WO2022016493A1 - Radio resource management measurement relaxation and cell reselection - Google Patents

Radio resource management measurement relaxation and cell reselection Download PDF

Info

Publication number
WO2022016493A1
WO2022016493A1 PCT/CN2020/104056 CN2020104056W WO2022016493A1 WO 2022016493 A1 WO2022016493 A1 WO 2022016493A1 CN 2020104056 W CN2020104056 W CN 2020104056W WO 2022016493 A1 WO2022016493 A1 WO 2022016493A1
Authority
WO
WIPO (PCT)
Prior art keywords
rrm measurement
lbt failure
configuration information
lbt
rrm
Prior art date
Application number
PCT/CN2020/104056
Other languages
French (fr)
Inventor
Jussi-Pekka Koskinen
Samuli Turtinen
Jorma Kaikkonen
Chunli Wu
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy, Nokia Technologies Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to PCT/CN2020/104056 priority Critical patent/WO2022016493A1/en
Priority to CN202080010830.6A priority patent/CN114342452A/en
Publication of WO2022016493A1 publication Critical patent/WO2022016493A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Embodiments of the present disclosure generally relate to the field of telecommunication and in particular, to device, method, apparatus and computer readable storage medium of Radio Resource Management (RRM) measurement relaxation and cell reselection.
  • RRM Radio Resource Management
  • the RRM in New Radio is based on measurements of Synchronization Signal Block (SSB) or Channel State Information-Reference Signal (CSI-RS) .
  • SSB Synchronization Signal Block
  • CSI-RS Channel State Information-Reference Signal
  • a network device may not be able to always transmit SSBs, for example, due to the Listen Before Talk (LBT) failure, which may impact measurements for cell reselection and RRM relaxation to be performed at the terminal device.
  • LBT Listen Before Talk
  • the paging information and the system information may not always be transmitted either.
  • example embodiments of the present disclosure provide a solution of RRM measurement relaxation and cell reselection.
  • a first device comprising at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the first device at least to obtain configuration information associated with a RRM measurement from a second device; detect at least one Listen Before Talk, LBT, failure occurred at the second device; and perform an operation related to the RRM measurement based on the configuration information and the at least one LBT failure.
  • the first device comprises at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the first device at least to obtain configuration information associated with a RRM measurement from a second device; detect at least one Listen Before Talk, LBT, failure occurred at the second device; and perform an operation related to the RRM measurement based on the configuration information and the at least one LBT failure.
  • LBT Listen Before Talk
  • a second device comprising at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the second device at least to transmit configuration information associated with a Radio Resource Management, RRM, measurement to a first device; and perform at least one Listen Before Talk, LBT, procedure, to cause the first device to perform an operation related to the RRM measurement based on the configuration information and at least one LBT failure occurred at the second device.
  • RRM Radio Resource Management
  • LBT Listen Before Talk
  • a method comprises obtaining configuration information associated with a RRM measurement from a second device; detecting at least one Listen Before Talk, LBT, failure occurred at the second device; and performing an operation related to the RRM measurement based on the configuration information and the at least one LBT failure.
  • LBT Listen Before Talk
  • a method comprises transmitting configuration information associated with a Radio Resource Management, RRM, measurement to a first device; and performing at least one Listen Before Talk, LBT, procedure, to cause the first device to perform an operation related to the RRM measurement based on the configuration information and at least one LBT failure occurred at the second device.
  • RRM Radio Resource Management
  • LBT Listen Before Talk
  • an apparatus comprises means for obtaining configuration information associated with a RRM measurement from a second device; means for detecting at least one Listen Before Talk, LBT, failure occurred at the second device; and means for performing an operation related to the RRM measurement based on the configuration information and the at least one LBT failure.
  • an apparatus comprises means for transmitting configuration information associated with a Radio Resource Management, RRM, measurement to a first device; and means for performing at least one Listen Before Talk, LBT, procedure, to cause the first device to perform an operation related to the RRM measurement based on the configuration information and at least one LBT failure occurred at the second device.
  • RRM Radio Resource Management
  • LBT Listen Before Talk
  • a computer readable medium having a computer program stored thereon which, when executed by at least one processor of a device, causes the device to carry out the method according to the third aspect.
  • a computer readable medium having a computer program stored thereon which, when executed by at least one processor of a device, causes the device to carry out the method according to the fourth aspect.
  • FIG. 1 illustrates an example environment in which example embodiments of the present disclosure can be implemented
  • FIG. 2 shows a flowchart of an example method of RRM measurement relaxation and cell reselection according to some example embodiments of the present disclosure
  • FIG. 3 shows a signaling chart illustrating a process of RRM measurement relaxation and cell reselection according to some example embodiments of the present disclosure
  • FIG. 4 shows a flowchart of an example method of RRM measurement relaxation and cell reselection according to some example embodiments of the present disclosure
  • FIG. 5 shows a simplified block diagram of a device that is suitable for implementing example embodiments of the present disclosure.
  • FIG. 6 shows a block diagram of an example computer readable medium in accordance with some embodiments of the present disclosure.
  • references in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an example embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
  • circuitry may refer to one or more or all of the following:
  • circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware.
  • circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
  • the term “communication network” refers to a network following any suitable communication standards, such as fifth generation (5G) systems, Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) and so on.
  • 5G fifth generation
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • NB-IoT Narrow Band Internet of Things
  • the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) new radio (NR) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • suitable generation communication protocols including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) new radio (NR) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the
  • the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom.
  • the network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR Next Generation NodeB (gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth, depending on the applied terminology and technology.
  • BS base station
  • AP access point
  • NodeB or NB node B
  • eNodeB or eNB evolved NodeB
  • gNB Next Generation NodeB
  • RRU Remote Radio Unit
  • RH radio header
  • RRH remote radio head
  • relay a
  • a RAN split architecture comprises a gNB-CU (Centralized unit, hosting RRC, SDAP and PDCP) controlling a plurality of gNB-DUs (Distributed unit, hosting RLC, MAC and PHY) .
  • a relay node may correspond to DU part of the IAB node.
  • terminal device refers to any end device that may be capable of wireless communication.
  • a terminal device may also be referred to as a communication device, user equipment (UE) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) .
  • UE user equipment
  • SS Subscriber Station
  • MS Mobile Station
  • AT Access Terminal
  • the terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (IoT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/
  • the terminal device may also correspond to Mobile Termination (MT) part of the integrated access and backhaul (IAB) node (a.k.a. a relay node) .
  • MT Mobile Termination
  • IAB integrated access and backhaul
  • the terms “terminal device” , “communication device” , “terminal” , “user equipment” and “UE” may be used interchangeably.
  • a user equipment apparatus such as a cell phone or tablet computer or laptop computer or desktop computer or mobile IoT device or fixed IoT device
  • This user equipment apparatus can, for example, be furnished with corresponding capabilities as described in connection with the fixed and/or the wireless network node (s) , as appropriate.
  • the user equipment apparatus may be the user equipment and/or or a control device, such as a chipset or processor, configured to control the user equipment when installed therein. Examples of such functionalities include the bootstrapping server function and/or the home subscriber server, which may be implemented in the user equipment apparatus by providing the user equipment apparatus with software configured to cause the user equipment apparatus to perform from the point of view of these functions/nodes.
  • FIG. 1 shows an example communication network 100 in which embodiments of the present disclosure can be implemented.
  • the communication network 100 comprises a terminal device 110 (hereafter also referred to as a first device 110 or a UE 110) and a network device 120 (hereafter also referred to as a second device 120 or a gNB 120) .
  • the terminal device 110 may communicate with the network device 120.
  • the communication network 100 may include any suitable number of network devices and terminal devices.
  • the network 100 may be a Code Division Multiple Access (CDMA) network, a Time Division Multiple Address (TDMA) network, a Frequency Division Multiple Access (FDMA) network, an Orthogonal Frequency-Division Multiple Access (OFDMA) network, a Single Carrier-Frequency Division Multiple Access (SC-FDMA) network or any others.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Address
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency-Division Multiple Access
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • Communications discussed in the network 100 may conform to any suitable standards including, but not limited to, New Radio Access (NR) , Long Term Evolution (LTE) , LTE-Evolution, LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (CDMA) , cdma2000, and Global System for Mobile Communications (GSM) and the like.
  • NR New Radio Access
  • LTE Long Term Evolution
  • LTE-A LTE-Evolution
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • GSM Global System for Mobile Communications
