WO2021062877A1 - Status control of secondary cell - Google Patents

Status control of secondary cell Download PDF

Info

Publication number
WO2021062877A1
WO2021062877A1 PCT/CN2019/109825 CN2019109825W WO2021062877A1 WO 2021062877 A1 WO2021062877 A1 WO 2021062877A1 CN 2019109825 W CN2019109825 W CN 2019109825W WO 2021062877 A1 WO2021062877 A1 WO 2021062877A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
status
indication
control information
secondary cell
Prior art date
Application number
PCT/CN2019/109825
Other languages
French (fr)
Inventor
Tao Yang
Karol Schober
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy, Nokia Technologies Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to CN201980101106.1A priority Critical patent/CN114557003A/en
Priority to PCT/CN2019/109825 priority patent/WO2021062877A1/en
Publication of WO2021062877A1 publication Critical patent/WO2021062877A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Embodiments of the present disclosure generally relate to the field of telecommunication and in particular, to apparatuses, methods, and computer readable medium for status control of a secondary cell (s) .
  • network connections may be established using a relatively wide frequency bandwidth.
  • a network device may configure one or more serving cells to serve user equipment, with each serving cell corresponding to at least one portion of the frequency bandwidth.
  • the serving cells may include a primary cell (PCell) operating on a primary frequency portion and one or more secondary cells (SCell) operating on one or more secondary frequency portions.
  • PCell primary cell
  • SCell secondary cells
  • example embodiments of the present disclosure provide a solution for status control of a SCell (s) .
  • a first apparatus comprises at least one processor; and at least one memory including computer program code; where the at least one memory and the computer program code are configured to, with the at least one processor, cause the first apparatus to receive, via a scheduling cell in a regular status, control information from a second apparatus, the control information comprising a cell indication, determine whether at least part of the cell indication matches at least part of an indication of the scheduling cell, and in accordance with a determination of a mismatch between the at least part of the cell indication and the at least part of the indication of the scheduling cell, perform status switching of at least one secondary cell between a regular status and a dormant status based on the control information.
  • a second apparatus comprises at least one processor; and at least one memory including computer program code; where the at least one memory and the computer program code are configured to, with the at least one processor, cause the second apparatus to determine whether at least one secondary cell is to be switched between a regular status and a dormant status, in accordance with a determination that the at least one secondary cell is to be switched between the regular status and the dormant status, configure control information to include a cell indication, at least part of the cell indication mismatching with at least part of an indication of a scheduling cell in a regular status, and transmit, via the scheduling cell, the control information to the first apparatus.
  • a method comprises receiving, at a first apparatus via a scheduling cell in a regular status, control information from a second apparatus, the control information comprising a cell indication, determining whether at least part of the cell indication matches at least part of an indication of the scheduling cell, and in accordance with a determination of a mismatch between the at least part of the cell indication and the at least part of the indication of the scheduling cell, performing status switching of at least one secondary cell between a regular status and a dormant status based on the control information.
  • a method comprises determining, at a second apparatus, whether at least one secondary cell is to be switched between a regular status and a dormant status, in accordance with a determination that the at least one secondary cell is to be switched between the regular status and the dormant status, configuring control information to include a cell indication, at least part of the cell indication mismatching with at least part of an indication of a scheduling cell in a regular status, and transmitting, via the scheduling cell, the control information to the first apparatus.
  • a first apparatus comprises means for: receiving, via a scheduling cell in a regular status, control information from a second apparatus, the control information comprising a cell indication; determining whether at least part of the cell indication matches at least part of an indication of the scheduling cell; and performing, in accordance with a determination of a mismatch between the at least part of the cell indication and the at least part of the indication of the scheduling cell, status switching of at least one secondary cell between a regular status and a dormant status based on the control information.
  • a second apparatus comprises means for: determining whether at least one secondary cell is to be switched between a regular status and a dormant status; configuring control information to include a cell indication, in accordance with a determination that the at least one secondary cell is to be switched between the regular status and the dormant status, at least part of the cell indication mismatching with at least part of an indication of a scheduling cell in a regular status; and transmitting, via the scheduling cell, the control information to the first apparatus.
  • a non-transitory computer readable medium comprises program instructions for causing an apparatus to perform at least the method according to any one of the above third and fourth aspects.
  • a computer program comprises instructions for causing an apparatus to perform at least the method according to any one of the above third and fourth aspects.
  • a computer readable medium stores a program of instructions, execution of which by a processor configures an apparatus to perform at least the method according to any one of the above third and fourth aspects.
  • Fig. 1 illustrates an example communication network in which example embodiments of the present disclosure may be implemented
  • Fig. 2 illustrates a signaling flow of a process for status control of a secondary cell according to some example embodiments of the present disclosure
  • Figs. 3A-3D illustrate examples of control information for status control according to some example embodiments of the present disclosure
  • Fig. 4 illustrates a flowchart of a method implemented at a first device according to some example embodiments of the present disclosure
  • Fig. 5 illustrates a flowchart of a method implemented at a second device according to some other embodiments of the present disclosure
  • Fig. 6 illustrates a simplified block diagram of a device that is suitable for implementing example embodiments of the present disclosure.
  • Fig. 7 illustrates a block diagram of an example computer readable medium in accordance with some example embodiments of the present disclosure.
  • references in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
  • first and second etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments.
  • the term “and/or” includes any and all combinations of one or more of the listed terms.
  • circuitry may refer to one or more or all of the following:
  • circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware.
  • circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
  • the term “communication network” refers to a network following any suitable communication standards, such as New Radio (NR) , Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) and so on.
  • NR New Radio
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • NB-IoT Narrow Band Internet of Things
  • the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • suitable generation communication protocols including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of the present disclosure to only the a
  • the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom.
  • the network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR NB (also referred to as a gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth, depending on the applied terminology and technology.
  • BS base station
  • AP access point
  • NodeB or NB node B
  • eNodeB or eNB evolved NodeB
  • NR NB also referred to as a gNB
  • RRU Remote Radio Unit
  • RH radio header
  • terminal device refers to any end device that may be capable of wireless communication.
  • a terminal device may also be referred to as a communication device, user equipment (UE) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) .
  • UE user equipment
  • SS Subscriber Station
  • MS Mobile Station
  • AT Access Terminal
  • the terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (loT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/
  • Fig. 1 shows an example communication network 100 in which embodiments of the present disclosure can be implemented.
  • the network 100 includes a first device 110 and a second device 120 that can communicate with each other.
  • the first device 110 is illustrated as a terminal device (user equipment)
  • the second device 120 is illustrated as a network device serving the terminal device.
  • the network 100 may include any suitable number of network devices, terminal devices and serving cells adapted for implementing embodiments of the present disclosure.
  • the first device 110 may sometimes be referred to as a first apparatus 110 hereinafter
  • the second device 120 may sometimes be referred to as a second apparatus 120 hereinafter.
  • the first device 110 and the second device 120 can communicate data and control information to each other.
  • a link from the second device 120 to the first device 110 is referred to as a downlink (DL)
  • a link from the first device 110 to the second device 120 is referred to as an uplink (UL) .
  • the second device 120 is a transmitting (TX) device (or a transmitter)
  • the first device 110 is a receiving (RX) device (or a receiver)
  • the first device 110 is a TX device (or a transmitter) and the second device 120 is a RX device (or a receiver) .
  • the network 100 may be a Code Division Multiple Access (CDMA) network, a Time Division Multiple Address (TDMA) network, a Frequency Division Multiple Access (FDMA) network, an Orthogonal Frequency-Division Multiple Access (OFDMA) network, a Single Carrier-Frequency Division Multiple Access (SC-FDMA) network or any others.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Address
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency-Division Multiple Access
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • Communications discussed in the network 100 may use conform to any suitable standards including, but not limited to, New Radio Access (NR) , Long Term Evolution (LTE) , LTE-Evolution, LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (CDMA) , cdma2000, and Global System for Mobile Communications (GSM) and the like.
  • NR New Radio Access
  • LTE Long Term Evolution
  • LTE-A LTE-Evolution
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • GSM Global System for Mobile Communications
  • the communications may be performed according to any generation communication protocols either currently known or to be developed in the future. Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols.
  • the techniques described herein may be used
  • NR New Radio
  • CA Carrier Aggregation
  • DC Dual Connectivity
  • SA stand-alone
  • NR-U stand-alone
  • stand-alone NR stand-alone NR.
  • the network device 120 may configure one or more serving cells 101, 102-1, 102-2 to serve the first device 110, with each serving cell corresponding to at least one component carrier (CC) .
  • Each CC may have one or more bandwidth parts (BWPs) .
  • BWPs bandwidth parts
  • the first device 110 may simultaneously receive or transmit on one or more CCs, depending on its capabilities.
  • the second device 120 may provide a plurality of serving cells including a primary cell (PCell) and one or more secondary cells (SCells) for the first device 110.
  • PCell primary cell
  • SCells secondary cells
  • the serving cell 101 is provided as a PCell 101 while the serving cells 102-1, 102-2 are provided as SCells 102-1, 102-2 (collectively or individually referred to as SCells) .
  • the PCell 101 operates on a primary CC while the SCells operate on secondary CCs. From point of view of the second device 120, a Pcell of one first device 110 may be Scell for another first device 110 and vice versa.
  • the first device 110 can perform an initial connection establishment procedure or initiate a connection re-establishment procedure with the second device 120 via the PCell 101.
  • a SCell 102 can provide additional radio resources for communication once the connection between the second device 120 and the first device 110 is established via the SCell 102.
  • a PCell configured to a first device may not be deactivated in order to guarantee the communication.
  • the first device and/or the second device may employ an activation/deactivation mechanism of a SCell to improve/optimize battery or power consumption of the first device.
  • the first device may activate or deactivate at least one of the one or more Scells, for example, through a medium access control-control element (MAC-CE) command.
  • MAC-CE medium access control-control element
  • the first device may stop receiving signals and stop transmission on the SCell.
  • An activation procedure employing an activation command may be needed to activate the SCell to be in an ON status (or activated status) .
  • the activation procedure may involve radio frequency adjustment, DL synchronization, and so on, which may take a relatively long time period (hundreds of ms in some cases) . Such latency may significantly affect the communication performance when there is a larger amount of data to be communicated between the first and second devices.
  • a Scell upon being activated, may be set to either a dormant status or a regular status.
  • the first device such as the UE may not need to continuously monitor control information (e.g., information on a physical downlink control channel (PDCCH) ) for the SCell in the dormant status, and does not expect to receive physical downlink shared channel (PDSCH) for the SCell in the dormant status.
  • PDSCH physical downlink shared channel
  • a UE shall maintain synchronization and automatic gain control running and may perform channel status information (CSI) measurements on the dormant SCell.
  • CSI channel status information
  • the delay for the first device to switch a SCell from the dormant status to the regular status is much lower than switching a deactivated SCell to the regular status.
  • PDCCH is not monitored for a Scell (or monitored sparsely) in the dormant status.
  • a solution on how to quickly activate Scell from dormant to regular status is currently missing.
  • DCI downlink control information
  • control information transmitted via a scheduling cell in a regular status is reused to control status switching of at least one SCell between a dormant status and a regular status at a first device (such as UE) .
  • a cell indication in the control information is configured by a second device (such as a network device) to be different from an indication of the scheduling cell.
  • the first device upon receipt of the control information via the scheduling cell, determines whether at least part of the cell indication matches with at least part of the indication of the scheduling cell.
  • the first device performs the status switching of the at least one SCell based on the control information if a mismatch is detected.
  • control information for the scheduling cell such as the PCell can enable efficient dormancy control of the SCell (s) .
  • the control information can thus be transmitted in a legacy format which may not increase the blind decoding complexity for the first device and communication standardization and implementation efforts are minimal.
  • Fig. 2 shows a signaling flow of a process 200 for status control of a SCell according to some example embodiments of the present disclosure.
  • the process 200 will be described with reference to Fig. 1.
  • the process 200 may involve the first device 110 and the second device 120 as illustrated in Fig. 1.
  • the second device 120 controls dormancy or non-dormancy of one or more SCells 102 at the first device 110 via control information.
  • the second device 120 determines 205 whether at least one SCell 102 is to be switched between a regular status and a dormant status.
  • the first device 110 may be configured with one or more SCells 102.
  • a Scell 102 may be activated or deactivated via an activation/deactivation procedure, for example, through a MAC-CE command. If a SCell 102 is in the deactivated (or inactive) status, the CC (s) or BWP (s) of the SCell 102 are not in use, and the first device 110 may stop receiving signals and stop transmission on the SCell 102.
  • a SCell 102 if being activated, may be either in a regular status or a dormant status. Particularly, if a SCell 102 is in the regular status, the first device 110 may perform normal communication with the second device 120 via this SCell 102, including transmission and reception of control information (e.g., in PDCCH) and user data (e.g., PDSCH) .
  • a regular status may also be referred to as a normal active status, a working status, an operating status, or a similar status. These terms are used interchangeably herein. If a SCell 102 is in the dormant status, the first device 110 may stop monitoring control information and/or stop PDSCH processing engine for the SCell and thus may not perform actual communication.
  • the first device 110 shall maintain synchronization and automatic gain control running and may perform channel status information (CSI) measurements on the dormant SCell 102.
  • CSI channel status information
  • an activated SCell 102 may be switched more quickly from the dormant status to the regular status as compared with a deactivated Scell being switched from the deactivated status to the activated status.
  • a dormant status may also be referred to as a sleeping status, a less-active status, an abnormal (or unusual) active status, or a similar status. These terms are used interchangeably herein.
  • a status of a SCell 102 may be transitioned between a deactivated status and an activated status or between a dormant status and a regular status.
  • the second device 120 may control one or more of the configured SCell (s) 102 of the first device 110 to switch between the dormant status and the regular status if traffic to be communicated is arriving with lower periodicity and switch between the deactivated status and the activated status if traffic to be communicated to first device 110 is arriving with high periodicity.
  • the dormant status on an activated cell enables less power saving compared to in the regular status.
  • the second device 120 may determine to switch one or more SCells 102 of the first device 110 to be the regular status from the current dormant status, and/or switch one or more SCells 102 to be the dormant status from the current regular status. If the second device 120 determines that at least one SCell is to be changed, for example, to be switched from the regular status to the dormant status and/or from the dormant status to the regular status, the second device 120 configures 210 control information to include a cell indication in such a way that the control information can be used for dormancy control of a SCell 102. The control information is to be transmitted to the first device 110 via a scheduling cell in a regular status.
