WO2022109838A1 - 无线通信的方法和装置 - Google Patents

无线通信的方法和装置 Download PDF

Info

Publication number
WO2022109838A1
WO2022109838A1 PCT/CN2020/131350 CN2020131350W WO2022109838A1 WO 2022109838 A1 WO2022109838 A1 WO 2022109838A1 CN 2020131350 W CN2020131350 W CN 2020131350W WO 2022109838 A1 WO2022109838 A1 WO 2022109838A1
Authority
WO
WIPO (PCT)
Prior art keywords
dmrs
domain resource
pdsch
time domain
time
Prior art date
Application number
PCT/CN2020/131350
Other languages
English (en)
French (fr)
Inventor
苏桐
官磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080107323.4A priority Critical patent/CN116671204A/zh
Priority to PCT/CN2020/131350 priority patent/WO2022109838A1/zh
Publication of WO2022109838A1 publication Critical patent/WO2022109838A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communications, and more particularly, to methods and apparatus for wireless communications.
  • a reference signal (RS) has been widely used.
  • the transmitting end device transmits the demodulation reference signal while transmitting data, and the receiving end device first performs channel estimation according to the demodulation reference signal, and further demodulates the data according to the result of the channel estimation.
  • the receiving end can receive the corresponding resource location.
  • DMRS demodulation reference signal
  • the design of the reference signal needs to meet the service requirements in different application scenarios, for example, in ultra-reliable and low-latency communication (ultra reliability) In low latency communication, URLLC), it is necessary to satisfy both low latency and high reliability.
  • ultra reliability ultra-reliable and low-latency communication
  • URLLC low latency communication
  • the communication system has put forward higher requirements on the resource overhead of the communication system while meeting the business requirements. Therefore, it is desirable to provide a technology that can satisfy the service requirements while taking into account the overhead of the demodulation reference signal and improve the utilization efficiency of the demodulation reference signal.
  • the embodiments of the present application relate to a method and an apparatus for wireless communication, which can satisfy service requirements while taking into account the overhead of demodulation reference signals, and improve the utilization efficiency of demodulation reference signals.
  • a method for wireless communication including: sending first indication information, where the first indication information is used to indicate a first time-domain resource combination, where the first time-domain resource combination includes a first demodulation reference signal DMRS and the first physical downlink shared channel PDSCH, the first DMRS is used to demodulate the first PDSCH, the time domain resource position of the first DMRS is before the time domain resource position of the first PDSCH; The time domain resource location sends the first DMRS.
  • the network device when performing wireless communication with the terminal device, sends first indication information to the terminal device, indicating that the network device is the first time domain resource combination determined by the terminal device, and the first time domain resource combination includes The first demodulation reference signal DMRS and the first physical downlink shared channel PDSCH, the time domain resource start position of the first DMRS is before the time domain resource start position of the first PDSCH, and the time domain resource start position of the first DMRS The position transmits the demodulation reference signal.
  • the time domain resource positions of the demodulation reference signal and the physical downlink shared channel can be flexibly configured according to the service scenario of the terminal device, and the time domain of the demodulation reference signal and the physical downlink shared channel can be improved. resource utilization efficiency.
  • the resource overhead of the network device for sending the demodulation reference signal can be reduced, and the demodulation reference signal can be improved. utilization efficiency.
  • the start position of the time domain resource position of the first DMRS is located before the start position of the time domain resource position of the first PDSCH.
  • the time domain resource position of the first DMRS is located before the start position of the time domain resource of the first PDSCH.
  • the first DMRS may occupy at least one time domain resource unit, the at least one time domain resource unit may be continuous or discontinuous, and the time domain resource unit may be a symbol.
  • the first symbol position in the two symbol positions is before the symbol position occupied by the first PDSCH.
  • the first PDSCH is sent at the time domain resource position of the first PDSCH.
  • the method further includes: determining time-domain resource allocation configuration information, where the time-domain resource allocation configuration information includes the first time-domain resource combination.
  • the time domain resource allocation configuration information may further include a second time domain resource combination, the second time domain resource combination includes a third DMRS and a third PDSCH, and the third DMRS is located in the time domain resources of the third PDSCH Inside.
  • the sequence initialization parameter of the first DMRS is a cell identity.
  • the first DMRS is sent at the time domain resource position of the first DMRS.
  • the method further includes: sending first downlink control information DCI before the start position of the time domain resource of the first DMRS, where the first DCI includes the first indication information .
  • the method further includes: sending a second PDSCH, the first DMRS is further used to demodulate the second PDSCH, the second PDSCH and the time domain resources of the first PDSCH Location is different.
  • the network device sends physical downlink shared channels with different time-domain resource locations to different terminal devices, and sends demodulation reference signals that can be shared to the multiple terminal devices, which can reduce the need for the network device to send demodulation reference signals. reduce the resource overhead and improve the utilization efficiency of the demodulation reference signal. That is, the demodulation reference signals having the same time domain resource location are configured for different terminal devices through the network device.
  • the time domain resource position of the second PDSCH may be before or after the time domain resource position of the first PDSCH.
  • the frequency domain resource location of the second PDSCH may be the same as the time domain resource location of the first PDSCH.
  • the first time-domain resource combination further includes a second DMRS, the second DMRS is used to demodulate the first PDSCH, and the second DMRS is located at the time of the first PDSCH in domain resources.
  • the network device when the first time domain resource combination includes the first DMRS and the second DMRS, the network device can meet different service scenarios by sending different DMRSs to the terminal device. For example, the network device may send the second DMRS coupled to the time domain resource location of the first PDSCH to the terminal device, so that the terminal device can use the second DMRS to demodulate the first PDSCH, thereby improving demodulation reliability.
  • the second DMRS is located in the time domain resource of the first PDSCH
  • the time domain resource position of the second DMRS occupies the first symbol of the time domain resource position of the first PDSCH.
  • the second DMRS occupies multiple consecutive or discontinuous positions in the time domain resource positions of the first PDSCH.
  • the method further includes: when the first PDSCH carries retransmission data, sending the second DMRS at a time domain resource position of the second DMRS.
  • the method further includes: sending a second DCI, where the time domain and/or frequency domain resource positions of the second DCI are located in the time domain and/or frequency domain of the first PDSCH before the resource location; and sending the second DMRS.
  • the time domain resource position of the second DCI is located before the time domain resource position of the first PDSCH.
  • the frequency domain resource position of the second DCI is located before the frequency domain resource position of the first PDSCH.
  • the time domain and resource positions of the second DCI are located before the time domain and frequency domain resource positions of the first PDSCH.
  • a method for wireless communication including: receiving first indication information, where the first indication information is used to indicate a first time-domain resource combination, where the first time-domain resource combination includes a first demodulation reference signal DMRS and the first physical downlink shared channel PDSCH, the first DMRS is used to demodulate the first PDSCH, the time domain resource position of the first DMRS is before the time domain resource position of the first PDSCH; The time domain resource location receives the first DMRS.
  • the method further includes: determining time-domain resource allocation configuration information, where the time-domain resource allocation configuration information includes at least one of the first time-domain resource combinations.
  • the terminal device may determine the time domain resource allocation configuration information through the second indication information sent by the network device.
  • the second indication information may be RRC signaling at the RRC layer.
  • the sequence initialization parameter of the first DMRS is a cell identity.
  • the first DMRS is received at the time domain resource position of the first DMRS.
  • the method further includes: receiving first downlink control information DCI, where the first DCI includes the first indication information.
  • the first time-domain resource combination further includes a second DMRS, the second DMRS is used to demodulate the first PDSCH, and the second DMRS is located at the time of the first PDSCH in domain resources.
  • the method further includes: when the first PDSCH carries retransmission data, receiving the second DMRS at a time domain resource position of the second DMRS.
  • the method further includes: receiving a second DCI, where the time domain and/or frequency domain resource positions of the second DCI are located in the time domain and/or frequency domain of the first PDSCH before the domain resource location; and receiving the second DMRS.
  • an apparatus for wireless communication including: a transceiver unit configured to send first indication information, where the first indication information is used to indicate a first time-domain resource combination, where the first time-domain resource combination includes a first Demodulation reference signal DMRS and first physical downlink shared channel PDSCH, the first DMRS is used to demodulate the first PDSCH, the time domain resource position of the first DMRS is before the time domain resource position of the first PDSCH; the transceiver The unit is further configured to send the first DMRS at the time domain resource position of the first DMRS.
  • the apparatus further includes: a processing unit configured to determine time-domain resource allocation configuration information, where the time-domain resource allocation configuration information includes at least one of the first time-domain resource combinations.
  • the sequence initialization parameter of the first DMRS is a cell identity.
  • the transceiver unit when the first PDSCH bears initially transmitted data, the transceiver unit is configured to send the first DMRS at the time domain resource position of the first DMRS.
  • the transceiver unit is further configured to send first downlink control information DCI before the start position of the time domain resource of the first DMRS, where the first DCI includes the first Instructions.
  • the transceiver unit is further configured to send a second PDSCH
  • the first DMRS is further configured to demodulate the second PDSCH
  • the time between the second PDSCH and the first PDSCH is Domain resource locations are different.
  • the first time-domain resource combination further includes a second DMRS, the second DMRS is used to demodulate the first PDSCH, and the second DMRS is located in the first PDSCH in the time domain resource.
  • the transceiver unit when the first PDSCH carries retransmission data, is further configured to send the second DMRS at the time domain resource position of the second DMRS.
  • the transceiver unit is further configured to send a second DCI, where the time domain and/or frequency domain resource positions of the second DCI are located in the time domain and/or the first PDSCH Before the frequency domain resource location; the transceiver unit is further configured to send the second DMRS.
  • a wireless communication device comprising: a transceiver unit configured to receive first indication information, where the first indication information is used to indicate a first time-domain resource combination, where the first time-domain resource combination includes a first solution A modulation reference signal DMRS and a first physical downlink shared channel PDSCH, the first DMRS is used to demodulate the first PDSCH, and the time domain resource position of the first DMRS is before the time domain resource position of the first PDSCH; the transceiver unit It is also used for receiving the first DMRS at the time domain resource position of the first DMRS.
  • the apparatus further includes: a processing unit configured to determine time-domain resource allocation configuration information, where the time-domain resource allocation configuration information includes at least one of the first time-domain resource combinations.
  • the sequence initialization parameter of the first DMRS is a cell identity.
  • the transceiver unit when the first PDSCH bears initially transmitted data, is further configured to receive the first DMRS at the time domain resource position of the first DMRS.
  • the transceiver unit is further configured to receive first downlink control information DCI, where the first DCI includes the first indication information.
  • the first time-domain resource combination further includes a second DMRS, the second DMRS is used to demodulate the first PDSCH, and the second DMRS is located in the first PDSCH in the time domain resource.
  • the transceiver unit when the first PDSCH carries retransmission data, is further configured to receive the second DMRS at the time domain resource position of the second DMRS.
  • the transceiver unit is further configured to receive a second DCI, where the time domain and/or frequency domain resource positions of the second DCI are located in the time domain and/or the first PDSCH before the frequency domain resource location; and the transceiver unit is further configured to receive the second DMRS.
  • a fifth aspect provides an apparatus for wireless communication, comprising a processor coupled to a memory for storing a computer program or instruction, the processor for executing the computer program or instruction in the memory, so that the first The method of the aspect or any possible implementation of the first aspect is performed, or the method of the second aspect or any possible implementation of the second aspect is performed.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the communication device is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the communication device is a chip or a system of chips.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit on the chip or a chip system.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • a wireless communication device comprising a processor coupled to a memory and operable to perform the method of the first aspect and possible implementations thereof or the second aspect and possible implementations thereof.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication device is a network device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip or a system of chips.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit on the chip or a chip system.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • a seventh aspect provides a computer-readable storage medium, characterized in that the computer-readable storage medium stores a computer program or instruction, and when the computer program or instruction is executed, the first aspect or the first aspect is made The method of any of the possible implementations is performed, or the method of the second aspect or any of the possible implementations of the second aspect is performed.
  • a communication system including the above-mentioned network device and terminal device.
  • FIG. 1 is a schematic diagram of a wireless communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic interaction diagram of a method for transmitting a demodulation reference signal according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an example of resource distribution according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another example of resource distribution according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of still another example of resource distribution according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of still another example of resource distribution according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of still another example of resource distribution according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of still another example of resource distribution according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of still another example of resource distribution according to an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 11 is another schematic block diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 12 is still another schematic block diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 13 is still another schematic block diagram of a communication apparatus according to an embodiment of the present application.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device may be components.
  • One or more components may reside within a process and/or thread of execution, and a component may be localized on one computer and/or distributed between 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals
  • LTE long term evolution
  • LTE-A advanced long term evolution
  • LTE frequency division duplex frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • WLAN Wireless local area networks
  • WiFi wireless fidelity
  • 5G future 5th generation
  • NR new radio
  • D2D device to device
  • M2M machine to machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • Terminal equipment may also be referred to as user equipment (UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device may be a station (staion, ST) in the WLAN, and may be a mobile phone (mobile phone), a satellite phone, a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a tablet computer (pad), a Computers with wireless transceiver functions, wireless local loop (WLL) stations, personal digital assistant (PDA) devices, virtual reality (VR) terminal devices, augmented reality (AR) Terminal equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation security Wireless terminals in (transportation safety), wireless terminals in smart cities, wireless terminals in smart homes, terminal equipment in 5G networks, or public land mobile communication networks that evolve in the future network, PLMN), handheld devices with wireless communication capabilities,
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • the network device can be any device with wireless transceiver function.
  • the network equipment includes but is not limited to: evolved node B (evolved nodeB, eNB or eNodeB), radio network controller (radio network controller, RNC), node B (node B, NB), base station controller (base station controller, BSC), base transceiver station (BTS), home base station (for example, home evolved node B, or home node B, HNB), base band unit (BBU), access point in WLAN, wireless Access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP) in a fidelity (wireless fidelity, WIFI) system ), etc., can also be 5G, such as, NR, gNB in the system, or, transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna panels of the base station in the 5G system, or, also It can be a network node that constitutes a gNB or
  • a network device provides services for a cell
  • a terminal device communicates with the network device through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell
  • the cell may be a network device
  • a cell corresponding to a cell such as a base station
  • the cell may belong to a macro base station, or it may belong to a base station corresponding to a small cell.
  • the small cell here may include: a metro cell, a micro cell, a pico cell (pico cell), femto cell (femto cell), etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • a carrier in an LTE system or a 5G system can have multiple cells working on the same frequency at the same time.
  • the concepts of the above-mentioned carrier and cell can also be considered equivalent.
  • CA carrier aggregation
  • the carrier index of the secondary carrier and the cell identification (Cell ID) of the secondary cell operating on the secondary carrier are carried at the same time.
  • the concepts of the carrier and the cell are equivalent, for example, the UE accessing a carrier is equivalent to accessing a cell.
  • FIG. 1 shows a schematic diagram of a wireless communication system provided by an embodiment of the present application.
  • the communication system 100 includes a network device 110 for communicating with a plurality of terminal devices (eg, terminal devices 120 , 130 , 140 and 150 ).
  • FIG. 1 is a schematic diagram of a wireless communication system, and the specific components of the network device 110 are not shown in detail.
  • the network device 110 may additionally include a transmitter chain and a receiver chain, which can be understood by those skilled in the art. Each may include multiple components related to signal transmission and reception (eg, processors, modulators, multiplexers, demodulators, demultiplexers, or antennas, etc.).
  • network device 110 may communicate with any number of end devices similar to end devices 120 , 130 , 140 and 150 .
  • Terminal devices 120 , 130 , 140 and 150 may be, for example, cellular phones, smart phones, laptop computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or for communicating over wireless communication system 100 any other suitable equipment.
  • the network device 110 may be a base station in ultra-reliable low latency communication (URLLC) in a factory scenario, and the terminal devices 120, 130, 140, and 150 may be closely arranged and arranged in a URLLC service scenario.
  • URLLC ultra-reliable low latency communication
  • FIG. 1 only shows the process (ie, the downlink process) that the network device 110 sends information or data to the terminal devices 120, 130, 140 and 150.
  • the wireless communication system also includes data, Upstream process of information, etc. (terminal equipment sends data to network equipment).
  • the network device 110, the terminal devices 120, 130, 140 and 150 may be wireless communication sending apparatuses and/or wireless communication receiving apparatuses.
  • the wireless communication transmitting device may encode the data for transmission. Specifically, the wireless communication transmitting device may acquire (eg, generate, receive from other communication devices, or store in memory, etc.) a certain number of data bits to be transmitted over the channel to the wireless communication receiving device. Such data bits may be contained in a transport block (or transport blocks) of data, which may be segmented to produce multiple code blocks.
  • FIG. 1 is only a simplified schematic diagram of an example, and the network may also include other network devices, which are not shown in FIG. 1 .
  • a network device 110 communicates with a terminal device (eg, a terminal device 120 ), and sending data from the network device to the terminal device is generally referred to as downlink transmission or downlink scheduling.
  • a terminal device eg, a terminal device 120
  • sending data from the network device to the terminal device is generally referred to as downlink transmission or downlink scheduling.
  • the network device 110 sends a downlink control channel (physical downlink control channel, PDCCH), a downlink data shared channel (physical downlink shared channel, PDSCH), a demodulation reference signal (demodulation reference signal) to the terminal device. , DMRS), etc. are used to complete downlink scheduling.
  • PDCCH physical downlink control channel
  • PDSCH downlink data shared channel
  • demodulation reference signal demodulation reference signal
  • DMRS demodulation reference signal
  • the downlink scheduling in the 5G NR system includes semi-static scheduling and dynamic scheduling.
  • the network device 110 may send downlink control information (DCI) to the terminal device through the PDCCH to indicate the resources allocated to the terminal device.
  • DCI downlink control information
  • the resources allocated to the terminal device within a certain period of time are fixed. After the transmission condition changes greatly, the network device sends DCI again to reallocate resources to the terminal device.
  • the resources may refer to time-frequency resources and/or frequency-domain resources, for example, the time-frequency resources may be time-slot resources, time-domain symbols, and the like.
  • the time unit may be a time slot or a mini-slot, and the description takes a time slot as an example for description.
  • the network device 110 When the network device 110 communicates with a terminal device (eg, the terminal device 120 ), the network device 110 sends a PDSCH and a DMRS corresponding to the PDSCH to the terminal device 120 , and the DMRS is used by the terminal device 120 to demodulate the PDSCH.
  • a terminal device eg, the terminal device 120
  • the network device 110 sends a PDSCH and a DMRS corresponding to the PDSCH to the terminal device 120 , and the DMRS is used by the terminal device 120 to demodulate the PDSCH.
  • the PDSCH and the DMRS sent by the network device 110 are tightly coupled, that is, there is at least one DMRS in one PDSCH. It can be seen that when performing downlink data scheduling, the network device needs to send a demodulation reference signal DMRS corresponding to the PDSCH, so that the terminal device can demodulate the PDSCH sent by the network device.
  • the network device Corresponding PDSCH and DMRS need to be sent to the terminal equipment, thus resulting in more transmission of demodulation reference signals in the communication system, increasing the DMRS overhead in the semi-persistent scheduling process, and causing waste of resources.
  • the present application provides a wireless communication method, which reduces the number of times of demodulation reference signal transmission, reduces DMRS overhead, and saves resources when a network device and a terminal device perform a downlink scheduling process.
  • a and/or B means that A exists alone, B exists alone, or A and B exist simultaneously.
  • FIG. 2 shows a schematic interaction diagram of a method 200 for transmitting a demodulation reference signal according to an embodiment of the present application.
  • FIG. 2 takes the interaction between the network device 110 and the terminal device 120 as an example for introduction.
  • the process of transmitting a demodulation reference signal (DMRS) between terminal equipment #1 (an example of terminal equipment, such as terminal equipment 120) and a network equipment is used as an example for introduction, and the transmission method 200 shown in FIG. include:
  • DMRS demodulation reference signal
  • the network device sends first indication information.
  • the network device 110 sends first indication information to the terminal device #1, where the first indication information is used to indicate the first time domain resource combination to the terminal device #1, where the first time domain resource combination includes the first demodulation reference signal DMRS and a first physical downlink shared channel PDSCH, the first DMRS is used to demodulate the first PDSCH, and the time domain resource position of the first DMRS is before the time domain resource position of the first PDSCH;
  • the network device 110 indicates the time domain resource combination determined by the network device 110 by sending the indication information #1 to the terminal device #1.
  • the resource combination determined by the network device 110 may be the resource combination #1.
  • the terminal device #1 determines the resource combination #1, thereby ensuring that the same resource combination is used to transmit data between the network device 110 and the terminal device #1.
  • the first DMRS may be a group of DMRSs occupying multiple time-domain symbols, or the first DMRS may occupy one time-domain symbol.
  • the time-domain resource position of the first DMRS may be before the time-domain resource position of the first PDSCH.
  • the starting position of the time-domain resource position of the first DMRS may be the same as the time-domain resource position of the first PDSCH. before the starting position.
  • the first DMRS occupies a symbol position on the time domain resource, and the symbol position is before the time domain resource position of the first PDSCH.
