WO2019096235A1 - 接收参考信号的方法和发送参考信号的方法 - Google Patents

接收参考信号的方法和发送参考信号的方法 Download PDF

Info

Publication number
WO2019096235A1
WO2019096235A1 PCT/CN2018/115819 CN2018115819W WO2019096235A1 WO 2019096235 A1 WO2019096235 A1 WO 2019096235A1 CN 2018115819 W CN2018115819 W CN 2018115819W WO 2019096235 A1 WO2019096235 A1 WO 2019096235A1
Authority
WO
WIPO (PCT)
Prior art keywords
offset
reference signal
resource block
index
resource
Prior art date
Application number
PCT/CN2018/115819
Other languages
English (en)
French (fr)
Inventor
陈铮
王建国
张旭
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18879338.4A priority Critical patent/EP3605934B1/en
Publication of WO2019096235A1 publication Critical patent/WO2019096235A1/zh
Priority to US16/876,087 priority patent/US11323221B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of communications, and, more particularly, to a method of receiving a reference signal and a method of transmitting a reference signal, and a communication device.
  • a communication technology in which a terminal device can acquire a system bandwidth, and then determine a reference signal sequence corresponding to a resource element (Resource Element, RE) according to the system bandwidth, and thus can be based on a reference signal carried on the resource unit and the reference.
  • the signal sequence element performs channel estimation or channel measurement.
  • the terminal device needs to know the system bandwidth.
  • the terminal device cannot know the system bandwidth message.
  • the present application provides a communication method and communication apparatus capable of enabling a terminal device to complete channel estimation or channel measurement without knowing the system bandwidth.
  • a method for receiving a reference signal includes: determining, by a terminal device, a location of a resource unit to which a reference signal is mapped; the terminal device determining a reference signal sequence corresponding to the resource unit, wherein each element in the reference signal sequence Determining, by the resource block index of the resource block corresponding to the resource unit, the number of resource units carrying the reference signal in the resource block, the resource block offset, and/or the inter-symbol offset; the terminal device receives the resource unit by using the resource unit
  • the reference signal is used for channel estimation or channel measurement based on the received reference signal and the reference signal sequence.
  • the reference signal is generated based on the reference sequence.
  • channel estimation or channel measurement can be performed without the terminal device having to know the size of the system bandwidth. Since the network device does not need to inform the terminal device system of the bandwidth size, and can support flexible changes of the carrier bandwidth, the spectrum usage method can be adjusted, and the signaling overhead for indicating the system bandwidth can be reduced.
  • the resource block index is an index of the resource block in a bandwidth part (BWP, Bandwidth Part) to which the resource block belongs.
  • BWP Bandwidth Part
  • the resource block offset may also be referred to as a BWP offset.
  • the resource block offset is an offset of a starting position of the BWP where the resource unit is located with respect to a reference point.
  • the BWP where the resource unit is located may be a BWP allocated by the network device to the terminal device.
  • the reference point is determined according to the location of the common resource block Common RB of the carrier.
  • the reference point includes a starting location of a common resource block.
  • the reference point is determined based on the position of the sync signal block.
  • the inter-symbol offset is an offset between any two index elements of the reference sequence unit on the resource element adjacent to the time domain on the same subcarrier.
  • the terminal device determines a reference signal sequence corresponding to the resource unit, where the terminal device determines that the index of the reference signal sequence r(m) corresponding to the location (k, l) of the resource unit is
  • k is a subcarrier index corresponding to the resource unit
  • l is a time domain symbol index corresponding to the resource unit, which is an index of the reference signal sequence, and is a resource block index indicating a resource unit carrying a reference signal in the resource block.
  • the number of offsets for this resource block is the offset between the symbols.
  • the subcarrier index of the resource unit and the resource block index are defined relative to a bandwidth portion BWP where the resource unit is located.
  • the subcarrier index of the resource unit and the resource block index are determined based on the BWP where the resource unit is located.
  • the time domain symbol index corresponding to the resource unit is defined with respect to a start symbol of a time slot in which the resource unit is located.
  • the time domain symbol index corresponding to the resource unit is determined based on the start symbol of the time slot in which the resource unit is located.
  • the value of the inter-symbol offset is determined according to a subcarrier spacing corresponding to the resource block.
