WO2022011628A1 - Methods, apparatuses, and computer readable media for controlling measurements in a secondary cell - Google Patents

Methods, apparatuses, and computer readable media for controlling measurements in a secondary cell Download PDF

Info

Publication number
WO2022011628A1
WO2022011628A1 PCT/CN2020/102271 CN2020102271W WO2022011628A1 WO 2022011628 A1 WO2022011628 A1 WO 2022011628A1 CN 2020102271 W CN2020102271 W CN 2020102271W WO 2022011628 A1 WO2022011628 A1 WO 2022011628A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
state information
channel state
information reference
secondary cell
Prior art date
Application number
PCT/CN2020/102271
Other languages
French (fr)
Inventor
Lei Du
Lars Dalsgaard
Elena Virtej
Tero Henttonen
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy, Nokia Technologies Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to PCT/CN2020/102271 priority Critical patent/WO2022011628A1/en
Priority to CN202110799867.8A priority patent/CN113950131B/en
Publication of WO2022011628A1 publication Critical patent/WO2022011628A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0245Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal according to signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • H04W52/0258Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity controlling an operation mode according to history or models of usage information, e.g. activity schedule or time of day
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Various embodiments relates to methods, apparatuses, and computer readable media for controlling measurements in a secondary cell (SCell) .
  • SCell secondary cell
  • SCell may be activated and deactivated to enable reasonable power consumption of a user equipment (UE) .
  • LTE long term evolution
  • NR new radio
  • a method comprising: receiving a configuration of a channel state information reference signal based layer 3 radio resource management measurement for a secondary cell, the configuration comprising information on at least one channel state information reference signal resource for the channel state information reference signal based layer 3 radio resource management measurement; determining that the secondary cell goes to dormancy; and in response to the determination, performing the channel state information reference signal based layer 3 radio resource management measurement on a part of the at least one channel state information reference signal resource, or suspending the channel state information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource.
  • the channel state information reference signal based layer 3 radio resource management measurement on the part of the at least one channel state information reference signal resource is performed in response to the determination in a case where a synchronization signal block based measurement for the secondary cell is configured.
  • the channel state information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource is suspended in response to the determination in a case where the synchronization signal block based measurement for the secondary cell is configured.
  • the method may further comprise: in a case where the configuration comprises an indication of at least one associated synchronization signal block of the channel state information reference signal based layer 3 radio resource management measurement, performing a synchronization signal block based measurement for the secondary cell on the at least one associated synchronization signal block when the secondary cell is in dormancy.
  • the part of the at least one channel state information reference signal resource on which the channel state information reference signal based layer 3 radio resource management measurement is performed may comprise at least one of: at least one first channel state information reference signal resource within an active bandwidth part; at least one second channel state information reference signal resource with a bandwidth same as a channel state information reference signal resource for a special cell; at least one third channel state information reference signal resource associated with at least one beam associated with quality above a predetermined threshold; at least one fourth channel state information reference signal resource within a dormant bandwidth part; or at least one fifth channel state information reference signal resource with a center frequency same as a frequency of a synchronization signal block to which the special cell is associated.
  • the method may further comprise receiving information on at least one of a measurement type, a measurement object, or an index of a channel state information reference signal resource to be measured in the secondary cell when the secondary sell is in dormancy, and the channel state information reference signal based layer 3 radio resource management measurement on the part of the at least one channel state information reference signal resource is performed according to the information.
  • the method may further comprise detecting that the secondary cell goes out of dormancy, and resuming the channel state information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource in response to the detection.
  • the method may further comprise receiving an indication on whether the resuming is enabled when the secondary cell goes out of dormancy, and the channel state information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource is resumed in response to the detection in a case where the resuming is enabled.
  • an apparatus which may be configured to perform at least the method in the first aspect.
  • the apparatus may include at least one processor and at least one memory.
  • the at least one memory may include computer program code, and the at least one memory and the computer program code may be configured to, with the at least one processor, cause the apparatus to perform: receiving a configuration of a channel state information reference signal based layer 3 radio resource management measurement for a secondary cell, the configuration comprising information on at least one channel state information reference signal resource for the channel state information reference signal based layer 3 radio resource management measurement; determining that the secondary cell goes to dormancy; and in response to the determination, performing the channel state information reference signal based layer 3 radio resource management measurement on a part of the at least one channel state information reference signal resource, or suspending the channel state information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource.
  • the channel state information reference signal based layer 3 radio resource management measurement on the part of the at least one channel state information reference signal resource is performed in response to the determination in a case where a synchronization signal block based measurement for the secondary cell is configured.
  • the channel state information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource is suspended in response to the determination in a case where the synchronization signal block based measurement for the secondary cell is configured.
  • the at least one memory may include computer program code
  • the at least one memory and the computer program code may be further configured to, with the at least one processor, cause the apparatus to perform: in a case where the configuration comprises an indication of at least one associated synchronization signal block of the channel state information reference signal based layer 3 radio resource management measurement, performing a synchronization signal block based measurement for the secondary cell on the at least one associated synchronization signal block when the secondary cell is in dormancy.
  • the part of the at least one channel state information reference signal resource on which the channel state information reference signal based layer 3 radio resource management measurement is performed may comprise at least one of: at least one first channel state information reference signal resource within an active bandwidth part; at least one second channel state information reference signal resource with a bandwidth same as a channel state information reference signal resource for a special cell; at least one third channel state information reference signal resource associated with at least one beam with quality above a predetermined threshold; at least one fourth channel state information reference signal resource within a dormant bandwidth part; or at least one fifth channel state information reference signal resource with a center frequency same as a frequency of a synchronization signal block to which the special cell is associated.
  • the at least one memory may include computer program code
  • the at least one memory and the computer program code may be further configured to, with the at least one processor, cause the apparatus to perform receiving information on at least one of a measurement type, a measurement object, or an index of a channel state information reference signal resource to be measured in the secondary cell when the secondary sell is in dormancy, and the channel state information reference signal based layer 3 radio resource management measurement on the part of the at least one channel state information reference signal resource is performed according to the information.
  • the at least one memory may include computer program code, and the at least one memory and the computer program code may be further configured to, with the at least one processor, cause the apparatus to perform detecting that the secondary cell goes out of dormancy, and resuming the channel state information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource in response to the detection.
  • the at least one memory may include computer program code
  • the at least one memory and the computer program code may be further configured to, with the at least one processor, cause the apparatus to perform receiving an indication on whether the resuming is enabled when the secondary cell goes out of dormancy, and the channel state information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource is resumed in response to the detection in a case where the resuming is enabled.
  • an apparatus which may be configured to perform at least the method in the first aspect.
  • the apparatus may include means for performing: receiving a configuration of a channel state information reference signal based layer 3 radio resource management measurement for a secondary cell, the configuration comprising information on at least one channel state information reference signal resource for the channel state information reference signal based layer 3 radio resource management measurement; determining that the secondary cell goes to dormancy; and in response to the determination, performing the channel state information reference signal based layer 3 radio resource management measurement on a part of the at least one channel state information reference signal resource, or suspending the channel state information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource.
  • the channel state information reference signal based layer 3 radio resource management measurement on the part of the at least one channel state information reference signal resource is performed in response to the determination in a case where a synchronization signal block based measurement for the secondary cell is configured.
  • the channel state information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource is suspended in response to the determination in a case where the synchronization signal block based measurement for the secondary cell is configured.
  • the apparatus may further comprise means for performing: in a case where the configuration comprises an indication of at least one associated synchronization signal block of the channel state information reference signal based layer 3 radio resource management measurement, performing a synchronization signal block based measurement for the secondary cell on the at least one associated synchronization signal block when the secondary cell is in dormancy.
  • the part of the at least one channel state information reference signal resource on which the channel state information reference signal based layer 3 radio resource management measurement is performed may comprise at least one of: at least one first channel state information reference signal resource within an active bandwidth part; at least one second channel state information reference signal resource with a bandwidth same as a channel state information reference signal resource for a special cell; at least one third channel state information reference signal resource associated with at least one beam with quality above a predetermined threshold; at least one fourth channel state information reference signal resource within a dormant bandwidth part; or at least one fifth channel state information reference signal resource with a center frequency same as a frequency of a synchronization signal block to which the special cell is associated.
  • the apparatus may further comprise means for receiving information on at least one of a measurement type, a measurement object, or an index of a channel state information reference signal resource to be measured in the secondary cell when the secondary sell is in dormancy, and the channel state information reference signal based layer 3 radio resource management measurement on the part of the at least one channel state information reference signal resource is performed according to the information.
  • the apparatus may further comprise means for performing: detecting that the secondary cell goes out of dormancy, and resuming the channel state information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource in response to the detection.
  • the apparatus may further comprise means for receiving an indication on whether the resuming is enabled when the secondary cell goes out of dormancy, and the channel state information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource is resumed in response to the detection in a case where the resuming is enabled.
  • a computer readable medium may include instructions stored thereon for causing an apparatus to perform the method in the first aspect.
  • the instructions may cause the apparatus to perform: receiving a configuration of a channel state information reference signal based layer 3 radio resource management measurement for a secondary cell, the configuration comprising information on at least one channel state information reference signal resource for the channel state information reference signal based layer 3 radio resource management measurement; determining that the secondary cell goes to dormancy; and in response to the determination, performing the channel state information reference signal based layer 3 radio resource management measurement on a part of the at least one channel state information reference signal resource, or suspending the channel state information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource.
  • the channel state information reference signal based layer 3 radio resource management measurement on the part of the at least one channel state information reference signal resource is performed in response to the determination in a case where a synchronization signal block based measurement for the secondary cell is configured.
  • the channel state information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource is suspended in response to the determination in a case where the synchronization signal block based measurement for the secondary cell is configured.
  • the instructions may cause the apparatus to further perform: in a case where the configuration comprises an indication of at least one associated synchronization signal block of the channel state information reference signal based layer 3 radio resource management measurement, performing a synchronization signal block based measurement for the secondary cell on the at least one associated synchronization signal block when the secondary cell is in dormancy.
  • the part of the at least one channel state information reference signal resource on which the channel state information reference signal based layer 3 radio resource management measurement is performed may comprise at least one of: at least one first channel state information reference signal resource within an active bandwidth part; at least one second channel state information reference signal resource with a bandwidth same as a channel state information reference signal resource for a special cell; at least one third channel state information reference signal resource associated with at least one beam with quality above a predetermined threshold; at least one fourth channel state information reference signal resource within a dormant bandwidth part; or at least one fifth channel state information reference signal resource with a center frequency same as a frequency of a synchronization signal block to which the special cell is associated.
  • the instructions may cause the apparatus to further perform receiving information on at least one of a measurement type, a measurement object, or an index of a channel state information reference signal resource to be measured in the secondary cell when the secondary sell is in dormancy, and the channel state information reference signal based layer 3 radio resource management measurement on the part of the at least one channel state information reference signal resource is performed according to the information.
  • the instructions may cause the apparatus to further perform detecting that the secondary cell goes out of dormancy, and resuming the channel state information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource in response to the detection.
  • the instructions may cause the apparatus to further perform receiving an indication on whether the resuming is enabled when the secondary cell goes out of dormancy, and the channel state information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource is resumed in response to the detection in a case where the resuming is enabled.
  • a method comprising receiving a first configuration of a channel state information reference signal based measurement for a secondary cell, receiving a second configuration of a synchronization signal block based measurement for the secondary cell; determining that the secondary cell goes to dormancy, suspending the channel state information reference signal based measurement for the secondary cell in response to the determination, and performing the synchronization signal block based measurement for the secondary cell.
  • an apparatus which may be configured to perform at least the method in the fifth aspect.
  • the apparatus may include at least one processor and at least one memory.
  • the at least one memory may include computer program code, and the at least one memory and the computer program code may be configured to, with the at least one processor, cause the apparatus to perform receiving a first configuration of a channel state information reference signal based measurement for a secondary cell, receiving a second configuration of a synchronization signal block based measurement for the secondary cell, determining that the secondary cell goes to dormancy, suspending the channel state information reference signal based measurement for the secondary cell in response to the determination, and performing the synchronization signal block based measurement for the secondary cell.
  • an apparatus which may be configured to perform at least the method in the fifth aspect.
  • the apparatus may include means for receiving a first configuration of a channel state information reference signal based measurement for a secondary cell, means for receiving a second configuration of a synchronization signal block based measurement for the secondary cell, means for determining that the secondary cell goes to dormancy, means for suspending the channel state information reference signal based measurement for the secondary cell in response to the determination, and means for performing the synchronization signal block based measurement for the secondary cell.
  • a computer readable medium may include instructions stored thereon for causing an apparatus to perform the method in the fifth aspect.
  • the instructions may cause the apparatus to perform receiving a first configuration of a channel state information reference signal based measurement for a secondary cell, receiving a second configuration of a synchronization signal block based measurement for the secondary cell, determining that the secondary cell goes to dormancy, suspending the channel state information reference signal based measurement for the secondary cell in response to the determination, and performing the synchronization signal block based measurement for the secondary cell.
  • a method comprising determining a state of a secondary cell, transmitting a channel state information reference signal on at least one channel state information reference signal resource for the secondary cell when the secondary cell is in an activated state, and suspending the transmission of the channel state information reference signal on at least a part of the at least one channel state information reference signal resource for the secondary cell when the secondary cell is in dormancy.
  • the transmission of the channel state information reference signal on at least a part of the at least one channel state information reference signal resource for the secondary cell may be suspended when the secondary cell is in dormancy in a case where a synchronization signal block based measurement for the secondary cell is configured.
  • synchronization signal block when the secondary cell is in dormancy, synchronization signal block may be transmitted on less synchronization signal block resources than synchronization signal block resources used in a case where the secondary cell is the activated state.
  • the at least the part of the at least one channel state information reference signal resource may comprise at least one of: at least one first channel state information reference signal resource with at least a part outside of the active bandwidth part; at least one second channel state information reference signal resource with a bandwidth different from the channel state information reference signal resource for a special cell; at least one third channel state information reference signal resource associated with at least one beam with quality below the predetermined threshold; at least one fourth channel state information reference signal resource with at least a part outside of a dormant bandwidth part; or at least one fifth channel state information reference signal resource with a center frequency different from the frequency of the synchronization signal block to which the special cell is associated.
  • the method may further comprise detecting that the secondary cell goes out of dormancy, and resuming the transmission of the channel state information reference signal on the at least the part of the at least one channel state information reference signal resource for the secondary cell in response to the detection.
  • the transmission of the channel state information reference signal on the at least the part of the at least one channel state information reference signal resource for the secondary cell may be resumed in response to the detection in case where the resuming is enabled.
  • an apparatus which may be configured to perform at least the method in the ninth aspect.
  • the apparatus may include at least one processor and at least one memory.
  • the at least one memory may include computer program code, and the at least one memory and the computer program code may be configured to, with the at least one processor, cause the apparatus to perform determining a state of a secondary cell, transmitting a channel state information reference signal on at least one channel state information reference signal resource for the secondary cell when the secondary cell is in an activated state, and suspending the transmission of the channel state information reference signal on at least a part of the at least one channel state information reference signal resource for the secondary cell when the secondary cell is in dormancy.
  • the transmission of the channel state information reference signal on at least a part of the at least one channel state information reference signal resource for the secondary cell may be suspended when the secondary cell is in dormancy in a case where a synchronization signal block based measurement for the secondary cell is configured.
  • synchronization signal block when the secondary cell is in dormancy, synchronization signal block may be transmitted on less synchronization signal block resources than synchronization signal block resources used in a case where the secondary cell is the activated state.
  • the at least the part of the at least one channel state information reference signal resource may comprise at least one of: at least one first channel state information reference signal resource with at least a part outside of the active bandwidth part; at least one second channel state information reference signal resource with a bandwidth different from the channel state information reference signal resource for a special cell; at least one third channel state information reference signal resource associated with at least one beam with quality below the predetermined threshold; at least one fourth channel state information reference signal resource with at least a part outside of a dormant bandwidth part; or at least one fifth channel state information reference signal resource with a center frequency different from the frequency of the synchronization signal block to which the special cell is associated.
  • the at least one memory may include computer program code, and the at least one memory and the computer program code may be further configured to, with the at least one processor, cause the apparatus to perform detecting that the secondary cell goes out of dormancy, and resuming the transmission of the channel state information reference signal on the at least the part of the at least one channel state information reference signal resource for the secondary cell in response to the detection.
  • the transmission of the channel state information reference signal on the at least the part of the at least one channel state information reference signal resource for the secondary cell may be resumed in response to the detection in case where the resuming is enabled.
  • an apparatus which may be configured to perform at least the method in the ninth aspect.
  • the apparatus may include means for determining a state of a secondary cell, means for transmitting a channel state information reference signal on at least one channel state information reference signal resource for the secondary cell when the secondary cell is in an activated state, and means for suspending the transmission of the channel state information reference signal on at least a part of the at least one channel state information reference signal resource for the secondary cell when the secondary cell is in dormancy.
  • the transmission of the channel state information reference signal on at least a part of the at least one channel state information reference signal resource for the secondary cell may be suspended when the secondary cell is in dormancy in a case where a synchronization signal block based measurement for the secondary cell is configured.
  • synchronization signal block when the secondary cell is in dormancy, synchronization signal block may be transmitted on less synchronization signal block resources than synchronization signal block resources used in a case where the secondary cell is the activated state.
  • the at least the part of the at least one channel state information reference signal resource may comprise at least one of: at least one first channel state information reference signal resource with at least a part outside of the active bandwidth part; at least one second channel state information reference signal resource with a bandwidth different from the channel state information reference signal resource for a special cell; at least one third channel state information reference signal resource associated with at least one beam with quality below the predetermined threshold; at least one fourth channel state information reference signal resource with at least a part outside of a dormant bandwidth part; or at least one fifth channel state information reference signal resource with a center frequency different from the frequency of the synchronization signal block to which the special cell is associated.
  • the apparatus may further comprise means for detecting that the secondary cell goes out of dormancy, and means for resuming the transmission of the channel state information reference signal on the at least the part of the at least one channel state information reference signal resource for the secondary cell in response to the detection.
  • the transmission of the channel state information reference signal on the at least the part of the at least one channel state information reference signal resource for the secondary cell may be resumed in response to the detection in case where the resuming is enabled.
  • a computer readable medium may include instructions stored thereon for causing an apparatus to perform the method in the ninth aspect.
  • the instructions may cause the apparatus to perform determining a state of a secondary cell, transmitting a channel state information reference signal on at least one channel state information reference signal resource for the secondary cell when the secondary cell is in an activated state, and suspending the transmission of the channel state information reference signal on at least a part of the at least one channel state information reference signal resource for the secondary cell when the secondary cell is in dormancy.
  • the transmission of the channel state information reference signal on at least a part of the at least one channel state information reference signal resource for the secondary cell may be suspended when the secondary cell is in dormancy in a case where a synchronization signal block based measurement for the secondary cell is configured.
  • synchronization signal block when the secondary cell is in dormancy, synchronization signal block may be transmitted on less synchronization signal block resources than synchronization signal block resources used in a case where the secondary cell is the activated state.
  • the at least the part of the at least one channel state information reference signal resource may comprise at least one of: at least one first channel state information reference signal resource with at least a part outside of the active bandwidth part; at least one second channel state information reference signal resource with a bandwidth different from the channel state information reference signal resource for a special cell; at least one third channel state information reference signal resource associated with at least one beam with quality below the predetermined threshold; at least one fourth channel state information reference signal resource with at least a part outside of a dormant bandwidth part; or at least one fifth channel state information reference signal resource with a center frequency different from the frequency of the synchronization signal block to which the special cell is associated.