  • the communications may be performed according to any generation communication protocols either currently known or to be developed in the future. Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols.
  • the techniques described herein may be used for
  • RRM in NR is based on measurements of SSB or Channel CSI-RS.
  • the network device 120 may not be able to always transmit SSBs.
  • the LBT procedure performed at the network device 120 is not successful (i.e. the network device 120 is not able to obtain the channel)
  • the DL SSB transmission will not occur at all.
  • the paging information and the system information may not always be transmitted either.
  • the DL transmission failure caused by the LBT failure may impact measurements for cell reselection and RRM relaxation to be performed at the terminal device 110.
  • the present disclosure proposes a solution for the terminal device to determine whether the cell reselection is to be initiated or a RRM measurement relaxation is allowed based on the detection of the LBT failure.
  • RRM measurement relaxation can be applicable for NR-U and the power saving for the terminal device is optimized to allow RRM measurement relaxation when the channel is not busy for NR-U.
  • FIG. 2 shows a flowchart of an example method 200 of RRM measurement relaxation and cell reselection according to some example embodiments of the present disclosure.
  • the method 200 can be implemented at the UE 110 as shown in FIG. 1. For the purpose of discussion, the method 200 will be described with reference to FIG. 1.
  • the UE 110 obtains configuration information associated with RRM measurement from gNB 120.
  • the configuration information may comprise various parameters associated with RRM measurements.
  • the configuration information may comprise a relaxed RRM measurement configuration, such as criteria for performing the RRM measurement relaxation, which may indicate that in which scenario or under what condition the UE 110 can perform a RRM measurement relaxation.
  • the relaxed RRM measurement configuration may comprise a time interval of a RRM measurement in the relaxed RRM measurement mode and the condition for stopping the RRM measurement relaxation.
  • the configuration information associated with RRM measurement may also comprise DL SSB transmission configuration.
  • DL SSB transmission configuration the UE 110 may be configured with discovery burst transmission window within which the UE monitors for the SBBs.
  • the gNB 120 may not always able to perform a DL transmission. For example, when the LBT procedure performed at the network device 120 is not successful, the DL transmission will not occur at all, which may be referred to as a DL transmission failure. It is also possible that the UE 110 cannot receive any DL data even if the DL transmission has been performed at the gNB 120.
  • the UE 110 detects at least one LBT failure occurred at the gNB 120.
  • the UE 110 may also detect the LBT failure in the DL transmission for paging information and/or system information.
  • the UE 110 may aware of the reception time window for the DL SSB transmission.
  • the UE 110 may be configured with discovery burst transmission window within which the UE monitors for the SBBs.
  • the UE 110 can assume that the SSBs are transmitted in a half frame that is within a discovery burst transmission window, starting from the first symbol of the first slot in a half-frame.
  • the duration of the discovery burst transmission window can be provided by DiscoveryBurst-WindowLength-r16. If DiscoveryBurst-WindowLength-r16 is not provided, the UE 110 may assume that the duration of the discovery burst transmission window is a half frame (5ms) .
  • L max The maximum number of SSBs (that can be transmitted in a half frame) , L max , is 8 and number of candidate locations for SSBs, depends on the sub-carrier spacing of the SSBs. For 15 kHz SCS (of SSB) , and for 30 kHz SCS (of SSB) , For a serving cell, the UE 110 may assume that a periodicity of the discovery burst transmission window is same as a periodicity of half frames for receptions of SSBs in the serving cell.
  • the UE 110 may assume that one or more SSBs indicated by ssb-PositionsInBurst may be transmitted within the discovery burst transmission window and have candidate SSB indexes corresponding to SSB indexes provided by ssb-PositionsInBurst. If Most Significant Bit (MSB) k, k ⁇ 1, of ssb-PositionsInBurst is set to 1, the UE may assume that SSBs within the discovery burst transmission window with candidate SSBs index (es) corresponding to SSBs index equal to k-1 may be transmitted. If MSB k is set to 0, the UE 110 assumes that the SSBs are not transmitted.
  • MSB k Most Significant Bit
  • the UE may assume that SSBs in a serving cell that are within a same discovery burst transmission window or across discovery burst transmission windows are quasi co-located i.e. repeated versions from same source/beam, if a value of is same among the SSBs. is an index of a DM-RS sequence transmitted in a PBCH of a corresponding SSB. is either provided by ssb-PositionQCL-r16 or, if ssb-PositionQCL-r16 is not provided, obtained from a Master Information Block (MIB) based on the table shown as below:
  • MIB Master Information Block
  • Table 1 Mapping between the combination of subCarrierSpacingCommon and Least Significant Bit (LSB) of ssb-SubcarrierOffset to
  • the UE 110 may assume that within a discovery burst transmission window, a number of transmitted SS/PBCH blocks on a serving cell is not larger than and a number of transmitted SSBs with a same SSB index is not larger than one.
  • UE 110 may determine the DL SSBs are not transmitted due to the LBT failure.
  • the UE 110 may obtain a reference receiving level for at least one previous DL SSB transmission in in a previous reception time window and determine a current receiving level for at least one DL SSB transmission in a current reception time window. The UE 110 may compare the reference receiving level with the current receiving level. If the UE 110 determines that a difference between the reference receiving level and the current receiving level exceeds a threshold difference, the UE 110 may determine that the LBT failure is detected.
  • the UE 110 may detect the LBT failure in the DL SSB transmission based on the presence of SSBs and/or the change in observed SSB locations among the candidate locations. For example, the UE 110 may determine a candidate location for receiving at least one DL SSB transmission. If the UE 110 determines that the current reception location of the at least one SSB deviates from the candidate location, the UE 110 may determine that the LBT failure is detected.
  • the UE 110 may perform an operation related to the RRM measurement based on the configuration information and the at least one LBT failure.
  • the UE 110 may determine whether a cell reselection procedure is to be performed when the UE monitors the failure of the DL transmission. For example, if the number of the failure of the DL transmission reaches a threshold number, the UE 110 may determine that the current serving cell is too busy or has a poor service quality. If the UE 110 is in a relaxed RRM measurement mode, the UE 110 may revolution whether the relaxed RRM measurement is to be stopped when the UE 110 monitors the failure of the DL transmission.
  • the UE 110 may determine the cell selection receiving level value (Srxlev) based on the successful performed DL transmission.
  • the UE 110 may obtain the reference cell selection receiving level value (SrxlevRef) and compare the Srxlev with the SrxlevRef. Based on the comparison, the UE 110 may determine the operation related to the RRM measurement to be performed at the UE 110.
  • the UE 110 may perform a cell reselection procedure.
  • the UE 110 may also bar the current serving cell for a time period.
  • the time period can be statically specified or configurable.
  • the UE 110 may stop the RRM measurement relaxation. For example, the UE 110 may start measuring neighbouring cells earlier or to have more frequent samples to detect the problem with the camped cell earlier and find another suitable cell more quickly. Alternatively, the UE 110 may also re-evaluate the condition of the RRM measurement relaxation, to determine whether the UE 110 should keep performing the RRM measurement relaxation. It is also possible that the UE 110 may start more RRM measurements e.g. intra/inter frequency, RAT, (un) licensed etc.
  • RRM measurements e.g. intra/inter frequency, RAT, (un) licensed etc.
  • the UE 110 may perform at least one of operation related to RRM measurement, such as a cell reselection procedure, a serving cell of the first device baring for a time period, a termination of the RRM measurement relaxation at the first device and a re-evaluation for an availability of the RRM measurement relaxation. It is also possible that the UE 110 may start more RRM measurements e.g. intra/inter frequency, RAT, (un) licensed etc.
  • the UE 110 may be configured with a “SSB failure” threshold/counter to count the SSB failure due to LBT failure.
  • the UE 110 may increment a count value of LBT failure detected in a reception time window. If the UE determines the count value exceeds a threshold value, which may be indicated in the condition for stopping the RRM measurement relaxation, the UE 110 may perform at least one of above-mentioned operation related to RRM measurement.
  • threshold/counter configured for the UE can be single SSB occasion specific or “SSB set” specific.
  • the counter may be increased every time when UE detects DL LBT failure for SSB.
  • the counter may be increased if the UE detects LBT failure from all “SSB set” occasions.
  • the UE in case the UE receives SSB correctly, the UE decreases counter value.
  • the counters could be determined per SSB or based on reception of any SSB in a discovery burst window.
  • RRM measurement relaxation can be applicable for NR-U and the power saving for the terminal device is optimized to allow RRM measurement relaxation when the channel is not busy for NR-U.
  • FIG. 3 shows a signaling chart illustrating a process of RRM measurement relaxation and cell reselection according to some example embodiments of the present disclosure.
  • the process 300 may involve the UE 110 and the gNB 120 shown in FIG. 1.
  • an example process for determining the operation related to RRM measurement based on a counter for the LBT failure configured at the UE 110 can be further explained in detail.
  • the gNB 120 may transmit 302 configuration information associated with RRM measurement to the UE 110.
  • the configuration information may indicate in which condition the UE can perform a RRM measurement relaxation.
  • the configuration information may indicate in which condition the RRM measurement relaxation is to be stopped.
  • the UE 110 may determine 304, based on the configuration information, whether a RRM measurement relaxation can be performed. If so, the UE 110 may start performing the RRM measurement relaxation.
  • the gNB 120 may continue transmitting SSBs to the UE 110.