  • a scheduling cell may be any cell configured to the first device 110 and is currently in a regular status such that the first device 110 will monitor control information transmitted by the second device 120 for this cell.
  • the scheduling cell is the PCell 101 configured to the first device 110 as the Pcell 101 may always be activated and in a regular status.
  • the scheduling cell may also be an activated Scell 102 in a regular status that is configured to the first device 110.
  • the cell indication in the control information may be configured by the second device 120 to be different from an indication of the scheduling cell.
  • the cell indication may be included in a cell indication field (CIF) of the control information.
  • the CIF may be of a size of several bits. In an example, the CIF includes three bits. Thus, different combinations of values of the bits (for example, 000, 0001, 0010, and the like) may be used to represent different cell indications.
  • the PCell 101 and the one or more SCells 102 configured to the first device 110 may be assigned with respective different cell indications.
  • the cell indication included in the control information for dormancy control of the SCell (s) 102 may at least partially mismatch with the indication of the scheduling cell.
  • the control information may be in any predefined format, depending on the communication conditions between the second device 120 and the first device 110.
  • the control information may also be referred to as downlink control information (DCI) .
  • DCI downlink control information
  • Some example formats of the control information may include DCI format 0_0, DCI format 0_1, DCI format 1_0, DCI format 1_1, or any other possible format.
  • the control information may include one or more fields for conveying other information, which will also be discussed in detail below.
  • the second device 120 transmits 215 the control information to the first device 110 via the scheduling cell.
  • the first device 110 thus receives 220 the control information via the scheduling cell.
  • the first device 110 may monitor the control information on the CC or BWP (s) associated with the scheduling cell and then detect the control information.
  • the control information may be transmitted in a physical control channel to the first device 110, such as a physical downlink control channel (PDCCH) .
  • the control information may be transmitted in a unicast format to the first device 110 via the scheduling cell.
  • the control information may be scrambled with a radio network temporary identity (RNTI) by the second device 120 when transmitting the control information.
  • the RNTI may be a cell-RNTI (C-RNTI) , which may be assigned when the first device 110 establishes a network connection with the second device 120.
  • C-RNTI may be specific to the first device 110, used for all serving cells of the first device 110 (the PCell 101 and the SCell (s) 102) .
  • the scheduling cell may be assigned with a new RNTI, while the rest of the serving cells use a UE-specific C-RNTI for unicast messages.
  • the first device 110 may receive a signal on the PDCCH and de-scramble the received signal with the RNTI to obtain the control information.
  • the first device 110 may be assigned a plurality of possible RNTIs and may try several times to correctly de-scramble the received signal with the same RNTI used by the second device 120.
  • the second device 120 may specifically scramble the control information with a new RNTI (referred to as a dormancy RNTI) which is different from the C-RNTI assigned for the serving cells of the first device 110.
  • a dormancy RNTI a new RNTI
  • the first device 110 may be able to identify the control information for dormancy control of the SCell (s) 102 if the control information can be de-scrambled successfully from the received signal using the dormancy RNTI.
  • the first device 110 Upon receipt of the control information via the scheduling cell, the first device 110 determines 225 whether at least part of the cell indication matches at least part of an indication of the scheduling cell. To differentiate the control information for dormancy control of the SCell (s) 102 from normal control information for the scheduling cell, the cell indication included in the control information may be different the indication of the scheduling cell. As such, if the first device 110 determines a mismatch between the at least part of the cell indication and the at least part of the indication of the scheduling cell, which means that the two indications are different, the first device 110 performs 230 status switching of at least one SCell 102 between a regular status and a dormant status based on the control information. Depending on the configuration of the control information, the status switching may be performed in a variety of different ways.
  • the cell indication in the control information may be configured by the second device 120 as a predetermined cell indication that is different from any indication of a cell (either a PCell 101 or a SCell 102) configured to the first device 110.
  • a predetermined cell indication may be considered as being corresponding to a virtual cell that is other than a cell configured to the first device 110.
  • one or more values in the CIF may be reserved to be used as the predetermined cell indications for the virtual cells, instead of being assigned to the PCell 101 or the SCell (s) 102 of the first device 110.
  • One or more predetermined cell indications corresponding to one or more virtual cells may be configured by the second device 120 to the first device 110 in order to indicate different dormancy control schemes for the SCell (s) 102.
  • the predetermined cell indication (s) may be, for example, configured via a message CrossCarrierSchedulingConfig or any other message. If the first device 110 receives the control information including one of the predetermined cell indication (s) corresponding to a virtual cell, the first device 110 may determine that the received control information can be used for dormancy control of one or more SCells 102.
  • a specific predetermined indication may be configured as the cell indication in the control information.
  • the first predetermined indication may be used to indicate that a following field or all the remaining field of the control information includes status information used for configuring one or more statuses of one or more SCell (s) 102. That is, the control information may include the cell indication and the status information.
  • Fig. 3A shows an example of such control information 311, which includes a value of CIF indicating the first predetermined indication and status information indicating one or more configured statuses of one or more individual SCells 102.
  • the second device 120 may specifically configure a status of one or more SCells 102 in the status information to be either the regular status or the dormant status.
  • the status information may include a bit map with each bit corresponding to one SCell 102 configured to the first device 110. A different value of the bit may indicate a specific status. For example, a bit with a value of “1” may indicate that the corresponding SCell 102 is configured to be in a regular status while a bit of a value of “1” may indicate that the corresponding SCell 102 is configured to be in a dormant status.
  • the size of the status information may depend on the number of SCell (s) 102 configured to the first device 110.
  • the status information may be included in a legacy field of the control information 311, such as in a resource allocation (RA) information element (IE) field in the control information 311. If the second device 120 decides to change the status of one or more SCells 102, it may only need to change the value of the corresponding bits in the status information.
  • RA resource allocation
  • IE information element
  • the first device 110 upon receipt of the control information 311, may determine whether at least part of the cell indication in the control information 311 (for example, a value of CIF in the control information 311) matches with the at least part of the first predetermined indication. If the first device 110 determines that the at least part of the cell indication matches with the at least part of the first predetermined indication, for example, the two indications are detected to be the same (e.g., both are a bit sequence of “111” ) , the first device 110 may further obtain the status information from the control information 311 such as the status information in Fig. 3A. Since the status information indicates the configured status of one or more SCells 102, the first device 110 may perform the status switching of the one or more SCells 102 based on the status information.
  • the control information 311 for example, a value of CIF in the control information 3111
  • the first device 110 may switch this SCell 102 from the regular status to be the dormant status. Likewise, if a SCell 102 is in a dormant status and the status information indicates that this SCell 102 is to be configured to a regular status, the first device 110 may perform the status switching accordingly. In some cases, the status information includes the configured status of each SCell 102 configured to the first device 110 even if a status of some SCell 102 does not need to be changed. If the status information indicates that a SCell 102 is set to a regular status and the SCell 102 is currently in the regular status, the first device 110 may remain the status of this SCell 102 as unchanged.
  • control information 311 includes no scheduling information to the scheduling cell, in some example embodiments, in addition to the control information 311, the second device 120 transmits further control information intended for the scheduling information, such as control information 312 shown in Fig. 3A.
  • the control information 312 may be normal control information for the scheduling cell, which may include the indication of the scheduling cell, for example, in the CIF, and scheduling information for transmission between the first and second devices 110, 120 via the scheduling cell.
  • the scheduling information may include, for example, resource allocation (RA) for one or more BWPs of the scheduling information, and/or other information configured by the second device 120 for transmission from the first device 110 to the second device 120 or in a reverse direction.
  • the first device 110 may apply the control information 312 for transmission between the first device 110 and the second device 120 via the scheduling cell.
  • RA resource allocation
  • a further specific predetermined indication may be configured as the cell indication in the control information, indicating switching statuses of all the SCells 102 configured to the first device 110 into the regular status. If the second device 120 determines that one or more of the configured SCells 102 is to be switched to the regular status, it may configure the cell indication in the control information to be the second predetermined indication.
  • the second predetermined indication may be different from the first predetermined indication, and also different from indications of the cells configured to the first device 110 for communication.
  • the second indication may be set as a bit sequence of “000. ”
  • Fig. 3B shows an example of such control information 320 where the CIF includes a value indicating the second predetermined indication.
  • the first device 110 may determine whether at least part of the cell indication matches with at least part of a second predetermined indication. If the first device 110 determines that the at least part of the cell indication matches with the at least part of the second predetermined indication, for example, the two indications are detected to be the same (e.g., both are a bit sequence of “000” ) , the first device 110 may directly deactivate the dormant status of a set of configured SCells 102 and switch the set of SCells 102 all into the regular status. That is, regardless of the number of SCells 102 configured to the first device 110 and no matter in which status an individual Scell 102 is, they may all be set to the regular status.
  • a single cell indication in the control information can be used to control the status switching (i.e., switching all the configured SCells 102 into the regular status) .
  • other fields of the control information 320 may be used to carry normal scheduling information for the scheduling cell.
  • the second device 120 may configure normal scheduling information for the scheduling cell into the control information 320.
  • the first device 110 may also obtain the scheduling information from the control information 320 and apply the scheduling information for transmission between the first device 110 and the second device 120 via the scheduling cell.
  • the second predetermined indication By means of the second predetermined indication, no additional control information for the scheduling cell is required to be transmitted, thereby reducing the message overhead between the first and second devices and improving the resource utilization.
  • activation flexibility from dormancy is jeopardized, controlling the status of the SCells in batch can be beneficial in the cases where a larger amount of burst data is to be communicated between the two devices.
  • another predetermined indication may be included in the control information, indicating switching statuses of all the SCells 102 configured to the first device 110 into the dormant status.
  • the third predetermined indication may be included in the control information if the second device 120 determines to control the first device 110 to switch all the SCells 102 to the regular status.
  • the control information may also include scheduling information intended for the scheduling cell. The first device 110, after detecting the match of the cell indication in the control information and the third predetermined indication, may switch all the configured SCells 102 into the dormant status and apply the scheduling information for transmission via the scheduling cell.
  • the second device 120 may configure the cell indication to be an indication of a target SCell 102 if the second device 120 decides to switch the status of this target SCell 102 between the regular status and the dormant status.
  • the target SCell 102 may be currently in the regular status and the second device 120 decides to switch the status of the target SCell 102 to be the dormant status, or the target SCell 102 is in the dormant status and the second device 120 decides to switch the status of the target SCell 102 to be the regular status.
  • the second device 120 may configure the cell indication to be an indication of the target SCell 102.
  • Fig. 3C shows an example of such control information 330 where the CIF includes a value indicating the indication of the target SCell 102.
  • the first device 110 may determine whether at least part of the cell indication matches with at least part of an indication of the indication of the target SCell 102. If the first device 110 determines that the at least part of the cell indication matches with the at least part of the indication of the indication of the target SCell 102, for example, the two indications are detected to be the same, the first device 110 may perform the status switching of the target SCell 102.
  • the target SCell 102 may not be cross-carrier scheduled or the control information may be scrambled with a RNTI other than C-RNTI, for example, the dormancy RNTI. As such, the first device 110 can determine that the control information 330 is used for dormancy control of this target SCell 102 instead of carrier scheduling.
  • the first device 110 may perform the status switching of the target SCell 102 based on the current status of this SCell 102. Specifically, if the current status of the target SCell 102 is in the dormant status, the first device 110 may switch the target SCell 102 from the dormant status to the regular status. If the current status of the target SCell 102 is in the regular status, the first device 110 may switch the target SCell 102 from the regular status to the dormant status. In this way, a single cell indication in the control information can be used to individually change a status of a specific SCell.
  • control information 330 may be used to carry normal scheduling information.
  • the second device 120 may configure normal scheduling information for the scheduling cell into the control information 330.
  • the first device 110 may also obtain the scheduling information from the control information 330 and apply the scheduling information for transmission between the first device 110 and the second device 120 via the scheduling cell.
  • the second device 120 may configure scheduling information for the target SCell 102 into the control information 330.
  • the first device 110 may apply the scheduling information for transmission between the first device 110 and the second device 120 via the target SCell 102.
  • the second device 120 may transmit further control information for the scheduling cell.
  • control information By means of incorporating the indication of the target SCell into the control information, it is flexible to control dormancy of an individual SCell. Additional control information for the scheduling cell may not be required to be transmitted in some cases where the scheduling information for the scheduling cell is transmitted together with the indication of the target SCell. In some other cases, the second device 120 may directly schedule the activated target SCell 102 through the same control information.
  • the status switching of the SCell (s) may be performed based on the cell indication (and probably the status information in the example of Fig. 3A) .
  • the cell indication can specifically indicate to the first device 110 that the control information is used for dormancy control of the SCell (s)
  • the control information may be scrambled with C-RNTI of the scheduling cell. No new RNTIs may be assigned other than those assigned for the PCell and SCell (s) configured to the first device. As such, the first device may not need to extend the search space for de-scrambling the control information.
  • the format sizes of the control information may be the same as those of normal control information for the scheduling cell.
  • the control information may be scrambled with a special dormancy RNTI such that the first device 110 can identify the control information as being used to control status switching of one or more SCell 102 after de-scrambling the control information from a received signal from the second device 120 successfully.
  • Fig. 3D illustrates an example of such control information 340 which is scrambled with the dormancy RNTI.
  • the control information 340 may be dedicated for dormancy control of one or more SCell (s) 102.
  • normal control information used for data scheduling of one or more SCells 102 may also be transmitted via the scheduling cell.
  • the dormancy RNTI may be also used to differentiate the control information transmitted via the scheduling cell for dormancy control of the one or more SCells 102 from control information for data scheduling of the one or more SCells 10 that is transmitted via the scheduling cell.
  • the control information 340 may include status information used for configuring one or more statuses of one or more SCell (s) 102.
  • the CIF of the control information 340 may include an indication of a target SCell 102 which is to be switched between the dormant status and the regular status.
  • the control information 340 may be configured to indicate one or more indications of one or more SCells 102 and their configured statuses. For one or more other SCells 102 statuses of which may not need to be changed, their indications and the configured statuses may not be included in the control information 340.
  • the status information may be similar as the status information as described with reference to Fig.
  • control information scrambled with the dormancy RNTI may be configured in various other manners to control a status of one or more SCells 102 as needed.
