WO2018056789A1 - 무선 통신 시스템에서 상향링크 송수신 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 상향링크 송수신 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2018056789A1
WO2018056789A1 PCT/KR2017/010628 KR2017010628W WO2018056789A1 WO 2018056789 A1 WO2018056789 A1 WO 2018056789A1 KR 2017010628 W KR2017010628 W KR 2017010628W WO 2018056789 A1 WO2018056789 A1 WO 2018056789A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
csi
transmission
base station
resource
Prior art date
Application number
PCT/KR2017/010628
Other languages
English (en)
French (fr)
Inventor
박종현
강지원
김기준
박해욱
Original Assignee
엘지전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US16/065,723 priority Critical patent/US10819407B2/en
Priority to JP2019516135A priority patent/JP6840841B2/ja
Priority to CN201780047388.2A priority patent/CN109565311B/zh
Priority to AU2017332423A priority patent/AU2017332423B2/en
Priority to RU2019112447A priority patent/RU2717840C1/ru
Priority to EP17853503.5A priority patent/EP3480968B1/en
Priority to EP20189216.3A priority patent/EP3758247A1/en
Priority to BR112019005754-4A priority patent/BR112019005754B1/pt
Application filed by 엘지전자(주) filed Critical 엘지전자(주)
Priority to MYPI2019001621A priority patent/MY194573A/en
Priority to CA3035000A priority patent/CA3035000C/en
Priority to KR1020197005098A priority patent/KR102219351B1/ko
Priority to SG11201901549TA priority patent/SG11201901549TA/en
Priority to MX2019002900A priority patent/MX2019002900A/es
Publication of WO2018056789A1 publication Critical patent/WO2018056789A1/ko
Priority to US16/288,742 priority patent/US10819408B2/en
Priority to PH12019500590A priority patent/PH12019500590A1/en
Priority to US17/015,312 priority patent/US11296760B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0486Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking channel rank into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0645Variable feedback
    • H04B7/065Variable contents, e.g. long-term or short-short
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/563Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method for transmitting uplink Multi Input Multi Output (MIMO) and an apparatus for supporting the same.
  • MIMO uplink Multi Input Multi Output
  • Mobile communication systems have been developed to provide voice services while ensuring user activity.
  • the mobile communication system has expanded not only voice but also data service.As a result of the explosive increase in traffic, a shortage of resources and users are demanding higher speed services, a more advanced mobile communication system is required. have.
  • An object of the present invention is to propose a method for uplink Multi Input Multi Output (MIMO) transmission.
  • MIMO Multi Input Multi Output
  • an object of the present invention is to propose a method of configuring downlink control information (DCI) for uplink MIMO (Multi Input Multi Output) transmission.
  • DCI downlink control information
  • an object of the present invention is to propose a method for transmitting an uplink reference signal (Uplink Reference Signal) which is the basis for uplink MIMO (Multi Input Multi Output) transmission and a method of controlling the same.
  • Uplink Reference Signal Uplink Reference Signal
  • MIMO Multi Input Multi Output
  • An aspect of the present invention provides a sounding reference signal (SRS) resource indication (SRI) from a base station in a method of performing uplink transmission by a user equipment (UE) in a wireless communication system.
  • SRS sounding reference signal
  • SRI resource indication
  • DCI downlink control information
  • a user equipment (UE) for performing uplink transmission in a wireless communication system includes a radio frequency (RF) unit for transmitting and receiving a radio signal and a processor for controlling the RF unit. And the processor receives a downlink control information (DCI) including a sounding reference signal (SRS) resource indication (SRI) and a precoding indication from a base station, It may be configured to transmit the uplink to the base station by applying the precoding indicated by the precoding indication on the antenna port of the SRS transmitted in the SRS resources selected by the SRI.
  • DCI downlink control information
  • SRS sounding reference signal
  • SRI resource indication
  • the method may further include transmitting a pre-coded SRS for each one or more SRS resources configured for the UE to the base station.
  • the beamforming vector and / or beamforming coefficient applied for the precoded SRS transmission may be set by the base station by control channel signaling or may be arbitrarily determined by the UE.
  • a beamforming vector and / or a beamforming coefficient applied for the precoded SRS transmission in the SRS resource may be used to receive a downlink reference signal (DL RS). It may be determined based on the beamforming vector and / or beamforming coefficient used.
  • DL RS downlink reference signal
  • the DL RS is a channel state information reference signal (CSI-RS), and a beamforming vector and / or beamforming coefficient applied for the precoded SRS transmission.
  • CSI-RS channel state information reference signal
  • the CSI-RS resource used to determine the coefficient may be indicated by the base station.
  • an independent beamforming vector and / or beamforming coefficient may be applied to each subband for the precoded SRS transmission in the SRS resource.
  • the beamforming vector and / or beamforming coefficient applied to the precoded SRS transmission for each subband is a beamforming vector used for reception of a downlink reference signal (DL RS). (beamforming) and / or may be determined based on the beamforming coefficient (beamforming coefficient).
  • DL RS downlink reference signal
  • the DL RS is a channel state information reference signal (CSI-RS), and a beamforming vector and / or beamforming coefficient applied for the precoded SRS transmission.
  • CSI-RS channel state information reference signal
  • the CSI-RS resource used to determine the coefficient may be indicated by the base station.
  • the DCI may further include a rank indication for the uplink transmission.
  • the number of ranks for the uplink transmission may be determined by the number of antenna ports of the SRS transmitted in the SRS resource selected by the SRI.
  • the precoding instruction can be divided into a first precoding instruction and a second precoding instruction, and the second precoding instruction can be joint encoded with uplink resource allocation information scheduled to the UE. .
  • frequency preselected optimized precoding may be supported in uplink.
  • uplink transmission throughput may be improved by applying optimized precoding for each uplink subband (resource block group).
  • an overhead of uplink-related downlink control information for applying uplink subband (resource block group) precoding can be minimized.
  • FIG. 1 illustrates a structure of a radio frame in a wireless communication system to which the present invention can be applied.
  • FIG. 2 is a diagram illustrating a resource grid for one downlink slot in a wireless communication system to which the present invention can be applied.
  • FIG. 3 shows a structure of a downlink subframe in a wireless communication system to which the present invention can be applied.
  • FIG. 4 shows a structure of an uplink subframe in a wireless communication system to which the present invention can be applied.
  • MIMO 5 is a configuration diagram of a general multiple input / output antenna (MIMO) communication system.
  • FIG. 6 is a diagram illustrating a channel from a plurality of transmit antennas to one receive antenna.
  • FIG. 7 illustrates a reference signal pattern mapped to a downlink resource block pair in a wireless communication system to which the present invention can be applied.
  • FIG. 8 is a diagram illustrating a resource to which a reference signal is mapped in a wireless communication system to which the present invention can be applied.
  • FIG. 9 illustrates an uplink subframe including a sounding reference signal symbol in a wireless communication system to which the present invention can be applied.
  • FIG. 10 is a diagram illustrating a self-contained subframe structure in a wireless communication system to which the present invention can be applied.
  • FIG. 11 illustrates a transceiver unit model in a wireless communication system to which the present invention can be applied.
  • FIG. 12 is a diagram illustrating a service area per transceiver unit in a wireless communication system to which the present invention can be applied.
  • FIG. 13 is a diagram illustrating an uplink transmission and reception method according to an embodiment of the present invention.
  • FIG. 14 illustrates a block diagram of a wireless communication device according to an embodiment of the present invention.
  • a base station has a meaning as a terminal node of a network that directly communicates with a terminal.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases. That is, it is obvious that various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a 'base station (BS)' may be replaced by terms such as a fixed station, a Node B, an evolved-NodeB (eNB), a base transceiver system (BTS), an access point (AP), and the like. .
  • a 'terminal' may be fixed or mobile, and may include a user equipment (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), and an AMS ( Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC) Device, Machine-to-Machine (M2M) Device, Device-to-Device (D2D) Device, etc.
  • UE user equipment
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS Advanced Mobile Station
  • WT Wireless Terminal
  • MTC Machine-Type Communication
  • M2M Machine-to-Machine
  • D2D Device-to-Device
  • downlink means communication from a base station to a terminal
  • uplink means communication from a terminal to a base station.
  • a transmitter may be part of a base station, and a receiver may be part of a terminal.
  • a transmitter may be part of a terminal and a receiver may be part of a base station.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA).
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802, 3GPP and 3GPP2. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • FIG. 1 illustrates a structure of a radio frame in a wireless communication system to which the present invention can be applied.
  • 3GPP LTE / LTE-A supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • Type 1A illustrates the structure of a type 1 radio frame.
  • Type 1 radio frames may be applied to both full duplex and half duplex FDD.
  • a radio frame consists of 10 subframes.
  • One subframe consists of two consecutive slots in the time domain, and subframe i consists of slot 2i and slot 2i + 1.
  • the time taken to transmit one subframe is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
  • uplink transmission and downlink transmission are distinguished in the frequency domain. While there is no restriction on full-duplex FDD, the terminal cannot simultaneously transmit and receive in half-duplex FDD operation.
  • One slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain. Since 3GPP LTE uses OFDMA in downlink, the OFDM symbol is for representing one symbol period. The OFDM symbol may be referred to as one SC-FDMA symbol or symbol period.
  • a resource block is a resource allocation unit and includes a plurality of consecutive subcarriers in one slot.
  • FIG. 1B illustrates a frame structure type 2.
  • an uplink-downlink configuration is a rule indicating whether uplink and downlink are allocated (or reserved) for all subframes.
  • Table 1 shows an uplink-downlink configuration.
  • 'D' represents a subframe for downlink transmission
  • 'U' represents a subframe for uplink transmission
  • 'S' represents a downlink pilot.
  • a special subframe consisting of three fields: a time slot, a guard period (GP), and an uplink pilot time slot (UpPTS).
  • DwPTS is used for initial cell search, synchronization or channel estimation at the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • GP is a section for removing interference caused in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • the uplink-downlink configuration can be classified into seven types, and the location and / or number of downlink subframes, special subframes, and uplink subframes are different for each configuration.
  • Switch-point periodicity refers to a period in which an uplink subframe and a downlink subframe are repeatedly switched in the same manner, and both 5ms or 10ms are supported.
  • the special subframe S exists every half-frame, and in case of having a period of 5ms downlink-uplink switching time, it exists only in the first half-frame.
  • subframes 0 and 5 and DwPTS are sections for downlink transmission only.
  • the subframe immediately following the UpPTS and the subframe subframe is always an interval for uplink transmission.
  • the uplink-downlink configuration may be known to both the base station and the terminal as system information.
  • the base station may notify the terminal of the change of the uplink-downlink allocation state of the radio frame by transmitting only an index of the configuration information.
  • the configuration information is a kind of downlink control information, which may be transmitted through a physical downlink control channel (PDCCH) like other scheduling information, and is commonly transmitted to all terminals in a cell through a broadcast channel as broadcast information. May be
  • PDCCH physical downlink control channel
  • Table 2 shows the configuration of the special subframe (length of DwPTS / GP / UpPTS).
  • the structure of a radio frame according to the example of FIG. 1 is just one example, and the number of subcarriers included in the radio frame or the number of slots included in the subframe and the number of OFDM symbols included in the slot may vary. Can be.
  • FIG. 2 is a diagram illustrating a resource grid for one downlink slot in a wireless communication system to which the present invention can be applied.
  • one downlink slot includes a plurality of OFDM symbols in the time domain.
  • one downlink slot includes seven OFDM symbols, and one resource block includes 12 subcarriers in a frequency domain, but is not limited thereto.
  • Each element on the resource grid is a resource element, and one resource block (RB) includes 12 ⁇ 7 resource elements.
  • the number N ⁇ DL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth.
  • the structure of the uplink slot may be the same as the structure of the downlink slot.
  • FIG. 3 shows a structure of a downlink subframe in a wireless communication system to which the present invention can be applied.
  • up to three OFDM symbols in the first slot in a subframe are control regions to which control channels are allocated, and the remaining OFDM symbols are data regions to which PDSCH (Physical Downlink Shared Channel) is allocated. data region).
  • PDSCH Physical Downlink Shared Channel
  • An example of a downlink control channel used in 3GPP LTE includes a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid-ARQ indicator channel (PHICH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols (ie, the size of the control region) used for transmission of control channels within the subframe.
  • the PHICH is a response channel for the uplink and carries an ACK (Acknowledgement) / NACK (Not-Acknowledgement) signal for a hybrid automatic repeat request (HARQ).
  • Control information transmitted through the PDCCH is called downlink control information (DCI).
  • the downlink control information includes uplink resource allocation information, downlink resource allocation information or an uplink transmission (Tx) power control command for a certain terminal group.
  • the PDCCH is a resource allocation and transmission format of DL-SCH (Downlink Shared Channel) (also referred to as a downlink grant), resource allocation information of UL-SCH (Uplink Shared Channel) (also called an uplink grant), and PCH ( Paging information in paging channel, system information in DL-SCH, resource allocation for upper-layer control message such as random access response transmitted in PDSCH, arbitrary terminal It may carry a set of transmission power control commands for the individual terminals in the group, activation of Voice over IP (VoIP), and the like.
  • the plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs.
  • the PDCCH consists of a set of one or a plurality of consecutive CCEs.
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to the state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups.
  • the format of the PDCCH and the number of available bits of the PDCCH are determined according to the association between the number of CCEs and the coding rate provided by the CCEs.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the terminal, and attaches a CRC (Cyclic Redundancy Check) to the control information.
  • the CRC is masked with a unique identifier (referred to as RNTI (Radio Network Temporary Identifier)) according to the owner or purpose of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • a unique identifier of the terminal for example, a C-RNTI (Cell-RNTI) may be masked to the CRC.
  • a paging indication identifier for example, P-RNTI (P-RNTI) may be masked to the CRC.
  • the system information more specifically, the PDCCH for the system information block (SIB), the system information identifier and the system information RNTI (SI-RNTI) may be masked to the CRC.
  • SI-RNTI system information RNTI
  • RA-RNTI random access-RNTI
  • FIG. 4 shows a structure of an uplink subframe in a wireless communication system to which the present invention can be applied.
  • an uplink subframe may be divided into a control region and a data region in the frequency domain.
  • a physical uplink control channel (PUCCH) carrying uplink control information is allocated to the control region.
  • the data region is allocated a Physical Uplink Shared Channel (PUSCH) that carries user data.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • a PUCCH for one UE is allocated a resource block (RB) pair in a subframe.
  • RBs belonging to the RB pair occupy different subcarriers in each of the two slots.
  • This RB pair allocated to the PUCCH is said to be frequency hopping at the slot boundary (slot boundary).
  • MIMO Multi-Input Multi-Output
  • MIMO technology generally uses multiple transmit (Tx) antennas and multiple receive (Rx) antennas, away from those which generally use one transmit antenna and one receive antenna.
  • the MIMO technology is a technique for increasing capacity or individualizing performance by using multiple input / output antennas at a transmitting end or a receiving end of a wireless communication system.
  • 'MIMO' will be referred to as a 'multi-input / output antenna'.
  • the multi-input / output antenna technology does not rely on one antenna path to receive one total message, but collects a plurality of pieces of data received through several antennas to complete complete data.
  • multiple input / output antenna technology can increase the data rate within a specific system range, and can also increase the system range through a specific data rate.
  • MIMO communication technology is the next generation mobile communication technology that can be widely used in mobile communication terminals and repeaters, and attracts attention as a technology that can overcome the transmission limit of other mobile communication depending on the limit situation due to the expansion of data communication. have.
  • MIMO multiple input / output antenna
  • MIMO 5 is a configuration diagram of a general multiple input / output antenna (MIMO) communication system.
  • the theoretical channel transmission capacity is proportional to the number of antennas unlike the case where a plurality of antennas are used only in a transmitter or a receiver.
  • the transmission rate according to the increase in the channel transmission capacity may theoretically increase as the maximum rate R_o multiplied by the following rate increase rate R_i when using one antenna.
  • a transmission rate four times higher than a single antenna system may be theoretically obtained.
  • the technique of the multiple input / output antennas improves transmission rate by simultaneously transmitting a plurality of data symbols by using a spatial diversity scheme that improves transmission reliability by using symbols passing through various channel paths and by using a plurality of transmit antennas. It can be divided into spatial multiplexing method. In addition, researches on how to appropriately combine these two methods to obtain the advantages of each are being studied in recent years.
  • the spatial diversity scheme there is a space-time block code sequence and a space-time trellis code sequence system that simultaneously uses diversity gain and coding gain.
  • the bit error rate improvement performance and the code generation freedom are excellent in the trellis code method, but the operation complexity is simple in the space-time block code.
  • Such a spatial diversity gain can be obtained by an amount corresponding to the product N_T ⁇ N_R of the number of transmit antennas N_T and the number of receive antennas N_R.
  • the spatial multiplexing technique is a method of transmitting different data strings at each transmitting antenna, and at the receiver, mutual interference occurs between data transmitted simultaneously from the transmitter.
  • the receiver removes this interference using an appropriate signal processing technique and receives it.
  • the noise cancellation schemes used here include: maximum likelihood detection (MLD) receivers, zero-forcing (ZF) receivers, minimum mean square error (MMSE) receivers, Diagonal-Bell Laboratories Layered Space-Time (D-BLAST), V-BLAST (Vertical-Bell Laboratories Layered Space-Time).
  • MLD maximum likelihood detection
  • ZF zero-forcing
  • MMSE minimum mean square error
  • D-BLAST Diagonal-Bell Laboratories Layered Space-Time
  • V-BLAST Very-Bell Laboratories Layered Space-Time
  • N_T transmit antennas and N_R receive antennas as shown in FIG. 5.
  • N_T the maximum transmittable information
  • the transmission power may be different in each of the transmission information s_1, s_2, ..., s_N_T, and if each transmission power is P_1, P_2, ..., P_N_T, transmission information whose transmission power is adjusted Can be represented by the following vector:
  • the transmission information in which the transmission power of Equation 3 is adjusted may be represented as a diagonal matrix P of the transmission power as follows.
  • the information vector in which the transmission power of Equation 4 is adjusted is then multiplied by the weight matrix W to form N_T transmission signals x_1, x_2, ..., x_N_T which are actually transmitted.
  • the weight matrix plays a role of appropriately distributing transmission information to each antenna according to a transmission channel situation.
  • Such transmission signals x_1, x_2, ..., x_N_T can be expressed as follows using a vector x.
  • w_ij represents a weight between the i th transmit antenna and the j th transmission information, and W represents this in a matrix.
  • W is called a weight matrix or a precoding matrix.
  • the above-described transmission signal (x) can be considered divided into the case of using the spatial diversity and the case of using the spatial multiplexing.
  • the elements of the information vector s all have different values, while using spatial diversity causes the same signal to be sent through multiple channel paths. Therefore, the elements of the information vector s all have the same value.
  • a method of mixing spatial multiplexing and spatial diversity is also conceivable. That is, for example, the same signal may be transmitted using spatial diversity through three transmission antennas, and the rest may be considered to be spatially multiplexed to transmit different signals.
  • the reception signals will be represented by the vectors y of the reception signals y_1, y_2, ..., y_N_R of each antenna as follows.
  • each channel may be classified according to a transmit / receive antenna index, and a channel passing through the receive antenna i from the transmit antenna j will be denoted as h_ij. Note that the order of the index of h_ij is that of the receiving antenna index first and that of the transmitting antenna is later.
  • These channels can be grouped together and displayed in vector and matrix form.
  • An example of the vector display is described as follows.
  • FIG. 6 is a diagram illustrating a channel from a plurality of transmit antennas to one receive antenna.
  • a channel arriving from a total of N_T transmit antennas to a reception antenna i may be expressed as follows.
  • Equation 7 when all the channels passing through the N_R receiving antennas from the N_T transmitting antennas through the matrix representation as shown in Equation 7 can be expressed as follows.
  • n_1, n_2, ..., n_N_R added to each of the N_R receiving antennas is expressed as a vector. Is as follows.
  • each of the multiple input / output antenna communication systems may be represented through the following relationship.
  • the number of rows and columns of the channel matrix H indicating the state of the channel is determined by the number of transmit and receive antennas.
  • the number of rows is equal to the number of receiving antennas N_R
  • the number of columns is equal to the number of transmitting antennas N_T.
  • the channel matrix H becomes an N_R ⁇ N_T matrix.
  • the rank of a matrix is defined as the minimum number of rows or columns that are independent of each other.
  • the rank of the matrix cannot be greater than the number of rows or columns.
  • the rank (H) of the channel matrix H is limited as follows.
  • the rank when the matrix is subjected to eigen value decomposition, the rank may be defined as the number of nonzero eigenvalues among eigen values. Similarly, the rank can be defined as the number of non-zero singular values when SVD (singular value decomposition). Therefore, the physical meaning of rank in the channel matrix is the maximum number that can send different information in a given channel.
  • 'rank' for MIMO transmission refers to the number of paths that can independently transmit a signal at a specific time point and a specific frequency resource, and 'number of layers' is transmitted through each path.
  • the transmitting end since the transmitting end transmits the number of layers corresponding to the number of ranks used for signal transmission, unless otherwise specified, the rank has the same meaning as the number of layers.
  • the signal Since data is transmitted over a wireless channel in a wireless communication system, the signal may be distorted during transmission. In order to correctly receive the distorted signal at the receiving end, the distortion of the received signal must be corrected using the channel information.
  • a signal transmission method known to both a transmitting side and a receiving side and a method of detecting channel information using a distorted degree when a signal is transmitted through a channel are mainly used.
  • the above-mentioned signal is called a pilot signal or a reference signal (RS).
  • RS can be classified into two types according to its purpose. There is an RS for obtaining channel state information and an RS used for data demodulation. Since the former is intended for the UE to acquire channel state information on the downlink, it should be transmitted over a wide band, and a UE that does not receive downlink data in a specific subframe should be able to receive and measure its RS. It is also used for radio resource management (RRM) measurement such as handover.
  • RRM radio resource management
  • the latter is an RS that the base station sends along with the corresponding resource when the base station transmits the downlink, and the UE can estimate the channel by receiving the RS, and thus can demodulate the data. This RS should be transmitted in the area where data is transmitted.
  • the downlink reference signal is one common reference signal (CRS: common RS) for acquiring information on channel states shared by all terminals in a cell, measurement of handover, etc. and a dedicated reference used for data demodulation only for a specific terminal. There is a dedicated RS. Such reference signals may be used to provide information for demodulation and channel measurement. That is, DRS is used only for data demodulation and CRS is used for both purposes of channel information acquisition and data demodulation.
  • CRS common reference signal
  • the receiving side measures the channel state from the CRS and transmits an indicator related to the channel quality such as the channel quality indicator (CQI), precoding matrix index (PMI) and / or rank indicator (RI). Feedback to the base station).
  • CRS is also referred to as cell-specific RS.
  • CSI-RS a reference signal related to feedback of channel state information
  • the DRS may be transmitted through resource elements when data demodulation on the PDSCH is needed.
  • the UE may receive the presence or absence of a DRS through a higher layer and is valid only when a corresponding PDSCH is mapped.
  • the DRS may be referred to as a UE-specific RS or a demodulation RS (DMRS).
  • FIG. 7 illustrates a reference signal pattern mapped to a downlink resource block pair in a wireless communication system to which the present invention can be applied.
  • a downlink resource block pair may be represented by 12 subcarriers in one subframe x frequency domain in a time domain in which a reference signal is mapped. That is, one resource block pair on the time axis (x-axis) has a length of 14 OFDM symbols in the case of normal cyclic prefix (normal CP) (in case of FIG. 7 (a)), and an extended cyclic prefix ( extended CP: Extended Cyclic Prefix) has a length of 12 OFDM symbols (in case of FIG. 7 (b)).
  • normal CP normal cyclic prefix
  • extended CP Extended Cyclic Prefix
  • the resource elements (REs) described as '0', '1', '2' and '3' in the resource block grid are determined by the CRS of the antenna port indexes '0', '1', '2' and '3', respectively.
  • the location of the resource element described as 'D' means the location of the DRS.
  • the CRS is used to estimate a channel of a physical antenna and is distributed in the entire frequency band as a reference signal that can be commonly received to all terminals located in a cell. That is, this CRS is a cell-specific signal and is transmitted every subframe for the wideband.
  • the CRS may be used for channel quality information (CSI) and data demodulation.
  • CSI channel quality information
  • CRS is defined in various formats depending on the antenna arrangement at the transmitting side (base station).
  • base station In a 3GPP LTE system (eg, Release-8), RS for up to four antenna ports is transmitted according to the number of transmit antennas of a base station.
  • the downlink signal transmitting side has three types of antenna arrangements such as a single transmit antenna, two transmit antennas, and four transmit antennas. For example, if the number of transmitting antennas of the base station is two, CRSs for antenna ports 0 and 1 are transmitted, and if four, CRSs for antenna ports 0 to 3 are transmitted. When there are four transmitting antennas of the base station, the CRS pattern in one RB is shown in FIG.
  • the reference signal for the single antenna port is arranged.
  • the reference signals for the two transmit antenna ports are arranged using time division multiplexing (TDM) and / or FDM frequency division multiplexing (FDM) scheme. That is, the reference signals for the two antenna ports are assigned different time resources and / or different frequency resources so that each is distinguished.
  • TDM time division multiplexing
  • FDM frequency division multiplexing
  • reference signals for the four transmit antenna ports are arranged using the TDM and / or FDM scheme.
  • the channel information measured by the receiving side (terminal) of the downlink signal may be transmitted by a single transmit antenna, transmit diversity, closed-loop spatial multiplexing, open-loop spatial multiplexing, or It can be used to demodulate the transmitted data using a transmission scheme such as a multi-user multi-input / output antenna (Multi-User MIMO).
  • a reference signal when a multiple input / output antenna is supported, when a reference signal is transmitted from a specific antenna port, the reference signal is transmitted to a location of resource elements specified according to a pattern of the reference signal, and the location of resource elements specified for another antenna port. Is not sent to. That is, reference signals between different antennas do not overlap each other.
  • DRS is used to demodulate data. Precoding weights used for a specific terminal in multiple I / O antenna transmission are used without change to estimate the corresponding channel by combining with the transmission channel transmitted from each transmission antenna when the terminal receives the reference signal.
  • the 3GPP LTE system (eg, Release-8) supports up to four transmit antennas and a DRS for rank 1 beamforming is defined.
  • the DRS for rank 1 beamforming also indicates a reference signal for antenna port index 5.
  • LTE system evolution In the advanced LTE-A system, it should be designed to support up to eight transmit antennas in the downlink of the base station. Therefore, RS for up to eight transmit antennas must also be supported. Since the downlink RS in the LTE system defines only RSs for up to four antenna ports, when the base station has four or more up to eight downlink transmit antennas in the LTE-A system, RSs for these antenna ports are additionally defined. Must be designed. RS for up to eight transmit antenna ports must be designed for both the RS for channel measurement and the RS for data demodulation described above.
  • an RS for an additional up to eight transmit antenna ports should be additionally defined in the time-frequency domain in which CRS defined in LTE is transmitted every subframe over the entire band.
  • the RS overhead becomes excessively large.
  • the newly designed RS in LTE-A system is divided into two categories, RS for channel measurement purpose for selecting MCS, PMI, etc. (CSI-RS: Channel State Information-RS, Channel State Indication-RS, etc.) And RS (Data Demodulation-RS) for demodulation of data transmitted through eight transmit antennas.
  • CSI-RS Channel State Information-RS, Channel State Indication-RS, etc.
  • RS Data Demodulation-RS
  • CSI-RS for the purpose of channel measurement has a feature that is designed for channel measurement-oriented purposes, unlike the conventional CRS is used for data demodulation at the same time as the channel measurement, handover, and the like. Of course, this may also be used for the purpose of measuring handover and the like. Since the CSI-RS is transmitted only for the purpose of obtaining channel state information, unlike the CRS, the CSI-RS does not need to be transmitted every subframe. In order to reduce the overhead of the CSI-RS, the CSI-RS is transmitted intermittently on the time axis.
  • the DM-RS is transmitted to the UE scheduled in the corresponding time-frequency domain for data demodulation. That is, the DM-RS of a specific UE is transmitted only in a region where the UE is scheduled, that is, a time-frequency region in which data is received.
  • LTE-A system up to eight transmit antennas are supported on the downlink of a base station.
  • the RS for up to 8 transmit antennas are transmitted in every subframe in the same manner as the CRS of the existing LTE, the RS overhead becomes excessively large. Therefore, in the LTE-A system, two RSs are added, separated into CSI-RS for CSI measurement and DM-RS for data demodulation for selecting MCS and PMI.
  • the CSI-RS can be used for purposes such as RRM measurement, but is designed for the purpose of obtaining CSI. Since the CSI-RS is not used for data demodulation, it does not need to be transmitted every subframe.
  • the CSI-RS may be periodically transmitted with an integer multiple of one subframe or may be transmitted in a specific transmission pattern. At this time, the period or pattern in which the CSI-RS is transmitted may be set by the eNB.
  • the DM-RS is transmitted to the UE scheduled in the corresponding time-frequency domain. That is, the DM-RS of a specific UE is transmitted only in a region where the UE is scheduled, that is, a time-frequency region in which data is received.
  • the UE In order to measure the CSI-RS, the UE must transmit the CSI-RS index of the CSI-RS for each CSI-RS antenna port of the cell to which it belongs, and the CSI-RS resource element (RE) time-frequency position within the transmitted subframe. , And information about the CSI-RS sequence.
  • RE resource element
  • the eNB should transmit CSI-RS for up to eight antenna ports, respectively.
  • Resources used for CSI-RS transmission of different antenna ports should be orthogonal to each other.
  • the CSI-RSs for each antenna port may be mapped to different REs so that these resources may be orthogonally allocated in the FDM / TDM manner.
  • the CSI-RSs for different antenna ports may be transmitted in a CDM scheme that maps to orthogonal codes.
  • the eNB informs its cell UE of the information about the CSI-RS, it is necessary to first inform the information about the time-frequency to which the CSI-RS for each antenna port is mapped. Specifically, the subframe numbers through which the CSI-RS is transmitted, or the period during which the CSI-RS is transmitted, the subframe offset through which the CSI-RS is transmitted, and the OFDM symbol number where the CSI-RS RE of a specific antenna is transmitted, and the frequency interval (spacing), the RE offset or shift value in the frequency axis.
  • the CSI-RS sequence is a complex-valued modulation symbol a_k used as a reference symbol on each antenna port p as shown in Equation 12 below. maps to, l ⁇ (p)
  • Equation 12 k ', l' (where k 'is a subcarrier index in a resource block and l' represents an OFDM symbol index in a slot) and the conditions of n_s are as shown in Table 3 or Table 4 below. It is determined according to the same CSI-RS configuration.
  • Table 3 illustrates the mapping of (k ', l') from the CSI-RS configuration in the generic CP.
  • Table 4 illustrates the mapping of (k ', l') from the CSI-RS configuration in the extended CP.
  • ICI inter-cell interference
  • HetNet heterogeneous network
  • the CSI-RS configuration is different depending on the number of antenna ports and the CP in the cell, and adjacent cells may have different configurations as much as possible.
  • the CSI-RS configuration may be divided into a case of applying to both the FDD frame and the TDD frame and the case of applying only to the TDD frame according to the frame structure.
  • (k ', l') and n_s are determined according to the CSI-RS configuration, and time-frequency resources used for CSI-RS transmission are determined according to each CSI-RS antenna port.
  • FIG. 8 is a diagram illustrating a resource to which a reference signal is mapped in a wireless communication system to which the present invention can be applied.
  • FIG. 8 (a) shows 20 CSI-RS configurations available for CSI-RS transmission by one or two CSI-RS antenna ports
  • FIG. 8 (b) shows four CSI-RS antenna ports.
  • 10 shows CSI-RS configurations available for use
  • FIG. 8 (c) shows five CSI-RS configurations available for CSI-RS transmission by eight CSI-RS antenna ports.
  • the radio resource (ie, RE pair) to which the CSI-RS is transmitted is determined according to each CSI-RS configuration.
  • CSI-RS is performed on a radio resource according to the configured CSI-RS configuration among the 10 CSI-RS configurations shown in FIG. Is sent.
  • CSI-RS is performed on a radio resource according to the CSI-RS configuration among the five CSI-RS configurations shown in FIG. Is sent.
  • CSI-RS for each antenna port is transmitted by CDM to the same radio resource per two antenna ports (that is, ⁇ 15,16 ⁇ , ⁇ 17,18 ⁇ , ⁇ 19,20 ⁇ , and ⁇ 21,22 ⁇ ). do.
  • the respective CSI-RS complex symbols for antenna ports 15 and 16 are the same, but different orthogonal codes (e.g., Walsh codes) are multiplied to the same radio resource.
  • the complex symbol of CSI-RS for antenna port 15 is multiplied by [1, 1]
  • the complex symbol of CSI-RS for antenna port 16 is multiplied by [1 -1] and mapped to the same radio resource.
  • the UE can detect the CSI-RS for a particular antenna port by multiplying the transmitted multiplied code. That is, the multiplied code [1 1] is multiplied to detect the CSI-RS for the antenna port 15, and the multiplied code [1 -1] is multiplied to detect the CSI-RS for the antenna port 16.
  • the radio resources according to the CSI-RS configuration having a small number of CSI-RS antenna ports It includes radio resources.
  • the radio resource for the number of eight antenna ports includes both the radio resource for the number of four antenna ports and the radio resource for the number of one or two antenna ports.
  • a plurality of CSI-RS configurations may be used in one cell. Only non-zero power (NZP) CSI-RS is used with zero or one CSI-RS configuration, and zero power (ZP: zero power) CSI-RS is zero or multiple CSI-RS. Configuration can be used.
  • NZP non-zero power
  • ZP zero power
  • ZP CSI-RS For each bit set to 1 in ZP CSI-RS (ZP CSI-RS), a 16-bit bitmap set by the upper layer, the UE corresponds to the four CSI-RS columns of Tables 3 and 4 above. Assume zero transmit power in the REs (except in the case of overlapping with the RE assuming the NZP CSI-RS set by the upper layer). Most Significant Bit (MSB) corresponds to the lowest CSI-RS configuration index, and the next bit in the bitmap corresponds to the next CSI-RS configuration index.
  • MSB Most Significant Bit
  • the CSI-RS is transmitted only in a downlink slot that satisfies the condition of (n_s mod 2) in Tables 3 and 4 and a subframe that satisfies the CSI-RS subframe configuration.
  • CSI-RSs are not transmitted in subframes that conflict with special subframe, sync signal (SS), PBCH, or SIB 1 (SystemInformationBlockType1) message transmission or subframes configured for paging message transmission. Do not.
  • the CSI-RS is not configured to be transmitted every subframe, but is configured to be transmitted at a predetermined transmission period corresponding to a plurality of subframes. In this case, the CSI-RS transmission overhead may be much lower than in the case where the CSI-RS is transmitted every subframe.
  • T_CSI-RS Subframe periods
  • ⁇ _CSI-RS subframe offset
  • Table 5 illustrates a CSI-RS subframe configuration
  • the CSI-RS transmission period (T_CSI-RS) and the subframe offset ( ⁇ _CSI-RS) are determined according to the CSI-RS subframe configuration (I_CSI-RS).
  • the CSI-RS subframe configuration of Table 5 may be set to any one of a 'SubframeConfig' field and a 'zeroTxPowerSubframeConfig' field.
  • the CSI-RS subframe configuration may be set separately for the NZP CSI-RS and the ZP CSI-RS.
  • the subframe including the CSI-RS satisfies Equation 13 below.
  • T_CSI-RS denotes a CSI-RS transmission period
  • ⁇ _CSI-RS denotes a subframe offset value
  • n_f denotes a system frame number
  • n_s denotes a slot number
  • one UE may configure one CSI-RS resource configuration.
  • the UE may be configured with one or more CSI-RS resource configuration (s).
  • the CSI-RS configuration is composed of the number of antenna ports (antennaPortsCount), subframe configuration (subframeConfig), resource configuration (resourceConfig), and how many antenna ports the CSI-RS is transmitted on It tells what is the period and offset of the subframe to be transmitted and at which RE location (i.e., frequency and OFDM symbol index) in that subframe.
  • each CSI-RS (resource)
  • parameters for configuring each CSI-RS are set through higher layer signaling.
  • CSI-RS port count A parameter indicating the number of antenna ports used for CSI-RS transmission (for example, 1 CSI-RS port, 2 CSI-RS port, 4 CSI-RS port, 8 CSI) -RS port)
  • CSI-RS configuration (refer to Tables 3 and 4): parameters relating to CSI-RS allocated resource location
  • CSI-RS subframeConfig i.e., I_CSI-RS
  • Table 5 parameters relating to the subframe period and / or offset to which the CSI-RS will be transmitted
  • transmit power (P_C) for CSI feedback in relation to the UE's assumption of reference PDSCH transmit power for feedback, the UE derives CSI feedback and scales it in 1 dB steps [-8, 15].
  • P_C is assumed to be the ratio of Energy Per Resource Element (EPRE) and CSI-RS EPRE per PDSCH RE.
  • transmission power (P_C) for CSI feedback for each CSI process. If the CSI subframe sets C_CSI, 0 and C_CSI, 1 are set by the higher layer for the CSI process, P_C is set for each CSI subframe set of the CSI process.
  • QCL scrambling identifier qcl-ScramblingIdentity-r11
  • CRS port count crs-PortsCount-r11
  • MBSFN subframe configuration list mbsfn-
  • P_C is assumed as the ratio of PDSCH EPRE to CSI-RS EPRE.
  • the PDSCH EPRE corresponds to a symbol in which the ratio of PDSCH EPRE to CRS EPRE is ⁇ _A.
  • the CSI-RS and the PMCH are not configured together.
  • the UE When four CRS antenna ports are configured in frame structure type 2, the UE is a CSI belonging to the [20-31] set (see Table 3) for the normal CP or the [16-27] set for the extended CP (see Table 4). -RS configuration index not set.
  • the UE uses the CSI-RS antenna port of the CSI-RS resource configuration for delay spread, Doppler spread, Doppler shift, average gain, and average delay. You can assume that you have a QCL relationship.
  • antenna ports 0-3 corresponding to CSI-RS resource configuration and antenna ports 15-22 corresponding to CSI-RS resource configuration are used for Doppler spread and Doppler shift. can be assumed to be a QCL relationship.
  • one UE may configure one ZP CSI-RS resource configuration for a serving cell.
  • one or more ZP CSI-RS resource configurations may be configured for the serving cell.
  • the following parameters for ZP CSI-RS resource configuration may be configured through higher layer signaling.
  • ZP CSI-RS Configuration List (zeroTxPowerResourceConfigList) (see Tables 3 and 4): Parameters for zero-power CSI-RS configuration
  • ZP CSI-RS subframe configuration (eroTxPowerSubframeConfig, i.e. I_CSI-RS) (see Table 5): parameters relating to the subframe period and / or offset in which the zero-power CSI-RS is transmitted
  • ZP CSI-RS and PMCH are not set at the same time.
  • one or more CSI-IM (Channel-State Information-Interference Measurement) resource configuration may be set for a serving cell.
  • the following parameters for configuring each CSI-IM resource may be configured through higher layer signaling.
  • the CSI-IM resource configuration is the same as any one of the configured ZP CSI-RS resource configurations.
  • the CSI-IM resource and the PMCH in the same subframe of the serving cell are not configured at the same time.
  • SRS Sounding Reference Signal
  • SRS is mainly used for measuring channel quality in order to perform frequency-selective scheduling of uplink and is not related to transmission of uplink data and / or control information.
  • the present invention is not limited thereto, and the SRS may be used for various other purposes for improving power control or supporting various start-up functions of terminals which are not recently scheduled.
  • start-up functions include initial modulation and coding scheme (MCS), initial power control for data transmission, timing advance, and frequency semi-selective scheduling. May be included.
  • MCS initial modulation and coding scheme
  • frequency semi-selective scheduling refers to scheduling in which frequency resources are selectively allocated to the first slot of a subframe, and pseudo-randomly jumps to another frequency in the second slot to allocate frequency resources.
  • the SRS may be used to measure downlink channel quality under the assumption that the radio channel is reciprocal between uplink and downlink. This assumption is particularly valid in time division duplex (TDD) systems where uplink and downlink share the same frequency spectrum and are separated in the time domain.
  • TDD time division duplex
  • Subframes of the SRS transmitted by any terminal in the cell may be represented by a cell-specific broadcast signal.
  • the 4-bit cell-specific 'srsSubframeConfiguration' parameter indicates an array of 15 possible subframes through which the SRS can be transmitted over each radio frame. Such arrangements provide flexibility for the adjustment of the SRS overhead in accordance with a deployment scenario.
  • the sixteenth arrangement of these switches completely switches off the SRS in the cell, which is mainly suitable for a serving cell serving high-speed terminals.
  • FIG. 9 illustrates an uplink subframe including a sounding reference signal symbol in a wireless communication system to which the present invention can be applied.
  • the SRS is always transmitted on the last SC-FDMA symbol on the arranged subframe.
  • the SRS and DMRS are located in different SC-FDMA symbols.
  • PUSCH data transmissions are not allowed in certain SC-FDMA symbols for SRS transmissions.
  • the sounding overhead is equal to the highest sounding overhead, even if all subframes contain SRS symbols. It does not exceed about 7%.
  • Each SRS symbol is generated by a base sequence (random sequence or a set of sequences based on Zadoff-Ch (ZC)) for a given time unit and frequency band, and all terminals in the same cell use the same base sequence.
  • SRS transmissions from a plurality of terminals in the same cell at the same frequency band and at the same time are orthogonal to each other by different cyclic shifts of the basic sequence to distinguish them from each other.
  • SRS sequences from different cells may be distinguished by assigning different base sequences to each cell, but orthogonality between different base sequences is not guaranteed.
  • Massive Machine Type Communications which connects multiple devices and objects to provide various services anytime and anywhere, is also one of the major issues to be considered in next-generation communication.
  • MTC Massive Machine Type Communications
  • a communication system design considering a service / UE that is sensitive to reliability and latency is being discussed.
  • FIG. 10 is a diagram illustrating a self-contained subframe structure in a wireless communication system to which the present invention can be applied.
  • a fifth generation (5G) new RAT considers a self-contained subframe structure as shown in FIG. 10.
  • the hatched area represents a downlink (DL) control area
  • the black portion represents an uplink (UL) control area.
  • the area without the shaded display may be used for DL data transmission, or may be used for UL data transmission.
  • the feature of this structure is that DL transmission and UL transmission proceed sequentially in one subframe, DL data can be transmitted in a subframe, and UL ACK / NACK can also be received. As a result, when a data transmission error occurs, the time required for data retransmission is reduced, thereby minimizing latency of final data transmission.
  • a time gap is required for a base station and a UE to switch from a transmission mode to a reception mode or a process of switching from a reception mode to a transmission mode.
  • some OFDM symbols at the time of switching from DL to UL in the self-contained subframe structure are set to a guard period (GP).
  • mmW millimeter wave
  • the wavelength is shortened to allow the installation of multiple antenna elements in the same area. That is, in the 30 GHz band, the wavelength is 1 cm, and a total of 64 (8x8) antenna elements are arranged in a two-dimensional array in a 0.5 lambda (ie, wavelength) interval in a panel of 4 by 4 (4 by 4) cm. Installation is possible. Therefore, in mmW, a plurality of antenna elements are used to increase the beamforming gain (BF) to increase coverage or to increase throughput.
  • BF beamforming gain
  • TXRU Transceiver Unit
  • having a transceiver unit (TXRU: Transceiver Unit) to enable transmission power and phase adjustment for each antenna element enables independent beamforming for each frequency resource.
  • TXRU Transceiver Unit
  • a method of mapping a plurality of antenna elements to one TXRU and adjusting a beam direction with an analog phase shifter is considered.
  • the analog BF method has a disadvantage in that only one beam direction can be made in all bands so that frequency selective BF cannot be performed.
  • hybrid beamforming having B TXRUs having a smaller number than Q antenna elements in an intermediate form between digital BF and analog BF may be considered.
  • hybrid BF hybrid beamforming
  • connection method between a TXRU and an antenna element will be described with reference to the accompanying drawings.
  • FIG. 11 illustrates a transceiver unit model in a wireless communication system to which the present invention can be applied.