  • the UE 110 may monitor the DL transmission from the gNB 120, for example, the SSB transmission in a specific discovery burst transmission windows. For example, if the gNB 120 transmits 306, 308 the SSBs to the UE successfully, the UE 110 may continue the relaxed RRM measurement.
  • the UE 110 may detect 310 the DL LBT failure from the SSB occasion, which can be determined based on the configuration information. If the UE 110 determines the DL LBT failure is detected, the UE may increase the counter for the DL LBT failure by 1.
  • the gNB 120 may transmit 312 a SSB to the UE 110 successfully again.
  • the counter for the DL LBT failure may be configured to decrease the counting value when a SSB is received.
  • the UE 110 may decrease 314 the counter by 1 and therefore the counter is set to zero now.
  • the UE 110 may continue detecting the DL LBT failure. Each time when the UE detects the DL LBT failure, the counter for the DL LBT failure will be increased by 1. The UE may monitor 316 whether a threshold value is reached by the counter. The threshold value may be indicated in the condition in which the RRM measurement relaxation is to be stopped. When the UE 110 determines the counting value of the counter reaches a threshold value, the UE 110 may stop the RRM measurement relaxation.
  • the process 300 shown in FIG. 3 merely illustrates an example for the RRM measurement relaxation.
  • the UE 110 can determine whether the RRM measurement relaxation should be stopped based on other measurements conditions. Besides the stopping of the RRM measurement relaxation, the UE 110 may also perform other operation related RRM measurement such as cell reselection etc.
  • FIG. 4 shows a flowchart of an example method 400 of RRM measurement relaxation and cell reselection according to some example embodiments of the present disclosure.
  • the method 400 can be implemented at the gNB 120 as shown in FIG. 1.
  • the method 200 will be described with reference to FIG. 1.
  • the gNB 120-2 transmits configuration information associated with RRM measurement to a UE 110.
  • the gNB 120-2 performs at least one Listen Before Talk, LBT, procedure, to cause the UE 110 to perform an operation related to the RRM measurement from the UE 110 based on the configuration information and at least one LBT failure occurred at the gNB 120-2.
  • LBT Listen Before Talk
  • the operation comprises at least one of a cell reselection procedure, a serving cell of the first device baring for a time period, a termination of the RRM measurement relaxation at the first device, and a re-evaluation for an availability of the RRM measurement relaxation.
  • an apparatus capable of performing the method 200 may comprise means for performing the respective steps of the method 200.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the apparatus comprises means for obtaining configuration information associated with a RRM measurement from a second device; means for detecting at least one Listen Before Talk, LBT, failure occurred at the second device; and means for performing an operation related to the RRM measurement based on the configuration information and the at least one LBT failure.
  • LBT Listen Before Talk
  • the configuration information indicates at least one of a condition for performing a RRM measurement relaxation, and a condition for stopping the RRM measurement relaxation.
  • the means for detecting at least one LBT failure comprises means for detecting at least one of a transmission of synchronization signal block, a transmission of paging information, a transmission of system information and a transmission of a reference signal.
  • the means for detecting at least one LBT failure comprises means for determining a candidate location for receiving at least one Synchronization Signal block, SSB, transmission from the second device to the first device in a reception time window; and means for, in accordance with a determination that a current reception location of the at least one SSB deviates from the candidate location, determining that the LBT failure is detected.
  • SSB Synchronization Signal block
  • the means for detecting at least one LBT failure comprises means for obtaining a reference receiving level for at least one previous Synchronization Signal block, SSB, transmission from the second device to the first device in a previous reception time window; means for determining a current receiving level for at least one SSB transmission in a current reception time window; and means for, in accordance with a determination that a difference between the reference receiving level and the current receiving level exceeds a threshold difference, determining that the LBT failure is detected.
  • SSB Synchronization Signal block
  • the means for performing the operation comprises means for, in accordance with a determination that the at least one LBT failure is detected, determining a current value of cell selection receiving level based on at least one transmission performed from the second device to the first device; means for obtaining a reference value of the cell selection receiving level from the configuration information; and means for, in accordance with a determination that the actual value is lower than the reference value, performing at least one of a cell reselection procedure, a serving cell of the first device baring for a time period, termination of the RRM measurement relaxation at the first device, and re-evaluation for an availability of the RRM measurement relaxation.
  • the means for performing the operation comprises means for, in accordance with a determination that the at least one LBT failure is detected, incrementing a count value of LBT failure detected in a reception time window; and means for, in accordance with a determination that the count value exceeds a threshold value indicated by the condition, performing at least one of a cell reselection procedure, a serving cell of the first device baring for a time period, termination of the RRM measurement relaxation at the first device, and re-evaluation for an availability of the RRM measurement relaxation.
  • the means for performing the operation comprises means for, in accordance with a determination that the at least one LBT failure is detected, performing at least one of a cell reselection procedure, a serving cell of the first device baring for a time period, termination of the RRM measurement relaxation at the first device, and re-evaluation for an availability of the RRM measurement relaxation.
  • an apparatus capable of performing the method 400 may comprise means for performing the respective steps of the method 400.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the apparatus comprises means for transmitting configuration information associated with a RRM measurement to a first device; and means for performing at least one Listen Before Talk, LBT, procedure, to cause the first device to perform an operation related to the RRM measurement based on the configuration information and at least one LBT failure occurred at the second device.
  • LBT Listen Before Talk
  • the operation comprises at least one of a cell reselection procedure, a serving cell of the first device baring for a time period, termination of the RRM measurement relaxation at the first device, and re-evaluation for an availability of the RRM measurement relaxation.
  • FIG. 5 is a simplified block diagram of a device 500 that is suitable for implementing embodiments of the present disclosure.
  • the device 500 may be provided to implement the communication device, for example the terminal device 110 and the network device 120 as shown in FIG. 1.
  • the device 500 includes one or more processors 510, one or more memories 540 coupled to the processor 510, and one or more transmitters and/or receivers (TX/RX) 540 coupled to the processor 510.
  • TX/RX transmitters and/or receivers
  • the TX/RX 540 is for bidirectional communications.
  • the TX/RX 540 has at least one antenna to facilitate communication.
  • the communication interface may represent any interface that is necessary for communication with other network elements.
  • the processor 510 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 500 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • the memory 520 may include one or more non-volatile memories and one or more volatile memories.
  • the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 524, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , and other magnetic storage and/or optical storage.
  • the volatile memories include, but are not limited to, a random access memory (RAM) 522 and other volatile memories that will not last in the power-down duration.
  • a computer program 530 includes computer executable instructions that are executed by the associated processor 510.
  • the program 530 may be stored in the ROM 520.
  • the processor 510 may perform any suitable actions and processing by loading the program 530 into the RAM 520.
  • the embodiments of the present disclosure may be implemented by means of the program 530 so that the device 500 may perform any process of the disclosure as discussed with reference to FIGs. 2-4.
  • the embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
  • the program 530 may be tangibly contained in a computer readable medium which may be included in the device 500 (such as in the memory 520) or other storage devices that are accessible by the device 500.
  • the device 500 may load the program 530 from the computer readable medium to the RAM 522 for execution.
  • the computer readable medium may include any types of tangible non-volatile storage, such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like.
  • FIG. 6 shows an example of the computer readable medium 600 in form of CD or DVD.
  • the computer readable medium has the program 530 stored thereon.
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, device, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the methods 200 and 400 as described above with reference to FIGs. 2 and 4.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing device, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the computer program codes or related data may be carried by any suitable carrier to enable the device, device or processor to perform various processes and operations as described above.
  • Examples of the carrier include a signal, computer readable medium, and the like.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Embodiments of the present disclosure relate to device, method, apparatus and computer readable storage medium of Radio Resource Management (RRM) measurement relaxation and cell reselection. The method comprises obtaining configuration information associated with a RRM measurement from a second device; detecting at least one Listen Before Talk, LBT, failure occurred at the second device; and performing an operation related to the RRM measurement based on the configuration information and the at least one LBT failure. In this way, RRM measurement relaxation can be applicable for NR-U and the power saving for the terminal device is optimized to allow RRM measurement relaxation when the channel is not busy for NR-U.