  • the control information 340 may not include a CIF to specifically indicate a cell. The status information itself may be enough to implement the dormancy control of the SCells 102.
  • dormancy control is based on reusing control information of a scheduling cell in a regular status, and can be applied in various communication scenarios, including a scenario where the first device is configured at least with an initial BWP and one dormancy BWP, and another scenario where the first device is configured with a single BWP and the dormant BWP will be the same as the configured normal BWP except that PDCCH monitoring configuration and CSI configuration or RRC configuration change happens within the single BWP.
  • Fig. 4 shows a flowchart of an example method 400 implemented at a terminal device in accordance with some example embodiments of the present disclosure. For the purpose of discussion, the method 400 will be described from the perspective of the first device 110 with reference to Fig. 1.
  • the first device 110 receives, via a scheduling cell in a regular status, control information from a second device 120.
  • the control information includes a cell indication.
  • the first device 110 determines whether at least part of the cell indication matches at least part of an indication of the scheduling cell. In accordance with a determination of a mismatch between the at least part of the cell indication and the at least part of the indication of the scheduling cell, at block 430, the first device 110 performs status switching of at least one SCell 102 between a regular status and a dormant status based on the control information.
  • the first device 110 may perform transmission between the first device 110 and the second device 120 based on the control information.
  • the first device 110 may determine whether the at least part of the cell indication matches with at least part of a first predetermined indication, the first predetermined indication corresponding to a first virtual cell that is other than a cell configured to the first device 110. In accordance with a determination that the at least part of the cell indication matches with the at least part of the first predetermined indication, the first device 110 may obtain, from the control information, status information indicating a configured status of each of the at least one SCell, and then switch the each of the at least one SCell into the regular status or the dormant status based on the status information.
  • the at least one SCell is from a set of SCells configured to the first device 110.
  • the first device 110 may determine whether the at least part of the cell indication matches with at least part of a second predetermined indication, the second predetermined indication corresponding to a second virtual cell that is other than a cell configured to the first device 110. In accordance with a determination that the at least part of the cell indication matches with the at least part of the second predetermined indication, the first device 110 may switch the set of SCells into the regular status.
  • the first device 110 may determine that the at least part of the cell indication matches with at least part of an indication of a target SCell of the at least one SCell, and determine a current status of the target SCell. In case the current status of the target SCell is the dormant status, the first device 110 may switch the target SCell from the dormant status to the regular status. In case the current status of the target SCell is the regular status, the first device 110 may switch the target SCell from the regular status to the dormant status.
  • control information may further comprise scheduling information.
  • the first device 110 may apply the scheduling information for transmission between the first device 110 and the second device 120 via the scheduling cell.
  • the first device 110 in accordance with the target SCell being switched from the dormant status to the regular status, the first device 110 may apply the scheduling information for transmission between the first device 110 and the second device 120 via the target SCell.
  • control information may be scrambled with a dormancy radio network temporary identity that is different from a cell-radio network temporary identity associated with a cell configured to the first device 110.
  • the first device 110 may obtain status information from the control information, the status information indicating a configured status of each of the at least one SCell. The first device 110 may switch the each of the at least one SCell into the regular status or the dormant status based on the status information.
  • control information may be received from the second device 120 in a unicast format.
  • the cell indication may be comprised in a carrier indicator field of the control information.
  • the scheduling cell may comprise at least one of a PCell or a SCell configured to the first device 110.
  • the first device 110 may comprise a user equipment
  • the second device 120 may comprise a network device.
  • Fig. 5 shows a flowchart of an example method 500 implemented at a second device in accordance with some example embodiments of the present disclosure. For the purpose of discussion, the method 500 will be described from the perspective of the second device 120 with reference to Fig. 1.
  • the second device 120 determines whether at least one SCell is to be switched between a regular status and a dormant status. In accordance with a determination that the at least one SCell is to be switched between the regular status and the dormant status, at block 520, the second device 120 configures control information to include a cell indication, at least part of the cell indication mismatching with at least part of an indication of a scheduling cell in a regular status. At block 530, the second device 120 transmits, via the scheduling cell, the control information to the first device 110. In some example embodiments, if no SCell is determined to be switched between the regular status and the dormant status, the second device 120 may configure and transmit normal control information intended for the scheduling cell.
  • the second device 120 may determine status information indicating a configured status of the at least one SCell; configure the cell indication to be a first predetermined indication, the first predetermined indication corresponding to a first virtual cell that is other than a cell configured to the first device 110; and configure the control information to include the cell indication and the status information.
  • the at least one SCell may be from a set of SCells configured to the first device 110.
  • the second device 120 may configure the cell indication to be a second predetermined indication such that the set of SCells is switched into the regular status based on the second predetermined indication, the second predetermined indication corresponding to a second virtual cell that is other than a cell configured to the first device 110.
  • the second device 120 may configure the cell indication to be an indication of the target SCell.
  • the second device 120 may configure the control information to include scheduling information for transmission between the first device 110 and the second device 120 via the scheduling cell.
  • the second device 120 may configure the control information to include scheduling information for transmission between the first device 110 and the second device 120 via the target SCell.
  • the second device 120 may configure the control information to include status information to indicate a configured status of each of the at least one SCell; and scramble the control information with a dormancy radio network temporary identity that is different from a cell-radio network temporary identity associated with a cell configured to the first device 110.
  • the second device 120 may transmit the control information in a unicast format.
  • the cell indication may be comprised in a carrier indicator field of the control information.
  • the scheduling cell may comprise at least one of a PCell or a SCell configured to the first device 110.
  • the first device 110 may comprise a user equipment
  • the second device 120 may comprise a network device.
  • a first apparatus capable of performing any of the method 400 may comprise means for performing the respective steps of the method 400.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the first apparatus comprises means for receiving, via a scheduling cell in a regular status, control information from a second apparatus, the control information comprising a cell indication; determining whether at least part of the cell indication matches at least part of an indication of the scheduling cell; and performing in accordance with a determination of a mismatch between the at least part of the cell indication and the at least part of the indication of the scheduling cell, status switching of at least one secondary cell between a regular status and a dormant status based on the control information.
  • the means for performing the status switching of the at least one secondary cell comprises: means for determining whether the at least part of the cell indication matches with at least part of a first predetermined indication, the first predetermined indication corresponding to a first virtual cell that is other than a cell configured to the first apparatus; means for in accordance with a determination that the at least part of the cell indication matches with the at least part of the first predetermined indication, obtaining, from the control information, status information indicating a configured status of each of the at least one secondary cell; and means for switching the each of the at least one secondary cell into the regular status or the dormant status based on the status information.
  • the at least one secondary cell is from a set of secondary cells configured to the first apparatus.
  • the means for performing the status switching of the at least one secondary cell comprises: means for determining whether the at least part of the cell indication matches with at least part of a second predetermined indication, the second predetermined indication corresponding to a second virtual cell that is other than a cell configured to the first apparatus; and means for switching in accordance with a determination that the at least part of the cell indication matches with the at least part of the second predetermined indication, the set of secondary cells into the regular status.
  • the means for performing the status switching of the at least one secondary cell comprises: means for determining that the at least part of the cell indication matches with at least part of an indication of a target secondary cell of the at least one secondary cell; means for determining a current status of the target secondary cell; means for in case the current status of the target secondary cell is the dormant status, switching the target secondary cell from the dormant status to the regular status; and means for in case the current status of the target secondary cell is the regular status, switching the target secondary cell from the regular status to the dormant status.
  • control information further comprises scheduling information.
  • the first apparatus may further comprise means for applying the scheduling information for transmission between the first apparatus and the second apparatus via the scheduling cell.
  • control information further comprises scheduling information.
  • the first apparatus may further comprise means for applying in accordance with the target secondary cell being switched from the dormant status to the regular status, the scheduling information for transmission between the first apparatus and the second apparatus via the target secondary cell.
  • control information is scrambled with a dormancy radio network temporary identity that is different from a cell-radio network temporary identity associated with a cell configured to the first apparatus.
  • the means for performing the status switching of the at least one secondary cell comprises: means for obtaining status information from the control information, the status information indicating a configured status of each of the at least one secondary cell; and means for switching the each of the at least one secondary cell into the regular status or the dormant status based on the status information.
  • control information is received from the second apparatus in a unicast format.
  • cell indication is comprised in a carrier indicator field of the control information.
  • the scheduling cell comprises at least one of a primary cell or a secondary cell configured to the first apparatus.
  • the first apparatus comprises a user equipment
  • the second apparatus comprises a network device.
  • the first apparatus further comprises means for performing other steps in some example embodiments of the method 400.
  • the means comprises at least one processor; and at least one memory including computer program code, the at least one memory and computer program code configured to, with the at least one processor, cause the performance of the first apparatus.
  • a second apparatus capable of performing any of the method 500 may comprise means for performing the respective steps of the method 500.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the second apparatus comprises means for: determining whether at least one secondary cell is to be switched between a regular status and a dormant status; in accordance with a determination that the at least one secondary cell is to be switched between the regular status and the dormant status, configuring control information to include a cell indication, at least part of the cell indication mismatching with at least part of an indication of a scheduling cell in a regular status; and transmitting, via the scheduling cell, the control information to the first apparatus.
  • the means for configuring the control information comprises: means for determining status information indicating a configured status of at least one of the set of secondary cells; means for configuring the cell indication to be a first predetermined indication, the first predetermined indication corresponding to a first virtual cell that is other than a cell configured to the first apparatus; and means for configuring the control information to include the cell indication and the status information.
  • the at least one secondary cell is from a set of secondary cells configured to the first apparatus.
  • the means for configuring the control information comprises: means for configuring the cell indication to be a second predetermined indication such that the set of secondary cells is switched into the regular status based on the second predetermined indication, the second predetermined indication corresponding to a second virtual cell that is other than a cell configured to the first apparatus.
  • the means for configuring the control information comprises: means for configuring, in accordance with a determination that a target secondary cell of the at least one secondary cell is to be switched from the regular status to the dormant status or from the dormant status to the regular status, the cell indication to be an indication of the target secondary cell.
  • the second apparatus further comprises means for configure the control information to include scheduling information for transmission between the first apparatus and the second apparatus via the scheduling cell.
  • the second apparatus further comprises means for configuring in accordance with a determination that the target secondary cell is to be switched from the dormant status to the regular status, the control information to include scheduling information for transmission between the first apparatus and the second apparatus via the target secondary cell.
  • the means for configuring the control information comprises means for configuring the control information to include status information to indicate a configured status of each of the at least one secondary cell; and means for scrambling the control information with a dormancy radio network temporary identity that is different from a cell-radio network temporary identity associated with a cell configured to the first apparatus.
  • the cell indication is comprised in a carrier indicator field of the control information.
  • the scheduling cell comprises at least one of a primary cell or a secondary cell configured to the first apparatus.
  • the first apparatus comprises a user equipment
  • the second apparatus comprises a network device.
  • the second apparatus further comprises means for performing other steps in some example embodiments of the method 500.
  • the means comprises at least one processor; and at least one memory including computer program code, the at least one memory and computer program code configured to, with the at least one processor, cause the performance of the second apparatus.
  • Fig. 6 is a simplified block diagram of a device 600 that is suitable for implementing example embodiments of the present disclosure.
  • the device 600 may be provided to implement the communication device, for example the first device 110 or the second device 120 as shown in Fig. 1.
  • the device 600 includes one or more processors 610, one or more memories 620 coupled to the processor 610, and one or more communication modules 640 coupled to the processor 610.
  • the communication module 640 is for bidirectional communications.
  • the communication module 640 has at least one antenna to facilitate communication.
  • the communication interface may represent any interface that is necessary for communication with other network elements.
  • the processor 610 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 600 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • the memory 620 may include one or more non-volatile memories and one or more volatile memories.
  • the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 624, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , and other magnetic storage and/or optical storage.
  • the volatile memories include, but are not limited to, a random access memory (RAM) 622 and other volatile memories that will not last in the power-down duration.
  • a computer program 630 includes computer executable instructions that are executed by the associated processor 610.
  • the program 630 may be stored in the memory, e.g., ROM 624.
  • the processor 610 may perform any suitable actions and processing by loading the program 630 into the RAM 622.
  • the example embodiments of the present disclosure may be implemented by means of the program 630 so that the device 600 may perform any process of the disclosure as discussed with reference to Figs. 2 to 5.
  • the example embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
  • the program 630 may be tangibly contained in a computer readable medium which may be included in the device 600 (such as stored in the memory 620) or other storage devices that are accessible by the device 600.
  • the device 600 may load the program 630 from the computer readable medium to the RAM 622 for execution.
  • the computer readable medium may include any types of tangible non-volatile storage, such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like.
  • Fig. 7 shows an example of the computer readable medium 700 in form of CD or DVD.
  • the computer readable medium has the program 630 stored thereon.
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the method 600 as described above with reference to Figs. 2 to 5.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the computer program code or related data may be carried by any suitable carrier to enable the device, apparatus or processor to perform various processes and operations as described above.
  • Examples of the carrier include a signal, computer readable medium, and the like.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.

