WO2019192002A1 - 信息传输方法、终端设备和网络设备 - Google Patents

信息传输方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2019192002A1
WO2019192002A1 PCT/CN2018/082057 CN2018082057W WO2019192002A1 WO 2019192002 A1 WO2019192002 A1 WO 2019192002A1 CN 2018082057 W CN2018082057 W CN 2018082057W WO 2019192002 A1 WO2019192002 A1 WO 2019192002A1
Authority
WO
WIPO (PCT)
Prior art keywords
bits
bit
downlink control
terminal device
state
Prior art date
Application number
PCT/CN2018/082057
Other languages
English (en)
French (fr)
Inventor
费永强
余政
王宏
南方
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2018/082057 priority Critical patent/WO2019192002A1/zh
Publication of WO2019192002A1 publication Critical patent/WO2019192002A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications, and more specifically, to an information transmission method, a terminal device, and a network device.
  • MTC machine type communication
  • MTC physical downlink control channel MPDCCH
  • the present application provides an information transmission method, a terminal device, and a network device, which can reduce power consumption of the system.
  • the first aspect provides a method for transmitting information, including: receiving, by a terminal device, first downlink control information that is sent by a network device, where the first downlink control information includes a resource allocation field, where the resource allocation field includes consecutive Bits and consecutive 5 bits, the continuous The value of each bit is all 1, The number of the resource blocks included in the uplink bandwidth.
  • the terminal device determines, according to the consecutive five bits, that the terminal device does not send uplink data, and/or the terminal device does not monitor. Or not receiving the downlink control channel; and/or, the terminal device enters a dormant state, an idle state, a discontinuous reception state, an extended discontinuous reception state, or a power saving mode.
  • the resource allocation field in the first downlink control information includes For consecutive bits, resource allocation can be indicated by a method of "indicating narrowband index + resource allocation in narrowband". Where the narrowband index is composed of The upper 6 bits of consecutive bits indicate that the resource blocks in the narrow band are The lower 5 bits of consecutive bits are indicated. When high When the value of the bit bits is all 1, the partial state of the lower 5 bits is unused in all system bandwidths and in all terminal device upstream bandwidths. by using The unused state in the bit bit indicates that the terminal device does not send the uplink data, enters the idle state, or the like, and may enable the network device to correctly demodulate the uplink data sent by the terminal device or correctly receive the data of the last uplink data packet. In this case, the terminal device can stop sending uplink data or enter an idle state, etc., so that the terminal device can flexibly terminate the behavior of data transmission of the UE, thereby reducing resource overhead and reducing power consumption of the system.
  • the method when the terminal device is used to indicate that the terminal device does not send uplink data according to the first bit state, the method further includes: the terminal device is the second bit according to consecutive 5 bits. a state, determining that: the terminal device does not send uplink data, and the terminal device does not monitor or not receive the downlink control channel; and/or, the terminal device does not send uplink data, and the terminal device enters a dormant state. , idle state, discontinuous reception state, extended discontinuous reception state or energy saving mode.
  • the first bit state and the second bit state respectively indicate different situations, so that the terminal device can flexibly determine whether to stop transmitting the uplink data or stop transmitting the uplink data according to the first bit state or the second bit state. And stop monitoring the downlink control channel and the like.
  • the first bit state is any one of 10101, 10110, 10111, 11000, 11001, 11010, or 11111.
  • the first bit state and the second bit state are: ⁇ first bit state, second bit state ⁇ is ⁇ 10101, 11010 ⁇ or ⁇ 11010, 10101 ⁇ ; or ⁇ The first bit state, the second bit state ⁇ is ⁇ 10110, 11001 ⁇ or ⁇ 11001, 10110 ⁇ ; or ⁇ the first bit state, the second bit state ⁇ is ⁇ 10111, 11000 ⁇ or ⁇ 11000, 10111 ⁇ ; or ⁇ The first bit state, the second bit state ⁇ is ⁇ 11111, 11000 ⁇ or ⁇ 11000, 11111 ⁇ .
  • the Hamming distance is larger, the probability of false detection between the two code words due to bad channel conditions, transmission errors, and the like, the greater the probability that the error can be detected.
  • the three states of ⁇ 10101,11010 ⁇ , ⁇ 10110,11001 ⁇ and ⁇ 10111,11000 ⁇ have the largest Hamming distance, so that when one bit state is transmitted, the probability of being misdetected into another bit state is the smallest.
  • the average Hamming distance between the bit state "11111" and "00000” to "10100” is the largest. If "11111” is used instead of "10111", ⁇ 11111, 11000 ⁇ is used to indicate that the terminal device does not send the uplink. In the case of data or the like, the probability that the "indication of normal resource allocation" is erroneously transmitted and demodulated into a case where the terminal device does not transmit uplink data may become small, thereby increasing the reliability of data transmission.
  • the first downlink control information further includes an acknowledgement/negative acknowledgement indication field, where the acknowledgement/negative acknowledgement indication field is used to indicate uplink data corresponding to a hybrid automatic repeat request process. Positive or negative response; wherein the number of bits of the acknowledgement/negative acknowledgement indication field is equal to 1; or the number of bits of the acknowledgement/negative acknowledgement indication field is greater than 1, and each acknowledgement/negative acknowledgement indicator bit The values are the same.
  • the foregoing technical solution can make ACK/NACK feedback of all HARQ processes receiving conditions in one DCI, thereby reducing signaling overhead.
  • the terminal device may determine, by using an indication value of the downlink control information subframe repetition number indication field, a start time and an end time of the network device sending the first downlink control information, so that the terminal device may determine to stop sending the physical uplink shared channel. time.
  • the first downlink control information further includes a transmit power control command field, where the transmit power control command field is used to indicate that the terminal device sends the transmit power of the physical uplink shared channel.
  • the first type indication bit includes a bit corresponding to one or more of the following bits: a hybrid automatic repeat request process number indication field, a positive acknowledgement/negative response indication field, and a downlink control information subframe repetition number.
  • the indication field the transmit power control command field; the value of the reserved bit is all 1 or all 0s.
  • the second aspect provides an information transmission method, including: the network device sends first downlink control information to the terminal device, where the first downlink control information includes a resource allocation field, and the resource allocation field includes consecutive Bits and consecutive 5 bits, the continuous The value of each bit is all ones. Is the number of resource blocks included in the uplink bandwidth; when the consecutive 5 bits are in the first bit state: indicating that the terminal device does not send uplink data; and/or indicating uplink data sent by the terminal device And/or indicating that the terminal device does not monitor or not receive the downlink control channel; and/or, instructing the terminal device to enter a dormant state, an idle state, a discontinuous reception state, an extended discontinuous reception state, or a power saving mode .
  • the first bit state is 10101, 10110, 10111, 11000, 11001, 11010, or 11111.
  • the first bit state and the second bit state are: ⁇ first bit state, second bit state ⁇ is ⁇ 10101, 11010 ⁇ or ⁇ 11010, 10101 ⁇ ; or, ⁇ The first bit state, the second bit state ⁇ is ⁇ 10110, 11001 ⁇ or ⁇ 11001, 10110 ⁇ ; or, ⁇ the first bit state, the second bit state ⁇ is ⁇ 10111, 11000 ⁇ or ⁇ 11000, 10111 ⁇ ; , ⁇ first bit state, second bit state ⁇ is ⁇ 11111, 11000 ⁇ or ⁇ 11000, 11111 ⁇ .
  • the first bit state and the second bit state may be any one of 10101 and 11010, 11010 and 10101, 10110 and 11001, 11001 and 10110, 10111 and 11000, 11000 and 10111, 11111 and 11000.
  • the first downlink control information further includes a downlink control information subframe repetition number indication field, where the downlink control information sub-repetition frequency indication field is used to indicate a repetition quantity of the physical downlink control channel.
  • a third aspect provides a terminal device, including: a receiving unit, configured to receive, by a terminal device, first downlink control information that is sent by a network device, where the first downlink control information includes a resource allocation field, and the resource allocation field Including continuous Bits and consecutive 5 bits, the continuous The value of each bit is all 1, The number of resource blocks included in the uplink bandwidth, the determining unit, configured to determine, by the terminal device, that the terminal device does not send uplink data according to the consecutive five bits as the first bit state; and/or The terminal device does not monitor or receive the downlink control channel; and/or the terminal device enters a dormant state, an idle state, a discontinuous reception state, an extended discontinuous reception state, or a power saving mode.
  • the first bit state is used to indicate that the terminal device does not send uplink data
  • the method further includes: determining, by the terminal device, the second bit state according to the consecutive 5 bits, determining: The terminal device does not send uplink data, and the terminal device does not monitor or receive the downlink control channel; and/or the terminal device does not send uplink data, and the terminal device enters a dormant state, an idle state, and a non- Continuous reception state, extended discontinuous reception state or energy saving mode.
  • the first bit state is any one of 10101, 10110, 10111, 11000, 11001, 11010, or 11111.
  • the first bit state and the second bit state may be any one of 10101 and 11010, 11010 and 10101, 10110 and 11001, 11001 and 10110, 10111 and 11000, 11000 and 10111, 11111 and 11000.
  • the first downlink control information received by the receiving unit further includes a positive acknowledgement/negative response indication field, where the acknowledgement/negative response indication field is used to indicate that a hybrid automatic retransmission is performed.
  • An acknowledgement or a negative acknowledgement of the uplink data corresponding to the request process wherein the number of bits of the acknowledgement/negative acknowledgement indication field is equal to 1; or the number of bits of the acknowledgement/negative acknowledgement indication field is greater than 1, and each affirmative The response/negative response indication bits have the same value.
  • the first downlink control information received by the receiving unit further includes a positive acknowledgement/negative acknowledgement indication field, where the acknowledgement/negative response indication field includes N bits, and the N The bits are respectively used to indicate an acknowledgement or a negative acknowledgement for the uplink data corresponding to the N hybrid automatic repeat request processes, and N is an integer greater than one.
  • the first downlink control information received by the receiving unit further includes a downlink control information subframe repetition frequency indication field, where the downlink control information subframe repetition frequency indication field is used to indicate physical downlink The number of repetitions of the control channel.
  • the first downlink control information received by the receiving unit further includes a transmit power control command field, where the transmit power control command field is used to indicate that the terminal device sends a physical uplink shared channel. Transmit power.
  • the first type indication bit includes a bit corresponding to one or more of the following bits: a hybrid automatic repeat request process number indication field, a positive acknowledgement/negative response indication field, and a downlink control information subframe repetition number.
  • the indication field the physical uplink control channel transmission power control command field; the value of the reserved bit is all 1 or all 0s.
  • a fourth aspect provides a network device, including: a sending unit, configured to send, by a network device, first downlink control information to a terminal device, where the first downlink control information includes a resource allocation field, where the resource allocation field includes continuously Bits and consecutive 5 bits, the continuous The value of each bit is all ones. Is the number of resource blocks included in the uplink bandwidth; when the consecutive 5 bits are in the first bit state: indicating that the terminal device does not send uplink data; and/or indicating uplink data sent by the terminal device And/or indicating that the terminal device does not monitor or not receive the downlink control channel; and/or instructs the terminal device to enter a sleep state, an idle state, a discontinuous reception state, an extended discontinuous reception state, or a power saving mode.
  • the method when the first bit state only indicates that the terminal device does not send uplink data and/or a response to the uplink data sent by the terminal device, the method further includes: the consecutive five When the bit is in the second bit state: indicating that the terminal device does not send uplink data and/or indicates a response to the uplink data sent by the terminal device, and indicates that the terminal device does not monitor or does not receive the downlink control channel; and Or, indicating that the terminal device does not send uplink data and/or indicates a response to uplink data sent by the terminal device, and the terminal device enters a dormant state, an idle state, a discontinuous reception state, and an extended discontinuous reception. State or energy saving mode.
  • the first bit state is 10101, 10110, 10111, 11000, 11001, 11010, or 11111.
  • the first bit state and the second bit state may be any one of 10101 and 11010, 11010 and 10101, 10110 and 11001, 11001 and 10110, 10111 and 11000, 11000 and 10111, 11111 and 11000.
  • the first downlink control information sent by the sending unit further includes an acknowledgement/negative acknowledgement indication field, where the acknowledgement/negative response indication field is used to indicate that a hybrid automatic retransmission is performed.
  • An acknowledgement or a negative acknowledgement of the uplink data corresponding to the request process wherein the number of bits of the acknowledgement/negative acknowledgement indication field is equal to 1; or the number of bits of the acknowledgement/negative acknowledgement indication field is greater than 1, and each The values of the positive acknowledgement/negative acknowledgement indication bits are the same.
  • the first downlink control information sent by the sending unit further includes an acknowledgement/negative acknowledgement indication field, where the acknowledgement/negative response indication field includes N bits, and the N The bits are respectively used to indicate an acknowledgement or a negative acknowledgement for the uplink data corresponding to the N hybrid automatic repeat request processes, and N is an integer greater than one.
  • the first downlink control information that is sent by the sending unit further includes a downlink control information subframe repetition number indication field, where the downlink control information sub-repetition frequency indication field is used to indicate physical downlink control. The number of repetitions of the channel.
  • the first downlink control information that is sent by the sending unit further includes a transmit power control command field, where the transmit power control command field is used to indicate that the terminal device sends a physical uplink shared channel. Transmit power.
  • the bits of the first downlink control information sent by the sending unit except for the existing padding bits, the resource allocation field, and downlink control for distinguishing the scheduled physical downlink shared channel
  • the information format and the bits corresponding to the flag bits of the downlink control information format of the physical uplink shared channel are reserved, and the remaining bits are reserved bits; or, in addition to the padding bits present, the resource allocation field, the used to distinguish the scheduling
  • the downlink control information format of the physical downlink shared channel and the bit corresponding to the flag bit of the downlink control information format of the physical uplink shared channel and the first type of indication bits, the remaining bits are reserved bits;
  • the first type of indication bit includes a bit corresponding to one or more of the following bits: the hybrid automatic repeat request process number indication field, the acknowledgement/negative response indication field, the first The row control information subframe repetition number indication field, the physical uplink control channel transmission power control command field; the value of the reserved bit is all 1 or all 0s.
  • a terminal device comprising a processor for implementing the functions of the method described in the first aspect above.
  • the terminal device may also include a memory for storing program instructions and data.
  • the memory is coupled to the processor, and the processor can invoke and execute program instructions stored in the memory for implementing the functions of the method described in the first aspect above.
  • the terminal device may also include a transceiver (or receiver) for the terminal device to communicate with other devices.
  • a network device comprising a processor for implementing the functions in the method described in the second aspect above.
  • the network device can also include a memory for storing program instructions and data.
  • the memory is coupled to the processor, and the processor can invoke and execute program instructions stored in the memory for implementing the functions of the method described in the second aspect above.
  • the network device may also include a transceiver (or receiver) for the network device to communicate with other devices.
  • a computer storage medium comprising computer instructions which, when executed on a computer, cause the computer to perform any of the possible implementations of the first aspect or the first aspect described above The method described in the manner.
  • a computer storage medium comprising computer instructions which, when executed on a computer, cause the computer to perform any of the possible implementations of the second or second aspect described above The method described in the manner.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of the first aspect described above.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of the second aspect described above.
  • a system comprising the terminal device of the third aspect and the network device of the fourth aspect.
  • FIG. 1 is a diagram showing an example of a system of an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of an information transmission method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a resource allocation field in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of ending uplink transmission of a terminal device in advance when a network device performs continuous scheduling according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the terminal device stopping monitoring the physical downlink control channel when the network device correctly receives the last uplink data packet in the embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a network device according to an embodiment of the present application.
  • a terminal device may also be referred to as a UE, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, and a terminal.
  • a wireless communication device a user agent, or a user device.
  • the terminal device may be a staion (ST) in the WLAN, and may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, and a personal digital processing.
  • ST staion
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • handheld device with wireless communication capabilities computing device or other processing device connected to a wireless modem
  • computing device or other processing device connected to a wireless modem for example, a terminal device in a 5G network or Terminal equipment in a public land mobile network (PLMN) network in the future.
  • PLMN public land mobile network
  • the terminal device may also be a wearable device.
  • a wearable device which can also be called a wearable smart device, is a general term for applying wearable technology to intelligently design and wear wearable devices such as glasses, gloves, watches, clothing, and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are more than just a hardware device, but they also implement powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-size, non-reliable smartphones for full or partial functions, such as smart watches or smart glasses, and focus on only one type of application, and need to work with other devices such as smartphones. Use, such as various smart bracelets for smart signs monitoring, smart jewelry, etc.
  • the terminal device may also be a terminal device in an Internet of Things (IoT) system, and the IoT is an important component of future information technology development, and its main technical feature is to pass the article through the communication technology. Connected to the network to realize an intelligent network of human-machine interconnection and physical interconnection.
