WO2018143721A1 - 무선 통신 시스템에서의 채널 상태 정보 보고 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서의 채널 상태 정보 보고 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2018143721A1
WO2018143721A1 PCT/KR2018/001447 KR2018001447W WO2018143721A1 WO 2018143721 A1 WO2018143721 A1 WO 2018143721A1 KR 2018001447 W KR2018001447 W KR 2018001447W WO 2018143721 A1 WO2018143721 A1 WO 2018143721A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
resource
qcl
information
mapped
Prior art date
Application number
PCT/KR2018/001447
Other languages
English (en)
French (fr)
Inventor
박종현
강지원
김기준
박해욱
윤석현
안민기
이길봄
Original Assignee
엘지전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자(주) filed Critical 엘지전자(주)
Priority to CN201880010039.8A priority Critical patent/CN110268667B/zh
Priority to US16/483,290 priority patent/US11258499B2/en
Priority to EP18748652.7A priority patent/EP3579480B1/en
Publication of WO2018143721A1 publication Critical patent/WO2018143721A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/06Channels characterised by the type of signal the signals being represented by different frequencies
    • H04L5/10Channels characterised by the type of signal the signals being represented by different frequencies with dynamo-electric generation of carriers; with mechanical filters or demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0628Diversity capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for reporting channel state information of a terminal.
  • Mobile communication systems have been developed to provide voice services while ensuring user activity.
  • the mobile communication system has expanded not only voice but also data service.As a result of the explosive increase in traffic, a shortage of resources and users are demanding higher speed services, a more advanced mobile communication system is required. have.
  • An object of the present invention is to improve a reference signal reception performance of a terminal through an appropriate quasi-co-location (QCL) assumption in a wireless communication system.
  • QCL quasi-co-location
  • a method of reporting channel state information (CSI) of a terminal in a wireless communication system comprising: receiving CSI-RS resource configuration information for receiving a CSI-RS (Reference Signal) resource from a base station; Receiving the CSI-RS resource based on the CSI resource configuration information; And reporting the CSI generated based on the CSI-RS resource to the base station.
  • the CSI-RS resource configuration information may include indication information regarding a subcarrier location to which the same CSI-RS resource is mapped.
  • the indication information may include first indication information about a subcarrier location to which the same CSI-RS resource is mapped, second indication information about a subcarrier location to which a zero power CSI-RS resource is mapped, and / or The third indication information on the subcarrier location to which the CSI-RS resource for the other terminal is mapped may be included.
  • the first indication information may include offset information of a first subcarrier to which the same CSI-RS resource is mapped and / or subcarrier spacing information to which the same CSI-RS resource is mapped.
  • the second indication information may include offset information of the first subcarrier to which the ZP CSI-RS resource is mapped and / or subcarrier spacing information to which the ZP CSI-RS resource is mapped.
  • the third indication information may include offset information of a first subcarrier to which the CSI-RS resource is mapped for the other terminal and / or subcarrier interval information to which the CSI-RS resource is mapped to the other terminal. It may include.
  • the same CSI-RS resource may be repeatedly transmitted within a specific time-duration by an interval between remaining subcarriers other than the subcarrier to which the ZP CSI-RS resource is mapped.
  • the specific time-section may be one orthogonal frequency division multiple (OFDM) symbol interval.
  • OFDM orthogonal frequency division multiple
  • the NZP CSI-RS resource for the other terminal is mapped to the subcarrier.
  • the CSI reporting method may further include receiving the same CSI-RS resource repeatedly transmitted within the specific time interval using different receive beam candidates; Selecting at least one reception beam candidate among the reception beam candidates based on the reception result; It may further include.
  • the CSI reporting method may further include signaling and transmitting information about a maximum number of available reception beam candidates to the base station by the terminal; It may further include.
  • the number of times the same CSI-RS resource is repeatedly transmitted within the specific-time interval may be determined based on the maximum number of reception beam candidates available to the terminal.
  • the indication information is information on a subcarrier location to which the same CSI-RS resource is mapped, and may indicate a number of times the same CSI-RS resource is repeated in one orthogonal frequency division multiple (OFDM) symbol. have.
  • a terminal for reporting channel state information (CSI) in a wireless communication system comprising: a radio frequency (RF) unit for transmitting and receiving a radio signal; And a processor controlling the RF unit; And the processor is configured to control the RF unit to receive CSI-RS resource configuration information for receiving a CSI-RS (Reference Signal) resource from a base station, and to control the RF unit based on the CSI resource configuration information.
  • a radio frequency (RF) unit for transmitting and receiving a radio signal
  • a processor controlling the RF unit
  • the processor is configured to control the RF unit to receive CSI-RS resource configuration information for receiving a CSI-RS (Reference Signal) resource from a base station, and to control the RF unit based on the CSI resource configuration information.
  • CSI-RS Reference Signal
  • the CSI-RS resource configuration information may include indication information regarding a subcarrier location to which the same CSI-RS resource is mapped.
  • the indication information may include first indication information about a subcarrier location to which the same CSI-RS resource is mapped, second indication information about a subcarrier location to which a zero power CSI-RS resource is mapped, and / or The third indication information on the subcarrier location to which the CSI-RS resource for the other terminal is mapped may be included.
  • the same CSI-RS resource may be repeatedly transmitted within a specific time-duration by an interval between remaining subcarriers other than the subcarrier to which the ZP CSI-RS resource is mapped.
  • the reception performance in terms of the space of the RS of the terminal is further improved by defining the reception beam related parameter as a new QCL parameter.
  • the QCL signaling is instructed to the UE in a layered signaling manner, not only the signaling overhead can be reduced but also the semi-static QCL indication considering the instantaneous situation is possible.
  • the CSI-RS is received based on the QCL assumption with the SSB, the reception performance of the CSI-RS is improved.
  • the QCL hypothesis is used for CSI-RS reception for beam operation, support for the QCL hypothesis operation for beam management can be achieved and the beam can be operated more efficiently.
  • the CSI-RS resource can be repeatedly transmitted a plurality of times within one OFDM symbol period, the effect of reducing the overall CSI procedure delay / overhead for beam management / operation is reduced.
  • FIG. 1 illustrates a structure of a radio frame in a wireless communication system to which the present invention can be applied.
  • FIG. 2 is a diagram illustrating a resource grid for one downlink slot in a wireless communication system to which the present invention can be applied.
  • FIG. 3 shows a structure of a downlink subframe in a wireless communication system to which the present invention can be applied.
  • FIG. 4 shows a structure of an uplink subframe in a wireless communication system to which the present invention can be applied.
  • FIG. 5 illustrates a self-contained subframe structure to which the present invention can be applied.
  • FIG. 6 illustrates a sub-array partition model that is a first TXRU virtualization model option.
  • FIG. 7 illustrates a full-connection model, which is a second TXRU virtualization model option.
  • FIG. 8 illustrates a reference signal pattern mapped to a downlink resource block pair in a wireless communication system to which the present invention can be applied.
  • FIG. 9 is a diagram illustrating a service area for each TXRU.
  • FIG 10 illustrates an antenna panel model to which analog beamforming is applied for each panel to which the present invention can be applied.
  • FIG. 11 illustrates a manner in which one CSI-RS resource is mapped per panel according to an embodiment of the present invention.
  • FIG. 12 illustrates a manner in which a plurality of CSI-RS resources are mapped per panel according to an embodiment of the present invention.
  • FIG. 13 illustrates a manner in which shared CSI-RS resources are mapped for a plurality of panels according to an embodiment of the present invention.
  • FIG. 14 is a diagram illustrating the duration of the SS block and SS burst that can be applied to the present invention.
  • 15 is a diagram illustrating an SS burst configuration for a TDD case that can be applied to the present invention.
  • Type 16 illustrates Type 1 CSI-RS and Type 2 CSI-RS that may be applied to the present invention.
  • 17 is a diagram illustrating a QCL assumption method according to type 2 CSI-RS configuration according to an embodiment of the present invention.
  • FIG. 18 is a diagram illustrating (mandatory) QCL indication for a type 2 CSI-RS resource according to an embodiment of the present invention.
  • FIG. 19 is a diagram illustrating an overall DL beam operating procedure according to an embodiment of the present invention.
  • 20 and 21 illustrate CSI-RS antenna port mapping for each subcarrier in the frequency domain according to an embodiment of the present invention.
  • 22 is a flowchart illustrating a CSI reporting method of a terminal according to an embodiment of the present invention.
  • FIG. 23 illustrates a block diagram of a wireless communication device according to an embodiment of the present invention.
  • a base station has a meaning as a terminal node of a network that directly communicates with a terminal.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases. That is, it is obvious that various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a base station (BS) is a fixed station, a Node B, an evolved-NodeB (eNB), a base transceiver system (BTS), an access point (AP), a gNB (g-NodeB, NR ( NewRAT) / 5G-NodeB) or the like.
  • a 'terminal' may be fixed or mobile, and may include a user equipment (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), and an AMS ( Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC) Device, Machine-to-Machine (M2M) Device, Device-to-Device (D2D) Device, etc.
  • UE user equipment
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS Advanced Mobile Station
  • WT Wireless Terminal
  • MTC Machine-Type Communication
  • M2M Machine-to-Machine
  • D2D Device-to-Device
  • downlink means communication from a base station to a terminal
  • uplink means communication from a terminal to a base station.
  • a transmitter may be part of a base station, and a receiver may be part of a terminal.
  • a transmitter may be part of a terminal and a receiver may be part of a base station.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA).
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802, 3GPP and 3GPP2. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • FIG. 1 illustrates a structure of a radio frame in a wireless communication system to which the present invention can be applied.
  • 3GPP LTE / LTE-A supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • a radio frame consists of 10 subframes.
  • One subframe consists of two slots in the time domain.
  • the time taken to transmit one subframe is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
  • One slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain. Since 3GPP LTE uses OFDMA in downlink, the OFDM symbol is for representing one symbol period. The OFDM symbol may be referred to as one SC-FDMA symbol or symbol period.
  • a resource block is a resource allocation unit and includes a plurality of consecutive subcarriers in one slot.
  • FIG. 1B illustrates a frame structure type 2.
  • FIG. Type 2 radio frames consist of two half frames, each of which has five subframes, a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS).
  • DwPTS downlink pilot time slot
  • GP guard period
  • UpPTS uplink pilot time slot
  • One subframe consists of two slots.
  • DwPTS is used for initial cell search, synchronization or channel estimation at the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • an uplink-downlink configuration is a rule indicating whether uplink and downlink are allocated (or reserved) for all subframes.
  • Table 1 shows an uplink-downlink configuration.
  • 'D' represents a subframe for downlink transmission
  • 'U' represents a subframe for uplink transmission
  • 'S' represents DwPTS
  • GP UpPTS
  • UpPTS Indicates a special subframe consisting of three fields.
  • the uplink-downlink configuration can be classified into seven types, and the location and / or number of downlink subframes, special subframes, and uplink subframes are different for each configuration.
  • Switch-point periodicity refers to a period in which an uplink subframe and a downlink subframe are repeatedly switched in the same manner, and both 5ms or 10ms are supported.
  • the special subframe S exists every half-frame, and in case of having a period of 5ms downlink-uplink switching time, it exists only in the first half-frame.
  • subframes 0 and 5 and DwPTS are sections for downlink transmission only.
  • the subframe immediately following the UpPTS and the subframe subframe is always an interval for uplink transmission.
  • the uplink-downlink configuration may be known to both the base station and the terminal as system information.
  • the base station may notify the terminal of the change of the uplink-downlink allocation state of the radio frame by transmitting only an index of the configuration information.
  • the configuration information is a kind of downlink control information, which may be transmitted through a physical downlink control channel (PDCCH) like other scheduling information, and is commonly transmitted to all terminals in a cell through a broadcast channel as broadcast information. May be
  • PDCCH physical downlink control channel
  • Table 2 shows the configuration of the special subframe (length of DwPTS / GP / UpPTS).
  • the structure of the radio frame is only one example, and the number of subcarriers included in the radio frame or the number of slots included in the subframe and the number of OFDM symbols included in the slot may be variously changed.
  • FIG. 2 is a diagram illustrating a resource grid for one downlink slot in a wireless communication system to which the present invention can be applied.
  • one downlink slot includes a plurality of OFDM symbols in the time domain.
  • one downlink slot includes seven OFDM symbols, and one resource block includes 12 subcarriers in a frequency domain, but is not limited thereto.
  • Each element on the resource grid is a resource element, and one resource block (RB) includes 12 ⁇ 7 resource elements.
  • the number NDL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth.
  • the structure of the uplink slot may be the same as the structure of the downlink slot.
  • FIG. 3 shows a structure of a downlink subframe in a wireless communication system to which the present invention can be applied.
  • up to three OFDM symbols in the first slot in a subframe are control regions to which control channels are allocated, and the remaining OFDM symbols are data regions to which PDSCH (Physical Downlink Shared Channel) is allocated. data region).
  • PDSCH Physical Downlink Shared Channel
  • An example of a downlink control channel used in 3GPP LTE includes a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid-ARQ indicator channel (PHICH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols (ie, the size of the control region) used for transmission of control channels within the subframe.
  • the PHICH is a response channel for the uplink and carries an ACK (Acknowledgement) / NACK (Not-Acknowledgement) signal for a hybrid automatic repeat request (HARQ).
  • Control information transmitted through the PDCCH is called downlink control information (DCI).
  • the downlink control information includes uplink resource allocation information, downlink resource allocation information or an uplink transmission (Tx) power control command for a certain terminal group.
  • the PDCCH is a resource allocation and transmission format of DL-SCH (Downlink Shared Channel) (also referred to as a downlink grant), resource allocation information of UL-SCH (Uplink Shared Channel) (also called an uplink grant), and PCH ( Paging information in paging channel, system information in DL-SCH, resource allocation for upper-layer control message such as random access response transmitted in PDSCH, arbitrary terminal It may carry a set of transmission power control commands for the individual terminals in the group, activation of Voice over IP (VoIP), and the like.
  • the plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs.
  • the PDCCH consists of a set of one or a plurality of consecutive CCEs.
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to the state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups.
  • the format of the PDCCH and the number of available bits of the PDCCH are determined according to the association between the number of CCEs and the coding rate provided by the CCEs.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the terminal, and attaches a CRC (Cyclic Redundancy Check) to the control information.
  • the CRC is masked with a unique identifier (referred to as RNTI (Radio Network Temporary Identifier)) according to the owner or purpose of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • a unique identifier of the terminal for example, a C-RNTI (Cell-RNTI) may be masked to the CRC.
  • a paging indication identifier for example, P-RNTI (P-RNTI) may be masked to the CRC.
  • the system information more specifically, the PDCCH for the system information block (SIB), the system information identifier and the system information RNTI (SI-RNTI) may be masked to the CRC.
  • SI-RNTI system information RNTI
  • RA-RNTI random access-RNTI
  • FIG. 4 shows a structure of an uplink subframe in a wireless communication system to which the present invention can be applied.
  • an uplink subframe may be divided into a control region and a data region in the frequency domain.
  • a physical uplink control channel (PUCCH) carrying uplink control information is allocated to the control region.
  • the data region is allocated a Physical Uplink Shared Channel (PUSCH) that carries user data.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • a PUCCH for one UE is allocated a resource block (RB) pair in a subframe.
  • RBs belonging to the RB pair occupy different subcarriers in each of the two slots.
  • This RB pair allocated to the PUCCH is said to be frequency hopping at the slot boundary (slot boundary).
  • next generation communication As more communication devices demand larger communication capacities, there is a need for improved mobile broadband communication compared to conventional RAT.
  • massive MTC Machine Type Communications
  • massive MTC Machine Type Communications
  • URLLC ultra-reliable and low latency communication
  • FIG. 5 illustrates a self-contained subframe structure to which the present invention can be applied.
  • a self-contained subframe structure as shown in FIG. 5 is considered in the fifth generation new RAT.
  • hatched areas indicate downlink control areas and black parts indicate uplink control areas.
  • an area without an indication may be used for downlink data transmission or may be used for uplink data transmission.
  • the feature of this structure is that DL transmission and UL transmission may proceed sequentially in one subframe, so that DL data may be sent in one subframe and UL ACK / NACK may be received. As a result, when a data transmission error occurs, the time taken to retransmit the data is reduced, thereby minimizing the delay until the final data transfer.
  • subframe structure configurable / configurable in a system operating based on New RAT
  • at least the following four subframe types may be considered.
  • sections existing in each subframe type are listed in chronological order.
  • a time gap is required for a process of switching a base station and a UE from a transmission mode to a reception mode or a process of switching from a reception mode to a transmission mode.
  • some OFDM symbols at the time of switching from DL to UL in the subframe structure may be set to GP.
  • Such a subframe type may be referred to as 'self-contained SF'.
  • mmW millimeter wave
  • the wavelength is shortened, so that multiple antennas can be installed in the same area. That is, in the 30 GHz band, the wavelength is 1 cm, and a total of 100 antenna elements can be installed in a 2-dimensional array in a 0.5 lambda (wavelength) interval on a panel of 5 by 5 cm. Therefore, in mmW, a plurality of antenna elements are used to increase beamforming (BF) gain to increase coverage or to increase throughput.
  • BF beamforming
  • TXRU transmitter unit
  • phase adjustment for each antenna element enables independent beamforming for each frequency resource.
  • TXRU transmitter unit
  • the analog beamforming method has a disadvantage in that only one beam direction can be made in the entire band and thus frequency selective beamforming cannot be performed.
  • a hybrid BF having B TXRUs, which is smaller than Q antenna elements, may be considered as an intermediate form between digital BF and analog BF.
  • the direction of beams that can be transmitted simultaneously is limited to B or less.
  • FIG. 6 and 7 illustrate a representative connection scheme of a TXRU and an antenna element. More specifically, FIG. 6 illustrates a sub-array partition model, which is a first TXRU virtualization model option, and FIG. 7 illustrates a full-connection model, which is a second TXRU virtualization model option.
  • the TXRU virtualization model shows the relationship between the output signal of the TXRU and the output signal of the antenna element.
  • the antenna element is connected to only one TXRU.
  • the antenna element is connected to all TXRUs.
  • W denotes a phase vector multiplied by an analog phase shifter. That is, the analog beamforming direction may be determined by W.
  • the mapping between the CSI-RS antenna ports and the TXRUs may be one to one (1 to 1, 1: 1) or one to many (1 to many, 1: N).
  • Reference signal ( RS : Reference Signal)
  • the signal Since data is transmitted over a wireless channel in a wireless communication system, the signal may be distorted during transmission. In order to correctly receive the distorted signal at the receiving end, the distortion of the received signal must be corrected using the channel information.
  • a signal transmission method known to both a transmitting side and a receiving side and a method of detecting channel information using a distorted degree when a signal is transmitted through a channel are mainly used.
  • the above-mentioned signal is called a pilot signal or a reference signal (RS).
  • RS can be classified into two types according to its purpose. There is an RS for obtaining channel state information and an RS used for data demodulation. Since the former is intended for the UE to acquire channel state information on the downlink, it should be transmitted over a wide band, and a UE that does not receive downlink data in a specific subframe should be able to receive and measure its RS. It is also used for radio resource management (RRM) measurement such as handover.
  • RRM radio resource management
  • the latter is an RS that the base station sends along with the corresponding resource when the base station transmits the downlink, and the UE can estimate the channel by receiving the RS, and thus can demodulate the data. This RS should be transmitted in the area where data is transmitted.
  • the downlink reference signal is one common reference signal (CRS: common RS) for acquiring information on channel states shared by all terminals in a cell, measurement of handover, etc. and a dedicated reference used for data demodulation only for a specific terminal. There is a dedicated RS. Such reference signals may be used to provide information for demodulation and channel measurement. That is, DRS is used only for data demodulation and CRS is used for both purposes of channel information acquisition and data demodulation.
  • CRS common reference signal
  • the receiving side measures the channel state from the CRS and transmits an indicator related to the channel quality such as the channel quality indicator (CQI), precoding matrix index (PMI) and / or rank indicator (RI). Feedback to the base station).
  • CRS is also referred to as cell-specific RS.
  • CSI-RS a reference signal related to feedback of channel state information
  • a UE In a 3GPP LTE (-A) system, a UE is defined to report CSI to a base station (BS), where the CSI may indicate the quality of a radio channel (also referred to as a link) formed between the UE and the antenna port.
  • a rank indicator (RI), a precoding matrix indicator (PMI), and / or a channel quality indicator (CQI) may correspond to the CSI.
  • RI represents rank information of a channel, which means the number of streams that a UE receives through the same time-frequency resource. Since the RI is determined dependently by the long-term fading of the channel, it may be fed back from the UE to the base station in a period longer than PMI and CQI.
  • PMI is a value reflecting channel spatial characteristics and indicates a precoding index preferred by the UE based on a metric such as SINR.
  • CQI is a value indicating the strength of a channel and generally means a reception SINR obtained when the base station uses PMI.
  • the base station may configure a plurality of CSI processes to the UE, and receive and report the CSI for each process.
  • the CSI process may include a CSI-RS for signal quality measurement from a base station and a CSI-interference measurement (CSI-IM) resource for interference measurement.
  • CSI-IM CSI-interference measurement
  • the DRS may be transmitted through resource elements when data demodulation on the PDSCH is needed.
  • the UE may receive the presence or absence of a DRS through a higher layer and is valid only when a corresponding PDSCH is mapped.
  • the DRS may be referred to as a UE-specific RS or a demodulation RS (DMRS).
  • FIG. 8 illustrates a reference signal pattern mapped to a downlink resource block pair in a wireless communication system to which the present invention can be applied.
  • a downlink resource block pair may be represented by 12 subcarriers in one subframe x frequency domain in a time domain in which a reference signal is mapped. That is, one resource block pair on the time axis (x-axis) has a length of 14 OFDM symbols in the case of normal cyclic prefix (normal CP) (in case of FIG. 7 (a)), and an extended cyclic prefix ( extended CP: Extended Cyclic Prefix) has a length of 12 OFDM symbols (in case of FIG. 7 (b)).
  • normal CP normal cyclic prefix
  • extended CP Extended Cyclic Prefix
  • Resource elements (REs) described as '0', '1', '2' and '3' in the resource block grid have the antenna port indexes of '0', '1', '2' and '3', respectively.
  • the location of the CRS, and the resource elements described as 'D' means the location of the DRS.
  • the reference signal for the single antenna port is arranged.
  • the reference signals for the two transmit antenna ports are arranged using time division multiplexing (TDM) and / or FDM frequency division multiplexing (FDM) scheme. That is, the reference signals for the two antenna ports are assigned different time resources and / or different frequency resources so that each is distinguished.
  • TDM time division multiplexing
  • FDM frequency division multiplexing
  • reference signals for the four transmit antenna ports are arranged using the TDM and / or FDM scheme.
  • the channel information measured by the receiving side (terminal) of the downlink signal may be transmitted by a single transmit antenna, transmit diversity, closed-loop spatial multiplexing, open-loop spatial multiplexing, or It may be used to demodulate data transmitted using a transmission scheme such as a multi-user MIMO.
  • a reference signal when a multiple input / output antenna is supported, when a reference signal is transmitted from a specific antenna port, the reference signal is transmitted to a location of resource elements specified according to a pattern of the reference signal, and the location of resource elements specified for another antenna port. Is not sent to. That is, reference signals between different antennas do not overlap each other.
  • LTE system evolution In the advanced LTE-A system, it should be designed to support up to eight transmit antennas in the downlink of the base station. Therefore, RS for up to eight transmit antennas must also be supported. Since the downlink RS in the LTE system defines only RSs for up to four antenna ports, when the base station has four or more up to eight downlink transmit antennas in the LTE-A system, RSs for these antenna ports are additionally defined. Must be designed. RS for up to eight transmit antenna ports must be designed for both the RS for channel measurement and the RS for data demodulation described above.
  • an RS for an additional up to eight transmit antenna ports should be additionally defined in the time-frequency domain in which CRS defined in LTE is transmitted every subframe over the entire band.
  • the RS overhead becomes excessively large.
  • the newly designed RS in LTE-A system is divided into two categories, RS for channel measurement purpose for selecting MCS, PMI, etc. (CSI-RS: Channel State Information-RS, Channel State Indication-RS, etc.) And RS (Data Demodulation-RS) for demodulation of data transmitted through eight transmit antennas.
  • CSI-RS Channel State Information-RS, Channel State Indication-RS, etc.
  • RS Data Demodulation-RS
  • CSI-RS for the purpose of channel measurement has a feature that is designed for channel measurement-oriented purposes, unlike the conventional CRS is used for data demodulation at the same time as the channel measurement, handover, and the like. Of course, this may also be used for the purpose of measuring handover and the like. Since the CSI-RS is transmitted only for the purpose of obtaining channel state information, unlike the CRS, the CSI-RS does not need to be transmitted every subframe. In order to reduce the overhead of the CSI-RS, the CSI-RS is transmitted intermittently on the time axis.
  • LTE-A system up to eight transmit antennas are supported on the downlink of a base station.
  • the RS for up to 8 transmit antennas are transmitted in every subframe in the same manner as the CRS of the existing LTE, the RS overhead becomes excessively large. Therefore, in the LTE-A system, two RSs are added, separated into CSI-RS for CSI measurement and DM-RS for data demodulation for selecting MCS and PMI.
  • the CSI-RS can be used for purposes such as RRM measurement, but is designed for the purpose of obtaining CSI. Since the CSI-RS is not used for data demodulation, it does not need to be transmitted every subframe.
  • the CSI-RS may be periodically transmitted with an integer multiple of one subframe or may be transmitted in a specific transmission pattern. At this time, the period or pattern in which the CSI-RS is transmitted may be set by the eNB.
  • the UE In order to measure the CSI-RS, the UE must transmit the CSI-RS index of the CSI-RS for each CSI-RS antenna port of the cell to which it belongs, and the CSI-RS resource element (RE) time-frequency position within the transmitted subframe. , And information about the CSI-RS sequence.
  • RE resource element
  • the eNB should transmit CSI-RS for up to eight antenna ports, respectively.
  • Resources used for CSI-RS transmission of different antenna ports should be orthogonal to each other.
  • these resources may be orthogonally allocated in FDM / TDM manner by mapping CSI-RSs for each antenna port to different REs.
  • the CSI-RSs for different antenna ports may be transmitted in a CDM scheme that maps to orthogonal codes.
  • the eNB informs its cell UE of the information about the CSI-RS, it is necessary to first inform the information about the time-frequency to which the CSI-RS for each antenna port is mapped. Specifically, the subframe numbers through which the CSI-RS is transmitted, or the period during which the CSI-RS is transmitted, the subframe offset through which the CSI-RS is transmitted, and the OFDM symbol number where the CSI-RS RE of a specific antenna is transmitted, and the frequency interval (spacing), the RE offset or shift value in the frequency axis.
  • analog beamforming at mmW PDSCH transmission is possible only in one analog beam direction at a time.
  • data can be transmitted from the base station to only a few UEs in the corresponding direction.
  • different analog beam directions may be set for each antenna port to simultaneously transmit data to a plurality of UEs in different analog beam directions.
  • FIG. 9 is a diagram illustrating a service area for each TXRU.
  • each sub-array consists of a total of 64 (8x8) antenna elements in a 2-dimension array, it will cover an area corresponding to 15 degrees of horizontal angle and 15 degrees of vertical angle by a specific analog beamforming. It becomes possible.
  • the base area to be serviced is divided into a plurality of areas, so that they can be serviced one at a time.
  • the CSI-RS antenna port and the TXRU are mapped one-to-one (1-to-1). Therefore, hereinafter, the antenna port and the TXRU have substantially the same meaning.
  • TXRUs Antenna ports, sub-arrays
  • a digital beam having a higher resolution is formed to form a throughput of the region.
  • throughput can be increased.
  • the throughput of the region may be increased.
  • each TXRU (antenna port, sub-array) has a different analog beamforming direction
  • data transmission can be simultaneously performed in a corresponding subframe (SF) to UEs distributed in a wider area.
  • SF subframe
  • two of the four antenna ports may be used for PDSCH transmission to UE1 in region 1 and the other two may be used for PDSCH transmission to UE2 in region 2.
  • FIG. 9 (b) shows an example in which SDM (Spatial Division Multiplexing) is performed between PDSCH1 transmitted to UE1 and PDSCH2 transmitted to UE2.
  • FIG. 9C illustrates an example in which frequency division multiplexing (FDM) is performed between PDSCH1 transmitted to UE1 and PDSCH2 transmitted to UE2.
  • FDM frequency division multiplexing
  • the preferred method may be changed according to the rank and MCS service to the UE in order to maximize cell throughput among the method of serving one region using all antenna ports and dividing the antenna ports to serve multiple regions at the same time.
  • the preferred method may be changed according to the amount of data to be transmitted to each UE.
  • the base station calculates the cell throughput or scheduling metric obtained when serving a region using all antenna ports, and calculates the cell throughput or scheduling metric obtained when serving two regions by dividing the antenna ports.
  • the base station may select the final transmission scheme by comparing the cell throughput or scheduling metric obtained through each scheme.
  • the number of antenna ports participating in PDSCH transmission may be varied by SF (by SF-by-SF).
  • CSI feedback from the UE suitable for this may be required.
  • BRS sequence May be defined as in Equation 1 below.
  • c (i) represents a pseudo-random sequence generator and may be initialized by Equation 2 at the start of each OFDM symbol.
  • BRRS sequence May be defined as in Equation 3 below.
  • Equation 3 n_s represents a slot number in a radio frame, l represents an OFDM symbol number in the slot, and c (n) represents a pseudo-random sequence.
  • the pseudo-random sequence generator may be initialized by Equation 4 at the start of each OFDM symbol.
  • equation (4) May be configured in the UE through RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the BRS may be transmitted in every subframe and may be transmitted in different analog beam directions for each port.
  • This BRS can be used by the base station to determine the approximate analog beam direction for the UE. Once the approximate analog beam direction for the UE is determined based on the BRS, the base station can determine the more precise analog beam direction for the UE by transmitting BRRS for each more precise / fine analog beam direction within the determined analog beam direction range.
  • the name of the reference signal used to determine the analog beam direction for the UE is not limited to the above-described BRS or BRRS, and may be replaced / designated with various reference signals available for performing the same function.
  • the BRS may be a primary / first CSI-RS, a primary synchronization signal / sequence (PSS), a secondary synchronization signal / sequence (SSS), a synchronization signal / sequence (SS) block, an NR-PSS, and / or an NR-SSS. May be replaced / designated, and BRRS may be replaced / designated by secondary / second CSI-RS.
  • the PCRS exists only when xPDSCH transmission is associated with a corresponding antenna port, and the PCRS may be an effective reference for phase noise compensation.
  • the PCRS may be transmitted only in the physical resource blocks and symbols to which the corresponding xPDSCH is mapped.
  • the PCRS may be the same in all symbols corresponding to the xPDSCH assignment.
  • the PCRS sequence r (m) may be defined as shown in Equation 5 below.
  • Equation 5 c (i) represents a pseudo-random sequence.
  • the pseudo-random sequence generator may be initialized by Equation 6 at the start of each subframe.
  • n_SCID value may be set to 0 unless otherwise specified.
  • n_SCID may be given by the DCI format associated with the xPDSCH transmission.
  • the UE when the UE receives data (e.g., PDSCH), a method of demodulation to a UE-specific RS such as a specific DMRS is considered. Since the DMRS is transmitted together only for the scheduled RB (s) of the PDSCH and is transmitted only during the time interval in which the scheduled PDSCH is transmitted, there may be a limitation in reception performance in performing channel estimation only with the DMRS itself. For example, in performing channel estimation, an estimated value of a major large-scale parameter / property (LSP) of a radio channel is required, and DMRS density may not be sufficient to obtain only the DMRS existing in the time / freq region where the scheduled PDSCH is transmitted. There is a number. Therefore, in order to support the implementation of the terminal, the LTE-A standard defines the following quasi co-location signaling / assumption / behavior between RS ports and supports methods for setting / operating the terminal accordingly.
  • LSP major large-scale parameter / property
  • QC / QCL quadsi co-located or quasi co-location
  • the wide range characteristics include one or more of delay spread, Doppler spread, frequency shift, average received power, and received timing.
  • the terminal may assume that one symbol may be inferred from the radio channel through which it is carried.
  • the broad characteristics include one or more of delay spread, Doppler spread, Doppler shift, average gain, and average delay.
  • two antenna ports are in QC / QCL relationship (or QC / QCL), so that the broad characteristics of the radio channel from one antenna port are the same as those of the radio channel from the other antenna port.
  • Means Considering a plurality of antenna ports through which RSs are transmitted, if the antenna ports through which two different RSs are transmitted are in a QCL relationship, the broad characteristics of the radio channel from one antenna port may be obtained from another antenna port. It could be replaced by the broad nature of the wireless channel.
  • the above QC / QCL related definitions are not distinguished. That is, the QC / QCL concept may follow one of the above definitions. Or in another similar form, antenna ports for which QC / QCL assumptions hold can be assumed to be transmitted at the same co-location (eg, antenna ports transmitting at the same transmission point). QC / QCL concept definitions may be modified, and the spirit of the present invention includes such similar variations. In the present invention, the above definitions related to QC / QCL are used interchangeably for convenience of description.
  • the terminal cannot assume the same wide-ranging characteristic among the radio channels from the corresponding antenna ports for non-QC / QCL antenna ports. That is, in this case, the terminal must perform independent processing for each set non-QC / QCL antenna port for timing acquisition and tracking, frequency offset estimation and compensation, delay estimation, and Doppler estimation.
  • the terminal can perform the following operations:
  • the terminal may determine the power-delay profile, delay spreading and Doppler spectrum, and Doppler spreading estimation results for the radio channel from any one antenna port. The same applies to a Wiener filter used for channel estimation for a wireless channel from another antenna port.
  • the terminal may perform time and frequency synchronization for one antenna port and then apply the same synchronization to demodulation of another antenna port.
  • the terminal may average reference signal received power (RSRP) measurements for two or more antenna ports.
  • RSRP reference signal received power
  • the UE estimates the radio channel estimated from its CRS antenna port when estimating the channel through the corresponding DMRS antenna port.
  • large-scale properties large-scale properties
  • the CRS is a reference signal broadcast with a relatively high density (density) throughout every subframe and the entire band, so that an estimate of the wide characteristic can be obtained more stably from the CRS.
  • the DMRS is UE-specifically transmitted for a specific scheduled RB, and since the precoding matrix used by the BS is changed in the precoding resource block group (PRG) unit, the effective channel received by the UE is Since the PRG may vary in units of PRGs, even when a plurality of PRGs are scheduled, performance degradation may occur when DMRS is used to estimate a wide range of characteristics of a wireless channel over a wide band.
  • PRG precoding resource block group
  • the CSI-RS can have a transmission period of several to several tens of ms, and has a low density of 1 resource element per antenna port on average per resource block, the CSI-RS can also be used to estimate the wide characteristics of a radio channel. Performance degradation may occur.
  • the UE can utilize the detection / reception of a downlink reference signal, channel estimation, and channel state reporting.
  • the UE may assume that antenna ports 0-3 of the serving cell and antenna ports for PSS / SSS have a QCL relationship with respect to Doppler shift and average delay.
  • a UE configured with transmission mode 10 for a given serving cell may be configured with up to four parameter sets by higher layer signaling to decode the PDSCH according to the detected PDCCH / EPDCCH having the DCI format 2D for the UE and the given serving cell.
  • the parameter set according to the Co-Location indicator 'field value can be used.
  • the parameter set indicated in the PDCCH / EPDCCH with the DCI format 2D corresponding to the associated SPS activation can be used to determine the PDSCH RE mapping and PDSCH antenna port QCL.
  • the following parameters for determining PDSCH RE mapping and PDSCH antenna port QCL are set via higher layer signaling for each parameter set:
  • the UE Decode the PDSCH according to the detected PDCCH / EPDCCH with DCI format 1A with CRC scrambled with the C-RNTI intended for the given serving cell, and for PDSCH transmission on antenna port 7, the UE is a Type B QCL type
  • a UE configured with transmission mode 10 for a given serving cell should use parameter set 1 of Table 3.
  • a UE configured with transmission mode 10 for a given serving cell must use parameter set 1 of Table 3.
  • the UE with transmission mode 10 set for the given serving cell is the lowest
  • the PDSCH RE mapping must be determined using the lower indexed zero-power CSI-RS.
  • the UE in which transmission mode 8-10 is set for the serving cell, assumes that antenna ports 7-14 of the serving cell are QCL for delay spread, Doppler spread, Doppler shift, average gain, and average delay of a given subframe.
  • a UE configured for transmission mode 1-9 for a serving cell may have QCLs for Doppler shift, Doppler spread, average delay, and delay spread of a given subframe in antenna ports 0-3, 5, and 7-30 of the serving cell. Assume that
  • a UE configured with a transmission mode 10 for a serving cell has one of the following two QCL types for the serving cell by higher layer parameter qcl-Operation to decode the PDSCH according to the transmission scheme associated with the antenna ports 7-14. Consists of one
  • Type A The UE is QCL antenna ports 0-3, 7-30 of the serving cell for delay spread, Doppler spread, Doppler shift, and average delay.
  • Type B UE uses Doppler shift for antenna ports 15-30 corresponding to CSI-RS resource configuration identified by higher layer parameter qcl-CSI-RS-ConfigNZPId-r11 and antenna ports 7-14 associated with PDSCH. ), Doppler spread, average delay, and delay spread.
  • LAA Licensed-Assisted Access
  • the UE may be configured with one CSI-RS resource configuration.
  • the UE may be configured with one CSI-RS resource configuration.
  • the UE may be configured with one or more CSI-RS resource configurations.
  • the UE may be configured with one or more CSI-RS resource configuration (s).
  • the following parameters for a UE that should assume non-zero transmit power for CSI-RS are set via higher layer signaling for each CSI-RS resource configuration:
  • transmission mode 10 is set for the UE, the UE assumptions about the reference PDSCH transmission power for CSI feedback (P_c) for each CSI process. If the CSI subframe sets C_ (CSI, 0) and C_ (CSI, 1) are set by the higher layer for the CSI process, then P_c is set for each CSI subframe set of the CSI process.
  • CDM type parameter if UE is set higher layer parameter CSI-Reporting-Type and CSI reporting type is set to 'CLASS A' for CSI process.
  • the higher layer parameter qcl-CRS-Info-r11 for the UE assumption of the QCL type B of the CRS antenna ports and the CSI-RS antenna ports having the following parameters:
  • P_c is an estimated ratio of PDSCH EPRE to CSI-RS Energy Per Resource Element (EPRE) when the UE derives CSI feedback and takes a value within the range [-8, 15] dB with 1 dB step size, where PDSCH EPRE Corresponds to the number of symbols for the ratio of PDSCH EPRE to cell related RS EPRE.
  • EPRE Energy Per Resource Element
  • the UE does not expect the configuration of the CSI-RS and PMCH in the same subframe of the serving cell.
  • the UE does not expect to receive a CSI-RS configuration index belonging to the [20 -31] set for the generic CP or the [16 -27] set for the extended CP. Do not.
  • the UE may assume that it is QCL for delay spread, Doppler spread, Doppler shift, average gain, and average delay between CSI-RS antenna ports of the CSI-RS resource configuration.
  • a UE configured with transmission mode 10 and QCL Type B may assume antenna ports 0-3 associated with qcl-CRS-Info-r11 corresponding to CSI-RS resource configuration, and antenna ports corresponding to CSI-RS resource configuration 15-30 may be assumed to be QCL for Doppler shift and Doppler spread.
  • the eMIMO type is set to CLASS B, the number of CSI-RS resources configured for one CSI procedure is plural, and QCL type B is set,
  • the UE does not expect to receive a CSI-RS resource configuration for a CSI process having a value different from the higher layer parameter qcl-CRS-Info-r11.
  • a BL / CE UE with CEModeA or CEModeB set does not expect a non-zero transmit power CSI-RS to be set.
  • the UE shall not assume that the two antenna ports are QCLed unless otherwise specified.
  • the UE may assume that antenna ports 0-3 of the serving cell are QCLed for delay spread, Doppler spread, Doppler shift, average gain and average delay.
  • the UE For discovery signal based measurement purposes, the UE should not assume that there is a signal or physical channel other than the discovery signal.
  • the UE supports discoverySignalsInDeactSCell-r12, the discovery signal based RRM measurement for the carrier frequency applicable to the secondary cell on the same carrier frequency is set in the UE, the secondary cell is disabled, the UE is in the secondary cell by the higher layer If not set to receive the MBMS, the UE shall have the secondary cell PSS, SSS, Physical Broadcast Channel (PBCH), CRS, PCFICH, PDSCH, PDCCH, EPDCCH, PHICH, DMRS and CSI-RS (except for discovery signal transmission). It is assumed that no subframe is received by the secondary cell until the activation command is received.
  • PBCH Physical Broadcast Channel
  • CRS Physical Broadcast Channel
  • PCFICH Physical Broadcast Channel
  • PDSCH Physical Broadcast Channel
  • PDCCH Physical Broadcast Channel
  • EPDCCH EPDCCH
  • PHICH PHICH
  • DMRS CSI-RS
  • the base station may correspond to an "element” depending on the N (N >> 1) antenna port (or specific port-to-element virtualization).
  • N N >> 1 antenna port (or specific port-to-element virtualization).
  • the throughput of the system can be increased by performing D-beam forming using a "port" for convenience of description.
  • the CSI-RS operation (or CSI reporting operation) of the non-precoded scheme defined as Class A (each CSI process has one CSI-RS resource and one CSI-RS operations (or CSI reporting operations) in a beamformed scheme defined as Class B (which may be associated with CSI-IM resources), and each CSI process may be associated with one or more CSI-RS resources. Or more CSI-IM resources).
  • the base station may configure several CSI-RS resources to the UE in one CSI procedure.
  • the UE merges each of the CSI-RS resources configured in one CSI procedure without considering it as an independent channel and assumes one large CSI-RS resource, and calculates / acquires CSI from the corresponding resource and feeds it back to the base station. For example, if the base station configures three 4-port CSI-RS resources to the UE within one CSI procedure, the UE merges the configured three 4-port CSI-RS resources into one 12-port CSI-RS. Assume an RS resource. The UE calculates / acquires CSI from the corresponding resource using 12-port PMI and feeds it back to the base station.
  • the base station may configure several CSI-RS resources to the UE in one CSI procedure. For example, within one CSI procedure, the base station can configure eight 4-port CSI-RS resources for the UE. As different virtualization is applied to each of the eight 4-port CSI-RSs, different beamforming may be applied. For example, assuming vertical beamforming is applied at the zenith angle of 100 degrees to the first CSI-RS, vertical beamforming is applied to the second to eighth CSI-RSs with a zenith angle difference of 5 degrees. As a result, vertical beamforming may be applied to a CSI-RS corresponding to the eighth at a zenith angle of 135 degrees.
  • the UE assumes each of the configured CSI-RS resources as an independent channel, selects one of the configured CSI-RS resources, calculates / acquires CSI based on the selected resource, and feeds back / reports to the base station. . That is, the UE may select a robust CSI-RS resource from among the eight configured 4-port CSI-RS resources, calculate the CSI based on the selected CSI-RS resource, and report it to the base station. In this case, the UE may report the selected CSI-RS resource to the base station through a CSI-RS Resource Index (CRI) value. For example, when the first CSI-RS resource channel is the strongest, the UE may report the base station by setting the CRI value to '0'.
  • CRI CSI-RS Resource Index
  • K may mean the number of CSI-RS resources existing in the CSI process
  • Nk may mean the number of CSI-RS ports of the k-th CSI-RS resource. For example, if the UE is configured with eight 4-port CSI-RS resources, K is 8 and Nk is 4 regardless of k value.
  • the CRI indicates only a specific CSI-RS resource, but in the future, the CRI may be further embodied as indicating a specific port combination to a specific CSI-RS.
  • the CRI indicates that one selected CSI-RS resource among the eight CSI-RS resources in the CSI procedure and the additionally selected one CSI-RS resource are composed of a combination of ports 15 and 16.
  • the UE measures N antenna ports, selects an N-port precoder using the N-port precoder, and reports CSI (PMI, CQI, RI, etc.) related thereto to the base station.
  • CSI PMI, CQI, RI, etc.
  • the CSI-RS for channel measurement of the UE should also increase, and the codebook size related thereto also increases, and as a result, the feedback overhead also increases.
  • the number of CSI-RS ports is related to the maximum rank of the terminal rather than the number of antenna ports of the base station, so that the number of antenna ports of the base station can be used without a large increase in the CSI-RS.
  • the robustness of beamforming may be weakened in an environment in which the mobility of the terminal is high and in a narrow environment of the beam of the base station.
  • a hybrid CSI-RS based scheme (or CSI reporting technique) using a combination of Class A and B may be considered.
  • an LSP estimated from a specific QCLed CSI-RS resource indicated by a scheduling DCI to receive channel estimation help of a DMRS transmitted with a scheduled PDSCH can be used.
  • the aperiodic CSI-RS transmission scheme is considered in that CSI-RS transmission itself is transmitted only when necessary out of the conventional periodic form.
  • the RS density utilized as the CSI-RS for the QCL assumption may be significantly shorter than that of the existing system. Therefore, hereinafter, various QCL operation embodiments in consideration of the aperiodic CSI-RS transmission scheme in the NR environment will be proposed.
  • the QCL parameters that can be defined in the NR environment.
  • the following QCL parameters are not limited to the NR environment but can be applied to various wireless communication systems.
  • QCL parameter to be considered at least one of the following may be defined / set:
  • reception beam related parameters such as AA and AS may be defined as a new type of QCL parameter.
  • the terminal may receive (or receive beam width / sweeping) the received beam direction of the transmit signal from another antenna port (s) equal to (or in connection with) AA estimated from the particular antenna port (s).
  • Degree) and the like may mean that transmission signals can be received.
  • reception performance may be guaranteed to be above a certain level.
  • AA may also be replaced by a name such as “(Almost) Dominant arrival angle”.
  • the QCL hypothesis from the AA point of view is that a signal measured from another antenna port that is assumed to be QCL (or has a QCL relationship) assuming that there is a certain dominant (arrival) angle 'S' of the signal measured from that particular antenna port.
  • the specific dominant (arrival) angle of may be interpreted to mean that the "almost” is the same / similar to the S. That is, a receiver capable of QCL assumption may “almost” the AA estimated from a particular indicated QCLed RS / SS of another QCLed RS / SS having a QCL relationship with that RS / SS.
  • AS can be divided into Azimuth AS and Zenith AS, and in this case, they can be defined separately or together for each dimension. And / or, AS may be divided into departure AS and arrival AS, and may be defined separately or together for each AS.
  • a QCL assumption is possible with respect to the receive beam width / sweeping degree (and / or receive beam direction) between antenna ports where the QCL is guaranteed / assumed.
  • a terminal may receive (and / or receive) beam width / sweeping degree of a transmit signal from another antenna port (s) that is the same as or similar to the AS estimated from a particular antenna port (s).
  • Beam direction may be set to receive a transmission signal. As such, when the UE operates, reception performance may be guaranteed to be above a certain level.
  • AA can be interpreted as an average, (most) valid / dominant beam / spatial direction / angle related parameter, and AS (with respect to AA above) It can be interpreted as a beam / space / angle spectrum / range related parameter regarding how far the beam direction is spread by reflector distribution or the like.
  • AA and AS are the parameters used in the QCL assumption for the reception beam / space / angle management function after all, for example, reception beam parameters, reception beam related parameters, reception angle parameters, reception angle related parameters, reception It may be collectively referred to as a spatial parameter, a spatial QCL parameter, a spatial parameter or a spatial Rx parameter.
  • AA and AS will be collectively referred to as 'receive beam related parameters'.
  • Receive beam related parameters include Angle of Arrival (AoA), Dominant AoA, average AoA, Power Angular Spectrum (PAS) of AoA, average Angle of Departure (AoD), PAS of AoD, transmit / receive channel correlation, transmit / receive beamforming, spatial channel correlation may be defined.
  • AoA Angle of Arrival
  • Dominant AoA Dominant AoA
  • average AoA Power Angular Spectrum
  • AoD Average Angle of Departure
  • PAS of AoD transmit / receive channel correlation
  • transmit / receive beamforming spatial channel correlation
  • PAP Power Angle (-of-Arrival) Profile
  • PAPs are PAPs for Azimuth and / or Zenith angle-domains, which may be defined separately or together for each particular dimension. And / or the PAPs may be defined separately or together, respectively, in terms of departure and / or arrival.
  • QCL guarantee / assumed means, for example, the reception beam width / sweeping degree in the case where it is desired to receive a transmission signal from another antenna port (s) based on a PAP estimated from a particular antenna port (s). And / or receive beam direction), etc., may be set to be the same as (or associated with) the specific antenna port (s) and may be received. Furthermore, QCL guarantee / assumption from a PAP point of view may mean that reception performance when operated in this manner is guaranteed to a certain level or more.
  • partial QCL (or may be referred to as a similar / modified name such as sub-QCL, fractional QCL, or quasi-sub-location)” Introduce the new concept of.
  • certain antenna ports may also be referred to as pseudo / modified names, such as “Partial QCL (or sub-QCL, fractional QCL, or quasi-sub-location).
  • Partial QCL or sub-QCL, fractional QCL, or quasi-sub-location.
  • a signal transmitted from a particular antenna port group A e.g., antenna port group A may be one or more
  • a (wireless) channel experienced / observed accordingly is a particular antenna
  • Partial QCL” is established for a signal transmitted from port group B (eg, antenna port group B may be one or more) and / or thus experienced / observed (wireless) channel.
  • port group B eg, antenna port group B may be one or more
  • the QCL parameter (s) / property (s) for antenna port group A are the “sub-sets of QCL parameter (s) / property (s) estimated from antenna port group B. set) (relationships that are the same or included in a superset) ”. This may mean that performance is guaranteed at a certain level or more when the associated operation based on this is applied.
  • This “partial QCL” has meaning in various environments.
  • a plurality of physical antennas form a single frequency network (SFN) to form a logical antenna port group A, and the logical antenna group B is mapped to individual physical antennas.
  • Case may be considered. That is, as a representative example, the antenna ports of the logical antenna port group A are mapped to a plurality of physical antennas (especially when LSPs are different for each physical antenna) so that signals of the corresponding antenna ports are simultaneously transmitted through the plurality of antennas.
  • An antenna port of the antenna port group B may be mapped to any one of a plurality of physical antennas to which the logical antenna port group A has been mapped, and a signal of the corresponding port is transmitted through the one antenna.
  • the receiving end may derive the LSP of the channel to be subjected to / transmitted by the signal transmitted via logical antenna port group B from the LSP of the channel obtained from the signal transmitted through logical antenna port group A (ie , Partial QCL relationship / establishment).
  • the channel delay values for / affecting the signal transmitted through logical antenna port group B are In this regard, a relationship may be established / assumed that is some of the channel delay values that affect / influence the signal transmitted through logical antenna port group A. And / or, for example, if logical antenna port group B has a partial QCL relationship for logical antenna port group A in a multipath fading panel environment, affecting / affecting the signal transmitted through logical antenna port group B Channel Doppler values may be established / assumed that are some of the channel Doppler values that affect / affect the signal transmitted over logical antenna port group A.
  • the receiving end may perform parameter / LSP setting for the channel estimator of the signal received through the logical antenna port group B / based on the LSP obtained from the signal of the logical antenna port group A.
  • the receiving end can receive the signal transmitted through the logical antenna port group B among the receiving beam directions (or angles / ranges) for receiving the signal transmitted through the logical antenna port group A. Or angle / range). This allows the receiving end to improve the search speed in the receiving beam direction and / or reduce the complexity of the receiving process.
  • At least one of the above-described QCL parameters / properties is the following specific RS / SS (e.g., different types of RS / SS among RS / SS described below or the same type). Of RS / SS) may be supported to be used for terminal operation.
  • PSS and / or SSS can be collectively referred to as 'synchronization sequence / signal block'
  • PCS Phase Noise Compensation Reference Signal
  • the BRRS and the QCLed RS / SS may be provided together when setting the RRC of the corresponding BRRS, which may be regarded as supporting semi-static QCL configuration for BRRS.
  • L2-level (and / or L1-level) QCL settings such as medium access control (MAC) control elements (MAC) (and / or DCI)
  • MAC medium access control
  • DCI data control elements
  • all the QCL configuration information is provided to the terminal (in real time) at L2-level (and / or L1-level) with full flexibility, or a plurality of candidate QCL configuration parameter sets are configured through RRC configuration.
  • which of these may be selected / applied / used may be supported in a form in which the UE is instructed through L2-level (and / or L1-level) signaling.
  • the way of telling is also applicable.
  • the QCL configuration may be layered (e.g., a total of three orders) (or a plurality of times) to be indicated / provided to the terminal, primarily through the RRC configuration, and secondly, L2-.
  • the layered QCL configuration indication method may be applied to the same / similarly for the QCL configuration for other RS / SS as well as the QCL configuration for BRRS.
  • the QCL RS / SS (e.g., BRS and / or PSS / SSS) information (BRRS) provided for BRRS channel estimation / measurement purposes and the like may be L1 (and / or L2) -level dynamic indication ( Signaling via dynamic indication can be very efficient in wireless communication systems that consider "aperiodic or on-demand" BRRS transmission.
  • BRRS QCL RS / SS
  • L1 and / or L2 -level dynamic indication
  • the transmitter may set at least one BRRS (resource (s)) in advance in the receiver, and the transmitter (or base station) may provide L2-level (e.g., information for the receiver to receive each BRRS).
  • L2-level e.g., information for the receiver to receive each BRRS.
  • MAC CE e.g., information for the receiver to receive each BRRS.
  • L1-level e.g., DCI.
  • the information for receiving each BRRS includes RS / SS information QCLed (with BRRS), and may include, for example, information about specific BRS port (s) and / or specific PSS / SSS. .
  • the transmitter (or base station) is very flexible and appropriate (aperiodic / on-demand) considering the instantaneous situation such as loading and traffic / channel condition of the terminal by using the BRRS transmission resources preset in the terminal.
  • the BRRS transmission can be performed.
  • a specific ID may be assigned for each BRRS (or BRRS resource) and / or for BRRS port (s), and / or for each BRS (or BRS resource) and / or BRS port.
  • a specific ID may be given for each (s). This specific ID may be indicated to the terminal through QCL signaling for providing the QCL configuration to the terminal described above.
  • the QCL parameters listed above describe the QCL parameters / characteristics to which the QCL assumption applies. Can be limited to some of the characteristics.
  • the terminal may be limited to the QCL assumption possible only for the ⁇ Doppler spread, and / or Doppler shift ⁇ parameter / characteristic. This is due to the reason that there is a limit in obtaining frequency synchronization stably with BRRS itself.
  • BRRS-specific BRS and QCL assumptions may be supported by an implementation scheme, such as when BRRS and BRS are generated from the same oscillator.
  • the terminal may be limited to the QCL assumption possible for ⁇ Delay spread, and / or Average delay ⁇ parameters / characteristics.
  • the base station is configured / supported by the terminal to provide an effective receiver implementation. Can support
  • the terminal may be limited to the QCL assumption possible with respect to ⁇ Average angle and / or Angular spread ⁇ parameters / characteristics (ie, reception beam related parameters).
  • This has the advantage that the receiver (analog) beam coefficients generation for the reception of the BRRS can be applied implicitly from the beam coefficient generation applied when receiving the BRS, thereby supporting an efficient receiver implementation.
  • the terminal may be configured to reflect (additionally) only “AS” (ie, assume a QCL).
  • the BRS or BRRS with higher RS density when considering channel measurements for the CSI-RS itself (considering that the CSI-RS transmission in NR may have aperiodic characteristics). Need to be supported to enable QCL assumptions for certain QCL parameters / characteristics (e.g. ⁇ Doppler spread and Doppler shift ⁇ ). Information about RS / SS QCLed (with CSI-RS) may be provided with the RRC setup of the corresponding CSI-RS, which is a semi-static QCL configuration for CSI-RS. RS) can be seen as supported.
  • LCL-level (and / or L1-level) QCL settings such as medium access control (MAC) control elements (MAC) (and / or DCI), may be used to provide more dynamic QCL configuration.
  • all the QCL configuration information is provided to the terminal (in real time) at L2-level (and / or L1-level) with full flexibility, or a plurality of candidate QCL configuration parameter sets are configured through RRC configuration.
  • which of these may be selected / applied / used may be supported in a form in which the UE is instructed through L2-level (and / or L1-level) signaling.
  • the way of telling is also applicable.
  • the QCL configuration may be layered (e.g., a total of three orders) (or a plurality of times) to be indicated / provided to the terminal, primarily through the RRC configuration, and secondly, L2-.
  • the layered QCL configuration indication method may be applied to the same / similarly for the QCL configuration for other RS / SS as well as the QCL configuration for the CSI-RS.
  • the QCL RS / SS (e.g., BRS, BRRS and / or PSS / SSS) information provided for the channel estimation / measurement purposes of the CSI-RS, etc., is L1 (and / or L2). Signaling via -level dynamic indication can be very efficient in wireless communication systems considering "aperiodic or on-demand" CSI-RS transmission.
  • the transmitter may set at least one CSI-RS (resource (s)) in advance in the receiver, and for every CSI-RS measurement for each CSI-RS ID (or CSI-RS resource configuration) Configuration information (e.g. # of ports), scrambling ID, time / frequency RE pattern, CSI-RS (RB-level and / or RE-level) density, port subset (actual allocation) Port), QCL RS / SS information (with CSI-RS), and / or subframe period / offset (CSI-RS transmission time-domain operation as aperiodic, semi-persistent, or periodic type Rather than semi-statically, only some information elements (e.g.
  • the transmitter may dynamically indicate other information elements except for the semi-statically set information elements through L2-level (eg, MAC CE) and / or L1-level (eg, DCI).
  • L2-level eg, MAC CE
  • L1-level eg, DCI
  • the remaining information elements may include information regarding RS / SS QCL (with CSI-RS), for example, specific BRS / BRRS port (s), specific PSS / SSS, CSI-RS (RB-level and And / or information about the RE-level, time-domain / symbol) density value (s), and / or aperiodic, semi-persistent, or periodic type, such as CSI-RS transmission time-domain operation. It may include.
  • semi-static setting may mean that a method in which a specific set of preset candidate parameter sets is dynamically selected is applied.
  • the transmitter (or base station) is very flexible and appropriate (aperiodic / on-demand) considering the instantaneous situation such as loading and traffic / channel condition of the terminal by using the CSI-RS resources preset in the terminal. ) CSI-RS transmission can be performed.
  • At least one CSI-RS (resource (s)) that is semi-statically configured in the terminal may include at least one “CSI-RS container (s) (“ CSI-RS container () s) each with corresponding ID ”).
  • CSI-RS container (s) each with corresponding ID
  • the transmission of aperiodic / on-demand CSI-RS in each “CSI-RS container” is performed by the base station for optimal beamforming and QCL RS / SS associated with the corresponding CSI-RS at each transmission point.
  • Dynamic indication has the advantage of maximizing the efficiency of using CSI-RS transmission resources.
  • the UE may be configured with a specific CSI-RS resource (for BM with 1-port), which is basically set to aperiodic, semi-persistent, or periodic CSI-RS resource.
  • the CSI-RS resource for BM is linked to BM related reporting (setting) and can be set / instructed so that the UE performs (periodically) optimal beam (s) related reporting in the BM process.
  • BM related reporting setting
  • s optimal beam
  • Specific beam strength related metrics at this time eg, L1 RSRP, etc.
  • This can be interpreted as performing a BM related operation for a neighboring cell / TRP, for which CSI-RS resources for each BM are relatively long-term transmission and / or low (RB / RE-level) density. It may be set to.
  • at least one CSI-RS resource (for BM) may already be set / indicated as beam indication purpose for a particular NR-PDCCH (eg, per Control-resource set (CORESET)).
  • CORESET Control-resource set
  • the UE monitors a specific NR-PDCCH / CORESET and attempts to detect / receive (DCI), when receiving a specific BM CSI-RS resource (s) set / linked with the specific NR-PDCCH / CORESET. It may be supported to attempt to detect / receive by applying (same) the received beam setting that was applied (the beam used at this time may be referred to as a "serving-beam").
  • the CSI-RS resource (s) for a particular BM associated with (at least for beam indication purposes) the at least one particular NR-PDCCH / CORESET is set to relatively short-term transmission and / or high (RB / RE-level) density. / Can be indicated.
  • the base station may set / instruct / update these beam indications (in conjunction with a specific NR-PDCCH / CORESET) rather than MAC CE (eg, L2) and / or DCI rather than RRC level.
  • MAC CE eg, L2
  • DCI DCI rather than RRC level.
  • the base station may change a resource that was aperiodic type to a semi-permanent / periodic type (because of the serving beam), or lower the transmission period (because of the serving beam) so that the resource may be transmitted frequently.
  • the CSI-RS on the particular serving beam can be used for tracking purposes RS (e.g., to measure / estimate / derive at least one QCL parameter).
  • tracking purposes RS e.g., to measure / estimate / derive at least one QCL parameter.
  • the time-domain RS density can be set / indicated / updated to a sufficient level such that the number of RS samples in a slot appears more than once in the time-domain.
  • QCL assumptions with different RS / SSs may be independently set / indicated for each CSI-RS resource. For example, assuming that CSI-RS # 1 and # 2 are configured in the UE, CSI-RS # 1 is assumed to be a specific BRS and QCL, and CSI-RS resource # 2 is set to a particular BRRS and QCL assumed form. / Can be indicated. In this case, CSI-RS # 1 is a non-precoded CSI-RS, and / or CSI-RS for the initial stage of the CSI-RS measurement (eg, hybrid CSI reporting based on CSI-RS # 1 and # 2).
  • CSI-RS # 1 may be set / indicated to be QCL with a specific BRS.
  • the CSI-RS # 2 is a beamformed CSI-RS, and / or the base station to increase the transmission efficiency while the terminal is connected to a specific BRS as a serving-beam and already proceeds beam refinement through (following) BRRS It may correspond to CSI-RS # 2 set for the purpose of link adaptation.
  • CSI-RS # 2 may be set / indicated with BRRS and QCL, not BRS.
  • QCL assumptions (at least for received beam related parameters) between the plurality of CSI-RS resources may be set / indicated. For example, when CSI-RS # 1 and # 2 are configured in the terminal, the terminal may assume a QCL relationship between antenna ports of the CSI-RS # 1 and # 2 (at least with respect to the reception beam related parameter).
  • the receiver may be set / indicated QCL assumptions between antenna ports in one CSI-RS resource. For example, when the CSI-RS # 1 is configured in the terminal, the terminal may assume a QCL relationship between antenna ports corresponding to the CSI-RS # 1.
  • a QCL assumption with either BRS or BRRS may be selectively set / indicated.
  • the present invention is not limited thereto, and according to the embodiment, the CSI-RS may be supported with a method of maximizing the QCL RS density by setting / instructing QCL assumptions for both BRS and BRRS.
  • the terminal may be limited to the QCL assumption possible only for the ⁇ Doppler spread, and / or Doppler shift ⁇ parameter / characteristic. This is due to the reason that there is a limit in obtaining the frequency synchronization stably with the CSI-RS itself.
  • the terminal may be limited to the QCL assumption possible with respect to ⁇ Average angle and / or Angular spread ⁇ parameters / characteristics (ie, reception beam related parameters). This is because it is advantageous to reflect the more stable beam width in the CSI-RS reception process. Furthermore, if the beam width of the CSI-RS is narrow, the terminal may be configured to reflect (additionally) only “AS” (ie, assume a QCL).
  • the terminal may be limited to the QCL assumption possible for ⁇ Delay spread, and / or Average delay ⁇ parameters / characteristics. This is advantageous in that the CSI-RS reception process reflects the QCL parameters, such as BRS, transmitted in a band wider than the CSI-RS transmission bandwidth, in consideration of the case where the CSI-RS transmission bandwidth is limited to some bands and transmitted. Because.
  • DMRS-based PDSCH / EPDCCH When UE wants to receive DMRS-based PDSCH / EPDCCH, channel estimation for DMRS is necessary, and QCL assumption / signaling with specific CSI-RS, BRRS, and / or BRS may be supported for such DMRS.
  • the base station may be set / instructed to apply only the QCL between the DMRS and the specific CSI-RS resource (s).
  • CSI-RS density may be insufficient as CSI-RS transmission has aperiodic characteristics as in NR environment
  • DMRS supports QCL of other RSs, which guarantees more stable RS density than CSI-RS. You may have to.
  • the DMRS may be QCLed with a specific BRS, BRRS and / or PCRS, and direct QCL signaling indicating such QCL configuration may be provided to the terminal.
  • the direct QCL signaling may instruct the UE not only the RS but also additional CSI-RS resource (s), PSS and / or SSS in addition to the RS.
  • the inter-RS / in the form that QCL application between independent / separated / different RS and / or SS can be performed for each specific / individual QCL parameter.
  • SS QCL relation can be defined / established. That is, when the UE assumes / applies the QCL, the UE may distinguish / different QCL parameters to be applied according to DMRS and QCL type of RS / SS.
  • the UE assumes QCL limited only for ⁇ Delay spread, Average delay, Average angle, Angular spread, and / or Average gain ⁇ parameters / characteristics. Can be set / instructed to apply.
  • the terminal may be set / instructed to assume / apply QCL with respect to ⁇ Doppler spread, and / or Doppler shift ⁇ . . This is because the ⁇ Doppler spread, and / or Doppler shift ⁇ parameter / characteristic is limited to estimation / application based only on the CSI-RS.
  • the UE may receive ⁇ Delay spread, Average delay, Average angle, Angular spread, and And / or Average gain ⁇ can be set / instructed to assume / apply QCL only for parameters / characteristics.
  • the UE may be set / instructed to assume / apply QCL with respect to ⁇ Doppler spread and / or Doppler shift ⁇ only. This embodiment is applicable to the case where estimating / applying the ⁇ Doppler spread, and / or Doppler shift ⁇ parameter / characteristic of DMRS from PSS / SSS ensures more stable performance.
  • the UE may receive ⁇ Delay spread, Average delay, Average angle, Angular spread, and And / or Average gain ⁇ can be set / instructed to assume / apply QCL only for parameters / characteristics.
  • the terminal assumes QCL limited only for ⁇ Doppler spread, and / or Doppler shift ⁇ parameters / characteristics. Can be set / instructed to apply.
  • the specific CSI-RS resource (s), while enabling the QCL assumption for all (or most) QCL parameters / characteristics for a particular BRS (s) and / or BRRS (s), are applicable.
  • the QCL assumption may be enabled only for some limited QCL parameters / characteristics (except for example ⁇ Doppler spread, and / or Doppler shift ⁇ ).
  • the base station may set / indicate differently applicable ranges of QCL parameters / characteristics for each RS / SS, and some of the plurality of RS / SSs may be assumed to be QCL together for the same QCL parameter / characteristics.
  • the number of available RS samples can be further increased by setting / instructing this to be possible.
  • the most direct QCL application gives priority to a particular RS (e.g., CSI-RS), but through other weighted averages (e.g., BRS, BRRS, and / or PCRS).
  • RS e.g., CSI-RS
  • BRS CSI-RS
  • BRRS BRRS
  • PCRS PCRS
  • Different QCL settings / instructions may be applied to specific DMRS port (s) during DMRS QCL assumption / signaling (eg to support non-coherent joint transmissions).
  • the UE may specify specific ⁇ BRS (s), BRRS (s), PCRS, and
  • QCL assumptions with / or CSI-RS ⁇
  • DMRS ports 9 and 10 another specific ⁇ BRS (s), BRRS (s), PCRS, and / or CSI-RS ⁇ and QCL assumptions may be indicated to be possible. have.
  • DMRS ports ⁇ 7 and 8 ⁇ and ⁇ 9 and 10 ⁇ can be applied in embodiments such as being transmitted from different transmission reception points (TRPs) or from different antenna panels within the same TRP. have. Through this, various types of (non-coherent) joint transmission can be effectively supported.
  • a specific DMRS is QCLed with a specific CSI-RS
  • a corresponding CSI-RS is QCLed with a specific BRS
  • both of these DMRS QCL and CSI-RS QCL are each (separate) L1-level signaling (e.g., signaling by DCI).
  • L1-level signaling e.g., signaling by DCI.
  • a timeline issue may occur regarding which time the DMSI should assume the CSI-RS and QCL transmitted.