  • the time domain resource position of the first DMRS is a plurality of time domain symbols, and at least one time domain symbol in the plurality of time domain symbols is located before the start position of the time domain resource of the first PDSCH, such as the plurality of time domain symbols
  • the start symbol in the symbol is located before the start position of the time domain resource of the first PDSCH.
  • the position of each time domain symbol occupied by the first DMRS is before the time domain resource position of the first PDSCH.
  • the network device 110 may determine a resource combination #1, and the resource combination #1 corresponds to the physical downlink channel PDSCH#A and the demodulation of the terminal device #1.
  • Reference signal DMRS#A the time domain resource position of the DMRS#A is before the time domain resource position of the PDSCH#A.
  • the time domain resource location of the DMRS#A may be as shown in FIG. 3 before the time domain resource location of the PDSCH#A.
  • FIG. 3 shows a schematic diagram of the possible resource distribution of the demodulation reference signal and the physical downlink shared channel in the embodiment of the present application. As shown in FIG. 3 , in a time slot, the time domain resource position of DMRS#A is the time domain Symbol 2, the position of PDSCH#A in the time domain resource is the position of time domain symbols 5 and 6.
  • the first time-domain resource combination further includes a second DMRS, where the second DMRS is used to demodulate the first PDSCH, and the second DMRS is located within the time-domain resources of the first PDSCH.
  • the network device 110 may further determine a resource combination #2, where the resource combination #2 corresponds to the physical downlink shared channel PDSCH#B of the terminal device, demodulation Reference signals DMRS#B1 and DMRS#B2, the time domain resource position of the DMRS#B1 is before the time domain resource position of the PDSCH#B, and the time domain resource position of DMRS#B2 is within the time domain resource position of PDSCH#B .
  • the time domain resource location of DMRS#B2 is located within the time domain resource location of PDSCH#B, which can be understood as the time domain resource location of PDSCH#B including the time domain resource location of DMRS#B2.
  • DMRS#B2 occupies one time-domain symbol, and the symbol position may be the starting symbol position of PDSCH#B2.
  • the DMRS #B2 may also occupy multiple time domain symbols, and the time domain resource position of the DMRS #B2 is located within the time domain resource position of the PDSCH #B. It should be understood that at this time, DMRS#B2 and PDSCH#B are in a coupled state.
  • the time-domain resource positions of the DMRS#B1, DMRS#B2, and the PDSCH#B may be as shown in FIG. 4 .
  • FIG. 4 is a schematic diagram showing another possible resource distribution of the demodulation reference signal and the physical downlink shared channel in the embodiment of the present application.
  • the time domain resource position of DMRS #B1 is Time domain symbol 2
  • the position of PDSCH#B in the time domain resource are time domain symbols 7 and 8
  • the time domain resource position of DMRS#B2 is the position of time domain symbol 7 in the time slot.
  • DMRS #B2 occupies the starting position of the time domain resource position of PDSCH #B.
  • FIG. 3 and FIG. 4 only illustrate the distribution of time domain resources, and the protection scope of the present application is not limited thereto.
  • FIG. 3 and FIG. 4 only exemplify the distribution of resources in the time domain, and do not limit the distribution of resources in the frequency domain.
  • the network device 110 may send downlink control information DCI#1 to the terminal device #1 before the time domain resource location of the DMRS#A, where the DCI#1 includes the indication information #1.
  • the network device 110 may send downlink control information DCI#1 to the terminal device #1 before the time domain resource location of the DMRS #B1, where the DCI#1 includes the indication information #1.
  • the time-domain resource location of DCI#1 may be as shown in FIG. 5 .
  • FIG. 5 shows a schematic diagram of another resource distribution according to an embodiment of the present application.
  • the time domain resource may be a time domain symbol, or a time domain resource used in a future communication process, which is not limited in the present application.
  • the transmission method 200 further includes:
  • the time domain resource allocation configuration information includes DMRS mapping type, PDSCH start and length indicator (the start and the length indicator value, SLIV).
  • DMRS mapping type may indicate the time domain resource position of the DMRS
  • PDSCH SLIV is used to jointly indicate the starting position S and length L of the physical downlink shared channel.
  • the starting position S and the length L of the physical downlink shared channel PDSCH are referred to as the time domain resource position of the PDSCH.
  • the network device may determine the time domain resource allocation configuration information according to the protocol configuration.
  • the time-domain resource allocation configuration information may include a first time-domain resource combination.
  • the time-domain resource allocation configuration information includes resource combination #A (ie, an example of the first time-domain resource combination).
  • the time-domain resource allocation configuration information may further include resource combination #B (ie, another example of the first time-domain resource combination).
  • the resource combination #A corresponds to the first DMRS and the first PDSCH
  • the resource combination #B corresponds to the first DMRS, the second DMRS and the first PDSCH.
  • resource combination #A corresponds to DMRS #A and PDSCH #A
  • resource combination #B corresponds to DMRS #B1, DMRS #B2, and PDSCH #B.
  • the time-domain resource allocation allocation configuration information may include at least one first time-domain resource combination.
  • the time-domain resource allocation configuration information includes multiple resource combinations #A (may be referred to as "first candidate combinations"), or multiple resource combinations #B (may be referred to as “second candidate combinations"), or multiple Resource combination #A and multiple resource combinations #B.
  • the time-domain resource allocation allocation configuration information may include at least one first time-domain resource combination, which may be understood as the time-domain resource allocation configuration information including at least one of the first candidate combination and the second candidate combination.
  • the first candidate combination may include multiple resource combinations #A
  • the second candidate combination may include multiple resource combinations #B.
  • the first time-domain resource combination includes the first DMRS and the first PDSCH
  • the first time-domain resource combination corresponds to the first candidate combination.
  • the first time-domain resource combination includes the first DMRS, the second DMRS, and the first PDSCH
  • the first time-domain resource combination corresponds to the second candidate combination.
  • Table 1 shows a possible form of time-domain resource allocation configuration information.
  • the time-domain resource allocation configuration information includes a first candidate combination and a second candidate combination, and the first candidate combination corresponds to a row index (Row index) 1 ⁇ i, the second candidate combination corresponds to row numbers i+1, i+2, ...
  • Each of the indexes 1 to i in Table 1 corresponds to a resource combination #A, and each index of the indexes i+1, i+2, . . . corresponds to a resource combination #B.
  • the mapping type in Table 1 corresponds to the time domain resource location of the DMRS.
  • the mapping type corresponding to the first candidate combination is Type C
  • the mapping type corresponding to the second candidate combination is Type C or Type B.
  • the start position S and the length L are used to indicate the time domain resource position occupied by the transmitted physical downlink shared channel PDSCH, and it should be understood that the start and length indicators may be used to indicate S and L.
  • Table 2 shows another possible form of time-domain resource allocation configuration information, where the time-domain resource allocation configuration information includes a first candidate combination, and the first candidate combination includes a plurality of first time-domain resource combinations, and the first candidate combination includes a plurality of first time domain resource combinations.
  • a candidate combination corresponds to row indices 1 to j.
  • the time-domain resource allocation configuration information further includes a third candidate combination, that is, the time-domain resource combination corresponding to row indices j+1, j+2 . . . in Table 2.
  • the third candidate combination includes a plurality of second time domain resource combinations, the second time domain resource combination includes a third DMRS and a third PDSCH, and the third DMRS is located within the time domain resources of the third PDSCH.
  • Table 3 shows the location of the demodulation reference signal DMRS in the time domain resources.
  • the reference point 1 of the DMRS in the time domain is the beginning of the time slot, and the position 10 of the first symbol of the DMRS in the time domain is the symbol 2 or symbol 3 starting from 1, and when the high-level parameter When dmrs-TypeA-Position is 3, the position of symbol 3 is selected.
  • the PDSCH time domain resource mapping mode is the mapping type Type B, the reference point 1 of the DMRS in the time domain is the beginning of the scheduled PDSCH resource, and the position 10 of the first symbol of the DMRS in the time domain is the symbol starting from 1 0.
  • the reference point 1 of the DMRS in the time domain is the beginning of the time slot, and the position 10 of the first symbol of the DMRS in the time domain is the symbol 2 or symbol 3 starting from 1, and when the high-level parameter When dmrs-TypeA-Position is 3, the position of symbol 3 is selected.
  • the time domain resource location of the DMRS may also be other locations, which are not limited in this application.
  • the at least two candidate combinations indicated to the terminal device #1 by the network device through dedicated signaling include candidate combination #A (ie, the first candidate combination) and candidate combination #B (ie, the second candidate combination).
  • Resource combination #A (an example of candidate combination #A) can be used to indicate the time domain transmission positions of demodulation reference signal DMRS #A and physical downlink shared channel PDSCH #A
  • resource combination #B (an example of candidate combination #B) ) is used to indicate the time domain transmission positions of the demodulation reference signals DMRS#B1 and DMRS#B2 and PDSCH#B
  • the demodulation reference signal DMRS#A is used for channel estimation at the receiving end (ie, terminal equipment #1) and used for The demodulation of the downlink shared physical channel (ie PDSCH#A)
  • DMRS#B1 and DMRS#B2 are used for channel estimation at the receiving end (ie terminal equipment #1) and for demodulation of the downlink shared physical channel (ie PDSCH#B) .
  • the time domain resource position of the demodulation reference signal DMRS#A corresponding to the resource combination #A is before the start position S of the time domain resource position of the physical downlink shared channel PDSCH#A, for example, DMRS#A is in the time domain.
  • the position of the resource can be the symbol bit 2 or 3 of a time slot, and the starting position S of the time domain resource position of the physical downlink shared channel PDSCH#A can be ⁇ 4, 5, 6,... ⁇
  • the length L can be ⁇ 2, 4,7 ⁇ .
  • the time domain resource positions of the demodulation reference signal and the physical downlink shared channel listed above are only exemplary, and the present application is not limited to this.
  • the time domain resource position of DMRS#A may be one symbol.
  • the symbol is 1 or 4, and the length L of the PDSCH#A may also be 3.
  • the time domain transmission position of DMRS#A is before PDSCH#A.
  • Fig. 3 shows the position of DMRS#A in time domain symbol 2
  • PDSCH#A occupies two symbol bits 5 and 6 in the time slot.
  • FIG. 6 shows another possible relative position of the demodulation reference signal and the physical downlink shared channel in the embodiment of the present application.
  • Fig. 6 shows the position of DMRS#A in time domain symbol 3, and PDSCH#A occupies three symbol positions 6, 7, and 8 in the time slot.
  • Candidate combination #A may include other relative positional relationships between DMRS#A and PDSCH#A.
  • the time domain resource position of the first demodulation reference signal DMRS#B1 corresponding to the resource combination #B is before the start position S of the time domain resource position of the physical downlink shared channel PDSCH#B.
  • the position of DMRS#B1 in the time domain resource is the symbol bit 2 or 3 of a time slot
  • the position of the second demodulation reference signal DMRS#B2 in the time domain resource is the starting symbol position of the physical downlink shared channel PDSCH#B
  • the starting position S of the time domain resource position of the physical downlink shared channel PDSCH#B may be ⁇ 5, 6... ⁇ and the length L may be ⁇ 2, 4, 7 ⁇ .
  • time domain resource positions of the demodulation reference signal and the physical downlink shared channel listed above are only exemplary, and the present application is not limited to this.
  • the length L of the PDSCH#B can also be 3, and for example , the time-domain resource position of DMRS#B1 may also be located at time-domain symbol 4 in the time slot.
  • the time domain transmission position of DMRS #B1 is before PDSCH #B.
  • the relative positions of the demodulation reference signal and the physical downlink shared channel may be as shown in FIG. 4 .
  • DMRS#B1 is at the position of time domain symbol 2
  • PDSCH#B occupies 5 and 6 symbol bits in the time slot
  • DMRS#B2 is the first symbol of the time domain resource position occupied by PDSCH#B.
  • the relative positional relationship between DMRS#B1, DMRS#B2 and PDSCH#B shown in FIG. 4 is only an exemplary illustration, and the present application is not limited to this, and the candidate combination #B may include DMRS#B1 and DMRS# Other relative positional relationships of B2 and PDSCH#B.
  • the above examples of the positions of the DMRS and the PDSCH are only schematic descriptions, and do not limit the embodiments of the present application.
  • the time domain symbols in the embodiments of the present application may also carry DCI.
  • the time-domain resource allocation configuration information may further include a third candidate combination.
  • the third candidate combination includes a plurality of second time domain resource combinations
  • the second time domain resource combination includes a third DMRS and a third PDSCH
  • the third DMRS is located in the time domain resources of the third PDSCH .
  • the network device 110 indicates to the terminal device #1 through dedicated signaling that the time domain resource allocation configuration information further includes a third candidate combination, and the third candidate combination includes resource combination #C and/or resource combination #D.
  • the DMRS mapping type corresponding to resource combination #C may be Type B
  • the DMRS mapping type corresponding to resource combination #D may be Type A.
  • Table 4 shows a possible form of candidate combinations of time-domain resource allocation configuration information.
  • the third candidate combination corresponds to row indices j+1, . . . , k+1, . . .
  • each row in row indices k+1, k+2, ... corresponds to a resource combination #C in the third candidate combination
  • each row in row indices j+1 to k corresponds to a resource combination #C in the third candidate combination
  • a Resource Portfolio #D A Resource Portfolio #D.
  • terminal device #1 determines allocation configuration information of time domain resources, where the time domain resource allocation configuration information includes at least one of the first candidate combination and the second candidate combination.
  • the time domain resource allocation configuration information determined by the terminal device #1 may be indicated by the network device through dedicated signaling, for example, the network device 110 may notify the UE through radio resource control (radio resource control, RRC) signaling.
  • RRC radio resource control
  • time-domain resource allocation configuration information determined by the terminal device corresponds to the network device, and here, in order to avoid redundant description, the detailed description of the time-domain resource allocation configuration information is omitted.
  • the terminal device determines the first resource combination according to the first indication information.
  • Terminal device #1 receives the first indication information sent by the network device, and determines a first time domain resource combination according to the first indication information, where the first time domain resource combination includes a first demodulation reference signal DMRS and a first physical downlink shared channel PDSCH, the first DMRS is used to demodulate the first PDSCH, and the time domain resource position of the first DMRS is before the time domain resource position of the first PDSCH.
  • the first time domain resource combination includes a first demodulation reference signal DMRS and a first physical downlink shared channel PDSCH
  • the first DMRS is used to demodulate the first PDSCH
  • the time domain resource position of the first DMRS is before the time domain resource position of the first PDSCH.
  • the first resource combination determined by the terminal device #1 is consistent with the network device 110 .
  • the first resource combination of terminal device #1 is determined according to the first indication information sent by the network device.
  • the first time domain resource combination determined by the terminal device #1 and the network device 110 is resource combination #A or resource combination #B.
  • the resource combination form determined by the aforementioned network device 110 can be seen.
  • the terminal device #1 determining the first resource combination according to the first indication information may be that the terminal device #1 determines the first time domain resource combination from candidate combinations, where the candidate combination includes the first candidate combination and at least one of a second candidate combination, where the first candidate combination corresponds to the first DMRS, and the second candidate combination corresponds to the first DMRS and the second DMRS.
  • the terminal device #1 receives the indication information #1 sent by the network device 110, and determines the resource combination according to the indication information #1. Specifically, when the terminal device #1 receives the DCI #1 sent by the network device 110 on the time domain resource, it determines the resource combination indicated by the network device 110 according to the indication information #1 in the DCI #1, for example, the resource combination Can be Resource Portfolio #A.
  • the terminal device receives the first downlink control information DCI before the time domain resource position of the first DMRS, where the first DCI includes the first indication information.
  • the terminal device #1 receives the downlink control information DCI #1 sent by the network device 110 before the time domain resource location of the DMRS #A, where the DCI #1 includes the indication information #1.
  • the network device 110 sends the downlink control information DCI#1 to the terminal device #1 before the time domain resource location of the DMRS#B1, where the DCI#1 includes the indication information #1.
  • the network device sends the first DMRS at the time domain resource position of the first DMRS.
  • the network device 110 sends the first PDSCH at the time domain resource position of the first PDSCH according to the first time domain resource combination.
  • the network device 110 sends the PDSCH #A and the DMRS #A according to the resource combination #A.
  • the PDSCH #B and the DMRS #B1 are sent according to the resource combination #B.
  • the PDSCH #B and the DMRS #B2 are sent according to the resource combination #B.
  • the PDSCH #B, the DMRS #B1 and the DMRS #B2 are sent according to the resource combination #B.
  • the network device 110 may make a judgment and select to transmit DMRS #B1 or DMRS #B2 or DMRS #B1 and DMRS #B2 accordingly.
  • the judgment made by the network device is to determine whether the service has changed, and another example is to determine whether DMRS#B1 is used as the reference signal for demodulating PDSCH#B is optimal. , and another example is to judge whether the data service corresponding to PDSCH#B needs to be retransmitted.
  • the network device sends the first DMRS at the time domain resource position of the first DMRS, and sends the first PDSCH at the time domain resource position of the first PDSCH.
  • the resource combination #A determined by the network device is the combination with row index 2 in Table 1.
  • the network device sends DMRS#A on time-domain symbol 2, and sends PDSCH#A on time-domain symbol 4 and symbol 5.
  • terminal device #1 receives the DMRS #A and PDSCH #A according to the determined resource combination #A.
  • the resource combination #B determined by the network device is the combination with the row index i+2 in Table 1.
  • the network device sends DMRS#B1 on time-domain symbol 2, and can also send DMRS#B2 on time-domain symbol 4, and sends DMRS#B2 on time domain symbol 4.
  • PDSCH #B is sent on time domain symbols 4 and 5.
  • terminal device #1 receives DMRS#B1 on time-domain symbol 2 and PDSCH#B on time-domain symbols 4 and 5, or terminal device #1 receives DMRS#B1 on time-domain symbol 2, DMRS #B2 is received on domain symbol 4 and PDSCH #B is received on time domain symbol 5.
  • Terminal device #1 receives DMRS#B2 on time-domain symbol 4 and PDSCH#B on time-domain symbol 5. It can be understood that the network device sends PDSCH#B on symbols 4 and 5 of the time slot, and DMRS#B2 occupies PDSCH#B At the first symbol position (ie, symbol 4), terminal device #1 receives PDSCH #B and DMRS #B2 at the corresponding time domain resource positions.
  • the resource combination #A may also correspond to other row indexes in Table 1. It should also be understood that the resource combination #A may also correspond to other time-domain resource allocation configuration information, for example, corresponding to the row index 1 in Table 2.
  • the method 200 for transmitting a demodulation reference signal may further include:
  • the network device sends the second DCI to the terminal device.
  • the terminal device #1 receives the second DCI sent by the network device 110 .
  • the network device 110 can make a judgment and select to send the DMRS #B2 accordingly.
  • the network device 110 may determine whether the time domain resource allocated by the terminal device #1 has changed. For example, the determination performed by the network device may be to determine whether the service has changed, or to determine whether the PDSCH #B1 is used as the Whether the reference signal for demodulating PDSCH#B is optimal can also be judged whether the data service corresponding to PDSCH#B needs to be retransmitted.
  • the network device 110 sends the DCI#2 to the terminal device #1, so that when the terminal device #1 receives the DCI#2, the terminal device #1 receives the DMRS#B2 at the time domain resource location of the DMRS#B2.
  • the network device 110 determines that the service of the terminal device #1 has not changed, and does not send the DCI #2.
  • the network device 110 determines that the terminal device #1 needs to receive the retransmission data service, and sends the DCI #2 to the terminal device #1, so that after the terminal device #1 receives the DCI #2, the The time domain resource location receives this DMRS #B2.
  • indication information #2 is included in the DCI#2, so that when the terminal device #1 receives the DCI#2, it is determined according to the indication information #2 to receive the DMRS# at the time domain resource position of the DMRS#B2 B2.
  • the indication information #2 may be carried by a bit field in the DCI #2.
  • the network device 110 determines that the terminal device #1 receives the initial transmission data service and does not send the DCI #2.
  • the network device 110 sends DCI#2 to the terminal device #1, where the DCI#2 is used to indicate the second DMRS and the second PDSCH, and the resource location of the second PDSCH is different from the resource location of the first PDSCH.
  • the resource locations include at least one of time domain and frequency domain resource locations.
  • the DCI#2 may instruct the terminal device #1 to receive the second PDSCH at a location different from the resource location where the PDSCH#B is located.
  • the second PDSCH may be located at the same location as the PDSCH#B in the time domain resource but in a different location in the frequency domain resource.
  • the second PDSCH may occupy the same time domain symbol in the time domain as PDSCH #B, and the frequency domain position of the second PDSCH may be adjacent to the frequency domain position of PDSCH #B in the frequency domain, for example, the second PDSCH PDSCH and PDSCH#B occupy adjacent resource blocks (RBs).
  • RBs resource blocks
  • the second PDSCH may be located at a location different from the PDSCH#B in a time domain resource location and a frequency domain resource location.
  • terminal device #1 when terminal device #1 receives the DCI #2, it may receive the PDSCH at the position of the second PDSCH indicated by the DCI #2, and use the time domain resources of DMRS #B (that is, an example of the second DMRS) The location receives this DMRS#B.
  • DMRS #B that is, an example of the second DMRS
  • the terminal device receives the first DMRS at the time domain resource position of the first DMRS
  • terminal device #1 receives the PDSCH #A and DMRS #A according to resource combination #A. Specifically, terminal device #1 receives the DMRS #A at the time domain resource position of the DMRS #A, and receives the PDSCH #A at the time domain resource position of the PDSCH #A.
  • terminal device #1 receives the PDSCH #B and the DMRS #B1 according to resource combination #B. Specifically, terminal device #1 receives the DMRS #B1 at the time domain resource position of the DMRS #B1, and receives the PDSCH #B at the time domain resource position of the PDSCH #B.
  • terminal device #1 receives the PDSCH #B and the DMRS #B2 according to resource combination #B. Specifically, terminal device #1 receives the DMRS #B2 at the time domain resource position of the DMRS #B2, and receives the PDSCH #B at the time domain resource position of the PDSCH #B.
  • terminal device #1 can receive the DMRS #B2 according to signaling or a preset condition, and the signaling or preset condition is that terminal device #1 determines to receive the DMRS #B2 at the time domain resource position of the DMRS #B2. Analyzing conditions.
  • the preset condition may be that the network device 110 sends an indication signaling (such as downlink control information DCI) to the terminal device #1, and the terminal device can determine that the DMRS needs to be received at the time domain resource position of the DMRS #B2 upon receiving the DCI.
  • the network device 110 may directly instruct the terminal device #1 to receive the DMRS at the time domain resource position of the DMRS #B2 through high layer signaling.
  • the terminal device #1 may receive the DMRS #B2 at the time domain resource position of the DMRS #B2 according to a preset condition.
  • the preset condition may be that the network device 110 sends an indication signaling (eg, DCI#2) to the terminal device #1.
  • terminal device #1 receives the DCI #2 between the time domain resource position of DMRS #B1 and the time domain resource position of the PDSCH #B, and determines the time domain resource at DMRS #B2 according to the DCI #2
  • the location receives the DMRS #B2, and the location receives the DMRS #B2.
  • terminal device #1 receives DMRS #B1 at the time domain resource position of DMRS #B1, and can use DMRS #B1 to demodulate PDSCH #B.
  • terminal device #1 receives the DCI#2 between the time domain resource location of DMRS#B1 and the time domain resource location of the PDSCH#B, terminal device #1 can also receive DMRS#B2 and use DMRS#B2 Demodulate PDSCH#B.
  • terminal device #1 may also determine whether to receive DMRS #B2 according to the data service type of PDSCH #B. Specifically, terminal device #1 can determine that the initial transmission data service or the retransmission data service is received at the time domain resource position of PDSCH #B, and in the case of transmitting retransmission data at the time domain resource position of PDSCH #B, terminal device #1 The DMRS #B2 can be received at the time domain resource position of the DMRS #B2, and the PDSCH #B can be demodulated using the DMRS #B2.