Description

RADIO RESOURCE MANAGEMENT MEASUREMENT RELAXATION AND CELL RESELECTION FIELD
Embodiments of the present disclosure generally relate to the field of telecommunication and in particular, to device, method, apparatus and computer readable storage medium of Radio Resource Management (RRM) measurement relaxation and cell reselection.
BACKGROUND
In general, the RRM in New Radio (NR) is based on measurements of Synchronization Signal Block (SSB) or Channel State Information-Reference Signal (CSI-RS) .
A network device may not be able to always transmit SSBs, for example, due to the Listen Before Talk (LBT) failure, which may impact measurements for cell reselection and RRM relaxation to be performed at the terminal device. Similarly, the paging information and the system information may not always be transmitted either.
SUMMARY
In general, example embodiments of the present disclosure provide a solution of RRM measurement relaxation and cell reselection.
In a first aspect, there is provided a first device. The first device comprises at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the first device at least to obtain configuration information associated with a RRM measurement from a second device; detect at least one Listen Before Talk, LBT, failure occurred at the second device; and perform an operation related to the RRM measurement based on the configuration information and the at least one LBT failure.
In a second aspect, there is provided a second device. The second device comprises at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one  processor, cause the second device at least to transmit configuration information associated with a Radio Resource Management, RRM, measurement to a first device; and perform at least one Listen Before Talk, LBT, procedure, to cause the first device to perform an operation related to the RRM measurement based on the configuration information and at least one LBT failure occurred at the second device.
In a third aspect, there is provided a method. The method comprises obtaining configuration information associated with a RRM measurement from a second device; detecting at least one Listen Before Talk, LBT, failure occurred at the second device; and performing an operation related to the RRM measurement based on the configuration information and the at least one LBT failure.
In a fourth aspect, there is provided a method. The method comprises transmitting configuration information associated with a Radio Resource Management, RRM, measurement to a first device; and performing at least one Listen Before Talk, LBT, procedure, to cause the first device to perform an operation related to the RRM measurement based on the configuration information and at least one LBT failure occurred at the second device.
In a fifth aspect, there is provided an apparatus comprises means for obtaining configuration information associated with a RRM measurement from a second device; means for detecting at least one Listen Before Talk, LBT, failure occurred at the second device; and means for performing an operation related to the RRM measurement based on the configuration information and the at least one LBT failure.
In a sixth aspect, there is provided an apparatus comprises means for transmitting configuration information associated with a Radio Resource Management, RRM, measurement to a first device; and means for performing at least one Listen Before Talk, LBT, procedure, to cause the first device to perform an operation related to the RRM measurement based on the configuration information and at least one LBT failure occurred at the second device.
In a seventh aspect, there is provided a computer readable medium having a computer program stored thereon which, when executed by at least one processor of a device, causes the device to carry out the method according to the third aspect.
In an eighth aspect, there is provided a computer readable medium having a computer program stored thereon which, when executed by at least one processor of a  device, causes the device to carry out the method according to the fourth aspect.
Other features and advantages of the embodiments of the present disclosure will also be apparent from the following description of specific embodiments when read in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of embodiments of the disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS
Embodiments of the disclosure are presented in the sense of examples and their advantages are explained in greater detail below, with reference to the accompanying drawings, where
FIG. 1 illustrates an example environment in which example embodiments of the present disclosure can be implemented;
FIG. 2 shows a flowchart of an example method of RRM measurement relaxation and cell reselection according to some example embodiments of the present disclosure;
FIG. 3 shows a signaling chart illustrating a process of RRM measurement relaxation and cell reselection according to some example embodiments of the present disclosure;
FIG. 4 shows a flowchart of an example method of RRM measurement relaxation and cell reselection according to some example embodiments of the present disclosure;
FIG. 5 shows a simplified block diagram of a device that is suitable for implementing example embodiments of the present disclosure; and
FIG. 6 shows a block diagram of an example computer readable medium in accordance with some embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some example embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement  the present disclosure, without suggesting any limitation as to the scope of the disclosure. The disclosure described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
References in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an example embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
It shall be understood that although the terms “first” and “second” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish functionalities of various elements. As used herein, the term “and/or” includes any and all combinations of one or more of the listed terms.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a” , “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” , “comprising” , “has” , “having” , “includes” and/or “including” , when used herein, specify the presence of stated features, elements, and/or components etc., but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof.
As used in this application, the term “circuitry” may refer to one or more or all of the following:
(a) hardware-only circuit implementations (such as implementations in only analog and/or digital circuitry) and
(b) combinations of hardware circuits and software, such as (as applicable) :
(i) a combination of analog and/or digital hardware circuit (s) with software/firmware and
(ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) and
(c) hardware circuit (s) and or processor (s) , such as a microprocessor (s) or a portion of a microprocessor (s) , that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation.
This definition of circuitry applies to all uses of this term in this application, including in any claims. As a further example, as used in this application, the term circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware. The term circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
As used herein, the term “communication network” refers to a network following any suitable communication standards, such as fifth generation (5G) systems, Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) and so on. Furthermore, the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) new radio (NR) communication protocols, and/or any other protocols either currently known or to be developed in the future. Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of the present disclosure to only the aforementioned system.
As used herein, the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom. The network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR Next Generation NodeB (gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth, depending on the applied terminology and technology. A RAN split architecture comprises a gNB-CU (Centralized unit, hosting RRC, SDAP and PDCP) controlling a plurality of gNB-DUs (Distributed unit, hosting RLC, MAC and PHY) . A relay node may correspond to DU part of the IAB node.
The term “terminal device” refers to any end device that may be capable of wireless communication. By way of example rather than limitation, a terminal device may also be referred to as a communication device, user equipment (UE) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) . The terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (IoT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/or industrial wireless networks, and the like. The terminal device may also correspond to Mobile Termination (MT) part of the integrated access and backhaul (IAB) node (a.k.a. a relay node) . In the following description, the terms “terminal device” , “communication device” , “terminal” , “user equipment” and “UE” may be used interchangeably.
Although functionalities described herein can be performed, in various example embodiments, in a fixed and/or a wireless network node, in other example embodiments, functionalities may be implemented in a user equipment apparatus (such as a cell phone or  tablet computer or laptop computer or desktop computer or mobile IoT device or fixed IoT device) . This user equipment apparatus can, for example, be furnished with corresponding capabilities as described in connection with the fixed and/or the wireless network node (s) , as appropriate. The user equipment apparatus may be the user equipment and/or or a control device, such as a chipset or processor, configured to control the user equipment when installed therein. Examples of such functionalities include the bootstrapping server function and/or the home subscriber server, which may be implemented in the user equipment apparatus by providing the user equipment apparatus with software configured to cause the user equipment apparatus to perform from the point of view of these functions/nodes.
FIG. 1 shows an example communication network 100 in which embodiments of the present disclosure can be implemented. As shown in FIG. 1, the communication network 100 comprises a terminal device 110 (hereafter also referred to as a first device 110 or a UE 110) and a network device 120 (hereafter also referred to as a second device 120 or a gNB 120) . The terminal device 110 may communicate with the network device 120. It is to be understood that the number of network devices and terminal devices shown in FIG. 1 is given for the purpose of illustration without suggesting any limitations. The communication network 100 may include any suitable number of network devices and terminal devices.
Depending on the communication technologies, the network 100 may be a Code Division Multiple Access (CDMA) network, a Time Division Multiple Address (TDMA) network, a Frequency Division Multiple Access (FDMA) network, an Orthogonal Frequency-Division Multiple Access (OFDMA) network, a Single Carrier-Frequency Division Multiple Access (SC-FDMA) network or any others. Communications discussed in the network 100 may conform to any suitable standards including, but not limited to, New Radio Access (NR) , Long Term Evolution (LTE) , LTE-Evolution, LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (CDMA) , cdma2000, and Global System for Mobile Communications (GSM) and the like. Furthermore, the communications may be performed according to any generation communication protocols either currently known or to be developed in the future. Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols. The  techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies. For clarity, certain aspects of the techniques are described below for LTE, and LTE terminology is used in much of the description below.