Abstract

A status control method of a secondary cell (SCell) is disclosed. A first apparatus receives, via a scheduling cell in a regular status, control information from a second apparatus, the control information comprising a cell indication (410). The first apparatus determines whether at least part of the cell indication matches at least part of an indication of the scheduling cell (420). In accordance with a determination of a mismatch between the at least part of the cell indication and the at least part of the indication of the scheduling cell, the first apparatus performs status switching of at least one SCell between a regular status and a dormant status based on the control information (430). According to this method, the reuse of the control information for the scheduling cell such as the PCell can enable efficient dormancy control of the SCell(s).

Description

STATUS CONTROL OF SECONDARY CELL FIELD
Embodiments of the present disclosure generally relate to the field of telecommunication and in particular, to apparatuses, methods, and computer readable medium for status control of a secondary cell (s) .
BACKGROUND
In the communications arena, there is a constant evolution ongoing in order to provide efficient and reliable solutions for utilizing wireless communication networks. Each new generation has it owns technical challenges for handling the different situations and processes that are needed to connect and serve devices connected to the wireless network. To meet the demand for wireless data traffic having increased since deployment of 4th generation (4G) communication systems, efforts have been made to develop improved 5th generation (5G) or pre-5G communication systems. The new communication systems can support various types of service applications for user equipment.
In some systems, network connections may be established using a relatively wide frequency bandwidth. A network device may configure one or more serving cells to serve user equipment, with each serving cell corresponding to at least one portion of the frequency bandwidth. The serving cells may include a primary cell (PCell) operating on a primary frequency portion and one or more secondary cells (SCell) operating on one or more secondary frequency portions.
SUMMARY
In general, example embodiments of the present disclosure provide a solution for status control of a SCell (s) .
In a first aspect, there is provided a first apparatus. The first apparatus comprises at least one processor; and at least one memory including computer program code; where the at least one memory and the computer program code are configured to, with the at least one processor, cause the first apparatus to receive, via a scheduling cell in a regular status,  control information from a second apparatus, the control information comprising a cell indication, determine whether at least part of the cell indication matches at least part of an indication of the scheduling cell, and in accordance with a determination of a mismatch between the at least part of the cell indication and the at least part of the indication of the scheduling cell, perform status switching of at least one secondary cell between a regular status and a dormant status based on the control information.
In a second aspect, there is provided a second apparatus. The second apparatus comprises at least one processor; and at least one memory including computer program code; where the at least one memory and the computer program code are configured to, with the at least one processor, cause the second apparatus to determine whether at least one secondary cell is to be switched between a regular status and a dormant status, in accordance with a determination that the at least one secondary cell is to be switched between the regular status and the dormant status, configure control information to include a cell indication, at least part of the cell indication mismatching with at least part of an indication of a scheduling cell in a regular status, and transmit, via the scheduling cell, the control information to the first apparatus.
In a third aspect, there is provided a method. The method comprises receiving, at a first apparatus via a scheduling cell in a regular status, control information from a second apparatus, the control information comprising a cell indication, determining whether at least part of the cell indication matches at least part of an indication of the scheduling cell, and in accordance with a determination of a mismatch between the at least part of the cell indication and the at least part of the indication of the scheduling cell, performing status switching of at least one secondary cell between a regular status and a dormant status based on the control information.
In a fourth aspect, there is provided a method. The method comprises determining, at a second apparatus, whether at least one secondary cell is to be switched between a regular status and a dormant status, in accordance with a determination that the at least one secondary cell is to be switched between the regular status and the dormant status, configuring control information to include a cell indication, at least part of the cell indication mismatching with at least part of an indication of a scheduling cell in a regular status, and transmitting, via the scheduling cell, the control information to the first apparatus.
In a fifth aspect, there is provided a first apparatus. The first apparatus comprises means for: receiving, via a scheduling cell in a regular status, control information from a second apparatus, the control information comprising a cell indication; determining whether at least part of the cell indication matches at least part of an indication of the scheduling cell; and performing, in accordance with a determination of a mismatch between the at least part of the cell indication and the at least part of the indication of the scheduling cell, status switching of at least one secondary cell between a regular status and a dormant status based on the control information.
In a sixth aspect, there is provided a second apparatus. The second apparatus comprises means for: determining whether at least one secondary cell is to be switched between a regular status and a dormant status; configuring control information to include a cell indication, in accordance with a determination that the at least one secondary cell is to be switched between the regular status and the dormant status, at least part of the cell indication mismatching with at least part of an indication of a scheduling cell in a regular status; and transmitting, via the scheduling cell, the control information to the first apparatus.
In a seventh aspect, there is provided a non-transitory computer readable medium. The non-transitory computer readable medium comprises program instructions for causing an apparatus to perform at least the method according to any one of the above third and fourth aspects.
In an eighth aspect, there is provided a computer program. The computer program comprises instructions for causing an apparatus to perform at least the method according to any one of the above third and fourth aspects.
In a ninth aspect, there is provide a computer readable medium. The computer readable medium stores a program of instructions, execution of which by a processor configures an apparatus to perform at least the method according to any one of the above third and fourth aspects.
It is to be understood that the summary section is not intended to identify key or essential features of embodiments of the present disclosure, nor is it intended to be used to limit the scope of the present disclosure. Other features of the present disclosure will become easily comprehensible through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Some example embodiments will now be described with reference to the accompanying drawings, where:
Fig. 1 illustrates an example communication network in which example embodiments of the present disclosure may be implemented;
Fig. 2 illustrates a signaling flow of a process for status control of a secondary cell according to some example embodiments of the present disclosure;
Figs. 3A-3D illustrate examples of control information for status control according to some example embodiments of the present disclosure;
Fig. 4 illustrates a flowchart of a method implemented at a first device according to some example embodiments of the present disclosure;
Fig. 5 illustrates a flowchart of a method implemented at a second device according to some other embodiments of the present disclosure;
Fig. 6 illustrates a simplified block diagram of a device that is suitable for implementing example embodiments of the present disclosure; and
Fig. 7 illustrates a block diagram of an example computer readable medium in accordance with some example embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some example embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitation as to the scope of the disclosure. The disclosure described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
References in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
It shall be understood that although the terms “first” and “second” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments. As used herein, the term “and/or” includes any and all combinations of one or more of the listed terms.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a” , “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” , “comprising” , “has” , “having” , “includes” and/or “including” , when used herein, specify the presence of stated features, elements, and/or components etc., but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof.
As used in this application, the term “circuitry” may refer to one or more or all of the following:
(a) hardware-only circuit implementations (such as implementations in only analog and/or digital circuitry) and
(b) combinations of hardware circuits and software, such as (as applicable) :
(i) a combination of analog and/or digital hardware circuit (s) with software/firmware and
(ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an  apparatus, such as a mobile phone or server, to perform various functions) and
(c) hardware circuit (s) and or processor (s) , such as a microprocessor (s) or a portion of a microprocessor (s) , that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation.
This definition of circuitry applies to all uses of this term in this application, including in any claims. As a further example, as used in this application, the term circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware. The term circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
As used herein, the term “communication network” refers to a network following any suitable communication standards, such as New Radio (NR) , Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) and so on. Furthermore, the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) communication protocols, and/or any other protocols either currently known or to be developed in the future. Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of the present disclosure to only the aforementioned system.
As used herein, the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom. The network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR NB (also referred to as a gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth, depending on the applied  terminology and technology.
The term “terminal device” refers to any end device that may be capable of wireless communication. By way of example rather than limitation, a terminal device may also be referred to as a communication device, user equipment (UE) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) . The terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (loT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/or industrial wireless networks, and the like. In the following description, the terms “terminal device” , “communication device” , “terminal” , “user equipment” and “UE” may be used interchangeably.
Fig. 1 shows an example communication network 100 in which embodiments of the present disclosure can be implemented. The network 100 includes a first device 110 and a second device 120 that can communicate with each other. In this example, the first device 110 is illustrated as a terminal device (user equipment) , and the second device 120 is illustrated as a network device serving the terminal device.
It is to be understood that the number of network devices, terminal devices and serving cells is only for the purpose of illustration without suggesting any limitations. The network 100 may include any suitable number of network devices, terminal devices and serving cells adapted for implementing embodiments of the present disclosure. The first device 110 may sometimes be referred to as a first apparatus 110 hereinafter, and the second device 120 may sometimes be referred to as a second apparatus 120 hereinafter.
In the network 100, the first device 110 and the second device 120 can communicate data and control information to each other. In the case that the first device  110 is a terminal device and the second device 120 is a network device, a link from the second device 120 to the first device 110 is referred to as a downlink (DL) , while a link from the first device 110 to the second device 120 is referred to as an uplink (UL) . In DL, the second device 120 is a transmitting (TX) device (or a transmitter) and the first device 110 is a receiving (RX) device (or a receiver) . In UL, the first device 110 is a TX device (or a transmitter) and the second device 120 is a RX device (or a receiver) .
Depending on the communication technologies, the network 100 may be a Code Division Multiple Access (CDMA) network, a Time Division Multiple Address (TDMA) network, a Frequency Division Multiple Access (FDMA) network, an Orthogonal Frequency-Division Multiple Access (OFDMA) network, a Single Carrier-Frequency Division Multiple Access (SC-FDMA) network or any others. Communications discussed in the network 100 may use conform to any suitable standards including, but not limited to, New Radio Access (NR) , Long Term Evolution (LTE) , LTE-Evolution, LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (CDMA) , cdma2000, and Global System for Mobile Communications (GSM) and the like. Furthermore, the communications may be performed according to any generation communication protocols either currently known or to be developed in the future. Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols. The techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies. For clarity, certain aspects of the techniques are described below for LTE, and LTE terminology is used in much of the description below.
With development of communication technologies, a new generation of technology such as the fifth generation (5G) New Radio (NR) support new communication scenarios including Carrier Aggregation (CA) , Dual Connectivity (DC) , stand-alone (SA) NR-Unlicensed (NR-U) and stand-alone NR.
The network device 120 may configure one or more serving cells 101, 102-1, 102-2 to serve the first device 110, with each serving cell corresponding to at least one component carrier (CC) . Each CC may have one or more bandwidth parts (BWPs) . In some cases of CA being supported in the network 100, two or more CCs are aggregated in order to support a broader frequency bandwidth. By means of the techniques of CA, the  first device 110 may simultaneously receive or transmit on one or more CCs, depending on its capabilities. In such case, the second device 120 may provide a plurality of serving cells including a primary cell (PCell) and one or more secondary cells (SCells) for the first device 110. In the example of Fig. 1, the serving cell 101 is provided as a PCell 101 while the serving cells 102-1, 102-2 are provided as SCells 102-1, 102-2 (collectively or individually referred to as SCells) . The PCell 101 operates on a primary CC while the SCells operate on secondary CCs. From point of view of the second device 120, a Pcell of one first device 110 may be Scell for another first device 110 and vice versa.
The first device 110 can perform an initial connection establishment procedure or initiate a connection re-establishment procedure with the second device 120 via the PCell 101. A SCell 102 can provide additional radio resources for communication once the connection between the second device 120 and the first device 110 is established via the SCell 102.
Generally, a PCell configured to a first device may not be deactivated in order to guarantee the communication. However, the first device and/or the second device may employ an activation/deactivation mechanism of a SCell to improve/optimize battery or power consumption of the first device. When the first device is configured with one or more SCells, the first device may activate or deactivate at least one of the one or more Scells, for example, through a medium access control-control element (MAC-CE) command. When a SCell is deactivated to be in an OFF status (or deactivated or inactive status) , the first device may stop receiving signals and stop transmission on the SCell. An activation procedure employing an activation command may be needed to activate the SCell to be in an ON status (or activated status) . The activation procedure may involve radio frequency adjustment, DL synchronization, and so on, which may take a relatively long time period (hundreds of ms in some cases) . Such latency may significantly affect the communication performance when there is a larger amount of data to be communicated between the first and second devices.
Currently, it has been proposed to introduce a dormant status for an activated SCell. A Scell, upon being activated, may be set to either a dormant status or a regular status. The first device such as the UE may not need to continuously monitor control information (e.g., information on a physical downlink control channel (PDCCH) ) for the SCell in the dormant status, and does not expect to receive physical downlink shared channel (PDSCH) for the SCell in the dormant status. However, a UE shall maintain synchronization and  automatic gain control running and may perform channel status information (CSI) measurements on the dormant SCell. As such, the dormant status provides less power saving compared to the deactivated status. On the other hand, the delay for the first device to switch a SCell from the dormant status to the regular status is much lower than switching a deactivated SCell to the regular status. As said, PDCCH is not monitored for a Scell (or monitored sparsely) in the dormant status. A solution on how to quickly activate Scell from dormant to regular status is currently missing.
One possible solution is to introduce an explicit new downlink control information (DCI) format for a network device to control dormancy of a SCell at UE. However, this may increase the number of blind decodes required by the UE to decode DCI. In addition, a new DCI format needs to be defined, which requires significant standardization and implementation effort.
According to example embodiments of the present disclosure, there is provided a solution for status control of a SCell. In this solution, control information transmitted via a scheduling cell in a regular status is reused to control status switching of at least one SCell between a dormant status and a regular status at a first device (such as UE) . A cell indication in the control information is configured by a second device (such as a network device) to be different from an indication of the scheduling cell. The first device, upon receipt of the control information via the scheduling cell, determines whether at least part of the cell indication matches with at least part of the indication of the scheduling cell. The first device performs the status switching of the at least one SCell based on the control information if a mismatch is detected. According to this solution, the reuse of the control information for the scheduling cell such as the PCell can enable efficient dormancy control of the SCell (s) . The control information can thus be transmitted in a legacy format which may not increase the blind decoding complexity for the first device and communication standardization and implementation efforts are minimal.
Example embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings. Reference is now made to Fig. 2, which shows a signaling flow of a process 200 for status control of a SCell according to some example embodiments of the present disclosure. For the purpose of discussion, the process 200 will be described with reference to Fig. 1. The process 200 may involve the first device 110 and the second device 120 as illustrated in Fig. 1.
In the process 200, the second device 120 controls dormancy or non-dormancy of one or more SCells 102 at the first device 110 via control information. The second device 120 determines 205 whether at least one SCell 102 is to be switched between a regular status and a dormant status.
The first device 110 may be configured with one or more SCells 102. A Scell 102 may be activated or deactivated via an activation/deactivation procedure, for example, through a MAC-CE command. If a SCell 102 is in the deactivated (or inactive) status, the CC (s) or BWP (s) of the SCell 102 are not in use, and the first device 110 may stop receiving signals and stop transmission on the SCell 102.
A SCell 102, if being activated, may be either in a regular status or a dormant status. Particularly, if a SCell 102 is in the regular status, the first device 110 may perform normal communication with the second device 120 via this SCell 102, including transmission and reception of control information (e.g., in PDCCH) and user data (e.g., PDSCH) . A regular status may also be referred to as a normal active status, a working status, an operating status, or a similar status. These terms are used interchangeably herein. If a SCell 102 is in the dormant status, the first device 110 may stop monitoring control information and/or stop PDSCH processing engine for the SCell and thus may not perform actual communication. However, the first device 110 shall maintain synchronization and automatic gain control running and may perform channel status information (CSI) measurements on the dormant SCell 102. As such, an activated SCell 102 may be switched more quickly from the dormant status to the regular status as compared with a deactivated Scell being switched from the deactivated status to the activated status. A dormant status may also be referred to as a sleeping status, a less-active status, an abnormal (or unusual) active status, or a similar status. These terms are used interchangeably herein.
In sum, a status of a SCell 102 may be transitioned between a deactivated status and an activated status or between a dormant status and a regular status. The second device 120 may control one or more of the configured SCell (s) 102 of the first device 110 to switch between the dormant status and the regular status if traffic to be communicated is arriving with lower periodicity and switch between the deactivated status and the activated status if traffic to be communicated to first device 110 is arriving with high periodicity. The dormant status on an activated cell enables less power saving compared to in the regular status.
