WO2020143828A1 - 资源配置的方法和装置 - Google Patents

资源配置的方法和装置 Download PDF

Info

Publication number
WO2020143828A1
WO2020143828A1 PCT/CN2020/071735 CN2020071735W WO2020143828A1 WO 2020143828 A1 WO2020143828 A1 WO 2020143828A1 CN 2020071735 W CN2020071735 W CN 2020071735W WO 2020143828 A1 WO2020143828 A1 WO 2020143828A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
functional unit
node
type
resources
Prior art date
Application number
PCT/CN2020/071735
Other languages
English (en)
French (fr)
Inventor
刘凤威
毛祺琦
袁世通
陈磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080008917.XA priority Critical patent/CN113711669A/zh
Priority to EP20738622.8A priority patent/EP3911076A4/en
Priority to JP2021540191A priority patent/JP7295247B2/ja
Priority to BR112021013539-1A priority patent/BR112021013539A2/pt
Priority to KR1020217025219A priority patent/KR20210122793A/ko
Publication of WO2020143828A1 publication Critical patent/WO2020143828A1/zh
Priority to US17/371,965 priority patent/US11785626B2/en
Priority to JP2023094720A priority patent/JP2023123550A/ja
Priority to US18/462,719 priority patent/US20240073936A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • H04B7/15542Selecting at relay station its transmit and receive resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present application relates to the field of communications, and more specifically, to a method and device for resource configuration.
  • the base station establishes a connection with the core network through optical fiber.
  • fiber deployment costs are very high.
  • the wireless relay node (RN) establishes a connection with the core network through a wireless backhaul link, which can save part of the fiber deployment cost.
  • the relay node establishes a wireless backhaul link with one or more superior nodes, and accesses the core network through the superior node.
  • the superior node can control the relay node through various signaling (for example, data scheduling, timing modulation, power control, etc.).
  • the relay node can provide services for multiple subordinate nodes.
  • the upper node of the relay node may be a base station or another relay node; the lower node of the relay node may be a terminal or another relay node.
  • 5G New Radio considers the introduction of integrated access and backhaul (IAB) solutions to further reduce deployment costs and increase deployment flexibility.
  • IAB integrated access and backhaul relay
  • the IAB node may include two functional units: mobile terminal (MT) and distributed unit (DU).
  • MT mobile terminal
  • DU distributed unit
  • MT is used for IAB nodes to communicate with superior nodes
  • DU is used for IAB nodes to communicate with lower nodes.
  • MT resources and DU resources there is no configuration scheme for MT resources and DU resources in IAB nodes.
  • the present application provides a method and apparatus for resource configuration, by indicating to the IAB node the multiplexing type corresponding to each of the one or more antenna panels of the first functional unit and the second functional unit, so that The IAB node obtains the resource configuration of the MT or the resource configuration of the DU based on the multiplexing type, which helps to realize the resource configuration of the IAB node under multiple panels.
  • a method for resource configuration including: a first node receives first indication information sent by a second node, the first indication information is used to indicate one or more antenna panels of a first functional unit Resource multiplexing type of each antenna panel of the second functional unit; the first node uses resources of one or more antenna panels of the second functional unit for data transmission, wherein The resource type of one or more antenna panels is determined according to the resource reuse type. Therefore, after obtaining the resource reuse type, the first node can determine the resources of one or more antenna panels of the second functional unit in combination with the resource configuration of the first functional unit, thereby realizing the multi-antenna panel IAB node Resource allocation.
  • the method further includes: the first node receives resource configuration information from the second node, and the resource configuration information is used to indicate a first function in the first node Resources of one or more antenna panels of the unit; wherein, resources of one or more antenna panels of the second functional unit are based on the resource reuse type, one or more antenna panels of the first functional unit Resources, and the preset relationship is determined, the preset relationship includes correspondence between the resource configuration of the first functional unit and the resource configuration of the second functional unit of the first node under different resource multiplexing types relationship. Therefore, the first node may also obtain the resource configuration of the first functional unit from the second node, and then use the resource configuration of the first functional unit to search for the resource configuration of the second functional unit in the foregoing preset relationship.
  • the method further includes: the first node sending second indication information to the second node, where the second indication information is used to indicate each of the first functional units The resource multiplexing type supported by the antenna panel and the second functional unit, or for indicating the resource multiplexing type supported by the first antenna panel of the first functional unit and the second functional unit, the first The antenna panel represents an antenna panel in the same direction as the antenna panel used by the second functional unit, or is used to indicate the resource multiplexing type supported by the second antenna panel of the first functional unit and the second functional unit, The second antenna panel refers to an antenna panel in a different direction from the antenna panel used by the second functional unit. Therefore, the first node can report the supported resource reuse type to the second node, so that the second node can refer to the resource reuse type reported by the first node to configure the resource reuse type for the first node.
  • the first functional unit is a mobile terminal MT
  • the second functional unit is a distributed unit DU; or, the first functional unit is a distributed unit DU, and the second functional unit is a mobile terminal MT.
  • the method further includes: if there is a signal to be transmitted in the DU or MT of the first node, the first node
  • the resources in the resource configuration are adjusted, where the resources corresponding to the signal to be transmitted are the first type of resources. Therefore, for some special signals to be transmitted, in order to ensure the smooth transmission of these signals to be transmitted, the first node may adjust the resources in the resource configuration of the DU. "Adjustment" may be interpreted as adjusting soft resources or unavailable resources to hard resources; or, adjusting hard resources to soft resources or unavailable resources.
  • the signal to be transmitted includes one or more of the following signals: a synchronization signal block SSB and a random access channel RACH signal.
  • the first node adjusting the resource configuration of the DU includes: if the first node determines the first resource in the resource configuration of the DU Is a second type of resource, the first node adjusts the first resource to a first type of resource, where the first resource is used by the DU of the first node to transmit the signal to be transmitted Resources.
  • the first resource in the resource configuration of the DU is a soft resource or an unavailable resource, the first resource is converted to a hard resource.
  • the first node adjusting the resource configuration of the DU includes: if the first node determines the second resource in the resource configuration of the DU Is a first-type resource, the first node adjusts the second resource to a second-type resource, where the second resource is used in the MT of the first node to transmit the to-be-transmitted resource
  • the resources of the signal coincide in the time domain.
  • the second resource can be transformed into a soft resource or an unavailable resource, thereby ensuring the smooth transmission of the signal to be transmitted in the MT.
  • a method for resource configuration which includes: a second node determining first indication information, where the first indication information is used to indicate each of one or more antenna panels of the first functional unit A resource multiplexing type of the antenna panel and the second functional unit, where the resource multiplexing type is used by the first node to determine resources of one or more antenna panels of the second functional unit; A node sends the first indication information.
  • the second node sends the first node the resource multiplexing type of each of the one or more antenna panels of the first functional unit and the second functional unit, so that the first node is based on the resource multiplexing type,
  • the resources of one or more antenna panels of the second functional unit are determined, thereby realizing the resource configuration in the IAB node under the multi-antenna panel.
  • the method further includes: the second node sending resource configuration information to the first node, where the resource configuration information is used to indicate a first functional unit in the first node Of one or more antenna panels. Therefore, the second node sends the resource configuration of the first functional unit to the first node, so that the first node uses the resource configuration of the first functional unit to search for the resource configuration of the second functional unit in the preset relationship.
  • the method further includes: the second node receives second indication information sent by the first node, and the second indication information is used to indicate each of the first functional units The resource multiplexing type supported by the antenna panel and the second functional unit, or for indicating the resource multiplexing type supported by the first antenna panel of the first functional unit and the second functional unit, the first
  • the antenna panel represents an antenna panel in the same direction as the antenna panel used by the second functional unit, or is used to indicate the resource multiplexing type supported by the second antenna panel of the first functional unit and the second functional unit
  • the second antenna panel represents an antenna panel in a different direction from the antenna panel used by the second functional unit; wherein the second node determining the first indication information includes: the second node is based on the first Two indication information to determine the first indication information. Therefore, by receiving the resource reuse type reported by the first node and supported by the first node, the second node may refer to the resource reuse type reported by the first node to configure the resource reuse type for the first node.
  • the first functional unit is a mobile terminal MT
  • the second functional unit is a distributed unit DU; or, the first functional unit is a distributed unit DU, and the second functional unit is a mobile terminal MT.
  • a communication device including a module for performing the method in the above first aspect or any possible implementation manner of the first aspect.
  • a communication device including a module for performing the method in the second aspect or any possible implementation manner of the second aspect.
  • a communication device may be the first node (such as an IAB node or a terminal device) in the above method design, or a chip provided in the first node.
  • the communication device includes: a processor, coupled to a memory, and configured to execute instructions in the memory to implement the method performed by the first node in the first aspect and any possible implementation manner thereof.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication interface may be a transceiver or an input/output interface.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication device may be a second node (such as a host base station) in the above method design, or a chip provided in the second node.
  • the communication device includes: a processor, coupled to a memory, and capable of executing instructions in the memory to implement the method performed by the second node in the second aspect and any possible implementation manner thereof.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication interface may be a transceiver or an input/output interface.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a program which when executed by a processor, is used to execute any method in the first aspect or the second aspect and possible implementation manners thereof.
  • a program product comprising: program code, when the program code is run by a communication unit, a processing unit or a transceiver, or a processor of a communication device (eg, a first node), The communication device is caused to perform any method in the first aspect and its possible implementation manners.
  • a program product comprising: program code, when the program code is run by a communication unit, a processing unit or a transceiver, or a processor of a communication device (eg, a second node), Causing the communication device to perform any method in the second aspect and its possible implementations
  • a computer-readable storage medium stores a program that causes a communication device (eg, a first node) to perform the first aspect described above and possible implementations thereof. Any method.
  • a computer-readable storage medium stores a program that causes a communication device (eg, a second node) to perform the second aspect described above and possible implementations thereof Any of the methods.
  • a communication device eg, a second node
  • FIG. 1 is a schematic structural diagram of a communication system to which an embodiment of this application is applicable.
  • FIG. 2 is a schematic diagram of an example of a scene of a multi-antenna panel.
  • FIG. 3 is a schematic interaction diagram of a resource configuration method according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the correspondence between the resource configuration of an antenna panel of a DU and the resource configuration of an MT under different resource multiplexing types.
  • FIG. 5 is a schematic diagram of the multiplexing type of one antenna panel of MT and two antenna panels of DU.
  • FIG. 6 is a schematic diagram of resource configuration of one antenna panel of the MT and two antenna panels of the DU.
  • FIG. 7 is a schematic diagram of an example of multiple antenna panels of a DU and multiple antenna panels of an MT.
  • FIG. 8 is a schematic diagram of an example of adjusting resource configuration in an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of an apparatus for resource configuration according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an apparatus for resource configuration according to an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of an apparatus for resource configuration according to another embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of an apparatus for resource configuration according to another embodiment of the present application.
  • multiple or “multiple items” means two or more.
  • at least one may be replaced with “one or more”.
  • IAB nodes IAB nodes
  • LTE long term evolution
  • FIG. 1 is a schematic structural diagram of a communication system to which an embodiment of the present application is applicable.
  • NB-IoT narrowband Internet of Things
  • WLAN wireless local area network
  • LTE Long Term Evolution
  • D2D device-to-device
  • An IAB system includes at least one base station 100, and one or more terminal devices (terminals) 101 served by the base station 100, one or more relay nodes IAB nodes, and one or more terminal devices served by the IAB node 110 111.
  • the base station 100 is called a donor base station (donor next generation node B, DgNB), and the IAB node 110 is connected to the base station 100 through a wireless backhaul link 113.
  • the host base station is also referred to as a host node, that is, a Donor node in this application.
  • Base stations include but are not limited to: evolved node B (evolved node base, eNB), radio network controller (radio network controller, RNC), node B (node B, NB), base station controller (base station controller, BSC), Base transceiver station (BTS), home base station (for example, home evolved NodeB, or home node B, HNB), baseband unit (BBU), eLTE (evolved LTE, eLTE) base station, NR base station (next generation, node B, gNB), etc.
  • evolved node B evolved node base, eNB
  • RNC radio network controller
  • node B node B
  • base station controller base station controller
  • BSC Base transceiver station
  • home base station for example, home evolved NodeB, or home node B, HNB
  • BBU baseband unit
  • eLTE evolved LTE, eLTE
  • Terminal equipment includes but is not limited to: user equipment (user equipment (UE), mobile station, access terminal, user unit, user station, mobile station, remote station, remote terminal, mobile device, terminal, wireless communication device, user agent, Stations (ST), cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (wireless local loop) (WLL) stations in wireless local area network (WLAN) Personal digital processing (personal digital assistant, PDA), handheld devices with wireless communication capabilities, computing devices, other processing devices connected to wireless modems, in-vehicle devices, wearable devices, mobile stations in future 5G networks, and future evolving public Any one of terminal equipment in a land mobile network (PLMN) network.
  • the IAB node is a specific name of a relay node, and does not limit the scheme of the embodiments of the present application. It may be one of the above base stations or terminal devices with a forwarding function, or may be an independent device form.
  • the integrated access and backhaul system may also include multiple other IAB nodes, such as IAB node 120 and IAB node 130.
  • IAB node 120 is connected to IAB node 110 via wireless backhaul link 123 to access the network.
  • the IAB node 130 is connected to the IAB node 110 via a wireless backhaul link 133 to access the network, the IAB node 120 serves one or more terminal devices 121, and the IAB node 130 serves one or more terminal devices 131.
  • both IAB node 110 and IAB node 120 are connected to the network through a wireless backhaul link.
  • the wireless backhaul links are all viewed from the perspective of the relay node, for example, the wireless backhaul link 113 is the backhaul link of the IAB node 110, and the wireless backhaul link 123 is the IAB node 120 Backhaul link.
  • an IAB node such as 120
  • relay nodes can be connected through multiple wireless relay nodes To the network.
  • IAB nodes can refer to any node or device with a relay function. The use of the IAB node and the relay node in this application should be understood to have the same meaning.
  • Superior node The node that provides wireless backhaul link resources, such as 110, is called the superior node of the IAB node 120. It should be understood that the superior node may be an IAB node, a host base station (such as a Donor node), or a network device, etc., which is not limited.
  • Subordinate node A node that uses the backhaul link resources to transmit data to the network or receives data from the network is called a subordinate node.
  • 120 is called a relay node 110 subordinate node, and 131 can become a subordinate node of 130.
  • the network is the network above the core network or other access networks, such as the Internet and a private network.
  • An access link refers to a wireless link used by a node to communicate with its subordinate nodes, including uplink transmission and downlink transmission links.
  • the uplink transmission on the access link is also referred to as the uplink transmission of the access link, and the downlink transmission is also referred to as the downlink transmission of the access link.
  • the nodes include but are not limited to the aforementioned IAB nodes.
  • the backhaul link refers to the wireless link used by a node to communicate with its superior node, including the uplink and downlink transmission links.
  • the uplink transmission on the backhaul link is also called the uplink transmission of the backhaul link, and the downlink transmission is also called the downlink transmission of the backhaul link.
  • the nodes include but are not limited to the aforementioned IAB nodes.
  • an IAB node can be divided into two parts, namely a mobile terminal (MT) and a distributed unit (DU).
  • MT is used for IAB nodes to communicate with superior nodes
  • DU is used for IAB nodes to communicate with lower nodes.
  • the link between the MT in the IAB node and the superior node is called the parent backhaul link (parent BH link)
  • the link between the DU in the IAB node and the subordinate IAB node is called the inferior backhaul link (child BH link)
  • the link between the DU in the IAB node and the subordinate UE is called an access link.
  • the link between the IAB node and the superior node is referred to as the backhaul link
  • the link between the IAB node and the subordinate IAB node and/or UE is collectively referred to as the access link.
  • the lower node can be regarded as a terminal device of the upper node.
  • an IAB node in the integrated access and backhaul system shown in FIG. 1, an IAB node is connected to a superior node, but in future relay systems, in order to improve the reliability of the wireless backhaul link, an IAB node, For example, 120, there may be multiple superior nodes serving an IAB node at the same time.
  • the IAB node 130 may also be connected to the IAB node 120 through the return link 134, that is, both the IAB node 110 and the IAB node 120 are IAB The superior node of node 130.
  • the names of the IAB nodes 110, 120, and 130 do not limit the scenarios or networks in which they are deployed, and can be any other names such as relay, RN, and so on. The use of IAB nodes in this application is only for the convenience of description.
  • the wireless links 102, 112, 122, 132, 113, 123, 133, 134 may be bidirectional links, including uplink and downlink transmission links, in particular, the wireless backhaul links 113, 123, 133, 134 may be used by superior nodes to provide services for subordinate nodes, such as superior nodes 100 provides a wireless backhaul service for the subordinate node 110. It should be understood that the uplink and downlink of the backhaul link may be separated, that is, the uplink and downlink are not transmitted through the same node.
  • the downlink transmission refers to a higher-level node, such as node 100, transmits information or data to a lower-level node, such as node 110, and uplink transmission refers to transmit information or data to a lower-level node, such as node 110, to a higher-level node, such as node 100.
  • the node is not limited to whether it is a network node or a terminal device.
  • the terminal device may serve as a relay node to serve other terminal devices.
  • the wireless backhaul link may be an access link.
  • the backhaul link 123 may also be regarded as an access link for the node 110, and the backhaul link 113 is also the access of the node 100. link.
  • the upper node may be a base station or a relay node
  • the lower node may be a relay node or a terminal device with a relay function.
  • the lower node may also be a terminal device.
  • the relay nodes shown in FIG. 1, such as 110, 120, and 130, can exist in two forms: one exists as an independent access node, and can independently manage terminal devices connected to the relay node.
  • the relay node usually has an independent physical cell identifier (PCI).
  • PCI physical cell identifier
  • This type of relay usually requires a complete protocol stack function, such as radio resource control (RRC) function.
  • RRC radio resource control
  • This kind of relay is usually called layer 3 relay; while another form of relay node and Donor node, such as Donor eNB, Donor gNB, belong to the same cell, and user management is performed by the host base station, such as Donor node Managed, this kind of relay is usually called layer 2 relay.
  • Layer 2 relays usually exist as the DU of the base station DgNB under the NR control and bearer separation (central unit and distributed unit, CU-DU) architecture, through the F1 application protocol (F1 application protocol, F1-AP) interface or tunneling protocol and
  • the CU communicates, and the tunneling protocol may be, for example, a general packet radio service technology tunneling protocol (general packet radio service tunneling protocol, GTP) protocol, which will not be described in detail.
  • the Donor node refers to a node that can access the core network through the node, or an anchor base station of the wireless access network, through which the base station can access the network.
  • the anchor base station is responsible for receiving the data of the core network and forwarding it to the relay node, or receiving the data of the relay node and forwarding it to the core network.
  • the Donor node in the relay system is called IAB Donor, which is the host node.
  • IAB Donor is the host node.
  • IAB donor and host node are entities or network elements with different functions. .
  • a relay node such as an IAB node or a terminal device or a network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes central processing unit (CPU), memory management unit (memory management unit, MMU), and memory (also called main memory) and other hardware.
  • the operating system may be any one or more computer operating systems that implement business processes through processes, for example, a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a windows operating system.
  • the application layer includes browser, address book, word processing software, instant messaging software and other applications.
  • the embodiment of the present application does not specifically limit the specific structure of the execution body of the method provided in the embodiment of the present application, as long as it can run the program that records the code of the method provided by the embodiment of the present application to provide according to the embodiment of the present application
  • the method may be used for communication.
  • the execution body of the method provided in the embodiments of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call a program and execute the program.
  • various aspects or features of the present application may be implemented as methods, devices, or articles using standard programming and/or engineering techniques.
  • article of manufacture encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (eg, hard disks, floppy disks, or magnetic tapes, etc.), optical disks (eg, compact discs (CD), digital universal discs (digital) discs, DVDs) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • MT resource refers to the resource used by the MT function of the IAB node.
  • MT resources may be configured as uplink (U) resources, downlink (D) resources, and flexible (F) resources.
  • MT resources can be divided into the following two types:
  • Available resources refer to resources that may be scheduled by superior nodes
  • Unavailable (null, N) resources refer to resources that will not be scheduled by superior nodes. Those skilled in the art should understand that in actual use, unavailable resources can also be recorded as "NULL", which does not limit the embodiments of the present application.
  • the available resources and unavailable resources of the MT may be explicitly configured by the higher-level node through high-level signaling (for example, RRC signaling), or may be implicitly derived by the IAB node through the DU resource type.
  • the embodiment of the present application does not limit the manner in which the available resources and unavailable resources of the MT are obtained.
  • the DU resource refers to the resource used by the DU function of the IAB node.
  • the DU resource may be configured as an uplink (Ulink) resource, a downlink (Dlink) resource, a flexible (F) resource, and an unavailable (Null, N) resource.
  • the uplink resources of the DU can be divided into soft (soft, S) resources and hard (H) resources.
  • Downlink resources of DU can be divided into soft resources and hard resources.
  • the flexible resources of DU can be divided into soft resources and hard resources.
  • Soft resource refers to whether the resource can be used by the DU, depending on the instructions of the upper node.
  • Hard resources indicates resources that are always available to the DU.
  • the soft resources and hard resources of the DU may be explicitly configured by higher-level nodes through high-level signaling (such as RRC signaling) or interface messages (such as F1-AP interface messages or enhanced F1-AP interface messages). It can also be derived implicitly by the IAB node through the resource configuration of the MT. This application does not limit how the soft resources and hard resources of the DU are obtained.
  • TDM time-division multiplexing
  • SDM static space division multiplexing
  • DU resources Full duplex multiplexing
  • the resource configuration of MT resources and the resource configuration of DU resources may have different correspondences. For example, if the resource multiplexing type is TDM, the MT and DU of the IAB node cannot be transmitted simultaneously; if the resource multiplexing type is SDM, the MT and DU can be received or sent simultaneously; if the resource multiplexing type is full-duplex, MT and DU can be transmitted at the same time, and it is not limited to receive or send at the same time.
  • FIG. 2 is a schematic diagram showing an example of a scene of a multi-antenna panel.
  • the IAB node has multiple antenna panels (such as three antenna panels, respectively antenna panel 0, antenna panel 1 and antenna panel 2).
  • the IAB node can use a multi-antenna panel to communicate with the upper node, the lower node, or the access UE. It should be understood that the embodiment of the present application does not limit the number of antenna panels of the IAB node, and FIG. 2 only uses three antenna panels as an example for description.
  • FIG. 3 shows a schematic interaction diagram of a resource configuration method 200 according to an embodiment of the present application. As shown in FIG. 3, the illustrated method 200 includes:
  • the second node sends first indication information to the first node, where the first indication information is used to indicate that each of the one or more antenna panels of the first functional unit is multiplexed with the resources of the second functional unit Types of.
  • the first node receives the first indication information.
  • the first node may be a relay node, such as an IAB node.
  • the second node may be a superior node of the first node.
  • the signaling sent by the IAB node to the first node may be generated by the superior node of the second node (such as the Donor node) and sent to the second node; and the first node sends the second node
  • the sent signaling may also be sent by the second node to the superior node of the second node.
  • the resource multiplexing type of each of the one or more antenna panels of the first functional unit and the second functional unit is configured by the second node for the first node.
  • the resource multiplexing type can be time division multiplexing TDM, static space division multiplexing SDM, dynamic SDM, full duplex multiplexing, etc.
  • the first functional unit may be a mobile terminal MT, and accordingly, the second functional unit is a distributed unit DU; or, the first functional unit may be a distributed unit DU and the second functional unit is a mobile Terminal MT.
  • the embodiments of the present application are described by using the antenna panel as an example, but this does not limit the protection scope of the embodiments of the present application.