As mentioned above, RRM in NR is based on measurements of SSB or Channel CSI-RS. As shown in FIG. 1, in a SSB-based RRM measurement for unlicensed band scenario (NR-U) , the network device 120 may not be able to always transmit SSBs. For example, when the LBT procedure performed at the network device 120 is not successful (i.e. the network device 120 is not able to obtain the channel) , the DL SSB transmission will not occur at all. Similarly, the paging information and the system information may not always be transmitted either. The DL transmission failure caused by the LBT failure may impact measurements for cell reselection and RRM relaxation to be performed at the terminal device 110.
Therefore, the present disclosure proposes a solution for the terminal device to determine whether the cell reselection is to be initiated or a RRM measurement relaxation is allowed based on the detection of the LBT failure. In this way, RRM measurement relaxation can be applicable for NR-U and the power saving for the terminal device is optimized to allow RRM measurement relaxation when the channel is not busy for NR-U.
Principle and implementations of the present disclosure will be described in detail below with reference to FIGs. 2-4.
FIG. 2 shows a flowchart of an example method 200 of RRM measurement relaxation and cell reselection according to some example embodiments of the present disclosure. The method 200 can be implemented at the UE 110 as shown in FIG. 1. For the purpose of discussion, the method 200 will be described with reference to FIG. 1.
As shown in FIG. 2, at 210, the UE 110 obtains configuration information associated with RRM measurement from gNB 120.
In some example embodiments, the configuration information may comprise various parameters associated with RRM measurements. For example, the configuration information may comprise a relaxed RRM measurement configuration, such as criteria for performing the RRM measurement relaxation, which may indicate that in which scenario or under what condition the UE 110 can perform a RRM measurement relaxation. Furthermore, for example, the relaxed RRM measurement configuration may comprise a  time interval of a RRM measurement in the relaxed RRM measurement mode and the condition for stopping the RRM measurement relaxation.
Moreover, the configuration information associated with RRM measurement may also comprise DL SSB transmission configuration. By means of DL SSB transmission configuration, the UE 110 may be configured with discovery burst transmission window within which the UE monitors for the SBBs.
As mentioned above, in NR, the gNB 120 may not always able to perform a DL transmission. For example, when the LBT procedure performed at the network device 120 is not successful, the DL transmission will not occur at all, which may be referred to as a DL transmission failure. It is also possible that the UE 110 cannot receive any DL data even if the DL transmission has been performed at the gNB 120.
As shown in FIG. 2, at 220, the UE 110 detects at least one LBT failure occurred at the gNB 120. In addition to the DL SSB transmission, as mentioned above, the UE 110 may also detect the LBT failure in the DL transmission for paging information and/or system information.
In a case where the UE 110 detects the LBT failure in the DL SSB transmission, for example, the UE 110 may aware of the reception time window for the DL SSB transmission. As described above, the UE 110 may be configured with discovery burst transmission window within which the UE monitors for the SBBs. The UE 110 can assume that the SSBs are transmitted in a half frame that is within a discovery burst transmission window, starting from the first symbol of the first slot in a half-frame. The duration of the discovery burst transmission window can be provided by DiscoveryBurst-WindowLength-r16. If DiscoveryBurst-WindowLength-r16 is not provided, the UE 110 may assume that the duration of the discovery burst transmission window is a half frame (5ms) .
The maximum number of SSBs (that can be transmitted in a half frame) , L max, is 8 and number of candidate locations for SSBs, 
Figure PCTCN2020104056-appb-000001
depends on the sub-carrier spacing of the SSBs. For 15 kHz SCS (of SSB) , 
Figure PCTCN2020104056-appb-000002
and for 30 kHz SCS (of SSB) , 
Figure PCTCN2020104056-appb-000003
For a serving cell, the UE 110 may assume that a periodicity of the discovery burst transmission window is same as a periodicity of half frames for receptions of SSBs in the serving cell.
The UE 110 may assume that one or more SSBs indicated by ssb-PositionsInBurst  may be transmitted within the discovery burst transmission window and have candidate SSB indexes corresponding to SSB indexes provided by ssb-PositionsInBurst. If Most Significant Bit (MSB) k, k≥1, of ssb-PositionsInBurst is set to 1, the UE may assume that SSBs within the discovery burst transmission window with candidate SSBs index (es) corresponding to SSBs index equal to k-1 may be transmitted. If MSB k is set to 0, the UE 110 assumes that the SSBs are not transmitted.
The UE may assume that SSBs in a serving cell that are within a same discovery burst transmission window or across discovery burst transmission windows are quasi co-located i.e. repeated versions from same source/beam, if a value of 
Figure PCTCN2020104056-appb-000004
is same among the SSBs. 
Figure PCTCN2020104056-appb-000005
is an index of a DM-RS sequence transmitted in a PBCH of a corresponding SSB. 
Figure PCTCN2020104056-appb-000006
is either provided by ssb-PositionQCL-r16 or, if ssb-PositionQCL-r16 is not provided, obtained from a Master Information Block (MIB) based on the table shown as below:
Table 1: Mapping between the combination of subCarrierSpacingCommon and Least Significant Bit (LSB) of ssb-SubcarrierOffset to
Figure PCTCN2020104056-appb-000007
Figure PCTCN2020104056-appb-000008
The UE 110 may assume that within a discovery burst transmission window, a number of transmitted SS/PBCH blocks on a serving cell is not larger than
Figure PCTCN2020104056-appb-000009
and a number of transmitted SSBs with a same SSB index is not larger than one.
In some example embodiments, in the discovery burst transmission windows for SSBs, if the UE 110 detects that the SSBs have been received with good quality earlier but start to disappear, UE 110 may determine the DL SSBs are not transmitted due to the LBT failure.
In some example embodiments, the UE 110 may obtain a reference receiving level for at least one previous DL SSB transmission in in a previous reception time window and  determine a current receiving level for at least one DL SSB transmission in a current reception time window. The UE 110 may compare the reference receiving level with the current receiving level. If the UE 110 determines that a difference between the reference receiving level and the current receiving level exceeds a threshold difference, the UE 110 may determine that the LBT failure is detected.
In some example embodiments, the UE 110 may detect the LBT failure in the DL SSB transmission based on the presence of SSBs and/or the change in observed SSB locations among the candidate locations. For example, the UE 110 may determine a candidate location for receiving at least one DL SSB transmission. If the UE 110 determines that the current reception location of the at least one SSB deviates from the candidate location, the UE 110 may determine that the LBT failure is detected.
Referring back to FIG. 2, at 230, the UE 110 may perform an operation related to the RRM measurement based on the configuration information and the at least one LBT failure.
In some example embodiments, the UE 110 may determine whether a cell reselection procedure is to be performed when the UE monitors the failure of the DL transmission. For example, if the number of the failure of the DL transmission reaches a threshold number, the UE 110 may determine that the current serving cell is too busy or has a poor service quality. If the UE 110 is in a relaxed RRM measurement mode, the UE 110 may revolution whether the relaxed RRM measurement is to be stopped when the UE 110 monitors the failure of the DL transmission.
In some example embodiments, if the UE 110 determines that the at least one LBT failure is detected, the UE 110 may determine the cell selection receiving level value (Srxlev) based on the successful performed DL transmission. The UE 110 may obtain the reference cell selection receiving level value (SrxlevRef) and compare the Srxlev with the SrxlevRef. Based on the comparison, the UE 110 may determine the operation related to the RRM measurement to be performed at the UE 110.
For example, if the UE 110 determines that the Srxlev is lower than the SrxlevRef, the UE may perform a cell reselection procedure. Alternatively, the UE 110 may also bar the current serving cell for a time period. The time period can be statically specified or configurable.
Furthermore, if the UE 110 is configured with a relaxed RRM measurement  currently, the UE 110 may stop the RRM measurement relaxation. For example, the UE 110 may start measuring neighbouring cells earlier or to have more frequent samples to detect the problem with the camped cell earlier and find another suitable cell more quickly. Alternatively, the UE 110 may also re-evaluate the condition of the RRM measurement relaxation, to determine whether the UE 110 should keep performing the RRM measurement relaxation. It is also possible that the UE 110 may start more RRM measurements e.g. intra/inter frequency, RAT, (un) licensed etc.
In some example embodiments, if the UE 110 determines that the at least one LBT failure is detected, the UE 110 may perform at least one of operation related to RRM measurement, such as a cell reselection procedure, a serving cell of the first device baring for a time period, a termination of the RRM measurement relaxation at the first device and a re-evaluation for an availability of the RRM measurement relaxation. It is also possible that the UE 110 may start more RRM measurements e.g. intra/inter frequency, RAT, (un) licensed etc.
As another option, the UE 110 may be configured with a “SSB failure” threshold/counter to count the SSB failure due to LBT failure. In some example embodiments, if the UE 110 determines that the at least one LBT failure is detected, the UE 110 may increment a count value of LBT failure detected in a reception time window. If the UE determines the count value exceeds a threshold value, which may be indicated in the condition for stopping the RRM measurement relaxation, the UE 110 may perform at least one of above-mentioned operation related to RRM measurement.
For example, threshold/counter configured for the UE can be single SSB occasion specific or “SSB set” specific. For single SSB occasion case, the counter may be increased every time when UE detects DL LBT failure for SSB. For “SSB set” case, the counter may be increased if the UE detects LBT failure from all “SSB set” occasions.
In some example embodiments, in case the UE receives SSB correctly, the UE decreases counter value.
In some example embodiments, the counters could be determined per SSB or based on reception of any SSB in a discovery burst window.
In this way, RRM measurement relaxation can be applicable for NR-U and the power saving for the terminal device is optimized to allow RRM measurement relaxation when the channel is not busy for NR-U.
FIG. 3 shows a signaling chart illustrating a process of RRM measurement relaxation and cell reselection according to some example embodiments of the present disclosure. The process 300 may involve the UE 110 and the gNB 120 shown in FIG. 1. With reference to FIG. 3, an example process for determining the operation related to RRM measurement based on a counter for the LBT failure configured at the UE 110 can be further explained in detail.
