WO2022021313A1 - Transmission detection skipping mechanism for power saving - Google Patents

Transmission detection skipping mechanism for power saving Download PDF

Info

Publication number
WO2022021313A1
WO2022021313A1 PCT/CN2020/106174 CN2020106174W WO2022021313A1 WO 2022021313 A1 WO2022021313 A1 WO 2022021313A1 CN 2020106174 W CN2020106174 W CN 2020106174W WO 2022021313 A1 WO2022021313 A1 WO 2022021313A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
indication
receiving power
power level
blockage
Prior art date
Application number
PCT/CN2020/106174
Other languages
French (fr)
Inventor
Jianguo Liu
Chunli Wu
Navin Hathiramani
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy, Nokia Technologies Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to PCT/CN2020/106174 priority Critical patent/WO2022021313A1/en
Priority to CN202080011374.7A priority patent/CN114270987A/en
Publication of WO2022021313A1 publication Critical patent/WO2022021313A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Embodiments of the present disclosure generally relate to the field of telecommunication and in particular, to devices, methods, apparatuses and computer readable storage media of transmission detection skipping mechanism for power saving.
  • a power saving signal (a.k.a wake-up indication) is introduced to dynamically control the PDCCH monitoring behaviour depending on the data traffic.
  • the power saving signal can indicate whether the UE skips the subsequent monitoring occasions within the Discontinuous Reception (DRX) on duration or not. By this way, the UE will wake up to monitor PDCCH only when there is scheduled data.
  • example embodiments of the present disclosure provide a solution of transmission detection skipping mechanism for power saving.
  • a first device comprising at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the first device at least to, receive, from a second device, an indication of a blockage occasion for a transmission from the second device to the first device, the transmission being blocked within a time interval of the blockage occasion on an operating channel associated with at least one third device; and cause a detection associated with the transmission to be skipped within the time interval based on the indication.
  • a second device comprising at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the second device at least to receive, from a fourth device, an indication of a blockage occasion for a transmission from the second device to the first device, the transmission being blocked within a time interval of the blockage occasion on an operating channel associated with at least one third device; and transmit the indication to the first device.
  • a fourth device comprises at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the fourth device at least to determine a total inter-cell receiving power level associated with a second device; generate, based on the total inter-cell receiving power level and channel occupancy information associated with a further transmission of the at least one third device, an indication of a blockage occasion for a transmission from the second device to the first device, the transmission being blocked within a time interval of the blockage occasion on an operating channel associated with at least one third device; and transmit the indication to the second device.
  • a method comprisesreceiving, from a second device, an indication of a blockage occasion for a transmission from the second device to the first device, the transmission being blocked within a time interval of the blockage occasion on an operating channel associated with at least one third device; and causing a detection associated with the transmission to be skipped within the time interval based on the indication.
  • a method comprises receiving, from a fourth device, an indication of a blockage occasion for a transmission from the second device to the first device, the transmission being blocked within a time interval of the blockage occasion on an operating channel associated with at least one third device; and transmitting the indication to the first device.
  • a method comprises determining a total inter-cell receiving power level associated with a second device; generating, based on the total inter-cell receiving power level and channel occupancy information associated with a further transmission of the at least one third device, an indication of a blockage occasion for a transmission from the second device to the first device, the transmission being blocked within a time interval of the blockage occasion on an operating channel associated with at least one third device; and transmitting the indication to the second device.
  • an apparatus comprises means for receiving, from a second device, an indication of a blockage occasion for a transmission from the second device to the first device, the transmission being blocked within a time interval of the blockage occasion on an operating channel; and means for causing a detection associated with the transmission to be skipped within the time interval based on the indication.
  • an apparatus comprises means for receiving, from a fourth device, an indication of a blockage occasion for a transmission from the second device to the first device, the transmission being blocked within a time interval of the blockage occasion on an operating channel; and means for transmitting the indication to the first device.
  • an apparatus comprises means for determining a total inter-cell receiving power level associated with a second device; means for generating, based on the total inter-cell receiving power level and channel occupancy information associated with a further transmission of the at least one third device, an indication of a blockage occasion for a transmission from the second device to the first device, the transmission being blocked within a time interval of the blockage occasion on an operating channel; and means for transmitting the indication to the second device.
  • a computer readable medium having a computer program stored thereon which, when executed by at least one processor of a device, causes the device to carry out the method according to the fourth aspect.
  • a computer readable medium having a computer program stored thereon which, when executed by at least one processor of a device, causes the device to carry out the method according to the fifth aspect.
  • a computer readable medium having a computer program stored thereon which, when executed by at least one processor of a device, causes the device to carry out the method according to the sixth aspect.
  • FIG. 1 illustrates an example environment in which example embodiments of the present disclosure can be implemented
  • FIG. 2 shows a signaling chart illustrating a process of transmission detection skipping mechanism according to some example embodiments of the present disclosure
  • FIG. 3 shows a flowchart of an example method of transmission detection skipping mechanism according to some example embodiments of the present disclosure
  • FIG. 4 shows a flowchart of an example method of transmission detection skipping mechanism according to some example embodiments of the present disclosure
  • FIG. 5 shows a flowchart of an example method of transmission detection skipping mechanism according to some example embodiments of the present disclosure
  • FIG. 6 shows a simplified block diagram of a device that is suitable for implementing example embodiments of the present disclosure.
  • Fig. 7 shows a block diagram of an example computer readable medium in accordance with some embodiments of the present disclosure.
  • references in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an example embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
  • circuitry may refer to one or more or all of the following:
  • circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware.
  • circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
  • the term “communication network” refers to a network following any suitable communication standards, such as fifth generation (5G) systems, Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) and so on.
  • 5G fifth generation
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • NB-IoT Narrow Band Internet of Things
  • the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) new radio (NR) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • suitable generation communication protocols including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) new radio (NR) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the
  • the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom.
  • the network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR Next Generation NodeB (gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth, depending on the applied terminology and technology.
  • BS base station
  • AP access point
  • NodeB or NB node B
  • eNodeB or eNB evolved NodeB
  • gNB Next Generation NodeB
  • RRU Remote Radio Unit
  • RH radio header
  • RRH remote radio head
  • relay a
  • a RAN split architecture comprises a gNB-CU (Centralized unit, hosting RRC, SDAP and PDCP) controlling a plurality of gNB-DUs (Distributed unit, hosting RLC, MAC and PHY) .
  • a relay node may correspond to DU part of the IAB node.
  • terminal device refers to any end device that may be capable of wireless communication.
  • a terminal device may also be referred to as a communication device, user equipment (UE) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) .
  • UE user equipment
  • SS Subscriber Station
  • MS Mobile Station
  • AT Access Terminal
  • the terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (IoT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/
  • the terminal device may also correspond to Mobile Termination (MT) part of the integrated access and backhaul (IAB) node (a.k.a. a relay node) .
  • MT Mobile Termination
  • IAB integrated access and backhaul
  • the terms “terminal device” , “communication device” , “terminal” , “user equipment” and “UE” may be used interchangeably.
  • a user equipment apparatus such as a cell phone or tablet computer or laptop computer or desktop computer or mobile IoT device or fixed IoT device
  • This user equipment apparatus can, for example, be furnished with corresponding capabilities as described in connection with the fixed and/or the wireless network node (s) , as appropriate.
  • the user equipment apparatus may be the user equipment and/or or a control device, such as a chipset or processor, configured to control the user equipment when installed therein. Examples of such functionalities include the bootstrapping server function and/or the home subscriber server, which may be implemented in the user equipment apparatus by providing the user equipment apparatus with software configured to cause the user equipment apparatus to perform from the point of view of these functions/nodes.
  • FIG. 1 shows an example communication network 100 in which embodiments of the present disclosure can be implemented.
  • the communication network 100 may comprise a terminal device 110 (hereinafter may also be referred to as UE 110 or a first device 110) .
  • the communication network 100 may further comprise a network device 120-1 (hereinafter may also be referred to as a serving gNB 120-1 or a second device 120-1) .
  • the network device 120-1 may be the serving gNB of the terminal device 110.
  • the terminal device 110 may communicate with the network device 120-1.
  • the communication network 100 may further comprise a network device 120-2.
  • the network device 120-2 can be considered as a neighboring network device of the network device 120-1.