  • the technical solutions of the embodiments of the present application are not only applicable to different antenna panels, but also applicable to different cells and different subunits. That is, different antenna panels can be replaced with different cells; or, with different subunits, for example, the DU of the IAB node has multiple subunits, or the MT of the IAB node has multiple subunits.
  • the subunits can be represented by cells, cell groups, carriers, carrier groups, or partial bandwidth (BWP).
  • subunits can be represented by cells, cell groups, carriers, carrier groups, or antenna panels.
  • a DU may have multiple facing panels, and each antenna panel corresponds to a cell. Therefore, a subunit may be represented by an antenna panel or a cell; for another example, a DU may have multiple carriers, and each carrier corresponds to a cell, so , Subunits can be represented by carriers or cells.
  • the second node may indicate that each antenna panel of the DU has a different resource configuration, and the resource configuration corresponding to each antenna panel is not the same as the resource reuse type of the MT resource The same; or, it can indicate that the resources of each cell of the DU have different resource configurations, and the resource configuration of the MT resources corresponding to the resource configuration of each cell is different, or that the resources of each subunit of the DU can have different resources Configuration, and the resource reuse type of each subunit and MT resource is different.
  • resource multiplexing of DU resources and MT resources can be understood as multiplexing of resources when transmitting signals on resources corresponding to each antenna panel/each cell/subunit.
  • different antenna panels may correspond to different cell identifiers (IDs) or the same cell ID, which is not limited.
  • IDs cell identifiers
  • the DU when the IAB node provides services to the subordinate node or the UE, the DU can support the operation of multiple cells, and the multiple cells have different cell IDs.
  • different cells use different antenna panels, and the second node may configure the resource reuse type of the different cells of the DU of the first node and the MT.
  • the MT of the IAB node establishes connections with multiple superior nodes, that is, the MT may communicate with different cells.
  • the second node configures the above-mentioned resource multiplexing type for the first node
  • the second node may configure the resources of all antenna panels of the MT and DU
  • the multiplexing type is TDM, or the resource multiplexing type when MT and DU are in the same antenna panel can be configured as TDM, and the resource multiplexing type when using different antenna panels with DU is semi-static SDM or dynamic SDM.
  • the "same antenna panel” means that the MT and the DU use the same antenna panel, or that the MT uses the same antenna panel as the DU.
  • “Different antenna panel” means that the MT and the DU use different antenna panels, or the antenna panel used by the MT and the antenna panel used by the DU have different directions.
  • the "co-antenna panel” may be characterized by other concepts or terms, such as co-location, quasi-co-location, co-orientation, strong correlation, and mutual influence, etc., which will be described here in a unified manner, and will not be repeated below.
  • the MT and DU of the first node adopt the default resource reuse type before the second node displays the configured resource reuse type for the first node.
  • the default resource reuse type includes: the resource reuse type of all antenna panels of MT and DU is TDM, or the resource reuse type of MT and DU when using the same antenna panel is TDM, which is different from that of DU.
  • the type of resource multiplexing when using an antenna panel is semi-static SDM or dynamic SDM.
  • the method 200 further includes:
  • the first node sends second indication information to the second node, where the second indication information is used to indicate that each antenna panel of the first functional unit and the resource supported by the second functional unit are complex.
  • a type or, used to indicate a resource multiplexing type supported by the first antenna panel of the first functional unit and the second functional unit, where the first antenna panel represents an antenna used with the second functional unit
  • a resource multiplexing type supported by the panel and the second functional unit, and the second antenna panel represents an antenna panel that has a different direction from the antenna panel used by the second functional unit.
  • the first node may report the co-location relationship between the antenna panel used by the MT and the antenna panel of the DU to the second node (the co-location relationship is used to indicate whether the antenna panel used by the MT and the antenna panel of the DU are the same).
  • the first node may report to the second node the resource multiplexing type supported by each antenna panel of the DU of the first node and the MT through the second indication Specifically, when the MT uses one or more antenna panels for transmission, the resource multiplexing types of different antenna panels of the MT and DU. Accordingly, the second node may determine whether the MT and the DU are the same antenna panel based on the resource multiplexing type supported by each antenna panel of the DU and the MT reported by the first node.
  • the first node may report the resource multiplexing type supported by the first antenna panel in the DU and the MT, or the second antenna panel in the DU and the supported by the MT through the second indication information Resource reuse type.
  • the second indication information may further include the identifier of the first antenna panel.
  • the second indication information may also indicate the identifier of the first antenna panel or the identifier of the second antenna panel.
  • the identification of the antenna panel may be panel ID or cell ID, or it may also be distinguished by the reference signal identification or the reference signal resource identification, for example, the synchronization signal block (SSB) identification, channel state information
  • SSB synchronization signal block
  • the identification of the reference signal (channel state-information-reference signal, CSI-RS), the identification of the CSI-RS resource, the identification of the sounding reference signal (sounding reference signal), etc. are not limited.
  • the first node and/or the second node may distinguish different antenna panels through the identification of the reference signal.
  • each downlink reference signal set contains at least one downlink reference signal
  • the MT uses the antenna panel 0 when receiving or sending the downlink reference signal set 0, and receives or sends the downlink reference
  • the antenna panel 1 is used for the signal set 1. Therefore, the first node should report the resource multiplexing type of the MT and the DU or the co-location relationship between the MT and the antenna panel of the DU when the MT receives and transmits the downlink reference signal set 0 and the downlink reference signal set 1 respectively.
  • the IAB node may report that when the MT of the IAB node receives a certain downlink reference signal set, the antenna panel used is co-located with a certain antenna panel of the DU. It should be noted that the remaining signals (for example, physical uplink shared channel (PUSCH) and physical downlink shared channel (physical downlink shared channel (PDSCH)) received and sent by the MT have spatial quasi-share with at least one downlink reference signal set here. Address (quasi-co-located, QCL) relationship, or use the same antenna panel.
  • PUSCH physical uplink shared channel
  • PDSCH physical downlink shared channel
  • the second node may refer to the resource reuse type reported by the first node to configure the resource reuse type for the first node, for example:
  • the second Nodes can be configured with TDM, dynamic SDM, semi-static SDM and full duplex;
  • the second node can configure TDM, dynamic SDM, and semi-static SDM;
  • the second node can configure TDM, dynamic SDM
  • the second node may configure TDM.
  • the second node may configure the resource multiplexing type for the first node in other ways without referring to the content reported by the first node. There is no restriction on this.
  • Capability includes one or more of the following: transceiver isolation, antenna isolation, and interference suppression capabilities.
  • IAB nodes have the following sequence of capacity requirements for different resource multiplexing types, TDM ⁇ dynamic SDM ⁇ static SDM ⁇ full duplex. In other words, full-duplex requires higher transceiver isolation (or higher antenna isolation, and even higher interference suppression capability), while TDM requires lower transceiver isolation (or lower antenna isolation, Or lower interference suppression capability).
  • the resource multiplexing type configured by the second node for it may be static SDM, dynamic SDM or TDM , But not for full duplex.
  • the second node may configure the first node with a special type of soft resources.
  • the first node can use the special soft resource to communicate with the superior node on the corresponding MT resource, for example, to receive a random access response message (random access) response, RAR) PDSCH or physical downlink control channel (PDCCH).
  • RAR random access response message
  • PDCH physical downlink control channel
  • the first node uses resources of one or more antenna panels of the second functional unit for data transmission, where the resource type of one or more antenna panels of the second functional unit is based on the resources The type of reuse is determined.
  • the second node sends the resource multiplexing type to the first node through the first indication information.
  • the resource multiplexing type refers to a different resource multiplexing type of each antenna panel and the second functional unit in the multiple antenna panels of the first functional unit.
  • the first node can determine the resources of one or more antenna panels of the second functional unit in combination with the resource configuration of the first functional unit, and finally use the one or more antennas of the second functional unit The resources of the panel are used for data transmission, thereby realizing the resource configuration in the IAB node under the multi-antenna panel or multi-cell.
  • the DU of the first node can use all antenna panels, and the MT can use one antenna panel.
  • Different antenna panels of DU and MT can have different resource reuse types.
  • the resource multiplexing type of the antenna panel of the MT and DU may be TDM or dynamic SDM.
  • the resource multiplexing type of the antenna panel of the MT and DU may be semi-static SDM or full-duplex. Described in the scenario illustrated in FIG.
  • antenna panel 0 is shared by MT and DU, and the resource multiplexing type of antenna panel 0 of MT and DU is time division multiplexing TDM; while antenna panel 1 is only Used by the DU, therefore, the resource multiplexing type of the antenna panel 1 of the DU and the MT may be TDM or semi-static SDM.
  • the MT can also receive or send on different antenna panels.
  • the MT supports receiving data on multiple antenna panels, or the MT uses multiple antenna panels for mobility measurement or beam training.
  • the second node may also send resource configuration information about the first functional unit to the first node, so that the first node may determine one or more antennas of the second functional unit based on the resource configuration information of the first functional unit Panel resource configuration.
  • the method 200 further includes:
  • the second node sends resource configuration information to the first node, where the resource configuration information is used to indicate resources of one or more antenna panels of the first functional unit in the first node.
  • the first node receives the resource configuration information.
  • the first node determines resources of one or more antenna panels of the second functional unit according to the resource reuse type indicated in the first indication information, resources of one or more antenna panels of the first functional unit, and a preset relationship .
  • the second node may send the resource configuration information to the first node through semi-static signaling (such as RRC signaling) or interface messages (such as F1-AP or interface message enhanced F1-AP interface messages).
  • the first node can learn the resources of one or more antenna panels of the first functional unit in the first node through the resource configuration information. Then, the first node determines the resources of the one or more antenna panels of the second functional unit according to the resource reuse type indicated in the first indication information, the resources of the one or more antenna panels of the first functional unit, and the preset relationship .
  • the preset relationship includes a correspondence between the resource configuration of the first functional unit and the resource configuration of the second functional unit of the first node under different resource multiplexing types.
  • the resource configuration of the DU and the resource configuration of the MT have different correspondences.
  • the multiple subunits of the MT and the multiple subunits of the DU may have different multiplexing types, which are as described in the above embodiments.
  • the multiplexing type may be reported to the second node by the first node, or configured by the second node for the first node.
  • the second node separately configures resource types for each subunit of the MT of the first node.
  • the MT resource type includes at least one of available and unavailable.
  • the first node and/or the superior node of the first node derives the resource type of each subunit of the DU according to the multiplexing relationship between the MT subunit and the DU subunit.
  • the resource type of the DU includes at least one of hard resources, soft resources, and unavailable resources. One kind.
  • the second node configures the resource type of each subunit of the DU of the first node as a hard resource or a soft resource, and the first node and/or the superior node of the first node according to the MT subunit and the DU
  • the multiplexing relationship of the subunits derives the availability of the resources of each subunit of the MT.
  • the resource type configured by the second node for each subunit of the MT and DU of the first node may also include the transmission direction.
  • the transmission direction includes downlink (downlink, indicated by D), uplink (uplink, indicated by U), and flexible ( flexible, denoted by F).
  • FIG. 4 shows a schematic diagram of the correspondence between the resource configuration of one antenna panel of the DU and the resource configuration of the MT under different resource multiplexing types. The preset relationship is described below with reference to the specific example in FIG. 4.
  • the corresponding relationship between the resource configuration of an antenna panel of the DU and the resource configuration of the MT is as follows: For the hard resources of the DU, the corresponding resources of the MT are unavailable resources, that is, the MT will not be on these resources with the superior The nodes communicate; or, for the unavailable resources of the MT, the resources of the corresponding DU are hard resources. As shown in the four time slots in Figure 4, in TDM, DU is in time slot 1 (DH), time slot 3 (DH), time slot 4 (DH), time slot 5 (FH), time slot 6 ( The corresponding resources in FH), time slot 7 (UH) and time slot 8 (UH) are hard resources, and the MT resources corresponding to MT in these time slots are unavailable resources.
  • time slot 0 (the resource in the DU is a NULL resource)
  • time slot 2 (the resource in the DU is the downlink soft resource DS)
  • time slot 9 (the resource in the DU is the uplink soft resource US)
  • MT The corresponding MT resources on these time slots are available resources.
  • the resource configuration of one antenna panel of the DU of TDM and the resource configuration of the MT in FIG. 4 are only some examples. The following gives all possible combinations of the resource configuration of an antenna panel of the DU and the resource configuration of the MT in the scenario of the first node in the TDM. As shown in Table 1:
  • MT:Tx indicates that the MT should be transmitted after being scheduled;
  • DU:Tx indicates that the DU may transmit;
  • MT:Rx indicates that the MT is capable of receiving (if a signal needs to be received) ;
  • DU:Rx indicates that the DU may schedule the uplink transmission of the subordinate node;
  • MT:Tx/Rx indicates that the MT should be transmitted or received after being scheduled, but the transmission and reception occur at different times;
  • DU:Tx/Rx indicates The DU may transmit or receive the transmission of the subordinate node, but the transmission and the reception do not occur simultaneously;
  • IA indicates that the DU resource is explicitly or implicitly indicated as available;
  • INA indicates that the DU resource is explicitly or implicitly indicated Is unavailable;
  • MT: NULL indicates that the MT does not send and does not need to have the receiving capability;
  • DU: NULL indicates that the DU does not send and does not receive the transmission of the lower node.
  • the correspondence between the resource configuration of one antenna panel of the DU and the resource configuration of the MT is as follows: when the DU and the MT are in the same transmission direction, for the hard resources of the DU, the corresponding resources of the MT are unavailable resources, that is, The MT will not communicate with the superior node on these resources; when the DU is in the opposite direction to the MT, for the hard resources of the DU, the corresponding MT resources are available resources. Or, when the DU is in the same direction as the MT, the resources of the corresponding DU are hard resources for the unavailable resources of the MT; when the DU and the MT are in the opposite direction, the resources of the corresponding DU may be hard resources for the available resources of the MT.
  • DU is in slot 1 (DH), slot 3 (DH), slot 4 (DH), slot 5 (FH), slot 6 (FH), slot
  • the corresponding resources in 7 (UH) and time slot 8 (UH) are hard resources, and the MT is on the time slot in the same transmission direction as the DU or the time slot corresponding to the same flexible resource (including time slot 1, time slot 3, The MT resources corresponding to timeslot 5, timeslot 6, and timeslot 8) are unavailable resources.
  • time slot 0 (the resource in the DU is a NULL resource)
  • time slot 2 (the resource in the DU is the downlink soft resource DS)
  • time slot 4 (the resource in the DU is the downlink hard resource DH)
  • Slot 7 (the resource in the DU is the uplink soft resource US)
  • slot 9 (the resource in the DU is the uplink soft resource US)
  • the corresponding MT resource of the MT in these time slots is an available resource.
  • the time slots (including time slot 4) opposite to the DU are available resources. It can be seen that for slot 4, the resource configuration of the DU and the resource configuration of the MT are different under different resource multiplexing types.
  • the resource configuration of one antenna panel of the DU and the resource configuration of the MT in the SDM scenario in FIG. 4 are only some examples. The following gives all possible combinations of the resource configuration of an antenna panel of the DU and the resource configuration of the MT in the scenario of the first node in the SDM. As shown in Table 2 below:
  • the superior node needs to know the specific transmission direction of the DU in advance before deciding whether to perform space division multiplexing transmission.
  • the IAB node can report the transmission direction of the F resource in the DU in advance, so that the DU of the upper node can schedule.
  • the F resource of the DU when the IAB node is not reported in the actual direction of the F resource of the DU, the F resource of the DU is not (if displayed or implicitly) configured as a hard resource, and does not perform space division transmission.
  • the F resource is a soft resource, dynamic SDM is performed, that is, the F resource of the DU is only allowed to perform dynamic SDM.
  • the third scenario the resource reuse type is full duplex.
  • the transmission and reception of the MT and the DU may not affect each other, that is, the resource configuration of the MT and the resource configuration of the DU do not affect each other.
  • the resources of the DU in each time slot can be hard resources, and the resources of the MT in each time slot can be available resources.
  • the fourth scenario the resource reuse type is dynamic SDM.
  • dynamic SDM the difference between dynamic SDM and static SDM is that whether the DU and MT perform SDM depends on the scheduling or instruction of the second node, that is, space division multiplexing is only performed between the available resources of the MT and the soft resources of the DU.
  • the DU is in slot 1 (DH), slot 3 (DH), slot 5 (FH), slot 6 (FH), slot 7 (UH) and slot
  • the corresponding resource in 8 (UH) is a hard resource
  • the MT is on a time slot in the same transmission direction as the DU or a time slot corresponding to the same flexible resource (including time slot 1, time slot 3, time slot 5, and time slot 6) , Time slot 8)
  • the corresponding MT resource is an unavailable resource.
  • time slot 0 (the resource in the DU is a NULL resource)
  • time slot 2 (the resource in the DU is the downlink soft resource DS)
  • time slot 4 (the resource in the DU is the downlink soft resource DS)
  • Slot 7 (the resource in the DU is the uplink soft resource US)
  • slot 9 (the resource in the DU is the uplink soft resource US)
  • the corresponding MT resource of the MT in these time slots is an available resource.
  • the difference with the resource configuration of the DU under static SDM is that in dynamic SDM, the resource of the DU in time slot 4 is a soft resource.
  • the IAB node when the DU resource is F, only dynamic SDM can be performed. That is, the IAB node first determines the transmission direction of the corresponding MT resource, and then schedules the DU resource. The transmission on the DU resource determined by the IAB node may cause the DU and MT to be sent simultaneously, or the DU and MT to be received simultaneously.
  • the time slot in FIG. 4 is only used as an example for description, but does not limit the embodiment of the present application. In practice, the time slot can be replaced with other time-domain resources, such as frames, subframes, mini-slots, Symbols, etc.
  • the first node After receiving the resource of one or more antenna panels of the first functional unit, the first node uses the preset relationship corresponding to the resource reuse type (for example, if the resource If the multiplexing type is TDM, refer to Table 1; if the resource multiplexing type is SDM, refer to Table 2) to determine the resources of one or more antenna panels of the second functional unit.
  • the resource reuse type for example, if the resource If the multiplexing type is TDM, refer to Table 1; if the resource multiplexing type is SDM, refer to Table 2
  • the first functional unit is a DU
  • the second functional unit is an MT
  • the second node sends the first node a resource configuration of part or all of the antenna panel of the DU
  • the first node acquires the antenna panel and the MT of the DU Resource reuse type, and then use the preset relationship corresponding to the resource reuse type to search, you can determine the resource configuration of the MT; or, if the first functional unit is MT, the second functional unit is DU, the second node If a node sends the resource configuration of part or all of the antenna panel of the MT, the first node obtains the resource multiplexing type of the antenna panel of the MT and DU, and then uses the preset relationship corresponding to the resource multiplexing type to search, and it can be determined Resource allocation for outgoing DU.
  • the first indication information can be used to indicate multiple antennas of the DU
  • Different antenna panels of DU and MT may have different types of resource multiplexing.
  • the first node may determine the resource configuration of the MT based on the resource multiplexing type indicated in the first indication information and the resource configuration of the DU.
  • the first indication information indicates that the resource multiplexing type of the antenna panel 0 of the DU and the MT is TDM, and the first node can obtain the resource configuration of the MT by looking up the above Table 1, or the first indication information indicates the antenna panel 1 of the DU
  • the resource multiplexing type with the MT is SDM, and the first node can obtain the resource configuration of the MT by looking up Table 2 above.
  • the resource multiplexing type of the antenna panel 0 of the DU and the MT is TDM
  • the MT resource is known as Table 1 NULL.
  • the first indication information can be used to indicate the MT’s antenna panel and The resource reuse type corresponding to each antenna panel in the DU.
  • the first node may determine the resource configuration of the DU based on the resource multiplexing type indicated in the first indication information and the resource configuration of the MT.
  • the first indication information indicates that the resource multiplexing type of the antenna panel 0 of the MT and DU is TDM, and the first node can obtain the resource configuration of the DU by searching the above Table 1, or the first indication information indicates the antenna of the MT and DU
  • the resource reuse type of Panel 1 is SDM, and the first node can obtain the resource configuration of the DU by looking up Table 2 above.
  • FIG. 5 shows a schematic diagram of the multiplexing type of one antenna panel of the MT and two antenna panels of the DU. As shown in FIG. 5, the resource multiplexing type of one antenna panel of MT and antenna panel 0 of DU is multiplexing type 0, and the resource multiplexing type of antenna panel 1 of DU is multiplexing type 1.
  • the resource multiplexing type of antenna panel 0 of the MT and DU is multiplexing type 1.
  • the resources of the MT need to be determined jointly according to the result of the resource multiplexing type 0 and the result of the resource multiplexing type 1, for example, if the first node uses the resources of the resource multiplexing type 0 and the DU antenna panel 0, Determine that one resource of the MT is an available resource, and determine that the resource of the MT is an unavailable resource according to the resource reuse type of 1 and the resource of the DU antenna panel 1, and the resource should be finally determined as an available resource. If the result determined by the first node according to the resources of DU antenna panel 0 and resource reuse type 0 is an unavailable resource, and the result determined according to the resources of DU antenna panel 1 and resource reuse type 1 is an unavailable resource, then MT The resource is unavailable.
  • Figure 6 shows an example in the scenario of Figure 5.
  • the resource multiplexing type 0 of the MT resource and the antenna panel 0 of the DU is TDM.
  • the resource multiplexing type 1 of the MT resource and the antenna panel 1 of the DU is SDM.
  • MT resources are: D, D, D, U, U and U;
  • DU antenna panel 0 resources Respectively: DS, DH, US, US, UH, and DS;
  • DU antenna panel 1 resources are: DS, DH, UH, US, UH, and DH.
  • the second node may configure resources for all different antenna panels of the DU of the first node.
  • the resource types may include D-S, D-H, U-S, U-H, F-H, F-S, and NA.
  • the first node may derive jointly from the resource configuration of multiple antenna panels of the DU.
  • different antenna panels of the DU can have different resource configurations.
  • the antenna panel 0 is a soft resource and the antenna panel 1 is a hard resource
  • the corresponding MT resource is a downlink resource (the state is an available resource).
  • the available resources of the MT are jointly derived from the resource configuration of the antenna panel 0 and the antenna panel 1 of the DU.
  • the available resources corresponding to the MT in time slot 2 are obtained from the intersection of the available MT resources derived from the antenna panel 0 of the DU and the available MT resources derived from the antenna panel 1 of the DU.
  • the second node may configure some antenna panel resources for the DU of the first node.
  • the resource types may include D-S, D-H, U-S, U-H, F-H, F-S, and NA.
  • the second node may configure resources of the same antenna panel as the MT of the DU of the first node, so that the first node may derive the resources of the MT based on the preset relationship and the resource reuse type.
  • the first node can be derived based on the resource reuse type and the resource of the MT.
  • the derivation mode of the first node may not be limited, as long as the derivation result satisfies the preset relationship under different resource reuse types. In FIG.
  • the first node can derive the resource configuration of the MT according to the resource multiplexing type (TDM) and the preset relationship. Further, the DU’s resource configuration
  • the resources of the antenna panel 1 can be derived according to the resources of the MT (whether available), the resource multiplexing type (SDM), and the preset relationship.
  • the second node may configure MT resources for the first node.
  • the first node combines the resource reuse type of the DU with the same antenna panel as the MT to obtain: the resource configuration of the DU with the same antenna panel as the MT, or the resource with the DU using different antenna panels with the MT
  • the multiplexing type can be obtained: resource configuration of DU resources using different antenna panels with MT.
  • the first node can derive the corresponding resource configuration based on the preset relationship and the resource reuse type.
  • the second node configures DU resources for the first node and derives MT resources, or configures the first node for MT resources and derives DU resources.
  • the second node may also configure resources for the first node in a fully configured manner. That is, the second node configures the MT resources (including available resources and unavailable resources) and DU resources (including soft resources and hard resources) for the first node at the same time.
  • the first node no longer needs to derive resources based on the above-mentioned preset relationship.
  • the second node is the resource configuration of any antenna panel of the configured MT, and the resource configuration of any antenna panel of the DU should satisfy the resource configuration constraints under the corresponding resource reuse type (that is, the above-mentioned preset relationship).
  • FIG. 5 describes embodiments of multiple antenna panels of the DU of the first node and one antenna panel of the MT.
  • the MT may also use multiple antenna panels.
  • An embodiment of the multiple antenna panels of the DU and the multiple antenna panels of the MT will be described below. It should be understood that the terms and concepts such as the resource reuse type and the preset relationship involved in the following embodiments may refer to the foregoing description, and will not be described in detail below.
  • the first node can determine the resources of each antenna panel of the DU based on the resources of each antenna panel of the MT and the preset relationship.
  • Each antenna panel of the MT may be independently configured with a set of available resources, where the available resources of different antenna panels of the MT may be orthogonal in the time domain or the air domain, or may coincide in the time domain or the air domain, which is not limited.