  • a timeline issue may occur regarding DMRS reception / measurement at which point the QCL with the CSI-RS transmitted should be reflected.
  • the UE may select one of the SF points of #n SF or earlier. Of the most recently (successfully) received CSI-RS ID # k.
  • the QCL RS / SS provided (by DCI triggering) for the reception / measurement of the CSI-RS ID # k itself (by DCI triggering) as well as the measurement samples of the CSI-RS ID # k received at a single SF time point. Combining / averaging, for example, measurement samples of CSI-RS ID # k earlier in time, where the same information as BRS (s) and / or BRRS (s) were provided with QCL signaling). QCL assumptions can be applied.
  • PCRS is an RS defined for the purpose of phase drift correction / phase tracking and the like and may be transmitted together with the DMRS.
  • One DMRS for each DMRS port group including a plurality of DMRS ports may be associated with one PCRS (eg, have a QCL / GCL relationship).
  • PCRS may also be referred to as PT (Phase Tracking) -RS.
  • the DMRS is GCL and the GCL from a GCL point to be described below, the DMRS is a Primary DMRS or a Secondary PCRS (or PT-RS), and the PCRS (or PT-RS) is a second ( Secondary) may be referred to as DMRS or Primary PCRS (or PT-RS).
  • the QCL necessary to receive / measure the PCRS may be defined / set to apply the same / CLOSE QCL operation that is set / instructed to apply for the reception / measurement of the DMRS transmitted / scheduled together.
  • This relationship is referred to herein as a "genuine co-location (GCL)" relationship.
  • GCL means “a QCL relationship in which GCL antenna ports can imply more than just large-scale parameters to each other (for example, small-scale parameters, etc.).
  • the terminal may be interpreted as 'capable of specific time bundling and / or frequency bundling by treating ports that are GCL (or having a GCL relationship) as substantially the same port'. In other words, the terminal can treat the ports in the GCL relationship as the same port and assume the same precoding.
  • PCRS may be defined / configured / instructed to enable DMRS and GCL assumptions.
  • the UE treats / reviews the PCRS port and the DMRS port as the same port, indicating that the same precoding is applied to both antenna ports. Can assume
  • a method in which separate / independent QCL signaling is provided by separating the QCL necessary for receiving / measuring PCRS from the QCL of DMRS transmitted / scheduled together is also applicable.
  • separate QCL signaling may be separately provided for each RS through DCI.
  • QCL signaling for PCRS may be separated to be provided in a relatively semi-static manner rather than QCL signaling for DMRS.
  • QCL signaling for PCRS may be provided through L2-level signaling and / or RRC signaling through MAC CE or the like.
  • DMRS is set / instructed to allow for specific CSI-RS (and / or BRS and / or BRRS) and QCL assumptions, or PCRS is set to enable specific (serving) BRS (and / or BRRS) and QCL assumptions. / Can be indicated.
  • (QCLed / GCLed) (specific) RS / SS may be implicitly indicated as specifically RS / SS for Serving-Cell / Transmission Point / TP. That is, the terminal may be defined / configured to recognize that the (QCLed / GCLed) (specific) RS / SS is RS / SS for serving-cell / TP / beam and apply the QCL assumption for them. Can be.
  • the base station sets the RRC to QCL type B for CoMP (Coordinated MultiPoint) operation so that the UE can perform dynamic point selection (DPS) operation or for non-CoMP operation.
  • RRC is set to QCL Type A so that the UE applies QCL to all RSs of the serving-cell.
  • a virtual cell / sector (virtual sector) formed in a specific beam direction can be serviced (eg, by analog beamforming).
  • a virtual cell / sector is collectively referred to as a "beam”
  • it needs to be supported to enable inter-beam CoMP operation such as dynamic beam selection (DBS). Specific examples thereof will be described later with reference to FIG. 10.
  • FIG 10 illustrates an antenna panel model to which analog beamforming is applied for each panel to which the present invention can be applied.
  • a specific analog beamforming is applied to each panel to form a “virtual cell / sector / beam” through a transmission antenna configuration having a “multi panel antenna” structure.
  • the signal transmitted from such a transmitter is not dominant to a particular receiver in a particular beam direction (e.g. from a particular panel), and the signal quality of two or more adjacent beam directions is specific. In situations in which the difference is within a level, performance improvement through the above-described DBS can be expected.
  • the present specification proposes that the receiver can smoothly perform beam-based CoMP operation such as DBS by defining / setting a specific QCL type B 'capable of supporting such an operation of the receiver.
  • QCL type A ' may be supported as a mode for allowing QCL assumptions to be applied to each other between RSs corresponding to serving cells / TPs / beams.
  • QCL type switching can be defined / configured in the following form:
  • UE configured with transmission mode X for serving cell / TP / beam (or configured for New RAT operation) decodes PDSCH according to transmission scheme associated with antenna ports (eg, ports 7-14) associated with DMRS To do this, one of the following QCL types may be set for the serving cell / TP / beam by the higher layer parameter.
  • Type A ' The UE is QCL antenna ports associated with the BRS (and / or BRRS and / or PSS / SSS) of the serving cell / TP / beam are for at least one of the QCL parameters / characteristics described above.
  • Type B ' UE uses antenna port XX-YY corresponding to CSI-RS resource (and / or BRS / BRRS) configuration identified by higher layer parameters and antenna port associated with DMRS associated with PDSCH (eg, 7 -14) is QCLed for at least one of the QCL parameters / characteristics described above.
  • the QCL type B ' is replaced with the QCL type C' described later, so that only the semi-static switching between the QCL type A 'and the QCL type C' can be defined or the QCL type A'- A method of defining all C's and optionally setting one type by RRC signaling or the like is also applicable.
  • Type C ' The UE is responsible for antenna ports associated with the BRS / BRRS (and / or PCRS) of the particular beam corresponding to the indicated BRS / BRRS configuration and antenna ports (eg, port associated with the DMRS associated with the PDSCH). 7-14) is QCLed for at least one of the QCL parameters / characteristics described above.
  • the QCL type A-C related description may be changed / defined by variously reflecting the proposed QCL related elements proposed in the present invention. That is, when the QCL type is switched to A 'and B' or switched, or QCL type C indicating direct QCL with a specific BRS in addition to the QCL types A 'and B' is also supported (with / in addition), it is applicable.
  • the technical elements proposed in the present invention may be reflected / replaced to define / change / apply.
  • RSs are referred to as terms such as BRS, BRRS, PCRS, etc., but the application of the present invention is not limited thereto, and RS of another name having the same / similar form / function / purpose as the corresponding RS. It is apparent that the present invention can also be applied to the above.
  • control information set / instructed to the terminal / receiver may be delivered by RRC, MAC CE, and / or DCI, and may perform some form of signaling such as L1- and / or L2-level signaling. Whether the corresponding setting / instruction is provided may be defined / set differently / independently for each control information.
  • single / multi point transmission may be supported for both DL MIMO and UL MIMO.
  • measurement assumptions for QCL assumptions and antenna ports may be performed in an NR environment. Based on this, hereinafter, intra / inter-TRP coordinated transmission in which QCL is assumed between specific RSs will be described later.
  • the first panel model can be identified as a uniform 1D / 2D rectangular panel arrangement. Since the appropriate CSI-RS resources / ports must be configured in the UE via this antenna array, efficient closed-loop MIMO transmission can be applied based on the CSI measurement and feedback of the UE.
  • CSI-RS port and antenna array mapping depends on the eNB implementation, so there can be various mapping schemes, for example: (1) one CSI-RS resource per panel, (2) multiple CSI-RS resources per panel , And (3) a manner in which CSI-RS resources mapped to a plurality of panels are mapped.
  • FIG. 11 illustrates a manner in which one CSI-RS resource is mapped per panel according to an embodiment of the present invention.
  • the embodiment of FIG. 11 is the simplest method of CSI-RS mapping in which one CSI-RS resource is transmitted in the (a / one) panel so that the CSI-RS ports in the CSI-RS resource can be QCL guaranteed / assumed. That is, according to this embodiment, at least some of the above-described QCL parameters / characteristics (for example, average gain, delay spread, Doppler spread, Doppler shift) between (some or all) CSI-RS ports in one CSI-RS resource. , average delay and / or receive beam related parameters) may be assumed / guaranteed.
  • This QCL assumption / assurance is that the same oscillator (with associated component) must be used to generate a signal at the CSI-RS ports (included in one CSI-RS resource or mapped to one panel). May be used if used.
  • RRM Radio Resource Management
  • FIG. 12 illustrates a manner in which a plurality of CSI-RS resources are mapped per panel according to an embodiment of the present invention.
  • CSI-RS 12 may be interpreted as a multi-beamformed CSI-RS based operation similar to a Full Dimension (FD) -MIMO Class B having a plurality of BF (Beamformed) CSI-RS resources. Since these multiple CSI-RSs transmitted from a single panel target different beam directions, it cannot be said that they are always QCLed for all QCL characteristics / parameters between each CSI-RS and its corresponding RRM-RS. Similar to that defined in the LTE spec, only some characteristics / parameters such as, for example, Doppler shift and Doppler spread can be used in the QCL assumption between CSI-RS and RRM-RS for this case, which is explicitly Can be indicated. Since this difference from the embodiment of FIG. 11 originates from different CSI-RS mapping schemes for the antenna array, the NR spec should appropriately support various implementation schemes of CSI-RS antenna port mapping for different purposes.
  • FD Full Dimension
  • BF Beamformed
  • FIG. 13 illustrates a manner in which shared CSI-RS resources are mapped for a plurality of panels according to an embodiment of the present invention.
  • the embodiment of FIG. 13 may be interpreted as a shared CSI-RS resource mapped to multiple panels to have more beamforming gains in the CSI-RS transmitted by cooperative transmission from multiple panel antennas. have.
  • the manner in which the CSI-RS ports are mapped to the plurality of panels may be particularly useful when, for example, a user wants to support SU-MIMO transmission for a specific UE having a low traffic load.
  • the CSI-RS can be used as a UE-specific beamformed CSI-RS dedicated to the UE, assuming that the network obtains sufficient information in the beamforming direction for the target UE.
  • QCL assumptions are needed, it is necessary to investigate how QCL assumptions and signaling between CSI-RS and RRM-RS are defined and supported for NR operation.
  • various intra-TRP coordinated transmission schemes may be considered in the NR.
  • appropriate QCL assumptions between RS (s) for RRM and CSI-RS (s) set in the UE may be needed to support intra-TRP coordination transmission.
  • the embodiments shown in Figures 11-13 are defined in the LTE spec (the UE of TM 10 is QCL by RRC signaling). Semi-static settings similar to different QCL types, such as type A or B) may be supported.
  • each UE may be configured with specific CSI-RS resource (s) with some required RRC parameters, but the actual CSI-RS transmission may be controlled by the eNB via L1- signaling.
  • the controllable component may include an actual transmission instance, time / frequency RE pattern, port number, applied port numbering and / or scrambling seed.
  • Such dynamic CSI-RS allocation and transmission may further require support of more flexible QCL signaling with other RSs including RRM-RSs in a more dynamic manner. That is, dynamic CSI-RS allocation and transmission for NRs may further require more flexible QCL signaling support for other RSs including RRM-RSs.
  • the UE can select several TX-RX analog beam pairs by measuring and comparing the quality of a particular DL RS (referred to as 'RRM-RS' for convenience).
  • the eNB (or referred to as gNB) may select one of the UE preferred TX (send) beams to transmit beamformed CSI-RS or DMRS ports.
  • the UE must know which RX (receive) beam of the candidate RX beams should be set to receive these antenna ports so that the TX beam ID corresponding to the RRM-RS port can be signaled to the UE.
  • the RRM-RS port and the CSI-RS / DMRS port are QCL in terms of dominant arrival angle according to the following QCL definition:
  • Two antenna ports can be said to be QCL if the LSP of the channel through which the symbol of one antenna port can be transmitted can be implied / inferred from the channel through which the symbol of the other antenna port is transmitted.
  • Dominant arrival angle can determine the RX beamforming coefficients.
  • the Dominant arrival angle may be regarded as LSP relatively. Without the QCL assumption, the UE must search for multiple RX beam candidates, which is energy and time consuming.
  • the CSI-RS needs to be instructed to follow the QCL connection to the primary or secondary RRM-RS (s). If the subband CSI-RS is configured in the UE, it may be advantageous to follow the QCL for other CSI-RSs transmitted over broadband, for example.
  • a TM10 configured UE with QCL type B may be scheduled to receive a PDSCH transmitted from a non-serving cell / TP as a CoMP Dynamic point selection (DPS) operation.
  • the DMRS for the PDSCH may be instructed to follow the QCL and at least one of the CSI-RSs set by the PQI field in the DCI.
  • the DMRS for the PDSCH may be set to have a QCL relationship with at least one of the CSI-RSs indicated by the PQI field.
  • This DPS operation may be performed in that actual dynamic TRP selection may be performed according to a set CSI-RS resource (for example, each CSI-RS resource set for each TRP) or dynamic beam selection (DBS) may be performed within a single TRP.
  • a set CSI-RS resource for example, each CSI-RS resource set for each TRP
  • DBS dynamic beam selection
  • an operation similar to the DPS operation may be considered. This can be interpreted as intra-TRP CoMP in terms of beam steering.
  • the DMRS for the PDSCH is not supported unless the DMRS design for the NR study requires any other QCL support and sufficient RS density is guaranteed within the scheduled band.
  • the DMRS for PDSCH should also be explicitly indicated to follow QCL to other RS, eg, CSI-RS or RRM-RS, unless DMRS design for NR study is done without requiring any other QCL supports and by guaranteeing sufficient RS density within the scheduled band).
  • a scheduled PDSCH that wants to be distributed over time domains, such as several symbols of the same subcarrier, is used to generate a second level of DMRS (i.e., a secondary DMRS).
  • a second level of DMRS i.e., a secondary DMRS.
  • the second DMRS is an RS transmitted to support phase compensation on the UE side
  • the second DMRS may be a concept corresponding to the aforementioned PCRS (or PT-RS).
  • the second DMRS may be referred to as PCRS (or PT-RS) or replaced with PCRS (or PT-RS).
  • the second DMRS is QCLed with the first DMRS for all QCL parameters / characteristics, where the QCL can be interpreted as the GCL described above.
  • the GCL indicates that time / frequency bundling is possible between antenna ports, thereby effectively indicating the same port.
  • the UE can receive the DMRS assuming the same precoding between the GCL antenna ports.
  • the first and second DMRSs are distributed / distributed over a plurality of symbol domains (ie, several time domains, for example, successive time domains) in the same subcarrier domain (ie, the same frequency domain).
  • a GCL relationship may be indicated / set between the first and second DMRSs.
  • the UE may receive the DMRS assuming the same precoding to the first and second DMRS ports.
  • the GCL relationship in the above embodiment has been interpreted around the DMRS (or data demodulation) perspective, but may also be interpreted / described around the PCRS (or phase compensation) perspective. That is, in the above-described embodiment, the second DMRS (or PCRS / PT-RS) was used as the purpose / effect of stably receiving the DMRS by increasing the DMRS density, but on the contrary, the first DMRS is the PCRS (or PT-RS). It can also be used as a purpose / effect to reliably receive PCRS by increasing the density.
  • the first subcarrier region i.e., the same frequency domain
  • the first subcarrier region may be distributed / dispersed over a plurality of symbol regions (i.e., several time domains, for example, successive time domains) in the first subcarrier region.
  • a second PCRS (or PT-RS) (corresponding to the first and second DMRSs of the above-described embodiment) may be transmitted, wherein a GCL relationship is indicated between the first and second PCRSs (or PT-RS).
  • the PCRS (or PT-RSs) assumes the same precoding to the first and second PCRSs (or PT-RSs) ports. Can be received.
  • the DMRS and PCRS (or PT-RS) having a GCL relationship may be distributed to the terminal in the same frequency domain and transmitted to the terminal, and the terminal may be a DMRS port and a PCRS (or PT-RS).
  • the terminal may be a DMRS port and a PCRS (or PT-RS).
  • DMRS and PCRS or PT-RS
  • the GRS DMRS and PCRS may be named according to the GCL purpose (for example, data demodulation purpose or phase compensation purpose), and when data demodulation is for the purpose, DMRS and PCRS (or PT-RS).
  • first and second DMRSs May be referred to as first and second DMRSs, and may be referred to as first and second PCRSs (or PT-RSs) when phase compensation is intended.
  • first and second PCRSs or PT-RSs
  • present invention is not limited thereto and may be replaced with an RS (or RS name) having the same purpose / function / effect.
  • CSI-RS or RRM-RS do not support DMRS design for NR unless they require QCL support and guarantee sufficient RS density.
  • DMRS QCL to CSI-RS or RRM-RS may need to be dynamically indicated, unless DMRS design for NR is done without requiring any QCL supports and by guaranteeing sufficient RS density).
  • the above-described GCL concept means that the setting / instruction of a specific “ ⁇ frequency, time, space, and / or code ⁇ -domain bundling / merging” is possible,
  • the transmitter e.g., base station
  • the receiver e.g., terminal
  • subcarrier level e.g., RB level
  • RB group e.g., RBG
  • subband level e.g., RB group
  • the bundling may be indicated.
  • the transmitter e.g., base station
  • the receiver e.g., terminal
  • Bundling may be indicated by a bundling level.
  • the transmitter may instruct the receiver (eg, terminal) to bundle at a port / beam level, etc., where the ports / beams correspond to a specific RS corresponding thereto. And / or channels (eg, when the same precoder should be used for nominal ports / beams that are separated at the transmitter).
  • the transmitter e.g., the base station
  • the transmitter may have a different sequence (e.g. generated by different scrambling parameters) or other cover code (e.g., specific to the receiver (e.g., the terminal).
  • bundling may be indicated between the OCCs.
  • the receiver upon being set / instructed that certain GCL assumptions are possible between the RS, SS and / or channel (to enable the application of ⁇ frequency, time, space and / or code ⁇ -domain bundling), the receiver will receive the corresponding RS, GCL assumptions between SSs and / or channels can be applied to improve reception performance by ⁇ frequency, time, space and / or code ⁇ -domain bundling.
  • GCL assumptions between SSs and / or channels can be applied to improve reception performance by ⁇ frequency, time, space and / or code ⁇ -domain bundling.
  • These operations differ in their typical operation between RS, SS, and / or channels, but vary in transmission flexibility by allowing (as a temporary) setting / instruction of such GCL assumptions in certain cases to the receiver according to the sender's intent. This has the advantage of providing flexibility and improving reception performance.
  • the PCRS and DMRS may differ in their intended behavior (e.g., PCRS for phase compensation purposes, DMRS for data demodulation). Purpose) If the setting / instruction is provided that the GCL assumption is possible, the reception performance can be improved by utilizing the GCL PCRS (DMRS) together with DMRS reception processing for the purpose of data demodulation.
  • DMRS GCL PCRS
  • the PSS is a channel of the SSS.
  • the SSS reception performance can be improved by enabling it to be used as an estimated reference signal.
  • the BRS is set to enable specific PSS / SSS / ESS and GCL assumptions, it is also possible to improve the reception performance of the BRS.
  • the GCL hypothesis may be set / instructed to allow the UE to perform bundling by applying the GCL hypothesis for a specific different ( ⁇ frequency, time, space and / or code ⁇ -domain) even within the same RS, SS, or channel. have.
  • each actual CSI-RS transmission is sent by the DCI (1-shot).
  • the UE averages / combines measurement samples between these 1-shot CSI-RS measurements over the GCL (or GCL assumptions set / indicated) time instances. / combining). On the sender side, this may mean that for the GCL time instances, for example, the beamforming coefficients applied in each CSI-RS transmission should not be changed.
  • the transmitter applied to each beamformed CSI-RS transmission may be transmitted to the receiver-transparent, but at least the CSI-RS transmitted with the same precoder maintained / applied within the GCL time instances (transmitter) Can guarantee.
  • This allows the receiver to measure and combine GCLed (aperiodic) CSI-RSs to ensure sufficient measurement samples, thereby estimating specific LSPs.
  • another RS e.g., DMRS
  • the above-described QCL setting / instruction can be performed, thereby improving DMRS-based data demodulation performance.
  • the GCL indicator (eg, the GCL indication field defined in the DCI) for setting / instructing the GCL may be configured in a 1-bit field or the like and implemented in a “toggling” form. That is, for example, when the aperiodic CSI-RS transmission is triggered, the transmitted GCL indicator is' 0 'and the GCL indicator of the most recently transmitted / measured CSI-RS transmission (of the same ID as the corresponding CSI-RS) is also' If it is 0 '(ie, if the GCL indicator is not toggled), the UE may perform a bundling / combining / averaging operation by applying a GCL assumption between these two CSI-RS transmissions.
  • the UE may continue to bundle the subsequent CSI-RS together if the GCL indicator for the subsequent CSI-RS is also transmitted in an untoggled form. If the GCL indicator for the subsequent CSI-RS transmission is toggled and transmitted, the terminal may no longer bundle the corresponding CSI-RS.
  • the operation of determining whether to perform or apply bundling according to a GCL indicator value (for example, toggling or not) indicated for the most recently transmitted CSI-RS may be referred to as the same CSI-RS ID.
  • FIG. Compared to the most recent time point in the set where only the CSI-RS transmission instances indicated by the same QCL as the QCL with other RSs (e.g., BRS and / or BRRS) of the corresponding CSI-RS (toggle) Whether or not to apply the GCL assumption).
  • RSs e.g., BRS and / or BRRS
  • the UE may be limited to the form of applying the GCL assumption within CSI-RS transmission time points that follow the same 'CSI-RS to another RS (eg, BRS and / or BRRS) QCL'. .
  • the DCI field is configured in the following form.
  • the CSI process ID indicated through the corresponding DCI field may be variously signaled to the UE by applying only bundling with the same CSI-RS transmission time points.
  • how to determine the limited set as shown in the following table may be implemented in various embodiments by the DCI field to be applied.
  • GCL related operation may be replaced with GCL (and its related definition / attributes) instead of QCL for all the QCL related proposed operations mentioned in the present invention (which is further enhanced than QCL). Making it applicable is a GCL concept).
  • PSS, SSS and / or PBCH may be transmitted in an 'SS block (SSB)'. Excluding other signals is not excluded from the SS block.
  • One or more SS block (s) may constitute an 'SS burst'.
  • One or more SS burst (s) may constitute an 'SS burst set'. The number of SS bursts in the SS burst set may be finite.
  • the SS block and how to configure the SS burst will be described in more detail.
  • PSS, SSS and / or PBCH may be defined for conveying initial access related information (eg, symbol timing, cell-ID, essential system information and / or information for initial UL transmission, etc.). Further discussion is underway in NR to define other new signals / channels for the delivery of essential system information or for cell / TRP / beam measurements.
  • initial access related information eg, symbol timing, cell-ID, essential system information and / or information for initial UL transmission, etc.
  • signals / channels eg, NR-SS, NR-PBCH, control channel, measurement RS, etc.
  • the signal / channel composed / composed in the SS block may be changed according to a transmission occasion if the periodicity of each signal / channel for initial access is different. That is, another set of initial access related signals / channels can be configured / composed in the SS block.
  • the various types of SS blocks may be defined as follows according to some sort of composed / composed signal / channel in the SS block:
  • Type 1 NR-SS (PSS and SSS)
  • Type 2 NR-SS and NR-PBCH
  • Type 3 NR-SS and MRS
  • Type 4 NR-SS and control channel
  • Signals / channels may be multiplexed within the SS block.
  • the duration of the SS block may be changed.
  • Type 1 (NR-SS only) and Type 2 (multiplexing of NR-SS and NR-PRBCH) described above may have different SS block durations.
  • the duration of the 'SS burst' is determined by the duration of the 'SS block', the fixed duration of the SS burst must also be taken into account.
  • FIG. 14 is a diagram illustrating the duration of the SS block and SS burst that can be applied to the present invention.
  • the fixed duration of the SS burst is independent of the type of synthesized signal / channel in the SS block. It may be preferred. Thus, each type of SS block can be assumed to have the same duration, regardless of all kinds of composite signals / channels in the SS block.
  • the DL control signaling may be located in the first OFDM symbol (s) of the slot and / or mini slot.
  • the UL control channel may be located around the last UL symbol (s) transmitted in the slot. Accordingly, it can be seen that the DL control channel and the DMRS are located in the first N OFDM symbols, and the UL control channel is located in the last N OFDM symbols in the slot.
  • the SS block may be located in the middle of the slot. Consecutive SS blocks in a slot may be used to construct an 'SS burst'. In addition, when a plurality of SS blocks for an SS burst are spread over a plurality of slots, an inconsecutive 'SS block' may be needed to form an 'SS burst'.
  • 15 is a diagram illustrating an SS burst configuration for a TDD case that can be applied to the present invention.
  • both continuous and discontinuous 'SS blocks' need to be used to construct an 'SS burst'.
  • both consecutive 'SS blocks' and non-contiguous 'SS blocks' can be used to construct an 'SS burst'.
  • the SS blocks making up the SS burst may be located consecutively (in the time domain) and / or discontinuously.
  • the fixed duration of the SS burst may be preferred regardless of the type of synthesized signal / channel in the SS block.
  • each type of SS block may be assumed to have the same duration, regardless of the composite signal / channel type within the SS block.
  • Both consecutive and discontinuous 'SS blocks' may be needed to construct an 'SS burst'.
  • both continuous and discontinuous 'SS blocks' can be used to construct an 'SS burst'.
  • the following signal combination may be considered for inter-cell RRM measurement for CONNECTED and IDLE.
  • Option 1-1 NR-SSS and / or NR-PSS
  • Mobility RS (MRS) -1 multi-port multi-beam reference signal multiplexed in SS block
  • Option 1-3 MRS-2 (unmultiplexed multi-port multi-beam reference signal in SS block)
  • Option 1-4 MRS-3 (Single / multi-port single-beam reference signal)
  • Option 1-5 NR-SSS and DM-RS for PBCH, if DM-RS for PBCH is supported
  • Option 2-1 NR-SSS in IDLE state; MRS- ⁇ 1,2 ⁇ in CONNECTED state
  • Option 2-2 NR-SSS in IDLE state; NR-SSS and MRS- ⁇ 1,2 ⁇ in CONNECTED state
  • Option 2-3 NR-PSS and / or NR-SSS in IDLE state; NR-PSS and / or NR-SSS, and CSI-RS in CONNECTED state
  • Option 2-4 RS and MRS in IDLE state for CONNECTED state ⁇ 1,2,3 ⁇
  • Overhead of RS resources e.g., number of resource elements, BandWidth used for RS mapping, resource usage over time
  • CSI-RS supports DL Tx beam sweeping and UE Rx beam sweeping.
  • CSI-RS may be used in P1, P2 and / or P3 mode.
  • NR CSI-RS supports the following mapping structure.
  • N_P CSI-RS port (s) may be mapped per (sub) time unit.
  • the same CSI-RS antenna ports can be mapped over the entire (sub) time unit.
  • Each time unit may be divided into sub time units.
  • the partitioning method may include TDM, IFDMA, and OFDM symbol-level partitioning having an OFDM symbol length equal to or shorter than a standard / preset / reference OFDM symbol length (subcarrier interval). Partitioning methods may be used but other partitioning methods are not excluded.
  • This / the above mapping structure can be used to support multi-panels / Tx chains.
  • the CSI-RS mapping options for Tx and Rx beam sweeping can be as follows:
  • Tx beams are the same over sub time units within each time unit, but may vary over time units.
  • the Tx beam may be different for each sub time unit within each time unit but may be the same over time unit.
  • Option 3 (combination of Option 1 and Option 2):
  • the Tx beam (s) may be the same over a sub time unit.
  • the Tx beam (s) may differ from one another over a sub time unit. For example, a combination of different time units in terms of number and period may be proposed. Only Tx sweeping or Rx sweeping may be possible.
  • One or more CSI-RS resource configurations may be configured for the proposed mapping structure.
  • the CSI-RS (this RS name may vary) may be referred to as a type 2 CSI-RS, which may be set in a (sub) time unit form for a specific beam operation purpose as described above.
  • the CSI-RS which may be set to another type (eg, CSI-RS type of 3GPP LTE / LTE-A, etc.), will be referred to as type 1 CSI-RS, and each type of CSI-RS This will be described with reference to FIG. 16 below.
  • FIG. 16 illustrates Type 1 CSI-RS and Type 2 CSI-RS that may be applied to the present invention.
  • FIG. 16A illustrates a Type 1 CSI-RS
  • FIG. 16B illustrates a Type 2 CSI-RS.
  • the number of CSI-RS ports and / or sequence generation / scrambling parameters are set, and a specific period / The offset may be set (may be omitted in the case of aperiodic CSI-RS, etc.).
  • the location of the frequency / time resource where the CSI-RS is transmitted at each CSI-RS transmission instance (for example, CSI-RS RE location / pattern) follows the structure in which it is configured in advance (via RRC signaling). For convenience, this is referred to as the type 1 CSI-RS as described above.
  • the specific CSI-RS resource configuration may be further subdivided by the “(sub) time unit” related setting, and detailed operation options regarding the operation of the UE may be further configured for the (sub) time unit.
  • this is referred to as the type 2 CSI-RS as described above.
  • the type 2 CSI-RS also basically has a period / offset parameter set like the type 1 CSI-RS (or a point where the period / offset parameter is omitted and the unit of time appears / indicated). It is also possible to implicitly indicate / set the periodic parameters through the CSI-RS.
  • the CSI-RS may be set / limited in a bursty manner in which a plurality of time units appear continuously, which is associated with an aperiodic CSI-RS setting. The start time of the corresponding CSI-RS burst, etc.), in which case the CSI-RS is detailed according to the (sub) time unit based on every CSI-RS transmission time indicated by the corresponding period / offset parameter.
  • An additional (time unit offset) parameter explicitly indicating the transmission time may be set together.
  • every CSI-RS transmission time point (as a default setting method) may be defined / set / limited as a start time point of every time unit (for example, as shown in FIG. 16 (b)).
  • a plurality of sub time units may be set in one time unit. That is, one time unit may be divided into a plurality of sub time units. This sub time unit may be limited to always being set continuously (for example, as shown in Fig. 16B). Alternatively, the sub-time units may have a separate period / offset so that each of the sub-time units can be set within one time unit (discontinuously / independently / separately), and parameters associated with them may be set together.
  • 17 is a diagram illustrating a QCL assumption method according to type 2 CSI-RS configuration according to an embodiment of the present invention.
  • Type 2 CSI-RS configuration can be utilized for specific (DL) beam operation.
  • one type 2 CSI-RS configuration may be provided in the form of including / indicating / configuring one or multiple CSI-RS resource (s), and one type 2 CSI-RS configuration is provided by multiple CSIs.
  • the configuration of -RS resources it may be limited that the different CSI-RS resources are not transmitted at the same time. That is, the plurality of CSI-RS resources may be limited to at least TDM transmitted (in each resource unit) (as shown in FIG. 17).
  • the number of different / independent antenna ports may be set for each CSI-RS resource.
  • the same number of antenna ports may be set for all different CSI-RS resources (depending on the base station configuration) under specific conditions.
  • specific QCL parameter (s) / characteristic (s) e.g., Delay spread, Doppler spread, Doppler shift, Average gain, Average delay, Average angle (AA), 'for each CSI-RS resource'
  • Other RS / signal (s) (group (s)) assumed / established by QCL or partial QCL for at least one of angular spread (AS) and / or PAP (specific MRS-1, -2, and / or described above) Or -3) and / or specific SS block index (or ID) (s) may be set in the terminal (in advance). This may be configured in the terminal through RRC signaling, MAC (L2) signaling and / or DCI (L1) signaling.
  • the UE can actively apply / utilize specific QCL parameter (s) / characteristic (s) obtained through QCL or partial QCL assumptions when measuring antenna ports in CSI-RS resources, thereby reducing implementation complexity and / or detecting Improved measurement performance.
  • the CSI-RS (target RS) and other RS / signal (s) (group (s)) assumed to be QCL hypothesized or partial QCL assumed (specific MRS-1, -2, and / or described above) Or -3) and / or specific SS block index (es) may be collectively referred to as a 'source RS (or QCL source / reference RS)'.
  • the QCL parameter (or LSP) of the target RS can be implied / estimated from the QCL parameter (or LSP) estimated from the source RS.
  • RS / signal (s) (group (s)) indicated, for example, by QCL (or partial QCL) for each CSI-RS resource (specific MRS-1, -2, and / or -described above). 3) and / or when there are a plurality of specific SS block index (es) (ie, 'source RS'), the terminal may specify specific QCL parameter (s) / characteristic (s) for a plurality of source RSs indicated for each resource. ) May be defined / set to apply / perform (partial) QCL hypothesis operations by combining (or averaging or specific weighted averaging).
  • a partial QCL can be defined / set.
  • other RS / signal (s) (group (s)) (including specific MRS-1, -2, and / or -3 described above) and / or specific SS block index (es) for which partial QCL is assumed / established May be set in the terminal (in advance). This may be configured in the terminal through RRC signaling, MAC (L2) signaling and / or DCI (L1) signaling.
  • the detection / measurement performance can be improved.
  • the base station QCL when both the former CSI-RS resource-level QCL setting / signaling method and the latter port-level QCL setting / signaling method are both supported, the base station QCL to the CSI-RS resource-level as in the former embodiment.
  • additional flexibility can be utilized whether to provide setup / signaling or QCL setup / signaling at the port-level as in the latter embodiment. That is, in the embodiment of FIG. 17, the QCL or the partial QCL may be modified / applied in a form in which the QCL or the partial QCL is set / indicated by each port unit within the resource instead of the resource unit.
  • the terminal may specify specific QCL parameter (s) / characteristic (s) for a plurality of source RSs indicated for each resource. ) May be defined / set to apply / perform (partial) QCL hypothesis operations by combining (or averaging or specific weighted averaging).
  • a partial QCL can be defined / set.
  • the terminal may be defined / configured to perform a report associated with the base station for a beam operation purpose and the like.
  • p 1, 2, ... P (configurable by the base station)
  • information on which CSI-RS resource is a port in which CSI-RS resource may also be reported to the base station in paired form with the port index information at all times (or according to base station configuration).
  • CSI-RS resource indicator For example, if an indicator indicating which CSI-RS resource is referred to as a CSI-RS resource indicator (CRI), the reporting contents of the UE are paired with two pieces of indication information such as ⁇ CRI, port index ⁇ . May be reported to the base station. And / or, together with this, the UE reports certain metrics that may represent / represent the signal quality for the port (eg, RSRP, Reference Signal Received Quality (RSRQ), and / or a specific function such as CQI or the like). It may be set to.
  • RSRP Reference Signal Received Quality
  • RSRQ Reference Signal Received Quality
  • the paired information may be defined / configured to be configured by the terminal in the form of ⁇ CRI, port selection codebook index (or PMI) ⁇ .
  • the corresponding "selection codebook" may be pre-defined / set in order to derive the port selection PMI.
  • the size of the vector corresponding to each index in the selection codebook corresponds to the number of CSI-RS ports in the CSI-RS resource that the corresponding / paired CRI refers to, and the vector corresponding to each index indicates that only one value of one element is '1'.
  • the remaining elements may be in the form of all zeros (ie, selection codebook vectors).
  • one type 2 CSI-RS configuration is set / provided in a form including one or K (K> 1) CSI-RS resource (s), an upper limit value for the configurable K value This may exist.
  • Information about the (maximum) K value that can be supported / implemented by the terminal may be delivered to the base station upon initial access through specific UE capability signaling of the terminal, and the base station may transmit up to K CSI-RSs based on this. Resources may be limited to provide within one type 2 CSI-RS configuration.
  • the base station configures one type 2 CSI-RS based on the UE capability signaling information and the like, it may configure semi-static in the form of RRC signaling.
  • L2 eg, by MAC CE
  • L1 eg, by DCI
  • L3 L3 signaling
  • the remaining (K-N) CSI-RS resources that are not activated may be recognized or deactivated by the terminal, or a separate signaling for deactivation / cancellation may be provided / supported by the terminal.
  • the UE measures signal quality for each port configured / included in each of the activated N CSI-RS resources and compares the obtained metric with each other to obtain P preferred port information and / or (the above preferred P ports).
  • Star may be defined / set to report the metric value to the base station.
  • the QCL definition at NR can be determined taking into account five large QCL parameters / characteristics such as delay spread, Doppler spread, Doppler shift, average gain and average delay. Furthermore, in addition to these QCL parameters / characteristics, to support the UE-side beamforming / receiving procedure, the QCL framework of NR can be extended with new spatial QCL parameters (ie, reception beam related parameters) as described above. . These spatial QCL parameters (i.e., receive beam related parameters) represent the QCL characteristics for the new arrival / reception angle, especially when analog beamforming is applied on the UE side. During the beam operation procedure, the UE may select several TX-RX analog beam pairs by measuring and comparing the quality of a particular DL RS (eg, RRM-RS).
  • a particular DL RS eg, RRM-RS
  • the TRP may select one of the UE preferred Tx beams to transmit beamformed CSI-RS or DMRS ports.
  • the UE must know which Rx beam should be set up to receive these antenna ports among candidate Rx beams so that the Tx beam ID corresponding to the RRM-RS port can be signaled to the UE.
  • the RRM-RS port and the CSI-RS / DMRS port are QCL in terms of / with respect to the dominant arrival / receiving angle.
  • the dominant arrival / reception angles determine the Rx beamforming coefficients and can be considered relatively large-scale because the analog beams may not change dynamically compared to digital beams. Without the QCL assumption, the UE must search for multiple RX beam candidates, which is energy and time consuming.
  • a new type of QCL characteristic e.g., 'spatial QCL parameters (ie, receive beam related parameters)'
  • QCL characteristic e.g., 'spatial QCL parameters (ie, receive beam related parameters)'
  • receive beam related parameters ie, receive beam related parameters
  • the RRM-RS may be called MRS-1, 2 or 3 and may or may not be multiplexed within the SS block.
  • the RRM-RS may be a single or multi-beam RS.
  • the UE may assume that the PAP from the CSI-RS is a subset of the PAP observed from the MRS-x or SS block. This is considered that the TXRU used for CSI-RS transmission should be used for signal transmission in the SS block at least in an SFN manner.
  • the CSI-RS related configuration via RRC or MAC should include a QCL indication (at least for spatial QCL parameters) for the SS block index.
  • the UE may assume that the PAP from the CSI-RS is a subset of the PAP observed from the signals transmitted in the SS block.
  • UE feedback and content need to be supported to help QCL association between reference signal resources / ports for UE spatial QCL parameter (s) to support the UE side beamforming / receive procedure.
  • the spatial parameters for QCL at NR describe the spatial channel characteristics of the RS antenna port observed at the receiver.
  • the spatial parameters in the NR describe the spatial channel characteristics of the antenna ports at the transmitter. If necessary, the UE may report information related thereto to the base station.
  • the NR does not support or support the downlink indication for deriving a QCL assumption for supporting UE-side beamforming for downlink control channel reception.
  • a non zero power (NZP) CSI-RS resource in NR may be defined as a set of NZP CSI-RS ports that map to an RE set within a frequency span / duration that can be measured at least to derive CSI.
  • Multiple NZP CSI-RS resources may be configured in the UE to support at least CoMP and multiple beamforming CSI-RS based operation.
  • each NZP CSI-RS resource for at least CoMP may have a different number of CSI-RS ports.
  • FIG. 18 is a diagram illustrating (mandatory) QCL indication for a type 2 CSI-RS resource according to an embodiment of the present invention.
  • the QCL definition at NR can be determined taking into account five large QCL parameters / characteristics such as delay spread, Doppler spread, Doppler shift, average gain and average delay. Furthermore, in addition to these QCL parameters / characteristics, to support the UE-side beamforming / receiving procedure, the QCL framework of NR can be extended with new spatial QCL parameters (ie, reception beam related parameters) as described above. . These spatial QCL parameters (i.e., receive beam related parameters) represent the QCL characteristics for the new arrival / reception angle, especially when analog beamforming is applied on the UE side.
  • the UE measures several TX-RX analog beam pairs by measuring and comparing the quality of a particular DL RS (e.g., RS port (s) for RRM, which may be referred to as 'RRM-RS' for convenience). Can be selected.
  • the TRP may select one of the UE preferred Tx beams to transmit beamformed CSI-RS or DMRS ports.
  • the UE must know which Rx beam should be set up to receive these antenna ports among the candidate Rx beams so that the Tx beam direction corresponding to the RRM-RS port can be signaled to the UE via the associated QCL indication.
  • the RRM-RS port and the CSI-RS / DMRS port are QCL in terms of / with respect to the dominant arrival / receiving angle.
  • the dominant arrival / reception angles determine the Rx beamforming coefficients and can be considered relatively large-scale because the analog beams may not change dynamically compared to digital beams. Without the QCL assumption, the UE must search for multiple RX beam candidates, which is energy and time consuming.
  • a new type of QCL characteristic e.g., 'spatial QCL parameters (ie, receive beam related parameters)'
  • QCL characteristic e.g., 'spatial QCL parameters (ie, receive beam related parameters)'
  • receive beam related parameters ie, receive beam related parameters
  • the RRM-RS may be called MRS-1, 2 or 3 and may or may not be multiplexed within the SS block.
  • the RRM-RS may be a single or multi-beam RS.
  • the UE may assume that the PAP from the CSI-RS is a subset of the PAP observed from the MRS-x or SS block. This is considered that the TXRU used for CSI-RS transmission should be used for signal transmission in the SS block at least in an SFN manner.
  • the CSI-RS related configuration via RRC or MAC should include a QCL indication (at least for spatial QCL parameters) for the SS block index.
  • the UE may assume that the PAP from the CSI-RS is a subset of the PAP observed from the signals transmitted in the SS block.
  • Type 1 CSI-RS resources for MIMO CSI feedback
  • Type 2 CSI-RS resources to support DL Tx / Rx beam sweeping
  • each CSI-RS resource may have a QCL assumption / relationship with a specific SS block.
  • the CSI-RS port may correspond to different analog beams in one CSI-RS resource.
  • the UE may report its preferred ⁇ CRI, port index ⁇ to the base station for DL beam operation.
  • Type 1 CSI-RS resources for MIMO CSI feedback, at least for linking with appropriate QCL signaling (e.g., linking with Type 2 CSI-RS resource and port index pairs) to aid in the Rx beam setup of the UE.
  • QCL signaling should be provided to the UE.
  • Information that a QCL or partial QCL assumption is applicable for at least one of the (s) may include L1 (e.g., by DCI), L2 (e.g., by MAC CE), and / or L3 (e.g., , By RRC).
  • the UE may reflect / apply the QCL hypothesis or the partial QCL hypothesis when measuring Type 1 CSI-RS resources based on such signaling / configuration.
  • QCL or partial QCL for the QCL type 2 CSI-RS resource (and / or specific port within that resource).
  • / or information such as a specific SS block index it may be applied when measuring the type 1 CSI-RS resource by linking / considering this information. That is, when measuring Type 1 CSI-RS resources, the UE may not only have QCL assumptions / relationships between Type 1 CSI-RS resources and Type 2 CSI-RS resources / ports, but also type 2 CSI-RS resources / ports and MRS-x or the like. QCL assumptions / relationships between SS blocks may also be considered / applied.
  • the QCL or partial QCL indication for the specific type 2 CSI-RS resource (s) and / or port index within the resource may be linked (not intended for actual QCL assumption) by specific conditions and settings.
  • the UE does not perform the type 1 CSI-RS resource and the QCL indicated type 2 CSI-RS resource / port and QCL assumption when measuring the type 1 CSI-RS resource, but rather the type 2 CSI-RS.
  • Resource / Port and QCL The indicated MRS-x and / or SS block and QCL assumption may be performed.
  • the UE may reflect / apply the QCL hypothesis or the partial QCL hypothesis when measuring Type 1 CSI-RS resources based on such signaling / configuration.
  • the QCL assumption / relationship with the SSB block may be set / instructed in CSI-RS 'resource' units / levels, and as an additional / modified embodiment thereof, CSI in each CSI-RS resource QCL assumptions / relationships with SSB blocks may also be established / indicated in RS 'ports' units / levels (ie, in more detail). Accordingly, in the embodiments proposed herein, embodiments described in CSI-RS port units / levels may be derived as embodiments replaced by CSI-RS resource units / levels, although not mentioned otherwise. And vice versa.
  • FIG. 19 is a diagram illustrating an overall DL beam operating procedure according to an embodiment of the present invention.
  • FIG. 19 illustrates a QCL relationship between a type 2 CSI-RS resource and an SS block (or MRS-1).
  • a beam-width of an SFN-transmitted SS block (QCL with type 2 CSI-RS resource) is transmitted to a plurality of CSI-RS ports transmitted in one CSI-RS resource.
  • Each CSI-RS port may correspond to a different analog beam by a gNB implementation.
  • the QCL indication may include a cell / TP identifier associated with the SS block so that the beam operating procedure covers at least the multi-cell / TP scenario to support at least efficient CoMP operation.
  • This is accompanied by a specific (physical) cell-ID (and / or TP ID) when a specific RS (e.g., CSI-RS) in the above proposal establishes a QCL assumption / relationship with a particular SS block (or MRS) and the like.
  • a QCL hypothesis / relationship can be set in one SS block (or MRS).
  • the QCL indication may not necessarily include a 'serving' cell / TP identifier of the UE as a cell / TP identifier associated with the SS block and may include a 'non-serving' cell / TP identifier. It may be.
  • This is not limited to the SS block in which the Q block hypothesis / relation indicated for a particular RS (e.g., CSI-RS) is necessarily transmitted / associated from the serving cell / TP, and transmitted from the non-serving cell / TP. It can also be extended to the associated SS block.
  • CSI-RS e.g., CSI-RS
  • the UE receives a specific LSP for a signal / channel tracked while receiving a SS block transmitted by neighboring cells as well as a plurality of SS blocks transmitted by a single cell, for example, a specific RS (eg, CSI-RS). It has the advantage / effect that it can be reflected / applied in reception / measurement.
  • a specific RS eg, CSI-RS
  • CSI-RS related configuration via RRC or MAC should be able to include QCL indication with SS block index for at least spatial QCL parameter (s).
  • the UE may assume that the PAP from the CSI-RS is a subset of the PAP observed from the signals transmitted in the SS block.
  • the following DL L1 (Layer 1) / L2 (Layer 2) beam management procedures may be supported in one or multiple TRPs:
  • P-1 is used to enable UE measurement for different TRP Tx beams to support the selection of TRP Tx (transmission) beams / UE Rx (reception) beam (s).
  • TRP transmission
  • UE Rx reception
  • it may generally include intra / inter-TRP Tx beam sweeping from a set of different beams (or using a set of different beams).
  • beamforming of a UE it may generally include UE Rx beam sweeping from a set of different beams (or using a set of different beams).
  • the TRP Tx beam and the UE Rx beam may be determined jointly or sequentially. If sequentially determined, for example, the TRP Tx beam may be determined first, and then the UE Rx beam may be determined based on the determined TRP Tx beam.
  • P-2 is used to enable measurement of the UE for different TRP Tx beams to determine / modify inter / intra-TRP Tx beam (s). That is, since this P-2 is intended for the UE to determine the optimal / appropriate TRP Tx beam (s), the P-2 measures different TRP Tx beams (more specifically, RS transmitted through different TRP Tx beams). Measurement), and do not repeat the measurement for the same TRP Tx beam. Therefore, when P-2 is set, Tx beams in which RS (eg, CSI-RS) resources are transmitted / mapped in the same / one RS resource set may be different for each resource. In this case, the Rx beams used for measuring different TRP Tx beam (s) may be fixed to the same beam, and may correspond to the Rx beam determined / selected in P-3 described below.
  • RS eg, CSI-RS
  • This P-2 may be configured in the terminal through RRC signaling.
  • P-2 may be set / instructed to the UE by setting / instructing the 'ResourceRep (or CSI-RS-ResourceRep) RRC parameter' to 'off'.
  • the 'ResourceRep RRC parameter' may correspond to an RRC parameter indicating whether 'repetition is on / off'. If the 'ResourceRep RRC parameter' indicates repetition on (ie, the parameter is set to on), the UE may assume that the base station maintains a fixed Tx beam for each RS resource in the same RS set.
  • the UE may assume that the base station does not maintain a fixed Tx beam for each RS resource in the same RS set.
  • the ResourceRep RRC parameter when the RS is CSI-RS may be referred to as a 'CSI-RS-ResourceRep RRC parameter'.
  • the CSI-RS-ResourceRep parameter, associated with the CSI-RS resource set defines whether the iteration is on / off at the base station along with the spatial domain transmission filter (especially whether the spatial domain transmission filter is the same).
  • (CSI-RS-ResourceRep parameter associated with a CSI-RS resource set defines whether a repetition in conjunction with spatial domain transmission filter is ON / OFF at gNB-side).
  • the UE If the UE receives the upper layer parameter CSI-RS-ResourceRep set to 'OFF' (that is, P-2 is set), the UE indicates that the CSI-RS resource in the resource set has the same downlink space in all symbols. If the UE is configured with the higher-payer parameter CSI-RS-ResourceRep is set to 'OFF', the UE may not assume that the CSI-RS resources within the resource set are transmitted with the same downlink spatial domain transmission filter and with same number of ports in every symbol).
  • P-2 may be subjected to UE measurements for a smaller Tx beam set (ie, narrower range of beam sets) than P-1 for finer beam refinement than P-1. Therefore, P-2 can also be regarded as a special case of P-1.
  • P-3 is used to enable (repeat) measurement of the UE for the same TRP Tx beam to determine / change the UE Rx beam if the UE uses beamforming. do. That is, since this P-3 is for the UE to determine the optimal / appropriate Rx beam, the same TRP 'Tx' beam 'repetitively' measured / received using different 'Rx' beam (more specifically The RS transmitted through the same TRP Tx beams may be measured using different Rx beams. In this case, the same TRP 'Tx' beam repeatedly measured may be a Tx beam previously determined / selected through P-2. Therefore, when P-3 is configured, the Tx beams to which RS (eg, CSI-RS) resources are transmitted / mapped in the same RS resource set may be the same for each resource.
  • RS eg, CSI-RS
  • This P-3 may be configured in the terminal through RRC signaling.
  • the P-3 may be set / instructed to the UE by setting / instructing the 'ResourceRep (or CSI-RS-ResourceRep) RRC parameter' to 'on'.
  • the UE determines that the CSI-RS resource in the resource set is the same downlink space domain transmission filter. If the UE is configured with the higher-layer parameter CSI-RS-ResourceRep set to 'ON', the it is assumed that the CSI-RS resources in the resource set are transmitted in different OFDM symbols, respectively. UE may assume that the CSI-RS resources within the resource set are transmitted with the same downlink spatial domain transmission filter, where the CSI-RS resources in the resource set are transmitted in different OFDM symbols.). Also, the UE is not expected to receive different periodicity in CSI-RS-timeConfig and NrofPorts in every CSI-RS resource within the set .).
  • Procedures P-2 and P-3 may be performed jointly (or sequentially) and / or multiple times to achieve the purpose of simultaneous modification of the TRP Tx beam and the UE Rx beam. There may or may not be a physical layer procedure in procedure P-3. In addition, multiple Tx / Rx beam pair management for the UE may be supported.
  • the above procedures can be applied to all frequency bands and can be used in single / multi beam per TRP.
  • the UL beam management procedure will be described below.
  • the UL beam management procedure may be defined similarly to the above-described DL beam management procedure, and may be broadly classified into the following types:
  • U-1 can be used to enable TRP measurement for different UE Tx beams to support the selection of UE Tx beam / TRP Rx beam.
  • Such U-1 may correspond to P-1 described above.
  • U-2 (procedure): can be used to enable TRP measurement for different TRP Rx beams to change / select inter / intra-TRP Rx beam (s). This U-2 may correspond to P-2 described above.
  • U-3 (procedure): When the UE uses beamforming, it can be used to enable (repetitive) TRP measurements for the same TRP Rx beam to change the UE Tx beam.
  • This U-3 may correspond to P-3 described above.
  • indication of various Tx / Rx beam match / match / correspondance related information may be supported.
  • UL beam management may be performed based on the following channels / RSs:
  • the TRP and the UE may have Tx / Rx beam correspondence / consistency. Or, the TRP may not have Tx / Rx beam match / match / correspondance and / or the UE may not have Tx / Rx beam match / match / correspondance.
  • the UE may be configured with the following features for CSI acquisition:
  • CSI reporting settings include at least the following:
  • Time-domain behavior aperiodic or periodic / semi-persistent
  • RS settings include at least the following:
  • Time-domain behavior aperiodic or periodic / semi-permanent
  • RS type including at least CSI-RS
  • IM settings include at least the following:
  • Time-domain behavior aperiodic or periodic / semi-permanent
  • IM type including CSI-IM
  • CSI measurement settings include at least the following:
  • the CSI measurement setting performs a function of interconnecting a specific CSI reporting setting, a specific RS setting and / or a specific IM setting, and the terminal is configured with one CSI measurement setting, an RS setting and / or an IM.
  • the settings can be seen as being associated / associated with each other.
  • RS settings may also be referred to as resource settings and include signal configurations for channel and / or interference measurements.
  • IM settings can be removed.
  • the UE may be set to N ⁇ 1 CSI reporting setting, M ⁇ 1 resource setting and one CSI measurement setting, where the CSI measurement setting includes L ⁇ 1 link.
  • Each L link may correspond to a CSI reporting setting and a resource setting.
  • At least the following configuration parameters may be signaled via RRC for at least CSI acquisition.
  • reported CSI parameters At least in each CSI reporting setting: reported CSI parameters, reported CSI type (I or II), codebook configuration including codebook subset restrictions, time-domain behavior, frequency granularity for CQI and PMI ( granularity), measurement limitation configurations
  • the configuration of Ks ⁇ 1 CSI-RS resources for each set s includes at least mapping to REs, number of ports, time domain operation, etc.
  • CSI report setting indication In each of the L links of the CSI measurement settings: CSI report setting indication, resource setting indication, quantity to be measured (channel or interference)
  • One CSI reporting setting can be linked to one or more resource settings
  • Multiple CSI reporting settings may be associated with the same resource setting
  • At least the following may be dynamically selected by L1 or L2 signaling:
  • the reporting information includes at least:
  • CSI-RS resource ID Details such as CSI-RS resource ID, antenna port index, combination of antenna port index and time index, sequence index, etc.
  • beam management overhead and latency can be considered during CSI-RS design for NR beam management.
  • IFDMA interleaved frequency division multiple access
  • option 1 or option 2 described above may be considered to reduce beam operation / management overhead and delay.
  • the main purpose of the proposed option 1 or option 2 is to reduce the repetitive transmission duration of CSI-RS resources to within a specific number of OFDM symbols (for example, 1) (that is, within a specific number of OFDMA symbols). In order to allow two or more CSI-RS resources to be transmitted repeatedly in a scheme).
  • this object can be achieved by introducing IFDMA. More specifically, when following IFDMA, within one RB, the CSI-RS (or CSI-RS resource) is mapped on a specific subcarrier (or tone) basis, while the remaining subcarriers are nulling ( That is, the CSI-RS may be mapped and transmitted in the frequency resource in such a manner that a value of '0' is mapped.
  • a pattern in which a corresponding CSI-RS (or CSI-RS resource) is repeatedly transmitted in one OFDM symbol may be generated. For example, if a CSI-RS (or CSI-RS resource) maps only to a subcarrier with an even (or odd) index within one RB (ie in the frequency-domain), within one OFDM symbol ( That is, in the time-domain, the corresponding CSI-RS (or CSI-RS resource) may be repeatedly transmitted two times.
  • this object can be achieved by introducing a larger subcarrier spacing for CSI-RS resources for beam operation / management purposes.
  • the base station may increase the subcarrier spacing of the corresponding CSI-RS resources to reduce the corresponding CSI-RS resource transmission duration (duration), in this case Information about the increased subcarrier spacing may be separately indicated to the terminal.
  • a CSI-RS resource for BM purposes may be transmitted with a subcarrier interval set twice as large as another RS resource, in which case the CSI-RS resource may be transmitted twice in one OFDM symbol. have.
  • the base station may transmit CSI-RSs repeatedly transmitted in one OFDM symbol to different beams, respectively, to determine a transmission beam.
  • the UE may receive CSI-RSs repeatedly transmitted in one OFDM symbol as different beams, thereby enabling faster transmission / reception beam determination.
  • CSI-RS design for NR beam management includes: For example, CSI-RS multiplexing, UE beam switch delay, and UE implementation complexity (eg, Automatic Gain Control (AGC) training time). ), Coverage of CSI-RS, etc.
  • AGC Automatic Gain Control
  • CSI-RS supports beam management for NR
  • CSI-RS designs must consider analog beamforming aspects.
  • the design requirements for CSI-RS for beam management and CSI-RS for CSI acquisition can vary considerably in terms of port number, time / frequency density, and port multiplexing methods. Therefore, a CSI-RS (ie, CSI-RS Type B) for beam management needs to be designed separately from the CSI-RS (ie, CSI-RS Type A) for CSI acquisition.
  • the main purpose of CSI-RS Type A is DL link adaptation similar to LTE CSI-RS
  • the main purpose of CSI-RS Type B is DL Tx / Rx beam which does not necessarily require measurement accuracy for link adaptation. Management.
  • CSI-RS Type B may be thinner than CSI-RS Type A, at least in terms of frequency density.
  • CSI-RS type B needs to support a larger number of RS transmissions in a slot in order to be able to estimate / measure more sets of ⁇ Tx beam, Rx beam ⁇ .
  • both CSI-RS types can be included in resource settings, and can be associated with different reporting settings, respectively (ie one is normal CSI reporting and the other is beam Associated with reporting).
  • NR should consider designing two types of NZP CSI-RS separately.
  • CSI-RS Type A mainly for DL link adaptation
  • CSI-RS Type B mainly for DL beam management
  • Option 2 For CSI-RS Type B for DL beam management, it has been described that beam management overhead and delay should be considered, including Option 1 (IFDMA) and Option 2 (large subcarrier spacing) described above. First of all, it is unclear whether Option 2 has more advantages over Option 1. Since both options have similar goals in terms of overhead and latency, Option 2 is an unnecessarily larger network implementation, considering CSI-RS resource multiplexing in the frequency domain for multiple UEs, each with different subcarrier spacing. May cause complexity
  • Option 1 may therefore be considered for further consideration.
  • issues that need to be clearly understood with respect to Option 1. For example, how many comb values should be supported, whether comb offsets are supported, NZP CSI-RS REs for use by the UE for Rx beam sweeping, such as Rx beam sweeping for P-1 and P-3; There may be various issues such as how to distinguish ZP (Null) REs within the same OFDM symbol.
  • One possible option for the last issue is the NZP and one CSI-RS with one resource set to a specific comb value / offset and ZP and the remaining resources set to an independent comb value / offset to properly indicate null REs.
  • One possible option regarding the last issue would be reusing the above agreed framework such that one resource setting includes multiple CSI-RS resources where one of resources is to be configured with NZP and certain comb value / offset, and the other resources are to be configured with ZP and independent comb value / offset to properly indicate Null REs).
  • 20 and 21 illustrate CSI-RS antenna port mapping for each subcarrier in the frequency domain according to an embodiment of the present invention.
  • UE1 is configured with CSI-RS port 15
  • UE2 is configured with CSI-RS port 16.
  • 20 and 21 'arrow' means NZP RE / subcarrier, 'number' above each arrow indicates antenna port number to which the corresponding NZP RE / subcarrier is transmitted / mapped, 'X' indicates ZP. (Null) RE / Subcarrier.
  • the embodiments can be seen as embodiments in which "CSI-RS resource multiplexing (independent comb value / offset setting with appropriate Null RE configurations) in the frequency domain for a plurality of UEs" is applied as described above.
  • the base station transmits a signal multiplexed in this manner, and the UE1 may operate in a form in which the following information is preset in order to receive such a signal.
  • a 'comb value (or length)' is a value applied at the frequency axis RE / subcarrier level, and means a RE / subcarrier unit / spacing to which a signal (ie, CSI-RS) is mapped / appears.
  • This comb value may be generalized extended / modified for other frequency granularities.
  • the comb offset means the index of the first RE / subcarrier in which the CSI-RS appears / mapped in one RB.
  • the base station configures the following three CSI-RS resources in UE1 through a specific resource setting #ID as follows. I can do it:
  • the base station may provide an explicit configuration to the terminal so that the terminal can clearly know the location of the NZP / ZP (Null) REs.
  • UE1 should never assume or assume that these REs are "ZP (Null) REs", even if they do not receive any settings for the port 16 RE positions in FIGS. 20 and 21. This is because NZP signals for other UEs may be transmitted through REs not separately indicated / configured as shown in FIGS. 20 and 21.
  • FFT Fast Fourier Transform
  • FFT Fast Fourier Transform
  • the base station may additionally configure / instruct the following CSI-RS resource # 4 to UE1 in the configuration information (for example, resource setting #ID) (ie, the base station may signal / resource information about another terminal). Also explicitly / implicitly indicated / set separately):
  • UE1 may signal terminal capability information regarding whether it is a cancellation receiver to the base station in advance.
  • the base station determines the following from the configuration information (eg, resource setting #ID). You can additionally configure / direct the same CSI-RS resource # 4:
  • the present embodiment corresponds to an embodiment in which the base station explicitly sets UE1 that REs corresponding to the port 16 are ZP (Null) REs having an “X” display form.
  • the UE1 provided with this configuration may attempt to receive the CSI-RS while sequentially applying 256 FFTs (that is, 1/4 FFT size).
  • the setting of the NZP CSI-RS resource for UE2 may also be performed in the same / similar manner as the NZP CSI-RS resource setting method for UE1 described above, and the configuration information (for example, The RE / subcarrier location corresponding to port 16 of FIGS. 20 and 21 may be explicitly / implicitly indicated to UE2 through the resource setting #ID).
  • the present invention is not limited thereto, and the CSI-RS resource multiplexing in the frequency domain for a plurality of UEs (suitable Null RE configurations) It is to be understood that variations of various explicit / implicit setting / directive / signalings to support the implementation of " independent comb value / offset setting "
  • the base station may separately provide the terminal (in the form of a specific parameter value) with information on how many additional NZP CSI-RS transmission REs for other terminals (within the corresponding comb length / value) exist.
  • NZP interference
  • Information that explicitly or implicitly indicates that there is every / length 4 'may be provided to UE1.
  • the base station may inform the terminal by setting a parameter value corresponding to the number of REs to indicate '1'.
  • a terminal may provide a base station with UE capability signaling regarding whether it is possible to perform a beam sweeping procedure applying up to (up to) RX beam candidates (within one OFDM symbol). It may be.
  • the base station should consider the UE capability signaling and provide a configuration in which there is no problem in the related terminal operation (ie, the UE does not expect to provide the configuration beyond the capability of the UE indicated through the UE capability signaling). .
  • the UE capability signaling may be signaled / supported in the form that 'comb length / value can be set to a specific length / value (implemented)' (ie, includes a maximum comb length / value). May be signaled / supported). And / or port 16 in FIGS. 20 and 21, even if the terminal is configured with a length / value greater than the (maximum) length / value included in the UE capability signaling to reflect an operation similar to the above descriptions.
  • the UE capability information may be signaled / supported in the form of expecting the support / assistance of beam sweeping application to Rx beam candidates having a length / value 'less' set because different NZP interference REs are mixed.
  • the following information in the UE capability signaling of the terminal can also be supported to be delivered to the base station:
  • Information relating to how many groups the Rx beam candidates can be grouped (for example, grouping eight Rx beam candidates into two groups of four) (the purpose of grouping is, for example, different antennas for each group)
  • the purpose of grouping is, for example, different antennas for each group
  • the transfer of information associated with the group such as a large power range change can be expected when the inter-group sweeping is applied, etc.
  • the CSI-RS may be configured, but the CSI-RS configuration over two OFDM symbols may be provided to the terminal to support sweeping for a total of eight Rx beams (ie, two candidate beam groups).
  • the two candidate beam groups may be mapped to two OFDM symbols, respectively, and the base station may ensure that the OFDM symbols to which the candidate beam groups are mapped are not continuously positioned in the time axis for the purpose of guaranteeing the AGC setting time of the UE.
  • the DL beam management procedure may be performed in two steps.
  • the TRP (s) and the UE may have a wide / coarse beam (eg, group of beams) alignment using SS burst and / or MRS, using CSI-RS Type B for beam management
  • the optimal TRP Tx beam (s) and UE Rx beam (s) can be found.
  • the CSI-RS resources for beam management are wide / coarse beams (ie, so that finer Tx beam (s) selection and reporting can be performed through antenna port selection within the CSI-RS). Group of beams).
  • Tx beam (s) are the same over sub-time units within each time unit
  • P-3 may be supported by setting a single CSI-RS resource with multiple OFDM symbols and / or potential comb value settings set, where P-2 is each one OFDM symbol. It can be supported by setting a number of CSI-RS resources that are configured.
  • P-1 may be supported by a combination of P-2 and P-3 in which a plurality of CSI-RS resources are each set with a plurality of OFDM symbols.
  • CSI-RS measurement is needed to select the best TRP Tx beam and / or UE Rx beam.
  • RS resources are selected based on RSRP or CQI, similar to CSI-RS Resource Indicator (CRI) selection, as in LTE eFD-MIMO.
  • CRI CSI-RS Resource Indicator
  • UE Rx beam selection the TRP needs to know the number of UE beam candidates and does not need to know whether the UE Rx beam coefficient and the UE Rx beam are changed.
  • the measurement settings for beam management also include L ⁇ 1 links, each L link forming at least an association between the reporting settings and the resource settings for beam management.
  • the beam management procedure can be understood as a special case of the CSI acquisition procedure.
  • the report content for beam management may be different from the report content for CSI acquisition.
  • CRI and / or port index reporting may be needed for beam management without PMI / RI reporting.
  • beam intensity related metrics eg, RSRP or CQI type metrics
  • the P-3 beam management procedure does not require CRI and / or port index reporting but may or may not require RSRP (or CQI) type reporting to determine whether a new Tx beam can be used for the P-3. It may be.
  • Beam reporting for DL beam management purposes may be included in the reporting settings, for example,
  • P-1 and P-2 can be supported with resource, reporting and measurement settings.
  • P-3 can be supported with resource and measurement settings.
  • FIG. 22 is a flowchart illustrating a CSI reporting method of a terminal according to an embodiment of the present invention. Descriptions of the above-described embodiments with respect to the flowchart may be applied in the same or similar manner, and redundant descriptions are omitted.
  • the terminal may receive CSI-RS resource configuration information (for example, the above-described resource setting #ID) for receiving the CSI-RS resource from the base station (S2210).
  • CSI-RS resource configuration information for example, the above-described resource setting #ID
  • the UE may receive (at least one) CSI-RS resource based on the CSI resource configuration information (S2220).
  • the terminal may report the CSI generated based on the (at least one) CSI-RS resource to the base station (S2230).
  • the CSI-RS resource configuration information includes information on the location of a subcarrier (or can be replaced with an RE) to which the same CSI-RS resource is mapped. can do.
  • the indication information is, as an embodiment, the first indication information regarding the subcarrier location to which the same (NZP) CSI-RS resource is mapped, and the subcarrier location to which the ZP (Null) CSI-RS resource is mapped.
  • the first indication information may include offset information (eg, comb offset) of the first subcarrier to which the same CSI-RS resource is mapped and / or subcarrier interval information (eg, comb) to which the same CSI-RS resource is mapped. Value).
  • the second indication information may include offset information (eg, comb offset) of the first subcarrier to which a ZP CSI-RS resource is mapped and / or subcarrier interval information (eg, to which the ZP CSI-RS resource is mapped). comb value).
  • the third indication information may include offset information (eg, comb offset) of the first subcarrier to which the CSI-RS resource for another terminal is mapped and / or subcarrier spacing information to which the CSI-RS resource for the other terminal is mapped. (Eg, comb value).
  • the same CSI-RS resource may be repeatedly transmitted within a specific time-section by an interval between the remaining subcarriers except the subcarrier to which the ZP CSI-RS resource is mapped.
  • the specific time-section may be one OFDM symbol period.
  • the indication information indicates an interval (ie, a comb value / length) between two subcarriers other than the subcarrier to which the ZP CSI-RS resource is mapped
  • the same CSI-RS resource is one. It may be repeated two times in the OFDM symbol interval of.
  • the UE may assume that the NZP CSI-RS resource for another UE is mapped to the corresponding subcarrier.
  • the indication information may be information on a subcarrier location to which the same CSI-RS resource is mapped, and may explicitly indicate the number of times the same CSI-RS resource is repeated in one OFDM symbol. .
  • the indication information may further indicate the number of times the ZP CSI-RS resource and / or CSI-RS resource for another UE is repeated in one RB.
  • the UE receives the same CSI-RS resource repeatedly transmitted within a specific time interval using different reception beam candidates, and receives at least one of the reception beam candidates based on the reception result.
  • the beam candidate may be selected (ie, performing the P-3 BM procedure).
  • the terminal may signal (for example, UE capability signaling) information on the maximum number of available reception beam candidates and transmit the information to the base station in advance.
  • the base station may determine the number of times the same CSI-RS resources are repeatedly transmitted based on the maximum number information of the received beam candidates received from the terminal. For example, the base station may set the number of CSI-RS repetitive transmissions to be equal to or less than the maximum number of reception beam candidates.
  • FIG. 23 illustrates a block diagram of a wireless communication device according to an embodiment of the present invention.
  • a wireless communication system includes a base station (eNB) 2310 and a plurality of terminals (UE) 2320 located in an area of a base station 2310.
  • eNB base station
  • UE terminals
  • the base station 2310 includes a processor 2311, a memory 2312, and an RF unit 2313.
  • the processor 2311 implements the functions, processes, and / or methods proposed above. Layers of the air interface protocol may be implemented by the processor 2311.
  • the memory 2312 is connected to the processor 2311 and stores various information for driving the processor 2311.
  • the RF unit 2313 is connected to the processor 2311 and transmits and / or receives a radio signal.
  • the terminal 2320 includes a processor 2321, a memory 2232, and an RF unit 2323.
  • the processor 2321 implements the functions, processes, and / or methods proposed in the above-described embodiments. Layers of the air interface protocol may be implemented by the processor 2321.
  • the memory 2232 is connected to the processor 2321 and stores various information for driving the processor 2321.
  • the RF unit 2323 is connected to the processor 2321 to transmit and / or receive a radio signal.
  • the memories 2312 and 2322 may be inside or outside the processors 2311 and 2321, and may be connected to the processors 2311 and 2321 by various well-known means.
  • the base station 2310 and / or the terminal 2320 may have one antenna or multiple antennas.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • 'A and / or B' may be interpreted as meaning at least one of A and / or B.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in memory and driven by the processor.
  • the memory may be located inside or outside the processor, and may exchange data with the processor by various known means.