  • the terminal device 110 may also communicate with the network device 120-2.
  • the communication network 100 may include any suitable number of network devices and terminal devices.
  • the communication network 100 may also comprise a control unit 130 (hereinafter may also be referred to as a fourth device 130) , which may communication with network devices 120-1 and 120-2.
  • a control unit 130 hereinafter may also be referred to as a fourth device 130
  • the communication network 100 may be applicable for the centralized RAN (C-RAN) scenario, which has been already adopted by many operators in many countries for their radio access network (RAN) in LTE and 5G network, the C-RAN may connect a baseband processing unit (a Distributed Unit (DU) and a Centralized Unit (CU) integrated or DU only) in a centralized location to multiple unit of radio equipment via high capacity and low latency fronthaul.
  • C-RAN centralized RAN
  • DU Distributed Unit
  • CU Centralized Unit
  • the lower layer split between the DU and radio unit (RU) for the transport network architecture provides a possibility for application of the present invention.
  • High performance transport between the DU and RU e.g. optical network
  • advanced scheduling optimization can enable advanced scheduling optimization, which could be useful in high capacity and low-latency scenarios, or scenarios where cross cell coordination is beneficial.
  • the communication network 100 may be applicable for CA scenario in 5G RAN.
  • the configured serving cells i.e. PCell and SCell
  • the configured serving cells are aggregated together to serve the UE.
  • at least one licensed cell can be deployed as the PCell and multiple cells in the unlicensed band can be deployed as the SCells.
  • control unit 130 which may also be referred to as the Centralized Control Unit, CCU
  • the control unit 130 may locate in the DU or CU in 5G RAN architecture.
  • each cell in the coordination set has an independent control unit (which may also be referred to as the Distributed Control Unit, DCU) .
  • the control unit 130 can be considered as a part of the serving cell (e.g. RRH/RU/DU) .
  • a power saving signal (a.k.a wake-up indication) is introduced to dynamically control the PDCCH monitoring behaviour depending on the data traffic.
  • the power saving signal can indicate whether the UE skips the subsequent monitoring occasions within the DRX on duration or not. By this way, the UE will wake up to monitor PDCCH only when there is scheduled data.
  • a radio equipment In NR-U, a radio equipment is required to perform Listen-before-Talk (LBT) operation before transmission according to the regulatory requirements in certain regions in order to achieve coexistence fairness with other RATs (e.g. Wi-Fi) .
  • LBT Listen-before-Talk
  • the equipment shall consider a channel to be occupied if other RLAN transmissions are detected at a power level larger than a maximum energy detection (ED) threshold. If a radio device passes LBT successfully, it can occupy the channel for a certain time period.
  • the maximum Channel Occupancy Time COT would vary with the channel access priority class and can last up to 10ms after the radio device grabs the channel with a successful LBT.
  • a serving cell may suffer strong interference from one or more neighboring cells and thus may not be able to acquire the channel due to DL LBT failure. This means that the serving cell will be blocked to access the channel during the channel occupancy time of one or more the neighboring cell (s) .
  • the downlink transmission of the gNB 120-1 may be blocked by a neighboring gNB 120-2. If the neighboring gNB 120-2 generates strong interference to the gNB 120-1 after transmission and causes LBT failure in the gNB 120-1. After the neighboring gNB 120-2 occupies the channel with duration of 5 slots (i.e. the COT is equal to 5 slots) , the gNB 120-1 cannot be able to access the channel at least during the transmission of the gNB 120-2.
  • the serving gNB may have multiple neighboring gNBs.
  • the serving gNB may not be blocked by a transmission of a single gNB of the multiple neighboring gNBs.
  • joint transmission of the multiple neighboring gNBs could cause LBT failure at the serving gNB if the total received interference level is larger than the maximum ED threshold.
  • a UE During the blockage of the serving gNB 120-1, if the UE 110 is in a RRC connected mode, a UE needs to perform transmission detection involved in PDCCH/Synchronization Signal Block (SSB) /Channel State Information Reference Signal (CSI-RS) /Demodulation Reference Signal (DMRS) from the gNB 120-1 during the active time, because the UE is not aware of the blockage of the serving gNB 120-1.
  • SSB Synchron Control Signal Block
  • CSI-RS Channel State Information Reference Signal
  • DMRS Demodulation Reference Signal
  • a control unit may determine the blockage occasion of the serving gNB based on the inter-cell receiving power level and the channel occupancy time of the neighboring gNB.
  • the blockage occasion of the serving gNB may be transmit to the UE, to cause the downlink transmission detection to be skipped at the UE.
  • This solution may facilitate transmission detection skipping for UE taking the channel occupancy information of interfering neighbouring cells into account.
  • the UE measurement on one or more interfering cells is enabled to efficiently avoid blind measurement due to LBT, therefore the UE power saving and measurement efficiency can be improved.
  • FIG. 2 shows a signaling chart illustrating a process of transmission detection skipping mechanism according to some example embodiments of the present disclosure.
  • the process200 may involve the UE 110, the serving gNB 120-1, the neighboring gNB 120-2 and the control unit 130 as illustrated in FIG. 1.
  • the control unit may collect inter-cell received energy levels.
  • the inter-cell received energy level can be obtained through offline simulation/measurement tools or measured based on reference signalling resources
  • the control unit 130 may transmit 202, to the serving gNB 120-1, an indication that a receiving power level is to be detected at the serving gNB 120-1 in a detection time window in which a transmission of the neighboring gNB 120-2 is performed on the operating channel associated with the neighboring gNB 120-2.
  • the detection can be performed at the serving gNB 120-1 in a controlled environment, in which there is no interference sources other than the transmission of the neighboring gNB 120-2.
  • the control unit 130 may configure a set of Downlink Reference Signal (DL RS) resources for the serving gNB 120-1 for inter-cell received energy measurement.
  • the DL RS resources can be CSI-RS/SSB/DMRS resources allocated to the cells in the coordination set for downlink transmission.
  • the control unit 130 may transmit 202’ the configuration information of resources for a DL RS to the serving gNB 120-1.
  • the serving gNB 120-1 may measure the Reference Signal Receiving Power (RSRP) based on the configuration information in a detection time window in which a transmission of the neighboring gNB 120-2 is performed on the resources for a DL RS.
  • the serving gNB 120-1 may transmit 204’ the RSRP as the receiving power level to the control unit 130.
  • RSRP Reference Signal Receiving Power
  • the neighboring gNB 120-2 may perform 208 a LBT operation. If the neighboring gNB 120-2 can get a channel for a transmission with a successful LBT operation, the neighboring gNB 120-2 may report 208 the channel occupancy information to the control unit 130 through fronthaul.
  • the channel occupancy information may comprise at least one of the channel occupancy time, such as a starting point of the transmission of the neighboring gNB 120-2 and the duration of the transmission.
  • the channel occupancy time can be considered as the transmission time of the neighboring gNB 120-2 after successfully passing LBT or shared COT from another devices.
  • the channel occupancy information may also comprise the operating channel for the transmission.
  • control unit 130 may further determine the blockage occasions for the serving gNB 120-1.
  • control unit 130 When the control unit 130 receives the receiving power level from the serving gNB 120-1, the control unit 130 may determine the inter-cell receiving power level assoc i ated with the serving gNB 120-1 and the neighboring gNB 120-2.
  • the control unit 130 may calculate the inter-cell receiving power level from the interfering cells in the coordination which occupy the channel at the same time for a time interval. For example, the control unit 130 may determine the inter-cell receiving power level based on the receiving power level received from the serving gNB 120-1.
  • the serving gNB 120-1 may also determine receiving power level due to other transmission of other neighboring gNBs other than the neighboring gNB 120-2.
  • the control unit may also consider the receiving power level associated with other transmission of other neighboring gNBs.
  • the control unit 130 may determine that the channel for the transmission of the interfering gNB is occupied and the transmission of the serving gNB 120-1 may be blocked by the the transmission of the interfering gNB in the time interval.
  • the time interval of the transmission from the interfering gNB can be grouped into multiple common periods. If the serving gNB 120-1 will be blocked in two consecutive periods, the two periods can be combined into a common period, i.e. the time interval in which the channel is occupied by the the transmission of the interfering gNB.
  • the control unit 130 may determine 210 the blockage occasion, which may comprise the time interval in which the transmission of the serving gNB 120-1 is to be blocked and the operating channel where the serving gNB 120-1 will be blocked to access.
  • the time interval can be indicated through starting point and duration.
  • the control unit 130 may indicate at least one of the blockage occasion and the interfering gNB, for example, the neighboring gNB 120-2 to the serving gNB 120-1.
  • the threshold duration can be configured through OAM, predefined during specification or self-determined by the control unit 130 based on the connection latency between the DU/CU and the RU.
  • control unit 130 may transmit 212 an indication of the the blockage occasion to the serving gNB 120-1. Then the serving gNB 120-1 may further forward 214 the indication to the UE 110.
  • the serving gNB 120-1 may also transmit a further indication of a measurement on the interfering gNB, for example, the neighboring gNB 120-2.
  • the measurement may be referred to as a Radio Resource Management measurement.
  • the configuration information of the measurement can be transmitted from the serving gNB 120-1 to the UE 110 via a higher layer signalling, for example, a RRC signalling.
  • the indication of the blockage occasion and the indication of the measurement on the interfering gNB can be transmitted from the serving gNB 120-1 to the UE 110 through a cell other than the serving cell, for example, a licensed cell in the scenario of CA, or another unlicensed cell/band/carrier which passes the LBT successfully in the case of CA or multiple-channel operation.
  • the indication of the blockage occasion and the indication of the measurement on the interfering gNB can be transmitted from the serving gNB 120-1 to the UE 110 as a short control signalling without LBT.
  • the short controlling signalling can be sequence-based or DCI-based.
  • the resources e.g. transmission occasions or search space configuration set, sequence or a RNTI for DCI decoding
  • the short controlling signalling detection shall be pre-configured to UE 110.