  • the instructions may further cause the apparatus to perform detecting that the secondary cell goes out of dormancy, and resuming the transmission of the channel state information reference signal on the at least the part of the at least one channel state information reference signal resource for the secondary cell in response to the detection.
  • the transmission of the channel state information reference signal on the at least the part of the at least one channel state information reference signal resource for the secondary cell may be resumed in response to the detection in case where the resuming is enabled.
  • a method comprising determining a state of a secondary cell, transmitting a channel state information reference signal on a channel state information reference signal resource for the secondary cell and a synchronization signal block on a synchronization signal block resource for the secondary cell when the secondary cell is in an activated state, suspending the transmission of the channel state information reference signal on the channel state information reference signal resource for the secondary cell when the secondary cell is in dormancy, and transmitting the synchronization signal block for the secondary cell when the secondary cell is in dormancy.
  • the synchronization signal block may be transmitted on a part of the synchronization signal block resource for the secondary cell when the secondary cell is in dormancy.
  • an apparatus which may be configured to perform at least the method in the thirteenth aspect.
  • the apparatus may include at least one processor and at least one memory.
  • the at least one memory may include computer program code, and the at least one memory and the computer program code may be configured to, with the at least one processor, cause the apparatus to perform determining a state of a secondary cell, transmitting a channel state information reference signal on a channel state information reference signal resource for the secondary cell and a synchronization signal block on a synchronization signal block resource for the secondary cell when the secondary cell is in an activated state, suspending the transmission of the channel state information reference signal on the channel state information reference signal resource for the secondary cell when the secondary cell is in dormancy, and transmitting the synchronization signal block for the secondary cell when the secondary cell is in dormancy.
  • the synchronization signal block may be transmitted on a part of the synchronization signal block resource for the secondary cell when the secondary cell is in dormancy.
  • an apparatus which may be configured to perform at least the method in the thirteenth aspect.
  • the apparatus may include means for determining a state of a secondary cell, means for transmitting a channel state information reference signal on a channel state information reference signal resource for the secondary cell and a synchronization signal block on a synchronization signal block resource for the secondary cell when the secondary cell is in an activated state, means for suspending the transmission of the channel state information reference signal on the channel state information reference signal resource for the secondary cell when the secondary cell is in dormancy, and means for transmitting the synchronization signal block for the secondary cell when the secondary cell is in dormancy.
  • the synchronization signal block may be transmitted on a part of the synchronization signal block resource for the secondary cell when the secondary cell is in dormancy.
  • a computer readable medium may include instructions stored thereon for causing an apparatus to perform the method in the thirteenth aspect.
  • the instructions may cause the apparatus to perform determining a state of a secondary cell, transmitting a channel state information reference signal on a channel state information reference signal resource for the secondary cell and a synchronization signal block on a synchronization signal block resource for the secondary cell when the secondary cell is in an activated state, suspending the transmission of the channel state information reference signal on the channel state information reference signal resource for the secondary cell when the secondary cell is in dormancy, and transmitting the synchronization signal block the secondary cell when the secondary cell is in dormancy.
  • the synchronization signal block may be transmitted on a part of the synchronization signal block resource for the secondary cell when the secondary cell is in dormancy.
  • FIG. 1 illustrates an example procedure of controlling measurement for SCell in an embodiment.
  • FIG. 2 illustrates an example procedure of controlling measurement for SCell in an embodiment.
  • FIG. 3 illustrates an example procedure of controlling measurement for SCell in an embodiment.
  • FIG. 4 illustrates an example procedure of controlling measurement for SCell in an embodiment.
  • FIG. 5 illustrates an example method for controlling measurement in an embodiment.
  • FIG. 6 illustrates an example method for controlling measurement in an embodiment.
  • FIG. 7 illustrates an example method for controlling measurement in an embodiment.
  • FIG. 8 illustrates an example method for controlling measurement in an embodiment.
  • FIG. 9 illustrates an example method for controlling measurement in an embodiment.
  • FIG. 10 illustrates an example method for controlling measurement in an embodiment.
  • FIG. 11 illustrates an example method for controlling measurement in an embodiment.
  • FIG. 12 illustrates an example apparatus for controlling measurement in an embodiment.
  • FIG. 13 illustrates an example apparatus for controlling measurement in an embodiment.
  • FIG. 14 illustrates an example method for controlling measurement in an embodiment.
  • FIG. 15 illustrates an example method for controlling measurement in an embodiment.
  • FIG. 16 illustrates an example method for controlling measurement in an embodiment.
  • FIG. 17 illustrates an example method for controlling measurement in an embodiment.
  • FIG. 18 illustrates an example apparatus for controlling measurement in an embodiment.
  • FIG. 19 illustrates an example apparatus for controlling measurement in an embodiment.
  • network controlled mobility may include cell level mobility and beam level mobility (or beam management) .
  • the cell level mobility may be based on certain measurements.
  • the measurements may include radio resource management measurement (RRM) measurements, such as synchronization signal block (SSB) based and/or channel state information reference signal (CSI-RS) based layer 3 (L3) RRM measurements, on one or more serving and/or neighbor cells.
  • RRM radio resource management
  • the RRM measurement may be configured for example by radio resource control (RRC) signaling.
  • RRC radio resource control
  • the beam level mobility may also be based on some measurements, such as SSB based and/or CSI-RS based layer 1 (L1) measurements (e.g.
  • CQI channel quality indicator
  • the UE in the SCell may perform the SSB based and/or CSI-RS based measurements, as well as receptions via downlink channels such as a physical downlink shared channel (PDSCH) and a physical downlink control channel (PDCCH) , and transmissions via corresponding uplink channels.
  • the UE in the SCell may suspend the SSB based and/or CSI-RS based measurements together with the receptions and transmissions.
  • the “suspending” or the like herein may mean stop performing or not performing an operation such as a CSI-RS based measurement for at least a period of time.
  • a dormant state may be configured for an SCell for example in an LTE system, where the UE may be configured to perform the measurements but suspend the receptions and transmissions, so that a faster transition to the activated state may be enabled, for example. Transitions among the activated state, the deactivate state, and the dormant state may be based on one or more of media access control (MAC) control element (CE) , one or more timers, downlink control information (DCI) , and so on.
  • MAC media access control
  • CE control element
  • DCI downlink control information
  • the dormant state may be configured as a part of the activated state.
  • the activated state may include an activated state with dormancy and an activated state with non-dormancy.
  • the activated state with dormancy may correspond to or be similar to the separate dormant state in the previous example, and the activated state with non-dormancy may correspond to or be similar to the above separate activated state in the previous example.
  • the SCell when the SCell is in the activated state with dormancy, the UE may be configured to suspend the receptions and transmissions, but may continue to perform the SSB based and/or CSI-RS based measurements mentioned above.
  • the transition from the activated state with dormancy to the deactivated state, the transitions between the activated state with non-dormancy and the deactivated state, and the transitions between the activated state with dormancy and the activated state with non-dormancy may be also based on one or more of MAC CE, one or more timers, DCI, and so on.
  • the activated state with dormancy is also called as a dormant state or dormancy and the activated state with non-dormancy is also called as an activated state herein.
  • the CSI-RS based measurement When the SCell is in a dormant state, if the CSI-RS based measurement is configured to provide refined beam information, the measurements on a large amount of CSI-RS resources may lead to additional measurement efforts over SSB based measurement, which may increase the UE power consumption; on the other hand, and transmission of CSI-RS to be measured by the UE in the dormant SCell may also consume the radio capacity and may increase signaling overhead of the network.
  • the UE when determining that the SCell goes to dormancy or is in dormancy, the UE may be configured to perform the CSI-RS based measurement for the SCell conditionally and/or selectively, and correspondingly, the network may be configured to transmit CSI-RS for the CSI-RS based measurement for the SCell conditionally and/or selectively. For example, when determining that a SCell goes to dormancy or is in dormancy, the UE may suspend the CSI-RS based measurement (e.g., L3 RRM measurement) for the SCell on at least a part of CSI-RS resource, and correspondingly, the network (e.g.
  • the CSI-RS based measurement e.g., L3 RRM measurement
  • the base station may suspend the transmission of the CSI-RS for the SCell on at least a part of CSI-RS resources, so as to save power and capacity. That is, the CSI-RS based measurement (e.g., L3 RRM measurement) may not be performed on a part of the CSI-RS resources for the SCell in dormancy and/or is performed on another part of the CSI-RS resources for the SCell in dormancy. Thus, for example, the power consumption and measurement efforts of the UE may be reduced, and CSI-RS signaling may also be reduced.
  • the CSI-RS based measurement e.g., L3 RRM measurement
  • FIG. 1 illustrates an example procedure of controlling measurement for SCell in an embodiment, where a UE 101, a special cell (sPCell) 102, and a SCell 103 may be involved.
  • a PCell special cell
  • the UE 101 may be any apparatus capable of wireless communication, such as a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (loT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device,
  • the sPCell 102 may be a primary cell (PCell) or a primary secondary cell (PSCell) .
  • the sPCell 102 may be determined at the time of connection establishment for scheduling a carrier aggregation group (CAG) including the sPCell 102 and the SCell 103, and may communicate with the UE 101 for example via a PDCCH and a physical uplink control channel (PUCCH) .
  • the SCell 103 may be configured to provide additional radio resources for the UE 101 for example after the RRC connection establishment, and may be in one of the above-mentioned activated state, dormant state or dormancy, and deactivated state.
  • the sPCell 102 and the SCell 103 may be associated with an apparatus such as at least a part of a network node (for example a base station) . Then, for example, management for both the sPCell 102 and the SCell 103 may be performed in the apparatus to which the sPCell 102 is associated, and information on configuration, scheduling, and so on for both the sPCell 102 and the SCell 103 may be transmitted from the apparatus to the UE 101 for example via a downlink channel from the sPCell 102 to the UE 101, and SSB and CSI-RS for measurements for the SCell 103 may be transmitted from the apparatus to the UE 101 for example via a downlink channel from the SCell 103 to the UE 101.
  • a network node for example a base station
  • the sPCell 102 and the SCell 103 may be associated with or served by different apparatuses such as different parts of a base station or separate base stations. Then, for example, information on configuration (e.g. measurement configuration) for the SCell 103 may be notified, from the apparatus associated with or serving the sPCell 102, to both the UE 101 and the apparatus associated with or serving the SCell 103, or may be generated in the apparatus associated with or serving the SCell 103 and then transmitted to the apparatus associated with or serving the sPCell 102 and further to the UE 101 via the sPCell 102, or the like. Further, the SSB and CSI-RS for measurements for the SCell 103 may be transmitted from the apparatus associated with or serving the SCell 103 to the UE 101 for example via the downlink channel from the SCell 103 to the UE 101.
  • information on configuration e.g. measurement configuration
  • the SCell 103 may be notified, from the apparatus associated with or serving the sPCell 102, to both the
  • communication between the UE 101 and the sPCell 102 may mean that communication between the UE 101 and the apparatus associated with or serving the sPCell 102 via a channel associated with the sPCell 102 from/to the UE 101
  • communication between the UE 101 and the SCell 103 may mean that communication between the UE 101 and an apparatus associated with or serving the SCell 103 via a channel associated with the SCell 103 from/to the UE 101
  • the apparatus associated with or serving the sPCell 102 and the apparatus associated with or serving the SCell 103 may be co-located, or separated, or integrated.
  • the UE 101 receiving information from sPCell 102 may mean that the UE 101 receives the information from an apparatus associated with or serving the sPCell 102 for example via a downlink channel (e.g. PDCCH or PDSCH) of the sPCell 102 to the UE 101
  • the UE 101 receiving information from SCell 103 may mean that the UE 101 receives the information from an apparatus associated with or serving the SCell 103 for example via a downlink channel (e.g. PDCCH or PDSCH) of the SCell 103 to the UE 101, or the like.
  • an operation performed by the sPCell 102 or the SCell 103 may mean an operation performed by the apparatus associated with or serving the sPCell 102 or the SCell 103.
  • any suitable manners may be adopted for the communication between the two apparatuses or the two parts.
  • a configuration 104 of CSI-RS based measurement may be transmitted to the UE 101 from the network (e.g., the sPCell 102) , based on which the UE 101 may be configured to perform CSI-RS based L3 RRM measurements on the SCell 103.
  • the configuration 104 may include one or more of information on one or more cells for CSI-RS based L3 RRM measurements (e.g. a list of identifiers of the one or more cells) , information on one or more CSI-RS resources associated with respective cells, information on associated SSB which is associated with respective CSI-RS resources, and so on.
  • the configuration 104 may be included or encoded in an information element (IE) such as CSI-RS-ResourceConfigMobility in control message from a telecommunication system such as the LTE system or the NR system.
  • IE information element
  • measConfig may be used to provide or convey the information on configuration of the CSI-RS based L3 RRM measurement in addition to or in lieu of the configuration 104.
  • the UE 101 may determine the configuration of CSI-RS based L3 RRM measurement for the SCell 103 from the received configuration 104. For example, the UE 101 may determine the CSI-RS resource (s) to be measured for the SCell 103, for example according to the identifier of the SCell 103 included in the configuration 104, and may determine whether there is an associated SSB associated with a CSI-RS resource for the SCell 103 for example by detecting whether the “assoicatedSSB” parameter is included in the “CSI-RS-Resource-Mobility” parameter associated with a CSI-RS resource for the SCell 103 in the configuration 104.
  • the CSI-RS resource (s) to be measured for the SCell 103, for example according to the identifier of the SCell 103 included in the configuration 104, and may determine whether there is an associated SSB associated with a CSI-RS resource for the SCell 103 for example by detecting whether the “assoicatedSSB” parameter is included in
  • At least one SSB and/or at least one CSI-RS may be transmitted from the SCell 103 to the UE 101, and the UE 101 may perform SSB based measurement (s) based on the at least one received SSB from the SCell 103 and/or CSI-RS based L3 RRM measurement (s) based on the at least one received CSR-RS from the SCell 103.
  • the UE 101 may determine when the SCell 103 goes to dormancy. For example as illustrated in FIG. 1, the UE 101 may receive a signaling 106 such as a RRC command or a DCI from the sPCell 102, which notifies that the SCell 103 goes to dormancy, or indicates when the Scell 103 will go to dormancy. Then, based on the received signaling 106, the UE 101 may determine that the SCell 103 goes to dormancy. In addition to or in lieu of the signaling 106, in another example, the UE 101 may determine that the SCell 103 goes to dormancy, based on some MAC signaling and/or when a timer expires.
  • a signaling 106 such as a RRC command or a DCI from the sPCell 102
  • the UE 101 may determine that the SCell 103 goes to dormancy, after a given delay after receiving the signaling 106. Accordingly, the sPCell 102 and/or Scell 103 may determine that the UE 101 starts the dormancy behavior after the given delay.
  • the UE 101 may suspend the CSI-RS based L3 RRM measurements for the SCell 103, and correspondingly, in some embodiments the SCell 103 may suspend transmission of CSI-RS for the CSI-RS based L3 RRM measurements.
  • the UE 101 may continue to perform SSB based measurements for the SCell 103 during the period 107, for example by using the same SSB resources measured for the SCell 103 during the period 105 or using less SSB resources than the SSB resources measured for the SCell 103 during the period 105. This may be performed when SSB based measurement is configured. For example, the UE 101 may perform the SSB based measurements for the SCell 103 based on a measurement configuration previously received from the sPCell 102 (not illustrated in FIG. 1) .
  • the measurement configuration may be encoded in the IE MeasConfig which specifies measurements to be performed by the UE in the telecommunication system such as the LTE system or NR system, and covers intra-frequency, inter-frequency and inter-RAT (inter radio access technology) mobility as well as configuration of measurement gaps.
  • IE MeasConfig specifies measurements to be performed by the UE in the telecommunication system such as the LTE system or NR system, and covers intra-frequency, inter-frequency and inter-RAT (inter radio access technology) mobility as well as configuration of measurement gaps.
  • the UE 101 may suspend the CSI-RS based L3 RRM measurements for the SCell 103 at least on this CSI-RS resource for the SCell 103, and may perform or fall back to the SSB based measurements on the associated SSB associated with this CSI-RS resource.
  • the SCell 103 may continue to transmit SSB (at least on the associated SSB resource) to the UE 101 for the SSB based measurement for the SCell 103while suspending the transmission of CSI-RS for the CSI-RS based L3 RRM measurements for the SCell 103.
  • the UE 101 may also determine when the SCell 103 goes out of dormancy. For example as illustrated in FIG. 1, the UE 101 may receive a signaling 108 such as a RRC command or DCI from the sPCell 102, which notifies that the SCell 103 goes out of dormancy. Based on the received signaling 108, the UE 101 may determine that the SCell 103 goes out of dormancy. In addition to or in lieu of the signaling 108, in another example, the UE 101 may determine that the SCell 103 goes out of dormancy, based on some MAC signaling and/or a timer.
  • a signaling 108 such as a RRC command or DCI from the sPCell 102
  • the UE 101 may determine that the SCell 103 goes out of dormancy, after a given delay after receiving the signaling 108; the UE 101 may also start a timer after receiving the signaling 106, or after a given delay after receiving the signaling 106, and may determine that the SCell 103 goes out of dormancy, when the timer expires; or the like.
  • the signaling 106 and the signaling 108 may utilize the same message but with different parameter values, or may utilize different messages.
  • the UE 101 may resume the CSI-RS based L3 RRM measurements for the SCell 103 for example according to the configuration 104, and the SCell 103 may also resume the transmission of CSI-RS for the CSI-RS based L3 RRM measurements for the SCell 103.
  • the UE 101 may suspend the CSI-RS based L3 RRM measurements for the SCell 103 when determining that the SCell 103 is in dormancy, and in some embodiments, it may resume the suspended CSI-RS based L3 RRM measurements for the SCell 103 when determining that the SCell 103 is out of dormancy.
  • the SCell 103 may suspend the transmission of CSI-RS for the CSI-RS based L3 RRM measurements for the SCell 103 on at least some CSI-RS resources when the SCell 103 is in dormancy, and may resume the suspended transmission of CSI-RS for the CSI-RS based L3 RRM measurements for the SCell 103 when the SCell 103 is out of dormancy.
  • the SCell 103 when the SCell 103 is in dormancy, CSI-RS signaling with respect to the CSI-RS based L3 RRM measurements for the SCell 103 may be saved, and the power consumption of both UE 101 and SCell 103 may be reduced by suspending the CSI-RS based L3 RRM measurements and related signaling transmissions.
  • the UE 101 may adjust, autonomously and without introducing new signaling, the CSI-RS based L3 RRM measurement behavior when the SCell 103 goes to dormancy.
  • the UE 101 may suspend the CSI-RS based L3 RRM measurements for the SCell 103 on a part of the CSI-RS resources for the SCell 103, and may continue to perform the CSI-RS based L3 RRM measurements for the SCell 103 on another part of the CSI-RS resources for the SCell 103.
  • the SCell 103 may transmit CSI-RS 201 and CSI-RS 202 through the corresponding CSI-RS resources for the SCell 103 so that the UE 101 may perform the CSI-RS based L3 RRM measurements for the SCell 103. Then, during the period 107 when the SCell 103 is in the dormant state, the UE 101 may suspend the CSI-RS based L3 RRM measurement for the SCell 103 on the CSI-RS resource associated with the CSI-RS 201, and may continue to perform the CSI-RS based L3 RRM measurement for the SCell 103 on the CSI-RS resource associated with the CSI-RS 202. Correspondingly, in some embodiments, during the period 107, the SCell 103 may suspend the transmission of the CSI-RS 201, and may continue the transmission of the CSI-RS 202.
  • the UE 101 and the SCell 103 may determine which CSI-RS based L3 RRM measurement for a dormant SCell is to be suspended and/or which CSI-RS based L3 RRM measurement for a dormant SCell is to be continued, based on one or more predetermined rules.
  • one or more predetermined rules may include, but are not limited to, one or more of:
  • the UE 101 and the SCell 103 determine, for example based on one or more measurement results during the period of 105, that the CSI-RS resource associated with CSI-RS 201 for the CSI-RS L3 RRM measurement for the SCell 103 is associated with a beam which is not good enough (e.g.
  • the UE 101 may suspend the CSI-RS L3 RRM measurement for the SCell 103 on the CSI-RS resource associated with CSI-RS 201, and may continue to perform the CSI-RS L3 RRM measurement for the SCell 103 on the CSI-RS resource associated with CSI-RS 202; correspondingly, in some embodiments, the SCell 103 may suspend the transmission of CSI-RS 201, and may continue to transmit the CSI-RS 202.
  • the UE 101 may perform the checking/determinining based on the one or more measurement results for example during the period of 105 and the predetermined rules, to determine which CSI-RS based L3 RRM measurement for a dormant SCell 103 is to be suspended and/or which CSI-RS based L3 RRM measurement for a dormant SCell 103 is to be continued, and then may notify the checking/determining result to the sPCell 102 and further to the SCell 103, or to the SCell 103 for example during the period 105.
  • possible mismatches between the autonomous determination by the UE 101 and the autonomous determination by the SCell 103 may be avoided.
  • the sPCell 102 may perform the checking/determining based on the one or more measurement results obtained for example during the period of 105 and the predetermined rules, to determine which CSI-RS based L3 RRM measurement for a dormant SCell 103 is to be suspended and/or which CSI-RS based L3 RRM measurement for a dormant SCell 103 is to be continued, and in some embodiments, the sPCell 102 may order or inform the SCell 103 to suspend transmission of CSI-RS on at least a part of CSR-RS resources.
  • the UE 101 may suspend correspondingly the CSI-RS based L3 RRM measurements on the at least a part of CSR-RS resources for which the transmission of CSI-RS is suspended by the SCell 103.
  • the measurement behavior of the UE 101 in the dormant SCell 103 may be based on one or more network indications.
  • the sPCell 102 may transmit at least one signaling 301 to indicate information or configuration on one or more of: the measurement types and/or objects to be measured by the UE 101 when the SCell 103 goes to dormancy (as an example, the measurement type may include, but is not limited to, at least SSB-based measurement and/or CSI-RS based measurement) ; enabling or disabling the CSI-RS based L3 based RRM measurements for the SCell 103; one or more CSI-RS resources (e.g. indexes) on which the CSI-RS based L3 based RRM measurements for the SCell 103 is to be performed and/or suspended when the SCell 103 goes to dormancy; or the like.
  • the measurement type may include, but is not limited to, at least SSB-based measurement and/or CSI-RS based measurement
  • the measurement type may
  • the sPCell 102 may transmit at least one signaling 301 indicating one or more CSI-RS indexes associated with one or more CSI-RS resources on which the UE 101 is expected to measure when the SCell 103 goes to dormancy, where the CSI-RS 202 is indicated while the CSI-RS 201 is not indicated.
  • the SCell 103 may suspend the transmission of CSI-RS 201 and continue to transmit the CSI-RS 202, and the UE 101 may suspend the CSI-RS based L3 RRM measurement on the CSI-RS resource associated with the CSI-RS 201 but continue the CSI-RS based L3 RRM measurement on the CSI-RS resource associated with the CSI-RS 202.
  • the at least one signaling 301 may be implemented based on one or more IEs in a signaling message from a telecommunication system such as the LTE system or the NR system.
  • the information/configuration on one or more CSI-RS indexes associated with one or more CSI-RS resources on which a UE is expected to measure when SCell goes to dormancy may be included in the CSI-RS-CellMobility IE of a message from the telecommunication system such as the LTE system or the NR system, for example as a new parameter in the CSI-RS-CellMobility IE.
  • the information/configuration on the measurement types and/or objects to be measured by a UE when SCell goes to dormancy may be included in one or more IEs such as MeasConfig IE of a message from the telecommunication system such as the LTE system or the NR system.
  • the at least one signaling 301 may also indicate whether the UE 101 is configured to resume the CSI-RS based L3 RRM measurements, which have been suspended during the period 107 when the SCell 103 is in dormancy, during the period 109 when the SCell 103 goes out of dormancy. For example, if the at least one signaling 301 indicate to resume, then during the period 109 when the SCell 103 goes out of dormancy, the UE 101 may resume one or more the CSI-RS based L3 RRM measurements, which have been suspended during the period 107, including the CSI-RS based L3 RRM measurement on the CSI-RS resource associated with the CSI-RS 201.
  • the UE 101 may keep the measurement behavior during the period 107, or may stop the CSI-RS based L3 RRM measurements (for example including the CSI-RS based L3 RRM measurement on the CSI-RS resource associated with the CSI-RS 202) , or the like, until a further measurement configuration is received.
  • the configuration 104 and the at least one signaling 301 may be implemented in the same IE or different IEs
  • the UE 101 and the SCell 103 (and/or the sPCell 102) may determine whether to suspend/perform CSI-RS based L3 RRM measurement (s) on certain CSI-RS resources for a SCell (s) which is in dormancy, suspend/perform measurement on which part (s) of the CSI-RS resource (s) for the dormant SCell (s) , and/or whether to resume one or more suspended measurement (s) when the SCell goes out of dormancy, either autonomously or based on one or more signaling from the network (e.g. form the sPCell 102) and/or one or more agreements or one or more predetermined rules in advance.
  • CSI-RS based L3 RRM measurement is involved in the examples described above with reference to the FIG. 1, FIG. 2, and FIG. 3, it should be appreciated that one or more aspects and/or features may also be applied to other measurements, e.g., other CSI-RS based measurements such as CSI-RS based L1-RSRP (or physical layer) CQI measurements, or other reference signal (e.g., Cell specific reference signal (CRS) ) based measurements.
  • other CSI-RS based measurements such as CSI-RS based L1-RSRP (or physical layer) CQI measurements, or other reference signal (e.g., Cell specific reference signal (CRS) ) based measurements.
  • CRS Cell specific reference signal
  • the UE 101 may also receive configuration 401 of CSI-RS based measurement (e.g., L1-RSRP CQI measurement, or L3 RRM measurement) from the sPCell 102, and may perform the CSI-RS based measurement (e.g., L1-RSRP CQI measurement) for the SCell 103 based on the received configuration 401 and/or SSB based measurement for the SCell 103 based on one or more another configurations received from the network (e.g. from the sPCell 102, which are not illustrated in FIG. 4)
  • configuration 401 of CSI-RS based measurement e.g., L1-RSRP CQI measurement, or L3 RRM measurement
  • the CSI-RS based measurement e.g., L1-RSRP CQI measurement
  • the SCell 103 may also receive configuration 401 of CSI-RS based measurement (e.g., L1-RSRP CQI measurement, or L3 RRM measurement) from the sPCell 102