The second device 120 may determine to switch one or more SCells 102 of the first device 110 to be the regular status from the current dormant status, and/or switch one or more SCells 102 to be the dormant status from the current regular status. If the second device 120 determines that at least one SCell is to be changed, for example, to be switched from the regular status to the dormant status and/or from the dormant status to the regular status, the second device 120 configures 210 control information to include a cell indication in such a way that the control information can be used for dormancy control of a SCell 102. The control information is to be transmitted to the first device 110 via a scheduling cell in a regular status. A scheduling cell may be any cell configured to the first device 110 and is currently in a regular status such that the first device 110 will monitor control information transmitted by the second device 120 for this cell. In some example embodiments, the scheduling cell is the PCell 101 configured to the first device 110 as the Pcell 101 may always be activated and in a regular status. In some example embodiments, the scheduling cell may also be an activated Scell 102 in a regular status that is configured to the first device 110.
To differentiate the control information for dormancy control of the at least one SCell 102 from normal control information for the scheduling cell, the cell indication in the control information may be configured by the second device 120 to be different from an indication of the scheduling cell. The cell indication may be included in a cell indication field (CIF) of the control information. The CIF may be of a size of several bits. In an example, the CIF includes three bits. Thus, different combinations of values of the bits (for example, 000, 0001, 0010, and the like) may be used to represent different cell indications. Generally, the PCell 101 and the one or more SCells 102 configured to the first device 110 may be assigned with respective different cell indications. In some example embodiments, the cell indication included in the control information for dormancy control of the SCell (s) 102 may at least partially mismatch with the indication of the scheduling cell.
The control information may be in any predefined format, depending on the communication conditions between the second device 120 and the first device 110. In the examples where the second device 120 is a network device and the first device 110 is a UE, the control information may also be referred to as downlink control information (DCI) . Some example formats of the control information may include DCI format 0_0, DCI format 0_1, DCI format 1_0, DCI format 1_1, or any other possible format. There may be a  variety ways to configure the control information for the purpose of dormancy control of a SCell, which will be discussed in detail below. In addition to the cell indication, the control information may include one or more fields for conveying other information, which will also be discussed in detail below.
With the control information configured, the second device 120 transmits 215 the control information to the first device 110 via the scheduling cell. The first device 110 thus receives 220 the control information via the scheduling cell. Specifically, the first device 110 may monitor the control information on the CC or BWP (s) associated with the scheduling cell and then detect the control information. In some example embodiments, the control information may be transmitted in a physical control channel to the first device 110, such as a physical downlink control channel (PDCCH) . In some example embodiments, the control information may be transmitted in a unicast format to the first device 110 via the scheduling cell.
In some example embodiments, the control information may be scrambled with a radio network temporary identity (RNTI) by the second device 120 when transmitting the control information. The RNTI may be a cell-RNTI (C-RNTI) , which may be assigned when the first device 110 establishes a network connection with the second device 120. The C-RNTI may be specific to the first device 110, used for all serving cells of the first device 110 (the PCell 101 and the SCell (s) 102) . Alternatively, the scheduling cell may be assigned with a new RNTI, while the rest of the serving cells use a UE-specific C-RNTI for unicast messages. This enables to differentiate the control information transmitted on the scheduling cell for data scheduling of the scheduling cell from the control information transmitted on the scheduling cell for any of the cross-scheduled cells. The first device 110 may receive a signal on the PDCCH and de-scramble the received signal with the RNTI to obtain the control information. The first device 110 may be assigned a plurality of possible RNTIs and may try several times to correctly de-scramble the received signal with the same RNTI used by the second device 120.
In an example embodiment, instead of using a C-RNTI associated with a cell (a PCell 101 or a SCell 102) configured to the first device 110, the second device 120 may specifically scramble the control information with a new RNTI (referred to as a dormancy RNTI) which is different from the C-RNTI assigned for the serving cells of the first device 110. By means of such a dormancy RNTI, the first device 110 may be able to identify the control information for dormancy control of the SCell (s) 102 if the control information can  be de-scrambled successfully from the received signal using the dormancy RNTI. Such example embodiment will be described in further detail below.
Upon receipt of the control information via the scheduling cell, the first device 110 determines 225 whether at least part of the cell indication matches at least part of an indication of the scheduling cell. To differentiate the control information for dormancy control of the SCell (s) 102 from normal control information for the scheduling cell, the cell indication included in the control information may be different the indication of the scheduling cell. As such, if the first device 110 determines a mismatch between the at least part of the cell indication and the at least part of the indication of the scheduling cell, which means that the two indications are different, the first device 110 performs 230 status switching of at least one SCell 102 between a regular status and a dormant status based on the control information. Depending on the configuration of the control information, the status switching may be performed in a variety of different ways.
In some example embodiments, the cell indication in the control information may be configured by the second device 120 as a predetermined cell indication that is different from any indication of a cell (either a PCell 101 or a SCell 102) configured to the first device 110. Such a predetermined cell indication may be considered as being corresponding to a virtual cell that is other than a cell configured to the first device 110. For example, in the CIFs, one or more values in the CIF may be reserved to be used as the predetermined cell indications for the virtual cells, instead of being assigned to the PCell 101 or the SCell (s) 102 of the first device 110.
One or more predetermined cell indications corresponding to one or more virtual cells may be configured by the second device 120 to the first device 110 in order to indicate different dormancy control schemes for the SCell (s) 102. The predetermined cell indication (s) may be, for example, configured via a message CrossCarrierSchedulingConfig or any other message. If the first device 110 receives the control information including one of the predetermined cell indication (s) corresponding to a virtual cell, the first device 110 may determine that the received control information can be used for dormancy control of one or more SCells 102.
In an example embodiment, a specific predetermined indication (referred to as a “first predetermined indication” ) may be configured as the cell indication in the control information. The first predetermined indication may be used to indicate that a following  field or all the remaining field of the control information includes status information used for configuring one or more statuses of one or more SCell (s) 102. That is, the control information may include the cell indication and the status information. Fig. 3A shows an example of such control information 311, which includes a value of CIF indicating the first predetermined indication and status information indicating one or more configured statuses of one or more individual SCells 102.
If the second device 120 configures the cell indication in the control information 311 to be the first predetermined indication, the second device 120 may specifically configure a status of one or more SCells 102 in the status information to be either the regular status or the dormant status. In some examples, the status information may include a bit map with each bit corresponding to one SCell 102 configured to the first device 110. A different value of the bit may indicate a specific status. For example, a bit with a value of “1” may indicate that the corresponding SCell 102 is configured to be in a regular status while a bit of a value of “1” may indicate that the corresponding SCell 102 is configured to be in a dormant status. The size of the status information may depend on the number of SCell (s) 102 configured to the first device 110. The status information may be included in a legacy field of the control information 311, such as in a resource allocation (RA) information element (IE) field in the control information 311. If the second device 120 decides to change the status of one or more SCells 102, it may only need to change the value of the corresponding bits in the status information.
The first device 110, upon receipt of the control information 311, may determine whether at least part of the cell indication in the control information 311 (for example, a value of CIF in the control information 311) matches with the at least part of the first predetermined indication. If the first device 110 determines that the at least part of the cell indication matches with the at least part of the first predetermined indication, for example, the two indications are detected to be the same (e.g., both are a bit sequence of “111” ) , the first device 110 may further obtain the status information from the control information 311 such as the status information in Fig. 3A. Since the status information indicates the configured status of one or more SCells 102, the first device 110 may perform the status switching of the one or more SCells 102 based on the status information.
Specifically, if the status information indicates that a SCell 102 is set to a regular status and the SCell 102 is currently in a dormant status, the first device 110 may switch this SCell 102 from the regular status to be the dormant status. Likewise, if a SCell 102 is  in a dormant status and the status information indicates that this SCell 102 is to be configured to a regular status, the first device 110 may perform the status switching accordingly. In some cases, the status information includes the configured status of each SCell 102 configured to the first device 110 even if a status of some SCell 102 does not need to be changed. If the status information indicates that a SCell 102 is set to a regular status and the SCell 102 is currently in the regular status, the first device 110 may remain the status of this SCell 102 as unchanged.
By means of the special first indication and the status information in the control information 311, the status of one or more individual SCells 102 can be controlled in a fine-grain manner. Since the control information 311 includes no scheduling information to the scheduling cell, in some example embodiments, in addition to the control information 311, the second device 120 transmits further control information intended for the scheduling information, such as control information 312 shown in Fig. 3A. The control information 312 may be normal control information for the scheduling cell, which may include the indication of the scheduling cell, for example, in the CIF, and scheduling information for transmission between the first and  second devices  110, 120 via the scheduling cell. The scheduling information may include, for example, resource allocation (RA) for one or more BWPs of the scheduling information, and/or other information configured by the second device 120 for transmission from the first device 110 to the second device 120 or in a reverse direction. The first device 110 may apply the control information 312 for transmission between the first device 110 and the second device 120 via the scheduling cell.
In an example embodiment, a further specific predetermined indication (referred to as a “second predetermined indication” ) may be configured as the cell indication in the control information, indicating switching statuses of all the SCells 102 configured to the first device 110 into the regular status. If the second device 120 determines that one or more of the configured SCells 102 is to be switched to the regular status, it may configure the cell indication in the control information to be the second predetermined indication. The second predetermined indication may be different from the first predetermined indication, and also different from indications of the cells configured to the first device 110 for communication. For example, the second indication may be set as a bit sequence of “000. ” Fig. 3B shows an example of such control information 320 where the CIF includes a value indicating the second predetermined indication.
Upon receipt of the control information 320, the first device 110 may determine whether at least part of the cell indication matches with at least part of a second predetermined indication. If the first device 110 determines that the at least part of the cell indication matches with the at least part of the second predetermined indication, for example, the two indications are detected to be the same (e.g., both are a bit sequence of “000” ) , the first device 110 may directly deactivate the dormant status of a set of configured SCells 102 and switch the set of SCells 102 all into the regular status. That is, regardless of the number of SCells 102 configured to the first device 110 and no matter in which status an individual Scell 102 is, they may all be set to the regular status.
In this way, a single cell indication in the control information can be used to control the status switching (i.e., switching all the configured SCells 102 into the regular status) . As such, other fields of the control information 320 may be used to carry normal scheduling information for the scheduling cell. Specifically, the second device 120 may configure normal scheduling information for the scheduling cell into the control information 320. In addition to switching the SCells 102 into the regular status, the first device 110 may also obtain the scheduling information from the control information 320 and apply the scheduling information for transmission between the first device 110 and the second device 120 via the scheduling cell.
By means of the second predetermined indication, no additional control information for the scheduling cell is required to be transmitted, thereby reducing the message overhead between the first and second devices and improving the resource utilization. Although activation flexibility from dormancy is jeopardized, controlling the status of the SCells in batch can be beneficial in the cases where a larger amount of burst data is to be communicated between the two devices.
As an alternative, another predetermined indication (for example, a third predetermined indication different from the first and second predetermined indication) may be included in the control information, indicating switching statuses of all the SCells 102 configured to the first device 110 into the dormant status. The third predetermined indication may be included in the control information if the second device 120 determines to control the first device 110 to switch all the SCells 102 to the regular status. In this example embodiment, the control information may also include scheduling information intended for the scheduling cell. The first device 110, after detecting the match of the cell indication in the control information and the third predetermined indication, may switch all  the configured SCells 102 into the dormant status and apply the scheduling information for transmission via the scheduling cell.
In a further example embodiment, instead of inserting some new predetermined indication corresponding to virtual cells into the control information, the second device 120 may configure the cell indication to be an indication of a target SCell 102 if the second device 120 decides to switch the status of this target SCell 102 between the regular status and the dormant status. The target SCell 102 may be currently in the regular status and the second device 120 decides to switch the status of the target SCell 102 to be the dormant status, or the target SCell 102 is in the dormant status and the second device 120 decides to switch the status of the target SCell 102 to be the regular status. In either case, the second device 120 may configure the cell indication to be an indication of the target SCell 102. Fig. 3C shows an example of such control information 330 where the CIF includes a value indicating the indication of the target SCell 102.
Upon receipt of the control information 330, the first device 110 may determine whether at least part of the cell indication matches with at least part of an indication of the indication of the target SCell 102. If the first device 110 determines that the at least part of the cell indication matches with the at least part of the indication of the indication of the target SCell 102, for example, the two indications are detected to be the same, the first device 110 may perform the status switching of the target SCell 102. In some example embodiments, the target SCell 102 may not be cross-carrier scheduled or the control information may be scrambled with a RNTI other than C-RNTI, for example, the dormancy RNTI. As such, the first device 110 can determine that the control information 330 is used for dormancy control of this target SCell 102 instead of carrier scheduling.
The first device 110 may perform the status switching of the target SCell 102 based on the current status of this SCell 102. Specifically, if the current status of the target SCell 102 is in the dormant status, the first device 110 may switch the target SCell 102 from the dormant status to the regular status. If the current status of the target SCell 102 is in the regular status, the first device 110 may switch the target SCell 102 from the regular status to the dormant status. In this way, a single cell indication in the control information can be used to individually change a status of a specific SCell.
Other fields of the control information 330 may be used to carry normal scheduling information. In an example embodiment, the second device 120 may  configure normal scheduling information for the scheduling cell into the control information 330. The first device 110 may also obtain the scheduling information from the control information 330 and apply the scheduling information for transmission between the first device 110 and the second device 120 via the scheduling cell. As an alternative, in the case where the target SCell 102 is switched to the regular status, the second device 120 may configure scheduling information for the target SCell 102 into the control information 330. Thus, after switching the target SCell 102 into the regular status, the first device 110 may apply the scheduling information for transmission between the first device 110 and the second device 120 via the target SCell 102. In such case, the second device 120 may transmit further control information for the scheduling cell.
By means of incorporating the indication of the target SCell into the control information, it is flexible to control dormancy of an individual SCell. Additional control information for the scheduling cell may not be required to be transmitted in some cases where the scheduling information for the scheduling cell is transmitted together with the indication of the target SCell. In some other cases, the second device 120 may directly schedule the activated target SCell 102 through the same control information.
In the example embodiments as described with reference to Figs. 3A-3C, the status switching of the SCell (s) may be performed based on the cell indication (and probably the status information in the example of Fig. 3A) . Since the cell indication can specifically indicate to the first device 110 that the control information is used for dormancy control of the SCell (s) , the control information may be scrambled with C-RNTI of the scheduling cell. No new RNTIs may be assigned other than those assigned for the PCell and SCell (s) configured to the first device. As such, the first device may not need to extend the search space for de-scrambling the control information. In some example embodiments, the format sizes of the control information may be the same as those of normal control information for the scheduling cell.
In some example embodiments, as mentioned above, the control information may be scrambled with a special dormancy RNTI such that the first device 110 can identify the control information as being used to control status switching of one or more SCell 102 after de-scrambling the control information from a received signal from the second device 120 successfully. Fig. 3D illustrates an example of such control information 340 which is scrambled with the dormancy RNTI. In this example, the control information 340 may be dedicated for dormancy control of one or more SCell (s) 102. In some cases of  cross-carrier scheduling, normal control information used for data scheduling of one or more SCells 102 may also be transmitted via the scheduling cell. The dormancy RNTI may be also used to differentiate the control information transmitted via the scheduling cell for dormancy control of the one or more SCells 102 from control information for data scheduling of the one or more SCells 10 that is transmitted via the scheduling cell.
The control information 340 may include status information used for configuring one or more statuses of one or more SCell (s) 102. The CIF of the control information 340 may include an indication of a target SCell 102 which is to be switched between the dormant status and the regular status. In some examples, the control information 340 may be configured to indicate one or more indications of one or more SCells 102 and their configured statuses. For one or more other SCells 102 statuses of which may not need to be changed, their indications and the configured statuses may not be included in the control information 340. In some other examples, the status information may be similar as the status information as described with reference to Fig. 3A, including a bit map to indicate each configured statuses of all the individual SCells 102 configured to the first device 110. It would be appreciated that the control information scrambled with the dormancy RNTI may be configured in various other manners to control a status of one or more SCells 102 as needed. In some example embodiments, the control information 340 may not include a CIF to specifically indicate a cell. The status information itself may be enough to implement the dormancy control of the SCells 102.