Abstract

본 발명의 일 실시예에 따른 무선 통신 시스템에서 단말의 CSI(Channel State Information) 보고 방법에 있어서, CSI-RS(Reference Signal) 자원 수신을 위한 CSI-RS 자원 설정 정보를 기지국으로부터 수신하는 단계; 상기 CSI 자원 설정 정보에 기초하여 상기 CSI-RS 자원을 수신하는 단계; 및 상기 CSI-RS 자원을 기초로 생성한 CSI를 상기 기지국에 보고하는 단계; 를 포함하되, 상기 단말에 대하여 동일한 CSI-RS 자원의 반복 전송이 설정된 경우, 상기 CSI-RS 자원 설정 정보는 상기 동일한 CSI-RS 자원이 매핑되는 서브캐리어 위치에 관한 지시 정보를 포함할 수 있다.

Description

무선 통신 시스템에서의 채널 상태 정보 보고 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게는 단말의 채널 상태 정보 보고 방법 및 이를 위한 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스에 대한 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 발명의 목적은, 무선 통신 시스템에서 적절한 QCL(Quasi-co-Location) 가정을 통해 단말의 참조 신호 수신 성능을 향상시키고자 함이 목적이다.
또한, 본 발명의 목적은, 무선 통신 시스템에서 빔 운영(management)을 목적으로 한 QCL 가정 동작을 정의하기 위함이 목적이다.
또한, 본 발명의 목적은, 무선 통신 시스템에서 빔 관리/운영 목적을 위한 CSI 절차를 정의하기 위함이 목적이다.
또한, 본 발명의 목적은, 무선 통신 시스템에서 빔 관리/운영 목적을 위한 새로운/효율적인 CSI-RS 전송 방식 및 이에 관한 설정 정보를 기지국이 단말에 제공하기 위한 방법을 제안하기 위함이 목적이다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예에 따른 무선 통신 시스템에서 단말의 CSI(Channel State Information) 보고 방법에 있어서, CSI-RS(Reference Signal) 자원 수신을 위한 CSI-RS 자원 설정 정보를 기지국으로부터 수신하는 단계; 상기 CSI 자원 설정 정보에 기초하여 상기 CSI-RS 자원을 수신하는 단계; 및 상기 CSI-RS 자원을 기초로 생성한 CSI를 상기 기지국에 보고하는 단계; 를 포함하되, 상기 단말에 대하여 동일한 CSI-RS 자원의 반복 전송이 설정된 경우, 상기 CSI-RS 자원 설정 정보는 상기 동일한 CSI-RS 자원이 매핑되는 서브캐리어 위치에 관한 지시 정보를 포함할 수 있다.
또한, 상기 지시 정보는, 상기 동일한 CSI-RS 자원이 매핑되는 서브캐리어 위치에 관한 제1 지시 정보, ZP(zero power) CSI-RS 자원이 매핑되는 서브캐리어 위치에 관한 제2 지시 정보 및/또는 다른 단말을 위한 CSI-RS 자원이 매핑되는 서브캐리어 위치에 관한 제3 지시 정보를 포함할 수 있다.
또한, 상기 제1 지시 정보는, 상기 동일한 CSI-RS 자원이 매핑되는 첫 번째 서브캐리어의 오프셋 정보 및/또는 상기 동일한 CSI-RS 자원이 매핑되는 서브캐리어 간격(spacing) 정보를 포함할 수 있다.
또한, 상기 제2 지시 정보는, 상기 ZP CSI-RS 자원이 매핑되는 첫 번째 서브캐리어의 오프셋 정보 및/또는 상기 ZP CSI-RS 자원이 매핑되는 서브캐리어 간격 정보를 포함할 수 있다.
또한, 상기 제3 지시 정보는, 상기 다른 단말을 위한 상기 CSI-RS 자원이 매핑되는 첫 번째 서브캐리어의 오프셋 정보 및/또는 상기 다른 단말을 위한 상기 CSI-RS 자원이 매핑되는 서브캐리어 간격 정보를 포함할 수 있다.
또한, 상기 동일한 CSI-RS 자원은, 상기 ZP CSI-RS 자원이 매핑되는 서브캐리어를 제외한 나머지 서브캐리어들 사이의 간격만큼 특정 시간-구간(duration) 내에서 반복되어 전송될 수 있다.
또한, 상기 특정 시간-구간은 하나의 OFDM(orthogonal frequency division multiple) 심볼 구간일 수 있다.
또한, 상기 지시 정보에 의해 지시되지 않은 서브캐리어가 존재하는 경우, 상기 서브캐리어에는 상기 다른 단말을 위한 상기 NZP CSI-RS 자원이 매핑된 것으로 가정될 수 있다.
또한, 상기 CSI 보고 방법은, 상기 특정 시간-구간 내에서 반복 전송되는 상기 동일한 CSI-RS 자원을 서로 다른 수신 빔 후보들을 사용하여 수신하는 단계; 및 상기 수신 결과에 기초하여 상기 수신 빔 후보들 중 적어도 하나의 수신 빔 후보를 선택하는 단계; 를 더 포함할 수 있다.
또한, 상기 CSI 보고 방법은, 상기 단말이 사용 가능한 수신 빔 후보 최대 개수에 관한 정보를 시그널링하여 상기 기지국에 전송하는 단계; 를 더 포함할 수 있다.
또한, 상기 동일한 CSI-RS 자원이 상기 특정-시간 구간 내에서 반복 전송되는 횟수는, 상기 단말이 사용 가능한 수신 빔 후보의 최대 개수에 기초하여 결정될 수 있다.
또한, 상기 지시 정보는, 상기 동일한 CSI-RS 자원이 매핑되는 서브캐리어 위치에 관한 정보로서, 상기 동일한 CSI-RS 자원이 하나의 OFDM(orthogonal frequency division multiple) 심볼 내에서 반복되는 횟수를 지시할 수 있다.
또한, 본 발명의 다른 실시예에 따른 무선 통신 시스템에서 CSI(Channel State Information)를 보고하는 단말에 있어서, 무선 신호를 송수신하기 위한 RF(Radio Frequency) 유닛; 및 상기 RF 유닛을 제어하는 프로세서; 를 포함하고, 상기 프로세서는, 상기 RF 유닛을 제어하여 CSI-RS(Reference Signal) 자원 수신을 위한 CSI-RS 자원 설정 정보를 기지국으로부터 수신하고, 상기 RF 유닛을 제어하여 상기 CSI 자원 설정 정보에 기초하여 상기 CSI-RS 자원을 수신하고, 상기 RF 유닛을 제어하여 상기 CSI-RS 자원을 기초로 생성한 CSI를 상기 기지국에 보고하되, 상기 단말에 대하여 동일한 CSI-RS 자원의 반복 전송이 설정된 경우, 상기 CSI-RS 자원 설정 정보는 상기 동일한 CSI-RS 자원이 매핑되는 서브캐리어 위치에 관한 지시 정보를 포함할 수 있다.
또한, 상기 지시 정보는, 상기 동일한 CSI-RS 자원이 매핑되는 서브캐리어 위치에 관한 제1 지시 정보, ZP(zero power) CSI-RS 자원이 매핑되는 서브캐리어 위치에 관한 제2 지시 정보 및/또는 다른 단말을 위한 CSI-RS 자원이 매핑되는 서브캐리어 위치에 관한 제3 지시 정보를 포함할 수 있다.
또한, 상기 동일한 CSI-RS 자원은, 상기 ZP CSI-RS 자원이 매핑되는 서브캐리어를 제외한 나머지 서브캐리어들 사이의 간격만큼 특정 시간-구간(duration) 내에서 반복되어 전송될 수 있다.
본 발명의 일 실시예에 따르면, 새로운 QCL 파라미터로서 수신 빔 관련 파라미터를 정의함으로써 단말의 RS의 공간 관점에서의 수신 성능이 더욱 향상된다는 효과를 갖는다.
또한, 본 발명의 일 실시예에 따르면, 서로 다른 종류의 RS에 대한 GCL 가정이 가능하기 때문에, 특정 RS의 밀도가 증가되는 것과 동일한 효과를 가져와 해당 RS의 수신 성능을 향상시킬 수 있다는 효과를 갖는다.
또한, 본 발명의 일 실시예에 따르면, QCL 시그널링을 계층화된 시그널링 방식으로 단말에 지시하기 때문에, 시그널링 오버헤드를 줄일 수 있을 뿐 아니라, 순시적인 상황을 고려한 반-정적인 QCL 지시가 가능하다는 효과를 갖는다.
또한, 본 발명의 실시예에 따르면, SSB와의 QCL 가정에 기초하여 CSI-RS를 수신하기 때문에 CSI-RS의 수신 성능이 향상된다는 효과를 갖는다. 아울러, 이러한 QCL 가정을 빔 운영 목적의 CSI-RS 수신에 사용하는 경우, 빔 운영(management) 목적을 위한 QCL 가정 동작의 지원이 가능해지며 보다 효율적인 빔 운영이 가능하다는 효과를 갖는다.
또한, 본 발명의 실시예에 따르면, CSI-RS를 이용한 빔 운영/관리가 가능하기 때문에 CSI-RS의 활용도가 매우 높아진다는 효과가 있다.
또한, 본 발명의 실시예에 따르면, CSI-RS 자원이 하나의 OFDM 심볼 구간 내에서 복수회 반복 전송 가능해지므로, 빔 관리/운영을 위한 전체 CSI 절차 지연/오버헤드가 줄어든다는 효과가 발생한다.
또한, 본 발명의 실시예에 따르면, 하나의 OFDM 심볼 구간 내에서 CSI-RS 자원이 반복 전송되는 횟수가 기지국에 의해 명확히 지시되므로, 이에 대한 모호함이 사라진다는 효과가 발생한다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 발명이 적용될 수 있는 무선 통신 시스템에서 무선 프레임의 구조를 나타낸다.
도 2는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 서브 프레임의 구조를 나타낸다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 상향링크 서브 프레임의 구조를 나타낸다.
도 5는 본 발명이 적용될 수 있는 self-contained subframe 구조를 예시한다.
도 6은 제1 TXRU 가상화 모델 옵션인 서브-어레이 파티션 모델을 예시한다.
도 7은 제2 TXRU 가상화 모델 옵션인 풀-커넥션 모델을 예시한다.
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 자원 블록 쌍에 매핑된 참조 신호 패턴을 예시한다.
도 9는 TXRU별 서비스 영역을 예시한 도면이다.
도 10은 본 발명이 적용될 수 있는 패널별로 아날로그 빔포밍이 적용된 안테나 패널 모델을 예시한다.
도 11은 본 발명의 일 실시예에 따라 패널당 하나의 CSI-RS 자원이 매핑되는 방식을 예시한다.
도 12는 본 발명의 일 실시예에 따라 패널당 복수의 CSI-RS 자원들이 매핑되는 방식을 예시한다.
도 13은 본 발명의 일 실시예에 따라 복수의 패널에 대해 공유되는(shared) CSI-RS 자원이 매핑되는 방식을 예시한다.
도 14는 본 발명에 적용될 수 있는 SS 블록 및 SS 버스트의 지속 시간을 예시한 도면이다.
도 15는 본 발명에 적용될 수 있는 TDD 케이스에 대한 SS 버스트 구성을 예시한 도면이다.
도 16은 본 발명에 적용될 수 있는 타입 1 CSI-RS 및 타입 2 CSI-RS를 예시한다.
도 17은 본 발명의 일 실시예에 따른 타입 2 CSI-RS 설정에 따른 QCL 가정 방식을 예시한 도면이다.
도 18은 본 발명의 일 실시예에 따른 타입 2 CSI-RS 자원을 위한 (필수적인) QCL 지시를 예시한 도면이다.
도 19는 본 발명의 일 실시예에 따른 전체적인 DL 빔 운영 절차를 예시한 도면이다.
도 20 및 21은 본 발명의 일 실시예에 따른 주파수 도메인에서의 각 서브 캐리어에 대한 CSI-RS 안테나 포트 매핑을 예시한 도면이다.
도 22는 본 발명의 일 실시예에 따른 단말의 CSI 보고 방법을 예시한 순서도이다.
도 23은 본 발명의 일 실시예에 따른 무선 통신 장치의 블록 구성도를 예시한다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point), gNB(g-NodeB, NR(NewRAT)/5G-NodeB) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.
시스템 일반
도 1은 본 발명이 적용될 수 있는 무선 통신 시스템에서 무선 프레임의 구조를 나타낸다.
3GPP LTE/LTE-A에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
도 1의 (a)는 타입 1 무선 프레임의 구조를 예시한다. 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성된다. 하나의 서브프레임은 시간 영역(time domain)에서 2개의 슬롯(slot)으로 구성된다. 하나의 서브프레임을 전송하는데 걸리는 시간을 TTI(transmission time interval)이라 한다. 예를 들어, 하나의 서브 프레임은 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms일 수 있다.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(RB: Resource Block)을 포함한다. 3GPP LTE는 하향링크에서 OFDMA를 사용하므로 OFDM 심볼은 하나의 심볼 구간(symbol period)을 표현하기 위한 것이다. OFDM 심볼은 하나의 SC-FDMA 심볼 또는 심볼 구간이라고 할 수 있다. 자원 블록(resource block)은 자원 할당 단위이고, 하나의 슬롯에서 복수의 연속적인 부 반송파(subcarrier)를 포함한다.
도 1의 (b)는 타입 2 프레임 구조(frame structure type 2)를 나타낸다. 타입 2 무선 프레임은 2개의 하프 프레임(half frame)으로 구성되며, 각 하프 프레임은 5개의 서브프레임과 DwPTS(Downlink Pilot Time Slot), 보호구간(GP: Guard Period), UpPTS(Uplink Pilot Time Slot)로 구성되며, 이 중 1개의 서브프레임은 2개의 슬롯으로 구성된다. DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향링크 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
TDD 시스템의 타입 2 프레임 구조에서 상향링크-하향링크 구성(uplink-downlink configuration)은 모든 서브프레임에 대하여 상향링크와 하향링크가 할당(또는 예약)되는지 나타내는 규칙이다. 표 1은 상향링크-하향링크 구성을 나타낸다.
Figure PCTKR2018001447-appb-T000001
표 1을 참조하면, 무선 프레임의 각 서브프레임 별로, 'D'는 하향링크 전송을 위한 서브프레임을 나타내고, 'U'는 상향링크 전송을 위한 서브프레임을 나타내며, 'S'는 DwPTS, GP, UpPTS 3가지의 필드로 구성되는 스페셜 서브프레임(special subframe)을 나타낸다. 상향링크-하향링크 구성은 7가지로 구분될 수 있으며, 각 구성 별로 하향링크 서브프레임, 스페셜 서브프레임, 상향링크 서브프레임의 위치 및/또는 개수가 다르다.
하향링크에서 상향링크로 변경되는 시점 또는 상향링크에서 하향링크로 전환되는 시점을 전환 시점(switching point)이라 한다. 전환 시점의 주기성(Switch-point periodicity)은 상향링크 서브프레임과 하향링크 서브프레임이 전환되는 양상이 동일하게 반복되는 주기를 의미하며, 5ms 또는 10ms가 모두 지원된다. 5ms 하향링크-상향링크 전환 시점의 주기를 가지는 경우에는 스페셜 서브프레임(S)은 하프-프레임 마다 존재하고, 5ms 하향링크-상향링크 전환 시점의 주기를 가지는 경우에는 첫번째 하프-프레임에만 존재한다.
모든 구성에 있어서, 0번, 5번 서브프레임 및 DwPTS는 하향링크 전송만을 위한 구간이다. UpPTS 및 서브프레임 서브프레임에 바로 이어지는 서브프레임은 항상 상향링크 전송을 위한 구간이다.
이러한, 상향링크-하향링크 구성은 시스템 정보로써 기지국과 단말이 모두 알고 있을 수 있다. 기지국은 상향링크-하향링크 구성 정보가 바뀔 때마다 구성 정보의 인덱스만을 전송함으로써 무선 프레임의 상향링크-하향링크 할당상태의 변경을 단말에 알려줄 수 있다. 또한, 구성 정보는 일종의 하향링크 제어정보로서 다른 스케줄링 정보와 마찬가지로 PDCCH(Physical Downlink Control Channel)를 통해 전송될 수 있으며, 방송 정보로서 브로드캐스트 채널(broadcast channel)을 통해 셀 내의 모든 단말에 공통으로 전송될 수도 있다.
표 2는 스페셜 서브프레임의 구성(DwPTS/GP/UpPTS의 길이)을 나타낸다.
Figure PCTKR2018001447-appb-T000002
무선 프레임의 구조는 하나의 예시에 불과하며, 무선 프레임에 포함되는 부 반송파의 수 또는 서브 프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 2는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 2를 참조하면, 하나의 하향링크 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함한다. 여기서, 하나의 하향링크 슬롯은 7개의 OFDM 심볼을 포함하고, 하나의 자원 블록은 주파수 영역에서 12개의 부 반송파를 포함하는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
자원 그리드 상에서 각 요소(element)를 자원 요소(resource element)하고, 하나의 자원 블록(RB: resource block)은 12 × 7 개의 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원 블록들의 수 NDL은 하향링크 전송 대역폭(bandwidth)에 종속한다.
상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 서브 프레임의 구조를 나타낸다.
도 3을 참조하면, 서브 프레임내의 첫번째 슬롯에서 앞의 최대 3개의 OFDM 심볼들이 제어 채널들이 할당되는 제어 영역(control region)이고, 나머지 OFDM 심볼들은 PDSCH(Physical Downlink Shared Channel)이 할당되는 데이터 영역(data region)이다. 3GPP LTE에서 사용되는 하향링크 제어 채널의 일례로 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 등이 있다.
PCFICH는 서브 프레임의 첫번째 OFDM 심볼에서 전송되고, 서브 프레임 내에 제어 채널들의 전송을 위하여 사용되는 OFDM 심볼들의 수(즉, 제어 영역의 크기)에 관한 정보를 나른다. PHICH는 상향 링크에 대한 응답 채널이고, HARQ(Hybrid Automatic Repeat Request)에 대한 ACK(Acknowledgement)/NACK(Not-Acknowledgement) 신호를 나른다. PDCCH를 통해 전송되는 제어 정보를 하향링크 제어정보(DCI: downlink control information)라고 한다. 하향링크 제어정보는 상향링크 자원 할당 정보, 하향링크 자원 할당 정보 또는 임의의 단말 그룹에 대한 상향링크 전송(Tx) 파워 제어 명령을 포함한다.
PDCCH는 DL-SCH(Downlink Shared Channel)의 자원 할당 및 전송 포맷(이를 하향링크 그랜트라고도 한다.), UL-SCH(Uplink Shared Channel)의 자원 할당 정보(이를 상향링크 그랜트라고도 한다.), PCH(Paging Channel)에서의 페이징(paging) 정보, DL-SCH에서의 시스템 정보, PDSCH에서 전송되는 랜덤 액세스 응답(random access response)과 같은 상위 레이어(upper-layer) 제어 메시지에 대한 자원 할당, 임의의 단말 그룹 내 개별 단말들에 대한 전송 파워 제어 명령들의 집합, VoIP(Voice over IP)의 활성화 등을 나를 수 있다. 복수의 PDCCH들은 제어 영역 내에서 전송될 수 있으며, 단말은 복수의 PDCCH들을 모니터링할 수 있다. PDCCH는 하나 또는 복수의 연속적인 CCE(control channel elements)의 집합으로 구성된다. CCE는 무선 채널의 상태에 따른 부호화율(coding rate)을 PDCCH에 제공하기 위하여 사용되는 논리적 할당 단위이다. CCE는 복수의 자원 요소 그룹(resource element group)들에 대응된다. PDCCH의 포맷 및 사용 가능한 PDCCH의 비트 수는 CCE들의 수와 CCE들에 의해 제공되는 부호화율 간의 연관 관계에 따라 결정된다.
기지국은 단말에게 전송하려는 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC(Cyclic Redundancy Check)를 붙인다. CRC에는 PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(이를 RNTI(Radio Network Temporary Identifier)라고 한다.)가 마스킹된다. 특정의 단말을 위한 PDCCH라면 단말의 고유한 식별자, 예를 들어 C-RNTI(Cell-RNTI)가 CRC에 마스킹될 수 있다. 또는 페이징 메시지를 위한 PDCCH라면 페이징 지시 식별자, 예를 들어 P-RNTI(Paging-RNTI)가 CRC에 마스킹될 수 있다. 시스템 정보, 더욱 구체적으로 시스템 정보 블록(SIB: system information block)를 위한 PDCCH라면 시스템 정보 식별자, SI-RNTI(system information RNTI)가 CRC에 마스킹될 수 있다. 단말의 랜덤 액세스 프리앰블의 전송에 대한 응답인 랜덤 액세스 응답을 지시하기 위하여, RA-RNTI(random access-RNTI)가 CRC에 마스킹될 수 있다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 상향링크 서브 프레임의 구조를 나타낸다.
도 4를 참조하면, 상향링크 서브 프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나눌 수 있다. 제어 영역에는 상향링크 제어 정보를 나르는 PUCCH(Physical Uplink Control Channel)이 할당된다. 데이터 영역은 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared Channel)이 할당된다. 단일 반송파 특성을 유지하기 위해 하나의 단말은 PUCCH와 PUSCH을 동시에 전송하지 않는다.
하나의 단말에 대한 PUCCH에는 서브 프레임 내에 자원 블록(RB: Resource Block) 쌍이 할당된다. RB 쌍에 속하는 RB들은 2개의 슬롯들의 각각에서 서로 다른 부 반송파를 차지한다. 이를 PUCCH에 할당된 RB 쌍은 슬롯 경계(slot boundary)에서 주파수 도약(frequency hopping)된다고 한다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 RAT에 비해 향상된 mobile broadband 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 massive MTC (Machine Type Communications) 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다. 뿐만 아니라, 차세대 통신에서 신뢰도(reliability) 및 지연(latency)에 민감한 서비스/UE를 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이, enhanced mobile broadband communication, massive MTC, URLLC(Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있으며, 이러한 기술을 ‘new RAT’이라 통칭될 수 있다.
Self-contained subframe structure
도 5는 본 발명이 적용될 수 있는 self-contained subframe 구조를 예시한다.
TDD 시스템에서 데이터 전송 지연을 최소화하기 위하여 5세대 new RAT에서는 도 5와 같은 self-contained subframe 구조가 고려되고 있다. 도 5에서 빗금친 영역은 하향링크 제어 영역, 검정색 부분은 상향링크 제어 영역을 나타낸다. 또한, 도 5에서 표시가 없는 영역은 하향링크 데이터 전송을 위해 사용될 수도 있고, 상향링크 데이터 전송을 위해 사용될 수도 있다. 이러한 구조의 특징은 하나의 subframe 내에서 DL 전송과 UL 전송이 순차적으로 진행될 수 있어, 하나의 subframe 내에서 DL data를 보내고, UL ACK/NACK을 받을 수 있다. 결과적으로 데이터 전송 에러 발생시에 데이터 재전송까지 걸리는 시간이 줄어들게 되며, 이로 인해 최종 데이터 전달까지의 지연을 최소화할 수 있다.
New RAT을 기반으로 동작하는 시스템에서 구성/설정 가능한 상기 self-contained subframe 구조의 일례로, 적어도 다음과 같은 4가지 subframe type이 고려될 수 있다. 이하에서 각 subframe type에서 존재하는 구간들은 시간 순서대로 나열되었다.
1) DL 제어 구간 + DL 데이터 구간 + GP(guard period) + UL 제어 구간
2) DL 제어 구간 + DL 데이터 구간
3) DL 제어 구간 + GP + UL 데이터 구간 + UL 제어 구간
4) DL 제어 구간 + GP + UL 데이터 구간
이러한 self-contained subframe 구조에서 기지국과 UE가 송신 모드에서 수신 모드로 전환되는 과정 또는 수신 모드에서 송신 모드로 전환되는 과정을 위한 time gap이 필요하다. 이를 위하여 subframe 구조에서 DL에서 UL로 전환되는 시점의 일부 OFDM symbol이 GP로 설정될 수 있으며, 이와 같은 subframe type은 ‘self-contained SF’이라 지칭될 수 있다.
Analog beamforming
Millimeter Wave(mmW)에서는 파장이 짧아져서 동일 면적에 다수개의 안테나 설치가 가능해 진다. 즉 30GHz 대역에서 파장은 1cm로써 5 by 5 cm의 패널에 0.5 lambda(파장) 간격으로 2-차원 배열 형태로 총 100개의 안테나 요소(element) 설치가 가능하다. 그러므로 mmW에서는 다수개의 안테나 요소들을 사용하여 beamforming(BF) 이득을 높여 커버리지를 증가시키거나, throughput을 높이려고 한다.
이 경우에 안테나 요소별로 전송 파워 및 위상 조절이 가능하도록 TXRU(transceiver unit)을 가지면 주파수 자원 별로 독립적인 beamforming이 가능하다. 그러나 100여개의 안테나 요소 모두에 TXRU를 설치하기에는 가격 측면에서 실효성이 떨어지는 문제를 갖게 된다. 그러므로 하나의 TXRU에 다수개의 안테나 요소를 매핑하고 analog phase shifter로 빔의 방향을 조절하는 방식이 고려되고 있다. 이러한 analog beamforming 방식은 전 대역에 있어서 하나의 빔 방향만을 만들 수 있어 주파수 선택적 beamforming을 해줄 수 없는 단점을 갖는다.
Digital BF와 analog BF의 중간 형태로 Q개의 안테나 요소보다 적은 개수인 B개의 TXRU를 갖는 hybrid BF를 고려할 수 있다. 이 경우에 B개의 TXRU와 Q개의 안테나 요소의 연결 방식에 따라서 차이는 있지만, 동시에 전송할 수 있는 빔의 방향은 B개 이하로 제한된다.
도 6 및 7은 TXRU와 안테나 요소(element)의 대표적인 연결 방식을 예시한다. 보다 상세하게는, 도 6은 제1 TXRU 가상화 모델 옵션인 서브-어레이 파티션 모델을 예시하며, 도 7은 제2 TXRU 가상화 모델 옵션인 풀-커넥션 모델을 예시한다. 도 6 및 7에서 TXRU 가상화 모델은 TXRU의 출력 신호와 안테나 요소의 출력 신호 사이의 관계를 나타낸다.
도 6과 같이 TXRU가 서브-어레이에 연결되는 가상화 모델의 경우, 안테나 요소는 하나의 TXRU에만 연결된다. 이와 달리, TXRU가 모든 안테나 요소에 연결되는 가상화 모델의 경우, 안테나 요소는 모든 TXRU에 연결된다. 본 도면들에서 W는 아날로그 위상 쉬프터(analog phase shifter)에 의해 곱해지는 위상 벡터를 나타낸다. 즉, W에 의해 아날로그 빔포밍 방향이 결정될 수 있다. 여기서, CSI-RS 안테나 포트들과 TXRU들과의 매핑은 일대일(1 to 1, 1:1) 또는 일대다(1 to many, 1:N)일 수 있다.
참조 신호( RS : Reference Signal)
무선 통신 시스템에서 데이터는 무선 채널을 통해 전송되기 때문에, 신호는 전송 중에 왜곡될 수 있다. 수신단에서 왜곡된 신호를 정확하게 수신하기 위하여, 수신된 신호의 왜곡은 채널 정보를 이용하여 보정되어야 한다. 채널 정보를 검출하기 위하여 송신측과 수신측 모두 알고 있는 신호 전송 방법과 신호가 채널을 통해 전송될 때 왜곡된 정도를 이용하여 채널 정보를 검출하는 방법을 주로 이용한다. 상술한 신호를 파일럿 신호 또는 참조 신호(RS: reference signal)라고 한다.
또한 최근 대부분의 이동통신 시스템에서 패킷을 전송할 때, 지금까지 한 개의 송신안테나와 한 개의 수신안테나를 사용했던 것에서 탈피, 다중송신안테나와 다중수신안테나를 채택해 송수신 데이터 효율을 향상시킬 수 있는 방법을 사용한다. 다중 입출력 안테나를 이용하여 데이터를 송수신할 때, 신호를 정확하게 수신하기 위하여 송신 안테나와 수신 안테나 간의 채널 상태가 검출되어야 한다. 따라서 각 송신 안테나는 개별적인 참조 신호를 가져야 한다.
이동 통신 시스템에서 RS는 그 목적에 따라 크게 두 가지로 구분될 수 있다. 채널 상태 정보 획득을 위한 목적의 RS와 데이터 복조를 위해 사용되는 RS가 있다. 전자는 UE가 하향 링크로의 채널 상태 정보를 획득하는데 그 목적이 있으므로, 광대역으로 전송되어야 하고, 특정 서브 프레임에서 하향 링크 데이터를 수신하지 않는 UE라도 그 RS를 수신하고 측정할 수 있어야 한다. 또한 이는 핸드 오버 등의 무선 자원 무선 자원 관리(RRM: Radio Resource Management) 측정 등을 위해서도 사용된다. 후자는 기지국이 하향링크를 보낼 때 해당 리소스에 함께 보내는 RS로서, UE는 해당 RS를 수신함으로써 채널 추정을 할 수 있고, 따라서 데이터를 복조할 수 있게 된다. 이 RS는 데이터가 전송되는 영역에 전송되어야 한다.
하향 참조 신호는 셀 내 모든 단말이 공유하는 채널 상태에 대한 정보 획득 및 핸드오버 등의 측정 등을 위한 하나의 공통 참조 신호(CRS: common RS)와 특정 단말만을 위하여 데이터 복조를 위해 사용되는 전용 참조 신호(dedicated RS)가 있다. 이와 같은 참조 신호들을 이용하여 복조(demodulation)와 채널 측정(channel measurement)을 위한 정보를 제공할 수 있다. 즉, DRS는 데이터 복조용으로만 사용되며 CRS는 채널 정보 획득 및 데이터 복조의 두 가지 목적으로 다 사용된다.
수신 측(즉, 단말)은 CRS로부터 채널 상태를 측정하고, CQI(Channel Quality Indicator), PMI(Precoding Matrix Index) 및/또는 RI(Rank Indicator)와 같은 채널 품질과 관련된 지시자를 송신 측(즉, 기지국)으로 피드백한다. CRS는 셀 특정 기준신호(cell-specific RS)라고도 한다. 반면, 채널 상태 정보(CSI: Channel State Information)의 피드백과 관련된 참조 신호를 CSI-RS라고 정의할 수 있다.
3GPP LTE(-A) 시스템에서는, UE가 CSI를 기지국(BS)으로 보고하도록 정의되어 있으며, 여기서 CSI는, UE와 안테나 포트 사이에 형성되는 무선 채널(혹은 링크라고도 지칭됨)의 품질을 나타낼 수 있는 정보를 통칭한다. 예를 들어, 랭크 지시자(rank indicator, RI), 프리코딩행렬 지시자(precoding matrix indicator, PMI), 및/또는 채널품질지시자(channel quality indicator, CQI) 등이 CSI에 해당할 수 있다. 여기서, RI는 채널의 랭크(rank) 정보를 나타내며, 이는 UE가 동일 시간-주파수 자원을 통해 수신하는 스트림의 개수를 의미한다. RI는 채널의 롱-텀(long-term) 페이딩(fading)에 의해 종속되어 결정되므로, PMI, CQI보다 보통 더 긴 주기로 UE에서 기지국으로 피드백될 수 있다. PMI는 채널 공간 특성을 반영한 값으로 SINR 등의 메트릭(metric)을 기준으로 UE가 선호하는 프리코딩 인덱스를 나타낸다. CQI는 채널의 세기를 나타내는 값으로 일반적으로 기지국이 PMI를 이용했을 때 얻을 수 있는 수신 SINR을 의미한다.
3GPP LTE(-A) 시스템에서 기지국은 다수개의 CSI 프로세스를 UE에게 설정해 주고, 각 프로세스에 대한 CSI를 보고 받을 수 있다. 여기서 CSI 프로세스는 기지국으로부터의 신호 품질 측정을 위한 CSI-RS와 간섭 측정을 위한 CSI-interference measurement (CSI-IM) 자원을 포함할 수 있다.
DRS는 PDSCH 상의 데이터 복조가 필요한 경우 자원 요소들을 통해 전송될 수 있다. 단말은 상위 계층을 통하여 DRS의 존재 여부를 수신할 수 있으며, 상응하는 PDSCH가 매핑되었을 때만 유효하다. DRS를 단말 특정 참조 신호(UE-specific RS) 또는 복조 참조 신호(DMRS: Demodulation RS)라고 할 수 있다.
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 자원 블록 쌍에 매핑된 참조 신호 패턴을 예시한다.
도 8을 참조하면, 참조 신호가 매핑되는 단위로 하향링크 자원 블록 쌍은 시간 영역에서 하나의 서브 프레임 × 주파수 영역에서 12개의 부 반송파로 나타낼 수 있다. 즉, 시간 축(x축) 상에서 하나의 자원 블록 쌍은 일반 순환 전치(normal CP: normal Cyclic Prefix) 인 경우 14개의 OFDM 심볼의 길이를 가지고(도 7(a)의 경우), 확장 순환 전치(extended CP: extended Cyclic Prefix)인 경우 12개의 OFDM 심볼의 길이를 가진다(도 7(b)의 경우). 자원 블록 격자에서 '0', '1', '2' 및 '3'으로 기재된 자원 요소(Resource Element; RE)들은 각각 안테나 포트 인덱스 '0', '1', '2' 및 '3'의 CRS의 위치를 의미하며, 'D'로 기재된 자원 요소들은 DRS의 위치를 의미한다.
기지국이 단일의 송신 안테나를 사용하는 경우, 단일 안테나 포트를 위한 참조 신호가 배열된다.
기지국이 2개의 송신 안테나를 사용하는 경우, 2개의 송신 안테나 포트를 위한 참조 신호는 시분할 다중화(TDM: Time Division Multiplexing) 및/또는 주파수 분할 다중화(FDM Frequency Division Multiplexing) 방식을 이용하여 배열된다. 즉, 2개의 안테나 포트를 위한 참조 신호는 각각이 구별되기 위해 서로 다른 시간 자원 및/또는 서로 다른 주파수 자원이 할당된다.
게다가, 기지국이 4개의 송신 안테나를 사용하는 경우, 4개의 송신 안테나 포트를 위한 참조 신호는 TDM 및/또는 FDM 방식을 이용하여 배열된다. 하향링크 신호의 수신 측(단말)에 의하여 측정된 채널 정보는 단일의 송신 안테나 전송, 송신 다이버시티, 폐쇄 루프 공간 다중화(closed-loop spatial multiplexing), 개방 루프 공간 다중화(open-loop spatial multiplexing) 또는 다중 사용자-다중 입출력 안테나(Multi-User MIMO)와 같은 전송 방식을 이용하여 전송된 데이터를 복조하기 위하여 사용될 수 있다.
다중 입출력 안테나가 지원되는 경우 참조 신호가 특정의 안테나 포트로부터 전송될 때, 상기 참조 신호는 참조 신호의 패턴에 따라 특정된 자원 요소들의 위치에 전송되며, 다른 안테나 포트를 위해 특정된 자원 요소들의 위치에 전송되지 않는다. 즉, 서로 다른 안테나 사이의 참조 신호는 서로 겹치지 않는다.
LTE 시스템의 진화 발전된 형태의 LTE-A 시스템에서 기지국의 하향 링크로 최대 8개의 송신 안테나를 지원할 수 있도록 디자인되어야 한다. 따라서 최대 8개 송신 안테나에 대한 RS 역시 지원되어야 한다. LTE 시스템에서 하향 링크 RS는 최대 4개의 안테나 포트에 대한 RS만 정의되어 있으므로, LTE-A 시스템에서 기지국이 4개 이상 최대 8개의 하향 링크 송신 안테나를 가질 경우 이들 안테나 포트에 대한 RS가 추가적으로 정의되고 디자인되어야 한다. 최대 8개의 송신 안테나 포트에 대한 RS는 위에서 설명한 채널 측정을 위한 RS와 데이터 복조를 위한 RS 두 가지가 모두 디자인되어야 한다.
LTE-A 시스템을 디자인 함에 있어서 중요한 고려 사항 중 하나는 하위 호환성(backward compatibility), 즉 LTE 단말이 LTE-A 시스템에서도 아무 무리 없이 잘 동작해야 하고, 시스템 또한 이를 지원해야 한다는 것이다. RS 전송 관점에서 보았을 때, LTE에서 정의되어 있는 CRS가 전 대역으로 매 서브 프레임마다 전송되는 시간-주파수 영역에서 추가적으로 최대 8개의 송신 안테나 포트에 대한 RS가 추가적으로 정의되어야 한다. LTE-A 시스템에서 기존 LTE의 CRS와 같은 방식으로 최대 8개의 송신 안테나에 대한 RS 패턴을 매 서브 프레임마다 전 대역에 추가하게 되면 RS 오버헤드가 지나치게 커지게 된다.
따라서 LTE-A 시스템에서 새로이 디자인되는 RS는 크게 두 가지 분류로 나누게 되는데, MCS, PMI 등의 선택을 위한 채널 측정 목적의 RS (CSI-RS: Channel State Information-RS, Channel State Indication-RS 등)와 8개의 전송 안테나로 전송되는 데이터 복조를 위한 RS(DM-RS: Data Demodulation-RS)이다.
채널 측정 목적의 CSI-RS는 기존의 CRS가 채널 측정, 핸드 오버 등의 측정 등의 목적과 동시에 데이터 복조를 위해 사용되는 것과 달리 채널 측정 위주의 목적을 위해서 디자인되는 특징이 있다. 물론 이 또한 핸드 오버 등의 측정 등의 목적으로도 사용될 수도 있다. CSI-RS가 채널 상태에 대한 정보를 얻는 목적으로만 전송되므로 CRS와 달리 매 서브 프레임마다 전송되지 않아도 된다. CSI-RS의 오버헤드를 줄이기 위하여 CSI-RS는 시간 축 상에서 간헐적으로 전송된다.
LTE-A 시스템에서 기지국의 하향 링크로 최대 8개의 송신 안테나를 지원한다. LTE-A 시스템에서 기존 LTE의 CRS와 같은 방식으로 최대 8개의 송신 안테나에 대한 RS를 매 서브 프레임마다 전 대역에 전송하게 되면 RS 오버헤드가 지나치게 커지게 된다. 따라서 LTE-A 시스템에서는 MCS, PMI 등의 선택을 위한 CSI 측정 목적의 CSI-RS와 데이터 복조를 위한 DM-RS로 분리되어 두 개의 RS가 추가되었다. CSI-RS는 RRM 측정 등의 목적으로도 사용될 수는 있지만 CSI 획득의 주목적을 위해서 디자인되었다. CSI-RS는 데이터 복조에 사용되지 않으므로 매 서브 프레임마다 전송될 필요는 없다. 그러므로 CSI-RS의 오버헤드를 줄이기 위하여 시간 축 상에서 간헐적으로 전송하도록 한다. 즉, CSI-RS는 한 서브 프레임의 정수 배의 주기를 가지고 주기적으로 전송되거나 특정 전송 패턴으로 전송될 수 있다. 이 때 CSI-RS가 전송되는 주기나 패턴은 eNB가 설정할 수 있다.
CSI-RS를 측정하기 위해서 UE는 반드시 자신이 속한 셀의 각각의 CSI-RS 안테나 포트에 대한 CSI-RS의 전송 서브 프레임 인덱스, 전송 서브 프레임 내에서 CSI-RS 자원 요소(RE) 시간-주파수 위치, 그리고 CSI-RS 시퀀스 등에 대한 정보를 알고 있어야 한다.
LTE-A 시스템에 eNB는 CSI-RS를 최대 8개의 안테나 포트에 대해서 각각 전송해야 한다. 서로 다른 안테나 포트의 CSI-RS 전송을 위해 사용되는 자원은 서로 직교(orthogonal)해야 한다. 한 eNB가 서로 다른 안테나 포트에 대한 CSI-RS를 전송할 때 각각의 안테나 포트에 대한 CSI-RS를 서로 다른 RE에 맵핑함으로써 FDM/TDM 방식으로 이들 자원을 orthogonal하게 할당할 수 있다. 또는 서로 다른 안테나 포트에 대한 CSI-RS를 서로 orthogonal한 코드에 맵핑시키는 CDM 방식으로 전송할 수 있다.
CSI-RS에 관한 정보를 eNB가 자기 셀 UE에게 알려줄 때, 먼저 각 안테나 포트에 대한 CSI-RS가 매핑되는 시간-주파수에 대한 정보를 알려줘야 한다. 구체적으로, CSI-RS가 전송되는 서브 프레임 번호들, 또는 CSI-RS가 전송되는 주기, CSI-RS가 전송되는 서브 프레임 오프셋이며, 특정 안테나의 CSI-RS RE가 전송되는 OFDM 심볼 번호, 주파수 간격(spacing), 주파수 축에서의 RE의 오프셋 또는 쉬프트 값 등이 있다.
CSI-RS는 1개, 2개, 4개 또는 8개의 안테나 포트를 통해 전송된다. 이때, 사용되는 안테나 포트는 각각 p=15, p=15,16, p=15,...,18, p=15,...,22이다. CSI-RS는 서브캐리어 간격 Δf=15kHz에 대해서만 정의될 수 있다.
RS 가상화 ( Virtualization )
mmW에서 아날로그 빔포밍에 의해 한 시점에 하나의 아날로그 빔 방향으로만 PDSCH 전송이 가능하다. 그 결과, 해당 방향에 있는 일부 소수의 UE에게만 기지국으로부터 데이터 전송이 가능하게 된다. 따라서, 필요에 따라 안테나 포트별로 아날로그 빔 방향을 다르게 설정하여 여러 아날로그 빔 방향에 있는 다수의 UE들에게 동시에 데이터 전송을 수행할 수 있다.
이하에서는 256 안테나 요소를 4등분하여 4개의 서브-어레이를 형성하고, 도 9와 같이 서브-어레이에 TXRU를 연결한 구조 예시를 중심으로 설명한다.
도 9는 TXRU별 서비스 영역을 예시한 도면이다.
각 서브-어레이가 2차원(2-dimension) 배열 형태로 총 64(8x8)의 안테나 요소로 구성되면, 특정 아날로그 빔포밍에 의해 15도의 수평각 영역과 15도의 수직각 영역에 해당하는 지역을 커버할 수 있게 된다. 즉, 기지국이 서비스해야 되는 지역을 다수개의 영역으로 나누어, 한번에 하나씩 서비스할 수 있도록 한다. 이하의 설명에서 CSI-RS 안테나 포트와 TXRU는 일대일(1-to-1) 매핑되었다고 가정한다. 따라서, 이하에서 안테나 포트와 TXRU는 실질적으로 동일한 의미를 갖는다.
도 9(a)의 예시와 같이 모든 TXRU(안테나 포트, 서브-어레이)가 동일한 아날로그 빔포밍 방향을 가지면, 더 높은 레졸루션(resolution)을 갖는 디지털 빔(digital beam)을 형성하여 해당 지역의 쓰루풋(throughput)을 증가시킬 수 있다. 또한, 해당 지역으로 전송 데이터의 랭크를 증가시켜 해당 지역의 쓰루풋(throughput)을 증가시킬 수 있다.
도 9(b)와 같이, 각 TXRU(안테나 포트, 서브-어레이)가 다른 아날로그 빔포밍 방향을 가지면, 더 넓은 영역에 분포된 UE들에게 해당 subframe(SF)에서 동시에 데이터 전송이 가능해진다. 예를 들어, 4개의 안테나 포트 중에서 2개는 영역 1에 있는 UE1에게 PDSCH 전송을 위해 사용하고 나머지 2개는 영역 2에 있는 UE2에게 PDSCH 전송을 위해 사용할 수 있다.
도 9(b)에서는 UE1에게 전송되는 PDSCH1과 UE2에게 전송되는 PDSCH2가 SDM(Spatial Division Multiplexing)된 예를 나타낸다. 이와 달리, 도 9(c)에서는 UE1에게 전송되는 PDSCH1과 UE2에게 전송되는 PDSCH2가 FDM(Frequency Division Multiplexing)된 예를 나타낸다.
모든 안테나 포트를 사용하여 한 영역을 서비스 하는 방식과 안테나 포트들을 나누어 여러 영역을 동시에 서비스 하는 방식 중에서 셀 쓰루풋을 최대화하기 위하여 UE에게 서비스하는 랭크 및 MCS에 따라서 선호되는 방식이 변경될 수 있다. 또한, 각 UE에게 전송할 데이터의 양에 따라서 선호되는 방식이 변경될 수 있다.
기지국은 모든 안테나 포트를 사용하여 한 영역을 서비스 할 때 얻을 수 있는 셀 쓰루풋 또는 스케줄링 메트릭을 계산하고, 안테나 포트를 나누어서 두 영역을 서비스 할 때 얻을 수 있는 셀 쓰루풋 또는 스케줄링 메트릭을 계산한다. 기지국은 각 방식을 통해 얻을 수 있는 셀 쓰루풋 또는 스케줄링 메트릭을 비교하여 최종 전송 방식을 선택할 수 있다. 결과적으로, SF별로(SF-by-SF)으로 PDSCH 전송에 참여하는 안테나 포트의 개수가 변동될 수 있다. 기지국이 안테나 포트의 개수에 따른 PDSCH의 전송 MCS를 계산하고 스케줄링 알고리즘에 반영하기 위하여, 이에 적합한 UE로부터의 CSI 피드백이 요구될 수 있다.
빔 참조 신호(Beam reference signal; BRS) 및 빔 개량 참조 신호(Beam refinement reference signal; BRRS )
BRS들은 적어도 하나의 안테나 포트 p={0, 1, ..., 7}에서 전송될 수 있다. BRS 시퀀스
Figure PCTKR2018001447-appb-I000001
는 아래의 수학식 1와 같이 정의될 수 있다.
Figure PCTKR2018001447-appb-M000001
수학식 1에서 l= 0, 1, ..., 13은 OFDM 심볼 넘버를 나타낼 수 있다. 또한, c(i)는 pseudo-랜덤 시퀀스 생성기(generator)를 나타내며, 각 OFDM 심볼의 시작 지점에서 수학식 2에 의해 초기화될 수 있다.
Figure PCTKR2018001447-appb-M000002
BRRS는 최대 8개의 안테나 포트 p = 600, ..., 607에서 전송될 수 있다. BRRS의 전송 및 수신은 xPDCCH에서의 하향링크 자원 할당에서 동적으로 스케줄링될 수 있다.
BRRS 시퀀스
Figure PCTKR2018001447-appb-I000002
는 아래의 수학식 3과 같이 정의될 수 있다.
Figure PCTKR2018001447-appb-M000003
수학식 3에서 n_s는 무선 프레임 내의 슬롯 넘버를 나타내며, l은 상기 슬롯 내의 OFDM 심볼 넘버, c(n)은 pseudo-랜덤 시퀀스를 나타낸다. 상기 pseudo-랜덤 시퀀스 생성기는 각 OFDM 심볼의 시작 지점에서 수학식 4에 의해 초기화될 수 있다.
Figure PCTKR2018001447-appb-M000004
수학식 4에서
Figure PCTKR2018001447-appb-I000003
는 RRC(Radio Resource Control) 시그널링을 통해 UE에 설정될 수 있다.
BRS는 매 서브 프레임에 전송될 수 있으며, 포트별로 서로 다른 아날로그 빔 방향으로 전송될 수 있다. 이러한 BRS는 기지국이 UE에 대한 대략적인 아날로그 빔 방향을 결정하는 데 사용될 수 있다. BRS에 기초하여 UE에 대한 대략적인 아날로그 빔 방향이 결정되면, 기지국은 결정된 아날로그 빔 방향 범위 내에서 보다 정밀한/세밀한 아날로그 빔 방향별로 BRRS를 전송하여 UE에 대한 보다 정밀한 아날로그 빔 방향을 결정할 수 있다.
이렇듯 UE에 대한 아날로그 빔 방향을 결정하는 데 사용되는 참조 신호에 대한 명칭은 상술한 BRS 또는 BRRS로 한정되지 않으며, 동일한 기능을 수행하는 데 사용 가능한 다양한 참조 신호로 대체/지칭될 수 있음은 물론이다. 예를 들어, BRS는 primary/first CSI-RS, PSS(Primary synchronization signal/sequence), SSS(Secondary synchronization signal/sequence), SS(Synchronization Signal/Sequence) block, NR-PSS, 그리고/또는 NR-SSS로 대체/지칭될 수도 있으며, BRRS는 secondary/second CSI-RS으로 대체/지칭될 수도 있다.
하향링크 위상 노이즈 보상 참조 신호(DL Phase noise compensation reference signal; DL PCRS )
xPDSCH와 연계된 PCRS는 DCI 포맷에서 시그널링되는 바와 같이 안테나 포트 P=60 또는 P=61에서 전송될 수 있다. xPDSCH 전송이 대응하는 안테나 포트와 연계된 경우에만 PCRS가 존재하며, 이때의 PCRS는 위상 노이즈 보상에 대한 유효 참조가 될 수 있다. PCRS는 대응하는 xPDSCH가 매핑된 물리 자원 블록들 및 심볼들에서만 전송될 수 있다. PCRS는 xPDSCH 할당에 대응하는 모든 심볼들에서 동일할 수 있다.
안테나 포트들 p=60, 61 중 어느 포트에 대해서도, PCRS 시퀀스 r(m)는 아래의 수학식 5와 같이 정의될 수 있다.
Figure PCTKR2018001447-appb-M000005
수학식 5에서 c(i)는 pseudo-랜덤 시퀀스를 나타낸다. 상기 pseudo-랜덤 시퀀스 생성기는 각 서브 프레임의 시작 지점에서 수학식 6에 의해 초기화될 수 있다.
Figure PCTKR2018001447-appb-M000006
수학식 6 에서
Figure PCTKR2018001447-appb-I000004
는 i= 0, 1일 때 아래와 같이 결정될 수 있다.
- 만일,
Figure PCTKR2018001447-appb-I000005
에 대한 값이 상위 계층에 의해 제공되지 않는 경우,
Figure PCTKR2018001447-appb-I000006
- 이외에,
Figure PCTKR2018001447-appb-I000007
n_SCID 값은 특별히 정해지지 않으면, 0으로 설정될 수 있다. xPDSCH 전송에 있어서, n_SCID는 xPDSCH 전송과 연계된 DCI 포맷에 의해 주어질 수 있다.
안테나 포트 간 QCL (quasi co-located)
본 발명에서는 단말이 데이터(e.g., PDSCH)를 수신할 때 특정 DMRS와 같은 UE-specific RS로 demodulation을 하도록 하는 방식을 고려한다. 이러한 DMRS는 해당 PDSCH의 scheduled RB(s)에 대하여만 함께 전송되고 scheduled PDSCH가 전송되는 시간 구간 동안에만 전송되므로 해당 DMRS자체로만 채널 추정을 수행하는 데에 수신 성능의 한계가 존재할 수 있다. 예를 들어, 채널 추정을 수행하는데 있어서 무선 채널의 주요 large-scale parameter/property(LSP)의 추정값이 필요하며 이를 상기 scheduled PDSCH가 전송되는 time/freq 영역에 존재하는 DMRS만으로 얻기에는 DMRS density가 부족할 수가 있다. 따라서 이러한 단말의 구현을 지원하기 위하여 LTE-A 표준에서는 다음과 같은 RS port간의 quasi co-location signaling/assumption/behavior를 정의하고 이에 따라 단말을 설정/동작시킬 수 있는 방식들을 지원하고 있다.
QC/QCL(quasi co-located 혹은 quasi co-location)은 다음과 같이 정의될 수 있다.
두 개의 안테나 포트가 QC/QCL 관계에 있다(혹은 QC/QCL 되었다)고 하면, 하나의 안테나 포트를 통해 전달되는 신호의 광범위 특성(large-scale property)이 다른 하나의 안테나 포트를 통해 전달되는 신호로부터 암시(infer)될 수 있다고 단말이 가정할 수 있다. 여기서, 상기 광범위 특성은 지연 확산(Delay spread), 도플러 확산(Doppler spread), 주파수 쉬프트(Frequency shift), 평균 수신 파워(Average received power), 수신 타이밍(Received Timing) 중 하나 이상을 포함한다.
또한, 다음과 같이 정의될 수도 있다. 두 개의 안테나 포트가 QC/QCL 관계에 있다(혹은 QC/QCL 되었다)고 하면, 하나의 안테나 포트를 통해 일 심볼이 전달되는 채널의 광범위 특성(large-scale property)이 다른 하나의 안테나 포트를 통해 일 심볼이 전달되는 무선 채널로부터 암시(infer)될 수 있다고 단말이 가정할 수 있다. 여기서, 상기 광범위 특성은 지연 확산(delay spread), 도플러 확산(Doppler spread), 도플러 쉬프트(Doppler shift), 평균 이득(average gain) 및 평균 지연(average delay) 중 하나 이상을 포함한다.
즉, 두 개의 안테나 포트들이 QC/QCL 관계에 있다(혹은 QC/QCL 되었다)고 함은, 하나의 안테나 포트로부터의 무선 채널의 광범위 특성이 나머지 하나의 안테나 포트로부터의 무선 채널의 광범위 특성과 같음을 의미한다. RS가 전송되는 복수의 안테나 포트를 고려하면, 서로 다른 두 종류의 RS가 전송되는 안테나 포트들이 QCL 관계에 있으면, 한 종류의 안테나 포트로부터의 무선 채널의 광범위 특성을 다른 한 종류의 안테나 포트로부터의 무선 채널의 광범위 특성으로 대체할 수 있을 것이다.
본 명세서에서 위 QC/QCL 관련 정의들을 구분하지 않는다. 즉, QC/QCL 개념은 위 정의들 중에 하나를 따를 수 있다. 혹은 유사한 다른 형태로, QC/QCL 가정이 성립하는 안테나 포트 간에는 마치 동일 위치(co-location)에서 전송하는 것처럼 가정할 수 있다는 형태 (예를 들어, 동일 전송 포인트(transmission point)에서 전송하는 안테나 포트라고 단말이 가정할 수 있다는 등)으로 QC/QCL 개념 정의가 변형될 수도 있으며, 본 발명의 사상은 이와 같은 유사 변형예들을 포함한다. 본 발명에서는 설명의 편의상 위 QC/QCL 관련 정의들을 혼용하여 사용한다.
상기 QC/QCL의 개념에 따라, 단말은 비-QC/QCL(Non-QC/QCL) 안테나 포트들에 대해서는 해당 안테나 포트들로부터의 무선 채널 간에 동일한 상기 광범위 특성을 가정할 수 없다. 즉, 이 경우 단말은 타이밍 획득 및 트랙킹(tracking), 주파수 오프셋 추정 및 보상, 지연 추정 및 도플러 추정 등에 대하여 각각의 설정된 비-QC/QCL 안테나 포트 별로 독립적인 프로세싱을 수행하여야 한다.
QC/QCL을 가정할 수 있는 안테나 포트들간에 대해서, 단말은 다음과 같은 동작을 수행할 수 있다는 장점이 있다:
- 지연 확산 및 도플러 확산에 대하여, 단말은 어떤 하나의 안테나 포트로부터의 무선 채널에 대한 전력-지연-프로파일(power-delay profile), 지연 확산 및 도플러 스펙트럼(Doppler spectrum), 도플러 확산 추정 결과를, 다른 안테나 포트로부터의 무선 채널에 대한 채널 추정 시 사용되는 위너 필터(Wiener filter) 등에 동일하게 적용할 수 있다.
- 주파수 쉬프트(shift) 및 수신된 타이밍에 대하여, 단말은 어떤 하나의 안테나 포트에 대한 시간 및 주파수 동기화 수행한 후, 동일한 동기화를 다른 안테나 포트의 복조에 적용할 수 있다.
- 평균 수신 전력에 대하여, 단말은 둘 이상의 안테나 포트들에 대하여 RSRP(Reference Signal Received Power) 측정을 평균할 수 있다.
예를 들어, 단말이 하향링크 데이터 채널 복조를 위한 DMRS 안테나 포트가 서빙 셀의 CRS 안테나 포트와 QC/QCL 되었다면, 단말은 해당 DMRS 안테나 포트를 통한 채널 추정 시 자신의 CRS 안테나 포트로부터 추정했던 무선 채널의 광범위 특성들(large-scale properties)을 동일하게 적용하여 DMRS 기반 하향링크 데이터 채널 수신 성능을 향상시킬 수 있다.
왜냐하면, CRS는 매 서브프레임 그리고 전체 대역에 걸쳐 상대적으로 높은 밀도(density)로 브로드캐스팅되는 참조 신호이므로, 광범위 특성에 관한 추정치는 CRS로부터 보다 안정적으로 획득이 가능하기 때문이다. 반면, DMRS는 특정 스케줄링된 RB에 대해서는 단말 특정하게 전송되며, 또한 PRG(precoding resource block group) 단위가 기지국이 전송에 사용하는 프리코딩 행렬(precoding matrix)가 변할 수 있으므로 단말에게 수신되는 유효 채널은 PRG 단위로 달라질 수 있어 다수의 PRG를 스케줄링 받은 경우라고 하더라도 넓은 대역에 걸쳐 DMRS를 무선 채널의 광범위 특성 추정용으로 사용 시에 성능 열화가 발생할 수 있다. 또한, CSI-RS도 그 전송 주기가 수~수십 ms가 될 수 있고, 자원 블록 당 평균적으로 안테나 포트 당 1 자원 요소의 낮은 밀도를 가지므로 CSI-RS도 마찬가지로 무선 채널의 광범위 특성 추정용으로 사용할 경우 성능 열화가 발생할 수 있다.
즉, 안테나 포트 간의 QC/QCL 가정을 함으로써 단말은 하향링크 참조 신호의 검출/수신, 채널 추정, 채널 상태 보고 등에 활용할 수 있다.
한편, 단말은 서빙 셀의 안테나 포트 0-3과 PSS/SSS를 위한 안테나 포트는 도플러 쉬프트 및 평균 지연에 대해 QCL 관계를 가짐을 가정할 수 있다.
PDSCH 자원 매핑 파라미터들
주어진 서빙 셀에 대한 전송 모드 10이 설정된 UE는 UE 및 주어진 서빙 셀용 DCI 포맷 2D를 갖는 검출된 PDCCH/EPDCCH에 따라 PDSCH를 디코딩하기 위해 상위 계층 시그널링에 의해 파라미터 세트를 4개까지 설정받을 수 있다.
만일 UE가 Type B의 QCL 타입을 설정받는 경우, PDSCH RE 매핑 및 PDSCH 안테나 포트 QCL을 결정하기 위해 DCI 포맷 2D를 갖는 검출된 PDCCH/EPDCCH에서 이하의 표 3에 도시된 'PDSCH RE Mapping 및 Quasi-Co-Location indicator' 필드 값에 따라 설정된 파라미터를 사용할 수 있다. 대응하는 PDCCH / EPDCCH가 없는 PDSCH의 경우, PDSCH RE 매핑 및 PDSCH 안테나 포트 QCL을 결정하기 위해 연관된 SPS 활성화와 대응되는 DCI 포맷 2D를 갖는 PDCCH / EPDCCH에서 지시된 파라미터 세트를 사용할 수 있다.
Figure PCTKR2018001447-appb-T000003