  • the UE 101 may determine that the SCell 103 goes to dormancy, and may suspend the CSI-RS based L1 CQI measurement for the SCell 103 during the period 107. For example, the UE 101 may continue the SSB based measurement for the SCell 103 during the period 107 based on one or more another configurations on the SSB based measurement previously received from the network.
  • the SCell 103 may suspend the transmission of CSI-RS for the CSI-RS based L1-RSRP CQI measurement for the SCell 103, and may continue the transmission of SSB for the SSB based measurement for the SCell 103.
  • the UE 101 may determine that the SCell 103 goes out of dormancy, and may resume the CSI-RS based measurement (e.g., L1-RSRP CQI measurement or L3 RRM measurement) for the SCell 103 during the period 107.
  • the SCell 103 may resume the transmission of CSI-RS for the CSI-RS based L1-RSRP CQI measurement for the SCell 103.
  • the UE 101 may also receive one or more signaling from network (e.g. from the sPCell 102) , and may determine whether to suspend/perform CSI-RS based L1 CQI measurement (s) for one or more SCell (s) in dormancy, on which part (s) of the CSI-RS resource (s) for the SCell (s) to suspend/perform measurement, and/or whether to resume suspended measurement (s) on certain resources for the SCell going out of dormancy, based on the received one or more signaling.
  • network e.g. from the sPCell 102
  • the UE 101 may also receive one or more signaling from network (e.g. from the sPCell 102) , and may determine whether to suspend/perform CSI-RS based L1 CQI measurement (s) for one or more SCell (s) in dormancy, on which part (s) of the CSI-RS resource (s) for the SCell (s) to suspend/perform measurement, and/or
  • the disclosure is not limited to the above examples, and one or more aspects and/or features described above may be combined or modified.
  • the CSI-RS based measurement herein is not limited to the CSI-RS based L3 RRM measurement and the CSI-RS based L1 CQI measurement in the above examples.
  • the UE 101 when determining that the SCell 103 goes to dormancy or is in dormancy, in a case where the CSI-RS based measurement for the SCell 103 is enabled, the UE 101 may be configured to perform the CSI-RS based measurement for the SCell 103 conditionally and/or selectively, and correspondingly, the SCell 103 may be configured to transmit CSI-RS for the CSI-RS based measurement for the SCell conditionally and/or selectively.
  • the UE 101 may suspend the CSI-RS based measurement for the SCell 103 on at least a part of CSI-RS resource, and correspondingly, the SCell 103 may suspend the transmission of the CSI-RS for the CSI-RS based measurement for the SCell on at least a part of CSI-RS resources, so that the CSI-RS based measurement is not performed on the CSI-RS resources for the SCell 103 in dormancy or is performed on a part of the CSI-RS resources for the SCell 103 in dormancy.
  • the power consumption and measurement efforts of the UE 101 may be reduced, and CSI-RS signaling may be reduced.
  • the UE 101 and/or SCell 103 may control/adjust the CSI-RS based measurement behavior for the SCell 103 either autonomously or based one or more network indications (e.g. from the sPCell 102) and/or one or more agreements or rules determined in advance. Also, the UE 101 and/or SCell 103 may determine whether to resume the suspended CSI-RS based measurement either autonomously or based one or more network indications (e.g. from the sPCell 102) and/or one or more agreements or rules determined in advance. When UE is not configured to resume the suspended CSI-RS based measurement automatically, the measurement behavior of the UE when the SCell 103 is in dormancy may be either maintained, or stopped, for example until the UE 101 receives further measurement configuration.
  • the measurement behavior of the UE when the SCell 103 is in dormancy may be either maintained, or stopped, for example until the UE 101 receives further measurement configuration.
  • FIG. 5 illustrates an example method 500 for controlling measurement in an embodiment, which may be performed for example in the UE 101.
  • the UE 101 may receive a configuration of CSI-RS based measurement for the SCell 103, for example, the configuration 104 of CSI-RS based L3 RRM measurement for the SCell 103 as illustrated in FIG. 1, FIG. 2, and FIG. 3 which may include information on at least one CSI-RS resource for the CSI-RS based L3 RRM measurement for the SCell 103, and/or the configuration 401 of CSI-RS based L1 CQI measurement for the SCell 103 as illustrated in FIG. 4 which may include information on at least one CSI-RS resource for the CSI-RS based L1 CQI measurement for the SCell 103.
  • the CSI-based measurement to be controlled in the example method 500 may include, but is not limited to, the CSI-RS based L3 RRM measurement and/or the CSI-RS based L1 CQI measurement.
  • the UE 101 may determine that the SCell 103 goes to dormancy.
  • the UE 101 may receive a signaling indicating that the SCell 103 goes to dormancy, such as the signaling 106 as illustrated in FIG. 1, FIG. 2, FIG. 3, and FIG. 4, and then may determine that the SCell 103 goes to dormancy, based on the received signaling.
  • the UE 101 may determine that the SCell 103 goes to dormancy, for example based on some MAC signaling and/or a timer.
  • the UE 101 may perform selectively the CSI-RS based measurement for the SCell 103 on a part of at least one CSI-RS resource for the SCell 103, which may include, for example, performing the CSI-RS based measurement for the SCell 103 on a part of at least one CSI-RS resource for the SCell 103, and/or suspending the CSI-RS based measurement for the SCell 103 on at least a part of the at least one CSI-RS resource for the SCell 103 (e.g.
  • the UE 101 may suspend the CSI-RS based measurement for the SCell 103 on the at least one CSI-RS resource for the SCell 103 as illustrated in FIG. 5) .
  • the UE 101 may suspend the CSI-RS based measurement for the SCell 103 on at least a part (e.g. all) of the at least one CSI-RS resource for the SCell 103 after a given delay.
  • the UE 101 may suspend the CSI-RS based measurement for the SCell 103 on at least a part of CSI-RS resource, so that, for example, the power consumption and measurement efforts of the UE 101 may be reduced.
  • FIG. 6 illustrates another example method 600 for controlling measurement in an embodiment, which may be performed for example in the UE 101.
  • the example method 600 may also include an operation 601 of determining whether SSB based measurement is configured for the SCell 103, and the operation 503 may be performed in a case where it is determined in the step 601 that the SSB based measurement is configured for the SCell 103.
  • FIG. 7 illustrates another example method 700 for controlling measurement in an embodiment, which may be performed for example in the UE 101.
  • the example method 700 may further include an operation 701 of determining whether the configuration received in the step 501 includes an indication of at least one associated SSB of the CSI-RS based L3 RRM measurement for the SCell 103, and an operation 702 where the UE 101 may further perform the SSB based measurement for the SCell 103, e.g., on the at least one associated SSB, in response to the determination that the SCell 103 goes to dormancy, if it is determined in the operation 701 that the configuration received in the step 501 includes an indication of at least one associated SSB of the CSI-RS based L3 RRM measurement for the SCell 103.
  • the part of the at least one CSI-RS resource, on which the CSI-RS based measurement for the SCell 103 may be performed in the operation 503 of the example method 500 may include, but are not limited to, one or more of: (1) one or more CSI-RS resources associated with one or more beams with quality above a predetermined threshold, e.g.
  • one or more CSI-RS resources associated with a predetermined number of best beams (2) one or more CSI-RS resources in a dormancy bandwidth part; (3) one or more CSI-RS resources with a center frequency same as a frequency of SSB to which the sPCell 102 is associated; (4) one or more CSI-RS resources on which a measurement gap is not required for the CSI-RS based measurement for the SCell 103 in dormancy, e.g. one or more CSI-RS resources in the SCell 103 that are within an active bandwidth part, or one or more CSI-RS resources in the SCell 103 that have the same bandwidth with the CSI-RS resource in the sPCell 102, or the like.
  • the at least a part of the at least one CSI-RS resource, on which the CSI-RS based measurement for the SCell 103 may be suspended in the operation 503 of the example method 500 may include, but are not limited to, one or more of: (1) one or more CSI-RS resources associated with one or more beams with quality below a predetermined threshold, e.g.
  • the CSI-RS resources associated with the beams other than a predetermined number of best beams (2) one or more CSI-RS resources with at least a part being outside of a dormancy bandwidth part; (3) one or more CSI-RS resources with a center frequency different from a frequency of SSB to which the sPCell 102 is associated; (4) one or more CSI-RS resources on which a measurement gap is required for the CSI-RS based measurement for the SCell 103 in dormancy, e.g.
  • the whole CSI-RS resources, for the SCell 103 in dormancy in a case where at least a part of one or more CSI-RS resources in the SCell 103 is outside of active bandwidth part, or in a case where one or more CSI-RS resources in the SCell 103 have a different bandwidth from the CSI-RS resource in the sPCell 102, or the like; (5) the whole CSI-RS resources, for the SCell 103 in dormancy.
  • FIG. 8 illustrates another example method 800 for controlling measurement in an embodiment, which may be performed for example in the UE 101.
  • the example method 800 may also include an operation 801 of receiving information on at least one of a measurement type, a measurement object, or an index of a CSI-RS resource to be measured in the SCell 103 when the SCell 1-3 is in dormancy. Then, in the operation 503, the CSI-RS based measurement on the part of the at least one CSI-RS resource for the SCell 103 in dormancy may be performed according to the information received in the operation 801.
  • the CSI-RS based measurement for the SCell 103 in dormancy may be suspended in the operation 503.
  • the information received in the operation 801 indicates that the measurement type and measurement object for the dormant SCell 103 is for example performing CSI-RS based L3 RRM measurement on the CSI-RS resource associated with CSI-RS 202 as illustrated in FIG.
  • the CSI-RS based measurement on the CSI-RS resource associated with CSI-RS 202 may be performed when the SCell 103 is in dormancy, and the CSI-RS based measurement on the other CSI-RS resource (s) for the SCell 103, such as the CSI-RS resource associated with CSI-RS 201 as illustrated in FIG. 3, may be suspended when the SCell is in dormancy.
  • FIG. 9 illustrates another example method 900 for controlling measurement in an embodiment, which may be performed for example in the UE 101.
  • the example method 900 may further include an operation 901 of detecting that the SCell 103 goes out of dormancy, and an operation 902 of resuming the CSI-RS based measurement on the at least a part of the at least one CSI-RS resource for the SCell 103 (which is suspended in the operation 503) in response to the detection.
  • the detection in the operation 901 may be based on at least one of a signaling (e.g. from the sPCell 102) indicating that the SCell 103 goes out of dormancy, such as the signaling 108 as illustrated in FIG. 1, FIG. 2, FIG. 3, and FIG. 4, some MAC and/or timer expires, or the like.
  • FIG. 10 illustrates another example method 1000 for controlling measurement in an embodiment, which may be performed for example in the UE 101.
  • the example method 1000 may further include an operation 1001 of receiving an indication on whether the resuming is enabled when the SCell 103 goes out of dormancy, and an operation 1002 of determining whether the resuming is enabled when the SCell 103 goes out of dormancy, for example based on the indication received in the operation 1001. Then, the operation 902 may be performed in a case where it is determined in the operation 1002 that the resuming is enabled.
  • the indication received in the operation 1001 may also indicate on which CSI-RS resource (s) the suspended CSI-RS based measurement may be resumed. For example, if the resuming is disabled, the UE 101 may maintain the measurement behavior when the SCell 103 is in dormancy or may stop the CSI-RS based measurement and/or SSB based measurement for the SCell 103 until receiving a further measurement configuration (e.g. a configuration of CSI-RS based measurement) or the like, which may be determined by the UE 101 autonomously or indicated by the indication received in the operation 1001 or another indication from the network (e.g. from the sPCell 102) .
  • a further measurement configuration e.g. a configuration of CSI-RS based measurement
  • FIG. 11 illustrates another example method 1100 for controlling measurement in an embodiment, which may be performed for example in the UE 101.
  • the example method 1100 may further include an operation 1101 of receiving a configuration of SSB based measurement for the SCell 103 and an operation 1102 of performing the SSB based measurement for the SCell 103.
  • the CSI-RS based measurement for the SCell 103 may be suspended in response to the determination in the operation 502.
  • the configuration of SSB based measurement for the SCell 103 may be based on one or more IEs such as measConfig IE in the telecommunication system such as the LTE system or the NR system.
  • the method for controlling measurement performed in the UE 101 may be not limited to the above examples, and one or more aspects and/or features described above may be combined, modified, and/or deleted.
  • the operations 1001, 901, and 902 as illustrated in FIG. 10 may be also included in the example as illustrated in FIG.
  • the operations in the above examples may be not limited to the orders as illustrated, for example the operation 1001 may be performed before or in parallel with the operation 501, or the like; the information received in respective operations may be based on one or more signaling, for example at least a part of the information received in the operation 801 may be also included in the configuration of CSI-RS based measurement received in the operation 501 and/or included in the configuration of SSB based measurement received in the operation 1101; or the like.
  • FIG. 12 illustrates an example apparatus 1200 for controlling measurement in an embodiment, which may be at least a part of the UE 101.
  • the example apparatus 1200 may include at least one processor 1201 and at least one memory 1202 that may include computer program code 1203.
  • the at least one memory 1202 and the computer program code 1203 may be configured to, with the at least one processor 1201, cause the apparatus 1200 at least to perform at least the operations of the example methods 500 -1100 described above.
  • the at least one processor 1201 in the example apparatus 1200 may include, but not limited to, at least one hardware processor, including at least one microprocessor such as a central processing unit (CPU) , a portion of at least one hardware processor, and any other suitable dedicated processor such as those developed based on for example Field Programmable Gate Array (FPGA) and Application Specific Integrated Circuit (ASIC) . Further, the at least one processor 1201 may also include at least one other circuitry or element not shown in FIG. 12.
  • at least one hardware processor including at least one microprocessor such as a central processing unit (CPU) , a portion of at least one hardware processor, and any other suitable dedicated processor such as those developed based on for example Field Programmable Gate Array (FPGA) and Application Specific Integrated Circuit (ASIC) .
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • the at least one memory 1202 in the example apparatus 1200 may include at least one storage medium in various forms, such as a volatile memory and/or a non-volatile memory.
  • the volatile memory may include, but not limited to, for example, a random-access memory (RAM) , a cache, and so on.
  • the non-volatile memory may include, but not limited to, for example, a read only memory (ROM) , a hard disk, a flash memory, and so on.
  • the at least memory 1202 may include, but are not limited to, an electric, a magnetic, an optical, an electromagnetic, an infrared, or a semiconductor system, apparatus, or device or any combination of the above.
  • the example apparatus 1200 may also include at least one other circuitry, element, and interface, for example at least one I/O interface, at least one antenna element, and the like.
  • the circuitries, parts, elements, and interfaces in the example apparatus 1200 may be coupled together via any suitable connections including, but not limited to, buses, crossbars, wiring and/or wireless lines, in any suitable ways, for example electrically, magnetically, optically, electromagnetically, and the like.
  • FIG. 13 illustrates another example apparatus 1300 for controlling measurement in an embodiment, which may be at least a part of the UE 101.
  • the example apparatus 1300 may include means for performing operations described above in various embodiments.
  • the apparatus 1300 may include means 1301 for performing the operation 501 of the example method 500, means 1302 for performing the operation 502 of the example method 500, and means 1303 for performing the operation 503 of the example method 500.
  • at least one I/O interface, at least one antenna element, and the like may also be included in the example apparatus 1300.
  • the example apparatus 1300 may further include one or more means for performing one or more additional operations in any of the example methods 600-1100, such as the operations 710, 801, 901, 902, 1001, 1101, 1102, and so on.
  • examples of means such as means 1301, 1302 and 1303 may include circuitries.
  • an example of means 1301 may include a circuitry configured to perform the operation 501 of the example method 500
  • an example of means 1302 may include a circuitry configured to perform the operation 502 of the example method 500
  • an example of means 1303 may include a circuitry configured to perform the operation 503 of the example method 500.
  • examples of means may also include software modules and any other suitable function entities.
  • circuitry throughout this disclosure may refer to one or more or all of the following: (a) hardware-only circuit implementations (such as implementations in only analog and/or digital circuitry) ; (b) combinations of hardware circuits and software, such as (as applicable) (i) a combination of analog and/or digital hardware circuit (s) with software/firmware and (ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) ; and (c) hardware circuit (s) and or processor (s) , such as a microprocessor (s) or a portion of a microprocessor (s) , that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation.
  • hardware-only circuit implementations such as implementations in only analog and/or digital circuitry
  • combinations of hardware circuits and software such as (as applicable) (i) a
  • circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware.
  • circuitry also covers, for example and if applicable to the claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
  • FIG. 14 illustrates an example method 1400 for controlling measurement in an embodiment, which may be performed for example in an apparatus associated with or serving the SCell 103, to cooperate with the example methods 500-1100 performed in the UE 101.
  • the example method 1400 may include an operation 1401 of determining a state of the SCell 103, an operation 1402 of transmitting CSI-RS on at least one CSI-RS resource in response to determining in the operation 1401 that the SCell 103 is in an activated state, and an operation 1403 of suspending the transmission of the CSI-RS on at least a part of the at least one CSI-RS resource in response to determining in the operation 1401 that the SCell 103 is in a dormant state or in dormancy.
  • the at least a part of the at least one CSI-RS resource on which the transmission of CSI-RS is suspended in the operation 1403 may include, but is not limited to: one or more of: (1) one or more CSI-RS resources associated with one or more beams with quality below a predetermined threshold, e.g.
  • the associated with the beams other than a predetermined number of best beams; (2) one or more CSI-RS resources with at least a part being outside of dormancy bandwidth part; (3) one or more CSI-RS resources with a center frequency different from a frequency of SSB to which the sPCell 102 is associated; (4) one or more CSI-RS resources on which a measurement gap is required for the CSI-RS based measurement for the SCell 103 in dormancy, e.g.
  • FIG. 15 illustrates an example method 1500 for controlling measurement in an embodiment, which may be performed for example in an apparatus associated with or serving the SCell 103, to cooperate with the example methods 500-1100 performed in the UE 101.
  • the example method 1500 may further include an operation 1501 of determining SSB based measurement is configured for the SCell. Further, corresponding to the operation 701 or the like in the example method 700, as illustrated in FIG. 15, the example method 1500 may further include an operation 1502 of transmitting SSB on the associated SSB resource associated with at least one of the suspended CSI-RS resources in the operation 1403.
  • SSB may be transmitted on less SSB resources when the SCell 103 is in dormancy compared with the case where the SCell 103 is the activated state.
  • FIG. 16 illustrates an example method 1600 for controlling measurement in an embodiment, which may be performed for example in an apparatus associated with or serving the SCell 103, to cooperate with the example methods 500-1100 performed in the UE 101.
  • the example method 1600 may further include an operation of 1601 of determining whether the SCell 103 goes out of dormancy, and an operation of 1602 of resuming at least a part of the transmission of CSI-RS which has been suspended in the operation 1403, for example to cooperate with the operation 902 of the example method 900.
  • the operation 1602 may be performed in a case where the resuming is enabled. If the resuming is disabled, for example, the SCell 103 may maintain the transmission of CSI-RS and/or SSB when the SCell 103 is in dormancy, or may stop transmitting CSI-RS and/or SSB.
  • FIG. 17 illustrates an example method 1700 for controlling measurement in an embodiment, which may be performed for example in an apparatus associated with or serving the SCell 103, to cooperate with the example methods 500-1100 performed in the UE 101.
  • the example method 1700 may include the operations in the example method 1400, where, in the operation 1403, the transmission of CSI-RS on the CSI-RS resources for the SCell 103 may be suspended. Further, as illustrated in FIG. 17, the example method 1700 may further include an operation of 1701 of transmitting SSB on SSB resources for the SCell 103 when the SCell 103 is in the activate state, and an operation of 1702 of continuing to transmit SSB on at least a part of SSB resources for the SCell 103 when the SCell 103 is in dormancy. For example, the transmission of SSB in the operation 1702 may be performed on less SSB sources than the transmission of SSB in the operation 1701.
  • the transmission of SSB may include transmission of SSB on one or more SSBs associated with one or more CSI-RS resources, e.g., the CSI-RS resources on which the transmission of the CSI-RS is to be suspended in the operation 1403.
  • the method for controlling measurement performed in the apparatus serving or associated with the SCell 103 may not be limited to the above example methods 1400-1700, and one or more aspects and/or features described above, for example with respect to the example methods 500 and 1400, may be combined, modified, and/or deleted.
  • the example method 1400 may further include another operations such as transmitting information on at least one of a measurement type, a measurement object, or an index of a CSI-RS resource to be measured in the SCell 103 when the SCell 103 is in dormancy, transmitting indication on whether to resume the suspended CSI-RS based measurement, and so on.
  • FIG. 18 illustrates an example apparatus 1800 for controlling measurement in an embodiment, which may be at least a part of the apparatus serving or associated with the SCell 103.
  • the example apparatus 1800 may include at least one processor 1801 and at least one memory 1802 that may include computer program code 1803.
  • the at least one memory 1802 and the computer program code 1803 may be configured to, with the at least one processor 1801, cause the apparatus 1800 at least to perform at least the operations of any of the example methods 1400-1700 described above.
  • the at least one processor 1801 in the example apparatus 1800 may include, but not limited to, at least one hardware processor, including at least one microprocessor such as a CPU, a portion of at least one hardware processor, and any other suitable dedicated processor such as those developed based on for example FPGA and ASIC. Further, the at least one processor 1801 may also include at least one other circuitry or element not shown in FIG. 18.
  • the at least one memory 1802 in the example apparatus 1800 may include at least one storage medium in various forms, such as a volatile memory and/or a non-volatile memory.
  • the volatile memory may include, but not limited to, for example, a RAM, a cache, and so on.
  • the non-volatile memory may include, but not limited to, for example, a ROM, a hard disk, a flash memory, and so on.
  • the at least memory 1802 may include, but are not limited to, an electric, a magnetic, an optical, an electromagnetic, an infrared, or a semiconductor system, apparatus, or device or any combination of the above.
  • the example apparatus 1800 may also include at least one other circuitry, element, and interface, for example at least one I/O interface, at least one antenna element, and the like.
  • the circuitries, parts, elements, and interfaces in the example apparatus 1800 may be coupled together via any suitable connections including, but not limited to, buses, crossbars, wiring and/or wireless lines, in any suitable ways, for example electrically, magnetically, optically, electromagnetically, and the like.
  • FIG. 19 illustrates another example apparatus 1900 for controlling measurement in an embodiment, which may be at least a part of the apparatus associated with or serving the SCell 103.
  • the example apparatus 1900 may include means for performing operations described with reference to any of the methods 1400-1700.
  • the apparatus 1900 may include means 1901 for performing the operation 1401 of the example method 1400, means 1902 for performing the operation 1402 of the example method 1400, and means 1903 for performing the operation 1403 of the example method 1400.
  • at least one I/O interface, at least one antenna element, and the like may also be included in the example apparatus 1300.
  • the example apparatus 1900 may further include one or more means for performing one or more additional operations in the example methods 1400-1700, such as the operations 1501, 1502, 1601, 1602, 1701, 1702, and so on.
  • examples of means such as means 1901, 1902 and 1903 may include circuitries.
  • an example of means 1901 may include a circuitry configured to perform the operation 1401 of the example method 1400
  • an example of means 1902 may include a circuitry configured to perform the operation 1402 of the example method 1400
  • an example of means 1903 may include a circuitry configured to perform the operation 1403 of the example method 1400.
  • examples of means may also include software modules and any other suitable function entities.
  • the means mentioned above may comprise at least one processor; and at least one memory including computer program code, the at least one memory and computer program code configured to, with the at least one processor, cause the performance of the apparatus.
  • another example embodiment may relate to an example method for controlling measurement which may be performed in the sPCell 102.
  • this example method may include an operation of transmitting information on at least one of a measurement type, a measurement object, or an index of a CSI-RS resource to be measured in the SCell 103 when the SCell 103 is in dormancy.
  • the example method performed in the sPCell 102 for controlling measurements may also include one or more aspects of the example method 1400 performed in the SCell 103.
  • another example embodiment may relate to an example apparatus which may serve the sPCell 102.
  • the example apparatus serving the sPCell 102 may include at least one processor and at least one memory that may include computer program code.
  • the at least one memory and the computer program code may be configured to, with the at least one processor, cause the apparatus serving the sPCell 102 at least to perform at least the operations of the example method associated with the sPCell 102, for example transmitting information on at least one of a measurement type, a measurement object, or an index of a CSI-RS resource to be measured in the SCell 103 when the SCell 103 is in dormancy.
  • the example apparatus serving the sPCell 102 may include one or more means for performing the operations of the example method associated with the sPCell 102, for example transmitting information on at least one of a measurement type, a measurement object, or an index of a CSI-RS resource to be measured in the SCell 103 when the SCell 103 is in dormancy.
  • Another example embodiment may relate to computer program codes or instructions which may cause an apparatus to perform at least respective methods described above.
  • Another example embodiment may be related to a computer readable medium having such computer program codes or instructions stored thereon.
  • a computer readable medium may include at least one storage medium in various forms such as a volatile memory and/or a non-volatile memory.
  • the volatile memory may include, but not limited to, for example, a RAM, a cache, and so on.
  • the non-volatile memory may include, but not limited to, a ROM, a hard disk, a flash memory, and so on.
  • the non-volatile memory may also include, but are not limited to, an electric, a magnetic, an optical, an electromagnetic, an infrared, or a semiconductor system, apparatus, or device or any combination of the above.
  • the words “comprise, ” “comprising, ” and the like are to be construed in an inclusive sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to. ”
  • the word “coupled” refers to two or more elements that may be either directly connected, or connected by way of one or more intermediate elements.
  • the word “connected” refers to two or more elements that may be either directly connected, or connected by way of one or more intermediate elements.
  • conditional language used herein such as, among others, “can, ” “could, ” “might, ” “may, ” “e.g., ” “for example, ” “such as” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states.
  • conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment.