  • the first node may determine different resource configuration results of the resource configuration on one antenna panel of the DU.
  • the first node may determine the DU resource based on the following principle: For a DU resource (for example, a time slot or a symbol), if the first node determines the results according to the resources of different antenna panels of the MT and the resource reuse type, If it is a hard resource, then the one DU resource is a hard resource; if the result determined by the first node according to the resource of an antenna panel in the MT and the resource reuse type is a soft resource, that is, as long as there are multiple antenna panels in the MT An antenna panel deduces that the result of the one DU resource is a soft resource, then the one DU resource is a soft resource.
  • the soft resource of the DU is the union of the soft resources determined according to different antenna panels of the MT.
  • the first node can determine the resource of each antenna panel of the MT based on the resource of each antenna panel of the DU and the preset relationship Resources.
  • whether the resource of each antenna panel of the MT is an available resource can be determined according to the derivation results of multiple antenna panels of the DU.
  • the first node may determine the MT resource based on the following principle: For an MT resource, if the result of the first node's determination according to the resources of different antenna panels of the DU and the resource reuse type are all unavailable resources, then the one The MT resource is an unavailable resource; if the result determined by the first node according to the resource of one antenna panel in the DU and the resource reuse type is an available resource, that is, as long as there is one antenna panel in the DU, as long as one antenna panel is derived The result of the MT resource is an available resource, then the one MT resource is an available resource. That is, the available resources of the MT are the union of the available resources determined according to different antenna panels of the DU.
  • the first node may also determine the MT resource based on the following principle: For an MT resource, if the result of the first node's determination according to the resources of different antenna panels of the DU and the resource reuse type are all available resources, then the one The MT resource is an available resource; if the result determined by the first node according to the resource of one antenna panel in the DU and the resource reuse type is an unavailable resource, that is, as long as there is one antenna panel for multiple antenna panels or cells in the DU The result of the one MT resource is an unavailable resource, then the one MT resource is an unavailable resource. That is, the unavailable resources of the MT are the union of the unavailable resources determined according to different antenna panels of the DU.
  • FIG. 7 is a schematic diagram showing an example of multiple antenna panels of DU and multiple antenna panels of MT.
  • the resource multiplexing type of antenna panel 0 of MT and antenna panel 0 of DU is 00, and the resource multiplexing type of antenna panel 0 of MT and antenna panel 1 of DU is 01;
  • the resource multiplexing type of antenna panel 0 of DU is 10, and the resource multiplexing type of antenna panel 1 of MT and antenna panel 1 of DU is 11.
  • the resource reuse type in FIG. 7 is only a schematic description of the possible combination relationship between different antenna panels.
  • the specific resource reuse type please refer to the previous description, for example, static SDM, dynamic SDM, TDM, Full-duplex, etc.
  • the resources of the DU antenna panel 0 need to be determined jointly according to the result of the resource multiplexing type 00 and the result of the resource multiplexing type 10, for example, if the first node determines the DU antenna panel according to the resource multiplexing type of 00
  • the resource a of 0 is a soft resource.
  • the resource reuse type of 10 it is determined that the resource a of the DU antenna panel 0 is a hard resource. Based on the principle of determining the DU resource above, the resource a should be finally determined as a soft resource.
  • the resource of the DU antenna panel 1 needs to be determined jointly according to the result of the resource multiplexing type 01 and the result of the resource multiplexing type 11, for example, if the first node determines the resource b of the DU antenna panel 1 according to the resource multiplexing type 01 Hard resource. According to the resource multiplexing type of 11, it is determined that the resource b of the DU antenna panel 0 is a hard resource. Based on the principle of determining the DU resource above, the resource b should be finally determined as a hard resource.
  • the above embodiment introduces a method for the first node to derive the DU resource type according to the MT resource configuration, and a method for the first node to derive the MT resource type according to the DU resource configuration.
  • the derivation method is also applicable to the upper node or the host node of the first node, for example, the upper node or the host node uses the above derivation method to derive the DU resource type according to the MT resource configuration of the first node, or according to the first node
  • the DU resource configuration derives the MT resource type.
  • the resource configuration of the DU or MT may be adjusted to make the IAB resource configuration more flexible. This will be described in detail below. Of course, this adjustment is not limited to the scenario with multiple antenna panels, that is, the scenario with a single antenna panel is also applicable.
  • the method 200 further includes:
  • the first node adjusts the resources in the resource configuration of the DU.
  • the resource corresponding to the signal to be transmitted is the first type of resource.
  • the first type of resources refers to hard resources. The case of determining the resource configuration of the DU will be described as an example.
  • the signal to be transmitted may be a synchronization signal (synchronization signal, SS)/physical broadcast channel (PBCH) block (or synchronization signal block SSB), or may be a random access channel (random access) channel, RACH).
  • SSB may include the SSB set sent by the IAB node to the access UE, or the SSB set used by the IAB nodes for mutual discovery, which is not limited.
  • RACH channel may include the RACH sent by the UE or the remaining IAB nodes to the IAB node.
  • the purpose of adjusting the resources in the resource configuration of the DU is to ensure that it is always feasible to send and receive signals to be transmitted.
  • the corresponding resource in the DU (that is, the hard resource) can be adjusted to ensure that the signal to be transmitted in the MT is successfully sent or Receive; if there is a signal to be transmitted in the DU, and the corresponding resource in the DU is a soft resource or an unavailable resource, the corresponding resource in the DU can be adjusted to a hard resource to ensure that the signal to be transmitted in the DU is successfully sent or receive.
  • slot-level conversion means that the resources corresponding to the entire time slot containing this signal are converted into hard resources.
  • Symbol-level conversion means that only resources corresponding to symbols containing signals are converted into hard resources.
  • the first node adjusting the resource configuration of the DU includes:
  • the first node determines that the first resource in the resource configuration of the DU is the second type of resource, the first node adjusts the first resource to the first type of resource.
  • the first resource is a resource used for the DU of the first node to transmit the signal to be transmitted.
  • the second type of resources are soft resources or unavailable resources.
  • Adjustment here refers to: converting soft resources or unavailable resources into hard resources. It should be understood that the “adjustment” here can be understood as previously configured as a soft resource or an unavailable resource, but in actual communication, it is directly used according to the hard resource. That is, regardless of whether the first resource is a soft resource or an unavailable resource, the DU must transmit the signal to be transmitted in the first resource. It should be understood that the “adjustment” here may not have separate configuration information for resource adjustment, but means that the so-called “adjusted” resource position during actual use can break through the above-mentioned preset relationship (such as the aforementioned Table 1 or Table 2) The constrained rules use soft or unavailable resources as hard resources.
  • the first resource used to transmit the signal to be transmitted is a soft resource or an unavailable resource, in order not to affect the DU to be transmitted
  • the first resource may be converted into a hard resource.
  • the first node adjusting the resource configuration of the DU includes:
  • the first node determines that the second resource in the resource configuration of the DU is the first type of resource, the first node adjusts the second resource to the second type of resource.
  • the second resource is a resource that coincides with the resource used to transmit the signal to be transmitted in the MT of the first node in the time domain.
  • the second resource is a resource in the DU. It should be understood that the coincidence here refers to the coincidence in the time domain, and the frequency domain is not limited.
  • Adjustment here refers to: converting hard resources into soft resources or unavailable resources. It should be understood that the “adjustment” here can be understood as previously configured as a hard resource, but in actual communication, it is directly used according to a soft resource or an unavailable resource. That is, regardless of whether the resource that coincides with the second resource in the time domain is a hard resource or a soft resource (or unavailable resource), the MT transmits the signal to be transmitted in the second resource.
  • the “adjustment” here may not have separate configuration information for resource adjustment, but means that the so-called “adjusted” resource position during actual use can break through the above-mentioned preset relationship (such as the aforementioned Table 1 or Table 2)
  • the constrained rules use hard resources as soft resources or unavailable resources.
  • the resource used to transmit the signal to be transmitted corresponds to the second resource in the DU is a hard resource, in order not to affect the MT
  • the second resource may be converted into a soft resource or an unavailable resource, that is, the signal transmission of the DU in the second resource needs to be stopped.
  • the upper diagram in FIG. 8 illustrates the resource configuration before and after DU adjustment; the lower diagram in FIG. 8 illustrates the resource configuration before and after MT adjustment.
  • R in FIG. 8 represents a signal such as SSB or RACH.
  • the DU resource configuration cycle is 10 resource units (including 5 resource units corresponding to hard resources and 5 resource units corresponding to soft resources), and the transmission of signals The cycle is 40 resource units. When receiving or sending this signal, multiple signal resources may overlap with the soft resources of the DU in the time domain.
  • the configuration period of the DU's resource configuration (including soft resources and hard resources) needs to be equal to the signal transmission period.
  • this signal is SSB
  • the period of SSB may be 160 milliseconds (ms), which may include 640 time slots (60 KHz subcarrier interval).
  • ms milliseconds
  • Increasing the period of DU resource configuration will greatly increase the signaling overhead.
  • Figure 8 shows the adjusted DU resource configuration.
  • the resources that the DU sends the SSB or the resources that receive the RACH may coincide with the soft resources of the DU (for example, in the time domain), and the soft resources of the DU may be adjusted to hard resources.
  • the resource that the MT receives the SSB or the resource that sends the RACH may coincide with the unavailable resource of the MT (for example, in the time domain), and the unavailable resource of the MT may be adjusted to the available resource.
  • FIG. 8 takes the example that the cycle of resource configuration of the MT is the same as the cycle of resource configuration of the DU, but in this embodiment of the present application, whether the cycle of resource configuration of the DU is the same as the cycle of resource configuration of the MT It is not limited and may be the same or different.
  • the resources used to transmit the SSB should be hard resources in nature; or, the resources used to receive RACH (DU resources) should be hard resources in nature.
  • the resources used to receive RACH should be hard resources in nature.
  • the resource for receiving SSB (or sending RACH) in the MT resource coincides with the resource for sending SSB (or receiving RACH) in the DU resource in the time domain, the MT can be received preferentially SSB in the resource (or send RACH). That is, the resources used to send SSB (or receive RACH) among the corresponding DU resources are regarded as soft resources or unavailable resources.
  • the resource configuration of the DU needs to be adjusted. It should be understood that for other signals that are periodically sent or received, for example, the reference signal such as the CSI-RS signal that the IAB node requests to configure to the upper node, the resources determined above can be used The configuration is sent or received without adjusting the resource configuration of the DU.
  • the resource configuration of the MT may also be adjusted. For example, if there is a signal with a higher priority in the DU that needs to be transmitted, and the resources (available resources) corresponding to the resource configuration of the MT coincide in the time domain, then the corresponding MT resources can be adjusted to unavailable resources to ensure The signal in the DU is transmitted smoothly.
  • the resources that the DU sends SSB or receive RACH may coincide with the available resources of the MT in the time domain.
  • the available resources of the MT can be adjusted to unavailable resources, that is, the superior node does not schedule the MT of the IAB node at the corresponding location. Transmission of PDSCH, PUSCH and other signals.
  • FIGS. 4 to 8 are only for the convenience of those skilled in the art to understand the embodiments of the present application, and are not intended to limit the embodiments of the present application to the illustrated specific scenarios. Those skilled in the art can obviously make various equivalent modifications or changes based on the examples of FIGS. 4 to 8, and such modifications or changes also fall within the scope of the embodiments of the present application.
  • the device 900 is used to execute the method executed by the first node in the foregoing method embodiment.
  • the specific form of the device 900 may be a relay node or a chip in the relay node. This embodiment of the present application does not limit this.
  • the device 900 includes:
  • the transceiver module 910 is configured to receive first indication information sent by a second node, where the first indication information is used to indicate resources of each of the one or more antenna panels of the first functional unit and the second functional unit Reuse type
  • the transceiver module 910 is further configured to use resources of one or more antenna panels of the second functional unit for data transmission, wherein the resource type of one or more antenna panels of the second functional unit is based on The resource reuse type is determined.
  • the transceiver module 910 is further configured to receive resource configuration information from the second node, and the resource configuration information is used to indicate a first functional unit in the first node Resources of one or more antenna panels;
  • the resources of the one or more antenna panels of the second functional unit are determined according to the resource reuse type, the resources of the one or more antenna panels of the first functional unit, and a preset relationship, all
  • the preset relationship includes a correspondence between the resource configuration of the first functional unit and the resource configuration of the second functional unit of the first node under different resource reuse types.
  • the transceiver module 910 is further configured to send second indication information to the second node, where the second indication information is used to indicate each antenna of the first functional unit A resource multiplexing type supported by the panel and the second functional unit, or used to indicate a resource multiplexing type supported by the first antenna panel of the first functional unit and the second functional unit, the first antenna
  • the panel represents an antenna panel in the same direction as the antenna panel used by the second functional unit, or is used to indicate the type of resource reuse supported by the second antenna panel of the first functional unit and the second functional unit.
  • the second antenna panel means an antenna panel in a direction different from the antenna panel used by the second functional unit.
  • the first functional unit is a mobile terminal MT functional unit and the second functional unit is a distributed unit DU; or, the first functional unit is a distributed unit DU and the second functional unit is Mobile terminal MT functional unit.
  • the apparatus further includes:
  • the processing module 920 is configured to adjust the resources in the resource configuration of the DU if there is a signal to be transmitted in the DU or MT of the first node, where the resource corresponding to the signal to be transmitted is the first type of resource .
  • the processing module 920 is used to adjust the resource configuration of the DU, specifically including:
  • the first resource in the resource configuration of the DU is the second type of resource
  • the first resource is adjusted to the first type of resource, where the first resource is a DU transmission station for the first node Describe the resources of the signal to be transmitted.
  • the processing module 920 is used to adjust the resource configuration of the DU, specifically including:
  • the second resource in the resource configuration of the DU is a first-type resource
  • the second resource is adjusted to a second-type resource, where the second resource is used in an MT with the first node
  • the resources that transmit the signal to be transmitted coincide in the time domain.
  • the signal to be transmitted includes one or more of the following signals: a synchronization signal block SSB and a random access channel RACH signal.
  • the apparatus 900 for transmitting data may correspond to the method of the first node in the foregoing method embodiment, for example, the method in FIG. 3, and the above and other management operations of each module in the apparatus 900 and The /or functions are respectively for implementing the corresponding steps of the method of the first node in the foregoing method embodiments, so the beneficial effects in the foregoing method embodiments can also be achieved, and for the sake of brevity, they are not repeated here.
  • each module in the device 900 may be implemented in the form of software and/or hardware, which is not specifically limited.
  • the device 900 is presented in the form of functional modules.
  • the “module” herein may refer to an application-specific integrated circuit ASIC, a circuit, a processor and memory that execute one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the device 900 may take the form shown in FIG. 10.
  • the processing module 920 may be implemented by the processor 1001 shown in FIG. 10.
  • the transceiver module 910 may be implemented by the transceiver 1003 shown in FIG.
  • the processor is implemented by executing the computer program stored in the memory.
  • the function and/or implementation process of the transceiver module 910 may also be implemented through pins or circuits.
  • the memory is a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit may also be a storage unit in the computer device located outside the chip, as shown in FIG. 10 1002.
  • FIG. 10 shows a schematic structural diagram of an apparatus 1000 for resource configuration according to an embodiment of the present application.
  • the device 1000 includes a processor 1001.
  • the processor 1001 is configured to call an interface to perform the following actions: receive first indication information sent by a second node, and the first indication information is used to indicate one or more of the first functional unit Each antenna panel of each antenna panel and the resource multiplexing type of the second functional unit; using the resources of one or more antenna panels of the second functional unit for data transmission, wherein one of the second functional units
  • the resource type of the multiple antenna panels is determined according to the resource reuse type.
  • the processor 1001 may call an interface to perform the above-mentioned sending and receiving actions, where the called interface may be a logical interface or a physical interface, which is not limited.
  • the physical interface may be implemented by a transceiver.
  • the device 1000 further includes a transceiver 1003.
  • the device 1000 further includes a memory 1002, and the memory 1002 may store the program code in the foregoing method embodiment, so that the processor 1001 can call it.
  • the device 1000 includes a processor 1001, a memory 1002, and a transceiver 1003, the processor 1001, the memory 1002, and the transceiver 1003 communicate with each other through an internal connection channel to transfer control and/or data signals.
  • the processor 1001, the memory 1002, and the transceiver 1003 may be implemented by a chip.
  • the processor 1001, the memory 1002, and the transceiver 1003 may be implemented on the same chip, or may be implemented on different chips, respectively. Or any two of them can be combined in one chip.
  • the memory 1002 may store program codes, and the processor 1001 calls the program codes stored in the memory 1002 to implement corresponding functions of the device 1000.
  • the device 1000 may also be used to perform other steps and/or operations on the first node side in the foregoing embodiment, and for the sake of brevity, details are not described here.
  • FIG. 11 shows a schematic block diagram of an apparatus 1100 for resource configuration according to an embodiment of the present application.
  • the apparatus 1100 is used to execute the method executed by the second node in the foregoing method embodiment.
  • the second node is a superior node of the first node.
  • the specific form of the device 1100 may be a relay node or a chip in the relay node, or may be a home base station or a chip in the home base station. This embodiment of the present application does not limit this.
  • the device 1100 includes:
  • the processing module 1110 is configured to determine first indication information, and the first indication information is used to indicate a resource multiplexing type of each of the one or more antenna panels of the first functional unit and the second functional unit ,
  • the resource multiplexing type is used by the first node to determine resources of one or more antenna panels of the second functional unit;
  • the transceiver module 1120 is configured to send the first indication information to the first node.
  • the transceiver module 1120 is further used to:
  • the transceiver module 1120 is further configured to: receive second indication information sent by the first node, and the second indication information is used to indicate each antenna of the first functional unit A resource multiplexing type supported by the panel and the second functional unit, or used to indicate a resource multiplexing type supported by the first antenna panel of the first functional unit and the second functional unit, the first antenna
  • the panel represents an antenna panel in the same direction as the antenna panel used by the second functional unit, or is used to indicate the type of resource reuse supported by the second antenna panel of the first functional unit and the second functional unit.
  • the second antenna panel represents an antenna panel in a direction different from the antenna panel used by the second functional unit;
  • processing module 1110 is used to determine the first indication information, including:
  • the second node determines the first indication information based on the second indication information.
  • the first functional unit is a mobile terminal MT functional unit and the second functional unit is a distributed unit DU; or, the first functional unit is a distributed unit DU and the second functional unit is Mobile terminal MT functional unit.
  • the apparatus 1100 for transmitting data may correspond to the method of the second node in the foregoing method embodiment, for example, the method in FIG. 11, and the above and other management operations of each module in the apparatus 1100 and
  • the /or functions are respectively for implementing the corresponding steps of the method of the second node in the foregoing method embodiments, and therefore the beneficial effects in the foregoing method embodiments can also be achieved. For brevity, they are not described here.
  • each module in the device 1100 may be implemented in the form of software and/or hardware, which is not specifically limited.
  • the device 1100 is presented in the form of a functional module.
  • the “module” herein may refer to an application-specific integrated circuit ASIC, a circuit, a processor and memory that execute one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • ASIC application-specific integrated circuit
  • the processing module 1110 may be implemented by the processor 1201 shown in FIG. 12.
  • the transceiver module 1120 may be implemented by the transceiver 1203 shown in FIG.
  • the processor is implemented by executing the computer program stored in the memory.
  • the device 1100 is a chip
  • the function and/or implementation process of the transceiver module 1120 may also be implemented through pins or circuits.
  • the memory is a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit may also be a storage unit located outside the chip in the computer device, as shown in FIG. 12 1202.
  • FIG. 12 shows a schematic structural diagram of an apparatus 1200 for resource configuration according to an embodiment of the present application.
  • the device 1200 includes a processor 1201.
  • the processor 1201 is configured to determine first indication information, and the first indication information is used to indicate each of the one or more antenna panels of the first functional unit A resource multiplexing type with the second functional unit, the resource multiplexing type is used by the first node to determine resources of one or more antenna panels of the second functional unit; the processor 1201 is also used to call an interface to execute The following action: sending the first indication information to the first node.
  • the processor 1201 may call an interface to perform the above-mentioned sending and receiving actions, where the called interface may be a logical interface or a physical interface, which is not limited.
  • the physical interface may be implemented by a transceiver.
  • the device 1200 further includes a transceiver 1203.
  • the device 1200 further includes a memory 1202, and the memory 1202 may store the program code in the foregoing method embodiment, so that the processor 1201 can call it.
  • the device 1200 includes a processor 1201, a memory 1202, and a transceiver 1203, the processor 1201, the memory 1202, and the transceiver 1203 communicate with each other through an internal connection channel to transfer control and/or data signals.
  • the processor 1201, the memory 1202, and the transceiver 1203 may be implemented by chips.
  • the processor 1201, the memory 1202, and the transceiver 1203 may be implemented in the same chip, or may be implemented in different chips, respectively. Or any two of them can be combined in one chip.
  • the memory 1202 may store program codes, and the processor 1201 calls the program codes stored in the memory 1202 to implement the corresponding functions of the device 1200.
  • apparatus 1200 may also be used to perform other steps and/or operations on the second node side in the foregoing embodiment, and for the sake of brevity, details are not described here.
  • the method disclosed in the above embodiments of the present application may be applied to a processor, or implemented by a processor.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • the steps of the foregoing method embodiments may be completed by instructions in the form of hardware integrated logic circuits or software in the processor.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an existing programmable gate array (FPGA) or other available Programming logic devices, discrete gates or transistor logic devices, discrete hardware components, can also be a system chip (system on chip, SoC), can also be a central processor (central processor (unit), CPU, or network processor (network processor (NP), can also be a digital signal processing circuit (digital signal processor, DSP), can also be a microcontroller (micro controller (unit), MCU), can also be a programmable controller (programmable logic (device, PLD) or other Integrated chip.
  • SoC system on chip
  • NP network processor
  • DSP digital signal processing circuit
  • microcontroller micro controller (unit)
  • MCU microcontroller
  • PLD programmable controller
  • PLD programmable logic
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied and executed by a hardware decoding processor, or may be executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium in the art, such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, an electrically erasable programmable memory, and a register.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electronically Erasable programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (random access memory, RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate synchronous dynamic random access memory double data SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • serial link DRAM SLDRAM
  • direct RAMbus RAM direct RAMbus RAM
  • the present application further provides a computer program product, the computer program product includes: computer program code, when the computer program code runs on the computer, the computer is caused to perform the operations shown in FIGS. 3 to 8 The method of any one of the embodiments is shown.
  • the present application also provides a computer-readable medium that stores program code, and when the program code is run on a computer, the computer is caused to execute the operations shown in FIGS. 3 to 8. The method of any one of the embodiments is shown.
  • the present application further provides a system, which includes the foregoing first node and second node.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical, or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or part of the technical solution can be embodied in the form of a software product
  • the computer software product is stored in a storage medium, including Several instructions are used to enable a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the foregoing storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种资源配置的方法和装置,通过向IAB节点指示第一功能单元的一个或多个天线面板中的每个天线面板与第二功能单元对应的复用类型,使得IAB节点基于复用类型得到MT的资源配置或DU的资源配置,有助于实现多天线面板下IAB节点的资源配置。该方法包括:第一节点接收第二节点发送的第一指示信息,所述第一指示信息用于指示第一功能单元的一个或多个天线面板中的每个天线面板与第二功能单元的资源复用类型;所述第一节点使用所述第二功能单元的一个或多个天线面板的资源进行数据传输,其中,所述第二功能单元的一个或多个天线面板的资源类型是根据所述资源复用类型确定的。