  • the UE 110 may determine 216 the transmission from the serving gNB 120-1 is to be blocked within a time interval of the blockage occasion on an operating channel associated with at least one third device. Then a transmission detection can be skipped within the time interval at the UE.
  • the UE may skip the transmission detection from the serving gNB 120-1 involved in the PDCCH/DMRS monitoring, SSB decoding or CIS-RS measurement at the indicated blockage occasions.
  • This solution may facilitate transmission detection skipping for UE taking the channel occupancy information of interfering neighbouring cells into account. Furthermore, the UE measurement on one or more interfering cells is enabled to efficiently avoid blind measurement due to LBT, therefore the UE power saving and measurement efficiency can be improved.
  • FIG. 3 shows a flowchart of an example method 300 of transmission detection skipping mechanism according to some example embodiments of the present disclosure.
  • the method 300 can be implemented at the first device 110 as shown in FIG. 1. For the purpose of discussion, the method 300 will be described with reference to FIG. 1.
  • the first device receives, from a second device, an indication of a blockage occasion for a transmission from the second device to the first device.
  • the transmission may be blocked within a time interval of the blockage occasion on an operating channel associated with at least one third device.
  • the first device causes a detection associated with the transmission to be skipped within the time interval based on the indication.
  • the detection comprises at least one of a monitoring on a control channel for the transmission, or a radio resource management measurement associated with the second device.
  • the first device may receive, from the second device, a further indication of a measurement on the at least one third device interfering the transmission.
  • the first device may also obtain configuration information for the measurement and perform the measurement based on the further indication and the configuration information.
  • the configuration information is received from the further indication or a higher layer signaling.
  • the indication is received through at least one of a licensed cell of the second device, an unlicensed cell of the second device in which a successful Listen Before Talk, LBT, procedure is performed by the second device, or a short control signalling transmitted on pre-configured resources.
  • LBT Listen Before Talk
  • the further indication is received through at least one of a licensed cell of the second device, an unlicensed cell of the second device in which a successful Listen Before Talk, LBT, procedure is performed by the second device, or a short control signalling transmitted on pre-configured resources.
  • a licensed cell of the second device an unlicensed cell of the second device in which a successful Listen Before Talk, LBT, procedure is performed by the second device, or a short control signalling transmitted on pre-configured resources.
  • the first device comprises a terminal device and the second device comprises a network device.
  • the at least one third device comprises a network device.
  • FIG. 4 shows a flowchart of an example method 400 of transmission detection skipping mechanism according to some example embodiments of the present disclosure.
  • the method 400 can be implemented at the second device 120-2 as shown in FIG. 1.
  • the method 400 will be described with reference to FIG. 1.
  • the second device 120-2 receives, from a fourth device, an indication of a blockage occasion for a transmission from the second device to the first device.
  • the transmission is blocked within a time interval of the blockage occasion on an operating channel associated with at least one third device.
  • the second device transmits the indication to the first device.
  • the second device may detect the receiving power level in the detection time window.
  • the second device may also transmit the receiving power level to the fourth device.
  • the second device receives configuration information of resources for a reference signal from the fourth device.
  • the second device may determine a receiving power level in a detection time window in which the further transmission is performed based on the configuration information and transmit the receiving power level to the fourth device.
  • the first device comprises a terminal device
  • the second device comprises a network device
  • the at least one third device comprises a further network device
  • the fourth device comprises a control unit.
  • FIG. 5 shows a flowchart of an example method 500 of transmission detection skipping mechanism according to some example embodiments of the present disclosure.
  • the method 500 can be implemented at the fourth device 130 as shown in FIG. 1.
  • the method 500 will be described with reference to FIG. 1.
  • the fourth device 130 determines a total inter-cell receiving power level associated with a second device.
  • the fourth device 130 may receive the receiving power levels from the second device, the receiving power level being determined in a detection time window in which a further transmission associated with the third device is performed.
  • the fourth device 130 may also receive channel occupancy information from at least one third device, the channel occupancy information indicating the operating channel on which the further transmission associated with the at least one third device is performed and occupancy time of the operating channel and determine the inter-cell receiving power level based on the receiving power levels.
  • the fourth device 130 generates, based on the total inter-cell receiving power level, an indication of a blockage occasion for a transmission from the second device to the first device. The transmission is blocked within a time interval of the blockage occasion on an operating channel.
  • the fourth device 130 may determine the transmission from the second device to a first device is to be blocked.
  • the fourth device 130 may further determine an operating channel and occupancy time of the operating channel from the channel occupancy information and determine a time interval in which the transmission is to be blocked based on the occupancy time.
  • the fourth device 130 may further generate the indication based on the operating channel and the time interval.
  • the fourth device 130 transmits the indication to the second device.
  • the first device comprises a terminal device
  • the second device comprises a network device
  • the at least one third device comprises a further network device
  • the fourth device comprises a control unit.
  • an apparatus capable of performing the method 300 may comprise means for performing the respective steps of the method 300.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the apparatus comprises means for receiving, from a second device, an indication of a blockage occasion for a transmission from the second device to the first device, the transmission being blocked within a time interval of the blockage occasion on an operating channel associated with at least one third device; and means for causing a detection associated with the transmission to be skipped within the time interval based on the indication.
  • an apparatus capable of performing the method 400 may comprise means for performing the respective steps of the method 400.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the apparatus comprises means for receiving, from a fourth device, an indication of a blockage occasion for a transmission from the second device to the first device, the transmission being blocked within a time interval of the blockage occasion on an operating channel associated with at least one third device; and means for transmitting the indication to the first device.
  • an apparatus capable of performing the method 500 may comprise means for performing the respective steps of the method 500.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the apparatus comprises means for determining a total inter-cell receiving power level associated with a second device; means for generating, based on the total inter-cell receiving power level, an indication of a blockage occasion for a transmission from the second device to the first device, the transmission being blocked within a time interval of the blockage occasion on an operating channel associated with at least one third device; and means for transmitting the indication to the second device.
  • FIG. 6 is a simplified block diagram of a device 600 that is suitable for implementing embodiments of the present disclosure.
  • the device 600 may be provided to implement the communication device, for example the UE 110, the serving gNB 120-1 and the control unit 130 as shown in FIG. 1.
  • the device 600 includes one or more processors 610, one or more memories 640 coupled to the processor 610, and one or more transmitters and/or receivers (TX/RX) 640 coupled to the processor 610.
  • TX/RX transmitters and/or receivers
  • the TX/RX 640 is for bidirectional communications.
  • the TX/RX 640 has at least one antenna to facilitate communication.
  • the communication interface may represent any interface that is necessary for communication with other network elements.
  • the processor 610 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 600 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • the memory 620 may include one or more non-volatile memories and one or more volatile memories.
  • the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 624, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , and other magnetic storage and/or optical storage.
  • the volatile memories include, but are not limited to, a random access memory (RAM) 622 and other volatile memories that will not last in the power-down duration.
  • a computer program 630 includes computer executable instructions that are executed by the associated processor 610.
  • the program 630 may be stored in the ROM 620.
  • the processor 610 may perform any suitable actions and processing by loading the program 630 into the RAM 620.
  • the embodiments of the present disclosure may be implemented by means of the program 630 so that the device 600 may perform any process of the disclosure as discussed with reference to FIGs. 2 to 5.
  • the embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
  • the program 630 may be tangibly contained in a computer readable medium which may be included in the device 600 (such as in the memory 620) or other storage devices that are accessible by the device 600.
  • the device 600 may load the program 630 from the computer readable medium to the RAM 622 for execution.
  • the computer readable medium may include any types of tangible non-volatile storage, such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like.
  • FIG. 7. shows an example of the computer readable medium 700 in form of CD or DVD.
  • the computer readable medium has the program 630 stored thereon.
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, device, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the methods 300, 400 and 500 as described above with reference to FIGs. 3-5.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing device, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the computer program codes or related data may be carried by any suitable carrier to enable the device, device or processor to perform various processes and operations as described above.
  • Examples of the carrier include a signal, computer readable medium, and the like.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.