  • terminal device #1 needs to receive DMRS #B1, and use DMRS #B1 to demodulate the PDSCH #B in the case of initial transmission of data services.
  • DMRS#B2 is received and the PDSCH#B is demodulated using DMRS#B2.
  • the terminal device #1 After receiving the DCI#2, the terminal device #1 receives the DMRS#2 at the time domain resource position of the DMRS#B2.
  • terminal equipment #1 determines to receive DMRS #2 after receiving DCI #3, it may be that terminal equipment #1 determines that data retransmission occurs according to the retransmission data service indication information contained in the DCI #2, and according to the determination result ( That is, data retransmission occurs) to receive DMRS#B2.
  • Terminal device #1 can determine to receive DMRS #B2 according to a bit field in DCI #2. This bit indicates that the data service carried by the scheduled PDSCH is the retransmission data service.
  • FIG. 2 shows steps or operations of the information processing method, but these steps or operations are only examples, and the embodiments of the present application may also perform other operations or variations of the respective operations in FIG. 2 .
  • the sequence used for the demodulation reference signal DMRS in this embodiment of the present application may include a pseudo-random (pseudo-noise, PN) sequence.
  • PN pseudo-random
  • the sequence r(n) of the demodulation reference signal DMRS can be calculated by the following formula:
  • r(n) represents the nth sequence element on the lth symbol in the time slot
  • n represents the position of the DMRS in the frequency domain
  • the form presented by r(n) is the complex form obtained by the modulation of the PN sequence.
  • the initialization sequence c init is used to determine the sequence of the demodulation reference signal on a symbol, and c is a pseudo-random sequence (PN sequence), which can be generated by a PN sequence generator (for example, a Gold sequence generator) according to the initialization sequence c init .
  • PN sequence pseudo-random sequence
  • is the group number of code division multiplexing (CDM).
  • the identifier of the demodulation reference signal may be a cell identifier N ID , or an identifier configured by a higher layer. E.g, for and is given by the high-level parameters scamblingID0 and scramblingID1 respectively in the DMRS-DownlinkConfig IE.
  • the demodulation reference signal DMRS sent by the network device is DMRS#A in candidate combination #A or DMRS#B1 in candidate combination #B, is the cell identity N ID .
  • the DMRS sent by the network device is the demodulation reference signal DMRS#B2 in the candidate combination #B, The identifier configured for the upper layer.
  • the symbol in the embodiment of the present application may be an orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbol, or may also be a symbol defined in a future protocol and used to represent a time unit, the embodiment of the present application This is not particularly limited.
  • OFDM orthogonal frequency division multiplexing
  • FIG. 7 shows a schematic diagram of still another example of resource distribution according to an embodiment of the present application.
  • FIG. 7 introduces a time slot (slot) in the time domain and a resource block (resource block, RB) in the frequency domain, and the RB includes 12 subcarriers in the frequency domain.
  • slot time slot
  • RB resource block
  • the network device sends the demodulation reference signal DMRS and the physical downlink shared channel PDSCH to the terminal device #1 to the terminal device #6.
  • the resource distribution can be applied to the system shown in FIG. 1 , for example, it can be used in the URLLC service of ultra-reliable and low-latency communication in a factory scenario.
  • the factory scenario the UE location and service arrival time on the same production line are relatively fixed, and the arrangement is relatively close.
  • Mini-slot-based semi-static scheduling can be used to save DCI overhead.
  • the scheduling manner of terminal equipment #1 to terminal equipment #6 is semi-persistent scheduling based on mini-slots (mini-slot).
  • time domain symbols 0 and 1 are downlink control channels, which carry the activated DCI of each terminal equipment that is semi-persistently scheduled.
  • DMRS#A with a length of 1 symbol is transmitted on time-domain symbol 2 and frequency-domain subcarriers 1, 4, 7, and 10.
  • the resource combination #1 determined by the network device for the terminal device #1 is an example of the candidate combination #A, and accordingly, the candidate combinations are respectively determined for the terminal device #2 to the terminal device #6 in the candidate combination #A.
  • the transmission position of DMRS#A corresponding to UE2 to UE6 by the network equipment is symbol 2, and correspondingly, UE2 PDSCH#A is sent on symbols 4 and 5, and UE3 PDSCH#A is sent on symbols 6 and 7.
  • UE4 PDSCH#A is sent on symbols 8 and 9
  • UE5 PDSCH#A is sent on symbols 10 and 11
  • UE6 PDSCH#A is sent on symbols 12 and 13.
  • the network device sends the DMRS and PDSCH according to the determined resource combination #1, and accordingly, UE2 to UE6 receive the DMRS and PDSCH at the time domain resource position according to the resource combination #1 indicated by the network device.
  • the physical downlink shared channels of multiple terminal equipments in one time slot can share one DMRS, that is, the PDSCH#A of UE2 to UE6 share the DMRS#A on the time domain symbol 2, thereby Reduce the overhead of DMRS.
  • FIG. 8 shows a schematic diagram of still another example of resource distribution according to an embodiment of the present application.
  • FIG. 8 introduces a slot in the time domain and a resource block RB in the frequency domain, and the RB includes 12 subcarriers in the frequency domain.
  • the schematic diagram of resource distribution shown in FIG. 8 can be applied to the system shown in FIG. 1 .
  • the candidate combinations determined by the network device for multiple UEs are multiple candidate combinations #B, for example, the resource combinations determined by the network device for terminal device #1 #1 is an example of the candidate combination #B, and accordingly, in the candidate combination #B, corresponding candidate combinations are determined for the terminal device #2 to the terminal device #6, respectively.
  • the network device may send DMRS#B1 common to UE1 for UE2 to UE6 on symbol 2, UE2 PDSCH#B on symbols 4 and 5, and UE3 PDSCH#B on symbols 6 and 7 , UE4 PDSCH#B is sent on symbols 8 and 9, UE5 PDSCH#B is sent on symbols 10 and 11, UE6 PDSCH#B is sent on symbols 12 and 13, DMRS#B1 is used to demodulate UE2 PDSCH#B, UE3 PDSCH#B, UE4 PDSCH#B, UE5 PDSCH#B, and UE6 PDSCH#B.
  • the network device may send the DMRS#B2 corresponding to each terminal device at the first symbol bit of the symbol position occupied by the physical downlink shared channel, and send the first symbol (ie, symbol 8) of the UE4 PDSCH#B.
  • Send the DMRS#B2 corresponding to UE4 send the DMRS#B2 corresponding to UE5 on the first symbol (ie symbol 10) of sending UE5 PDSCH#B, and send the first symbol of UE6 PDSCH#B (ie symbol 12). ) to send the DMRS#B2 corresponding to UE6.
  • the DMRS#B2 corresponding to the UEs 4-6 is used to demodulate the PDSCH#B corresponding to each UE, instead of demodulating with the DMRS#B1.
  • the scheduling manner of terminal equipment #1 to terminal equipment #6 is semi-persistent scheduling based on mini-slots (mini-slot).
  • time domain symbols 0 and 1 are downlink control channels, which carry the activated DCI of each terminal equipment that is semi-persistently scheduled.
  • the activated DCI is used to indicate that the candidate combinations configured by the network device for the plurality of terminal devices (UE1 to UE6) are six examples in the candidate combination #B.
  • the activated DCI is also used to instruct the plurality of terminal devices to demodulate the physical downlink shared channel using the common DMRS#B1 (ie, the DMRS on symbol 2).
  • the network device sends DCI indication information to the terminal device according to the received condition information, where the DCI indication information is used to instruct the terminal device to use DMRS#B2 as a demodulation reference signal of PDSCH#B.
  • the network device sends indication information DCI#0 to the terminal equipments UE4, UE5 and UE6, and the indication information DCI#0 instructs UE4, UE5 and UE6 to use their corresponding DMRS#B2 as the demodulation reference of their PDSCH#B Signal.
  • the network device may send the DCI on RBs adjacent to the RBs shown in FIG. 8 .
  • condition information may be information indicating that the current service has changed or indicating that it is not an optimal method to use DMRS#B1 as the demodulation reference signal of PDSCH#B at the current moment.
  • FIG. 9 shows a schematic diagram of still another example of resource distribution according to an embodiment of the present application.
  • FIG. 9 introduces n+1 time slots (slots) in the time domain and one resource block in the frequency domain, and the RB includes 12 subcarriers in the frequency domain.
  • the schematic diagram of resource distribution shown in FIG. 9 can be applied to the system shown in FIG. 1 .
  • the candidate combinations determined by the network device for multiple UEs are multiple candidate combinations #B, for example, the network devices are terminal equipment #1 to terminal equipment # 6
  • the determined candidate combination is consistent with the candidate combination shown in FIG. 8 , and detailed descriptions thereof are omitted here in order to avoid redundant descriptions.
  • the terminal device receives the initial transmission data service #1 sent by the network device in time slot 0.
  • UE6 receives initial transmission data traffic #1 on slot 0, specifically, UE6 receives DMRS #B1 on symbol 2 and UE6 PDSCH #B on symbols 12 and 13.
  • UE6 demodulates the UE6 PDSCH#B according to the DMRS#B1.
  • UE6 makes an error in demodulating the initial transmission data service #1, and feeds back HARQ-ACK information.
  • the network device sends the retransmission DCI to schedule the UE6 to receive the retransmission data at time slot n.
  • UE6 receives PDSCH #B (ie, initial data traffic #1 of slot 0) on symbols 12 and 13 in slot n, and DMRS #B2 on symbol 12 in slot n.
  • the retransmission data PDSCH#B is not demodulated by the DMRS#B1 on the symbol 2 in the time slot n, but is demodulated by the DMRS#B2 received on the symbol 12.
  • the retransmission data scheduling is performed in the form of dynamic scheduling.
  • the time-frequency domain resource location where the PDSCH #B carrying the retransmission data is located is only for illustration and not limited.
  • DMRS#B1 on symbol 2 in slot n to demodulate retransmission PDSCH#B on symbols 12 and 13 in slot n is not an optimal method.
  • the network device may also use the RB adjacent to the RB corresponding to the time slot n in FIG. 9 to send DCI indication information, where the DCI is used to instruct the UE6 to receive the retransmission data service on the time slot n.
  • the network device may also use an RB adjacent to the RB corresponding to time slot n in FIG. 9 to send DCI indication information, where the DCI is used to instruct UE6 to receive retransmission data services on the adjacent RB.
  • the method when the terminal equipment retransmits the data service, by determining DMRS#B2, and receiving the demodulation reference signal according to the time domain symbol occupied by the DMRS#B2, the method can improve the success rate of retransmission and increase the system robustness.
  • the candidate combinations determined by the network device for multiple terminal devices in the embodiments of the present application may have PDSCHs of different lengths L. It should also be understood that the service data of multiple terminal devices may be sent on different RBs.
  • FIG. 10 is a schematic block diagram of a communication apparatus 300 provided by an embodiment of the present application.
  • the apparatus 300 includes a transceiver unit 310 and a processing unit 320 .
  • the transceiver unit 310 can communicate with the outside, and the processing unit 320 is used for data processing.
  • Transceiver unit 310 may also be referred to as a communication interface or a communication unit.
  • the apparatus 300 may further include a storage unit, where the storage unit may be used to store instructions or/or data, and the processing unit 320 may read the instructions or/or data in the storage unit.
  • the apparatus 300 may be used to perform the actions performed by the terminal device #1 in the above method embodiments.
  • the apparatus 300 may be a terminal device or a component or chip configured in the terminal device, and the transceiver unit 310 is used to perform the above
  • the processing unit 320 is configured to perform the operations related to the processing on the terminal device side in the above method embodiments.
  • the processing unit 320 may be configured to determine time-domain resource allocation configuration information, where the time-domain resource allocation configuration information includes the first time-domain resource combination.
  • the processing unit 320 may also be configured to determine a first time-domain resource combination, where the first time-domain resource combination includes a first demodulation reference signal DMRS and a first physical downlink shared channel PDSCH, and the first DMRS is used for decoding The first PDSCH is tuned, and the time domain resource position of the first DMRS is before the time domain resource position of the first PDSCH.
  • the first time-domain resource combination includes a first demodulation reference signal DMRS and a first physical downlink shared channel PDSCH
  • the first DMRS is used for decoding
  • the first PDSCH is tuned, and the time domain resource position of the first DMRS is before the time domain resource position of the first PDSCH.
  • the transceiver unit 310 is further configured to receive first indication information, where the first indication information is used to indicate the first time domain resource combination.
  • the transceiver unit 310 is further configured to receive the first downlink control information DCI before the start position of the time domain resource of the first DMRS, where the first DCI includes the first indication information.
  • the transceiver unit 310 is further configured to receive a second PDSCH, the first DMRS is further configured to demodulate the second PDSCH, and the second PDSCH and the first PDSCH have different time domain resource positions.
  • the transceiver unit 310 is further configured to receive the first DMRS at the time domain resource position of the first DMRS.
  • the apparatus 300 may be configured to perform the actions performed by the network device in the above method embodiments.
  • the apparatus 300 may be a network device or a component or chip configured in the network device, and the transceiver unit 310 is configured to perform
  • the processing unit 320 is configured to perform the operations related to the processing of the network device in the above method embodiments.
  • the processing unit 320 may be configured to determine time-domain resource allocation configuration information, where the time-domain resource allocation configuration information includes the first time-domain resource combination.
  • the transceiver unit 310 is configured to send the first DMRS at the time domain resource position of the first DMRS.
  • the transceiver unit 310 is further configured to send the first downlink control information DCI before the time domain resource position of the first DMRS.
  • an embodiment of the present application further provides a communication apparatus 400 .
  • the communication device 400 includes a processor 410 coupled with a memory 420 for storing computer programs or instructions or and/or data, and the processor 410 for executing the computer programs or instructions and/or data stored in the memory 420 , so that the methods in the above method embodiments are executed.
  • the communication apparatus 400 includes one or more processors 410 .
  • the communication apparatus 400 may further include a memory 420 .
  • the communication device 400 may include one or more memories 420 .
  • the memory 420 may be integrated with the processor 410, or provided separately.
  • the wireless communication apparatus 400 may further include a transceiver 430, and the transceiver 430 is used for signal reception and/or transmission.
  • the processor 410 is used to control the transceiver 430 to receive and/or transmit signals.
  • the processor 410 is configured to implement the processing-related operations performed by the network device 110 in the above method embodiments
  • the transceiver 430 is configured to implement the transceiving-related operations performed by the network device in the above method embodiments.
  • the processor 410 may be configured to determine time-domain resource allocation configuration information.
  • the transceiver 430 is configured to send first indication information, where the first indication information is used to indicate a first time-domain resource combination, where the first time-domain resource combination includes a first demodulation reference signal DMRS and a first physical The downlink shared channel PDSCH, the first DMRS is used to demodulate the first PDSCH, and the time domain resource position of the first DMRS is before the time domain resource position of the first PDSCH.
  • first indication information is used to indicate a first time-domain resource combination
  • the first time-domain resource combination includes a first demodulation reference signal DMRS and a first physical The downlink shared channel PDSCH
  • the first DMRS is used to demodulate the first PDSCH
  • the time domain resource position of the first DMRS is before the time domain resource position of the first PDSCH.
  • the transceiver 430 is further configured to send the first downlink control information DCI before the time domain resource position of the first DMRS.
  • the communication apparatus 400 is configured to implement the operations performed by the terminal device in the above method embodiments.
  • the processor 410 is configured to implement the processing-related operations performed by the terminal device #1 in the above method embodiments
  • the transceiver 430 is configured to implement the transceiving-related operations performed by the terminal device in the above method embodiments.
  • the processor 410 is further configured to determine time-domain resource allocation configuration information.
  • the transceiver 430 is further configured to receive the first downlink control information DCI before the time domain resource position of the first DMRS.
  • the transceiver 430 is further configured to receive the first DMRS at the time domain resource position of the first DMRS.
  • FIG. 12 shows a simplified schematic structural diagram of the first communication apparatus.
  • the terminal device takes a mobile phone as an example.
  • the terminal device includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control terminal equipment, execute software programs, and process data of software programs.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal equipment may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the antenna and radio frequency circuit with a transceiver function can be regarded as a transceiver unit of the terminal device, and the processor with a processing function can be regarded as a processing unit of the terminal device.
  • the terminal device includes a transceiver unit 510 and a processing unit 520 .
  • the transceiver unit 510 may also be referred to as a transceiver, a transceiver, a transceiver, or the like.
  • the processing unit 520 may also be referred to as a processor, a processing board, a processing module, a processing device, or the like.
  • the device for implementing the receiving function in the transceiver unit 510 may be regarded as a receiving unit, and the device for implementing the transmitting function in the transceiver unit 510 may be regarded as a sending unit, that is, the transceiver unit 510 includes a receiving unit and a sending unit.
  • the transceiver unit may also sometimes be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may also sometimes be referred to as a receiver, receiver, or receiving circuit, or the like.
  • the transmitting unit may also sometimes be referred to as a transmitter, a transmitter, or a transmitting circuit, or the like.
  • the transceiver unit 510 is configured to perform a receiving operation of a terminal device.
  • the processing unit 520 is configured to perform processing actions on the terminal device side.
  • FIG. 12 is only an example and not a limitation, and the above-mentioned terminal device (an example of a first communication apparatus) including a transceiver unit and a processing unit may not depend on the structure shown in FIG. 12 .
  • the chip When the communication device 500 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit may be a processor or a microprocessor or an integrated circuit integrated on the chip.
  • the input circuit can be an input pin, the output circuit can be an output pin, and the processing circuit can be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver, the signal output by the output circuit may be, for example, but not limited to, output to and transmitted by a transmitter, and the input circuit and output
  • the circuits can be different circuits or the same circuit, in which case the circuit is used as an input circuit and an output circuit respectively at different times.
  • the embodiment of the present application further provides a communication apparatus 600, where the communication apparatus 600 may be a network device or a chip.
  • the communication apparatus 600 may be configured to perform the operations performed by the network device in the foregoing method embodiments.
  • FIG. 13 shows a simplified schematic diagram of the structure of a base station.
  • the base station includes part 610 and part 620.
  • the 610 part is mainly used for the transceiver of the radio frequency signal and the conversion of the radio frequency signal and the baseband signal;
  • the 620 part is mainly used for the baseband processing and the control of the base station.
  • the part 610 may generally be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver.
  • the 620 part is usually the control center of the base station, which may be generally referred to as a processing unit, and is used to control the base station to perform the processing operations on the network device side in the foregoing method embodiments.
  • the transceiver unit of part 610 which may also be called a transceiver or a transceiver, etc., includes an antenna and a radio frequency circuit, wherein the radio frequency circuit is mainly used for radio frequency processing.
  • the device used for implementing the receiving function in part 610 may be regarded as a receiving unit, and the device used for implementing the transmitting function may be regarded as a sending unit, that is, part 610 includes a receiving unit and a sending unit.
  • the receiving unit may also be referred to as a receiver, a receiver, or a receiving circuit, and the like, and the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit, and the like.
  • Section 620 may include one or more single boards, each of which may include one or more processors and one or more memories.
  • the processor is used to read and execute the program in the memory to realize the baseband processing function and control the base station. If there are multiple boards, each board can be interconnected to enhance the processing capability.
  • one or more processors may be shared by multiple boards, or one or more memories may be shared by multiple boards, or one or more processors may be shared by multiple boards at the same time. device.
  • the transceiving unit of part 610 is used to perform the steps related to transceiving performed by the network device in the embodiment; the part 620 is used to perform the steps related to processing performed by the network device.
  • FIG. 13 is only an example and not a limitation, and the above-mentioned network device including a transceiver unit and a processing unit may not depend on the structure shown in FIG. 13 .
  • the chip When the communication device 600 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface; the processing unit may be a processor, a microprocessor or an integrated circuit integrated on the chip.
  • the input circuit can be an input pin, the output circuit can be an output pin, and the processing circuit can be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver, the signal output by the output circuit may be, for example, but not limited to, output to and transmitted by a transmitter, and the input circuit and output
  • the circuits can be different circuits or the same circuit, in which case the circuit is used as an input circuit and an output circuit respectively at different times.
  • Embodiments of the present application further provide a computer-readable storage medium, on which computer instructions for implementing the method executed by the terminal device or the method executed by the network device in the foregoing method embodiments are stored.
  • the computer when the computer program is executed by a computer, the computer can implement the method executed by the terminal device or the method executed by the network device in the above method embodiments.
  • Embodiments of the present application further provide a computer program product including instructions, which, when executed by a computer, cause the computer to implement the method executed by the terminal device or the method executed by the network device in the above method embodiments.
  • An embodiment of the present application further provides a communication system, where the communication system includes the network device and the terminal device in the above embodiments.
  • the communication system includes: the network device and the terminal device in the above embodiment.
  • the methods and apparatuses provided in the embodiments of the present application may be applied to terminal equipment or network equipment, and the terminal equipment or network equipment may include a hardware layer, an operating system layer running on the hardware layer, and an application running on the operating system layer Floor.
  • the hardware layer may include hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also called main memory).
  • the operating system of the operating system layer may be any one or more computer operating systems that implement business processing through processes, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer may include applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the present application do not specifically limit the specific structure of the execution body of the methods provided by the embodiments of the present application, as long as the program in which the codes of the methods provided by the embodiments of the present application are recorded can be executed to execute the methods according to the embodiments of the present application.
  • the execution body of the method provided by the embodiment of the present application may be a terminal device, or a functional module in the terminal device that can call a program and execute the program.
  • inventions of the present application may be implemented as methods, apparatus, or articles of manufacture using standard programming and/or engineering techniques.
  • article of manufacture as used herein may encompass a computer program accessible from any computer-readable device, carrier or media.
  • computer readable media may include, but are not limited to, magnetic storage devices (eg, hard disks, floppy disks, or magnetic tapes, etc.), optical disks (eg, compact discs (CDs), digital versatile discs (DVDs), etc. ), smart cards and flash memory devices (eg, erasable programmable read-only memory (EPROM), cards, stick or key drives, etc.).
  • Various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • processors mentioned in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), application-specific integrated circuits ( application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM).
  • RAM can be used as an external cache.
  • RAM may include the following forms: static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (SDRAM) , double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (synchlink DRAM, SLDRAM) and Direct memory bus random access memory (direct rambus RAM, DR RAM).
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • Direct memory bus random access memory direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module
  • memory described herein is intended to include, but not be limited to, these and any other suitable types of memory.
  • the disclosed systems, devices and methods may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solutions of the embodiments of the present application can be embodied in the form of software products in essence, or the parts that make contributions to the prior art or the parts of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, removable hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种无线通信的方法和装置,该方法包括:发送第一指示信息,所述第一指示信息用于指示第一时域资源组合,所述第一时域资源组合包括第一解调参考信号DMRS和第一物理下行共享信道PDSCH,所述第一DMRS用于解调所述第一PDSCH,所述第一DMRS的时域资源位置在所述第一PDSCH的时域资源位置之前;在所述第一DMRS的时域资源位置发送所述第一DMRS。通过为终端设备指示第一时域资源组合,使得解调参考信号和物理下行共享信道的时域资源位置可以根据终端设备的业务场景灵活配置,提高解调参考信号和物理下行共享信道的时域资源利用效率。