Description

资源配置的方法和装置 技术领域
本申请涉及通信领域,并且更具体地,涉及一种资源配置的方法和装置。
背景技术
随着移动通信技术的不断发展,频谱资源日趋紧张。为了提高频谱利用率,未来的基站部署将会更加密集。此外,密集部署还可以避免覆盖空洞的出现。在传统蜂窝网络架构下,基站通过光纤与核心网建立连接。然而在很多场景下,光纤的部署成本非常高昂。无线中继节点(relay node,RN)通过无线回传链路与核心网建立连接,可节省部分光纤部署成本。
一般情况下,中继节点与一个或多个上级节点建立无线回传链路,并通过上级节点接入核心网。上级节点可通过多种信令对中继节点进行一定的控制(例如,数据调度、定时调制、功率控制等)。另外,中继节点可为多个下级节点提供服务。中继节点的上级节点可以是基站,也可以是另一个中继节点;中继节点的下级节点可以是终端,也可以是另一个中继节点。考虑到未来无线网络的高带宽,5G新空口(new radio,NR)考虑引入接入回传一体化(integrated access and backhaul,IAB)方案以进一步降低部署成本,提高部署灵活性,并由此引入一体化的接入和回传的中继,即IAB节点。
IAB节点可包括两部分功能单元:移动终端(mobile terminal,MT)和分布式单元(Distributed unit,DU)。其中,MT用于IAB节点与上级节点通信,而DU用于IAB节点与下级节点通信。在多天线面板(panel)或多小区的场景中,尚无对IAB节点中MT资源与DU资源的配置方案。
发明内容
有鉴于此,本申请提供一种资源配置的方法和装置,通过向IAB节点指示第一功能单元的一个或多个天线面板中的每个天线面板与第二功能单元对应的复用类型,使得IAB节点基于复用类型得到MT的资源配置或DU的资源配置,有助于实现多panel下IAB节点的资源配置。
第一方面,提供了一种资源配置的方法,包括:第一节点接收第二节点发送的第一指示信息,所述第一指示信息用于指示第一功能单元的一个或多个天线面板中的每个天线面板与第二功能单元的资源复用类型;所述第一节点使用所述第二功能单元的一个或多个天线面板的资源进行数据传输,其中,所述第二功能单元的一个或多个天线面板的资源类型是根据所述资源复用类型确定的。因此,第一节点在得到该资源复用类型后,可以结合第一功能单元的资源配置,确定出第二功能单元的一个或多个天线面板的资源,从而实现了多天线面板IAB节点中的资源配置。
在一种可能的实现方式中,所述方法还包括:所述第一节点接收来自所述第二节点的资源配置信息,所述资源配置信息用于指示所述第一节点中的第一功能单元的一个或多个 天线面板的资源;其中,所述第二功能单元的一个或多个天线面板的资源是根据所述资源复用类型,所述第一功能单元的一个或多个天线面板的资源,以及预设关系确定的,所述预设关系包括所述第一节点在不同的资源复用类型下所述第一功能单元的资源配置与所述第二功能单元的资源配置的对应关系。因此,第一节点还可以从第二节点获取第一功能单元的资源配置,然后使用第一功能单元的资源配置在上述预设关系中查找第二功能单元的资源配置。
在一种可能的实现方式中,所述方法还包括:所述第一节点向所述第二节点发送第二指示信息,所述第二指示信息用于指示所述第一功能单元的每个天线面板与所述第二功能单元支持的资源复用类型,或者,用于指示所述第一功能单元的第一天线面板与所述第二功能单元支持的资源复用类型,所述第一天线面板表示与所述第二功能单元使用的天线面板方向相同的天线面板,或者,用于指示所述第一功能单元的第二天线面板与所述第二功能单元支持的资源复用类型,所述第二天线面板表示与所述第二功能单元使用的天线面板方向不同的天线面板。因此,第一节点可以向第二节点上报支持的资源复用类型,使得第第二节点可以参考第一节点上报的资源复用类型,为第一节点配置资源复用类型。
可选地,所述第一功能单元是移动终端MT,所述第二功能单元是分布式单元DU;或者,所述第一功能单元是分布式单元DU,所述第二功能单元是移动终端MT。
在一种可能的实现方式中,在确定DU的资源配置的情况下,所述方法还包括:若所述第一节点的DU或MT中存在待传输的信号,所述第一节点对DU的资源配置中的资源进行调整,其中,所述待传输的信号对应的资源是第一类资源。因此,对于部分特殊的待传输的信号,为了保证这些待传输的信号顺利传输,第一节点可以对DU的资源配置中的资源进行调整。“调整”可以解释为将软资源或不可用资源调整为硬资源;或者,将硬资源调整为软资源或不可用资源。
可选地,所述待传输的信号包括以下信号中的一项或多项:同步信号块SSB、随机接入信道RACH信号。
可选地,若所述第一节点的DU中存在待传输的信号,所述第一节点对DU的资源配置进行调整,包括:若所述第一节点确定DU的资源配置中的第一资源是第二类资源,则所述第一节点将所述第一资源调整为第一类资源,其中,所述第一资源是用于所述第一节点的DU传输所述待传输的信号的资源。为了保证DU中待传输的信号顺利传输,需要确保将DU的资源配置中用于传输待传输的信号是硬资源。因此,如果DU的资源配置中第一资源是软资源或不可用资源,则将第一资源变换为硬资源。
可选地,若所述第一节点的MT中存在待传输的信号,所述第一节点对DU的资源配置进行调整,包括:若所述第一节点确定DU的资源配置中的第二资源是第一类资源,则所述第一节点将所述第二资源调整为第二类资源,其中,所述第二资源是与所述第一节点的MT中用于传输所述待传输的信号的资源在时域上重合的资源。为了保证MT中待传输的信号顺利传输,需要确保将MT的资源配置中用于传输待传输的信号是硬资源。因此,可以将第二资源变换为软资源或不可用资源,从而保证MT中待传输的信号顺利传输。
第二方面,提供了一种资源配置的方法,包括:第二节点确定第一指示信息,所述第一指示信息用于指示所述第一功能单元的一个或多个天线面板中的每个天线面板与第二功能单元的资源复用类型,所述资源复用类型用于第一节点确定所述第二功能单元的一个 或多个天线面板的资源;所述第二节点向所述第一节点发送所述第一指示信息。因此,第二节点通过向第一节点发送第一功能单元的一个或多个天线面板中的每个天线面板与第二功能单元的资源复用类型,使得第一节点基于该资源复用类型,结合第一功能单元的资源配置,确定出第二功能单元的一个或多个天线面板的资源,从而实现了多天线面板下IAB节点中的资源配置。
在一种可能的实现方式中,所述方法还包括:所述第二节点向所述第一节点发送资源配置信息,所述资源配置信息用于指示所述第一节点中的第一功能单元的一个或多个天线面板的资源。因此,第二节点通过向第一节点发送第一功能单元的资源配置,使得第一节点使用第一功能单元的资源配置在预设关系中查找第二功能单元的资源配置。
在一种可能的实现方式中,所述方法还包括:所述第二节点接收所述第一节点发送第二指示信息,所述第二指示信息用于指示所述第一功能单元的每个天线面板与所述第二功能单元支持的资源复用类型,或者,用于指示所述第一功能单元的第一天线面板与所述第二功能单元支持的资源复用类型,所述第一天线面板表示与所述第二功能单元使用的天线面板方向相同的天线面板,或者,用于指示所述第一功能单元的第二天线面板与所述第二功能单元支持的资源复用类型,所述第二天线面板表示与所述第二功能单元使用的天线面板方向不同的天线面板;其中,所述第二节点确定所述第一指示信息,包括:所述第二节点基于所述第二指示信息,确定所述第一指示信息。因此,第二节点通过接收第一节点上报的第一节点支持的资源复用类型,可以参考第一节点上报的资源复用类型,为第一节点配置资源复用类型。
可选地,所述第一功能单元是移动终端MT,所述第二功能单元是分布式单元DU;或者,所述第一功能单元是分布式单元DU,所述第二功能单元是移动终端MT。
第三方面,提供了一种通信装置,该通信装置包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的模块。
第四方面,提供了一种通信装置,该通信装置包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的模块。
第五方面,提供一种通信装置,该通信装置可以为上述方法设计中的第一节点(比如IAB节点或终端设备),或者,为设置在第一节点中的芯片。该通信装置包括:处理器,与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面及其任意一种可能的实现方式中第一节点所执行的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
当该通信装置为第一节点时,该通信接口可以是收发器,或,输入/输出接口。
当该通信装置为设置于第一节点中的芯片时,该通信接口可以是输入/输出接口。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第六方面,提供一种通信装置,该通信装置可以为上述方法设计中的第二节点(比如宿主基站),或者,为设置在第二节点中的芯片。该通信装置包括:处理器,与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面及其任意一种可能的实现方式中第二节点所执行的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
当该通信装置为第二节点时,该通信接口可以是收发器,或,输入/输出接口。
当该通信装置为设置于第二节点中的芯片时,该通信接口可以是输入/输出接口。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第七方面,提供了一种程序,该程序在被处理器执行时,用于执行第一方面或第二方面及其可能的实施方式中的任一方法。
第八方面,提供了一种程序产品,所述程序产品包括:程序代码,当所述程序代码被通信装置(例如,第一节点)的通信单元、处理单元或收发器、处理器运行时,使得通信设备执行上述第一方面及其可能的实施方式中的任一方法。
第九方面,提供了一种程序产品,所述程序产品包括:程序代码,当所述程序代码被通信装置(例如,第二节点)的通信单元、处理单元或收发器、处理器运行时,使得通信设备执行上述第二方面及其可能的实施方式中的任一方法
第十方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得通信装置(例如,第一节点)执行上述第一方面及其可能的实施方式中的任一方法。
第十一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得通信装置(例如,第二节点)执行上述第二方面及其可能的实施方式中的任一方法。
附图说明
图1是本申请实施例所适用的通信系统的结构示意图。
图2是多天线面板的场景的一个例子的示意图。
图3是根据本申请实施例的资源配置的方法的示意性交互图。
图4是不同资源复用类型下DU的一个天线面板的资源配置与MT的资源配置的对应关系的示意图。
图5是MT的一个天线面板与DU的两个天线面板的复用类型的示意图。
图6是MT的一个天线面板与DU的两个天线面板的资源配置的示意图。
图7是DU的多个天线面板与MT的多个天线面板的一个例子的示意图。
图8是本申请实施例中调整资源配置的一个例子的示意图。
图9是根据本申请实施例的资源配置的装置的示意性框图。
图10是根据本申请实施例的资源配置的装置的示意性结构图。
图11是根据本申请另一实施例的资源配置的装置的示意性框图。
图12是根据本申请另一实施例的资源配置的装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
在本申请实施例的描述中,除非另有说明,“多个”或“多项”的含义是两个或两个以上。另外,“至少一个”可以替换为“一个或多个”。
应理解,本申请中所有节点、消息的名称仅仅是本申请为描述方便而设定的名称,在实际网络中的名称可能不同,不应理解本申请限定各种节点、消息的名称,相反,任何具有和本申请中用到的节点或消息具有相同或类似功能的名称都视作本申请的方法或等效 替换,都在本申请的保护范围之内,以下不再赘述。
考虑到未来无线网络的高带宽,第五代(5th generation,5G)新空口(new radio,NR)考虑引入接入回传一体化(integrated access and backhaul,IAB)方案以进一步降低部署成本,提高部署灵活性,并由此引入一体化的接入和回传的中继,本申请将支持一体化的接入和回传的中继节点称为IAB节点(IAB node)以区分长期演进(long term evolution,LTE)的中继,包含IAB节点的系统又称为中继系统。
为了更好地理解本申请实施例公开的一种资源配置的方法及装置,下面先对本发明实施例使用的网络架构进行描述。请参阅图1,图1为本申请实施例所适用的通信系统的结构示意图。
需要说明的是,本申请实施例提及的通信系统包括但不限于:窄带物联网(narrow band-internet of things,NB-IoT)系统、无线局域网(wireless local access network,WLAN)系统、LTE系统、下一代5G移动通信系统或者5G之后的通信系统,如NR、设备到设备(device to device,D2D)通信系统。
在图1所示的通信系统中,给出了一体化的接入和回传IAB系统。一个IAB系统至少包括一个基站100,及基站100所服务的一个或多个终端设备(terminal)101,一个或多个中继节点IAB节点,及该IAB节点110所服务的一个或多个终端设备111。通常基站100被称为宿主基站(donor next generation node B,DgNB),IAB节点110通过无线回传链路113连接到基站100。宿主基站在本申请中也称为宿主节点,即,Donor节点。基站包括但不限于:演进型节点B(evolved node base,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home node B,HNB)、基带单元(baseband Unit,BBU)、eLTE(evolved LTE,eLTE)基站、NR基站(next generation node B,gNB)等。终端设备包括但不限于:用户设备(user equipment,UE)、移动台、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动设备、终端、无线通信设备、用户代理、无线局域网(wireless local access network,WLAN)中的站点(station,ST)、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备、连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的移动台以及未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端设备等中的任意一种。IAB节点是中继节点的特定的名称,不对本申请实施例的方案构成限定,可以是一种具有转发功能的上述基站或者终端设备中的一种,也可以是一种独立的设备形态。
一体化的接入和回传系统还可以包括多个其他IAB节点,例如IAB节点120和IAB节点130,IAB节点120是通过无线回传链路123连接到IAB节点110以接入到网络的,IAB节点130是通过无线回传链路133连接到IAB节点110以接入到网络的,IAB节点120为一个或多个终端设备121服务,IAB节点130为一个或多个终端设备131服务。图1中,IAB节点110和IAB节点120都通过无线回传链路连接到网络。在本申请中,所述无线回传链路都是从中继节点的角度来看的,比如无线回传链路113是IAB节点110的回传链路,无线回传链路123是IAB节点120的回传链路。如图1所示,一个IAB节 点,如120,可以通过无线回传链路,如123,连接另一个IAB节点110,从而连接到网络,而且,中继节点可以经过多级无线中继节点连接到网络。应理解,本申请中用IAB节点仅仅出于描述的需要,并不表示本申请的方案仅用于NR的场景,在本申请中,IAB节点可以泛指任何具有中继功能的节点或设备,本申请中的IAB节点和中继节点的使用应理解具有相同的含义。
为描述方便,以下定义本申请实施例中用到的基本术语或概念。
上级节点:把提供无线回传链路资源的节点,如110,称为IAB节点120的上级节点。应理解,上级节点可以是IAB节点,宿主基站(比如Donor节点),或者网络设备等,对此不作限定。
下级节点:把使用回传链路资源向网络进行数据传输,或者接收来自网络的数据的节点称为下级节点,如,120则称为中继节点110下级节点,131可以成为130的下级节点,网络为核心网或者其他接入网之上的网络,如因特网,专网等。
接入链路:接入链路是指某个节点和它的下级节点进行通信时所使用的无线链路,包括上行传输和下行传输的链路。接入链路上的上行传输也被称为接入链路的上行传输,下行传输也被称为接入链路的下行传输。其中的节点包括但不限于前述IAB节点。
回传链路:回传链路是指某个节点和它的上级节点进行通信时所使用的无线链路,包括上行传输和下行传输的链路。回传链路上的上行传输也被称为回传链路的上行传输,下行传输也被称为回传链路的下行传输。其中的节点包括但不限于前述IAB节点。
在另外一种描述中,IAB节点可以分为两部分,即移动终端(mobile terminal,MT)和分布式单元(distributed unit,DU)。其中,MT用于IAB节点与上级节点通信,而DU用于IAB节点与下级节点通信。IAB节点中的MT与上级节点的链路被称为上级回传链路(parent BH link),IAB节点中的DU与其下级IAB节点之间的链路被称为下级回传链路(child BH link),而IAB节点中的DU与下属UE之间的链路被称为接入链路(access link)。但在本申请中,为描述方便,IAB节点与上级节点的链路被称为回传链路,IAB节点与下级IAB节点和/或UE的链路被统称为接入链路。
通常,下级节点可以被看作是上级节点的一个终端设备。应理解,图1所示的一体化接入和回传系统中,一个IAB节点连接一个上级节点,但是在未来的中继系统中,为了提高无线回传链路的可靠性,一个IAB节点,如120,可以有多个上级节点同时为一个IAB节点提供服务,如图中的IAB节点130还可以通过回传链路134连接到IAB节点120,即,IAB节点110和IAB节点120都为IAB节点130的上级节点。IAB节点110,120,130的名称并不限制其所部署的场景或网络,可以是比如relay,RN等任何其他名称。本申请使用IAB节点仅是方便描述的需要。
在图1中,无线链路102,112,122,132,113,123,133,134可以是双向链路,包括上行和下行传输链路,特别地,无线回传链路113,123,133,134可以用于上级节点为下级节点提供服务,如上级节点100为下级节点110提供无线回传服务。应理解,回传链路的上行和下行可以是分离的,即,上行链路和下行链路不是通过同一个节点进行传输的。所述下行传输是指上级节点,如节点100,向下级节点,如节点110,传输信息或数据,上行传输是指下级节点,如节点110,向上级节点,如节点100,传输信息或数据。所述节点不限于是网络节点还是终端设备,例如,在D2D场景下,终端设备可以充当中继节点为其他 终端设备服务。无线回传链路在某些场景下又可以是接入链路,如回传链路123对节点110来说也可以被视作接入链路,回传链路113也是节点100的接入链路。应理解,上述上级节点可以是基站,也可以是中继节点,下级节点可以是中继节点,也可以是具有中继功能的终端设备,如D2D场景下,下级节点也可以是终端设备。
图1所示的中继节点,如110,120,130,可以有两种存在的形态:一种是作为一个独立的接入节点存在,可以独立管理接入到中继节点的终端设备,此时的中继节点通常具有独立的物理小区标识(physical cell identifier,PCI),这种形态的中继通常需要有完全的协议栈功能,比如无线资源控制(radio resource control,RRC)的功能,这种中继通常被称为层3中继;而另一种形态的中继节点和Donor节点,如Donor eNB,Donor gNB,属于同一个小区,用户的管理是由宿主基站,如Donor节点来进行管理的,这种中继通常被称为层2中继。层2中继在NR的控制和承载分离(central unit and Distributed unit,CU-DU)架构下通常作为基站DgNB的DU而存在,通过F1应用协议(F1application protocol,F1-AP)接口或者隧道协议和CU进行通信,其中隧道协议可以是例如通用分组无线服务技术隧道协议(general packet radio service tunneling protocol,GTP)协议,不再赘述。Donor节点是指通过该节点可以接入到核心网的节点,或者是无线接入网的一个锚点基站,通过该锚点基站可以接入到网络。锚点基站负责接收核心网的数据并转发给中继节点,或者接收中继节点的数据并转发给核心网。通常,把中继系统中的Donor节点称为IAB Donor,即宿主节点,本申请中两个名词可能会交替使用,应理解,不应理解IAB donor和宿主节点是具有不同功能的实体或网元。
在本申请实施例中,中继节点(如IAB节点)或终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
为了便于理解,这里对本申请实施例涉及到的一些术语或概念进行解释。
MT资源:是指IAB节点MT功能所使用的资源。MT资源可以被配置为上行(uplink,U)资源、下行(downlink,D)资源和灵活(flexible,F)资源。
此外,MT资源还可分为以下两种类型:
可用资源,是指可能被上级节点调度的资源;
不可用(null,N)资源,是指不会被上级节点调度的资源。本领域技术人员应理解,在实际使用中,不可用资源也可以记作“NULL”,这不对本申请实施例造成限定。
在本申请实施例中,MT的可用资源和不可用资源可以是由上级节点通过高层信令(例如RRC信令)显式配置,也可以由IAB节点通过DU资源类型隐式推导得出的。本申请实施例不限定MT的可用资源与不可用资源是通过何种方式得到的。
DU资源:是指IAB节点DU功能所使用的资源。DU资源可以被配置为上行(uplink,U)资源、下行(downlink,D)资源、灵活(flexible,F)资源和不可用(null,N)资源。进一步的,DU的上行资源可以分为软(soft,S)资源和硬(hard,H)资源。DU的下行资源可以分为软资源和硬资源。DU的灵活资源可以分为软资源和硬资源。
软资源:是指资源是否可由DU使用,取决于上级节点的指示。
硬资源:表示DU始终可用的资源。
在本申请中,DU的软资源和硬资源可以是由上级节点通过高层信令(例如RRC信令)或接口消息(例如F1-AP接口消息或增强的F1-AP接口消息)显式配置,也可以由IAB节点通过MT的资源配置隐式推导得出。本申请不限定DU的软资源和硬资源是通过何种方式得到的。
IAB节点中的MT资源和DU资源可以存在不同的资源复用类型,比如,时分多路复用(time-division multiplexing,TDM),静态空分复用(space division multiplexing,SDM),动态SDM,全双工复用等方式。在不同的资源复用类型下,MT资源的资源配置与DU资源的资源配置可具备不同的对应关系。例如,若资源复用类型是TDM,IAB节点的MT和DU不能进行同时传输;若资源复用类型是SDM,MT与DU可进行同时接收或同时发送;若资源复用类型是全双工,MT与DU可进行同时传输,且不限制为同时接收或同时发送。
图2示出了多天线面板的场景的一个例子的示意图。如图2所示,IAB节点具有多天线面板(比如三个天线面板,分别为天线面板0,天线面板1和天线面板2)。IAB节点可以使用多天线面板与上级节点、下级节点或接入UE进行通信。应理解,本申请实施例对IAB节点的天线面板的数量不作限定,图2中只是以3个天线面板为例进行描述。
图3示出了根据本申请实施例的资源配置的方法200的示意性交互图。如图3所示,所示方法200包括:
S210,第二节点向第一节点发送第一指示信息,所述第一指示信息用于指示第一功能单元的一个或多个天线面板中的每个天线面板与第二功能单元的资源复用类型。对应地,第一节点接收所述第一指示信息。
所述第一节点可以是中继节点,比如IAB节点。
所述第二节点可以是所述第一节点的上级节点。上级节点的描述可以参见前文,这里不作赘述。这里,当第二节点是IAB节点时,IAB节点向第一节点发送的信令可能由第二节点的上级节点(比如Donor节点)生成并发送至第二节点;而第一节点向第二节点发送 的信令也可能由第二节点发送至第二节点的上级节点。