  • TXRU virtualization model represents the relationship between the output signal of the TXRU and the output signal of the antenna elements.
  • TXRU virtualization model option-1 as shown in FIG. 11 (a): sub-array partition model and TXRU virtualization model option as shown in FIG. 11 (b) -2: can be divided into a full-connection model.
  • the antenna element is divided into multiple antenna element groups, and each TXRU is connected to one of the groups.
  • the antenna element is connected to only one TXRU.
  • signals of multiple TXRUs are combined and delivered to a single antenna element (or an array of antenna elements). That is, the TXRU is connected to all antenna elements. In this case, the antenna element is connected to all TXRUs.
  • q is a transmission signal vector of antenna elements having M equally polarized signals in one column.
  • w is a wideband TXRU virtualization weight vector, and W is a phase vector multiplied by an analog phase shifter. That is, the direction of analog beamforming is determined by W.
  • x is a signal vector of M_TXRU TXRUs.
  • mapping between the antenna port and the TXRUs may be one-to-one (1-to-1) or one-to-many.
  • the TXRU-to-element mapping is only one example, and the present invention is not limited thereto, and TXRU and antenna elements may be implemented in various forms from a hardware point of view. The present invention can be equally applied to the mapping between them.
  • a user equipment In a 3GPP LTE / LTE-A system, a user equipment (UE) has been defined to report channel state information (CSI) to a base station (BS or eNB).
  • CSI channel state information
  • CSI collectively refers to information that may indicate the quality of a radio channel (also called a link) formed between a UE and an antenna port.
  • a rank indicator (RI) For example, a rank indicator (RI), a precoding matrix indicator (PMI), a channel quality indicator (CQI), and the like correspond to this.
  • PMI precoding matrix indicator
  • CQI channel quality indicator
  • RI represents rank information of a channel, which means the number of streams that a UE receives through the same time-frequency resource. Since this value is determined dependent on the long term fading of the channel, it is fed back from the UE to the BS with a period that is generally longer than PMI, CQI.
  • PMI is a value reflecting channel spatial characteristics and represents a precoding index preferred by the UE based on a metric such as a signal-to-interference-plus-noise ratio (SINR).
  • SINR signal-to-interference-plus-noise ratio
  • the base station may configure a plurality of CSI processes to the UE and receive and report CSI for each process.
  • the CSI process consists of a CSI-RS for signal quality measurement from a base station and a CSI-Interference Measurement (CSI-IM) resource for interference measurement.
  • CSI-IM CSI-Interference Measurement
  • PDSCH may be transmitted in only one analog beam direction at one time by analog beamforming.
  • only a small number of UEs in the corresponding direction can transmit data from the base station. Therefore, by differently setting the analog beam direction for each antenna port as necessary, data transmission can be simultaneously performed to a plurality of UEs in different analog beam directions.
  • FIG. 12 is a diagram illustrating a service area per transceiver unit in a wireless communication system to which the present invention can be applied.
  • FIG. 12 four sub-arrays are formed by dividing 256 antenna elements into four parts, and a structure in which TXRUs are connected to the sub-arrays as shown in FIG. 11 will be described as an example.
  • a specific analog beamforming may cover an area corresponding to a horizontal angle of 15 degrees and a vertical angle of 15 degrees. . That is, the area that the base station should serve is divided into a plurality of areas, and serviced one at a time.
  • antenna port and TXRU have the same meaning in the following description.
  • TXRU 0, 1, 2, 3 have the same analog beamforming direction (i.e. region 1), as shown in Figure 12 (a)
  • higher resolution It is possible to increase the throughput of the area by forming a digital beam having a resolution.
  • rank By increasing the rank (rank) of the data transmitted to the region can increase the throughput of the region.
  • each TXRU (antenna port, sub-array) (ie, ports 0, 1, 2, and 3) has different analog beamforming directions (ie, region 1 or region). 2), data can be simultaneously transmitted in a corresponding subframe (SF) to UEs distributed in a wider area.
  • SF subframe
  • two of the four antenna ports are used for PDSCH transmission to UE1 in region 1 and the other two are used for PDSCH transmission to UE2 in region 2 Can be.
  • FIG. 12 (b) shows an example of spatial division multiplexing (SDM) of PDSCH1 transmitted to UE1 and PDSCH2 transmitted to UE2.
  • SDM spatial division multiplexing
  • PDSCH1 transmitted to UE1 and PDSCH2 transmitted to UE2 may be transmitted by frequency division multiplexing (FDM).
  • FDM frequency division multiplexing
  • MCS modulation and coding scheme
  • the base station calculates the cell throughput or scheduling metric obtained when serving a region using all antenna ports, and calculates the cell throughput or scheduling metric obtained when serving two regions by dividing the antenna ports. do.
  • the base station may select the final transmission method by comparing the cell throughput or scheduling metric obtained through each method.
  • the number of antenna ports participating in PDSCH transmission in subframe units may vary.
  • CSI feedback from the UE suitable for this is required.
  • BRS Beam Reference Signal
  • the reference signal sequence 'r_l (m)' may be defined as in Equation 14 below.
  • N_RB ⁇ max, DL represents the largest downlink band configuration and is expressed as a multiple of N_sc ⁇ RB.
  • N_sc ⁇ RB represents the size of a resource block in the frequency domain and is expressed by the number of subcarriers.
  • Equation 14 c (i) may be predefined as a pseudo-random sequence.
  • the pseudo-random sequence generator may be initialized at the beginning of every OFDM symbol using Equation 15 below.
  • N_ID ⁇ cell represents a physical layer cell identifier.
  • n_s floor (l / 7), and floor (x) represents a floor function that yields a maximum integer less than or equal to x.
  • l ' l mod 7, where mod represents a modulo operation.
  • BRRS Beam Refinement Reference Signal
  • the reference signal sequence 'r_l, ns (m)' may be defined as in Equation 16 below.
  • n_s is a slot number in a radio frame.
  • l is the OFDM symbol number in the slot.
  • c (i) may be predefined as a pseudo-random sequence.
  • the pseudo-random sequence generator can be initialized at the beginning of every OFDM symbol using Equation 17 below.
  • N_ID ⁇ BRRS is set to the UE through RRC signaling.
  • the phase noise compensation reference signal associated with the xPDSCH may exist as a valid reference for phase noise compensation only when the xPDSCH transmission is associated with the corresponding antenna port.
  • the phase noise compensation reference signal associated with the xPDSCH may be transmitted only on the physical resource block and symbol to which the xPDSCH is mapped.
  • the phase noise compensation reference signal associated with the xPDSCH may be the same in all symbols according to the xPDSCH assignment.
  • the reference signal sequence 'r (m)' is defined as in Equation 18 below.
  • c (i) may be predefined as a pseudo-random sequence.
  • the pseudo-random sequence generator may be initialized at the beginning of every subframe using Equation 19 below.
  • n_SCID is 0 unless otherwise specified.
  • n_SCID is given in the DCI format associated with the xPDSCH transmission.
  • Non reciprocity based UL MIMO eg PMI based
  • Reciprocity based UL MIMO eg, UE derives a precoder based on downlink RS measurement) (including partial reciprocity)
  • TRPs transmit reception points
  • multiple points may be coordinated.
  • signaling associated with UL reciprocity based operation is introduced. For example, UE capability to indicate calibration accuracy
  • Frequency selective and frequency non-selective precoding in the digital domain can be considered for large system bandwidth.
  • Support for frequency selective precoding is determined in accordance with the determination of the NR waveform (s). The value of large system bandwidth is discussed later.
  • analogous base station-based (BS) mechanism For example, analogous base station-based (BS) mechanism
  • UE-aided and BS-centric mechanism The UE recommends candidate UL precoders to the BS from a predefined codebook based on the DL RS measurement. The BS then determines the final precoder to use from the codebook.
  • UE-centric and BS-aided mechanisms For example, UE-centric and BS-aided mechanisms: The BS provides the CSI (eg, channel response, indirect-related information) to the UE. The UE then determines the final precoder based on the information received from the BS.
  • CSI eg, channel response, indirect-related information
  • Frequency selective and frequency non-selective precoding in the digital domain can be considered for large system bandwidth.
  • Support for frequency selective precoding is determined in accordance with the determination of the NR waveform (s). The value of large system bandwidth is discussed later.
  • UE-aided and BS-centric mechanism The UE recommends candidate UL precoders to the BS based on the DL RS measurement. The BS then determines the final precoder.
  • UE-centric and BS-aided mechanisms For example, UE-centric and BS-aided mechanisms: The BS provides the CSI (eg, channel response, interference-related information) to the UE. The UE then determines the final precoder based on the information received from the BS.
  • CSI eg, channel response, interference-related information
  • Example 1 Signaling of a Single or Multiple PMI over DL Control and / or Data Channel
  • first level DCI includes location indication of second level DCI.
  • Example 2 In case of TDD, DL RS based precoder calculation at UE
  • frequency selective precoding is determined according to the RAN1 decision (eg, NR frame structure, waveform (s)).
  • UL precoding granularity ie, UL subband size
  • the evaluation should include UL specific aspects such as cubic metric (CM) analysis according to the UL waveform.
  • CM cubic metric
  • precoding information is also transmitted (for example, in DCI format). Include). Accordingly, the UE performs UL transmission by applying the indicated (single wideband) precoder to the scheduled physical resource block (PRB) (s).
  • PRB physical resource block
  • the UL must directly indicate the subband precoder when the base station grants the UL grant, which may cause excessive control channel overhead in proportion to the number of subbands.
  • the present invention proposes a method for applying the UL subband precoding while minimizing UL-related DCI overhead.
  • U1 is a relatively wideband (and / or long-term) precoder attribute
  • U2 is a relatively subband (and / or short-term) precoder attribute. Can be distinguished.
  • the present invention is not limited thereto, and the operation of the present invention described below may also be performed based on a single PMI (eg, TPMI) or precoder.
  • PMI eg, TPMI
  • precoder e.g., TPMI
  • a specific frequency axis resource unit is referred to as a “subband,” but the present invention is not limited thereto and should be understood as a term that refers to a specific frequency axis resource unit.
  • the term subband may be changed / mixed with each other in all / part descriptions of the present invention, such as RB, PRB, PRB Group (eg, PRG Group).
  • the U1 codebook may be configured as a widely-spaced beam for environments where it is advantageous to be selected (e.g., similar to an open-loop scheme, when the terminal speed is high, etc.).
  • each U1 information may include specific beam vectors to be selected by the U2.
  • each set of Discrete Fourier Transform (DFT) vectors equal to the number of UL transmit antenna ports of the UE (e.g., the number of antenna ports can be previously transmitted by the UE in SRS form, etc.).
  • U1 may be configured.
  • each U1 index may be designed in the form of a closely-spaced beam group.
  • the base station performs UL scheduling on the UE, it is useful to configure U1 with neighbor candidate beam vectors including the final specific beam direction to be indicated. That is, since U1 is a relatively wideband (and / or long term) precoder attribute, it is advantageous as U1 includes beams to be selected / indicated for the final beam optimized for each subband.
  • U1 information is designed.
  • the base station may set / indicate which U1 and / or U2 codebook should be applied to the UE by separate signaling before or during the UL scheduling (eg, by DCI).
  • the U1 codebook itself may be fixed as one, there is an advantage of enabling a more flexible codebook operation by supporting a function that may be changed / activated / reactivated by the setting / instruction of the base station as in the present invention. have.
  • the fact that U2 is 2 bits means that a total of four different U2 information can be indicated.
  • the beam group corresponding to the above-described U1 index may include four specific beam vectors, and each U2 information may be used in the two-bit selection index scheme to determine which of the beams to apply for each subband. It can be indicated per subband.
  • U2 when U1 is 4 bits, U2 may be more than 2 bits. For example, if U2 is 4 bits, 2 bits are allocated for "beam selector" so that a total of 4 different U2 information can be indicated, and co-phasing the selected beam. By allocating 2 bits (for example, Quadrature Phase Shift Keying (QPSK) " co-phasing ") connecting in a form, the total U2 may be set to 4 bits.
  • QPSK Quadrature Phase Shift Keying
  • This co-phasing is composed of a cross-polarized antenna type between a specific (two) transmission antenna port group of the terminal, and by applying a group-phase between the groups of the same beam. It can be applied in such a way as to configure the precoder in co-phasing form.
  • the U2 information is mapped / instructed for each subband, which may be set / instructed together with an UL resource allocation (RA) field scheduled for the corresponding UE.
  • RA resource allocation
  • the resource allocation information of the corresponding UL grant message is configured in the form of a specific PRB bitmap (for example, if each bit of the bitmap is '1', the corresponding PRB (ie, the PRB corresponding to the corresponding bit position) is It is included in the scheduled PRB and is not included in the case of '0'), which is not simply configured as a '1' or '0' bitmap, and can be extended to include K bit information for each PRB index. That is, it may correspond to one PRB for each K bit in the bitmap.
  • a structure for transmitting the U2 information through a corresponding 2 ⁇ K state for each PRB is proposed.
  • K 2
  • K 2
  • '01' indicates that the PRB is included in the scheduled PRB and applies the first precoder in U1.
  • '10' indicates that the PRB is included in the scheduled PRB and applies the second precoder in U1.
  • '11' indicates that the PRB is included in the scheduled PRB and applies the third precoder in U1.
  • the above encoding scheme is just one example, and descriptions of states such as '01', '10', and '11' may be defined in other forms, or RRC signaling and The base station may change / configure the same higher layer signal.
  • the base station may change / configure the same higher layer signal.
  • the scheduling information and the U2 information are jointly encoded in one bitmap, signaling overhead can be reduced as compared to the case where a bitmap for transmitting scheduling information and a bitmap for delivering U2 information are respectively configured. It has an effect.
  • the RA field is maintained as a bitmap in units of 1 bit, and a bitmap in units of K bits to transfer U2 information for each subband (per PRB / PRG) is provided as a separate field (or as a separate DCI (independent). May be applied). That is, a separate field indicating K bit (U2) precoder information may be defined / configured for each subband corresponding to a specific PRB (s) unit in the scheduled PRB region indicated by the RA field.
  • LA link adaptation
  • UL RS uplink reference signal
  • specific uplink RS eg, SRS, etc.
  • transmission may be configured / implemented by the terminal.
  • uplink RS will be described as SRS, but the present invention is not limited thereto.
  • Type 1 UL-LA UE (UL-LA process operation starting with precoded SRS transmission):
  • the UE may be defined / configured to transmit a specific precoded SRS (or beamformed SRS).
  • the base station may measure the precoded SRS of the specific port (s) and determine the previously proposed U1 and / or U2 information.
  • the base station is then accompanied by a UL scheduling grant accompanying it (e.g., via a separate DCI (field) for U1 or a message container for conveying specific control information (layer 1 (L1) and / or layer). 2 (L2: Layer 2) signaling may be delivered separately to the terminal) may be transmitted to the terminal.
  • L1 layer 1
  • 2 Layer 2
  • a type 1 UL-LA operation is described in which a UL link adaptation (UL-LA) process is initiated by starting a precoded SRS transmission without a specific non-coded SRS transmission procedure. Or UE).
  • UL-LA UL link adaptation
  • the UE may transmit precoded / beamformed SRS port (s) to which, for example, analog beamforming has been applied in a specific direction through the specific precoded SRS. And, by measuring the (analog) beamformed SRS port (s) by the base station to derive the appropriate U1 and / or U2 for this and to inform the UE in the above manner, the UE can be applied to UL transmission .
  • the corresponding beamforming vector (s) / coefficient (s) to be applied to the precoded / beamformed SRS by the UE may be determined as follows. First, a UE may measure a DL specific RS (eg, a Radio Resource Management-RS (RRM-RS), a BRS, a BRRS, etc.) transmitted by a base station. And, the UE finds the best "serving-beam” (may report it) and the UE for this is its (paired) best "Rx-”. Rx-receiving-beam ". The UE then reverses this best "Rx-receiving-beam” using the DL / UL channel reciprocity characteristic (or beam pair link).
  • RRM-RS Radio Resource Management-RS
  • the SRS When transmitting a precoded / beamformed SRS (for example, by taking a Hermitian), the SRS may be transmitted by applying the corresponding beamforming vector / coefficient (s). That is, the SRS transmission may be performed with the same spatial filtering as the spatial filtering used for the reception of a particular DL RS (e.g., the best "serving-beam"). .
  • the operation of such a UE may be predefined or set in the UE.
  • a UE may apply a precoded / beamformed SRS that applies a “Rx-receiving-beam” corresponding to a second-best “serving-beam”. Operation may be supported such that the base station can instruct / trigger to transmit.
  • a specific identifier e.g., Beam State Information (BSI) that allows the UE to recognize that number of " serving-beams " ) May be directed to the UE from the base station.
  • BSI Beam State Information
  • the beamforming vector / coefficient (s) to be applied by the UE when the precoded / beamformed SRS is transmitted may be set / indicated.
  • the UE may transmit by using the same spatial filtering as the spatial filtering used for reception of a specific DL RS in the SRS transmission. That is, for each DL RS, the terminal may implement optimal spatial filtering for DL RS reception, and the base station may perform transmission of a specific SRS resource with the same spatial filtering that the terminal used for receiving the specific DL RS. Can be directed.
  • a method of directly setting / instructing the beamforming vector / coefficient (s) that the UE should apply to the precoded SRS transmission to the UE may be applicable (for example, depending on the base station implementation, for example, another specific method).
  • the base station can obtain this information based on channel reciprocity through the method, etc.).
  • the beamforming vector / coefficient (s) may be directly informed to the UE by a base station through a control channel such as a specific DCI triggering transmission of a corresponding precoded SRS, or may be separately separated from a specific layer 1 (L1) layer.
  • the base station may inform the UE via signaling 2 (L2) and / or Layer 3 (L3) (eg, semi-static by RRC).
  • the Type 1 UL-LA UE capable of such an operation is: i) a "channel-reciprocity calibrated UE" (e.g., NR (or 5G) UE, including 3GPP release-15) Subsequent UEs, etc.), ii) "UEs that are not fully-digital-beamformed to the TX (and / or Transmitter and Receiver) (TX) antenna / port (s) of the UE", iii) "Analog -UE “applying beamforming to UL TX port (s), and / or iv) and / or” UE operating in TDD ".
  • a "channel-reciprocity calibrated UE” e.g., NR (or 5G) UE, including 3GPP release-15
  • TX Transmitter and Receiver
  • Type 2 UL-LA UE (UL-LA process operation starting with non-precoded SRS transmission):
  • the UE may be defined / configured to transmit a non-precoded SRS (or non-beamformed SRS).
  • the base station measures the non-precoded SRS of the specific port (s) can determine the previously proposed U1 and / or U2 information.
  • the base station is then separately sent to the UE via an UL scheduling grant accompanying it (e.g., separately isolated DCI (field) for U1) or a separate message container for conveying specific control information (by L1 and / or L2 signaling). May be delivered) to the UE.
  • an UL scheduling grant accompanying it (e.g., separately isolated DCI (field) for U1) or a separate message container for conveying specific control information (by L1 and / or L2 signaling). May be delivered) to the UE.
  • the frequency selective UL-MIMO scheduling considered in the present invention can be initiated.
  • the UL-LA process is initiated only by transmission of a specific non-precoded SRS, and the base station performs UL scheduling for the final UL precoder such as U1 and / or U2 determined by the base station measuring the non-precoded SRS of the specific port (s).
  • the form of notifying the UE at the time of operation may be referred to as a type 2 UL-LA operation (or UE).
  • this type 2 UE may mean that the TX (and / or TRX) antenna (s) / port (s) of the UE is capable of fully-digital-beamforming. .
  • the Type 2 UL-LA UE capable of this operation may be: i) "channel-reciprocity non-calibrated UE” (e.g., LTE / LTE-A UE, 3GPP release-14). Up to UE), ii) "UE capable of fully-digital-beamforming", and / or iii) and / or “UE operating in FDD (and / or TDD)", etc. May be
  • the base station is then separately sent to the UE via an UL scheduling grant accompanying it (e.g., separately isolated DCI (field) for U1) or a separate message container for conveying specific control information (by L1 and / or L2 signaling). May be delivered).
  • an UL scheduling grant accompanying it (e.g., separately isolated DCI (field) for U1) or a separate message container for conveying specific control information (by L1 and / or L2 signaling). May be delivered).
  • the frequency selective UL-MIMO scheduling considered in the present invention can be initiated.
  • the base station performs the precoded SRS.
  • the UE may be informed directly through a control channel such as a specific DCI that triggers the transmission of the UE, or the base station may transmit the UE through separate L1, L2, and / or L3 (eg, semi-static by RRC) signaling. You can let them know.
  • transmission of a specific non-precoded SRS of the UE is performed, and the UE receives the beamforming application related information from the base station, and transmission of the specific precoded SRS to which the UE is applied is started, and the base station measures and determines the corresponding precoded SRS.
  • the type in which the base station notifies the UE of the final UL precoder such as U1 and / or U2 during UL scheduling may be referred to as a type 3 UL-LA operation (or UE).
  • such a type 3 UE may have the meaning that the TX (and / or TRX) antenna (s) / port (s) of the UE are wholly capable of whole-digital-beamforming.
  • the Type 3 UL-LA UE capable of this operation may be: i) "channel-reciprocity non-calibrated UE", ii) "TX (and / or TRX) antenna (s) / of UE” UE not fully-digital-beamforming capable of port (s) ", iii) UE applying" analog-beamforming "to UL TX port (s), and / or iv)” FDD (and / or UE “operating in TDD) or the like.
  • specific SRS resource (s) may be configured in advance for the UE, and the UE may be configured to transmit a separate precoded SRS based on the configuration for each SRS resource.
  • the number of SRS ports per SRS resource may be 1 or more.
  • the UE may perform SRS transmission based on the number of SRS ports corresponding to each SRS resource and its configuration.
  • the beamforming vector (s) / coefficient (s) to be applied to the SRS port may be based on a base station indication, or the UE may arbitrarily (eNB-transparent), or Selected randomly, the precoded SRS may be transmitted for each SRS resource.
  • the base station first selects the SRS resource having the best reception quality through SRS measurement for each of these SRS resources, and derives the U1 and / or U2 for the SRS port (s) in the SRS resource. To the UE. That is, the base station may derive U1 and / or U2 to be applied to the SRS port (s) in the corresponding SRS resource and instruct the UE.
  • the base station configures multiple SRS resources for the UE, and the UE may transmit a precoded SRS having different beam directions for each SRS resource to the base station.
  • the base station transmits to the UE an SRI and a precoding indication (eg, U1 and / or U2, or Transmitted Precoding Matrix Indicator) transmitted by the UE at a previous time instance in the uplink scheduling grant (DCI).
  • the precoding indication may be used to indicate a preferred precoder applied over (or on the SRS port) the SRS port in the SRS resource selected by the SRI (The Precoding indication may be). used to indicate preferred precoder over the SRS ports in the selected SRS resource by the SRI).
  • a particular SRS resource is configured to transmit a 1-port SRS
  • the UE implements X transmit antenna (s) / port (s)
  • the UE is assigned a specific X x 1 (ie, X- by-1) may be defined / configured to transmit a kind of "rank 1 precoded SRS" by applying beamforming vectors / coefficients.
  • a particular SRS resource is configured to transmit v (> 1) -port SRS
  • X (> v) transmit antenna (s) / port (s)
  • the UE It may be defined / configured to transmit a sort of “rank v precoded SRS” by applying X xv (ie, X-by-v) beamforming vectors / coefficients.
  • the base station sets / instructs the SRI to the UE
  • the SRI also includes a meaning of a kind of rank indication.
  • the indicated rank it may be defined / set to apply when analyzing other fields in the corresponding UL grant.
  • the number of SRS antenna ports may be predefined or configured for each SRS resource (for example, by higher layer signaling such as RRC), and when the base station transmits an UL grant including SRI to the UE, uplink of the UE.
  • the number of ranks for data (eg, PUSCH) transmission may be determined as the number of antenna ports corresponding to the SRS resource indicated by the SRI.
  • the information indicating the SRI may be omitted and a rank indication (field) indicated by a UL grant may be automatically linked to indicate which SRS resource index is indicated and implicitly-indicated.
  • the operation may be defined or set / instructed so that the UE applies the precoder to which the SRS resource index applied is applied when the UL is transmitted.
  • only one SRS resource linked to this per specific rank is linked one to one. Preferably limited).
  • the base station may be defined or configured to inform the UE independently of the rank indication (eg, transmitted rank indication (TRI)) as well as the SRI. This may typically be the case when one or more SRS resource (s) can be set per specific target rank.
  • the reason why the base station configures a plurality of SRS resources in a specific rank may be for the UE to apply different beamforming vector (s) / coefficient (s) for the same rank and transmit the SRS several times. . That is, the base station measures all precoded SRSs with different beam coefficients for the same rank, so that even when the corresponding rank is finally selected, it is possible to determine which UL precoder is more advantageous (in terms of performance) and indicate this flexibility. There is an advantage that can be provided.
  • this " beam forming vector (s) / coefficient (s) " Can be defined or set to the UE to apply with a common beamforming vector (s) / coefficient (s) across the transmission band.
  • precoded subbands for the corresponding SRS resource in the form of applying different / independent beamforming vector (s) / coefficient (s) on a specific subband (or PRB (group)) basis over a transmission band
  • the operation of transmitting the SRS may be defined or set to the UE.
  • whether the corresponding precoded SRS is to apply wideband precoding or subband precoding is also determined by the base station to the UE by L1 (by DCI) and L2 (by MAC Control Element (CE)). , And / or L3 (by RRC) signaling.
  • the following operation may be defined or configured in the UE even when a specific "frequency-selective (subband) beamforming vector (s) / coefficient (s)" is applied in a specific precoded SRS transmission.
  • the base station may inform the base station (either separately or at the time of the corresponding SRS transmission indication / triggering) of the corresponding “frequency-selective (subband) beamforming vector (s) / count (s)” and allow the UE to follow it.
  • the UE may select (base station-transparent, randomly) randomly and transmit (frequency-selective) precoded SRS for each SRS resource.
  • DL specific RSs e.g., RRM-RS, BRS, BRRS, etc.
  • Frequency-selectively per subband in the number of dimensions of X TRX antenna (s) / port (s) of the UE)
  • X x Y ie X-by-Y precoder / beamformer
  • RRM-RS type eg., BRS, BRRS, etc.
  • Y 1
  • the transmission SRS of the UE may be limited to rank 1 precoded SRS.
  • the UE may be explicitly instructed to calculate the X-by-Y precoder for which specific RRM-RS (eg, BRS, BRRS, etc.).
  • specific RRM-RS eg, BRS, BRRS, etc.
  • the particular RRM-RS eg, BRS, BRRS, etc.
  • QCL quasi co-located
  • RS e.g., CSI-RS
  • the UE can determine its (paired) best "Rx-receiving-beam". In this case, the UE determines an X-by-Z precoder / beamformer vector / coefficient by frequency-selectively for each subband (in the dimension of X number of TRX antenna (s) / port (s) of the UE). Conversely (for example, by taking Hermitian), it can be applied during the corresponding precoded SRS transmission. This behavior may be defined or set to the UE.
  • the UE may transmit using spatial filtering that is the same as the spatial filtering used for reception of a specific DL RS when transmitting the SRS in a specific subband. That is, for each DL RS, the terminal may implement optimal spatial filtering for DL RS reception, and the base station transmits SRS resources in a specific subband with the same spatial filtering that the terminal used for receiving specific DL RS. Can be instructed to perform
  • RRM-RS e.g., BRS, BRRS
  • CSI-RS is used to support rank> 1 because it can be limited to rank 1 because it can be limited to a single port. May be effective.
  • the UE may also be explicitly instructed the UE to calculate the X-by-Z precoder for which particular CSI-RS (port (s)).
  • the specific CSI-RS (port (s)) may be indicated in the form of QCL signaling. And / or it may be predefined or set up in advance or separately with which RSI-RS (e.g., BRS, BRRS) the corresponding CSI-RS (port (s)) have.
  • RSI-RS e.g., BRS, BRRS
  • all of the proposed actions associated with the SRS may also be applied to (eg, a single PMI (eg, TPMI), precoder based manner) that do not follow the U1 and / or U2 structure.
  • a single PMI eg, TPMI
  • precoder based manner that do not follow the U1 and / or U2 structure.
  • a specific UL precoder indication is given for the non-precoded / precoded SRS transmission (by setting based on the SRS resource (s)). Can be.
  • SRS resource used above is a name given for convenience and may be signaled / instructed to the UE in a form in which a specific index per actual SRS resource unit is assigned. Or another name / parameter that replaces the concept of “SRS resource” by tying specific / some / virtualized port (s) grouped by specific grouping to the (all) SRS port (s) that the UE can transmit. By this the operation of the present invention can be applied.
  • the (semi-) open loop (OL) UL transmission may be configured / instructed to the UE by deleting all U2 information for each subband.
  • the base station may send a UL grant in the form of no U2 information to the UE with specific (separate) signaling (or using any of the U1 indexes), which is specific to the UE (Semi-). It may be operated to indicate OL UL transmission.
  • the UE may ignore the corresponding information even if U2 information exists in the UL grant.
  • the corresponding (UL-related) DCI may delete payloads in which U2 information could exist.
  • the UE may be defined or configured to perform blind detection (BD) for different payload sizes in a form in which the overall payload size of the corresponding DCI is reduced in preparation for the presence of U2 information.
  • BD blind detection
  • the (Semi-) OL UL transmission may be indicated in the form of deleting only precoder (s) information in a specific (spatial) dimensional direction of U1 and / or U2.
  • the UE may perform UL transmission by applying an OL scheme such as precoder cycling according to a specific predefined / indicated OL-precoding scheme.
  • the UE may perform UL transmission by applying the precoder (s) portion as instructed for a specific dimension provided with U1 and / or U2 information.
  • the UE may be defined or configured to perform BD for different payload sizes in a form in which the overall payload of the corresponding DCI is reduced compared to the conventional one.
  • the mapping of payload size and corresponding information of U1, U2, etc. is related to the number of UL (for link adaptation) specific RS (e.g., SRS) ports of the corresponding UE transmitted in advance (in conjunction with this). Correspondingly defined or set / instructed to the UE.
  • UL for link adaptation
  • SRS specific RS
  • the network instructs the UE to precoder, and the UE applies the indicated precoder to transmit DMRS and data.
  • a precoded RS based transmission in which the same precoder is applied to both the DMRS and the physical data channel is still desirable in terms of DMRS overhead. This is because in most cases the transmission rank will be smaller than the number of TXRUs due to the lack of a scatterer.
  • UL DMRS based spatial multiplexing Single User (SU) MIMO / MU-MIMO
  • UL Coordinated Multi-Point (CoMP) transmission may also be supported.
  • the UL reception point (s) may be transparent to the UE.
  • an open loop (OL) technique in which precoder information is not signaled to the UE by the network and a semi-OL (semi-OL) in which part of the precoder information is signaled to the UE by the network.
  • the open-loop technique may be considered in addition to the existing closed loop technique in which all information of the precoder (ie, PMI and RI) is signaled to the UE by the network.
  • OL and semi-OL MIMO may be useful.
  • UL MU-MIMO may be based on closed loop operation, but is not limited thereto.
  • the UL MIMO transmission technique may be classified as follows according to the completeness and presence of precoder information signaled from the network to the UE.
  • NR may be considered to increase the maximum layer from the beginning (eg, 8 layers for UL SU-MIMO considering the large UE type).
  • MU-MMO NR has a clear motivation to achieve higher order MU-MIMO to achieve target spectral efficiency.
  • supporting MU multiplexing layers beyond a certain number eg, 4 or 8) by using non-orthogonal DMRS ports (eg, scrambling sequences) to manage DMRS overhead within a reasonable range. desirable.
  • At least four orthogonal UL DMRS ports are preferably supported for both SU-MIMO and MU-MIMO.
  • CUPR Peak to Average Power Ratio
  • eMBB enhanced Mobile BroadBand
  • URLLC ultra-reliable low latency communication
  • CM Cubic Metric
  • frequency selective precoding can be considered to be introduced for UL MIMO.
  • increased control channel overhead due to indicating subband PMIs may be an important issue for applying such frequency selective UL-MIMO precoding.
  • the motivation to introduce such a frequency selective UL precoder is to achieve fast UL link adaptation using the frequency domain, so that the entire set of precoder information is required to be delivered to the UE instantaneously when scheduled for UL transmission. .
  • the final UL precoder W per subband may be decomposed into a wideband PMI component W_1 and a corresponding subband PMI component W_2. Then, in the UL scheduling DCI, W_1 information is sufficient to be included once, and multiple W_2s need to be included according to the scheduled RB area given by the resource allocation field in the same DCI.
  • the method of defining codebooks for W_1 and W_2 is for further study, but the baseline is preferably to reuse the Rel-12 DL 4-Tx codebook.
  • the existing LTE 2-Tx DL codebook can be reused as it is for the 2-Tx UL case, and the entire PMI per subband needs to be provided in the UL scheduling grant.
  • whether a DFT-S-OFDM (DFT spread OFDM) based UL-MIMO precoder is supported, and in this case a CP-OFDM based UL precoder or a DFT- Consider how to configure the UE using the S-OFDM based UL precoder.
  • the UE transmits at least one of CP-OFDM-based codebook 1 (eg, the dual codebook structure) and DFS-S-OFDM-based codebook 2 (eg, cubic-metric preserving (CMP) codebook, etc.) from the base station. Can be set. And, which of the codebooks the UE should perform UL precoding based on L1 (eg, by DCI), L2 (eg, by MAC CE), and / or L3 (eg, by RRC) Can be set / instructed from the base station.
  • L1 eg, by DCI
  • L2 eg, by MAC CE
  • L3 eg, by RRC
  • the UE may apply and / or switch one of codebook 1 and codebook 2 from the base station, and conversely, DFS-S-OFDM-based
  • the UE may apply and / or switch one of codebook 1 and codebook 2 from the base station, and conversely, DFS-S-OFDM-based
  • the UL transmission is set / indicated, it may be limited to that only codebook 2 can be applied. This is because the application of codebook 1 may be inappropriate under DFS-S-OFDM, which greatly amplifies PAPR.
  • codebook 1 is set to apply (e.g., UE, which is generally not a cell-edge region), which yields higher yield than transmit power.
  • codebook 1 is set to apply (e.g., UE, which is generally not a cell-edge region), which yields higher yield than transmit power.
  • UE which is generally not a cell-edge region
  • the UE can automatically interpret / apply the indicated PMI / precoder while applying different codebooks as described above.
  • a specific codebook (for example, codebook 1 or codebook 2, ...) may be linked to being set to a specific waveform-based (for example, CP-OFDM-based or DFS-S-OFDM-based). ) has been described.
  • the present invention is not limited thereto, and regardless of a specific waveform, when a UE transmits a UL, the UE selects a specific candidate codebook 1 (eg, DFT-based codebook) and codebook 2 (eg, a grassmannian codebook).
  • a specific candidate codebook 1 eg, DFT-based codebook
  • codebook 2 eg, a grassmannian codebook.
  • the above operations may be defined or configured / instructed to the UE to apply UL code by applying a specific codebook under a base station indication, among codebook 3 (eg, a householder codebook).
  • candidate codebook 1 is more suitable when the arrangement / spacing between antennas according to the UE antenna configuration is implemented in a relatively equidistant and / or closely-spaced form. It may be defined in the form of a specific DFT based codebook (eg, a dual codebook structure including an LTE-A codebook) using a vector or the like, or may be configured for the UE.
  • candidate codebook 2 is more suitable when the arrangement / spacing between antennas according to the UE antenna configuration is implemented in a relatively irregular or wide-spaced form, and is a code vector such as a Grasmanian codebook. It may be defined / set in the form of a codebook optimized to have maximum equal distances.
  • candidate codebook 3 is formed by extracting some code vectors between different codebooks having different properties and purposes, such as codebook 1 and codebook 2 (depending on the UE antenna configuration), and has a specific mixed codebook, for example, a house holder. It may be defined in the form of a codebook or the like or set to the UE.
  • the UE may perform capability signaling to the base station whether or not any codebook of at least one of the specific candidate codebooks applicable to the UL transmission is implemented or supported through the UE capability signaling. It may be defined or set to the UE. And / or when there are two or more codebooks implemented / supported in this manner, the UE may provide the granularity of preference information by assigning weighting in a specific form, among which the codebooks are preferred by the UEs. May inform the base station. It can be determined which codebook is more suitable based on the implemented antenna configuration characteristics of the UE, and information related to which codebook is more advantageous in terms of performance among the implemented / supported codebooks. There is an effect to provide to the base station.
  • the base station sets / indicates a codebook to be applied by the UE in the UL transmission based on this information.
  • the base station may configure the UE to use only the codebooks that it implements / supports (regardless of the inter-codebook preference information reported by the UE).
  • the codebook implementation / support state and / or codebook preference state of the plurality of UEs connected to the cell may be set / instructed (for example, for the purpose of easier UL MU-MIMO transmission, etc.).
  • a relatively semi-static setting method by RRC signaling (and / or MAC CE signaling) may also be applied.
  • RRC signaling and / or MAC CE signaling
  • it may be dynamically indicated which specific codebook to apply to the UE by relatively more dynamic signaling / instruction in association with a specific UL scheduling grant.
  • Such dynamic indication may be indicated explicitly and / or implicitly (in conjunction with feature field information) through a specific field in control signaling such as a corresponding UL grant.
  • which codebook is to be applied in association with each specific rank may be defined in advance or set to the UE.
  • the UE may be defined or set to the UE by always applying a specific codebook (for example, codebook 2) interworked with the UL grant.
  • a specific codebook for example, codebook 2
  • the UE is always defined to initiate UL transmission by applying a specific codebook (eg, codebook 1) associated with it. May be set to the UE.
  • the entire subband UL-MIMO precoder (s) is preferably provided to the UE instantaneously within the UL scheduling grant, where the wideband component is only used once to reduce control channel overhead. May be included.
  • LTE sets the UE to send SRS to a different number of different sets of SRS related parameters, where the number of specifically set SRS port (s) transmits the total transmission (Tx) of the UE.
  • the UE may apply the specific precoding / selection implemented.
  • the precoding / beamformed SRS transmission for UL LA is thoroughly examined in NR. It is preferable.
  • Type 1 UE (UL-LA initiated with transmission of precoded SRS (s))
  • the UE may be configured with one or more SRS resources, and beamforming or TRP transparent beamforming indicated by TRP (Transmit and Reception Point) is applied to SRS transmission on each SRS resource.
  • TRP Transmit and Reception Point
  • the TRP is assigned to an SRS resource indicator (SRI: SRS resource indicator) (for multiple configured SRS resources), MCS and / or SRS port in the SRI.
  • SRI SRS resource indicator
  • Type 2 UE (UL-LA initiated with transmission of non-precoded SRS (s))
  • the UE may be configured with one SRS resource, and the UE transmits non-precoded SRS.
  • the TRP determines the precoder applied over the MCS and / or SRS port (or on the SRS port), Instruct them when the UL scheduling grant is delivered to the UE.
  • the dual codebook structure described above may be used for the frequency-selective UL-MIMO precoder.
  • Type 3 UE transmission of precoded SRS according to the indication of UL-LA and TRP initiated with transmission of non-precoded SRS (s)
  • the TRP Based on the measurement of the UE's non-precoded SRS K_1 port (s), the TRP determines an approximate coarse beamformer, which is followed by a precoded SRS K_2 ( ⁇ K_1) port. Instruct the UE to apply to the transmission of the (s). And based on the measurement of the transmitted precoded SRS port (s) of the UE, the TRP determines the MCS and / or precoder and indicates them when the UL scheduling grant is delivered to the UE.
  • different UL-LA processes may be set UE-specific, including what type of SRS transmission is performed by the UE.
  • multiple SRS resources may be configured for the UE, where the UE is beamed differently on each configured SRS resource Send port (s).
  • the TRP may indicate such beamformer information to the UE, or the UE may be allowed to apply a TRP transparent beamformer for SRS transmission.
  • the TRP instructs the SRS resource indicator to the UE to apply the same beamformer used for the SRS transmission corresponding to the SRS resource indicated by the UE for the scheduled UL transmission. can do.
  • the TRP may further indicate digital precoding information (eg, UL PMI) via the SRS port (s) in the indicated SRS resource.
  • UL PMI digital precoding information
  • FIG. 13 is a diagram illustrating an uplink transmission and reception method according to an embodiment of the present invention.
  • FIG. 13 an operation of the present invention is simply illustrated, and a detailed description thereof may follow the above operation.
  • the UE receives downlink control information (DCI) from a base station (S1303).
  • DCI downlink control information
  • the DCI may include an SRS Resource Indication (SRI), a precoding indication (eg, U1 and / or U2, or TPMI) and / or a rank indication (eg, TRI).
  • SRI SRS Resource Indication
  • precoding indication eg, U1 and / or U2, or TPMI
  • rank indication eg, TRI
  • the precoding instruction may be divided into a first precoding instruction (ie, U1) having a broadband attribute and a second precoding instruction (U2) indicated for each subband.
  • the second precoding indication U2 may be jointly encoded with uplink resource allocation information scheduled to the UE and transmitted. That is, the second precoding indication U2 may be set / instructed together with the UL RA field.
  • the UE transmits an uplink to the base station by applying the precoding indicated by the precoding indication on the antenna port of the SRS transmitted in the SRS resource selected by the SRI (S1304).
  • the rank number for the uplink transmission may be explicitly indicated by the DCI or may be implicitly determined by the number of antenna ports of the SRS transmitted in the SRS resource selected by the SRI in the DCI.
  • the UE may receive a downlink reference signal (DL RS) (for example, CSI-RS, etc.) from the base station (S1301).
  • DL RS downlink reference signal
  • the UE may transmit a pre-coded SRS to one or more SRS resources configured for the UE (S1302).
  • the base station selects an SRS resource having the best reception quality through SRS measurement for each SRS resource, and precodes an instruction (for example, U1 and //) for the SRS port (s) in the selected SRS resource. Or U2, or TPMI) may be derived and instructed to the UE.
  • an instruction for example, U1 and //
  • U2 and TPMI may be derived and instructed to the UE.
  • the beamforming vector and / or beamforming coefficient applied for the precoded SRS transmission may be set by the base station by control channel signaling or may be arbitrarily determined by the UE.
  • the beamforming vector (beamforming) and / or beamforming coefficient applied for the pre-coded SRS transmission in the SRS resource is used for the reception of the DL RS (for example, CSI-RS, etc.) It may be determined based on a vector (beamforming) and / or beamforming coefficient (beamforming coefficient).
  • the UE may measure the DL RS transmitted by the base station to find the best "serving-beam” (also may report it). The UE then chooses its (paired) best "Rx-receiving-beam” for the best "serving-beam”. You can decide. The UE then reverses this best "Rx-receiving-beam” using the DL / UL channel reciprocity characteristic (or beam pair link).
  • the precoded SRS may be transmitted by applying a corresponding beamforming vector / coefficient (s). That is, the precoded SRS transmission may be performed with the same spatial filtering as the spatial filtering used for the reception of a particular DL RS (e.g., the best "serving-beam”). have.
  • the CSI-RS resource used to determine the beamforming vector and / or beamforming coefficient applied for the precoded SRS transmission is determined by the base station. Can be indicated.
  • the precoding SRS transmission performed by the UE in the SRS resource may be independently performed for each subband.
  • independent beamforming vectors and / or beamforming coefficients may be applied to each subband for precoding SRS transmission in an SRS resource.
  • a beamforming vector and / or beamforming coefficient applied for precoding SRS transmission for each subband in an SRS resource may be used to receive a DL RS (eg, CSI-RS, etc.). It may be determined based on the beamforming vector and / or beamforming coefficient used.
  • a DL RS eg, CSI-RS, etc.
  • the UE may measure the DL RS transmitted by the base station to find the best "serving-beam” (also may report it). The UE then chooses its (paired) best "Rx-receiving-beam” for the best "serving-beam”. You can decide. The UE then reverses this best "Rx-receiving-beam” using the DL / UL channel reciprocity characteristic (or beam pair link).
  • a precoded SRS for example, by taking a Hermitian
  • a precoded SRS may be transmitted for each subband by applying a corresponding beamforming vector / coefficient (s). That is, the precoded SRS transmission in a particular subband is the same as the spatial filtering used for the reception of a particular DL RS (e.g., the best "serving-beam”). It can be performed as.
  • the CSI-RS resource used to determine the beamforming vector and / or beamforming coefficient applied for the precoded SRS transmission is It may be indicated by the base station.
  • FIG. 14 illustrates a block diagram of a wireless communication device according to an embodiment of the present invention.
  • a wireless communication system includes a base station 1410 and a plurality of terminals 1420 located in an area of a base station 1410.
  • the base station 1410 includes a processor 1411, a memory 1412, and an RF unit 1413.
  • the processor 1411 implements the functions, processes, and / or methods proposed in FIGS. 1 to 13. Layers of the air interface protocol may be implemented by the processor 1411.
  • the memory 1412 is connected to the processor 1411 and stores various information for driving the processor 1411.
  • the RF unit 1413 is connected to the processor 1411 and transmits and / or receives a radio signal.
  • the terminal 1420 includes a processor 1421, a memory 1422, and an RF unit 1423.
  • the processor 1421 implements the functions, processes, and / or methods proposed in FIGS. 1 to 13. Layers of the air interface protocol may be implemented by the processor 1421.
  • the memory 1422 is connected to the processor 1421 and stores various information for driving the processor 1421.
  • the RF unit 1423 is connected to the processor 1421 and transmits and / or receives a radio signal.
  • the memories 1412 and 1422 may be inside or outside the processors 1411 and 1421, and may be connected to the processors 1411 and 1421 through various well-known means.
  • the base station 1410 and / or the terminal 1420 may have a single antenna or multiple antennas.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in memory and driven by the processor.
  • the memory may be located inside or outside the processor, and may exchange data with the processor by various known means.