PDSCH RE 매핑 및 PDSCH 안테나 포트 QCL을 결정하기 위한 다음의 파라미터들은 각 파라미터 세트에 대한 상위 계층 시그널링을 통해 설정된다:
- crs-PortsCount-r11.
- crs-FreqShift-r11.
- mbsfn-SubframeConfigList-r11.
- csi-RS-ConfigZPId-r11.
- pdsch-Start-r11.
- qcl-CSI-RS-ConfigNZPId-r11.
- zeroTxPowerCSI-RS2-r12(UE에 TDD 서빙 셀에 대한 상위 계층 파라미터 CSI-Reporting-Type이 설정된 경우).
UE 및 주어진 서빙 셀용으로 의도된 C-RNTI로 스크램블링된 CRC를 갖는 DCI 포맷 1A를 갖는 검출된 PDCCH / EPDCCH에 따라 PDSCH를 디코딩하고, 안테나 포트 7에서의 PDSCH 전송을 위해, UE가 Type B QCL 타입을 설정받은 경우, PDSCH RE 매핑 및 PDSCH 안테나 포트 QCL을 결정하기 위해, 주어진 서빙 셀을 위한 전송 모드 10이 설정된 UE는 표 3의 파라미터 세트 1을 사용해야 한다.
DCI 포맷 1A를 갖는 PDCCH / EPDCCH에서 지시된 SPS 활성화와 연관된 대응하는 PDCCH / EPDCCH없이 SPS C-RNTI 및 PDSCH로 스크램블링된 CRC를 갖는 DCI 포맷 1A를 갖는 검출된 PDCCH / EPDCCH에 대응하는 PDSCH를 디코딩하기 위해, 주어진 서빙 셀에 대해 전송 모드 10이 설정된 UE는, PDSCH RE 매핑 및 PDSCH 안테나 포트 QCL을 결정하기 위해, 표 3의 파라미터 세트 1을 사용해야 한다.
주어진 서빙 셀에서 UE를 위한 DCI 포맷 1A를 갖는 검출 된 PDCCH / EPDCCH에 따라 PDSCH를 디코딩하고, 안테나 포트 0-3에서의 PDSCH 전송을 위해, 주어진 서빙 셀에 대해 전송 모드 10이 설정된 UE는 가장 낮은 값으로 인덱싱된(the lower indexed) zero-power CSI-RS를 사용하여 PDSCH RE 매핑을 결정해야 한다.
PDSCH를 위한 안테나 포트 QCL
서빙 셀을 위한 송신 모드 8-10이 설정된 UE는, 서빙 셀의 안테나 포트들 7-14는 주어진 서브 프레임의 delay spread, Doppler spread, Doppler shift, average gain, 및 average delay에 대하여 QCL 되었다고 가정한다.
또한, 서빙 셀을 위한 송신 모드 1-9이 설정된 UE는, 서빙 셀의 안테나 포트들 0-3, 5 및 7-30은 주어진 서브 프레임의 Doppler shift, Doppler spread, average delay 및 delay spread 에 대하여 QCL 되었다고 가정한다.
서빙 셀을 위한 송신 모드 10이 설정된 UE는, 안테나 포트들 7-14와 관련된 송신 방식에 따라 PDSCH를 디코딩하기 위해, 상위 계층 파라미터 qcl-Operation에 의해 서빙 셀에 대해 아래와 같은 2개의 QCL 타입들 중 하나로 구성된다.
- 타입 A: UE는 서빙 셀의 안테나 포트 0-3, 7-30가 delay spread, Doppler spread, Doppler shift, 및 average delay에 대해 QCL된다.
- 타입 B: UE는 상위 계층 파라미터 qcl-CSI-RS-ConfigNZPId-r11에 의해 식별되는 CSI-RS 자원 구성에 해당하는 안테나 포트 15-30와 PDSCH와 연관된 안테나 포트 7-14는 도플러 쉬프트(Doppler shift), 도플러 확산(Doppler spread), 평균 지연(average delay), 및 지연 확산(delay spread)에 대해 QCL 된다.
LAA(Licensed-Assisted Access) Scell의 경우, UE는 QCL type B가 설정될 것을 기대하지 않는다.
CSI(Channel-State Information) - Reference Signal(CSI- RS ) 정의
전송 모드 9가 설정되었으나 상위 계층 파라미터 eMIMO-type이 설정되지 않은 서빙 셀 및 UE에 대해, UE는 하나의 CSI-RS 자원 구성을 설정받을 수 있다.
또한, 서빙 셀 및 UE에 대해 전송 모드 9 및 상위 계층 파라미터 eMIMO-type이 설정되고, eMIMO-type이 CALSS A로 설정된 경우, UE는 하나의 CSI-RS 자원 구성을 설정받을 수 있다.
또한, 서빙 셀 및 UE에 대해 전송 모드 9 및 상위 계층 파라미터 eMIMO-type이 설정되고, eMIMO-type이 CALSS B로 설정된 경우, UE는 하나 이상의 CSI-RS 자원 구성을 설정받을 수 있다.
전송 모드 10이 설정된 서빙 셀 및 UE에 대해, UE는 하나 이상의 CSI-RS 자원 구성(들)을 설정받을 수 있다. CSI-RS에 대해 non-zero 전송 전력을 가정해야 하는 UE를 위한 이하의 파라미터들은 각각의 CSI-RS 자원 구성에 대한 상위 계층 시그널링을 통해 설정된다:
- CSI-RS 자원 구성 식별자(UE에 전송 모드 10이 설정된 경우)
- CSI-RS 포트의 수
- CSI-RS 구성
- CSI-RS 서브 프레임 구성 I_(CSI-RS)
- CSI 피드백(P_c)을 위한 기준 PDSCH 전송 전력에 대한 UE의 가정(UE에 전송 모드 9가 설정된 경우)
- UE에 전송 모드 10이 설정되면, 각각의 CSI 프로세스에 대한 CSI 피드백(P_c)을 위한 기준 PDSCH 전송 전력에 대한 UE 가정. CSI 서브 프레임 세트들 C_(CSI,0) 및 C_(CSI,1)이 CSI 프로세스를 위한 상위 계층에 의해 설정되면, CSI 프로세스의 각 CSI 서브 프레임 세트를 위한 P_c가 설정됨.
- Pseudo-random 시퀀스 생성기 파라미터(n_ID).
- UE가 상위 계층 파라미터 CSI-Reporting-Type를 설정받고, CSI 보고 타입이 CSI 프로세스에 대한 'CLASS A'로 설정된 경우, CDM 타입 파라미터.
- UE에 전송 모드 10이 설정된 경우, 아래의 파라미터들을 갖는 CRS 안테나 포트들 및 CSI-RS 안테나 포트들의 QCL type B의 UE 가정에 대한 상위 계층 파라미터 qcl-CRS-Info-r11:
- qcl-ScramblingIdentity-r11.
- crs-PortsCount-r11.
- mbsfn-SubframeConfigList-r11.
P_c는 UE가 CSI 피드백을 도출하고 1dB 스텝 크기로 [-8, 15]dB 범위 내의 값을 취할 때, CSI-RS EPRE(Energy Per Resource Element)에 대한 PDSCH EPRE의 추정된 비율이며, 여기서 PDSCH EPRE는 셀 관련 RS EPRE에 대한 PDSCH EPRE의 비율에 대한 심볼 수와 대응된다.
UE는 서빙 셀의 동일한 서브 프레임에서 CSI-RS 및 PMCH의 구성을 기대하지 않는다.
프레임 구조 타입 2 서빙 셀과 4개의 CRS 포트의 경우, UE는 일반 CP의 경우 [20 -31] 세트 또는 확장 CP의 경우 [16 -27] 세트에 속한 CSI-RS 구성 인덱스를 수신할 것을 기대하지 않는다.
UE는 CSI-RS 자원 구성의 CSI-RS 안테나 포트들 간에는 지연 확산, 도플러 확산, 도플러 쉬프트, 평균 이득 및 평균 지연에 대해 QCL 된다고 가정할 수 있다.
전송 모드 10 및 QCL Type B가 설정된 UE는, CSI-RS 자원 구성에 대응하는 qcl-CRS-Info-r11과 연관된 안테나 포트 0-3을 가정할 수 있고, CSI-RS 자원 구성에 대응하는 안테나 포트들 15-30은 도플러 쉬프트 (Doppler shift) 및 도플러 확산(Doppler spread)에 대하여 QCL되었다고 가정할 수 있다.
UE에 전송 모드 10 및 상위 계층 파라미터 eMIMO-type가 설정되고, 상기 eMIMO type이 CLASS B로 설정되고, 하나의 CSI 절차를 위해 설정된 CSI-RS 자원들의 개수가 복수개이고, QCL type B가 설정된 경우, UE는 상위 계층 파라미터 qcl-CRS-Info-r11과 상이한 값을 갖는 CSI 프로세스에 대한 CSI-RS 자원 구성을 수신할 것을 기대하지 않는다.
CEModeA 또는 CEModeB가 설정된 BL/CE UE는 non-zero 전송 파워 CSI-RS가 설정될 것을 기대하지 않는다.
물리 채널과의 독립적인 가정(Assumptions independent of physical channel)
UE는 특별히 명시되지 않는 한, 두 개의 안테나 포트가 QCL된다는 가정을 해서는 안된다.
UE는 서빙 셀의 안테나 포트들 0-3이 지연 확산, 도플러 확산, 도플러 쉬프트, 평균 이득 및 평균 지연에 대해 QCL 되어 있다고 가정할 수 있다.
디스커버리 신호 기반 측정 목적의 경우, UE는 디스커버리 신호 이외의 다른 신호 또는 물리 채널이 있다고 가정해서는 안된다.
UE가 discoverySignalsInDeactSCell-r12를 지원하고, UE에 동일한 캐리어 주파수 상에서 세컨더리 셀에 적용 가능한 캐리어 주파수에 대한 디스커버리 신호 기반 RRM 측정이 설정되어 있고, 세컨더리 셀이 비활성화되어 있고, UE가 상위 계층에 의해 세컨더리 셀에서 MBMS를 수신하는 것으로 설정되지 않은 경우, UE는 (디스커버리 신호 전송을 제외한) PSS, SSS, PBCH(Physical Broadcast Channel), CRS, PCFICH, PDSCH, PDCCH, EPDCCH, PHICH, DMRS 및 CSI-RS가 세컨더리 셀에 대해 활성화 명령이 수신된 서브 프레임까지는 세컨더리 셀에 의해 전송되지 않는 것으로 가정한다.
CSI 보고 방법
FD(Full Dimension)-MIMO (또는, 매시브(Massive)-MIMO, 진보된(enhanced)-MIMO, 대규모 안테나 시스템(Large-Scale Antenna System), 매우 큰(Very Large) MIMO, 하이퍼(Hyper)-MIMO 등으로 지칭될 수 있음)가 도입 되면서, 기지국은 N(N>>1) 안테나 포트(또는 특정 포트-대-요소(port-to-element) 가상화(virtualization)에 따라서 "element"가 해당될 수도 있으며, 이하에서는 설명의 편의상 "port"로 통칭함)를 이용하여 D-빔포밍 등을 수행함으로써 시스템의 수율(throughput)을 높일 수가 있다.
현재 3GPP Rel-13에서는 클래스(Class) A로 정의되는 프리코딩되지 않은 방식(non-precoded scheme)의 CSI-RS 동작(또는 CSI 보고 동작)(각 CSI 프로세스가 하나의 CSI-RS 자원과 하나의 CSI-IM 자원과 연관될 수 있음)과 Class B로 정의되는 빔포밍된 방식(beamformed scheme)의 CSI-RS 동작(또는 CSI 보고 동작)(각 CSI 프로세스는 하나 또는 그 이상의 CSI-RS 자원과 하나 또는 그 이상의 CSI-IM 자원과 연관될 수 있음)을 정의한다.
Class A의 경우, FD MIMO system에서 기지국은 하나의 CSI 절차 내에서 여러 개의 CSI-RS 자원들을 UE에게 설정(configure)할 수 있다. UE는 하나의 CSI 절차 내에서 설정된 CSI-RS 자원들 각각을 독립 채널로 간주하지 않고 병합하여 하나의 큰 CSI-RS 자원으로 가정하며, 해당 자원으로부터 CSI를 계산/획득하여 기지국으로 피드백한다. 예를 들어, 하나의 CSI 절차 내에서 기지국이 UE에게 3개의 4-port CSI-RS 자원들을 설정한 경우, UE는 설정된 3개의 4-port CSI-RS 자원들을 병합하여 하나의 12-port CSI-RS 자원으로 가정한다. UE는 해당 자원으로부터 12-port PMI를 이용하여 CSI를 계산/획득하여 기지국으로 피드백한다.
Class B의 경우에도, FD MIMO system에서 기지국은 UE에게 하나의 CSI 절차 내에서 여러 개의 CSI-RS 자원들을 설정(configure)할 수 있다. 예를 들어, 하나의 CSI 절차 내에서 기지국은 UE에 8개의 4-port CSI-RS 자원들을 설정해줄 수 있다. 8개의 4-port CSI-RS 각각에 서로 다른 virtualization이 적용됨에 따라 서로 다른 빔포밍이 적용될 수 있다. 예를 들어, 첫 번째 CSI-RS에 100도의 zenith angle로 수직 빔포밍(vertical beamforming)이 적용된 경우를 가정하면, 5도의 zenith angle 차이를 두고 두 번째 내지 여덟 번째 CSI-RS들에 수직 빔포밍이 적용될 수 있으며, 그 결과 여덟 번째에 해당하는 CSI-RS에는 135도의 zenith angle로 수직 빔포밍이 적용되어 있을 수 있다.
이 경우, UE는 설정받은 CSI-RS 자원들 각각을 독립적인 채널로 가정하며, 설정받은 CSI-RS 자원들 중 하나를 선택하고 선택한 자원을 기준으로 CSI를 계산/획득하여 기지국에 피드백/보고한다. 즉, UE는 설정받은 8개의 4-port CSI-RS 자원들 중 채널이 강인한(robust) CSI-RS 자원을 선택하고, 선택한 CSI-RS 자원을 기준으로 CSI를 계산하여 기지국으로 보고할 수 있다. 이 경우, UE는 선택한 CSI-RS 자원을 CRI(CSI-RS Resource Index) 값을 통해 기지국으로 보고할 수 있다. 예를 들어, 첫 번째 CSI-RS 자원 채널이 가장 강한 경우, UE는 CRI 값을 ‘0’으로 설정하여 기지국에 보고할 수 있다.
상술한 특징을 효과적으로 나타내기 위해 Class B CSI 절차에 있어 다음과 같은 변수들이 정의될 수 있다. K는 CSI 프로세스 내에 존재하는 CSI-RS 자원의 개수, Nk는 k번째 CSI-RS 자원의 CSI-RS port 수를 의미할 수 있다. 예를 들어, UE가 8개의 4-port CSI-RS 자원들을 설정받은 경우, K는 8이며, Nk는 k값에 무관하게 4이다.
현재 Rel-13에서 CRI는 특정 CSI-RS 자원만을 지시하지만, 향후 CRI는 특정 CSI-RS에 특정 port 조합을 지시하는 것으로 더 구체화될 수 있다. 예를 들어, CRI는 CSI 절차 내 8개의 CSI-RS 자원들 중 선택된 하나의 CSI-RS 자원을 지시하고, 추가적으로 선택된 하나의 CSI-RS 자원이 15, 16번 포트의 조합으로 구성되었음을 지시하는 것으로 더 구체화 될 수 있다. 이때, CRI는 각 CSI-RS 자원별로 15 및 16번 포트의 조합 또는 17 및 18번 포트의 조합의 지시가 가능하다고 한다면, CRI는 16개(=2^4) 값들 중 어느 한 값으로 설정될 수 있다.
즉, CRI=0으로 설정되는 경우 첫 번째 CSI-RS 자원의 15 및 16번 포트의 조합을 지시하며, CRI=1로 설정되는 경우 첫 번째 CSI-RS 자원의 17 및 18번 포트의 조합을 지시하며, CRI=2로 설정되는 경우 두 번째 CSI-RS 자원의 15 및 16번 포트의 조합을 지시하며, CRI=3으로 설정되는 경우 두 번째 CSI-RS 자원의 17 및 18번 포트의 조합을 지시하는 방식으로 CRI 값의 오름차순에 따라 각 CSI-RS 별 포트 조합을 지시할 수 있으며, 최종적으로 CRI=15로 설정되는 경우 마지막 여덟 번째 CSI-RS 자원의 17 및 18번 포트의 조합을 지시하는 것으로 볼 수 있다.
Class A의 경우, 단말이 N개의 안테나 포트를 측정하고, 이를 이용하여 N-port 프리코더(precoder)를 선택하여 이와 관련된 CSI(PMI, CQI, RI 등)을 기지국에 보고하게 된다. 하지만, N이 증가할수록, 단말의 채널 측정을 위한 CSI-RS 또한 증가하여야 하며, 이와 관련된 코드북 크기도 증가하여, 결과적으로 피드백 오버헤드(feedback overhead) 또한 증가하게 된다.
반면에, Class B의 경우, CSI-RS 포트 수는 기지국의 안테나 포트 수보다는 단말의 최대 랭크(rank)와 관련되어 있어, 기지국의 안테나 포트 수가 증가해도 CSI-RS의 큰 증가 없이 사용할 수 있는 장점이 있다. 다만, 기지국에서 빔 선택(selection)을 실시해야 하므로, 단말의 이동성(mobility)가 높은 환경과 기지국의 빔이 좁은(narrow) 환경에서는 빔포밍의 강인성이 약화될 수 있는 단점이 있다.
이러한 두 개의 기법의 단점을 보완하고 장점을 극대화하기 위하여, Class A와 B를 조합해서 사용하는 하이브리드(hybrid) CSI-RS 기반 기법(scheme)(또는 CSI 보고 기법)이 고려될 수 있다.
새로운 RAT을 위한 QCL 가정 및 시그널링 방법
QCL 동작을 수행하는 단말에 있어서, QCL 타입 B로 설정된 경우, 스케줄된 PDSCH와 함께 전송되는 DMRS의 채널 추정 도움을 받기 위해 스케줄링 DCI에서 지시하는 특정 QCL된(QCLed) CSI-RS 자원으로부터 추정된 LSP들을 사용할 수 있다. 그러나, 본 발명에서 고려하는 New RAT(NR) 환경에서는 CSI-RS의 전송 자체가 종래의 주기적인 형태를 벗어나 필요할 때만 전송한다는 관점에서의 비주기적(aperiodic) CSI-RS 전송 방식이 고려되고 있으므로, QCL 가정을 위한 CSI-RS로서 활용되는 RS 밀도가 기존 시스템 대비 현저히 부족해질 수 있다는 문제점이 있다. 따라서, 이하에서는 이러한 NR 환경에서의 비주기적(aperiodic) CSI-RS 전송 방식 등을 고려한 다양한 QCL 동작 실시예에 대해 제안하기로 한다. 제안하기에 앞서, NR 환경에서 정의될 수 있는 QCL 파라미터에 대해 우선 살펴본다. 다만, 이하의 QCL 파라미터는 NR 환경에만 국한되는 것이 아니라, 다양한 무선 통신 시스템에 적용될 수 있음은 물론이다.
1. QCL 파라미터
(NR환경에서) 고려되는 QCL 파라미터로서 다음 중 적어도 하나가 정의/설정될 수 있다:
- 지연 확산(Delay spread)
- 도플러 확산(Doppler spread)
- 도플러 쉬프트(Doppler shift)
- 평균 이득(Average gain)
- 평균 지연(Average delay)
- 평균 각(Average angle; AA)
- 각도 확산(Angular spread; AS)
NR 환경에서는 아날로그 빔포밍이 UE 측에서 적용될 때, arrival angle에 대한 새로운 유형의 QCL 특성을 고려할 필요가 있으므로, AA 및 AS와 같은 수신 빔 관련 파라미터가 새로운 타입의 QCL 파라미터로서 정의될 수 있다.
AA 관점에서, QCL이 보장/가정되는 안테나 포트들간에는 수신 빔 방향(그리고/또는 수신 빔 폭/스위핑 정도)에 대한 QCL 가정이 가능하다. 예를 들어, 단말은 특정 안테나 포트(들)로부터 추정되는 AA와 동일하거나 또는 (이와 연관하여) 유사하게 다른 안테나 포트(들)로부터의 전송 신호의 수신 빔 방향(그리고/또는 수신 빔 폭/스위핑 정도) 등을 설정하여 전송 신호의 수신이 가능함을 의미할 수 있다. 이와 같이 UE가 동작했을 때 수신 성능이 특정 수준 이상으로 보장될 수 있다. 이러한 AA는, 예를 들어 “(Almost) Dominant arrival angle” 등의 명칭으로도 대체될 수 있다.
결국 AA 관점에서 QCL 가정됨은, 특정 안테나 포트로부터 측정되는 신호의 특정 dominant (arrival) angle ‘S’가 존재한다고 가정할 때, 이와 QCL 가정되는(또는 QCL 관계를 갖는) 다른 안테나 포트로부터 측정되는 신호의 특정 dominant (arrival) angle은 상기 S와 “거의(almost)” 동일/유사하다는 의미로 해석될 수 있다. 즉, QCL 가정이 가능한 수신기는 특정 지시된 QCL된(QCLed) RS/SS로부터 추정된 AA를 “거의(almost)” 그대로 해당 RS/SS와 QCL 관계를 갖는 다른 QCL된(QCLed) RS/SS의 수신 처리에 활용/적용 가능하게 되며, 그 결과 효율적인 수신기 구현/동작이 가능하다는 장점이 존재한다.
AS 관점에서 2개의 안테나 포트들간의 QCL 가정됨은, 특정 포트의 AS는 해당 포트와 QCL된 다른 포트로부터 추정된 AS로부터 유도/추정/적용될 수 있음을 의미한다.
AS는 Azimuth AS 및 Zenith AS로 구분될 수 있으며, 이 경우 구분되는 dimension별로 따로 혹은 함께 정의될 수도 있다. 그리고/또는, AS는 departure AS 및 arrival AS로 구분될 수 있으며, 구분되는 AS별로 따로 혹은 함께 정의될 수도 있다.
AS 관점에서, QCL이 보장/가정되는 안테나 포트들간에는 수신 빔 폭/스위핑 정도(그리고/또는, 수신 빔 방향)에 대한 QCL 가정이 가능하다. 예를 들어, 단말은 특정 안테나 포트(들)로부터 추정되는 AS와 동일하거나 또는 (이와 연관하여) 유사하게 다른 안테나 포트(들)로부터의 전송 신호의 수신 빔 폭/스위핑 정도(그리고/또는, 수신 빔 방향) 등을 설정하여 전송 신호의 수신이 가능함을 의미할 수 있다. 이와 같이 UE가 동작했을 때 수신 성능이 특정 수준 이상으로 보장될 수 있다.
AA 및 AS와 관련하여 상술한 내용을 종합해볼 때, AA는 평균적인, (가장) 유효한/dominant 빔/공간 방향/각도 관련 파라미터로 해석될 수 있으며, AS는 (상기 AA를 중심/기준으로) 반사체 분포 등에 의해 얼마나 빔 방향이 퍼져 있는지에 관한 빔/공간/각도 스펙트럼/범위 관련 파라미터로 해석될 수 있다.
이러한 AA 및 AS는 결국 수신 빔/공간/각도 운용(management) 기능을 위한 QCL 가정에 사용되는 파라미터이므로, 예를 들어, 수신 빔 파라미터, 수신 빔 관련 파라미터, 수신 각도 파라미터, 수신 각도 관련 파라미터, 수신 공간 파라미터, 공간 QCL 파라미터, 공간 파라미터 또는 공간 수신(Spatial Rx) 파라미터 등으로 통칭될 수 있다. 이하에서는 설명의 편의를 위해 AA 및 AS를 ‘수신 빔 관련 파라미터’라 통칭하기로 한다.
수신 빔 관련 파라미터로는 앞서 상술한 AA 및/또는 AS와 동일/유사한 성격의 Angle of Arrival(AoA), Dominant AoA, average AoA, Power Angular Spectrum (PAS) of AoA, average Angle of Departure (AoD), PAS of AoD, transmit/receive channel correlation, transmit/receive beamforming, spatial channel correlation 등 정의될 수도 있다.
PAP(Power Angle(-of-Arrival) Profile) 관점에서 2개의 안테나 포트들간의 QCL 가정됨은, 특정 포트의 PAP는 해당 포트와 QCL된 다른 포트로부터 추정된 PAP로부터 유도/추정/적용될 수 있음을 의미한다(즉, 두 포트들간의 PAP가 동일하거나 유사하다는 특성이 유도/추정/적용 가능). PAP는 아지무스(Azimuth) 및/또는 제니스(Zenith) 각도-도메인에 대한 PAP로서 각각의 특정 차원(dimension)별로 별도로 정의되거나 함께 정의될 수도 있다. 그리고/또는 PAP는 출발(departure) 및/또는 도착(arrival) 관점에서 각각 별도로 또는 함께 정의될 수도 있다.
PAP 관점에서 QCL 보장/가정됨은, 예를 들어, 특정 안테나 포트(들)로부터 추정되는 PAP를 기초로 또 다른 안테나 포트(들)로부터의 전송 신호를 수신하고자 할 경우의 수신 빔 폭/스위핑 정도(그리고/또는 수신 빔 방향) 등을, 해당 특정 안테나 포트(들)과 같거나 또는 (이와 연관되도록) 유사하게 설정하여 수신 가능함을 의미할 수 있다. 나아가, PAP 관점에서 QCL 보장/가정됨은, 이와 같이 동작했을 때의 수신 성능이 특정 수준 이상으로 보장됨을 의미할 수 있다.
본 명세서에서는 상술한 QCL 파라미터와 관련하여 “부분 QCL(Partial QCL)(또는 서브-QCL, fractional QCL, 또는 QSL(quasi-sub-location) 등과 같이 유사/변형된 명칭으로도 지칭될 수 있음)”이라는 새로운 개념을 소개한다.
상술한 적어도 하나의 QCL 파라미터에 대하여 특정 안테나 포트들간에는 “부분 QCL(Partial QCL)(또는 서브-QCL, fractional QCL, 또는 QSL(quasi-sub-location) 등과 같이 유사/변형된 명칭으로도 지칭될 수 있음)”과 같은 관계가 성립/설정/지시될 수 있다. 예를 들어, 특정 안테나 포트 그룹 A(예를 들어, 안테나 포트 그룹 A는 1개 또는 그 이상일 수 있음)로부터 전송되는 신호(및/또는 그에 따라 경험하는/관찰되는 (무선)채널)가 특정 안테나 포트 그룹 B(예를 들어, 안테나 포트 그룹 B는 1개 또는 그 이상일 수 있음)로부터 전송되는 신호(및/또는 그에 따라 경험하는/관찰되는 (무선)채널)에 대하여 “부분 QCL”이 성립한다고 가정/설정/지시될 수 있다. 이 경우, 안테나 포트 그룹 A에 대한 QCL 파라미터(들)/속성(property)(들)은 안테나 포트 그룹 B로부터 추정된 QCL 파라미터(들)/속성(property)(들)의 “부분 집합(sub-set)(동일하거나 상위 집합에 포함되는 관계)”인 것으로 가정/적용/활용할 수 있다. 이는, 이를 기초로 한 연관 동작 적용 시 성능이 일정 수준 이상으로 보장됨을 의미할 수 있다.
이러한 “부분 QCL”은 여러 환경에서 의미를 가지게 되는데, 대표적인 예시로 다수개의 물리적 안테나가 SFN(Single Frequency Network)을 구성하여 논리적 안테나 포트 그룹 A를 형성하고, 논리적 안테나 그룹 B는 개별 물리적 안테나에 매핑된 경우가 고려될 수 있다. 즉, 대표적인 예시로서 논리적 안테나 포트 그룹 A의 안테나 포트는 다수개의 물리적 안테나(특히, 각 물리 안테나 별로 LSP가 다른 경우)에 매핑되어 동시에 상기 다수개의 안테나를 통해 해당 안테나 포트의 신호가 전송되나, 논리적 안테나 포트 그룹 B의 안테나 포트는 논리적 안테나 포트 그룹 A가 매핑되었던 다수개의 물리적 안테나 중 어느 하나의 안테나에 매핑되어 상기 하나의 안테나를 통해 해당 포트의 신호가 전송되는 경우를 들 수 있다. 이러한 실시예에서 수신단은, 논리적 안테나 포트 그룹 A를 통해 전송된 신호로부터 획득한 채널의 LSP로부터 논리적 안테나 포트 그룹 B를 통해 전송된 신호가 겪게될/전송될 채널의 LSP를 유도할 수 있다(즉, 부분 QCL 관계/가정 성립).
예를 들어, 다중 경로 페이딩 패널 환경에서 논리적 안테나 포트 그룹 A에 대하여 논리적 안테나 포트 그룹 B가 부분 QCL 관계를 갖는다면, 논리적 안테나 포트 그룹 B를 통해 전송된 신호에 대한/영향을 주는 채널 지연 값들은, 논리적 안테나 포트 그룹 A를 통해 전송된 신호에 대한/영향을 주는 채널 지연 값들 중 일부인 관계가 성립/가정될 수 있다. 그리고/또는, 예를 들어, 다중 경로 페이딩 패널 환경에서 논리적 안테나 포트 그룹 A에 대하여 논리적 안테나 포트 그룹 B가 부분 QCL 관계를 갖는다면, 논리적 안테나 포트 그룹 B를 통해 전송된 신호에 대한/영향을 주는 채널 도플러 값들은, 논리적 안테나 포트 그룹 A를 통해 전송된 신호에 대한/영향을 주는 채널 도플러 값들 중 일부인 관계가 성립/가정될 수 있다. 이러한 관계를 이용하여 수신단은 논리적 안테나 포트 그룹 A의 신호로부터 획득한 LSP를 이용하여/기초로 논리적 안테나 포트 그룹 B를 통해 수신된 신호의 채널 추정기(channel estimator)에 대한 파라미터/LSP 설정을 수행할 수 있다. 그리고/또는, 예를 들어, 다중 경로 페이딩 패널 환경에서 논리적 안테나 포트 그룹 A에 대하여 논리적 안테나 포트 그룹 B가 부분 QCL 관계를 갖는다면, 논리적 안테나 포트 그룹 B를 통해 전송된 신호를 수신하기 위한 수신 빔 방향(또는 각도/범위)은 논리적 안테나 포트 그룹 A를 통해 전송된 신호를 수신하기 위한 수신 빔 방향(또는 각도/범위)에 속하는/포함되는 관계가 성립/가정될 수 있다. 이러한 관계를 이용하여 수신단은 논리적 안테나 포트 그룹 A를 통해 전송된 신호를 수신하기 위한 수신 빔 방향들(또는 각도/범위) 중에서 논리적 안테나 포트 그룹 B를 통해 전송된 신호를 수신하기 위한 수신 빔 방향(또는 각도/범위)을 검색할 수 있다. 이를 통해, 수신단은 수신 빔 방향의 검색 속도를 개선시킬 수 있으며, 그리고/또는 수신 처리의 복잡도를 감소킬 수 있다.
2. Inter/Intra-RS/SS QCL 관계
(NR환경에서) 상술한 QCL 파라미터/특성(property) 중 적어도 하나가, 하기의 특정 RS/SS간(예를 들어, 이하에서 후술하는 RS/SS 중 서로 다른 종류의 RS/SS간 또는 동일한 종류의 RS/SS간)에 정의/설정되어 단말 동작에 사용되도록 지원될 수 있다.
- PSS 및/또는 SSS(‘SS(synchronization sequence/signal) block’으로 통칭될 수 있음.)
- BRS
- BRRS
- CSI-RS
- PCRS(Phase noise Compensation Reference Signal)
- DMRS
3. BRRS(Beam Refinement Reference Signal) QCL
BRRS 기반 beam refinement 동작에 있어서, BRRS 자체에 대한 채널 추정 등을 위해 (NR에서의 BRRS 전송이 비주기적 특성을 가질 수 있음을 고려할 때) RS 밀도(density)가 더욱 높은 BRS 등으로부터 특정 QCL 파라미터/특성(예를 들어, {Doppler spread 및/또는 Doppler shift})에 대한 QCL 가정이 가능하도록 지원될 필요가 있다.
이렇듯 BRRS와 QCL된(QCLed) RS/SS는 해당 BRRS의 RRC 설정 시 함께 제공될 수 있으며, 이는 BRRS를 위한 반-정적 QCL 설정(semi-static QCL configuration for BRRS)이 지원되는 것으로 볼 수 있다. 혹은, 더욱 동적인 QCL 설정을 제공하기 위해 MAC(medium access control) CE(control element)(및/또는 DCI) 등을 통한 L2-레벨(및/또는 L1-레벨)의 QCL 설정이 각 BRRS에 대해 설정/제공될 수도 있다. 예를 들어, full flexibility를 가지고 L2-레벨(및/또는 L1-레벨)로 모든 QCL 설정 정보가 단말로 (실시간으로) 제공되거나, RRC 설정을 통해 다수의 후보(candidate) QCL 설정 파라미터 세트들을 설정해두고 이 중 어느 것을 선택/적용/사용할지는 L2-레벨(및/또는 L1-레벨) 시그널링을 통해 단말이 지시받는 형태로 지원될 수도 있다.
QCL 설정 지시/시그널링을 더욱 계층화한 예로서, 기지국은 RRC 설정을 통해 다수의 후보 QCL 설정 파라미터 세트들을 단말에 설정해두고, 이 중 2^M (M>=1)개의 파라미터 세트들을 MAC CE 등의 L2-레벨 시그널링을 통해 1차적으로 걸러낸 다음, 1차로 걸러낸 파라미터 세트들 중 어느 파라미터 세트를 최종적으로 선택/적용/사용할지를 N-bit 필드의 특정 DCI 등을 통한 L1-레벨 시그널링을 통해 단말에 지시해주는 방식도 적용 가능하다. 다시 말하면, QCL 설정이 계층화되어(예를 들어, 총 3차에 걸쳐)(또는 복수회에 걸쳐) 단말에 지시/제공될 수 있으며, 1차적으로는 RRC 설정을 통해, 2차적으로는 L2-레벨의 시그널링(예를 들어, MAC CE 등)을 통해, 3차적으로는 L1-레벨의 시그널링(예를 들어, DCI 등)을 통해 지시될 수 있다. 이렇듯 계층화된 QCL 설정 지시 방식은 BRRS에 대한 QCL 설정뿐만 아니라, 다른 RS/SS에 대한 QCL 설정에도 동일/유사하게 적용될 수 있다.
이와 같이 BRRS의 채널 추정/측정 목적 등으로 제공되는 (BRRS와) QCL된 RS/SS(예를 들어, BRS 및/또는 PSS/SSS) 정보를 L1(및/또는 L2)-레벨의 동적 지시(dynamic indication)를 통해서 시그널링 하는 방식은 “비주기적 또는 on-demand” BRRS 전송을 고려하는 무선 통신 시스템에 있어 매우 효율적일 수 있다.
보다 구체적으로, 송신기는 수신기에 사전에 적어도 하나의 BRRS (자원(들))를 설정해둘 수 있으며, 송신기(또는 기지국)는 수신기가 각 BRRS를 수신하기 위한 정보를 L2-레벨(예를 들어, MAC CE) 및/또는 L1-레벨(예를 들어, DCI)을 통해 동적 지시할 수 있다. 여기서, 각 BRRS를 수신하기 위한 정보는, (BRRS와) QCL된 RS/SS 정보를 포함하며, 예를 들어, 특정 BRS 포트(들) 및/또는 특정 PSS/SSS 등에 관한 정보를 포함할 수 있다. 그 결과, 송신기(또는 기지국)는 단말에 미리 설정해둔 BRRS 전송 자원들을 이용하여 단말의 로딩(loading) 및 트래픽/채널 컨디션 등 순시적인 상황을 고려하여 매우 유연하게 적절한 (비주기적/on-demand) BRRS 전송을 수행할 수 있다는 장점이 있다.
상술한 동작들을 효과적으로 지원하기 위해, 각 BRRS(또는 BRRS 자원)별로 및/또는 BRRS 포트(들)별로 특정 ID가 부여될 수 있으며, 그리고/또는 각 BRS(또는 BRS 자원)별로 및/또는 BRS 포트(들)별로 특정 ID가 부여될 수 있다. 이러한 특정 ID는 앞서 상술한 단말에 QCL 설정을 제공하기 위한 QCL 시그널링을 통해 단말에 지시될 수 있다.
기지국이 특정 BRRS에 대해 QCL된 RS/SS(예를 들어, 특정 BRS 포트(들)) 정보를 단말에 (동적) 지시할 때에, QCL 가정이 적용되는 QCL 파라미터/특성을 상기 열거한 QCL 파라미터들/특성들 중 일부로 제한할 수 있다.
예를 들어, 단말은 {Doppler spread, 및/또는 Doppler shift} 파라미터/특성에 대해서만 QCL 가정 가능한 것으로 제한될 수 있다. 이는 BRRS 자체만으로 주파수 동기를 안정적으로 획득하는 데에 한계가 있는 경우 등의 이유에 기인한다. 특히, 예를 들어 BRRS가 특정 BRS와 QCL 가정은 BRRS와 BRS가 동일한 발진기(oscillator)로부터 생성되는 경우 등의 구현 방식에 의해 지원될 수 있다.
그리고/또는, 단말은 {Delay spread, 및/또는 Average delay} 파라미터/특성에 대해서(도) QCL 가정 가능한 것으로 제한될 수 있다. 예를 들어, BRRS와 QCL된 BRS의 상기 LSP는 (동일 패널 안테나로부터 전송되는 등) BRRS 및 BRS간에 암시(infer)될 수 있음이 보장되는 경우에 기지국이 단말에 설정/지원함으로써 효과적인 수신기 구현을 지원할 수 있다.
그리고/또는, 단말은 {Average angle 및/또는 Angular spread} 파라미터/특성(즉, 수신 빔 관련 파라미터)에 대해서(도) QCL 가정 가능한 것으로 제한될 수 있다. 이는 BRRS의 수신을 위한 수신 (아날로그) 빔 계수 생성(beam coefficients generation)을 BRS 수신 시 적용한 빔 계수 생성으로부터 암시하여 적용할 수 있도록 함으로써 효율적인 수신기 구현을 지원할 수 있다는 장점이 있다. 혹은, BRRS의 AA는 특정 레벨 이상으로 BRS의 AA와 상이한 각도로 벗어날 수 있음을 고려한다면, “AS”만을 (추가) 반영(즉, QCL 가정)하도록 단말에 설정할 수도 있다.
4. CSI-RS QCL
CSI-RS 기반 CSI 측정 및 보고 동작에 있어서, CSI-RS 자체에 대한 채널 측정 시, (NR에서의 CSI-RS 전송이 비주기적 특성을 가질 수 있음을 고려할 때) RS 밀도가 더 높은 BRS나 BRRS 등으로부터 특정 QCL 파라미터/특성(예를 들어, {Doppler spread 및 Doppler shift})에 대한 QCL 가정이 가능하도록 지원될 필요가 있다. (CSI-RS와) QCL된 RS/SS에 관한 정보는 해당 CSI-RS의 RRC 설정 시에 함께 제공될 수 있고, 이는 CSI-RS를 위한 반-정적 QCL 설정(semi-static QCL configuration for CSI-RS)이 지원되는 것으로 볼 수 있다.
혹은, 더욱 동적인 QCL 설정을 제공하기 위해 MAC(medium access control) CE(control element)(및/또는 DCI) 등을 통한 L2-레벨(및/또는 L1-레벨)의 QCL 설정이 각 CSI-RS (자원)에 대해 설정/제공될 수도 있다. 예를 들어, full flexibility를 가지고 L2-레벨(및/또는 L1-레벨)로 모든 QCL 설정 정보가 단말로 (실시간으로) 제공되거나, RRC 설정을 통해 다수의 후보(candidate) QCL 설정 파라미터 세트들을 설정해두고 이 중 어느 것을 선택/적용/사용할지는 L2-레벨(및/또는 L1-레벨) 시그널링을 통해 단말이 지시받는 형태로 지원될 수도 있다.
QCL 설정 지시/시그널링을 더욱 계층화한 예로서, 기지국은 RRC 설정을 통해 다수의 후보 QCL 설정 파라미터 세트들을 단말에 설정해두고, 이 중 2^M (M>=1)개의 파라미터 세트들을 MAC CE 등의 L2-레벨 시그널링을 통해 1차적으로 걸러낸 다음, 1차로 걸러낸 파라미터 세트들 중 어느 파라미터 세트를 최종적으로 선택/적용/사용할지를 N-bit 필드의 특정 DCI 등을 통한 L1-레벨 시그널링을 통해 단말에 지시해주는 방식도 적용 가능하다. 다시 말하면, QCL 설정이 계층화되어(예를 들어, 총 3차에 걸쳐)(또는 복수회에 걸쳐) 단말에 지시/제공될 수 있으며, 1차적으로는 RRC 설정을 통해, 2차적으로는 L2-레벨의 시그널링(예를 들어, MAC CE 등)을 통해, 3차적으로는 L1-레벨의 시그널링(예를 들어, DCI 등)을 통해 지시될 수 있다. 이렇듯 계층화된 QCL 설정 지시 방식은 CSI-RS에 대한 QCL 설정뿐만 아니라, 다른 RS/SS에 대한 QCL 설정에도 동일/유사하게 적용될 수 있다.
이와 같이 CSI-RS의 채널 추정/측정 목적 등으로 제공되는 (CSI-RS와) QCL된 RS/SS(예를 들어, BRS, BRRS 및/또는 PSS/SSS) 정보를 L1(및/또는 L2)-레벨의 동적 지시(dynamic indication)를 통해서 시그널링 하는 방식은 “비주기적 또는 on-demand” CSI-RS 전송을 고려하는 무선 통신 시스템에 있어 매우 효율적일 수 있다.
보다 상세하게는, 송신기는 수신기에 사전에 적어도 하나의 CSI-RS (자원(들))를 설정해둘 수 있으며, 각 CSI-RS ID(또는 CSI-RS 자원 구성)별로 CSI-RS 측정을 위한 모든 설정 정보(예를 들어, 포트 개수/넘버(# of ports), 스크램블링 ID, 시간/주파수 RE 패턴, CSI-RS(RB-레벨 및/또는 RE-레벨) 밀도(density), 포트 서브셋(실제로 할당된 포트), (CSI-RS와) QCL된 RS/SS 정보, 및/또는 서브 프레임 주기/오프셋(CSI-RS 전송 시간-도메인 동작으로서 비주기적, 반-영구(semi-persistent), 또는 주기적 타입 중 하나를 포함))를 반-정적으로 설정하는 것이 아닌 이 중에서 일부 정보 요소(예를 들어, {포트 개수/넘버(# of ports), 스크램블링 ID 및/또는 시간/주파수 RE 패턴})만을 반-정적으로 설정(예를 들어, RRC를 통해)할 수 있다. 이 경우, 송신기는 반-정적으로 설정된 정보 요소들을 제외한 나머지 정보 요소들은 L2-레벨(예를 들어, MAC CE) 및/또는 L1-레벨(예를 들어, DCI)를 통해 동적 지시할 수 있다. 나머지 정보 요소는 (CSI-RS와) QCL된 RS/SS에 관한 정보를 포함할 수 있으며, 예를 들어, 특정 BRS/BRRS 포트(들), 특정 PSS/SSS, CSI-RS(RB-레벨 및/또는 RE-레벨, 시간-도메인/심볼) 밀도 값(들), 및/또는 CSI-RS 전송 시간-도메인 동작으로서 비주기적, 반-영구(semi-persistent), 또는 주기적 타입 중 하나 등에 관한 정보를 포함할 수 있다. 여기서 반-정적으로 설정함은, 미리 설정되어 있는 후보 파라미터 세트들 중 특정 세트가 동적으로 선택되는 방식이 적용됨을 의미할 수 있다.
그 결과, 송신기(또는 기지국)는 단말에 미리 설정해둔 CSI-RS 자원들을 이용하여 단말의 로딩(loading) 및 트래픽/채널 컨디션 등 순시적인 상황을 고려하여 매우 유연하게 적절한 (비주기적/on-demand) CSI-RS 전송을 수행할 수 있다는 장점이 있다.
이러한 실시예에서, 단말에게 반-정적으로 설정해 두는 적어도 하나의 CSI-RS (자원(들))는 각각 대응하는 ID를 갖는 적어도 하나의 “CSI-RS 컨테이너(들)(“CSI-RS container(s) each with corresponding ID”)로 해석될 수 있다. 이렇듯 각 “CSI-RS 컨테이너”에 비주기적/”on-demand” CSI-RS를 담아 전송하는 것은, 기지국이 매 전송 시점마다 최적의 빔포밍 및 해당 CSI-RS와 연관되는 QCL된 RS/SS를 동적 지시해줌으로써 CSI-RS 전송 자원의 사용 효율을 극대화할 수 있는 장점을 갖는다.
상기 제안 동작들이 효과적으로 적용될 수 있는 일례로, 단말은 특정 CSI-RS 자원(for BM with 1-포트)를 설정받을 수 있는데, 이는 기본적으로 비주기적, 반-영구, 또는 주기적 CSI-RS 자원으로 설정될 수 있다. 그리고 이러한 BM용 CSI-RS 자원은 BM 관련 보고(세팅)에 연동되어, BM 과정에서 단말이 최적의 빔(들) 관련 보고를 (주기적으로) 수행하도록 설정/지시될 수 있다. 일례로, 각 TRP/셀별로 BM용 CSI-RS 자원이 설정되어 있는 경우, 단말은 이들을 대상으로 측정하여 최적의 빔(들)에 대응하는 특정 CSI-RS 자원 ID(들)를 보고함과 동시에 그 때의 특정 빔 강도(strength) 관련 메트릭(예를 들어, L1 RSRP 등)도 함께 보고할 수 있다. 이는 결국, 이웃 셀/TRP에 대한 BM 관련 동작을 수행하고 있는 것으로 해석될 수 있으며, 이러한 동작을 위해 각 BM용 CSI-RS 자원은 상대적으로 장기 전송 및/또는 낮은 (RB/RE-레벨) 밀도로 설정된 상태일 수 있다. 이 과정에서, 적어도 하나의 CSI-RS 자원(for BM)은 특정 NR-PDCCH(예를 들어, Control-resource set(CORESET)마다)에 대한 빔 지시 용도로서 이미 설정/지시되어 있을 수 있다. 다시 말해, 단말이 BM 관련 보고의 측정 대상이 되는 다수의 BM용 CSI-RS 자원들에 대하여 BM 관련 보고를 수행함과 동시에, 이 중에서 적어도 하나의 특정 BM용 CSI-RS 자원(들)은 (각각) 특정 NR-PDCCH(예를 들어, CORESET)와 설정/연동되어 있을 수 있다. 이 경우, 단말은 특정 NR-PDCCH/CORESET을 모니터링하여 (DCI) 검출/수신을 시도할 때에, 해당 특정 NR-PDCCH/CORESET과 설정/연동된 특정 BM용 CSI-RS 자원(들)의 수신 시 적용했던 수신 빔 세팅을 (동일하게) 적용하여 검출/수신을 시도하도록 지원될 수 있다(이때 사용되는 빔은 “서빙-빔”으로 지칭될 수 있음). 이와 같이, 적어도 하나의 특정 NR-PDCCH/CORESET에 (빔 지시 용도로서) 연동된 특정 BM용 CSI-RS 자원(들)은 상대적으로 단기 전송 및/또는 높은 (RB/RE-레벨) 밀도로 설정/지시될 수 있다.
이때 만일, 비-서빙 빔(BM용 CSI-RS 자원과 대응)에 대한 신호 품질이 좋아져서 특정 서빙 빔을 대체하려고 하거나(빔 스위칭/변경) 새로운 서빙 빔을 설정/지시해주고자(예를 들어, CoMP를위해) 하는 경우, 기지국은 이러한 (특정 NR-PDCCH/CORESET과 연동되는) 빔 지시를 설정/지시/갱신 해주는 동작을 RRC 레벨이 아닌 MAC CE(예를 들어, L2) 및/또는 DCI(예를 들어, L1) 시그널링에 의한 동적 지시로 설정/지시/갱신해줄 수 있다. 그렇게 되면, 앞서 제안/설명한 바와 같이, 기지국은 (현재까지 서빙 빔으로 설정되지 않았던) 특정 BM용 CSI-RS 자원에 대하여 새롭게 특정 서빙 빔으로 설정/지시/갱신되는 시그널링을 줄 때, 해당 BM용 CSI-RS 자원의 (RB/RE-레벨) 밀도를 더 높은 값으로 설정/지시/갱신해주거나 특정 시간-도메인 동작 관련 파라미터(들)(예를 들어, 서브 프레임 주기/오프셋 및/또는 CSI-RS 전송의 비주기적, 반-영구, 또는 주기적 타입 중 하나)를 새롭게 설정/지시/갱신해줄 수 있다. 예를 들어, 기지국은 비주기적 타입이었던 자원을 (서빙-빔이므로) 반-영구/주기적 타입으로 변경해주거나, (서빙-빔이므로) 전송 주기를 더 낮춰서 자원이 자주 전송될 수 있도록 할 수 있다. 그리고/또는, 상기 파라미터(들)의 설정/지시/갱신을 통해, 상기 특정 서빙 빔을 통한 CSI-RS는 적어도 하나의 QCL 파라미터를 측정/추정/도출해내기 위한 트래킹 목적의 RS(예를 들어, TRS(tracking RS))의 용도로도 사용될 수 있다는 효과가 있다. CSI-RS를 TRS 용도로도 사용하기 위해, 한 슬롯 안에 해당 RS 샘플 수가 시간-도메인에서 두 번 이상 나타나도록 시간-도메인 RS 밀도가 충분한 수준으로 설정/지시/갱신될 수 있다.
수신기(또는 단말)에 설정되는 적어도 하나의 CSI-RS 자원은 각 CSI-RS 자원별로 독립적으로 서로 다른 RS/SS와의 QCL 가정이 설정/지시될 수 있다. 예를 들어, 단말에 CSI-RS #1 및 #2가 설정되었다고 가정했을 때, CSI-RS #1은 특정 BRS와 QCL 가정되고, CSI-RS 자원 #2는 특정 BRRS와 QCL 가정되는 형태로 설정/지시될 수 있다. 이때, CSI-RS #1은 non-precoded CSI-RS, 그리고/또는 CSI-RS 측정 초기 단계를 위한 CSI-RS(예를 들어, CSI-RS #1 및 #2를 기초로 한 하이브리드 CSI 보고에 있어서의 CSI-RS #1)에 해당할 수 있으며, 이 경우 CSI-RS #1은 특정 BRS와 QCL 되는 것으로 설정/지시될 수 있다. 반면, CSI-RS#2는 beamformed CSI-RS, 그리고/또는 단말이 특정 BRS를 서빙-빔으로서 접속하고 (후속하는) BRRS를 통해 이미 beam refinement를 충분히 진행한 상태에서 기지국이 전송 효율을 보다 높이기 위한 link adaptation을 목적으로 설정한 CSI-RS#2에 해당할 수 있으며, 이 경우 CSI-RS #2는 BRS가 아닌 BRRS와 QCL 설정/지시될 수 있다.
그리고/또는, 수신기(또는 단말)에 복수의 CSI-RS 자원이 설정되는 경우, 복수의 CSI-RS 자원간의 (적어도 수신 빔 관련 파라미터에 대한) QCL 가정이 설정/지시될 수도 있다. 예를 들어, 단말에 CSI-RS #1 및 #2가 설정된 경우, 단말은 (적어도 수신 빔 관련 파라미터에 대해) CSI-RS #1 및 #2의 안테나 포트들간 QCL 관계를 가정할 수 있다.
그리고/또는, 수신기(또는 단말)는 하나의 CSI-RS 자원 내의 안테나 포트들간의 QCL 가정이 설정/지시될 수도 있다. 예를 들어, 단말에 CSI-RS #1이 설정된 경우, 단말은 CSI-RS #1에 대응하는 안테나 포트들간의 QCL 관계를 가정할 수 있다.
이와 같이 다양한 동작을 원활히 지원하기 위하여, CSI-RS는 BRS 또는 BRRS 중에 어느 하나와의 QCL 가정이 선택적으로 설정/지시될 수 있다. 다만, 이에 한정되지 않으며, 실시예에 따라서 CSI-RS는 BRS 및 BRRS 모두에 대한 QCL 가정이 설정/지시됨으로써 QCL RS 밀도를 최대화하는 방법도 함께 지원될 수 있다.
기지국이 특정 CSI-RS에 대해 QCL된 RS/SS(예를 들어, 특정 BRS 포트(들)) 정보를 단말에 (동적) 지시할 때에, QCL 가정이 적용되는 QCL 파라미터/특성을 상기 열거한 QCL 파라미터들/특성들 중 일부로 제한할 수 있다.
예를 들어, 단말은 {Doppler spread, 및/또는 Doppler shift} 파라미터/특성에 대해서만 QCL 가정 가능한 것으로 제한될 수 있다. 이는 CSI-RS 자체만으로 주파수 동기를 안정적으로 획득하는 데에 한계가 있는 경우 등의 이유에 기인한다.
그리고/또는, 단말은 {Average angle 및/또는 Angular spread} 파라미터/특성(즉, 수신 빔 관련 파라미터)에 대해서(도) QCL 가정 가능한 것으로 제한될 수 있다. 이는 보다 안정적인 빔 폭을 CSI-RS 수신 처리에 반영하는 것이 유리하기 때문이다. 나아가, CSI-RS의 빔 폭이 좁다고(narrow) 한다면 “AS”만을 (추가) 반영(즉, QCL 가정)하도록 단말에 설정할 수도 있다.
그리고/또는, 단말은 {Delay spread, 및/또는 Average delay} 파라미터/특성에 대해서(도) QCL 가정 가능한 것으로 제한될 수 있다. 이는 CSI-RS 전송 대역폭이 일부 대역으로 한정되어 전송되는 등의 경우를 고려할 때, CSI-RS 전송 대역폭보다 더 넓은 대역으로 전송되는 BRS 등의 상기 QCL 파라미터를 CSI-RS 수신 처리에 반영하는 것이 유리하기 때문이다.
5. DMRS QCL
DMRS-기반 PDSCH/EPDCCH 등을 단말이 수신하고자 할 때 DMRS에 대한 채널 추정이 필요하며, 이러한 DMRS에 대해 특정 CSI-RS, BRRS, 및/또는 BRS와의 QCL 가정/시그널링이 지원될 수 있다.
예를 들어, CSI-RS의 밀도가 충분하다고 (기지국에 의해) 판단되는 환경에서는, 오직 DMRS와 특정 CSI-RS 자원(들)간의 QCL만 적용하도록 설정/지시될 수 있다. 또는, NR 환경에서와 같이 CSI-RS 전송이 비주기적 특성을 가짐에 따라 CSI-RS 밀도가 불충분할 수 있음을 고려할 때, DMRS는 CSI-RS보다 RS 밀도가 안정적으로 보장되는 다른 RS의 QCL 지원을 받아야 할 수 있다. 이 경우, DMRS는 특정 BRS, BRRS 및/또는 PCRS과 QCL될 수 있으며, 이러한 QCL 설정을 지시하는 direct QCL 시그널링이 단말에 제공될 수 있다. 이때, direct QCL 시그널링은 DMRS와의 QCL 설정을 상기 RS뿐 아니라, 특정 CSI-RS 자원(들), PSS 및/또는 SSS에 대해서도 함께/추가로 단말에 지시할 수도 있다.
상술한 바와 같은 inter-RS/SS간 특정 QCL 설정/지시가 제공될 때, 특정/개별 QCL 파라미터별로 독립적인/분리된/상이한 RS 및/또는 SS 사이의 QCL 적용이 가능한 형태로 inter-RS/SS QCL 관계(relationship)가 정의/설정될 수 있다. 즉, 단말은 QCL 가정/적용 시, DMRS와 QCL되는 RS/SS 종류에 따라 적용하는 QCL 파라미터를 구분/달리할 수 있다.
일 예로서, DMRS가 특정 CSI-RS 자원(들)과 QCL되는 경우, 단말은 {Delay spread, Average delay, Average angle, Angular spread, 및/또는 Average gain} 파라미터/특성에 대해서만 제한적으로 QCL을 가정/적용하도록 설정/지시될 수 있다. 또한, DMRS가 특정 BRS, BRRS, PCRS, 및/또는 PSS/SSS과 QCL되는 경우, 단말은 {Doppler spread, 및/또는 Doppler shift}에 대해 제한적으로 QCL을 가정/적용하도록 설정/지시될 수 있다. 이는, {Doppler spread, and/or Doppler shift} 파라미터/특성을 CSI-RS에만 기초하여 추정/적용하기에 한계가 있기 때문이다.
다른 예로서, DMRS가 특정 BRS(들), BRRS(들), PCRS, 및/또는 CSI-RS 자원(들)과 QCL되는 경우, 단말은 {Delay spread, Average delay, Average angle, Angular spread, 및/또는 Average gain} 파라미터/특성에 대해서만 제한적으로 QCL을 가정/적용하도록 설정/지시될 수 있다. 또한, DMRS가 특정 PSS 및/또는 SSS와 QCL되는 경우, 단말은 {Doppler spread, 및/또는 Doppler shift}에 대해서만 제한적으로 QCL을 가정/적용하도록 설정/지시될 수 있다. 본 실시예는, DMRS의 {Doppler spread, and/or Doppler shift} 파라미터/특성을 PSS/SSS로부터 추정/적용하는 것이 더 안정적인 성능을 보장하는 경우 등에 적용 가능하다.
다른 예로서, DMRS가 특정 BRS(들), BRRS(들), PCRS, 및/또는 CSI-RS 자원(들)과 QCL되는 경우, 단말은 {Delay spread, Average delay, Average angle, Angular spread, 및/또는 Average gain} 파라미터/특성에 대해서만 제한적으로 QCL을 가정/적용하도록 설정/지시될 수 있다. 또한, DMRS가 특정 BRS(들), BRRS(들), PCRS, 및/또는 PSS/SSS와 QCL되는 경우, 단말은 {Doppler spread, 및/또는 Doppler shift} 파라미터/특성에 대해서만 제한적으로 QCL을 가정/적용하도록 설정/지시될 수 있다. 본 실시예에 따르면, 특정 BRS(들) 및/또는 BRRS(들)의 경우 모든(또는 대부분의) QCL 파라미터/특성에 대해서 QCL 가정이 적용 가능하게 함과 동시에, 특정 CSI-RS 자원(들)의 경우 일부 제한적인 QCL 파라미터/특성에 대해서만(예를 들어, {Doppler spread, 및/또는 Doppler shift}를 제외하고) QCL 가정이 가능하도록 할 수 있다. 이와 같이, 기지국은 각 RS/SS별로 QCL 파라미터/특성의 적용 가능 범위를 상이하게 설정/지시할 수 있으며, 이 중 일부 복수의 RS/SS들에 대해서는 동일한 QCL 파라미터/특성에 대해 함께 QCL 가정될 수 있도록 설정/지시함으로써 가용한 RS 샘플 수를 더 늘릴 수 있다. 이 경우, 가장 직접적인 QCL 적용은 특정 RS(예를 들어, CSI-RS)에 우선 순위를 부여하되, 가중치 평균(weighted average) 등을 통해 다른 RS(예를 들어, BRS, BRRS, 및/또는 PCRS)로부터의 QCL 적용도 일부 함께 고려될 수 있도록 하는 형태로 구현될 수 있다.
DMRS QCL 가정/시그널링 시에 (non-coherent joint 전송을 지원하기 위한 목적 등으로) 특정 DMRS 포트(들)별로 상이한 QCL 설정/지시가 적용될 수 있다. 예를 들어, (DL 스케줄링 승인(grant)를 통해) DMRS 포트 7 ~ 10을 지시받은 경우, 단말은 이 중 DMRS 포트 7 및 8에 대해서는 특정 {BRS(들), BRRS(들), PCRS, 및/또는 CSI-RS}와 QCL 가정하도록, DMRS 포트 9 및 10에 대해서는 또 다른 특정 {BRS(들), BRRS(들), PCRS, 및/또는 CSI-RS}와 QCL 가정이 가능하도록 지시될 수 있다. 이를 통해 사실상 DMRS 포트 {7 및 8}과 {9 및 10}은 서로 상이한 TRP(Transmission Reception Point)로부터 전송이 되거나, 또는 동일한 TRP 내에서라도 서로 상이한 안테나 패널로부터 전송되는 등의 실시예 형태에 적용될 수 있다. 이를 통해, 다양한 형태의 (non-coherent) joint 전송이 효과적으로 지원될 수 있다.
특정 DMRS가 특정 CSI-RS와 QCL되고, 해당 CSI-RS는 특정 BRS와 QCL되고, 이러한 DMRS QCL과 CSI-RS QCL이 모두 각각 (별도의) L1-레벨 시그널링(예를 들어, DCI에 의한 시그널링)으로 동적 지시되는 경우를 가정해볼 수 있다. 이 경우, DMRS를 어느 시점에 전송된 CSI-RS와 QCL을 가정해야 하는지에 관한 타임라인 이슈가 발생할 수 있다. 다시 말하면, DMRS 수신/측정에 어느 시점에 전송된 CSI-RS와의 QCL을 반영해야 하는지 등에 관한 타임라인 이슈가 발생할 수 있다.
이를 해결하기 위해, 특정 DMRS (포트(들))가 특정 CSI-RS ID#k와 QCL된다는 시그널링이 예를 들어 #n SF에 수신되었다면, 단말은 #n SF 시점 혹은 그 이전의 SF 시점들 중에서 가장 최근에 (성공적으로) 수신된 해당 CSI-RS ID#k의
- 단일 SF 시점에서 수신되는 CSI-RS ID#k의 측정 샘플들에만 기초하여 QCL 가정을 적용하거나(본 실시예는 해당 CSI-RS ID#k에 관하여 측정 제한(measurement restriction; MR)이 ON으로 설정된 경우에만 적용하도록 한정될 수도 있음),
- 단일 SF 시점에서 수신되는 CSI-RS ID#k의 측정 샘플들뿐만 아니라, (해당 시점의 CSI-RS ID#k 자체의 수신/측정을 위해 (DCI 트리거링에 의해) 제공된 QCL된 RS/SS(예를 들어, BRS(들) 및/또는 BRRS(들))와 동일한 정보가 QCL 시그널링으로 제공되었던) 더 이전 시점의 CSI-RS ID#k의 측정 샘플들을 함께 컴바이닝/평균화(combining/averaging) 등을 통한 QCL 가정을 적용할 수 있다.
6. PCRS QCL
PCRS는 phase drift 보정/phase tracking 등을 위한 목적으로 정의된 RS로서, DMRS와 함께 전송될 수 있다. 복수의 DMRS 포트들이 포함된 각 DMRS 포트 그룹당 하나의 DMRS는 하나의 PCRS와 서로 연계(예를 들어, QCL/GCL 관계를 가짐)될 수 있다. PCRS는 PT(Phase Tracking)-RS로서 지칭될 수도 있다. 또는, 이하에서 후술하는 GCL 관점에서 PCRS가 DMRS와 GCL되는 경우, DMRS는 제1(Primary) DMRS 또는 제2(Secondary) PCRS(또는 PT-RS), PCRS(또는 PT-RS)는 제2(Secondary) DMRS 또는 제1(Primary) PCRS(또는 PT-RS)라고 지칭될 수도 있다.