第一功能单元的一个或多个天线面板中的每个天线面板与第二功能单元的资源复用类型,是第二节点为第一节点配置的。资源复用类型可以是时分复用TDM,静态空分复用SDM,动态SDM,全双工复用等方式。
这里,第一功能单元可以是移动终端MT,相应地,所述第二功能单元是分布式单元DU;或者,所述第一功能单元可以是分布式单元DU,所述第二功能单元是移动终端MT。
应理解,为了便于描述,本申请实施例是以天线面板为例进行描述的,但这并不对本申请实施例的保护范围构成限定。本申请实施例的技术方案不仅适用于不同的天线面板,也可以适用于不同的小区,也可以适用于不同的子单元。也就是说,不同的天线面板可以替换为不同的小区;或者,替换为不同的子单元,例如,IAB节点的DU具有多个子单元,或者IAB节点的MT具有多个子单元。其中,对于MT来说,子单元可以以小区,小区组,载波,载波组或部分带宽(Bandwidth part,BWP)来表示。例如,当MT采用载波聚合传输时,MT具有多个小区或多个载波,该多个小区或多个载波就是所述MT的子单元;当MT采用多连接传输时,MT具有多个小区组或载波组,该多个小区组或载波组就是所述MT的子单元。对于DU来说,子单元可以以小区,小区组,载波,载波组或天线面板来表示。例如,DU可具有多个朝向的面板,每个天线面板对应一个小区,因此,子单元可以用天线面板或小区来表示;再比如,DU可具有多个载波,每个载波对应一个小区,因此,子单元可以用载波或者小区来表示。
以第一功能单元是DU,第二功能单元是MT为例,第二节点可指示DU的各个天线面板有不同的资源配置,且各个天线面板对应的资源配置与MT资源的资源复用类型不相同;或者,可指示DU的各个小区的资源有不同的资源配置,且各个小区对应的资源配置MT资源的资源复用类型不相同,或者,可指示DU的各个子单元的资源有不同的资源配置,且各个子单元与MT资源的资源复用类型不相同。这里,本领域技术人员应理解,DU资源与MT资源的资源复用,可以理解为是在各个天线面板/各个小区/各子单元对应的资源上传输信号时对资源的复用。
可选地,不同的天线面板可以对应不同的小区标识(identifier,ID),也可以对应相同的小区ID,对此不作限定。
例如,在一种可能的实现中,在IAB节点为下级节点或UE提供服务时,DU可支持多个小区的运行,且多个小区具有不同的小区ID。可选地,不同的小区采用了不同的天线面板,第二节点可配置第一节点的DU的不同小区与MT的资源复用类型。在另一种可能的实现中,IAB节点的MT与多个上级节点建立连接,即MT可能与不同的小区进行通信。
应理解,第二节点在为第一节点配置上述资源复用类型,可以参考第一节点上报的第一节点支持的资源复用类型,也可以自己配置,对此不作限定。
对于第一节点未上报第一节点支持的资源复用类型的情形,或者,即使第一节点上报了第一节点支持的资源复用类型,第二节点可以配置MT与DU的所有天线面板的资源复用类型都是TDM,或者,可以配置MT与DU在同天线面板时的资源复用类型为TDM,与DU使用不同的天线面板时的资源复用类型为半静态SDM或动态SDM。
其中,“同天线面板”是指MT与DU使用同一天线面板,或者,MT使用的天线面板 与DU使用的天线面板方向相同。“不同的天线面板”是指MT与DU使用不同的天线面板,或者,MT使用的天线面板与DU使用的天线面板方向不相同。
在本申请实施例中,“同天线面板”可以通过其他概念或术语表征,比如,共址,准共址,同朝向,强相关,互影响等等,这里作统一说明,下文不再赘述。在另一种可能的实现中,在第二节点为第一节点显示配置资源复用类型之前,第一节点的MT与DU采用默认的资源复用类型。其中,默认的资源复用类型包括:MT与DU的所有天线面板的资源复用类型都是TDM,或者,MT与DU在使用同天线面板时的资源复用类型为TDM,与DU在使用不同天线面板时的资源复用类型为半静态SDM或动态SDM。
对于第一节点向第二节点上报所述第一节点支持的资源复用类型的情形,可选地,所述方法200还包括:
S220,所述第一节点向所述第二节点发送第二指示信息,所述第二指示信息用于指示所述第一功能单元的每个天线面板与所述第二功能单元支持的资源复用类型,或者,用于指示所述第一功能单元的第一天线面板与所述第二功能单元支持的资源复用类型,所述第一天线面板表示与所述第二功能单元使用的天线面板方向相同的天线面板,或,所述第一天线面板是所述第一功能单元与所述第二功能单元使用的同一天线面板;或者,用于指示所述第一功能单元的第二天线面板与所述第二功能单元支持的资源复用类型,所述第二天线面板表示与所述第二功能单元使用的天线面板方向不同的天线面板。也就是说,第一节点可以向第二节点上报MT使用的天线面板与DU的天线面板的共址关系(共址关系用于指示MT使用的天线面板与DU的天线面板是否相同)。
以第一功能单元是DU,第二功能单元是MT为例,第一节点可以通过第二指示信息,向第二节点上报第一节点的DU的每个天线面板与MT支持的资源复用类型,具体即:MT采用一个或多个天线面板传输时,MT与DU的不同天线面板的资源复用类型。相应地,第二节点可以基于第一节点上报的DU的每个天线面板与MT支持的资源复用类型,确定出MT与DU是否同天线面板。
或者,示例性地,第一节点可以通过第二指示信息,向第二节点上报DU中的第一天线面板与MT支持的资源复用类型,或者,DU中的第二天线面板与MT支持的资源复用类型。进一步地,第二指示信息中还可以包括第一天线面板的标识。
可选地,所述第二指示信息还可以指示第一天线面板的的标识或第二天线面板的标识。应理解,天线面板的标识可以是panel ID或小区ID,或者,也可以通过参考信号的标识或者参考信号资源标识进行区分,比如,同步信号块(synchronization signal block,SSB)的标识,信道状态信息参考信号(channel state information-reference signal,CSI-RS)的标识,CSI-RS资源的标识,探测参考信号(sounding reference signal,SRS)资源的标识等等,对此不作限定。
具体而言,第一节点和/或第二节点可以通过参考信号的标识区分不同的天线面板。比如,对于下行参考信号集合0和下行参考信号集合1,每个下行参考信号集合包含至少一个下行参考信号,MT在接收或发送下行参考信号集合0时采用天线面板0,在接收或发送下行参考信号集合1时采用天线面板1。因此,第一节点应分别上报MT在收发下行参考信号集合0和收发下行参考信号集合1时,MT与DU的资源复用类型,或者,MT与DU的天线面板的共址关系。示例性地,IAB节点可上报IAB节点的MT在接收某一个 下行参考信号集合时,所采用的天线面板与DU的某一个天线面板共址。应注意,这里假设MT收发的其余信号(例如,物理上行共享信道(physical uplink share channel,PUSCH)和物理下行共享信道(physical downlink share channel,PDSCH))与至少一个下行参考信号集合具有空间准共址(quasi co-located,QCL)关系,或采用同一个天线面板。
示例性地,第二节点可以参考第一节点上报的资源复用类型,为第一节点配置资源复用类型,例如:
当第一节点上报的资源复用类型是全双工复用时(这里,若第一节点支持全双工复用,可以默认第一节点也可支持其余所有的资源复用类型),第二节点可配置TDM,动态SDM,半静态SDM与全双工;
当第一节点上报的资源复用类型半静态SDM时,第二节点可配置TDM,动态SDM,半静态SDM;
当第一节点上报的资源复用类型动态SDM时,第二节点可配置TDM,动态SDM;
当第一节点上报的资源复用类型TDM时,第二节点可配置TDM。作为一种可能的实现方式,第二节点在收到上述第一节点上报的资源复用类型后,也可以不参考第一节点上报的内容,采用其他方式为第一节点配置资源复用类型,对此不作限定。
可选地,上述资源复用类型具有不同的能力需求。“能力”包括以下内容中的一项或多项:收发隔离度,天线隔离度,和干扰抑制能力等。一般地,IAB节点在不同资源复用类型对能力需求具有如下顺序,TDM<动态SDM<静态SDM<全双工。也就是说,全双工要求较高的收发隔离度(或较高的天线隔离度,偶较高的干扰抑制能力),而TDM要求较低的收发隔离度(或较低的天线隔离度,或较低的干扰抑制能力)。当第一节点向第二节点上报可支持的资源复用类型后,第二节点为第一节点所配置的资源复用类型应具有相同或更低的能力需求。例如,当第一节点上报其DU的一个或多个天线面板与MT的可支持资源复用类型为静态SDM后,第二节点为其配置的资源复用类型可以为静态SDM,动态SDM或TDM,但不可为全双工。
可选地,第二节点可以为第一节点配置一类特殊的软资源。当第一节点进行切换或者重新接入时,第一节点可以使用所述特殊的软资源,在对应的MT资源上与上级节点进行通信,比如,接收用于承载随机接入响应消息(random access response,RAR)的PDSCH或者物理下行控制信道(physical downlink control channel,PDCCH)。
S230,所述第一节点使用所述第二功能单元的一个或多个天线面板的资源进行数据传输,其中,所述第二功能单元的一个或多个天线面板的资源类型是根据所述资源复用类型确定的。
在本申请实施例中,第二节点通过第一指示信息向第一节点发送资源复用类型。该资源复用类型是指第一功能单元的多个天线面板中每个天线面板与第二功能单元的不同资源复用类型。第一节点在得到该资源复用类型后,可以结合第一功能单元的资源配置,确定出第二功能单元的一个或多个天线面板的资源,最后使用第二功能单元的一个或多个天线面板的资源进行数据传输,从而实现了多天线面板或多小区下IAB节点中的资源配置。
在一种实现方式中,第一节点的DU可以使用所有的天线面板,MT可以使用一个天线面板。DU的不同天线面板与MT可以有不同的资源复用类型。比如,当MT的天线面板与DU中的一个天线面板相同时,MT与DU的该天线面板的资源复用类型可以为TDM 或动态SDM。又比如,当MT的天线面板与DU中的一个天线面板不相同时,MT与DU的该天线面板的资源复用类型可以为半静态SDM或者全双工。以图3中示例的场景描述,对于天线面板0和天线面板1,天线面板0由MT与DU共享,MT与DU的天线面板0的资源复用类型是时分复用TDM;而天线面板1仅由DU使用,因此,DU的天线面板1与MT的资源复用类型可以是TDM,也可以是半静态SDM。
应理解,上面只是以MT使用一个天线面板为例进行说明的,但并不对本申请实施例构成限定。也就是说,MT也可以在不同的天线面板进行接收或发送,比如,MT支持在多个天线面板接收数据,或者,MT使用多个天线面板进行移动性测量或者波束训练等。
可选地,第二节点还可以向第一节点发送关于第一功能单元的资源配置信息,使得第一节点可以基于第一功能单元的资源配置信息,确定第二功能单元的一个或多个天线面板的资源配置。在第一节点确定第二功能单元的一个或多个天线面板的资源配置前,所述方法200还包括:
S240,第二节点向第一节点发送资源配置信息,所述资源配置信息用于指示所述第一节点中的第一功能单元的一个或多个天线面板的资源。对应地,所述第一节点接收所述资源配置信息。
所述第一节点根据第一指示信息中指示的资源复用类型,第一功能单元的一个或多个天线面板的资源,以及预设关系确定第二功能单元的一个或多个天线面板的资源。
具体而言,第二节点可以通过半静态信令(比如RRC信令)或者接口消息(例如F1-AP或接口消息增强的F1-AP接口消息),向第一节点发送所述资源配置信息。第一节点通过该资源配置信息,可以获知第一节点中的第一功能单元的一个或多个天线面板的资源。然后,第一节点根据第一指示信息中指示的资源复用类型,第一功能单元的一个或多个天线面板的资源,以及预设关系确定第二功能单元的一个或多个天线面板的资源。
所述预设关系包括所述第一节点在不同的资源复用类型下所述第一功能单元的资源配置与所述第二功能单元的资源配置的对应关系。这里,在不同的资源复用类型下,DU的资源配置与MT的资源配置存在不同的对应关系。
本申请所介绍实施例也可用于MT和DU均具有多个子单元的情况。
MT的多个子单元和DU的多个子单元可以具有不同的复用类型,所述复用类型如上述实施例所述。所述复用类型可以由第一节点上报至第二节点,或者由第二节点为第一节点配置。
例如,在一种可能的实现方式中,第二节点为第一节点的MT的各个子单元分别配置资源类型。其中MT资源类型包括可用和不可用中的至少一种。第一节点和/或第一节点的上级节点根据MT子单元与DU子单元的复用关系推导DU各个子单元的资源类型,DU的资源类型包括硬资源,软资源和不可用资源中的至少一种。
在另一种可能的实现中,第二节点为第一节点的DU的各个子单元配置资源类型为硬资源或软资源,第一节点和/或第一节点的上级节点根据MT子单元与DU子单元的复用关系推导MT各个子单元的各个资源的可用性。
应理解,第二节点为第一节点的MT和DU各子单元配置的资源类型还可以包括传输方向,传输方向包括下行(downlink,用D表示)、上行(uplink,用U表示)、灵活(flexible,用F表示)。
图4示出了不同资源复用类型下DU的一个天线面板的资源配置与MT的资源配置的对应关系的示意图。下面结合图4中的具体例子描述所述预设关系。
第一种情形:资源复用类型为TDM。
在该情形下,DU的一个天线面板的资源配置与MT的资源配置的对应关系体现为:对于DU的硬资源,对应的MT的资源为不可用资源,即MT不会在这些资源上与上级节点进行通信;或者,对于MT的不可用资源,对应的DU的资源为硬资源。如图4中所示的10个时隙,在TDM中,DU在时隙1(D-H)、时隙3(D-H)、时隙4(D-H)、时隙5(F-H)、时隙6(F-H)、时隙7(U-H)和时隙8(U-H)中对应的资源为硬资源,MT在这些时隙上对应的MT资源是不可用资源。而对于时隙0(DU中的资源是不可用(NULL)资源),时隙2(DU中的资源是下行软资源D-S),时隙9(DU中的资源是上行软资源U-S),MT在这些时隙上对应的MT资源是可用资源。
应理解,图4中关于TDM的DU的一个天线面板的资源配置与MT的资源配置只是一部分示例。下面给出第一节点在TDM的场景下,DU的一个天线面板的资源配置与MT的资源配置所有可能的组合方式。如下表1所示:
表1
Figure PCTCN2020071735-appb-000001
Figure PCTCN2020071735-appb-000002
在上述表1中,“MT:Tx”表示MT在被调度后应进行传输;“DU:Tx”表示DU可能进行传输;“MT:Rx”表示MT有能力进行接收(如果有信号需要接收);“DU:Rx”表示DU可能调度下级节点的上行传输;“MT:Tx/Rx”表示MT在被调度后应传输或接收,但传输和接收不同时发生;“DU:Tx/Rx”表示DU可能进行传输或接收下级节点的传输,但传输和接收不同时发生;“IA”表示DU资源被显式或隐式的指示为可用;“INA”表示DU资源被显式或隐式的指示为不可用;“MT:NULL”表示MT不进行发送且不必具有接收能力;“DU:NULL”表示DU不进行发送且不接收下级节点的传输。
第二种情形:资源复用类型为静态SDM。
在该情形下,DU的一个天线面板的资源配置与MT的资源配置的对应关系体现为:当DU与MT同传输方向时,对于DU的硬资源,对应的MT的资源为不可用资源,即MT不会在这些资源上与上级节点进行通信;当DU与MT反方向时,对于DU的硬资源,对应的MT的资源为可用资源。或者,当DU与MT同方向时,对于MT的不可用资源,对应的DU的资源为硬资源;当DU与MT反方向时,对于MT的可用资源,对应的DU的资源可以为硬资源。如图4所示,在静态SDM中,DU在时隙1(D-H)、时隙3(D-H)、时隙4(D-H)、时隙5(F-H)、时隙6(F-H)、时隙7(U-H)和时隙8(U-H)中对应的资源为硬资源,MT在与DU同传输方向的时隙上或者同是灵活资源对应的时隙上(包括时隙1、时隙3、时隙5、时隙6、时隙8)对应的MT资源是不可用资源。而对于时隙0(DU中的资源是不可用(NULL)资源),时隙2(DU中的资源是下行软资源D-S),时隙4(DU中的资源是下行硬资源D-H),时隙7(DU中的资源是上行软资源U-S),时隙9(DU中的资源是上行软资源U-S),MT在这些时隙上对应的MT资源是可用资源。其中,在与DU反方向的时隙(包括时隙4)上是可用资源。可以看到,对于时隙4,不同的资源复用类型下DU的资源配置与MT的资源配置是不同的。
应理解,图4中关于SDM场景下DU的一个天线面板的资源配置与MT的资源配置只是一部分示例。下面给出第一节点在SDM的场景下,DU的一个天线面板的资源配置与MT的资源配置所有可能的组合方式。如下表2所示:
表2
Figure PCTCN2020071735-appb-000003
Figure PCTCN2020071735-appb-000004
表2中出现的术语的解释或概念可以参见表1中的描述,为了简洁,这里不作赘述。
举例来说,当DU的资源类型为F时,按照表2,上级节点需要提前知道DU的具体传输方向,才能决定是否进行空分复用传输。为达到此目的,IAB节点可提前上报DU中F资源的传输方向,以便上级节点的DU进行调度。
或者,在另一种可能的实现中,当IAB节点未被配置DU的F资源的实际方向上报时,DU的F资源在(显示或隐式)被配置为硬资源时,不进行空分传输,而F资源为软资源时,进行动态SDM,即DU的F资源仅允许进行动态SDM。
第三种情形:资源复用类型为全双工。
在该情形下,MT与DU的收发可以互相不影响,也就是说,MT的资源配置与DU的资源配置互相不影响。如图4中所示,在全双工情形下,DU在每个时隙上的资源都可以为硬资源,MT在每个时隙上的资源都可以为可用资源。
第四种情形:资源复用类型为动态SDM。
动态SDM与静态SDM的区别在于,DU与MT是否进行SDM取决于第二节点的调度或指示,即空分复用仅在MT的可用资源与DU的软资源之间进行。如图4所示,在动态SDM中,DU在时隙1(D-H)、时隙3(D-H)、时隙5(F-H)、时隙6(F-H)、时隙7(U-H)和时隙8(U-H)中对应的资源为硬资源,MT在与DU同传输方向的时隙上或者同是灵活资源对应的时隙上(包括时隙1、时隙3、时隙5、时隙6、时隙8)对应的MT资源是不可用资源。而对于时隙0(DU中的资源是不可用(NULL)资源),时隙2(DU中的资源是下行软资源D-S),时隙4(DU中的资源是下行软资源D-S),时隙7(DU中的资源是上行软资源U-S),时隙9(DU中的资源是上行软资源U-S),MT在这些时隙上对应的MT资源是可用资源。与DU在静态SDM下的资源配置的不同之处在于:在动态SDM中,DU在时隙4中的资源为软资源。
在一种可能的实现中,当DU资源为F时,仅可进行动态SDM。即IAB节点先确定对应MT资源的传输方向,而后进行DU资源的调度。IAB节点确定的DU资源上的传输可以使得DU和MT同时发送,或DU和MT同时接收。应理解,这里只是以图4中的时隙为例进行描述,但并不对本申请实施例构成限定,实际上时隙可以替换为其他时域资源,比如,帧、子帧、微时隙、符号等等。
还应理解,本申请实施例的技术方案可以不限于上述4种情形,也可以适用于其他的资源复用类型,比如,FDM(包括静态FDM和动态FDM,其中静态FDM的资源配置与静态SDM相同,动态FDM与动态SDM相同),对此不作限定。
对于多天线面板的场景,有了上述预设关系,第一节点在收到第一功能单元的一个或多个天线面板的资源后,使用资源复用类型对应的预设关系(比如,如果资源复用类型是 TDM,则查表1;如果资源复用类型是SDM,则查表2),可以确定出第二功能单元的一个或多个天线面板的资源。具体地,若第一功能单元是DU,第二功能单元是MT,第二节点向第一节点发送的是DU的部分或者全部天线面板的资源配置,则第一节点获取DU的天线面板与MT的资源复用类型,然后使用资源复用类型对应的预设关系进行查找,可以确定出MT的资源配置;或者,若第一功能单元是MT,第二功能单元是DU,第二节点向第一节点发送的是MT的部分或者全部天线面板的资源配置,则第一节点获取MT与DU的天线面板的资源复用类型,,然后使用资源复用类型对应的预设关系进行查找,可以确定出DU的资源配置。
以第一功能单元是DU,第二功能单元是MT为例,假设DU可以使用所有天线面板,MT仅可以使用多个天线面板中的一个,那么第一指示信息可用于指示DU的多个天线面板中每个天线面板与MT的资源复用类型。DU的不同天线面板与MT可以存在不同的资源复用类型。第一节点基于第一指示信息中指示的资源复用类型,以及DU的资源配置,可以确定出MT的资源配置。比如,第一指示信息指示DU的天线面板0与MT的资源复用类型是TDM,第一节点通过查找上述表1,可以得到MT的资源配置;或,第一指示信息指示DU的天线面板1与MT的资源复用类型是SDM,第一节点通过查找上述表2,可以得到MT的资源配置。举例来说,在DU的天线面板0与MT的资源复用类型是TDM的情况下,若DU的天线面板0的资源中的一个时隙是DL-H,则MT资源根据表1可知其为NULL。
以第一功能单元是MT,第二功能单元是DU为例,假设DU可以使用所有天线面板,MT仅可以使用多个天线面板中的一个,那么第一指示信息可用于指示MT的天线面板与DU的中的每个天线面板对应的资源复用类型。第一节点基于第一指示信息中指示的资源复用类型,以及MT的资源配置,可以确定出DU的资源配置。比如,第一指示信息指示MT与DU的天线面板0的资源复用类型是TDM,第一节点通过查找上述表1,可以得到DU的资源配置;或,第一指示信息指示MT与DU的天线面板1的资源复用类型是SDM,第一节点通过查找上述表2,可以得到DU的资源配置。图5示出了MT的一个天线面板与DU的两个天线面板的复用类型的示意图。如图5所示,MT的一个天线面板与DU的天线面板0的资源复用类型是复用类型0,与DU的天线面板1的资源复用类型是复用类型1。在图5中,MT的资源需要根据资源复用类型0推导的结果以及资源复用类型1推导的结果共同确定,例如,如果第一节点根据资源复用类型0以及DU天线面板0的资源,确定MT的一个资源是可用资源,根据资源复用类型是1以及DU天线面板1的资源确定MT的该资源是不可用资源,该资源最终应被确定为可用资源。如果第一节点根据DU天线面板0的资源以及资源复用类型0确定的结果为不可用资源,且根据DU天线面板1的资源以及资源复用类型1确定的结果为不可用资源时,那么MT的该资源为不可用资源。
图6给出了图5场景下的一个例子。如图6所示,MT资源与DU的天线面板0的资源复用类型0是TDM。MT资源与DU的天线面板1的资源复用类型1是SDM。对于时隙0、时隙1、时隙2、时隙3、时隙4和时隙5,MT的资源分别为:D、D、D、U、U和U;DU的天线面板0的资源分别为:D-S、D-H、U-S、U-S、U-H和D-S;DU的天线面板1的资源分别为:D-S、D-H、U-H、U-S、U-H和D-H。
第二节点可以为第一节点的DU的所有不同天线面板配置资源,比如,资源类型可以 包括D-S、D-H、U-S、U-H、F-H、F-S和NA。而MT的资源,第一节点可以根据DU的多个天线面板的资源配置联合推导而来。对于同一资源,DU的不同的天线面板可以有不同的资源配置。在图6中,对于DU的同一上行资源(对应时隙2),在天线面板0为软资源,在天线面板1为硬资源,相应的MT的资源为下行资源(状态为可用资源)。其中,MT的可用资源是根据DU的天线面板0和天线面板1的资源配置联合推导而来。也就是说,MT在时隙2对应可用资源是由:DU的天线面板0所推导的MT资源可用以及DU的天线面板1所推导的MT资源可用的交集得到的。
或者,第二节点可以为第一节点的DU配置部分天线面板的资源,比如,资源类型可以包括D-S、D-H、U-S、U-H、F-H、F-S和NA。示例性地,第二节点可以为第一节点的DU配置与MT同天线面板的资源,从而第一节点可以基于预设关系以及资源复用类型推导出MT的资源。对于其他天线面板的资源,第一节点可以基于资源复用类型以及MT的资源推导得到。这里,可以不限定第一节点的推导方式,只要推导的结果满足不同资源复用类型下的预设关系即可。在图6中,如果第二节点配置了DU的天线面板0的资源,那么第一节点根据资源复用类型(TDM),以及预设关系,可以推导出MT的资源配置,进一步地,DU的天线面板1的资源可以根据MT的资源(是否可用)、资源复用类型(SDM)以及预设关系推导得到。
或者,第二节点可以为第一节点配置MT的资源。第一节点根据MT的资源配置,结合与MT同天线面板的DU的资源复用类型可以得到:与MT同天线面板的DU的资源配置,或者,结合与MT使用不同天线面板的DU资源的资源复用类型可以得到:与MT使用不同天线面板的DU资源的资源配置。
因此,不论第二节点首先为第一节点配置的资源是MT资源还是DU资源,第一节点基于预设关系和资源复用类型,均可以推导出相应的资源配置。