Description

无线通信的方法和装置 技术领域
本申请涉及通信领域,并且更具体地,涉及无线通信的方法和装置。
背景技术
目前,参考信号(reference signal,RS)已经得到广泛应用。在现有技术的参考信号的使用过程中,发送端设备在发送数据的同时发送解调参考信号,接收端设备先按照解调参考信号做信道估计,根据信道估计的结果,进一步解调数据。
以物理下行共享信道(physical downlink shared channel,PDSCH)为例,通过指示解调物理数据信道的解调参考信号(demodulation reference signal,DMRS)的相关配置参数,使得接收端能够在相应资源位置上接收DMRS,从而实现对相应物理数据信道的解调。
在第五代(5th generation,5G)通信系统中的新空口(new radio,NR)中,参考信号的设计需要满足不同应用场景下的业务需求,例如,在超可靠低时延通信(ultra reliability low latency communication,URLLC)中,既需要满足较低的时延,还需要满足较高的可靠性。
随着技术的发展,通在满足业务需求的同时,对通信系统资源开销提出了更高的要求。因此,希望提供一种技术,能够在满足业务需求的同时兼顾解调参考信号的开销、提高解调参考信号的利用效率。
发明内容
本申请实施例涉及一种无线通信的方法和装置,能够满足业务需求的同时兼顾解调参考信号的开销,提高解调参考信号的利用效率。
第一方面,提供了一种无线通信的方法,包括:发送第一指示信息,该第一指示信息用于指示第一时域资源组合,该第一时域资源组合包括第一解调参考信号DMRS和第一物理下行共享信道PDSCH,该第一DMRS用于解调该第一PDSCH,该第一DMRS的时域资源位置在该第一PDSCH的时域资源位置之前;在该第一DMRS的时域资源位置发送该第一DMRS。
根据本申请的方案,网络设备在与终端设备进行无线通信时,向终端设备发送第一指示信息,指示网络设备为终端设备确定的第一时域资源组合,该第一时域资源组合包括的第一解调参考信号DMRS和第一物理下行共享信道PDSCH,该第一DMRS的时域资源起始位置在该第一PDSCH的时域资源起始位置之前,并在第一DMRS的时域资源位置发送解调参考信号。通过为终端设备指示第一时域资源组合,使得解调参考信号和物理下行共享信道的时域资源位置可以根据终端设备的业务场景灵活配置,提高解调参考信号和物理下行共享信道的时域资源利用效率。特别地,在多终端设备的系统中,通过网络设备为不同的终端设备配置具有相同时域资源位置的解调参考信号,可以降低网络设备发送解调参 考信号的资源开销,提高解调参考信号的利用效率。
可选地,该第一DMRS的时域资源位置的起始位置位于在所述第一PDSCH的时域资源的起始位置之前。
可选地,该第一DMRS的时域资源位置位于该第一PDSCH的时域资源起始位置之前。
需要说明的是,该第一DMRS可以占据至少一个时域资源单元,该至少一个时域资源单元可以连续或者不连续,该时域资源单元可以是符号。
示例性地,当第一DMRS的时域资源位置为不连续的两个符号位置时,该两个符号位置中的第一个符号位置在该第一PDSCH所占据的符号位置之前。
可选地,在该第一PDSCH的时域资源位置发送该第一PDSCH。
结合第一方面,在一些可能的实现方式中,该方法还包括:确定时域资源分配配置信息,该时域资源分配配置信息包括该第一时域资源组合。
可选地,该时域资源分配配置信息还可以包括第二时域资源组合,该第二时域资源组合包括第三DMRS和第三PDSCH,该第三DMRS位于该第三PDSCH的时域资源内。
结合第一方面,在一些可能的实现方式中,该第一DMRS的序列初始化参数为小区标识。
结合第一方面,在一些可能的实现方式中,当该第一PDSCH承载初传数据时,在该第一DMRS的时域资源位置发送该第一DMRS。
结合第一方面,在一些可能的实现方式中,该方法还包括:在该第一DMRS的时域资源起始位置之前发送第一下行控制信息DCI,该第一DCI包括该第一指示信息。
结合第一方面,在一些可能的实现方式中,该方法还包括:发送第二PDSCH,该第一DMRS还用于解调该第二PDSCH,该第二PDSCH与该第一PDSCH的时域资源位置不同。
根据本申请的方案,网络设备向不同的终端设备发送时域资源位置不同的物理下行共享信道,并向该多个终端设备发送可以共用的解调参考信号,可以降低网络设备发送解调参考信号的资源开销,提高解调参考信号的利用效率。即,通过网络设备为不同的终端设备配置具有相同时域资源位置的解调参考信号。
可选地,该第二PDSCH的时域资源位置可以在该第一PDSCH的时域资源位置之前或者之后。
可选地,该第二PDSCH的频域资源位置可以与该第一PDSCH的时域资源位置相同。
结合第一方面,在一些可能的实现方式中,该第一时域资源组合还包括第二DMRS,该第二DMRS用于解调该第一PDSCH,该第二DMRS位于该第一PDSCH的时域资源内。
根据本申请的方案,在该第一时域资源组合包括第一DMRS和第二DMRS的情况下,网络设备通过向终端设备发送不同的DMRS可以满足不同的业务场景。例如,网络设备可以向终端设备发送与第一PDSCH的时域资源位置相耦合的第二DMRS,从而使得终端设备可以利用第二DMRS解调第一PDSCH,从而提升解调的可靠性。
需要说明的是,“第二DMRS位于该第一PDSCH的时域资源内”可以理解为第一PDSCH的时域资源位置包括第二DMRS的时域资源位置。
可选地,该第二DMRS的时域资源位置占据第一PDSCH的时域资源位置的第一个符号。
可选地,该第二DMRS占据该第一PDSCH的时域资源位置中多个连续或不连续的位置。
结合第一方面,在一些可能的实现方式中,该方法还包括:当该第一PDSCH承载重传数据时,在该第二DMRS的时域资源位置发送该第二DMRS。
结合第一方面,在一些可能的实现方式中,该方法还包括:发送第二DCI,该第二DCI的时域和/或频域资源位置位于该第一PDSCH的时域和/或频域资源位置之前;以及发送该第二DMRS。
可选地,该第二DCI的时域资源位置位于该第一PDSCH的时域资源位置之前。
可选地,该第二DCI的频域资源位置位于该第一PDSCH的频域资源位置之前。
可选地,该第二DCI的时域和资源位置位于该第一PDSCH的时域和频域资源位置之前。
第二方面,提供了一种无线通信的方法,包括:接收第一指示信息,该第一指示信息用于指示第一时域资源组合,该第一时域资源组合包括第一解调参考信号DMRS和第一物理下行共享信道PDSCH,该第一DMRS用于解调该第一PDSCH,该第一DMRS的时域资源位置在该第一PDSCH的时域资源位置之前;在该第一DMRS的时域资源位置接收该第一DMRS。
结合第二方面,在一种可能的实现方式中,该方法还包括:确定时域资源分配配置信息,该时域资源分配配置信息包括至少一个该第一时域资源组合。
可选地,终端设备可以通过网络设备发送的第二指示信息确定该时域资源分配配置信息。该第二指示信息可以为无限资源控制层RRC信令。
结合第二方面,在一种可能的实现方式中,该第一DMRS的序列初始化参数为小区标识。
结合第二方面,在一种可能的实现方式中,当该第一PDSCH承载初传数据时,在该第一DMRS的时域资源位置接收该第一DMRS。
结合第二方面,在一种可能的实现方式中,该方法还包括:接收第一下行控制信息DCI,该第一DCI包括该第一指示信息。
结合第二方面,在一种可能的实现方式中该第一时域资源组合还包括第二DMRS,该第二DMRS用于解调该第一PDSCH,该第二DMRS位于该第一PDSCH的时域资源内。
结合第二方面,在一种可能的实现方式中,该方法还包括:当该第一PDSCH承载重传数据时,在该第二DMRS的时域资源位置接收该第二DMRS。
结合第二方面,在一种可能的实现方式中,该方法还包括:接收第二DCI,该第二DCI的时域和/或频域资源位置位于该第一PDSCH的时域和/或频域资源位置之前;以及接收该第二DMRS。
应理解,在上述第一方面中对相关内容的扩展、限定、解释和说明也适用于第二方面中相同的内容。
第三方面,提供一种无线通信的装置,包括:收发单元,用于发送第一指示信息,该第一指示信息用于指示第一时域资源组合,该第一时域资源组合包括第一解调参考信号DMRS和第一物理下行共享信道PDSCH,该第一DMRS用于解调该第一PDSCH,该第一DMRS的时域资源位置在该第一PDSCH的时域资源位置之前;该收发单元还用于在该 第一DMRS的时域资源位置发送该第一DMRS。
结合第三方面,在一种可能的实现方式中,该装置还包括:处理单元,用于确定时域资源分配配置信息,该时域资源分配配置信息包括至少一个该第一时域资源组合。
结合第三方面,在一种可能的实现方式中,该第一DMRS的序列初始化参数为小区标识。
结合第三方面,在一种可能的实现方式中,当该第一PDSCH承载初传数据时,该收发单元用于在该第一DMRS的时域资源位置发送该第一DMRS。
结合第三方面,在一种可能的实现方式中,该收发单元还用于在该第一DMRS的时域资源起始位置之前发送第一下行控制信息DCI,该第一DCI包括该第一指示信息。
结合第三方面,在一种可能的实现方式中,该收发单元还用于发送第二PDSCH,该第一DMRS还用于解调该第二PDSCH,该第二PDSCH与该第一PDSCH的时域资源位置不同。
结合第三方面,在一种可能的实现方式中,该第一时域资源组合还包括第二DMRS,该第二DMRS用于解调该第一PDSCH,该第二DMRS位于该第一PDSCH的时域资源内。
结合第三方面,在一种可能的实现方式中,在当该第一PDSCH承载重传数据时,该收发单元还用于在该第二DMRS的时域资源位置发送该第二DMRS。
结合第三方面,在一种可能的实现方式中,该收发单元还用于发送第二DCI,该第二DCI的时域和/或频域资源位置位于该第一PDSCH的时域和/或频域资源位置之前;该收发单元还用于发送该第二DMRS。
第四方面,提供一种无线通信装置,包括:收发单元,用于接收第一指示信息,该第一指示信息用于指示第一时域资源组合,该第一时域资源组合包括第一解调参考信号DMRS和第一物理下行共享信道PDSCH,该第一DMRS用于解调该第一PDSCH,该第一DMRS的时域资源位置在该第一PDSCH的时域资源位置之前;该收发单元还用于在该第一DMRS的时域资源位置接收该第一DMRS。
结合第四方面,在一种可能的实现方式中,该装置还包括:处理单元,用于确定时域资源分配配置信息,该时域资源分配配置信息包括至少一个该第一时域资源组合。
结合第四方面,在一种可能的实现方式中,该第一DMRS的序列初始化参数为小区标识。
结合第四方面,在一种可能的实现方式中,当该第一PDSCH承载初传数据时,该收发单元还用于在该第一DMRS的时域资源位置接收该第一DMRS。
结合第四方面,在一种可能的实现方式中,该收发单元还用于接收第一下行控制信息DCI,该第一DCI包括该第一指示信息。
结合第四方面,在一种可能的实现方式中,该第一时域资源组合还包括第二DMRS,该第二DMRS用于解调该第一PDSCH,该第二DMRS位于该第一PDSCH的时域资源内。
结合第四方面,在一种可能的实现方式中,当该第一PDSCH承载重传数据时,该收发单元还用于在该第二DMRS的时域资源位置接收该第二DMRS。
结合第四方面,在一种可能的实现方式中,该收发单元还用于接收第二DCI,该第二DCI的时域和/或频域资源位置位于该第一PDSCH的时域和/或频域资源位置之前;以及该收发单元还用于接收该第二DMRS。
第五方面,提供一种无线通信的装置,包括处理器,该处理器与存储器耦合,该存储器用于存储计算机程序或指令,该处理器用于执行存储器中的该计算机程序或指令,使得第一方面或第一方面的任一种可能的实现方式中的方法被执行,或第二方面或第二方面的任一种可能的实现方式中的方法被执行。
可选地,该通信设备还包括存储器。可选地,该通信设备还包括通信接口,处理器与通信接口耦合。可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
在一种实现方式中,该通信设备为终端设备。当该通信设备为终端设备时,所述通信接口可以是收发器,或,输入/输出接口。可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该通信设备为芯片或芯片系统。当该通信设备为芯片或芯片系统时,所述通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
第六方面,提供了一种无线通信设备,包括处理器,所述处理器与存储器耦合,可用于执行第一方面及其可能实现方式或第二方面及其可能实现方式中的方法。可选地,该通信设备还包括存储器。可选地,该通信设备还包括通信接口,处理器与通信接口耦合。可选地,该通信设备还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信设备为网络设备。当该通信设备为网络设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信设备为芯片或芯片系统。当该通信设备为芯片或芯片系统时,所述通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
第七方面,提供了一种计算机可读存储介质,其特征在于,该计算机可读存储介质存储有计算机程序或指令,当该计算机程序或指令被执行时,使得第一方面或第一方面的任一种可能的实现方式中的方法被执行,或第二方面或第二方面的任一种可能的实现方式中的方法被执行。
第八方面,提供了一种通信系统,包括上述网络设备和终端设备。
附图说明
图1是本申请实施例的无线通信系统的示意图。
图2是本申请实施例的解调参考信号的传输方法示意性交互图。
图3是本申请实施例的资源分布的一例的示意图。
图4是本申请实施例的资源分布的另一例的示意图。
图5是本申请实施例的资源分布的再一例的示意图。
图6是本申请实施例的资源分布的再一例的示意图。
图7是本申请实施例的资源分布的再一例的示意图。
图8是本申请实施例的资源分布的再一例的示意图。
图9是本申请实施例的资源分布的再一例的示意图。
图10是本申请实施例的通信装置的示意性框图。
图11是本申请实施例的通信装置的另一示意性框图。
图12是本申请实施例的通信装置的再一示意性框图。
图13是本申请实施例的通信装置的再一示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
应理解,本申请实施例可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、先进的长期演进(advanced long term evolution,LTE-A)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、无线局域网(wireless local area networks,WLAN)、无线保真(wireless fidelity,WiFi)、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)或下一代通信系统等,本申请实施例并不限定。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(device to device,D2D)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及车辆间(vehicle to vehicle,V2V)通信。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中:
终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是WLAN中的站点(staion,ST),可以是手机(mobile phone)、卫星电话、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、平板电脑(pad)、带无线收发功能的电脑、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network, PLMN)中的终端设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,第五代通信(fifth-generation,5G)网络中的终端设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端设备等。本申请的实施例对应用场景不做限定。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
网络设备可以是任意一种具有无线收发功能的设备。该网络设备包括但不限于:演进型节点B(evolved nodeB,eNB或eNodeB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved node B,或home node B,HNB)、基带单元(base band unit,BBU),WLAN中的接入点,无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),分布式单元(distributed unit,DU),或者,设备到设备(device-to-device,D2D)、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备,或者车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等。
另外,在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
此外,LTE系统或5G系统中的载波上可以同时有多个小区同频工作,在某些特殊场景下,也可以认为上述载波与小区的概念等同。例如在载波聚合(carrier aggregation,CA)场景下,当为UE配置辅载波时,会同时携带辅载波的载波索引和工作在该辅载波的辅小区的小区标识(cell indentify,Cell ID),在这种情况下,可以认为载波与小区的概念等同,比如UE接入一个载波和接入一个小区是等同的。
图1示出了本申请实施例提供的无线通信系统的示意图。如图1所示,该通信系统100包括网络设备110,该网络设备110用于与多个终端设备(例如终端设备120、130、140和150)进行通信。图1示意性的给出无线通信系统的示意图,网络设备110的具体 部件未详细示出,例如,网络设备110可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。然而,可以理解,网络设备110可以与类似于终端设备120、130、140和150的任意数目的终端设备通信。终端设备120、130、140和150可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。再例如,网络设备110可以是工厂场景下超可靠低时延通信(ultra reliable low latency communication,URLLC)中的基站,终端设备120、130、140和150可以为URLLC业务场景下的排布紧密且业务具有规律性的用户设备UE。
此外,图1仅示出了网络设备110向终端设备120、130、140和150发送信息或数据的过程(即下行过程),本领域普通技术人员可以理解,所述无线通信系统还包括数据、信息等的上行过程(终端设备向网络设备发送数据)。
可以理解,在给定时间,网络设备110、终端设备120、130、140和150可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
此外,图1只是举例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
在无线通信系统中,网络设备110与终端设备(如终端设备120)进行通信,网络设备向终端设备发送数据一般称为下行传输或下行调度。例如,5G NR系统中下行调度过程,网络设备110向终端设备发送下行控制信道(physical downlink control channel,PDCCH)、下行数据共享信道(physical downlink shared channel,PDSCH)、解调参考信号(demodulation reference signal,DMRS)等用于完成下行调度。需要说明的是,5G NR系统中下行调度包括半静态调度和动态调度,其中,动态调度适合业务类型和业务触发时间不确定的场景,半静态调度适合用户设备移动幅度小,业务触发时间已知的场景,如一些工厂场景,产线UE和业务较为固定的情况。在半静态调度中,网络设备110可以通过PDCCH向终端设备发送下行控制信息(downlink control information,DCI)以指示分配给终端设备的资源,终端设备在一定时间段内分配的资源是固定的,当传输条件变化较大后,网络设备再次发送DCI对终端设备的资源重新分配。可以理解,该资源可以指时频资源和/或频域资源,例如该时频资源可以是时隙资源、时域符号等。可以理解,时间单元可以是时隙,也可以为迷你时隙,说明书中以时隙为例进行说明。
网络设备110与终端设备(如终端设备120)进行通信时,网络设备110向终端设备120发送PDSCH和与该PDSCH相对应的DMRS,该DMRS用于终端设备120解调PDSCH。一种可能的实施方式为,网络设备110发送的PDSCH与DMRS为紧耦合的,即一个PDSCH中存在至少一个DMRS。可见,在进行下行数据调度时,网络设备需要对应PDSCH发送解调参考信号DMRS,以使得终端设备能够解调网络设备发送的PDSCH,而在业务数量大或终端设备较多的情况下,网络设备需要向终端设备发送相应的PDSCH以及DMRS,因而造成通信系统中解调参考信号传输较多,增加半静态调度过程中的DMRS开销,造 成资源浪费。
基于上述问题,本申请提供了一种无线通信的方法,在网络设备与终端设备进行下行调度过程时,减少解调参考信号的传输次数,降低DMRS开销,节省资源。
需要说明的是,本申请中,A和/或B表示单独存在A,单独存在B,或者A和B同时存在。