Abstract

무선 통신 시스템에서 상향링크 송수신 방법 및 이를 위한 장치가 개시된다. 구체적으로, 무선 통신 시스템에서 사용자 장치(UE: User Equipment)가 상향링크 전송을 수행하는 방법에 있어서, 기지국으로부터 사운딩 참조 신호(SRS: Sounding Reference Signal) 자원 지시(SRI: SRS Resource Indication) 및 프리코딩 지시를 포함하는 하향링크 제어 정보(DCI: Downlink Control Information)을 수신하는 단계 및 상기 SRI에 의해 선택된 SRS 자원 내에서 전송된 SRS의 안테나 포트 상에 상기 프리코딩 지시에 의해 지시된 프리코딩을 적용하여 상기 기지국에게 상향링크를 전송하는 단계를 포함할 수 있다.

Description

무선 통신 시스템에서 상향링크 송수신 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게 상향링크 MIMO(Multi Input Multi Output) 전송을 위한 방법 및 이를 지원하는 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스에 대한 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 발명의 목적은 상향링크 MIMO(Multi Input Multi Output) 전송을 위한 방법을 제안한다.
또한, 본 발명의 목적은 상향링크 MIMO(Multi Input Multi Output) 전송을 위해 하향링크 제어 정보(DCI: Downlink Control Information)을 구성하는 방법을 제안한다.
또한, 본 발명의 목적은 상향링크 MIMO(Multi Input Multi Output) 전송을 위해 기반이 되는 상향링크 참조 신호(Uplink Reference Signal)을 전송하는 방법 및 이를 제어하는 방법을 제안한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 양상은, 무선 통신 시스템에서 사용자 장치(UE: User Equipment)가 상향링크 전송을 수행하는 방법에 있어서, 기지국으로부터 사운딩 참조 신호(SRS: Sounding Reference Signal) 자원 지시(SRI: SRS Resource Indication) 및 프리코딩 지시를 포함하는 하향링크 제어 정보(DCI: Downlink Control Information)을 수신하는 단계 및 상기 SRI에 의해 선택된 SRS 자원 내에서 전송된 SRS의 안테나 포트 상에 상기 프리코딩 지시에 의해 지시된 프리코딩을 적용하여 상기 기지국에게 상향링크를 전송하는 단계를 포함할 수 있다.
본 발명의 다른 일 양상은, 무선 통신 시스템에서 상향링크 전송을 수행하는 사용자 장치(UE: User Equipment)에 있어서, 무선 신호를 송수신하기 위한 RF(Radio Frequency) 유닛 및 상기 RF 유닛을 제어하는 프로세서를 포함하고, 상기 프로세서는 기지국으로부터 사운딩 참조 신호(SRS: Sounding Reference Signal) 자원 지시(SRI: SRS Resource Indication) 및 프리코딩 지시를 포함하는 하향링크 제어 정보(DCI: Downlink Control Information)을 수신하고, 상기 SRI에 의해 선택된 SRS 자원 내에서 전송된 SRS의 안테나 포트 상에 상기 프리코딩 지시에 의해 지시된 프리코딩을 적용하여 상기 기지국에게 상향링크를 전송하도록 구성될 수 있다.
바람직하게, 상기 UE에게 설정된 하나 이상의 SRS 자원 별로 프리코딩된 SRS를 상기 기지국에게 전송하는 단계를 더 포함할 수 있다.
바람직하게, 상기 프리코딩된 SRS 전송을 위해 적용되는 빔포밍 벡터(beamforming) 및/또는 빔포밍 계수(beamforming coefficient)는 제어 채널 시그널링에 의해 상기 기지국에 의해 설정되거나 또는 상기 UE가 임의로 결정할 수 있다.
바람직하게, 상기 SRS 자원 내 상기 프리코딩된 SRS 전송을 위해 적용되는 빔포밍 벡터(beamforming) 및/또는 빔포밍 계수(beamforming coefficient)는 하향링크 참조 신호(DL RS: Downlink Reference Signal)의 수신을 위해 이용한 빔포밍 벡터(beamforming) 및/또는 빔포밍 계수(beamforming coefficient)를 기반으로 결정될 수 있다.
바람직하게, 상기 DL RS는 채널 상태 정보 참조 신호(CSI-RS: Channel State Information-Reference Signal)이고, 상기 프리코딩된 SRS 전송을 위해 적용되는 빔포밍 벡터(beamforming) 및/또는 빔포밍 계수(beamforming coefficient)를 결정하기 위해 이용되는 CSI-RS 자원은 상기 기지국에 의해 지시될 수 있다.
바람직하게, 상기 SRS 자원 내에서 상기 프리코딩된 SRS 전송을 위해 각 서브밴드 별로 독립적인 빔포밍 벡터(beamforming) 및/또는 빔포밍 계수(beamforming coefficient)가 적용될 수 있다.
바람직하게, 상기 서브밴드 별로 상기 프리코딩된 SRS 전송을 위해 적용되는 빔포밍 벡터(beamforming) 및/또는 빔포밍 계수(beamforming coefficient)는 (DL RS: Downlink Reference Signal)의 수신을 위해 이용한 빔포밍 벡터(beamforming) 및/또는 빔포밍 계수(beamforming coefficient)를 기반으로 결정될 수 있다.
바람직하게, 상기 DL RS는 채널 상태 정보 참조 신호(CSI-RS: Channel State Information-Reference Signal)이고, 상기 프리코딩된 SRS 전송을 위해 적용되는 빔포밍 벡터(beamforming) 및/또는 빔포밍 계수(beamforming coefficient)를 결정하기 위해 이용되는 CSI-RS 자원은 상기 기지국에 의해 지시될 수 있다.
바람직하게, 상기 DCI는 상기 상향링크 전송을 위한 랭크 지시(rank indication)을 더 포함할 수 있다.
바람직하게, 상기 상향링크 전송을 위한 랭크 수는 상기 SRI에 의해 선택된 SRS 자원 내에서 전송된 SRS의 안테나 포트의 수로 결정될 수 있다.
바람직하게, 상기 프리코딩 지시는 제1 프리코딩 지시 및 제2 프리코딩 지시로 구분되고, 상기 제2 프리코딩 지시는 상기 UE에게 스케줄링되는 상향링크 자원 할당 정보와 조인트 인코딩(joint encoding)될 수 있다.
본 발명의 실시예에 따르면, 상향링크에서도 주파수 선택적인(frequency selective)한 최적화된 프리코딩을 지원할 수 있다.
또한, 본 발명의 실시예에 따르면, 상향링크 서브밴드(자원 블록 그룹) 별로 최적화된 프리코딩을 적용함으로써 상향링크 전송 수율(throughput)을 향상시킬 수 있다.
또한, 본 발명의 실시예에 따르면, 상향링크 서브밴드(자원 블록 그룹) 프리코딩을 적용하기 위한 상향링크 관련 하향링크 제어 정보의 오버헤드를 최소화할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 발명이 적용될 수 있는 무선 통신 시스템에서 무선 프레임의 구조를 나타낸다.
도 2는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 서브 프레임의 구조를 나타낸다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 상향링크 서브 프레임의 구조를 나타낸다.
도 5는 일반적인 다중 입출력 안테나(MIMO) 통신 시스템의 구성도이다.
도 6은 다수의 송신 안테나에서 하나의 수신 안테나로의 채널을 나타낸 도이다.
도 7은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 자원 블록 쌍에 매핑된 참조 신호 패턴을 예시한다.
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 참조 신호가 매핑되는 자원을 예시하는 도면이다.
도 9는 본 발명이 적용될 수 있는 무선 통신 시스템에서 사운딩 참조 신호 심볼을 포함한 상향링크 서브 프레임을 예시한다.
도 10은 본 발명이 적용될 수 있는 무선 통신 시스템에서 자기 완비(Self-contained) 서브프레임 구조를 예시하는 도면이다.
도 11은 본 발명이 적용될 수 있는 무선 통신 시스템에서 트랜스시버 유닛 모델을 예시한다.
도 12는 본 발명이 적용될 수 있는 무선 통신 시스템에서, 트랜시버 유닛 별 서비스 영역을 예시하는 도면이다.
도 13은 본 발명의 일 실시예에 따른 상향링크 송수신 방법을 예시하는 도면이다.
도 14는 본 발명의 일 실시예에 따른 무선 통신 장치의 블록 구성도를 예시한다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A 또는 새로운 RAT(new RAT)(5G(5 generation) 시스템의 RAT)를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.
본 발명이 적용될 수 있는 무선 통신 시스템 일반
도 1은 본 발명이 적용될 수 있는 무선 통신 시스템에서 무선 프레임의 구조를 나타낸다.
3GPP LTE/LTE-A에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
도 1에서 무선 프레임의 시간 영역에서의 크기는 T_s=1/(15000*2048)의 시간 단위의 배수로 표현된다. 하향링크 및 상향링크 전송은 T_f=307200*T_s=10ms의 구간을 가지는 무선 프레임으로 구성된다.
도 1의 (a)는 타입 1 무선 프레임의 구조를 예시한다. 타입 1 무선 프레임은 전이중(full duplex) 및 반이중(half duplex) FDD에 모두 적용될 수 있다.
무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성된다. 하나의 무선 프레임은 T_slot=15360*T_s=0.5ms 길이의 20개의 슬롯으로 구성되고, 각 슬롯은 0부터 19까지의 인덱스가 부여된다. 하나의 서브프레임은 시간 영역(time domain)에서 연속적인 2개의 슬롯(slot)으로 구성되고, 서브프레임 i는 슬롯 2i 및 슬롯 2i+1로 구성된다. 하나의 서브프레임을 전송하는데 걸리는 시간을 TTI(transmission time interval)이라 한다. 예를 들어, 하나의 서브 프레임은 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms일 수 있다.
FDD에서 상향링크 전송 및 하향링크 전송은 주파수 도메인에서 구분된다. 전이중 FDD에 제한이 없는 반면, 반이중 FDD 동작에서 단말은 동시에 전송 및 수신을 할 수 없다.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(RB: Resource Block)을 포함한다. 3GPP LTE는 하향링크에서 OFDMA를 사용하므로 OFDM 심볼은 하나의 심볼 구간(symbol period)을 표현하기 위한 것이다. OFDM 심볼은 하나의 SC-FDMA 심볼 또는 심볼 구간이라고 할 수 있다. 자원 블록(resource block)은 자원 할당 단위이고, 하나의 슬롯에서 복수의 연속적인 부 반송파(subcarrier)를 포함한다.
도 1의 (b)는 타입 2 프레임 구조(frame structure type 2)를 나타낸다.
타입 2 무선 프레임은 각 153600*T_s=5ms의 길이의 2개의 하프 프레임(half frame)으로 구성된다. 각 하프 프레임은 30720*T_s=1ms 길이의 5개의 서브프레임으로 구성된다.
TDD 시스템의 타입 2 프레임 구조에서 상향링크-하향링크 구성(uplink-downlink configuration)은 모든 서브프레임에 대하여 상향링크와 하향링크가 할당(또는 예약)되는지 나타내는 규칙이다.
표 1은 상향링크-하향링크 구성을 나타낸다.
Figure PCTKR2017010628-appb-T000001
표 1을 참조하면, 무선 프레임의 각 서브프레임 별로, 'D'는 하향링크 전송을 위한 서브프레임을 나타내고, 'U'는 상향링크 전송을 위한 서브프레임을 나타내며, 'S'는 DwPTS(Downlink Pilot Time Slot), 보호구간(GP: Guard Period), UpPTS(Uplink Pilot Time Slot) 3가지의 필드로 구성되는 스페셜 서브프레임(special subframe)을 나타낸다.
DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향링크 전송 동기를 맞추는 데 사용된다. GP는 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
각 서브프레임 i는 각 T_slot=15360*T_s=0.5ms 길이의 슬롯 2i 및 슬롯 2i+1로 구성된다.
상향링크-하향링크 구성은 7가지로 구분될 수 있으며, 각 구성 별로 하향링크 서브프레임, 스페셜 서브프레임, 상향링크 서브프레임의 위치 및/또는 개수가 다르다.
하향링크에서 상향링크로 변경되는 시점 또는 상향링크에서 하향링크로 전환되는 시점을 전환 시점(switching point)이라 한다. 전환 시점의 주기성(Switch-point periodicity)은 상향링크 서브프레임과 하향링크 서브프레임이 전환되는 양상이 동일하게 반복되는 주기를 의미하며, 5ms 또는 10ms가 모두 지원된다. 5ms 하향링크-상향링크 전환 시점의 주기를 가지는 경우에는 스페셜 서브프레임(S)은 하프-프레임 마다 존재하고, 5ms 하향링크-상향링크 전환 시점의 주기를 가지는 경우에는 첫번째 하프-프레임에만 존재한다.
모든 구성에 있어서, 0번, 5번 서브프레임 및 DwPTS는 하향링크 전송만을 위한 구간이다. UpPTS 및 서브프레임 서브프레임에 바로 이어지는 서브프레임은 항상 상향링크 전송을 위한 구간이다.
이러한, 상향링크-하향링크 구성은 시스템 정보로써 기지국과 단말이 모두 알고 있을 수 있다. 기지국은 상향링크-하향링크 구성 정보가 바뀔 때마다 구성 정보의 인덱스만을 전송함으로써 무선 프레임의 상향링크-하향링크 할당상태의 변경을 단말에 알려줄 수 있다. 또한, 구성 정보는 일종의 하향링크 제어정보로서 다른 스케줄링 정보와 마찬가지로 PDCCH(Physical Downlink Control Channel)를 통해 전송될 수 있으며, 방송 정보로서 브로드캐스트 채널(broadcast channel)을 통해 셀 내의 모든 단말에 공통으로 전송될 수도 있다.
표 2는 스페셜 서브프레임의 구성(DwPTS/GP/UpPTS의 길이)을 나타낸다.
Figure PCTKR2017010628-appb-T000002
도 1의 예시에 따른 무선 프레임의 구조는 하나의 예시에 불과하며, 무선 프레임에 포함되는 부 반송파의 수 또는 서브 프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 2는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 2를 참조하면, 하나의 하향링크 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함한다. 여기서, 하나의 하향링크 슬롯은 7개의 OFDM 심볼을 포함하고, 하나의 자원 블록은 주파수 영역에서 12개의 부 반송파를 포함하는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
자원 그리드 상에서 각 요소(element)를 자원 요소(resource element)하고, 하나의 자원 블록(RB: resource block)은 12 × 7 개의 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원 블록들의 수 N^DL은 하향링크 전송 대역폭(bandwidth)에 종속한다.
상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 서브 프레임의 구조를 나타낸다.
도 3을 참조하면, 서브 프레임내의 첫번째 슬롯에서 앞의 최대 3개의 OFDM 심볼들이 제어 채널들이 할당되는 제어 영역(control region)이고, 나머지 OFDM 심볼들은 PDSCH(Physical Downlink Shared Channel)이 할당되는 데이터 영역(data region)이다. 3GPP LTE에서 사용되는 하향링크 제어 채널의 일례로 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 등이 있다.
PCFICH는 서브 프레임의 첫번째 OFDM 심볼에서 전송되고, 서브 프레임 내에 제어 채널들의 전송을 위하여 사용되는 OFDM 심볼들의 수(즉, 제어 영역의 크기)에 관한 정보를 나른다. PHICH는 상향 링크에 대한 응답 채널이고, HARQ(Hybrid Automatic Repeat Request)에 대한 ACK(Acknowledgement)/NACK(Not-Acknowledgement) 신호를 나른다. PDCCH를 통해 전송되는 제어 정보를 하향링크 제어정보(DCI: downlink control information)라고 한다. 하향링크 제어정보는 상향링크 자원 할당 정보, 하향링크 자원 할당 정보 또는 임의의 단말 그룹에 대한 상향링크 전송(Tx) 파워 제어 명령을 포함한다.
PDCCH는 DL-SCH(Downlink Shared Channel)의 자원 할당 및 전송 포맷(이를 하향링크 그랜트라고도 한다.), UL-SCH(Uplink Shared Channel)의 자원 할당 정보(이를 상향링크 그랜트라고도 한다.), PCH(Paging Channel)에서의 페이징(paging) 정보, DL-SCH에서의 시스템 정보, PDSCH에서 전송되는 랜덤 액세스 응답(random access response)과 같은 상위 레이어(upper-layer) 제어 메시지에 대한 자원 할당, 임의의 단말 그룹 내 개별 단말들에 대한 전송 파워 제어 명령들의 집합, VoIP(Voice over IP)의 활성화 등을 나를 수 있다. 복수의 PDCCH들은 제어 영역 내에서 전송될 수 있으며, 단말은 복수의 PDCCH들을 모니터링할 수 있다. PDCCH는 하나 또는 복수의 연속적인 CCE(control channel elements)의 집합으로 구성된다. CCE는 무선 채널의 상태에 따른 부호화율(coding rate)을 PDCCH에 제공하기 위하여 사용되는 논리적 할당 단위이다. CCE는 복수의 자원 요소 그룹(resource element group)들에 대응된다. PDCCH의 포맷 및 사용 가능한 PDCCH의 비트 수는 CCE들의 수와 CCE들에 의해 제공되는 부호화율 간의 연관 관계에 따라 결정된다.
기지국은 단말에게 전송하려는 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC(Cyclic Redundancy Check)를 붙인다. CRC에는 PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(이를 RNTI(Radio Network Temporary Identifier)라고 한다.)가 마스킹된다. 특정의 단말을 위한 PDCCH라면 단말의 고유한 식별자, 예를 들어 C-RNTI(Cell-RNTI)가 CRC에 마스킹될 수 있다. 또는 페이징 메시지를 위한 PDCCH라면 페이징 지시 식별자, 예를 들어 P-RNTI(Paging-RNTI)가 CRC에 마스킹될 수 있다. 시스템 정보, 더욱 구체적으로 시스템 정보 블록(SIB: system information block)를 위한 PDCCH라면 시스템 정보 식별자, SI-RNTI(system information RNTI)가 CRC에 마스킹될 수 있다. 단말의 랜덤 액세스 프리앰블의 전송에 대한 응답인 랜덤 액세스 응답을 지시하기 위하여, RA-RNTI(random access-RNTI)가 CRC에 마스킹될 수 있다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 상향링크 서브 프레임의 구조를 나타낸다.
도 4를 참조하면, 상향링크 서브 프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나눌 수 있다. 제어 영역에는 상향링크 제어 정보를 나르는 PUCCH(Physical Uplink Control Channel)이 할당된다. 데이터 영역은 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared Channel)이 할당된다. 단일 반송파 특성을 유지하기 위해 하나의 단말은 PUCCH와 PUSCH을 동시에 전송하지 않는다.
하나의 단말에 대한 PUCCH에는 서브 프레임 내에 자원 블록(RB: Resource Block) 쌍이 할당된다. RB 쌍에 속하는 RB들은 2개의 슬롯들의 각각에서 서로 다른 부 반송파를 차지한다. 이를 PUCCH에 할당된 RB 쌍은 슬롯 경계(slot boundary)에서 주파수 도약(frequency hopping)된다고 한다.
MIMO(Multi-Input Multi-Output)
MIMO 기술은 지금까지 일반적으로 한 개의 송신안테나와 한 개의 수신안테나를 사용했던 것에서 탈피하여, 다중 송신(Tx) 안테나와 다중 수신(Rx) 안테나를 사용한다. 다시 말해서, MIMO 기술은 무선 통신 시스템의 송신단 또는 수신단에서 다중 입출력 안테나를 사용하여 용량 증대 또는 성능 개성을 꾀하기 위한 기술이다. 이하에서는 'MIMO'를 '다중 입출력 안테나'라 칭하기로 한다.
더 구체적으로, 다중 입출력 안테나 기술은 하나의 완전한 메시지(total message)를 수신하기 위하여 한 개의 안테나 경로에 의존하지 않으며, 여러 개의 안테나를 통해 수신한 복수의 데이터 조각을 수집하여 완전한 데이터를 완성시킨다. 결과적으로, 다중 입출력 안테나 기술은 특정 시스템 범위 내에서 데이터 전송율을 증가시킬 수 있으며, 또한 특정 데이터 전송율을 통해 시스템 범위를 증가시킬 수 있다.
차세대 이동통신은 기존 이동통신에 비해 훨씬 높은 데이터 전송률을 요구하므로 효율적인 다중 입출력 안테나 기술이 반드시 필요할 것으로 예상된다. 이와 같은 상황에서 MIMO 통신 기술은 이동통신 단말과 중계기 등에 폭넓게 사용할 수 있는 차세대 이동통신 기술이며, 데이터 통신 확대 등으로 인해 한계 상황에 따라 다른 이동통신의 전송량 한계를 극복할 수 있는 기술로서 관심을 모으고 있다.
한편, 현재 연구되고 있는 다양한 전송효율 향상 기술 중 다중 입출력 안테나(MIMO) 기술은 추가적인 주파수 할당이나 전력증가 없이도 통신 용량 및 송수신 성능을 획기적으로 향상시킬 수 있는 방법으로서 현재 가장 큰 주목을 받고 있다.
도 5는 일반적인 다중 입출력 안테나(MIMO) 통신 시스템의 구성도이다.
도 5를 참조하면, 송신 안테나의 수를 N_T개로, 수신 안테나의 수를 N_R개로 동시에 늘리게 되면, 송신기나 수신기에서만 다수의 안테나를 사용하게 되는 경우와 달리 안테나 수에 비례하여 이론적인 채널 전송 용량이 증가하므로, 전송 레이트(transfer rate)를 향상시키고, 주파수 효율을 획기적으로 향상시킬 수 있다. 이 경우, 채널 전송 용량의 증가에 따른 전송 레이트는 하나의 안테나를 이용하는 경우의 최대 전송 레이트(R_o)에 다음과 같은 레이트 증가율(R_i)이 곱해진 만큼으로 이론적으로 증가할 수 있다.
Figure PCTKR2017010628-appb-M000001
즉, 예를 들어, 4개의 송신 안테나와 4개의 수신 안테나를 이용하는 MIMO 통신 시스템에서는 단일 안테나 시스템에 비해 이론상 4배의 전송 레이트를 획득할 수 있다.
이와 같은 다중 입출력 안테나의 기술은 다양한 채널 경로를 통과한 심볼들을 이용하여 전송 신뢰도를 높이는 공간 다이버시티(spatial diversity) 방식과, 다수의 송신 안테나를 이용하여 다수의 데이터 심볼을 동시에 송신하여 전송률을 향상시키는 공간 멀티플렉싱(spatial multiplexing) 방식으로 나눌 수 있다. 또한 이러한 두 가지 방식을 적절히 결합하여 각각의 장점을 적절히 얻고자 하는 방식에 대한 연구도 최근 많이 연구되고 있는 분야이다.
각각의 방식에 대해 좀더 구체적으로 살펴보면 다음과 같다.
첫째로, 공간 다이버시티 방식의 경우에는 시공간 블록 부호 계열과, 다이버시티 이득과 부호화 이득을 동시에 이용하는 시공간 트렐리스(Trelis) 부호 계열 방식이 있다. 일반적으로 비트 오류율 개선 성능과 부호 생성 자유도는 트렐리스 부호 방식이 우수하지만, 연산 복잡도는 시공간 블록 부호가 간단하다. 이와 같은 공간 다이버서티 이득은 송신 안테나 수(N_T)와 수신 안테나 수(N_R)의 곱(N_T × N_R)에 해당되는 양을 얻을 수 있다.
둘째로, 공간 멀티플렉싱 기법은 각 송신 안테나에서 서로 다른 데이터 열을 송신하는 방법인데, 이때 수신기에서는 송신기로부터 동시에 전송된 데이터 사이에 상호 간섭이 발생하게 된다. 수신기에서는 이 간섭을 적절한 신호처리 기법을 이용하여 제거한 후 수신한다. 여기에 사용되는 잡음 제거 방식은 MLD(maximum likelihood detection) 수신기, ZF(zero-forcing) 수신기, MMSE(minimum mean square error) 수신기, D-BLAST (Diagonal-Bell Laboratories Layered Space-Time), V-BLAST(Vertical-Bell Laboratories Layered Space-Time) 등이 있으며, 특히 송신단에서 채널 정보를 알 수 있는 경우에는 SVD(singular value decomposition) 방식 등을 사용할 수 있다.
셋째로, 공간 다이버시티와 공간 멀티플렉싱의 결합된 기법을 들 수 있다. 공간 다이버시티 이득만을 얻을 경우 다이버시티 차수의 증가에 따른 성능개선 이득이 점차 포화되며, 공간 멀티플렉싱 이득만을 취하면 무선 채널에서 전송 신뢰도가 떨어진다. 이를 해결하면서 두 가지 이득을 모두 얻는 방식들이 연구되어 왔으며, 이 중 시공간 블록 부호 (Double-STTD), 시공간 BICM(STBICM) 등의 방식이 있다.
상술한 바와 같은 다중 입출력 안테나 시스템에 있어서의 통신 방법을 보다 구체적인 방법으로 설명하기 위해 이를 수학적으로 모델링하는 경우 다음과 같이 나타낼 수 있다.
먼저, 도 5에 도시된 바와 같이 N_T개의 송신 안테나와 N_R개의 수신 안테나가 존재하는 것을 가정한다.
먼저, 송신 신호에 대해 살펴보면, 이와 같이 N_T개의 송신 안테나가 있는 경우 최대 전송 가능한 정보는 N_T개 이므로, 이를 다음과 같은 벡터로 나타낼 수 있다.
Figure PCTKR2017010628-appb-M000002
한편, 각각의 전송 정보 s_1, s_2,..., s_N_T에 있어 전송 전력을 달리 할 수 있으며, 이때 각각의 전송 전력을 P_1, P_2,..., P_N_T라 하면, 전송 전력이 조정된 전송 정보는 다음과 같은 벡터로 나타낼 수 있다.
Figure PCTKR2017010628-appb-M000003
또한, 수학식 3의 전송 전력이 조정된 전송 정보를 전송 전력의 대각 행렬 P로 다음과 같이 나타낼 수 있다.
Figure PCTKR2017010628-appb-M000004
한편, 수학식 4의 전송 전력이 조정된 정보 벡터는 그 후 가중치 행렬 W가 곱해져 실제 전송되는 N_T개의 전송 신호 x_1, x_2,..., x_N_T를 구성한다. 여기서, 가중치 행렬은 전송 채널 상황 등에 따라 전송 정보를 각 안테나에 적절히 분배해 주는 역할을 수행한다. 이와 같은 전송 신호 x_1, x_2,..., x_N_T를 벡터 x를 이용하여 다음과 같이 나타낼 수 있다.
Figure PCTKR2017010628-appb-M000005
여기서, w_ij는 i번째 송신 안테나와 j번째 전송 정보간의 가중치를 나타내며, W는 이를 행렬로 나타낸 것이다. 이와 같은 행렬 W를 가중치 행렬(Weight Matrix) 또는 프리코딩 행렬(Precoding Matrix)라 부른다.
한편, 상술한 바와 같은 전송 신호(x)는 공간 다이버시티를 사용하는 경우와 공간 멀티플랙싱을 사용하는 경우로 나누어 생각해 볼 수 있다.
공간 멀티플랙싱을 사용하는 경우는 서로 다른 신호를 다중화하여 보내게 되므로, 정보 벡터 s의 원소들이 모두 다른 값을 가지게 되는 반면, 공간 다이버시티를 사용하게 되면 같은 신호를 여러 채널 경로를 통하여 보내게 되므로 정보 벡터 s의 원소들이 모두 같은 값을 갖게 된다.
물론, 공간 멀티플랙싱과 공간 다이버시티를 혼합하는 방법도 고려 가능하다. 즉, 예를 들어 3 개의 송신 안테나를 통하여 같은 신호를 공간 다이버시티를 이용하여 전송하고, 나머지는 각각 다른 신호를 공간 멀티플랙싱하여 보내는 경우도 고려할 수 있다.
다음으로, 수신신호는 N_R개의 수신 안테나가 있는 경우, 각 안테나의 수신신호 y_1, y_2,..., y_N_R을 벡터 y로 다음과 같이 나타내기로 한다.
Figure PCTKR2017010628-appb-M000006
한편, 다중 입출력 안테나 통신 시스템에 있어서의 채널을 모델링하는 경우, 각각의 채널은 송수신 안테나 인덱스에 따라 구분할 수 있으며, 송신 안테나 j로부터 수신 안테나 i를 거치는 채널을 h_ij로 표시하기로 한다. 여기서, h_ij의 인덱스의 순서가 수신 안테나 인덱스가 먼저, 송신안테나의 인덱스가 나중임에 유의한다.
이러한 채널은 여러 개를 한데 묶어서 벡터 및 행렬 형태로도 표시 가능하다. 벡터 표시의 예를 들어 설명하면 다음과 같다.
도 6은 다수의 송신 안테나에서 하나의 수신 안테나로의 채널을 나타낸 도이다.
도 6에 도시된 바와 같이 총 N_T개의 송신 안테나로부터 수신안테나 i로 도착하는 채널은 다음과 같이 표현 가능하다.
Figure PCTKR2017010628-appb-M000007
또한, 상기 수학식 7과 같은 행렬 표현을 통해 N_T개의 송신 안테나로부터 N_R개의 수신 안테나를 거치는 채널을 모두 나타내는 경우 다음과 같이 나타낼 수 있다.
Figure PCTKR2017010628-appb-M000008
한편, 실제 채널은 위와 같은 채널 행렬 H를 거친 후에 백색 잡음(AWGN: Additive White Gaussian Noise)가 더해지게 되므로, N_R개의 수신 안테나 각각에 더해지는 백색 잡음 n_1, n_2,..., n_N_R을 백터로 표현하면 다음과 같다.
Figure PCTKR2017010628-appb-M000009
상술한 바와 같은 전송 신호, 수신 신호, 채널, 및 백색 잡음의 모델링을 통해 다중 입출력 안테나 통신 시스템에서의 각각은 다음과 같은 관계를 통해 나타낼 수 있다.
Figure PCTKR2017010628-appb-M000010
한편, 채널의 상태를 나타내는 채널 행렬 H의 행과 열의 수는 송수신 안테나 수에 의해서 결정된다. 채널 행렬 H는 앞서 살펴본 바와 같이 행의 수는 수신 안테나의 수 N_R과 같아지고, 열의 수는 송신 안테나의 수 N_T와 같아 지게 된다. 즉, 채널 행렬 H는 N_R×N_T 행렬이 된다.
일반적으로, 행렬의 랭크(rank)는 서로 독립인(independent) 행 또는 열의 개수 중에서 최소 개수로 정의된다. 따라서, 행렬의 랭크는 행 또는 열의 개수보다 클 수 없게 된다. 수식적으로 예를 들면, 채널 행렬 H의 랭크(rank(H))는 다음과 같이 제한된다.
Figure PCTKR2017010628-appb-M000011
또한, 행렬을 고유치 분해(Eigen value decomposition)를 하였을 때, 랭크는 고유치(eigen value)들 중에서 0이 아닌 고유치들의 개수로 정의할 수 있다. 비슷한 방법으로, 랭크를 SVD(singular value decomposition) 했을 때 0이 아닌 특이값(singular value)들의 개수로 정의할 수 있다. 따라서, 채널 행렬에서 랭크의 물리적인 의미는 주어진 채널에서 서로 다른 정보를 보낼 수 있는 최대 수라고 할 수 있다.
본 명세서에 있어, MIMO 전송에 대한 '랭크(Rank)'는 특정 시점 및 특정 주파수 자원에서 독립적으로 신호를 전송할 수 있는 경로의 수를 나타내며, '레이어(layer)의 개수'는 각 경로를 통해 전송되는 신호 스트림의 개수를 나타낸다. 일반적으로 송신단은 신호 전송에 이용되는 랭크 수에 대응하는 개수의 레이어를 전송하기 때문에 특별한 언급이 없는 한 랭크는 레이어 개수와 동일한 의미를 가진다.
참조 신호(RS: Reference Signal)
무선 통신 시스템에서 데이터는 무선 채널을 통해 전송되기 때문에, 신호는 전송 중에 왜곡될 수 있다. 수신단에서 왜곡된 신호를 정확하게 수신하기 위하여, 수신된 신호의 왜곡은 채널 정보를 이용하여 보정되어야 한다. 채널 정보를 검출하기 위하여 송신측과 수신측 모두 알고 있는 신호 전송 방법과 신호가 채널을 통해 전송될 때 왜곡된 정도를 이용하여 채널 정보를 검출하는 방법을 주로 이용한다. 상술한 신호를 파일럿 신호 또는 참조 신호(RS: reference signal)라고 한다.
또한 최근 대부분의 이동통신 시스템에서 패킷을 전송할 때, 지금까지 한 개의 송신안테나와 한 개의 수신안테나를 사용했던 것에서 탈피, 다중송신안테나와 다중수신안테나를 채택해 송수신 데이터 효율을 향상시킬 수 있는 방법을 사용한다. 다중 입출력 안테나를 이용하여 데이터를 송수신할 때, 신호를 정확하게 수신하기 위하여 송신 안테나와 수신 안테나 간의 채널 상태가 검출되어야 한다. 따라서 각 송신 안테나는 개별적인 참조 신호를 가져야 한다.
이동 통신 시스템에서 RS는 그 목적에 따라 크게 두 가지로 구분될 수 있다. 채널 상태 정보 획득을 위한 목적의 RS와 데이터 복조를 위해 사용되는 RS가 있다. 전자는 UE가 하향 링크로의 채널 상태 정보를 획득하는데 그 목적이 있으므로, 광대역으로 전송되어야 하고, 특정 서브 프레임에서 하향 링크 데이터를 수신하지 않는 UE라도 그 RS를 수신하고 측정할 수 있어야 한다. 또한 이는 핸드 오버 등의 무선 자원 무선 자원 관리(RRM: Radio Resource Management) 측정 등을 위해서도 사용된다. 후자는 기지국이 하향링크를 보낼 때 해당 리소스에 함께 보내는 RS로서, UE는 해당 RS를 수신함으로써 채널 추정을 할 수 있고, 따라서 데이터를 복조할 수 있게 된다. 이 RS는 데이터가 전송되는 영역에 전송되어야 한다.
하향 참조 신호는 셀 내 모든 단말이 공유하는 채널 상태에 대한 정보 획득 및 핸드오버 등의 측정 등을 위한 하나의 공통 참조 신호(CRS: common RS)와 특정 단말만을 위하여 데이터 복조를 위해 사용되는 전용 참조 신호(dedicated RS)가 있다. 이와 같은 참조 신호들을 이용하여 복조(demodulation)와 채널 측정(channel measurement)을 위한 정보를 제공할 수 있다. 즉, DRS는 데이터 복조용으로만 사용되며 CRS는 채널 정보 획득 및 데이터 복조의 두 가지 목적으로 다 사용된다.
수신 측(즉, 단말)은 CRS로부터 채널 상태를 측정하고, CQI(Channel Quality Indicator), PMI(Precoding Matrix Index) 및/또는 RI(Rank Indicator)와 같은 채널 품질과 관련된 지시자를 송신 측(즉, 기지국)으로 피드백한다. CRS는 셀 특정 기준신호(cell-specific RS)라고도 한다. 반면, 채널 상태 정보(CSI: Channel State Information)의 피드백과 관련된 참조 신호를 CSI-RS라고 정의할 수 있다.
DRS는 PDSCH 상의 데이터 복조가 필요한 경우 자원 요소들을 통해 전송될 수 있다. 단말은 상위 계층을 통하여 DRS의 존재 여부를 수신할 수 있으며, 상응하는 PDSCH가 매핑되었을 때만 유효하다. DRS를 단말 특정 참조 신호(UE-specific RS) 또는 복조 참조 신호(DMRS: Demodulation RS)라고 할 수 있다.
도 7은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 자원 블록 쌍에 매핑된 참조 신호 패턴을 예시한다.
도 7을 참조하면, 참조 신호가 매핑되는 단위로 하향링크 자원 블록 쌍은 시간 영역에서 하나의 서브 프레임 × 주파수 영역에서 12개의 부 반송파로 나타낼 수 있다. 즉, 시간 축(x축) 상에서 하나의 자원 블록 쌍은 일반 순환 전치(normal CP: normal Cyclic Prefix) 인 경우 14개의 OFDM 심볼의 길이를 가지고(도 7(a)의 경우), 확장 순환 전치(extended CP: extended Cyclic Prefix)인 경우 12개의 OFDM 심볼의 길이를 가진다(도 7(b)의 경우). 자원 블록 격자에서 '0', '1', '2' 및 '3'으로 기재된 자원 요소들(REs)은 각각 안테나 포트 인덱스 '0', '1', '2' 및 '3'의 CRS의 위치를 의미하며, 'D'로 기재된 자원 요소들은 DRS의 위치를 의미한다.
이하 CRS에 대하여 좀 더 상세하게 기술하면, CRS는 물리적 안테나의 채널을 추정하기 위해 사용되고, 셀 내에 위치한 모든 단말에 공통적으로 수신될 수 있는 참조 신호로써 전체 주파수 대역에 분포된다. 즉, 이 CRS는 cell-specific한 시그널로, 광대역에 대해서 매 서브 프레임마다 전송된다. 또한, CRS는 채널 품질 정보(CSI) 및 데이터 복조를 위해 이용될 수 있다.
CRS는 전송 측(기지국)에서의 안테나 배열에 따라 다양한 포맷으로 정의된다. 3GPP LTE 시스템(예를 들어, 릴리즈-8)에서는 기지국의 전송 안테나 개수에 따라서 최대 4개의 안테나 포트에 대한 RS가 전송된다. 하향링크 신호 송신 측은 단일의 송신 안테나, 2개의 송신 안테나 및 4개의 송신 안테나와 같이 3 종류의 안테나 배열을 가진다. 예를 들어 기지국의 송신 안테나의 개수가 두 개일 경우, 0번과 1번 안테나 포트에 대한 CRS가 전송되고, 네 개인 경우 0~3 번 안테나 포트에 대한 CRS가 각각 전송된다. 기지국의 송신 안테나가 4개일 경우 한 RB 에서의 CRS 패턴은 도 7과 같다.
기지국이 단일의 송신 안테나를 사용하는 경우, 단일 안테나 포트를 위한 참조 신호가 배열된다.