上文描述了第二节点为第一节点配置DU资源而推导MT资源的例子,或者,为第一节点配置MT资源而推导DU资源。在实际中,第二节点还可以采用全配置的方式为第一节点配置资源。即第二节点为第一节点同时配置MT资源(包括可用资源和不可用资源)和DU资源(包括软资源和硬资源)。这里,第一节点无需再基于上述预设关系推导资源。但是,第二节点为配置的MT任一天线面板的资源配置,与DU的任一天线面板的资源配置应满足相应资源复用类型下资源配置的约束(即上述预设关系)。
上文中的例子(比如图5或图6)描述了第一节点的DU的多个天线面板与MT的一个天线面板的实施例。可选地,MT也可以使用多个天线面板。下面将描述DU的多个天线面板与MT的多个天线面板的实施例。应理解,下面的实施例涉及到的资源复用类型、预设关系等术语或概念,可以参考前文的描述,下文不再赘述。
如果第二节点首先为第一节点配置的是MT的每个天线面板的资源,第一节点基于MT的每个天线面板的资源以及预设关系可以确定出DU的每个天线面板的资源。MT的每个天线面板可能被独立配置可用资源集合,其中,MT的不同天线面板的可用资源可以在时域或空域正交,也可能在时域或空域重合,对此不作限定。相应地,第一节点根据MT的不同天线面板的资源配置,确定的DU的一个天线面板上的资源配置的资源配置结果可能不相同。可选地,第一节点可以基于以下原则确定DU资源:对于一个DU资源(例如一个时隙或一个符号),如果第一节点根据MT的不同天线面板的资源以及资源复用类 型确定的结果均为硬资源时,那么该一个DU资源为硬资源;如果第一节点根据MT中的一个天线面板的资源以及资源复用类型确定的结果是软资源时,即MT中的多个天线面板只要有一个天线面板推导出来该一个DU资源的结果是软资源,那么该一个DU资源为软资源。也就是说,DU的软资源是根据MT的不同天线面板确定的软资源的并集。
类似地,如果第二节点首先为第一节点配置的是DU的每个天线面板的资源,第一节点基于DU的每个天线面板的资源以及预设关系可以确定出MT的每个天线面板的资源。当然,MT的每个天线面板的资源是否是可用资源,可以根据DU的多个天线面板的推导结果而定。
可选地,第一节点可以基于以下原则确定MT资源:对于一个MT资源,如果第一节点根据DU的不同天线面板的资源以及资源复用类型确定的结果均为不可用资源时,那么该一个MT资源为不可用资源;如果第一节点根据DU中的一个天线面板的资源以及资源复用类型确定的结果是可用资源时,即DU中的多个天线面板只要有一个天线面板推导出来该一个MT资源的结果是可用资源,那么该一个MT资源为可用资源。也就是说,MT的可用资源是根据DU的不同天线面板确定的可用资源的并集。
可选地,第一节点还可以基于以下原则确定MT资源:对于一个MT资源,如果第一节点根据DU的不同天线面板的资源以及资源复用类型确定的结果均为可用资源时,那么该一个MT资源为可用资源;如果第一节点根据DU中的一个天线面板的资源以及资源复用类型确定的结果是不可用资源时,即DU中的多个天线面板或小区只要有一个天线面板推导出来该一个MT资源的结果是不可用资源,那么该一个MT资源为不可用资源。也就是说,MT的不可用资源是根据DU的不同天线面板确定的不可用资源的并集。
图7示出了DU的多个天线面板与MT的多个天线面板的一个例子的示意图。如图7所示,MT的天线面板0与DU的天线面板0的资源复用类型是00,MT的天线面板0与DU的天线面板1的资源复用类型是01;MT的天线面板1与DU的天线面板0的资源复用类型是10,MT的天线面板1与DU的天线面板1的资源复用类型是11。其中,图7中的资源复用类型只是示意性描述不同天线面板之间可能的组合关系,当然,资源复用类型具体是什么,可以参见前文的描述,比如,静态SDM,动态SDM,TDM,全双工等等,这里不作赘述。在图7中,DU天线面板0的资源需要根据资源复用类型00推导的结果以及资源复用类型10推导的结果共同确定,例如,如果第一节点根据资源复用类型是00确定DU天线面板0的资源a是软资源,根据资源复用类型是10确定DU天线面板0的该资源a是硬资源,基于前文确定DU资源的原则,该资源a最终应被确定为软资源。DU天线面板1的资源需要根据资源复用类型01推导的结果以及资源复用类型11推导的结果共同确定,例如,如果第一节点根据资源复用类型是01确定DU天线面板1的资源b是硬资源,根据资源复用类型是11确定DU天线面板0的该资源b是硬资源,基于前文确定DU资源的原则,该资源b最终应被确定为硬资源。
应理解,图7中的示例只是便于本领域技术人员理解,而不应对本申请实施例的保护范围构成限定。
上述实施例介绍了第一节点根据MT资源配置推导DU资源类型的方法,以及第一节点根据DU资源配置推导MT资源类型的方法。可选的,所述推导方法同样适用于第一节点的上级节点或宿主节点,例如,上级节点或宿主节点利用上述推导方法根据第一节点的 MT资源配置推导DU资源类型,或根据第一节点的DU资源配置推导MT资源类型。
在本申请实施例中,为了保证特定物理信号(例如广播同步信号块,参考信号等)的顺利发送或接收,可以对DU或MT的资源配置进行调整,以使得IAB的资源配置更为灵活。下文将详细进行描述。当然,这种调整并不限于是多天线面板的场景,即单天线面板的场景也适用。
可选地,所述方法200还包括:
若所述第一节点的DU或MT中存在待传输的信号,所述第一节点对DU的资源配置中的资源进行调整。其中,所述待传输的信号对应的资源是第一类资源。其中,第一类资源是指硬资源。以确定DU的资源配置的情况为例进行说明。
待传输的信号可以是同步信号(synchronization signal,SS)/物理广播信道(physical broadcast channel,PBCH)块(block)(或者称作同步信号块SSB),或者,可以是随机接入信道(random access channel,RACH)。应理解,SSB可以包括IAB节点面向接入UE发送的SSB集合,也可以包括IAB节点之间相互发现所使用的SSB集合,对此不作限定。类似地,RACH信道可以包括UE或其余IAB节点向IAB节点发送的RACH。
这里,对DU的资源配置中的资源进行调整的目的在于:保证待传输的信号的收发始终是可行的。也就是说,如果MT中有待传输的信号,且此时DU中相应的资源是硬资源,可以将DU中对应的资源(即硬资源)进行调整,以保证MT中的待传输信号顺利发送或接收;如果DU中有待传输的信号,且此时DU中相应的资源是软资源或不可用资源,可以将DU中对应的资源调整为硬资源,以保证DU中的待传输的信号顺利发送或接收。
应理解,本申请实施例对资源调整的粒度不作具体限定,可以是时隙级的转换,也可以是符号级的转换等等。比如,时隙级转换是指,包含此信号的整个时隙对应的资源被转换为硬资源。符号级转换是指,仅将包含信号的符号对应的资源转换为硬资源。
可选地,若DU存在待传输的信号,所述第一节点对DU的资源配置进行调整,包括:
若所述第一节点确定DU的资源配置中的第一资源是第二类资源,则所述第一节点将所述第一资源调整为第一类资源。其中,所述第一资源是用于所述第一节点的DU传输所述待传输的信号的资源。第二类资源是软资源或不可用资源。
这里的“调整”是指:将软资源或不可用资源转换为硬资源。应理解,这里的“调整”可以理解为以前被配置为软资源或不可用资源,但在实际通信是直接按照硬资源来使用。即无论第一资源是软资源或是不可用资源,DU都要在第一资源中传输所述待传输的信号。应理解,这里的“调整”可以不存在单独的配置信息来做资源的调整,而是指实际使用时所谓被“调整”的资源位置可以突破上述预设关系(例如前述表1或表2)所约束的规则,将软资源或不可用资源作为硬资源使用。
也就是说,如果第一节点中DU存在上述待传输的信号,而在时域上,用于传输该待传输的信号的第一资源却是软资源或不可用资源,为了不影响DU中待传输的信号的发送或接收,可以将该第一资源变换为硬资源。
可选地,若所述第一节点的DU中存在待传输的信号,所述第一节点对DU的资源配置进行调整,包括:
若所述第一节点确定DU的资源配置中的第二资源是第一类资源,则所述第一节点将 所述第二资源调整为第二类资源。其中,所述第二资源是与所述第一节点的MT中用于传输所述待传输的信号的资源在时域上重合的资源。其中,第二资源是DU中的资源。应理解,这里的重合指的是时域上的重合,对频域不作限定。
这里的“调整”是指:将硬资源转换为软资源或不可用资源。应理解,这里的“调整”可以理解为以前被配置为硬资源,但在实际通信是直接按照软资源或不可用资源来使用。即不论与第二资源在时域上重合的资源是硬资源还是软资源(或不可用资源),MT都要在第二资源中传输所述待传输的信号。应理解,这里的“调整”可以不存在单独的配置信息来做资源的调整,而是指实际使用时所谓被“调整”的资源位置可以突破上述预设关系(例如前述表1或表2)所约束的规则,将硬资源作为软资源或不可用资源使用。
也就是说,如果第一节点中MT存在上述待传输的信号,而在时域上,用于传输该待传输的信号的资源在DU中对应的第二资源却是硬资源,为了不影响MT中待传输的信号的发送或接收,可以将该第二资源变换为软资源或不可用资源,即需要停止DU在第二资源中的信号传输。
为了便于理解,下面结合图8中的例子进行说明。如图8所示,图8中上部的图示意的是DU调整前的资源配置和调整后的资源配置;图8中下部的图示意的是MT调整前的资源配置和调整后的资源配置。图8中的R表示信号,例如SSB或RACH等。以调整DU资源配置为例进行说明,可以看到,DU的资源配置的周期为10个资源单元(包括硬资源对应的5个资源单元和软资源对应的5个资源单元),而信号的传输周期为40个资源单元。在接收或发送此信号时,可能会造成多个信号资源与DU的软资源在时域上重合。若要通过配置将DU的周期性发送或接收的信号与硬资源在时域上完全重合,则需要将DU的资源配置(包括软资源和硬资源)的配置周期等同于信号的传输周期。例如,假设此信号为SSB,SSB的周期可以为160毫秒(ms),其中可包含640个时隙(60KHz子载波间隔)。而增大DU资源配置的周期,将会大大增加信令的开销。
为了避免增加开销,可以对DU的资源进行调整。图8中示出了调整后的DU资源配置,通过将DU中与多个信号资源在时域上重合的软资源调整为硬资源,以保证DU周期信号的顺利发送,从而避免了增加信令开销。例如,DU发送SSB的资源,或接收RACH的资源,可能与DU的软资源重合(例如,在时域上重合),DU的软资源可被调整为硬资源。或者,MT接收SSB的资源,或发送RACH的资源,可能与MT的不可用资源重合(例如,在时域上重合),MT的不可用资源可被调整为可用资源。
上面描述了图8中调整DU的资源配置的方式,应理解,MT的资源配置可以参考上述方式,将不可用资源调整为可用资源。为了简洁,这里对MT的资源配置如何调整不作赘述。还应理解,图8中是以MT的资源配置的周期与DU的资源配置的周期相同为例进行描述的,但是本申请实施例对DU的资源配置的周期与MT的资源配置的周期是否相同不作限定,可以相同也可以不同。
也就是说,用于发送SSB的资源(例如,DU资源),在本质上应是硬资源;或者,用于接收RACH的资源(DU资源),在本质上应是硬资源。作为另一种可能的情形,如果MT资源中用于接收SSB(或发送RACH)的资源,在时域上与DU资源中用于发送SSB(或接收RACH)的资源重合,那么可以优先接收MT资源中的SSB(或发送RACH)。即将对应的DU资源中用于发送SSB(或接收RACH)的资源看作软资源或不可用资源。
上面描述了需要对DU的资源配置调整的情形,应理解,对于其他周期性发送或接收的信号,比如,IAB节点向上级节点请求配置的CSI-RS信号等参考信号,可以沿用前文确定的资源配置进行相应的发送或接收,而无需对DU的资源配置进行调整。
还应理解,上文描述了需要对DU的资源配置调整的情形,在一种可能的实现方式中,还可以对MT的资源配置进行调整。比如,如果DU中存在优先级比较高的信号需要传输,且与MT的资源配置对应的资源(可用资源)在时域上重合,那么可以将相应的MT的资源调整为不可用资源,以保证DU中的信号顺利传输。例如,DU发送SSB或接收RACH的资源可能与MT的可用资源在时域上重合,此时,MT的可用资源可被调整为不可用资源,即上级节点不在对应的位置调度IAB节点的MT进行PDSCH,PUSCH等信号的传输。
应理解,图4至图8中的例子仅仅是为了便于本领域技术人员理解本申请实施例,并非要将本申请实施例限于例示的具体场景。本领域技术人员根据图4至图8的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本申请实施例的范围内。
还应理解,本申请实施例的各个方案可以进行合理的组合使用,并且实施例中出现的各个术语的解释或说明可以在各个实施例中互相参考或解释,对此不作限定。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文结合图1至图8详细描述了根据本申请实施例的资源配置的方法。下面将结合图9至图12描述根据本申请实施例的资源配置的装置。应理解,方法实施例所描述的技术特征同样适用于以下装置实施例。
图9示出了根据本申请实施例的资源配置的装置900的示意性框图。所述装置900用于执行前文方法实施例中第一节点执行的方法。可选地,所述装置900的具体形态可以是中继节点或中继节点中的芯片。本申请实施例对此不作限定。所述装置900包括:
收发模块910,用于接收第二节点发送的第一指示信息,所述第一指示信息用于指示第一功能单元的一个或多个天线面板中的每个天线面板与第二功能单元的资源复用类型;
所述收发模块910还用于,使用所述第二功能单元的一个或多个天线面板的资源进行数据传输,其中,所述第二功能单元的一个或多个天线面板的资源类型是根据所述资源复用类型确定的。
在一种可选的实现方式中,所述收发模块910还用于,接收来自所述第二节点的资源配置信息,所述资源配置信息用于指示所述第一节点中的第一功能单元的一个或多个天线面板的资源;
其中,所述第二功能单元的一个或多个天线面板的资源是根据所述资源复用类型,所述第一功能单元的一个或多个天线面板的资源,以及预设关系确定的,所述预设关系包括所述第一节点在不同的资源复用类型下所述第一功能单元的资源配置与所述第二功能单元的资源配置的对应关系。
在一种可选的实现方式中,所述收发模块910还用于,向所述第二节点发送第二指示信息,所述第二指示信息用于指示所述第一功能单元的每个天线面板与所述第二功能单元支持的资源复用类型,或者,用于指示所述第一功能单元的第一天线面板与所述第二功能单元支持的资源复用类型,所述第一天线面板表示与所述第二功能单元使用的天线面板方 向相同的天线面板,或者,用于指示所述第一功能单元的第二天线面板与所述第二功能单元支持的资源复用类型,所述第二天线面板表示与所述第二功能单元使用的天线面板方向不同的天线面板。
可选地,所述第一功能单元是移动终端MT功能单元,所述第二功能单元是分布式单元DU;或者,所述第一功能单元是分布式单元DU,所述第二功能单元是移动终端MT功能单元。
在一种可选的实现方式中,在确定DU的资源配置的情况下,所述装置还包括:
处理模块920,用于若所述第一节点的DU或MT中存在待传输的信号,对DU的资源配置中的资源进行调整,其中,所述待传输的信号对应的资源是第一类资源。
在一种可选的实现方式中,若所述装置的DU中存在待传输的信号,所述处理模块920用于对DU的资源配置进行调整,具体包括:
若确定DU的资源配置中的第一资源是第二类资源,则将所述第一资源调整为第一类资源,其中,所述第一资源是用于所述第一节点的DU传输所述待传输的信号的资源。
在一种可选的实现方式中,若所述装置的MT中存在待传输的信号,所述处理模块920用于对DU的资源配置进行调整,具体包括:
若确定DU的资源配置中的第二资源是第一类资源,则将所述第二资源调整为第二类资源,其中,所述第二资源是与所述第一节点的MT中用于传输所述待传输的信号的资源在时域上重合的资源。
可选地,所述待传输的信号包括以下信号中的一项或多项:同步信号块SSB、随机接入信道RACH信号。
应理解,根据本申请实施例的传输数据的装置900可对应于前述方法实施例中第一节点的方法,比如,图3中的方法,并且装置900中的各个模块的上述和其它管理操作和/或功能分别为了实现前述方法实施例中第一节点的方法的相应步骤,因此也可以实现前述方法实施例中的有益效果,为了简洁,这里不作赘述。
还应理解,装置900中的各个模块可以通过软件和/或硬件形式实现,对此不作具体限定。换言之,装置900是以功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路ASIC、电路、执行一个或多个软件或固件程序的处理器和存储器、集成逻辑电路,和/或其他可以提供上述功能的器件。可选地,在一个简单的实施例中,本领域的技术人员可以想到装置900可以采用图10所示的形式。处理模块920可以通过图10所示的处理器1001实现。收发模块910可以通过图10所示的收发器1003来实现。具体的,处理器通过执行存储器中存储的计算机程序来实现。可选地,当所述装置900是芯片时,那么收发模块910的功能和/或实现过程还可以通过管脚或电路等来实现。可选地,所述存储器为所述芯片内的存储单元,比如寄存器、缓存等,所述存储单元还可以是所述计算机设备内的位于所述芯片外部的存储单元,如图10所的存储器1002。
图10示出了根据本申请实施例的资源配置的装置1000的示意性结构图。如图10所示,所述装置1000包括:处理器1001。
在一种可能的实现方式中,所述处理器1001用于调用接口执行以下动作:接收第二节点发送的第一指示信息,所述第一指示信息用于指示第一功能单元的一个或多个天线面板中的每个天线面板与第二功能单元的资源复用类型;使用所述第二功能单元的一个或多 个天线面板的资源进行数据传输,其中,所述第二功能单元的一个或多个天线面板的资源类型是根据所述资源复用类型确定的。
应理解,所述处理器1001可以调用接口执行上述收发动作,其中,调用的接口可以是逻辑接口或物理接口,对此不作限定。可选地,物理接口可以通过收发器实现。可选地,所述装置1000还包括收发器1003。
可选地,所述装置1000还包括存储器1002,存储器1002中可以存储上述方法实施例中的程序代码,以便于处理器1001调用。
具体地,若所述装置1000包括处理器1001、存储器1002和收发器1003,则处理器1001、存储器1002和收发器1003之间通过内部连接通路互相通信,传递控制和/或数据信号。在一个可能的设计中,处理器1001、存储器1002和收发器1003可以通过芯片实现,处理器1001、存储器1002和收发器1003可以是在同一个芯片中实现,也可能分别在不同的芯片实现,或者其中任意两个功能组合在一个芯片中实现。该存储器1002可以存储程序代码,处理器1001调用存储器1002存储的程序代码,以实现装置1000的相应功能。
应理解,所述装置1000还可用于执行前文实施例中第一节点侧的其他步骤和/或操作,为了简洁,这里不作赘述。
图11示出了根据本申请实施例的资源配置的装置1100的示意性框图。所述装置1100用于执行前文方法实施例中第二节点执行的方法。第二节点是第一节点的上级节点。可选地,所述装置1100的具体形态可以是中继节点或中继节点中的芯片,或者,可以是宿主基站或宿主基站中的芯片。本申请实施例对此不作限定。所述装置1100包括:
处理模块1110,用于确定第一指示信息,所述第一指示信息用于指示所述第一功能单元的一个或多个天线面板中的每个天线面板与第二功能单元的资源复用类型,所述资源复用类型用于第一节点确定所述第二功能单元的一个或多个天线面板的资源;
收发模块1120,用于向所述第一节点发送所述第一指示信息。
在一种可选的实现方式中,所述收发模块1120还用于:
向所述第一节点发送资源配置信息,所述资源配置信息用于指示所述第一节点中的第一功能单元的一个或多个天线面板的资源。
在一种可选的实现方式中,所述收发模块1120还用于:接收所述第一节点发送第二指示信息,所述第二指示信息用于指示所述第一功能单元的每个天线面板与所述第二功能单元支持的资源复用类型,或者,用于指示所述第一功能单元的第一天线面板与所述第二功能单元支持的资源复用类型,所述第一天线面板表示与所述第二功能单元使用的天线面板方向相同的天线面板,或者,用于指示所述第一功能单元的第二天线面板与所述第二功能单元支持的资源复用类型,所述第二天线面板表示与所述第二功能单元使用的天线面板方向不同的天线面板;
其中,所述处理模块1110用于确定所述第一指示信息,包括:
所述第二节点基于所述第二指示信息,确定所述第一指示信息。
可选地,所述第一功能单元是移动终端MT功能单元,所述第二功能单元是分布式单元DU;或者,所述第一功能单元是分布式单元DU,所述第二功能单元是移动终端MT功能单元。
应理解,根据本申请实施例的传输数据的装置1100可对应于前述方法实施例中第二节点的方法,比如,图11中的方法,并且装置1100中的各个模块的上述和其它管理操作和/或功能分别为了实现前述方法实施例中第二节点的方法的相应步骤,因此也可以实现前述方法实施例中的有益效果,为了简洁,这里不作赘述。
还应理解,装置1100中的各个模块可以通过软件和/或硬件形式实现,对此不作具体限定。换言之,装置1100是以功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路ASIC、电路、执行一个或多个软件或固件程序的处理器和存储器、集成逻辑电路,和/或其他可以提供上述功能的器件。可选地,在一个简单的实施例中,本领域的技术人员可以想到装置1100可以采用图12所示的形式。处理模块1110可以通过图12所示的处理器1201实现。收发模块1120可以通过图12所示的收发器1203来实现。具体的,处理器通过执行存储器中存储的计算机程序来实现。可选地,当所述装置1100是芯片时,那么收发模块1120的功能和/或实现过程还可以通过管脚或电路等来实现。可选地,所述存储器为所述芯片内的存储单元,比如寄存器、缓存等,所述存储单元还可以是所述计算机设备内的位于所述芯片外部的存储单元,如图12所的存储器1202。
图12示出了根据本申请实施例的资源配置的装置1200的示意性结构图。如图12所示,所述装置1200包括:处理器1201。
在一种可能的实现方式中,所述处理器1201用于确定第一指示信息,所述第一指示信息用于指示所述第一功能单元的一个或多个天线面板中的每个天线面板与第二功能单元的资源复用类型,所述资源复用类型用于第一节点确定所述第二功能单元的一个或多个天线面板的资源;所述处理器1201还用于调用接口执行以下动作:向所述第一节点发送所述第一指示信息。
应理解,所述处理器1201可以调用接口执行上述收发动作,其中,调用的接口可以是逻辑接口或物理接口,对此不作限定。可选地,物理接口可以通过收发器实现。可选地,所述装置1200还包括收发器1203。
可选地,所述装置1200还包括存储器1202,存储器1202中可以存储上述方法实施例中的程序代码,以便于处理器1201调用。
具体地,若所述装置1200包括处理器1201、存储器1202和收发器1203,则处理器1201、存储器1202和收发器1203之间通过内部连接通路互相通信,传递控制和/或数据信号。在一个可能的设计中,处理器1201、存储器1202和收发器1203可以通过芯片实现,处理器1201、存储器1202和收发器1203可以是在同一个芯片中实现,也可能分别在不同的芯片实现,或者其中任意两个功能组合在一个芯片中实现。该存储器1202可以存储程序代码,处理器1201调用存储器1202存储的程序代码,以实现装置1200的相应功能。
应理解,所述装置1200还可用于执行前文实施例中第二节点侧的其他步骤和/或操作,为了简洁,这里不作赘述。
上述本申请实施例揭示的方法可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application  specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图3至图8所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图3至图8所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的第一节点以及第二节点。
应理解,在本申请实施例中,编号“第一”、“第二”…仅仅为了区分不同的对象,比如为了区分不同的节点或者指示信息,并不对本申请实施例的范围构成限制,本申请实施例并不限于此。
还应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及 算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (62)