  • the value is greater than or equal to the bandwidth of the BWP where the resource unit is located.
  • the value of the inter-symbol offset is greater than or equal to N*M, where N is a ratio of a maximum subcarrier spacing used by the carrier to a minimum subcarrier spacing, and M is greater than or equal to a bandwidth of the BWP where the resource unit is located.
  • the value of the inter-symbol offset is greater than or equal to L*M, where L is the maximum configurable number of BWPs, and M is greater than or equal to the bandwidth of the BWP where the resource unit is located.
  • the resource block offset is an offset between a minimum RB index and a minimum carrier RB index of the BWP where the resource unit is located.
  • the resource block offset is signaled by higher layer signaling.
  • the resource block offset is a value of a frequency domain location of a BWP where the resource unit of the high layer signaling configuration is located.
  • the BWP where the resource unit is located is an initial BWP, and the value of the resource block offset is 0.
  • a second aspect provides a method for receiving a reference signal, including: determining, by a network device, a location of a resource unit to which a reference signal is mapped; the network device determining a reference signal sequence corresponding to the resource unit, wherein each element in the reference signal sequence The index is determined by a resource block index of the resource block corresponding to the resource unit, a quantity of resource units carrying the reference signal in the resource block, a resource block offset, and/or an inter-symbol offset; the network device sends the resource unit by using the resource unit Reference signal.
  • the reference signal is generated based on the reference sequence.
  • channel estimation or channel measurement can be performed without the terminal device having to know the size of the system bandwidth. Since the network device does not need to inform the terminal device system of the bandwidth size, it can support flexible changes of the carrier bandwidth, can adjust the usage of the spectrum, and can reduce the signaling overhead for indicating the system bandwidth.
  • the resource block index is an index of the resource block in a bandwidth part (BWP, Bandwidth Part) to which the resource block belongs.
  • BWP Bandwidth Part
  • the resource block offset may also be referred to as a BWP offset.
  • the resource block offset is an offset of a starting position of the BWP where the resource unit is located with respect to a reference point.
  • the BWP where the resource unit is located may be a BWP that the network device allocates to the network device.
  • the reference point is determined according to the location of the common resource block Common RB of the carrier.
  • the reference point includes a starting location of a common resource block.
  • the reference point is determined based on the position of the sync signal block.
  • the inter-symbol offset is an offset between any two index elements of the reference sequence unit on the resource element adjacent to the time domain on the same subcarrier.
  • the network device determines a reference signal sequence corresponding to the resource unit, where the network device determines that an index of the reference signal sequence r(m) corresponding to the location (k, l) of the resource unit is
  • k is a subcarrier index corresponding to the resource unit
  • l is a time domain symbol index corresponding to the resource unit, which is an index of the reference signal sequence, and is a resource block index indicating a resource unit carrying a reference signal in the resource block.
  • the number of offsets for this resource block is the offset between the symbols.
  • the subcarrier index of the resource unit and the resource block index are defined relative to a bandwidth portion BWP where the resource unit is located.
  • the subcarrier index of the resource unit and the resource block index are determined based on the BWP where the resource unit is located.
  • the time domain symbol index corresponding to the resource unit is defined with respect to a start symbol of a time slot in which the resource unit is located.
  • the time domain symbol index corresponding to the resource unit is determined based on the start symbol of the time slot in which the resource unit is located.
  • the value of the inter-symbol offset is determined according to a subcarrier spacing corresponding to the resource block.
  • the value is greater than or equal to the bandwidth of the BWP where the resource unit is located.
  • the value of the inter-symbol offset is greater than or equal to N*M, where N is a ratio of a maximum subcarrier spacing used by the carrier to a minimum subcarrier spacing, and M is greater than or equal to a bandwidth of the BWP where the resource unit is located.
  • the value of the inter-symbol offset is greater than or equal to L*M, where L is the maximum configurable number of BWPs, and M is greater than or equal to the bandwidth of the BWP where the resource unit is located.
  • the resource block offset is an offset between a minimum RB index and a minimum carrier RB index of the BWP where the resource unit is located.
  • the resource block offset is signaled by higher layer signaling.