As shown in FIG. 3, the gNB 120 may transmit 302 configuration information associated with RRM measurement to the UE 110. The configuration information may indicate in which condition the UE can perform a RRM measurement relaxation. The configuration information may indicate in which condition the RRM measurement relaxation is to be stopped.
The UE 110 may determine 304, based on the configuration information, whether a RRM measurement relaxation can be performed. If so, the UE 110 may start performing the RRM measurement relaxation.
The gNB 120 may continue transmitting SSBs to the UE 110. The UE 110 may monitor the DL transmission from the gNB 120, for example, the SSB transmission in a specific discovery burst transmission windows. For example, if the gNB 120 transmits 306, 308 the SSBs to the UE successfully, the UE 110 may continue the relaxed RRM measurement.
Then the UE 110 may detect 310 the DL LBT failure from the SSB occasion, which can be determined based on the configuration information. If the UE 110 determines the DL LBT failure is detected, the UE may increase the counter for the DL LBT failure by 1.
Then the gNB 120 may transmit 312 a SSB to the UE 110 successfully again. In some example embodiments, the counter for the DL LBT failure may be configured to decrease the counting value when a SSB is received. In this case, the UE 110 may decrease 314 the counter by 1 and therefore the counter is set to zero now.
The UE 110 may continue detecting the DL LBT failure. Each time when the UE detects the DL LBT failure, the counter for the DL LBT failure will be increased by 1. The UE may monitor 316 whether a threshold value is reached by the counter. The threshold value may be indicated in the condition in which the RRM measurement relaxation is to be stopped. When the UE 110 determines the counting value of the  counter reaches a threshold value, the UE 110 may stop the RRM measurement relaxation.
It is to be understood that the process 300 shown in FIG. 3 merely illustrates an example for the RRM measurement relaxation. The UE 110 can determine whether the RRM measurement relaxation should be stopped based on other measurements conditions. Besides the stopping of the RRM measurement relaxation, the UE 110 may also perform other operation related RRM measurement such as cell reselection etc.
FIG. 4 shows a flowchart of an example method 400 of RRM measurement relaxation and cell reselection according to some example embodiments of the present disclosure. The method 400 can be implemented at the gNB 120 as shown in FIG. 1. For the purpose of discussion, the method 200 will be described with reference to FIG. 1.
At 410, the gNB 120-2 transmits configuration information associated with RRM measurement to a UE 110.
At 420, the gNB 120-2 performs at least one Listen Before Talk, LBT, procedure, to cause the UE 110 to perform an operation related to the RRM measurement from the UE 110 based on the configuration information and at least one LBT failure occurred at the gNB 120-2.
In some example embodiments, the operation comprises at least one of a cell reselection procedure, a serving cell of the first device baring for a time period, a termination of the RRM measurement relaxation at the first device, and a re-evaluation for an availability of the RRM measurement relaxation.
In some example embodiments, an apparatus capable of performing the method 200 (for example, implemented at the first device 110) may comprise means for performing the respective steps of the method 200. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module.
In some example embodiments, the apparatus comprises means for obtaining configuration information associated with a RRM measurement from a second device; means for detecting at least one Listen Before Talk, LBT, failure occurred at the second device; and means for performing an operation related to the RRM measurement based on the configuration information and the at least one LBT failure.
In some example embodiments, the configuration information indicates at least one of a condition for performing a RRM measurement relaxation, and a condition for  stopping the RRM measurement relaxation.
In some example embodiments, the means for detecting at least one LBT failure comprises means for detecting at least one of a transmission of synchronization signal block, a transmission of paging information, a transmission of system information and a transmission of a reference signal.
In some example embodiments, the means for detecting at least one LBT failure comprises means for determining a candidate location for receiving at least one Synchronization Signal block, SSB, transmission from the second device to the first device in a reception time window; and means for, in accordance with a determination that a current reception location of the at least one SSB deviates from the candidate location, determining that the LBT failure is detected.
In some example embodiments, the means for detecting at least one LBT failure comprises means for obtaining a reference receiving level for at least one previous Synchronization Signal block, SSB, transmission from the second device to the first device in a previous reception time window; means for determining a current receiving level for at least one SSB transmission in a current reception time window; and means for, in accordance with a determination that a difference between the reference receiving level and the current receiving level exceeds a threshold difference, determining that the LBT failure is detected.
In some example embodiments, the means for performing the operation comprises means for, in accordance with a determination that the at least one LBT failure is detected, determining a current value of cell selection receiving level based on at least one transmission performed from the second device to the first device; means for obtaining a reference value of the cell selection receiving level from the configuration information; and means for, in accordance with a determination that the actual value is lower than the reference value, performing at least one of a cell reselection procedure, a serving cell of the first device baring for a time period, termination of the RRM measurement relaxation at the first device, and re-evaluation for an availability of the RRM measurement relaxation.
In some example embodiments, the means for performing the operation comprises means for, in accordance with a determination that the at least one LBT failure is detected, incrementing a count value of LBT failure detected in a reception time window; and means for, in accordance with a determination that the count value exceeds a threshold value  indicated by the condition, performing at least one of a cell reselection procedure, a serving cell of the first device baring for a time period, termination of the RRM measurement relaxation at the first device, and re-evaluation for an availability of the RRM measurement relaxation.
In some example embodiments, the means for performing the operation comprises means for, in accordance with a determination that the at least one LBT failure is detected, performing at least one of a cell reselection procedure, a serving cell of the first device baring for a time period, termination of the RRM measurement relaxation at the first device, and re-evaluation for an availability of the RRM measurement relaxation.
In some example embodiments, an apparatus capable of performing the method 400 (for example, implemented at the second device 120) may comprise means for performing the respective steps of the method 400. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module.
In some example embodiments, the apparatus comprises means for transmitting configuration information associated with a RRM measurement to a first device; and means for performing at least one Listen Before Talk, LBT, procedure, to cause the first device to perform an operation related to the RRM measurement based on the configuration information and at least one LBT failure occurred at the second device.
In some example embodiments, the operation comprises at least one of a cell reselection procedure, a serving cell of the first device baring for a time period, termination of the RRM measurement relaxation at the first device, and re-evaluation for an availability of the RRM measurement relaxation.
FIG. 5 is a simplified block diagram of a device 500 that is suitable for implementing embodiments of the present disclosure. The device 500 may be provided to implement the communication device, for example the terminal device 110 and the network device 120 as shown in FIG. 1. As shown, the device 500 includes one or more processors 510, one or more memories 540 coupled to the processor 510, and one or more transmitters and/or receivers (TX/RX) 540 coupled to the processor 510.
The TX/RX 540 is for bidirectional communications. The TX/RX 540 has at least one antenna to facilitate communication. The communication interface may represent any interface that is necessary for communication with other network elements.
The processor 510 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 500 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
The memory 520 may include one or more non-volatile memories and one or more volatile memories. Examples of the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 524, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , and other magnetic storage and/or optical storage. Examples of the volatile memories include, but are not limited to, a random access memory (RAM) 522 and other volatile memories that will not last in the power-down duration.
computer program 530 includes computer executable instructions that are executed by the associated processor 510. The program 530 may be stored in the ROM 520. The processor 510 may perform any suitable actions and processing by loading the program 530 into the RAM 520.
The embodiments of the present disclosure may be implemented by means of the program 530 so that the device 500 may perform any process of the disclosure as discussed with reference to FIGs. 2-4. The embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
In some embodiments, the program 530 may be tangibly contained in a computer readable medium which may be included in the device 500 (such as in the memory 520) or other storage devices that are accessible by the device 500. The device 500 may load the program 530 from the computer readable medium to the RAM 522 for execution. The computer readable medium may include any types of tangible non-volatile storage, such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like. FIG. 6 shows an example of the computer readable medium 600 in form of CD or DVD. The computer readable medium has the program 530 stored thereon.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in  firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, device, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the  methods  200 and 400 as described above with reference to FIGs. 2 and 4. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing device, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
In the context of the present disclosure, the computer program codes or related data may be carried by any suitable carrier to enable the device, device or processor to perform various processes and operations as described above. Examples of the carrier include a signal, computer readable medium, and the like.
The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable medium may include but not  limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in languages specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (28)