  1. 一种资源配置的方法,其特征在于,包括:
    第一节点接收第二节点发送的第一指示信息,所述第一指示信息用于指示第一功能单元的一个或多个天线面板中的每个天线面板与第二功能单元的资源复用类型;
    所述第一节点使用所述第二功能单元的一个或多个天线面板的资源进行数据传输,其中,所述第二功能单元的一个或多个天线面板的资源类型是根据所述资源复用类型确定的。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一节点接收来自所述第二节点的资源配置信息,所述资源配置信息用于指示所述第一节点中的第一功能单元的一个或多个天线面板的资源;
    其中,所述第二功能单元的一个或多个天线面板的资源是根据所述资源复用类型,所述第一功能单元的一个或多个天线面板的资源,以及预设关系确定的,所述预设关系包括所述第一节点在不同的资源复用类型下所述第一功能单元的资源配置与所述第二功能单元的资源配置的对应关系。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述第一节点向所述第二节点发送第二指示信息,所述第二指示信息用于指示所述第一功能单元的每个天线面板与所述第二功能单元支持的资源复用类型,或者,用于指示所述第一功能单元的第一天线面板与所述第二功能单元支持的资源复用类型,所述第一天线面板表示与所述第二功能单元使用的天线面板方向相同的天线面板,或者,用于指示所述第一功能单元的第二天线面板与所述第二功能单元支持的资源复用类型,所述第二天线面板表示与所述第二功能单元使用的天线面板方向不同的天线面板。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一功能单元是移动终端MT,所述第二功能单元是分布式单元DU;或者,所述第一功能单元是分布式单元DU,所述第二功能单元是移动终端MT。
  5. 根据权利要求4所述的方法,其特征在于,在确定DU的资源配置的情况下,所述方法还包括:
    若所述第一节点的DU或MT中存在待传输的信号,所述第一节点对DU的资源配置中的资源进行调整,其中,所述待传输的信号对应的资源是第一类资源。
  6. 根据权利要求5所述的方法,其特征在于,若所述第一节点的DU中存在待传输的信号,所述第一节点对DU的资源配置进行调整,包括:
    若所述第一节点确定DU的资源配置中的第一资源是第二类资源,则所述第一节点将所述第一资源调整为第一类资源,其中,所述第一资源是用于所述第一节点的DU传输所述待传输的信号的资源。
  7. 根据权利要求5所述的方法,其特征在于,若所述第一节点的MT中存在待传输的信号,所述第一节点对DU的资源配置进行调整,包括:
    若所述第一节点确定DU的资源配置中的第二资源是第一类资源,则所述第一节点将所述第二资源调整为第二类资源,其中,所述第二资源是与所述第一节点的MT中用于传 输所述待传输的信号的资源在时域上重合的资源。
  8. 根据权利要求5至7中任一项所述的方法,其特征在于,所述待传输的信号包括以下信号中的一项或多项:同步信号块SSB、随机接入信道RACH信号。
  9. 一种资源配置的方法,其特征在于,包括:
    第二节点确定第一指示信息,所述第一指示信息用于指示所述第一功能单元的一个或多个天线面板中的每个天线面板与第二功能单元的资源复用类型,所述资源复用类型用于第一节点确定所述第二功能单元的一个或多个天线面板的资源;
    所述第二节点向所述第一节点发送所述第一指示信息。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    所述第二节点向所述第一节点发送资源配置信息,所述资源配置信息用于指示所述第一节点中的第一功能单元的一个或多个天线面板的资源。
  11. 根据权利要求9或10所述的方法,其特征在于,所述方法还包括:
    所述第二节点接收所述第一节点发送第二指示信息,所述第二指示信息用于指示所述第一功能单元的每个天线面板与所述第二功能单元支持的资源复用类型,或者,用于指示所述第一功能单元的第一天线面板与所述第二功能单元支持的资源复用类型,所述第一天线面板表示与所述第二功能单元使用的天线面板方向相同的天线面板,或者,用于指示所述第一功能单元的第二天线面板与所述第二功能单元支持的资源复用类型,所述第二天线面板表示与所述第二功能单元使用的天线面板方向不同的天线面板;
    其中,所述第二节点确定所述第一指示信息,包括:
    所述第二节点基于所述第二指示信息,确定所述第一指示信息。
  12. 根据权利要求9至11中任一项所述的方法,其特征在于,所述第一功能单元是移动终端MT,所述第二功能单元是分布式单元DU;或者,所述第一功能单元是分布式单元DU,所述第二功能单元是移动终端MT。
  13. 一种资源配置的装置,其特征在于,包括:
    收发模块,用于接收第二节点发送的第一指示信息,所述第一指示信息用于指示第一功能单元的一个或多个天线面板中的每个天线面板与第二功能单元的资源复用类型;
    所述收发模块还用于,使用所述第二功能单元的一个或多个天线面板的资源进行数据传输,其中,所述第二功能单元的一个或多个天线面板的资源类型是根据所述资源复用类型确定的。
  14. 根据权利要求13所述的装置,其特征在于,所述收发模块还用于,接收来自所述第二节点的资源配置信息,所述资源配置信息用于指示所述装置中的第一功能单元的一个或多个天线面板的资源;
    其中,所述第二功能单元的一个或多个天线面板的资源是根据所述资源复用类型,所述第一功能单元的一个或多个天线面板的资源,以及预设关系确定的,所述预设关系包括所述第一节点在不同的资源复用类型下所述第一功能单元的资源配置与所述第二功能单元的资源配置的对应关系。
  15. 根据权利要求13或14所述的装置,其特征在于,所述收发模块还用于,向所述第二节点发送第二指示信息,所述第二指示信息用于指示所述第一功能单元的每个天线面板与所述第二功能单元支持的资源复用类型,或者,用于指示所述第一功能单元的第一天 线面板与所述第二功能单元支持的资源复用类型,所述第一天线面板表示与所述第二功能单元使用的天线面板方向相同的天线面板,或者,用于指示所述第一功能单元的第二天线面板与所述第二功能单元支持的资源复用类型,所述第二天线面板表示与所述第二功能单元使用的天线面板方向不同的天线面板。
  16. 根据权利要求13至15中任一项所述的装置,其特征在于,所述第一功能单元是移动终端MT,所述第二功能单元是分布式单元DU;或者,所述第一功能单元是分布式单元DU,所述第二功能单元是移动终端MT。
  17. 根据权利要求16所述的装置,其特征在于,在确定DU的资源配置的情况下,所述装置还包括:
    处理模块,用于若所述装置的DU或MT中存在待传输的信号,对DU的资源配置中的资源进行调整,其中,所述待传输的信号对应的资源是第一类资源。
  18. 根据权利要求17所述的装置,其特征在于,若所述装置的DU中存在待传输的信号,所述处理模块用于对DU的资源配置进行调整,具体包括:
    若确定DU的资源配置中的第一资源是第二类资源,则将所述第一资源调整为第一类资源,其中,所述第一资源是用于所述第一节点的DU传输所述待传输的信号的资源。
  19. 根据权利要求17所述的装置,其特征在于,若所述装置的MT中存在待传输的信号,所述处理模块用于对DU的资源配置进行调整,具体包括:
    若确定DU的资源配置中的第二资源是第一类资源,则将所述第二资源调整为第二类资源,其中,所述第二资源是与所述第一节点的MT中用于传输所述待传输的信号的资源在时域上重合的资源。
  20. 根据权利要求17至19中任一项所述的装置,其特征在于,所述待传输的信号包括以下信号中的一项或多项:同步信号块SSB、随机接入信道RACH信号。
  21. 一种资源配置的装置,其特征在于,包括:
    处理模块,用于确定第一指示信息,所述第一指示信息用于指示所述第一功能单元的一个或多个天线面板中的每个天线面板与第二功能单元的资源复用类型,所述资源复用类型用于第一节点确定所述第二功能单元的一个或多个天线面板的资源;
    收发模块,用于向所述第一节点发送所述第一指示信息。
  22. 根据权利要求21所述的装置,其特征在于,所述收发模块还用于:
    向所述第一节点发送资源配置信息,所述资源配置信息用于指示所述第一节点中的第一功能单元的一个或多个天线面板的资源。
  23. 根据权利要求21或22所述的装置,其特征在于,所述收发模块还用于:接收所述第一节点发送第二指示信息,所述第二指示信息用于指示所述第一功能单元的每个天线面板与所述第二功能单元支持的资源复用类型,或者,用于指示所述第一功能单元的第一天线面板与所述第二功能单元支持的资源复用类型,所述第一天线面板表示与所述第二功能单元使用的天线面板方向相同的天线面板,或者,用于指示所述第一功能单元的第二天线面板与所述第二功能单元支持的资源复用类型,所述第二天线面板表示与所述第二功能单元使用的天线面板方向不同的天线面板;
    其中,所述处理模块用于确定所述第一指示信息,包括:
    基于所述第二指示信息,确定所述第一指示信息。
  24. 根据权利要求21至23中任一项所述的装置,其特征在于,所述第一功能单元是移动终端MT,所述第二功能单元是分布式单元DU;或者,所述第一功能单元是分布式单元DU,所述第二功能单元是移动终端MT。
  25. 一种资源配置信息的传输方法,其特征在于,包括:
    第一节点生成第二指示信息,所述第二指示信息用于指示第一功能单元的一个或多个子单元中的每个子单元与第二功能单元能够支持的资源复用类型;
    所述第一节点向第二节点发送的所述第二指示信息。
  26. 根据权利要求25所述的方法,其特征在于,
    所述第二指示信息用于指示第一功能单元的一个或多个子单元中的每个子单元与第二功能单元的一个或多个子单元中的每个子单元能够支持的资源复用类型。
  27. 根据权利要求26所述的方法,其特征在于,所述第一功能单元包括第一子单元和第二子单元,所述第二功能单元包括第三子单元和第四子单元,
    所述第二指示信息用于指示所述第一子单元与所述第三子单元能够支持的资源复用类型;和/或
    所述第二指示信息用于指示所述第一子单元与所述第四子单元能够支持的资源复用类型;和/或
    所述第二指示信息用于指示所述第二子单元与所述第三子单元能够支持的资源复用类型;和/或
    所述第二指示信息用于指示所述第二子单元与所述第四子单元能够支持的资源复用类型。
  28. 根据权利要求25-27任一项所述的方法,其特征在于,
    所述第一功能单元为分布式单元DU,所述第二功能单元为移动终端MT。
  29. 根据权利要求25-28任一项所述的方法,其特征在于,
    所述资源复用类型包括:时分多路复用TDM,空分复用SDM,或全双工复用。
  30. 根据权利要求29所述的方法,其特征在于,
    所述资源复用类型是SDM,表示所述第一功能单元与所述第二功能单元能够同时接收或同时发送;或
    所述资源复用类型是全双工,表示所述第一功能单元与所述第二功能单元能够同时传输,且不限制为同时接收或同时发送。
  31. 根据权利要求25-30任一项所述的方法,其特征在于,
    所述第一功能单元的子单元为小区,小区组,载波,载波组或天线面板;
    所述第二功能单元的子单元为小区,小区组,载波,载波组或天线面板。
  32. 根据权利要求25-31任一项所述的方法,其特征在于,所述方法还包括:
    所述第一节点从所述第二节点接收资源配置信息,所述资源配置信息用于指示所述第一节点中的第一功能单元的一个或多个子单元的资源类型。
  33. 根据权利要求32所述的方法,其特征在于,
    所述资源类型为硬资源或软资源。
  34. 根据权利要求32或33所述的方法,其特征在于,
    所述资源类型还包括传输方向,所述传输方向包括下行(downlink)、上行(uplink)、灵活(flexible)。
  35. 根据权利要求25-34任一项所述的方法,其特征在于,所述方法还包括:
    所述第一节点获取第一资源,所述第一资源属于第一类资源或属于第二类资源;
    所述第一节点将所述第一资源视为属于第一类资源而在所述第一资源上传输待传输信号。
  36. 根据权利要求25-35任一项所述的方法,其特征在于,
    所述第一类资源为硬资源,所述第二类资源为软资源或不可用资源。
  37. 根据权利要求25-36任一项所述的方法,其特征在于,
    当第一资源是第二类资源时,则所述第一节点将所述第一资源视为第一类资源而在所述第一资源上传输待传输信号。
  38. 根据权利要求25-37任一项所述的方法,其特征在于,
    所述待传输的信号包括以下信号中的一项或多项:同步信号块SSB、随机接入信道RACH信号。
  39. 一种资源配置信息的传输装置,其特征在于,包括:
    处理模块,用于生成第二指示信息,所述第二指示信息用于指示第一功能单元的一个或多个子单元中的每个子单元与第二功能单元能够支持的资源复用类型;
    收发模块,用于向第二节点发送的所述第二指示信息。
  40. 根据权利要求39所述的装置,其特征在于,
    所述第二指示信息用于指示第一功能单元的一个或多个子单元中的每个子单元与第二功能单元的一个或多个子单元中的每个子单元能够支持的资源复用类型。
  41. 根据权利要求40所述的装置,其特征在于,所述第一功能单元包括第一子单元和第二子单元,所述第二功能单元包括第三子单元和第四子单元,
    所述第二指示信息用于指示所述第一子单元与所述第三子单元能够支持的资源复用类型;和/或
    所述第二指示信息用于指示所述第一子单元与所述第四子单元能够支持的资源复用类型;和/或
    所述第二指示信息用于指示所述第二子单元与所述第三子单元能够支持的资源复用类型;和/或
    所述第二指示信息用于指示所述第二子单元与所述第四子单元能够支持的资源复用类型。
  42. 根据权利要求39-41任一项所述的装置,其特征在于,
    所述第一功能单元为分布式单元DU,所述第二功能单元为移动终端MT。
  43. 根据权利要求39-42任一项所述的装置,其特征在于,
    所述资源复用类型包括:时分多路复用TDM,空分复用SDM,或全双工复用。
  44. 根据权利要求43所述的装置,其特征在于,
    所述资源复用类型是SDM,表示所述第一功能单元与所述第二功能单元能够同时接收或同时发送;或
    所述资源复用类型是全双工,表示所述第一功能单元与所述第二功能单元能够同时传输,且不限制为同时接收或同时发送。
  45. 根据权利要求39-44任一项所述的装置,其特征在于,
    所述第一功能单元的子单元为小区,小区组,载波,载波组或天线面板;
    所述第二功能单元的子单元为小区,小区组,载波,载波组或天线面板。
  46. 根据权利要求39-45任一项所述的装置,其特征在于,
    所述收发模块还用于从所述第二节点接收资源配置信息,所述资源配置信息用于指示所述第一节点中的第一功能单元的一个或多个子单元的资源类型。
  47. 根据权利要求46所述的装置,其特征在于,
    所述资源类型为硬资源或软资源。
  48. 根据权利要求46或47所述的装置,其特征在于,
    所述资源类型还包括传输方向,所述传输方向包括下行(downlink)、上行(uplink)、灵活(flexible)。
  49. 根据权利要求39-48任一项所述的装置,其特征在于,
    所述处理模块还用于获取第一资源,所述第一资源属于第一类资源或属于第二类资源;
    所述收发模块将所述第一资源视为属于第一类资源而在所述第一资源上传输待传输信号。
  50. 根据权利要求39-49任一项所述的装置,其特征在于,
    所述第一类资源为硬资源,所述第二类资源为软资源或不可用资源。
  51. 根据权利要求39-50任一项所述的装置,其特征在于,
    当第一资源是第二类资源时,则所述第一节点将所述第一资源视为第一类资源而在所述第一资源上传输待传输信号。
  52. 根据权利要求39-51任一项所述的装置,其特征在于,
    所述待传输的信号包括以下信号中的一项或多项:同步信号块SSB、随机接入信道RACH信号。
  53. 一种传输方法,其特征在于,包括:
    获取第一资源,所述第一资源属于第一类资源或属于第二类资源;
    将所述第一资源视为属于第一类资源而在所述第一资源上传输待传输信号。
  54. 根据权利要求53所述的方法,其特征在于,
    所述第一类资源为硬资源,所述第二类资源为软资源或不可用资源。
  55. 根据权利要求53或54所述的方法,其特征在于,
    当第一资源是第二类资源时,则所述第一节点将所述第一资源视为第一类资源而在所述第一资源上传输待传输信号。
  56. 根据权利要求53-55任一项所述的方法,其特征在于,
    所述待传输的信号包括以下信号中的一项或多项:同步信号块SSB、随机接入信道RACH信号。
  57. 一种传输装置,其特征在于,包括:
    处理模块,用于获取第一资源,所述第一资源属于第一类资源或属于第二类资源;
    收发模块,用于将所述第一资源视为属于第一类资源而在所述第一资源上传输待传输信号。
  58. 根据权利要求57所述的装置,其特征在于,
    所述第一类资源为硬资源,所述第二类资源为软资源或不可用资源。
  59. 根据权利要求57或58所述的装置,其特征在于,
    当第一资源是第二类资源时,则所述第一节点将所述第一资源视为第一类资源而在所述第一资源上传输待传输信号。
  60. 根据权利要求57-59任一项所述的装置,其特征在于,
    所述待传输的信号包括以下信号中的一项或多项:同步信号块SSB、随机接入信道RACH信号。
  61. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有程序指令,当其在处理器上运行时,执行如权利要求1-12,25-38或53-56中任一项所述的方法。
  62. 一种通信装置,其特征在于,包括:
    处理器,用于与存储器耦合,执行所述存储器中的指令,以实现如权利要求1-12,25-38或53-56中任一项所述的方法。
PCT/CN2020/071735 2019-01-11 2020-01-13 资源配置的方法和装置 WO2020143828A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN202080008917.XA CN113711669A (zh) 2019-01-11 2020-01-13 资源配置的方法和装置
EP20738622.8A EP3911076A4 (en) 2019-01-11 2020-01-13 METHOD AND DEVICE FOR RESOURCE CONFIGURATION
JP2021540191A JP7295247B2 (ja) 2019-01-11 2020-01-13 リソース構成方法および装置
BR112021013539-1A BR112021013539A2 (pt) 2019-01-11 2020-01-13 Método e aparelho de configuração de recurso
KR1020217025219A KR20210122793A (ko) 2019-01-11 2020-01-13 자원 구성을 위한 방법 및 장치
US17/371,965 US11785626B2 (en) 2019-01-11 2021-07-09 Resource configuration method and apparatus
JP2023094720A JP2023123550A (ja) 2019-01-11 2023-06-08 リソース構成方法および装置
US18/462,719 US20240073936A1 (en) 2019-01-11 2023-09-07 Resource configuration method and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910028398.2 2019-01-11
CN201910028398 2019-01-11
CN201910785412.3 2019-08-23
CN201910785412.3A CN111436145A (zh) 2019-01-11 2019-08-23 资源配置的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/371,965 Continuation US11785626B2 (en) 2019-01-11 2021-07-09 Resource configuration method and apparatus