  • IoT Internet of Things
  • the terminal device may be a terminal device in an MTC class system
  • the MTC class system is an important component of the machine type communication system, and the main technical feature thereof is that the machine or the object is connected to the network through the communication technology, and Increase communication reliability and depth coverage and reduce energy consumption through narrowband communication and repeated data transmission.
  • the uplink bandwidth of an MTC-type terminal device can be only 1.4 MHz.
  • the energy consumption of the MTC type communication terminal can be reduced.
  • the network device may be a device for communicating with the mobile device, such as a network device, and the network device may be an access point (AP) in the WLAN, a base transceiver station (BTS) in GSM or CDMA, or may be A base station (nodeB, NB) in WCDMA may also be an evolved base station (evolutional node B, eNB or eNodeB) in LTE, or a relay station or an access point, or an in-vehicle device, a wearable device, and a network in a future 5G network.
  • AP access point
  • BTS base transceiver station
  • NB base station
  • WCDMA may also be an evolved base station (evolutional node B, eNB or eNodeB) in LTE, or a relay station or an access point, or an in-vehicle device, a wearable device, and a network in a future 5G network.
  • eNB evolved base station
  • eNodeB evolved base
  • the network device provides a service for the cell
  • the terminal device communicates with the network device by using a transmission resource (for example, a frequency domain resource, or a spectrum resource) used by the cell
  • a transmission resource for example, a frequency domain resource, or a spectrum resource
  • the cell may be a network device.
  • a base station corresponding to a cell
  • the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell, where the small cell may include: a metro cell, a micro cell, and a pico cell. (pico cell), femto cell, etc.
  • pico cell pico cell
  • femto cell etc.
  • multiple carriers can work at the same frequency on the carrier in the LTE system or the 5G system.
  • the concept of the carrier and the cell can be considered to be equivalent.
  • the carrier index of the secondary carrier and the cell ID of the secondary cell working in the secondary carrier are also carried. In this case, it can be considered.
  • the carrier is equivalent to the concept of a cell, for example, the UE accessing one carrier and accessing one cell are equivalent.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through a process, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as browsers, contacts, word processing software, and instant messaging software.
  • the specific structure of the execution body of the method provided by the embodiment of the present application is not particularly limited as long as the program of the code of the method provided by the embodiment of the present application can be run by using the program according to the present application.
  • the method can be communicated.
  • the execution body of the method provided by the embodiment of the present application may be a terminal device or a network device, or a function module that can call a program and execute a program in the terminal device or the network device.
  • a computer readable medium may include, but is not limited to, a magnetic storage device (eg, a hard disk, a floppy disk, or a magnetic tape, etc.), such as a compact disc (CD), a digital versatile disc (DVD). Etc.), smart cards and flash memory devices (eg, erasable programmable read-only memory (EPROM), cards, sticks or key drivers, etc.).
  • a magnetic storage device eg, a hard disk, a floppy disk, or a magnetic tape, etc.
  • CD compact disc
  • DVD digital versatile disc
  • Etc. smart cards and flash memory devices (eg, erasable programmable read-only memory (EPROM), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, without limitation, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • the system 100 includes a network device 102, which may include one antenna or multiple antennas, such as antennas 104, 106, 108, 110, 112, and 114. Additionally, network device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include multiple components related to signal transmission and reception (eg, processor, modulator, multiplexer) , demodulator, demultiplexer or antenna, etc.).
  • a network device 102 may include one antenna or multiple antennas, such as antennas 104, 106, 108, 110, 112, and 114.
  • network device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include multiple components related to signal transmission and reception (eg, processor, modulator, multiplexer) , demodulator, demultiplexer or antenna, etc.).
  • Network device 102 can communicate with a plurality of terminal devices, such as terminal device 116 and terminal device 122. However, it will be appreciated that network device 102 can communicate with any number of terminal devices similar to terminal device 116 or terminal device 122.
  • Terminal devices 116 and 122 may be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other suitable for communicating over wireless communication system 100. device.
  • terminal device 116 is in communication with antennas 112 and 114, wherein antennas 112 and 114 transmit information to terminal device 116 over a forward link (also referred to as downlink) 118 and through the reverse link (also Information referred to as uplink 120 receives information from terminal device 116.
  • terminal device 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to terminal device 122 over forward link 124 and receive information from terminal device 122 over reverse link 126.
  • forward link 118 can use a different frequency band than reverse link 120, and forward link 124 can be used differently than reverse link 126. Frequency band.
  • FDD frequency division duplex
  • the forward link 118 and the reverse link 120 can use a common frequency band, a forward link 124, and a reverse link.
  • Link 126 can use a common frequency band.
  • Each antenna (or set of antennas consisting of multiple antennas) and/or regions designed for communication is referred to as a sector of network device 102.
  • the antenna group can be designed to communicate with terminal devices in sectors of the network device 102 coverage area.
  • the network device can transmit signals to all of the terminal devices in its corresponding sector through a single antenna or multiple antenna transmit diversity.
  • the transmit antenna of network device 102 may also utilize beamforming to improve the signal to noise ratio of forward links 118 and 124.
  • the network device 102 utilizes beamforming to transmit signals to the randomly dispersed terminal devices 116 and 122 in the associated coverage area, as compared to the manner in which the network device transmits signals to all of its terminal devices through single antenna or multi-antenna transmit diversity, Mobile devices in neighboring cells are subject to less interference.
  • network device 102, terminal device 116, or terminal device 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
  • the wireless communication transmitting device can encode the data for transmission.
  • the wireless communication transmitting device may acquire (eg, generate, receive from other communication devices, or store in memory, etc.) a certain number of data bits to be transmitted over the channel to the wireless communication receiving device.
  • Such data bits may be included in a transport block (or multiple transport blocks) of data that may be segmented to produce multiple code blocks.
  • FIG. 1 is only one possible example of a scenario in which the embodiments of the present application can be applied, and does not constitute a limitation on the embodiments of the present application.
  • the technical solution of the embodiment of the present application can be easily extended to a communication scenario such as a device-to-device (D2D) and a vehicle-to-vehicular (V2V).
  • D2D device-to-device
  • V2V vehicle-to-vehicular
  • the technical solution provided by the embodiment of the present application is described by using the terminal device as the UE and the network device as the base station, but the application is not limited thereto.
  • the information transmission method 200 of the embodiment of the present application will be described in detail below with reference to FIG. 2 .
  • 2 is a schematic interaction diagram of an information transmission method according to an embodiment of the present application.
  • the method of FIG. 2 can include 210 and 220.
  • the format of the first DCI used by the base station to schedule uplink transmission may be DCI format 6-0A.
  • the first DCI may include a resource allocation field, which may include continuous Bits and 5 consecutive bits. Among them, the continuous The bits may be used to indicate a narrowband allocated to the UE for uplink transmission, and the consecutive 5 bits may be used to indicate a resource block (RB) allocated to the UE for uplink transmission in the narrowband. The number of RBs included in the upstream bandwidth.
  • a resource allocation field which may include continuous Bits and 5 consecutive bits. Among them, the continuous The bits may be used to indicate a narrowband allocated to the UE for uplink transmission, and the consecutive 5 bits may be used to indicate a resource block (RB) allocated to the UE for uplink transmission in the narrowband. The number of RBs included in the upstream bandwidth.
  • the resource allocation field may include 8 consecutive bits as shown in FIG. 3(a).
  • the k bits may be used to indicate subcarrier level resource allocation in one RB, or used to indicate a resource unit (RU) number, or used to indicate whether to indicate subcarrier level resource allocation. No restrictions.
  • the The values in consecutive bits are all ones.
  • the value of the resource allocation field has a total of 10 bits, and the resource allocation field may be represented as "yy111xxxxx", where "x" is a bit occupied by consecutive 5 bits, and "y” is a bit occupied by k bits; "x" and "y” can be either "0" or "1".
  • the resource allocation field is high. High in position The value of the bit bits is all ones.
  • the resource allocation field is high.
  • the value of the bit bits is all ones.
  • the value of the resource allocation field is 10 bits, and the resource allocation field may be represented as "111yyxxxxx", where "x" is a bit occupied by consecutive 5 bits, and "y” is a bit occupied by k bits; "x" and “y” can be either "0" or "1".
  • the names of the resource allocation fields are not limited in the embodiment of the present application, that is, they may also be expressed as other names.
  • the resource allocation may also be expressed as a resource block allocation
  • the resource allocation field may also be represented as a resource block allocation field; for example, the field may also be expressed as a domain, and the resource allocation field may also be expressed as a resource allocation domain.
  • each of the values corresponds to a resource allocation of a frequency domain.
  • the consecutive 5 bits are in a first bit state, and may be used to indicate at least one of the following situations:
  • the response of the base station to the uplink data sent by the UE may include an acknowledgement (ACK)/Negative Acknowledgment (NACK).
  • ACK acknowledgement
  • NACK Negative Acknowledgment
  • the response of the base station to the uplink data sent by the UE is ACK, it indicates that the base station has correctly received or demodulated the uplink data sent by the UE to the base station.
  • the response of the base station to the uplink data sent by the UE is NACK, it indicates that the base station does not correctly receive or demodulate the uplink data sent by the UE to the base station.
  • the UE does not monitor or receive the second DCI, and/or the downlink control channel.
  • the format of the second DCI may be the same as the format of the first DCI.
  • the DCI format used by the second DCI may be DCI format 6-0A or DCI format 6-1A.
  • the downlink control channel may be a physical downlink control channel (PDCCH), an enhanced physical downlink control channel (EPDCCH), an MPDCCH, and a physical sidelink control channel (physical sidelink control channel).
  • PDCH physical downlink control channel
  • EPDCCH enhanced physical downlink control channel
  • MPDCCH MPDCCH
  • physical sidelink control channel physical sidelink control channel
  • the channel, the PSCCH, or the narrowband physical downlink control channel (NPDCCH), and the like are not limited in this embodiment of the present application.
  • not receiving the downlink control channel may refer to not receiving data or information carried on the MPDCCH, where the data or information may refer to data or information encoded by the MPDCCH. Not receiving the downlink control channel may also mean not searching for the MPDCCH in the user-specific search space or the common search space.
  • the period of the second DCI to schedule the physical uplink data channel or the physical downlink data channel may be a transmission time interval (TTI) or a short transmission time tnterval (sTTI).
  • TTI transmission time interval
  • sTTI short transmission time tnterval
  • the specific scheduling process is that the base station sends an MPDCCH to the UE, and the MPDCCH can carry scheduling information for scheduling a physical uplink shared channel (PUSCH) in the second DCI format, where the scheduling information includes, for example, resource allocation information, modulation coding. Control information such as mode.
  • the UE monitors the MPDCCH, and performs uplink data channel transmission according to the monitored scheduling information carried in the MPDCCH.
  • the scheduling information carried in the MPDCCH may indicate uplink data channel transmission with a TTI length of 1 ms or a TTI length of less than 1 ms.
  • the UE does not monitor or does not receive the second DCI, and/or the downlink control channel may be at least one of the following: the UE does not monitor the second DCI, the UE does not receive the second DCI, and the UE does not monitor the downlink control channel.
  • the UE does not receive the downlink control channel, the UE does not monitor the second DCI and the downlink control channel, and the UE does not receive the second DCI and the downlink control channel.
  • the UE enters any one of a sleep state, an idle state, a discontinuous reception state, an extended discontinuous reception state, or a power saving mode.
  • the UE does not monitor/not receive the second DCI, and/or the MPDCCH before entering the sleep state. After the UE enters the connected state, the UE may continue to monitor the second DCI, and/or the MPDCCH.
  • the UE does not monitor or does not receive the second DCI, and/or the MPDCCH may not be monitored or received before the UE enters a dormant state, an idle state, a discontinuous reception state, an extended discontinuous reception state, or a power saving mode.
  • Second DCI, and/or, MPDCCH When the first DCI indicates that the UE does not monitor or does not receive the second DCI, and/or MPDCCH, the UE does not monitor or does not receive the second DCI, and/or the MPDCCH, and then may enter any of the above states; subsequently, if The UE reactivates or wakes up from this state, and the UE can monitor or receive the second DCI, and/or MPDCCH.
  • the UE may enter other states in addition to any of the above-mentioned sleep state, idle state, discontinuous reception state, extended discontinuous reception state, or power-saving mode, which is not used in this embodiment of the present application. Specifically limited.
  • the first bit state may be preset to any one of “10101”, “10110”, “10111”, “11000”, “11001”, “11010” or “11111”.
  • bit status of the consecutive 5 bits “00000” to “10100” may be used in the second DCI to indicate resource allocation.
  • the first bit state in the first DCI is "10101" to "11111", so that the network device and the terminal device do not confuse the first DCI and the second DCI.
  • the system can preset the first bit state to "11111".
  • the bit status of consecutive 5 bits of the resource allocation field in the first DCI transmitted by the base station to the UE is "11111".
  • the number of RBs in the uplink bandwidth is 50, and the number of bits in the resource allocation field is Time, The value is 3, High continuous bits
  • the bit status of the bit bit is "111”
  • the resource allocation field in the first DCI The status of consecutive bits is "11111111”.
  • the resource allocation field when the number of bits in the resource allocation field is And the k bits are the high k bits in the resource allocation field, and when k is 2, the resource allocation field has 10 bits, the resource allocation field may be represented as “yy11111111”, where “y” may be “0”. It can also be "1".
  • the k-bit status may be used to indicate resource allocation at the subcarrier level or resource allocation of the RB granularity.
  • the resource allocation field may be represented as “0011111111”.
  • the first bit state is only used to indicate case 1: the UE does not send uplink data, and/or, in response to the uplink data sent by the base station to the UE, the 5 consecutive bits may be the first
  • the second bit state can be used to indicate case 2:
  • the UE does not send the uplink data and/or the base station responds to the uplink data sent by the UE, and the UE does not monitor/not receive the second DCI and/or the MPDCCH, and/or the UE enters the dormant state, the idle state, and the disconnected receiving state. , extended discontinuous reception state or energy saving mode.
  • the first bit state and the second bit state may be ⁇ 10101, 11010 ⁇ or ⁇ 11010, 10101 ⁇ .
  • the first bit state and the second bit state may be ⁇ 10110, 11001 ⁇ or ⁇ 11001, 10110 ⁇ .
  • the first bit state and the second bit state may be ⁇ 10111, 11000 ⁇ or ⁇ 11000, 10111 ⁇ .
  • the first bit state and the second bit state may be ⁇ 11111, 11000 ⁇ or ⁇ 11000, 11111 ⁇ .
  • the Hamming distance represents the number of different characters between two code words of the same length. For example, if the two code words are "11111" and "11110" respectively, the Hamming distance is 1; if the two code words are "10101" and "11010", respectively, the Hamming distance is 4.
  • the ⁇ 10101, 11010 ⁇ , ⁇ 10110, 11001 ⁇ and ⁇ 10111, 11000 ⁇ three bit state pairs have the largest Hamming distance, so that when one of the bit states is transmitted, the probability of being misdetected to another bit state is the smallest.
  • Table 1 gives the Hamming distance between the bit states “10101” to “11111” and “00000” to “10100”. Among them, “00000” to “10100” can be used to indicate resource allocation. It can be seen from Table 1 that the average Hamming distance between the bit state “11111” and “00000” to “10100” is the largest. If “11111” is used instead of “10111”, the condition 1 is indicated using ⁇ 11111, 11000 ⁇ . And Case 2, the probability that "indicating normal resource allocation” is erroneously transmitted and demodulated into Case 1 and Case 2 can be made small, thereby increasing the reliability of data transmission.
  • the UE determines at least one of the following according to consecutive 5 bits as the first bit state: (a) the UE does not send uplink data; (b) the UE does not monitor or does not receive the second DCI, and/ Or, the downlink control channel; (c) the UE enters any one of a sleep state, an idle state, a discontinuous reception state, an extended discontinuous reception state, or a power saving mode.
  • the UE may determine the at least one condition according to the first bit status.
  • the first bit state is preset to “10110”, and when the UE receives the first DCI, the resource allocation field in the first DCI is consecutive. If the first bit status indicates that the UE stops transmitting uplink data and does not monitor the second DCI, the UE may stop transmitting uplink data to the base station, where the number of bits is all 1 and the consecutive 5 bits are the first bit state “10110”. And not monitoring the second DCI in the MPDCCH that schedules the UE.
  • the UE may determine at least one condition according to whether the uplink data sent by the UE is the last uplink data in an uplink transmission. For example, if the uplink data sent by the UE is not the last uplink data, the UE may determine that the first bit status indicates that (a) the UE does not send uplink data; if the uplink data sent by the UE is the last uplink data, the UE may determine The first bit status indication (a) the UE does not transmit uplink data, and (b) the UE does not monitor or does not receive the second DCI, and/or the downlink control channel, and (c) the UE enters a dormant state, an idle state, and is discontinuous Any one of a receiving state, an extended discontinuous receiving state, or a power saving mode.
  • the UE may determine the foregoing at least one of the foregoing manners in other manners, which is not specifically limited in this embodiment of the present application.
  • the resource allocation field in the first downlink control information includes consecutive The number of bits and consecutive 5 bits, resource allocation can be indicated by the method of "indicating narrowband index + resource allocation in narrowband". Where the narrowband index is continuous The bits indicate that the resource blocks in the narrow band are indicated by consecutive 5 bits. When continuous When the value of each bit is all 1, the partial state of five consecutive bits is unused in all system bandwidths and in all terminal device upstream bandwidths. by using The unused state in the bit bit indicates that the UE does not send the uplink data, enters the idle state, or the like, and may be performed in the case that the base station has correctly demodulated the uplink data sent by the UE or has correctly received the data of the last uplink data packet.
  • the UE can stop sending uplink data or enter an idle state, etc., so that the base station can flexibly terminate the behavior of data transmission of the UE, etc., in addition to the continuous scheduling of the base station, thereby reducing resource overhead and reducing system power consumption.