The example embodiments for dormancy control of one or more SCell have been described above. Such dormancy control is based on reusing control information of a scheduling cell in a regular status, and can be applied in various communication scenarios, including a scenario where the first device is configured at least with an initial BWP and one dormancy BWP, and another scenario where the first device is configured with a single BWP and the dormant BWP will be the same as the configured normal BWP except that PDCCH monitoring configuration and CSI configuration or RRC configuration change happens within the single BWP.
Fig. 4 shows a flowchart of an example method 400 implemented at a terminal device in accordance with some example embodiments of the present disclosure. For the purpose of discussion, the method 400 will be described from the perspective of the first device 110 with reference to Fig. 1.
At block 410, the first device 110 receives, via a scheduling cell in a regular status, control information from a second device 120. The control information includes a cell indication. At block 420, the first device 110 determines whether at least part of the cell indication matches at least part of an indication of the scheduling cell. In accordance with a determination of a mismatch between the at least part of the cell indication and the at least part of the indication of the scheduling cell, at block 430, the first device 110 performs status switching of at least one SCell 102 between a regular status and a dormant status based on the control information.
In some example embodiments, if the cell indication matches with the indication of the scheduling cell, which means that the control information is intended for the scheduling cell, the first device 110 may perform transmission between the first device 110 and the second device 120 based on the control information.
In some example embodiments, to perform the status switch, the first device 110 may determine whether the at least part of the cell indication matches with at least part of a first predetermined indication, the first predetermined indication corresponding to a first virtual cell that is other than a cell configured to the first device 110. In accordance with a determination that the at least part of the cell indication matches with the at least part of the first predetermined indication, the first device 110 may obtain, from the control information, status information indicating a configured status of each of the at least one SCell, and then switch the each of the at least one SCell into the regular status or the dormant status based on the status information.
In some example embodiments, the at least one SCell is from a set of SCells configured to the first device 110. In some example embodiments, to perform the status switch, the first device 110 may determine whether the at least part of the cell indication matches with at least part of a second predetermined indication, the second predetermined indication corresponding to a second virtual cell that is other than a cell configured to the first device 110. In accordance with a determination that the at least part of the cell indication matches with the at least part of the second predetermined indication, the first device 110 may switch the set of SCells into the regular status.
In some example embodiments, to perform the status switch, the first device 110 may determine that the at least part of the cell indication matches with at least part of an indication of a target SCell of the at least one SCell, and determine a current status of the  target SCell. In case the current status of the target SCell is the dormant status, the first device 110 may switch the target SCell from the dormant status to the regular status. In case the current status of the target SCell is the regular status, the first device 110 may switch the target SCell from the regular status to the dormant status.
In some example embodiments, the control information may further comprise scheduling information. In some example embodiments, the first device 110 may apply the scheduling information for transmission between the first device 110 and the second device 120 via the scheduling cell. In some example embodiments, in accordance with the target SCell being switched from the dormant status to the regular status, the first device 110 may apply the scheduling information for transmission between the first device 110 and the second device 120 via the target SCell.
In some example embodiments, the control information may be scrambled with a dormancy radio network temporary identity that is different from a cell-radio network temporary identity associated with a cell configured to the first device 110. In some example embodiments, to perform the status switching, the first device 110 may obtain status information from the control information, the status information indicating a configured status of each of the at least one SCell. The first device 110 may switch the each of the at least one SCell into the regular status or the dormant status based on the status information.
In some example embodiments, the control information may be received from the second device 120 in a unicast format.
In some example embodiments, the cell indication may be comprised in a carrier indicator field of the control information. In some example embodiments, the scheduling cell may comprise at least one of a PCell or a SCell configured to the first device 110. In some example embodiments, the first device 110 may comprise a user equipment, and the second device 120 may comprise a network device.
Fig. 5 shows a flowchart of an example method 500 implemented at a second device in accordance with some example embodiments of the present disclosure. For the purpose of discussion, the method 500 will be described from the perspective of the second device 120 with reference to Fig. 1.
At block 510, the second device 120 determines whether at least one SCell is to be switched between a regular status and a dormant status. In accordance with a  determination that the at least one SCell is to be switched between the regular status and the dormant status, at block 520, the second device 120 configures control information to include a cell indication, at least part of the cell indication mismatching with at least part of an indication of a scheduling cell in a regular status. At block 530, the second device 120 transmits, via the scheduling cell, the control information to the first device 110. In some example embodiments, if no SCell is determined to be switched between the regular status and the dormant status, the second device 120 may configure and transmit normal control information intended for the scheduling cell.
In some example embodiments, to configure the control information, the second device 120 may determine status information indicating a configured status of the at least one SCell; configure the cell indication to be a first predetermined indication, the first predetermined indication corresponding to a first virtual cell that is other than a cell configured to the first device 110; and configure the control information to include the cell indication and the status information.
In some example embodiments, the at least one SCell may be from a set of SCells configured to the first device 110. In some example embodiments, to configure the control information, the second device 120 may configure the cell indication to be a second predetermined indication such that the set of SCells is switched into the regular status based on the second predetermined indication, the second predetermined indication corresponding to a second virtual cell that is other than a cell configured to the first device 110.
In some example embodiments, to configure the control information, in accordance with a determination that a target SCell of the at least one SCell is to be switched from the regular status to the dormant status or from the dormant status to the regular status, the second device 120 may configure the cell indication to be an indication of the target SCell.
In some example embodiments, the second device 120 may configure the control information to include scheduling information for transmission between the first device 110 and the second device 120 via the scheduling cell.
In some example embodiments, to configure the control information, in accordance with a determination that the target SCell is to be switched from the dormant status to the regular status, the second device 120 may configure the control information to include scheduling information for transmission between the first device 110 and the  second device 120 via the target SCell.
In some example embodiments, the second device 120 may configure the control information to include status information to indicate a configured status of each of the at least one SCell; and scramble the control information with a dormancy radio network temporary identity that is different from a cell-radio network temporary identity associated with a cell configured to the first device 110.
In some example embodiments, the second device 120 may transmit the control information in a unicast format.
In some example embodiments, the cell indication may be comprised in a carrier indicator field of the control information. In some example embodiments, the scheduling cell may comprise at least one of a PCell or a SCell configured to the first device 110. In some example embodiments, the first device 110 may comprise a user equipment, and the second device 120 may comprise a network device.
In some example embodiments, a first apparatus capable of performing any of the method 400 (for example, the first device 110) may comprise means for performing the respective steps of the method 400. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module.
In some example embodiments, the first apparatus comprises means for receiving, via a scheduling cell in a regular status, control information from a second apparatus, the control information comprising a cell indication; determining whether at least part of the cell indication matches at least part of an indication of the scheduling cell; and performing in accordance with a determination of a mismatch between the at least part of the cell indication and the at least part of the indication of the scheduling cell, status switching of at least one secondary cell between a regular status and a dormant status based on the control information.
In some example embodiments, the means for performing the status switching of the at least one secondary cell comprises: means for determining whether the at least part of the cell indication matches with at least part of a first predetermined indication, the first predetermined indication corresponding to a first virtual cell that is other than a cell configured to the first apparatus; means for in accordance with a determination that the at least part of the cell indication matches with the at least part of the first predetermined indication, obtaining, from the control information, status information indicating a  configured status of each of the at least one secondary cell; and means for switching the each of the at least one secondary cell into the regular status or the dormant status based on the status information.
In some example embodiments, the at least one secondary cell is from a set of secondary cells configured to the first apparatus. In some example embodiments, the means for performing the status switching of the at least one secondary cell comprises: means for determining whether the at least part of the cell indication matches with at least part of a second predetermined indication, the second predetermined indication corresponding to a second virtual cell that is other than a cell configured to the first apparatus; and means for switching in accordance with a determination that the at least part of the cell indication matches with the at least part of the second predetermined indication, the set of secondary cells into the regular status.
In some example embodiments, the means for performing the status switching of the at least one secondary cell comprises: means for determining that the at least part of the cell indication matches with at least part of an indication of a target secondary cell of the at least one secondary cell; means for determining a current status of the target secondary cell; means for in case the current status of the target secondary cell is the dormant status, switching the target secondary cell from the dormant status to the regular status; and means for in case the current status of the target secondary cell is the regular status, switching the target secondary cell from the regular status to the dormant status.
In some example embodiments, the control information further comprises scheduling information. In some example embodiments, the first apparatus may further comprise means for applying the scheduling information for transmission between the first apparatus and the second apparatus via the scheduling cell.
In some example embodiments, the control information further comprises scheduling information. In some example embodiments, the first apparatus may further comprise means for applying in accordance with the target secondary cell being switched from the dormant status to the regular status, the scheduling information for transmission between the first apparatus and the second apparatus via the target secondary cell.
In some example embodiments, the control information is scrambled with a dormancy radio network temporary identity that is different from a cell-radio network temporary identity associated with a cell configured to the first apparatus. In some  example embodiments, the means for performing the status switching of the at least one secondary cell comprises: means for obtaining status information from the control information, the status information indicating a configured status of each of the at least one secondary cell; and means for switching the each of the at least one secondary cell into the regular status or the dormant status based on the status information.
In some example embodiments, the control information is received from the second apparatus in a unicast format. In some example embodiments, the cell indication is comprised in a carrier indicator field of the control information. In some example embodiments, the scheduling cell comprises at least one of a primary cell or a secondary cell configured to the first apparatus. In some example embodiments, the first apparatus comprises a user equipment, and the second apparatus comprises a network device.
In some example embodiments, the first apparatus further comprises means for performing other steps in some example embodiments of the method 400. In some example embodiments, the means comprises at least one processor; and at least one memory including computer program code, the at least one memory and computer program code configured to, with the at least one processor, cause the performance of the first apparatus.
In some example embodiments, a second apparatus capable of performing any of the method 500 (for example, the second device 120) may comprise means for performing the respective steps of the method 500. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module.
In some example embodiments, the second apparatus comprises means for: determining whether at least one secondary cell is to be switched between a regular status and a dormant status; in accordance with a determination that the at least one secondary cell is to be switched between the regular status and the dormant status, configuring control information to include a cell indication, at least part of the cell indication mismatching with at least part of an indication of a scheduling cell in a regular status; and transmitting, via the scheduling cell, the control information to the first apparatus.
In some example embodiments, the means for configuring the control information comprises: means for determining status information indicating a configured status of at least one of the set of secondary cells; means for configuring the cell indication to be a first predetermined indication, the first predetermined indication corresponding to a first virtual  cell that is other than a cell configured to the first apparatus; and means for configuring the control information to include the cell indication and the status information.
In some example embodiments, the at least one secondary cell is from a set of secondary cells configured to the first apparatus. In some example embodiments, the means for configuring the control information comprises: means for configuring the cell indication to be a second predetermined indication such that the set of secondary cells is switched into the regular status based on the second predetermined indication, the second predetermined indication corresponding to a second virtual cell that is other than a cell configured to the first apparatus.
In some example embodiments, the means for configuring the control information comprises: means for configuring, in accordance with a determination that a target secondary cell of the at least one secondary cell is to be switched from the regular status to the dormant status or from the dormant status to the regular status, the cell indication to be an indication of the target secondary cell.
In some example embodiments, the second apparatus further comprises means for configure the control information to include scheduling information for transmission between the first apparatus and the second apparatus via the scheduling cell.
In some example embodiments, the second apparatus further comprises means for configuring in accordance with a determination that the target secondary cell is to be switched from the dormant status to the regular status, the control information to include scheduling information for transmission between the first apparatus and the second apparatus via the target secondary cell.
In some example embodiments, the means for configuring the control information comprises means for configuring the control information to include status information to indicate a configured status of each of the at least one secondary cell; and means for scrambling the control information with a dormancy radio network temporary identity that is different from a cell-radio network temporary identity associated with a cell configured to the first apparatus.
In some example embodiments, the cell indication is comprised in a carrier indicator field of the control information. In some example embodiments, the scheduling cell comprises at least one of a primary cell or a secondary cell configured to the first apparatus. In some example embodiments, the first apparatus comprises a user equipment,  and the second apparatus comprises a network device.
In some example embodiments, the second apparatus further comprises means for performing other steps in some example embodiments of the method 500. In some example embodiments, the means comprises at least one processor; and at least one memory including computer program code, the at least one memory and computer program code configured to, with the at least one processor, cause the performance of the second apparatus.
Fig. 6 is a simplified block diagram of a device 600 that is suitable for implementing example embodiments of the present disclosure. The device 600 may be provided to implement the communication device, for example the first device 110 or the second device 120 as shown in Fig. 1. As shown, the device 600 includes one or more processors 610, one or more memories 620 coupled to the processor 610, and one or more communication modules 640 coupled to the processor 610.
The communication module 640 is for bidirectional communications. The communication module 640 has at least one antenna to facilitate communication. The communication interface may represent any interface that is necessary for communication with other network elements.
The processor 610 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 600 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
The memory 620 may include one or more non-volatile memories and one or more volatile memories. Examples of the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 624, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , and other magnetic storage and/or optical storage. Examples of the volatile memories include, but are not limited to, a random access memory (RAM) 622 and other volatile memories that will not last in the power-down duration.
computer program 630 includes computer executable instructions that are executed by the associated processor 610. The program 630 may be stored in the memory,  e.g., ROM 624. The processor 610 may perform any suitable actions and processing by loading the program 630 into the RAM 622.
The example embodiments of the present disclosure may be implemented by means of the program 630 so that the device 600 may perform any process of the disclosure as discussed with reference to Figs. 2 to 5. The example embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
In some example embodiments, the program 630 may be tangibly contained in a computer readable medium which may be included in the device 600 (such as stored in the memory 620) or other storage devices that are accessible by the device 600. The device 600 may load the program 630 from the computer readable medium to the RAM 622 for execution. The computer readable medium may include any types of tangible non-volatile storage, such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like. Fig. 7 shows an example of the computer readable medium 700 in form of CD or DVD. The computer readable medium has the program 630 stored thereon.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the method 600 as described above with reference to Figs. 2 to 5. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The  functionality of the program modules may be combined or split between program modules as desired in various embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
In the context of the present disclosure, the computer program code or related data may be carried by any suitable carrier to enable the device, apparatus or processor to perform various processes and operations as described above. Examples of the carrier include a signal, computer readable medium, and the like.
The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the  present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in languages specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (34)