  1. A first device comprising:
    at least one processor; and
    at least one memory including computer program codes;
    the at least one memory and the computer program codes are configured to, with the at least one processor, cause the first device at least to:
    obtain configuration information associated with a Radio Resource Management, RRM, measurement from a second device;
    detect at least one Listen Before Talk, LBT, failure occurred at the second device; and
    perform an operation related to the RRM measurement based on the configuration information and the at least one LBT failure.
  2. The first device of Claim 1, wherein the configuration information indicates at least one of the followings:
    a condition for performing a RRM measurement relaxation, and
    a condition for stopping the RRM measurement relaxation.
  3. The first device of Claim 1, wherein the first device is caused to detecting the at least one LBT failure by:
    detecting at least one of the following:
    a transmission of synchronization signal block,
    a transmission of paging information,
    a transmission of system information, and
    a transmission of a reference signal.
  4. The first device of Claim 1, wherein the first device is caused to detecting the at least one LBT failure by:
    determining a candidate location for receiving at least one Synchronization Signal block, SSB, transmission from the second device to the first device in a reception time window; and
    in accordance with a determination that a current reception location of the at least one SSB deviates from the candidate location, determining that the LBT failure is detected.
  5. The first device of Claim 1, wherein the first device is caused to detecting the at least one LBT failure by:
    obtaining a reference receiving level for at least one previous Synchronization Signal block, SSB, transmission from the second device to the first device in a previous reception time window;
    determining a current receiving level for at least one SSB transmission in a current reception time window; and
    in accordance with a determination that a difference between the reference receiving level and the current receiving level exceeds a threshold difference, determining that the LBT failure is detected.
  6. The first device of Claim 1, wherein the first device is caused to perform the operation by:
    in accordance with a determination that the at least one LBT failure is detected, determining a current value of cell selection receiving level based on at least one transmission performed from the second device to the first device;
    obtaining a reference value of the cell selection receiving level from the configuration information; and
    in accordance with a determination that the actual value is lower than the reference value, performing at least one of the following:
    a cell reselection procedure,
    a serving cell of the first device baring for a time period,
    termination of the RRM measurement relaxation at the first device, and
    re-evaluation for an availability of the RRM measurement relaxation.
  7. The first device of Claim 1, wherein the first device is caused to perform the operation by:
    in accordance with a determination that at least one LBT failure is detected, incrementing a count value of LBT failure detected in a reception time window; and
    in accordance with a determination that the count value exceeds a threshold value indicated by the condition, performing at least one of the following:
    a cell reselection procedure,
    a serving cell of the first device baring for a time period,
    a termination of the RRM measurement relaxation at the first device, and
    a re-evaluation for an availability of the RRM measurement relaxation.
  8. The first device of Claim 1, wherein the first device is caused to perform the operation by:
    in accordance with a determination that at least one LBT failure is detected, performing at least one of the following:
    a cell reselection procedure,
    a serving cell of the first device baring for a time period,
    a termination of the RRM measurement relaxation at the first device, and
    a re-evaluation for an availability of the RRM measurement relaxation.
  9. The first device of Claim 1, wherein the first device comprises a terminal device, the second device comprises a network device.
  10. A second device comprising:
    at least one processor; and
    at least one memory including computer program codes;
    the at least one memory and the computer program codes are configured to, with the at least one processor, cause the second device at least to:
    transmit configuration information associated with a Radio Resource Management, RRM, measurement to a first device; and
    perform at least one Listen Before Talk, LBT, procedure, to cause the first device to perform an operation related to the RRM measurement based on the configuration information and at least one LBT failure occurred at the second device.
  11. The second device of Claim 10, wherein the operation comprises at least one of the following:
    a cell reselection procedure,
    a serving cell of the first device baring for a time period,
    a termination of the RRM measurement relaxation at the first device, and
    a re-evaluation for an availability of the RRM measurement relaxation.
  12. The second device of Claim 10, wherein the first device comprises a terminal  device, the second device comprises a network device.
  13. A method comprising:
    obtaining configuration information associated with a Radio Resource Management, RRM, measurement from a second device;
    detecting at least one Listen Before Talk, LBT, failure occurred at the second device; and
    performing an operation related to the RRM measurement based on the configuration information and the at least one LBT failure.
  14. The method of Claim 13, wherein the configuration information indicates at least one of the followings:
    a condition for performing a RRM measurement relaxation, and
    a condition for stopping the RRM measurement relaxation.
  15. The method of Claim 13, wherein detecting the at least one LBT failure comprises:
    detecting at least one of the following:
    a transmission of synchronization signal block,
    a transmission of paging information,
    a transmission of system information, and
    a transmission of a reference signal.
  16. The method of Claim 13, wherein detecting the at least one LBT failure comprises:
    determining a candidate location for receiving at least one Synchronization Signal block, SSB, transmission from the second device to the first device in a reception time window; and
    in accordance with a determination that a current reception location of the at least one SSB deviates from the candidate location, determining that the LBT failure is detected.
  17. The method of Claim 13, wherein detecting the at least one LBT failure comprises:
    obtaining a reference receiving level for at least one previous Synchronization  Signal block, SSB, transmission from the second device to the first device in a previous reception time window;
    determining a current receiving level for at least one SSB transmission in a current reception time window; and
    in accordance with a determination that a difference between the reference receiving level and the current receiving level exceeds a threshold difference, determining that the LBT failure is detected.
  18. The method of Claim 13, wherein performing the operation comprises:
    in accordance with a determination that at least one LBT failure is detected, determining a current value of cell selection receiving level based on at least one transmissions performed from the second device to the first device;
    obtaining a reference value of the cell selection receiving level from the configuration information; and
    in accordance with a determination that the actual value is lower than the reference value, performing at least one of the following:
    a cell reselection procedure,
    a serving cell of the first device baring for a time period,
    termination of the RRM measurement relaxation at the first device, and
    re-evaluation for an availability of the RRM measurement relaxation.
  19. The method of Claim 13, wherein performing the operation comprises:
    in accordance with a determination that at least one LBT failure is detected, increment a count value of LBT failure detected in a reception time window; and
    in accordance with a determination that the count value exceeds a threshold value indicated by the condition, performing at least one of the following:
    a cell reselection procedure,
    a serving cell of the first device baring for a time period,
    a termination of the RRM measurement relaxation at the first device, and
    a re-evaluation for an availability of the RRM measurement relaxation.
  20. The method of Claim 13, wherein performing the operation comprises:
    in accordance with a determination that at least one LBT failure is detected, performing at least one of the following:
    a cell reselection procedure,
    a serving cell of the first device baring for a time period,
    a termination of the RRM measurement relaxation at the first device, and
    a re-evaluation for an availability of the RRM measurement relaxation.
  21. The method of Claim 13, wherein the first device comprises a terminal device, the second device comprises a network device.
  22. A method comprising:
    transmitting configuration information associated with a Radio Resource Management, RRM, measurement to a first device; and
    performing at least one Listen Before Talk, LBT, procedure, to cause the first device to perform an operation related to the RRM measurement based on the configuration information and at least one LBT failure occurred at the second device.
  23. The method of Claim 22, wherein the operation comprises at least one of the following:
    a cell reselection procedure,
    a serving cell of the first device baring for a time period,
    a termination of the RRM measurement relaxation at the first device, and
    a re-evaluation for an availability of the RRM measurement relaxation.
  24. The method of Claim 22, wherein the first device comprises a terminal device, the second device comprises a network device.
  25. An apparatus comprising:
    means for obtaining configuration information associated with a Radio Resource Management, RRM, measurement from a second device;
    means for detecting at least one Listen Before Talk, LBT, failure occurred at the second device; and
    means for performing an operation related to the RRM measurement based on the configuration information and the at least one LBT failure.
  26. An apparatus comprising:
    means for transmitting configuration information associated with a Radio Resource Management, RRM, measurement to a first device; and
    means for performing at least one Listen Before Talk, LBT, procedure, to cause the first device to perform an operation related to the RRM measurement based on the configuration information and at least one LBT failure occurred at the second device.
  27. A non-transitory computer readable medium comprising program instructions for causing an apparatus to perform at least the method of any of claims 13-21.
  28. A non-transitory computer readable medium comprising program instructions for causing an apparatus to perform at least the method of any of claims 22-24.
PCT/CN2020/104056 2020-07-24 2020-07-24 Radio resource management measurement relaxation and cell reselection WO2022016493A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/104056 WO2022016493A1 (en) 2020-07-24 2020-07-24 Radio resource management measurement relaxation and cell reselection
CN202080010830.6A CN114342452A (en) 2020-07-24 2020-07-24 Radio resource management measurement relaxation and cell reselection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/104056 WO2022016493A1 (en) 2020-07-24 2020-07-24 Radio resource management measurement relaxation and cell reselection