Abstract

Disclosed are methods for controlling measurements in a secondary cell. An example method may include receiving a configuration of channel state information reference signal based measurement based measurement for a secondary cell, determining that the secondary cell goes to dormancy, and performing the channel state information reference signal based measurement based measurement based measurement for the secondary cell on a first part of at least one channel state information reference signal based measurement based measurement resource for the secondary cell or in response to the determination, performing the channel state information reference signal based measurement on a part of the at least one channel state information reference signal resource, or suspending the channel state information reference signal based measurement on the at least one channel state information reference signal resource. Related apparatuses and computer readable media are also disclosed.

Description

METHODS, APPARATUSES, AND COMPUTER READABLE MEDIA FOR CONTROLLING MEASUREMENTS IN A SECONDARY CELL TECHNICAL FIELD
Various embodiments relates to methods, apparatuses, and computer readable media for controlling measurements in a secondary cell (SCell) .
BACKGROUND
In a telecommunication system such as a long term evolution (LTE) system or a new radio (NR or 5G) system, SCell may be activated and deactivated to enable reasonable power consumption of a user equipment (UE) .
SUMMARY
In a first aspect, disclosed is a method comprising: receiving a configuration of a channel state information reference signal based layer 3 radio resource management measurement for a secondary cell, the configuration comprising information on at least one channel state information reference signal resource for the channel state information reference signal based layer 3 radio resource management measurement; determining that the secondary cell goes to dormancy; and in response to the determination, performing the channel state information reference signal based layer 3 radio resource management measurement on a part of the at least one channel state information reference signal resource, or suspending the channel state information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource.
In some embodiments, the channel state information reference signal based layer 3 radio resource management measurement on the part of the at least one channel state information reference signal resource is performed in response to the determination in a case where a synchronization signal block based measurement for the secondary cell is configured.
In some embodiments, the channel state information reference signal based layer  3 radio resource management measurement on the at least one channel state information reference signal resource is suspended in response to the determination in a case where the synchronization signal block based measurement for the secondary cell is configured.
In some embodiments, the method may further comprise: in a case where the configuration comprises an indication of at least one associated synchronization signal block of the channel state information reference signal based layer 3 radio resource management measurement, performing a synchronization signal block based measurement for the secondary cell on the at least one associated synchronization signal block when the secondary cell is in dormancy.
In some embodiments, the part of the at least one channel state information reference signal resource on which the channel state information reference signal based layer 3 radio resource management measurement is performed may comprise at least one of: at least one first channel state information reference signal resource within an active bandwidth part; at least one second channel state information reference signal resource with a bandwidth same as a channel state information reference signal resource for a special cell; at least one third channel state information reference signal resource associated with at least one beam associated with quality above a predetermined threshold; at least one fourth channel state information reference signal resource within a dormant bandwidth part; or at least one fifth channel state information reference signal resource with a center frequency same as a frequency of a synchronization signal block to which the special cell is associated.
In some embodiments, the method may further comprise receiving information on at least one of a measurement type, a measurement object, or an index of a channel state information reference signal resource to be measured in the secondary cell when the secondary sell is in dormancy, and the channel state information reference signal based layer 3 radio resource management measurement on the part of the at least one channel state information reference signal resource is performed according to the information.
In some embodiments, the method may further comprise detecting that the secondary cell goes out of dormancy, and resuming the channel state information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource in response to the detection.
In some embodiments, the method may further comprise receiving an indication on whether the resuming is enabled when the secondary cell goes out of dormancy, and the channel state information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource is resumed in response to the detection in a case where the resuming is enabled.
In a second aspect, disclosed is an apparatus which may be configured to perform at least the method in the first aspect. The apparatus may include at least one processor and at least one memory. The at least one memory may include computer program code, and the at least one memory and the computer program code may be configured to, with the at least one processor, cause the apparatus to perform: receiving a configuration of a channel state information reference signal based layer 3 radio resource management measurement for a secondary cell, the configuration comprising information on at least one channel state information reference signal resource for the channel state information reference signal based layer 3 radio resource management measurement; determining that the secondary cell goes to dormancy; and in response to the determination, performing the channel state information reference signal based layer 3 radio resource management measurement on a part of the at least one channel state information reference signal resource, or suspending the channel state information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource.
In some embodiments, the channel state information reference signal based layer 3 radio resource management measurement on the part of the at least one channel state information reference signal resource is performed in response to the determination in a case where a synchronization signal block based measurement for the secondary cell is configured.
In some embodiments, the channel state information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource is suspended in response to the determination in a case where the synchronization signal block based measurement for the secondary cell is configured.
In some embodiments, the at least one memory may include computer program code, and the at least one memory and the computer program code may be further configured to, with the at least one processor, cause the apparatus to perform: in a case where the  configuration comprises an indication of at least one associated synchronization signal block of the channel state information reference signal based layer 3 radio resource management measurement, performing a synchronization signal block based measurement for the secondary cell on the at least one associated synchronization signal block when the secondary cell is in dormancy.
In some embodiments, the part of the at least one channel state information reference signal resource on which the channel state information reference signal based layer 3 radio resource management measurement is performed may comprise at least one of: at least one first channel state information reference signal resource within an active bandwidth part; at least one second channel state information reference signal resource with a bandwidth same as a channel state information reference signal resource for a special cell; at least one third channel state information reference signal resource associated with at least one beam with quality above a predetermined threshold; at least one fourth channel state information reference signal resource within a dormant bandwidth part; or at least one fifth channel state information reference signal resource with a center frequency same as a frequency of a synchronization signal block to which the special cell is associated.
In some embodiments, the at least one memory may include computer program code, and the at least one memory and the computer program code may be further configured to, with the at least one processor, cause the apparatus to perform receiving information on at least one of a measurement type, a measurement object, or an index of a channel state information reference signal resource to be measured in the secondary cell when the secondary sell is in dormancy, and the channel state information reference signal based layer 3 radio resource management measurement on the part of the at least one channel state information reference signal resource is performed according to the information.
In some embodiments, the at least one memory may include computer program code, and the at least one memory and the computer program code may be further configured to, with the at least one processor, cause the apparatus to perform detecting that the secondary cell goes out of dormancy, and resuming the channel state information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource in response to the detection.
In some embodiments, the at least one memory may include computer program code, and the at least one memory and the computer program code may be further configured to, with the at least one processor, cause the apparatus to perform receiving an indication on whether the resuming is enabled when the secondary cell goes out of dormancy, and the channel state information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource is resumed in response to the detection in a case where the resuming is enabled.
In a third aspect, disclosed is an apparatus which may be configured to perform at least the method in the first aspect. The apparatus may include means for performing: receiving a configuration of a channel state information reference signal based layer 3 radio resource management measurement for a secondary cell, the configuration comprising information on at least one channel state information reference signal resource for the channel state information reference signal based layer 3 radio resource management measurement; determining that the secondary cell goes to dormancy; and in response to the determination, performing the channel state information reference signal based layer 3 radio resource management measurement on a part of the at least one channel state information reference signal resource, or suspending the channel state information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource.
In some embodiments, the channel state information reference signal based layer 3 radio resource management measurement on the part of the at least one channel state information reference signal resource is performed in response to the determination in a case where a synchronization signal block based measurement for the secondary cell is configured.
In some embodiments, the channel state information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource is suspended in response to the determination in a case where the synchronization signal block based measurement for the secondary cell is configured.
In some embodiments, the apparatus may further comprise means for performing: in a case where the configuration comprises an indication of at least one associated synchronization signal block of the channel state information reference signal based layer 3  radio resource management measurement, performing a synchronization signal block based measurement for the secondary cell on the at least one associated synchronization signal block when the secondary cell is in dormancy.
In some embodiments, the part of the at least one channel state information reference signal resource on which the channel state information reference signal based layer 3 radio resource management measurement is performed may comprise at least one of: at least one first channel state information reference signal resource within an active bandwidth part; at least one second channel state information reference signal resource with a bandwidth same as a channel state information reference signal resource for a special cell; at least one third channel state information reference signal resource associated with at least one beam with quality above a predetermined threshold; at least one fourth channel state information reference signal resource within a dormant bandwidth part; or at least one fifth channel state information reference signal resource with a center frequency same as a frequency of a synchronization signal block to which the special cell is associated.
In some embodiments, the apparatus may further comprise means for receiving information on at least one of a measurement type, a measurement object, or an index of a channel state information reference signal resource to be measured in the secondary cell when the secondary sell is in dormancy, and the channel state information reference signal based layer 3 radio resource management measurement on the part of the at least one channel state information reference signal resource is performed according to the information.
In some embodiments, the apparatus may further comprise means for performing: detecting that the secondary cell goes out of dormancy, and resuming the channel state information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource in response to the detection.
In some embodiments, the apparatus may further comprise means for receiving an indication on whether the resuming is enabled when the secondary cell goes out of dormancy, and the channel state information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource is resumed in response to the detection in a case where the resuming is enabled.
In a fourth aspect, a computer readable medium is disclosed. The computer  readable medium may include instructions stored thereon for causing an apparatus to perform the method in the first aspect. The instructions may cause the apparatus to perform: receiving a configuration of a channel state information reference signal based layer 3 radio resource management measurement for a secondary cell, the configuration comprising information on at least one channel state information reference signal resource for the channel state information reference signal based layer 3 radio resource management measurement; determining that the secondary cell goes to dormancy; and in response to the determination, performing the channel state information reference signal based layer 3 radio resource management measurement on a part of the at least one channel state information reference signal resource, or suspending the channel state information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource.
In some embodiments, the channel state information reference signal based layer 3 radio resource management measurement on the part of the at least one channel state information reference signal resource is performed in response to the determination in a case where a synchronization signal block based measurement for the secondary cell is configured.
In some embodiments, the channel state information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource is suspended in response to the determination in a case where the synchronization signal block based measurement for the secondary cell is configured.
In some embodiments, the instructions may cause the apparatus to further perform: in a case where the configuration comprises an indication of at least one associated synchronization signal block of the channel state information reference signal based layer 3 radio resource management measurement, performing a synchronization signal block based measurement for the secondary cell on the at least one associated synchronization signal block when the secondary cell is in dormancy.
In some embodiments, the part of the at least one channel state information reference signal resource on which the channel state information reference signal based layer 3 radio resource management measurement is performed may comprise at least one of: at least one first channel state information reference signal resource within an active bandwidth part; at least one second channel state information reference signal resource with a bandwidth same as  a channel state information reference signal resource for a special cell; at least one third channel state information reference signal resource associated with at least one beam with quality above a predetermined threshold; at least one fourth channel state information reference signal resource within a dormant bandwidth part; or at least one fifth channel state information reference signal resource with a center frequency same as a frequency of a synchronization signal block to which the special cell is associated.
In some embodiments, the instructions may cause the apparatus to further perform receiving information on at least one of a measurement type, a measurement object, or an index of a channel state information reference signal resource to be measured in the secondary cell when the secondary sell is in dormancy, and the channel state information reference signal based layer 3 radio resource management measurement on the part of the at least one channel state information reference signal resource is performed according to the information.
In some embodiments, the instructions may cause the apparatus to further perform detecting that the secondary cell goes out of dormancy, and resuming the channel state information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource in response to the detection.
In some embodiments, the instructions may cause the apparatus to further perform receiving an indication on whether the resuming is enabled when the secondary cell goes out of dormancy, and the channel state information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource is resumed in response to the detection in a case where the resuming is enabled.
In a fifth aspect, disclosed is a method comprising receiving a first configuration of a channel state information reference signal based measurement for a secondary cell, receiving a second configuration of a synchronization signal block based measurement for the secondary cell; determining that the secondary cell goes to dormancy, suspending the channel state information reference signal based measurement for the secondary cell in response to the determination, and performing the synchronization signal block based measurement for the secondary cell.
In a sixth aspect, disclosed is an apparatus which may be configured to perform  at least the method in the fifth aspect. The apparatus may include at least one processor and at least one memory. The at least one memory may include computer program code, and the at least one memory and the computer program code may be configured to, with the at least one processor, cause the apparatus to perform receiving a first configuration of a channel state information reference signal based measurement for a secondary cell, receiving a second configuration of a synchronization signal block based measurement for the secondary cell, determining that the secondary cell goes to dormancy, suspending the channel state information reference signal based measurement for the secondary cell in response to the determination, and performing the synchronization signal block based measurement for the secondary cell.
In a seventh aspect, disclosed is an apparatus which may be configured to perform at least the method in the fifth aspect. The apparatus may include means for receiving a first configuration of a channel state information reference signal based measurement for a secondary cell, means for receiving a second configuration of a synchronization signal block based measurement for the secondary cell, means for determining that the secondary cell goes to dormancy, means for suspending the channel state information reference signal based measurement for the secondary cell in response to the determination, and means for performing the synchronization signal block based measurement for the secondary cell.
In an eighth aspect, a computer readable medium is disclosed. The computer readable medium may include instructions stored thereon for causing an apparatus to perform the method in the fifth aspect. The instructions may cause the apparatus to perform receiving a first configuration of a channel state information reference signal based measurement for a secondary cell, receiving a second configuration of a synchronization signal block based measurement for the secondary cell, determining that the secondary cell goes to dormancy, suspending the channel state information reference signal based measurement for the secondary cell in response to the determination, and performing the synchronization signal block based measurement for the secondary cell.
In a ninth aspect, disclosed is a method comprising determining a state of a secondary cell, transmitting a channel state information reference signal on at least one channel state information reference signal resource for the secondary cell when the secondary cell is in  an activated state, and suspending the transmission of the channel state information reference signal on at least a part of the at least one channel state information reference signal resource for the secondary cell when the secondary cell is in dormancy.
In some embodiments, the transmission of the channel state information reference signal on at least a part of the at least one channel state information reference signal resource for the secondary cell may be suspended when the secondary cell is in dormancy in a case where a synchronization signal block based measurement for the secondary cell is configured.
In some embodiments, when the secondary cell is in dormancy, synchronization signal block may be transmitted on less synchronization signal block resources than synchronization signal block resources used in a case where the secondary cell is the activated state.
In some embodiments, the at least the part of the at least one channel state information reference signal resource may comprise at least one of: at least one first channel state information reference signal resource with at least a part outside of the active bandwidth part; at least one second channel state information reference signal resource with a bandwidth different from the channel state information reference signal resource for a special cell; at least one third channel state information reference signal resource associated with at least one beam with quality below the predetermined threshold; at least one fourth channel state information reference signal resource with at least a part outside of a dormant bandwidth part; or at least one fifth channel state information reference signal resource with a center frequency different from the frequency of the synchronization signal block to which the special cell is associated.
In some embodiments, the method may further comprise detecting that the secondary cell goes out of dormancy, and resuming the transmission of the channel state information reference signal on the at least the part of the at least one channel state information reference signal resource for the secondary cell in response to the detection.
In some embodiments, the transmission of the channel state information reference signal on the at least the part of the at least one channel state information reference signal resource for the secondary cell may be resumed in response to the detection in case where the resuming is enabled.
In a tenth aspect, disclosed is an apparatus which may be configured to perform at least the method in the ninth aspect. The apparatus may include at least one processor and at least one memory. The at least one memory may include computer program code, and the at least one memory and the computer program code may be configured to, with the at least one processor, cause the apparatus to perform determining a state of a secondary cell, transmitting a channel state information reference signal on at least one channel state information reference signal resource for the secondary cell when the secondary cell is in an activated state, and suspending the transmission of the channel state information reference signal on at least a part of the at least one channel state information reference signal resource for the secondary cell when the secondary cell is in dormancy.
In some embodiments, the transmission of the channel state information reference signal on at least a part of the at least one channel state information reference signal resource for the secondary cell may be suspended when the secondary cell is in dormancy in a case where a synchronization signal block based measurement for the secondary cell is configured.
In some embodiments, when the secondary cell is in dormancy, synchronization signal block may be transmitted on less synchronization signal block resources than synchronization signal block resources used in a case where the secondary cell is the activated state.