  1. A first apparatus, comprising:
    at least one processor; and
    at least one memory including computer program code;
    wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the first apparatus to:
    receive, via a scheduling cell in a regular status, control information from a second apparatus, the control information comprising a cell indication,
    determine whether at least part of the cell indication matches at least part of an indication of the scheduling cell, and
    in accordance with a determination of a mismatch between the at least part of the cell indication and the at least part of the indication of the scheduling cell, perform status switching of at least one secondary cell between a regular status and a dormant status based on the control information.
  2. The apparatus of claim 1, wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the first apparatus to:
    determine whether the at least part of the cell indication matches with at least part of a first predetermined indication, the first predetermined indication corresponding to a first virtual cell that is other than a cell configured to the first apparatus;
    in accordance with a determination that the at least part of the cell indication matches with the at least part of the first predetermined indication, obtain, from the control information, status information indicating a configured status of each of the at least one secondary cell; and
    switch the each of the at least one secondary cell into the regular status or the dormant status based on the status information.
  3. The apparatus of claim 1, wherein the at least one secondary cell is from a set of secondary cells configured to the first apparatus.
  4. The apparatus of claim 3, wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the first apparatus to:
    determine whether the at least part of the cell indication matches with at least part of  a second predetermined indication, the second predetermined indication corresponding to a second virtual cell that is other than a cell configured to the first apparatus; and
    in accordance with a determination that the at least part of the cell indication matches with the at least part of the second predetermined indication, switch the set of secondary cells into the regular status.
  5. The apparatus of claim 1, wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the first apparatus to:
    determine that the at least part of the cell indication matches with at least part of an indication of a target secondary cell of the at least one secondary cell;
    determine a current status of the target secondary cell;
    in case the current status of the target secondary cell is the dormant status, switch the target secondary cell from the dormant status to the regular status; and
    in case the current status of the target secondary cell is the regular status, switch the target secondary cell from the regular status to the dormant status.
  6. The apparatus of any one of claims 4-5, wherein the control information further comprises scheduling information, and wherein the at least one memory and the computer program code are configured to, with the at least one processor, further cause the first apparatus to:
    apply the scheduling information for transmission between the first apparatus and the second apparatus via the scheduling cell.
  7. The apparatus of claim 5, wherein the control information further comprises scheduling information, and wherein the at least one memory and the computer program code are configured to, with the at least one processor, further cause the first apparatus to:
    in accordance with the target secondary cell being switched from the dormant status to the regular status, apply the scheduling information for transmission between the first apparatus and the second apparatus via the target secondary cell.
  8. The apparatus of claim 1, wherein the control information is scrambled with a dormancy radio network temporary identity that is different from a cell-radio network temporary identity associated with a cell configured to the first apparatus, and
    wherein the at least one memory and the computer program code are configured to,  with the at least one processor, cause the first apparatus to:
    obtain status information from the control information, the status information indicating a configured status of each of the at least one secondary cell; and
    switch the each of the at least one secondary cell into the regular status or the dormant status based on the status information.
  9. The apparatus of any of claims 1 to 8, wherein the control information is received from the second apparatus in a unicast format.
  10. The apparatus of any of claims 1 to 9, wherein the cell indication is comprised in a carrier indicator field of the control information; and/or
    wherein the scheduling cell comprises at least one of a primary cell or a secondary cell configured to the first apparatus; and/or
    wherein the first apparatus comprises a user equipment, and the second apparatus comprises a network device.
  11. A second apparatus, comprising:
    at least one processor; and
    at least one memory including computer program code;
    wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the second apparatus to:
    determine whether at least one secondary cell is to be switched between a regular status and a dormant status,
    in accordance with a determination that the at least one secondary cell is to be switched between the regular status and the dormant status, configure control information to include a cell indication, at least part of the cell indication mismatching with at least part of an indication of a scheduling cell in a regular status, and
    transmit, via the scheduling cell, the control information to the first apparatus.
  12. The apparatus of claim 11, wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the second apparatus to:
    determine status information indicating a configured status of the at least one  secondary cell;
    configure the cell indication to be a first predetermined indication, the first predetermined indication corresponding to a first virtual cell that is other than a cell configured to the first apparatus; and
    configure the control information to include the cell indication and the status information.
  13. The apparatus of claim 11, wherein the at least one secondary cell is from a set of secondary cells configured to the first apparatus, and wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the second apparatus to:
    configure the cell indication to be a second predetermined indication such that the set of secondary cells is switched into the regular status based on the second predetermined indication, the second predetermined indication corresponding to a second virtual cell that is other than a cell configured to the first apparatus.
  14. The apparatus of claim 11, wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the second apparatus to:
    in accordance with a determination that a target secondary cell of the at least one secondary cell is to be switched from the regular status to the dormant status or from the dormant status to the regular status,
    configure the cell indication to be an indication of the target secondary cell.
  15. The apparatus of any one of claims 13 to 14, wherein the at least one memory and the computer program code are configured to, with the at least one processor, further cause the second apparatus to:
    configure the control information to include scheduling information for transmission between the first apparatus and the second apparatus via the scheduling cell.
  16. The apparatus of claim 14, wherein the at least one memory and the computer program code are configured to, with the at least one processor, further cause the second apparatus to:
    in accordance with a determination that the target secondary cell is to be switched  from the dormant status to the regular status, configure the control information to include scheduling information for transmission between the first apparatus and the second apparatus via the target secondary cell.
  17. The apparatus of claim 11, wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the first apparatus to:
    configure the control information to include status information to indicate a configured status of each of the at least one secondary cell; and
    scramble the control information with a dormancy radio network temporary identity that is different from a cell-radio network temporary identity associated with a cell configured to the first apparatus.
  18. The apparatus of any of claims 11 to 17, wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the first apparatus to:
    transmit the control information in a unicast format.
  19. The apparatus of any of claims 11 to 18, wherein the cell indication is comprised in a carrier indicator field of the control information; and/or
    wherein the scheduling cell comprises at least one of a primary cell or a secondary cell configured to the first apparatus; and/or
    wherein the first apparatus comprises a user equipment, and the second apparatus comprises a network device.
  20. A method comprising:
    receiving, at a first apparatus via a scheduling cell in a regular status, control information from a second apparatus, the control information comprising a cell indication;
    determining whether at least part of the cell indication matches at least part of an indication of the scheduling cell; and
    in accordance with a determination of a mismatch between the at least part of the cell indication and the at least part of the indication of the scheduling cell, performing status switching of at least one secondary cell between a regular status and a dormant status based on the control information.
  21. The method of claim 20, wherein performing the status switching of the at least one secondary cell comprises:
    determining whether the at least part of the cell indication matches with at least part of a first predetermined indication, the first predetermined indication corresponding to a first virtual cell that is other than a cell configured to the first apparatus;
    in accordance with a determination that the at least part of the cell indication matches with the at least part of the first predetermined indication, obtaining, from the control information, status information indicating a configured status of each of the at least one secondary cell; and
    switching the each of the at least one secondary cell into the regular status or the dormant status based on the status information.
  22. The method of claim 20, wherein the at least one secondary cell is from a set of secondary cells configured to the first apparatus, and wherein performing the status switching of the at least one secondary cell comprises:
    determining whether the at least part of the cell indication matches with at least part of a second predetermined indication, the second predetermined indication corresponding to a second virtual cell that is other than a cell configured to the first apparatus; and
    in accordance with a determination that the at least part of the cell indication matches with the at least part of the second predetermined indication, switching the set of secondary cells into the regular status.
  23. The method of claim 20, wherein performing the status switching of the at least one secondary cell comprises:
    determining that the at least part of the cell indication matches with at least part of an indication of a target secondary cell of the at least one secondary cell;
    determining a current status of the target secondary cell;
    in case the current status of the target secondary cell is the dormant status, switching the target secondary cell from the dormant status to the regular status; and
    in case the current status of the target secondary cell is the regular status, switching the target secondary cell from the regular status to the dormant status.
  24. The method of claim 20, wherein the control information is scrambled with a dormancy radio network temporary identity that is different from a cell-radio network  temporary identity associated with a cell configured to the first apparatus, and
    wherein performing the status switching of the at least one secondary cell comprises:
    obtaining status information from the control information, the status information indicating a configured status of each of the at least one secondary cell; and
    switching the each of the at least one secondary cell into the regular status or the dormant status based on the status information.
  25. A method comprising:
    determining, at a second apparatus, whether at least one secondary cell is to be switched between a regular status and a dormant status;
    in accordance with a determination that the at least one secondary cell is to be switched between the regular status and the dormant status, configuring control information to include a cell indication, at least part of the cell indication mismatching with at least part of an indication of a scheduling cell in a regular status; and
    transmitting, via the scheduling cell, the control information to the first apparatus.
  26. The method of claim 25, wherein configuring the control information comprises:
    determining status information indicating a configured status of at least one of the set of secondary cells;
    configuring the cell indication to be a first predetermined indication, the first predetermined indication corresponding to a first virtual cell that is other than a cell configured to the first apparatus; and
    configuring the control information to include the cell indication and the status information.
  27. The method of claim 25, wherein the at least one secondary cell is from a set of secondary cells configured to the first apparatus, and wherein configuring the control information comprises:
    configuring the cell indication to be a second predetermined indication such that the set of secondary cells is switched into the regular status based on the second predetermined indication, the second predetermined indication corresponding to a second virtual cell that is other than a cell configured to the first apparatus.
  28. The method of claim 25, wherein configuring the control information comprises:
    in accordance with a determination that a target secondary cell of the at least one secondary cell is to be switched from the regular status to the dormant status or from the dormant status to the regular status,
    configuring the cell indication to be an indication of the target secondary cell.
  29. The method of claim 25, wherein configuring the control information comprises:
    configuring the control information to include status information to indicate a configured status of each of the at least one secondary cell; and
    scrambling the control information with a dormancy radio network temporary identity that is different from a cell-radio network temporary identity associated with a cell configured to the first apparatus.
  30. A first apparatus comprising means for:
    receiving, via a scheduling cell in a regular status, control information from a second apparatus, the control information comprising a cell indication;
    determining whether at least part of the cell indication matches at least part of an indication of the scheduling cell; and
    performing in accordance with a determination of a mismatch between the at least part of the cell indication and the at least part of the indication of the scheduling cell, status switching of at least one secondary cell between a regular status and a dormant status based on the control information.
  31. A second apparatus comprising means for:
    determining whether at least one secondary cell is to be switched between a regular status and a dormant status;
    configuring control information to include a cell indication in accordance with a determination that the at least one secondary cell is to be switched between the regular status and the dormant status, at least part of the cell indication mismatching with at least part of an indication of a scheduling cell in a regular status; and
    transmitting, via the scheduling cell, the control information to the first apparatus.
  32. A non-transitory computer readable medium comprising program instructions for causing an apparatus to perform at least the method of any of claims 20-24 or the method of any of claims 25-29.
  33. A computer program comprising instructions for causing an apparatus to perform at least the method of any of claims 20-24 or the method of any of claims 25-29.
  34. A computer readable medium storing a program of instructions, execution of which by a processor configures an apparatus to perform at least the method of any of claims 20-24 or the method of any of claims 25-29.
PCT/CN2019/109825 2019-10-04 2019-10-04 Status control of secondary cell WO2021062877A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980101106.1A CN114557003A (en) 2019-10-04 2019-10-04 State control of secondary cells
PCT/CN2019/109825 WO2021062877A1 (en) 2019-10-04 2019-10-04 Status control of secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109825 WO2021062877A1 (en) 2019-10-04 2019-10-04 Status control of secondary cell