Abstract

Embodiments of the present disclosure relate to devices, methods, apparatuses and computer readable storage media of transmission detection skipping mechanism. The method comprises receiving, from a second device, an indication of a blockage occasion for a transmission from the second device to the first device, the transmission being blocked within a time interval of the blockage occasion on an operating channel associated with at least one third device; and causing a detection associated with the transmission to be skipped within the time interval based on the indication. This solution may facilitate transmission detection skipping for UE taking the channel occupancy information of interfering neighbouring cells into account. Furthermore, the UE measurement on one or more interfering cells is enabled to efficiently avoid blind measurement due to LBT, therefore the UE power saving and measurement efficiency can be improved.

Description

TRANSMISSION DETECTION SKIPPING MECHANISM FOR POWER SAVING FIELD
Embodiments of the present disclosure generally relate to the field of telecommunication and in particular, to devices, methods, apparatuses and computer readable storage media of transmission detection skipping mechanism for power saving.
BACKGROUND
In Release 16 New Radio (Rel-16 NR) , the 3rd Generation Partnership Project (3GPP) conducted a study item and a work item on User Equipment (UE) power saving. A key observation was that Physical Downlink Control Channel (PDCCH) monitoring is consuming a significant amount of UE power.
It has been proved that a large amount of UE’s power in modem composed of Radio Frequency (RF) chain and Base Band Unit (BBU) is consumed due to the PDCCH monitoring without any scheduled data. Therefore, a power saving signal (a.k.a wake-up indication) is introduced to dynamically control the PDCCH monitoring behaviour depending on the data traffic. The power saving signal can indicate whether the UE skips the subsequent monitoring occasions within the Discontinuous Reception (DRX) on duration or not. By this way, the UE will wake up to monitor PDCCH only when there is scheduled data.
SUMMARY
In general, example embodiments of the present disclosure provide a solution of transmission detection skipping mechanism for power saving.
In a first aspect, there is provided a first device. The first device comprises at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the first device at least to, receive, from a second device, an indication of a blockage occasion for a transmission from the second device to the first device, the transmission being blocked within a time interval of the blockage occasion on an operating channel associated with at least one third device; and cause a detection associated with the transmission to be skipped within the time interval based on the indication.
In a second aspect, there is provided a second device. The second device comprises at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the second device at least to receive, from a fourth device, an indication of a blockage occasion for a transmission from the second device to the first device, the transmission being blocked within a time interval of the blockage occasion on an operating channel associated with at least one third device; and transmit the indication to the first device.
In a third aspect, there is provided a fourth device. The fourth device comprises at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the fourth device at least to determine a total inter-cell receiving power level associated with a second device; generate, based on the total inter-cell receiving power level and channel occupancy information associated with a further transmission of the at least one third device, an indication of a blockage occasion for a transmission from the second device to the first device, the transmission being blocked within a time interval of the blockage occasion on an operating channel associated with at least one third device; and transmit the indication to the second device.
In a fourth aspect, there is provided a method. The method comprisesreceiving, from a second device, an indication of a blockage occasion for a transmission from the second device to the first device, the transmission being blocked within a time interval of the blockage occasion on an operating channel associated with at least one third device; and causing a detection associated with the transmission to be skipped within the time interval based on the indication.
In a fifth aspect, there is provided a method. The method comprises receiving, from a fourth device, an indication of a blockage occasion for a transmission from the second device to the first device, the transmission being blocked within a time interval of the blockage occasion on an operating channel associated with at least one third device; and transmitting the indication to the first device.
In a sixth aspect, there is provided a method. The method comprises determining a total inter-cell receiving power level associated with a second device; generating, based on the total inter-cell receiving power level and channel occupancy information associated  with a further transmission of the at least one third device, an indication of a blockage occasion for a transmission from the second device to the first device, the transmission being blocked within a time interval of the blockage occasion on an operating channel associated with at least one third device; and transmitting the indication to the second device.
In a seventh aspect, there is provided an apparatus comprises means for receiving, from a second device, an indication of a blockage occasion for a transmission from the second device to the first device, the transmission being blocked within a time interval of the blockage occasion on an operating channel; and means for causing a detection associated with the transmission to be skipped within the time interval based on the indication.
In an eighth aspect, there is provided an apparatus comprises means for receiving, from a fourth device, an indication of a blockage occasion for a transmission from the second device to the first device, the transmission being blocked within a time interval of the blockage occasion on an operating channel; and means for transmitting the indication to the first device.
In a ninth aspect, there is provided an apparatus comprises means for determining a total inter-cell receiving power level associated with a second device; means for generating, based on the total inter-cell receiving power level and channel occupancy information associated with a further transmission of the at least one third device, an indication of a blockage occasion for a transmission from the second device to the first device, the transmission being blocked within a time interval of the blockage occasion on an operating channel; and means for transmitting the indication to the second device.
In a tenth aspect, there is provided a computer readable medium having a computer program stored thereon which, when executed by at least one processor of a device, causes the device to carry out the method according to the fourth aspect.
In an eleventh aspect, there is provided a computer readable medium having a computer program stored thereon which, when executed by at least one processor of a device, causes the device to carry out the method according to the fifth aspect.
In a twelfth aspect, there is provided a computer readable medium having a computer program stored thereon which, when executed by at least one processor of a device, causes the device to carry out the method according to the sixth aspect.
Other features and advantages of the embodiments of the present disclosure will also be apparent from the following description of specific embodiments when read in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of embodiments of the disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS
Embodiments of the disclosure are presented in the sense of examples and their advantages are explained in greater detail below, with reference to the accompanying drawings, where
FIG. 1 illustrates an example environment in which example embodiments of the present disclosure can be implemented;
FIG. 2 shows a signaling chart illustrating a process of transmission detection skipping mechanism according to some example embodiments of the present disclosure;
FIG. 3 shows a flowchart of an example method of transmission detection skipping mechanism according to some example embodiments of the present disclosure;
FIG. 4 shows a flowchart of an example method of transmission detection skipping mechanism according to some example embodiments of the present disclosure;
FIG. 5 shows a flowchart of an example method of transmission detection skipping mechanism according to some example embodiments of the present disclosure;
FIG. 6 shows a simplified block diagram of a device that is suitable for implementing example embodiments of the present disclosure; and
Fig. 7 shows a block diagram of an example computer readable medium in accordance with some embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some example embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement  the present disclosure, without suggesting any limitation as to the scope of the disclosure. The disclosure described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
References in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an example embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
It shall be understood that although the terms “first” and “second” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish functionalities of various elements. As used herein, the term “and/or” includes any and all combinations of one or more of the listed terms.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a” , “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” , “comprising” , “has” , “having” , “includes” and/or “including” , when used herein, specify the presence of stated features, elements, and/or components etc., but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof.
As used in this application, the term “circuitry” may refer to one or more or all of the following:
(a) hardware-only circuit implementations (such as implementations in only analog and/or digital circuitry) and
(b) combinations of hardware circuits and software, such as (as applicable) :
(i) a combination of analog and/or digital hardware circuit (s) with software/firmware and
(ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) and
(c) hardware circuit (s) and or processor (s) , such as a microprocessor (s) or a portion of a microprocessor (s) , that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation.
This definition of circuitry applies to all uses of this term in this application, including in any claims. As a further example, as used in this application, the term circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware. The term circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
As used herein, the term “communication network” refers to a network following any suitable communication standards, such as fifth generation (5G) systems, Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) and so on. Furthermore, the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) new radio (NR) communication protocols, and/or any other protocols either currently known or to be developed in the future. Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of the present disclosure to only the aforementioned system.
As used herein, the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom. The network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR Next Generation NodeB (gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth, depending on the applied terminology and technology. A RAN split architecture comprises a gNB-CU (Centralized unit, hosting RRC, SDAP and PDCP) controlling a plurality of gNB-DUs (Distributed unit, hosting RLC, MAC and PHY) . A relay node may correspond to DU part of the IAB node.
The term “terminal device” refers to any end device that may be capable of wireless communication. By way of example rather than limitation, a terminal device may also be referred to as a communication device, user equipment (UE) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) . The terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (IoT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/or industrial wireless networks, and the like. The terminal device may also correspond to Mobile Termination (MT) part of the integrated access and backhaul (IAB) node (a.k.a. a relay node) . In the following description, the terms “terminal device” , “communication device” , “terminal” , “user equipment” and “UE” may be used interchangeably.
Although functionalities described herein can be performed, in various example embodiments, in a fixed and/or a wireless network node, in other example embodiments, functionalities may be implemented in a user equipment apparatus (such as a cell phone or  tablet computer or laptop computer or desktop computer or mobile IoT device or fixed IoT device) . This user equipment apparatus can, for example, be furnished with corresponding capabilities as described in connection with the fixed and/or the wireless network node (s) , as appropriate. The user equipment apparatus may be the user equipment and/or or a control device, such as a chipset or processor, configured to control the user equipment when installed therein. Examples of such functionalities include the bootstrapping server function and/or the home subscriber server, which may be implemented in the user equipment apparatus by providing the user equipment apparatus with software configured to cause the user equipment apparatus to perform from the point of view of these functions/nodes.