  • the resource block offset is a value of a frequency domain location of a BWP where the resource unit of the high layer signaling configuration is located.
  • the BWP where the resource unit is located is an initial BWP, and the value of the resource block offset is 0.
  • a communication device comprising means for performing the steps of the first or second aspect and various implementations thereof.
  • a communication device comprising a processor for calling and running a computer program from a memory, such that the communication device performs the method of the first or second aspect and its implementations described above.
  • a chip system comprising a processor for calling and running a computer program from a memory, such that the device in which the chip system is installed performs the first or second aspect and various implementations thereof method.
  • a computer program product comprising: computer program code, when the computer program code is processed by a communication unit, a processing unit or a transceiver of a communication device (eg, a terminal device or a network device) When the device is in operation, the communication device is caused to perform the method of the first or second aspect described above and its various implementations.
  • a computer readable storage medium storing a program causing a communication device (eg, a terminal device or a network device) to perform the first aspect or the second aspect and each of the above The method in the implementation.
  • a communication device eg, a terminal device or a network device
  • the process of channel estimation or channel measurement can be completed without the terminal device having to know the size of the system bandwidth. Since the network device does not need to inform the terminal device system of the bandwidth size, and can support flexible changes of the carrier bandwidth, the spectrum usage method can be adjusted, and the signaling overhead for indicating the system bandwidth can be reduced.
  • FIG. 1 is a schematic configuration diagram of an example of a communication system of the present application.
  • FIG. 2 is a schematic interaction diagram of an example of a communication method of the present application.
  • FIG. 3 is a schematic diagram showing an example of resource allocation in the present application.
  • FIG. 4 is a schematic diagram showing an example of a mapping method of a reference signal in the present application.
  • FIG. 5 is a schematic diagram of another example of resource allocation of the present application.
  • FIG. 6 is a schematic diagram of another example of a mapping manner of a reference signal of the present application.
  • Fig. 7 is a schematic block diagram showing an example of a communication device of the present application.
  • FIG. 8 is a schematic block diagram of an example of a terminal device according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of another example of the communication device of the present application.
  • FIG. 10 is a schematic block diagram of another example of a network device according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the terminal device may also be referred to as a user equipment (User Equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, Mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device can be a station in the WLAN (STAION, ST), which can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, and a personal digital processing.
  • WLAN STAION, ST
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • handheld device with wireless communication capabilities computing device or other processing device connected to a wireless modem, in-vehicle device, wearable device, and next-generation communication system, for example, a terminal device in a 5G network or Terminal equipment in the future evolution of the Public Land Mobile Network (PLMN) network.
  • PLMN Public Land Mobile Network
  • the terminal device may also be a wearable device.
  • a wearable device which can also be called a wearable smart device, is a general term for applying wearable technology to intelligently design and wear wearable devices such as glasses, gloves, watches, clothing, and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are more than just a hardware device, but they also implement powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-size, non-reliable smartphones for full or partial functions, such as smart watches or smart glasses, and focus on only one type of application, and need to work with other devices such as smartphones. Use, such as various smart bracelets for smart signs monitoring, smart jewelry, etc.
  • the terminal device may also be a terminal device in an Internet of Things (IoT) system, and the IoT is an important component of future information technology development, and its main technical feature is to pass the article through the communication technology. Connected to the network to realize an intelligent network of human-machine interconnection and physical interconnection.
  • IoT Internet of Things
  • the IOT technology can achieve massive connection, deep coverage, and terminal power saving through, for example, Narrow Band NB technology.
  • the NB includes only one Resource Block (RB), that is, the bandwidth of the NB is only 180 KB.
  • RB Resource Block
  • the terminal must be required to be discrete in access. According to the communication method of the embodiment of the present application, the congestion problem of the IOT technology massive terminal when accessing the network through the NB can be effectively solved.
  • the network device may include an access network device or a core network device.
  • the access network device may be a device for communicating with the mobile device, such as an access network device, and the access network device may be an access point (AP) in the WLAN, a base station in the GSM or CDMA (Base Transceiver Station, BTS), which may also be a base station (NodeB, NB) in WCDMA, or a gNB in a new radio system (NR) system, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE. , or a relay station or an access point, or an in-vehicle device, a wearable device, and an access network device in a future 5G network or an access network device in a future evolved PLMN network.