PCRS를 수신/측정하기 위해 필요한 QCL은, 함께 전송/스케줄되는 DMRS의 수신/측정을 위해 적용하도록 설정/지시되는 QCL 동작을 그대로/동일하게 적용하도록 정의/설정될 수 있다. 본 명세서에서는 이러한 관계를 “genuine co-location(GCL)” 관계라 지칭한다. 즉, GCL이란, “GCL된 안테나 포트들간에 서로 large-scale 파라미터만 암시(infer)할 수 있는 것이 아닌 그 이상도(예를 들어, small-scale 파라미터 등) 암시할 수 있는 QCL 관계를 의미한다. 이를 일반화하면, 단말은 ‘GCL되는(또는 GCL 관계를 갖는) 포트들을 사실상 동일 포트로 취급하여 특정 시간 번들링(bundling) 및/또는 주파수 번들링이 가능’한 것으로 해석될 수 있다. 즉, 다시 말하면, 단말은 GCL 관계에 있는 포트들은 사실상 동일한 포트로 취급하여 동일한 프리코딩의 가정이 가능하다.
예를 들어, PCRS는 DMRS와 GCL 가정이 가능하도록 정의/설정/지시될 수 있으며, 이 경우 단말은 PCRS 포트와 DMRS 포트를 동일 포트로 취급/간주하여 두 안테나 포트들에 동일한 프리코딩이 적용되었음을 가정할 수 있다.
이러한 GCL 개념은 전송 빔 조정(coordination) 및 QCL 관련하여 이하에서 보다 상세히 후술한다.
그리고/또는, PCRS를 수신/측정하기 위해 필요한 QCL을 함께 전송/스케줄되는 DMRS의 QCL과 분리하여 별도로/독립적인 QCL 시그널링이 제공되는 방식도 적용 가능하다. 이때, 별도의 분리된 QCL 시그널링은 DCI를 통해 각각 RS별로 별도로 제공될 수다. 또는, 가중되는 DCI 오버헤드 문제를 방지하고자, PCRS를 위한 QCL 시그널링을 DMRS를 위한 QCL 시그널링보다 상대적으로 반-정적 방식으로 제공되도록 분리할 수도 있다. 예를 들어, PCRS를 위한 QCL 시그널링은 MAC CE 등을 통한 L2-레벨의 시그널링 및/또는 RRC 시그널링 등을 통해 제공될 수 있다. 일례로, DMRS는 특정 CSI-RS (및/또는 BRS 및/또는 BRRS)와 QCL 가정이 가능하도록 설정/지시되거나, PCRS는 특정 (서빙) BRS (및/또는 BRRS)와 QCL 가정이 가능하도록 설정/지시될 수 있다.
본 명세서에서 (QCL된/GCL된) (특정) RS/SS는 특별히 서빙-셀/TP(Transmission Point)/빔에 대한 RS/SS인 것으로 암시적으로 지시(implicitly indication)될 수도 있다. 즉, 단말은 상기 (QCL된/GCL된) (특정) RS/SS는 서빙-셀/TP/빔에 대한 RS/SS인 것으로 인식하도록 정의/설정될 수 있고, 이들에 대한 QCL 가정을 적용할 수 있다.
7. QCL 타입
LTE-A 표준에서의 QCL 타입의 경우, 기지국은 CoMP(Coordinated MultiPoint) 동작을 위해 QCL 타입 B로 RRC 설정하여 단말이 dynamic point selection(DPS) 동작을 수행할 수 있도록 하거나, non-CoMP 동작을 위해 QCL 타입 A로 RRC 설정하여 단말이 서빙-셀의 모든 RS 서로간에 QCL 적용하도록 하였다.
NR 환경에서는 cell/TP뿐만 아니라 특정 빔 방향으로 형성된 가상 셀/섹터(virtual sector)에 대해서 서비스를 받는 동작이 가능하다(예를 들어, 아날로그 빔포밍에 의해). 이러한 가상 셀/섹터를 편의상 “빔”으로 통칭하면, 동적 “빔” 선택(Dynamic beam selection; DBS) 등의 빔 간 CoMP 동작도 가능하도록 지원될 필요가 있다. 이에 대한 구체적 예시는 이하에서 도 10을 참조하여 후술한다.
도 10은 본 발명이 적용될 수 있는 패널별로 아날로그 빔포밍이 적용된 안테나 패널 모델을 예시한다.
도 10의 예시처럼, “멀티 패널 안테나” 구조를 갖는 송신 안테나 구성을 통해, 각 패널별로 특정 아날로그 빔포밍이 적용되어 각각 “가상 셀/섹터/빔”을 형성하고 있는 상황을 가정할 수 있다. 이러한 송신기로부터 전송되는 신호가 특정 수신기에게 특정 빔 방향(예를 들어, 특정 패널로부터의(from a particular panel))의 신호가 우세(dominant)하지 않고, 인접 두 개 이상의 빔 방향의 신호 품질이 특정 레벨 이내의 차이를 보이는 상황 등에 있어서는 상술한 DBS를 통한 성능 향상을 기대할 수 있다.
따라서, 본 명세서에서는 수신기의 이러한 동작을 지원할 수 있는 특정 QCL 타입 B’를 정의/설정함으로써, 수신기가 DBS 등의 빔-기반 CoMP 동작을 원활히 수행할 수 있도록 지원함을 제안한다. 또한, QCL 타입 A’는 서빙 셀/TP/빔에 해당하는 RS간에 서로 QCL 가정이 적용될 수 있도록 하는 모드로서 지원될 수 있다.
상술한 제안 내용을 종합하면 다음과 같은 형태로 QCL 타입 스위칭이 정의/설정될 수 있다:
서빙 셀/TP/빔을 위한 송신 모드 X가 설정된(또는 New RAT 동작을 위해 설정된) UE는, DMRS와 관련된 안테나 포트들(예를 들어, 포트 7-14)과 연관된 송신 방식에 따라 PDSCH를 디코딩하기 위해, 상위 계층 파라미터에 의해 서빙 셀/TP/빔에 대해 아래와 같은 QCL 타입들 중 하나가 설정될 수 있다.
- 타입 A’: UE는 서빙 셀/TP/빔의 BRS(및/또는 BRRS 및/또는 PSS/SSS)와 관련된 안테나 포트들은 상술한 QCL 파라미터/특성들 중 적어도 하나에 대해 QCL된다.
- 타입 B’: UE는 상위 계층 파라미터에 의해 식별되는 CSI-RS 자원(및/또는 BRS/BRRS) 구성에 해당하는 안테나 포트 XX-YY와 PDSCH와 연관된 DMRS와 관련된 안테나 포트(예를 들어, 7-14)는 상술한 QCL 파라미터/특성들 중 적어도 하나에 대해 QCL된다.
상기 설정 가능한 QCL 타입 중, QCL 타입 B’를 후술하는 QCL 타입 C’로 대체하여, 오직 QCL 타입 A’과 QCL 타입 C’간의 반-정적 스위칭만을 가능하도록 한정 정의하거나, 혹은 QCL 타입 A’-C’를 모두 정의하고 RRC 시그널링 등에 의해 선택적으로 어느 하나의 타입이 설정되는 방식도 적용 가능하다.
- 타입 C’: UE는 지시된 BRS/BRRS 구성에 대응하는 특정 빔의 BRS/BRRS(및/또는 PCRS)와 관련된 안테나 포트들 및 PDSCH와 연계된 DMRS와 관련된 안테나 포트들(예를 들어, 포트 7-14)은 상술한 QCL 파라미터/특성들 중 적어도 하나에 대해 QCL된다.
다만, 이러한 QCL 타입 A-C 관련 설명은 본 발명에서 제안된 QCL 관련 제안 요소가 다양하게 반영되어 변경/정의될 수 있음은 자명하다. 즉, QCL 타입을 A’와 B’로 두고 스위칭하거나, QCL 타입 A’ 및 B’ 이외에 특정 BRS와의 direct QCL을 지시하는 QCL 타입 C도 (함께/추가로) 지원되도록 할 때, 이에 대한 적용 가능한 QCL 타입/특성을 포함한 세부 설명에는 본 발명에서 제안된 기술 요소가 반영/대체되어 정의/변경/적용될 수 있다.
본 명세서에서 설명의 편의상 다양한 RS를 BRS, BRRS, PCRS 등의 용어로 지칭하였으나, 본 발명의 적용이 이들에 한정되는 것은 아니며, 해당 RS와 동일/유사한 형태/기능/목적을 가진 다른 명칭의 RS 등에 대해서도 본 발명이 적용될 수 있음은 자명하다.
또한, 본 명세서에서 단말/수신기에 설정/지시되는 제어 정보는 RRC, MAC CE, 및/또는 DCI에 의해 전달될 수 있으며, 이러한 L1- 및/또는 L2-레벨 등의 시그널링 중 어떠한 형태의 시그널링을 통해 해당 설정/지시가 제공되는지는 개별 제어 정보별로 상이하게/독립적으로 정의/설정될 수 있다.
NR을 위한 전송 빔 조정(transmission beam coordination) 및 QCL
NR 환경에서 DL MIMO 및 UL MIMO 모두에 대해 단일/다중(single/multi) 포인트 전송이 지원될 수 있다. 또한, NR 환경에서 QCL 가정과 안테나 포트들을 위한 측정 가정이 수행될 수 있다. 이에 기초하여 이하에서는, 특정 RS들 사이에서 QCL이 가정된 intra/inter-TRP 조정(coordinated) 전송에 대해 후술한다.
1. Intra-TRP 조정 전송
다양한 안테나 패널 배열 구조가 NR 환경/시스템에서 고려되고 있다. 제1 패널 모델은 균일한 1D/2D 직사각형 패널 배열로서 식별될 수 있다. 적절한 CSI-RS 자원/포트는 이러한 안테나 어레이를 통해 UE에 구성되어야 하므로, 효율적인 폐루프(closed-loop) MIMO 전송이 UE의 CSI 측정 및 피드백을 기반으로 적용될 수 있다. CSI-RS 포트 및 안테나 배열 매핑은 eNB 구현에 달려있어 다양한 매핑 방식이 존재할 수 있으며, 예를 들어, (1) 패널당 하나의 CSI-RS 자원, (2) 패널당 복수의 CSI-RS 자원들, 및 (3) 복수의 패널들에 매핑된 CSI-RS 자원이 매핑되는 방식 등이 존재할 수 있다.
도 11은 본 발명의 일 실시예에 따라 패널당 하나의 CSI-RS 자원이 매핑되는 방식을 예시한다.
도 11의 실시예는 하나의 CSI-RS 자원이 (a/one) 패널에서 전송되어 CSI-RS 자원 내의 CSI-RS 포트들이 QCL 보장/가정될 수 있는 CSI-RS 매핑의 가장 간단한 방법이다. 즉, 본 실시예에 따르면, 하나의 CSI-RS 자원 내의 (일부 또는 모든) CSI-RS 포트간에 상술한 QCL 파라미터/특성 중 적어도 일부(예를 들어, average gain, delay spread, Doppler spread, Doppler shift, average delay 및/또는 수신 빔 관련 파라미터)에 대한 QCL이 가정/보장될 수 있다. 이러한 QCL 가정/보장은, (하나의 CSI-RS 자원에 포함된 또는 하나의 패널에 매핑되는) CSI-RS 포트들에서 신호를 생성하기 위하여, (관련 구성 요소(component)를 갖는) 동일한 발진기가 사용된 경우에 수행될 수 있다.
이는, 종래의 단일 (가상) 셀 동작으로 해석될 수 있으며, 단일 가상 셀은 RRM(Radio resource management)(편의상 이하, ‘RRM-RS’라 지칭)에 대응하는 RS 포트를 측정함으로써 UE와 연관될 수 있다. RRM-RS 및 잠재적으로 비주기적인/서브밴드 CSI-RS에 대한 상세한 RS 설계에 따라, UE 구현을 지원하기 위해, CSI-RS 자원과 특정 RRM-RS 사이의 적절한 QCL 가정이 필요하다.
도 12는 본 발명의 일 실시예에 따라 패널당 복수의 CSI-RS 자원들이 매핑되는 방식을 예시한다.
도 12의 실시예는 다수의 BF(Beamformed) CSI-RS 자원을 갖는 FD(Full Dimension)-MIMO 클래스 B와 유사하게 다중 빔포밍된 CSI-RS 기반 동작으로 해석될 수 있다. 단일 패널로부터 전송된 이들 다수의 CSI-RS들은 상이한 빔 방향들을 목표로 하기 때문에, 각각의 CSI-RS와 이와 대응하는 RRM-RS 사이에 모든 QCL 특성/파라미터들에 대해 항상 QCL 된다고 말할 수 없다. LTE spec에서 정의된 것과 유사하게, 이 경우에 대한 CSI-RS와 RRM-RS 사이의 QCL 가정에는, 예를 들어, Doppler shift 및 Doppler spread와 같은 일부 특성/파라미터만이 사용될 수 있으며, 이는 명시적으로 지시될 수 있다. 도 11의 실시예와의 이러한 차이점은 안테나 어레이에 대한 상이한 CSI-RS 매핑 방식에서 비롯된 것이므로, NR spec은 상이한 목적의 CSI-RS 안테나 포트 매핑의 다양한 구현 방식을 적절하게 지원해야 한다.
도 13은 본 발명의 일 실시예에 따라 복수의 패널에 대해 공유되는(shared) CSI-RS 자원이 매핑되는 방식을 예시한다.
도 13의 실시예는 다수의 패널 안테나들로부터의 협력(cooperative) 전송에 의해 전송된 CSI-RS에 더 많은 빔포밍 이득을 갖도록 다수의 패널들에 매핑된 공유되는 CSI-RS 자원으로서 해석될 수 있다. 이와 같이 복수의 패널들에 CSI-RS 포트가 매핑되는 방식은, 예를 들어, 트래픽 부하가 적은 특정 UE에 대한 SU-MIMO 전송을 지원하고자 하는 경우에 특히 유용할 수 있다. CSI-RS는 네트워크가 타겟 UE에 대한 빔포밍 방향의 충분한 정보를 획득한다고 가정하면, UE 전용의 UE-특정(specific) 빔포밍된(beamformed) CSI-RS로서 사용될 수 있다. 사용 시나리오를 적절하게 지원하려면, QCL 가정이 필요한 경우, CSI-RS 및 RRM-RS 사이의 QCL 가정과 시그널링이 NR 동작에 대해 어떻게 정의되고 지원되는지 조사될 필요가 있다.
상술한 내용을 종합해볼 때, 다중 패널 TP(Transmission Point)에 대한 CSI-RS 자원 매핑 방법에 따라, 다양한 intra-TRP 조정 전송 방식이 NR에서 고려될 수 있다. 또한, RRM에 대한 RS(들)와 UE에 설정된 CSI-RS(들) 간의 적절한 QCL 가정이 intra-TRP 조정 전송을 지원하기 위해 필요할 수 있다.
2. QCL 타입 및 시그널링
채널 추정 성능을 향상시키기 위해, 상이한 안테나 포트들 사이의 QCL 가정이 NR에서 필요하다면, 도 11 내지 13에서 도시된 실시예들에는 LTE spec에 정의된 바(TM 10의 UE가 RRC 시그널링에 의해 QCL 타입 A 또는 B로 설정됨)와 같은 서로 다른 QCL 타입과 유사한 반-정적 설정들이 지원될 수 있다.
그러나, NR 컨텍스트에서, 고려되고 있는 비주기적인 유형의 CSI-RS 전송(Rel-14 eFD-MIMO에서 활발하게 논의됨)과 함께, UE측 수신 동작에 효율적으로 사용하기 위해, 보다 동적으로 설정 가능한 QCL 타입 및 대응하는 QCL 가정을 연구하는 것이 바람직하다. 다시 말하면, 각각의 UE는 몇몇 필수 RRC 파라미터를 갖는 특정 CSI-RS 자원(들)을 설정받을 수 있지만, 실제 CSI-RS 전송은 L1- 시그널링을 통해 eNB에 의해 제어될 수 있다. 여기서, 제어 가능한 컴포넌트는 실제 전송 시점(instance), 시간/주파수 RE 패턴, 포트 수, 적용된 포트 넘버링 및/또는 스크램블링 시드를 포함할 수 있다. 이러한 동적 CSI-RS 할당 및 전송은, 더욱 동적인 방식으로 RRM-RS를 포함하는 다른 RS와의 보다 유연한 QCL 시그널링의 지원을 더욱 요구할 수 있다. 즉, NR에 대한 동적 CSI-RS 할당 및 전송은 RRM-RS를 포함하는 다른 RS에 대한 보다 유연한 QCL 시그널링 지원을 더 요구할 수 있다.
3. 기타 QCL 파라미터/특성
현재의 LTE spec에서는, 안테나 포트들 간의 QCL에 대한 5가지 LSP들, 즉, delay spread, Doppler spread, Doppler shift, average gain, 및 average delay가 정의되어 있다. 이러한 기존의 QCL 파라미터 외에도, 특히 아날로그 빔 포밍이 UE 측에서 적용될 때, NR 연구를 위해 새로운 타입의 arrival angle/beam에 관한 특성이 고려될 필요가 있다.
빔 스캐닝/트래킹 절차 동안, UE는 특정 DL RS(편의상 ‘RRM-RS’라 지칭함)의 품질을 측정 및 비교함으로써 여러 TX-RX 아날로그 빔 쌍을 선택할 수 있다. eNB(또는 gNB라 지칭 가능)는 빔포밍된 CSI-RS 또는 DMRS 포트들을 송신하기 위해, UE 선호 TX(전송) 빔들 중 하나를 선택할 수 있다. 이 경우, UE는 RRM-RS 포트에 대응하는 TX 빔 ID가 UE로 시그널링될 수 있도록, 후보 RX 빔들 중에서 어떤 RX(수신) 빔이 이들 안테나 포트들을 수신하도록 설정되어야 하는지를 알아야 한다. 이 상황에서, RRM-RS 포트와 CSI-RS/DMRS 포트가 아래와 같은 QCL 정의에 따라 dominant arrival angle의 관점에서 QCL된다고 말할 수 있다:
- 하나의 안테나 포트의 심볼이 전달되는 채널의 LSP가 다른 안테나 포트의 심볼이 전송되는 채널로부터 암시/추론(infer)될 수 있다면 두 개의 안테나 포트가 QCL되었다고 말할 수 있다.
Dominant arrival angle은 RX 빔 형성 계수를 결정할 수 있다. 또한, 아날로그 빔이 디지털 빔에 비해 동적으로 변경되지 않을 수 있기 때문에, Dominant arrival angle은 상대적으로 LSP로 간주될 수 있다. QCL 가정없이, UE는 다수의 RX 빔 후보들을 탐색해야 하는데, 이는 에너지 및 시간 소모적이다.
따라서, NR 환경에서는 UE 측에서 아날로그 빔포밍이 적용될 때 arrival angle에 대한 새로운 유형의 QCL 특성을 고려할 필요가 있으므로, 앞서 상술한 바와 같은 수신 빔 관련 파라미터가 새로운 타입의 QCL 파라미터로서 정의될 수 있다.
4. Inter-RS QCL 및 TRP 간 전송 조정
RRM-RS 설계에 있어서, RRM-RS 측정을 보조하기 위해 동기 신호들로부터 획득된 QCL 파라미터/특성 중 일부(예를 들어, Doppler shift 및 average delay)가 RRM-RS에 대해 QCL이 가정될지 여부가 고려되어야 한다. UE가 이러한 RRM-RS(들)을 한번 트래킹하면, 이는 UE에 대해 UE-특정적으로(specifically) 빔포밍될 수 있는 보다 미세한 빔 정제를 위해 RRM-RS의 제2 레벨의 QCL 연결(linkage)을 위해 사용될 수 있다. 상술한 바와 같이, CSI-RS는 primary 또는 secondary RRM-RS(들)에 대한 QCL 연결을 따르도록 지시될 필요가 있다. 서브밴드 CSI-RS가 UE에 설정되면, 예를 들어, 광대역으로 전송되는 다른 CSI-RS에 대한 QCL을 따르는 것이 유리할 수 있다.
현재의 LTE spec에서, QCL 타입 B를 갖는 TM10이 설정된 UE는 CoMP 동적 포인트 선택(Dynamic point selection; DPS) 동작으로서 비-서빙 셀/TP로부터 송신되는 PDSCH를 수신하기 위해 스케줄링될 수 있다. 이때, PDSCH를 위한 DMRS는, DCI 내의 PQI 필드에 의해 설정된 CSI-RS들 중 적어도 하나와 QCL을 따르도록 지시될 수 있다. 다시 말하면, PDSCH를 위한 DMRS는 PQI 필드에 의해 지시된 CSI-RS 중 적어도 하나와 QCL 관계를 갖는 것으로 설정될 수 있다. 이러한 DPS 동작은 설정된 CSI-RS 자원(예를 들어, TRP마다 설정된 각 CSI-RS 자원)에 따라 실제 동적 TRP 선택이 수행되거나 또는 단일 TRP 내에서 동적 빔 선택(DBS)이 수행될 수 있다는 점에서, NR-MIMO에서 상기 DPS 동작과 유사한 동작이 고려될 수 있다. 이는, 빔 조정 관점에서 intra-TRP CoMP로 해석될 수 있다.
NR에서 이러한 종류의 다양한 전송 전략을 적절하게 지원하기 위해, NR 연구를 위한 DMRS 설계가 어떠한 다른 QCL 지원을 요구하지 않고, 스케줄링된 대역 내에서 충분한 RS 밀도가 보장되지 않는 한, PDSCH에 대한 DMRS는 다른 RS(예를 들어, CSI-RS 및/또는 RRM-RS)와의 QCL을 따르도록 명시적으로 지시될 수 있다(In order to properly support these kinds of various transmission strategies in NR, the DMRS for PDSCH should also be explicitly indicated to follow QCL to other RS, e.g., CSI-RS or RRM-RS, unless DMRS design for NR study is done without requiring any other QCL supports and by guaranteeing sufficient RS density within the scheduled band).
특히, 위상 잡음 효과로 인한 UE 측 위상 보상을 지원하기 위해, 동일한 부반송파의 여러 심볼과 같이 시간 영역에 걸쳐 분산되기를 원하는 스케쥴링된 PDSCH로 DMRS의 두 번째 레벨(즉, 제2(secondary) DMRS)이 전송될 수 있다. 이러한 제2 DMRS는 UE 측의 위상 보상을 지원하기 위해 전송되는 RS이므로, 앞서 상술한 PCRS(또는 PT-RS)과 대응하는 개념일 수 있다. 따라서, 제2 DMRS는 PCRS(또는 PT-RS)로 지칭되거나 PCRS(또는 PT-RS)로 대체될 수 있다.
제2 DMRS는 모든 QCL 파라미터/특성에 대해 제1 DMRS와 QCL되어 있다고 가정될 수 있는데, 이때의 QCL은 앞서 상술한 GCL로 해석될 수 있다. 여기서, GCL은, 앞서 상술한 바와 같이, 안테나 포트들간 시간/주파수 번들링이 가능하여 효과적으로 동일한 포트임을 지시한다. 그 결과, 단말은 GCL된 안테나 포트들간에 동일한 프리코딩을 가정하여 DMRS를 수신할 수 있다.
상술한 내용을 종합하면, 동일한 부반송파 영역(즉, 동일한 주파수 영역)에서 복수의 심볼 영역(즉, 여러 시간 영역, 예를 들어, 연속된 시간 영역)에 걸쳐/분산되어 제1 및 제2 DMRS가 전송될 수 있으며, 이때 제1 및 제2 DMRS 사이에는 GCL 관계가 지시/설정될 수 있다. 단말은 제1 및 제2 DMRS의 GCL 관계를 지시/설정받으면, 제1 및 제2 DMRS 포트에 동일한 프리코딩을 가정하여 DMRS를 수신할 수 있다.
상술한 실시예에서의 GCL 관계는 DMRS(또는 데이터 복조) 관점을 중심으로 해석되었으나, PCRS(또는 위상 보상) 관점을 중심으로 해석/기술될 수도 있다. 즉, 앞서 상술한 실시예에서 제2 DMRS(또는 PCRS/PT-RS)가 DMRS 밀도를 높여 DMRS를 안정적으로 수신하고자 하는 목적/효과로 사용되었으나, 반대로 제1 DMRS가 PCRS(또는 PT-RS) 밀도를 높여 PCRS를 안정적으로 수신하고자 하는 목적/효과로 사용될 수도 있다.
이러한 관점에서 상술한 실시예를 재서술한다면, 동일한 부반송파 영역(즉, 동일한 주파수 영역)에서 복수의 심볼 영역(즉, 여러 시간 영역, 예를 들어, 연속된 시간 영역)에 걸쳐/분산되어 제1 및 제2 PCRS(또는 PT-RS)(앞서 상술한 실시예의 제1 및 제2 DMRS에 대응)가 전송될 수 있으며, 이때 제1 및 제2 PCRS(또는 PT-RS) 사이에는 GCL 관계가 지시/설정될 수 있다. 단말은 제1 및 제2 PCRS(또는 PT-RS)의 GCL 관계를 지시/설정받으면, 제1 및 제2 PCRS(또는 PT-RS) 포트에 동일한 프리코딩을 가정하여 PCRS(또는 PT-RS)를 수신할 수 있다.
상술한 실시예를 일반화하면 결국, GCL 관계를 갖는 DMRS 및 PCRS(또는 PT-RS)가 동일한 주파수 영역에서 시간 영역으로 분산되어 단말에 전송될 수 있으며, 단말은 DMRS 포트 및 PCRS(또는 PT-RS) 포트 사이의 GCL 관계를 가정하고 동일한 프리코딩을 가정하여 DMRS 및 PCRS(또는 PT-RS)를 수신할 수 있게 된다. 이때, GCL되는 DMRS 및 PCRS(또는 PT-RS)는 GCL 목적(예를 들어, 데이터 복조 목적 또는 위상 보상 목적)에 따라 명명될 수 있으며, 데이터 복조가 목적인 경우 DMRS 및 PCRS(또는 PT-RS)는 제1 및 제2 DMRS로, 위상 보상이 목적인 경우 제1 및 제2 PCRS(또는 PT-RS)로 지칭될 수 있다. 다만, 이에 한정되는 것은 아니며 동일한 목적/기능/효과를 갖는 RS(또는 RS 명칭)으로 대체될 수 있음은 물론이다.
결론적으로, 다양한 intra/inter-TRP 조정(coordinated) 전송을 적절하게 지원하기 위해, NR에 대한 DMRS 설계가 QCL 지원을 요구하지 않고 충분한 RS 밀도를 보장하지 않는 한, CSI-RS 또는 RRM-RS에 대한 DMRS QCL이 동적으로 지시될 필요가 있다(To properly support various intra/inter-TRP coordinated transmissions, DMRS QCL to CSI-RS or RRM-RS may need to be dynamically indicated, unless DMRS design for NR is done without requiring any QCL supports and by guaranteeing sufficient RS density).
상술한 GCL 개념은, 특정 “{주파수, 시간, 공간, 및/또는 코드}-도메인 번들링/병합”의 설정/지시가 가능함을 의미하며,
- 주파수-도메인 번들링의 경우, 송신기(예를 들어, 기지국)는 수신기(예를 들어, 단말)에 부반송파 레벨, RB 레벨, RB 그룹(예를 들어, RBG) 레벨 및/또는 서브밴드 레벨 등으로 번들링을 지시할 수 있다.
- 시간-도메인 번들링의 경우, 송신기(예를 들어, 기지국)는 수신기(예를 들어, 단말)에 심볼 레벨, 슬롯 레벨, (미니-) 서브 프레임 레벨, 또는 서브 프레임 그룹(예를 들어, TTI 번들링) 레벨 등으로 번들링을 지시할 수 있다.
- 공간-도메인 번들링의 경우, 송신기(예를 들어, 기지국)는 수신기(예를 들어, 단말)에 포트/빔 레벨 등으로 번들링을 지시할 수 있으며, 이때의 포트들/빔들은 대응되는 특정 RS들 및/또는 채널들에 해당할 수 있다(예를 들어, 동일한 프리 코더가 송신기에서 구분되는 nominal 포트들/빔들에 사용되어야 하는 경우).
- 코드-도메인 번들링의 경우, 송신기(예를 들어, 기지국)는 수신기(예를 들어, 단말)에 특정 다른 시퀀스(예를 들어, 서로 다른 스크램블링 파라미터들에 의해 생성된) 또는 다른 커버 코드(예를 들어, OCC)간에 번들링을 지시할 수 있다.
이와 같이, RS, SS 및/또는 채널간에 특정 ({주파수, 시간, 공간 및/또는 코드}-도메인 번들링을 적용할 수 있도록 하는) GCL 가정이 가능하다는 설정/지시를 받으면, 수신자는 해당 RS, SS, 및/또는 채널간에 GCL 가정을 적용하여 {주파수, 시간, 공간 및/또는 코드}-도메인 번들링에 의한 수신 성능을 향상시킬 수 있다. 이러한 동작은, RS, SS, 및/또는 채널간에 통상적인 동작은 상이하지만, 송신자의 의도에 따라 수신자에게 특정한 경우에 (한시적으로) 상기와 같은 GCL 가정의 설정/지시가 가능하도록 함으로써 다양한 전송 유연성(flexibility)을 제공하고 수신 성능 향상을 가져올 수 있다는 장점이 있다.
일례로, 상기 예시한 바와 같이, PCRS와 DMRS는 (서로 상이한 안테나 포트 넘버가 부여될 수 있고) 기본적으로 의도하는 동작이 상이할 수 있는데(예를 들어, PCRS는 위상 보상 목적, DMRS는 데이터 복조 목적), 만일 GCL 가정이 가능하다는 설정/지시가 제공된다면 데이터 복조의 목적으로도 (DMRS와) GCL된 PCRS를 함께 DMRS 수신 처리에 활용함으로써 수신 성능을 향상시킬 수 있다.
또 다른 예시로서, 이와 같은 특정 RS간의 동작뿐만 아니라, “PSS/SSS/ESS(Extended Synchronization Signal) 및/또는 BRS”의 관계를 고려하여 특정 설정/지시되는 GCL 관계에 따라, PSS가 SSS의 채널 추정 참조 신호로 활용될 수 있도록 함으로써 SSS 수신 성능을 향상시킬 수 있다. 이와 유사하게 BRS도 특정 PSS/SSS/ESS와 GCL 가정이 가능하도록 설정된다면, 이를 통해 BRS의 수신 성능도 향상시키는 것이 가능하다.
또한, GCL 가정은 동일한 RS, SS, 또는 채널 내에서도 특정 상이한 ({주파수, 시간, 공간 및/또는 코드}-도메인)에 대하여 단말이 GCL 가정 적용에 의한 번들링을 수행할 수 있도록 설정/지시될 수도 있다.
일례로, 특정 CSI-RS (자원 및/또는 포트(들))에 대해서 특정 시점(time instance)들에 대하여 GCL 가정이 설정/지시된다면, 실제 각 CSI-RS 전송이 DCI에 의해 (1-shot) 동적 지시된 경우라 하더라도, 단말은 이러한 1-shot CSI-RS 측정들 간의 측정 샘플들을 상기 GCL된(또는 GCL 가정이 설정/지시된) 시점(time instance)들에 걸쳐서 평균화/컴바이닝(averaging/combining)할 수 있다. 송신자 측면에서 이는, 상기 GCL된 시점들(time instances)에 대해서는, 예를 들어, 각 CSI-RS 전송 시 적용하는 빔포밍 계수들을 변화시키지 않아야 함을 의미할 수 있다. 결국, 각 빔포밍된 CSI-RS 전송 시 적용되는 프리코더는 수신기-transparent하게 전송될 수 있지만 적어도 상기 GCL된 시점들(time instances) 내에서는 동일 프리코더가 유지/적용된 CSI-RS가 전송됨을 송신기가 보장해줄 수 있다. 이로써 수신기가 GCL된 (비주기적) CSI-RS들을 측정 및 결합(combining)하여 충분한 측정 샘플들을 확보하고, 이를 통해 특정 LSP들을 추정해 낼 수 있다는 효과가 있다. 이와 같이 추정된 LSP들을 가지고 또 다른 RS(예를 들어, DMRS)와 상술한 QCL 설정/지시 등이 가능하며 이를 통해 DMRS-기반의 데이터 복조 성능을 향상시킬 수 있다.
상술한 바와 같이 GCL을 설정/지시하는 GCL 지시자(예를 들어, DCI 내에 정의된 GCL 지시 필드)는 1-bit 필드 등으로 구성되어 “토글링” 형태로 구현될 수 있다. 즉, 예를 들어, 비주기적 CSI-RS 전송이 트리거링되면서 전송된 GCL 지시자가 ‘0’이고 가장 최근에 전송/측정된 (해당 CSI-RS와 동일한 ID의) CSI-RS 전송의 GCL 지시자 역시 ‘0’이었다면(즉, GCL 지시자가 토글링되지 않았다면), 단말은 이 두 가지 CSI-RS 전송 간에 GCL 가정을 적용하여 번들링/컴바이닝/평균화(bundling/combining/averaging) 동작을 수행할 수 있다. 이런 방식으로, 단말은 후속하는 CSI-RS에 대한 GCL 지시자 역시 토글링되지 않은 형태로 전송되었다면, 후속하는 CSI-RS에 대해서도 계속해서 함께 번들링할 수 있다. 만일 후속하는 CSI-RS 전송에 대한 GCL 지시자가 토글링되어 전송되었다면, 단말은 해당 CSI-RS에 대해 더 이상 번들링하지 않을 수 있다.
이와 같이, 가장 최근에 전송된 CSI-RS에 대해 지시된 GCL 지시자 값(예를 들어, 토글링 여부)에 따라 단말이 번들링 수행/적용 여부를 결정하는 동작은, (동일한 CSI-RS ID라 할지라도) 해당 CSI-RS의 다른 RS(예를 들어, BRS 및/또는 BRRS)와의 QCL과 동일한 QCL로 지시된 CSI-RS 전송 시점(instance)들만 모은 세트 내에서의 가장 최근 시점과 비교하여(토글링 여부에 의해) GCL 가정을 적용할지를 결정하는 형태로 한정될 수 있다. 이는 동일한 CSI-RS ID에 의한 전송이라 할지라도, 앞서 설명한 바와 같이 자원을 공유하는 상태에서 다른 RS(예를 들어, BRS 및/또는 BRRS)와 QCL된 CSI-RS 전송이 비주기적으로 유연하게 전송될 수 있기 때문이다. 결국, 단말은 이와 같이 동일한 ‘CSI-RS to 다른 RS(예를 들어, BRS 및/또는 BRRS) QCL’을 따르는 CSI-RS 전송 시점들 내에서 상기 GCL 가정 여부를 적용하는 형태로 제한될 수 있다.
이러한 제한 동작은, 상기 ‘CSI-RS to 다른 RS(예를 들어, BRS 및/또는 BRRS) QCL’이 같은 CSI-RS 전송 시점들만 모아서 적용하도록 하는 방법 외에도, 하기와 같은 형태로 DCI 필드가 구성되는 경우 등에 있어서는 해당 DCI 필드를 통해 지시되는 CSI process ID가 동일한 CSI-RS 전송 시점들만 모아서 번들링을 적용하도록 하는 등으로 단말에 다양하게 시그널링 지시될 수 있다. 또한, 하기의 표와 같이 어떻게 상기 제한된 세트를 결정할 수 있는지는 적용되는 DCI 필드에 의해 다양한 실시예로 구현될 수 있다.
Figure PCTKR2018001447-appb-T000004
본 명세서에서 일부 예시만 언급하였으나, 상기 GCL 관련 동작은 본 발명에서 언급된 모든 QCL 관련 제안 동작들에 대해서도 QCL 대신 GCL(및 그 관련 정의/속성)로 대체되어 적용될 수 있다(QCL보다 더욱 강화된 특성들을 적용 가능하도록 하는 것이 GCL 개념이므로).
SS 관련 QCL 정의/개념
PSS, SSS 및/또는 PBCH는 ‘SS 블록(SSB)’ 내에서 전송될 수 있다. 다른 신호를 배제하는 것은 SS 블록에서 배제되지 않는다. 하나 또는 복수의 SS 블록(들)이 ‘SS 버스트(burst)’를 구성할 수 있다. 하나 또는 복수의 SS 버스트(들)은 ‘SS 버스트 세트’를 구성할 수 있다. SS 버스트 세트 내의 SS 버스트 개수는 유한(finite)할 수 있다. 이하에서는 이러한 SS 블록 및 SS 버스트를 어떻게 구성할지에 대해 보다 상세히 살펴본다.
NR에서는 초기 액세스 관련 정보(예를 들어, 심볼 타이밍, 셀-ID, 필수 시스템 정보 및/또는 초기 UL 전송을 위한 정보 등)를 전달하기 위한 PSS, SSS 및/또는 PBCH가 정의될 수 있다. 나아가, NR에서는 필수 시스템 정보 전달 또는 셀/TRP/빔 측정을 위한 다른 새로운 신호/채널을 정의하기 위해 더 많은 논의가 진행되고 있다. 따라서, NR에서는 초기 액세스를 위한 여러 신호/채널(예를 들어, NR-SS, NR-PBCH, 제어 채널, 측정 RS 등)이 정의될 수 있다. 이 경우, SS 블록 내에서 구성/합성되는(composed) 신호/채널은, 초기 액세스를 위한 각 신호/채널의 주기성(periodicity)이 다르면, 전송 시간(transmission occasion)에 따라 변경될 수 있다. 즉, 초기 액세스 관련 신호/채널의 다른 세트가 SS 블록 내에서 구성/합성(compose)될 수 있다. 이러한 측면에서, SS 블록의 여러 타입들은 SS 블록 내에서의 일종의 구성/합성(composed) 신호/채널에 따라 다음과 같이 정의될 수 있다:
- 타입 1: NR-SS(PSS 및 SSS)
- 타입 2: NR-SS 및 NR-PBCH
- 타입 3: NR-SS 및 MRS
- 타입 4: NR-SS 및 제어 채널
신호/채널은 SS 블록 내에서 다중화될 수 있다. SS 블록 내에서 합성되는 신호/채널의 종류에 따라, SS 블록의 지속 시간(duration)이 변경될 수 있다. 예를 들어, TDM된 경우, 상술한 타입 1(NR-SS only) 및 타입 2(NR-SS 및 NR-PRBCH의 다중화)는 서로 다른 SS 블록의 지속 시간을 가질 수 있다. 그러나, SS 블록 내에서 합성된 신호/채널의 종류에 관계없이 SS 블록의 지속 시간을 유지하는 것이 바람직할 수 있다. 나아가, 'SS 버스트'의 지속 시간이 'SS 블록'의 지속 시간에 의해 결정된다는 점을 고려할 때, SS 버스트의 고정된 지속 시간도 고려되어야 한다.
도 14는 본 발명에 적용될 수 있는 SS 블록 및 SS 버스트의 지속 시간을 예시한 도면이다.
도 14를 참조하면, 'SS 버스트'의 지속 시간이 'SS 블록'의 지속 시간에 의해 결정된다는 점을 고려할 때, SS 버스트의 고정된 지속 시간은 SS 블록 내의 합성 신호/채널의 종류에 관계없이 선호(preferred)될 수 있다. 따라서, SS 블록 내 모든 종류의 합성 신호/채널에 관계없이 SS 블록의 각 타입은 동일한 지속 시간을 갖는 것으로 가정될 수 있다.
DL 제어 시그널링은 슬롯 및/또는 미니 슬롯의 첫 번째 OFDM 심볼(들)에 위치할 수 있다. 또한, UL 제어 채널은 슬롯에서 마지막으로 전송된 UL 심볼(들) 주변에 위치할 수 있다. 따라서, DL 제어 채널 및 DMRS는 처음 N개의 OFDM 심볼에 위치하고, UL 제어 채널은 슬롯 내에서 마지막 N개의 OFDM 심볼에 위치한다고 볼 수 있다. 'SS 블록'과 DL/UL 제어 채널의 충돌을 피하기 위해, SS 블록은 슬롯의 중간에 위치할 수 있다. 슬롯 내에서 연속적인(consecutive) SS 블록들은 'SS 버스트'를 구성하는 데 사용될 수 있다. 또한, SS 버스트를 위한 복수의 SS 블록들이 복수의 슬롯에 걸쳐 확산되는 경우, 'SS 버스트'를 구성하기 위해 불연속적인(inconsecutive) 'SS 블록'이 필요할 수 있다.
도 15는 본 발명에 적용될 수 있는 TDD 케이스에 대한 SS 버스트 구성을 예시한 도면이다.
앞서 상술한 바와 같이 연속적이거나 불연속적인 'SS 블록'은 모두 'SS 버스트'를 구성하는 데 사용될 필요가 있다. 따라서, 연속적인 ‘SS 블록’ 및 비연속적인 'SS 블록' 모두 'SS 버스트'를 구성하는 데 사용될 수 있다. 다시 말하면, SS 버스트를 구성하는 SS 블록은 (시간 도메인에서) 연속적으로 위치하거나 그리고/또는 불연속적으로 위치할 수 있다.
도 14 및 15와 관련하여 상술한 내용을 종합하자면 아래와 같은 결론/제안이 도출될 수 있다:
- 'SS 버스트'의 지속 시간이 'SS 블록'의 지속 시간에 의해 결정된다는 점을 고려할 때, SS 버스트의 고정된 지속 시간은 SS 블록 내의 합성 신호/채널의 종류에 관계없이 선호될 수 있다. 따라서, SS 블록 내의 합성 신호/채널 종류에 관계없이 SS 블록의 각 타입은 동일한 지속 시간을 갖는 것으로 가정될 수 있다.
- 'SS 버스트 (SS burst)'를 구성하기 위해 연속적인 및 비연속적인 'SS 블록' 모두가 필요할 수 있다. 따라서, 연속적인 및 비연속적인 'SS 블록' 모두는 'SS 버스트'를 구성하는 데 사용될 수 있다.
이하에서는, 상술한 SS 블록 등의 동기 절차 관련 신호(영역/블록) 수신을 통해 획득한 특정 QCL 파라미터/특성을, 해당 신호(영역/블록)과 QCL 그리고/또는 부분 QCL이 성립한다고 가정/설정/지시되는 다른 RS (그룹)에 대하여(예를 들어, 빔 운영(beam management)을 위한) 적용함으로써, 상기 다른 RS (그룹)의 수신 복잡도 감소 그리고/또는 검출 성능 향상 효과를 발생시키기 위한 제반 기술을 제안하도록 한다. 이러한 제반 기술을 제안하기에 앞서, 제안 기술에 기초가 되는 내용에 대해 우선적으로 살펴본다.
CONNECTED 및 IDLE에 대한 셀-간(inter-cell) RRM 측정을 위해 다음과 같은 신호 조합(combination)이 고려될 수 있다.
1. 옵션 1: 동일한 RS
- 옵션 1-1: NR-SSS 및/또는 NR-PSS
- 옵션 1-2: MRS(Mobility RS)-1(SS 블록에서 다중화된 멀티-포트 멀티-빔 참조 신호)
- 옵션 1-3: MRS-2(SS 블록에서 다중화되지 않은 멀티-포트 멀티-빔 참조 신호)
- 옵션 1-4: MRS-3(싱글/멀티-포트 싱글-빔 참조 신호)
- 옵션 1-5: PBCH를 위한 DM-RS가 지원되는 경우, PBCH를 위한 NR-SSS 및 DM-RS
2. 옵션 2: 동일하지 않은 RS
- 옵션 2-1: IDLE 상태의 NR-SSS; CONNECTED 상태의 MRS-{1,2}
- 옵션 2-2: IDLE 상태의 NR-SSS; CONNECTED 상태의 NR-SSS 및 MRS-{1,2}
- 옵션 2-3: IDLE 상태의 NR-PSS 및/또는 NR-SSS; CONNECTED 상태의 NR-PSS 및/또는 NR-SSS, 및 CSI-RS
- 옵션 2-4: CONNECTED 상태의 경우, IDLE 상태의 RS 및 MRS-{1,2,3}
적어도 다음과 같은 측면이 고려되어 결과 및 분석이 제공되어야 한다.
- CONNECTED 및 IDLE의 셀 커버리지
- RS 자원의 오버헤드(예를 들어, 자원 요소의 개수, RS 매핑에 사용되는 BW(BandWidth), 시간 상의 자원 사용)
- RS 측정량(measurement quantity)의 정확도(Accuracy)
IDLE 모드 RS 옵션 선택으로 인한 다음과 같은 영향은 멀티-빔 케이스에서도 고려될 수 있다:
- RACH(Random Access Channel) 절차 동안 획득된 연관 빔들과 관련하여, RRC 접속 전 RACH 이후의 DL/UL 신호 수신에서의 성능
CSI-RS는 DL Tx 빔 스위핑 및 UE Rx 빔 스위핑을 지원한다. CSI-RS는 P1, P2 및/또는 P3 모드에서 사용될 수 있다.
NR CSI-RS는 다음의 매핑 구조를 지원한다.
- N_P개의 CSI-RS 포트(들)는 (서브) 시간 단위(time unit)마다 매핑될 수 있다. 전체 (서브) 시간 단위에 걸쳐 동일한 CSI-RS 안테나 포트들이 매핑될 수 있다. 여기에서, "시간 단위"는 구성된/참조 뉴머롤로지(numerology)에서 n(>=1)개의 OFDM 심볼을 의미한다.
- 각 시간 단위는 서브 시간 단위로 분할될 수 있다. 이때 분할 방법으로는 표준/기설정된/참조 OFDM 심볼 길이(서브 캐리어 간격)와 동일하거나 더 짧은 OFDM 심볼 길이(즉, 더 큰 서브 캐리어 간격)를 갖는 TDM, IFDMA, OFDM 심볼-레벨의 분할과 같은 분할 방법이 사용될 수 있으나 다른 분할 방법 역시 배제되지 않는다.
- 이러한/상술한 매핑 구조는 멀티 패널들/Tx 체인들을 지원하는 데 사용될 수 있다.
Tx 및 Rx 빔 스위핑을 위한 CSI-RS 매핑 옵션은 다음과 같을 수 있다:
- 옵션 1: Tx 빔은 각 시간 단위 내에서 서브 시간 단위에 걸쳐 동일하나, 시간 단위에 걸쳐 다를 수 있다.
- 옵션 2: Tx 빔은 각 시간 단위 내에서 서브 시간 단위별로 다르나 시간 단위에 걸쳐 동일할 수 있다.
- 옵션 3(옵션 1과 옵션 2의 조합): 하나의 시간 단위 내에서 Tx 빔(들)은 서브 시간 단위에 걸쳐 동일할 수 있다. 다른 시간 단위 내에서 Tx 빔(들)은 서브 시간 단위에 걸쳐 서로 다를 수 있다. 예를 들어, 개수 및 주기 측면에서 서로 다른 시간 유닛들의 조합이 제안될 수 있다. Tx 스위핑 또는 Rx 스위핑만 가능할 수도 있다.
상기 제안된 매핑 구조에 대하여 하나 또는 복수의 CSI-RS 자원 구성이 설정될 수 있다.
이하에서는 설명의 편의를 위해, 상술한 바와 같이 특정 빔 운영 목적 등으로 (서브) 시간 단위 형태로 설정될 수 있는 CSI-RS(본 RS 명칭은 달라질 수 있음)를 타입 2 CSI-RS로 지칭하기로 하고, 그렇지 않은 형태(예를 들어, 3GPP LTE/LTE-A의 CSI-RS 형태 등)로 설정될 수 있는 CSI-RS를 타입 1 CSI-RS라 지칭하기로 하며, 각 타입의 CSI-RS에 대해 이하에서 도 16을 참조하여 설명한다.
도 16은 본 발명에 적용될 수 있는 타입 1 CSI-RS 및 타입 2 CSI-RS를 예시한다. 특히, 도 16(a)는 타입 1 CSI-RS, 도 16(b)는 타입 2 CSI-RS를 각각 예시한다.
도 16(a)를 참조하면, 기존의 CSI-RS 설정 방식(즉, 타입 1 CSI-RS 설정 방식)의 경우, CSI-RS 포트 수 및/또는 시퀀스 생성/스크램블링 파라미터가 설정되고, 특정 주기/오프셋이 설정될 수 있다(비주기적(aperiodic) CSI-RS 등의 경우에는 생략될 수 있음). 또한, 기존의 CSI-RS 설정 방식(즉, 타입 1 CSI-RS 설정 방식)의 경우, 각 CSI-RS 전송 시점(instance)에 CSI-RS가 전송되는 주파수/시간 자원의 위치(예를 들어, CSI-RS RE 위치/패턴)가 사전에 (RRC 시그널링을 통해) 설정되는 구조를 따른다. 편의상 이를 타입 1 CSI-RS로 지칭함은 앞서 상술한 바와 같다.
이와 달리, 특정 CSI-RS 자원 설정이 “(서브) 시간 단위” 관련 설정에 의해 좀더 세분화되고, 해당 (서브) 시간 단위에 대하여 단말의 동작에 관한 세부 동작 옵션 등이 더 설정될 수도 있다. 편의상 이를 타입 2 CSI-RS로 지칭함은 앞서 상술한 바와 같다.
도 16(b)를 참조하면, 타입 2 CSI-RS도 기본적으로 타입 1 CSI-RS처럼 주기/오프셋 파라미터가 설정될 수 있고(또는 주기/오프셋 파라미터가 생략되고 매 시간 단위가 나타나는/지시되는 지점을 통해 주기 파라미터가 암묵적으로 지시/설정되는 방식도 가능, 예를 들어, bursty하게 다수의 시간 단위가 연속적으로 나타나는 형태로 CSI-RS가 설정/한정될 수도 있으며 이는 비주기적 CSI-RS 설정과 연계되어 해당 CSI-RS 버스트의 시작 시점 등이 지시될 수 있음), 이 경우 해당 주기/오프셋 파라미터에 의해 지시되는 매 CSI-RS 전송 시점을 기준으로 (서브) 시간 단위에 따른 CSI-RS 세부(detailed) 전송 시점을 명시적으로 지시하는 부가적인 (시간 단위 오프셋) 파라미터가 함께 설정될 수 있다. 그리고/또는, (기본(default) 설정 방법으로서) 매 CSI-RS 전송 시점은 매 시간 단위의 시작 시점으로 정의/설정/한정될 수 있으며(예를 들어, 도 16(b)에 도시한 바와 같이), 하나의 시간 유닛 내에서 복수의 서브 시간 유닛들이 설정될 수 있다. 즉, 하나의 시간 유닛은 복수의 서브 시간 유닛들로 구분될 수 있다. 이러한 서브 시간 단위는 항상 연속적(consecutive)으로만 설정되는 것으로 한정될 수 있다(예를 들어, 도 16(b)에 도시한 바와 같이). 혹은, 보다 유연하게 서브 타임 유닛들은 각각 하나의 시간 유닛 내에서 (불연속적으로도/독립적으로/별도로) 설정될 수 있도록 별도의 주기/오프셋을 가지고, 이와 연관된 파라미터들이 함께 설정될 수도 있다.
도 17은 본 발명의 일 실시예에 따른 타입 2 CSI-RS 설정에 따른 QCL 가정 방식을 예시한 도면이다.
타입 2 CSI-RS 형태의 설정은, 특정 (DL) 빔 운영을 위한 용도로 활용될 수 있다. 예를 들어, 하나의 타입 2 CSI-RS 설정은 하나 또는 다수의 CSI-RS 자원(들)을 포함/지시/설정하는 형태로 제공될 수 있으며, 하나의 타입 2 CSI-RS 설정이 다수의 CSI-RS 자원들의 설정을 포함하는 경우 특징적으로 서로 다른 CSI-RS 자원들간에는 동일한 시점에 전송되지 않는 것으로 한정될 수 있다. 즉, 다수의 CSI-RS 자원들은 (각 자원 단위로) 적어도 TDM되어 전송되는 것으로 한정될 수 있다(도 17에 도시한 바와 같이).
이러한 동작의 장점으로, 서로 다른 CSI-RS 자원 간에는 적어도 서로 상이한/독립적인 (아날로그) 빔이 적용되고, 상이한 (아날로그) 빔이 적용된 CSI-RS 자원들이 서로 다른 시점에 단말에 전송되도록 하여, 단말이 이에 대한 RX 빔 스위핑 동작을 포함한 빔 운영 절차를 효과적으로 수행할 수 있도록 한다. 추가로, 각 CSI-RS 자원별로 서로 상이한/독립적인 안테나 포트 수가 설정될 수 있다. 또는, 특정 조건 하에서 (기지국 설정에 따라) 상이한 CSI-RS 자원별로 모두 동일한 안테나 포트 수만 설정 가능하도록 한정될 수도 있다.
이와 같은 구조에서, ‘각 CSI-RS 자원별로’ 특정 QCL 파라미터(들)/특성(들)(예를 들어, Delay spread, Doppler spread, Doppler shift, Average gain, Average delay, Average angle (AA), Angular spread (AS) 및/또는 PAP 중 적어도 하나)에 대하여 QCL 또는 부분 QCL이 가정/성립하는 다른 RS/신호(들) (그룹(들))(상술한 특정 MRS-1, -2, 및/또는 -3을 포함) 그리고/또는 특정 SS 블록 인덱스(또는 ID)(들)이 (사전에) 단말에 설정될 수 있다. 이는, RRC 시그널링, MAC (L2) 시그널링 및/또는 DCI (L1) 시그널링을 통해 단말에 설정될 수 있다. 이를 통해, 단말은 CSI-RS 자원 내의 안테나 포트들을 측정할 때 QCL 또는 부분 QCL 가정을 통해 획득한 특정 QCL 파라미터(들)/특성(들)를 적극 적용/활용함으로써 구현 복잡도 감소, 그리고/또는 검출/측정 성능 향상 효과를 얻을 수 있다. 이하에서는, 설명의 편의를 위해, CSI-RS(타겟 RS)와 QCL 가정 또는 부분 QCL 가정되는 다른 RS/신호(들) (그룹(들))(상술한 특정 MRS-1, -2, 및/또는 -3을 포함) 그리고/또는 특정 SS 블록 인덱스(들)을 ‘소스 RS(또는 QCL 소스/참조 RS)’라 통칭될 수도 있다. 따라서, 타겟 RS의 QCL 파라미터(또는 LSP)는 소스 RS로부터 추정된 QCL 파라미터(또는 LSP)로부터 암시/추정될 수 있다.
그리고/또는, 예를 들어, 각 CSI-RS 자원별로 QCL(또는 부분 QCL) 지시된 다른 RS/신호(들) (그룹(들))(상술한 특정 MRS-1, -2, 및/또는 -3을 포함) 그리고/또는 특정 SS 블록 인덱스(들)(즉, ‘소스 RS’)가 복수개인 경우, 단말은 각 자원별로 지시된 복수의 소스 RS에 대한 특정 QCL 파라미터(들)/특성(들)을 조합(union)(또는 평균 또는 특정 가중 평균(particular weighted averaging))하여 (부분) QCL 가정 동작을 적용/수행하도록 정의/설정될 수 있다. 그리고/또는, MRS-x(x는 자연수, 예를 들어, x=1, 2, 또는 3)도 특정 SS 블록 인덱스(들)와 사전에 특정 QCL 파라미터(들)/특성(들)에 대하여 QCL 또는 부분 QCL이 정의/설정될 수 있다.
또는, 보다 유연한 기지국 구현을 지원하기 위해, 위와 같은 구조에서 각 CSI-RS 자원 내의 ‘각 CSI-RS 안테나 포트(또는 특정 포트 그룹)별로’ 특정 QCL 파라미터(들)/특성(들)에 대하여 QCL 또는 부분 QCL이 가정/성립되는 다른 RS/신호(들) (그룹(들))(상술한 특정 MRS-1, -2, 및/또는 -3을 포함) 그리고/또는 특정 SS 블록 인덱스(들)가 (사전에) 단말에 설정될 수 있다. 이는, RRC 시그널링, MAC (L2) 시그널링 및/또는 DCI (L1) 시그널링을 통해 단말에 설정될 수 있다. 이를 통해, 단말은 CSI-RS 자원 내의 안테나 포트를 측정할 때 이러한 QCL 또는 부분 QCL 가정을 통해 획득한 특정 QCL 파라미터(들)/특성(들)를 적극 적용/활용함으로써 구현 복잡도 감소, 그리고/또는 검출/측정 성능 향상 효과를 얻을 수 있다.
나아가, 전자의 CSI-RS 자원-레벨의 QCL 설정/시그널링 방식 및 후자의 포트-레벨의 QCL 설정/시그널링 방식이 모두 지원 가능한 경우, 기지국은 전자의 실시예와 같이 CSI-RS 자원-레벨로 QCL 설정/시그널링을 제공할 것인지 또는 후자의 실시예와 같이 포트-레벨로 QCL 설정/시그널링을 제공할 것인지에 관한 추가적인 유연성을 활용할 수 있다는 효과가 있다. 즉, 도 17의 실시예에서 QCL 또는 부분 QCL이, 자원 단위가 아니라 자원 내부의 각 포트 단위로 설정/지시되는 형태로 변형/적용이 가능하다. 그리고/또는, 예를 들어, 각 CSI-RS 포트별로 QCL(또는 부분 QCL) 지시된 다른 RS/신호(들) (그룹(들))(상술한 특정 MRS-1, -2, 및/또는 -3을 포함) 그리고/또는 특정 SS 블록 인덱스(들)(즉, ‘소스 RS’)가 복수개인 경우, 단말은 각 자원별로 지시된 복수의 소스 RS에 대한 특정 QCL 파라미터(들)/특성(들)을 조합(union)(또는 평균 또는 특정 가중 평균(particular weighted averaging))하여 (부분) QCL 가정 동작을 적용/수행하도록 정의/설정될 수 있다. 그리고/또는, MRS-x(x는 자연수, 예를 들어, x=1, 2, 또는 3)도 특정 SS 블록 인덱스(들)와 사전에 특정 QCL 파라미터(들)/특성(들)에 대하여 QCL 또는 부분 QCL이 정의/설정될 수 있다.
한편, 단말은, 빔 운영 목적 등을 위하여, 기지국으로 이와 연관된 보고를 수행하도록 정의/설정될 수 있다. 이때, 단말은 p-번째(th)(예를 들어, p=1,2,…P(기지국에 의해 설정 가능)) 선호하는(preferred) (CSI-RS) 포트의 인덱스 정보를 기지국(예를 들어, gNB)에 보고할 때, 해당 포트가 어느 CSI-RS 자원 내에 있는 포트인지에 관한 정보도 항상(또는 기지국 설정에 따라) 상기 포트 인덱스 정보와 페어링된 형태로 기지국에 보고할 수 있다. 예를 들어, 어느 CSI-RS 자원인지를 지시하는 지시자를 CRI(CSI-RS resource indicator)라 지칭한다면, 단말의 보고 내용(reporting contents)은 {CRI, 포트 인덱스}와 같이 두 지시 정보가 페어링된 형태로 기지국에 보고될 수 있다. 그리고/또는, 이와 함께 포트에 대한 신호 품질을 대표할/나타낼 수 있는 특정 메트릭(예를 들어, RSRP, RSRQ(Reference Signal Received Quality), 및/또는 CQI 등 또는 이와 유사한 특정 함수)을 단말이 보고하도록 설정될 수도 있다.
보고 내용의 또 다른 변형 실시예로서, 페어링된 정보를 {CRI, 포트 선택 코드북 인덱스(또는 PMI)}와 같은 형태로 구성하여 단말이 보고하도록 정의/설정될 수 있다. 이때, 포트 선택 PMI를 도출(derive)하기 위해 이에 해당하는 “선택 코드북(selection codebook)”이 미리-정의/설정될 수 있다. 선택 코드북의 각 인덱스에 해당하는 벡터의 사이즈는 대응하는/페어링된 CRI가 지칭하는 CSI-RS 자원 내의 CSI-RS 포트 수와 일치하며, 각 인덱스에 해당하는 벡터는 특정 원소 1개의 값만 ‘1’이고, 나머지 원소는 모두 0인 형태(즉, 선택 코드북 벡터 형태)로 구성될 수 있다.
상술한 바와 같이, 하나의 타입 2 CSI-RS 설정이 하나 또는 K개(K>1)의 CSI-RS 자원(들)를 포함하는 형태로 설정/제공되는 경우, 설정 가능한 K 값에 대한 상한 값이 존재할 수 있다. 단말이 지원 가능한/구현된 (최대의) K 값에 관한 정보는 단말의 특정 UE 능력(capability) 시그널링을 통해 초기 접속 시 기지국에 전달될 수 있으며, 기지국은 이를 기초로 K개까지의 CSI-RS 자원을 하나의 타입 2 CSI-RS 설정 내에서 제공하도록 제한될 수 있다. 기지국이 이러한 UE 능력 시그널링 정보 등에 기초하여 K개의 CSI-RS 자원을 하나의 타입 2 CSI-RS 설정 시, RRC 시그널링 형태로 반-정적(semi-static)으로 설정할 수 있다. 보다 상세하게는, RRC-설정된(configured) K개의 CSI-RS 자원들 중에서 L2(예를 들어, MAC CE에 의한) 시그널링 (및/또는 L1(예를 들어, DCI에 의한), L3 시그널링)을 통해 N개(N<=K)의 CSI-RS 자원만 선택적으로 활성화되는 설정/제어 동작이 지원될 수 있다(도 17 참조). 이 경우, 활성화되지 못한 나머지 (K-N)개의 CSI-RS 자원은 비활성화 또는 해지된 것으로 단말이 인식하거나, 비활성화/해지를 위한 별도의 시그널링이 단말에 제공/지원될 수도 있다. 결국 단말은 활성화된 N개의 CSI-RS 자원 각각에 설정된/포함된 포트별로 신호 품질을 측정하고, 이를 통해 획득한 메트릭을 상호 비교하여 P개의 선호되는 포트 정보 그리고/또는 (상기 선호되는 P개의 포트별) 메트릭 값을 기지국에 보고하도록 정의/설정될 수 있다.
NR에서의 QCL 정의는 지연 확산, 도플러 확산, 도플러 쉬프트, 평균 이득 및 평균 지연과 같은 5가지 대규모 QCL 파라미터/특성이 고려하여 결정될 수 있다. 나아가, 이러한 QCL 파라미터/특성 외에도, UE측 빔 형성/수신 절차를 지원하기 위해, NR의 QCL 프레임 워크는 새로운 공간 QCL 파라미터(즉, 수신 빔 관련 파라미터)로 확장될 수 있음은 앞서 상술한 바와 같다. 이러한 공간 QCL 파라미터(즉, 수신 빔 관련 파라미터)는, 특히 UE 측에 아날로그 빔포밍이 적용될 때의 새로운 도착(arrival)/수신 각도에 대한 QCL 특성을 나타낸다. 빔 운영 절차 동안, UE는 특정 DL RS(예를 들어, RRM-RS)의 품질을 측정하고 비교함으로써 몇몇 TX-RX 아날로그 빔 쌍을 선택할 수 있다. TRP는 빔포밍된 CSI-RS 또는 DMRS 포트를 전송하기 위해 UE 선호(preferred) Tx 빔 중 하나를 선택할 수 있다. 이 경우, RRM-RS 포트에 대응하는 Tx 빔 ID가 UE로 시그널링될 수 있도록, UE는 후보 Rx 빔들 중에서 이 안테나 포트들을 수신하기 위해 어떤 Rx 빔이 설정되어야 하는지를 알아야 한다. 이러한 상황에서, RRM-RS 포트와 CSI-RS/DMRS 포트는 도미넌트한 도착/수신 각도(dominant arrival/receiving angle) 측면에서/대하여 QCL되었다고 말할 수 있다.
도미넌트한 도착/수신 각도는 Rx 빔포밍 계수를 결정하며, 디지털 빔에 비해 아날로그 빔이 동적으로 변경되지 않을 수 있기 때문에 상대적으로 large-scale 특성으로 간주될 수 있다. QCL 가정이 없다면, UE는 다수의 RX 빔 후보들을 탐색해야 하는데, 이는 에너지 및 시간 소모적이다.
따라서, UE에서 아날로그 빔포밍이 적용될 때, 도미넌트한 도착/수신 각도에 대한 새로운 타입의 QCL 특성(예를 들어, ‘공간 QCL 파라미터(즉, 수신 빔 관련 파라미터)’)이 NR에서 정의되어야 한다.
초기 액세스 관련 논의를 고려할 때, RRM-RS는 MRS-1,2 또는 3으로 불릴 수 있으며 SS 블록 내에서 다중화될 수도 있고 그렇지 않을 수도 있다. 또한, RRM-RS는 싱글 또는 멀티 빔 RS일 수 있다. Rx 빔 탐색/스위핑에서의 적절한(reasonable) UE 복잡성을 지원하기 위해, RRC 또는 MAC을 통한 CSI-RS 관련 설정은 적어도 공간 QCL 파라미터 측면에서 특정 MRS-x(x는 자연수, 예를 들어, x=1, 2, 또는 3) 또는 SS 블록 인덱스에 대한 QCL(또는 부분 QCL) 지시를 포함해야 한다. 이 경우, UE는 CSI-RS로부터의 PAP는 MRS-x 또는 SS 블록으로부터 관측된 PAP의 부분 집합인 것으로 가정할 수 있다. 이는, CSI-RS 전송에 사용되는 TXRU는 적어도 SFN 방식(SFN manner)으로 SS 블록 내의 신호 전송에 사용되어야 한다는 점이 고려된 것이다.
따라서, Rx 빔 탐색에서 적절한 UE 복잡성을 지원하기 위해, RRC 또는 MAC을 통한 CSI-RS 관련 설정은 SS 블록 인덱스에 대한 QCL 지시(적어도 공간 QCL 파라미터에 대하여)를 포함해야 한다. 이때, UE는 CSI-RS로부터의 PAP는 SS 블록 내에서 전송된 신호들로부터 관측된 PAP의 부분 집합임을 가정할 수 있다.
UE 측 빔포밍/수신 절차를 지원하기 위한 UE 공간 QCL 파라미터(들)에 대한 참조 신호 자원들/포트들 사이의 QCL 연관을 돕기 위해, UE 피드백 및 내용이 지원될 필요가 있다.
빔포밍/수신 절차에 대한 세부 정보가 제공되어야 하며, 적어도 아래의 메트릭 관점에서 성능이 평가되어야 하는 것이 바람직하다:
- RS 오버 헤드
- UE 피드백 오버헤드
- 스펙트럼 효율