Publications (1)

Publication Number Publication Date
WO2022016493A1 true WO2022016493A1 (en) 2022-01-27

Family

ID=79729737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104056 WO2022016493A1 (en) 2020-07-24 2020-07-24 Radio resource management measurement relaxation and cell reselection

Country Status (2)

Country Link
CN (1) CN114342452A (en)
WO (1) WO2022016493A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023150999A1 (en) * 2022-02-11 2023-08-17 Nokia Shanghai Bell Co., Ltd. Devices, methods, apparatuses, and computer readable media for measurement mode interaction

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024113589A1 (en) * 2023-04-04 2024-06-06 Zte Corporation Systems and methods for power saving

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018091107A1 (en) * 2016-11-18 2018-05-24 Nokia Technologies Oy Opportunistic use of drs instances in lte-u stand alone systems
WO2019160353A1 (en) * 2018-02-14 2019-08-22 Samsung Electronics Co., Ltd. Method and apparatus for power savings at a user equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017136458A2 (en) * 2016-02-02 2017-08-10 Intel IP Corporation Listen-before-talk (lbt) failure during a random access procedure
CN111096059B (en) * 2017-08-16 2023-09-05 Lg电子株式会社 Method and apparatus for managing radio links in unlicensed frequency bands
CN111385912A (en) * 2018-12-28 2020-07-07 展讯通信(上海)有限公司 Cell change method and device, storage medium and terminal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018091107A1 (en) * 2016-11-18 2018-05-24 Nokia Technologies Oy Opportunistic use of drs instances in lte-u stand alone systems
WO2019160353A1 (en) * 2018-02-14 2019-08-22 Samsung Electronics Co., Ltd. Method and apparatus for power savings at a user equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023150999A1 (en) * 2022-02-11 2023-08-17 Nokia Shanghai Bell Co., Ltd. Devices, methods, apparatuses, and computer readable media for measurement mode interaction

Also Published As

Publication number Publication date
CN114342452A (en) 2022-04-12

Similar Documents

Publication Publication Date Title
US11962524B2 (en) Beam failure recovery
WO2022061617A1 (en) Positioning reference signal transmission triggered by sounding reference signal
WO2022027186A1 (en) Positioning reference signal design for low power tracking
WO2022016493A1 (en) Radio resource management measurement relaxation and cell reselection
US20240089774A1 (en) Measuring a Reference Signal with Associated Synchronization Signal
WO2022178837A1 (en) Positioning assistance data delivery for ue positioning in radio resource control inactive state
WO2021168603A1 (en) Event triggered measurement for channel state information
WO2022151632A1 (en) Relaxing evaluation of radio link quality
WO2023133892A1 (en) Enhanced user equipment report
WO2022021313A1 (en) Transmission detection skipping mechanism for power saving
WO2022178862A1 (en) Methods, devices and computer storage media for communication
WO2024026753A1 (en) Positioning measurement across frequency hops
US20230189081A1 (en) Methods for communication, terminal device, and computer readable media
US20230337312A1 (en) Method, device and computer readable medium of communication for beam failure recovery
WO2023024114A1 (en) Mitigation of performance degradation
WO2023023967A1 (en) Relaxed measurement timing configurations
WO2022227039A1 (en) Measurement gap enhancement
WO2024020901A1 (en) Serving cell search
US20240163918A1 (en) Methods for communication, terminal device, and computer readable media
US20230097223A1 (en) Method, device and computer readable medium of communication
WO2022252154A1 (en) Relaxation compensation for improved system performance
WO2024036522A1 (en) Cell re-selection enhancements
WO2023283783A1 (en) Positioning
WO2023082274A1 (en) Transmit power determination in radio resource control inactive state
WO2022252196A1 (en) Channel occupancy time sharing for transmission in unlicensed band

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20946467

Country of ref document: EP

Kind code of ref document: A1