FIG. 1 shows an example communication network 100 in which embodiments of the present disclosure can be implemented. As shown in FIG. 1, the communication network 100 may comprise a terminal device 110 (hereinafter may also be referred to as UE 110 or a first device 110) . The communication network 100 may further comprise a network device 120-1 (hereinafter may also be referred to as a serving gNB 120-1 or a second device 120-1) . The network device 120-1 may be the serving gNB of the terminal device 110. The terminal device 110 may communicate with the network device 120-1. Furthermore, the communication network 100 may further comprise a network device 120-2. The network device 120-2 can be considered as a neighboring network device of the network device 120-1. The terminal device 110 may also communicate with the network device 120-2.
It is to be understood that the number of network devices and terminal devices shown in FIG. 1 is given for the purpose of illustration without suggesting any limitations. The communication network 100 may include any suitable number of network devices and terminal devices.
Furthermore, the communication network 100 may also comprise a control unit 130 (hereinafter may also be referred to as a fourth device 130) , which may communication with network devices 120-1 and 120-2.
As an option, the communication network 100 may be applicable for the centralized RAN (C-RAN) scenario, which has been already adopted by many operators in many countries for their radio access network (RAN) in LTE and 5G network, the C-RAN may connect a baseband processing unit (a Distributed Unit (DU) and a Centralized Unit  (CU) integrated or DU only) in a centralized location to multiple unit of radio equipment via high capacity and low latency fronthaul.
In 5G RAN, the lower layer split between the DU and radio unit (RU) for the transport network architecture provides a possibility for application of the present invention. High performance transport between the DU and RU (e.g. optical network) can enable advanced scheduling optimization, which could be useful in high capacity and low-latency scenarios, or scenarios where cross cell coordination is beneficial.
As another option, the communication network 100 may be applicable for CA scenario in 5G RAN. In this scenario, the configured serving cells (i.e. PCell and SCell) are aggregated together to serve the UE. Herein, at least one licensed cell can be deployed as the PCell and multiple cells in the unlicensed band can be deployed as the SCells.
It is possible that the cells in the coordination set share the same control unit 130 (which may also be referred to as the Centralized Control Unit, CCU) , as shown in FIG. 1. The control unit 130 may locate in the DU or CU in 5G RAN architecture.
It is also possible that each cell in the coordination set has an independent control unit (which may also be referred to as the Distributed Control Unit, DCU) . The control unit 130 can be considered as a part of the serving cell (e.g. RRH/RU/DU) .
As described above, in Rel-16 NR, the 3GPP conducted a study item and a work item on UE power saving. A key observation was that PDCCH monitoring is consuming a significant amount of UE power.
It has been proved that a large amount of UE’s power in modem composed of RF chain and BBU is consumed due to the PDCCH monitoring without any scheduled data. Therefore, a power saving signal (a.k.a wake-up indication) is introduced to dynamically control the PDCCH monitoring behaviour depending on the data traffic. The power saving signal can indicate whether the UE skips the subsequent monitoring occasions within the DRX on duration or not. By this way, the UE will wake up to monitor PDCCH only when there is scheduled data.
In NR-U, a radio equipment is required to perform Listen-before-Talk (LBT) operation before transmission according to the regulatory requirements in certain regions in order to achieve coexistence fairness with other RATs (e.g. Wi-Fi) . For this, the equipment shall consider a channel to be occupied if other RLAN transmissions are detected at a power level larger than a maximum energy detection (ED) threshold. If a  radio device passes LBT successfully, it can occupy the channel for a certain time period. In Rel-16 NR-U, the maximum Channel Occupancy Time (COT) would vary with the channel access priority class and can last up to 10ms after the radio device grabs the channel with a successful LBT.
However, for unlicensed deployment, a serving cell may suffer strong interference from one or more neighboring cells and thus may not be able to acquire the channel due to DL LBT failure. This means that the serving cell will be blocked to access the channel during the channel occupancy time of one or more the neighboring cell (s) .
For example, as shown in FIG. 1, the downlink transmission of the gNB 120-1 may be blocked by a neighboring gNB 120-2. If the neighboring gNB 120-2 generates strong interference to the gNB 120-1 after transmission and causes LBT failure in the gNB 120-1. After the neighboring gNB 120-2 occupies the channel with duration of 5 slots (i.e. the COT is equal to 5 slots) , the gNB 120-1 cannot be able to access the channel at least during the transmission of the gNB 120-2.
It is also possible that the serving gNB may have multiple neighboring gNBs. The serving gNB may not be blocked by a transmission of a single gNB of the multiple neighboring gNBs. However, joint transmission of the multiple neighboring gNBs could cause LBT failure at the serving gNB if the total received interference level is larger than the maximum ED threshold.
During the blockage of the serving gNB 120-1, if the UE 110 is in a RRC connected mode, a UE needs to perform transmission detection involved in PDCCH/Synchronization Signal Block (SSB) /Channel State Information Reference Signal (CSI-RS) /Demodulation Reference Signal (DMRS) from the gNB 120-1 during the active time, because the UE is not aware of the blockage of the serving gNB 120-1. As noted above, the transmission detection behaviors like PDCCH monitoring will consume a significant amount of UE power.
Therefore, the embodiments of the present invention propose a solution of transmission detection skipping mechanism for power saving for the UE. In this solution, a control unit may determine the blockage occasion of the serving gNB based on the inter-cell receiving power level and the channel occupancy time of the neighboring gNB. The blockage occasion of the serving gNB may be transmit to the UE, to cause the downlink transmission detection to be skipped at the UE. This solution may facilitate  transmission detection skipping for UE taking the channel occupancy information of interfering neighbouring cells into account. Furthermore, the UE measurement on one or more interfering cells is enabled to efficiently avoid blind measurement due to LBT, therefore the UE power saving and measurement efficiency can be improved.
Principle and implementations of the present disclosure will be described in detail below with reference to FIGs. 2-5. FIG. 2 shows a signaling chart illustrating a process of transmission detection skipping mechanism according to some example embodiments of the present disclosure. For the purpose of discussion, the process 200 will be described with reference to FIG. 1. The process200 may involve the UE 110, the serving gNB 120-1, the neighboring gNB 120-2 and the control unit 130 as illustrated in FIG. 1.
To determine a time interval in which the serving cell is to be blocked due to on-going transmission from other neighbouring gNB in a same coordination set, the control unit may collect inter-cell received energy levels. The inter-cell received energy level can be obtained through offline simulation/measurement tools or measured based on reference signalling resources
As shown in FIG. 2, for example, the control unit 130 may transmit 202, to the serving gNB 120-1, an indication that a receiving power level is to be detected at the serving gNB 120-1 in a detection time window in which a transmission of the neighboring gNB 120-2 is performed on the operating channel associated with the neighboring gNB 120-2. The detection can be performed at the serving gNB 120-1 in a controlled environment, in which there is no interference sources other than the transmission of the neighboring gNB 120-2.
As another option, the control unit 130 may configure a set of Downlink Reference Signal (DL RS) resources for the serving gNB 120-1 for inter-cell received energy measurement. In some example embodiments, the DL RS resources can be CSI-RS/SSB/DMRS resources allocated to the cells in the coordination set for downlink transmission. As shown in FIG. 2, the control unit 130 may transmit 202’ the configuration information of resources for a DL RS to the serving gNB 120-1. The serving gNB 120-1 may measure the Reference Signal Receiving Power (RSRP) based on the configuration information in a detection time window in which a transmission of the neighboring gNB 120-2 is performed on the resources for a DL RS. The serving gNB 120-1 may transmit 204’ the RSRP as the receiving power level to the control unit 130.
In some example embodiments, the neighboring gNB 120-2 may perform 208 a LBT operation. If the neighboring gNB 120-2 can get a channel for a transmission with a successful LBT operation, the neighboring gNB 120-2 may report 208 the channel occupancy information to the control unit 130 through fronthaul. For example, the channel occupancy information may comprise at least one of the channel occupancy time, such as a starting point of the transmission of the neighboring gNB 120-2 and the duration of the transmission. For example, the channel occupancy time can be considered as the transmission time of the neighboring gNB 120-2 after successfully passing LBT or shared COT from another devices. The channel occupancy information may also comprise the operating channel for the transmission.
Based on the receiving power level from the serving gNB 120-1 and the channel occupancy information of the neighboring gNB 120-2, the control unit 130 may further determine the blockage occasions for the serving gNB 120-1.
When the control unit 130 receives the receiving power level from the serving gNB 120-1, the control unit 130 may determine the inter-cell receiving power level assoc iated with the serving gNB 120-1 and the neighboring gNB 120-2.
The control unit 130 may calculate the inter-cell receiving power level from the interfering cells in the coordination which occupy the channel at the same time for a time interval. For example, the control unit 130 may determine the inter-cell receiving power level based on the receiving power level received from the serving gNB 120-1.
Although the receiving power level is determined by the serving gNB 120-1 in a case where the serving gNB 120-1 is interfered by the transmission of the neighboring gNB 120-2, the serving gNB 120-1 may also determine receiving power level due to other transmission of other neighboring gNBs other than the neighboring gNB 120-2. The control unit may also consider the receiving power level associated with other transmission of other neighboring gNBs.
In a time interval occupied by the interfering gNB, for example, the neighboring gNB 120-2, if the control unit 130 determines the inter-cell receiving power level exceeds a threshold level, the control unit 130 may determine that the channel for the transmission of the interfering gNB is occupied and the transmission of the serving gNB 120-1 may be blocked by the the transmission of the interfering gNB in the time interval.
It is possible that the time interval of the transmission from the interfering gNB  can be grouped into multiple common periods. If the serving gNB 120-1 will be blocked in two consecutive periods, the two periods can be combined into a common period, i.e. the time interval in which the channel is occupied by the the transmission of the interfering gNB.
Based on the channel occupancy information received from the neighboring gNB 120-2, the control unit 130 may determine 210 the blockage occasion, which may comprise the time interval in which the transmission of the serving gNB 120-1 is to be blocked and the operating channel where the serving gNB 120-1 will be blocked to access. For example, the time interval can be indicated through starting point and duration.
In some example embodiments, if the blockage duration at one occasion is large than a threshold duration, the control unit 130 may indicate at least one of the blockage occasion and the interfering gNB, for example, the neighboring gNB 120-2 to the serving gNB 120-1. For example, the threshold duration can be configured through OAM, predefined during specification or self-determined by the control unit 130 based on the connection latency between the DU/CU and the RU.
After the blockage occasion is determined, the control unit 130 may transmit 212 an indication of the the blockage occasion to the serving gNB 120-1. Then the serving gNB 120-1 may further forward 214 the indication to the UE 110.
In addition to the blockage occasion, the serving gNB 120-1 may also transmit a further indication of a measurement on the interfering gNB, for example, the neighboring gNB 120-2. For example, the measurement may be referred to as a Radio Resource Management measurement. The configuration information of the measurement can be transmitted from the serving gNB 120-1 to the UE 110 via a higher layer signalling, for example, a RRC signalling.