NR에서 QCL에 대한 공간 파라미터는 수신기에서 관찰된 RS 안테나 포트의 공간 채널 특성을 설명한다. 또한, NR에서 공간 파라미터는 송신기에서의 안테나 포트의 공간 채널 특성을 설명한다. 필요한 경우, UE는 이와 관련된 정보를 기지국에 보고할 수 있다.
NR은 하향링크 제어 채널 수신을 위한 UE-측 빔포밍을 지원하기 위한 QCL 가정을 도출하기 위한 하향링크 지시를 지원하거나 지원하지 않는다.
NR에서 NZP(non zero power) CSI-RS 자원은 적어도 CSI를 도출하기 위해 측정될 수 있는 주파수 범위(span)/지속 시간 내의 RE 세트에 매핑되는 NZP CSI-RS 포트 세트로서 정의될 수 있다. 다수의 NZP CSI-RS 자원들은 적어도 CoMP 및 멀티플 빔포밍 CSI-RS 기반 동작을 지원하기 위해 UE에 설정될 수 있다. 여기서, 적어도 CoMP를 위한 각 NZP CSI-RS 자원은 서로 다른 개수의 CSI-RS 포트를 가질 수 있다.
도 18은 본 발명의 일 실시예에 따른 타입 2 CSI-RS 자원을 위한 (필수적인) QCL 지시를 예시한 도면이다.
NR에서의 QCL 정의는 지연 확산, 도플러 확산, 도플러 쉬프트, 평균 이득 및 평균 지연과 같은 5가지 대규모 QCL 파라미터/특성이 고려하여 결정될 수 있다. 나아가, 이러한 QCL 파라미터/특성 외에도, UE측 빔 형성/수신 절차를 지원하기 위해, NR의 QCL 프레임 워크는 새로운 공간 QCL 파라미터(즉, 수신 빔 관련 파라미터)로 확장될 수 있음은 앞서 상술한 바와 같다. 이러한 공간 QCL 파라미터(즉, 수신 빔 관련 파라미터)는, 특히 UE 측에 아날로그 빔포밍이 적용될 때의 새로운 도착(arrival)/수신 각도에 대한 QCL 특성을 나타낸다. 빔 운영 절차 동안, UE는 특정 DL RS(예를 들어, RRM을 위한 RS 포트(들), 편의상 ‘RRM-RS’라 지칭될 수 있음)의 품질을 측정하고 비교함으로써 몇몇 TX-RX 아날로그 빔 쌍을 선택할 수 있다. TRP는 빔포밍된 CSI-RS 또는 DMRS 포트를 전송하기 위해 UE 선호(preferred) Tx 빔 중 하나를 선택할 수 있다. 이 경우, RRM-RS 포트에 대응하는 Tx 빔 방향이 관련된 QCL 지시를 통해 UE로 시그널링될 수 있도록, UE는 후보 Rx 빔들 중에서 이 안테나 포트들을 수신하기 위해 어떤 Rx 빔이 설정되어야 하는지를 알아야 한다. 이러한 상황에서, RRM-RS 포트와 CSI-RS/DMRS 포트는 도미넌트한 도착/수신 각도(dominant arrival/receiving angle) 측면에서/대하여 QCL되었다고 말할 수 있다.
도미넌트한 도착/수신 각도는 Rx 빔포밍 계수를 결정하며, 디지털 빔에 비해 아날로그 빔이 동적으로 변경되지 않을 수 있기 때문에 상대적으로 large-scale 특성으로 간주될 수 있다. QCL 가정이 없다면, UE는 다수의 RX 빔 후보들을 탐색해야 하는데, 이는 에너지 및 시간 소모적이다.
따라서, UE에서 아날로그 빔포밍이 적용될 때, 도미넌트한 도착/수신 각도에 대한 새로운 타입의 QCL 특성(예를 들어, ‘공간 QCL 파라미터(즉, 수신 빔 관련 파라미터)’)이 NR에서 정의되어야 한다.
초기 액세스 관련 논의를 고려할 때, RRM-RS는 MRS-1,2 또는 3으로 불릴 수 있으며 SS 블록 내에서 다중화될 수도 있고 그렇지 않을 수도 있다. 또한, RRM-RS는 싱글 또는 멀티 빔 RS일 수 있다. Rx 빔 탐색/스위핑에서의 적절한(reasonable) UE 복잡성을 지원하기 위해, RRC 또는 MAC을 통한 CSI-RS 관련 설정은 적어도 공간 QCL 파라미터 측면에서 특정 MRS-x(x는 자연수, 예를 들어, x=1, 2, 또는 3) 또는 SS 블록 인덱스에 대한 QCL(또는 부분 QCL) 지시를 포함해야 한다. 이 경우, UE는 CSI-RS로부터의 PAP는 MRS-x 또는 SS 블록으로부터 관측된 PAP의 부분 집합인 것으로 가정할 수 있다. 이는, CSI-RS 전송에 사용되는 TXRU는 적어도 SFN 방식(SFN manner)으로 SS 블록 내의 신호 전송에 사용되어야 한다는 점이 고려된 것이다.
따라서, Rx 빔 탐색에서 적절한 UE 복잡성을 지원하기 위해, RRC 또는 MAC을 통한 CSI-RS 관련 설정은 SS 블록 인덱스에 대한 QCL 지시(적어도 공간 QCL 파라미터에 대하여)를 포함해야 한다. 이때, UE는 CSI-RS로부터의 PAP는 SS 블록 내에서 전송된 신호들로부터 관측된 PAP의 부분 집합임을 가정할 수 있다.
CSI-RS 설정과 관련하여, 타입 1 CSI-RS 자원(MIMO CSI 피드백용)과 (DL Tx/Rx 빔 스위핑을 지원하기 위한) 타입 2 CSI-RS 자원(DL 빔 운영용)을 제안함은 앞서 상술한 바와 같다.
도 18을 참조하면, 각 CSI-RS 자원은 특정 SS 블록과 QCL 가정/관계를 가질 수 있다. 또한, 하나의 CSI-RS 자원 내에서 CSI-RS 포트가 서로 다른 아날로그 빔과 대응될 수 있다. 이 경우, UE는 DL 빔 운영을 위하여 자신이 선호하는 {CRI, 포트 인덱스}를 기지국에 보고할 수 있다.
MIMO CSI 피드백을 위한 타입 1 CSI-RS 자원을 측정하기 위해서는, 적어도 UE의 Rx 빔 설정을 돕기 위해 적절한 QCL 시그널링(예를 들어, 타입 2 CSI-RS 자원 및 포트 인덱스 쌍과 연결시키기(linking) 위한 QCL 시그널링)이 UE에 제공되어야 한다.
즉, 타입 1 CSI-RS 자원의 설정 상에서, 특정 타입 2 CSI-RS 자원(들) 및/또는 해당 자원(들) 내의 포트 인덱스(또는 이에 대한 특정 선택 코드북 인덱스)와 QCL 파라미터(들)/특성(들) 중 적어도 하나에 대하여 QCL 또는 부분 QCL 가정이 적용 가능하다는 정보가 L1(예를 들어, DCI에 의해), L2(예를 들어, MAC CE에 의해), 및/또는 L3(예를 들어, RRC에 의해) 시그널링에 의해 제공될 수 있다. 단말은 이러한 시그널링/설정에 기초하여 타입 1 CSI-RS 자원 측정 시 QCL 가정 또는 부분 QCL 가정을 반영/적용할 수 있다. 이때, QCL된 타입 2 CSI-RS 자원(그리고/또는 해당 자원 내부의 특정 포트)에 대하여 QCL 또는 부분 QCL되었다고 지시되는 특정 MRS-x(예를 들어, x=1, 2, 또는 3, ...) 및/또는 특정 SS 블록 인덱스 등의 정보가 존재하면, 이 정보까지 연결(linkage)시켜/고려하여 상기 타입 1 CSI-RS 자원을 측정할 때 적용할 수 있음은 물론이다. 즉, UE는 타입 1 CSI-RS 자원 측정 시, 타입 1 CSI-RS 자원과 타입 2 CSI-RS 자원/포트 사이의 QCL 가정/관계뿐 아니라, 타입 2 CSI-RS 자원/포트와 MRS-x 또는 SS 블록 사이의 QCL 가정/관계도 고려/적용할 수 있다.
이때, 특정 조건 및 설정 등에 의하여, 상기 특정 타입 2 CSI-RS 자원(들) 및/또는 해당 자원 내의 포트 인덱스에 대한 QCL 또는 부분 QCL 지시는 (실제 QCL 가정을 위한 용도가 아닌) 연결(linkage) 지시 용도로만 적용을 하여, 상기 특정 타입 2 CSI-RS 자원(들) 및/또는 해당 자원 내의 포트 인덱스와 QCL 연결되어 있는 상기 특정 MRS-x(예를 들어, x=1, 2, 또는 3, ...) 및/또는 상기 특정 SS 블록 인덱스 등에 대한 QCL 또는 부분 QCL 가정만 적용하도록 UE의 동작이 한정될 수도 있다. 따라서, 이 경우에는 UE는 타입 1 CSI-RS 자원 측정 시, 상기 타입 1 CSI-RS 자원과 QCL 지시된 타입 2 CSI-RS 자원/포트와 QCL 가정을 수행하는 것이 아니라, 상기 타입 2 CSI-RS 자원/포트와 QCL 지시된 MRS-x 및/또는 SS 블록과 QCL 가정을 수행할 수 있다.
그리고/또는, 타입 1 CSI-RS 자원의 설정 상에서, 특정 MRS-x(예를 들어, x=1, 2, 또는 3, ...) 및/또는 특정 SS 블록 인덱스와 직접적으로 QCL 파라미터(들)/특성(들) 중 적어도 하나에 대하여 QCL 또는 부분 QCL 가정이 적용 가능하다는 정보가 L1(예를 들어, DCI에 의해), L2(예를 들어, MAC CE에 의해), 및/또는 L3(예를 들어, RRC에 의해) 시그널링에 의해 제공될 수 있다. 단말은 이러한 시그널링/설정에 기초하여 타입 1 CSI-RS 자원 측정 시 QCL 가정 또는 부분 QCL 가정을 반영/적용할 수 있다.
즉, 도 17의 실시예와 같이 CSI-RS ‘자원’ 단위/레벨로 SSB 블록과의 QCL 가정/관계가 설정/지시될 수 있으며, 이에 대한 추가적인/변형 실시예로서 각 CSI-RS 자원 내 CSI-RS ‘포트’ 단위/레벨로도(즉, 보다 더 세부적으로) SSB 블록과의 QCL 가정/관계가 설정/지시될 수 있다. 따라서, 본 명세서에서 제안되는 실시예들에서, 별도로 언급하지 않더라도, CSI-RS 포트 단위/레벨로 설명된 실시예들은 CSI-RS 자원 단위/레벨로 대체된 실시예로 도출될 수 있음은 물론이며, 그 반대의 경우도 마찬가지이다.
도 19는 본 발명의 일 실시예에 따른 전체적인 DL 빔 운영 절차를 예시한 도면이다. 특히, 도 19는 타입 2 CSI-RS 자원과 SS 블록(또는 MRS-1) 사이의 QCL 관계를 예시한다.
도 19를 참조하면, SFN-전송된 SS 블록(타입 2 CSI-RS 자원과 QCL된)의 빔-폭(beam-width)은 하나의 CSI-RS 자원 내에서 복수개 전송되는 CSI-RS 포트들로 구분/분할될 수 있으며, 각 CSI-RS 포트는 gNB 구현에 의해 서로 다른 아날로그 빔에 대응할 수 있다.
적어도 효율적인 CoMP 동작을 지원하기 위해 빔 운영 절차가 멀티-셀/TP 시나리오를 커버하도록, QCL 지시는 SS 블록과 연계된 셀/TP 식별자를 포함할 수 있다. 이는, 상기 제안에서 특정 RS(예를 들어, CSI-RS)가 특정 SS 블록(또는 MRS) 등과 QCL 가정/관계가 설정될 때, 특정 (물리적) cell-ID(및/또는 TP ID)를 동반한 SS 블록(또는 MRS) 등으로 QCL 가정/관계가 설정될 수 있음을 의미하는 것이다. 이때, CoMP 동작 지원을 위해, QCL 지시는 SS 블록과 연계된 셀/TP 식별자로서 반드시 단말의 ‘서빙’ 셀/TP 식별자를 포함하지 않을 수 있으며, ‘비-서빙’ 셀/TP 식별자를 포함할 수도 있다. 이는, 특정 RS(예를 들어, CSI-RS)에 대하여 QCL 가정/관계가 지시된 SS 블록이 반드시 서빙 셀/TP로부터 전송/연계된 SS 블록에 한정되지 않으며, 비-서빙 셀/TP로부터 전송/연계된 SS 블록으로도 확장될 수 있음을 의미한다.
이를 통해, 단말은 단일 셀이 전송하는 다수의 SS 블록들뿐만 아니라, 주변 셀들이 전송하는 SS 블록 등을 수신하면서 트래킹한 신호/채널에 대한 특정 LSP를 특정 RS(예를 들어, CSI-RS)의 수신/측정에 반영/적용 가능하다는 장점/효과가 있다.
상술한 내용들을 종합하여 도출되는 결론은 아래와 같이 요약될 수 있다:
결론 1: UE 측에서 아날로그 빔포밍이 적용될 때, 도미넌트 도착/수신 각도에 대한 새로운 타입의 QCL 특성이 NR에서 정의되어야 한다.
결론 2: RX 빔 탐색에서 적절한(reasonable) UE 복잡성을 지원하기 위해, RRC 또는 MAC을 통한 CSI-RS 관련 설정은 적어도 공간 QCL 파라미터(들)에 대한 SS 블록 인덱스과의 QCL 지시를 포함할 수 있어야 한다. 여기서, UE는 CSI-RS로부터의 PAP는 SS 블록 내에서 송신된 신호들로부터 관측된 PAP의 부분 집합인 것으로 가정할 수 있다.
결론 3: Rx 빔 탐색에서 적절한 UE 복잡성을 지원하기 위해, (타입 2) CSI-RS 자원은 적어도 공간 QCL 파라미터에 대하여 MRS-1 또는 SS 블록과의 적절한 QCL 연결(linkage)이 설정될 필요가 있다.
이하에서는 3GPP LTE 및/또는 NR 시스템에 적용될 수 있는 CSI 획득을 위한 프레임워크에 대해 제안한다. 그러나, 이에 한정되는 것은 아니며, 다양한 무선 통신 시스템(예를 들어, UTRA 등)으로도 확장 적용 가능하다.
다음의 DL L1(Layer 1)/L2(Layer 2) 빔 관리 절차는 하나 또는 복수의 TRP에서 지원될 수 있다:
- P-1 (절차): P-1은 TRP Tx(transmission) 빔들/UE Rx(reception) 빔(들)의 선택을 지원하기 위한 서로 다른 TRP Tx 빔들에 대한 UE 측정을 활성화(enable)하는 데 사용될 수 있다. TRP의 빔 포밍의 경우, 일반적으로 서로 다른 빔들의 세트로부터의(또는 서로 다른 빔들로 구성된 세트를 이용한) intra/inter-TRP Tx 빔 스위핑을 포함할 수 있다. UE의 빔 포밍의 경우, 일반적으로 서로 다른 빔들의 세트로부터의(또는 서로 다른 빔들로 구성된 세트를 이용한) UE Rx 빔 스위핑을 포함할 수 있다. TRP Tx 빔과 UE Rx 빔은 함께(jointly) 또는 순차적으로(sequentially) 결정될 수 있다. 순차적으로 결정되는 경우, 예를 들어, TRP Tx 빔이 먼저 결정된 후 결정된 TRP Tx 빔을 기반으로 UE Rx 빔이 결정될 수 있다.
- P-2 (절차): P-2는 inter/intra-TRP Tx 빔(들)을 결정/변경하기 위해 서로 다른 TRP Tx 빔들에 대한 UE의 측정을 활성화(enable)하는 데 사용된다. 즉, 이러한 P-2는 UE가 최적의/적절한 TRP Tx 빔(들)을 결정하기 위함이 목적이므로, 서로 다른 TRP Tx 빔들을 측정(보다 상세하게는 서로 다른 TRP Tx 빔들을 통해 전송되는 RS를 측정)하며, 동일한 TRP Tx 빔에 대한 반복적인 측정은 수행하지 않는다. 따라서, P-2가 설정된 경우, 동일한/하나의 RS 자원 세트 내에서 RS(예를 들어, CSI-RS) 자원들이 전송/매핑되는 Tx 빔은 자원별로 상이할 수 있다. 이때, 서로 다른 TRP Tx 빔(들)의 측정에 사용되는 Rx 빔은 동일한 빔으로 고정될 수 있으며, 이하에서 후술하는 P-3에서 결정/선택된 Rx 빔에 해당할 수 있다.
이러한 P-2는 RRC 시그널링을 통해 단말에 설정될 수 있다. 예를 들어, P-2는 ‘ResourceRep(또는 CSI-RS-ResourceRep) RRC 파라미터’가 ‘off’로 설정/지시됨으로써 단말에 설정/지시될 수 있다. 여기서, ‘ResourceRep RRC 파라미터’는 ‘반복(repetition)이 on/off’되는지 여부를 지시하는 RRC 파라미터에 해당할 수 있다. 만일, ‘ResourceRep RRC 파라미터’가 반복 on을 지시하는 경우(즉, 파라미터가 on으로 설정되는 경우), UE는 기지국이 동일한 RS 세트 내 RS 자원별로 고정된 Tx 빔을 유지하고 있는 것으로 가정할 수 있으며, 반복 off를 지시하는 경우(즉 파라미터가 off로 설정된 경우), UE는 기지국이 동일한 RS 세트 내 RS 자원별로 고정된 Tx 빔을 유지하지 않는 것으로 가정할 수 있다. 이때, 상기 RS가 CSI-RS인 경우의 ResourceRep RRC 파라미터는 ‘CSI-RS-ResourceRep RRC 파라미터’라 지칭될 수 있다. CSI-RS 자원 세트와 연계된 CSI-RS-ResourceRep 파라미터는 공간 도메인 전송 필터(spatial domain transmission filter)(특히, 공간 도메인 전송 필터가 동일한지 여부)와 함께 반복이 기지국에서 On/Off되는지 여부를 정의/지시할 수 있다(CSI-RS-ResourceRep parameter associated with a CSI-RS resource set defines whether a repetition in conjunction with spatial domain transmission filter is ON/OFF at gNB-side).
만일, UE가 'OFF'로 설정된 상위 계층 파라미터 CSI-RS-ResourceRep를 설정받은 경우(즉, P-2가 설정되는 경우), UE는 자원 세트 내의 CSI-RS 자원이 모든 심볼에서 동일한 다운 링크 공간 도메인 송신 필터 및 동일한 포트 수로 전송된다고 가정하지 않을 수 있다(If the UE is configured with the higher-payer parameter CSI-RS-ResourceRep is set to ‘OFF’, the UE may not assume that the CSI-RS resources within the resource set are transmitted with the same downlink spatial domain transmission filter and with same number of ports in every symbol).
이러한 P-2는 P-1보다 더 미세한 빔 조정(refinement)을 위해 P-1보다 더 작은 Tx 빔 세트(즉, 더 좁은 범위의 빔 세트)에 대해 UE 측정이 수행될 수 있다. 따라서, P-2는 P-1의 특수 케이스로 볼 수도 있다.
- P-3 (절차): P-3는 UE가 빔포밍을 사용하는 경우, UE Rx 빔을 결정/변경하기 위해 동일한 TRP Tx 빔에 대한 UE의 (반복) 측정을 활성화(enable)하는 데 사용된다. 즉, 이러한 P-3는 UE가 최적의/적절한 Rx 빔을 결정하기 위함이 목적이므로, 동일한 TRP ‘Tx’ 빔을 서로 다른 ‘Rx’ 빔을 이용해 ‘반복적으로’ 측정/수신(보다 상세하게는, 동일한 TRP Tx 빔들을 통해 전송되는 RS를 서로 다른 Rx 빔을 이용하여 측정)할 수 있다. 이때 반복 측정되는 동일한 TRP ‘Tx’ 빔은 P-2를 통해 사전에 결정/선택된 Tx 빔일 수 있다. 따라서, P-3가 설정된 경우, 동일한 RS 자원 세트 내에서 RS(예를 들어, CSI-RS) 자원들이 전송/매핑되는 Tx 빔은 자원별로 동일할 수 있다.
이러한 P-3는 RRC 시그널링을 통해 단말에 설정될 수 있다. 예를 들어, P-3는 ‘ResourceRep(또는 CSI-RS-ResourceRep) RRC 파라미터’가 ‘on’로 설정/지시됨으로써 단말에 설정/지시될 수 있다.
만일, UE가 'ON'으로 설정된 상위 계층 파라미터 CSI-RS-ResourceRep를 설정받은 경우(즉, P-3가 설정되는 경우), UE는 자원 세트 내의 CSI-RS 자원은 동일한 다운 링크 공간 도메인 송신 필터를 통해 전송되며, 상기 자원 세트 내의 CSI-RS 자원들은 각각 서로 다른 OFDM 심볼들에서 전송되는 것으로 가정한다(If the UE is configured with the higher-layer parameter CSI-RS-ResourceRep set to ‘ON’, the UE may assume that the CSI-RS resources within the resource set are transmitted with the same downlink spatial domain transmission filter, where the CSI-RS resources in the resource set are transmitted in different OFDM symbols.). 또한, UE는 세트 내의 모든 CSI-RS 자원들이 상이한 주기성(periodicity)을 가질 것을 기대하지 않는다(The UE is not expected to receive different periodicity in CSI-RS-timeConfig and NrofPorts in every CSI-RS resource within the set.).
절차 P-2 및 P-3은, TRP Tx 빔 및 UE Rx 빔의 동시 변경의 목적을 달성하기 위해, 함께(jointly)(또는 순차적으로(sequentially)) 및/또는 복수 회 수행될 수 있다. 절차 P-3에는 물리 계층 절차가 존재하거나 그렇지 않을 수도 있다. 또한, UE에 대한 다중 Tx/Rx 빔 쌍 관리가 지원될 수 있다.
상술한 절차들은 모든 주파수 대역에 적용될 수 있으며, TRP당 단일/다중 빔에서 사용될 수 있다.
이하에서는 UL 빔 관리 절차에 대해 후술한다. UL 빔 관리 절차는 앞서 상술한 DL 빔 관리 절차와 유사하게 정의될 수 있으며, 크게 아래와 같은 종류로 구분될 수 있다:
- U-1 (절차): UE Tx 빔/TRP Rx 빔의 선택을 지원하기 위하여, 서로 다른 UE Tx 빔들에 대한 TRP 측정을 활성화(enable)하는 데 사용될 수 있다. 이러한 U-1은 앞서 상술한 P-1과 대응될 수 있다.
- U-2 (절차): inter/intra-TRP Rx 빔(들)을 변경/선택하기 위해 서로 다른 TRP Rx 빔들에 대한 TRP 측정을 활성화(enable)하는 데 사용될 수 있다. 이러한 U-2은 앞서 상술한 P-2과 대응될 수 있다.
- U-3 (절차): UE가 빔포밍을 사용하는 경우, UE Tx 빔을 변경하기 위해 동일한 TRP Rx 빔에 대한 (반복적인) TRP 측정을 활성화(enable)하는 데 사용될 수 있다. 이러한 U-3은 앞서 상술한 P-3과 대응될 수 있다.
이러한 절차들과 관련하여 다양한 Tx/Rx 빔 일치/부합/대응(correspondance) 관련 정보의 지시가 지원될 수 있다.
다음과 같은 채널/RS를 기초로 UL 빔 관리가 수행될 수 있다:
- PRACH
- SRS
- DM-RS
TRP와 UE는 Tx/Rx 빔 대응성(correspondence)/일치성을 가질 수 있다. 또는, TRP는 Tx/Rx 빔 일치/부합/대응(correspondance)을 갖지 않고 및/또는 UE는 Tx/Rx 빔 일치/부합/대응(correspondance)을 갖지 않을 수 있다.
UE는 CSI 획득을 위해 다음과 같은 특징으로 설정될 수 있다:
- N(≥1)개의 CSI 보고 세팅(reporting settings), M(≥1)개의 RS 세팅(settings), J(≥1)개의 IM 세팅(settings) 및 N개의 CSI 보고 세팅(settings)을 M개의 RS 세팅(settings) 및 J개의 IM 세팅(settings)과 연결하는 CSI 측정 세팅(‘측정 연결(link)’로도 지칭 가능)
- CSI 보고 세팅은 적어도 다음을 포함한다:
- 시간-도메인 동작: 비주기적 또는 주기적/반-영구적(semi-persistent)
- 적어도 PMI 및 CQI에 대한 주파수-단위
- 보고되는 CSI 파라미터(PMI가 보고되는 경우, PMI 타입(타입 I 또는 II) 및 코드북 구성)
- RS 세팅은 적어도 다음을 포함한다:
- 시간-도메인 동작: 비주기적 또는 주기적/반영구적
- 적어도 CSI-RS를 포함하는 RS 타입
- K개의 자원들의 RS 자원 세트(들)
- IM 세팅은 적어도 다음을 포함한다:
- 시간-도메인 동작: 비주기적 또는 주기적/반영구적
- CSI-IM을 포함하는 IM 타입
- RS 세팅 및 IM 세팅은 병합될 수 있음
- CSI 측정 세팅은 적어도 다음을 포함한다:
- 하나의 CSI 보고 세팅
- 하나의 RS 세팅
- 하나의 IM 세팅
- CQI의 경우, 참조 전송 스킴(scheme) 설정
- 즉, CSI 측정 세팅은 특정 CSI 보고 세팅, 특정 RS 세팅 및/또는 특정 IM 세팅을 상호 연결하는 기능을 수행하며, 단말은 하나의 CSI 측정 세팅을 통해 설정된 CSI 보고 세팅, RS 세팅 및/또는 IM 세팅은 서로 연계/관련된 것으로 볼 수 있다.
RS 세팅은 자원 세팅으로도 명명될 수 있으며 채널 및/또는 간섭 측정을 위한 신호 구성을 포함한다. IM 세팅은 제거될 수 있다.
UE는 N≥1 CSI 보고 세팅, M≥1 자원 세팅 및 1개의 CSI 측정 세팅으로 설정될 수 있으며, 여기서 CSI 측정 세팅에는 L≥1 링크가 포함된다.
각각의 L 링크는 CSI 보고 세팅 및 자원 세팅에 대응할 수 있다.
최소한 다음의 구성 파라미터는 적어도 CSI 획득을 위해 RRC를 통해 시그널링될 수 있다.
- N, M 및 L - 암시적 또는 명시적으로 지시됨
- 각 CSI 보고 세팅에서 적어도: 보고된 CSI 매개 변수, 보고된 경우 CSI 타입(I 또는 II), 코드북 부분 집합(subset) 제한을 포함한 코드북 구성, 시간-영역 동작, CQI 및 PMI를 위한 주파수 세분성(granularity), 측정 제한 구성들
- 각 자원 세팅에서:
- S≥1 CSI-RS 자원 세트(들)의 구성(각 세트는 UE에 설정된 모든 CSI-RS 자원들의 "풀"로부터의 서로 다른 선택에 해당함)
- 각 세트 s에 대한 Ks ≥ 1 CSI-RS 자원들의 구성은 적어도 RE로의 매핑, 포트 수, 시간 영역 동작 등을 포함
- CSI 측정 세팅의 L 링크 각각에서: CSI 보고 세팅 지시, 자원 세팅 지시, 측정할 수량(채널 또는 간섭)
- 하나의 CSI 보고 세팅은 하나 이상의 자원 세팅과 연결될 수 있음
- 복수의 CSI 보고 세팅들은 동일한 자원 세팅과 연결될 수 있음
적어도 다음은 L1 또는 L2 시그널링에 의해 동적으로 선택될 수 있다:
- CSI 측정 세팅 내의 하나 또는 여러 개의 CSI 보고 세팅
- 적어도 하나의 자원 세팅에서 선택된 적어도 하나의 CSI-RS 자원 세트
- 적어도 하나의 CSI-RS 자원 세트에서 선택된 적어도 하나의 CSI-RS 자원
- K(= 설정된 빔의 전체 개수)개의 빔으로 구성되고 N개의 선택된 빔의 측정 결과를 보고하는 빔 관리(적어도 CSI-RS)를 위한 RS에 기반 UE 측정:
- N은 반드시 고정될 필요는 없음
- N 값을 설정 및/또는 지시하는 방법
- 이동성 목적을 위한 RS에 기반의 상기 절차는 배제되지 않음
- 보고 정보는 적어도 다음을 포함함:
- N개의 빔(들)에 대한 측정량
- CSI, RSRP 또는 둘 다와 같은 자세한 보고 컨텐츠
- N개의 빔을 선택하는 방법
- 부분 집합(subset) 식별 방법
- N개의 DL 송신 빔(들)을 지시하는 정보(만일, N<K인 경우)
- CSI-RS 자원 ID, 안테나 포트 인덱스, 안테나 포트 인덱스 및 시간 인덱스의 조합, 시퀀스 인덱스 등과 같은 세부 정보
다음의 가능한 후보 솔루션을 고려하여, NR 빔 관리를 위한 CSI-RS 설계 중 빔 관리 오버헤드 및 대기 시간이 고려될 수 있다.
- 옵션 1: IFDMA(interleaved frequency division multiple access)
- 옵션 2: 큰 서브 캐리어 간격(Larger subcarrier spacing)
즉, 다시 말하면, 앞서 상술한 바와 같은 P-1 내지 P-3와 같은 빔 관리/운영에 있어서, 빔 운영/관리 오버헤드 및 지연을 줄이기 위해, 상술한 옵션 1 또는 옵션 2이 고려될 수 있다. 제안된 옵션 1 또는 옵션 2의 주 목적은 CSI-RS 자원의 반복 전송 구간(duration)을 특정 OFDM 심볼 개수(예를 들어, 1개)이내로 줄이고자 함이 목적이다(즉, 특정 OFDMA 심볼 개수 내에서 2개 이상의 CSI-RS 자원이 반복되어 전송되도록 하기 위함이 목적).
옵션 1의 경우, IFDMA를 도입함으로써 상기 목적이 달성될 수 있다. 보다 상세하게는, IFDMA를 따를 때, 하나의 RB 내에서 CSI-RS(또는 CSI-RS 자원)는 특정 서브 캐리어(또는 톤(tone)) 단위로 매핑되되, 나머지 서브 캐리어는 널링(nulling)(즉, ‘0’ 값이 매핑)되는 방식으로 CSI-RS가 주파수 자원에 매핑되어 전송될 수 있다. 그렇게 되면, 하나의 RB 내에서 해당 CSI-RS(또는 CSI-RS 자원)가 매핑된 서브 캐리어 단위(이는, ‘Comb value’로서 기지국에 의해 시그널링/지시될 수 있으며, 이하에서 상세히 후술)만큼, 하나의 OFDM 심볼 내에서 해당 CSI-RS(또는 CSI-RS 자원)가 반복되어 전송되는 패턴이 생성될 수 있다. 예를 들어, 하나의 RB 내에서(즉, 주파스-도메인에서) CSI-RS(또는 CSI-RS 자원)가 짝수(또는 홀수) 인덱스를 갖는 서브 캐리어에만 매핑된다면, 하나의 OFDM 심볼 내에서(즉, 시간-도메인에서) 해당 CSI-RS(또는 CSI-RS 자원)는 2번 반복되어 전송될 수 있다.
옵션 2의 경우, 빔 운영/관리 목적의 CSI-RS 자원에 대하여 더 큰 서브 캐리어 간격을 도입함으로써 상기 목적이 달성될 수 있다. 보다 상세하게는, BM 목적의 CSI-RS를 전송하는 경우, 기지국은 해당 CSI-RS 자원의 서브 캐리어 간격(spacing)을 증가시켜 해당 CSI-RS 자원 전송 구간(duration)을 줄여서 전송할 수 있으며, 이때 늘어난 서브 캐리어 간격에 관한 정보는 단말에 별도로 지시될 수 있다. 예를 들어, BM 목적의 CSI-RS 자원이 서브 캐리어 간격은 다른 RS 자원보다 2배 크게 설정되어 전송될 수 있으며, 이 경우 하나의 OFDM 심볼 내에서 CSI-RS 자원은 2번 반복되어 전송될 수 있다.
이러한 옵션 1 및 옵션 2에 따를 때, CSI-RS 반복 전송 패턴이 하나의 OFDM 심볼 내에서 전송 가능하므로, 빔 운영/관리 절차의 지연 및 오버헤드가 그만큼 줄어들 수 있다는 장점이 있다. 특히, P-1 또는 P-2 목적의 경우 전송 빔을 결정하기 위해 기지국은 하나의 OFDM 심볼 내에서 반복 전송되는 CSI-RS들을 각각 서로 다른 빔으로 전송할 수 있으며, P-1 또는 P-3 목적의 경우 수신 빔을 결정하기 위해 단말은 하나의 OFDM 심볼 내에서 반복 전송되는 CSI-RS들을 각각 서로 다른 빔으로 수신할 수 있으며, 이를 통해 보다 빠른 전송/수신 빔 결정이 가능해지게 된다.
NR 빔 관리를 위한 CSI-RS 설계 중 고려되는 다른 측면에는 다음이 포함된다: 예를 들어, CSI-RS 멀티플렉싱, UE 빔 스위치 지연 및 UE 구현 복잡성(예를 들어, AGC(Automatic Gain Control) 트레이닝 시간), CSI-RS의 커버리지 등
이하에서는, DL 빔 관리 프레임워크에 대해 제안한다.
1. 자원 세팅
CSI-RS가 NR에 대한 빔 관리를 지원하므로, CSI-RS 설계가 아날로그 빔포밍 측면을 고려해야 한다. 빔 관리를 위한 CSI-RS와 CSI 획득을 위한 CSI-RS의 설계 요건은 포트 수, 시간/주파수 밀도, 포트 멀티플렉싱 방법 등의 측면에서 상당히 다를 수 있다. 따라서 CSI 획득을 위한 CSI-RS(즉, CSI-RS 타입 A)와 별도로 빔 관리를 위한 CSI-RS(즉, CSI-RS 타입 B)가 설계될 필요가 있다. CSI-RS 타입 A의 주 목적은 LTE CSI-RS와 유사한 DL 링크 적응(link adaptation)이며, CSI-RS 타입 B의 주 목적은 링크 적응을 위한 측정 정확도를 반드시 필요로 하지 않는 DL Tx/Rx 빔 관리이다. 따라서, CSI-RS 타입 B는 적어도 주파수 밀도 관점에서 CSI-RS 타입 A보다 더 희박할 수 있다. 그러나 CSI-RS 타입 B는 {Tx 빔, Rx 빔}의 더 많은 세트를 추정/측정할 수 있도록 하기 위해, 슬롯 내에서 더 많은 수의 RS 송신을 지원할 필요가 있다.
그러나 통합된 CSI 획득 및 빔 관리 프레임워크의 관점에서, CSI-RS 타입 모두가 자원 세팅에 포함될 수 있으며, 서로 다른 보고 세팅과 각각 연계될 수 있다(즉, 하나는 일반적인 CSI 보고와 다른 하나는 빔 보고와 각각 연계).
NR은 두 타입의 NZP CSI-RS를 따로 설계하는 것을 고려해야 한다.
- CSI-RS 타입 A: 주로 DL 링크 적응용
- CSI-RS 타입 B: 주로 DL 빔 관리용
DL 빔 관리를 위한 CSI-RS 타입 B에 대하여, 상술한 옵션 1(IFDMA) 및 옵션 2(큰 서브캐리어 간격)을 포함하여 빔 관리 오버헤드 및 지연이 고려되어야 한다고 기술하였다. 우선 옵션 2가 옵션 1과 비교하여 더 많은 이점을 가지고 있는지 여부는 불확실하다. 두 옵션 모두 오버헤드 및 지연 시간 측면에서 유사한 목표를 갖기 때문에, 각각 상이한 서브 캐리어 간격을 갖는 다수의 UE에 대한 주파수 도메인에서의 CSI-RS 자원 멀티플렉싱을 고려하면, 옵션 2는 불필요하게 더 큰 네트워크 구현 복잡성을 유발할 수 있다.
따라서 옵션 1이 추가 고려 대상이 될 수 있다. 그러나 옵션 1과 관련하여 명확하게 이해되어야 할 여러 가지 이슈가 있을 수 있다. 예를 들어, 얼마나 많은 comb 값이 지원되어야 하는지, comb 오프셋이 지원되는지, UE가 P-1 및 P-3에 대한 Rx 빔 스위핑 등의 Rx 빔 스위핑을 위해 이용하기 위해 NZP CSI-RS RE들 및 ZP(zero power)(Null) RE들을 동일한 OFDM 심볼 내에서 어떻게 구별할 수 있을지 등과 가튼 여러 가지 이슈가 있을 수 있다.
마지막 이슈에 관한 하나의 가능한 옵션은, NZP 및 특정 comb 값/오프셋이 설정된 하나의 자원과 Null RE들을 적절히 지시하기 위해 ZP 및 독립적인 comb 값/오프셋이 설정된 나머지 자원들이 포함된 복수의 CSI-RS 자원들을 포함하는 하나의 자원 세팅을 갖는 상술한 프레임워크를 재사용하는 것이다(One possible option regarding the last issue would be reusing the above agreed framework such that one resource setting includes multiple CSI-RS resources where one of resources is to be configured with NZP and certain comb value/offset, and the other resources are to be configured with ZP and independent comb value/offset to properly indicate Null REs).
적절한 Null RE 구성을 갖는 독립적인 comb 값/오프셋 구성을 포함하여 다중 UE에 대한 주파수 도메인에서의 CSI-RS 자원 다중화가 적절하게 지원되는지 주의깊게 확인할 필요가 있다.
옵션 1(IFDMA)에 관하여, 복수의 UE들에 대한 주파수 도메인에서의 적어도 CSI-RS 자원 다중화를 지원하기 위한 적절한 Null RE 구성을 포함하는 추가 오픈 이슈가 우선적으로 주의 깊게 다루어져야 한다.
이하에서는, 앞서 제안된 옵션 1을 차용하는 경우에 있어서, 복수의 UE들을 위한 CSI-RS 자원들이 주파수 도메인에서 멀티플렉싱된 경우의 RE 구성(NZP 및 ZP RE 구성)의 단말로의 지시 방법에 관한 구체적인 실시예에 대해 제안한다.
도 20 및 21은 본 발명의 일 실시예에 따른 주파수 도메인에서의 각 서브 캐리어에 대한 CSI-RS 안테나 포트 매핑을 예시한 도면이다. 도 20 및 21의 실시예에서 UE1은 CSI-RS 포트 15를 설정받고, UE2는 CSI-RS 포트 16을 설정받았다고 가정한다. 또한, 도 20 및 21에서 ‘화살표’는 NZP RE/서브 캐리어를 의미하며, 각 화살표 위의 ‘숫자’는 대응하는 NZP RE/서브캐리어가 전송/매핑되는 안테나 포트 넘버, ‘X’ 표시는 ZP(Null) RE/서브캐리어를 의미한다.
본 실시예들은, 위에서 상술한 바와 같이, “복수의 UE들을 위한 주파수 도메인에서의 CSI-RS 자원 멀티플렉싱(적절한 Null RE 구성들을 갖는 독립적인 comb 값/오프셋 설정)”이 적용된 실시예들로 볼 수 있다. 기지국은 이와 같은 형태로 MUX(multiplexing)된 신호를 전송하게 되는데, UE1은 이러한 신호를 수신하기 위해 다음과 같은 정보를 사전 설정받는 형태로 동작할 수 있다. 본 명세서에서 ‘comb 값(또는 길이)’은 주파수축 RE/서브캐리어 레벨에서 적용되는 값으로서, 신호(즉, CSI-RS)가 매핑되는/나타나는 RE/서브캐리어 단위/간격을 의미한다. 예를 들어, ‘comb 값=4’는 주파수축에서 4RE/서브캐리어 간격으로 신호가 나타남/매핑됨을 의미할 수 있다. 이러한 comb 값은 다른 주파수 세분성(granularity)에 대해서도 일반화 확장/변형 적용될 수도 있다. 이 경우, CSI-RS 자원은 하나의 OFDM 심볼 내에서 comb 값만큼 반복되어 단말에 전송될 수 있다(즉, 상기 예의 경우 하나의 OFDM 심볼 내에서 ‘comb 값=4’만큼 CSI-RS 자원이 단말에 반복 전송됨). 또한, comb 오프셋은 하나의 RB 내에서 CSI-RS가 나타나는/매핑되는 첫 RE/서브캐리어의 인덱스를 의미한다.
도 20 및 21과 같은 형태로 CSI-RS 포트가 각 서브 캐리어에 매핑되어 단말에 전송되는 경우, 기지국은 다음과 같이 특정 자원 세팅 #ID를 통해 다음과 같은 3개의 CSI-RS 자원을 UE1에 설정해줄 수 있다:
- CSI-RS 자원 #1: 15 포트(싱글 포트)를 갖는 NZP CSI-RS, comb 값 = 4, comb 오프셋 = 0 (도 20의 실시예에 해당함, 도 21의 경우 comb 오프셋 = 1 로 설정된다는 차이만 존재함)
- CSI-RS 자원 #2: ZP(Null) CSI-RS, comb 값 = 4, comb 오프셋 = 1 (도 20의 실시예에 해당함, 도 21의 경우 comb offset = 0으로 설정된다는 차이만 존재함)
- CSI-RS 자원 #3: ZP CSI-RS, comb 값 = 4, comb 오프셋 = 3 (도 20의 실시예에 해당함, 도 21의 경우 comb 오프셋 = 2로 설정된다는 차이만 존재함)
본 예시와 같은 형태로, 기지국은 NZP/ZP(Null) RE들의 위치를 단말이 명확히 알 수 있도록 단말에게 명시적 설정을 제공할 수 있다. 이때, UE1은 도 20 및 21에서의 포트 16 RE 위치들에 대해서는 아무런 설정을 받지 않더라도, 이러한 RE들이 “ZP(Null) RE들”이라는 추정/가정을 하면 절대 안 된다. 그 이유는, 도 20 및 21에 도시한 바와 같이 별도로 지시/설정받지 않은 RE들을 통해서는 다른 UE를 위한 NZP 신호가 전송될 수 있기 때문이다.
예를 들어, UE1이 포트 15 신호 수신 시 FFT(Fast Fourier Transform) 사이즈를 1024 FFT로 설정하여 수신 신호를 주파수축으로 전환하고 있었다고 가정할 때, 1024 FFT의 1/4인 256 FFT를 설정하지 않고 1/2인 512 FFT를 설정할 수 있다(즉, 하나의 OFDM 심볼 내에서 신호가 4번이 아닌, 2번 반복 전송되는 것으로 예측함). 왜냐하면, UE1은 설정받은 CSI-RS 자원#1에 의한 ‘comb 값=4’ 지시에 의해 시간축에서 4번 반복 패턴을 갖는 신호가 나타날 것으로 예측할 수 있으나, ‘comb 값=4 및 comb 오프셋=2’ 위치의 RE/서브캐리어에 대해서는 별도로 지시받지 않아 UE2에 대한 포트 16 신호 등과 같은 NZP 간섭 신호 역시 예상되기 때문이다. 따라서, UE는 별도로 지시되지 않은 RE/서브캐리어에 대해서는 간섭에 의한 열화를 고려해 다른 단말에 대한 신호가 전송되는 것으로 간주/가정하여 신호 수신 동작을 수행할 수 있다. 따라서, 상기 실시예에서, UE1은 비록 ‘comb=4’를 지시받았더라도 ‘comb=2’를 가정할 수 있으며, 하나의 OFDM 심볼 구간(duration)동안 2번 반복 전송되는 CSI-RS 자원들을 2개의 상이한 Rx 빔들을 적용하여 순차적으로 수신하는 등과 같은 Rx 빔 스위핑 동작을 수행할 수 있다.
만일 기지국이, UE1이 특정 cancelation receiver 형태로 구현된 경우 등을 고려하여, UE1이 UE2를 향한 포트 16 신호를 취소한 후에 포트 15에 대한 Rx 빔 스위핑을 적용할 수 있도록 지원하기 위한 설정을 제공하고자 한다면, 기지국은 상기 설정 정보(예를 들어, 자원 세팅 #ID)에서 다음과 같은 CSI-RS 자원 #4를 UE1에 추가 설정/지시해줄 수 있다(즉, 기지국이 다른 단말에 대한 신호/자원 정보도 별도로 명시적/암시적으로 지시/설정해 줌):
- CSI-RS 자원 #4(간섭 제거 목적임을 암시적/명시적으로 식별 가능한 형태로 지시/설정될 수 있음): NZP CSI-RS(취소 목적(for cancelation purpose)), comb 값 = 4, comb 오프셋 = 2(도 20에서의 포트 16 위치들을 지시하는 형태로 설정, 도 21의 경우 comb 오프셋 = 3로 설정된다는 차이만 존재함)
UE1은 자신이 cancelation receiver인지에 관한 단말 능력(capability) 정보를 사전에 기지국에 시그널링해줄 수 있다.
만일, 기지국이 복수의 단말들(예를 들어, UE1과 UE2)간의 MUX를 적용하지 않고, UE1을 위해서만 신호를 전송하고자 하는 경우, 상기 설정 정보(예를 들어, 자원 세팅 #ID)에서 다음과 같은 CSI-RS 자원 #4를 추가 설정/지시해줄 수 있다:
- CSI-RS 자원 #4: ZP CSI-RS, comb 값 = 4, comb 오프셋 = 2 (도 20에서의 port 16위치들에 해당하는 부분들을 지시하는 형태로 설정됨, 도 21의 경우 comb 오프셋 = 3로 설정된다는 차이만 존재함)
즉, 본 실시예는 기지국이 상기 포트 16에 해당하는 RE들이 “X”표시 형태의 ZP(Null) RE들임을 UE1에게 명확히 설정해준 실시예에 해당한다. 이 경우, UE1은 포트 15가 comb 값(길이)=4로 설정된 것으로 인식/가정하여 시간축에서 하나의 심볼 구간 내에 4번의 반복 패턴이 나타날 것으로 예상하고, 4개의 (서로 다른) Rx 빔들을 이용한 Rx 빔 스위핑을 적용할 수 있다(이들 중 가장 선호되는 최적의 Rx 빔을 찾고자 함이 목적). 결국, 이러한 설정을 제공받은 UE1은, 256 FFT(즉, 1/4 FFT 사이즈)를 순차적으로 적용하면서 CSI-RS 수신을 시도할 수 있다.
별도로 언급하지 않았으나, UE2에 관한 NZP CSI-RS 자원의 설정 역시, 앞서 상술한 UE1에 대한 NZP CSI-RS 자원 설정 방식과 동일/유사하게 수행될 수 있음은 물론이며, 설정 정보(예를 들어, 자원 세팅 #ID)를 통해 도 20 및 21의 포트 16에 해당하는 RE/서브캐리어 위치가 UE2에 명시적/암시적으로 지시될 수 있다.
이상에서는 자원 세팅을 활용하여 CSI-RS 자원을 설정하는 예시를 상술하였으나 이에 한정되는 것은 아니며, 본 발명에서 제안하는 “복수의 UE들을 위한 주파수 도메인에서의 CSI-RS 자원 멀티플렉싱(적절한 Null RE 구성들을 갖는 독립적인 comb 값/오프셋 설정)”의 구현을 지원하기 위한 다양한 명시적/암시적 설정/지시/시그널링들의 변형안들도 본 발명의 사상에 모두 포함되는 것으로 이해될 수 있다.
예를 들어, 기지국은, 위 예시들에서 CSI-RS 자원 #1에 해당하는 NZP CSI-RS에 관한 정보만 단말에 설정해주되, ZP(Null) RE에 관한 정보로 단말이 하나의 OFDM 심볼 길이/구간 내에 몇 개의 반복 패턴 파형까지 기대/활용할 수 있는지에 관한 반복 패턴 수(또는 최대 반복 패턴수 등)를 (파라미터 값으로) 간단히 알려주는 방식도 가능하다. 즉, 도 20 및 21과 같은 예시에서 기지국은, NZP CSI-RS를 ‘comb 값(길이) = 4’로 설정함과 동시에 “(한 OFDM 심볼 길이 내) (최대) 2개의 반복 패턴이 발생함(또는 2개까지의 서로 다른 Rx 빔 후보들을 고려한 Rx 빔 스위핑이 적용 가능함)” 등과 같은 형태의 관련 정보를 함께 단말에 제공할 수도 있다. 이때, 반복 패턴 횟수를 파라미터 형태로 알려주는 경우, 기지국은 반복 패턴 횟수에 대응하는 파라미터 값이 ‘2’를 지시하도록 설정하여 단말에 알려줄 수 있다.
그리고/또는, 기지국은 다른 단말에 대한 NZP CSI-RS 전송 RE들이 몇 개까지 (해당 comb 길이/값 내에) 추가로 존재하는지에 관한 정보를 (특정 파라미터 값 형태로) 단말에 별도로 제공할 수도 있다. 예를 들어, 도 20 및 21의 예시의 경우 기지국은, 추가 1개의 NZP (간섭) RE(예를 들어, UE2에 대한 포트 16 전송 RE)가 ‘comb 값/길이=4’ 이내에서 ‘comb 값/길이=4’마다 존재함을 명시적/암시적으로 지시하는 정보를 UE1에 제공해줄 수 있다. 이때, 추가로 존재하는 NZP CSI-RS 전송 RE의 개수를 파라미터 형태로 알려주는 경우, 기지국은 해당 RE 개수에 대응하는 파라미터 값이 ‘1’을 지시하도록 설정하여 단말에 알려줄 수 있다.
본 명세서에서 제안되는 또 다른 기술로서, 단말은 자신이 (하나의 OFDM 심볼 내에서) (최대) 몇 개까지의 RX 빔 후보들을 적용한 빔 스위핑 절차 수행이 가능한지에 관한 UE 능력 시그널링을 기지국에 제공해줄 수도 있다. 이 경우, 기지국은 UE 능력 시그널링을 고려하여 관련된 단말 동작에 문제가 없는 형태의 설정을 제공해야 한다(즉, UE는 UE 능력 시그널링을 통해 지시된 UE의 능력을 벗어난 설정의 제공을 기대하지 않는다).
예를 들어, 단말이 ‘최대 2개의 Rx 빔 후보들을 하나의 OFDM 심볼 내에서 스위핑 절차에 사용/적용할 수 있다’는 형태의 UE 능력 시그널링을 기지국에 전송하였다면, 기지국은 이를 고려하여 ‘comb 길이/값 = 2’로 설정해줄 수 있다. 이때, UE는 ‘comb 길이/값 = 4’로 설정되는 것을 기대하지 않을 수 있다. 또는, 도 20 및 21의 실시예에서와 같이, 기지국은 ‘comb 길이/값 = 4’를 단말에 설정해줄 수 있으며, 이 경우 단말은 다른 NZP 간섭 RE가 각 comb 길이/구간 이내에 적어도 1개 존재하는 것으로 가정/예측할 수 있다.
그리고/또는, UE 능력 시그널링은 명확하게 ‘comb 길이/값이 특정 길이/값까지 설정받을 수 있다(구현되어있다)’는 형태로 시그널링/지원될 수 있다(즉, 최대 comb 길이/값을 포함하도록 시그널링/지원될 수 있음). 그리고/또는, 위 설명들과 유사한 동작을 반영하기 위해, UE 능력 시그널링에 포함되어 있는 (최대) 길이/값보다 더 큰 길이/값을 단말이 설정받는다 하더라도, 도 20 및 21에서의 포트 16과 같이, 다른 NZP 간섭 RE 등이 섞여있어 결국 설정받은 길이/값 ‘이하’의 Rx 빔 후보들로 빔 스위핑 적용의 보장/지원을 기대한다는 형태로 UE 능력 정보가 시그널링/지원될 수 있다.
그리고/또는, 단말의 UE 능력 시그널링에서 다음과 같은 정보도 기지국에 전달될 수 있도록 지원 가능하다:
- 단말의 총 Rx 빔 후보 개수(예를 들어, 8개), 그리고/또는
- 상기 Rx 빔 후보들이 몇 개의 그룹으로 그룹핑될 수 있는지와 관련된 정보(예를 들어, 8개의 Rx 빔 후보들을 4개씩 2그룹으로 그룹핑)(그룹핑의 목적은, 예를 들어, 그룹별로 서로 다른 안테나 패널에 대해 적용되는 경우, Rx 빔 스위핑이 수행됨에 따라 그룹간 스위핑이 적용될 때는 AGC 세팅 등에 큰 전력 범위 변화가 예상될 수 있다는 등과 같은 그룹과 연관된 정보의 전달 목적이 있음),
결국, 기지국은, 후자의 예시(즉, 8개의 Rx 빔 후보들을 4개씩 2그룹으로 그룹핑)와 같은 추가 정보를 UE 능력 시그널링을 통해 수신하면, 예를 들어 ‘comb 값/길이 = 4’가 적용된 CSI-RS를 설정하되, 총 8개의 Rx 빔들(즉, 2개의 후보 빔 그룹)에 대한 스위핑을 지원하기 위해 2개의 OFDM 심볼에 걸친 CSI-RS 설정을 단말에 제공할 수 있다. 이때, 2개의 후보 빔 그룹들은 2개의 OFDM 심볼에 각각 매핑될 수 있으며, 기지국은 단말의 AGC 세팅 시간을 보장해주기 위한 목적 등으로, 후보 빔 그룹들이 매핑되는 OFDM 심볼들이 시간축에서 연속적으로 위치하지 않도록 설정할 수 있다(즉, 후보 빔 그룹들이 시간축에서 연속적으로 전송되지 않도록 설정). 그리고/또는, 이러한 단말 동작이 발생할 수 있음을 고려하여, 기지국은 2개 이상(예를 들어, 3개)의 (연속적인) OFDM 심볼들을 단말에 CSI-RS 설정 제공해줄 수 있으며, 이 경우 단말은 총 12개(=comb 값/길이(4)*OFDM 심볼 개수(3))의 반복 패턴에 대하여, 8개의 RX 빔 후보들을 적절히 선택하여 Rx 빔 스위핑 과정에 적용할 수 있다.
다시 도 19를 참조하면, DL 빔 관리 절차는 2 단계로 수행될 수 있다. TRP(들) 및 UE는 SS 버스트 및/또는 MRS를 이용하여 넓은/굵은(coarse) 빔(예를 들어, 빔들의 그룹) 정렬을 가질 수 있으며, 빔 관리를 위한 CSI-RS 타입 B를 사용하여 최적의 TRP Tx 빔(들) 및 UE Rx 빔(들)을 찾을 수 있다. 이 경우, CSI-RS 내의 안테나 포트 선택을 통해 더욱 미세한(finer) Tx 빔(들) 선택 및 보고가 수행될 수 있도록, 빔 관리를 위한 CSI-RS 자원은 넓은/굵은(coarse) 빔(즉, 빔들의 그룹)에 매핑될 수 있다.
앞서 Tx 및 Rx 빔 스위핑을 위한 CSI-RS 매핑에 대한 3가지 옵션들을 제안하였다. 다만, 상술한 3가지 옵션과 관련하여, 식별된 DL 빔 관리 절차 P-1, P-2 및 P-3을 지원하기 위해 다음과 같은 옵션 1만 지원되는 것으로도 충분하다.
- 옵션 1:
1) Tx 빔(들)은 각 시간 단위 내에서 서브-시간 단위들에 걸쳐 동일함
2) Tx 빔(들)은 시간 단위들에 걸쳐 다름
이와 관련하여, P-3은 다수의 OFDM 심볼들 및/또는 잠재적인(potential) comb 값 세팅이 설정된 단일 CSI-RS 자원을 설정함으로써 지원될 수 있고, P-2는 각각이 하나의 OFDM 심볼로 설정되는 다수의 CSI-RS 자원들을 설정함으로써 지원될 수 있다. 또한, P-1은 각각이 다수의 OFDM 심볼로 설정된 다수의 CSI-RS 자원들이 설정되는 P-2 및 P-3의 조합에 의해 지원될 수 있다.
2. 측정 세팅
CSI-RS 측정은 최상의 TRP Tx 빔 및/또는 UE Rx 빔을 선택하는 데 필요하다. Tx 빔 선택에서, RS 자원은 LTE eFD-MIMO에서와 같이 CSI-RS 자원 지시자(CRI) 선택과 유사하게 RSRP 또는 CQI에 기초하여 선택된다. 한편, UE Rx 빔 선택에 있어서, TRP는 UE 빔 후보들의 수를 알 필요가 있으며, UE Rx 빔 계수 및 UE Rx 빔의 변경 여부는 알 필요가 없다.
DL 빔 관리 프레임 워크 관점에서, 빔 관리를 위한 측정 세팅에는 L≥1 링크도 포함되며, 각 L 링크는 적어도 빔 관리를 위한 보고 세팅과 자원 세팅 사이의 연계를 구성한다.
3. 보고 세팅
빔 관리 절차는 CSI 획득 절차의 특별한 케이스로 이해될 수 있다. 그러나, 빔 관리를 위한 보고 컨텐츠는 CSI 획득을 위한 보고 컨텐츠와 다를 수 있다. 예를 들어, CRI 및/또는 포트 인덱스 보고는 PMI/RI 보고가 없는 빔 관리에 필요할 수 있다. 또한, 빔 강도 관련 메트릭들(예를 들어, RSRP 또는 CQI 타입의 메트릭)은 함께 보고될 필요가 있을 수 있지만, 그 목적은 DL 링크 적응을 포함하지 않을 수 있으므로, 보고 세분성 또는 컨텐츠가 다를 수 있다. 또한, P-3 빔 관리 절차는 CRI 및/또는 포트 인덱스 보고를 요구하지 않지만 새로운 Tx 빔이 P-3에 사용될 수 있는지 여부를 결정하기 위해 RSRP(또는 CQI) 타입의 보고가 필요할 수도 있고 그렇지 않을 수도 있다. 통합된 프레임워크의 경우, 동일한 자원/측정/보고 세팅들로 빔 관리 및 CSI 수집을 지원하는 것이 바람직하지만, 그들 중 의도하지 않은 조합을 피하기 위해 측정/보고 세팅에 대한 특정 필수 제한이 고려될 수 있다.
DL 빔 관리 목적의 빔 보고는 보고 세팅에 포함될 수 있으며, 예를 들어,
- P-1 및 P-2는 자원, 보고 및 측정 세팅으로 지원될 수 있다.
- P-3은 자원 및 측정 세팅으로 지원될 수 있다.
도 22는 본 발명의 일 실시예에 따른 단말의 CSI 보고 방법을 예시한 순서도이다. 본 순서도와 관련하여 앞서 상술한 실시예들의 설명이 동일/유사하게 적용될 수 있으며, 중복되는 설명은 생략한다.
우선, 단말은 CSI-RS 자원 수신을 위한 CSI-RS 자원 설정 정보(예를 들어, 앞서 상술한 자원 세팅 #ID)를 기지국으로부터 수신할 수 있다(S2210).
다음으로, 단말은 CSI 자원 설정 정보에 기초하여 (적어도 하나의) CSI-RS 자원을 수신할 수 있다(S2220).
다음으로, 단말은 상기 (적어도 하나의) CSI-RS 자원을 기초로 생성한 CSI를 기지국에 보고할 수 있다(S2230).
만일, 단말에 대하여 동일한 CSI-RS 자원의 반복 전송이 설정된 경우, 상기 CSI-RS 자원 설정 정보는 동일한 CSI-RS 자원이 매핑되는 서브캐리어(또는 RE로 대체될 수 있음) 위치에 관한 정보를 포함할 수 있다.
보다 상세하게는, 지시 정보는 일 실시예로서, 동일한 (NZP) CSI-RS 자원이 매핑되는 서브캐리어 위치에 관한 제1 지시 정보, ZP(Null) CSI-RS 자원이 매핑되는 서브캐리어 위치에 관한 제2 지시 정보 및/또는 다른 단말을 위한 (NZP) CSI-RS 자원이 매핑되는 서브캐리어 위치에 관한 제3 지시 정보를 포함할 수 있다. 제1 지시 정보는, 동일한 CSI-RS 자원이 매핑되는 첫 번째 서브캐리어의 오프셋 정보(예를 들어, comb 오프셋) 및/또는 동일한 CSI-RS 자원이 매핑되는 서브캐리어 간격 정보(예를 들어, comb 값)를 포함할 수 있다. 제2 지시 정보는, ZP CSI-RS 자원이 매핑되는 첫 번째 서브캐리어의 오프셋 정보(예를 들어, comb 오프셋) 및/또는 상기 ZP CSI-RS 자원이 매핑되는 서브캐리어 간격 정보(예를 들어, comb 값)를 포함할 수 있다. 제3 지시 정보는, 다른 단말을 위한 CSI-RS 자원이 매핑되는 첫 번째 서브캐리어의 오프셋 정보(예를 들어, comb 오프셋) 및/또는 다른 단말을 위한 CSI-RS 자원이 매핑되는 서브캐리어 간격 정보(예를 들어, comb 값)를 포함할 수 있다.
동일한 CSI-RS 자원은, ZP CSI-RS 자원이 매핑되는 서브캐리어를 제외한 나머지 서브캐리어들 사이의 간격만큼 특정 시간-구간 내에서 반복되어 전송될 수 있다. 여기서, 특정 시간-구간은 하나의 OFDM 심볼 구간일 수 있다. 예를 들어, 지시 정보에 의해 ZP CSI-RS 자원이 매핑된 서브캐리어를 제외한 나머지 서브캐리어들 사이의 간격(즉, comb 값/길이)이 2로 지시된 경우, 상기 동일한 CSI-RS 자원은 하나의 OFDM 심볼 구간 내에서 2번 반복되어 전송될 수 있다.
만일, 지시 정보에 의해 별도로 지시되지 않은 서브캐리어가 존재하는 경우, 단말은 해당 서브캐리어에는 다른 단말을 위한 NZP CSI-RS 자원이 매핑된 것으로 가정할 수 있다.
또한, 다른 실시예로서, 지시 정보는, 동일한 CSI-RS 자원이 매핑되는 서브캐리어 위치에 관한 정보로서, 동일한 CSI-RS 자원이 하나의 OFDM 심볼 내에서 반복되는 횟수를 명시적으로 지시할 수도 있다. 또한, 지시 정보는, ZP CSI-RS 자원 및/또는 다른 단말에 대한 CSI-RS 자원이 하나의 RB 내에서 반복되는 횟수에 대해서도 추가로 지시할 수도 있다.
또한, 본 순서도에는 도시하지 않았으나, 단말은 특정 시간-구간 내에서 반복 전송되는 동일한 CSI-RS 자원을 서로 다른 수신 빔 후보들을 사용하여 수신하고, 수신 결과에 기초하여 수신 빔 후보들 중 적어도 하나의 수신 빔 후보를 선택할 수 있다(즉, P-3 BM 절차 수행). 이를 위해, 단말은 자신이 사용 가능한 수신 빔 후보 최대 개수에 관한 정보를 시그널링(예를 들어, UE 능력 시그널링)하여 사전에 기지국에 전송해줄 수 있다. 이 경우, 기지국은 단말로부터 수신한 수신 빔 후보의 최대 개수 정보에 기초하여 동일한 CSI-RS 자원이 반복 전송되는 횟수를 결정할 수 있다. 예를 들어, 기지국은 CSI-RS 반복 전송 횟수를 수신 빔 후보의 최대 개수 이하로 설정할 수 있다.
본 발명이 적용될 수 있는 장치 일반
도 23는 본 발명의 일 실시예에 따른 무선 통신 장치의 블록 구성도를 예시한다.
도 23를 참조하면, 무선 통신 시스템은 기지국(eNB)(2310)과 기지국(2310) 영역 내에 위치한 다수의 단말(UE)(2320)을 포함한다.
기지국(2310)은 프로세서(processor, 2311), 메모리(memory, 2312) 및 RF부(radio frequency unit, 2313)을 포함한다. 프로세서(2311)는 앞서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(2311)에 의해 구현될 수 있다. 메모리(2312)는 프로세서(2311)와 연결되어, 프로세서(2311)를 구동하기 위한 다양한 정보를 저장한다. RF부(2313)는 프로세서(2311)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
단말(2320)은 프로세서(2321), 메모리(2322) 및 RF부(2323)을 포함한다. 프로세서(2321)는 앞서 상술한 실시예들에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(2321)에 의해 구현될 수 있다. 메모리(2322)는 프로세서(2321)와 연결되어, 프로세서(2321)를 구동하기 위한 다양한 정보를 저장한다. RF부(2323)는 프로세서(2321)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
메모리(2312, 2322)는 프로세서(2311, 2321) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(2311, 2321)와 연결될 수 있다. 또한, 기지국(2310) 및/또는 단말(2320)은 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 가질 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
한편, 본 명세서에서 ‘A 및/또는 B’는 A 및/또는 B 중 적어도 하나를 의미하는 것으로 해석될 수 있다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 3GPP LTE/LTE-A/NR 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE/LTE-A/NR 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (15)