기지국이 2개의 송신 안테나를 사용하는 경우, 2개의 송신 안테나 포트를 위한 참조 신호는 시분할 다중화(TDM: Time Division Multiplexing) 및/또는 주파수 분할 다중화(FDM Frequency Division Multiplexing) 방식을 이용하여 배열된다. 즉, 2개의 안테나 포트를 위한 참조 신호는 각각이 구별되기 위해 서로 다른 시간 자원 및/또는 서로 다른 주파수 자원이 할당된다.
게다가, 기지국이 4개의 송신 안테나를 사용하는 경우, 4개의 송신 안테나 포트를 위한 참조 신호는 TDM 및/또는 FDM 방식을 이용하여 배열된다. 하향링크 신호의 수신 측(단말)에 의하여 측정된 채널 정보는 단일의 송신 안테나 전송, 송신 다이버시티, 폐쇄 루프 공간 다중화(closed-loop spatial multiplexing), 개방 루프 공간 다중화(open-loop spatial multiplexing) 또는 다중 사용자-다중 입출력 안테나(Multi-User MIMO(Multi Input Multi Output))와 같은 전송 방식을 이용하여 전송된 데이터를 복조하기 위하여 사용될 수 있다.
다중 입출력 안테나가 지원되는 경우 참조 신호가 특정의 안테나 포트로부터 전송될 때, 상기 참조 신호는 참조 신호의 패턴에 따라 특정된 자원 요소들의 위치에 전송되며, 다른 안테나 포트를 위해 특정된 자원 요소들의 위치에 전송되지 않는다. 즉, 서로 다른 안테나 사이의 참조 신호는 서로 겹치지 않는다.
이하 DRS에 대하여 좀 더 상세하게 기술하면, DRS는 데이터를 복조하기 위하여 사용된다. 다중 입출력 안테나 전송에서 특정의 단말을 위해 사용되는 선행 부호화(precoding) 가중치는 단말이 참조 신호를 수신하였을 때 각 송신 안테나에서 전송된 전송 채널과 결합되어 상응하는 채널을 추정하기 위하여 변경 없이 사용된다.
3GPP LTE 시스템(예를 들어, 릴리즈-8)은 최대로 4개의 전송 안테나를 지원하고, 랭크 1 빔포밍(beamforming)을 위한 DRS가 정의된다. 랭크 1 빔포밍을 위한 DRS는 또한 안테나 포트 인덱스 5 를 위한 참조 신호를 나타낸다.
LTE 시스템의 진화 발전된 형태의 LTE-A 시스템에서 기지국의 하향 링크로 최대 8개의 송신 안테나를 지원할 수 있도록 디자인되어야 한다. 따라서 최대 8개 송신 안테나에 대한 RS 역시 지원되어야 한다. LTE 시스템에서 하향 링크 RS는 최대 4개의 안테나 포트에 대한 RS만 정의되어 있으므로, LTE-A 시스템에서 기지국이 4개 이상 최대 8개의 하향 링크 송신 안테나를 가질 경우 이들 안테나 포트에 대한 RS가 추가적으로 정의되고 디자인되어야 한다. 최대 8개의 송신 안테나 포트에 대한 RS는 위에서 설명한 채널 측정을 위한 RS와 데이터 복조를 위한 RS 두 가지가 모두 디자인되어야 한다.
LTE-A 시스템을 디자인 함에 있어서 중요한 고려 사항 중 하나는 하위 호환성(backward compatibility), 즉 LTE 단말이 LTE-A 시스템에서도 아무 무리 없이 잘 동작해야 하고, 시스템 또한 이를 지원해야 한다는 것이다. RS 전송 관점에서 보았을 때, LTE에서 정의되어 있는 CRS가 전 대역으로 매 서브 프레임마다 전송되는 시간-주파수 영역에서 추가적으로 최대 8개의 송신 안테나 포트에 대한 RS가 추가적으로 정의되어야 한다. LTE-A 시스템에서 기존 LTE의 CRS와 같은 방식으로 최대 8개의 송신 안테나에 대한 RS 패턴을 매 서브 프레임마다 전 대역에 추가하게 되면 RS 오버헤드가 지나치게 커지게 된다.
따라서 LTE-A 시스템에서 새로이 디자인되는 RS는 크게 두 가지 분류로 나누게 되는데, MCS, PMI 등의 선택을 위한 채널 측정 목적의 RS (CSI-RS: Channel State Information-RS, Channel State Indication-RS 등)와 8개의 전송 안테나로 전송되는 데이터 복조를 위한 RS(DM-RS: Data Demodulation-RS)이다.
채널 측정 목적의 CSI-RS는 기존의 CRS가 채널 측정, 핸드 오버 등의 측정 등의 목적과 동시에 데이터 복조를 위해 사용되는 것과 달리 채널 측정 위주의 목적을 위해서 디자인되는 특징이 있다. 물론 이 또한 핸드 오버 등의 측정 등의 목적으로도 사용될 수도 있다. CSI-RS가 채널 상태에 대한 정보를 얻는 목적으로만 전송되므로 CRS와 달리 매 서브 프레임마다 전송되지 않아도 된다. CSI-RS의 오버헤드를 줄이기 위하여 CSI-RS는 시간 축 상에서 간헐적으로 전송된다.
데이터 복조를 위해서 해당 시간-주파수 영역에서 스케줄링 된 UE에게 전용적(dedicated)으로 DM-RS가 전송된다. 즉, 특정 UE의 DM-RS는 해당 UE가 스케줄링 된 영역, 즉 데이터를 수신 받는 시간-주파수 영역에만 전송되는 것이다.
LTE-A 시스템에서 기지국의 하향 링크로 최대 8개의 송신 안테나를 지원한다. LTE-A 시스템에서 기존 LTE의 CRS와 같은 방식으로 최대 8개의 송신 안테나에 대한 RS를 매 서브 프레임마다 전 대역에 전송하게 되면 RS 오버헤드가 지나치게 커지게 된다. 따라서 LTE-A 시스템에서는 MCS, PMI 등의 선택을 위한 CSI 측정 목적의 CSI-RS와 데이터 복조를 위한 DM-RS로 분리되어 두 개의 RS가 추가되었다. CSI-RS는 RRM 측정 등의 목적으로도 사용될 수는 있지만 CSI 획득의 주목적을 위해서 디자인되었다. CSI-RS는 데이터 복조에 사용되지 않으므로 매 서브 프레임마다 전송될 필요는 없다. 그러므로 CSI-RS의 오버헤드를 줄이기 위하여 시간 축 상에서 간헐적으로 전송하도록 한다. 즉, CSI-RS는 한 서브 프레임의 정수 배의 주기를 가지고 주기적으로 전송되거나 특정 전송 패턴으로 전송될 수 있다. 이 때 CSI-RS가 전송되는 주기나 패턴은 eNB가 설정할 수 있다.
데이터 복조를 위해서는 해당 시간-주파수 영역에서 스케줄링 된 UE에게 dedicated하게 DM-RS가 전송된다. 즉, 특정 UE의 DM-RS는 해당 UE가 스케줄링 된 영역, 즉 데이터를 수신 받는 시간-주파수 영역에만 전송된다.
CSI-RS를 측정하기 위해서 UE는 반드시 자신이 속한 셀의 각각의 CSI-RS 안테나 포트에 대한 CSI-RS의 전송 서브 프레임 인덱스, 전송 서브 프레임 내에서 CSI-RS 자원 요소(RE) 시간-주파수 위치, 그리고 CSI-RS 시퀀스 등에 대한 정보를 알고 있어야 한다.
LTE-A 시스템에 eNB는 CSI-RS를 최대 8개의 안테나 포트에 대해서 각각 전송해야 한다. 서로 다른 안테나 포트의 CSI-RS 전송을 위해 사용되는 자원은 서로 직교(orthogonal)해야 한다. 한 eNB가 서로 다른 안테나 포트에 대한 CSI-RS를 전송할 때 각각의 안테나 포트에 대한 CSI-RS를 서로 다른 RE에 맵핑함으로써 FDM/TDM방식으로 이들 자원을 orthogonal하게 할당할 수 있다. 또는 서로 다른 안테나 포트에 대한 CSI-RS를 서로 orthogonal한 코드에 맵핑시키는 CDM방식으로 전송할 수 있다.
CSI-RS에 관한 정보를 eNB가 자기 셀 UE에게 알려줄 때, 먼저 각 안테나 포트에 대한 CSI-RS가 매핑되는 시간-주파수에 대한 정보를 알려줘야 한다. 구체적으로, CSI-RS가 전송되는 서브 프레임 번호들, 또는 CSI-RS가 전송되는 주기, CSI-RS가 전송되는 서브 프레임 오프셋이며, 특정 안테나의 CSI-RS RE가 전송되는 OFDM 심볼 번호, 주파수 간격(spacing), 주파수 축에서의 RE의 오프셋 또는 쉬프트 값 등이 있다.
CSI-RS는 1개, 2개, 4개 또는 8개의 안테나 포트를 통해 전송된다. 이때, 사용되는 안테나 포트는 각각 p=15, p=15,16, p=15,...,18, p=15,...,22이다. CSI-RS는 서브캐리어 간격 Δf=15kHz에 대해서만 정의될 수 있다.
CSI-RS 전송을 위해 설정된 서브프레임 내에서, CSI-RS 시퀀스는 아래 수학식 12와 같이 각 안테나 포트(p) 상의 참조 심볼(reference symbol)로서 이용되는 복소 변조 심볼(complex-valued modulation symbol) a_k,l^(p)에 매핑된다.
Figure PCTKR2017010628-appb-M000012
상기 수학식 12에서, (k',l')(여기서, k'는 자원 블록 내 부반송파 인덱스이고, l'는 슬롯 내 OFDM 심볼 인덱스를 나타낸다.) 및 n_s의 조건은 아래 표 3 또는 표 4와 같은 CSI-RS 설정(configuration)에 따라 결정된다.
표 3는 일반 CP에서 CSI-RS 구성으로부터 (k',l')의 매핑을 예시한다.
Figure PCTKR2017010628-appb-T000003
표 4는 확장 CP에서 CSI-RS 구성으로부터 (k',l')의 매핑을 예시한다.
Figure PCTKR2017010628-appb-T000004
표 3 및 표 4를 참조하면, CSI-RS의 전송에 있어서, 이종 네트워크(HetNet: heterogeneous network) 환경을 포함하여 멀티 셀 환경에서 셀간 간섭(ICI: inter-cell interference)을 줄이기 위하여 최대 32개(일반 CP 경우) 또는 최대 28개(확장 CP 경우)의 서로 다른 구성(configuration)이 정의된다.
CSI-RS 구성은 셀 내의 안테나 포트의 개수 및 CP에 따라 서로 다르며, 인접한 셀은 최대한 서로 다른 구성을 가질 수 있다. 또한, CSI-RS 구성은 프레임 구조에 따라 FDD 프레임과 TDD 프레임에 모두 적용하는 경우와 TDD 프레임에만 적용하는 경우로 나눠질 수 있다.
표 3 및 표 4를 기반으로 CSI-RS 구성에 따라 (k',l') 및 n_s가 정해지고, 각 CSI-RS 안테나 포트에 따라 CSI-RS 전송에 이용하는 시간-주파수 자원이 결정된다.
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 참조 신호가 매핑되는 자원을 예시하는 도면이다.
도 8(a)는 1개 또는 2개의 CSI-RS 안테나 포트들에 의한 CSI-RS 전송에 사용 가능한 20가지 CSI-RS 구성들을 나타낸 것이고, 도 8(b)는 4개의 CSI-RS 안테나 포트들에 의해 사용 가능한 10가지 CSI-RS 구성들을 나타낸 것이며, 도 8(c)는 8개의 CSI-RS 안테나 포트들에 의해 CSI-RS 전송에 사용 가능한 5가지 CSI-RS 구성들을 나타낸 것이다.
이와 같이, 각 CSI-RS 구성에 따라 CSI-RS가 전송되는 무선 자원(즉, RE 쌍)이 결정된다.
특정 셀에 대하여 CSI-RS 전송을 위해 1개 혹은 2개의 안테나 포트가 설정되면, 도 8(a)에 도시된 20가지 CSI-RS 구성들 중 설정된 CSI-RS 구성에 따른 무선 자원 상에서 CSI-RS가 전송된다.
마찬가지로, 특정 셀에 대하여 CSI-RS 전송을 위해 4개의 안테나 포트가 설정되면, 도 8(b)에 도시된 10가지 CSI-RS 구성들 중 설정된 CSI-RS 구성에 따른 무선 자원 상에서 CSI-RS가 전송된다. 또한, 특정 셀에 대하여 CSI-RS 전송을 위해 8개의 안테나 포트가 설정되면, 도 8(c)에 도시된 5가지 CSI-RS 구성들 중 설정된 CSI-RS 구성에 따른 무선 자원 상에서 CSI-RS가 전송된다.
2개의 안테나 포트 별(즉, {15,16}, {17,18}, {19,20}, {21,22})로 각각의 안테나 포트에 대한 CSI-RS는 동일한 무선 자원에 CDM되어 전송된다. 안테나 포트 15 및 16를 예를 들면, 안테나 포트 15 및 16에 대한 각각의 CSI-RS 복소 심볼은 동일하나, 서로 다른 직교 코드(예를 들어, 왈시 코드(walsh code)가 곱해져서 동일한 무선 자원에 매핑된다. 안테나 포트 15에 대한 CSI-RS의 복소 심볼에는 [1, 1]이 곱해지고, 안테나 포트 16에 대한 CSI-RS의 복소 심볼에는 [1 -1]이 곱해져서 동일한 무선 자원에 매핑된다. 이는 안테나 포트 {17,18}, {19,20}, {21,22}도 마찬가지이다.
UE는 전송된 심볼에 곱해진 코드를 곱하여 특정 안테나 포트에 대한 CSI-RS를 검출할 수 있다. 즉, 안테나 포트 15에 대한 CSI-RS를 검출하기 위해서 곱해진 코드 [1 1]을 곱하고, 안테나 포트 16에 대한 CSI-RS를 검출하기 위해서 곱해진 코드 [1 -1]을 곱한다.
도 8(a) 내지 (c)를 참조하면, 동일한 CSI-RS 구성 인덱스에 해당하게 되면, 안테나 포트 수가 많은 CSI-RS 구성에 따른 무선 자원은 CSI-RS 안테나 포트 수가 적은 CSI-RS 구성에 따른 무선 자원을 포함한다. 예를 들어, CSI-RS 구성 0의 경우, 8개 안테나 포트 수에 대한 무선 자원은 4개 안테나 포트 수에 대한 무선 자원과 1 또는 2개의 안테나 포트 수에 대한 무선 자원을 모두 포함한다.
하나의 셀에서 복수의 CSI-RS 구성이 사용될 수 있다. 넌-제로 전력(NZP: non-zero power) CSI-RS는 0개 또는 1개 CSI-RS 구성만이 이용되고, 제로 전력(ZP: zero power) CSI-RS는 0개 또는 여러 개의 CSI-RS 구성이 이용될 수 있다.
상위 계층에 의해 설정되는 16 비트의 비트맵인 ZP CSI-RS(ZeroPowerCSI-RS)에서 1로 설정된 각 비트 별로, UE는 위의 표 3 및 표 4의 4개의 CSI-RS 열(column)에 해당하는 RE들에서(상위 계층에 의해 설정된 NZP CSI-RS를 가정하는 RE와 중복되는 경우를 제외) 제로 전송 전력을 가정한다. 최상위 비트(MSB: Most Significant Bit)는 가장 낮은 CSI-RS 구성 인덱스에 해당하고, 비트맵 내에서 그 다음의 비트는 순서대로 다음의 CSI-RS 구성 인덱스에 해당한다.
CSI-RS는 위의 표 3 및 표 4에서 (n_s mod 2)의 조건을 만족하는 하향링크 슬롯 및 CSI-RS 서브프레임 구성을 만족하는 서브프레임에서만 전송된다.
프레임 구조 타입 2(TDD)의 경우, 스페셜 서브프레임, 동기 신호(SS), PBCH 또는 SIB 1(SystemInformationBlockType1) 메시지 전송과 충돌되는 서브프레임 또는 페이징 메시지 전송을 위해 설정된 서브프레임에서 CSI-RS는 전송되지 않는다.
또한, 안테나 포트 세트 S(S={15}, S={15,16}, S={17,18}, S={19,20} 또는 S={21,22}) 내 속하는 어떠한 안테나 포트에 대한 CSI-RS가 전송되는 RE는 PDSCH 또는 다른 안테나 포트의 CSI-RS 전송에 사용되지 않는다.
CSI-RS 전송에 사용되는 시간-주파수 자원들은 데이터 전송에 사용될 수 없으므로, CSI-RS 오버헤드가 증가할수록 데이터 처리량(throughput)이 감소하게 된다. 이를 고려하여 CSI-RS는 매 서브프레임마다 전송되도록 구성되지 않고, 다수의 서브프레임에 해당하는 소정의 전송 주기마다 전송되도록 구성된다. 이 경우, 매 서브프레임마다 CSI-RS가 전송되는 경우에 비하여 CSI-RS 전송 오버헤드가 많이 낮아질 수 있다.
CSI-RS 전송을 위한 서브프레임 주기(이하, 'CSI 전송 주기'로 지칭함)(T_CSI-RS) 및 서브프레임 오프셋(Δ_CSI-RS)은 아래 표 5와 같다.
표 5은 CSI-RS 서브프레임 구성을 예시한다.
Figure PCTKR2017010628-appb-T000005
표 5를 참조하면, CSI-RS 서브프레임 구성(I_CSI-RS)에 따라 CSI-RS 전송 주기(T_CSI-RS) 및 서브프레임 오프셋(Δ_CSI-RS)이 결정된다.
표 5의 CSI-RS 서브프레임 구성은 앞서 'SubframeConfig' 필드 및 'zeroTxPowerSubframeConfig' 필드 중 어느 하나로 설정될 수 있다. CSI-RS 서브프레임 구성은 NZP CSI-RS 및 ZP CSI-RS에 대하여 개별적으로(separately) 설정될 수 있다.
CSI-RS를 포함하는 서브프레임은 아래 수학식 13을 만족한다.
Figure PCTKR2017010628-appb-M000013
수학식 13에서 T_CSI-RS는 CSI-RS 전송 주기, Δ_CSI-RS는 서브프레임 오프셋 값, n_f는 시스템 프레임 넘버, n_s는 슬롯 넘버를 의미한다.
서빙 셀에 대해 전송 모드 9(transmission mode 9)가 설정된 UE의 경우, UE는 하나의 CSI-RS 자원 구성이 설정될 수 있다. 서빙 셀에 대해 전송 모드 10(transmission mode 10)이 설정된 UE의 경우, UE는 하나 또는 그 이상의 CSI-RS 자원 구성(들)이 설정될 수 있다.
현재 LTE 표준에서 CSI-RS 구성은 안테나 포트 개수(antennaPortsCount), 서브프레임 구성(subframeConfig), 자원 구성(resourceConfig) 등으로 구성되어 있어, CSI-RS가 몇 개의 안테나 포트에서 전송되는지, CSI-RS가 전송될 서브프레임의 주기 및 오프셋이 어떻게 되는지, 그리고 해당 서브프레임에서 어떤 RE 위치(즉, 주파수와 OFDM 심볼 인덱스)에서 전송되는지 알려준다.
구체적으로 각 CSI-RS (자원) 구성을 위한 아래와 같이 파라미터가 상위 계층 시그널링을 통해 설정된다.
- 전송 모드 10이 설정된 경우, CSI-RS 자원 구성 식별자
- CSI-RS 포트 개수(antennaPortsCount): CSI-RS 전송을 위해 사용되는 안테나 포트의 개수를 나타내는 파라미터(예를 들어, 1 CSI-RS 포트, 2 CSI-RS 포트, 4 CSI-RS 포트, 8 CSI-RS 포트)
- CSI-RS 구성(resourceConfig) (표 3 및 표 4 참조): CSI-RS 할당 자원 위치에 관한 파라미터
- CSI-RS 서브프레임 구성(subframeConfig, 즉 I_CSI-RS) (표 5 참조): CSI-RS가 전송될 서브프레임 주기 및/또는 오프셋에 관한 파라미터
- 전송 모드 9가 설정된 경우, CSI 피드백을 위한 전송 파워(P_C): 피드백을 위한 참조 PDSCH 전송 파워에 대한 UE의 가정과 관련하여, UE가 CSI 피드백을 도출하고 1 dB 단계 크기로 [-8, 15] dB 범위 내에서 값을 취할 때, P_C는 PDSCH RE 당 에너지(EPRE: Energy Per Resource Element)와 CSI-RS EPRE의 비율로 가정된다.
- 전송 모드 10이 설정된 경우, 각 CSI 프로세스에 대하여 CSI 피드백을 위한 전송 파워(P_C). CSI 프로세스에 대하여 CSI 서브프레임 세트들 C_CSI,0 및 C_CSI,1가 상위 계층에 의해 설정되면, P_C는 CSI 프로세스의 각 CSI 서브프레임 세트 별로 설정된다.
- 임의 랜덤(pseudo-rnadom) 시퀀스 발생기 파라미터(n_ID)
- 전송 모드 10이 설정된 경우, QCL(QuasiCo-Located) 타입 B UE 가정을 위한 QCL 스크램블링 식별자(qcl-ScramblingIdentity-r11), CRS 포트 카운트(crs-PortsCount-r11), MBSFN 서브프레임 설정 리스트(mbsfn-SubframeConfigList-r11) 파라미터를 포함하는 상위 계층 파라미터('qcl-CRS-Info-r11')
UE가 도출한 CSI 피드백 값이 [-8, 15] dB 범위 내의 값을 가질 때, P_C는 CSI-RS EPRE에 대한 PDSCH EPRE의 비율로 가정된다. 여기서, PDSCH EPRE는 CRS EPRE에 대한 PDSCH EPRE의 비율이 ρ_A인 심볼에 해당한다.
서빙 셀의 동일한 서브프레임에서 CSI-RS와 PMCH이 함께 설정되지 않는다.
프레임 구조 타입 2에서 4개의 CRS 안테나 포트가 설정된 경우, UE는 일반 CP의 경우 [20-31] 세트(표 3 참조) 또는 확장 CP의 경우 [16-27] 세트(표 4 참조)에 속하는 CSI-RS 구성 인덱스가 설정되지 않는다.
UE는 CSI-RS 자원 구성의 CSI-RS 안테나 포트가 지연 확산(delay spread), 도플러 확산(Doppler spread), 도플러 쉬프트(Doppler shift), 평균 이득(average gain) 및 평균 지연(average delay)에 대하여 QCL 관계를 가진다고 가정할 수 있다.
전송 모드 10 그리고 QCL 타입 B가 설정된 UE는 CSI-RS 자원 구성에 해당하는 안테나 포트 0-3과 CSI-RS 자원 구성에 해당하는 안테나 포트 15-22가 도플러 확산(Doppler spread), 도플러 쉬프트(Doppler shift)에 대하여 QCL 관계라고 가정할 수 있다.
전송 모드 1-9가 설정된 UE의 경우, 서빙 셀에 대하여 UE는 하나의 ZP CSI-RS 자원 구성이 설정될 수 있다. 전송 모드 10이 설정된 UE의 경우, 서빙 셀에 대하여 UE는 하나 또는 그 이상의 ZP CSI-RS 자원 구성이 설정될 수 있다.
상위 계층 시그널링을 통해 ZP CSI-RS 자원 구성을 위한 아래와 같은 파라미터가 설정될 수 있다.
- ZP CSI-RS 구성 리스트(zeroTxPowerResourceConfigList) (표 3 및 표 4 참조): 제로-파워 CSI-RS 구성에 관한 파라미터
- ZP CSI-RS 서브프레임 구성(eroTxPowerSubframeConfig, 즉 I_CSI-RS) (표 5 참조): 제로-파워 CSI-RS가 전송되는 서브프레임 주기 및/또는 오프셋에 관한 파라미터
서빙 셀의 동일한 서브프레임에서 ZP CSI-RS와 PMCH가 동시에 설정되지 않는다.
전송 모드 10이 설정된 UE의 경우, 서빙 셀에 대하여 하나 또는 그 이상의 CSI-IM(Channel-State Information - Interference Measurement) 자원 구성이 설정될 수 있다.
상위 계층 시그널링을 통해 각 CSI-IM 자원 구성을 위한 아래와 같은 파라미터가 설정될 수 있다.
- ZP CSI-RS 구성 (표 3 및 표 4 참조)
- ZP CSI RS 서브프레임 구성(I_CSI-RS) (표 5 참조)
CSI-IM 자원 구성은 설정된 ZP CSI-RS 자원 구성 중 어느 하나와 동일하다.
서빙 셀의 동일한 서브프레임 내 CSI-IM 자원과 PMCH가 동시에 설정되지 않는다.
사운딩 참조 신호(SRS: Sounding Reference Signal)
SRS는 주로 상향링크의 주파수-선택적 스케줄링을 수행하기 위하여 채널 품질 측정에 사용되며, 상향링크 데이터 및/또는 제어 정보의 전송과 관련되지 않는다. 그러나, 이에 한정되지 않으며 SRS는 전력 제어의 향상 또는 최근에 스케줄되어 있지 않은 단말들의 다양한 스타트-업(start-up) 기능을 지원하기 위한 다양한 다른 목적들을 위해 사용될 수 있다. 스타트-업 기능의 일례로, 초기의 변조 및 부호화 방식(MCS: Modulation and Coding Scheme), 데이터 전송을 위한 초기의 전력 제어, 타이밍 전진(timing advance) 및 주파수 반-선택적(semi-selective) 스케줄링이 포함될 수 있다. 이때, 주파수 반-선택적 스케줄링은 서브 프레임의 처음의 슬롯에 선택적으로 주파수 자원을 할당하고, 두번째 슬롯에서는 다른 주파수로 의사 랜덤(pseudo-randomly)하게 도약하여 주파수 자원을 할당하는 스케줄링을 말한다.
또한, SRS는 상향링크와 하향링크 간에 무선 채널이 상호적(reciprocal)인 가정하에 하향링크 채널 품질을 측정하기 위하여 사용될 수 있다. 이러한 가정은 상향링크와 하향링크가 동일한 주파수 스펙트럼을 공유하고, 시간 영역에서는 분리된 시분할 듀플레스(TDD: Time Division Duplex) 시스템에서 특히 유효하다
셀 내에서 어떠한 단말에 의하여 전송되는 SRS의 서브 프레임들은 셀-특정 방송 신호에 의하여 나타낼 수 있다. 4비트 셀-특정 'srsSubframeConfiguration' 파라미터는 SRS가 각 무선 프레임을 통해 전송될 수 있는 15가지의 가능한 서브 프레임의 배열을 나타낸다. 이러한 배열들에 의하여, 운용 시나리오(deployment scenario)에 따라 SRS 오버헤드(overhead)의 조정에 대한 유동성을 제공하게 된다.
이 중 16번째 배열은 셀 내에서 완전하게 SRS의 스위치를 오프하며, 이는 주로 고속 단말들을 서빙하는 서빙 셀에 적합하다.
도 9는 본 발명이 적용될 수 있는 무선 통신 시스템에서 사운딩 참조 신호 심볼을 포함한 상향링크 서브 프레임을 예시한다.
도 9를 참조하면, SRS는 배열된 서브 프레임 상에서 항상 마지막 SC-FDMA 심볼을 통해 전송된다. 따라서, SRS와 DMRS는 다른 SC-FDMA 심볼에 위치하게 된다.
PUSCH 데이터 전송은 SRS 전송을 위한 특정의 SC-FDMA 심볼에서는 허용되지 않으며, 결과적으로 사운딩(sounding) 오버헤드가 가장 높은 경우 즉, 모든 서브 프레임에 SRS 심볼이 포함되는 경우라도 사운딩 오버헤드는 약 7%를 초과하지 않는다.
각 SRS 심볼은 주어진 시간 단위와 주파수 대역에 관한 기본 시퀀스(랜덤 시퀀스 또는 Zadoff-Ch(ZC)에 기초한 시퀀스 세트)에 의하여 생성되고, 동일 셀 내의 모든 단말들은 동일한 기본 시퀀스를 사용한다. 이때, 동일한 주파수 대역과 동일한 시간에서 동일 셀 내의 복수의 단말로부터의 SRS 전송은 기본 시퀀스의 서로 다른 순환 이동(cyclic shift)에 의해 직교(orthogonal)되어 서로 구별된다.
각각의 셀 마다 서로 다른 기본 시퀀스가 할당되는 것에 의하여 서로 다른 셀로부터의 SRS 시퀀스가 구별될 수 있으나, 서로 다른 기본 시퀀스 간에 직교성은 보장되지 않는다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 무선 액세스 기술(RAT: Radio Access Technology)에 비해 향상된 이동 광대역(mobile broadband) 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브(massive) MTC(Machine Type Communications) 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다. 뿐만 아니라 신뢰성(reliability) 및 레이턴시(latency) 에 민감한 서비스/UE를 고려한 통신 시스템 디자인이 논의되고 있다.
이와 같이 진보된 이동 광대역 통신(enhanced mobile broadband communication), massive MTC, URLLC(Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있으며, 본 발명에서는 편의상 해당 기술을 새로운 RAT(new RAT) 이라고 지칭한다.
자기 완비(Self-contained) 서브프레임 구조
도 10은 본 발명이 적용될 수 있는 무선 통신 시스템에서 자기 완비(Self-contained) 서브프레임 구조를 예시하는 도면이다.
TDD 시스템에서 데이터 전송 레이턴시(latency)를 최소화하기 위하여 5세대(5G: 5 generation) new RAT에서는 도 10과 같은 자기 완비(self-contained) 서브프레임 구조를 고려하고 있다.
도 10에서 빗금친 영역(심볼 인덱스 0)은 하향링크(DL) 제어 영역을 나타내고, 검정색 부분(심볼 인덱스 13)은 상향링크(UL) 제어 영역을 나타낸다. 음영 표시가 없는 영역은 DL 데이터 전송을 위해 사용될 수도 있고, 또는 UL 데이터 전송을 위해 사용될 수도 있다. 이러한 구조의 특징은 한 개의 서브프레임 내에서 DL 전송과 UL 전송이 순차적으로 진행되어, 서브프레임 내에서 DL 데이터가 전송되고, UL ACK/NACK도 수신될 수 있다. 결과적으로 데이터 전송 에러 발생시에 데이터 재전송까지 걸리는 시간을 줄이게 되며, 이로 인해 최종 데이터 전달의 latency를 최소화할 수 있다.
이러한 self-contained 서브프레임 구조에서 기지국과 UE가 송신 모드에서 수신모드로 전환 과정 또는 수신모드에서 송신모드로 전환 과정을 위한 시간 갭(time gap)이 필요하다. 이를 위하여 self-contained 서브프레임 구조에서 DL에서 UL로 전환되는 시점의 일부 OFDM 심볼이 가드 구간(GP: guard period)으로 설정되게 된다.
아날로그 빔포밍(Analog beamforming)
밀리미터파(Millimeter Wave, mmW)에서는 파장이 짧아져서 동일 면적에 다수개의 안테나 요소(antenna element)의 설치가 가능하다. 즉, 30GHz 대역에서 파장은 1cm로써 4 X 4 (4 by 4) cm의 패널(panel)에 0.5 람다(lambda)(즉, 파장) 간격으로 2-차원 배열 형태로 총 64(8x8)의 antenna element 설치가 가능하다. 그러므로 mmW에서는 다수개의 antenna element를 사용하여 빔포밍(BF: beamforming) 이득을 높여 커버리지를 증가시키거나, 수율(throughput)을 높이려고 한다.
이 경우에 antenna element 별로 전송 파워 및 위상 조절이 가능하도록 트랜시버 유닛(TXRU: Transceiver Unit)을 가지면 주파수 자원 별로 독립적인 빔포밍이 가능하다. 그러나 100여개의 antenna element 모두에 TXRU를 설치하기에는 가격측면에서 실효성이 떨어지는 문제를 갖게 된다. 그러므로 하나의 TXRU에 다수개의 antenna element를 매핑하고 아날로그 위상 시프터(analog phase shifter)로 빔(beam)의 방향을 조절하는 방식이 고려되고 있다. 이러한 analog BF 방식은 전 대역에 있어서 하나의 beam 방향만을 만들 수 있어 주파수 선택적 BF을 할 수 없다는 단점이 있다.
디지털(Digital) BF와 analog BF의 중간 형태로 Q개의 antenna element보다 적은 개수인 B개의 TXRU를 갖는 하이브리드 빔포밍(hybrid BF)을 고려할 수 있다. 이 경우에 B개의 TXRU와 Q개의 antenna element의 연결 방식에 따라서 차이는 있지만, 동시에 전송할 수 있는 beam의 방향은 B개 이하로 제한되게 된다.
이하, 도면을 참조하여 TXRU와 antenna element의 연결 방식의 대표적인 일례들을 살펴본다.
도 11은 본 발명이 적용될 수 있는 무선 통신 시스템에서 트랜스시버 유닛 모델을 예시한다.
TXRU 가상화(virtualization) 모델은 TXRU의 출력 신호와 antenna elements의 출력 신호의 관계를 나타낸다. antenna element와 TXRU와의 상관 관계에 따라 도 11(a)와 같이 TXRU 가상화(virtualization) 모델 옵션-1: 서브-배열 분할 모델(sub-array partition model)과 도 11(b)와 같이 TXRU 가상화 모델 옵션-2: 전역 연결(full-connection) 모델로 구분될 수 있다.
도 11(a)를 참조하면, 서브-배열 분할 모델(sub-array partition model)의 경우, antenna element는 다중의 안테나 요소 그룹으로 분할되고, 각 TXRU는 그룹 중 하나와 연결된다. 이 경우에 antenna element는 하나의 TXRU에만 연결된다.
도 11(b)를 참조하면, 전역 연결(full-connection) 모델의 경우, 다중의 TXRU의 신호가 결합되어 단일의 안테나 요소(또는 안테나 요소의 배열)에 전달된다. 즉, TXRU가 모든 안테나 element에 연결된 방식을 나타낸다. 이 경우에 안테나 element는 모든 TXRU에 연결된다.
도 11에서 q는 하나의 열(column) 내 M개의 같은 편파(co-polarized)를 가지는 안테나 요소들의 송신 신호 벡터이다. w는 광대역 TXRU 가상화 가중치 벡터(wideband TXRU virtualization weight vector)이며, W는 아날로그 위상 시프터(analog phase shifter)에 의해 곱해지는 위상 벡터를 나타낸다. 즉 W에 의해 analog beamforming의 방향이 결정된다. x는 M_TXRU 개의 TXRU들의 신호 벡터이다.
여기서, 안테나 포트와 TXRU들과의 매핑은 일대일(1-to-1) 또는 일대다(1-to-many)일 수 있다.
도 11에서 TXRU와 안테나 요소 간의 매핑(TXRU-to-element mapping)은 하나의 예시를 보여주는 것일 뿐이고, 본 발명이 이에 한정되는 것은 아니며 하드웨어 관점에서 이 밖에 다양한 형태로 구현될 수 있는 TXRU와 안테나 요소 간의 매핑에도 본 발명이 동일하게 적용될 수 있다.
채널 상태 정보(CSI: Channel State Information) 피드백
3GPP LTE/LTE-A 시스템에서는, 사용자 기기(UE)가 채널 상태 정보(CSI)를 기지국(BS 또는 eNB)으로 보고하도록 정의되었다.
CSI는 UE와 안테나 포트 사이에 형성되는 무선 채널(혹은 링크라고도 함)의 품질을 나타낼 수 있는 정보를 통칭한다. 예를 들어, 랭크 지시자(RI: Rank Indicator), 프리코딩 행렬 지시자(PMI: Precoding Matrix Indicator), 채널 품질 지시자(CQI: Channel Quality Indicator) 등이 이에 해당한다.
여기서, RI는 채널의 랭크(rank) 정보를 나타내며, 이는 UE가 동일 시간-주파수 자원을 통해 수신하는 스트림의 개수를 의미한다. 이 값은 채널의 긴 주기(long term) 페이딩(fading)에 의해 종속되어 결정되므로, PMI, CQI보다 일반적으로 더 긴 주기를 가지고 UE에서 BS로 피드백된다. PMI는 채널 공간 특성을 반영한 값으로 신호 대 간섭 잡음비(SINR: Signal-to-Interference-plus-Noise Ratio) 등의 메트릭(metric)을 기준으로 UE가 선호하는 프리코딩 인덱스를 나타낸다. CQI는 채널의 세기를 나타내는 값으로 일반적으로 BS가 PMI를 이용했을 때 얻을 수 있는 수신 SINR을 의미한다.
3GPP LTE/LTE-A 시스템에서 기지국은 다수개의 CSI 프로세스(process)를 UE에게 설정해 주고, 각 프로세스에 대한 CSI를 보고 받을 수 있다. 여기서 CSI 프로세스는 기지국으로부터의 신호 품질 측정을 위한 CSI-RS와 간섭 측정을 위한 CSI-간섭 측정(CSI-IM: CSI-Interference Measurement) 자원으로 구성된다.
참조 신호(RS: Reference Signal) 가상화(virtualization)
mmW에서 analog beamforming에 의해 한 시점에 하나의 analog beam 방향으로만 PDSCH 전송될 수 있다. 이 경우, 해당 방향에 있는 일부 소수의 UE에게만 기지국으로부터 데이터 전송이 가능하게 된다. 그러므로 필요에 따라서 안테나 포트 별로 analog beam 방향을 다르게 설정함으로써 여러 analog beam 방향에 있는 다수의 UE들에게 동시에 데이터 전송이 수행될 수 있다.
도 12는 본 발명이 적용될 수 있는 무선 통신 시스템에서, 트랜시버 유닛 별 서비스 영역을 예시하는 도면이다.
도 12에서는 256 antenna element를 4등분하여 4개의 sub-array를 형성하고, 앞서 도 11과 같이 sub-array에 TXRU를 연결한 구조를 예로 들어 설명한다.
각 sub-array가 2-차원(dimension) 배열 형태로 총 64(8x8)의 antenna element이 구성되면, 특정 analog beamforming에 의해 15도의 수평각 영역과 15도의 수직각 영역에 해당하는 지역을 커버할 수 있다. 즉, 기지국이 서비스해야 되는 지역을 다수개의 영역으로 나누어, 한번에 하나씩 서비스 하게 된다.
이하의 설명에서 CSI-RS 안테나 포트(antenna port)와 TXRU는 일대일(1-to-1) 매핑되었다고 가정한다. 그러므로 antenna port와 TXRU는 이하의 설명에서 같은 의미를 갖는다.
도 12(a)와 같이 모든 TXRU(안테나 포트, sub-array)(즉, TXRU 0, 1, 2, 3)가 동일 analog beamforming 방향(즉, 영역 1(region 1))을 가지면, 더 높은 분해능(resolution)을 갖는 digital beam을 형성하여 해당 지역의 수율(throughput)을 증가 시킬 수 있다. 또한 해당 지역으로 전송 데이터의 랭크(rank)를 증가시켜 해당 지역의 throughput을 증가 시킬 수 있다.
도 12(b) 및 도 12(c)와 같이 각 TXRU(안테나 포트, sub-array)(즉, 포트(port) 0, 1, 2, 3)가 다른 analog beamforming 방향(즉, region 1 또는 region 2)을 가지면, 더 넓은 영역에 분포된 UE들에게 해당 서브프레임(SF: subframe)에서 동시에 데이터 전송이 가능해 진다.
도 12(b) 및 도 12(c)의 예시와 같이 4개의 안테나 포트 중에서 2개는 영역 1에 있는 UE1에게 PDSCH 전송을 위해 사용되고, 나머지 2개는 영역 2에 있는 UE2에게 PDSCH 전송을 위해 사용될 수 있다.
특히, 도 12(b)에서는 UE1에게 전송되는 PDSCH1과 UE2에게 전송되는 PDSCH2가 공간 분할 다중화(SDM: Spatial Division Multiplexing)된 예시를 나타낸다. 이와 달리 도 12(c)에서와 같이 UE1에게 전송되는 PDSCH1과 UE2에게 전송되는 PDSCH2가 주파수 분할 다중화(FDM: Frequency Division Multiplexing)되어 전송될 수도 있다.
모든 안테나 포트를 사용하여 한 영역을 서비스 하는 방식과 안테나 포트들을 나누어 여러 영역을 동시에 서비스 하는 방식 중에서 셀 수율(cell throughput)을 최대화하기 위하여 UE에게 서비스하는 랭크(rank) 그리고 변조 및 코딩 기법(MCS: Modulation and Coding Scheme)에 따라서 선호되는 방식이 바뀔 수 있다. 또한 각 UE에게 전송할 데이터의 양에 따라서 선호되는 방식이 바뀔 수 있다.
기지국은 모든 안테나 포트를 사용하여 한 영역을 서비스 할 때 얻을 수 있는 cell throughput 또는 스케줄링 매트릭(scheduling metric)을 계산하고, 안테나 포트를 나누어서 두 영역을 서비스 할 때 얻을 수 있는 cell throughput 또는 scheduling metric을 계산한다. 기지국은 각 방식을 통해 얻을 수 있는 cell throughput 또는 scheduling metric을 비교하여 최종 전송 방식을 선택할 수 있다. 결과적으로 서브프레임 단위로(SF-by-SF)으로 PDSCH 전송에 참여하는 안테나 포트의 개수가 변동될 수 있다. 기지국이 안테나 포트의 개수에 따른 PDSCH의 전송 MCS를 계산하고 스케줄링 알고리즘에 반영하기 위하여, 이에 적합한 UE로부터의 CSI 피드백이 요구된다.