图2示出了本申请实施例的解调参考信号的传输方法200的示意性交互图,如图2以网络设备110与终端设备120之间的交互为例进行介绍,为便于介绍,以下实施例中使用终端设备#1(终端设备的一例,如终端设备120)与网络设备之间传输解调参考信号(demodulation reference signal,DMRS)的过程为例进行介绍,图2所示的传输方法200包括:
S210、网络设备发送第一指示信息。
网络设备110向终端设备#1发送第一指示信息,该第一指示信息用于向该终端设备#1指示第一时域资源组合,该第一时域资源组合包括第一解调参考信号DMRS和第一物理下行共享信道PDSCH,该第一DMRS用于解调该第一PDSCH,该第一DMRS的时域资源位置在所述第一PDSCH的时域资源位置之前;
应理解,网络设备110通过向终端设备#1发送指示信息#1,指示网络设备110所确定的时域资源组合,例如,网络设备110确定的资源组合可以为资源组合#1。这样,终端设备#1接收到该指示信息#1后,确定资源组合#1,从而保证网络设备110与终端设备#1之间使用相同的资源组合传输数据。
可选地,该第一DMRS可以为占据多个时域符号的一组DMRS,或者该第一DMRS占据一个时域符号。
可选地,该第一DMRS的时域资源位置在该第一PDSCH的时域资源位置之前可以为该第一DMRS的时域资源位置的起始位置在该第一PDSCH的时域资源位置的起始位置之前。例如,该第一DMRS占据时域资源上的一个符号位置,该符号位置在第一PDSCH的时域资源位置之前。又例如,该第一DMRS的时域资源位置为多个时域符号,该多个时域符号中有至少一个时域符号位于该第一PDSCH的时域资源起始位置之前,比如该多个符号中的起始符号位于该第一PDSCH的时域资源起始位置之前。再例如,该第一DMRS所占据的每一个时域符号的位置都在该第一PDSCH的时域资源位置之前。
可选地,网络设备110在向终端设备#1发送第一指示信息之前,网络设备110可以确定资源组合#1,该资源组合#1对应终端设备#1的物理下行信道PDSCH#A和解调参考信号DMRS#A,该DMRS#A的时域资源位置在该PDSCH#A的时域资源位置之前。
作为示例而非限定,该DMRS#A的时域资源位置在该PDSCH#A的时域资源位置之前可以如图3所示。图3示出了本申请实施例中可能的解调参考信号和物理下行共享信道的资源分布的示意图,如图3所示,在一个时隙中,DMRS#A的时域资源位置为时域符号2,PDSCH#A在时域资源的位置为时域符号5和6的位置。
可选地,该第一时域资源组合还包括第二DMRS,该第二DMRS用于解调所述第一PDSCH,该第二DMRS位于所述第一PDSCH的时域资源内。
可选地,网络设备110在向终端设备#1发送第一指示信息之前,网络设备110还可以确定资源组合#2,该资源组合#2对应终端设备的物理下行共享信道PDSCH#B、解调参 考信号DMRS#B1和DMRS#B2,该DMRS#B1的时域资源位置在该PDSCH#B的时域资源位置之前,以及DMRS#B2的时域资源位置位于PDSCH#B的时域资源位置内。
需要说明的是,DMRS#B2的时域资源位置位于PDSCH#B的时域资源位置内可以为理解为PDSCH#B的时域资源位置包括该DMRS#B2的时域资源位置。例如,DMRS#B2占据一个时域符号,该符号位置可以为PDSCH#B2的起始符号位置。再例如,该DMRS#B2还可以占据多个时域符号,其该DMRS#B2的时域资源位置位于该PDSCH#B的时域资源位置内。应理解,此时DMRS#B2与PDSCH#B处于耦合状态。
作为示例而非限定,该DMRS#B1、DMRS#B2以及该PDSCH#B的时域资源位置可以如图4所示。图4示出了本申请实施例中另一可能的解调参考信号和物理下行共享信道的资源分布的示意图,如图4所示,在一个时隙中,DMRS#B1的时域资源位置为时域符号2,PDSCH#B在时域资源的位置为时域符号7和8,DMRS#B2的时域资源位置为该时隙中时域符号7的位置。如图4所示,DMRS#B2占据PDSCH#B的时域资源位置的起始位置。
应理解,图3和图4仅示例性地给出时域资源的分布情况,本申请的保护范围并不限定于此。此外,图3与图4仅示例性的给出时域上资源分布情况,并未对频域资源的分布构成限定。
可选地,网络设备110可以在DMRS#A的时域资源位置之前向终端设备#1发送下行控制信息DCI#1,该DCI#1包括该指示信息#1。
可选地,网络设备110可以在DMRS#B1的时域资源位置之前向终端设备#1发送下行控制信息DCI#1,该DCI#1包括该指示信息#1。
作为示例而非限定,DCI#1的时域资源位置可以如图5所示。图5示出了本申请实施例另一资源分布的示意图。
需要说明的是,在本申请实施例中,时域资源可以是时域符号,或者为未来通信过程中使用的时域资源,本申请并未限定于此。
可选地,在网络设备110确定第一资源组合之前,所述传输方法200还包括:
S220、确定时域资源分配配置信息,时域资源分配配置信息包括所述第一时域资源组合。
时域资源分配配置信息包括DMRS映射类型、PDSCH起始和长度指示符(the start and the length indicator value,SLIV)。应理解,DMRS映射类型可以表示DMRS的时域资源位置,PDSCH SLIV用于联合指示发送物理下行共享信道的起始位置S和长度L。本申请中,为便于描述,将物理下行共享信道PDSCH的起始位置S和长度L称为PDSCH的时域资源位置。
可选地,网络设备可以根据协议配置确定该时域资源分配配置信息。
可选地,该时域资源分配配置信息可以包括第一时域资源组合。例如,该时域资源分配配置信息包括资源组合#A(即第一时域资源组合的一例)。再例如,该时域资源分配配置信息还可以包括资源组合#B(即第一时域资源组合的又一例)。需要说明的是,资源组合#A对应第一DMRS和第一PDSCH,资源组合#B对应第一DMRS、第二DMRS和第一PDSCH。例如,资源组合#A对应DMRS#A和PDSCH#A,资源组合#B对应DMRS#B1、DMRS#B2和PDSCH#B。
可选地,该时域资源分配分配配置信息可以包括至少一个第一时域资源组合。例如,该时域资源分配配置信息包括多个资源组合#A(可称为“第一候选组合”),或者多个资源组合#B(可称为“第二候选组合”),或者多个资源组合#A和多个资源组合#B。
需要说明的是,该时域资源分配分配配置信息可以包括至少一个第一时域资源组合可以理解为时域资源分配配置信息包括第一候选组合和第二候选组合中的至少一种。该第一候选组合可以包括多个资源组合#A,第二候选组合可以包括多个资源组合#B。例如,在第一时域资源组合包括第一DMRS和第一PDSCH的情况下,该第一时域资源组合对应第一候选组合。再例如,在第一时域资源组合包括第一DMRS、第二DMRS和第一PDSCH的情况下,该第一时域资源组合对应第二候选组合。
例如表1示出了时域资源分配配置信息一种可能的形式,该时域资源分配配置信息包括第一候选组合和第二候选组合,该第一候选组合对应行索引(Row index)1~i,该第二候选组合对应行号i+1,i+2,……
表1
行索引 映射类型 S L
1 Type C 2 2
2 Type C 4 2
…… …… …… ……
i+1 Type C or Type B 2 2
i+2 Type C or Type B 4 2
…… …… …… ……
表1中索引1~i中的每一个索引对应一种资源组合#A,索引i+1,i+2,……中的每一个索引对应一种资源组合#B。
表1中映射类型对应DMRS的时域资源位置。例如,第一候选组合对应的映射类型为Type C,第二候选组合对应的映射类型为Type C or Type B。起始位置S和长度L用于指示发送的物理下行共享信道PDSCH占据的时域资源位置,应当理解,S和L可以使用起始和长度指示符进行指示。
再例如表2示出了时域资源分配配置信息的另一种可能形式,该时域资源分配配置信息包括第一候选组合,该第一候选组合包括多个第一时域资源组合,该第一候选组合对应行索引(row index)1~j。
表2
行索引 映射类型 S L
1 Type C 2 2
2 Type C 4 2
…… …… …… ……
j+1 Type A 2 12
j+2 Type B 12 2
…… …… …… ……
再例如,该时域资源分配配置信息还包括第三候选组合,即表2中行索引j+1,j+2…… 对应的时域资源组合。该第三候选组合包括多个第二时域资源组合,该第二时域资源组合包括第三DMRS和第三PDSCH,该第三DMRS位于该第三PDSCH的时域资源内。
应理解,以上列举仅为示例性说明,本申请并未限定于此。
表3示出了解调参考信号DMRS在时域资源的位置。映射类型Type C下,DMRS在时域上的参考点l为时隙的开始,DMRS在时域上的第一个符号所在的位置l 0为从l开始符号2或符号3,且当高层参数dmrs-TypeA-Position为3时选择符号3的位置。PDSCH时间域资源映射方式为映射类型Type B,DMRS在时间域上的参考点l为被调度的PDSCH资源的开始,DMRS在时域上的第一个符号所在的位置l 0为从l开始符号0。映射类型Type A下,DMRS在时域上的参考点l为时隙的开始,DMRS在时域上的第一个符号所在的位置l 0为从l开始符号2或符号3,且当高层参数dmrs-TypeA-Position为3时选择符号3的位置。映射类型TypeC下,DMRS的时域资源位置还可以是其他位置,本申请不做限定。
表3
Figure PCTCN2020131350-appb-000001
可选地,网络设备通过专有信令向终端设备#1指示的至少两种候选组合包括候选组合#A(即第一候选组合)和候选组合#B(即第二候选组合)。资源组合#A(候选组合#A中的一例)可以用于指示解调参考信号DMRS#A和物理下行共享信道PDSCH#A的时域发送位置,资源组合#B(候选组合#B中的一例)用于指示解调参考信号DMRS#B1和DMRS#B2以及PDSCH#B的时域发送位置,其中,解调参考信号DMRS#A用于接收端(即终端设备#1)进行信道估计并用于下行共享物理信道(即PDSCH#A)的解调,DMRS#B1和DMRS#B2用于接收端(即终端设备#1)进行信道估计并用于下行共享物理信道(即PDSCH#B)的解调。
可选地,资源组合#A对应的解调参考信号DMRS#A的时域资源位置在物理下行共享信道PDSCH#A的时域资源位置的起始位置S之前,例如,DMRS#A在时域资源的位置可以是一个时隙的符号位2或3,物理下行共享信道PDSCH#A的时域资源位置的起始位置S可以为{4,5,6,…}长度L可以为{2,4,7}。应理解,以上列举的解调参考信号的和物理下行共享信道的时域资源位置仅为示例性说明,本申请并未限定于此,例如,DMRS#A的时域资源位置可以是一个符号的符号为1或者4,该PDSCH#A的长度L还可以为3。
可选地,DMRS#A的时域发送位置在PDSCH#A之前。例如,图3中示出了DMRS#A在时域符号2的位置,PDSCH#A在时隙中占据5和6两个符号位。再例如,图6示出了本申请实施例中另一种可能的解调参考信号和物理下行共享信道的相对位置。如图6示出了DMRS#A在时域符号3的位置,PDSCH#A在时隙中占据6、7、8三个符号位置。应理解,上述举例仅为示例性说明DMRS#A与PDSCH#A的相对位置关系,本申请并未限定于此,候选组合#A中可以包括DMRS#A与PDSCH#A的其他相对位置关系。
可选地,资源组合#B对应的第一解调参考信号DMRS#B1的时域资源位置在物理下行共享信道PDSCH#B的时域资源位置的起始位置S之前。例如,DMRS#B1在时域资源 的位置为一个时隙的符号位2或3,第二解调参考信号DMRS#B2在时域资源的位置为物理下行共享信道PDSCH#B的起始符号位置,物理下行共享信道PDSCH#B的时域资源位置的起始位置S可以为{5,6…}长度L可以为{2,4,7}。应理解,以上列举的解调参考信号和物理下行共享信道的时域资源位置仅为示例性说明,本申请并未限定于此,例如,该PDSCH#B的长度L还可以为3,再例如,DMRS#B1的时域资源位置还可以位于时隙中时域符号4。
可选地,DMRS#B1的时域发送位置在PDSCH#B之前。解调参考信号和物理下行共享信道的相对位置可以如图4所示。图4中DMRS#B1在时域符号2的位置,PDSCH#B在时隙中占据5和6两个符号位,DMRS#B2在PDSCH#B所占时域资源位置的第一个符号。应理解,图4示出的DMRS#B1与DMRS#B2以及PDSCH#B的相对位置关系仅为示例性说明,本申请并未限定于此,候选组合#B中可以包括DMRS#B1与DMRS#B2以及PDSCH#B的其他相对位置关系。
需要说明的是,上文中DMRS与PDSCH的位置的举例仅为示意性描述,并未对本申请实施例进行限定,例如,本申请实施例中的时域符号上还可以承载DCI。
可选地,该时域资源分配配置信息还可以包括第三候选组合。需要说明的是,该第三候选组合包括多个第二时域资源组合,该第二时域资源组合包括第三DMRS和第三PDSCH,该第三DMRS位于该第三PDSCH的时域资源内。
具体地,网络设备110通过专有信令向终端设备#1指示时域资源分配配置信息还包括第三候选组合,第三候选组合包括资源组合#C和/或资源组合#D。例如,资源组合#C可以对应的DMRS映射类型为Type B,资源组合#D对应的DMRS映射类型可以为Type A。
例如,表4示出了时域资源分配配置信息候选组合的一种可能的形式。第三候选组合对应行索引j+1,……,k+1,……。具体的,行索引k+1,k+2,……中每一行对应第三候选组合中的一种资源组合#C,行索引j+1~k中的每一行对应第三候选组合中的一种资源组合#D。
表4
行索引 映射类型 S L
1 Type C 2 2
2 Type C 4 2
…… …… …… ……
i+1 Type C or Type B 2 2
i+2 Type C or Type B 4 2
…… …… …… ……
j+1 Type A 2 12
…… …… …… ……
k+1 Type B 12 2
…… …… …… ……
可选地,终端设备#1确定时域资源的分配配置信息,其中,该时域资源分配配置信息包括第一候选组合和第二候选组合中的至少一种。
可选地,终端设备#1确定的时域资源分配配置信息可以是网络设备通过专有信令所指示的,例如,网络设备110可以通过无线资源控制(radio resource control,RRC)信令告知UE在时域资源分配配置信息中确定的候选组合。
需要说明的是,终端设备确定的时域资源分配配置信息与网络设备相对应,此处,为了避免赘述,省略时域资源分配配置信息的详细描述。
S230、终端设备根据第一指示信息确定第一资源组合。
终端设备#1接收网络设备发送的第一指示信息,根据该第一指示信息确定第一时域资源组合,该第一时域资源组合包括第一解调参考信号DMRS和第一物理下行共享信道PDSCH,该第一DMRS用于解调该第一PDSCH,该第一DMRS的时域资源位置在该第一PDSCH的时域资源位置之前。
应理解,终端设备#1确定的该第一资源组合与网络设备110一致。例如,终端设备#1的第一资源组合是根据网络设备发送的第一指示信息确定的。作为示例而非限定,终端设备#1与网络设备110确定的第一时域资源组合为资源组合#A或资源组合#B。这里,为了避免赘述,省略其详细描述,对于终端设备#1确定的第一资源组合可见前述网络设备110确定的资源组合形式。
可选地,终端设备#1根据该第一指示信息确定该第一资源组合可以为,终端设备#1从候选组合中确定该第一时域资源组合,其中,该候选组合包括第一候选组合和第二候选组合中的至少一种,该第一候选组合对应第一DMRS,该第二候选组合对应第一DMRS和第二DMRS。
可选地,终端设备#1接收网络设备110发送的指示信息#1,并根据该指示信息#1确定资源组合。具体地,终端设备#1在时域资源上接收到网络设备110发送的DCI#1时,根据该DCI#1中的该指示信息#1确定网络设备110指示的资源组合,例如,该资源组合可以是资源组合#A。
可选地,终端设备在该第一DMRS的时域资源位置之前接收第一下行控制信息DCI,所述第一DCI包括所述第一指示信息。例如,终端设备#1在DMRS#A的时域资源位置之前接收网络设备110发送的下行控制信息DCI#1,该DCI#1包括该指示信息#1。
再例如,网络设备110在DMRS#B1的时域资源位置之前向终端设备#1发送下行控制信息DCI#1,该DCI#1包括该指示信息#1。
S240、网络设备在第一DMRS的时域资源位置发送该第一DMRS。
可选地,网络设备110根据该第一时域资源组合在第一PDSCH的时域资源位置发送第一PDSCH。
可选地,网络设备110根据资源组合#A发送该PDSCH#A和DMRS#A。
可选地,根据资源组合#B发送该PDSCH#B和该DMRS#B1。
可选地,根据资源组合#B发送该PDSCH#B和该DMRS#B2。
可选地,根据资源组合#B发送该PDSCH#B、该DMRS#B1和该DMRS#B2。
应理解,在资源组合#B的情况下,网络设备110可以进行判断,并相应地选择发送DMRS#B1或者DMRS#B2或者DMRS#B1和DMRS#B2。
还应理解,本申请实施例中,作为示例而非限定,网络设备进行的判断,例如是判断业务是否发生变化,再例如是判断以DMRS#B1作为解调PDSCH#B的参考信号是否最优, 再例如是判断PDSCH#B对应的数据业务是否需要重传。
可选地,网络设备在第一DMRS的时域资源位置发送该第一DMRS,在第一PDSCH的时域资源位置发送该第一PDSCH。
例如,网络设备确定的资源组合#A为表1中行索引为2的组合,网络设备在时域符号2上发送DMRS#A,并在时域符号4和符号5上发送PDSCH#A。相应的,终端设备#1根据所确定的资源组合#A接收该DMRS#A和PDSCH#A。
再例如,网络设备确定的资源组合#B为表1中行索引为i+2的组合,网络设备在时域符号2上发送DMRS#B1,也可以在时域符号4上发送DMRS#B2,并在时域符号4和5上发送PDSCH#B。相应的,终端设备#1在时域符号2上接收DMRS#B1并在时域符号4和5上接收PDSCH#B,或终端设备#1在时域符号2上接收DMRS#B1后,在时域符号4上接收DMRS#B2并在时域符号5上接收PDSCH#B。终端设备#1在时域符号4上接收DMRS#B2并在时域符号5上接收PDSCH#B可以理解为网络设备在时隙的符号4和5发送PDSCH#B,DMRS#B2占据PDSCH#B的第一个符号位置(即符号4),终端设备#1在相应的时域资源位置接收PDSCH#B和DMRS#B2。
应理解,上述仅为示意性举例,并不对本申请实施例进行限定,资源组合#A还可以对应表1中的其他行索引。还应理解,资源组合#A还可以对应其他时域资源分配配置信息,例如对应表2中的行索引1。
可选地,该解调参考信号的传输方法200还可以包括:
S241、网络设备向终端设备发送第二DCI。
相应地,终端设备#1接收网络设备110发送的第二DCI。
应理解,网络设备110在资源组合#B的情况下,网络设备110可以进行判断,并相应地选择发送DMRS#B2。
作为示例而非限定,网络设备110可以判断为终端设备#1分配的时域资源是否发生变化,例如,网络设备进行的判断,可以是判断业务是否发生变化,还可以是判断以PDSCH#B1作为解调PDSCH#B的参考信号是否最优,还可以是判断PDSCH#B对应的数据业务是否需要重传。
可选地,网络设备110向终端设备#1发送DCI#2,以便于该终端设备#1接收到该DCI#2时,在DMRS#B2的时域资源位置接收该DMRS#B2。
可选地,网络设备110判断终端设备#1的业务未发生变化,不发送DCI#2。
可选地,网络设备110判断终端设备#1需要接收重传数据业务,向终端设备#1发送该DCI#2,以便于该终端设备#1接收到该DCI#2后,在DMRS#B2的时域资源位置接收该DMRS#B2。
可选地,该DCI#2中包含指示信息#2,以便于该终端设备#1接收到该DCI#2时,根据该指示信息#2确定在DMRS#B2的时域资源位置接收该DMRS#B2。可选地,该指示信息#2可以由该DCI#2中一个比特域携带。
可选地,网络设备110判断终端设备#1接收初传数据业务,不发送DCI#2。
可选地,网络设备110向终端设备#1发送DCI#2,该DCI#2用于指示第二DMRS和第二PDSCH,该第二PDSCH的资源位置与第一PDSCH的资源位置不同。该资源位置包括时域和频域资源位置中的至少一种。例如,该DCI#2可以指示终端设备#1在与PDSCH#B 所在的资源位置不同的位置接收该第二PDSCH。
可选地,该第二PDSCH可以位于与PDSCH#B时域资源位置相同,频域资源位置不同的位置。例如,该第二PDSCH可以与PDSCH#B在时域上占据相同的时域符号,在频域上该第二PDSCH的频域位置可以与PDSCH#B的频域位置相邻,例如该第二PDSCH与PDSCH#B占据相邻的资源块(resource block,RB)。
再例如,该第二PDSCH可以位于与PDSCH#B时域资源位置不同,频域资源位置也不同的位置。
可选地,终端设备#1接收到该DCI#2时,可以在该DCI#2指示的第二PDSCH的位置接收该PDSCH,并在DMRS#B(即第二DMRS的一例)的时域资源位置接收该DMRS#B。
应理解,上述举例仅为示意性说明,并不对本申请构成限定。
S250、终端设备在第一DMRS的时域资源位置接收该第一DMRS
可选地,终端设备#1根据资源组合#A接收该PDSCH#A和DMRS#A。具体地,终端设备#1在该DMRS#A的时域资源位置接收该DMRS#A,在该PDSCH#A的时域资源位置接收该PDSCH#A。
可选地,终端设备#1根据资源组合#B接收该PDSCH#B和该DMRS#B1。具体地,终端设备#1在该DMRS#B1的时域资源位置接收该DMRS#B1,在该PDSCH#B的时域资源位置接收该PDSCH#B。
可选地,终端设备#1根据资源组合#B接收该PDSCH#B和该DMRS#B2。具体地,终端设备#1在该DMRS#B2的时域资源位置接收该DMRS#B2,在该PDSCH#B的时域资源位置接收该PDSCH#B。
应理解,终端设备#1可以根据信令或者预设条件接收该DMRS#B2,该信令或预设条件是终端设备#1确定在该DMRS#B2的时域资源位置接收该DMRS#B2的判断条件。例如,该预设条件可以是网络设备110向终端设备#1发送指示信令(如下行控制信息DCI),终端设备接收到该DCI即可确定需要在DMRS#B2的时域资源位置接收DMRS。再例如,网络设备110可以通过高层信令,直接指示终端设备#1在DMRS#B2的时域资源位置接收DMRS。