  1. 무선 통신 시스템에서 단말의 CSI(Channel State Information) 보고 방법에 있어서,
    CSI-RS(Reference Signal) 자원 수신을 위한 CSI-RS 자원 설정 정보를 기지국으로부터 수신하는 단계;
    상기 CSI 자원 설정 정보에 기초하여 상기 CSI-RS 자원을 수신하는 단계; 및
    상기 CSI-RS 자원을 기초로 생성한 CSI를 상기 기지국에 보고하는 단계; 를 포함하되,
    상기 단말에 대하여 동일한 CSI-RS 자원의 반복 전송이 설정된 경우, 상기 CSI-RS 자원 설정 정보는 상기 동일한 CSI-RS 자원이 매핑되는 서브캐리어 위치에 관한 지시 정보를 포함하는, CSI 보고 방법.
  2. 제 1 항에 있어서,
    상기 지시 정보는,
    상기 동일한 CSI-RS 자원이 매핑되는 서브캐리어 위치에 관한 제1 지시 정보, ZP(zero power) CSI-RS 자원이 매핑되는 서브캐리어 위치에 관한 제2 지시 정보 및/또는 다른 단말을 위한 CSI-RS 자원이 매핑되는 서브캐리어 위치에 관한 제3 지시 정보를 포함하는, CSI 보고 방법.
  3. 제 2 항에 있어서,
    상기 제1 지시 정보는,
    상기 동일한 CSI-RS 자원이 매핑되는 첫 번째 서브캐리어의 오프셋 정보 및/또는 상기 동일한 CSI-RS 자원이 매핑되는 서브캐리어 간격(spacing) 정보를 포함하는, CSI 보고 방법.
  4. 제 3 항에 있어서,
    상기 제2 지시 정보는,
    상기 ZP CSI-RS 자원이 매핑되는 첫 번째 서브캐리어의 오프셋 정보 및/또는 상기 ZP CSI-RS 자원이 매핑되는 서브캐리어 간격 정보를 포함하는, CSI 보고 방법.
  5. 제 4 항에 있어서,
    상기 제3 지시 정보는,
    상기 다른 단말을 위한 상기 CSI-RS 자원이 매핑되는 첫 번째 서브캐리어의 오프셋 정보 및/또는 상기 다른 단말을 위한 상기 CSI-RS 자원이 매핑되는 서브캐리어 간격 정보를 포함하는, CSI 보고 방법.
  6. 제 3 항에 있어서,
    상기 동일한 CSI-RS 자원은, 상기 ZP CSI-RS 자원이 매핑되는 서브캐리어를 제외한 나머지 서브캐리어들 사이의 간격만큼 특정 시간-구간(duration) 내에서 반복되어 전송되는, CSI 보고 방법.
  7. 제 6 항에 있어서,
    상기 특정 시간-구간은 하나의 OFDM(orthogonal frequency division multiple) 심볼 구간인, CSI 보고 방법.
  8. 제 6 항에 있어서,
    상기 지시 정보에 의해 지시되지 않은 서브캐리어가 존재하는 경우, 상기 서브캐리어에는 상기 다른 단말을 위한 상기 NZP CSI-RS 자원이 매핑된 것으로 가정되는, CSI 보고 방법.
  9. 제 8 항에 있어서,
    상기 특정 시간-구간 내에서 반복 전송되는 상기 동일한 CSI-RS 자원을 서로 다른 수신 빔 후보들을 사용하여 수신하는 단계; 및
    상기 수신 결과에 기초하여 상기 수신 빔 후보들 중 적어도 하나의 수신 빔 후보를 선택하는 단계; 를 더 포함하는, CSI 보고 방법.
  10. 제 9 항에 있어서,
    상기 단말이 사용 가능한 수신 빔 후보 최대 개수에 관한 정보를 시그널링하여 상기 기지국에 전송하는 단계; 를 더 포함하는, CSI 보고 방법.
  11. 제 10 항에 있어서,
    상기 동일한 CSI-RS 자원이 상기 특정-시간 구간 내에서 반복 전송되는 횟수는, 상기 단말이 사용 가능한 수신 빔 후보의 최대 개수에 기초하여 결정되는, CSI 보고 방법.
  12. 제 1 항에 있어서,
    상기 지시 정보는, 상기 동일한 CSI-RS 자원이 매핑되는 서브캐리어 위치에 관한 정보로서, 상기 동일한 CSI-RS 자원이 하나의 OFDM(orthogonal frequency division multiple) 심볼 내에서 반복되는 횟수를 지시하는, CSI 보고 방법.
  13. 무선 통신 시스템에서 CSI(Channel State Information)를 보고하는 단말에 있어서,
    무선 신호를 송수신하기 위한 RF(Radio Frequency) 유닛; 및
    상기 RF 유닛을 제어하는 프로세서; 를 포함하고,
    상기 프로세서는,
    상기 RF 유닛을 제어하여 CSI-RS(Reference Signal) 자원 수신을 위한 CSI-RS 자원 설정 정보를 기지국으로부터 수신하고,
    상기 RF 유닛을 제어하여 상기 CSI 자원 설정 정보에 기초하여 상기 CSI-RS 자원을 수신하고,
    상기 RF 유닛을 제어하여 상기 CSI-RS 자원을 기초로 생성한 CSI를 상기 기지국에 보고하되,
    상기 단말에 대하여 동일한 CSI-RS 자원의 반복 전송이 설정된 경우, 상기 CSI-RS 자원 설정 정보는 상기 동일한 CSI-RS 자원이 매핑되는 서브캐리어 위치에 관한 지시 정보를 포함하는, 단말.
  14. 제 13 항에 있어서,
    상기 지시 정보는,
    상기 동일한 CSI-RS 자원이 매핑되는 서브캐리어 위치에 관한 제1 지시 정보, ZP(zero power) CSI-RS 자원이 매핑되는 서브캐리어 위치에 관한 제2 지시 정보 및/또는 다른 단말을 위한 CSI-RS 자원이 매핑되는 서브캐리어 위치에 관한 제3 지시 정보를 포함하는, 단말.
  15. 제 14 항에 있어서,
    상기 동일한 CSI-RS 자원은, 상기 ZP CSI-RS 자원이 매핑되는 서브캐리어를 제외한 나머지 서브캐리어들 사이의 간격만큼 특정 시간-구간(duration) 내에서 반복되어 전송되는, 단말.
PCT/KR2018/001447 2017-02-02 2018-02-02 무선 통신 시스템에서의 채널 상태 정보 보고 방법 및 이를 위한 장치 WO2018143721A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880010039.8A CN110268667B (zh) 2017-02-02 2018-02-02 报告无线通信系统中的信道状态信息的方法及其装置
US16/483,290 US11258499B2 (en) 2017-02-02 2018-02-02 Method for reporting channel state information in wireless communication system and apparatus for same
EP18748652.7A EP3579480B1 (en) 2017-02-02 2018-02-02 Method for reporting channel state information in wireless communication system and apparatus for same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762454038P 2017-02-02 2017-02-02
US62/454,038 2017-02-02
US201762543323P 2017-08-09 2017-08-09
US62/543,323 2017-08-09