In some embodiments, the at least the part of the at least one channel state information reference signal resource may comprise at least one of: at least one first channel state information reference signal resource with at least a part outside of the active bandwidth part; at least one second channel state information reference signal resource with a bandwidth different from the channel state information reference signal resource for a special cell; at least one third channel state information reference signal resource associated with at least one beam with quality below the predetermined threshold; at least one fourth channel state information reference signal resource with at least a part outside of a dormant bandwidth part; or at least one fifth channel state information reference signal resource with a center frequency different from the frequency of the synchronization signal block to which the special cell is associated.
In some embodiments, the at least one memory may include computer program  code, and the at least one memory and the computer program code may be further configured to, with the at least one processor, cause the apparatus to perform detecting that the secondary cell goes out of dormancy, and resuming the transmission of the channel state information reference signal on the at least the part of the at least one channel state information reference signal resource for the secondary cell in response to the detection.
In some embodiments, the transmission of the channel state information reference signal on the at least the part of the at least one channel state information reference signal resource for the secondary cell may be resumed in response to the detection in case where the resuming is enabled.
In a eleventh aspect, disclosed is an apparatus which may be configured to perform at least the method in the ninth aspect. The apparatus may include means for determining a state of a secondary cell, means for transmitting a channel state information reference signal on at least one channel state information reference signal resource for the secondary cell when the secondary cell is in an activated state, and means for suspending the transmission of the channel state information reference signal on at least a part of the at least one channel state information reference signal resource for the secondary cell when the secondary cell is in dormancy.
In some embodiments, the transmission of the channel state information reference signal on at least a part of the at least one channel state information reference signal resource for the secondary cell may be suspended when the secondary cell is in dormancy in a case where a synchronization signal block based measurement for the secondary cell is configured.
In some embodiments, when the secondary cell is in dormancy, synchronization signal block may be transmitted on less synchronization signal block resources than synchronization signal block resources used in a case where the secondary cell is the activated state.
In some embodiments, the at least the part of the at least one channel state information reference signal resource may comprise at least one of: at least one first channel state information reference signal resource with at least a part outside of the active bandwidth part; at least one second channel state information reference signal resource with a bandwidth  different from the channel state information reference signal resource for a special cell; at least one third channel state information reference signal resource associated with at least one beam with quality below the predetermined threshold; at least one fourth channel state information reference signal resource with at least a part outside of a dormant bandwidth part; or at least one fifth channel state information reference signal resource with a center frequency different from the frequency of the synchronization signal block to which the special cell is associated.
In some embodiments, the apparatus may further comprise means for detecting that the secondary cell goes out of dormancy, and means for resuming the transmission of the channel state information reference signal on the at least the part of the at least one channel state information reference signal resource for the secondary cell in response to the detection.
In some embodiments, the transmission of the channel state information reference signal on the at least the part of the at least one channel state information reference signal resource for the secondary cell may be resumed in response to the detection in case where the resuming is enabled.
In a twelfth aspect, a computer readable medium is disclosed. The computer readable medium may include instructions stored thereon for causing an apparatus to perform the method in the ninth aspect. The instructions may cause the apparatus to perform determining a state of a secondary cell, transmitting a channel state information reference signal on at least one channel state information reference signal resource for the secondary cell when the secondary cell is in an activated state, and suspending the transmission of the channel state information reference signal on at least a part of the at least one channel state information reference signal resource for the secondary cell when the secondary cell is in dormancy.
In some embodiments, the transmission of the channel state information reference signal on at least a part of the at least one channel state information reference signal resource for the secondary cell may be suspended when the secondary cell is in dormancy in a case where a synchronization signal block based measurement for the secondary cell is configured.
In some embodiments, when the secondary cell is in dormancy, synchronization signal block may be transmitted on less synchronization signal block resources than synchronization signal block resources used in a case where the secondary cell is the activated  state.
In some embodiments, the at least the part of the at least one channel state information reference signal resource may comprise at least one of: at least one first channel state information reference signal resource with at least a part outside of the active bandwidth part; at least one second channel state information reference signal resource with a bandwidth different from the channel state information reference signal resource for a special cell; at least one third channel state information reference signal resource associated with at least one beam with quality below the predetermined threshold; at least one fourth channel state information reference signal resource with at least a part outside of a dormant bandwidth part; or at least one fifth channel state information reference signal resource with a center frequency different from the frequency of the synchronization signal block to which the special cell is associated.
In some embodiments, the instructions may further cause the apparatus to perform detecting that the secondary cell goes out of dormancy, and resuming the transmission of the channel state information reference signal on the at least the part of the at least one channel state information reference signal resource for the secondary cell in response to the detection.
In some embodiments, the transmission of the channel state information reference signal on the at least the part of the at least one channel state information reference signal resource for the secondary cell may be resumed in response to the detection in case where the resuming is enabled.
In a thirteenth aspect, disclosed is a method comprising determining a state of a secondary cell, transmitting a channel state information reference signal on a channel state information reference signal resource for the secondary cell and a synchronization signal block on a synchronization signal block resource for the secondary cell when the secondary cell is in an activated state, suspending the transmission of the channel state information reference signal on the channel state information reference signal resource for the secondary cell when the secondary cell is in dormancy, and transmitting the synchronization signal block for the secondary cell when the secondary cell is in dormancy.
In some embodiments, the synchronization signal block may be transmitted on a part of the synchronization signal block resource for the secondary cell when the secondary cell  is in dormancy.
In a fourteenth aspect, disclosed is an apparatus which may be configured to perform at least the method in the thirteenth aspect. The apparatus may include at least one processor and at least one memory. The at least one memory may include computer program code, and the at least one memory and the computer program code may be configured to, with the at least one processor, cause the apparatus to perform determining a state of a secondary cell, transmitting a channel state information reference signal on a channel state information reference signal resource for the secondary cell and a synchronization signal block on a synchronization signal block resource for the secondary cell when the secondary cell is in an activated state, suspending the transmission of the channel state information reference signal on the channel state information reference signal resource for the secondary cell when the secondary cell is in dormancy, and transmitting the synchronization signal block for the secondary cell when the secondary cell is in dormancy.
In some embodiments, the synchronization signal block may be transmitted on a part of the synchronization signal block resource for the secondary cell when the secondary cell is in dormancy.
In a fifteenth aspect, disclosed is an apparatus which may be configured to perform at least the method in the thirteenth aspect. The apparatus may include means for determining a state of a secondary cell, means for transmitting a channel state information reference signal on a channel state information reference signal resource for the secondary cell and a synchronization signal block on a synchronization signal block resource for the secondary cell when the secondary cell is in an activated state, means for suspending the transmission of the channel state information reference signal on the channel state information reference signal resource for the secondary cell when the secondary cell is in dormancy, and means for transmitting the synchronization signal block for the secondary cell when the secondary cell is in dormancy.
In some embodiments, the synchronization signal block may be transmitted on a part of the synchronization signal block resource for the secondary cell when the secondary cell is in dormancy.
In a sixteenth aspect, a computer readable medium is disclosed. The computer  readable medium may include instructions stored thereon for causing an apparatus to perform the method in the thirteenth aspect. The instructions may cause the apparatus to perform determining a state of a secondary cell, transmitting a channel state information reference signal on a channel state information reference signal resource for the secondary cell and a synchronization signal block on a synchronization signal block resource for the secondary cell when the secondary cell is in an activated state, suspending the transmission of the channel state information reference signal on the channel state information reference signal resource for the secondary cell when the secondary cell is in dormancy, and transmitting the synchronization signal block the secondary cell when the secondary cell is in dormancy.
In some embodiments, the synchronization signal block may be transmitted on a part of the synchronization signal block resource for the secondary cell when the secondary cell is in dormancy.
BRIEF DESCRIPTION OF THE DRAWINGS
Some embodiments will now be described, by way of non-limiting examples, with reference to the accompanying drawings.
FIG. 1 illustrates an example procedure of controlling measurement for SCell in an embodiment.
FIG. 2 illustrates an example procedure of controlling measurement for SCell in an embodiment.
FIG. 3 illustrates an example procedure of controlling measurement for SCell in an embodiment.
FIG. 4 illustrates an example procedure of controlling measurement for SCell in an embodiment.
FIG. 5 illustrates an example method for controlling measurement in an embodiment.
FIG. 6 illustrates an example method for controlling measurement in an embodiment.
FIG. 7 illustrates an example method for controlling measurement in an embodiment.
FIG. 8 illustrates an example method for controlling measurement in an embodiment.
FIG. 9 illustrates an example method for controlling measurement in an embodiment.
FIG. 10 illustrates an example method for controlling measurement in an embodiment.
FIG. 11 illustrates an example method for controlling measurement in an embodiment.
FIG. 12 illustrates an example apparatus for controlling measurement in an embodiment.
FIG. 13 illustrates an example apparatus for controlling measurement in an embodiment.
FIG. 14 illustrates an example method for controlling measurement in an embodiment.
FIG. 15 illustrates an example method for controlling measurement in an embodiment.
FIG. 16 illustrates an example method for controlling measurement in an embodiment.
FIG. 17 illustrates an example method for controlling measurement in an embodiment.
FIG. 18 illustrates an example apparatus for controlling measurement in an embodiment.
FIG. 19 illustrates an example apparatus for controlling measurement in an embodiment.
DETAILED DESCRIPTION
In a telecommunication system such as an LTE system or an NR system, network controlled mobility may include cell level mobility and beam level mobility (or beam management) . For example, the cell level mobility may be based on certain measurements. The measurements may include radio resource management measurement (RRM)  measurements, such as synchronization signal block (SSB) based and/or channel state information reference signal (CSI-RS) based layer 3 (L3) RRM measurements, on one or more serving and/or neighbor cells. The RRM measurement may be configured for example by radio resource control (RRC) signaling. The beam level mobility may also be based on some measurements, such as SSB based and/or CSI-RS based layer 1 (L1) measurements (e.g. channel quality indicator (CQI) measurements at a layer lower than L3) , on one or more serving cells, which may be configured for example by RRC signaling. The measurements may be performed at lower layers such as L1 and controlled for example by means of physical layer, media access control (MAC) layer control signaling and/or RRC signaling.
When the SCell is activated or in an activated state, the UE in the SCell may perform the SSB based and/or CSI-RS based measurements, as well as receptions via downlink channels such as a physical downlink shared channel (PDSCH) and a physical downlink control channel (PDCCH) , and transmissions via corresponding uplink channels. In some embodiments, when the SCell is deactivated or in a deactivated state or in dormancy, the UE in the SCell may suspend the SSB based and/or CSI-RS based measurements together with the receptions and transmissions. The “suspending” or the like herein may mean stop performing or not performing an operation such as a CSI-RS based measurement for at least a period of time.
Besides the activated state and the deactivated state, a dormant state may be configured for an SCell for example in an LTE system, where the UE may be configured to perform the measurements but suspend the receptions and transmissions, so that a faster transition to the activated state may be enabled, for example. Transitions among the activated state, the deactivate state, and the dormant state may be based on one or more of media access control (MAC) control element (CE) , one or more timers, downlink control information (DCI) , and so on.
In another example, the dormant state may be configured as a part of the activated state. For example in an NR system, the activated state may include an activated state with dormancy and an activated state with non-dormancy. The activated state with dormancy may correspond to or be similar to the separate dormant state in the previous example, and the activated state with non-dormancy may correspond to or be similar to the  above separate activated state in the previous example. For example, when the SCell is in the activated state with dormancy, the UE may be configured to suspend the receptions and transmissions, but may continue to perform the SSB based and/or CSI-RS based measurements mentioned above. Similar to the transitions among the separate activated state, the separate deactivate state, and the separate dormant state in the previous example, for example, the transition from the activated state with dormancy to the deactivated state, the transitions between the activated state with non-dormancy and the deactivated state, and the transitions between the activated state with dormancy and the activated state with non-dormancy may be also based on one or more of MAC CE, one or more timers, DCI, and so on. To facilitate descriptions, the activated state with dormancy is also called as a dormant state or dormancy and the activated state with non-dormancy is also called as an activated state herein.
When the SCell is in a dormant state, if the CSI-RS based measurement is configured to provide refined beam information, the measurements on a large amount of CSI-RS resources may lead to additional measurement efforts over SSB based measurement, which may increase the UE power consumption; on the other hand, and transmission of CSI-RS to be measured by the UE in the dormant SCell may also consume the radio capacity and may increase signaling overhead of the network.
In some embodiments, in a case where the CSI-RS based measurement for an SCell is enabled, when determining that the SCell goes to dormancy or is in dormancy, the UE may be configured to perform the CSI-RS based measurement for the SCell conditionally and/or selectively, and correspondingly, the network may be configured to transmit CSI-RS for the CSI-RS based measurement for the SCell conditionally and/or selectively. For example, when determining that a SCell goes to dormancy or is in dormancy, the UE may suspend the CSI-RS based measurement (e.g., L3 RRM measurement) for the SCell on at least a part of CSI-RS resource, and correspondingly, the network (e.g. the base station) may suspend the transmission of the CSI-RS for the SCell on at least a part of CSI-RS resources, so as to save power and capacity. That is, the CSI-RS based measurement (e.g., L3 RRM measurement) may not be performed on a part of the CSI-RS resources for the SCell in dormancy and/or is performed on another part of the CSI-RS resources for the SCell in dormancy. Thus, for example, the power consumption and measurement efforts of the UE may be reduced, and  CSI-RS signaling may also be reduced.
FIG. 1 illustrates an example procedure of controlling measurement for SCell in an embodiment, where a UE 101, a special cell (sPCell) 102, and a SCell 103 may be involved.
In different embodiments, the UE 101 may be any apparatus capable of wireless communication, such as a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (loT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/or industrial wireless networks, and the like.
The sPCell 102 may be a primary cell (PCell) or a primary secondary cell (PSCell) . The sPCell 102 may be determined at the time of connection establishment for scheduling a carrier aggregation group (CAG) including the sPCell 102 and the SCell 103, and may communicate with the UE 101 for example via a PDCCH and a physical uplink control channel (PUCCH) . The SCell 103 may be configured to provide additional radio resources for the UE 101 for example after the RRC connection establishment, and may be in one of the above-mentioned activated state, dormant state or dormancy, and deactivated state.
In an embodiment, the sPCell 102 and the SCell 103 may be associated with an apparatus such as at least a part of a network node (for example a base station) . Then, for example, management for both the sPCell 102 and the SCell 103 may be performed in the apparatus to which the sPCell 102 is associated, and information on configuration, scheduling, and so on for both the sPCell 102 and the SCell 103 may be transmitted from the apparatus to the UE 101 for example via a downlink channel from the sPCell 102 to the UE 101, and SSB and CSI-RS for measurements for the SCell 103 may be transmitted from the apparatus to the  UE 101 for example via a downlink channel from the SCell 103 to the UE 101.
In another embodiment, the sPCell 102 and the SCell 103 may be associated with or served by different apparatuses such as different parts of a base station or separate base stations. Then, for example, information on configuration (e.g. measurement configuration) for the SCell 103 may be notified, from the apparatus associated with or serving the sPCell 102, to both the UE 101 and the apparatus associated with or serving the SCell 103, or may be generated in the apparatus associated with or serving the SCell 103 and then transmitted to the apparatus associated with or serving the sPCell 102 and further to the UE 101 via the sPCell 102, or the like. Further, the SSB and CSI-RS for measurements for the SCell 103 may be transmitted from the apparatus associated with or serving the SCell 103 to the UE 101 for example via the downlink channel from the SCell 103 to the UE 101.
Herein, for facilitating descriptions, communication (or information exchanging, including transmission and/or reception) between the UE 101 and the sPCell 102 may mean that communication between the UE 101 and the apparatus associated with or serving the sPCell 102 via a channel associated with the sPCell 102 from/to the UE 101, and communication between the UE 101 and the SCell 103 may mean that communication between the UE 101 and an apparatus associated with or serving the SCell 103 via a channel associated with the SCell 103 from/to the UE 101, wherein the apparatus associated with or serving the sPCell 102 and the apparatus associated with or serving the SCell 103 may be co-located, or separated, or integrated. For example, the UE 101 receiving information from sPCell 102 may mean that the UE 101 receives the information from an apparatus associated with or serving the sPCell 102 for example via a downlink channel (e.g. PDCCH or PDSCH) of the sPCell 102 to the UE 101, the UE 101 receiving information from SCell 103 may mean that the UE 101 receives the information from an apparatus associated with or serving the SCell 103 for example via a downlink channel (e.g. PDCCH or PDSCH) of the SCell 103 to the UE 101, or the like. Similarly, an operation performed by the sPCell 102 or the SCell 103 may mean an operation performed by the apparatus associated with or serving the sPCell 102 or the SCell 103. Further, in a case where the apparatus associated with or serving the sPCell 102 and the apparatus associated with or serving the SCell 103 are different apparatuses or different parts in an apparatus, any suitable manners may be adopted for the communication  between the two apparatuses or the two parts.
In the example as illustrated in FIG. 1, a configuration 104 of CSI-RS based measurement (e.g., L3 RRM measurement) may be transmitted to the UE 101 from the network (e.g., the sPCell 102) , based on which the UE 101 may be configured to perform CSI-RS based L3 RRM measurements on the SCell 103. For example, the configuration 104 may include one or more of information on one or more cells for CSI-RS based L3 RRM measurements (e.g. a list of identifiers of the one or more cells) , information on one or more CSI-RS resources associated with respective cells, information on associated SSB which is associated with respective CSI-RS resources, and so on. In an embodiment, the configuration 104 may be included or encoded in an information element (IE) such as CSI-RS-ResourceConfigMobility in control message from a telecommunication system such as the LTE system or the NR system. In another embodiment, one or more other IEs such as measConfig may be used to provide or convey the information on configuration of the CSI-RS based L3 RRM measurement in addition to or in lieu of the configuration 104.
Then, the UE 101 may determine the configuration of CSI-RS based L3 RRM measurement for the SCell 103 from the received configuration 104. For example, the UE 101 may determine the CSI-RS resource (s) to be measured for the SCell 103, for example according to the identifier of the SCell 103 included in the configuration 104, and may determine whether there is an associated SSB associated with a CSI-RS resource for the SCell 103 for example by detecting whether the “assoicatedSSB” parameter is included in the “CSI-RS-Resource-Mobility” parameter associated with a CSI-RS resource for the SCell 103 in the configuration 104.
During a time period 105 when the SCell 103 is in the activated state, at least one SSB and/or at least one CSI-RS may be transmitted from the SCell 103 to the UE 101, and the UE 101 may perform SSB based measurement (s) based on the at least one received SSB from the SCell 103 and/or CSI-RS based L3 RRM measurement (s) based on the at least one received CSR-RS from the SCell 103.
Then, the UE 101 may determine when the SCell 103 goes to dormancy. For example as illustrated in FIG. 1, the UE 101 may receive a signaling 106 such as a RRC command or a DCI from the sPCell 102, which notifies that the SCell 103 goes to dormancy, or  indicates when the Scell 103 will go to dormancy. Then, based on the received signaling 106, the UE 101 may determine that the SCell 103 goes to dormancy. In addition to or in lieu of the signaling 106, in another example, the UE 101 may determine that the SCell 103 goes to dormancy, based on some MAC signaling and/or when a timer expires. For example, the UE 101 may determine that the SCell 103 goes to dormancy, after a given delay after receiving the signaling 106. Accordingly, the sPCell 102 and/or Scell 103 may determine that the UE 101 starts the dormancy behavior after the given delay.