可选地,终端设备#1可以根据预设条件在该DMRS#B2的时域资源位置接收该DMRS#B2。该预设条件可以是网络设备110向终端设备#1发送指示信令(如DCI#2)。具体地,终端设备#1在DMRS#B1的时域资源位置与该PDSCH#B的时域资源位置之间接收到该DCI#2,并根据该DCI#2确定在DMRS#B2的时域资源位置接收该DMRS#B2,并在该位置接收该DMRS#B2。
应理解,终端设备#1在DMRS#B1的时域资源位置接收DMRS#B1,并可以使用DMRS#B1解调PDSCH#B。当终端设备#1在DMRS#B1的时域资源位置与该PDSCH#B的时域资源位置之间接收到该DCI#2时,终端设备#1还可以接收DMRS#B2,并使用DMRS#B2解调PDSCH#B。
可选地,终端设备#1还可以根据PDSCH#B的数据业务类型确定是否接收DMRS#B2。具体地,终端设备#1可以判断PDSCH#B的时域资源位置上接收初传数据业务或重传数据业务,在PDSCH#B的时域资源位置传输重传数据的情况下,终端设备#1可以在DMRS#B2的时域资源位置接收该DMRS#B2,并使用该DMRS#B2解调PDSCH#B。
需要说明的是,在上述可选地实现方式中,终端设备#1需要接收DMRS#B1,并在初传数据业务的情况下使用DMRS#B1解调该PDSCH#B,在重传数据业务的情况下接收DMRS#B2以及使用DMRS#B2解调该PDSCH#B。
可选地,终端设备#1在接收到DCI#2后,在DMRS#B2的时域资源位置接收该DMRS#2。
应理解,终端设备#1在接收到DCI#3后确定接收DMRS#2,可以为,终端设备#1根据该DCI#2包含的重传数据业务指示信息确定发生数据重传,根据确定结果(即发生数据重传)接收DMRS#B2。
终端设备#1可以根据DCI#2中的一个比特域确定接收DMRS#B2。该比特位指示调度的PDSCH承载的数据业务为重传数据业务。
还应理解,上述仅为示意性举例,并不对本申请实施例进行限定,任何可以使终端设备#1能够完成选择相应DMRS功能的信令或者预设条件都落在本申请保护范围内。
需要说明的是,图2示出了信息的处理方法的步骤或操作,但这些步骤或操作仅是示例,本申请实施例还可以执行其他操作或者图2中的各个操作的变形。
可选地,作为示例而非限定,本申请实施例中解调参考信号DMRS使用的序列可以包括伪随机(pseudo-noise,PN)序列。
可选地,本申请实施例中,解调参考信号DMRS的序列r(n)可以通过以下公式计算得到:
Figure PCTCN2020131350-appb-000002
Figure PCTCN2020131350-appb-000003
其中,r(n)表示时隙中第l个符号上的第n个序列元素,n表示DMRS在频域的位置,r(n)所呈现的形式是PN序列通过调制得到的复数形式。
其中,初始化序列c init用于确定一个符号上的解调参考信号的序列,c为伪随机序列(PN序列),可以由PN序列生成器(例如,Gold序列生成器)根据初始化序列c init生成。
其中,
Figure PCTCN2020131350-appb-000004
为一个时隙中的符号数,
Figure PCTCN2020131350-appb-000005
为一帧里面的是时隙数,l为一个时隙里面的OFDM符号数,
Figure PCTCN2020131350-appb-000006
是固定为0或1的常量,λ为码分复用(code division multiplexing,CDM)的组号。
Figure PCTCN2020131350-appb-000007
为解调参考信号的标识,可以为小区标识N ID,也可以为高层配置的标识。例如,
Figure PCTCN2020131350-appb-000008
Figure PCTCN2020131350-appb-000009
Figure PCTCN2020131350-appb-000010
时,在DMRS-DownlinkConfig IE中分别由高层参数scamblingID0和scramblingID1给出。
可选地,网络设备发送的解调参考信号DMRS为候选组合#A中的DMRS#A或候选组合#B中的DMRS#B1,
Figure PCTCN2020131350-appb-000011
为小区标识N ID
可选地,网络设备发送的DMRS为候选组合#B中的解调参考信号DMRS#B2,
Figure PCTCN2020131350-appb-000012
为高层配置的标识。
可选地,本申请实施例中符号可以为正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,或者也可以为在未来协议中定义的用于表示时间单元的符号, 本申请实施例对此并未特别限定。
图7示出了本申请实施例资源分布的再一例的示意图。图7以时域上的一个时隙(slot)和频域上的一个资源块(resource block,RB)进行介绍,该RB在频域上包括12个子载波。
如图7所示,网络设备向终端设备#1~终端设备#6发送解调参考信号DMRS和物理下行共享信道PDSCH。可选地,该资源分布可应用与如图1所示的系统,例如,可以用于工厂场景超可靠低时延通信URLLC业务下。工厂场景下,同一产线上的UE位置和业务到达时间比较固定,排布比较紧密,可以使用基于迷你时隙(mini-slot)的半静态调度以节省DCI开销。
可选地,终端设备#1~终端设备#6的调度方式为基于迷你时隙(mini-slot)的半静态调度。如图7所示,时域符号0和1为下行控制信道,承载着半静态调度的每个终端设备的激活DCI。
可选地,作为示例而非限定,在时域符号2且频域子载波1、4、7和10上发送长度为1个符号的DMRS#A。
可选地,网络设备为终端设备#1确定的资源组合#1为候选组合#A中的一例,并相应地,在候选组合#A中分别为终端设备#2至终端设备#6确定候选组合。如图7所示,网络设备为UE2至UE6对应的DMRS#A的发送位置为符号2,且对应在符号4和5上发送UE2 PDSCH#A,在符号6和7上发送UE3 PDSCH#A,在符号8和9上发送UE4 PDSCH#A,在符号10和11上发送UE5 PDSCH#A,在符号12和13上发送UE6 PDSCH#A。网络设备根据所确定的资源组合#1发送DMRS和PDSCH,相应地,UE2~UE6根据网络设备指示的资源组合#1在时域资源位置接收DMRS与PDSCH。
根据上述传输解调参考信号DMRS的方法,可以使得一个时隙上多个终端设备的物理下行共享信道公用一个DMRS,即UE2至UE6的PDSCH#A公用时域符号2上的DMRS#A,从而降低DMRS的开销。
图8示出了本申请实施例的资源分布的再一例的示意图。图8以时域上的一个时隙(slot)和频域上的一个资源块RB进行介绍,该RB在频域上包括12个子载波。
如图8所示的资源分布示意图可应用于图1所示的系统,网络设备为多个UE确定的候选组合为多个候选组合#B,例如,网络设备为终端设备#1确定的资源组合#1为候选组合#B中的一例,并相应地,在候选组合#B中分别为终端设备#2至终端设备#6确定相应的候选组合。如图8所示,网络设备可以在符号2上为UE2至UE6发送与UE1公用的DMRS#B1,并在符号4和5上发送UE2 PDSCH#B,在符号6和7上发送UE3 PDSCH#B,在符号8和9上发送UE4 PDSCH#B,在符号10和11上发送UE5 PDSCH#B,在符号12和13上发送UE6 PDSCH#B,DMRS#B1用于解调UE2 PDSCH#B、UE3 PDSCH#B、UE4 PDSCH#B、UE5 PDSCH#B和UE6 PDSCH#B。又例如网络设备可以在物理下行共享信道所占据的符号位置的第一个符号位发送每个终端设备对应的DMRS#B2,在发送UE4 PDSCH#B的第一个符号上(即符号8)上发送UE4对应的DMRS#B2,在发送UE5 PDSCH#B的第一个符号上(即符号10)上发送UE5对应的DMRS#B2,在发送UE6 PDSCH#B的第一个符号上(即符号12)上发送UE6对应的DMRS#B2。此时UE 4~6对应的DMRS#B2用于解调每个UE对应的PDSCH#B,而不是用DMRS#B1解调。
可选地,终端设备#1~终端设备#6的调度方式为基于迷你时隙(mini-slot)的半静态调度。如图8所示,时域符号0和1为下行控制信道,承载着半静态调度的每个终端设备的激活DCI。
可选地,该激活DCI用于指示网络设备为该多个终端设备(UE1至UE6)配置的候选组合为候选组合#B中的六例。相应地,该激活DCI还用于指示该多个终端设备使用公用的DMRS#B1(即符号2上的DMRS)解调物理下行共享信道。
可选地,网络设备根据接收到的条件信息,向终端设备发送DCI指示信息,该DCI指示信息用于指示终端设备使用DMRS#B2作为PDSCH#B的解调参考信号。例如图8中,网络设备向终端设备UE4、UE5和UE6发送指示信息DCI#0,该指示信息DCI#0指示UE4、UE5和UE6使用其对应的DMRS#B2作为其PDSCH#B的解调参考信号。应理解,网络设备可以在与图8中所示RB相邻的RB上发送该DCI。
可选地,该条件信息可以是表示当前业务发生变化的信息或是表示当前时刻以DMRS#B1作为PDSCH#B的解调参考信号不是最优的方法。
图9示出了本申请实施例的资源分布的再一例的示意图。图9以时域上的n+1个时隙(slot)和频域上的一个资源块进行介绍,该RB在频域上包括12个子载波。
如图9所示的资源分布示意图可应用于图1所示的系统,网络设备为多个UE确定的候选组合为多个候选组合#B,例如,网络设备为终端设备#1至终端设备#6确定的候选组合与图8所示的候选组合一致,这里,为了避免赘述,省略其详细说明。
可选地,终端设备在时隙0接收网络设备发送的初传数据业务#1。例如,UE6在时隙0接收初传数据业务#1,具体地,UE6在符号2上接收DMRS#B1,并在符号12和13上接收UE6 PDSCH#B。UE6根据该DMRS#B1解调该UE6 PDSCH#B。
可选地,UE6解调初传数据业务#1出错,反馈HARQ-ACK信息。网络设备发送重传DCI调度UE6在时隙n接收重传数据。UE6在时隙n中的符号12和13接收PDSCH#B(即时隙0的初传数据业务#1),在时隙n中的符号12上接收DMRS#B2。并且重传数据PDSCH#B不用时隙n中符号2上的DMRS#B1来解调,而是用符号12上接收到的DMRS#B2来进行重传数据的解调。应理解,采用动态调度的形式进行重传数据调度。图9中承载重传数据的PDSCH#B所在的时频域资源位置仅是举例说明,不做限定。
还应理解,时隙n中符号2上的DMRS#B1来解调时隙n中符号12和13上的重传PDSCH#B上述DMRS#B1不是最优方法。
可选地,网络设备还可以使用与图9中时隙n对应的RB相邻的RB发送DCI指示信息,该DCI用于指示UE6在时隙n上接收重传数据业务。
可选地,网络设备还可以使用与图9中时隙n对应的RB相邻的RB发送DCI指示信息,该DCI用于指示UE6在该相邻的RB上接收重传数据业务。
根据上述方法,当终端设备发生重传数据业务时,通过确定DMRS#B2,并根据该DMRS#B2所占时域符号接收解调参考信号,通过该方法可以提升重传的成功率,增加系统的鲁棒性。
应理解,上述仅为示意性举例,并不对本申请实施例进行限定,例如,本申请实施例中网络设备为多个终端设备确定的候选组合可以有不同长度L的PDSCH。还应理解,多个终端设备的业务数据可以在不同的RB上发送。
图10是本申请实施例提供的通信装置300的示意性框图。该装置300包括收发单元310和处理单元320。收发单元310可以与外部进行通信,处理单元320用于进行数据处理。收发单元310还可以称为通信接口或通信单元。可选地,该装置300还可以包括存储单元,该存储单元可以用于存储指令或者和/或数据,处理单元320可以读取存储单元中的指令或者和/或数据。
该装置300可以用于执行上文方法实施例中终端设备#1所执行的动作,这时,该装置300可以为终端设备或者配置于终端设备的部件或者芯片等,收发单元310用于执行上文方法实施例中终端设备侧的收发相关的操作,处理单元320用于执行上文方法实施例中终端设备侧的处理相关的操作。
例如,该处理单元320可以用于确定时域资源分配配置信息,该时域资源分配配置信息包括第一时域资源组合。
再例如,该处理单元320还可以用于确定第一时域资源组合,该第一时域资源组合包括第一解调参考信号DMRS和第一物理下行共享信道PDSCH,该第一DMRS用于解调该第一PDSCH,该第一DMRS的时域资源位置在该第一PDSCH的时域资源位置之前。
可选地,收发单元310还用于接收第一指示信息,该第一指示信息用于指示第一时域资源组合。
可选地,收发单元310还用于在第一DMRS的时域资源起始位置之前接收第一下行控制信息DCI,该第一DCI包括该第一指示信息。
可选地,收发单元310还用于接收第二PDSCH,第一DMRS还用于解调所述第二PDSCH,所述第二PDSCH与所述第一PDSCH的时域资源位置不同。
可选地,在第一资源组合对应一种DMRS的时域资源位置的情况下,收发单元310还用于在第一DMRS的时域资源位置接收所述第一DMRS。
或者,该装置300可以用于执行上文方法实施例中网络设备所执行的动作,这时,该装置300可以为网络设备或配置于网路设备的部件或芯片等,收发单元310用于执行上文方法实施例中网络设备的收发相关的操作,处理单元320用于执行上文方法实施例中网络设备的处理相关的操作。
例如,该处理单元320可以用于确定时域资源分配配置信息,所述时域资源分配配置信息包括所述第一时域资源组合。
可选地,收发单元310用于在所述第一DMRS的时域资源位置发送所述第一DMRS。
可选地,收发单元310还用于在第一DMRS的时域资源位置之前发送第一下行控制信息DCI。
如图11所示,本申请实施例还提供一种通信装置400。该通信装置400包括处理器410,处理器410与存储器420耦合,存储器420用于存储计算机程序或指令或者和/或数据,处理器410用于执行存储器420存储的计算机程序或指令和/或者数据,使得上文方法实施例中的方法被执行。
可选地,该通信装置400包括的处理器410为一个或多个。
可选地,如图11所示,该通信装置400还可以包括存储器420。
可选地,该通信装置400包括的存储器420可以为一个或多个。
可选地,该存储器420可以与该处理器410集成在一起,或者分离设置。
可选地,如图11所示,该无线通信装置400还可以包括收发器430,收发器430用于信号的接收和/或发送。例如,处理器410用于控制收发器430进行信号的接收和/或发送。
例如,处理器410用于实现上文方法实施例中由网络设备110执行的处理相关的操作,收发器430用于实现上文方法实施例中由网络设备执行的收发相关的操作。
可选地,该处理器410可以用于确定时域资源分配配置信息。
可选地,该收发器430用于发送第一指示信息,该第一指示信息用于指示第一时域资源组合,该第一时域资源组合包括第一解调参考信号DMRS和第一物理下行共享信道PDSCH,该第一DMRS用于解调该第一PDSCH,该第一DMRS的时域资源位置在该第一PDSCH的时域资源位置之前。
可选地,收发器430还用于在第一DMRS的时域资源位置之前发送第一下行控制信息DCI。
作为另一种方案,该通信装置400用于实现上文方法实施例中由终端设备执行的操作。
例如,处理器410用于实现上文方法实施例中由终端设备#1执行的处理相关的操作,收发器430用于实现上文方法实施例中由终端设备执行的收发相关的操作。
可选地,该处理器410还用于确定时域资源分配配置信息。
可选地,收发器430还用于在第一DMRS的时域资源位置之前接收第一下行控制信息DCI。
可选地,收发器430还用于在第一DMRS的时域资源位置接收所述第一DMRS。
本申请实施例还提供一种通信装置500,该通信装置500可以是终端设备也可以是芯片。该通信装置500可以用于执行上述方法实施例中由终端设备所执行的操作。当该通信装置500为终端设备时,图12示出了一种简化的第一通信装置的结构示意图。便于理解和图示方便,图12中,终端设备以手机作为例子。如图12所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图12中仅示出了一个存储器和处理器,在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单 元,将具有处理功能的处理器视为终端设备的处理单元。
如图12所示,终端设备包括收发单元510和处理单元520。收发单元510也可以称为收发器、收发机、收发装置等。处理单元520也可以称为处理器,处理单板,处理模块、处理装置等。
可选地,可以将收发单元510中用于实现接收功能的器件视为接收单元,将收发单元510中用于实现发送功能的器件视为发送单元,即收发单元510包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
例如,在一种实现方式中,收发单元510用于执行终端设备的接收操作。处理单元520用于执行终端设备侧的处理动作。
应理解,图12仅为示例而非限定,上述包括收发单元和处理单元的终端设备(第一通信装置的一例)可以不依赖于图12所示的结构。
当该通信装置500为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入/输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是不同的电路,也可以是同一电路,这种情况下该电路在不同的时刻分别用作输入电路和输出电路。
本申请实施例还提供一种通信装置600,该通信装置600可以是网络设备也可以是芯片。该通信装置600可以用于执行上述方法实施例中由网络设备所执行的操作。
当该通信装置600为网络设备。图13示出了一种简化的基站结构示意图。基站包括610部分以及620部分。610部分主要用于射频信号的收发以及射频信号与基带信号的转换;620部分主要用于基带处理,对基站进行控制等。610部分通常可以称为收发单元、收发机、收发电路、或者收发器等。620部分通常是基站的控制中心,通常可以称为处理单元,用于控制基站执行上述方法实施例中网络设备侧的处理操作。
610部分的收发单元,也可以称为收发机或收发器等,其包括天线和射频电路,其中射频电路主要用于进行射频处理。可选地,可以将610部分中用于实现接收功能的器件视为接收单元,将用于实现发送功能的器件视为发送单元,即610部分包括接收单元和发送单元。接收单元也可以称为接收机、接收器、或接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
620部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器。处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增强处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,610部分的收发单元用于执行实施例中由网络设备执行的收发相关的步骤;620部分用于执行由网络设备执行的处理相关的步骤。
应理解,图13仅为示例而非限定,上述包括收发单元和处理单元的网络设备可以不 依赖于图13所示的结构。
当该通信装置600为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入/输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是不同的电路,也可以是同一电路,这种情况下该电路在不同的时刻分别用作输入电路和输出电路。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法。
本申请实施例还提供一种通信系统,该通信系统包括上文实施例中的网络设备与终端设备。
作为一个示例,该通信系统包括:上文实施例中的网络设备与终端设备。
上述提供的任一种无线通信装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
本申请实施例提供的方法和装置,可以应用于终端设备或网络设备,该终端设备或网络设备可以包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。其中,硬件层可以包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。操作系统层的操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。应用层可以包含浏览器、通讯录、文字处理软件、即时通信软件等应用。
本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构进行特别限定,只要能够通过运行记录有本申请实施例提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可。例如,本申请实施例提供的方法的执行主体可以是终端设备,或者是终端设备中能够调用程序并执行程序的功能模块。
本申请实施例的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本文中使用的术语“制品”可以涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。
本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可以包括但不限于:无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM可以包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请实施例所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各 个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (36)