Publications (1)

Publication Number Publication Date
WO2020143828A1 true WO2020143828A1 (zh) 2020-07-16

Family

ID=71520271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071735 WO2020143828A1 (zh) 2019-01-11 2020-01-13 资源配置的方法和装置

Country Status (7)

Country Link
US (2) US11785626B2 (zh)
EP (1) EP3911076A4 (zh)
JP (2) JP7295247B2 (zh)
KR (1) KR20210122793A (zh)
CN (2) CN111436145A (zh)
BR (1) BR112021013539A2 (zh)
WO (1) WO2020143828A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022105904A1 (zh) * 2020-11-23 2022-05-27 维沃移动通信有限公司 传输处理方法、装置及通信设备
EP4195832A4 (en) * 2020-08-06 2024-04-10 Vivo Mobile Communication Co Ltd METHOD AND DEVICE FOR INDICating RESOURCE MULTIPLEXING AND RELAY NODE

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3920570A4 (en) * 2019-02-01 2022-08-03 Ntt Docomo, Inc. USER TERMINAL AND WIRELESS COMMUNICATION METHOD
CN113615281A (zh) * 2019-03-22 2021-11-05 苹果公司 5g-nr集成接入回程网络中的子分布式单元资源配置信息信令
CN112350811A (zh) * 2019-08-07 2021-02-09 华为技术有限公司 资源配置的方法以及装置
US11632704B2 (en) * 2019-09-25 2023-04-18 Qualcomm Incorporated Techniques for integrated access and backhaul topology discovery
CN114071613A (zh) * 2020-08-07 2022-02-18 华为技术有限公司 一种iab节点的配置方法及通信装置
US20220104215A1 (en) * 2020-09-25 2022-03-31 Qualcomm Incorporated Enhancements for periodic resources in an integrated access and backhaul network
JP2024504301A (ja) * 2021-01-15 2024-01-31 華為技術有限公司 アクセス・バックホール統合に基づいた通信方法及び装置
AU2022228745A1 (en) * 2021-03-03 2023-08-24 Lenovo (Singapore) Pte. Ltd. An integrated access and backhaul node configuration
CN115942486A (zh) * 2021-08-06 2023-04-07 华为技术有限公司 一种通信方法及通信装置
CN114095066B (zh) * 2021-11-10 2023-03-14 中国信息通信研究院 一种全双工中继定时方法和设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180092139A1 (en) * 2016-09-29 2018-03-29 At&T Intellectual Property I, L.P. Initial access and radio resource management for integrated access and backhaul (iab) wireless networks
US20190014533A1 (en) * 2017-07-10 2019-01-10 Qualcomm Incorporated Requesting resource allocation in a wireless backhaul network

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10140534B2 (en) * 2015-09-26 2018-11-27 Qualcomm Incorporated Ultrasonic imaging devices and methods
US10278146B2 (en) 2016-08-04 2019-04-30 Qualcomm Incorporated Coordination of signaling and resource allocation in a wireless network using radio access technology
CN110168947B (zh) 2017-01-08 2021-08-27 Lg 电子株式会社 在无线通信系统中的上行链路发送/接收方法及其装置
WO2018143721A1 (ko) 2017-02-02 2018-08-09 엘지전자(주) 무선 통신 시스템에서의 채널 상태 정보 보고 방법 및 이를 위한 장치
US20190021084A1 (en) * 2017-07-12 2019-01-17 Futurewei Technologies, Inc. System And Method For Backhaul and Access In Beamformed Communications Systems
US10700775B2 (en) * 2018-05-11 2020-06-30 At&T Intellectual Property I, L.P. Resource coordination for integrated access and backhaul
US10659109B2 (en) * 2018-07-02 2020-05-19 Qualcomm Incorporated Method and apparatus for expanding quasi-colocation (QCL) signaling to cover varied scenarios
CN110740503B (zh) * 2018-07-19 2022-09-16 中国移动通信有限公司研究院 传输功率的指示方法、装置及网络节点
US11134397B2 (en) * 2018-08-01 2021-09-28 Qualcomm Incorporated Techniques for selecting backhaul nodes for connecting to an integrated access and backhaul network
US11503555B2 (en) * 2018-08-17 2022-11-15 Qualcomm Incorporated Dynamic timing adjustment for new radio integrated access and backhaul node
CN110896559B (zh) * 2018-09-13 2023-03-31 中国移动通信有限公司研究院 一种功率余量的上报方法、装置和计算机可读存储介质
WO2020060232A1 (en) * 2018-09-20 2020-03-26 Lg Electronics Inc. Method and apparatus for supporting power sharing and control between iab links in wireless communication system
GB2577529B (en) * 2018-09-27 2021-02-03 Samsung Electronics Co Ltd Improvements in and relating to power control in integrated access and backhaul
US11234277B2 (en) * 2018-09-27 2022-01-25 Samsung Electronics Co., Ltd. Power control in integrated access and backhaul
US11019627B2 (en) * 2018-09-28 2021-05-25 At&T Intellectual Property I, L.P. Facilitation of signal alignment for 5G or other next generation network
WO2020065590A1 (en) * 2018-09-28 2020-04-02 Telefonaktiebolaget Lm Ericsson (Publ) Mobile terminal with multiple timing advances
CN110972293B (zh) * 2018-09-29 2023-07-28 中国移动通信有限公司研究院 一种信号的传输方法、装置、终端及存储介质
US11265754B2 (en) * 2018-10-25 2022-03-01 Qualcomm Incorporated Bearer mapping on wireless backhaul using cellular radio access technologies
KR20200050280A (ko) * 2018-11-01 2020-05-11 삼성전자주식회사 무선 통신 시스템에서 iab 노드의 동적자원 할당을 위한 방법 및 장치
US11997653B2 (en) * 2018-11-01 2024-05-28 Qualcomm Incorporated Release configuration of soft resources in integrated access and backhaul
US11363669B2 (en) * 2018-11-01 2022-06-14 Qualcomm Incorporated Conditional release of soft resources in an integrated access and backhaul network
US11012964B2 (en) * 2018-11-02 2021-05-18 Nokia Technologies Oy Timing advance control for IAB
US11240801B2 (en) * 2018-11-02 2022-02-01 Qualcomm Incorporated Dynamic resource management
US11838928B2 (en) * 2018-11-02 2023-12-05 Qualcomm Incorporated Dynamic resource management
WO2020095459A1 (ja) * 2018-11-09 2020-05-14 株式会社Nttドコモ 無線ノード、及び、無線通信方法
WO2020112811A1 (en) * 2018-11-29 2020-06-04 Intel Corporation Resource allocation in iab networks
WO2020132308A2 (en) * 2018-12-19 2020-06-25 Apple Inc. Configuration management, performance management, and fault management to support edge computing
US20210250941A1 (en) * 2019-01-08 2021-08-12 Nokia Solutions And Networks Oy Method and apparatus for intra-node resource allocation
WO2020146409A1 (en) * 2019-01-09 2020-07-16 Apple Inc. Signaling methods for semi-static resource configurations in integrated access and backhaul
WO2020205607A1 (en) * 2019-03-29 2020-10-08 Apple Inc. Configurations for dynamic indication of soft resource availability
EP3966975A4 (en) * 2019-05-05 2023-03-08 Lenovo (Beijing) Limited SIDE LINK DATA PACKET ACKNOWLEDGMENT
US20220182977A1 (en) * 2019-05-28 2022-06-09 Apple Inc. Soft resource signaling in relay networks
CN114175815A (zh) * 2019-05-31 2022-03-11 苹果公司 中继网络中的动态软资源信令
EP3993538B1 (en) * 2019-07-08 2024-05-29 Lg Electronics Inc. Transmission of guard symbol information related to switching between mt operation and du operation
US11503592B2 (en) * 2020-03-16 2022-11-15 Nokia Solutions And Networks Oy Timing control for integrated access and backhaul (IAB)

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180092139A1 (en) * 2016-09-29 2018-03-29 At&T Intellectual Property I, L.P. Initial access and radio resource management for integrated access and backhaul (iab) wireless networks
US20190014533A1 (en) * 2017-07-10 2019-01-10 Qualcomm Incorporated Requesting resource allocation in a wireless backhaul network

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Physical layer design for NR IAB", 3GPP TSG RAN WG1 MEETING #94BIS R1-1810130, 12 October 2018 (2018-10-12), XP051517545, DOI: 20200326155500A *
HUAWEI ET AL.: "Physical layer design for NR IAB", 3GPP TSG RAN WG1 MEETING #95 R1-1812198, 16 December 2018 (2018-12-16), XP051554070, DOI: 20200326155331X *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4195832A4 (en) * 2020-08-06 2024-04-10 Vivo Mobile Communication Co Ltd METHOD AND DEVICE FOR INDICating RESOURCE MULTIPLEXING AND RELAY NODE
WO2022105904A1 (zh) * 2020-11-23 2022-05-27 维沃移动通信有限公司 传输处理方法、装置及通信设备

Also Published As

Publication number Publication date
JP7295247B2 (ja) 2023-06-20
JP2023123550A (ja) 2023-09-05
US20240073936A1 (en) 2024-02-29
EP3911076A1 (en) 2021-11-17
US11785626B2 (en) 2023-10-10
US20210345345A1 (en) 2021-11-04
KR20210122793A (ko) 2021-10-12
CN111436145A (zh) 2020-07-21
BR112021013539A2 (pt) 2021-09-14
CN113711669A (zh) 2021-11-26
EP3911076A4 (en) 2022-09-14
JP2022516804A (ja) 2022-03-02

Similar Documents

Publication Publication Date Title
WO2020143828A1 (zh) 资源配置的方法和装置
WO2020143692A1 (zh) 通信方法和通信装置
WO2020224306A1 (zh) 一种通信的方法和装置
WO2018188561A1 (zh) 上行信息发送方法、接收方法和装置
WO2020029777A1 (zh) 一种资源配置的方法及装置
US20210218534A1 (en) Data transmission method and apparatus
JP2018500821A (ja) ネストされたシステム動作
US20220225333A1 (en) Resource dynamic indication method and apparatus
US20220394679A1 (en) Resource configuration method and apparatus
CN112399585A (zh) 一种资源复用方法及装置
CN112584518A (zh) 一种资源确定方法及装置
WO2021017611A1 (zh) 数据传输方法和装置
US20220173847A1 (en) Downlink transmission method and terminal device
JP2023514730A (ja) フィードバックリソース決定方法およびフィードバックリソース決定装置
WO2021062835A1 (zh) 一种资源的动态指示方法及装置
CN114520987A (zh) Iab节点的冲突处理方法、装置、设备及可读存储介质
WO2022109838A1 (zh) 无线通信的方法和装置
WO2023039811A1 (zh) 通信方法及通信装置
WO2022061733A1 (zh) 无线通信方法和设备
WO2024026678A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022237498A1 (zh) 重复传输的确定方法、装置、终端及网络侧设备
WO2023030205A1 (zh) 资源指示方法和通信装置
WO2023097629A1 (zh) 信息配置方法、终端设备和网络设备
WO2023035251A1 (zh) 无线通信的方法和通信设备
WO2023201643A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20738622

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021540191

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021013539

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020738622

Country of ref document: EP

Effective date: 20210811

ENP Entry into the national phase

Ref document number: 112021013539

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210708