Then, during a period 107 when the SCell 103 is in the dormant state, the UE 101 may suspend the CSI-RS based L3 RRM measurements for the SCell 103, and correspondingly, in some embodiments the SCell 103 may suspend transmission of CSI-RS for the CSI-RS based L3 RRM measurements.
As illustrated in FIG. 1, during the period 107, the UE 101 may continue to perform SSB based measurements for the SCell 103 during the period 107, for example by using the same SSB resources measured for the SCell 103 during the period 105 or using less SSB resources than the SSB resources measured for the SCell 103 during the period 105. This may be performed when SSB based measurement is configured. For example, the UE 101 may perform the SSB based measurements for the SCell 103 based on a measurement configuration previously received from the sPCell 102 (not illustrated in FIG. 1) . For example, the measurement configuration may be encoded in the IE MeasConfig which specifies measurements to be performed by the UE in the telecommunication system such as the LTE system or NR system, and covers intra-frequency, inter-frequency and inter-RAT (inter radio access technology) mobility as well as configuration of measurement gaps.
In another example, during the period 107, if an associated SSB associated with a CSI-RS resource for the SCell 103 is configured for example in the configuration 104, the UE 101 may suspend the CSI-RS based L3 RRM measurements for the SCell 103 at least on this CSI-RS resource for the SCell 103, and may perform or fall back to the SSB based measurements on the associated SSB associated with this CSI-RS resource. Correspondingly, in some embodiments, the SCell 103 may continue to transmit SSB (at least on the associated SSB resource) to the UE 101 for the SSB based measurement for the SCell 103while suspending the transmission of CSI-RS for the CSI-RS based L3 RRM measurements for the  SCell 103.
In addition, the UE 101 may also determine when the SCell 103 goes out of dormancy. For example as illustrated in FIG. 1, the UE 101 may receive a signaling 108 such as a RRC command or DCI from the sPCell 102, which notifies that the SCell 103 goes out of dormancy. Based on the received signaling 108, the UE 101 may determine that the SCell 103 goes out of dormancy. In addition to or in lieu of the signaling 108, in another example, the UE 101 may determine that the SCell 103 goes out of dormancy, based on some MAC signaling and/or a timer. For example, the UE 101 may determine that the SCell 103 goes out of dormancy, after a given delay after receiving the signaling 108; the UE 101 may also start a timer after receiving the signaling 106, or after a given delay after receiving the signaling 106, and may determine that the SCell 103 goes out of dormancy, when the timer expires; or the like. In different embodiments, the signaling 106 and the signaling 108 may utilize the same message but with different parameter values, or may utilize different messages.
Then, during a period 109 after determining that the SCell 103 goes out of dormancy, the UE 101 may resume the CSI-RS based L3 RRM measurements for the SCell 103 for example according to the configuration 104, and the SCell 103 may also resume the transmission of CSI-RS for the CSI-RS based L3 RRM measurements for the SCell 103.
In the example as illustrated in FIG. 1, the UE 101 may suspend the CSI-RS based L3 RRM measurements for the SCell 103 when determining that the SCell 103 is in dormancy, and in some embodiments, it may resume the suspended CSI-RS based L3 RRM measurements for the SCell 103 when determining that the SCell 103 is out of dormancy. Correspondingly, in some embodiments, the SCell 103 may suspend the transmission of CSI-RS for the CSI-RS based L3 RRM measurements for the SCell 103 on at least some CSI-RS resources when the SCell 103 is in dormancy, and may resume the suspended transmission of CSI-RS for the CSI-RS based L3 RRM measurements for the SCell 103 when the SCell 103 is out of dormancy. Thus, in some embodiments, when the SCell 103 is in dormancy, CSI-RS signaling with respect to the CSI-RS based L3 RRM measurements for the SCell 103 may be saved, and the power consumption of both UE 101 and SCell 103 may be reduced by suspending the CSI-RS based L3 RRM measurements and related signaling transmissions. Moreover, as illustrated in FIG. 1, in some embodiments, the UE 101 may  adjust, autonomously and without introducing new signaling, the CSI-RS based L3 RRM measurement behavior when the SCell 103 goes to dormancy.
In addition to or in lieu of suspending the CSI-RS based L3 RRM measurements for the SCell 103 when the SCell 103 is in dormancy, in another example, when the SCell 103 is in dormancy, the UE 101 may suspend the CSI-RS based L3 RRM measurements for the SCell 103 on a part of the CSI-RS resources for the SCell 103, and may continue to perform the CSI-RS based L3 RRM measurements for the SCell 103 on another part of the CSI-RS resources for the SCell 103.
For example as illustrated in FIG. 2, during the period 105 when the SCell 103 is in the activated state, the SCell 103 may transmit CSI-RS 201 and CSI-RS 202 through the corresponding CSI-RS resources for the SCell 103 so that the UE 101 may perform the CSI-RS based L3 RRM measurements for the SCell 103. Then, during the period 107 when the SCell 103 is in the dormant state, the UE 101 may suspend the CSI-RS based L3 RRM measurement for the SCell 103 on the CSI-RS resource associated with the CSI-RS 201, and may continue to perform the CSI-RS based L3 RRM measurement for the SCell 103 on the CSI-RS resource associated with the CSI-RS 202. Correspondingly, in some embodiments, during the period 107, the SCell 103 may suspend the transmission of the CSI-RS 201, and may continue the transmission of the CSI-RS 202.
For example, the UE 101 and the SCell 103 may determine which CSI-RS based L3 RRM measurement for a dormant SCell is to be suspended and/or which CSI-RS based L3 RRM measurement for a dormant SCell is to be continued, based on one or more predetermined rules. For example, such one or more predetermined rules may include, but are not limited to, one or more of:
(1) when a SCell is in dormancy, suspending the CSI-RS L3 RRM measurement for the SCell on one or more CSI-RS resources associated with one or more beams with quality below or lower than a predetermined threshold (e.g. suspending the CSI-RS L3 RRM measurement for the SCell on the CSI-RS resources associated with one or more beams other than a predetermined number of best beams) , and/or performing the CSI-RS L3 RRM measurement for the SCell on one or more CSI-RS resources associated with one or more beams with quality higher than or above the predetermined threshold (e.g. performing the  CSI-RS L3 RRM measurement for the SCell on the CSI-RS resources associated with a predetermined number of best beams) ;
(2) when a SCell is in dormancy, suspending the CSI-RS L3 RRM measurement for the SCell on one or more CSI-RS resources outside of a dormancy bandwidth part, and/or performing the CSI-RS L3 RRM measurement for the SCell on one or more CSI-RS resources in the dormancy bandwidth part;
(3) when a SCell is in dormancy, suspending the CSI-RS L3 RRM measurement for the SCell on one or more CSI-RS resources with a center frequency different from a frequency of an SSB to which sPCell (e.g. the sPCell 102) is associated (which is configured for example in the measurement configuration such as the IE MeasConfig) , and/or performing the CSI-RS L3 RRM measurement for the SCell on one or more CSI-RS resources with a center frequency same as a frequency of an SSB to which sPCell is associated;
(4) when a SCell is in dormancy, suspending the CSI-RS L3 RRM measurement for the SCell if a measurement gap is required (for example, in a case where at least a part of a CSI-RS resource for CSI-RS L3 RRM measurement for the SCell is outside of the active bandwidth part, or in a case where a CSI-RS resource for CSI-RS L3 RRM measurement for the SCell has a different bandwidth from the CSI-RS resource for the sPCell, or the like) , and/or performing the CSI-RS L3 RRM measurement for the SCell if a measurement gap is not required (for example, in a case where a CSI-RS resource for CSI-RS L3 RRM measurement for the SCell is within the active bandwidth part, or in a case where a CSI-RS resource for CSI-RS L3 RRM measurement for the SCell has the same bandwidth with the CSI-RS resource for the sPCell, or the like) .
For example, if the UE 101 and the SCell 103 determine, for example based on one or more measurement results during the period of 105, that the CSI-RS resource associated with CSI-RS 201 for the CSI-RS L3 RRM measurement for the SCell 103 is associated with a beam which is not good enough (e.g. with quality below or lower than a predetermined threshold) and the CSI-RS resource associated with the CSI-RS 202 for CSI-RS L3 RRM measurement for the SCell 103 is within an active bandwidth part and thus no measurement gap is required, then during the period 107 when the SCell 103 is in dormancy, the UE 101 may suspend the CSI-RS L3 RRM measurement for the SCell 103 on the CSI-RS resource  associated with CSI-RS 201, and may continue to perform the CSI-RS L3 RRM measurement for the SCell 103 on the CSI-RS resource associated with CSI-RS 202; correspondingly, in some embodiments, the SCell 103 may suspend the transmission of CSI-RS 201, and may continue to transmit the CSI-RS 202.
In another example, the UE 101 may perform the checking/determinining based on the one or more measurement results for example during the period of 105 and the predetermined rules, to determine which CSI-RS based L3 RRM measurement for a dormant SCell 103 is to be suspended and/or which CSI-RS based L3 RRM measurement for a dormant SCell 103 is to be continued, and then may notify the checking/determining result to the sPCell 102 and further to the SCell 103, or to the SCell 103 for example during the period 105. Thus, for example, possible mismatches between the autonomous determination by the UE 101 and the autonomous determination by the SCell 103 may be avoided. In another example, the sPCell 102 may perform the checking/determining based on the one or more measurement results obtained for example during the period of 105 and the predetermined rules, to determine which CSI-RS based L3 RRM measurement for a dormant SCell 103 is to be suspended and/or which CSI-RS based L3 RRM measurement for a dormant SCell 103 is to be continued, and in some embodiments, the sPCell 102 may order or inform the SCell 103 to suspend transmission of CSI-RS on at least a part of CSR-RS resources. The UE 101 may suspend correspondingly the CSI-RS based L3 RRM measurements on the at least a part of CSR-RS resources for which the transmission of CSI-RS is suspended by the SCell 103.
In another embodiment, the measurement behavior of the UE 101 in the dormant SCell 103 may be based on one or more network indications. For example, the sPCell 102 may transmit at least one signaling 301 to indicate information or configuration on one or more of: the measurement types and/or objects to be measured by the UE 101 when the SCell 103 goes to dormancy (as an example, the measurement type may include, but is not limited to, at least SSB-based measurement and/or CSI-RS based measurement) ; enabling or disabling the CSI-RS based L3 based RRM measurements for the SCell 103; one or more CSI-RS resources (e.g. indexes) on which the CSI-RS based L3 based RRM measurements for the SCell 103 is to be performed and/or suspended when the SCell 103 goes to dormancy; or the like.
For example, as illustrated in FIG. 3, the sPCell 102 may transmit at least one  signaling 301 indicating one or more CSI-RS indexes associated with one or more CSI-RS resources on which the UE 101 is expected to measure when the SCell 103 goes to dormancy, where the CSI-RS 202 is indicated while the CSI-RS 201 is not indicated. Then, during the period 107 when the SCell 103 is in dormancy, the SCell 103 may suspend the transmission of CSI-RS 201 and continue to transmit the CSI-RS 202, and the UE 101 may suspend the CSI-RS based L3 RRM measurement on the CSI-RS resource associated with the CSI-RS 201 but continue the CSI-RS based L3 RRM measurement on the CSI-RS resource associated with the CSI-RS 202.
For example, the at least one signaling 301 may be implemented based on one or more IEs in a signaling message from a telecommunication system such as the LTE system or the NR system. For example, the information/configuration on one or more CSI-RS indexes associated with one or more CSI-RS resources on which a UE is expected to measure when SCell goes to dormancy may be included in the CSI-RS-CellMobility IE of a message from the telecommunication system such as the LTE system or the NR system, for example as a new parameter in the CSI-RS-CellMobility IE. For example, the information/configuration on the measurement types and/or objects to be measured by a UE when SCell goes to dormancy may be included in one or more IEs such as MeasConfig IE of a message from the telecommunication system such as the LTE system or the NR system.
In addition, for example as illustrated in FIG. 3, the at least one signaling 301 may also indicate whether the UE 101 is configured to resume the CSI-RS based L3 RRM measurements, which have been suspended during the period 107 when the SCell 103 is in dormancy, during the period 109 when the SCell 103 goes out of dormancy. For example, if the at least one signaling 301 indicate to resume, then during the period 109 when the SCell 103 goes out of dormancy, the UE 101 may resume one or more the CSI-RS based L3 RRM measurements, which have been suspended during the period 107, including the CSI-RS based L3 RRM measurement on the CSI-RS resource associated with the CSI-RS 201. If the at least one signaling 301 indicate not to resume, for example, during the period 109 when the SCell 103 goes out of dormancy, the UE 101 may keep the measurement behavior during the period 107, or may stop the CSI-RS based L3 RRM measurements (for example including the CSI-RS based L3 RRM measurement on the CSI-RS resource associated with the CSI-RS 202) , or the  like, until a further measurement configuration is received.
It is appreciated that one or more features/aspects described above with reference to the FIG. 1, FIG. 2, and FIG. 3 may be combined and/or modified. For example, the configuration 104 and the at least one signaling 301 may be implemented in the same IE or different IEs, the UE 101 and the SCell 103 (and/or the sPCell 102) may determine whether to suspend/perform CSI-RS based L3 RRM measurement (s) on certain CSI-RS resources for a SCell (s) which is in dormancy, suspend/perform measurement on which part (s) of the CSI-RS resource (s) for the dormant SCell (s) , and/or whether to resume one or more suspended measurement (s) when the SCell goes out of dormancy, either autonomously or based on one or more signaling from the network (e.g. form the sPCell 102) and/or one or more agreements or one or more predetermined rules in advance.
Though the CSI-RS based L3 RRM measurement is involved in the examples described above with reference to the FIG. 1, FIG. 2, and FIG. 3, it should be appreciated that one or more aspects and/or features may also be applied to other measurements, e.g., other CSI-RS based measurements such as CSI-RS based L1-RSRP (or physical layer) CQI measurements, or other reference signal (e.g., Cell specific reference signal (CRS) ) based measurements.
For example, as illustrated in FIG. 4, the UE 101 may also receive configuration 401 of CSI-RS based measurement (e.g., L1-RSRP CQI measurement, or L3 RRM measurement) from the sPCell 102, and may perform the CSI-RS based measurement (e.g., L1-RSRP CQI measurement) for the SCell 103 based on the received configuration 401 and/or SSB based measurement for the SCell 103 based on one or more another configurations received from the network (e.g. from the sPCell 102, which are not illustrated in FIG. 4) 
Then, for example, based on the signaling 106, the UE 101 may determine that the SCell 103 goes to dormancy, and may suspend the CSI-RS based L1 CQI measurement for the SCell 103 during the period 107. For example, the UE 101 may continue the SSB based measurement for the SCell 103 during the period 107 based on one or more another configurations on the SSB based measurement previously received from the network. Correspondingly, in some embodiments, during the period 107, the SCell 103 may suspend the transmission of CSI-RS for the CSI-RS based L1-RSRP CQI measurement for the SCell 103,  and may continue the transmission of SSB for the SSB based measurement for the SCell 103.
Then, for example as illustrated in FIG. 4, based on the signaling 108, the UE 101 may determine that the SCell 103 goes out of dormancy, and may resume the CSI-RS based measurement (e.g., L1-RSRP CQI measurement or L3 RRM measurement) for the SCell 103 during the period 107. Correspondingly, during the period 109, the SCell 103 may resume the transmission of CSI-RS for the CSI-RS based L1-RSRP CQI measurement for the SCell 103.
Besides the autonomous adjustments of the CSI-RS based measurement (e.g., L1 CQI measurement) behavior as illustrated in FIG. 4, in another example, similar to the example as illustrated in FIG. 3, the UE 101 may also receive one or more signaling from network (e.g. from the sPCell 102) , and may determine whether to suspend/perform CSI-RS based L1 CQI measurement (s) for one or more SCell (s) in dormancy, on which part (s) of the CSI-RS resource (s) for the SCell (s) to suspend/perform measurement, and/or whether to resume suspended measurement (s) on certain resources for the SCell going out of dormancy, based on the received one or more signaling.
It is appreciated that the disclosure is not limited to the above examples, and one or more aspects and/or features described above may be combined or modified. For example, the CSI-RS based measurement herein is not limited to the CSI-RS based L3 RRM measurement and the CSI-RS based L1 CQI measurement in the above examples.
In one or more embodiments, when determining that the SCell 103 goes to dormancy or is in dormancy, in a case where the CSI-RS based measurement for the SCell 103 is enabled, the UE 101 may be configured to perform the CSI-RS based measurement for the SCell 103 conditionally and/or selectively, and correspondingly, the SCell 103 may be configured to transmit CSI-RS for the CSI-RS based measurement for the SCell conditionally and/or selectively. For example, when determining that the SCell 103 goes to dormancy or is in dormancy, the UE 101 may suspend the CSI-RS based measurement for the SCell 103 on at least a part of CSI-RS resource, and correspondingly, the SCell 103 may suspend the transmission of the CSI-RS for the CSI-RS based measurement for the SCell on at least a part of CSI-RS resources, so that the CSI-RS based measurement is not performed on the CSI-RS resources for the SCell 103 in dormancy or is performed on a part of the CSI-RS resources for  the SCell 103 in dormancy. Thus, for example, the power consumption and measurement efforts of the UE 101 may be reduced, and CSI-RS signaling may be reduced.
In different embodiments, the UE 101 and/or SCell 103 may control/adjust the CSI-RS based measurement behavior for the SCell 103 either autonomously or based one or more network indications (e.g. from the sPCell 102) and/or one or more agreements or rules determined in advance. Also, the UE 101 and/or SCell 103 may determine whether to resume the suspended CSI-RS based measurement either autonomously or based one or more network indications (e.g. from the sPCell 102) and/or one or more agreements or rules determined in advance. When UE is not configured to resume the suspended CSI-RS based measurement automatically, the measurement behavior of the UE when the SCell 103 is in dormancy may be either maintained, or stopped, for example until the UE 101 receives further measurement configuration.
FIG. 5 illustrates an example method 500 for controlling measurement in an embodiment, which may be performed for example in the UE 101.
As illustrated in FIG. 5, in the operation 501, the UE 101 may receive a configuration of CSI-RS based measurement for the SCell 103, for example, the configuration 104 of CSI-RS based L3 RRM measurement for the SCell 103 as illustrated in FIG. 1, FIG. 2, and FIG. 3 which may include information on at least one CSI-RS resource for the CSI-RS based L3 RRM measurement for the SCell 103, and/or the configuration 401 of CSI-RS based L1 CQI measurement for the SCell 103 as illustrated in FIG. 4 which may include information on at least one CSI-RS resource for the CSI-RS based L1 CQI measurement for the SCell 103. Correspondingly, the CSI-based measurement to be controlled in the example method 500 may include, but is not limited to, the CSI-RS based L3 RRM measurement and/or the CSI-RS based L1 CQI measurement.
Then, in the operation 502, the UE 101 may determine that the SCell 103 goes to dormancy. In an embodiment, the UE 101 may receive a signaling indicating that the SCell 103 goes to dormancy, such as the signaling 106 as illustrated in FIG. 1, FIG. 2, FIG. 3, and FIG. 4, and then may determine that the SCell 103 goes to dormancy, based on the received signaling. In another embodiment, in addition to or in lieu of the signaling, the UE 101 may determine that the SCell 103 goes to dormancy, for example based on some MAC signaling  and/or a timer.
Then, in the operation 503, in response to the determination that the SCell 103 goes to dormancy, the UE 101 may perform selectively the CSI-RS based measurement for the SCell 103 on a part of at least one CSI-RS resource for the SCell 103, which may include, for example, performing the CSI-RS based measurement for the SCell 103 on a part of at least one CSI-RS resource for the SCell 103, and/or suspending the CSI-RS based measurement for the SCell 103 on at least a part of the at least one CSI-RS resource for the SCell 103 (e.g. suspending the CSI-RS based measurement for the SCell 103 on the at least one CSI-RS resource for the SCell 103 as illustrated in FIG. 5) . For example, in response to the determination that the SCell 103 goes to dormancy, the UE 101 may suspend the CSI-RS based measurement for the SCell 103 on at least a part (e.g. all) of the at least one CSI-RS resource for the SCell 103 after a given delay.
Through the example method 500, for example, when determining that the SCell 103 goes to dormancy or is in dormancy, in a case where the CSI-RS based measurement for the SCell is enabled, the UE 101 may suspend the CSI-RS based measurement for the SCell 103 on at least a part of CSI-RS resource, so that, for example, the power consumption and measurement efforts of the UE 101 may be reduced.
FIG. 6 illustrates another example method 600 for controlling measurement in an embodiment, which may be performed for example in the UE 101. As illustrated in FIG. 6, besides the  operations  501, 502, and 503 in the example method 500, the example method 600 may also include an operation 601 of determining whether SSB based measurement is configured for the SCell 103, and the operation 503 may be performed in a case where it is determined in the step 601 that the SSB based measurement is configured for the SCell 103.
FIG. 7 illustrates another example method 700 for controlling measurement in an embodiment, which may be performed for example in the UE 101. As illustrated in FIG. 7, besides the  operations  501, 502, 503 in FIG. 6 and the operation 601 in FIG. 6, the example method 700 may further include an operation 701 of determining whether the configuration received in the step 501 includes an indication of at least one associated SSB of the CSI-RS based L3 RRM measurement for the SCell 103, and an operation 702 where the UE 101 may further perform the SSB based measurement for the SCell 103, e.g., on the at least one  associated SSB, in response to the determination that the SCell 103 goes to dormancy, if it is determined in the operation 701 that the configuration received in the step 501 includes an indication of at least one associated SSB of the CSI-RS based L3 RRM measurement for the SCell 103.
In an embodiment, in response to the determination that the SCell 103 goes to dormancy, the part of the at least one CSI-RS resource, on which the CSI-RS based measurement for the SCell 103 may be performed in the operation 503 of the example method 500, may include, but are not limited to, one or more of: (1) one or more CSI-RS resources associated with one or more beams with quality above a predetermined threshold, e.g. one or more CSI-RS resources associated with a predetermined number of best beams; (2) one or more CSI-RS resources in a dormancy bandwidth part; (3) one or more CSI-RS resources with a center frequency same as a frequency of SSB to which the sPCell 102 is associated; (4) one or more CSI-RS resources on which a measurement gap is not required for the CSI-RS based measurement for the SCell 103 in dormancy, e.g. one or more CSI-RS resources in the SCell 103 that are within an active bandwidth part, or one or more CSI-RS resources in the SCell 103 that have the same bandwidth with the CSI-RS resource in the sPCell 102, or the like.
In an embodiment, in response to the determination that the SCell 103 goes to dormancy, the at least a part of the at least one CSI-RS resource, on which the CSI-RS based measurement for the SCell 103 may be suspended in the operation 503 of the example method 500, may include, but are not limited to, one or more of: (1) one or more CSI-RS resources associated with one or more beams with quality below a predetermined threshold, e.g. the CSI-RS resources associated with the beams other than a predetermined number of best beams; (2) one or more CSI-RS resources with at least a part being outside of a dormancy bandwidth part; (3) one or more CSI-RS resources with a center frequency different from a frequency of SSB to which the sPCell 102 is associated; (4) one or more CSI-RS resources on which a measurement gap is required for the CSI-RS based measurement for the SCell 103 in dormancy, e.g. in a case where at least a part of one or more CSI-RS resources in the SCell 103 is outside of active bandwidth part, or in a case where one or more CSI-RS resources in the SCell 103 have a different bandwidth from the CSI-RS resource in the sPCell 102, or the like; (5) the whole CSI-RS resources, for the SCell 103 in dormancy.