  1. 一种无线通信的方法,其特征在于,包括:
    发送第一指示信息,所述第一指示信息用于指示第一时域资源组合,所述第一时域资源组合包括第一解调参考信号DMRS和第一物理下行共享信道PDSCH,所述第一DMRS用于解调所述第一PDSCH,所述第一DMRS的时域资源位置在所述第一PDSCH的时域资源位置之前;
    在所述第一DMRS的时域资源位置发送所述第一DMRS。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    确定时域资源分配配置信息,所述时域资源分配配置信息包括所述第一时域资源组合。
  3. 根据权利要求2所述的方法,其特征在于,所述第一DMRS的序列初始化参数为小区标识。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,当所述第一PDSCH承载初传数据时,在所述第一DMRS的时域资源位置发送所述第一DMRS。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    在所述第一DMRS的时域资源起始位置之前发送第一下行控制信息DCI,所述第一DCI包括所述第一指示信息。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    发送第二PDSCH,所述第一DMRS还用于解调所述第二PDSCH,所述第二PDSCH与所述第一PDSCH的时域资源位置不同。
  7. 根据权利要求1至3中任一项所述的方法,其特征在于,
    所述第一时域资源组合还包括第二DMRS,所述第二DMRS用于解调所述第一PDSCH,所述第二DMRS位于所述第一PDSCH的时域资源内。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    当所述第一PDSCH承载重传数据时,在所述第二DMRS的时域资源位置发送所述第二DMRS。
  9. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    发送第二DCI,所述第二DCI的时域和/或频域资源位置位于所述第一PDSCH的时域和/或频域资源位置之前;以及
    发送所述第二DMRS。
  10. 一种无线通信的方法,其特征在于,包括:
    接收第一指示信息;
    根据所述第一指示信息确定第一时域资源组合,所述第一时域资源组合包括第一解调参考信号DMRS和第一物理下行共享信道PDSCH,所述第一DMRS用于解调所述第一PDSCH,所述第一DMRS的时域资源位置在所述第一PDSCH的时域资源位置之前;
    在所述第一DMRS的时域资源位置接收所述第一DMRS。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    确定时域资源分配配置信息,所述时域资源分配配置信息包括至少一个所述第一时域 资源组合。
  12. 根据权利要求11所述的方法,其特征在于,所述第一DMRS的序列初始化参数为小区标识。
  13. 根据权利要求10至12中任一项所述的方法,其特征在于,当所述第一PDSCH承载初传数据时,在所述第一DMRS的时域资源位置接收所述第一DMRS。
  14. 根据权利要求10至13中任一项所述的方法,其特征在于,所述方法还包括:
    接收第一下行控制信息DCI,所述第一DCI包括所述第一指示信息。
  15. 根据权利要求10至14中任一项所述的方法,其特征在于,
    所述第一时域资源组合还包括第二DMRS,所述第二DMRS用于解调所述第一PDSCH,所述第二DMRS位于所述第一PDSCH的时域资源内。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    当所述第一PDSCH承载重传数据时,在所述第二DMRS的时域资源位置接收所述第二DMRS。
  17. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    接收第二DCI,所述第二DCI的时域和/或频域资源位置位于所述第一PDSCH的时域和/或频域资源位置之前;以及
    接收所述第二DMRS。
  18. 一种无线通信的装置,其特征在于,包括:
    收发单元,用于发送第一指示信息,所述第一指示信息用于指示第一时域资源组合,所述第一时域资源组合包括第一解调参考信号DMRS和第一物理下行共享信道PDSCH,所述第一DMRS用于解调所述第一PDSCH,所述第一DMRS的时域资源位置在所述第一PDSCH的时域资源位置之前;所述收发单元还用于在所述第一DMRS的时域资源位置发送所述第一DMRS。
  19. 根据权利要求18所述的装置,其特征在于,所述装置还包括:
    处理单元,用于确定时域资源分配配置信息,所述时域资源分配配置信息包括至少一个所述第一时域资源组合。
  20. 根据权利要求19所述的装置,其特征在于,所述第一DMRS的序列初始化参数为小区标识。
  21. 根据权利要求18至20中任一项所述的装置,其特征在于,当所述第一PDSCH承载初传数据时,所述收发单元用于在所述第一DMRS的时域资源位置发送所述第一DMRS。
  22. 根据权利要求18至21中任一项所述的装置,其特征在于,所述收发单元还用于在所述第一DMRS的时域资源起始位置之前发送第一下行控制信息DCI,所述第一DCI包括所述第一指示信息。
  23. 根据权利要求18至22中任一项所述的装置,其特征在于,所述收发单元还用于发送第二PDSCH,所述第一DMRS还用于解调所述第二PDSCH,所述第二PDSCH与所述第一PDSCH的时域资源位置不同。
  24. 根据权利要求18至20中任一项所述的装置,其特征在于,所述第一时域资源组合还包括第二DMRS,所述第二DMRS用于解调所述第一PDSCH,所述第二DMRS位于 所述第一PDSCH的时域资源内。
  25. 根据权利要求24所述的装置,其特征在于,在当所述第一PDSCH承载重传数据时,所述收发单元还用于在所述第二DMRS的时域资源位置发送所述第二DMRS。
  26. 根据权利要求24所述的装置,其特征在于,所述收发单元还用于发送第二DCI,所述第二DCI的时域和/或频域资源位置位于所述第一PDSCH的时域和/或频域资源位置之前;所述收发单元还用于发送所述第二DMRS。
  27. 一种无线通信的装置,其特征在于,包括:
    收发单元,用于接收第一指示信息,所述第一指示信息用于指示第一时域资源组合,所述第一时域资源组合包括第一解调参考信号DMRS和第一物理下行共享信道PDSCH,所述第一DMRS用于解调所述第一PDSCH,所述第一DMRS的时域资源位置在所述第一PDSCH的时域资源位置之前;所述收发单元还用于在所述第一DMRS的时域资源位置接收所述第一DMRS。
  28. 根据权利要求27所述的装置,其特征在于,所述装置还包括:
    处理单元,用于确定时域资源分配配置信息,所述时域资源分配配置信息包括至少一个所述第一时域资源组合。
  29. 根据权利要求28所述的装置,其特征在于,所述第一DMRS的序列初始化参数为小区标识。
  30. 根据权利要求27至29中任一项所述的装置,其特征在于,当所述第一PDSCH承载初传数据时,所述收发单元还用于在所述第一DMRS的时域资源位置接收所述第一DMRS。
  31. 根据权利要求27至30中任一项所述的装置,其特征在于,所述收发单元还用于接收第一下行控制信息DCI,所述第一DCI包括所述第一指示信息。
  32. 根据权利要求27至31中任一项所述的装置,其特征在于,所述第一时域资源组合还包括第二DMRS,所述第二DMRS用于解调所述第一PDSCH,所述第二DMRS位于所述第一PDSCH的时域资源内。
  33. 根据权利要求32所述的装置,其特征在于,当所述第一PDSCH承载重传数据时,所述收发单元还用于在所述第二DMRS的时域资源位置接收所述第二DMRS。
  34. 根据权利要求32所述的装置,其特征在于,所述收发单元还用于接收第二DCI,所述第二DCI的时域和/或频域资源位置位于所述第一PDSCH的时域和/或频域资源位置之前;以及所述收发单元还用于接收所述第二DMRS。
  35. 一种无线通信的装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行存储器中的所述计算机程序或指令,使得
    权利要求1至9中任一项所述的方法被执行,或
    权利要求10至17中任一项所述的方法被执行。
  36. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序或指令,当所述计算机程序或指令被执行时,使得
    权利要求1至9中任一项所述的方法被执行,或
    权利要求10至17中任一项所述的方法被执行。
PCT/CN2020/131350 2020-11-25 2020-11-25 无线通信的方法和装置 WO2022109838A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080107323.4A CN116671204A (zh) 2020-11-25 2020-11-25 无线通信的方法和装置
PCT/CN2020/131350 WO2022109838A1 (zh) 2020-11-25 2020-11-25 无线通信的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/131350 WO2022109838A1 (zh) 2020-11-25 2020-11-25 无线通信的方法和装置