In some example embodiments, the indication of the blockage occasion and the indication of the measurement on the interfering gNB can be transmitted from the serving gNB 120-1 to the UE 110 through a cell other than the serving cell, for example, a licensed cell in the scenario of CA, or another unlicensed cell/band/carrier which passes the LBT successfully in the case of CA or multiple-channel operation.
In some example embodiments, the indication of the blockage occasion and the indication of the measurement on the interfering gNB can be transmitted from the serving gNB 120-1 to the UE 110 as a short control signalling without LBT. The short controlling  signalling can be sequence-based or DCI-based. For this, the resources (e.g. transmission occasions or search space configuration set, sequence or a RNTI for DCI decoding) for the short controlling signalling detection shall be pre-configured to UE 110.
After the blockage occasion is received, the UE 110 may determine 216 the transmission from the serving gNB 120-1 is to be blocked within a time interval of the blockage occasion on an operating channel associated with at least one third device. Then a transmission detection can be skipped within the time interval at the UE.
For example, the UE may skip the transmission detection from the serving gNB 120-1 involved in the PDCCH/DMRS monitoring, SSB decoding or CIS-RS measurement at the indicated blockage occasions.
In some example embodiments, if the indication of the measurement on the interfering gNB is received, the can be triggered to perform measurement, such as RRM measurement during the blockage of the serving gNB 120-1 based on the configuration of RRM measurement and report the measurement result.
This solution may facilitate transmission detection skipping for UE taking the channel occupancy information of interfering neighbouring cells into account. Furthermore, the UE measurement on one or more interfering cells is enabled to efficiently avoid blind measurement due to LBT, therefore the UE power saving and measurement efficiency can be improved.
FIG. 3 shows a flowchart of an example method 300 of transmission detection skipping mechanism according to some example embodiments of the present disclosure. The method 300 can be implemented at the first device 110 as shown in FIG. 1. For the purpose of discussion, the method 300 will be described with reference to FIG. 1.
At 310, the first device receives, from a second device, an indication of a blockage occasion for a transmission from the second device to the first device. The transmission may be blocked within a time interval of the blockage occasion on an operating channel associated with at least one third device.
At 320, the first device causes a detection associated with the transmission to be skipped within the time interval based on the indication.
In some example embodiments, the detection comprises at least one of a monitoring on a control channel for the transmission, or a radio resource management  measurement associated with the second device.
In some example embodiments, the first device may receive, from the second device, a further indication of a measurement on the at least one third device interfering the transmission. The first device may also obtain configuration information for the measurement and perform the measurement based on the further indication and the configuration information.
In some example embodiments the configuration information is received from the further indication or a higher layer signaling.
In some example embodiments, the indication is received through at least one of a licensed cell of the second device, an unlicensed cell of the second device in which a successful Listen Before Talk, LBT, procedure is performed by the second device, or a short control signalling transmitted on pre-configured resources.
In some example embodiments, the further indication is received through at least one of a licensed cell of the second device, an unlicensed cell of the second device in which a successful Listen Before Talk, LBT, procedure is performed by the second device, or a short control signalling transmitted on pre-configured resources.
In some example embodiments, the first device comprises a terminal device and the second device comprises a network device. The at least one third device comprises a network device.
FIG. 4 shows a flowchart of an example method 400 of transmission detection skipping mechanism according to some example embodiments of the present disclosure. The method 400 can be implemented at the second device 120-2 as shown in FIG. 1. For the purpose of discussion, the method 400 will be described with reference to FIG. 1.
At 410, the second device 120-2 receives, from a fourth device, an indication of a blockage occasion for a transmission from the second device to the first device. The transmission is blocked within a time interval of the blockage occasion on an operating channel associated with at least one third device.
At 420, the the second device transmits the indication to the first device.
In some example embodiments, if the second device receives from the fourth device, a further indication that a receiving power level is to be detected at the second device in a detection time window in which the further transmission is performed on the  operating channel associated with at least one third device, the second device may detect the receiving power level in the detection time window. The second device may also transmit the receiving power level to the fourth device.
In some example embodiments, the second device receives configuration information of resources for a reference signal from the fourth device. The second device may determine a receiving power level in a detection time window in which the further transmission is performed based on the configuration information and transmit the receiving power level to the fourth device.
In some example embodiments, the first device comprises a terminal device, the second device comprises a network device, the at least one third device comprises a further network device and the fourth device comprises a control unit.
FIG. 5 shows a flowchart of an example method 500 of transmission detection skipping mechanism according to some example embodiments of the present disclosure. The method 500 can be implemented at the fourth device 130 as shown in FIG. 1. For the purpose of discussion, the method 500 will be described with reference to FIG. 1.
At 510, the fourth device 130 determines a total inter-cell receiving power level associated with a second device.
In some example embodiments, the fourth device 130 may receive the receiving power levels from the second device, the receiving power level being determined in a detection time window in which a further transmission associated with the third device is performed. The fourth device 130 may also receive channel occupancy information from at least one third device, the channel occupancy information indicating the operating channel on which the further transmission associated with the at least one third device is performed and occupancy time of the operating channel and determine the inter-cell receiving power level based on the receiving power levels.
At 520, the fourth device 130 generates, based on the total inter-cell receiving power level, an indication of a blockage occasion for a transmission from the second device to the first device. The transmission is blocked within a time interval of the blockage occasion on an operating channel.
In some example embodiments, if the fourth device 130 determines the inter-cell receiving power level exceeds a threshold level, the fourth device 130 may determine the transmission from the second device to a first device is to be blocked. The fourth device  130 may further determine an operating channel and occupancy time of the operating channel from the channel occupancy information and determine a time interval in which the transmission is to be blocked based on the occupancy time. The fourth device 130 may further generate the indication based on the operating channel and the time interval.
At 530, the fourth device 130 transmits the indication to the second device.
In some example embodiments, the first device comprises a terminal device, the second device comprises a network device, the at least one third device comprises a further network device and the fourth device comprises a control unit.
In some example embodiments, an apparatus capable of performing the method 300 (for example, implemented at the UE 110) may comprise means for performing the respective steps of the method 300. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module.
In some example embodiments, the apparatus comprises means for receiving, from a second device, an indication of a blockage occasion for a transmission from the second device to the first device, the transmission being blocked within a time interval of the blockage occasion on an operating channel associated with at least one third device; and means for causing a detection associated with the transmission to be skipped within the time interval based on the indication.
In some example embodiments, an apparatus capable of performing the method 400 (for example, implemented at the serving gNB 120-1) may comprise means for performing the respective steps of the method 400. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module.
In some example embodiments, the apparatus comprises means for receiving, from a fourth device, an indication of a blockage occasion for a transmission from the second device to the first device, the transmission being blocked within a time interval of the blockage occasion on an operating channel associated with at least one third device; and means for transmitting the indication to the first device.
In some example embodiments, an apparatus capable of performing the method 500 (for example, implemented at the control unit 130) may comprise means for performing the respective steps of the method 500. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software  module.
In some example embodiments, the apparatus comprises means for determining a total inter-cell receiving power level associated with a second device; means for generating, based on the total inter-cell receiving power level, an indication of a blockage occasion for a transmission from the second device to the first device, the transmission being blocked within a time interval of the blockage occasion on an operating channel associated with at least one third device; and means for transmitting the indication to the second device.
FIG. 6 is a simplified block diagram of a device 600 that is suitable for implementing embodiments of the present disclosure. The device 600 may be provided to implement the communication device, for example the UE 110, the serving gNB 120-1 and the control unit 130 as shown in FIG. 1. As shown, the device 600 includes one or more processors 610, one or more memories 640 coupled to the processor 610, and one or more transmitters and/or receivers (TX/RX) 640 coupled to the processor 610.
The TX/RX 640 is for bidirectional communications. The TX/RX 640 has at least one antenna to facilitate communication. The communication interface may represent any interface that is necessary for communication with other network elements.
The processor 610 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 600 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
The memory 620 may include one or more non-volatile memories and one or more volatile memories. Examples of the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 624, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , and other magnetic storage and/or optical storage. Examples of the volatile memories include, but are not limited to, a random access memory (RAM) 622 and other volatile memories that will not last in the power-down duration.
computer program 630 includes computer executable instructions that are executed by the associated processor 610. The program 630 may be stored in the ROM 620. The processor 610 may perform any suitable actions and processing by loading the  program 630 into the RAM 620.
The embodiments of the present disclosure may be implemented by means of the program 630 so that the device 600 may perform any process of the disclosure as discussed with reference to FIGs. 2 to 5. The embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
In some embodiments, the program 630 may be tangibly contained in a computer readable medium which may be included in the device 600 (such as in the memory 620) or other storage devices that are accessible by the device 600. The device 600 may load the program 630 from the computer readable medium to the RAM 622 for execution. The computer readable medium may include any types of tangible non-volatile storage, such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like. FIG. 7. shows an example of the computer readable medium 700 in form of CD or DVD. The computer readable medium has the program 630 stored thereon.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, device, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the  methods  300, 400 and 500 as described above with reference to FIGs. 3-5. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments.  Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing device, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
In the context of the present disclosure, the computer program codes or related data may be carried by any suitable carrier to enable the device, device or processor to perform various processes and operations as described above. Examples of the carrier include a signal, computer readable medium, and the like.
The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular  embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in languages specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (29)