빔 참조 신호(BRS: Beam Reference Signal)
빔 참조 신호(BRS)는 하나 또는 그 이상의 안테나 포트(p={0,1,...,7} 상에서 전송될 수 있다.
참조 신호 시퀀스 'r_l(m)'는 아래 수학식 14와 같이 정의될 수 있다.
Figure PCTKR2017010628-appb-M000014
여기서, l=0,1,...,13 은 OFDM 심볼 번호이다. N_RB^max,DL은 가장 큰 하향링크 밴드 설정을 나타내며, N_sc^RB의 배수로 표현된다. N_sc^RB는 주파수 도메인에서 자원 블록의 크기를 나타내며, 서브캐리어의 수로 표현된다.
수학식 14에서 c(i)는 의사-난수(pseudo-random) 시퀀스로서 미리 정의될 수 있다. 의사-난수 시퀀스 발생기는 아래 수학식 15를 이용하여 매 OFDM 심볼의 시작 시 초기화될 수 있다.
Figure PCTKR2017010628-appb-M000015
여기서, N_ID^cell은 물리 계층 셀 식별자를 나타낸다. n_s=floor(l/7)이고, floor(x)는 x 이하의 최대 정수를 도출하는 바닥 함수(floor function)를 나타낸다. l'=l mod 7이고, mod 는 모듈로(modulo) 연산을 나타낸다.
빔 보정 참조 신호(BRRS: Beam Refinement Reference Signal)
빔 보정 참조 신호(BRRS)는 최대 8개의 안테나 포트(p=600,...,607) 상에서 전송될 수 있다. BRRS의 전송 및 수신은 xPDCCH 상의 하향링크 자원 할당 내에서 스케줄링될 수 있다.
참조 신호 시퀀스 'r_l,ns(m)'는 아래 수학식 16과 같이 정의될 수 있다.
Figure PCTKR2017010628-appb-M000016
여기서, n_s는 무선 프레임 내 슬롯 번호이다. l은 슬롯 내 OFDM 심볼 번호이다. c(i)는 의사-난수(pseudo-random) 시퀀스로서 미리 정의될 수 있다. 의사-난수 시퀀스 발생기는 아래 수학식 17을 이용하여 매 OFDM 심볼의 시작 시 초기화될 수 있다.
Figure PCTKR2017010628-appb-M000017
여기서, N_ID^BRRS는 RRC 시그널링을 통해 UE에게 설정된다.
하향링크 위상 잡음 보상 참조 신호(DL Phase Noise Compensation Reference Signal)
xPDSCH와 연관된 위상 잡음 보상 참조 신호는 DCI 내에서 시그널링에 따라 안테나 포트(들) p=60 및/또는 p=61 상에서 전송될 수 있다. 또한, xPDSCH와 연관된 위상 잡음 보상 참조 신호는 xPDSCH 전송이 해당 안테나 포트와 연관될 때만 위상 잡음 보상을 위한 유효한 참조로서 존재할 수 있다. 또한, xPDSCH와 연관된 위상 잡음 보상 참조 신호는 해당 xPDSCH가 매핑된 물리 자원 블록 및 심볼 상에서만 전송될 수 있다. 또한, xPDSCH와 연관된 위상 잡음 보상 참조 신호는 xPDSCH 할당에 따라 모든 심볼에서 동일할 수 있다.
어떠한 안테나 포트 p∈{60,61}에 있어서, 참조 신호 시퀀스 'r(m)'는 아래 수학식 18과 같이 정의된다.
Figure PCTKR2017010628-appb-M000018
여기서, c(i)는 의사-난수(pseudo-random) 시퀀스로서 미리 정의될 수 있다. 의사-난수 시퀀스 발생기는 아래 수학식 19를 이용하여 매 서브프레임 시작 시 초기화될 수 있다.
Figure PCTKR2017010628-appb-M000019
여기서, n_SCID는 다르게 특정되지 않는 한 0이다. xPDSCH 전송에 있어서, n_SCID는 xPDSCH 전송과 연관된 DCI 포맷 내에서 주어진다.
n_ID^(i)(여기서, i=0,1)는 다음과 같이 주어진다. n_ID^PCRS,i의 값이 상위 계층에 의해 제공되지 않으면 n_ID^(i)는 N_ID^cell과 같다. 그렇지 않으면, n_ID^(i)는 n_ID^PCRS,i와 같다.
새로운 RAT(NR: New Rat) 상향링크(UL: Uplink) MIMO(Multi-Input Multi-Output)을 위해 다음과 같은 기술이 논의되고 있다.
i) 데이터 채널을 위한 상향링크 전송/수신 기법
- 비-호혜성(Non reciprocity) 기반 UL MIMO (예를 들어, PMI 기반)
- 호혜성(reciprocity) 기반 UL MIMO (예를 들어, UE가 하향링크 RS 측정 기반으로 프리코더(precoder)를 도출함) (부분적인(partial) reciprocity 포함)
- 다중 사용자(MU: Multi User)-MIMO 지원
- 개루프(Open-loop)/폐루프(Close-loop) 단일/다중 포인트 공간 다중화(SM: Spatial Multiplexing)
예를 들어, 다중 포인트 SM의 경우, 다중 레이어(multi layer)가 서로 다른 전송 수신 포인트(TRP: Transmit Reception Point)에 의해 조인트하게(jointly) 또는 독립적으로 수신된다.
다중 포인트 SM의 경우, 다중 포인트가 연합(coordination)될 수 있다.
- 단일/다중 패널(panel) 공간 다이버시티(spatial diversity)
- UL 안테나/패널 스위칭 (UE 측면)
- 아날로그 구현을 위한 UL 빔포밍 관리
- 상기 기술들의 조합
ii) 다음과 같은 기능을 고려한UL RS 설계
- 사운딩(sounding)
- 복조(Demodulation)
- 위상 노이즈 보상(Phase noise conpensation)
iii) UL MIMO의 컨텍스트 내 UL 전송 파워/타이밍 어드밴스(timing advance) 제어
iv) UL 제어 정보를 나르기 위한 전송 기법(들)
v) 다른 UL MIMO 및 관련 기술들이 제한되지 않는다.
UL MIMO 전송을 위한 다음과 같은 측면이 지원되어야 한다.
i) reciprocity 보정된(calibrated) UE, reciprocity 비-보정된(non-calibrated) UE, 및 non-reciprocity/partial reciprocity 경우에 대한 전송 기법/방법
- 필요하다면, UL reciprocity 기반 동작과 연관된 시그널링이 도입된다. 예를 들어, 보정(calibration) 정확성을 지시하는 UE 능력(capability)
- non-reciprocity와 reciprocity non-calibrated UE를 구별할지 여부에 대하여 논의될 예정이다.
- 전송 기법/방법의 수는 추가로 논의될 수 있다.
ii) 다음의 후보 기법/방법 중 적어도 하나가 지원된다.
- 후보 1: 코드북 기반 전송
큰 시스템 대역폭을 위해 디지털 도메인(digital domain)에서 주파수 선택적(selective) 및 주파수 비-선택적(non-selective) 프리코딩이 고려될 수 있다. 주파수 선택적 프리코딩의 지원은 NR 파형(waveform)(들)의 결정에 따라 결정된다. 큰 시스템 대역폭의 값을 추후 논의된다.
예를 들어, LTE와 유사한(analogous) 기지국-중심(BS(Base Station)-based) 메커니즘
예를 들어, UE-보조(UE-aided) 및 BS-중심(BS-centric) 메커니즘: UE는 DL RS 측정에 기반하여 미리 정의된 코드북으로부터 후보 UL 프리코더들을 BS에게 추천한다. 그리고, BS는 코드북으로부터 이용할 최종의 프리코더를 결정한다.
예를 들어, UE-중심(UE-centric) 및 BS-보조(BS-aided) 메커니즘: BS는 CSI(예를 들어, 채널 응답, 간접-관련 정보)를 UE에게 제공한다. 그리고, UE는 BS로부터 수신한 정보에 기반하여 최종의 프리코더를 결정한다.
- 후보 1: 비-코드북(non-codebook) 기반 전송
큰 시스템 대역폭을 위해 디지털 도메인(digital domain)에서 주파수 선택적(selective) 및 주파수 비-선택적(non-selective) 프리코딩이 고려될 수 있다. 주파수 선택적 프리코딩의 지원은 NR 파형(waveform)(들)의 결정에 따라 결정된다. 큰 시스템 대역폭의 값을 추후 논의된다.
예를 들어, calibrated UE들만을 위한 reciprocity 기반(DL RS 기반) 전송
예를 들어, UE-aided 및 BS-centric 메커니즘: UE는 DL RS 측정에 기반하여 후보 UL 프리코더들을 BS에게 추천한다. 그리고, BS는 최종의 프리코더를 결정한다.
예를 들어, UE-centric 및 BS-aided 메커니즘: BS는 CSI(예를 들어, 채널 응답, 간섭-관련 정보)를 UE에게 제공한다. 그리고, UE는 BS로부터 수신한 정보에 기반하여 최종의 프리코더를 결정한다.
- 다른 전송 기법/방법이 제한되지 않는다.
i) 주파수 선택적/비-선택적 프리코딩을 위한 UL 프리코더 시그널링에 대한 논의
- 예제 1: DL 제어 및/또는 데이터 채널을 통한 단일 또는 다중 PMI의 시그널링
다중의 PMI는 단일의 DCI 또는 다중-레벨 DCI(제1 레벨 DCI는 제2 레벨 DCI의 위치 지시를 포함함)를 통해 시그널링될 수 있다.
- 예제 2: TDD의 경우, UE에서 DL RS 기반의 프리코더 계산
주파수 선택적 프리코딩의 구현은 RAN1 결정(예를 들어, NR 프레임 구조, 파형(들))에 따라 결정된다.
다른 시스템 설계 측면에의 영향(예를 들어, DL 제어 채널 디코딩 성능/복잡도)이 고려되어야 한다.
ii) 프리코더 순환(cycling)을 포함하는 프리코딩된 전송을 위해 UL 주파수 선택적 프리코딩의 사용에 대한 논의
iii) 주파수 선택적 프리코딩의 경우, 다음과 같은 측면을 고려한 UL 프리코딩 단위(granularity)(즉, UL 서브밴드 크기)에 대한 논의
- 암묵적인(implicit)(표준 규격에 의한 정의) 또는 명시적인(explicit)(eNB/UE에 의한 결정) 시그널링 지원
- DL와 정렬(align)할지 여부
iv) 평가는 UL waveform 등에 따른 큐빅 메트릭(CM: Cubic Metric) 분석과 같은UL 특정(UE specific) 측면을 포함하여야 한다.
v) 주파수 비-선택적 프리코딩에 대한 논의는 최우선 순위(higher-priority)이다.
기존 LTE 표준에서는 UE의 UL-MIMO 전송을 위한 상향링크 그랜트(UL grant)(예를 들어, DCI 포맷 4)를 기지국이 UE한테 전송할 때, 프리코딩 정보를 함께 전달(예를 들어, DCI 포맷에 포함)한다. 이에 따라, UE는 지시된 (단일 광대역(single wideband)) 프리코더(precoder)를 스케줄링된 물리 자원 블록(PRB: Physical Resource Block)(들)에 적용하여 UL 전송을 수행한다.
상술한 바와 같이, UL에서도 주파수 선택적인 프리코더(frequency selective precoder)를 지시해주기 위한 방법이 논의되고 있다. 이를 통해 서브밴드(subband) 별로 보다 최적화된 UL precoder를 적용하도록 함으로써 전송 수율 성능을 개선할 수 있다.
그러나, DL과 달리 UL은 기지국이 UL grant 시에 이러한 subband precoder를 직접 지시해주어야 하며, 이는 subband 개수에 비례하여 과도한 제어 채널 오버헤드(overhead)를 야기할 수 있다.
따라서 본 발명에서는, 상향링크 관련된(UL-related) DCI overhead를 최소화시키면서 상기 UL subband precoding을 적용할 수 있도록 하는 방법을 제안한다.
본 발명에서는 기본적으로 특정 UL precoder 'P'를 P = U1 * U2 형태 등으로 구분하여 설명한다. 여기서, U1은 상대적으로 광대역(wideband)(및/또는 장기(long-term)) precoder 속성이고, U2는 상대적으로 서브밴드(subband)(및/또는 단기(short-term)) precoder 속성으로 분리될 수 있도록 구분할 수 있다.
다만, 본 발명이 이에 한정되는 것은 아니며, 단일 PMI(예를 들어, TPMI), precoder 기반으로도 이하 설명하는 본 발명의 동작이 수행될 수 있다.
U1 정보는 subband들에 걸쳐서 공통(common)되도록 지시하고, U2 정보만을 subband 별로 지시하는 형태로 UL 스케줄링 시에 (또는 이와 연관하여) UE에게 지시될 수 있도록 하는 방법을 제안한다.
예를 들어, 온전한 P가 6 비트이고, U1이 4 비트, U2가 2 비트인 상황을 가정하면, 본 발명에서 제안하는 계층화된 구조를 적용하지 않고는 각 subband 별로 6 비트를 할당하 모든 subband에 대한 UL precoder를 지시하여야 한다. 총 subband 수가 N이라고 하면, 총 6N 비트가 해당 UL precoder 지시에 소모된다. 반면에, 본 발명의 제안방식을 따르면 6 + 2N bits이 소모되므로 subband수 N이 증가함에 따라 control channel overhead 절감에 크게 기여하게 된다.
본 명세서에서 설명의 편의 상 특정 주파수축 자원 단위를 “서브밴드(subband)”라고 지칭하나, 이에 본 발명이 한정되는 것은 아니며 특정 주파수축 자원 단위를 통칭하는 용어로 이해되어야 한다. 예를 들어 subband라는 용어는 RB, PRB, PRB 그룹(예를 들어, PRG(PRB Group)) 등과 본 발명의 모든/일부 설명에서 서로 변경/혼용될 수 있다.
U1 정보 관련
만일, 채널 특성상 각 subband 별로 밀접한-간격의 빔(closely-spaced beam)들 중에 적절히 선택적으로 특정 빔이 지시되는 것이 유리한 환경이 아니고, 각 subband 별로 넓은-간격의 빔(widely-spaced beam)들 중에서 선택되도록 하는 것이 유리한 환경 등 (예를 들어, 개루프(open-loop) 방식과 유사하며, 단말 속도가 클 경우 등)을 위해서는 U1 코드북이 widely-spaced beam으로 구성될 수도 있다.
앞서 설명한 예시에서 U1이 4 비트라고 함은 총 16가지의 상이한 U1 정보가 지시될 수 있다는 것을 의미한다. 각각의 U1 정보는 상기 U2에서 선택하는 대상이 될 특정 빔 벡터(beam vector)들을 포함할 수 있다. 일례로, UE의 UL 전송 안테나 포트 수 (예를 들어, 이 안테나 포트 수만큼 사전에 UE가 SRS 형태 등으로 전송할 수 있음)만큼의 이산 푸리에 변환(DFT: Discrete Fourier Transform) 벡터들의 집합으로 각각의 U1이 구성될 수 있다.
이때, 각각의 U1 인덱스는 밀접한-간격의 빔 그룹(closely-spaced beam group) 형태로 설계될 수 있다. 결국 기지국이 해당 UE를 UL 스케줄링할 때, 지시하고자 하는 최종 특정 빔 방향을 포함하여 주변 후보 빔 벡터들로 U1을 구성하여 지시하는 것이 유용하다. 즉, U1은 상대적으로 광대역(및/또는 장기) precoder 속성이므로, 각 subband 별로 최적화된 최종 빔을 선택/지시하기 위한 대상이 되는 빔들이 U1에 포함될수록 유리하므로, 이러한 효과가 적절히 나타날 수 있도록 각 U1 정보가 설계되는 것이 바람직하다.
본 발명에서는 "밀접한-간격의 빔 그룹(closely-spaced beam group)", "넓은-간격의 빔 그룹(widely-spaced beam group)" 및/또는 "특정 형태(예를 들어, eNB에 의해 설정되는)로 구성된 빔 그룹" 등의 상이한 코드북이 적어도 하나 정의/설정될 수 있다. 그리고, 기지국이 상기 UL 스케줄링 시에(예를 들어, DCI에 의해) 혹은 그에 앞서 별도의 시그널링으로 어떠한 U1 및/또는 U2 코드북을 단말이 적용해야 하는지를 설정/지시할 수 있다. 결국, 이러한 U1 코드북 자체도 한 가지로 고정될 수도 있지만, 본 발명과 같이 기지국의 설정/지시에 의해 변경/활성/재활성할 수도 있도록 하는 기능을 지원함으로써 보다 유연한 코드북 운용을 가능하도록 하는 장점이 있다.
U2 정보 관련
앞서 설명한 예시에서 U2가 2 비트라고 함으로 총 4가지의 상이한 U2 정보가 지시될 수 있다는 것을 의미한다. 상기 앞서 지시된 U1 인덱스에 해당하는 빔 그룹이 4개의 특정 빔 벡터들을 포함할 수 있으며, 각각의 U2 정보는 이 빔들 중에서 최종적으로 각 subband 별로 적용할 빔이 무엇인지 상기 2 비트 선택 인덱스 방식으로 각 subband 별로 지시할 수 있다.
또한, 앞서 설명한 예시에서 U1이 4 비트일 때, U2가 2 비트 초과일 수도 있다. 예를 들어, U2가 4 비트라면, 총 4가지의 상이한 U2 정보가 지시될 수 있도록 "빔 선택(beam selector)"을 위해 2 비트가 할당되고, 해당 선택된 빔을 위상-일치(co-phasing) 형태로 연결하는 (일례로, QPSK(Quadrature Phase Shift Keying) "co-phasing") 2 비트가 할당됨으로써, 총 U2가 4 비트로 설정될 수도 있다. 이러한 co-phasing은 단말의 특정 (두 개의) 전송 안테나 포트 그룹 간에 서로 교차-편파(cross-polarized) 안테나 형태 등으로 구성되어 동일 빔을 상기 포트 그룹간에 그룹-위상(group-phase)을 적용함으로써 co-phasing 형태로 precoder를 구성하도록 하는 방식으로 적용될 수 있다.
또한, "co-phasing"를 위해 1 비트만을 할당하여, 일례로 BPSK(Binary Phase Shift Keying) co-phasing이 적용될 수도 있으며, "빔 선택(beam selector)"의 비트 길이(bit width)도 단말의 송신안테나 포트 구성 및 U1/U2 코드북 구조에 따라 변형/변경될 수 있음은 자명하다.
이러한 상기 U2 정보는 각 subband 별로 매핑/지시되며, 이는 해당 UE에게 스케줄링되는 UL 자원 할당(RA: Resource Allocation) 필드와 연동되어 함께 설정/지시될 수 있다.
예를 들어, 해당 UL grant 메시지의 자원 할당 정보가 특정 PRB 비트맵 형태로 구성된다면(예를 들어, 비트맵의 각 비트가 '1'이면 해당 PRB(즉, 해당 비트 위치에 대응되는 PRB)가 스케줄링된 PRB에 포함되고, '0'이면 포함되지 않음), 이를 단순히 '1' 또는 '0'의 비트맵으로 구성되지 않고, 각 PRB 인덱스 별로 K 비트 정보를 담을 수 있도록 확장할 수 있다. 즉, 비트맵 내 K 비트 별로 하나의 PRB에 대응될 수 있다. 이와 같이, 본 발명의 일 실시예에서는 각 PRB 별로 해당 2^K 상태(state)를 통해 상기 U2 정보를 전달할 수 있도록 하는 구조를 제안한다.
예를 들어, K=2라면, 각 PRB 별로 특정 기본 상태(default state)로서, 다음과 같이 정의/설정될 수 있다.
- '00'은 "해당 PRB가 스케줄링된 PRB에 포함되지 않음"을 지시함
- '01'은 "해당 PRB가 스케줄링된 PRB에 포함되며, U1 내의 첫 번째 precoder를 적용함"을 지시함
- '10'은 "해당 PRB가 스케줄링된 PRB에 포함되며, U1 내의 두 번째 precoder를 적용함"을 지시함
- '11'은 "해당 PRB가 스케줄링된 PRB에 포함되며, U1 내의 세 번째 precoder를 적용함"을 지시함
위와 같은 인코딩(encoding) 방식은 하나의 예시에 불과하며, ‘01’, ‘10’, ‘11’ 등과 같은 상태(state)의 설명(description)은 다른 형태로 정의될 수도 있으며, 또는 RRC 시그널링과 같은 상위 계층 신호에 의해 기지국이 변경/설정할 수도 있다. 이처럼, 각 상태(state)에 대한 설명이 기지국에 의해 설정 가능한 파라미터(예를 들어, RRC 시그널링에 의해) 형태로서 정의/지원되면 기지국의 설정 유연성(flexibility)을 향상시킬 수 있다는 장점이 있다.
위와 같이, 스케줄링 정보와 U2 정보가 하나의 비트 맵 내에서 조인트 인코딩됨에 따라, 스케줄링 정보를 전달하기 위한 비트맵과 U2 정보를 전달하기 위한 비트맵을 각각 구성하는 경우에 비하여 시그널링 오버헤드를 줄일 수 있는 효과가 있다.
또한, RA 필드는 1 비트 단위의 비트맵으로 유지하고, 상기 subband 별(PRB/PRG 별) U2 정보를 전달할 K 비트 단위의 비트맵을 별도의 필드로 함께 제공(또는, 별도의 DCI로 (독립적 시점에) 따로 제공)하는 형태도 적용될 수도 있다. 즉, RA 필드에서 지시하고 있는 스케줄링된 PRB 영역에 특정 PRB(들)단위로 대응되는 각 subband 별로 K 비트 (U2) precoder 정보를 지시하는 별도의 필드가 정의/설정될 수 있다.
(링크 적응(LA: Link Adaptation) 용) 특정 상향링크 참조 신호(UL RS)(예를 들어, SRS 등)과의 연계 동작 관련
- 본 발명에서 제안된 동작들과 (일부) 연계하여, 상기 UL precoder를 기지국에서 결정하기 위하여, 단말에 의해 특정 상향링크 RS (예를 들어, SRS 등) 전송이 설정/실시될 수 있다.
이하, 설명의 편의 상 상향링크 RS를 SRS로 지칭하여 설명하지만, 본 발명이 이에 한정되는 것은 아니다.
1) 타입 1 UL-LA UE (프리코딩된(Precoded) SRS 전송을 시작으로 UL-LA 프로세스 동작):
이러한 SRS와 관련하여, UE는 특정 precoded SRS(또는 빔포밍된 SRS)를 전송하도록 정의/설정될 수 있다. 이 경우 해당 특정 포트(들)의 precoded SRS를 기지국이 측정하여 앞서 제안된 U1 및/또는 U2 정보를 기지국이 결정할 수 있다. 그런 다음 기지국은 이를 동반한 UL 스케줄링 그랜트(예를 들어, U1의 경우 별도로 분리된 DCI (필드) 혹은 별도의 특정 제어 정보 전달용 메시지 컨테이너를 통해(계층 1(L1: Layer 1) 및/또는 계층 2(L2: Layer 2) 시그널링에 의해) 단말에게 별도로 전달될 수도 있음)를 단말에게 전송할 수 있다. 이에 따라 본 발명에서 고려하는 주파수 선택적인 UL-MIMO 스케줄링이 개시될 수 있다.
이와 같이 특정 프리코딩되지 않은(Non-precoded) SRS의 전송 절차 없이(즉, 생략하고) precoded SRS 전송을 시작으로 UL 링크 적응(UL-LA) 프로세스가 개시되는 형태를 타입 1 UL-LA 동작 (또는 UE)로 지칭할 수 있다.
다시 말해, 해당 특정 precoded SRS를 통해 UE가 이미 특정 방향으로 예를 들어 아날로그 빔포밍을 적용한 precoded/빔포밍된(beamformed) SRS 포트(들)을 전송할 수 있다. 그리고, 이러한 (아날로그) beamformed SRS 포트(들)을 기지국이 측정하여 이에 대해 적절한 U1 및/또는 U2를 도출한 후 이를 상기와 같은 방법으로 UE에게 알려줌으로써, UE가 UL 전송에 적용하도록 할 수 있다.
보다 특징적으로, UE가 이와 같이 precoded/beamformed SRS에 적용해야 하는 해당 빔포밍 벡터(beamforming vector)(들)/계수(coefficient)(들)은 다음과 같이 결정될 수 있다. 먼저, 기지국이 전송하는 DL 특정 RS (예를 들어, RRM-RS(Radio Resource Management-RS), BRS, BRRS 등)를 UE가 측정할 수 있다. 그리고, UE가 최적의(best) "서빙-빔(serving-beam)"을 찾고 (이를 보고할 수도 있음), 이에 대한 UE가 자신의 (페어된(paired)) 최적의(best) "Rx-수신-빔(Rx-receiving-beam)"을 결정할 수 있다. 그리고, UE는 DL/UL 채널 호혜성(reciprocity) 특성(또는 빔 페어 링크(beam pair link))을 이용하여 이러한 최적의(best) "Rx-수신-빔(Rx-receiving-beam)"을 역으로(예를 들어, 에르미트(Hermitian) 취하여) 자신의 precoded/beamformed SRS 전송 시 해당 빔포밍 벡터/계수(들)을 적용하여 SRS를 전송할 수 있다. 즉, SRS 전송은 특정 DL RS(예를 들어, 최적의(best) "서빙-빔(serving-beam)")의 수신을 위해 사용된 공간적 필터링(spatial filtering)과 동일한 spatial filtering으로 수행될 수 있다. 이러한 UE의 동작이 미리 정의되거나 UE에 설정될 수 있다.
또는, 반드시 상기 best 최적의(best) "서빙-빔(serving-beam)"에 대응하는 "Rx-수신-빔(Rx-receiving-beam)"만을 적용하도록 한정되지 않을 수 있다. 예를 들어, UE가 두 번째로 최적인(second-best) "서빙-빔(serving-beam)"에 대응하는 "Rx-수신-빔(Rx-receiving-beam)"을 적용한 precoded/beamformed SRS를 전송하도록 기지국이 지시/트리거할 수 있도록 동작이 지원될 수도 있다.
위와 같은 방식이 일반화되어 세 번째로 최적인(third-best) "서빙-빔(serving-beam)"에 대응하는, 또는 네 번째로 최적인(fourth-best) "서빙-빔(serving-beam)"에 대응하는, ... 과 같은 방식으로, UE가 해당 몇 번째 "서빙-빔(serving-beam)"임을 인지할 수 있도록 하는 특정 식별자(예를 들어, 빔 상태 정보(BSI: Beam State Information) 등)가 기지국으로부터 UE에게 지시될 수 있다. 이러한 형태로 상기 precoded/beamformed SRS 전송 시 UE가 적용하여야 할 빔포밍 벡터/계수(들)이 설정/지시될 수 있다.
다시 말해, UE는 SRS 전송 시 특정 DL RS의 수신을 위해 사용된 공간적 필터링(spatial filtering)과 동일한 spatial filtering을 이용하여 전송할 수 있다. 즉, 각각의 DL RS 별로 단말은 DL RS 수신을 위해 최적인 spatial filtering을 구현할 수 있으며, 기지국은 단말이 특정 DL RS 수신을 위해 사용하였던 spatial filtering과 동일한 spatial filtering으로 특정 SRS 자원의 전송을 수행하도록 지시할 수 있다.
또는, 상기 precoded SRS 전송 시 UE가 적용해야 하는 빔포밍 벡터/계수(들)를 기지국이 직접 UE에게 설정/지시해주는 방법도 적용 가능하다(예를 들어, 기지국 구현에 따라, 예를 들어 다른 특정 방법을 통한 채널 호혜성(channel reciprocity)에 기반하여 이러한 정보를 기지국이 획득할 수 있는 경우 등). 이러한 빔포밍 벡터/계수(들)은 해당 precoded SRS의 전송을 트리거하는 특정 DCI 등의 제어 채널을 통해 기지국이 UE에게 직접 알려줄 수 있으며, 혹은 별도로 분리된 특정 계층 1(L1: Layer 1), 계층 2(L2: Layer 2) 및/또는 계층 3(L3: Layer 3)(예를 들어, RRC에 의한 반-정적) 시그널링을 통해 기지국이 UE에게 알려줄 수 있다.
결국, 이러한 동작이 가능한 상기 타입 1 UL-LA UE는 i) "채널 호혜성 보정된(channel-reciprocity calibrated) UE"(예를 들어, NR(또는 5G) UE, 3GPP 릴리즈(release)-15 포함 그 이후의 UE 등), ii) "UE의 TX(Transmitter)(및/또는 TRX(Transmitter and Receiver)) 안테나/포트(들)에 전체적으로-디지털-빔포밍이 가능하지 않은 UE", iii) "아날로그-빔포밍을 UL TX 포트(들)에 적용하는 UE", 및/또는 iv) 및/또는 "TDD에서 동작하는 UE"로 한정될 수 있다.
그리고/또는, UE가 이와 관련한 자신의 특정 능력(capability)과 관련한 정보 (예를 들어, 상기 타입 1 관련 지원 가능 여부 등)을 사전에 기지국에 제공함으로써, 위 동작/프로세스가 설정/개시될 수도 있다.
2) 타입 2 UL-LA UE (Non-precoded SRS 전송을 시작으로 UL-LA 프로세스 동작):
또는 이러한 SRS와 관련하여, UE는 Non-precoded SRS(또는 빔포밍되지 않은 SRS)를 전송하도록 정의/설정될 수 있다. 이 경우 해당 특정 포트(들)의 non-precoded SRS를 기지국이 측정하여 앞서 제안된 U1 및/또는 U2 정보를 기지국이 결정할 수 있다. 그런 다음 기지국은 이를 동반한 UL 스케줄링 그랜트(예를 들어, U1의 경우 별도로 분리된 DCI (필드) 혹은 별도의 특정 제어 정보 전달용 메시지 컨테이너를 통해(L1 및/또는 L2 시그널링에 의해) UE에게 별도로 전달될 수도 있음)를 UE에게 전송할 수 있다. 이에 따라 본 발명에서 고려하는 주파수 선택적인 UL-MIMO 스케줄링이 개시될 수 있다.
이와 같이 특정 Non-precoded SRS의 전송만으로 UL-LA 프로세스가 개시되고, 이러한 특정 포트(들)의 non-precoded SRS를 기지국이 측정하여 결정한 U1 및/또는 U2 등의 최종 UL precoder를 기지국이 UL 스케줄링 시 UE에게 알려주는 형태를 타입 2 UL-LA 동작 (또는 UE)로 지칭할 수 있다.
보다 특징적으로, 이러한 타입 2 UE는 UE의 TX(및/또는 TRX) 안테나(들)/포트(들)이 전체적인-디지털-빔포밍(fully-digital-beamforming)이 가능한 UE라는 의미를 가질 수 있다.
결국, 이러한 동작이 가능한 상기 타입 2 UL-LA UE는 i) "채널 호혜성 보정되지 않은(channel-reciprocity non-calibrated UE"(예를 들어, LTE/LTE-A UE, 3GPP 릴리즈(release)-14까지의 UE), ii) "전체적으로-디지털-빔포밍(fully-digital-beamforming)이 가능한 UE", 및/또는 iii) 및/또는 "FDD (및/또는 TDD)에서 동작하는 UE" 등으로 한정될 수도 있다.
그리고/또는, UE가 이와 관련한 자신의 특정 능력(capability)과 관련한 정보 (예를 들어, 상기 타입 2 관련 지원 가능 여부 등)을 사전에 기지국에 제공함으로써 위 동작/프로세스가 설정/개시될 수도 있다.
3) 타입 3 UL-LA UE ((S1 포트(들)) Non-precoded SRS 전송을 시작으로 기지국으로부터의 특정 빔포밍 정보를 수신 받아 이를 적용한 (S2(<=S1) 포트(들) precoded SRS 전송을 개시하여 UL-LA 프로세스 동작):
또는 이러한 SRS와 관련하여, UE가 특정 (S1 포트(들)) Non-precoded SRS를 1차적으로 (긴(long-term) 주기를 갖고) 전송하도록 설정/지시함으로써, 기지국이 1차적인 빔포밍 벡터(들)/계수(들)을 도출할 수 있다. 그리고, 기지국은 이를 UE에게 지시함으로써 UE가 2차적인 특정 (S2(<=S1) 포트(들)) Precoded SRS를 전송하도록 정의/설정될 수 있다. 이 경우에도, 앞서 1)의 방법과 비교하여 상기 1차적인 Non-precoded SRS에 의한 대략적인 빔(coarse beam) 추정 동작이 추가된다는 차이만 가질 수 있다. 다시 말해, 해당 (S2(<=S1) 포트(들)) Precoded SRS를 기지국이 측정하여 상기 제안된 U1 및/또는 U2 정보를 기지국이 결정할 수 있다. 그런 다음 기지국은 이를 동반한 UL 스케줄링 그랜트(예를 들어, U1의 경우 별도로 분리된 DCI (필드) 혹은 별도의 특정 제어 정보 전달용 메시지 컨테이너를 통해(L1 및/또는 L2 시그널링에 의해) UE에게 별도로 전달될 수도 있음)를 전송할 수 있다. 이에 따라 본 발명에서 고려하는 주파수 선택적인 UL-MIMO 스케줄링이 개시될 수 있다.
이때, 상기 "(Non-precoded SRS를 기지국이 수신하여) 도출된 빔포밍 벡터(들)/계수(들)을 해당 Precoded SRS에 적용하도록 UE에게 설정/지시” 해주는 방법으로서, 기지국은 해당 precoded SRS의 전송을 트리거하는 특정 DCI 등의 제어 채널을 통해 UE에게 직접 알려줄 수 있으며, 혹은 기지국은 별도로 분리된 특정 L1, L2, 및/또는 L3(예를 들어, RRC에 의한 반정적) 시그널링을 통해 UE에게 알려줄 수 있다.
이와 같이 UE의 특정 Non-precoded SRS의 전송을 수반하며, 이에 대해 UE가 기지국으로부터의 빔포밍 적용 관련 정보를 수신하여 이를 적용한 특정 precoded SRS의 전송이 개시되고, 해당 precoded SRS를 기지국이 측정하여 결정한 U1 및/또는 U2 등의 최종 UL precoder를 기지국이 UL 스케줄링 시 UE에게 알려주는 형태를 타입 3 UL-LA 동작 (또는 UE)로 지칭할 수 있다.
보다 특징적으로, 이러한 타입 3 UE는 UE의 TX (및/또는 TRX) 안테나(들)/포트(들)이 전체적으로 전체적으로-디지털-빔포밍이 가능한 UE라는 의미를 가질 수 있다.
결국, 이러한 동작이 가능한 상기 타입 3 UL-LA UE는 i) "채널 호혜성 보정되지 않은(channel-reciprocity non-calibrated) UE", ii) "UE의 TX (및/또는 TRX) 안테나(들)/포트(들)에 전체적으로-디지털-빔포밍이 가능하지 않은 UE", iii) "아날로그-빔포밍"을 UL TX 포트(들)에 적용하는 UE", 및/또는 iv) "FDD (및/또는 TDD)에서 동작하는 UE" 등으로 한정될 수도 있다.
그리고/또는, UE가 이와 관련한 자신의 특정 능력(capability) 관련한 정보 (예를 들어, 상기 타입 3 관련 지원 가능 여부 등)을 사전에 기지국에 제공함으로써 위 동작/프로세스가 설정/개시될 수도 있다.
- 그리고/또는, 사전에 특정 SRS 자원(들)이 UE에게 설정되고, UE는 각 SRS 자원(resource) 별 설정에 기반하여 별도의 precoded SRS를 전송하도록 설정될 수 있다. 이때, 각 SRS resource 당 SRS 포트(port) 수는 1이거나 그 이상일 수도 있다.
즉, UE는 각 SRS resource에 해당하는 SRS 포트 수 및 해당 설정에 기반하여 SRS 전송을 수행할 수 있다.
이때, SRS 포트에 적용할 빔포밍 벡터(beamforming vector)(들)/계수(coefficient)(들)은 기지국 지시에 따르거나, 혹은 UE가 임의로(기지국-트랜스패턴트(eNB-transparent)하게, 또는 임의로(random)) 선택하여 각 SRS resource별로 precoded SRS를 전송할 수 있다. 이 경우, 기지국은 이러한 각 SRS resource에 대한 SRS 측정을 통해 가장 수신 품질이 좋은 SRS resource를 우선 선별해내고, 이러한 SRS resource 내의 SRS 포트(port)(들)에 대하여 상기 U1 및/또는 U2를 도출하여 UE에게 지시할 수 있다. 즉, 기지국은 해당 SRS resource 내의 SRS 포트(들)에 적용할 U1 및/또는 U2를 도출하여 UE에게 지시할 수 있다.
이 경우, 상기 제안된 U1 및/또는 U2 정보 뿐만 아니라 상기 최적의 SRS 자원 지시자(SRI: SRS resource indicator)를 동반한 UL 스케줄링 그랜트(scheduling grant) (예를 들어, U1 및/또는 SRI의 경우 별도로 분리된 DCI (필드) 혹은 별도의 특정 제어 정보 전달용 메시지 컨테이너를 통해(예를 들어, L1, L2, 및/또는 L3(예를 들어, RRC에 의한 반정적) 시그널링)에 의해 UE에게 별도로 전달될 수도 있음)가 UE에게 전송됨으로써 본 발명에서 고려하는 주파수-선택적인 UL-MIMO 스케줄링이 개시될 수 있다.
다시 말해, 기지국이 UE에게 다중의 SRS 자원을 설정하고, UE는 각 SRS 자원 별로 서로 다른 빔 방향성을 가지는 precoded SRS를 기지국에게 전송할 수 있다. 그리고, 기지국은 UE에게 상향링크 스케줄링 그랜트(DCI) 내 이전의 시간 인스턴스(instance)에서 UE에 의해 전송되었던 SRI와 프리코딩 지시(예를 들어, U1 및/또는 U2, 또는 TPMI(Transmitted Precoding Matrix Indicator)를 포함하여 전송할 수 있다. 이때, 프리코딩 지시는 SRI에 의해 선택된 SRS 자원 내 SRS 포트에 걸쳐(또는 SRS 포트 상에) 적용되는 선호 프리코더를 지시하기 위해 사용될 수 있다(The Precoding indication may be used to indicate preferred precoder over the SRS ports in the selected SRS resource by the SRI).
예를 들어, 특정 SRS resource가 1-포트 SRS를 전송하도록 설정되었다면, 만일 UE가 X개의 송신 안테나(들)/포트(들)을 구현하고 있는 경우, UE는 특정 X x 1 (즉, X-by-1) 빔포밍 벡터/계수들을 적용하여 일종의 "랭크 1 precoded SRS"를 전송하도록 정의/설정된 것일 수 있다.
유사하게, 특정 SRS resource가 v(>1)-포트 SRS를 전송하도록 설정되었다면, 만일 UE가 X(>=v)개의 송신 안테나(들)/포트(들)을 구현하고 있는 경우, UE는 특정 X x v (즉, X-by-v) 빔포밍 벡터들/계수들 적용하여 일종의 "랭크 v precoded SRS"를 전송하도록 정의/설정된 것일 수 있다.
즉, 상기 SRS resource 별로 설정된 해당 “SRS 포트 수 = (타겟) 랭크(rank) 수”의 특징이 있을 수 있다.
따라서, 기지국이 상기와 같은 SRI를 UE에게 설정/지시하게 되는 경우, 이러한 SRI가 일종의 랭크 지시자(rank indication)의 의미도 포함하는 것으로 인식될 수 있다. 그리고, 이러한 지시된 랭크에 입각하여 해당 UL grant 내의 다른 필드 해석 시에 적용하도록 정의/설정될 수 있다.
다시 말해, 각 SRS 자원 별로 SRS 안테나 포트 수가 미리 정의되거나 설정될 수 있으며(예를 들어, RRC 등 상위 계층 시그널링에 의해), 기지국이 SRI를 포함하는 UL grant를 UE에게 전송할 때, UE의 상향링크 데이터 (예를 들어, PUSCH) 전송을 위한 랭크 수는 SRI에 의해 지시된 SRS 자원에 대응되는 안테나 포트 수로 결정될 수 있다.