Publications (1)

Publication Number Publication Date
WO2022109838A1 true WO2022109838A1 (zh) 2022-06-02

Family

ID=81753753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131350 WO2022109838A1 (zh) 2020-11-25 2020-11-25 无线通信的方法和装置

Country Status (2)

Country Link
CN (1) CN116671204A (zh)
WO (1) WO2022109838A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109475000A (zh) * 2017-09-08 2019-03-15 展讯半导体(南京)有限公司 共享信道资源分配方法、装置及网络侧设备
CN109660324A (zh) * 2017-10-11 2019-04-19 维沃移动通信有限公司 解调参考信号传输方法、网络设备及终端
WO2019184565A1 (zh) * 2018-03-29 2019-10-03 北京展讯高科通信技术有限公司 物理下行共享信道接收及其时域资源指示方法、装置、存储介质、基站、终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109475000A (zh) * 2017-09-08 2019-03-15 展讯半导体(南京)有限公司 共享信道资源分配方法、装置及网络侧设备
CN109660324A (zh) * 2017-10-11 2019-04-19 维沃移动通信有限公司 解调参考信号传输方法、网络设备及终端
WO2019184565A1 (zh) * 2018-03-29 2019-10-03 北京展讯高科通信技术有限公司 物理下行共享信道接收及其时域资源指示方法、装置、存储介质、基站、终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Remaining Issues on DMRS Design", 3GPP TSG RAN WG1 MEETING #93 R1-1805958, 11 May 2018 (2018-05-11), XP051461666 *

Also Published As

Publication number Publication date
CN116671204A (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
WO2019096235A1 (zh) 接收参考信号的方法和发送参考信号的方法
WO2020143828A1 (zh) 资源配置的方法和装置
EP3849230A1 (en) Interference measurement method and apparatus
EP3726767B1 (en) Data transmission method and device and communication apparatus
WO2018171605A1 (zh) 接收信息的方法及其装置和发送信息的方法及其装置
US12089224B2 (en) Wireless communication method, terminal device and network device
WO2020221021A1 (zh) 通信方法和通信装置
JP2020526996A (ja) 伝送方法及びその装置
EP3787212A1 (en) Communication method and communication device
WO2019136720A1 (zh) 信号传输的方法和设备
WO2021017611A1 (zh) 数据传输方法和装置
WO2021134437A1 (zh) 传输初始接入配置信息的方法和装置
WO2019096232A1 (zh) 通信方法和通信装置
WO2020020315A1 (zh) 一种上下行时间资源配置的方法和装置
WO2019192500A1 (zh) 通信方法和通信装置
WO2022134076A1 (zh) 无线通信的方法和终端设备
WO2020097920A1 (zh) 参数重配的方法和装置
WO2023035144A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022109838A1 (zh) 无线通信的方法和装置
WO2022021811A1 (zh) 无线通信方法、终端设备和网络设备
WO2020164487A1 (zh) 一种无线通信的方法和装置
WO2021062869A1 (zh) 无线通信方法和终端设备
WO2019192002A1 (zh) 信息传输方法、终端设备和网络设备
WO2022077346A1 (zh) 信道传输的方法、终端设备和网络设备
WO2023050338A1 (zh) 无线通信的方法和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962729

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080107323.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20962729

Country of ref document: EP

Kind code of ref document: A1