  • the continuous The first bit state can be used to indicate the above (a), (b) or (c) even if the bits are not all ones.
  • the number of bits is all ones, so that the above solution is applicable to both a terminal device with an uplink bandwidth capability of 1.4 MHz and a terminal device with a bandwidth of 5 MHz, which increases the applicability of the solution and reduces the implementation complexity of the terminal device.
  • the first DCI schedules the UE to perform uplink data transmission, and the transmission is repeatedly transmitted 1024 times.
  • the base station After receiving the first 256 transmissions, the base station correctly demodulates the uplink data of the UE, and the base station does not continuously perform the UE. Dispatch.
  • the continuous scheduling may be that the base station schedules the UE within a short period of time before, during, or after the end of the UE transmission.
  • the DCI sent by the base station to the UE may indicate that the UE stops transmitting the uplink data, and the UE does not repeatedly send the uplink data to the base station. Therefore, the UE can end the uplink transmission in advance.
  • the UE performs uplink data transmission, and the transmission is repeatedly transmitted 1024 times. After receiving the first 256 transmissions, the base station has correctly received the last uplink data packet, and the DCI sent by the base station to the UE may indicate that the UE stops. When the uplink data is sent and the UE is instructed to stop monitoring the MPDCCH, the UE does not send the uplink data to the base station, and stops the MPDCCH.
  • the field included in the first DCI may be the same as the field included in the second DCI, or may be different from the field included in the second DCI. , or have a different name. This embodiment of the present application does not limit this.
  • the number of bits of the first DCI is the same as the number of bits of the second DCI, and the bits of the first DCI correspond to the bits of the second DCI.
  • the format of the first DCI is DCI format 6-0A.
  • the use of each field is as shown in Table 3 - Table 11.
  • the system bandwidth is 5MHz, and the number of bits in the resource allocation field is For example, at this time
  • the value of the resource allocation field is 7 bits, and the value of the upper 2 bits is 11; the first bit state is "11111"; if the first bit state only indicates that the UE does not send uplink data and/or the base station to the UE The response of the transmitted uplink data, the second bit state is "11000".
  • the resource allocation indication field is "1111111".
  • the remaining bits are reserved bits.
  • a reserved bit may indicate that the bit is in an inactive state.
  • the value of the reserved bits is all 1 or all 0s.
  • the bit value may be "1111” or "0000".
  • the name of the reserved bit is not limited in the embodiment of the present application, that is, the reserved bit may also be referred to as another name.
  • a reserved bit can also be called a reserve bit.
  • the value of the bit of the first DCI format 6-0/6-1A bit field is 0, it indicates that the format of the first DCI is DCI format 6-0A.
  • the value of the bit of the first DCI format 6-0/6-1A bit field is 1, it indicates that the format of the first DCI is DCI format 6-1A.
  • the remaining bits are reserved bits.
  • the padding bits may be used to extend the number of bits included in the first DCI.
  • the number of bits included in the first DCI can be made to reach a target value.
  • padding the bit may cause the number of bits included in the first DCI to reach the number of bits in the DCI format 6-1A.
  • the value of the bit of the DCI format 6-0/6-1A distinguishing bit field is "0", indicating that the format of the first DCI is DCI format 6-0A.
  • the first DCI in the solution 1-1 may further include a TPC command indication field, where the TPC command indication field may be used to indicate that the UE sends the transmit power of the physical uplink shared channel (PUSCH).
  • PUSCH physical uplink shared channel
  • the first DCI may include a PUSCH transmit power control command field only when the UE configures the cumulative transmit power control.
  • the accumulated transmit power may indicate that the UE performs power accumulation for the UE to determine the transmit power used in the subsequent scheduling.
  • the base station can be adjusted to adjust the UE's transmit power more quickly and flexibly.
  • the base station can increase the transmission power of the UE more quickly.
  • the first DCI in the solution 1-1 may further include a DCI subframe repetition number indication field, where the DCI subframe repetition number indication field is used to indicate the number of repetitions of the physical downlink control channel.
  • the UE may determine, according to the indication value of the DCI subframe repetition number indication field, that the base station sends the first DCI start time and the end time, so that the UE may determine the time to stop transmitting the PUSCH.
  • the first DCI may be used to instruct the UE to stop the current arbitrary PUSCH transmission, that is, the UE does not send the uplink data to the base station without performing any ACK/NACK feedback.
  • the first DCI may also be used to instruct the UE to stop the current arbitrary PUSCH transmission, and indicate that the ACK or the feedback is received for any HARQ process/all HARQ processes/last HARQ processes of the UE.
  • the number of bits of the ACK/NACK indication field may be equal to one.
  • the number of bits of the ACK/NACK indication field may be greater than one.
  • an ACK or NACK may be indicated using an NDI field. That is to say, the value of the bit in the NDI field can be "0" or "1".
  • the bit of the NDI field in the first DCI is only used as an ACK or NACK feedback, and the scope of the embodiment of the present application should not be limited.
  • the bits of the frequency hopping flag bits, the bits of the modulation and coding mode field, or other bits in the first DCI may also be used to indicate ACK or NACK feedback.
  • the ACK/NACK when the ACK/NACK is indicated, if the number of bits of the current field is greater than 1, the ACK/NACK may be indicated by using any one bit in the current field.
  • any one of the first bit, the second bit, or the third bit of the modulation and coding mode field may indicate ACK/NACK.
  • the first DCI is included in addition to the padding bit, the resource allocation field, the bit corresponding to the DCI format 6-0A/6-1A distinguishing bit, and the first type indicator bit.
  • the remaining bits are reserved bits;
  • the first type of indication bit includes a bit corresponding to one or more of the following fields: a DCI subframe repetition number indication field, an ACK/NACK indication field, and a TPC command field.
  • the first DCI may instruct the UE to stop PUSCH transmission, and the first DCI performs ACK/NACK feedback on any or all HARQ processes of the UE.
  • the first DCI may also be used to instruct the UE to stop the current arbitrary PUSCH transmission, and indicate an ACK/NACK for any HARQ process/all HARQ processes/last HARQ processes of the UE.
  • the values of the bits of the field used to indicate ACK/NACK feedback for any/all HARQ processes may be the same.
  • the value of the bit of the field indicating the ACK/NACK feedback for any/all HARQ processes is 1.
  • the reliability of the uplink data feedback corresponding to the HARQ process by the base station can be increased.
  • the first DCI may be used to instruct the UE to stop the current arbitrary PUSCH transmission, and indicate an ACK/NACK for any HARQ process/all HARQ processes/last HARQ processes of the UE.
  • the first DCI in the solution 1-4 may further include a HARQ process number indication field, where the HARQ process number indication field is used to indicate the HARQ process corresponding to the uplink data sent by the UE to the base station.
  • the first type of indication bit may include a bit corresponding to one or more of the following fields: a first DCI subframe repetition number indication field, a HARQ process number indication field, and a TPC command field.
  • the first DCI may instruct the UE to stop the PUSCH transmission corresponding to the current HARQ process without performing any ACK/NACK feedback.
  • the first DCI may also indicate that the base station performs ACK feedback on the HARQ process of the UE, so that the UE stops the PUSCH transmission corresponding to the HARQ process.
  • the first type of indication bit may include a bit corresponding to one or more of the following fields: a first DCI subframe repetition number indication field, a HARQ process number indication field, an ACK/NACK indication field, and a TPC command field.
  • the first DCI may indicate that the UE stops the PUSCH transmission, and the first DCI may further instruct the base station to perform ACK/NACK feedback on the HARQ process of the UE.
  • the fields indicating ACK/NACK feedback for any/all HARQ processes may not include a TPC command field, and/or a DCI subframe repetition number field.
  • the first DCI may indicate that the UE stops the PUSCH transmission, and the first DCI may also instruct the base station to perform ACK/NACK feedback on the HARQ process of the UE.
  • N is an integer greater than 1.
  • a total of N bits of any of the multiple fields in the first DCI may be used to indicate ACK/NACK feedback of uplink data corresponding to the N HARQ processes.
  • N can be equal to 8.
  • N may also be equal to 16 or other values, which is not limited in this application.
  • the number of bits of the frequency hopping flag bit field in the first DCI is 1, which can be used to indicate the ACK/NACK of the HARQ process 0; the number of bits in the adjustment coding mode field is 4, which can be used to indicate the HARQ process.
  • the foregoing technical solution can make ACK/NACK feedback for all HARQ processes receiving in one DCI, thereby reducing signaling overhead.
  • the first DCI may instruct the UE to stop the PUSCH transmission, and the first DCI may also instruct the base station to perform ACK/NACK feedback on the multiple HARQ processes of the UE.
  • the resource allocation indication field in the first DCI in the scheme 2-1 is “1111000”, and is used to indicate that the UE does not send uplink data and/or the base station responds to the uplink data sent by the UE. And, the UE does not monitor/not receive the second DCI and/or MPDCCH, and/or the UE enters a sleep state, an idle state, a disconnected reception state, an extended discontinuous reception state, or an energy saving mode.
  • the resource allocation indication field in the first DCI may be predefined as “1111111” for indicating the same information.
  • the ACK/NACK indication field is not included in the first DCI.
  • the first DCI may also instruct the base station to feed back an ACK to any HARQ process of the UE.
  • the base station may feed back an ACK to any HARQ process of the UE.
  • the base station may feed back an ACK to all HARQ processes of the UE.
  • the base station may feed back an ACK to the last HARQ process of the UE.
  • the first DCI may indicate that the UE does not monitor or not receive the second DCI and/or the MPDCCH, or the UE enters a dormant state, an idle state, a discontinuous reception state, and an extended discontinuous reception. State or power saving mode, and no uplink data is sent, and an ACK is fed back to the indicated HARQ process.
  • the resource allocation indication field in the first DCI may be predefined as “1111111” for indicating the same information.
  • the base station may send a third DCI to the UE.
  • the format of the third DCI may be DCI format 6-0B.
  • the modulation and coding mode field in the third DCI includes 4 bits, and when the 4 bits are in the third bit state, it may be used to indicate: (a) the UE does not send uplink data; (b) the base station to the UE (c) the UE does not monitor or does not receive the second DCI, and/or the downlink control channel; (d) the UE enters a dormant state, an idle state, a discontinuous reception state, and an extended discontinuous reception state. Or any of the energy saving modes.
  • the third bit state may be any one of "1011”, “1100”, “1100”, or "1111".
  • a fourth bit state may also be included for indicating (a) and/or (b), and (c) and/or (d).
  • the fourth bit state is "1100".
  • the fourth bit state is "1011”.
  • the fourth bit state is "1111".
  • the fourth bit state is "1100”.
  • the terminal device may include a hardware structure and/or a software module, a hardware structure, a software module, or a hardware structure.
  • the software modules are added to implement the above functions.
  • One of the above functions is performed in a hardware structure, a software module, or a hardware structure plus a software module, depending on the specific application and design constraints of the technical solution.
  • the receiving unit 610 is configured to receive a first DCI, where the first DCI includes a resource allocation field, and the resource allocation field includes consecutive Bits and consecutive 5 bits, continuous The value of each bit is all 1, Is the number of resource blocks included in the upstream bandwidth.
  • the determining unit 620 is configured to determine, according to the first five bit status, that the consecutive five bits in the first DCI received by the receiving unit 610 are: not to send uplink data; and/or not to monitor or not to receive the downlink control channel; / or, enter the sleep state, idle state, discontinuous reception state, extended discontinuous reception state or energy saving mode.
  • the first bit state is used to indicate that the uplink data is not sent
  • the method further includes: determining, according to the consecutive five bits, that the uplink data is not sent, and not receiving or receiving the downlink control channel; And/or, the uplink data is not sent, and enters a sleep state, an idle state, a discontinuous reception state, an extended discontinuous reception state, or a power saving mode.
  • the first bit state is any one of 10101, 10110, 10111, 11000, 11001, 11010 or 11111.
  • the first bit state and the second bit state are: ⁇ first bit state, second bit state ⁇ is ⁇ 10101, 11010 ⁇ or ⁇ 11010, 10101 ⁇ ; or ⁇ first bit state,
  • the two-bit state ⁇ is ⁇ 10110, 11001 ⁇ or ⁇ 11001, 10110 ⁇ ; or ⁇ the first bit state, the second bit state ⁇ is ⁇ 10111, 11000 ⁇ or ⁇ 11000, 10111 ⁇ ; or ⁇ the first bit state, the first The two-bit state ⁇ is ⁇ 11111, 11000 ⁇ or ⁇ 11000, 11111 ⁇ .
  • the first DCI received by the receiving unit 610 further includes an ACK/NACK indication field, where the ACK/NACK indication field is used to indicate an acknowledgement or a negative response to the uplink data corresponding to one HARQ process; wherein the ACK/ The number of bits of the NACK indication field is equal to 1; or the number of bits of the ACK/NACK indication field is greater than 1, and the value of each ACK/NACK indication bit is the same.
  • the first DCI received by the receiving unit 610 further includes an ACK/NACK indication field, where the ACK/NACK indication field includes N bits, where the N bits are used to indicate an ACK for uplink data corresponding to the N HARQ processes.
  • N is an integer greater than one.
  • the first DCI received by the receiving unit 610 further includes a DCI subframe repetition number indication field, where the DCI subframe repetition number indication field is used to indicate the number of repetitions of the MPDCCH.
  • the first DCI received by the receiving unit 610 further includes a TPC command field, where the TPC command field is used to indicate a transmit power of the PUCCH.
  • the first type of indication bit includes a bit corresponding to one or more of the following bits: a HARQ process number indication field, an ACK/NACK indication field, a DCI subframe repetition number indication field, and a TPC command field; the reserved bit The values are all 1 or all 0s.
  • the terminal device 700 can also include a memory 730 for storing program instructions and/or data.
  • Memory 730 is coupled to processor 720.
  • Processor 720 may operate in conjunction with memory 730.
  • Processor 720 may execute program instructions stored in memory 730.
  • the terminal device 700 may further include a transceiver 710 (which may be replaced with a receiver and a transmitter, a function implemented by the receiver) (for example, a receiving unit) for communicating with the other device through the transmission medium, thereby being used for the terminal device
  • the devices in 700 can communicate with other devices.
  • the processor 720 uses the transceiver 710 to send and receive signaling, and is used to implement the method performed by the terminal device in the method embodiment of the present application.
  • connection medium between the above transceiver 710, the processor 720, and the memory 730 is not limited in the embodiment of the present application.
  • the memory 730, the processor 720, and the transceiver 710 are connected by a bus 740 in FIG. 7.
  • the bus is indicated by a thick line in FIG. 7, and the connection manner between other components is only schematically illustrated. , not limited to.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 7, but it does not mean that there is only one bus or one type of bus.
  • FIG. 8 is a schematic block diagram of a network device according to an embodiment of the present application. It should be understood that the network device 800 shown in FIG. 8 is only an example, and the network device 800 of the embodiment of the present application may further include other modules or units, or include modules similar to those of the modules in FIG. 8, or may not include All the modules in Figure 8.
  • the method further includes: when the consecutive 5 bits are in the second bit state, indicating the terminal device Not transmitting the uplink data and/or the response to the uplink data sent by the terminal device, and the terminal device does not monitor or receive the downlink control channel; and/or the terminal device does not send the uplink data, and the terminal device enters the sleep state. , idle state, discontinuous reception state, extended discontinuous reception state or energy saving mode.
  • the first bit state is any one of 10101, 10110, 10111, 11000, 11001, 11010 or 11111.
  • the first DCI sent by the sending unit 810 further includes an ACK/NACK indication field, where the ACK/NACK indication field is used to indicate an acknowledgement or a negative response to the uplink data corresponding to one HARQ process; wherein the ACK/ The number of bits of the NACK indication field is equal to 1; or the number of bits of the ACK/NACK indication field is greater than 1, and the value of each ACK/NACK indication bit is the same.
  • the first DCI sent by the sending unit 810 further includes an ACK/NACK indication field, where the ACK/NACK indication field includes N bits, where the N bits are used to indicate an ACK for uplink data corresponding to the N HARQ processes.
  • N is an integer greater than one.
  • the first DCI sent by the sending unit 810 further includes a DCI subframe repetition number indication field, where the DCI subframe repetition number indication field is used to indicate the number of repetitions of the MPDCCH.
  • the first DCI sent by the sending unit 810 further includes a TPC command field, where the TPC command field is used to indicate that the terminal device sends the transmit power of the PUCCH.
  • the remaining bits are reserved bits; or bits corresponding to the existing padding bits, resource allocation fields, DCI format for distinguishing the physical downlink shared channel, and the flag bits of the DCI format for scheduling the physical uplink shared channel.
  • the remaining bits are reserved bits;
  • the first type of indication bit includes a bit corresponding to one or more of the following bits: a HARQ process number indication field, an ACK/NACK indication field, a DCI subframe repetition number indication field, and a TPC command field; the reserved bit The values are all 1 or all 0s.
  • the network device 900 can also include a memory 930 for storing program instructions and/or data.
  • Memory 930 is coupled to processor 920.
  • Processor 920 may operate in conjunction with memory 930.
  • Processor 920 may execute program instructions stored in memory 930.
  • connection medium between the above transceiver 910, the processor 920, and the memory 930 is not limited in the embodiment of the present application.
  • the memory 930, the processor 920, and the transceiver 910 are connected by a bus 940 in FIG. 9.
  • the bus is indicated by a thick line in FIG. 9, and the connection manner between other components is only schematically illustrated. , not limited to.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 9, but it does not mean that there is only one bus or one type of bus.
  • the embodiment of the present application further provides a communication system, including at least one network device and at least one terminal device mentioned in the foregoing embodiments of the present application.
  • the processor may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits (applications). Specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (ROMM), an erasable programmable read only memory (erasable PROM, EPROM), or an electrical Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory can be a random access memory (RAM) that acts as an external cache.
  • RAM random access memory
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic randomness synchronous dynamic randomness.
  • Synchronous DRAM SDRAM
  • DDR SDRAM double data rate synchronous DRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory Take memory
  • DR RAM direct memory bus random access memory
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the method provided by the embodiment of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, a network device, a user device, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server or data center via wired (eg coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a digital video disc (DVD)), or a semiconductor medium (eg, an SSD) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a digital video disc (DVD)
  • a semiconductor medium eg, an SSD
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Abstract