FIG. 8 illustrates another example method 800 for controlling measurement in an embodiment, which may be performed for example in the UE 101. As illustrated in FIG. 8, besides the  operations  501, 502, and 503 described above with reference to FIG. 5, FIG. 6, and FIG. 7, the example method 800 may also include an operation 801 of receiving information on at least one of a measurement type, a measurement object, or an index of a CSI-RS resource to be measured in the SCell 103 when the SCell 1-3 is in dormancy. Then, in the operation 503, the CSI-RS based measurement on the part of the at least one CSI-RS resource for the SCell 103 in dormancy may be performed according to the information received in the operation 801. For example, if the information received in the operation 801 indicates that the measurement type and measurement object for the dormant SCell 103 is only SSB based measurement, the CSI-RS based measurement for the SCell 103 in dormancy may be suspended in the operation 503. For example, if the information received in the operation 801 indicates that the measurement type and measurement object for the dormant SCell 103 is for example performing CSI-RS based L3 RRM measurement on the CSI-RS resource associated with CSI-RS 202 as illustrated in FIG. 3, then in the operation 503, the CSI-RS based measurement on the CSI-RS resource associated with CSI-RS 202 may be performed when the SCell 103 is in dormancy, and the CSI-RS based measurement on the other CSI-RS resource (s) for the SCell 103, such as the CSI-RS resource associated with CSI-RS 201 as illustrated in FIG. 3, may be suspended when the SCell is in dormancy.
FIG. 9 illustrates another example method 900 for controlling measurement in an embodiment, which may be performed for example in the UE 101. As illustrated in FIG. 9, besides the operations shown in the example method 500, the example method 900 may further include an operation 901 of detecting that the SCell 103 goes out of dormancy, and an operation 902 of resuming the CSI-RS based measurement on the at least a part of the at least one CSI-RS resource for the SCell 103 (which is suspended in the operation 503) in response to the detection. Similar to the determination in the operation 502, the detection in the operation 901 may be based on at least one of a signaling (e.g. from the sPCell 102) indicating that the SCell 103 goes out of dormancy, such as the signaling 108 as illustrated in FIG. 1, FIG. 2, FIG. 3, and FIG. 4, some MAC and/or timer expires, or the like.
In an embodiment, the UE 101 may determine to resume autonomously. FIG.  10 illustrates another example method 1000 for controlling measurement in an embodiment, which may be performed for example in the UE 101. As illustrated in FIG. 10, besides the operations in the example method 900, the example method 1000 may further include an operation 1001 of receiving an indication on whether the resuming is enabled when the SCell 103 goes out of dormancy, and an operation 1002 of determining whether the resuming is enabled when the SCell 103 goes out of dormancy, for example based on the indication received in the operation 1001. Then, the operation 902 may be performed in a case where it is determined in the operation 1002 that the resuming is enabled. In another embodiment, the indication received in the operation 1001 may also indicate on which CSI-RS resource (s) the suspended CSI-RS based measurement may be resumed. For example, if the resuming is disabled, the UE 101 may maintain the measurement behavior when the SCell 103 is in dormancy or may stop the CSI-RS based measurement and/or SSB based measurement for the SCell 103 until receiving a further measurement configuration (e.g. a configuration of CSI-RS based measurement) or the like, which may be determined by the UE 101 autonomously or indicated by the indication received in the operation 1001 or another indication from the network (e.g. from the sPCell 102) .
FIG. 11 illustrates another example method 1100 for controlling measurement in an embodiment, which may be performed for example in the UE 101. As illustrated in FIG. 11, besides the operations in the example method 500, the example method 1100 may further include an operation 1101 of receiving a configuration of SSB based measurement for the SCell 103 and an operation 1102 of performing the SSB based measurement for the SCell 103. Also, in this embodiment, in the operation 503, the CSI-RS based measurement for the SCell 103 may be suspended in response to the determination in the operation 502. For example, the configuration of SSB based measurement for the SCell 103 may be based on one or more IEs such as measConfig IE in the telecommunication system such as the LTE system or the NR system.
It is appreciated that the method for controlling measurement performed in the UE 101 may be not limited to the above examples, and one or more aspects and/or features described above may be combined, modified, and/or deleted. For example, the  operations  1001, 901, and 902 as illustrated in FIG. 10 may be also included in the example as illustrated  in FIG. 11; the operations in the above examples may be not limited to the orders as illustrated, for example the operation 1001 may be performed before or in parallel with the operation 501, or the like; the information received in respective operations may be based on one or more signaling, for example at least a part of the information received in the operation 801 may be also included in the configuration of CSI-RS based measurement received in the operation 501 and/or included in the configuration of SSB based measurement received in the operation 1101; or the like.
FIG. 12 illustrates an example apparatus 1200 for controlling measurement in an embodiment, which may be at least a part of the UE 101.
As shown in FIG. 12, the example apparatus 1200 may include at least one processor 1201 and at least one memory 1202 that may include computer program code 1203. The at least one memory 1202 and the computer program code 1203 may be configured to, with the at least one processor 1201, cause the apparatus 1200 at least to perform at least the operations of the example methods 500 -1100 described above.
In various embodiments, the at least one processor 1201 in the example apparatus 1200 may include, but not limited to, at least one hardware processor, including at least one microprocessor such as a central processing unit (CPU) , a portion of at least one hardware processor, and any other suitable dedicated processor such as those developed based on for example Field Programmable Gate Array (FPGA) and Application Specific Integrated Circuit (ASIC) . Further, the at least one processor 1201 may also include at least one other circuitry or element not shown in FIG. 12.
In various embodiments, the at least one memory 1202 in the example apparatus 1200 may include at least one storage medium in various forms, such as a volatile memory and/or a non-volatile memory. The volatile memory may include, but not limited to, for example, a random-access memory (RAM) , a cache, and so on. The non-volatile memory may include, but not limited to, for example, a read only memory (ROM) , a hard disk, a flash memory, and so on. Further, the at least memory 1202 may include, but are not limited to, an electric, a magnetic, an optical, an electromagnetic, an infrared, or a semiconductor system, apparatus, or device or any combination of the above.
Further, in various embodiments, the example apparatus 1200 may also include  at least one other circuitry, element, and interface, for example at least one I/O interface, at least one antenna element, and the like.
In various embodiments, the circuitries, parts, elements, and interfaces in the example apparatus 1200, including the at least one processor 1201 and the at least one memory 1202, may be coupled together via any suitable connections including, but not limited to, buses, crossbars, wiring and/or wireless lines, in any suitable ways, for example electrically, magnetically, optically, electromagnetically, and the like.
FIG. 13 illustrates another example apparatus 1300 for controlling measurement in an embodiment, which may be at least a part of the UE 101.
As shown in FIG. 13, the example apparatus 1300 may include means for performing operations described above in various embodiments. For example, the apparatus 1300 may include means 1301 for performing the operation 501 of the example method 500, means 1302 for performing the operation 502 of the example method 500, and means 1303 for performing the operation 503 of the example method 500. In one or more another embodiments, at least one I/O interface, at least one antenna element, and the like may also be included in the example apparatus 1300. In one or more another embodiments, the example apparatus 1300 may further include one or more means for performing one or more additional operations in any of the example methods 600-1100, such as the  operations  710, 801, 901, 902, 1001, 1101, 1102, and so on.
In some embodiments, examples of means such as  means  1301, 1302 and 1303 may include circuitries. For example, an example of means 1301 may include a circuitry configured to perform the operation 501 of the example method 500, an example of means 1302 may include a circuitry configured to perform the operation 502 of the example method 500, and an example of means 1303 may include a circuitry configured to perform the operation 503 of the example method 500. In some embodiments, examples of means may also include software modules and any other suitable function entities.
The term “circuitry” throughout this disclosure may refer to one or more or all of the following: (a) hardware-only circuit implementations (such as implementations in only analog and/or digital circuitry) ; (b) combinations of hardware circuits and software, such as (as applicable) (i) a combination of analog and/or digital hardware circuit (s) with  software/firmware and (ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) ; and (c) hardware circuit (s) and or processor (s) , such as a microprocessor (s) or a portion of a microprocessor (s) , that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation. This definition of circuitry applies to one or all uses of this term in this disclosure, including in any claims. As a further example, as used in this disclosure, the term circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware. The term circuitry also covers, for example and if applicable to the claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
FIG. 14 illustrates an example method 1400 for controlling measurement in an embodiment, which may be performed for example in an apparatus associated with or serving the SCell 103, to cooperate with the example methods 500-1100 performed in the UE 101.
As illustrated in FIG. 14, the example method 1400 may include an operation 1401 of determining a state of the SCell 103, an operation 1402 of transmitting CSI-RS on at least one CSI-RS resource in response to determining in the operation 1401 that the SCell 103 is in an activated state, and an operation 1403 of suspending the transmission of the CSI-RS on at least a part of the at least one CSI-RS resource in response to determining in the operation 1401 that the SCell 103 is in a dormant state or in dormancy.
In an embodiment, the at least a part of the at least one CSI-RS resource on which the transmission of CSI-RS is suspended in the operation 1403 may include, but is not limited to: one or more of: (1) one or more CSI-RS resources associated with one or more beams with quality below a predetermined threshold, e.g. the associated with the beams other than a predetermined number of best beams; (2) one or more CSI-RS resources with at least a part being outside of dormancy bandwidth part; (3) one or more CSI-RS resources with a center frequency different from a frequency of SSB to which the sPCell 102 is associated; (4) one or more CSI-RS resources on which a measurement gap is required for the CSI-RS based  measurement for the SCell 103 in dormancy, e.g. in a case where at least a part of one or more CSI-RS resources in the SCell 103 is outside of active bandwidth part, or in a case where one or more CSI-RS resources in the SCell 103 have a different bandwidth from the CSI-RS resource in the sPCell 102, or the like; (5) the whole CSI-RS resources for the SCell 103 in dormancy.
FIG. 15 illustrates an example method 1500 for controlling measurement in an embodiment, which may be performed for example in an apparatus associated with or serving the SCell 103, to cooperate with the example methods 500-1100 performed in the UE 101.
In an embodiment, besides the operations in the example method 1400, corresponding to the condition 601 in the example method 600 as illustrated in FIG. 6 or FIG. 7, for example as illustrated in FIG. 15, the example method 1500 may further include an operation 1501 of determining SSB based measurement is configured for the SCell. Further, corresponding to the operation 701 or the like in the example method 700, as illustrated in FIG. 15, the example method 1500 may further include an operation 1502 of transmitting SSB on the associated SSB resource associated with at least one of the suspended CSI-RS resources in the operation 1403. Thus, for example, SSB may be transmitted on less SSB resources when the SCell 103 is in dormancy compared with the case where the SCell 103 is the activated state.
FIG. 16 illustrates an example method 1600 for controlling measurement in an embodiment, which may be performed for example in an apparatus associated with or serving the SCell 103, to cooperate with the example methods 500-1100 performed in the UE 101.
In an embodiment, as illustrated in FIG. 16, besides the operations in the example method 1400, the example method 1600 may further include an operation of 1601 of determining whether the SCell 103 goes out of dormancy, and an operation of 1602 of resuming at least a part of the transmission of CSI-RS which has been suspended in the operation 1403, for example to cooperate with the operation 902 of the example method 900. For example, the operation 1602 may be performed in a case where the resuming is enabled. If the resuming is disabled, for example, the SCell 103 may maintain the transmission of CSI-RS and/or SSB when the SCell 103 is in dormancy, or may stop transmitting CSI-RS and/or SSB.
FIG. 17 illustrates an example method 1700 for controlling measurement in an  embodiment, which may be performed for example in an apparatus associated with or serving the SCell 103, to cooperate with the example methods 500-1100 performed in the UE 101.
As illustrated in FIG. 17, the example method 1700 may include the operations in the example method 1400, where, in the operation 1403, the transmission of CSI-RS on the CSI-RS resources for the SCell 103 may be suspended. Further, as illustrated in FIG. 17, the example method 1700 may further include an operation of 1701 of transmitting SSB on SSB resources for the SCell 103 when the SCell 103 is in the activate state, and an operation of 1702 of continuing to transmit SSB on at least a part of SSB resources for the SCell 103 when the SCell 103 is in dormancy. For example, the transmission of SSB in the operation 1702 may be performed on less SSB sources than the transmission of SSB in the operation 1701. In an embodiment, in the operation 1702, the transmission of SSB may include transmission of SSB on one or more SSBs associated with one or more CSI-RS resources, e.g., the CSI-RS resources on which the transmission of the CSI-RS is to be suspended in the operation 1403.
It is appreciated that the method for controlling measurement performed in the apparatus serving or associated with the SCell 103 may not be limited to the above example methods 1400-1700, and one or more aspects and/or features described above, for example with respect to the  example methods  500 and 1400, may be combined, modified, and/or deleted. For example, if the apparatus serving the sPCell 102 is the same with the apparatus serving the SCell 103, the example method 1400 may further include another operations such as transmitting information on at least one of a measurement type, a measurement object, or an index of a CSI-RS resource to be measured in the SCell 103 when the SCell 103 is in dormancy, transmitting indication on whether to resume the suspended CSI-RS based measurement, and so on.
FIG. 18 illustrates an example apparatus 1800 for controlling measurement in an embodiment, which may be at least a part of the apparatus serving or associated with the SCell 103.
As shown in FIG. 18, the example apparatus 1800 may include at least one processor 1801 and at least one memory 1802 that may include computer program code 1803. The at least one memory 1802 and the computer program code 1803 may be configured to, with the at least one processor 1801, cause the apparatus 1800 at least to perform at least the  operations of any of the example methods 1400-1700 described above.
In various embodiments, the at least one processor 1801 in the example apparatus 1800 may include, but not limited to, at least one hardware processor, including at least one microprocessor such as a CPU, a portion of at least one hardware processor, and any other suitable dedicated processor such as those developed based on for example FPGA and ASIC. Further, the at least one processor 1801 may also include at least one other circuitry or element not shown in FIG. 18.
In various embodiments, the at least one memory 1802 in the example apparatus 1800 may include at least one storage medium in various forms, such as a volatile memory and/or a non-volatile memory. The volatile memory may include, but not limited to, for example, a RAM, a cache, and so on. The non-volatile memory may include, but not limited to, for example, a ROM, a hard disk, a flash memory, and so on. Further, the at least memory 1802 may include, but are not limited to, an electric, a magnetic, an optical, an electromagnetic, an infrared, or a semiconductor system, apparatus, or device or any combination of the above.
Further, in various embodiments, the example apparatus 1800 may also include at least one other circuitry, element, and interface, for example at least one I/O interface, at least one antenna element, and the like.
In various embodiments, the circuitries, parts, elements, and interfaces in the example apparatus 1800, including the at least one processor 1801 and the at least one memory 1802, may be coupled together via any suitable connections including, but not limited to, buses, crossbars, wiring and/or wireless lines, in any suitable ways, for example electrically, magnetically, optically, electromagnetically, and the like.
FIG. 19 illustrates another example apparatus 1900 for controlling measurement in an embodiment, which may be at least a part of the apparatus associated with or serving the SCell 103.
As shown in FIG. 19, the example apparatus 1900 may include means for performing operations described with reference to any of the methods 1400-1700. For example, the apparatus 1900 may include means 1901 for performing the operation 1401 of the example method 1400, means 1902 for performing the operation 1402 of the example method 1400, and means 1903 for performing the operation 1403 of the example method 1400. In one or more  another embodiments, at least one I/O interface, at least one antenna element, and the like may also be included in the example apparatus 1300. In one or more another embodiments, the example apparatus 1900 may further include one or more means for performing one or more additional operations in the example methods 1400-1700, such as the  operations  1501, 1502, 1601, 1602, 1701, 1702, and so on.
In some embodiments, examples of means such as  means  1901, 1902 and 1903 may include circuitries. For example, an example of means 1901 may include a circuitry configured to perform the operation 1401 of the example method 1400, an example of means 1902 may include a circuitry configured to perform the operation 1402 of the example method 1400, and an example of means 1903 may include a circuitry configured to perform the operation 1403 of the example method 1400. In some embodiments, examples of means may also include software modules and any other suitable function entities.
In some embodiments, the means mentioned above may comprise at least one processor; and at least one memory including computer program code, the at least one memory and computer program code configured to, with the at least one processor, cause the performance of the apparatus.
It is appreciated that the disclosure is not limited to the above embodiments.
For example, another example embodiment may relate to an example method for controlling measurement which may be performed in the sPCell 102. For example, this example method may include an operation of transmitting information on at least one of a measurement type, a measurement object, or an index of a CSI-RS resource to be measured in the SCell 103 when the SCell 103 is in dormancy. Further, in a case where the apparatus serving the sPCell 102 and the apparatus server the SCell 103 are the same, the example method performed in the sPCell 102 for controlling measurements may also include one or more aspects of the example method 1400 performed in the SCell 103.
Further, another example embodiment may relate to an example apparatus which may serve the sPCell 102. Similar to the example apparatus 1800 serving the SCell 103, the example apparatus serving the sPCell 102 may include at least one processor and at least one memory that may include computer program code. The at least one memory and the computer program code may be configured to, with the at least one processor, cause the apparatus serving  the sPCell 102 at least to perform at least the operations of the example method associated with the sPCell 102, for example transmitting information on at least one of a measurement type, a measurement object, or an index of a CSI-RS resource to be measured in the SCell 103 when the SCell 103 is in dormancy. Similarly, the example apparatus serving the sPCell 102 may include one or more means for performing the operations of the example method associated with the sPCell 102, for example transmitting information on at least one of a measurement type, a measurement object, or an index of a CSI-RS resource to be measured in the SCell 103 when the SCell 103 is in dormancy.
Another example embodiment may relate to computer program codes or instructions which may cause an apparatus to perform at least respective methods described above. Another example embodiment may be related to a computer readable medium having such computer program codes or instructions stored thereon. In some embodiments, such a computer readable medium may include at least one storage medium in various forms such as a volatile memory and/or a non-volatile memory. The volatile memory may include, but not limited to, for example, a RAM, a cache, and so on. The non-volatile memory may include, but not limited to, a ROM, a hard disk, a flash memory, and so on. The non-volatile memory may also include, but are not limited to, an electric, a magnetic, an optical, an electromagnetic, an infrared, or a semiconductor system, apparatus, or device or any combination of the above.
Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise, ” “comprising, ” and the like are to be construed in an inclusive sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to. ” The word “coupled” , as generally used herein, refers to two or more elements that may be either directly connected, or connected by way of one or more intermediate elements. Likewise, the word “connected” , as generally used herein, refers to two or more elements that may be either directly connected, or connected by way of one or more intermediate elements. Additionally, the words “herein, ” “above, ” “below, ” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of this application. Where the context permits, words in the description using the singular or plural number may also include the plural or singular number respectively. The word “or” in reference to a list of two or more items, that word covers all of  the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.
Moreover, conditional language used herein, such as, among others, “can, ” “could, ” “might, ” “may, ” “e.g., ” “for example, ” “such as” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment.
While some embodiments have been described, these embodiments have been presented by way of example, and are not intended to limit the scope of the disclosure. Indeed, the apparatus, methods, and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the disclosure. For example, while blocks are presented in a given arrangement, alternative embodiments may perform similar functionalities with different components and/or circuit topologies, and some blocks may be deleted, moved, added, subdivided, combined, and/or modified. At least one of these blocks may be implemented in a variety of different ways. The order of these blocks may also be changed. Any suitable combination of the elements and acts of the some embodiments described above can be combined to provide further embodiments. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the disclosure.