또 다른 일례로, 상기 SRI의 정보 지시를 생략하고 UL grant 등에서 지시되는 랭크 지시 (필드)를 통해 상기 어떠한 SRS 자원 인덱스가 지시되고 있는지가 자동으로 연동될 수 있으며, 해당 암묵적으로(implicitly)-지시되는 SRS 자원 인덱스가 적용된 precoder를 UE가 UL 전송 시 적용하도록 동작이 정의되거나 혹은 설정/지시될 수 있다(단, 이때는 특정 랭크 당 이에 연동되는 SRS resource가 오직 1개씩만 1대1 연결(linkage)되어 있도록 한정되는 것이 바람직함).
또는, 보다 유연한 UL scheduling 관련 시그널링을 위해, 기지국이 UE에게 랭크 지시(예를 들어, TRI(Transmitted Rank Indication)) 뿐만 아니라 SRI도 함께 독립적으로 알려주도록 정의되거나 UE에게 설정될 수도 있다. 이는 대표적으로 특정 타겟 랭크마다 1개 또는 그 이상의 SRS 자원(들)이 설정될 수 있는 경우에 해당될 수 있다. 이와 같이 기지국이 특정 랭크에 복수개의 SRS resources를 설정하는 이유로는, 동일 랭크에 대한 상이한 빔포밍 벡터(들)/계수(들)을 UE가 적용하고 SRS를 여러 번 전송해보도록 하기 위함일 수 있다. 즉, 같은 랭크에 대하여 상이한 빔 계수가 적용된 precoded SRS를 기지국이 모두 측정함으로써 해당 랭크를 최종 선택할 경우에도 어떠한 UL precoder가 더 (성능 측면에서) 유리한지를 판단하여 이를 지시할 수 있다는 유연성(flexibility)를 제공할 수 있는 장점이 있다.
그리고/또는, 상기 UE가 특정 "빔포밍 벡터(들)/계수(들)을 해당 precoded SRS에 적용할 때", 이러한 "빔 포밍 벡터(들)/계수(들)"을 광대역(wideband) 속성으로 전송 대역에 걸쳐서 공통적인 빔포밍 벡터(들)/계수(들)로 적용하도록 정의되거나 UE에게 설정될 수 있다.
또는, 전송 대역에 걸쳐서 주파수-선택적으로 특정 서브밴드(또는 PRB (그룹)) 단위로 상이한/독립적인 빔포밍 벡터(들)/계수(들)을 적용하는 형태로 해당 SRS resource에 대한 서브밴드 precoded SRS를 전송하는 동작이 정의되거나 UE에게 설정될 수도 있다.
또한, 해당 precoded SRS를 광대역 프리코딩을 적용하도록 할지, 서브밴드 프리코딩을 적용하도록 할지의 여부도 기지국이 UE에게 L1(DCI에 의해), L2(MAC 제어 요소(CE: Control Element)에 의해), 및/또는 L3(RRC에 의해) 시그널링으로 지정해줄 수 있다.
이때, 특정 "주파수-선택적인 (서브밴드) 빔포밍 벡터(들)/계수(들)"을 특정 precoded SRS 전송 시 적용하도록 함에 있어서도, 다음과 같은 동작이 정의되거나 UE에게 설정될 수 있다.
i) 해당 "주파수-선택적인 (서브밴드) 빔포밍 벡터(들)/계수(들)"를 기지국이 (별도로 혹은 해당 SRS 전송 지시/트리거링 시에) 알려주고 이를 UE가 따르도록 할 수 있다.
ii) 혹은 UE가 임의로 (기지국-트랜스패런트(eNB-transparent)하게, 임의로(random)) 선택하여 각 SRS resource별로 (주파수-선택적인) precoded SRS를 전송할 수 있다.
iii) 혹은 기지국이 전송하는 DL 특정 RS (예를 들어, RRM-RS, BRS, BRRS 등) 포트 Y(예를 들어, Y=1)개를 측정함으로써, UE가 최적의(best) "서빙-빔(serving-beam)"을 찾을 수 있다(또는 찾고 이를 보고할 수 있음). 이와 더불어 (혹은 해당 빔 관리(beam management) 과정 이후에), 이에 대한 UE가 자신의 (페어된(paired)) best "RX-수신-빔(Rx-receiving-beam)"을 결정할 때, 상기 각 서브밴드 별로 주파수-선택적으로 (UE의 TRX 안테나(들)/포트(들) 개수 X개 만큼의 차원(dimension)으로) X x Y (즉, X-by-Y) 프리코더/빔포머(beamformer) 벡터/계수를 결정하고, 이를 역으로(예를 들어, Hermitian취하여) 해당 precoded SRS 전송 시에 적용할 수 있다.
이와 같은 RRM-RS 형태(예를 들어, BRS, BRRS 등)이 사용될 때는 Y=1로 한정되어, UE의 전송 SRS가 랭크 1 precoded SRS로만 한정될 수 있다.
또한, 어떠한 특정 RRM-RS(예를 들어, BRS, BRRS 등)에 대하여 상기 X-by-Y precoder를 계산할 지 UE에게 명시적으로 지시될 수 있다. 또한, 해당 특정 RRM-RS(예를 들어, BRS, BRRS 등) (포트(들))가 QCL(Quasi Co-located) 시그널링 형태로서 지시될 수도 있다.
iv) 혹은 기지국이 전송하는 DL 특정 (CSI 측정 용) RS (예를 들어, CSI-RS) 포트(또는 자원, 예를 들어, CSI-RS 자원 별로 CSI-RS 포트가 정해질 수 있음) Z(>=1)개를 측정함으로써, UE가 자신의 (paired) best "Rx-receiving-beam"을 결정할 수 있다. 이때, UE는 상기 각 서브밴드 별로 주파수-선택적으로 (UE의 TRX 안테나(들)/포트(들) 개수 X개 만큼의 차원으로) X-by-Z precoder/beamformer 벡터/계수를 결정하고, 이를 역으로(예를 들어, Hermitian 취하여) 해당 precoded SRS 전송 시에 적용할 수 있다. 이러한 동작이 정의되거나 UE에게 설정될 수 있다.
다시 말해, UE는 특정 서브밴드에서 SRS 전송 시 특정 DL RS의 수신을 위해 사용된 공간적 필터링(spatial filtering)과 동일한 spatial filtering을 이용하여 전송할 수 있다. 즉, 각각의 DL RS 별로 단말은 DL RS 수신을 위해 최적인 spatial filtering을 구현할 수 있으며, 기지국은 단말이 특정 DL RS 수신을 위해 사용하였던 spatial filtering과 동일한 spatial filtering으로 특정 서브밴드에서 SRS 자원의 전송을 수행하도록 지시할 수 있다.
이와 같이 CSI-RS가 사용될 때는 Z>1로 한정되거나, 유연하게 Z>=1로 정의되거나 UE에게 설정될 수 있다. 위의 RRM-RS(예를 들어, BRS, BRRS)를 사용하지 않는 이유가 이것이 단일 포트로 한정될 수가 있어서 랭크 1으로만 제한될 수 있으므로, 랭크 >1을 지원하기 위해 CSI-RS가 사용되는 것이 효과적일 수 있다.
또한, 어떠한 특정 CSI-RS (포트(들))에 대하여 상기 X-by-Z precoder를 계산할지 UE에게 명시적으로 지시될 수 있다. 또한, 해당 특정 CSI-RS (포트(들))가 QCL 시그널링 형태로 지시될 수도 있다. 그리고/또는 해당 CSI-RS (포트(들))가 어떠한 RRM-RS(예를 들어, BRS, BRRS)와의 QCL 연결(linkage)가 있는지가 함께 또는 별도로 사전에 정의되거나 UE에게 설정될 수도 있다.
- 상기 SRS와 연관된 제안 동작들은 모두 (혹은 일부), 상기 U1 및/또는 U2 구조를 따르지 않는 (예를 들어, 단일 PMI(예를 들어, TPMI), precoder 기반 방식)에도 적용될 수 있음은 자명하다. 예를 들어, 특정 단일 UL 프리코더 U를 결정하기 위해서도 상기 (SRS 자원(들)에 기반한 설정에 의한) non-precoded/precoded SRS 전송에 대하여 특정 UL 프리코더 지시가 주어지는 등의 동작으로 변형/적용될 수 있다.
- 앞서 사용한 "SRS 자원"의 표현은 편의상 부여한 명칭이며, 이와 같이 실제 SRS 자원 단위당 특정 인덱스가 부여되는 형태로 UE에게 시그널링/지시될 수도 있다. 또는, UE가 전송 가능한 (전체) SRS 포트(들)에 대하여 특정 그룹핑에 의해 그룹 지어진 특정/일부/가상화된 포트(들)을 묶어서 상기 "SRS 자원"이라는 개념을 대체한 또 다른 명칭/파라미터에 의해 본 발명의 동작이 적용될 수 있다.
추가 제안 사항
상기 동작에서, 서브밴드 별 U2 정보는 모두 삭제하는 형태로 (반(semi)-) 개루프(OL: Open Loop) UL 전송이 UE에게 설정/지시될 수 있다.
예를 들어, 기지국은 특정 (별도의) 시그널링으로 (또는 상기 U1 인덱스 중 어느 하나를 이용하여) 이와 같이 U2 정보가 없는 형태의 UL grant를 UE에게 전송할 수 있으며, 이것이 UE에게 특정 (Semi-) OL UL 전송을 지시하는 것으로 동작될 수 있다.
이와 같이 UE에게 설정/지시되면, UE는 UL grant 내 U2 정보가 존재하더라도 해당 정보들은 무시할 수 있다.
또는, 이와 같이 설정/지시되면, 해당 (UL-관련) DCI는 U2 정보들이 존재할 수 있었던 페이로드(payload)들이 삭제될 수 있다. 이 경우, UE가 U2 정보들이 존재하는 경우 대비하여 해당 DCI의 전체 페이로드 크기가 줄어든 형태로 상이한 페이로드 크기에 대한 블라인드 검출(BD: blind detection)을 수행하도록 정의되거나 설정될 수 있다.
또한, U1 및/또는 U2 중 특정 (공간(spatial)) 차원 방향의 프리코더(들) 정보만을 삭제하는 형태로 (Semi-)OL UL 전송이 지시될 수도 있다.
예를 들어, UE가 수직(vertical) 방향으로는 채널 변화가 미미하다고 판단되고 수평(horizontal) 방향으로는 상대적으로 채널 변화가 심하다면, horizontal 방향 성분의 특정 프리코더(들) 정보가 삭제되는 형태 (또는 무시하거나 다른 정보로 대체될 수 있음)으로 상기 U1 및/또는 U2 정보가 UL scheduling과 연계하여 지시될 수 있다. 이 경우, UE는 해당 부분은 특정 미리 정의된/지시된 OL-precoding 방식에 따라 프리코더 사이클링(precoder cycling) 등의 OL 기법을 적용하여 UL 전송할 수 있다. 또한, UE는 U1 및/또는 U2 정보가 제공된 특정 (spatial) 차원에 대해서는 지시받은 대로 프리코더(들) 부분을 적용하여 UL 전송할 수 있다.
위와 같이, 특정 (spatial) 차원의 프리코더(들) 정보가 삭제되어 지시되면, 해당 페이로드 부분이 삭제될 수 있다. 이 경우, UE가 기존 대비 해당 DCI의 전체 페이로드가 줄어든 형태로 상이한 페이로드 크기에 대한 BD를 수행하도록 정의되거나 설정될 수 있다.
이상에서 U1, U2 등의 페이로드 크기 및 해당 정보의 매핑은 (이에 연동하여) 사전에 전송한 해당 UE의 UL (링크 적응(link adaptation) 용) 특정 RS (예를 들어, SRS) 포트 수에 대응하여 정의되거나 UE에게 설정/지시될 수 있다.
UL MIMO 설계 프레임워크(framework)
LTE UL MIMO에서, 네트워크는 UE에게 precoder를 지시하고, UE는 지시된 precoder를 적용하여 DMRS 및 데이터를 전송한다. NR UL MIMO에서, DMRS 및 물리 데이터 채널 모두에게 동일한 precoder가 적용되는 프리코딩된(precoded) RS 기반 전송이 DMRS 오버헤드 측면에서 여전히 바람직하다. 이는 대부분의 경우 전송자(scatterer)의 부족으로 인하여 TXRU의 수보다 전송 랭크가 작을 것이기 때문이다.
따라서, DMRS 및 물리 데이터 채널 모두에게 동일한 precoder가 적용되는 프리코딩된(precoded) RS 기반 전송이 NR UL MIMO에서 기반(baseline)이 되는 것이 바람직하다.
전송 기술과 관련하여, UL DMRS 기반 공간 다중화(단일 사용자(SU: Single User) MIMO/MU-MIMO)를 지원하도록 합의되었다. UL 협력 다중-포인트(CoMP: Coordinated Multi-Point) 전송 또한 지원될 수 있다. 즉, UL 수신 포인트(들)은 UE에게 트랜스패런트(transparent)할 수 있다.
UL SU-MIMO에 있어서, precoder 정보가 네트워크에 의해 UE에게 시그널링되지 않는 개루프(OL: open loop) 기술 그리고 precoder 정보의 일부가 네트워크에 의해 UE에게 시그널링되는 반-개루프(semi-OL: semi-open-loop) 기술이 precoder의 모든 정보(즉, PMI 및 RI)가 네트워크에 의해 UE에게 시그널링되는 기존의 폐루프(closed loop) 기술에 추가하여 고려될 수 있다. 전체 또는 부분적인 DL/UL reciprocity이 유효할 때, OL 및 semi-OL MIMO는 유용할 수 있다. UL MU-MIMO는 폐루프 운영에 기반할 수 있으나, 이에 제한되지 않는다.
UL MIMO 전송 기술은 네트워크로부터 UE에게 시그널링되는 precoder 정보의 완전함(completeness) 및 존재에 따라 다음과 같이 분류될 수 있다.
- Closed loop: 전체 precoder 정보가 UE에게 시그널링
- Open loop: precoder 정보가 UE에게 시그널링되지 않음
- Semi-open loop: precoder 정보의 일부가 UE에게 시그널링
또한, DL SU-MIMO 및 DL MU-MIMO 모두를 위해 적어도 8개의 직교한 DL DMRS 포트를 지원하도록 합의되었다. DL과 유사하게, 기본적으로(baseline) UL SU-MIMO 및 UL MU-MIMO 모두를 위해 적어도 4개의 직교한 DMRS 포트를 지원하도록 제안하기 위해 LTE를 참조할 수 있다. SU-MIMO 관점에서 살펴보면, 실제 환경(즉 고주파 대역에서 제한된 수의 주 광선(dominant ray) 및 UE에서의 제한된 수의 TXRU)에서 상위 랭크 가능성을 고려함으로써, 기존의 LTE보다 높은 레이어를 지원하기 위한 동기가 분명하지 않을 수 있다. 그러나 순방향 호환성(forward compatibility)을 고려하면, 최대 레이어를 초기부터 증가시키는 것을 고려할 수 있다(예를 들어, 큰 UE 유형을 고려하여 UL SU-MIMO의 경우 8 레이어). MU-MMO 관점에서 살펴보면, NR은 목표 스펙트럼 효율을 달성하기 위해 높은 차원(higher order) MU-MIMO를 달성하기 위한 분명한 동기를 가진다. 그러나, 합리적인 범위 내에서 DMRS 오버 헤드를 관리하기 위해 비-직교 DMRS 포트 (예를 들어, 스크램블링 시퀀스)를 이용함으로써 특정 수 (예를 들어, 4 또는 8)를 초과하는 MU 다중화 레이어를 지원하는 것이 바람직하다.
따라서, SU-MIMO 및 MU-MIMO 모두를 위해 적어도 4개의 직교한 UL DMRS 포트가 지원되는 것이 바람직하다.
공간 다중화를위한 코드워드(codeword)의 수에 관해서는, 링크 적응 유연성과 제어 시그널링 오버헤드 간의 트레이드 오프(trade-off) 관계를 고려하여 LTE처럼 최대 두 개의 코드워드를 지원하는 것이 합리적일 수 있다.
따라서, NR UL MIMO에서 기본적으로 2개의 코드워드까지 지원하는 것이 바람직하다.
UL MIMO를 위한 주파수 선택적인 프리코딩
eMBB((enhanced Mobile BroadBand)) 및 URLLC(ultra-reliable low latency communication) 서비스의 경우 적어도 40GHz까지 UL NR 파형이 지원되도록 특정된 낮은 피크 전력 대 평균전력비(PAPR: Peak to Average Power Ratio)/큐빅 메트릭(CM: Cubic Metric) 기술이 없는. 순환 프리픽스-OFDM(CP-OFDM: Cyclic Prefix OFDM)이 권고된다고 합의되었다.
NR에서 CP-OFDM 파형 및 지원 가능한 시스템 대역폭을 고려할 때, 주파수 선택적 프리코딩은 UL MIMO를 위해 도입된 것으로 간주 될 수 있다. 그러나, 지시하는 서브 대역 PMI들로 인하여 증가된 제어 채널 오버헤드는 그러한 주파수 선택적 UL-MIMO 프리코딩을 적용하기 위한 중요한 문제일 수 있다. UL 관련 DCI와는 별도로 여러 PMI를 시그널링하고 그러한 시그널링을 지시하기 위해 DCI에 포인터 필드(pointer field)를 포함하는 것이 고려될 수 있지만, 이러한 종류의 2 단계 접근법은 첫 번째 단계에서 서브밴드 단위로 다중 PMI의 전체 정보를 제공하기 위한 레이턴시(latency)로 인하여 바람직하지 않을 수 있다. 다시 말해, 그러한 주파수 선택적 UL 프리코더를 도입하려는 동기는 주파수 영역을 이용하는 빠른 UL 링크 적응을 달성하는 것이므로, 프리코더 정보의 전체 세트는 UL 전송을 위해 스케줄링될 때 UE에게 순간적으로 전달되는 것이 요구된다.
주파수 선택적인 UL-MIMO 스케줄링에 대한 제어 채널 오버헤드 문제를 해결하기 위해, 이 UL 경우(예를 들어 4-Tx 경우)와 유사하게 DL에서와 같이 이중 코드북 구조를 적용하는 것이 검토될 필요가 있다. UL에 대해 합의된 CP-OFDM 구조를 고려하면, 서브밴드 당 최종 UL 프리코더 (W)는 광대역 PMI 성분 (W_1) 및 대응하는 서브밴드 PMI 성분(W_2)으로 분해 될 수 있다. 그런 다음, UL 스케줄링 DCI에서, W_1 정보는 한번 포함되기에 충분하고, 동일한 DCI 내의 자원 할당 필드에 의해 주어진 스케줄링 된 RB 영역에 따라 다수의 W_2가 포함될 필요가 있다. W_1과 W_2에 대한 코드북을 정의하는 방법은 추후 연구를 위한 것이지만, 기본(baseline)은 Rel-12 DL 4-Tx 코드북을 재사용하는 것이 바람직하다. 기존의 LTE 2-Tx DL 코드북은 2-Tx UL 경우에 대해 그대로 재사용 될 수 있으며, 전체의 서브밴드 당 PMI가 UL 스케쥴링 그랜트에서 제공 될 필요가 있다. 또한, DFT-스프레드-OFDM(DFT-S-OFDM: DFT spread OFDM) 기반 UL-MIMO 프리코더가 지원되는지 여부, 그리고 이 경우에 앞서 논의 된 바와 같이 CP-OFDM 기반 UL 프리코더를 사용하거나 DFT-S-OFDM 기반 UL 프리코더를 사용하여 UE를 설정하는 방법을 검토하여야 한다.
즉, UE는 CP-OFDM 기반 코드북1(예를 들어, 상기 이중 코드북 구조)과 DFS-S-OFDM 기반 코드북2(예를 들어, CMP(cubic-metric preserving) 코드북 등) 중 적어도 하나를 기지국으로부터 설정 받을 수 있다. 그리고, 단말은 이중 어떠한 코드북에 기반한 UL precoding을 수행해야 하는지 L1(예를 들어, DCI에 의해), L2(예를 들어, MAC CE에 의해), 및/또는 L3(예를 들어, RRC에 의해)로 기지국으로부터 설정/지시될 수 있다.
특징적으로는, UE는 CP-OFDM 기반 UL 전송이 설정/지시될 때에는 코드북1과 코드북2 중 하나를 기지국으로부터 설정/지시(and/or switching)받아 적용할 수 있고, 반대로 DFS-S-OFDM 기반 UL 전송이 설정/지시될 때에는 항상 코드북2만을 적용할 수 있는 것으로 한정될 수 있다. 이는 DFS-S-OFDM 기반 하에서는 코드북1의 적용이 PAPR을 크게 증폭시키는 등 부적절할 수 있기 때문이다.
보다 특징적으로는, 특정 랭크 값에 연동하여 상기 어떠한 코드북이 적용되는 지가 정의되거나 UE에 설정될 수도 있다. 예를 들어 랭크 X (예를 들어, X=1) 전송의 경우에는 PAPR 이슈 등 전송 파워 측면에서 유리하도록 코드북2가 적용되도록 정의되거나 UE에 설정할 수 있다. 반면, 랭크 Y (예를 들어, Y = 2) 또는 그 이상의 경우에는 코드북1이 적용되도록 설정됨으로써(예를 들어, 일반적으로 셀-에지(cell-edge) 영역이 아닌 UE) 전송 파워 측면보다 수율(throughput)을 극대화할 수 있는 precoder를 적용하도록 정의되거나 UE에 설정할 수 있다.
이와 같은 동작들이 적용된다면, 상기 UL grant 등을 통해 랭크가 지시될 때, UE는 자동으로 이에 연동하여 위와 같이 상이한 코드북을 적용한 상태에서 지시된 PMI/precoder를 해석/적용할 수 이싿.
앞서 설명에서는 일례로 특정 파형(waveform) 기반(예를 들어, CP-OFDM 기반 또는 DFS-S-OFDM 기반)으로 설정받는 것에 연동하여 특정 코드북(예를 들어, 코드북1 또는 코드북2, ...)가 적용되는 동작을 설명하였다.
다만, 이에 한정되지 않고, UE의 UL 전송시, 특정 파형과 무관하게, UE가 특정 후보 코드북1(예를 들어, DFT 기반 코드북), 코드북2(예를 들어, 그라스마니안(grassmannian) 코드북), 또는 코드북3(예를 들어, 하우스홀더(householder) 코드북) 등 중에서 기지국 지시하에 특정 코드북을 적용하여 UL 전송을 개시하도록 위 동작들이 정의되거나 UE에 설정/지시될 수도 있다.
보다 구체적인 실시예로서, 후보 코드북1은 UE 안테나 구성(configuration)에 따른 안테나 간 배치/간격이 상대적으로 등간격 및/또는 밀접한-간격(closely-spaced) 형태로 구현되어 있을 때 보다 적합한 것으로서, DFT-벡터 등을 사용하는 특정 DFT 기반 코드북(예를 들어, LTE-A 코드북을 포함하는 이중 코드북 구조) 형태로 정의되거나 UE에게 설정될 수 있다. 또한, 후보 코드북2 는 UE 안테나 구성(configuration)에 따른 안테나 간 배치/간격이 상대적으로 불규칙 적이거나 넓은-간격(widely-spaced) 형태로 구현되어 있을 때 보다 적합한 것으로서, 그라스마니안 코드북 등 코드벡터간 등간격(equal distance)을 최대한 가질 수 있도록 최적화한 코드북 형태로 정의/설정될 수 있다. 또한, 후보 코드북3은 (UE 안테나 구성에 따라) 상기 코드북1 및 코드북2 등의 다른 속성 및 목적을 가진 상이한 코드북 간에 일부 코드벡터들을 발췌하여 만드는 형태로 특정 혼합형태의 코드북, 예를 들어 하우스홀더 코드북 등의 형태로 정의되거나 UE에게 설정될 수 있다.
결국, 단말은 사전에 특정 기지국에 접속할 때에 UE 능력 시그널링을 통해 자신이 UL 전송시 적용할 수 있는 (상기) 특정 후보 코드북들 중 적어도 하나의 어떠한 코드북이 구현되어 있는지 또는 지원하는지를 기지국에게 능력 시그널링하도록 정의되거나 UE에게 설정될 수 있다. 그리고/또는 이와 같이 구현/지원되는 코드북이 두 개 이상일 때, UE는 그 중에서도 UE가 더 선호하는 코드북이 무엇인지를 (특정 형태로 가중치(weighting)을 부여하는 식으로 세분화된 선호도 정보를 제공할 수도 있음) 기지국에 알려줄 수 있다. 이는 해당 UE의 상기 구현된 안테나 구성 특성에 기반할 때 어떠한 코드북이 더 적합한지가 결정될 수 있으며, 이와 같이 구현/지원되는 코드북들 중에서 좀 더 성능 측면에서 유리한 효과를 내는 코드북이 무엇인지와 관련된 정보를 기지국에 제공해주도록 하는 효과가 있다.
그리고, 기지국은 이러한 정보에 입각하여 상기 UE가 UL 전송시 적용할 코드북을 설정/지시해주도록 한다. 이때, 단말이 구현/지원 가능하다고 능력 시그널링을 한 코드북들 중에서는 해당 기지국이 구현/지원하지 않는 코드북도 존재할 수 있다. 이 경우 기지국은 자신이 구현/지원하는 코드북만을 (UE가 보고한 상기 코드북간 선호도 정보와 무관하게) UE가 용하도록 설정할 수도 있다. 또는, 기지국도 다수의 코드북을 UE에게 설정/지시할 수 있는 능력이 있다고 하더라도 (즉, 모두 구현되어 있다하더라도) 해당 셀에 접속한 다수의 UE의 코드북 구현/지원 상태 그리고/또는 코드북 선호도 상태 등을 종합적으로 고려하여 셀-특정 또는 단말그룹-특정하게 공통으로 적용할 상기 특정 코드북을 설정/지시할 수도 있다(예를 들어, UL MU-MIMO 전송 등에 더 용이하도록 하는 목적을 위해).
상기 특정 코드북을 UL 전송 시 적용하도록 기지국이 해당 단말에게 설정/지시하는 방법에 있어서, RRC 시그널링(및/또는 MAC CE 시그널링) 등에 의한 상대적으로 준-정적의 설정 방법도 적용 가능하다. 앞서 설명한 바와 같이, 특정 UL 스케줄링 그랜트에 연동하여 상대적으로 보다 동적 시그널링/지시에 의해 어떠한 상기 특정 코드북을 UE에게 적용하도록 할지를 동적으로 지시될 수도 있다. 이러한 동적 지시는 해당 UL grant 등 제어 시그널링 내 특정 필드를 통하여 명시적으로 및/또는 (특징 필드 정보와 연동하여) 암묵적으로 지시될 수 있다.
보다 특징적으로는 상기 언급한 바와 같이 특정 랭크 별로 연동하여 어떠한 코드북이 적용될 지 사전에 정의되거나 UE에게 설정될 수도 있다. 예를 들어, 랭크 1 UL 전송을 스케줄링하는 UL grant가 전송이 되면 UE는 항상 이에 연동된 특정 코드북(예를 들어, 코드북2)를 적용하여 UL 전송을 개시하도록 정의되거나 UE에게 설정될 수 있다. 또한, 랭크 X (예를 들어, X>1) UL 전송을 스케줄링하는 UL grant가 전송이 되면 UE는 항상 이에 연동된 특정 코드북(예를 들어, 코드북1)을 적용하여 UL 전송을 개시하도록 정의되거나 UE에게 설정될 수 있다.
따라서, 지원된다면, 전체 서브밴드 UL-MIMO 프리코더(들)은 UL 스케줄링 그랜트 내에서 즉시(instantaneously) UE에게 제공되는 것이 바람직하고, 이때 광대역 성분(wideband component)는 제어 채널 오버헤드 감소를 위해 한번만 포함될 수 있다.
UL MIMO를 위한 프리코딩된 SRS 기반 전송
UL 링크 적응 (LA: link adaptation)에 있어서, LTE는 UE가 SRS 관련 파라미터의 상이한 다수의 세트로 SRS를 전송하도록 설정하며, 여기서 특히 설정된 SRS 포트(들)의 수가 UE의 총 송신(Tx: transmit) 안테나 포트보다 작을 때 UE는 구현 된 특정 프리코딩/선택을 적용할 수 있다. Rel-13/14 (e)FD-MIMO((enhanced) Full Dimension-MIMO) 빔포밍된 CSI-RS 기반 동작과 비교할 때, UL LA에 대한 프리코딩 /빔포밍된 SRS 전송은 NR에서 철저히 검토되는 것이 바람직하다. 설명의 편의상, 다음과 같이 UL LA 프로세스의 관점에서 3 가지 UE 타입이 존재할 수 있다:
1) 타입 1 UE (프리코딩된 SRS(들)의 전송으로 개시되는 UL-LA)
- UE는 하나 이상의 SRS 자원으로 설정될 수 있으며, TRP(Transmit and Reception Point)에 의해 지시된 빔포밍 또는 TRP 트랜스패런트(transparent) 빔포밍이 각 SRS 자원 상에서의 SRS 전송에 적용된다.
- UE의 전송된 프리코딩 된 SRS 자원(들)의 측정에 기반하여, TRP는 SRS 자원 지시자(SRI: SRS 자원 지시자)(다중의 설정된 SRS 자원들의 경우), MCS 및/또는 SRI 내 SRS 포트에 걸쳐(또는 SRS 포트 상에) 적용되는 프리코더를 결정하고, UL 스케줄링 그랜트가 UE에게 전달될 때 이들을 UE에게 지시한다.
2) 타입 2 UE (프리코딩되지 않은(non-precoded) SRS(들)의 전송으로 개시되는 UL-LA)
- UE는 하나의 SRS 자원으로 설정될 수 있으며, UE는 프리코딩되지 않은(non-precoded) SRS를 전송한다.
- UE의 전송된 프리코딩되지 않은(non-precoded) SRS 포트(들)의 측정에 기반하여, TRP는 MCS 및/또는 SRS 포트에 걸쳐(또는 SRS 포트 상에) 적용되는 프리코더를 결정하고, UL 스케줄링 그랜트가 UE에게 전달될 때 이들을 UE에게 지시한다.
4-Tx UE 및 CP-OFDM의 경우, 상술한 이중 코드북 구조가 주파수-선택적인 UL-MIMO 프리코더에 사용될 수 있다.
3) 타입 3 UE (프리코딩되지 않은(non-precoded) SRS(들)의 전송으로 개시되는 UL-LA 및 TRP의 지시에 따른 프리코딩된 SRS의 전송)
- UE의 프리코딩되지 않은(non-precoded) SRS K_1 포트(들)의 측정에 기반하여, TRP는 대략적인 빔포머(coarse beamformer)를 결정하고, 이를 이어지는 프리코딩된 SRS K_2 (≤K_1) 포트(들)의 전송에 적용하도록 UE에게 지시한다. 그리고, UE의 전송된 프리코딩된 SRS 포트(들)의 측정에 기반하여, TRP는 MCS 및/또는 프리코더를 결정하고, UL 스케줄링 그랜트가 UE에게 전달 될 때 이들을 지시한다.
UE에 의해 보고될 수 있는 상술한 분류된 타입에 기반하여, 어떤 유형의 SRS 전송이 UE에 의해 수행되는지를 포함하여, 상이한 UL-LA 프로세스가 UE- 특정하게 설정될 수 있다. 프리코딩된 SRS 전송 케이스(예를 들어, 타입 1 및/또는 타입 3)와 관련하여, 다수의 SRS 자원이 UE에게 설정될 수 있으며, 여기서 UE는 각각의 설정된 SRS 자원 상에서 상이하게 빔포밍된 SRS 포트(들)을 전송한다. TRP는 그러한 빔포머 정보(beamformer information)를 UE에게 지시할 수 있으며, 또는 UE는 SRS 전송을 위해 TRP 트랜스패런트 빔포머(transparent beamformer)를 적용하도록 허용될 수 있다. 그리고, UL 스케줄링 그랜트가 UE에게 주어질 때, TRP는 스케줄링된 UL 전송을 위해 UE가 지시된 SRS 자원에 대응하는 SRS 전송에 사용된 것과 동일한 빔포머(beamformer)를 적용하도록 SRS 자원 지시자를 UE에게 지시할 수 있다. 또한, 선택된 SRS 자원상에서, TRP는 지시된 SRS 자원 내의 SRS 포트(들)를 통해 디지털 프리코딩 정보(예를 들어, UL PMI)를 더 지시할 수 있다. 각 SRS 자원에 대해 설정된 SRS 포트의 수는 UE의 UL 전송에서 목표 랭크로서 해석 될 수 있음을 주목해야 한다. 따라서 TRP는 랭크 1 내지 4를 커버하기 위하여 각 SRS 자원은 서로 다른 랭크에 상응하는 다중의 SRS 자원을 설정할 수 있다(예를 들어, v번째 SRS 자원을 위해 설정된 v-포트 SRS(여기서, v=1, 2, 3, 4)).
따라서, UL 링크 적응 프로세스 측면에서 서로 다른 UE 타입에 기반하여, 프리코딩되지 않은(non-precoded) 및/또는 프리코딩된(precoded) SRS 전송 관련 절차가 더욱 검토될 필요가 있다.
도 13은 본 발명의 일 실시예에 따른 상향링크 송수신 방법을 예시하는 도면이다.
도 13에서는 본 발명의 동작을 간단히 예시한 것이며, 이에 대한 보다 상세한 설명은 상술한 동작을 따를 수 있다.
도 13을 참조하면, UE는 기지국으로부터 하향링크 제어 정보(DCI)를 수신한다(S1303).
DCI는 SRS 자원 지시(SRI: SRS Resource Indication), 프리코딩 지시(예를 들어, U1 및/또는 U2, 또는 TPMI) 및/또는 랭크 지시(예를 들어, TRI)를 포함할 수 있다.
예를 들어, 프리코딩 지시는 광대역 속성을 가지는 제1 프리코딩 지시(즉, U1) 및 서브밴드 별로 지시되는 제2 프리코딩 지시(U2)로 구분될 수 있다. 이때, 제2 프리코딩 지시(U2)는 UE에게 스케줄링되는 상향링크 자원 할당 정보와 조인트 인코딩(joint encoding)되어 전송될 수 있다. 즉, 제2 프리코딩 지시(U2)는 UL RA 필드와 연동되어 함께 설정/지시될 수 있다
UE는 SRI에 의해 선택된 SRS 자원 내에서 전송된 SRS의 안테나 포트 상에 프리코딩 지시에 의해 지시된 프리코딩을 적용하여 기지국에게 상향링크를 전송한다(S1304).
상기 상향링크 전송을 위한 랭크 수는 DCI에 의해 명시적으로 지시될 수도 있으며, 또는 DCI 내 SRI에 의해 선택된 SRS 자원 내에서 전송된 SRS의 안테나 포트의 수로 암묵적으로 결정될 수도 있다.
한편, 앞서 S1303 단계 이전에, UE는 기지국으로부터 하향링크 참조 신호(DL RS)(예를 들어, CSI-RS 등)을 수신할 수 있다(S1301).
또한, UE는 UE에게 설정된 하나 이상의 SRS 자원 별로 프리코딩된 SRS를 기지국에게 전송할 수 있다(S1302).
이 경우, 기지국은 각 SRS 자원에 대한 SRS 측정을 통해 가장 수신 품질이 좋은 SRS 자원을 선택하고, 선택된 SRS 자원 내의 SRS 포트(port)(들)에 대하여 프리코딩 지시(예를 들어, U1 및/또는 U2, 또는 TPMI)를 도출하여 UE에게 지시할 수 있다.
또한, 프리코딩된 SRS 전송을 위해 적용되는 빔포밍 벡터(beamforming) 및/또는 빔포밍 계수(beamforming coefficient)는 제어 채널 시그널링에 의해 기지국에 의해 설정되거나 또는 UE가 임의로 결정할 수 있다.
또한, SRS 자원 내 프리코딩된 SRS 전송을 위해 적용되는 빔포밍 벡터(beamforming) 및/또는 빔포밍 계수(beamforming coefficient)는 DL RS(예를 들어, CSI-RS 등)의 수신을 위해 이용한 빔포밍 벡터(beamforming) 및/또는 빔포밍 계수(beamforming coefficient)를 기반으로 결정될 수 있다.
보다 구체적으로, 기지국이 전송하는 DL RS를 UE가 측정하여, 최적의(best) "서빙-빔(serving-beam)"을 찾을 수 있다(또한 이를 보고할 수도 있음). 그리고, UE는 최적의(best) "서빙-빔(serving-beam)"에 대한 자신의 (페어된(paired)) 최적의(best) "Rx-수신-빔(Rx-receiving-beam)"을 결정할 수 있다. 그리고, UE는 DL/UL 채널 호혜성(reciprocity) 특성(또는 빔 페어 링크(beam pair link))을 이용하여 이러한 최적의(best) "Rx-수신-빔(Rx-receiving-beam)"을 역으로(예를 들어, 에르미트(Hermitian) 취하여) 자신의 precoded/beamformed SRS 전송 시 해당 빔포밍 벡터/계수(들)을 적용하여 precoded SRS를 전송할 수 있다. 즉, precoded SRS 전송은 특정 DL RS(예를 들어, 최적의(best) "서빙-빔(serving-beam)")의 수신을 위해 사용된 공간적 필터링(spatial filtering)과 동일한 spatial filtering으로 수행될 수 있다.
만약 DL-RS가 CSI-RS인 경우, 프리코딩된 SRS 전송을 위해 적용되는 빔포밍 벡터(beamforming) 및/또는 빔포밍 계수(beamforming coefficient)를 결정하기 위해 이용되는 CSI-RS 자원은 기지국에 의해 지시될 수 있다.
또한, UE가 SRS 자원 내에서 수행되는 프리코딩 SRS 전송은 서브밴드 별로 독립적으로 수행될 수 있다.
예를 들어, SRS 자원 내에서 프리코딩된 SRS 전송을 위해 각 서브밴드 별로 독립적인 빔포밍 벡터(beamforming) 및/또는 빔포밍 계수(beamforming coefficient)가 적용될 수 있다.
또한, SRS 자원 내 서브밴드 별로 프리코딩된 SRS 전송을 위해 적용되는 빔포밍 벡터(beamforming) 및/또는 빔포밍 계수(beamforming coefficient)는 DL RS(예를 들어, CSI-RS 등)의 수신을 위해 이용한 빔포밍 벡터(beamforming) 및/또는 빔포밍 계수(beamforming coefficient)를 기반으로 결정될 수 있다.
보다 구체적으로, 기지국이 전송하는 DL RS를 UE가 측정하여, 최적의(best) "서빙-빔(serving-beam)"을 찾을 수 있다(또한 이를 보고할 수도 있음). 그리고, UE는 최적의(best) "서빙-빔(serving-beam)"에 대한 자신의 (페어된(paired)) 최적의(best) "Rx-수신-빔(Rx-receiving-beam)"을 결정할 수 있다. 그리고, UE는 DL/UL 채널 호혜성(reciprocity) 특성(또는 빔 페어 링크(beam pair link))을 이용하여 이러한 최적의(best) "Rx-수신-빔(Rx-receiving-beam)"을 역으로(예를 들어, 에르미트(Hermitian) 취하여) 자신의 precoded/beamformed SRS 전송 시 해당 빔포밍 벡터/계수(들)을 적용하여 각 서브밴드 별로 precoded SRS를 전송할 수 있다. 즉, 특정 서브밴드에서 precoded SRS 전송은 특정 DL RS(예를 들어, 최적의(best) "서빙-빔(serving-beam)")의 수신을 위해 사용된 공간적 필터링(spatial filtering)과 동일한 spatial filtering으로 수행될 수 있다.
이 경우, 만약 DL-RS가 CSI-RS인 경우, 프리코딩된 SRS 전송을 위해 적용되는 빔포밍 벡터(beamforming) 및/또는 빔포밍 계수(beamforming coefficient)를 결정하기 위해 이용되는 CSI-RS 자원은 기지국에 의해 지시될 수 있다.
본 발명이 적용될 수 있는 장치 일반
도 14는 본 발명의 일 실시예에 따른 무선 통신 장치의 블록 구성도를 예시한다.
도 14를 참조하면, 무선 통신 시스템은 기지국(1410)과 기지국(1410) 영역 내에 위치한 다수의 단말(1420)을 포함한다.
기지국(1410)은 프로세서(processor, 1411), 메모리(memory, 1412) 및 RF부(radio frequency unit, 1413)을 포함한다. 프로세서(1411)는 앞서 도 1 내지 도 13에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(1411)에 의해 구현될 수 있다. 메모리(1412)는 프로세서(1411)와 연결되어, 프로세서(1411)를 구동하기 위한 다양한 정보를 저장한다. RF부(1413)는 프로세서(1411)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
단말(1420)은 프로세서(1421), 메모리(1422) 및 RF부(1423)을 포함한다. 프로세서(1421)는 앞서 도 1 내지 도 13에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(1421)에 의해 구현될 수 있다. 메모리(1422)는 프로세서(1421)와 연결되어, 프로세서(1421)를 구동하기 위한 다양한 정보를 저장한다. RF부(1423)는 프로세서(1421)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
메모리(1412, 1422)는 프로세서(1411, 1421) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(1411, 1421)와 연결될 수 있다. 또한, 기지국(1410) 및/또는 단말(1420)은 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 가질 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 3GPP LTE/LTE-A 시스템 또는 5G 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE/LTE-A 시스템 또는 5G 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (12)