本申请提供了一种信息传输的方法、终端设备和网络设备,其中,该方法包括:终端设备接收第一下行控制信息,所述第一下行控制信息包括资源分配字段,所述资源分配字段包括连续的 (I) 个比特和连续的5个比特,所述连续的 (I) 个比特的值全为1;所述终端设备根据所述连续的5个比特为第一比特状态,确定:所述终端设备不发送上行数据;和/或,所述终端设备不监测或者不接收下行控制信道;和/或,所述终端设备进入休眠态、空闲态、非连续接收态、延长的非连续接收态或节能模式。通过本申请实施例提供的信息传输方法、终端设备和网络设备,可以降低系统的功耗。本申请实施例提供的方法和设备提高了网络的覆盖能力,可以应用于物联网,例如MTC、IoT、LTE-M、M2M等。

Description

信息传输方法、终端设备和网络设备 技术领域
本申请涉及通信领域,并且更具体地,设计一种信息传输方法、终端设备和网络设备。
背景技术
现有的通信系统可以支持机器类型通信(machine type communication,MTC)。在终端设备与网络设备的数据传输过程中,为了保证MTC的终端设备的传输正确率和覆盖范围,终端设备的上行数据可以重复传输。
但是,网络设备可能在所有重复次数传输完之前就已正确解调终端设备发送的上行数据,但终端设备仍将继续发送该上行数据直至指示的重复次数,这样会增大系统的功耗。
此外,对于终端设备的一次上行传输中的最后一个数据包,由于在它之后没有任何新数据需要传输,终端设备无法获知该数据是否被正确接收,UE将会持续监测机器类型通信的物理下行控制信道(MTC physical downlink control channel,MPDCCH)。在网络设备已正确接收到最后一个数据包中的数据的情况下,终端设备的监测增大了系统的功耗。
发明内容
本申请提供一种信息传输方法、终端设备和网络设备,可以降低系统的功耗。
第一方面,提供了一种信息传输方法,包括:终端设备接收网络设备发送的第一下行控制信息,所述第一下行控制信息包括资源分配字段,所述资源分配字段包括连续的
Figure PCTCN2018082057-appb-000001
个比特和连续的5个比特,所述连续的
Figure PCTCN2018082057-appb-000002
个比特的值全为1,
Figure PCTCN2018082057-appb-000003
是上行带宽中包含的资源块个数;所述终端设备根据所述连续的5个比特为第一比特状态,确定:所述终端设备不发送上行数据;和/或,所述终端设备不监测或者不接收下行控制信道;和/或,所述终端设备进入休眠态、空闲态、非连续接收态、延长的非连续接收态或节能模式。
本申请实施例,第一下行控制信息中资源分配字段包括
Figure PCTCN2018082057-appb-000004
个连续的比特,资源分配可以通过“指示窄带索引+窄带中的资源分配”的方法进行指示。其中,窄带的索引由
Figure PCTCN2018082057-appb-000005
个连续的比特的高6位比特指示,窄带中的资源块由
Figure PCTCN2018082057-appb-000006
个连续的比特的低5位比特指示。当高
Figure PCTCN2018082057-appb-000007
位比特的值全为1时,低5位比特的部分状态在所有系统带宽、所有终端设备上行带宽中都是未使用的。通过使用
Figure PCTCN2018082057-appb-000008
位比特中的未使用状态指示终端设备不发送上行数据、进入空闲态等,可以使得在网络设备已经正确解调出终端设备发送的上行数据的情况或已经正确接收到最后一个上行数据包的数据的情况下,终端设备可以停止发送上行数据或进入空闲态等,这样使得终端设备可 以灵活地终止UE的数据传输等行为,从而可以减少资源的开销,降低系统的功耗。
在一些可能的实现方式中,当所述终端设备根据所述第一比特状态用于指示所述终端设备不发送上行数据时,还包括:所述终端设备根据连续的5个比特为第二比特状态,确定:所述终端设备不发送上行数据,且,所述终端设备不监测或者不接收下行控制信道;和/或,所述终端设备不发送上行数据,且,所述终端设备进入休眠态、空闲态、非连续接收态、延长的非连续接收态或节能模式。
上述技术方案,第一比特状态和第二比特状态分别指示不同的情况,使得终端设备可以根据第一比特状态或第二比特状态灵活地确定是要只停止发送上行数据,还是既停止发送上行数据且停止监测下行控制信道等。
在一些可能的实现方式中,所述第一比特状态为10101、10110、10111、11000、11001、11010或11111中的任意一种。
在一些可能的实现方式中,所述第一比特状态和所述第二比特状态分别为:{第一比特状态,第二比特状态}为{10101,11010}或{11010,10101};或者{第一比特状态,第二比特状态}为{10110,11001}或{11001,10110};或者{第一比特状态,第二比特状态}为{10111,11000}或{11000,10111};或者{第一比特状态,第二比特状态}为{11111,11000}或{11000,11111}。
也就是说,第一比特状态和第二比特状态可以为10101和11010,11010和10101,10110和11001,11001和10110,10111和11000,11000和10111,11111和11000中的任意一种。
上述技术方案,由于汉明距离越大,则两个码字之间因为信道条件恶劣、传输出错等因素导致误检的概率就越小,可检测出错误的概率越大。{10101,11010}、{10110,11001}以及{10111,11000}这三个状态对的汉明距离最大,这样当传输其中一个比特状态时,被误检成另一个比特状态的概率最小。除此之外,比特状态“11111”与“00000”~“10100”之间的平均汉明距离最大,若使用“11111”替代“10111”,即使用{11111,11000}指示终端设备不发送上行数据等情况,可以使得“指示正常的资源分配”错误地被传输并解调为终端设备不发送上行数据等情况的概率会变小,从而增加数据传输的可靠性。
在一些可能的实现方式中,所述第一下行控制信息还包括肯定应答/否定应答指示字段,所述肯定应答/否定应答指示字段用于指示对一个混合自动重传请求进程对应的上行数据的肯定应答或否定应答;其中,所述肯定应答/否定应答指示字段的比特数等于1;或所述肯定应答/否定应答指示字段的比特数大于1,且每个肯定应答/否定应答指示比特的取值相同。
上述技术方案,可以增加基站对HARQ进程对应的上行数据反馈的可靠性。
在一些可能的实现方式中,所述第一下行控制信息还包括肯定应答/否定应答指示字段,所述肯定应答/否定应答指示字段包括N个比特,所述N个比特分别用于指示对N个混合自动重传请求进程对应的上行数据的肯定应答或否定应答,N为大于1的整数。
上述技术方案,可以使得在一个DCI中就可以将所有的HARQ进程的接收情况进行ACK/NACK反馈,从而可以减少信令的开销。
在一些可能的实现方式中,所述第一下行控制信息还包括下行控制信息子帧重复次数指示字段,所述下行控制信息子帧重复次数指示字段用于指示物理下行控制信道的重复次数。
上述技术方案,终端设备可以通过下行控制信息子帧重复次数指示字段的指示值,确定网络设备发送第一下行控制信息的起始时间和结束时间,从而终端设备可以确定停止发送物理上行共享信道的时间。
在一些可能的实现方式中,所述第一下行控制信息还包括发射功率控制命令字段,所述发射功率控制命令字段用于指示所述终端设备发送物理上行共享信道的发射功率。
上述技术方案,由于第一下行控制信息可以对终端设备进行有效的功率累计,用于终端设备确定以后的调度中使用的发射功率,如此,有助于网络设备可以更快速、更灵活地调整终端设备的发射功率。尤其是当终端设备的信道条件变差、网络设备需要指示终端设备提升发射功率时,网络设备可以更快速地提升终端设备的发射功率。
在一些可能的实现方式中,在所述第一下行控制信息的比特中,除存在的填充比特、所述资源分配字段、用于区分调度物理下行共享信道的下行控制信息格式和调度物理上行共享信道的下行控制信息格式的标志位对应的比特之外,其余比特是保留比特;或除存在的所述填充比特、所述资源分配字段、所述用于区分调度物理下行共享信道的下行控制信息格式和调度物理上行共享信道的下行控制信息格式的标志位对应的比特和第一类指示比特之外,其余比特是保留比特;
其中,所述第一类指示比特包括如下比特中的一种或多种字段所对应的比特:混合自动重传请求进程号指示字段,肯定应答/否定应答指示字段,下行控制信息子帧重复次数指示字段,发射功率控制命令字段;所述保留比特的值全为1或全为0。
第二方面,提供了一种信息传输方法,包括:网络设备向终端设备发送第一下行控制信息,所述第一下行控制信息包括资源分配字段,所述资源分配字段包括连续的
Figure PCTCN2018082057-appb-000009
个比特和连续的5个比特,所述连续的
Figure PCTCN2018082057-appb-000010
个比特的值为全1,
Figure PCTCN2018082057-appb-000011
是上行带宽中包含的资源块个数;所述连续的5个比特为第一比特状态时:指示所述终端设备不发送上行数据;和/或,指示对所述终端设备发送的上行数据的应答;和/或,指示所述终端设备不监测或者不接收下行控制信道;和/或,指示所述终端设备进入休眠态、空闲态、非连续接收态、延长的非连续接收态或节能模式。
在一些可能的实现方式中,当所述第一比特状态只指示所述终端设备不发送上行数据和/或对所述终端设备发送的上行数据的应答时,还包括:所述连续的5个比特为第二比特状态时:指示所述终端设备不发送上行数据和/或指示对所述终端设备发送的上行数据的应答,且指示所述终端设备不监测或者不接收下行控制信道;和/或,指示所述终端设备不发送上行数据和/或指示对所述终端设备发送的上行数据的应答,且,所述终端设备进入休眠态、空闲态、非连续接收态、延长的非连续接收态或节能模式。
在一些可能的实现方式中,所述第一比特状态为10101、10110、10111、11000、11001、11010或11111。
在一些可能的实现方式中,所述第一比特状态和第二比特状态,分别为:{第一比特状态,第二比特状态}为{10101,11010}或{11010,10101};或者,{第一比特状态,第二比特状态}为{10110,11001}或{11001,10110};或者,{第一比特状态,第二比特状态}为{10111,11000}或{11000,10111};或者,{第一比特状态,第二比特状态}为{11111,11000}或{11000,11111}。
也就是说,第一比特状态和第二比特状态可以为10101和11010,11010和10101,10110和11001,11001和10110,10111和11000,11000和10111,11111和11000中的任意一种。
在一些可能的实现方式中,所述第一下行控制信息还包括肯定应答/否定应答指示字段,所述肯定应答/否定应答指示字段用于指示对一个混合自动重传请求进程所对应的上行数据的肯定应答或否定应答;其中,所述肯定应答/否定应答指示字段的比特数等于1;或者,所述肯定应答/否定应答指示字段的比特数大于1,且每个肯定应答/否定应答指示比特的取值相同。
在一些可能的实现方式中,所述第一下行控制信息还包括肯定应答/否定应答指示字段,所述肯定应答/否定应答指示字段包括N个比特,所述N个比特分别用于指示对N个混合自动重传请求进程所对应的上行数据的肯定应答或否定应答,N为大于1的整数。
在一些可能的实现方式中,所述第一下行控制信息还包括下行控制信息子帧重复次数指示字段,所述下行控制信息子重复次数指示字段用于指示物理下行控制信道的重复次数。
在一些可能的实现方式中,所述第一下行控制信息还包括发射功率控制命令字段,所述发射功率控制命令字段用于指示所述终端设备发送物理上行共享信道的发射功率。
在一些可能的实现方式中,在所述第一下行控制信息的比特中,除存在的填充比特、所述资源分配字段、用于区分调度物理下行共享信道的下行控制信息格式和调度物理上行共享信道的下行控制信息格式的标志位对应的比特之外,其余比特是保留比特;或者,除存在的所述填充比特、所述资源分配字段、所述用于区分调度物理下行共享信道的下行控制信息格式和调度物理上行共享信道的下行控制信息格式的标志位对应的比特和第一类指示比特之外,其余比特是保留比特;
其中,第一类指示比特包括如下比特中的一种或多种字段所对应的比特:所述混合自动重传请求进程号指示字段,所述肯定应答/否定应答指示字段,所述第一下行控制信息子帧重复次数指示字段,所述发射功率控制命令字段;所述保留比特的值全为1或全为0。
第三方面,提供了一种终端设备,包括:接收单元,用于终端设备接收网络设备发送的第一下行控制信息,所述第一下行控制信息包括资源分配字段,所述资源分配字段包括连续的
Figure PCTCN2018082057-appb-000012
个比特和连续的5个比特,所述连续的
Figure PCTCN2018082057-appb-000013
个比特的值全为1,
Figure PCTCN2018082057-appb-000014
是上行带宽中包含的资源块个数;确定单元,用于所述终端设备根据所述连续的5个比特为第一比特状态,确定:所述终端设备不发送上行数据;和/或,所述终端设备不监测或者不接收下行控制信道;和/或,所述终端设备进入休眠态、空闲态、非连续接收态、延长的非连续接收态或节能模式。
在一些可能的实现方式中,所述第一比特状态用于指示所述终端设备不发送上行数据,还包括:所述终端设备根据所述连续的5个比特为第二比特状态,确定:所述终端设备不发送上行数据,且,所述终端设备不监测或者不接收下行控制信道;和/或,所述终端设备不发送上行数据,且,所述终端设备进入休眠态、空闲态、非连续接收态、延长的非连续接收态或节能模式。
在一些可能的实现方式中,所述第一比特状态为10101、10110、10111、11000、11001、11010或11111中的任意一种。
在一些可能的实现方式中,所述第一比特状态和所述第二比特状态分别为:{第一比 特状态,第二比特状态}为{10101,11010}或{11010,10101};或者{第一比特状态,第二比特状态}为{10110,11001}或{11001,10110};或者{第一比特状态,第二比特状态}为{10111,11000}或{11000,10111};或者{第一比特状态,第二比特状态}为{11111,11000}或{11000,11111}。
也就是说,第一比特状态和第二比特状态可以为10101和11010,11010和10101,10110和11001,11001和10110,10111和11000,11000和10111,11111和11000中的任意一种。
在一些可能的实现方式中,所述接收单元接收的所述第一下行控制信息还包括肯定应答/否定应答指示字段,所述肯定应答/否定应答指示字段用于指示对一个混合自动重传请求进程对应的上行数据的肯定应答或否定应答;其中,所述肯定应答/否定应答指示字段的比特数等于1;或所述肯定应答/否定应答指示字段的比特数大于1,且每个肯定应答/否定应答指示比特的取值相同。
在一些可能的实现方式中,所述接收单元接收的所述第一下行控制信息还包括肯定应答/否定应答指示字段,所述肯定应答/否定应答指示字段包括N个比特,所述N个比特分别用于指示对N个混合自动重传请求进程对应的上行数据的肯定应答或否定应答,N为大于1的整数。
在一些可能的实现方式中,所述接收单元接收的所述第一下行控制信息还包括下行控制信息子帧重复次数指示字段,所述下行控制信息子帧重复次数指示字段用于指示物理下行控制信道的重复次数。
在一些可能的实现方式中,所述接收单元接收的所述第一下行控制信息还包括发射功率控制命令字段,所述发射功率控制命令字段用于指示所述终端设备发送物理上行共享信道的发射功率。
在一些可能的实现方式中,在所述接收单元接收的所述第一下行控制信息的比特中,除存在的填充比特、所述资源分配字段、用于区分调度物理下行共享信道的下行控制信息格式和调度物理上行共享信道的下行控制信息格式的标志位对应的比特之外,其余比特是保留比特;或除存在的所述填充比特、所述资源分配字段、所述用于区分调度物理下行共享信道的下行控制信息格式和调度物理上行共享信道的下行控制信息格式的标志位对应的比特和第一类指示比特之外,其余比特是保留比特;
其中,所述第一类指示比特包括如下比特中的一种或多种字段所对应的比特:混合自动重传请求进程号指示字段,肯定应答/否定应答指示字段,下行控制信息子帧重复次数指示字段,物理上行控制信道发射功率控制命令字段;所述保留比特的值全为1或全为0。
第四方面,提供了一种网络设备,包括:发送单元,用于网络设备向终端设备发送第一下行控制信息,所述第一下行控制信息包括资源分配字段,所述资源分配字段包括连续的
Figure PCTCN2018082057-appb-000015
个比特和连续的5个比特,所述连续的
Figure PCTCN2018082057-appb-000016
个比特的值为全1,
Figure PCTCN2018082057-appb-000017
是上行带宽中包含的资源块个数;所述连续的5个比特为第一比特状态时:指示所述终端设备不发送上行数据;和/或,指示对所述终端设备发送的上行数据的应答;和/或,指示所述终端设备不监测或者不接收下行控制信道;和/或指示所述终端设备进入休眠态、空闲态、非连续接收态、延长的非连续接收态或节能模式。
在一些可能的实现方式中,当所述第一比特状态只指示所述终端设备不发送上行数据和/或对所述终端设备发送的上行数据的应答时,还包括:所述连续的5个比特为第二比特 状态时:指示所述终端设备不发送上行数据和/或指示对所述终端设备发送的上行数据的应答,且指示所述终端设备不监测或者不接收下行控制信道;和/或,指示所述终端设备不发送上行数据和/或指示对所述终端设备发送的上行数据的应答,且,所述终端设备进入休眠态、空闲态、非连续接收态、延长的非连续接收态或节能模式。
在一些可能的实现方式中,所述第一比特状态为10101、10110、10111、11000、11001、11010或11111。
在一些可能的实现方式中,所述第一比特状态和第二比特状态分别为:{第一比特状态,第二比特状态}为{10101,11010}或{11010,10101};或者,{第一比特状态,第二比特状态}为{10110,11001}或{11001,10110};或者,{第一比特状态,第二比特状态}为{10111,11000}或{11000,10111};或者,{第一比特状态,第二比特状态}为{11111,11000}或{11000,11111}。
也就是说,第一比特状态和第二比特状态可以为10101和11010,11010和10101,10110和11001,11001和10110,10111和11000,11000和10111,11111和11000中的任意一种。
在一些可能的实现方式中,所述发送单元发送的所述第一下行控制信息还包括肯定应答/否定应答指示字段,所述肯定应答/否定应答指示字段用于指示对一个混合自动重传请求进程所对应的上行数据的肯定应答或否定应答;其中,所述肯定应答/否定应答指示字段的比特数等于1;或者,所述肯定应答/否定应答指示字段的比特数大于1,且每个肯定应答/否定应答指示比特的取值相同。
在一些可能的实现方式中,所述发送单元发送的所述第一下行控制信息还包括肯定应答/否定应答指示字段,所述肯定应答/否定应答指示字段包括N个比特,所述N个比特分别用于指示对N个混合自动重传请求进程所对应的上行数据的肯定应答或否定应答,N为大于1的整数。
在一些可能的实现方式中,所述发送单元发送的所述第一下行控制信息还包括下行控制信息子帧重复次数指示字段,所述下行控制信息子重复次数指示字段用于指示物理下行控制信道的重复次数。
在一些可能的实现方式中,所述发送单元发送的所述第一下行控制信息还包括发射功率控制命令字段,所述发射功率控制命令字段用于指示所述终端设备发送物理上行共享信道的发射功率。
在一些可能的实现方式中,在所述发送单元发送的所述第一下行控制信息的比特中,除存在的填充比特、所述资源分配字段、用于区分调度物理下行共享信道的下行控制信息格式和调度物理上行共享信道的下行控制信息格式的标志位对应的比特之外,其余比特是保留比特;或者,除存在的所述填充比特、所述资源分配字段、所述用于区分调度物理下行共享信道的下行控制信息格式和调度物理上行共享信道的下行控制信息格式的标志位对应的比特和第一类指示比特之外,其余比特是保留比特;
其中,第一类指示比特包括如下比特中的一种或多种字段所对应的比特:所述混合自动重传请求进程号指示字段,所述肯定应答/否定应答指示字段,所述第一下行控制信息子帧重复次数指示字段,所述物理上行控制信道发射功率控制命令字段;所述保留比特的值全为1或全为0。
第五方面,提供了一种终端设备,所述终端设备包括处理器,用于实现上述第一方面 描述的方法中的功能。所述终端设备还可以包括存储器,用于存储程序指令和数据。所述存储器与所述处理器耦合,所述处理器可以调用并执行所述存储器中存储的程序指令,用于实现上述第一方面描述的方法中的功能。所述终端设备还可以包括收发器(或者接收器),所述收发器(或者接收器)用于该终端设备与其它设备进行通信。
第六方面,提供了一种网络设备,所述网络设备包括处理器,用于实现上述第二方面描述的方法中的功能。所述网络设备还可以包括存储器,用于存储程序指令和数据。所述存储器与所述处理器耦合,所述处理器可以调用并执行所述存储器中存储的程序指令,用于实现上述第二方面描述的方法中的功能。所述网络设备还可以包括收发器(或者接收器),所述收发器(或者接收器)用于该网络设备与其它设备进行通信。
第七方面,提供了一种提供了一种计算机存储介质,包括计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行如上述第一方面或第一方面的任意可能的实现方式中所述的方法。
第八方面,提供了一种提供了一种计算机存储介质,包括计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行如上述第二方面或第二方面的任意可能的实现方式中所述的方法。
第九方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十一方面,提供了一种系统,包括第三方面所述的终端设备和第四方面所述的网络设备。
附图说明
图1是本申请实施例的一种系统的示例图。
图2是本申请实施例的信息传输方法的示意性流程图。
图3是本申请实施例的资源分配字段的示意图。
图4是本申请实施例的在网络设备进行连续调度时,提前结束终端设备上行传输的示意图。
图5是本申请实施例的在网路设备正确接收最后一个上行数据包时,终端设备停止监测物理下行控制信道的示意图。
图6是本申请实施例的终端设备的示意性框图。
图7是本申请实施例的终端设备的示意性框图。
图8是本申请实施例的网络设备的示意性框图。
图9是本申请实施例的网络设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access, CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
作为示例而非限定,在本申请实施例中,终端设备也可以称为UE、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是WLAN中的站点(staion,ST),可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,5G网络中的终端设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。
在本申请实施例中,IoT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。例如,NB只包括一个资源块(resource block,RB),即,NB的带宽只有180KHz。要做到海量接入,必须要求终端在接入上是离散的,根据本发明实施例的通信方法,能够有效解决IoT技术海量终端在通过NB接入网络时的拥塞问题。
在本申请实施例中,终端设备可以是MTC类系统中的终端设备,MTC类系统是机器类通信系统中的重要组成部分,其主要技术特点是将机器或物品通过通信技术与网络连接,并通过窄带通信、数据重复发送等方式,增加通信可靠性和深度覆盖,降低能耗。例如,MTC类终端设备的上行带宽可以只有1.4MHz。根据本申请实施例的通信方法,可以降低MTC类通信终端的能耗。