Publications (1)

Publication Number Publication Date
WO2018143721A1 true WO2018143721A1 (ko) 2018-08-09

Family

ID=63039870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001447 WO2018143721A1 (ko) 2017-02-02 2018-02-02 무선 통신 시스템에서의 채널 상태 정보 보고 방법 및 이를 위한 장치

Country Status (4)

Country Link
US (1) US11258499B2 (ko)
EP (1) EP3579480B1 (ko)
CN (1) CN110268667B (ko)
WO (1) WO2018143721A1 (ko)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111436223A (zh) * 2018-11-14 2020-07-21 联发科技股份有限公司 用于非相干联合传送信道状态信息报告的传送配置指示状态指示
CN111585724A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 通信方法、装置及设备
WO2020237612A1 (en) * 2019-05-31 2020-12-03 Qualcomm Incorporated Csi report configuration for full-duplex communications
US10917212B2 (en) 2018-08-10 2021-02-09 Mediatek Inc. Default QCL assumption for PDSCH reception
US20210167821A1 (en) * 2018-08-17 2021-06-03 Idac Holdings, Inc. Beam management for multi-trp
WO2021206410A1 (en) * 2020-04-06 2021-10-14 Samsung Electronics Co., Ltd. Method and apparatus for performing beam management based on uplink reference signal
US20220022180A1 (en) * 2020-07-17 2022-01-20 Samsung Electronics Co., Ltd. Method and apparatus for beam management and training
CN116171548A (zh) * 2020-06-30 2023-05-26 高通股份有限公司 用于高多普勒系统的信道状态信息(csi)参考信号(csi-rs)重复配置
US11785626B2 (en) 2019-01-11 2023-10-10 Huawei Technologies Co., Ltd. Resource configuration method and apparatus
US11871422B2 (en) * 2020-03-11 2024-01-09 Qualcomm Incorporated Frequency allocation for channel state information reference signals

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107046435B (zh) 2016-02-05 2021-09-28 索尼公司 无线通信方法和无线通信装置
CN108024371B (zh) * 2016-11-01 2020-07-31 上海朗帛通信技术有限公司 一种用于动态调度的ue、基站中的方法和装置
CN115622674A (zh) * 2017-02-07 2023-01-17 中兴通讯股份有限公司 一种相位噪声导频的配置、确定方法及装置
US10673652B2 (en) * 2017-03-02 2020-06-02 Futurewei Technologies, Inc. System and method for providing explicit feedback in the uplink
AU2017411184A1 (en) * 2017-04-25 2019-12-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Signal processing method and apparatus
US11178666B2 (en) * 2017-04-28 2021-11-16 Ntt Docomo, Inc. User terminal and radio communication method
CN110113143B (zh) * 2017-04-28 2020-12-25 华为技术有限公司 一种参数配置方法和装置
PL3488651T3 (pl) * 2017-05-02 2020-11-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Sposoby i aparaty do wykrywania kanałów kontrolnych w systemach komunikacji bezprzewodowej
CN108111269B (zh) * 2017-05-05 2023-01-10 中兴通讯股份有限公司 一种信道状态信息导频传输方法与装置
EP3619977A4 (en) * 2017-05-05 2020-05-20 ZTE Corporation SYSTEM AND METHOD FOR ASSIGNING RESOURCES
KR102506475B1 (ko) * 2017-08-31 2023-03-06 삼성전자 주식회사 이동 통신 시스템에서의 csi-rs 자원 반복 전송 지원 방법 및 장치
US11778657B2 (en) * 2017-10-27 2023-10-03 Apple Inc. Control resource set information in physical broadcast channel
US11394443B2 (en) * 2017-11-10 2022-07-19 Ntt Docomo, Inc. User terminal and radio communication method
KR102523434B1 (ko) * 2017-11-17 2023-04-19 삼성전자주식회사 무선 통신 시스템에서 기준 신호 설정 방법 및 장치
CN110035450B (zh) 2018-01-12 2020-06-23 维沃移动通信有限公司 测量上报的方法、终端设备和网络设备
CN110034802B (zh) * 2018-01-12 2021-08-20 大唐移动通信设备有限公司 一种信息传输方法及装置
CN110190941B (zh) * 2018-01-12 2022-05-10 华为技术有限公司 一种用于终端设备能力传输的方法、装置及系统
EP3738217A1 (en) * 2018-02-13 2020-11-18 Telefonaktiebolaget Lm Ericsson (Publ) Configuration of spatially qcl reference signal resources for transmissions in communication equipment having multiple antenna panels
GB201802543D0 (en) * 2018-02-16 2018-04-04 Samsung Electronics Co Ltd Reference signal configuration in a telecommunication system
US11088750B2 (en) * 2018-02-16 2021-08-10 Qualcomm Incorporated Feedback of beam switch time capability
WO2019202196A1 (en) * 2018-04-18 2019-10-24 Nokia Technologies Oy Numerology options for new radio
US11139880B2 (en) * 2018-05-04 2021-10-05 Qualcomm Incorporated Dynamic beam-switching latency for beam refinement procedures
US10659109B2 (en) * 2018-07-02 2020-05-19 Qualcomm Incorporated Method and apparatus for expanding quasi-colocation (QCL) signaling to cover varied scenarios
US11950106B2 (en) * 2018-08-09 2024-04-02 Apple Inc. User equipment capability indication of receive beamforming for cell identification
CN110868231B (zh) * 2018-08-10 2021-08-13 华为技术有限公司 管理天线面板的方法、网络设备和终端设备
WO2020029288A1 (en) * 2018-08-10 2020-02-13 Qualcomm Incorporated Quasi-colocation indication for non-zero power channel state information reference signal port groups
WO2020039307A1 (en) * 2018-08-20 2020-02-27 Telefonaktiebolaget Lm Ericsson (Publ) Channel state information feedback in a wireless communication system
EP3836620A4 (en) * 2018-09-19 2021-09-15 Guangdong Oppo Mobile Telecommunications Corp., Ltd. DATA TRANSMISSION PROCESS AND DEVICE, AND STORAGE MEDIA
US11057917B2 (en) * 2018-11-12 2021-07-06 Qualcomm Incorporated Quasi co-location relation configuration for periodic channel state information reference signals
US11368943B2 (en) * 2019-04-05 2022-06-21 Qualcomm Incorporated Uplink control information configuration for random access channel
US11664871B2 (en) * 2019-06-10 2023-05-30 Qualcomm Incorporated Methods and apparatus for UE initiated beam reporting
WO2020252767A1 (en) * 2019-06-21 2020-12-24 Qualcomm Incorporated Codebook subset restriction (cbsr) on per spatial domain amplitude
WO2021032009A1 (en) * 2019-08-16 2021-02-25 Mediatek Inc. Automatic gain control for serving cell activation based on two different reference signals
US11234245B1 (en) * 2019-08-21 2022-01-25 T-Mobile Innovations Llc Beamforming in massive MIMO networks
CN111082912B (zh) * 2019-10-12 2023-07-14 中兴通讯股份有限公司 信息确定方法及装置、电子装置和存储介质
US10993264B1 (en) * 2019-10-15 2021-04-27 Qualcomm Incorporated Multiplexing channel state information reports in multiple transmit-receive point (TRP) scenarios
US11611422B2 (en) * 2019-11-02 2023-03-21 Qualcomm Incorporated Sub-band-full-duplex adaptive base station transceiver
WO2021087844A1 (en) * 2019-11-07 2021-05-14 Qualcomm Incorporated Compressed csi feedback without full csi-rs presence
WO2021114127A1 (en) * 2019-12-11 2021-06-17 Qualcomm Incorporated Quasi-colocation configuration
CN114788209A (zh) * 2020-01-03 2022-07-22 中兴通讯股份有限公司 用于无线通信系统中的改进的信道估计的参考信号参数修改
CN113271128B (zh) * 2020-02-14 2022-09-13 大唐移动通信设备有限公司 一种分集传输方法、装置及发射机
CN115152298A (zh) * 2020-03-13 2022-10-04 华为技术有限公司 一种信道状态信息csi测量的指示方法和通信装置
US20230198725A1 (en) * 2020-06-09 2023-06-22 Qualcomm Incorporated Csi resources and report configuration for full duplex channels
US11575424B2 (en) * 2020-06-30 2023-02-07 Qualcomm Incorporated UE recommended CSI settings
WO2022011628A1 (en) * 2020-07-16 2022-01-20 Nokia Shanghai Bell Co., Ltd. Methods, apparatuses, and computer readable media for controlling measurements in a secondary cell
US11953578B2 (en) * 2020-07-23 2024-04-09 Qualcomm Incorporated Single sided beam management for bistatic air interface based radio frequency sensing in millimeter wave systems
CN116097807A (zh) * 2020-07-31 2023-05-09 Oppo广东移动通信有限公司 测量的方法、终端设备及网络设备
US20230254086A1 (en) * 2020-08-14 2023-08-10 Qualcomm Incorporated Channel state information (csi) processing for pdsch and dmrs based csi
CN116097580A (zh) * 2020-09-15 2023-05-09 苹果公司 符号级波束扫描能力报告
EP4218157A1 (en) * 2020-09-24 2023-08-02 InterDigital Patent Holdings, Inc. Methods, architectures, apparatuses and systems for adaptive learning aided precoder for channel aging in mimo systems
WO2022067640A1 (en) * 2020-09-30 2022-04-07 Lenovo (Beijing) Limited Method and apparatus for determining quasi co-location reference signal (s)
US20220116872A1 (en) * 2020-10-09 2022-04-14 Qualcomm Incorporated Base station report of user equipment antenna selection
CN112312331B (zh) * 2020-10-20 2022-07-08 捷开通讯(深圳)有限公司 一种物理广播信道和信息传输方法、装置
US20220216904A1 (en) * 2020-12-29 2022-07-07 Samsung Electronics Co., Ltd. Method and apparatus of inter-cell beam measurement and reporting
US11516714B2 (en) * 2021-01-08 2022-11-29 Qualcomm Incorporated Measurement of number of spatial-domain streams available for multiplexing
US11503601B2 (en) 2021-01-18 2022-11-15 Nokia Technologies Oy Beam management in wireless communication
WO2022183378A1 (zh) * 2021-03-02 2022-09-09 Oppo广东移动通信有限公司 码本上报的方法、终端设备和网络设备
JP2024511670A (ja) * 2021-04-02 2024-03-14 中興通訊股▲ふん▼有限公司 人工知能を使用する報告およびビーム管理のためのシステムおよび方法
US11791966B2 (en) 2021-09-10 2023-10-17 Qualcomm Incorporated Techniques for reporting channel state information periodicity
CN116489695A (zh) * 2022-01-17 2023-07-25 北京紫光展锐通信技术有限公司 Csi上报方法及装置
WO2023183809A2 (en) * 2022-03-21 2023-09-28 Cohere Technologies, Inc. Channel calibration in high density antenna systems

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101740221B1 (ko) * 2010-01-18 2017-05-29 주식회사 골드피크이노베이션즈 채널상태정보-기준신호 할당 방법 및 장치
EP2654333B1 (en) 2012-04-19 2018-01-31 Samsung Electronics Co., Ltd Method and apparatus for quasi co-location identification of reference symbol ports for coordinated multi-point communication systems
US9537638B2 (en) * 2012-05-11 2017-01-03 Qualcomm Incorporated Method and apparatus for performing coordinated multipoint feedback under multiple channel and interference assumptions
EP2677671B1 (en) * 2012-06-18 2019-06-05 Samsung Electronics Co., Ltd Aperiodic and periodic csi feedback modes for coordinated multi-point transmission
CN110233652B (zh) * 2012-07-02 2022-03-15 Lg 电子株式会社 在无线通信系统中报告信道状态信息的方法和装置
WO2014042378A2 (ko) * 2012-09-12 2014-03-20 엘지전자 주식회사 무선 통신 시스템에서 간섭 제거 기법을 이용한 신호 수신 방법 및 이를 위한 장치
JP6345677B2 (ja) * 2012-10-04 2018-06-20 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてアンテナポート関係を考慮した下りリンク信号送受信方法及び装置
EP3020224B1 (en) 2013-07-09 2021-03-17 LG Electronics Inc. Method for channel state report in wireless communication system and apparatus therefor
US9847962B2 (en) 2014-07-29 2017-12-19 Futurewei Technologies, Inc. Device, network, and method for communications with spatial-specific sensing
CN106301509B (zh) * 2015-05-21 2020-01-17 电信科学技术研究院 一种信道状态信息反馈方法和终端
WO2017111494A1 (en) * 2015-12-22 2017-06-29 Samsung Electronics Co., Ltd. Scheme for configuring reference signal and communicating channel state information in a wireless communication system using multiple antenna ports
WO2017190273A1 (en) * 2016-05-03 2017-11-09 Qualcomm Incorporated Dynamic csi-rs transmission for enhanced fd-mimo
EP3552336B1 (en) * 2016-12-08 2021-02-03 Telefonaktiebolaget LM Ericsson (publ) Controllable csi-rs density
EP4358459A1 (en) * 2016-12-08 2024-04-24 Telefonaktiebolaget LM Ericsson (publ) Obtaining and indicating of component combination used for csi-rs
US10567058B2 (en) * 2017-02-08 2020-02-18 Samsung Electronics Co., Ltd. Method and apparatus for beam management
CN110447212B (zh) * 2017-03-22 2023-10-03 交互数字专利控股公司 用于下一代无线通信系统的参考信号的方法及装置
CN108633061B9 (zh) * 2017-03-25 2023-09-29 中兴通讯股份有限公司 传输参数确定方法及装置
US11277301B2 (en) * 2017-09-07 2022-03-15 Comcast Cable Communications, Llc Unified downlink control information for beam management

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CATT: "Discussion on CSI-RS for beam management", 3GPP TSG RAN WG1 AH_NR MEETING R1-1700229, 10 January 2017 (2017-01-10), Spokane, USA, XP051202732 *
INTEL CORPORATION ET AL.: "CSI-RS Structure for Beam Management", R1-1700350, 3GPP TSG RAN WG1 NR AD-HOC MEETING, 10 January 2017 (2017-01-10), Spokane, USA, XP051202828 *
NOKIA: "On CSI-RS Design for DL Beam Management", R1-1701102, 3GPP TSG RAN WG1 NR AD-HOC MEETING, 9 January 2017 (2017-01-09), Spokane, USA, XP051202397 *
SAMSUNG: "CSI-RS for beam management", R1-1700927, 3GPP TSG RAN WG1 NR AD HOC, 10 January 2017 (2017-01-10), Spokane, USA, XP051203222 *
SAMSUNG: "DL beam management RS for multi-beam > 6GHZ NR system", R1-1612495, 3GPP TSG RAN WG1 MEETING #87, 4 November 2016 (2016-11-04), Reno, USA, XP051189622 *
See also references of EP3579480A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10917212B2 (en) 2018-08-10 2021-02-09 Mediatek Inc. Default QCL assumption for PDSCH reception
TWI723488B (zh) * 2018-08-10 2021-04-01 聯發科技股份有限公司 默認準共位假設之方法及其使用者設備
US11671149B2 (en) * 2018-08-17 2023-06-06 Interdigital Patent Holdings, Inc. Beam management for multi-TRP
US20210167821A1 (en) * 2018-08-17 2021-06-03 Idac Holdings, Inc. Beam management for multi-trp
CN111436223A (zh) * 2018-11-14 2020-07-21 联发科技股份有限公司 用于非相干联合传送信道状态信息报告的传送配置指示状态指示
US11785626B2 (en) 2019-01-11 2023-10-10 Huawei Technologies Co., Ltd. Resource configuration method and apparatus
CN111585724A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 通信方法、装置及设备
WO2020237612A1 (en) * 2019-05-31 2020-12-03 Qualcomm Incorporated Csi report configuration for full-duplex communications
US11871422B2 (en) * 2020-03-11 2024-01-09 Qualcomm Incorporated Frequency allocation for channel state information reference signals
WO2021206410A1 (en) * 2020-04-06 2021-10-14 Samsung Electronics Co., Ltd. Method and apparatus for performing beam management based on uplink reference signal
CN116171548A (zh) * 2020-06-30 2023-05-26 高通股份有限公司 用于高多普勒系统的信道状态信息(csi)参考信号(csi-rs)重复配置
US20220022180A1 (en) * 2020-07-17 2022-01-20 Samsung Electronics Co., Ltd. Method and apparatus for beam management and training
EP4165784A4 (en) * 2020-07-17 2023-12-13 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR BEAM MANAGEMENT, DRIVE

Also Published As

Publication number Publication date
US20200112355A1 (en) 2020-04-09
EP3579480A1 (en) 2019-12-11
US11258499B2 (en) 2022-02-22
EP3579480B1 (en) 2022-08-17
CN110268667B (zh) 2022-05-24
EP3579480A4 (en) 2020-12-02
CN110268667A (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
WO2018143721A1 (ko) 무선 통신 시스템에서의 채널 상태 정보 보고 방법 및 이를 위한 장치
WO2019108048A1 (ko) 무선 통신 시스템에서 상향링크 송수신 방법 및 이를 위한 장치
WO2018203728A1 (ko) 무선 통신 시스템에서 상향링크 송수신 방법 및 이를 위한 장치
WO2018128504A1 (ko) 무선 통신 시스템에서 상향링크 송수신 방법 및 이를 위한 장치
WO2018056789A1 (ko) 무선 통신 시스템에서 상향링크 송수신 방법 및 이를 위한 장치
WO2018203680A1 (ko) 무선 통신 시스템에서 빔을 통해 신호를 송수신하는 방법 및 이를 위한 장치
WO2018128365A1 (ko) 무선 통신 시스템에서 물리 상향링크 제어 채널 전송 방법 및 이를 위한 장치
WO2017039399A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치
WO2018203616A1 (ko) 동기 신호를 수신하는 방법 및 이를 위한 장치
WO2018128351A1 (ko) 무선 통신 시스템에서 빔을 이용하여 신호를 송수신하는 방법 및 이를 위한 장치
WO2018128376A1 (ko) 무선 통신 시스템에서 상향링크 채널을 송수신하는 방법 및 이를 위한 장치
WO2018203704A1 (ko) 무선 통신 시스템에서 빔 복구를 수행하는 방법 및 이를 위한 장치
WO2018164332A1 (ko) 무선 통신 시스템에서 빔 복구를 수행하는 방법 및 이를 위한 장치
WO2018128493A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 상향링크 신호 송수신 방법 및 이를 지원하는 장치
WO2018230975A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 보고하는 방법 및 이를 위한 장치
WO2016204549A1 (ko) 무선 통신 시스템에서 기준 신호 전송 방법 및 장치
WO2021172942A1 (en) Method and apparatus for supporting beam indication channel
WO2018174413A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 측정 및 보고하는 방법 및 이를 위한 장치
WO2017090987A1 (ko) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 이를 위한 장치
WO2018062937A1 (ko) 무선 통신 시스템에서의 데이터 송수신 방법 및 이를 위한 장치
WO2017026794A1 (ko) 무선 통신 시스템에서 csi-rs와 관련된 단말의 동작 방법 및 이를 지원하기 위한 장치
WO2018199704A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치
WO2017052330A1 (ko) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 이를 위한 장치
WO2018203679A1 (ko) 무선 통신 시스템에서 빔을 이용하여 신호를 송수신하는 방법 및 이를 위한 장치
WO2019066618A1 (ko) 무선 통신 시스템에서 qcl에 기초하여 데이터를 송수신하기 위한 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018748652

Country of ref document: EP

Effective date: 20190902