  1. 무선 통신 시스템에서 사용자 장치(UE: User Equipment)가 상향링크 전송을 수행하는 방법에 있어서,
    기지국으로부터 사운딩 참조 신호(SRS: Sounding Reference Signal) 자원 지시(SRI: SRS Resource Indication) 및 프리코딩 지시를 포함하는 하향링크 제어 정보(DCI: Downlink Control Information)을 수신하는 단계; 및
    상기 SRI에 의해 선택된 SRS 자원 내에서 전송된 SRS의 안테나 포트 상에 상기 프리코딩 지시에 의해 지시된 프리코딩을 적용하여 상기 기지국에게 상향링크를 전송하는 단계를 포함하는 상향링크 전송 방법.
  2. 제1항에 있어서,
    상기 UE에게 설정된 하나 이상의 SRS 자원 별로 프리코딩된 SRS를 상기 기지국에게 전송하는 단계를 더 포함하는 상향링크 전송 방법.
  3. 제2항에 있어서,
    상기 프리코딩된 SRS 전송을 위해 적용되는 빔포밍 벡터(beamforming) 및/또는 빔포밍 계수(beamforming coefficient)는 제어 채널 시그널링에 의해 상기 기지국에 의해 설정되거나 또는 상기 UE가 임의로 결정하는 상향링크 전송 방법.
  4. 제2항에 있어서,
    상기 SRS 자원 내 상기 프리코딩된 SRS 전송을 위해 적용되는 빔포밍 벡터(beamforming) 및/또는 빔포밍 계수(beamforming coefficient)는 하향링크 참조 신호(DL RS: Downlink Reference Signal)의 수신을 위해 이용한 빔포밍 벡터(beamforming) 및/또는 빔포밍 계수(beamforming coefficient)를 기반으로 결정되는 상향링크 전송 방법.
  5. 제4항에 있어서,
    상기 DL RS는 채널 상태 정보 참조 신호(CSI-RS: Channel State Information-Reference Signal)이고,
    상기 프리코딩된 SRS 전송을 위해 적용되는 빔포밍 벡터(beamforming) 및/또는 빔포밍 계수(beamforming coefficient)를 결정하기 위해 이용되는 CSI-RS 자원은 상기 기지국에 의해 지시되는 상향링크 전송 방법.
  6. 제2항에 있어서,
    상기 SRS 자원 내에서 상기 프리코딩된 SRS 전송을 위해 각 서브밴드 별로 독립적인 빔포밍 벡터(beamforming) 및/또는 빔포밍 계수(beamforming coefficient)가 적용되는 상향링크 전송 방법.
  7. 제6항에 있어서,
    상기 서브밴드 별로 상기 프리코딩된 SRS 전송을 위해 적용되는 빔포밍 벡터(beamforming) 및/또는 빔포밍 계수(beamforming coefficient)는 (DL RS: Downlink Reference Signal)의 수신을 위해 이용한 빔포밍 벡터(beamforming) 및/또는 빔포밍 계수(beamforming coefficient)를 기반으로 결정되는 상향링크 전송 방법.
  8. 제7항에 있어서,
    상기 DL RS는 채널 상태 정보 참조 신호(CSI-RS: Channel State Information-Reference Signal)이고,
    상기 프리코딩된 SRS 전송을 위해 적용되는 빔포밍 벡터(beamforming) 및/또는 빔포밍 계수(beamforming coefficient)를 결정하기 위해 이용되는 CSI-RS 자원은 상기 기지국에 의해 지시되는 상향링크 전송 방법.
  9. 제1항에 있어서,
    상기 DCI는 상기 상향링크 전송을 위한 랭크 지시(rank indication)을 더 포함하는 상향링크 전송 방법.
  10. 제1항에 있어서,
    상기 상향링크 전송을 위한 랭크 수는 상기 SRI에 의해 선택된 SRS 자원 내에서 전송된 SRS의 안테나 포트의 수로 결정되는 상향링크 전송 방법.
  11. 제1항에 있어서,
    상기 프리코딩 지시는 제1 프리코딩 지시 및 제2 프리코딩 지시로 구분되고,
    상기 제2 프리코딩 지시는 상기 UE에게 스케줄링되는 상향링크 자원 할당 정보와 조인트 인코딩(joint encoding)되는 상향링크 전송 방법.
  12. 무선 통신 시스템에서 상향링크 전송을 수행하는 사용자 장치(UE: User Equipment)에 있어서,
    무선 신호를 송수신하기 위한 RF(Radio Frequency) 유닛; 및
    상기 RF 유닛을 제어하는 프로세서를 포함하고,
    상기 프로세서는 기지국으로부터 사운딩 참조 신호(SRS: Sounding Reference Signal) 자원 지시(SRI: SRS Resource Indication) 및 프리코딩 지시를 포함하는 하향링크 제어 정보(DCI: Downlink Control Information)을 수신하고,
    상기 SRI에 의해 선택된 SRS 자원 내에서 전송된 SRS의 안테나 포트 상에 상기 프리코딩 지시에 의해 지시된 프리코딩을 적용하여 상기 기지국에게 상향링크를 전송하도록 구성되는 사용자 장치.
PCT/KR2017/010628 2016-09-26 2017-09-26 무선 통신 시스템에서 상향링크 송수신 방법 및 이를 위한 장치 WO2018056789A1 (ko)