Claims (38)

  1. A method comprising:
    receiving a configuration of a channel state information reference signal based layer 3 radio resource management measurement for a secondary cell, the configuration comprising information on at least one channel state information reference signal resource for the channel state information reference signal based layer 3 radio resource management measurement;
    determining that the secondary cell goes to dormancy; and
    in response to the determination, performing the channel state information reference signal based layer 3 radio resource management measurement on a part of the at least one channel state information reference signal resource, or suspending the channel state information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource.
  2. The method of claim 1 wherein,
    the channel state information reference signal based layer 3 radio resource management measurement on the part of the at least one channel state information reference signal resource is performed in response to the determination in a case where a synchronization signal block based measurement for the secondary cell is configured, or
    the channel state information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource is suspended in response to the determination in a case where the synchronization signal block based measurement for the secondary cell is configured.
  3. The method of claim 1 or 2 further comprising:
    in a case where the configuration comprises an indication of at least one associated synchronization signal block of the channel state information reference signal based layer 3 radio resource management measurement, performing a synchronization signal block based measurement for the secondary cell on the at least one associated synchronization signal block when the secondary cell is in dormancy.
  4. The method of any of claims 1 to 3 wherein the part of the at least one channel state information reference signal resource on which the channel state information reference signal based layer 3 radio resource management measurement is performed comprises at least one of:
    at least one first channel state information reference signal resource within an active bandwidth part;
    at least one second channel state information reference signal resource with a bandwidth same as a channel state information reference signal resource for a special cell;
    at least one third channel state information reference signal resource associated with at least one beam with quality above a predetermined threshold;
    at least one fourth channel state information reference signal resource within a dormant bandwidth part; or
    at least one fifth channel state information reference signal resource with a center frequency same as a frequency of a synchronization signal block to which the special cell is associated.
  5. The method of any of claims 1 to 4 further comprising:
    receiving information on at least one of a measurement type, a measurement object, or an index of a channel state information reference signal resource to be measured in the secondary cell when the secondary sell is in dormancy, and
    the channel state information reference signal based layer 3 radio resource management measurement on the part of the at least one channel state information reference signal resource being performed according to the information.
  6. The method of any of claims 1 to 5 further comprising:
    detecting that the secondary cell goes out of dormancy; and
    resuming the channel state information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource in response to the detection.
  7. The method of claim 6 further comprising:
    receiving an indication on whether the resuming is enabled when the secondary cell goes out of dormancy, and
    the channel state information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource being resumed in response to the detection in a case where the resuming is enabled.
  8. A method comprising:
    receiving a first configuration of a channel state information reference signal based measurement for a secondary cell;
    receiving a second configuration of a synchronization signal block based measurement for the secondary cell;
    determining that the secondary cell goes to dormancy;
    suspending the channel state information reference signal based measurement for the secondary cell in response to the determination; and
    performing the synchronization signal block based measurement for the secondary cell.
  9. A method comprising:
    determining a state of a secondary cell;
    transmitting a channel state information reference signal on at least one channel state information reference signal resource for the secondary cell when the secondary cell is in an activated state; and
    suspending the transmission of the channel state information reference signal on at least a part of the at least one channel state information reference signal resource for the secondary cell when the secondary cell is in dormancy.
  10. The method of claim 9 wherein the transmission of the channel state information reference signal on at least a part of the at least one channel state information reference signal resource for the secondary cell is suspended when the secondary cell is in dormancy in a case where a synchronization signal block based measurement for the secondary cell is configured.
  11. The method of claim 10 wherein, when the secondary cell is in dormancy, synchronization signal block is transmitted on less synchronization signal block resources than synchronization signal block resources used in a case where the secondary cell is the activated state.
  12. The method of any of claims 9 to 11 wherein the at least the part of the at least one channel state information reference signal resource comprises at least one of:
    at least one first channel state information reference signal resource with at least a part outside of the active bandwidth part;
    at least one second channel state information reference signal resource with a bandwidth different from the channel state information reference signal resource for a special cell;
    at least one third channel state information reference signal resource associated with at least one beam with quality below the predetermined threshold;
    at least one fourth channel state information reference signal resource with at least a part outside of a dormant bandwidth part; or
    at least one fifth channel state information reference signal resource with a center frequency different from the frequency of the synchronization signal block to which the special cell is associated.
  13. The method of any of claims 9 to 12 further comprising:
    detecting that the secondary cell goes out of dormancy; and
    resuming the transmission of the channel state information reference signal on the at least the part of the at least one channel state information reference signal resource for the secondary cell in response to the detection.
  14. The method of claim 13 wherein the transmission of the channel state information reference signal on the at least the part of the at least one channel state information reference signal resource for the secondary cell is resumed in response to the detection in case where the resuming is enabled.
  15. A method comprising:
    determining a state of a secondary cell;
    transmitting a channel state information reference signal on a channel state information reference signal resource for the secondary cell and a synchronization signal block on a synchronization signal block resource for the secondary cell when the secondary cell is in an activated state;
    suspending the transmission of the channel state information reference signal on the channel state information reference signal resource for the secondary cell when the secondary cell is in dormancy; and
    transmitting the synchronization signal block for the secondary cell when the secondary cell is in dormancy.
  16. The method of claim 15 wherein the synchronization signal block is transmitted on a part of the synchronization signal block resource for the secondary cell when the secondary cell is in dormancy.
  17. An apparatus comprising:
    at least one processor; and
    at least one memory including computer program code, the at least one memory and the computer program code being configured to, with the at least one processor, cause the apparatus to perform
    receiving a configuration of a channel state information reference signal based layer 3 radio resource management measurement for a secondary cell, the configuration comprising information on at least one channel state information reference signal resource for the channel state information reference signal based layer 3 radio resource management measurement,
    determining that the secondary cell goes to dormancy, and
    in response to the determination, performing the channel state information reference signal based layer 3 radio resource management measurement on a part of the at least one channel state information reference signal resource, or suspending the channel state  information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource.
  18. The apparatus of claim 17 wherein,
    the channel state information reference signal based layer 3 radio resource management measurement on the part of the at least one channel state information reference signal resource is performed in response to the determination in a case where a synchronization signal block based measurement for the secondary cell is configured, or
    the channel state information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource is suspended in response to the determination in a case where the synchronization signal block based measurement for the secondary cell is configured.
  19. The apparatus of claim 17 or 18 wherein the at least one memory and the computer program code is further configured to, with the at least one processor, cause the apparatus to perform
    in a case where the configuration comprises an indication of at least one associated synchronization signal block of the channel state information reference signal based layer 3 radio resource management measurement, performing a synchronization signal block based measurement for the secondary cell on the at least one associated synchronization signal block when the secondary cell is in dormancy.
  20. The apparatus of any of claims 17 to 19 wherein the part of the at least one channel state information reference signal resource on which the channel state information reference signal based layer 3 radio resource management measurement is performed comprises at least one of:
    at least one first channel state information reference signal resource within an active bandwidth part;
    at least one second channel state information reference signal resource with a bandwidth same as a channel state information reference signal resource for a special cell;
    at least one third channel state information reference signal resource within at least one beam with quality above a predetermined threshold;
    at least one fourth channel state information reference signal resource within a dormant bandwidth part; or
    at least one fifth channel state information reference signal resource with a center frequency same as a frequency of a synchronization signal block to which the special cell is associated.
  21. The apparatus of any of claims 17 to 20 wherein
    the at least one memory and the computer program code is further configured to, with the at least one processor, cause the apparatus to perform receiving information on at least one of a measurement type, a measurement object, or an index of a channel state information reference signal resource to be measured in the secondary cell when the secondary sell is in dormancy, and
    the channel state information reference signal based layer 3 radio resource management measurement on the part of the at least one channel state information reference signal resource is performed according to the information when the secondary sell is in dormancy.
  22. The apparatus of any of claims 17 to 21 wherein the at least one memory and the computer program code is further configured to, with the at least one processor, cause the apparatus to perform
    detecting that the secondary cell goes out of dormancy, and
    resuming the channel state information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource in response to the detection.
  23. The apparatus of claim 22 wherein
    the at least one memory and the computer program code is further configured to, with the at least one processor, cause the apparatus to perform receiving an indication on whether the resuming is enabled when the secondary cell goes out of dormancy, and
    the channel state information reference signal based layer 3 radio resource management measurement suspended on the at least one channel state information reference signal resource is resumed in response to the detection in a case where the resuming is enabled.
  24. An apparatus comprising:
    at least one processor; and
    at least one memory including computer program code, the at least one memory and the computer program code being configured to, with the at least one processor, cause the apparatus to perform
    receiving a first configuration of a channel state information reference signal based measurement for a secondary cell,
    receiving a second configuration of a synchronization signal block based measurement for the secondary cell,
    determining that the secondary cell goes to dormancy,
    suspending the channel state information reference signal based measurement for the secondary cell in response to the determination, and
    performing the synchronization signal block based measurement for the secondary cell.
  25. An apparatus comprising:
    at least one processor; and
    at least one memory including computer program code, the at least one memory and the computer program code being configured to, with the at least one processor, cause the apparatus to perform
    determining a state of a secondary cell,
    transmitting a channel state information reference signal on at least one channel state information reference signal resource for the secondary cell when the secondary cell is in an activated state, and
    suspending the transmission of the channel state information reference signal on at least a part of the at least one channel state information reference signal resource for the secondary cell when the secondary cell is in dormancy.
  26. The apparatus of claim 25 wherein, in a case where a synchronization signal block based measurement for the secondary cell is configured, the transmission of the channel state information reference signal on at least a part of the at least one channel state information reference signal resource for the secondary cell is suspended when the secondary cell is in dormancy.
  27. The apparatus of claim 26 wherein, when the secondary cell is in dormancy, synchronization signal block is transmitted on less synchronization signal block resources than a case where the secondary cell is the activated state.
  28. The apparatus of any of claims 25 to 27 wherein the at least the part of the at least one channel state information reference signal resource comprises at least one of:
    at least one first channel state information reference signal resource with at least a part outside of the active bandwidth part;
    at least one second channel state information reference signal resource with a bandwidth different from the channel state information reference signal resource for a special cell;
    at least one third channel state information reference signal resource within at least one beam with quality below the predetermined threshold;
    at least one fourth channel state information reference signal resource with at least a part outside of a dormant bandwidth part; or
    at least one fifth channel state information reference signal resource with a center frequency different from the frequency of the synchronization signal block to which the special cell is associated.
  29. The apparatus of any of claims 25 to 28 wherein the at least one memory and the computer program code is further configured to, with the at least one processor, cause the apparatus to perform
    detecting that the secondary cell goes out of dormancy, and
    resuming the transmission of the channel state information reference signal on the at least  the part of the at least one channel state information reference signal resource for the secondary cell in response to the detection.
  30. The apparatus of claim 29 wherein the transmission of the channel state information reference signal on the at least the part of the at least one channel state information reference signal resource for the secondary cell is resumed in response to the detection in case where the resuming is enabled.
  31. An apparatus comprising:
    at least one processor; and
    at least one memory including computer program code, the at least one memory and the computer program code being configured to, with the at least one processor, cause the apparatus to perform
    determining a state of a secondary cell,
    transmitting a channel state information reference signal on a channel state information reference signal resource for the secondary cell and a synchronization signal block on a synchronization signal block resource for the secondary cell when the secondary cell is in an activated state,
    suspending the transmission of the channel state information reference signal on the channel state information reference signal resource for the secondary cell when the secondary cell is in dormancy, and
    transmitting the synchronization signal block for the secondary cell when the secondary cell is in dormancy.
  32. The apparatus of claim 31 wherein the synchronization signal block is transmitted on a part of the synchronization signal block resource for the secondary cell when the secondary cell is in dormancy.
  33. An apparatus comprising means for performing:
    receiving a configuration of a channel state information reference signal based layer 3  radio resource management measurement for a secondary cell, the configuration comprising information on at least one channel state information reference signal resource for the channel state information reference signal based layer 3 radio resource management measurement;
    determining that the secondary cell goes to dormancy; and
    in response to the determination, performing the channel state information reference signal based layer 3 radio resource management measurement on a part of the at least one channel state information reference signal resource, or suspending the channel state information reference signal based layer 3 radio resource management measurement on the at least one channel state information reference signal resource.
  34. An apparatus comprising means for performing:
    receiving a first configuration of a channel state information reference signal based measurement for a secondary cell;
    receiving a second configuration of a synchronization signal block based measurement for the secondary cell;
    determining that the secondary cell goes to dormancy;
    suspending the channel state information reference signal based measurement for the secondary cell in response to the determination; and
    performing the synchronization signal block based measurement for the secondary cell.
  35. An apparatus comprising means for performing:
    determining a state of a secondary cell;
    transmitting a channel state information reference signal on at least one channel state information reference signal resource for the secondary cell when the secondary cell is in an activated state; and
    suspending the transmission of the channel state information reference signal on at least a part of the at least one channel state information reference signal resource for the secondary cell when the secondary cell is in dormancy.
  36. An apparatus comprising means for performing:
    determining a state of a secondary cell;
    transmitting a channel state information reference signal on a channel state information reference signal resource for the secondary cell and a synchronization signal block on a synchronization signal block resource for the secondary cell when the secondary cell is in an activated state;
    suspending the transmission of the channel state information reference signal on the channel state information reference signal resource for the secondary cell when the secondary cell is in dormancy; and
    transmitting the synchronization signal block for the secondary cell when the secondary cell is in dormancy.
  37. A computer readable medium comprising instructions stored thereon for causing an apparatus to perform at least a method of any of claims 1-8.
  38. A computer readable medium comprising instructions stored thereon for causing an apparatus to perform at least a method of any of claims 9-16.
PCT/CN2020/102271 2020-07-16 2020-07-16 Methods, apparatuses, and computer readable media for controlling measurements in a secondary cell WO2022011628A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/102271 WO2022011628A1 (en) 2020-07-16 2020-07-16 Methods, apparatuses, and computer readable media for controlling measurements in a secondary cell
CN202110799867.8A CN113950131B (en) 2020-07-16 2021-07-15 Method, apparatus and computer readable medium for controlling measurements in secondary cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/102271 WO2022011628A1 (en) 2020-07-16 2020-07-16 Methods, apparatuses, and computer readable media for controlling measurements in a secondary cell

Publications (1)

Publication Number Publication Date
WO2022011628A1 true WO2022011628A1 (en) 2022-01-20

Family

ID=79327439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102271 WO2022011628A1 (en) 2020-07-16 2020-07-16 Methods, apparatuses, and computer readable media for controlling measurements in a secondary cell

Country Status (2)

Country Link
CN (1) CN113950131B (en)
WO (1) WO2022011628A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024020863A1 (en) * 2022-07-27 2024-02-01 Apple Inc. Systems and methods for layer-1 and layer-3 ue measurement enhancements
WO2024026897A1 (en) * 2022-08-05 2024-02-08 富士通株式会社 Information processing method and apparatus, and information sending method and apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108476049A (en) * 2015-12-30 2018-08-31 三星电子株式会社 Method and apparatus for channel state information reference signals (CSI-RS)
CN110268667A (en) * 2017-02-02 2019-09-20 Lg 电子株式会社 Report the method and device thereof of the channel state information in wireless communication system
US20190379431A1 (en) * 2017-01-06 2019-12-12 Lg Electronics Inc. Method for receiving reference signal in wireless communication system and apparatus therefor
CN110831189A (en) * 2018-08-11 2020-02-21 华为技术有限公司 Link failure recovery method and related equipment
US20200092814A1 (en) * 2018-09-19 2020-03-19 Hua Zhou Power Saving in a Wireless Communication System

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108476049A (en) * 2015-12-30 2018-08-31 三星电子株式会社 Method and apparatus for channel state information reference signals (CSI-RS)
US20190379431A1 (en) * 2017-01-06 2019-12-12 Lg Electronics Inc. Method for receiving reference signal in wireless communication system and apparatus therefor
CN110268667A (en) * 2017-02-02 2019-09-20 Lg 电子株式会社 Report the method and device thereof of the channel state information in wireless communication system
CN110831189A (en) * 2018-08-11 2020-02-21 华为技术有限公司 Link failure recovery method and related equipment
US20200092814A1 (en) * 2018-09-19 2020-03-19 Hua Zhou Power Saving in a Wireless Communication System

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On SCell Dormancy Switching Delay", 3GPP DRAFT; R4-2007786, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Electronic Meeting; 20200525 - 20200605, 15 May 2020 (2020-05-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051884648 *

Also Published As

Publication number Publication date
CN113950131A (en) 2022-01-18
CN113950131B (en) 2024-04-12

Similar Documents

Publication Publication Date Title
US10425898B2 (en) Methods and arrangements relating to provision of beam coverage for a communication device operating in a wireless communication network
RU2755148C1 (en) Systems and methods for leveling the size of downlink control information (dci)
WO2019085974A1 (en) Buffer status report for split bearer preprocessing in wireless communications
EP2747492A2 (en) Method and apparatus for cell activation
CN113950131B (en) Method, apparatus and computer readable medium for controlling measurements in secondary cells
US20220070788A1 (en) Saving power in a communication device
TW201902247A (en) Cell-specific reference signal mute method and device thereof in mobile communication
US11489641B2 (en) Method and device for measurement restriction
US20220338032A1 (en) Communication method and communication apparatus
US20210250865A1 (en) Uplink information based on wake-up signal
WO2015176613A1 (en) Measurement device and method, and control device and method for wireless network
CN110831127B (en) Communication method, device and apparatus
CN111183666B (en) Method, computer program and apparatus
WO2022151632A1 (en) Relaxing evaluation of radio link quality
CN115412953A (en) Autonomous cell measurement
US20130083738A1 (en) Method and apparatus for modifying resource allocation
WO2021062877A1 (en) Status control of secondary cell
US20220217629A1 (en) Power saving
WO2021159416A1 (en) Reporting preconfigured uplink transmission failures
WO2024036522A1 (en) Cell re-selection enhancements
US11963055B2 (en) Neighbor cell measurements
WO2023023967A1 (en) Relaxed measurement timing configurations
WO2023173310A1 (en) Enhanced positioning mechanism
WO2022194200A1 (en) Terminal operation method and apparatus, terminal configuration method and apparatus, terminal, and network side device
WO2022252154A1 (en) Relaxation compensation for improved system performance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20945417

Country of ref document: EP

Kind code of ref document: A1