Publications (1)

Publication Number Publication Date
WO2021062877A1 true WO2021062877A1 (en) 2021-04-08

Family

ID=75336670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109825 WO2021062877A1 (en) 2019-10-04 2019-10-04 Status control of secondary cell

Country Status (2)

Country Link
CN (1) CN114557003A (en)
WO (1) WO2021062877A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022240923A1 (en) * 2021-05-11 2022-11-17 Intel Corporation Scell dormancy switching with scell-pcell cross- carrier scheduling

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102625421A (en) * 2011-01-27 2012-08-01 中兴通讯股份有限公司 Method of user equipment power saving and system of the same
US20140362824A1 (en) * 2013-06-07 2014-12-11 Broadcom Corporation Transceiver Reconfiguration Mechanism
CN104811962A (en) * 2014-01-24 2015-07-29 中兴通讯股份有限公司 Small cell state switching method and small cell state switching device
CN109963296A (en) * 2017-12-22 2019-07-02 株式会社Kt Method and apparatus for controlling SCell state

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103327537B (en) * 2012-03-19 2016-03-30 华为技术有限公司 The method of activation/deactivation, subscriber equipment and base station
WO2014123388A1 (en) * 2013-02-08 2014-08-14 엘지전자 주식회사 Method for transmitting network support information for removing interference and serving cell base station
CN105122861B (en) * 2013-04-04 2020-06-16 Lg电子株式会社 Receiving method and user equipment in small-scale cell
DE112016003526T5 (en) * 2015-08-04 2018-04-26 Intel IP Corporation DYNAMIC ACCESS TO A SPECTRUM WITH FLEXIBLE BANDWIDTH FOR SYSTEMS WITH APPROVED COMMON ACCESS
US10687319B2 (en) * 2016-08-08 2020-06-16 Comcast Cable Communications, Llc Group power control for a secondary cell
US11968154B2 (en) * 2017-12-19 2024-04-23 Qualcomm Incorporated Carrier aggregation SCell new state transition design
CN110012499B (en) * 2018-01-04 2022-07-12 株式会社Kt Method for controlling SCell state and apparatus therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102625421A (en) * 2011-01-27 2012-08-01 中兴通讯股份有限公司 Method of user equipment power saving and system of the same
US20140362824A1 (en) * 2013-06-07 2014-12-11 Broadcom Corporation Transceiver Reconfiguration Mechanism
CN104811962A (en) * 2014-01-24 2015-07-29 中兴通讯股份有限公司 Small cell state switching method and small cell state switching device
CN109963296A (en) * 2017-12-22 2019-07-02 株式会社Kt Method and apparatus for controlling SCell state

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022240923A1 (en) * 2021-05-11 2022-11-17 Intel Corporation Scell dormancy switching with scell-pcell cross- carrier scheduling

Also Published As

Publication number Publication date
CN114557003A (en) 2022-05-27

Similar Documents

Publication Publication Date Title
US20220225251A1 (en) Secondary cell activation
US11937181B2 (en) Wake up signaling handling in discontinuous reception
US20230232494A1 (en) Methods of communication, terminal devices, network devices and computer readable media
US11963104B2 (en) Mechanism for interactions for entering into sleep mode
AU2024201320A1 (en) Uplink information based on wake-up signal
WO2021062877A1 (en) Status control of secondary cell
US20220232663A1 (en) Mechanism for Handling PDCCH Skipping and Wake Up Signal
CN113708902B (en) Channel information reporting for dormant bandwidth portions
WO2022021313A1 (en) Transmission detection skipping mechanism for power saving
WO2021203223A1 (en) Reporting beam failure
US20230007554A1 (en) Failure Recovery for Serving Cell
WO2021022422A1 (en) Transmission of high layer ack/nack
WO2024031665A1 (en) Transmission reception point adaptation
WO2023115424A1 (en) Secondary cell activation and deactivation
WO2023212870A1 (en) Ue power saving mechanism
WO2021203322A1 (en) Beam reporting triggered by data transmission
WO2023087189A1 (en) Method, device and computer storage medium of communication
WO2021159416A1 (en) Reporting preconfigured uplink transmission failures
WO2022213392A1 (en) Paging enhancement mechanism
WO2023225874A1 (en) Method and apparatus for power headroom report
WO2022165681A1 (en) Data transmission with security configurations
WO2020227922A1 (en) Activation of secondary cell
WO2020258104A1 (en) Notification of status of discontinuous reception configuration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947666

Country of ref document: EP

Kind code of ref document: A1