  1. A first device comprising:
    at least one processor; and
    at least one memory including computer program codes;
    the at least one memory and the computer program codes are configured to, with the at least one processor, cause the first device at least to:
    receive, from a second device, an indication of a blockage occasion for a transmission from the second device to the first device, the transmission being blocked within a time interval of the blockage occasion on an operating channel associated with at least one third device; and
    cause a detection associate with the transmission to be skipped within the time interval based on the indication.
  2. The first device of Claim 1, wherein the detection comprises at least one of the following:
    a monitoring on a control channel for the transmission, or
    a radio resource management measurement associated with the second device.
  3. The first device of Claim 1, wherein the first device is further caused to:
    receive, from the second device, a further indication of a measurement on the at least one third device interfering the transmission within the time interval;
    obtain configuration information for the measurement; and
    perform the measurement based on the further indication and the configuration information.
  4. The first device of Claim 3, wherein the configuration information is received from at least one of the following:
    the further indication, or
    a higher layer signaling.
  5. The first device of Claim 1, wherein the indication is received through at least one of the following:
    a licensed cell of the second device,
    an unlicensed cell of the second device in which a successful Listen Before Talk, LBT, procedure is performed by the second device, or
    a short control signalling transmitted on pre-configured resources.
  6. The first device of Claim 2, wherein the further indication is received through at least one of the following:
    a licensed cell of the second device;
    an unlicensed cell of the second device, in which a successful Listen Before Talk, LBT, procedure is performed; or
    a short control signalling transmitted on pre-configured resources.
  7. The first device of Claim 1, wherein the first device comprises a terminal device, the second device comprises a network device and the at least one third device comprises a network device.
  8. A second device comprising:
    at least one processor; and
    at least one memory including computer program codes;
    the at least one memory and the computer program codes are configured to, with the at least one processor, cause the second device at least to:
    receive, from a fourth device, an indication of a blockage occasion for a transmission from the second device to the first device, the transmission being blocked within a time interval of the blockage occasion on an operating channel associated with at least one third device; and
    transmit the indication to the first device.
  9. The second device of Claim 8, wherein the second device is further caused to:
    in response to receiving, from the fourth device, a further indication that a receiving power level is to be detected at the second device in a detection time window in which the further transmission is performed on the operating channel, detect the receiving power level in the detection time window; and
    transmit the receiving power level to the fourth device.
  10. The second device of Claim 8, wherein the second device is further caused to:
    receive configuration information of resources for a reference signal from the fourth device;
    determine a receiving power level in a detection time window in which the further transmission is performed based on the configuration information; and
    transmit the receiving power level to the fourth device.
  11. The second device of Claim 8, wherein the first device comprises a terminal device, the second device comprises a network device, the at least one third device comprises a further network device and the fourth device comprises a control unit.
  12. A fourth device comprising:
    at least one processor; and
    at least one memory including computer program codes;
    the at least one memory and the computer program codes are configured to, with the at least one processor, cause the fourth device at least to:
    determine a total inter-cell receiving power level associated with a second device;
    generate, based on the total inter-cell receiving power level, an indication of a blockage occasion for a transmission from the second device to the first device, the transmission being blocked within a time interval of the blockage occasion on an operating channel associated with at least one third device; and
    transmit the indication to the second device.
  13. The fourth device of Claim 12, wherein the fourth device is caused to determine the inter-cell receiving power level by:
    receiving the receiving power levels from the second device, the receiving power level being determined in a detection time window in which a further transmission associated with the at least one third device is performed;
    receiving channel occupancy information from the at least one third device, the channel occupancy information indicating the operating channel on which the further transmission associated with the at least one third device is performed and occupancy time of the operating channel; and
    determining the total inter-cell receiving power level based on the receiving power levels and the channel occupancy information.
  14. The fourth device of Claim 12, wherein the fourth device is caused to generate the indication by:
    in accordance with a determination that the total inter-cell receiving power level exceeds a threshold level, determine the transmission from the second device to a first device is to be blocked;
    determining an operating channel and occupancy time of the operating channel from the channel occupancy information; and
    determining a time interval in which the transmission is to be blocked based on the occupancy time; and
    generating the indication based on the operating channel and the time interval.
  15. The fourth device of Claim 12, wherein the first device comprises a terminal device, the second device comprises a network device, the at least one third device comprises a further network device and the fourth device comprises a control unit.
  16. A method comprising:
    receiving, at a first device and from a second device, an indication of a blockage occasion for a transmission from the second device to the first device, the transmission being blocked within a time interval of the blockage occasion on an operating channel associated with at least one third device; and
    causing a detection associated with the transmission to be skipped within the time interval based on the indication.
  17. The method of Claim 16, wherein the detection comprises at least one of the following:
    a monitoring on a control channel for the transmission, or
    a radio resource management measurement associated with the second device.
  18. The method of Claim 16, further comprising:
    receiving, from the second device, a further indication of a measurement on the at least one third device interfering the transmission within the time interval;
    obtaining configuration information for the measurement; and
    performing the measurement based on the further indication and the configuration  information.
  19. The method of Claim 16, wherein the configuration information is received from at least one of the following:
    the further indication, or
    a higher layer signaling.
  20. The method of Claim 16, wherein the indication is received through at least one of the following:
    a licensed cell of the second device,
    an unlicensed cell of the second device in which a successful Listen Before Talk, LBT, procedure is performed by the second device, or
    a short control signalling transmitted on pre-configured resources.
  21. The method of Claim 16, wherein the further indication is received through at least one of the following:
    a licensed cell of the second device;
    an unlicensed cell of the second device, in which a successful Listen Before Talk, LBT, procedure is performed; or
    a short control signalling transmitted on pre-configured resources.
  22. A method comprising:
    receiving, at a second device and from a fourth device, an indication of a blockage occasion for a transmission from the second device to the first device, the transmission being blocked within a time interval of the blockage occasion on an operating channel associated with at least one third device; and
    transmitting the indication to the first device.
  23. The method of Claim 22, further comprising:
    in response to receiving, from the fourth device, a further indication that a receiving power level is to be detected at the second device in a detection time window in which the further transmission is performed on the operating channel, detecting the receiving power level in the detection time window; and
    transmitting the receiving power level to the fourth device.
  24. The method of Claim 22, further comprising:
    receiving configuration information of resources for a reference signal from the fourth device;
    determining a receiving power level in a detection time window in which the further transmission is performed based on the configuration information; and
    transmitting the receiving power level to the fourth device.
  25. A method comprising:
    determining, at a fourth device, a total inter-cell receiving power levels associated with a second device;
    generating, based on the total inter-cell receiving power level, an indication of a blockage occasion for a transmission from the second device to the first device, the transmission being blocked within a time interval of the blockage occasion on an operating channel associated with at least one third device; and
    transmitting the indication to the second device.
  26. The method of Claim 25, wherein determining the total inter-cell receiving power level comprises:
    receiving the receiving power levels from the second device, the receiving power level being determined in a detection time window in which the further transmission is performed;
    receiving channel occupancy information from the at least one third device, the channel occupancy information indicating the operating channel on which the further transmission associated with the at least one third device is performed and occupancy time of the operating channel; and
    determining the total inter-cell receiving power level based on the receiving power levels and the channel occupancy information.
  27. The method of Claim 25, wherein generating the indication comprises:
    in accordance with a determination that the total inter-cell receiving power level exceeds a threshold level, determine the transmission from the second device to a first device is to be blocked;
    determining an operating channel and occupancy time of the operating channel  from the channel occupancy information; and
    determining a time interval in which the transmission is to be blocked based on the occupancy time; and
    generating the indication based on the operating channel and the time interval.
  28. An apparatus comprising:
    means for performing at least the method of any of claims 16-21, 22-24, or 25-27.
  29. A non-transitory computer readable medium comprising program instructions for causing an apparatus to perform at least the method of any of claims 16-21, 22-24, or 25-27.
PCT/CN2020/106174 2020-07-31 2020-07-31 Transmission detection skipping mechanism for power saving WO2022021313A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/106174 WO2022021313A1 (en) 2020-07-31 2020-07-31 Transmission detection skipping mechanism for power saving
CN202080011374.7A CN114270987A (en) 2020-07-31 2020-07-31 Transmission detection skip mechanism for power saving