Priority Applications (16)

Application Number Priority Date Filing Date Title
MYPI2019001621A MY194573A (en) 2016-09-26 2017-09-26 Uplink transmission/reception method in wireless communication system and device therefor
JP2019516135A JP6840841B2 (ja) 2016-09-26 2017-09-26 無線通信システムにおけるアップリンクの送受信方法、及びこのための装置
CA3035000A CA3035000C (en) 2016-09-26 2017-09-26 Uplink transmission/reception method in wireless communication system and device therefor
RU2019112447A RU2717840C1 (ru) 2016-09-26 2017-09-26 Способ передачи/приема восходящей линии связи в системе беспроводной связи и устройство для этого
EP17853503.5A EP3480968B1 (en) 2016-09-26 2017-09-26 Uplink transmission/reception method in wireless communication system and devices therefor
EP20189216.3A EP3758247A1 (en) 2016-09-26 2017-09-26 Uplink transmission/reception method in wireless communication system and device therefor
BR112019005754-4A BR112019005754B1 (pt) 2016-09-26 2017-09-26 método e equipamento de usuário para realizar transmissão de enlace ascendente em um sistema de comunicação sem fio e método e estação base para receber a mesma
US16/065,723 US10819407B2 (en) 2016-09-26 2017-09-26 Uplink transmission/reception method in wireless communication system and device therefor
CN201780047388.2A CN109565311B (zh) 2016-09-26 2017-09-26 在无线通信系统中的上行链路发送/接收的方法及其装置
AU2017332423A AU2017332423B2 (en) 2016-09-26 2017-09-26 Uplink transmission/reception method in wireless communication system and device therefor
KR1020197005098A KR102219351B1 (ko) 2016-09-26 2017-09-26 무선 통신 시스템에서 상향링크 송수신 방법 및 이를 위한 장치
SG11201901549TA SG11201901549TA (en) 2016-09-26 2017-09-26 Uplink transmission/reception method in wireless communication system and device therefor
MX2019002900A MX2019002900A (es) 2016-09-26 2017-09-26 Metodo de transmision/recepcion de enlace ascendente en sistema de comunicacion inalambrica y dispositivo para el mismo.
US16/288,742 US10819408B2 (en) 2016-09-26 2019-02-28 Uplink transmission/reception method in wireless communication system and device therefor
PH12019500590A PH12019500590A1 (en) 2016-09-26 2019-03-19 Uplink transmission/reception method in wireless communication system and device therefor
US17/015,312 US11296760B2 (en) 2016-09-26 2020-09-09 Uplink transmission/reception method in wireless communication system and device therefor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201662400077P 2016-09-26 2016-09-26
US62/400,077 2016-09-26
US201662401961P 2016-09-30 2016-09-30
US62/401,961 2016-09-30
US201662416682P 2016-11-02 2016-11-02
US62/416,682 2016-11-02

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/065,723 A-371-Of-International US10819407B2 (en) 2016-09-26 2017-09-26 Uplink transmission/reception method in wireless communication system and device therefor
US16/288,742 Continuation US10819408B2 (en) 2016-09-26 2019-02-28 Uplink transmission/reception method in wireless communication system and device therefor

Publications (1)

Publication Number Publication Date
WO2018056789A1 true WO2018056789A1 (ko) 2018-03-29

Family

ID=61690986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/010628 WO2018056789A1 (ko) 2016-09-26 2017-09-26 무선 통신 시스템에서 상향링크 송수신 방법 및 이를 위한 장치

Country Status (15)

Country Link
US (3) US10819407B2 (ko)
EP (2) EP3758247A1 (ko)
JP (1) JP6840841B2 (ko)
KR (1) KR102219351B1 (ko)
CN (1) CN109565311B (ko)
AU (1) AU2017332423B2 (ko)
BR (1) BR112019005754B1 (ko)
CA (1) CA3035000C (ko)
CL (1) CL2019000689A1 (ko)
MX (1) MX2019002900A (ko)
MY (1) MY194573A (ko)
PH (1) PH12019500590A1 (ko)
RU (1) RU2717840C1 (ko)
SG (1) SG11201901549TA (ko)
WO (1) WO2018056789A1 (ko)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019170089A1 (zh) * 2018-03-05 2019-09-12 中兴通讯股份有限公司 信息传输的方法、装置和通信节点
WO2019218967A1 (en) 2018-05-18 2019-11-21 Huawei Technologies Co., Ltd. System and method for communications system training
EP3588799A1 (en) * 2018-06-28 2020-01-01 Acer Incorporated Device and method for handling a sounding reference signal transmission
WO2020063877A1 (zh) * 2018-09-27 2020-04-02 中兴通讯股份有限公司 指示方法、信息确定方法、装置、基站、终端及存储介质
CN111464218A (zh) * 2019-01-18 2020-07-28 中国移动通信有限公司研究院 下行波束管理的方法及设备
CN111464273A (zh) * 2019-01-18 2020-07-28 中国移动通信有限公司研究院 基于码本传输的探测参考信号资源的指示方法及设备
CN111586855A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 信号传输的方法与装置
US10819407B2 (en) 2016-09-26 2020-10-27 Lg Electronics Inc. Uplink transmission/reception method in wireless communication system and device therefor
WO2021047647A1 (zh) * 2019-09-12 2021-03-18 中兴通讯股份有限公司 上行传输方法和装置
CN112534737A (zh) * 2018-07-30 2021-03-19 高通股份有限公司 用于子带预编码的功率分配
US11082180B2 (en) 2017-05-25 2021-08-03 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Uplink precoding method, device and system
CN113228551A (zh) * 2019-01-09 2021-08-06 高通股份有限公司 用于全双工通信的信道状态反馈计算和波束训练
CN113243087A (zh) * 2018-10-12 2021-08-10 索尼集团公司 操作通信装置
JP2021520705A (ja) * 2018-04-04 2021-08-19 アイディーエーシー ホールディングス インコーポレイテッド 5g新無線のためのビーム表示
US11184129B2 (en) 2018-09-21 2021-11-23 Qualcomm Incorporated Sounding reference signal configurations to support uplink transmissions with cyclic delay diversity
JP2021536176A (ja) * 2018-09-26 2021-12-23 富士通株式会社 信号送信方法、信号受信方法及び装置
EP3905544A4 (en) * 2019-01-28 2021-12-29 Huawei Technologies Co., Ltd. Communication method and apparatus
CN114128340A (zh) * 2019-05-17 2022-03-01 株式会社Ntt都科摩 用户终端以及无线通信方法
RU2782542C2 (ru) * 2020-11-17 2022-10-31 Российская Федерация, от имени которой выступает Министерство цифрового развития, связи и массовых коммуникаций Способ передачи и приема сигналов в многопользовательской системе радиосвязи с множеством передающих и множеством приемных антенн
TWI826588B (zh) * 2018-12-14 2023-12-21 美商高通公司 用於靈活無線設備的波束成形編碼簿調適的方法、裝置及非暫時性電腦可讀取媒體

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10469224B2 (en) * 2016-09-30 2019-11-05 Qualcomm Incorporated Joint transmission of precoded and unprecoded sounding reference signals in uplink
US10432374B2 (en) * 2016-12-12 2019-10-01 Qualcomm Incorporated Reporting uplink channel feedback in wireless communications
US10749584B2 (en) * 2016-12-22 2020-08-18 Samsung Electronics Co., Ltd. Uplink MIMO codebook for advanced wireless communication systems
WO2018145013A1 (en) * 2017-02-06 2018-08-09 Intel Corporation Uplink transmissions using precoded sounding reference signals for communication systems
US11018828B2 (en) * 2017-02-06 2021-05-25 Qualcomm Incorporated Uplink MIMO reference signals and data transmission schemes
DE112018000358T5 (de) * 2017-03-07 2019-09-26 Intel IP Corporation Techniken für verbessertes strahlmanagement
KR102409785B1 (ko) * 2017-03-23 2022-06-16 삼성전자주식회사 무선 통신 시스템에서 초기 접속을 수행하기 위한 장치 및 방법
CN108631847B (zh) * 2017-03-24 2021-06-01 华为技术有限公司 传输信道状态信息的方法、终端设备和网络设备
CN113965231A (zh) * 2017-03-24 2022-01-21 华为技术有限公司 信息的传输方法和设备
CN108631999B (zh) * 2017-03-25 2021-07-09 华为技术有限公司 信令的发送方法,装置和系统
EP4109776A1 (en) 2017-05-05 2022-12-28 Apple Inc. Management of mimo communication systems
EP3639597B1 (en) * 2017-06-15 2024-04-17 Telefonaktiebolaget LM Ericsson (publ) Apparatuses and methods for scheduling object configuration
CN109150439B (zh) * 2017-06-16 2021-02-05 电信科学技术研究院 一种数据传输方法、装置、网络侧设备和用户设备
CN109951215B (zh) * 2017-12-20 2022-05-13 华为技术有限公司 一种获取下行信道信息的方法及装置
FI3986066T3 (fi) 2017-12-28 2024-01-11 Toyota Motor Co Ltd Menetelmä nousevan siirtotien datasiirtoon, päätelaite ja verkkolaite
US20190260435A1 (en) * 2018-02-17 2019-08-22 Mediatek Inc. Uplink Transmission Schemes In Mobile Communications
WO2020019136A1 (en) 2018-07-23 2020-01-30 Qualcomm Incorporated Configuration of sounding reference signal resource for multi-panel uplink transmission
JP7215564B2 (ja) * 2018-07-27 2023-01-31 日本電気株式会社 端末デバイスで実行される方法、端末デバイス、ネットワークデバイスで実行される方法及びネットワークデバイス
WO2020077536A1 (en) * 2018-10-16 2020-04-23 Qualcomm Incorporated Uplink srs with precoding
EP3934121A4 (en) * 2019-02-25 2022-10-05 Ntt Docomo, Inc. USER TERMINAL AND WIRELESS COMMUNICATION METHOD
WO2020197353A1 (ko) * 2019-03-28 2020-10-01 엘지전자 주식회사 무선 통신 시스템에서 사운딩 참조 신호의 송수신 방법 및 그 장치
WO2020252765A1 (en) * 2019-06-21 2020-12-24 Qualcomm Incorporated Channel state information reporting techniques for full-duplex user equipment
KR20210002208A (ko) 2019-06-27 2021-01-08 삼성전자주식회사 프리코딩을 수행하는 전자 장치 및 그 동작 방법
US20220247536A1 (en) * 2019-07-17 2022-08-04 Ntt Docomo, Inc. Terminal and radio communication method
WO2021012975A1 (en) * 2019-07-22 2021-01-28 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and apparatus of frequency-selective precoding for physical uplink shared channel transmission
CN110380763B (zh) * 2019-07-23 2021-05-11 东南大学 收发方向图非互易全数字波束成形天线阵列及其实现方法
WO2021016023A1 (en) 2019-07-24 2021-01-28 Google Llc Controlling dl mimo transmissions in a communication system
US11356300B2 (en) * 2019-08-02 2022-06-07 Qualcomm Incorporated Sounding reference signal configuration for supporting virtual and non-virtual port sounding
US11362785B2 (en) * 2019-08-13 2022-06-14 Qualcomm Incorporated Signaling sequences of sounding reference signal resource indicator collections for uplink repetitions
CN115664612A (zh) * 2019-10-15 2023-01-31 中兴通讯股份有限公司 传输方法、装置、第一通信节点、第二通信节点及介质
US11924863B2 (en) 2019-10-28 2024-03-05 Qualcomm Incorporated Subband precoding signaling in a wireless communications network
WO2021081981A1 (en) * 2019-11-01 2021-05-06 Qualcomm Incorporated Uplink subband precoding via linear combination of frequency domain bases
EP3847850A4 (en) * 2019-11-28 2021-12-22 Apple Inc. IMPROVED MOBILE STATION POWER TRANSMISSION APPARATUS, SYSTEM AND METHOD
CN111130607B (zh) * 2019-12-26 2024-01-23 中兴通讯股份有限公司 上行传输、信号接收方法、装置、终端、服务节点及介质
CN115004566A (zh) * 2020-01-31 2022-09-02 高通股份有限公司 下行链路控制信息中的同相因子指示
CN115152158A (zh) * 2020-02-18 2022-10-04 华为技术有限公司 物理上行共享信道传输数据的方法、传输数据的方法及终端、网络设备、芯片系统
US11653228B2 (en) * 2020-02-24 2023-05-16 Qualcomm Incorporated Channel state information (CSI) learning
WO2021168599A1 (en) * 2020-02-24 2021-09-02 Qualcomm Incorporated Reference signal configurations for uplink beam selection
WO2021221476A1 (ko) * 2020-04-29 2021-11-04 엘지전자 주식회사 복수 개의 trp를 위한 상향링크 송수신 방법 및 그를 위한 장치
WO2021228203A1 (en) * 2020-05-13 2021-11-18 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Apparatus and method of wireless communication
KR20230159444A (ko) * 2021-03-24 2023-11-21 인텔 코포레이션 단일 dci 기반 pusch(physical uplink shared channel) 송신 스케줄링
BR112023023185A2 (pt) * 2021-05-08 2024-01-30 Apple Inc Seleção de painel para transmissão por enlace ascendente
CN115412135B (zh) * 2021-05-28 2023-09-19 中国移动通信集团山东有限公司 波束赋形反馈模式确定方法即装置、设备、存储介质
WO2024060190A1 (en) * 2022-09-23 2024-03-28 Apple Inc. Closed-loop antenna selection for a single transmitter wireless device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102378271A (zh) * 2010-08-16 2012-03-14 电信科学技术研究院 Srs和周期csi的传输及其指示方法、装置及系统
US20120275411A1 (en) * 2009-12-22 2012-11-01 Hyung Tae Kim Apparatus for performing comp communication using a precoded sounding reference signal, and method for same
US20140204856A1 (en) * 2013-01-23 2014-07-24 Qualcomm Incorporated Efficient uplink resource indication for csi feedback
US20150365936A1 (en) * 2010-11-16 2015-12-17 Panasonic Intellectual Property Corporation Of America Communication device and srs transmission control method

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5361865B2 (ja) * 2008-04-04 2013-12-04 パナソニック株式会社 無線通信移動局装置およびプレコーディング行列使用方法
US8548406B2 (en) * 2009-05-05 2013-10-01 Lg Electronics Inc. Method of transmitting reference signal in multiple antenna system
US8848672B2 (en) * 2010-02-23 2014-09-30 Lg Electronics Inc. Method and device for providing control information for uplink transmission in wireless communication system supporting uplink multi-antenna transmission
CN102083223A (zh) * 2010-03-05 2011-06-01 大唐移动通信设备有限公司 一种发送dci和上行传输的方法、系统及装置
CN101827444B (zh) * 2010-03-31 2015-03-25 中兴通讯股份有限公司 一种测量参考信号的信令配置系统及方法
FR2966252B1 (fr) 2010-10-13 2013-11-22 Thales Sa Procede et systeme d'augmentation de la disponibilite d'un systeme de geolocalisation par satellite
EP2671333B1 (en) 2011-02-01 2019-04-10 BlackBerry Limited Mixed rank downlink compound multi-user interference alignment scheme
US9351288B2 (en) 2012-06-05 2016-05-24 Samsung Electronics Co., Ltd. Uplink channel sounding and channel state information estimation in mobile communication systems with multiple antennas
US9768939B2 (en) * 2012-06-18 2017-09-19 Lg Electronics Inc. Signal transmission/reception method and apparatus therefor
US9596065B2 (en) * 2012-10-24 2017-03-14 Qualcomm Incorporated Enhanced SRS transmission for MIMO operation in LTE-A
CN103905104B (zh) * 2012-12-28 2017-12-19 中兴通讯股份有限公司 一种根据探测参考信号的多天线发送方法及终端及基站
KR102004544B1 (ko) * 2013-02-06 2019-07-26 노키아 테크놀로지스 오와이 무선 통신 시스템에서 채널측정 기준신호 전송 방법 및 장치
US10555309B2 (en) * 2014-07-17 2020-02-04 Lg Electronics Inc. Method and device for transmitting downlink signal in wireless communication system
RU2662734C1 (ru) * 2015-01-15 2018-07-30 Телефонактиеболагет Лм Эрикссон (Пабл) Устройство беспроводной связи, радиоузел и соответствующие способы
CN112235088B (zh) * 2015-08-13 2024-04-09 三星电子株式会社 处理参考信号的方法、基站和终端
WO2017136749A1 (en) * 2016-02-03 2017-08-10 Docomo Innovations, Inc. User equipment and method for wireless communication
CA3019646A1 (en) * 2016-04-01 2017-10-05 Huawei Technologies Co., Ltd. System and method for srs switching, transmission, and enhancements
RU2717840C1 (ru) 2016-09-26 2020-03-26 ЭлДжи ЭЛЕКТРОНИКС ИНК. Способ передачи/приема восходящей линии связи в системе беспроводной связи и устройство для этого
US10469224B2 (en) * 2016-09-30 2019-11-05 Qualcomm Incorporated Joint transmission of precoded and unprecoded sounding reference signals in uplink

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120275411A1 (en) * 2009-12-22 2012-11-01 Hyung Tae Kim Apparatus for performing comp communication using a precoded sounding reference signal, and method for same
CN102378271A (zh) * 2010-08-16 2012-03-14 电信科学技术研究院 Srs和周期csi的传输及其指示方法、装置及系统
US20150365936A1 (en) * 2010-11-16 2015-12-17 Panasonic Intellectual Property Corporation Of America Communication device and srs transmission control method
US20140204856A1 (en) * 2013-01-23 2014-07-24 Qualcomm Incorporated Efficient uplink resource indication for csi feedback

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Presence of SRS Bit in DCI 6-0A/6-1A", R1-166622, 3GPP TSG RAN WG1 MEETING #86, 12 August 2016 (2016-08-12), Gothenburg, Sweden, XP051132222 *
See also references of EP3480968A4 *

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11296760B2 (en) 2016-09-26 2022-04-05 Lg Electronics Inc. Uplink transmission/reception method in wireless communication system and device therefor
US10819407B2 (en) 2016-09-26 2020-10-27 Lg Electronics Inc. Uplink transmission/reception method in wireless communication system and device therefor
US10819408B2 (en) 2016-09-26 2020-10-27 Lg Electronics Inc. Uplink transmission/reception method in wireless communication system and device therefor
US11082180B2 (en) 2017-05-25 2021-08-03 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Uplink precoding method, device and system
WO2019170089A1 (zh) * 2018-03-05 2019-09-12 中兴通讯股份有限公司 信息传输的方法、装置和通信节点
JP7050178B2 (ja) 2018-04-04 2022-04-07 アイディーエーシー ホールディングス インコーポレイテッド 5g新無線のためのビーム表示
JP2021520705A (ja) * 2018-04-04 2021-08-19 アイディーエーシー ホールディングス インコーポレイテッド 5g新無線のためのビーム表示
RU2784380C2 (ru) * 2018-05-08 2022-11-24 Панасоник Интеллекчуал Проперти Корпорейшн Оф Америка Терминал и способ передачи
EP3815253A4 (en) * 2018-05-18 2021-06-23 Huawei Technologies Co., Ltd. SYSTEM AND METHOD FOR COMMUNICATION SYSTEM LEARNING
WO2019218967A1 (en) 2018-05-18 2019-11-21 Huawei Technologies Co., Ltd. System and method for communications system training
US11277175B2 (en) 2018-05-18 2022-03-15 Futurewei Technologies, Inc. System and method for communications system training
TWI711290B (zh) * 2018-06-28 2020-11-21 宏碁股份有限公司 用於處理探測參考訊號傳輸的裝置及方法
US11159290B2 (en) 2018-06-28 2021-10-26 Acer Incorporated Device and method for handling a sounding reference signal transmission
EP3588799A1 (en) * 2018-06-28 2020-01-01 Acer Incorporated Device and method for handling a sounding reference signal transmission
CN112534737A (zh) * 2018-07-30 2021-03-19 高通股份有限公司 用于子带预编码的功率分配
CN112534737B (zh) * 2018-07-30 2023-10-20 高通股份有限公司 用于子带预编码的功率分配
US11184129B2 (en) 2018-09-21 2021-11-23 Qualcomm Incorporated Sounding reference signal configurations to support uplink transmissions with cyclic delay diversity
US11843437B2 (en) 2018-09-26 2023-12-12 Fujitsu Limited Signal transmission method, signal reception method and apparatuses thereof
JP2021536176A (ja) * 2018-09-26 2021-12-23 富士通株式会社 信号送信方法、信号受信方法及び装置
JP7408633B2 (ja) 2018-09-26 2024-01-05 富士通株式会社 信号送信方法、信号受信方法及び装置
WO2020063877A1 (zh) * 2018-09-27 2020-04-02 中兴通讯股份有限公司 指示方法、信息确定方法、装置、基站、终端及存储介质
CN113243087A (zh) * 2018-10-12 2021-08-10 索尼集团公司 操作通信装置
CN113243087B (zh) * 2018-10-12 2024-03-15 索尼集团公司 无线通信装置和对无线通信装置进行操作的方法
US11923933B2 (en) 2018-10-12 2024-03-05 Sony Group Corporation Operating communication devices
TWI826588B (zh) * 2018-12-14 2023-12-21 美商高通公司 用於靈活無線設備的波束成形編碼簿調適的方法、裝置及非暫時性電腦可讀取媒體
CN113228551A (zh) * 2019-01-09 2021-08-06 高通股份有限公司 用于全双工通信的信道状态反馈计算和波束训练
CN111464218A (zh) * 2019-01-18 2020-07-28 中国移动通信有限公司研究院 下行波束管理的方法及设备
CN111464273B (zh) * 2019-01-18 2023-01-13 中国移动通信有限公司研究院 基于码本传输的探测参考信号资源的指示方法及设备
CN111464218B (zh) * 2019-01-18 2022-08-12 中国移动通信有限公司研究院 下行波束管理的方法及设备
CN111464273A (zh) * 2019-01-18 2020-07-28 中国移动通信有限公司研究院 基于码本传输的探测参考信号资源的指示方法及设备
EP3905544A4 (en) * 2019-01-28 2021-12-29 Huawei Technologies Co., Ltd. Communication method and apparatus
CN111586855A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 信号传输的方法与装置
CN111586855B (zh) * 2019-02-15 2024-02-09 华为技术有限公司 信号传输的方法与装置
US11937203B2 (en) 2019-02-15 2024-03-19 Huawei Technologies Co., Ltd. Signal transmission method and apparatus
CN114128340B (zh) * 2019-05-17 2023-12-26 株式会社Ntt都科摩 用户终端以及无线通信方法
CN114128340A (zh) * 2019-05-17 2022-03-01 株式会社Ntt都科摩 用户终端以及无线通信方法
WO2021047647A1 (zh) * 2019-09-12 2021-03-18 中兴通讯股份有限公司 上行传输方法和装置
RU2782542C2 (ru) * 2020-11-17 2022-10-31 Российская Федерация, от имени которой выступает Министерство цифрового развития, связи и массовых коммуникаций Способ передачи и приема сигналов в многопользовательской системе радиосвязи с множеством передающих и множеством приемных антенн

Also Published As

Publication number Publication date
JP2019535174A (ja) 2019-12-05
SG11201901549TA (en) 2019-04-29
EP3480968A1 (en) 2019-05-08
BR112019005754A2 (pt) 2019-06-11
CN109565311B (zh) 2021-07-16
EP3480968B1 (en) 2020-11-04
CN109565311A (zh) 2019-04-02
US20190222277A1 (en) 2019-07-18
US20190199553A1 (en) 2019-06-27
RU2717840C1 (ru) 2020-03-26
US10819408B2 (en) 2020-10-27
KR20190028796A (ko) 2019-03-19
US11296760B2 (en) 2022-04-05
AU2017332423B2 (en) 2020-11-19
MY194573A (en) 2022-12-02
US10819407B2 (en) 2020-10-27
MX2019002900A (es) 2019-07-04
CA3035000A1 (en) 2018-03-29
PH12019500590A1 (en) 2020-01-20
KR102219351B1 (ko) 2021-02-23
US20200403669A1 (en) 2020-12-24
CL2019000689A1 (es) 2019-08-16
CA3035000C (en) 2022-06-14
AU2017332423A1 (en) 2019-03-21
EP3480968A4 (en) 2019-10-09
EP3758247A1 (en) 2020-12-30
JP6840841B2 (ja) 2021-03-10
BR112019005754B1 (pt) 2021-01-26

Similar Documents

Publication Publication Date Title
WO2018056789A1 (ko) 무선 통신 시스템에서 상향링크 송수신 방법 및 이를 위한 장치
WO2018128504A1 (ko) 무선 통신 시스템에서 상향링크 송수신 방법 및 이를 위한 장치
WO2019108048A1 (ko) 무선 통신 시스템에서 상향링크 송수신 방법 및 이를 위한 장치
WO2018203728A1 (ko) 무선 통신 시스템에서 상향링크 송수신 방법 및 이를 위한 장치
WO2017090987A1 (ko) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 이를 위한 장치
WO2017052330A1 (ko) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 이를 위한 장치
WO2018143721A1 (ko) 무선 통신 시스템에서의 채널 상태 정보 보고 방법 및 이를 위한 장치
WO2018128376A1 (ko) 무선 통신 시스템에서 상향링크 채널을 송수신하는 방법 및 이를 위한 장치
WO2018231001A1 (ko) 무선 통신 시스템에서 협력 전송 수행 방법 및 이를 위한 장치
WO2017039399A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치
WO2018128399A1 (ko) 무선 통신 시스템에서, 참조 신호를 전송하는 방법 및 이를 위한 장치
WO2017034270A1 (ko) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 이를 위한 장치
WO2018164332A1 (ko) 무선 통신 시스템에서 빔 복구를 수행하는 방법 및 이를 위한 장치
WO2018203704A1 (ko) 무선 통신 시스템에서 빔 복구를 수행하는 방법 및 이를 위한 장치
WO2018128365A1 (ko) 무선 통신 시스템에서 물리 상향링크 제어 채널 전송 방법 및 이를 위한 장치
WO2018230975A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 보고하는 방법 및 이를 위한 장치
WO2018199704A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치
WO2016204549A1 (ko) 무선 통신 시스템에서 기준 신호 전송 방법 및 장치
WO2018128493A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 상향링크 신호 송수신 방법 및 이를 지원하는 장치
WO2018174413A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 측정 및 보고하는 방법 및 이를 위한 장치
WO2019139369A1 (en) Method and apparatus for csi reporting in wireless communication system
WO2018030804A1 (ko) 무선 통신 시스템에서 채널 상태 보고를 위한 방법 및 이를 위한 장치
WO2017026794A1 (ko) 무선 통신 시스템에서 csi-rs와 관련된 단말의 동작 방법 및 이를 지원하기 위한 장치
WO2018182256A1 (ko) 무선 통신 시스템에서의 채널 상태 정보 보고 방법 및 이를 위한 장치
WO2019066618A1 (ko) 무선 통신 시스템에서 qcl에 기초하여 데이터를 송수신하기 위한 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17853503

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017853503

Country of ref document: EP

Effective date: 20190131

ENP Entry into the national phase

Ref document number: 20197005098

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3035000

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2017332423

Country of ref document: AU

Date of ref document: 20170926

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019516135

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019005754

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112019005754

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190322