网络设备可以是网络设备等用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(access point,AP),GSM或CDMA中的基站(base transceiver station,BTS),也可以是WCDMA中的基站(nodeB,NB),还可以是LTE中的演进型基站(evolutional node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等。
另外,在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
此外,LTE系统或5G系统中的载波上可以同时有多个小区同频工作,在某些特殊场景下,也可以认为上述载波与小区的概念等同。例如在CA场景下,当为UE配置辅载波时,会同时携带辅载波的载波索引和工作在该辅载波的辅小区的小区标识(cell indentify,Cell ID),在这种情况下,可以认为载波与小区的概念等同,比如UE接入一个载波和接入一个小区是等同的。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
此外,本申请实施例的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图1是能够适用本申请实施例通信方法的系统100的示意图。如图1所示,该系统100包括网络设备102,网络设备102可包括1个天线或多个天线例如,天线104、106、108、110、112和114。另外,网络设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
网络设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。然而,可以理解,网络设备102可以与类似于终端设备116或终端设备122的任意数目的终端设备通信。终端设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路(也称为下行链路)118向终端设备116发送信息,并通过反向链路(也称为上行链路)120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在频分双工(frequency division duplex,FDD)系统中,例如,前向链路118可与反向链路120使用不同的频带,前向链路124可与反向链路126使用不同的频带。
再例如,在时分双工(time division duplex,TDD)系统和全双工(full duplex)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每个天线(或者由多个天线组成的天线组)和/或区域称为网络设备102的扇区。例如,可将天线组设计为与网络设备102覆盖区域的扇区中的终端设备通信。网络设备可以通过单个天线或多天线发射分集向其对应的扇区内所有的终端设备发送信号。在网络设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,网络设备102的发射天线也可利用波束成形来改善前向链路118和124的信噪比。此外,与网络设备通过单个天线或多天线发射分集向它所有的终端设备发送信号的方式相比,在网络设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,网络设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
应理解,图1仅是对可以应用本申请实施例的场景的一种可能的示例,不构成对本申请实施例的限定。本申请实施例的技术方案可以很容易扩展到设备到设备(device-to-device,D2D)和车辆到车辆(vehicular-to-vehicular,V2V)等通信场景中。
在实施例的阐述中,忽略上下行可能存在的时延,假设网络设备的发送时刻与终端设备的接收时刻相同。对于网络设备的发送和终端设备的接收相对应的处理,实施例中多从终端设备侧角度阐述,本领域技术人员可以理解,终端设备从网络设备接收,意味着网络设备进行了发送。
为了描述方便,本申请实施例中,以终端设备是UE、网络设备是基站为例描述本申请实施例提供的技术方案,但本申请不限于此。
下面,结合图2,对本申请实施例的信息传输方法200进行详细说明。图2是根据本申请实施例的信息传输方法的示意性交互图。图2的方法可以包括210和220。
应理解,图2的方法可以应用于覆盖增强模式A(coverage enhanced mode A,CE Mode A)中,但本申请并不限于此。
在220中,UE接收基站发送的第一DCI。
可选地,基站调度上行传输使用的第一DCI的格式(format)可以是DCI format 6-0A。
第一DCI可以包括资源分配字段,该资源分配字段可以包括连续的
Figure PCTCN2018082057-appb-000018
个比特和连续的5个比特。其中,该连续的
Figure PCTCN2018082057-appb-000019
个比特可以用于指示分配给UE进行上行传输的窄带,该连续的5个比特可以用于指示在该窄带中分配给UE进行上行传输的资源块(resource block,RB),
Figure PCTCN2018082057-appb-000020
为上行带宽中包含的RB数。
示例性地,当上行带宽中的RB数为50时,此时
Figure PCTCN2018082057-appb-000021
的值为3,则该资源分配字段可以包括8个连续的比特,如图3(a)所示。
需要说明的是,在本申请实施例中,资源分配字段可以包括连续的
Figure PCTCN2018082057-appb-000022
个比特和连续的5个比特表示资源分配字段中的比特数至少有
Figure PCTCN2018082057-appb-000023
个。
可选地,当资源分配字段中的比特数为
Figure PCTCN2018082057-appb-000024
时,该k个比特可以用于指示一个RB中的子载波级资源分配,或者用于指示资源粒子(resource unit,RU)数,或者用于指示是否指示子载波级资源分配,本申请对此不做限制。
此时,该k个比特可以是资源分配字段中的高k位,也可以是资源分配字段中的低k位,或者是资源分配字段中间的k位。
可选地,该
Figure PCTCN2018082057-appb-000025
个连续的比特中的值全为1。
例如,当上行带宽中的RB数为50时,该资源分配字段的
Figure PCTCN2018082057-appb-000026
个连续比特全为1,即它的比特状态为“111”。
可选地,当资源分配字段中的比特数为
Figure PCTCN2018082057-appb-000027
且k个比特为资源分配字段中的高k位时,如图3(b)所示,资源分配字段中的低
Figure PCTCN2018082057-appb-000028
位中的高
Figure PCTCN2018082057-appb-000029
位比特的值全为1。
例如,当上行带宽中的RB数为50,且k为2时,此时
Figure PCTCN2018082057-appb-000030
的值为3,资源分配字段共有10个比特,则资源分配字段可以表示为“yy111xxxxx”,其中,“x”为连续的5比特所占的比特,“y”为k比特所占的比特;”“x”和“y”可以为“0”,也可以为“1”。
可选地,当资源分配字段中的比特数为
Figure PCTCN2018082057-appb-000031
且k个比特为资源分配字 段中的低k位时,如图3(c)所示,资源分配字段中的高
Figure PCTCN2018082057-appb-000032
位中的高
Figure PCTCN2018082057-appb-000033
位比特的值全为1。
例如,当上行带宽中的RB数为50,且k为2时,此时
Figure PCTCN2018082057-appb-000034
的值为3,资源分配字段共有10个比特,则资源分配字段可以表示为“111xxxxxyy”,其中,“x”为连续的5比特所占的比特,“y”为k比特所占的比特;”“x”和“y”可以为“0”,也可以为“1”。
可选地,当资源分配字段中的比特数为
Figure PCTCN2018082057-appb-000035
且k个比特为资源分配字段中的中间k位时,如图3(d)所示,资源分配字段中的高
Figure PCTCN2018082057-appb-000036
位比特的值全为1。
例如,当上行带宽中的RB数为50,且k为2时,此时
Figure PCTCN2018082057-appb-000037
的值为3,资源分配字段共有10个比特,则资源分配字段可以表示为“111yyxxxxx”,其中,“x”为连续的5比特所占的比特,“y”为k比特所占的比特;“x”和“y”可以为“0”,也可以为“1”。
应理解,本申请实施例对资源分配字段的名称并不限定,也就是说,它们也可以表述为其他名称。例如,资源分配也可以表述为资源块分配,资源分配字段也可以表示为资源块分配字段;再例如,字段也可以表述为域,资源分配字段也可以表述为资源分配域。
还应理解,当资源分配字段用于指示资源分配时,其每个取值对应一种频域的资源分配情况。
可选地,该连续的5个比特为第一比特状态,可以用于指示以下情况中的至少一项:
(a)UE不发送上行数据。
(b)基站对UE发送的上行数据的应答。
可选地,基站对UE发送的上行数据的应答可以包括肯定应答(acknowledgment,ACK)/否定应答(Negative Acknowledgment,NACK)。
可选地,当基站对UE发送的上行数据的应答为ACK时,表明基站已正确接收到或解调出UE向基站发送的上行数据。
可选地,当基站对UE发送的上行数据的应答为NACK时,表明基站没有正确接收到或解调出UE向基站发送的上行数据。
应理解,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
(c)UE不监测或者不接收第二DCI,和/或,下行控制信道。
其中,第二DCI为调度物理上行数据信道或物理下行数据信道的DCI。
可选地,第二DCI的格式可以与第一DCI的格式相同。
可选地,第二DCI使用的DCI格式可以是DCI format 6-0A或DCI format 6-1A。
可选地,下行控制信道可以为物理下行控制信道(physical downlink control channel,PDCCH)、增强的物理下行控制信道(enhanced physical downlink control channel, EPDCCH)、MPDCCH、物理副链路控制信道(physical sidelink control channel,PSCCH)或窄带物理下行控制信道(narrowband physical downlink control channel,NPDCCH)等,本申请实施例对此不作限定。
为了描述方便,本申请实施例以下行控制信道为MPDCCH为例对本实施例的技术方案进行描述。
在本申请实施例中,不接收下行控制信道可以是指不接收MPDCCH上承载的数据或信息,其中,该数据或信息可以是指经过MPDCCH编码后的数据或信息。不接收下行控制信道也可以是指不在用户特定搜索空间或公共搜索空间中搜索MPDCCH。
可选地,第二DCI调度物理上行数据信道或物理下行数据信道的周期可以是传输时间间隔(transmission time interval,TTI)或短传输时间间隔(short transmission time tnterval,sTTI)。
具体的调度流程是基站向UE发送MPDCCH,MPDCCH可以承载使用第二DCI格式的用于调度物理上行共享信道(physical uplink shared channel,PUSCH)的调度信息,该调度信息包括比如资源分配信息,调制编码方式等控制信息。UE监测MPDCCH,并根据监测出的MPDCCH中承载的调度信息来进行上行数据信道的发送。当引入sTTI技术后,MPDCCH中承载的调度信息可以指示TTI长度为1ms或TTI长度小于1ms的上行数据信道发送。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
具体而言,UE不监测或者不接收第二DCI,和/或,下行控制信道可以为以下中的至少一种:UE不监测第二DCI,UE不接收第二DCI,UE不监测下行控制信道,UE不接收下行控制信道,UE不监测第二DCI和下行控制信道,UE不接收第二DCI和下行控制信道。
应理解,在本申请实施例中,“第一”和“第二”仅仅为了区分不同的对象,但并不对本申请实施例的范围构成限制。
(d)UE进入休眠态、空闲态、非连续接收态、延长的非连续接收态或节能模式中的任意一种状态。
应理解,在本申请实施例中,UE进入休眠态前不监测/不接收第二DCI,和/或,MPDCCH。当UE进入连接态后,UE可以继续监测第二DCI,和/或,MPDCCH。
具体地,UE不监测或者不接收第二DCI,和/或,MPDCCH,可以是在UE进入休眠态、空闲态、非连续接收态、延长的非连续接收态或节能模式之前不监测或者不接收第二DCI,和/或,MPDCCH。当第一DCI指示UE不监测或者不接收第二DCI,和/或,MPDCCH,则UE不监测或者不接收第二DCI,和/或,MPDCCH,随后可以进入上述任意一种状态;随后,若UE从该状态中重新激活或醒来,该UE可以监测或者接收第二DCI,和/或,MPDCCH。
还应理解,UE除了进入上述休眠态、空闲态、非连续接收态、延长的非连续接收态或节能模式中的任意一种状态之外,还可以进入其他状态,本申请实施例对此不作具体限定。
在一种可能的实施例中,该第一比特状态可以是预设的。
可选地,可以将该第一比特状态预设为“10101”、“10110”、“10111”、“11000”、“11001”、“11010”或“11111”中的任意一种。
应当注意的是,该连续的5比特的“00000”至“10100”的比特状态可以在第二DCI中被用于指示资源分配。第一DCI中的第一比特状态为“10101”至“11111”,使得网络设备和终端设备不会混淆第一DCI和第二DCI。
例如,系统可以将第一比特状态预设为“11111”。在UE和基站数据传输过程中,基站向UE发送的第一DCI中的资源分配字段的连续的5个比特的比特状态为“11111”。
再例如,当上行带宽中的RB数为50、资源分配字段的比特数为
Figure PCTCN2018082057-appb-000038
时,
Figure PCTCN2018082057-appb-000039
的值为3,
Figure PCTCN2018082057-appb-000040
个连续比特的高
Figure PCTCN2018082057-appb-000041
位比特的比特状态为“111”,则第一DCI中的资源分配字段的
Figure PCTCN2018082057-appb-000042
个连续比特的状态为“11111111”。
再例如,当资源分配字段中的比特数为
Figure PCTCN2018082057-appb-000043
且k个比特为资源分配字段中的高k位,且k为2时,资源分配字段共有10个比特,则资源分配字段可以表示为“yy11111111”,其中,“y”可以为“0”,也可以为“1”。可选的,该k比特状态可以用于指示子载波级的资源分配或RB颗粒度的资源分配。可选的,当k比特状态为“00”指示RB颗粒度的资源分配时,则资源分配字段可以表示为“0011111111”。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
在一种可能的实施例中,第一比特状态只用于指示情况1:UE不发送上行数据,和/或,对基站对UE发送的上行数据的应答,则该5个连续比特可以为第二比特状态,第二比特状态可以用于指示情况2:
UE不发送上行数据的和/或基站对UE发送的上行数据的应答,且UE不监测/不接收第二DCI和/或MPDCCH,和/或,UE进入休眠态、空闲态、非连接接收态、延长的非连续接收态或节能模式。
可选地,第一比特状态和第二比特状态可以为{10101,11010}或{11010,10101}。
可选地,第一比特状态和第二比特状态可以为{10110,11001}或{11001,10110}。
可选地,第一比特状态和第二比特状态可以为{10111,11000}或{11000,10111}。
可选地,第一比特状态和第二比特状态可以为{11111,11000}或{11000,11111}。
也就是说,当第一比特状态为“10111”时,第二比特状态为“11000”;当第一比特状态为“11000”时,第二比特状态为“10111”。
上述技术方案,由于汉明距离(hamming distance)越大,则两个码字之间因为信道条件恶劣、传输出错等因素导致误检的概率就越小,可检测出错误的概率越大。其中,汉明距离表示相同长度的两个码字之间的不同字符的个数。例如,若两个码字分别为“11111”和“11110”,则汉明距离为1;若两个码字分别为“10101”和“11010”,则汉明距离 为4。{10101,11010}、{10110,11001}以及{10111,11000}这三个比特状态对的汉明距离最大,这样当传输其中一个比特状态时,被误检成另一个比特状态的概率最小。
除此之外,表1给出了比特状态“10101”~“11111”与“00000”~“10100”之间的汉明距离。其中,“00000”~“10100”可以用于指示资源分配。从表1中可以看出,比特状态“11111”与“00000”~“10100”之间的平均汉明距离最大,若使用“11111”替代“10111”,即使用{11111,11000}指示情况1和情况2,可以使得“指示正常的资源分配”错误地被传输并解调为情况1和情况2的概率会变小,从而增加数据传输的可靠性。
表1
状态 平均汉明距离 状态 平均汉明距离
10101 2.1429 11011 2.6190
10110 2.2381 11100 2.6190
10111 2.3810 11101 2.7619
11000 2.3810 11110 2.8571
11001 2.4762 11111 3.0000
11010 2.5238    
在220中,UE根据连续的5个比特为第一比特状态,确定以下中的至少一种情况:(a)UE不发送上行数据;(b)UE不监测或者不接收第二DCI,和/或,下行控制信道;(c)UE进入休眠态、空闲态、非连续接收态、延长的非连续接收态或节能模式中的任意一种状态。
在一种实现方式中,UE可以根据第一比特状态,确定上述至少一种情况。
例如,第一比特状态预设为“10110”,当UE接收到第一DCI,该第一DCI中的资源分配字段中连续
Figure PCTCN2018082057-appb-000044
个比特为全1、且连续的5个比特为第一比特状态“10110”,且该第一比特状态指示UE停止发送上行数据以及不监测第二DCI时,UE可以停止向基站发送上行数据,并且不监测MPDCCH中调度该UE的第二DCI。
可选的,UE可以根据其所发送的上行数据是否是一次上行传输中的最后一个上行数据,确定至少一种情况。例如,若UE所发送的上行数据不是最后一个上行数据,则UE可以确定第一比特状态指示(a)UE不发送上行数据;若UE所发送的上行数据是最后一个上行数据,则UE可以确定第一比特状态指示(a)UE不发送上行数据,以及(b)UE不监测或者不接收第二DCI,和/或,下行控制信道,以及(c)UE进入休眠态、空闲态、非连续接收态、延长的非连续接收态或节能模式中的任意一种状态。
应理解,UE还可以采用其他方式确定上述至少一种情况,本申请实施例对此不作具体限定。
本申请实施例,第一下行控制信息中资源分配字段包括连续的
Figure PCTCN2018082057-appb-000045
个比特和连续的5个比特,资源分配可以通过“指示窄带索引+窄带中的资源分配”的方法进行指示。其中,窄带的索引由连续的
Figure PCTCN2018082057-appb-000046
个比特指示,窄带中的资源块由连续的5个比特指示。当连续的
Figure PCTCN2018082057-appb-000047
个比特的值全为1时,连续的5个比特的部分状态在所有系统带 宽、所有终端设备上行带宽中都是未使用的。通过使用
Figure PCTCN2018082057-appb-000048
位比特中的未使用状态指示UE不发送上行数据、进入空闲态等,可以使得在基站已经正确解调出UE发送的上行数据的情况或已经正确接收到最后一个上行数据包的数据的情况下,UE可以停止发送上行数据或进入空闲态等,这样使得在基站连续调度之外的场合,基站可以灵活地终止UE的数据的传输等行为,从而可以减少资源的开销,降低系统的功耗。应当注意的是,对于上行带宽能力为1.4MHz的终端设备,在进行RB颗粒度的资源分配时,只要该资源分配字段中的该连续5个比特的值为“10101”~“11111”,则该资源分配字段不指示资源的分配。因此该连续的 个比特即使不为全1,第一比特状态也可用于指示上述(a)、(b)或(c)。但本申请实施例中令
Figure PCTCN2018082057-appb-000050
个比特为全1,使得上述方案无论对于上行带宽能力为1.4MHz的终端设备还是5MHz的终端设备都适用,增大了方案的适用性,减少了终端设备的实现复杂度。
在图4中,第一个DCI调度UE进行上行数据传输,该传输重复发送1024次,基站在接收了前256次传输后就已经正确解调出UE的上行数据,并且基站没有对UE进行连续的调度。其中,连续的调度,可以是基站在UE传输结束前、结束时或结束后的一段短时间内对UE进行调度。
当采用本申请实施例的技术方案后,在基站已经正确解调出UE的上行数据后,基站向UE发送的DCI可以指示UE停止发送上行数据,则UE不再向基站重复发送该上行数据,从而UE可以提前结束上行传输。
在图5中,UE进行上行数据传输,该传输重复发送1024次,基站在接收了前256次传输后就已经正确接收到最后一个上行数据包,此时基站向UE发送的DCI可以指示UE停止发送上行数据,且指示UE停止监测MPDCCH,则UE不再向基站发送该上行数据,并且停止MPDCCH。
可选地,除了资源分配字段,DCI format 6-0A还可以包括但不限于混合自动重传(hybrid automatic repeat request,HARQ)进程号字段、新数据指示(new data indicator,NDI)字段、发射功率控制(transmit power control,TPC)命令字段、下行分配分配(downlink assignment index,DAI)字段、信道状态信息(channel state information,CSI)请求字段以及探测参考信号(sounding reference signal,SRS)请求字段等。下表给出了一个DCI format 6-0A包含的字段的示例:
表2
Figure PCTCN2018082057-appb-000051
Figure PCTCN2018082057-appb-000052
需要说明的是,第一DCI和第二DCI的格式都为DCI format 6-0A时,第一DCI包含的字段,可以和第二DCI包含的字段相同,也可以和第二DCI包含的字段不同,或具有不同的名称。本申请实施例对此不作限定。
可选地,第一DCI的比特个数和第二DCI的比特个数相同,且第一DCI的比特和第二DCI的比特相对应。
在本申请实施例中,第一DCI的格式是DCI format 6-0A,对第一DCI来说,每个字段的用途如表3-表11所示。
以系统带宽为5MHz、资源分配字段中的比特数为
Figure PCTCN2018082057-appb-000053
为例,此时
Figure PCTCN2018082057-appb-000054
的值为2,资源分配字段共7比特,其中的高2位比特的值为11;第一比特状态为“11111”;若第一比特状态仅指示UE不发送上行数据和/或基站对UE发送的上行数据的应答,第二比特状态为“11000”。
表3
Figure PCTCN2018082057-appb-000055
Figure PCTCN2018082057-appb-000056
从表3中可以看出,在方案1-1中,资源分配指示字段为“1111111”。
可选地,在第一DCI中,除存在的填充比特、资源分配字段、DCI format 6-0A/6-1A区分位对应的比特之外,其余比特是保留比特。