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/106174 WO2022021313A1 (en) 2020-07-31 2020-07-31 Transmission detection skipping mechanism for power saving

Publications (1)

Publication Number Publication Date
WO2022021313A1 true WO2022021313A1 (en) 2022-02-03

Family

ID=80037353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106174 WO2022021313A1 (en) 2020-07-31 2020-07-31 Transmission detection skipping mechanism for power saving

Country Status (2)

Country Link
CN (1) CN114270987A (en)
WO (1) WO2022021313A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024065369A1 (en) * 2022-09-29 2024-04-04 Nokia Shanghai Bell Co., Ltd. Conditional skipping of measurements

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017133596A1 (en) * 2016-02-04 2017-08-10 电信科学技术研究院 Method and device for transmitting uplink control information
WO2017133452A1 (en) * 2016-02-03 2017-08-10 电信科学技术研究院 Method and device for transmitting uplink control information
WO2017213393A1 (en) * 2016-06-06 2017-12-14 Samsung Electronics Co., Ltd. Method and user equipment for transmitting uplink signals
WO2019183889A1 (en) * 2018-03-29 2019-10-03 Nokia Shanghai Bell Co., Ltd. Method, devices and computer readable medium for uplink transmission in a wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017133452A1 (en) * 2016-02-03 2017-08-10 电信科学技术研究院 Method and device for transmitting uplink control information
WO2017133596A1 (en) * 2016-02-04 2017-08-10 电信科学技术研究院 Method and device for transmitting uplink control information
WO2017213393A1 (en) * 2016-06-06 2017-12-14 Samsung Electronics Co., Ltd. Method and user equipment for transmitting uplink signals
WO2019183889A1 (en) * 2018-03-29 2019-10-03 Nokia Shanghai Bell Co., Ltd. Method, devices and computer readable medium for uplink transmission in a wireless communication system

Also Published As

Publication number Publication date
CN114270987A (en) 2022-04-01

Similar Documents

Publication Publication Date Title
US20230371073A1 (en) Harq feedback for nr sidelink communication in unlicensed spectrum
WO2022061617A1 (en) Positioning reference signal transmission triggered by sounding reference signal
US20230275727A1 (en) Positioning reference signal design for low power tracking
US20210250865A1 (en) Uplink information based on wake-up signal
WO2022170512A1 (en) Multiplexing of sidelink positioning reference signal with physical sidelink feedback channel
WO2022021313A1 (en) Transmission detection skipping mechanism for power saving
WO2022151632A1 (en) Relaxing evaluation of radio link quality
WO2022016493A1 (en) Radio resource management measurement relaxation and cell reselection
WO2021062877A1 (en) Status control of secondary cell
WO2021022422A1 (en) Transmission of high layer ack/nack
WO2023024114A1 (en) Mitigation of performance degradation
WO2024031561A1 (en) Improved positioning activity
WO2024026753A1 (en) Positioning measurement across frequency hops
WO2022252196A1 (en) Channel occupancy time sharing for transmission in unlicensed band
WO2022151630A1 (en) Uplink skipping
WO2022252154A1 (en) Relaxation compensation for improved system performance
WO2023023967A1 (en) Relaxed measurement timing configurations
WO2021226747A1 (en) Resource selection in sidelink
WO2022077226A1 (en) Discontinuous reception in sidelink communication
WO2024036522A1 (en) Cell re-selection enhancements
WO2024026790A1 (en) Method and apparatus for indication of communication pattern
WO2023173310A1 (en) Enhanced positioning mechanism
US20230171816A1 (en) Traffic priority-based energy detection threshold adaption in unlicensed band
WO2024040401A1 (en) Mechanism for failure detection
WO2023082274A1 (en) Transmit power determination in radio resource control inactive state

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20947738

Country of ref document: EP

Kind code of ref document: A1