可选地,保留比特可以表示该比特处于无效状态。
可选地,保留比特的值全为1或全为0。
例如,调制编码方式字段的4个比特为保留比特,则该比特值可以为“1111”,也可以为“0000”。
应理解,本申请实施例对保留比特的名称并不限定,也就是说,保留比特也可以称为其他名称。例如,保留比特也可以称为reserve bit。
可选地,若第一DCI format 6-0/6-1A区分位字段的比特的值为0,则表明该第一DCI的格式为DCI format 6-0A。
可选地,若第一DCI format 6-0/6-1A区分位字段的比特的值为1,则表明该第一DCI的格式为DCI format 6-1A。
可选地,在第一DCI中,除存在的所述填充比特、资源分配字段、DCI format 6-0A/6-1A区分位对应的比特和第一类指示比特之外,其余比特是保留比特;
其中,第一类指示比特可以包括第一DCI子帧重复次数指示比特,和/或,TPC命令比特。
可选地,填充比特可以用于扩展第一DCI包括的比特数。
如此,可以使得第一DCI包括的比特数达到目标值。例如,填充该比特可以使得第一DCI包括的比特数达到DCI format 6-1A的比特数。
例如DCI format 6-0/6-1A区分位字段的比特的值为“0”,表明第一DCI的格式为DCI format 6-0A。
可选地,方案1-1中的第一DCI还可以包括TPC命令指示字段,该TPC命令指示字段可以用于指示UE发送物理上行共享信道(physical uplink shared channel,PUSCH)的发射功率。
可选地,第一DCI可以仅当UE配置了累积发射功率控制时包括PUSCH发射功率控制命令字段。
其中,累计发射功率可以指示UE进行功率累积,用于UE确定在之后的调度中使用的发射功率。
如此,有助于基站可以更快速、更灵活地调整UE的发射功率。尤其是当UE的信道条件变差、基站需要指示UE提升发射功率时,基站可以更快速地提升UE的发射功率。
可选地,方案1-1中的第一DCI中还可以包括DCI子帧重复次数指示字段,该DCI子帧重复次数指示字段用于指示物理下行控制信道的重复次数。
UE可以根据DCI子帧重复次数指示字段的指示值,确定基站发送第一DCI起始时间和结束时间,从而UE可以确定停止发送PUSCH的时间。
示例性地,若DCI子帧重复次数字段指示了MPDCCH重复发送的子帧数,UE在接收到基站发送的第一DCI后,可以根据资源分配字段,确定第一DCI结束的子帧n。假设UE需要至少在h个子帧内停止发送PUSCH,则UE可以在第n+h个子帧的时候停止PUSCH的发送。
在方案1-1中,第一DCI可以用于指示UE停止当前任意的PUSCH传输,即UE不向基站发送上行数据,而不做任何ACK/NACK反馈。
在方案1-1中,第一DCI也可以用于指示UE停止当前任意的PUSCH传输,且指示对UE的任意HARQ进程/所有HARQ进程/最后一个HARQ进程反馈了ACK或。
表4
Figure PCTCN2018082057-appb-000057
从表4中可以看出,方案1-2中的第一DCI中还可以包括ACK/NACK指示字段,该ACK/NACK指示字段可以用于指示一个对HARQ进程对应的上行数据的ACK或NACK反馈。
可选地,ACK/NACK指示字段的比特数可以等于1。
可选地,ACK/NACK指示字段的比特数可以大于1。
需要说明的是,当ACK/NACK指示字段的比特数大于1时,该ACK/NACK指示字段的比特的值全部相同。
可选地,可以使用NDI字段指示ACK或NACK。也就是说,NDI字段中的比特的值可以为“0”,也可以为“1”。
需要说明的是,在方案1-2中,第一DCI中的NDI字段的比特作为ACK或NACK反馈仅仅是作为示意,不应对本申请实施例的范围构成任何限制。可选地,第一DCI中的 跳频标志位的比特、调制编码方式字段的比特,或者其他比特也可以用于指示ACK或NACK反馈。
可选地,在指示ACK/NACK时,若当前字段的比特数大于1,则可以使用当前字段中的任意一位比特指示ACK/NACK。
例如,若调制编码方式字段用于指示ACK/NACK,则调制编码方式字段的第一位比特、第二位比特或第三位比特的任意一个都可以指示ACK/NACK。
可选地,在方案1-2中,除存在的所述填充比特、资源分配字段、DCI format 6-0A/6-1A区分位对应的比特和第一类指示比特之外,第一DCI中的其余比特是保留比特;
其中,第一类指示比特包括如下一种或多种字段所对应的比特:DCI子帧重复次数指示字段、ACK/NACK指示字段、TPC命令字段。
在方案1-2中,该第一DCI可以指示UE停止PUSCH传输,且该第一DCI对UE的任意或所有HARQ进程进行了ACK/NACK反馈。
在方案1-2中,该第一DCI也可以用于指示UE停止当前任意的PUSCH传输,且指示对UE的任意HARQ进程/所有HARQ进程/最后一个HARQ进程的ACK/NACK。
应理解,为了内容的简洁,方案1-2中第一DCI的字段状态与方案1-1相同的,这里,为了避免赘述,省略其详细说明。
表5
Figure PCTCN2018082057-appb-000058
从表5中可以看出,在方案1-3中,第一DCI中除了DCI format 6-0A/6-1A区分位、资源分配字段,其它的所有字段都可以指示对任意/所有HARQ进程的ACK/NACK反馈。
应理解,指示对任意/所有HARQ进程的ACK/NACK反馈的字段可以不包括TPC命令字段,和/或DCI子帧重复次数字段。
可选地,用于指示对任意/所有HARQ进程的ACK/NACK反馈的字段的比特的取值都可以相同。
例如,当反馈ACK时,指示对任意/所有HARQ进程的ACK/NACK反馈的字段的比特的值都为1。
如此,可以增加基站对HARQ进程对应的上行数据反馈的可靠性。
在方案1-3中,第一DCI可以用于指示UE停止当前任意的PUSCH传输,且指示对UE的任意HARQ进程/所有HARQ进程/最后一个HARQ进程的ACK/NACK。
表6
第一DCI中的字段 比特数 方案1-4
DCI format 6-0/6-1A区分位 1 0
跳频标志位 1 保留
资源分配 7 1111111
调制编码方式 4 保留
PUSCH重复次数 2或3 保留
HARQ进程号 3 HARQ进程号
新数据指示 1 保留
冗余版本 2 保留
TPC命令 2 保留或指示TPC命令
上行索引 0或2 保留
下行分配索引 0或2 保留
信道状态信息请求 1 保留
探测参考信号请求 1 保留
DCI子帧重复次数 2 保留或指示DCI子帧重复次数
调制阶数覆盖 0或1 保留
从表6中可以看出,方案1-4中的第一DCI还可以包括HARQ进程号指示字段,该HARQ进程号指示字段用于指示UE向基站发送的上行数据对应的HARQ进程。
可选地,在方案1-4中,除存在的所述填充比特、资源分配比特、DCI format 6-0A/6-1A区分位对应的比特和第一类指示比特之外,第一DCI中的其余比特是保留比特;
其中,第一类指示比特可以包括如下一种或多中字段所对应的比特:第一DCI子帧重复次数指示字段、HARQ进程号指示字段、TPC命令字段。
在方案1-4中,第一DCI可以指示UE停止当前HARQ进程对应的PUSCH传输,而不做任何ACK/NACK反馈。
可选地,第一DCI也可以指示基站对UE的该HARQ进程进行了ACK反馈,从而UE停止该HARQ进程对应的PUSCH传输。
表7
Figure PCTCN2018082057-appb-000059
Figure PCTCN2018082057-appb-000060
从表7中可以看出,在方案1-5中,除存在的所述填充比特、资源分配字段、DCI format 6-0A/6-1A区分位对应的比特和第一类指示比特之外,第一DCI中的其余比特是保留比特;
其中,第一类指示比特可以包括如下一种或多种字段所对应的比特:第一DCI子帧重复次数指示字段、HARQ进程号指示字段、ACK/NACK指示字段、TPC命令字段。
在方案1-5中,第一DCI可以指示UE停止PUSCH传输,且第一DCI还可以指示基站对UE的该HARQ进程进行了ACK/NACK反馈。
表8
Figure PCTCN2018082057-appb-000061
Figure PCTCN2018082057-appb-000062
从表8中可以看出,在方案1-6中,除了DCI format 6-0A/6-1A区分位、资源分配字段、HARQ进程号字段,其它的所有字段都可以指示对任意/所有HARQ进程的ACK/NACK反馈。
应理解,指示对任意/所有HARQ进程的ACK/NACK反馈的字段可以不包括TPC命令字段,和/或DCI子帧重复次数字段。
在方案1-6中,第一DCI可以指示UE停止PUSCH传输,且第一DCI还可以指示基站对UE的该HARQ进程进行ACK/NACK反馈。
表9
第一DCI中的字段 比特数 方案1-7
DCI format 6-0/6-1A区分位 1 0
跳频标志位 1 HARQ进程0的ACK/NACK
资源分配 7 1111111
调制编码方式 4 HARQ进程1~4的ACK/NACK
PUSCH重复次数 2或3 保留
HARQ进程号 3 HARQ进程5~7的ACK/NACK
新数据指示 1 保留
冗余版本 2 保留
TPC命令 2 保留或指示TPC命令
上行索引 0或2 保留
下行分配索引 0或2 保留
信道状态信息请求 1 保留
探测参考信号请求 1 保留
DCI子帧重复次数 2 保留或指示DCI子帧重复次数
调制阶数覆盖 0或1 保留
从表9中可以看出,方案1-7中的第一DCI还可以包括ACK/NACK指示字段,该ACK/NACK指示字段包括N个比特,该N个比特可以分别用于指示对N个HARQ进程对应的上行数据的ACK/NACK。
其中,所述N为大于1的整数。
可选地,第一DCI中的任意多个字段的共N个比特都可以用于指示N个HARQ进程对应的上行数据的ACK/NACK反馈。
可选地,N可以等于8。
可选地,N也可以等于16或其他值,本申请对此不作限定。
如表9所示,第一DCI中的跳频标志位字段的比特数为1,可以用于指示HARQ进 程0的ACK/NACK;调整编码方式字段的比特数为4,可以用于指示HARQ进程1~4的ACK/NACK;HARQ进程号字段的比特数为3,可以用于指示HARQ进程5~7的ACK/NACK。
上述技术方案,可以使得在一个DCI中就可以对所有的HARQ进程的接收情况进行ACK/NACK反馈,从而可以减少信令开销。
在方案1-7中,第一DCI可以指示UE停止PUSCH传输,且第一DCI还可以指示基站对UE的多个HARQ进程进行ACK/NACK反馈。
表10
Figure PCTCN2018082057-appb-000063
从表10中可以看出,方案2-1中的第一DCI中的资源分配指示字段为“1111000”,用于指示:UE不发送上行数据的和/或基站对UE发送的上行数据的应答,且,UE不监测/不接收第二DCI和/或MPDCCH,和/或,UE进入休眠态、空闲态、非连接接收态、延长的非连续接收态或节能模式。
可选地,可以预定义第一DCI中的资源分配指示字段为“1111111”,用于指示相同的信息。
此时,第一DCI中不包括ACK/NACK指示字段。
一方面,在方案2-1中,第一DCI可以指示UE不监测或不接收第二DCI和/或MPDCCH,或UE进入休眠态、空闲态、非连续接收态、延长的非连续接收态或节能模式。
另一方面,第一DCI也可以指示基站对UE的任意HARQ进程反馈了ACK。
可选地,基站可以对UE的任一个HARQ进程反馈ACK。
可选地,基站可以对UE的所有HARQ进程反馈ACK。
可选地,基站可以对UE的最后一个HARQ进程反馈ACK。
表11
Figure PCTCN2018082057-appb-000064
可选地,在方案2-2中,该第一DCI可以指示UE不监测或不接收第二DCI和/或MPDCCH,或UE进入休眠态、空闲态、非连续接收态、延长的非连续接收态或节能模式,并且不发送上行数据,并且对指示的HARQ进程反馈了ACK。
可选地,可以预定义第一DCI中的资源分配指示字段为“1111111”,用于指示相同的信息。
在一种可能的实施例中,当UE工作在CE Mode B下时,基站可以向UE发送第三DCI。
可选地,第三DCI的格式可以为DCI format 6-0B。
可选地,,第三DCI中的调制编码方式字段包括4个比特,该4个比特为第三比特状态时,可以用于指示:(a)UE不发送上行数据;(b)基站对UE发送的上行数据的应答;(c)UE不监测或者不接收第二DCI,和/或,下行控制信道;(d)UE进入休眠态、空闲态、非连续接收态、延长的非连续接收态或节能模式中的任意一种状态。
可选地,第三比特状态可以为“1011”、“1100”、“1100”或“1111”中的任意一种。
可选地,当第三比特状态只指示(a)和/或(b)时,还可以包括第四比特状态,用于指示(a)和/或(b),且(c)和/或(d)。
可选地,当第三比特状态为“1011”时,第四比特状态为“1100”。
可选地,当第三比特状态为“1100”时,第四比特状态为“1011”。
可选地,当第三比特状态为“1100”时,第四比特状态为“1111”。
可选地,当第三比特状态为“1111”时,第四比特状态为“1100”。
这里,为了避免赘述,第三DCI和第一DCI相同的部分不再进行描述,具体可以参考上述内容中关于第一DCI的详细说明。
以上对本申请实施例提供的方法进行了详细描述,为了实现上述本申请实施例提供的方法中的各功能,终端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
基于与上述方法实施例同样的发明构思,本申请实施例提供了一种终端设备,用于实现上述方法中终端设备的功能。图6是本申请实施例终端设备的示意性框图。应理解,图6示出的终端设备600仅是示例,本申请实施例的终端设备600还可以包括其他模块或单元,或者包括与图6中的各个模块的功能相似的模块,或者并非要包括图6中所有模块。
接收单元610,用于接收第一DCI,该第一DCI包括资源分配字段,资源分配字段包括连续的
Figure PCTCN2018082057-appb-000065
个比特和连续的5个比特,连续的
Figure PCTCN2018082057-appb-000066
个比特的值全为1,
Figure PCTCN2018082057-appb-000067
是上行带宽中包含的资源块个数。
确定单元620,用于根据该接收单元610接收的第一DCI中的连续的5个比特为第一比特状态,确定:不发送上行数据;和/或,不监测或者不接收下行控制信道;和/或,进入休眠态、空闲态、非连续接收态、延长的非连续接收态或节能模式。
可选地,第一比特状态用于指示不发送上行数据,还包括:根据该连续的5个比特为第二比特状态,确定:不发送上行数据,且,不监测或者不接收下行控制信道;和/或,不发送上行数据,且,进入休眠态、空闲态、非连续接收态、延长的非连续接收态或节能模式。
可选地,第一比特状态为10101、10110、10111、11000、11001、11010或11111中的任意一种。
可选地,第一比特状态和所述第二比特状态分别为:{第一比特状态,第二比特状态}为{10101,11010}或{11010,10101};或者{第一比特状态,第二比特状态}为{10110,11001}或{11001,10110};或者{第一比特状态,第二比特状态}为{10111,11000}或{11000,10111};或者{第一比特状态,第二比特状态}为{11111,11000}或{11000,11111}。
可选地,该接收单元610接收的第一DCI还包括ACK/NACK指示字段,该ACK/NACK指示字段用于指示对一个HARQ进程对应的上行数据的肯定应答或否定应答;其中,该ACK/NACK指示字段的比特数等于1;或该ACK/NACK指示字段的比特数大于1,且每个ACK/NACK指示比特的取值相同。
可选地,该接收单元610接收的第一DCI还包括ACK/NACK指示字段,ACK/NACK指示字段包括N个比特,该N个比特分别用于指示对N个HARQ进程对应的上行数据的ACK/NACK,N为大于1的整数。
可选地,该接收单元610接收的第一DCI还包括DCI子帧重复次数指示字段,该DCI子帧重复次数指示字段用于指示MPDCCH的重复次数。
可选地,该接收单元610接收的第一DCI还包括TPC命令字段,该TPC命令字段用于指示发送PUCCH的发射功率。
可选地,在该接收单元610接收的第一DCI的比特中,除存在的填充比特、资源分配字段、用于区分调度物理下行共享信道的DCI格式和调度物理上行共享信道的DCI格式的标志位对应的比特之外,其余比特是保留比特;或除存在的填充比特、资源分配字段、用于区分调度物理下行共享信道的DCI格式和调度物理上行共享信道的DCI格式的标志位对应的比特和第一类指示比特之外,其余比特是保留比特;
其中,第一类指示比特包括如下比特中的一种或多种字段所对应的比特:HARQ进程号指示字段,ACK/NACK指示字段,DCI子帧重复次数指示字段,TPC命令字段;该保留比特的值全为1或全为0。
如图7所示为本申请实施例提供的终端设备700,用于实现上述方法中终端设备的功能。其中,该终端设备700可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。终端设备700包括处理器720(即确定单元),用于实现本申请实施例提供的方法中终端设备的功能。示例性地,处理器720可以用于根据连续的5个比特为第一比特状态,确定:不发送上行数据;和/或,不监测或者不接收下行控制信道;和/或,进入休眠态、空闲态、非连续接收态、延长的非连续接收态或节能模式等,具体参见方法示例中的详细描述,此处不做赘述。
终端设备700还可以包括存储器730,用于存储程序指令和/或数据。存储器730和处理器720耦合。处理器720可能和存储器730协同操作。处理器720可能执行存储器730中存储的程序指令。
终端设备700还可以包括收发器710(可以替换为接收器和发射器,由接收器实现接收的功能)(例如,接收单元),用于通过传输介质和其它设备进行通信,从而用于终端设备700中的装置可以和其它设备进行通信。处理器720利用收发器710收发信令,并用于实现本申请方法实施例中终端设备所执行的方法。
本申请实施例中不限定上述收发器710、处理器720以及存储器730之间的具体连接介质。本申请实施例在图7中以存储器730、处理器720以及收发器710之间通过总线740连接,总线在图7中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图7中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
基于与上述方法实施例同样的发明构思,本申请实施例提供了一种网络设备,用于实现上述方法中网络设备的功能。图8是本申请实施例网络设备的示意性框图。应理解,图8示出的网络设备800仅是示例,本申请实施例的网络设备800还可以包括其他模块或单元,或者包括与图8中的各个模块的功能相似的模块,或者并非要包括图8中所有模块。
发送单元810,用于发送第一DCI,该第一DCI包括资源分配字段,资源分配字段包括连续的
Figure PCTCN2018082057-appb-000068
个比特和连续的5个比特,连续的
Figure PCTCN2018082057-appb-000069
个比特的值全为1,
Figure PCTCN2018082057-appb-000070
是上行带宽中包含的资源块个数。该连续的5个比特为第一比特状态时:终端设备不发送上行数据;和/或,终端设备不监测或者不接收下行控制信道;和/或,终端设备进入休眠态、空闲态、非连续接收态、延长的非连续接收态或节能模式。
可选地,当第一比特状态只指示终端设备不发送上行数据和/或对终端设备发送的上 行数据的应答时,还包括:该连续的5个比特为第二比特状态时,指示终端设备不发送上行数据和/或对终端设备发送的上行数据的应答,且,终端设备不监测或者不接收下行控制信道;和/或,所述终端设备不发送上行数据,且,终端设备进入休眠态、空闲态、非连续接收态、延长的非连续接收态或节能模式。
可选地,第一比特状态为10101、10110、10111、11000、11001、11010或11111中的任意一种。
可选地,第一比特状态和所述第二比特状态分别为:{第一比特状态,第二比特状态}为{10101,11010}或{11010,10101};或者{第一比特状态,第二比特状态}为{10110,11001}或{11001,10110};或者{第一比特状态,第二比特状态}为{10111,11000}或{11000,10111};或者{第一比特状态,第二比特状态}为{11111,11000}或{11000,11111}。
可选地,该发送单元810发送的第一DCI还包括ACK/NACK指示字段,该ACK/NACK指示字段用于指示对一个HARQ进程对应的上行数据的肯定应答或否定应答;其中,该ACK/NACK指示字段的比特数等于1;或该ACK/NACK指示字段的比特数大于1,且每个ACK/NACK指示比特的取值相同。
可选地,该发送单元810发送的第一DCI还包括ACK/NACK指示字段,ACK/NACK指示字段包括N个比特,该N个比特分别用于指示对N个HARQ进程对应的上行数据的ACK/NACK,N为大于1的整数。
可选地,该发送单元810发送的第一DCI还包括DCI子帧重复次数指示字段,该DCI子帧重复次数指示字段用于指示MPDCCH的重复次数。
可选地,该发送单元810发送的第一DCI还包括TPC命令字段,该TPC命令字段用于指示终端设备发送PUCCH的发射功率。
可选地,在该发送单元810发送的第一DCI的比特中,除存在的填充比特、资源分配字段、用于区分调度物理下行共享信道的DCI格式和调度物理上行共享信道的DCI格式的标志位对应的比特之外,其余比特是保留比特;或除存在的填充比特、资源分配字段、用于区分调度物理下行共享信道的DCI格式和调度物理上行共享信道的DCI格式的标志位对应的比特和第一类指示比特之外,其余比特是保留比特;
其中,第一类指示比特包括如下比特中的一种或多种字段所对应的比特:HARQ进程号指示字段,ACK/NACK指示字段,DCI子帧重复次数指示字段,TPC命令字段;该保留比特的值全为1或全为0。
如图9所示为本申请实施例提供的网络设备900,用于实现上述方法中网络设备的功能。其中,该网络设备900可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。网络设备900包括处理器920,用于实现本申请实施例提供的方法中网络设备的功能,具体参见方法示例中的详细描述,此处不做赘述。
该网络设备900还可以包括存储器930,用于存储程序指令和/或数据。存储器930和处理器920耦合。处理器920可能和存储器930协同操作。处理器920可能执行存储器930中存储的程序指令。
该网络设备900还可以包括收发器910(可以替换为接收器和发射器,由接收器实现接收的功能)(例如,发送单元),用于通过传输介质和其它设备进行通信,从而用于该网络设备800中的装置可以和其它设备进行通信。处理器920利用收发器910收发信令, 并用于实现本申请方法实施例中网络设备所执行的方法。
本申请实施例中不限定上述收发器910、处理器920以及存储器930之间的具体连接介质。本申请实施例在图9中以存储器930、处理器920以及收发器910之间通过总线940连接,总线在图9中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图9中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本申请实施例还提供一种通信系统,其包含执行本申请上述实施例所提到的至少一个网络设备以及至少一个终端设备。
在本申请实施例中,处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在本申请实施例中,存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络 单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,SSD)等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (38)

  1. 一种信息传输方法,其特征在于,包括:
    终端设备接收网络设备发送的第一下行控制信息,所述第一下行控制信息包括资源分配字段,所述资源分配字段包括连续的
    Figure PCTCN2018082057-appb-100001
    个比特和连续的5个比特,所述连续的
    Figure PCTCN2018082057-appb-100002
    个比特的值全为1,
    Figure PCTCN2018082057-appb-100003
    是上行带宽中包含的资源块个数;
    所述终端设备根据所述连续的5个比特为第一比特状态确定:
    所述终端设备不发送上行数据;和/或,
    所述终端设备不监测或者不接收下行控制信道;和/或,
    所述终端设备进入休眠态、空闲态、非连续接收态、延长的非连续接收态或节能模式。
  2. 根据权利要求1所述的方法,其特征在于,所述第一比特状态用于指示所述终端设备不发送上行数据,还包括:
    所述终端设备根据所述连续的5个比特为第二比特状态,确定:
    所述终端设备不发送上行数据,且,所述终端设备不监测或者不接收下行控制信道;和/或,
    所述终端设备不发送上行数据,且,所述终端设备进入休眠态、空闲态、非连续接收态、延长的非连续接收态或节能模式。
  3. 根据权利要求1所述的方法,其特征在于,所述第一比特状态为10101、10110、10111、11000、11001、11010或11111。
  4. 根据权利要求2所述的方法,其特征在于,所述第一比特状态和所述第二比特状态分别为:
    {第一比特状态,第二比特状态}为{10101,11010}或{11010,10101};或者
    {第一比特状态,第二比特状态}为{10110,11001}或{11001,10110};或者
    {第一比特状态,第二比特状态}为{10111,11000}或{11000,10111};或者
    {第一比特状态,第二比特状态}为{11111,11000}或{11000,11111}。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一下行控制信息还包括肯定应答/否定应答指示字段,所述肯定应答/否定应答指示字段用于指示对一个混合自动重传请求进程对应的上行数据的肯定应答或否定应答;其中,
    所述肯定应答/否定应答指示字段的比特数等于1;或
    所述肯定应答/否定应答指示字段的比特数大于1,且每个肯定应答/否定应答指示比特的取值相同。
  6. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一下行控制信息还包括肯定应答/否定应答指示字段,所述肯定应答/否定应答指示字段包括N个比特,所述N个比特分别用于指示对N个混合自动重传请求进程对应的上行数据的肯定应答或否定应答,N为大于1的整数。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一下行控制信息还包括下行控制信息子帧重复次数指示字段,所述下行控制信息子帧重复次数指示字段用于指示物理下行控制信道的重复次数。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一下行控制信息还包括发射功率控制命令字段,所述发射功率控制命令字段用于指示所述终端设备发送物理上行数据信道的发射功率。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,在所述第一下行控制信息的比特中,除存在的填充比特、所述资源分配字段、用于区分调度物理下行共享信道的下行控制信息格式和调度物理上行共享信道的下行控制信息格式的标志位对应的比特之外,其余比特是保留比特;或
    除存在的所述填充比特、所述资源分配字段、所述用于区分调度物理下行共享信道的下行控制信息格式和调度物理上行共享信道的下行控制信息格式的标志位对应的比特和第一类指示比特之外,其余比特是保留比特;
    其中,所述第一类指示比特包括如下一种或多种字段所对应的比特:所述混合自动重传请求进程号指示字段,所述肯定应答/否定应答指示字段,所述下行控制信息子帧重复次数指示字段,所述发射功率控制命令字段;
    所述保留比特的值全为1或全为0。
  10. 一种信息传输方法,其特征在于,包括:
    网络设备向终端设备发送第一下行控制信息,所述第一下行控制信息包括资源分配字段,所述资源分配字段包括连续的
    Figure PCTCN2018082057-appb-100004
    个比特和连续的5个比特,所述连续的
    Figure PCTCN2018082057-appb-100005
    个比特的值为全1,
    Figure PCTCN2018082057-appb-100006
    是上行带宽中包含的资源块个数;
    若所述连续的5个比特为第一比特状态:
    指示所述终端设备不发送上行数据;和/或,
    指示对所述终端设备发送的上行数据的应答;和/或,
    指示所述终端设备不监测或者不接收下行控制信道;和/或
    指示所述终端设备进入休眠态、空闲态、非连续接收态、延长的非连续接收态或节能模式。
  11. 根据权利要求10所述的方法,其特征在于,若所述第一比特状态指示所述终端设备不发送上行数据和/或对所述终端设备发送的上行数据的应答,还包括:
    所述连续的5个比特为第二比特状态时:
    指示所述终端设备不发送上行数据和/或指示对所述终端设备发送的上行数据的应答,且,指示所述终端设备不监测或者不接收下行控制信道;和/或,
    指示所述终端设备不发送上行数据和/或指示对所述终端设备发送的上行数据的应答,且,指示所述终端设备进入休眠态、空闲态、非连续接收态、延长的非连续接收态或节能模式。
  12. 根据权利要求10所述的方法,其特征在于,所述第一比特状态为10101、10110、10111、11000、11001、11010或11111。
  13. 根据权利要求11所述的方法,其特征在于,所述第一比特状态和第二比特状态分别为:
    {第一比特状态,第二比特状态}为{10101,11010}或{11010,10101};或者,
    {第一比特状态,第二比特状态}为{10110,11001}或{11001,10110};或者,
    {第一比特状态,第二比特状态}为{10111,11000}或{11000,10111};或者,
    {第一比特状态,第二比特状态}为{11111,11000}或{11000,11111}。
  14. 根据权利要求10至13中任一项所述的方法,其特征在于,所述第一下行控制信息还包括肯定应答/否定应答指示字段,所述肯定应答/否定应答指示字段用于指示对一个混合自动重传请求进程所对应的上行数据的肯定应答或否定应答;其中,
    所述肯定应答/否定应答指示字段的比特数等于1;或者,
    所述肯定应答/否定应答指示字段的比特数大于1,且每个肯定应答/否定应答指示比特的取值相同。
  15. 根据权利要求10至13中任一项所述的方法,其特征在于,所述第一下行控制信息还包括肯定应答/否定应答指示字段,所述肯定应答/否定应答指示字段包括N个比特,所述N个比特分别用于指示对N个混合自动重传请求进程所对应的上行数据的肯定应答或否定应答,N为大于1的整数。
  16. 根据权利要求10至15中任一项所述的方法,其特征在于,所述第一下行控制信息还包括下行控制信息子帧重复次数指示字段,所述下行控制信息子重复次数指示字段用于指示物理下行控制信道的重复次数。
  17. 根据权利要求10至16中任一项所述的方法,其特征在于,所述第一下行控制信息还包括发射功率控制命令字段,所述发射功率控制命令字段用于指示所述终端设备发送物理上行共享信道的发射功率。
  18. 根据权利要求10至17中任一项所述的方法,其特征在于,在所述第一下行控制信息的比特中,除存在的填充比特、所述资源分配字段、用于区分调度物理下行共享信道的下行控制信息格式和调度物理上行共享信道的下行控制信息格式的标志位对应的比特之外,其余比特是保留比特;或者,
    除存在的所述填充比特、所述资源分配字段、所述用于区分调度物理下行共享信道的下行控制信息格式和调度物理上行共享信道的下行控制信息格式的标志位对应的比特和第一类指示比特之外,其余比特是保留比特;
    其中,所述第一类指示比特包括如下比特中的一种或多种字段对应的比特:所述混合自动重传请求进程号指示字段,所述肯定应答/否定应答指示字段,所述第一下行控制信息子帧重复次数指示字段,所述发射功率控制命令字段;
    所述保留比特的值全为1或全为0。
  19. 一种终端设备,其特征在于,包括:
    接收单元,用于接收网络设备发送的第一下行控制信息,所述第一下行控制信息包括资源分配字段,所述资源分配字段包括连续的
    Figure PCTCN2018082057-appb-100007
    个比特和连续的5个比特,所述连续的
    Figure PCTCN2018082057-appb-100008
    个比特的值全为1,
    Figure PCTCN2018082057-appb-100009
    是上行带宽中包含的资源块个数;
    确定单元,用于根据所述连续的5个比特为第一比特状态确定:
    不发送上行数据;和/或,
    不监测或者不接收下行控制信道;和/或,
    进入休眠态、空闲态、非连续接收态、延长的非连续接收态或节能模式。
  20. 根据权利要求19所述的终端设备,其特征在于,所述第一比特状态用于指示不 发送上行数据,所述确定单元还用于:
    根据所述连续的5个比特为第二比特状态,确定:
    不发送上行数据,且,不监测或者不接收下行控制信道;和/或,
    不发送上行数据,且,备进入休眠态、空闲态、非连续接收态、延长的非连续接收态或节能模式。
  21. 根据权利要求19所述的终端设备,其特征在于,所述第一比特状态为10101、10110、10111、11000、11001、11010或11111。
  22. 根据权利要求20所述的终端设备,其特征在于,所述第一比特状态和所述第二比特状态分别为:
    {第一比特状态,第二比特状态}为{10101,11010}或{11010,10101};或者
    {第一比特状态,第二比特状态}为{10110,11001}或{11001,10110};或者
    {第一比特状态,第二比特状态}为{10111,11000}或{11000,10111};或者
    {第一比特状态,第二比特状态}为{11111,11000}或{11000,11111}。
  23. 根据权利要求19至22中任一项所述的终端设备,其特征在于,所述接收单元接收的所述第一下行控制信息还包括肯定应答/否定应答指示字段,所述肯定应答/否定应答指示字段用于指示对一个混合自动重传请求进程对应的上行数据的肯定应答或否定应答;其中,
    所述肯定应答/否定应答指示字段的比特数等于1;或
    所述肯定应答/否定应答指示字段的比特数大于1,且每个肯定应答/否定应答指示比特的取值相同。
  24. 根据权利要求19至22中任一项所述的终端设备,其特征在于,所述接收单元接收的所述第一下行控制信息还包括肯定应答/否定应答指示字段,所述肯定应答/否定应答指示字段包括N个比特,所述N个比特分别用于指示对N个混合自动重传请求进程对应的上行数据的肯定应答或否定应答,N为大于1的整数。
  25. 根据权利要求19至24中任一项所述的终端设备,其特征在于,所述接收单元接收的所述第一下行控制信息还包括下行控制信息子帧重复次数指示字段,所述下行控制信息子帧重复次数指示字段用于指示物理下行控制信道的重复次数。
  26. 根据权利要求19至25中任一项所述的终端设备,其特征在于,所述接收单元接收的所述第一下行控制信息还包括发射功率控制命令字段,所述发射功率控制命令字段用于指示所述终端设备发送物理上行共享信道的发射功率。
  27. 根据权利要求19至26中任一项所述的终端设备,其特征在于,在所述接收单元接收的所述第一下行控制信息的比特中,除存在的填充比特、所述资源分配字段、用于区分调度物理下行共享信道的下行控制信息格式和调度物理上行共享信道的下行控制信息格式的标志位对应的比特之外,其余比特是保留比特;或
    除存在的所述填充比特、所述资源分配字段、所述用于区分调度物理下行共享信道的下行控制信息格式和调度物理上行共享信道的下行控制信息格式的标志位对应的比特和第一类指示比特之外,其余比特是保留比特;
    其中,所述第一类指示比特包括如下一种或多种字段所对应的比特:所述混合自动重传请求进程号指示字段,所述肯定应答/否定应答指示字段,所述下行控制信息子帧重复次数指示字段,所述发射功率控制命令字段;
    所述保留比特的值全为1或全为0。
  28. 一种网络设备,其特征在于,包括:
    发送单元,用于向终端设备发送第一下行控制信息,所述第一下行控制信息包括资源分配字段,所述资源分配字段包括连续的
    Figure PCTCN2018082057-appb-100010
    个比特和连续的5个比特,所述连续的
    Figure PCTCN2018082057-appb-100011
    个比特的值为全1,
    Figure PCTCN2018082057-appb-100012
    是上行带宽中包含的资源块个数;
    若述连续的5个比特为第一比特状态:
    指示所述终端设备不发送上行数据;和/或,
    指示对所述终端设备发送的上行数据的应答;和/或,
    指示所述终端设备不监测或者不接收下行控制信道;和/或
    指示所述终端设备进入休眠态、空闲态、非连续接收态、延长的非连续接收态或节能模式。
  29. 根据权利要求28所述的网络设备,其特征在于,若所述第一比特状态只指示所述终端设备不发送上行数据和/或对所述终端设备发送的上行数据的应答,还包括:
    所述连续的5个比特为第二比特状态时:
    指示所述终端设备不发送上行数据和/或指示对所述终端设备发送的上行数据的应答,且,指示所述终端设备不监测或者不接收下行控制信道;和/或,
    指示所述终端设备不发送上行数据和/或指示对所述终端设备发送的上行数据的应答,且,指示所述终端设备进入休眠态、空闲态、非连续接收态、延长的非连续接收态或节能模式。
  30. 根据权利要求28所述的网络设备,其特征在于,所述第一比特状态为10101、10110、10111、11000、11001、11010或11111。
  31. 根据权利要求29所述的网络设备,其特征在于,所述第一比特状态和第二比特状态分别为:
    {第一比特状态,第二比特状态}为{10101,11010}或{11010,10101};或者,
    {第一比特状态,第二比特状态}为{10110,11001}或{11001,10110};或者,
    {第一比特状态,第二比特状态}为{10111,11000}或{11000,10111};或者,
    {第一比特状态,第二比特状态}为{11111,11000}或{11000,11111}。
  32. 根据权利要求28至31中任一项所述的网络设备,其特征在于,所述发送单元发送的第一下行控制信息还包括肯定应答/否定应答指示字段,所述肯定应答/否定应答指示字段用于指示对一个混合自动重传请求进程所对应的上行数据的肯定应答或否定应答;其中,
    所述肯定应答/否定应答指示字段的比特数等于1;或者,
    所述肯定应答/否定应答指示字段的比特数大于1,且每个肯定应答/否定应答指示比特的取值相同。
  33. 根据权利要求28至31中任一项所述的网络设备,其特征在于,所述发送单元发送的所述第一下行控制信息还包括肯定应答/否定应答指示字段,所述肯定应答/否定应答指示字段包括N个比特,所述N个比特分别用于指示对N个混合自动重传请求进程所对应的上行数据的肯定应答或否定应答,N为大于1的整数。
  34. 根据权利要求28至33中任一项所述的网络设备,其特征在于所述发送单元发送的所述第一下行控制信息还包括下行控制信息子帧重复次数指示字段,所述下行控制信息子重复次数指示字段用于指示物理下行控制信道的重复次数。
  35. 根据权利要求28至34中任一项所述的网络设备,其特征在于,所述发送单元发送的所述第一下行控制信息还包括发射功率控制命令字段,所述发射功率控制命令字段用于指示所述终端设备发送物理上行共享信道的发射功率。
  36. 根据权利要求28至35中任一项所述的网络设备,其特征在于,在所述发送单元发送的所述第一下行控制信息的比特中,除存在的填充比特、所述资源分配字段、用于区分调度物理下行共享信道的下行控制信息格式和调度物理上行共享信道的下行控制信息格式的标志位对应的比特之外,其余比特是保留比特;或者,
    除存在的所述填充比特、所述资源分配字段、所述用于区分调度物理下行共享信道的下行控制信息格式和调度物理上行共享信道的下行控制信息格式的标志位对应的比特和第一类指示比特之外,其余比特是保留比特;
    其中,所述第一类指示比特包括如下比特中的一种或多种字段对应的比特:所述混合自动重传请求进程号指示字段,所述肯定应答/否定应答指示字段,所述第一下行控制信息子帧重复次数指示字段,所述发射功率控制命令字段;
    所述保留比特的值全为1或全为0。
  37. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得所述计算机执行如权利要求1至9中任一项所述的方法。
  38. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得所述计算机执行如权利要求10至18中任一项所述的方法。
PCT/CN2018/082057 2018-04-04 2018-04-04 信息传输方法、终端设备和网络设备 WO2019192002A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/082057 WO2019192002A1 (zh) 2018-04-04 2018-04-04 信息传输方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/082057 WO2019192002A1 (zh) 2018-04-04 2018-04-04 信息传输方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2019192002A1 true WO2019192002A1 (zh) 2019-10-10

Family

ID=68099806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/082057 WO2019192002A1 (zh) 2018-04-04 2018-04-04 信息传输方法、终端设备和网络设备

Country Status (1)

Country Link
WO (1) WO2019192002A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113543290A (zh) * 2020-04-22 2021-10-22 维沃移动通信有限公司 节能模式的指示方法、终端及网络侧设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017019587A2 (en) * 2015-07-29 2017-02-02 Qualcomm Incorporated Bundling and hybrid automatic repeat request operation for enhanced machine-type communication
CN106559188A (zh) * 2015-09-25 2017-04-05 华为技术有限公司 一种数据传输的方法及基站

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017019587A2 (en) * 2015-07-29 2017-02-02 Qualcomm Incorporated Bundling and hybrid automatic repeat request operation for enhanced machine-type communication
CN106559188A (zh) * 2015-09-25 2017-04-05 华为技术有限公司 一种数据传输的方法及基站

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Further considerations on HARQ-ACK feedback for PUSCH in eFeMTC", 3GPP TSG RAN WGI MEETING #92, RI-1801431, 16 February 2018 (2018-02-16), XP051396927 *
LENOVO ET AL.: "Remaining issue for uplink HARQ-ACK feedback in efeMTC", 3GPP TSG RAN WGI MEETING #92, R1-1801812, 16 February 2018 (2018-02-16), XP051396997 *
LENOVO ET AL.: "Uplink HARQ-ACK feedback in efeMT", 3GPP TSG RAN WG1 MEETING #91, RL-1719739, 19 November 2017 (2017-11-19), XP051370408 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113543290A (zh) * 2020-04-22 2021-10-22 维沃移动通信有限公司 节能模式的指示方法、终端及网络侧设备
WO2021213264A1 (zh) * 2020-04-22 2021-10-28 维沃移动通信有限公司 节能模式的指示方法、终端及网络侧设备
CN113543290B (zh) * 2020-04-22 2022-10-11 维沃移动通信有限公司 节能模式的指示方法、终端及网络侧设备

Similar Documents

Publication Publication Date Title
JP6526701B2 (ja) ワイヤレス通信におけるスケジューリング割当てのコンテンツおよび送信
TWI748983B (zh) 業務傳輸的方法和裝置
WO2020211096A1 (zh) 无线通信方法、终端设备和网络设备
US11570800B2 (en) Data transmission method, terminal device and network device
US20220060290A1 (en) Wireless communication method, receiving-end device, and sending-end device
US20200145973A1 (en) Information transmission method, apparatus and terminal
US11729819B2 (en) Method and device for determining contention window
WO2019047819A1 (zh) 发送上行控制信道的方法和装置
US11528731B2 (en) Communication method and communications apparatus
US20230039093A1 (en) Sidelink resource determining method and communication apparatus
WO2018121227A1 (zh) 发送控制信息的方法和装置及接收控制信息的方法和装置
WO2019192500A1 (zh) 通信方法和通信装置
US20230209508A1 (en) Information transmission method, resource selection method, apparatus, and electronic device
CN115399025A (zh) 无线通信方法、终端设备和网络设备
WO2019192002A1 (zh) 信息传输方法、终端设备和网络设备
WO2021227142A1 (zh) Harq-ack码本的反馈方法、终端设备和网络设备
WO2021088260A1 (zh) 传输反馈信息的方法、终端设备和网络设备
WO2020199769A1 (zh) 控制信息的传输方法和装置
WO2021062869A1 (zh) 无线通信方法和终端设备
WO2019191911A1 (zh) 数据传输的方法和设备
WO2018227596A1 (zh) 时域资源指示方法、数据传输方法、装置和通信系统
WO2022109838A1 (zh) 无线通信的方法和装置
WO2022027683A1 (zh) 确定传输使用的天线面板的方法和终端设备
RU2748162C1 (ru) Способ передачи данных, сетевое устройство и терминал
WO2021072608A1 (zh) 最小时间单元偏移的通知方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18913295

Country of ref document: EP

Kind code of ref document: A1