  • AP access point
  • GSM Global System for Mobile communications
  • CDMA Base Transceiver Station
  • NodeB base station
  • gNB new radio system
  • NR new radio system
  • Evolutional Node B, eNB or eNodeB evolved base station
  • the access network device provides a service for the cell
  • the terminal device communicates with the access network device by using a transmission resource (for example, a frequency domain resource, or a spectrum resource) used by the cell
  • a transmission resource for example, a frequency domain resource, or a spectrum resource
  • the cell It may be a cell corresponding to an access network device (for example, a base station), and the cell may belong to a macro base station or a base station corresponding to a small cell, where the small cell may include: a metro cell and a micro cell ( Micro cell), Pico cell, Femto cell, etc.
  • Micro cell Micro cell
  • Pico cell Pico cell
  • Femto cell etc.
  • multiple carriers can work at the same frequency on the carrier in the LTE system or the 5G system.
  • the concept of the carrier and the cell can be considered equivalent.
  • CA carrier aggregation
  • the concept of the carrier and the cell can be considered to be equivalent, for example, the UE accessing one carrier and accessing one cell are equivalent.
  • the core network device can be connected to multiple access network devices for controlling the access network device, and can distribute data received from the network side (for example, the Internet) to the access network device.
  • the network side for example, the Internet
  • terminal device the access network device, and the core network device listed above are merely exemplary descriptions, and the application is not limited thereto.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through a process, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as browsers, contacts, word processing software, and instant messaging software.
  • the specific structure of the execution body of the method provided by the embodiment of the present application is not particularly limited as long as the program of the code of the method provided by the embodiment of the present application can be run by using the program according to the present application.
  • the method can be communicated.
  • the execution body of the method provided by the embodiment of the present application may be a terminal device or a network device, or a function module that can call a program and execute a program in the terminal device or the network device.
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • the computer readable medium may include, but is not limited to, a magnetic storage device (eg, a hard disk, a floppy disk, or a magnetic tape, etc.), such as a compact disc (CD), a digital versatile disc (Digital Versatile Disc, DVD). Etc.), smart cards and flash memory devices (eg, Erasable Programmable Read-Only Memory (EPROM), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, without limitation, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • multiple applications may be run at the application layer.
  • the application that performs the communication method of the embodiment of the present application is used to control the receiving device to complete the received data.
  • the application of the corresponding action can be a different application.
  • the system 100 includes an access network device 102, which may include one antenna or multiple antennas, such as antennas 104, 106, 108, 110, 112, and 114.
  • access network device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include multiple components associated with signal transmission and reception (eg, processor, modulator, complex) Consumer, demodulator, demultiplexer or antenna, etc.).
  • Access network device 102 can communicate with a plurality of terminal devices, such as terminal device 116 and terminal device 122. However, it will be appreciated that the access network device 102 can communicate with any number of terminal devices similar to the terminal device 116 or the terminal device 122.
  • Terminal devices 116 and 122 may be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other suitable for communicating over wireless communication system 100. device.
  • terminal device 116 is in communication with antennas 112 and 114, wherein antennas 112 and 114 transmit information to terminal device 116 over a forward link (also referred to as downlink) 118 and through the reverse link (also Information referred to as uplink 120 receives information from terminal device 116.
  • terminal device 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to terminal device 122 over forward link 124 and receive information from terminal device 122 over reverse link 126.
  • forward link 118 can use a different frequency band than reverse link 120, and forward link 124 can be used differently than reverse link 126. Frequency band.
  • FDD Frequency Division Duplex
  • the forward link 118 and the reverse link 120 can use a common frequency band, a forward link 124, and a reverse link.
  • Link 126 can use a common frequency band.
  • Each antenna (or set of antennas consisting of multiple antennas) and/or regions designed for communication is referred to as a sector of the access network device 102.
  • the antenna group can be designed to communicate with terminal devices in sectors of the coverage area of the access network device 102.
  • the access network device can transmit signals to all of the terminal devices in its corresponding sector by single antenna or multi-antenna transmit diversity.
  • the transmit antenna of the access network device 102 can also utilize beamforming to improve the forward links 118 and 124. Signal to noise ratio.
  • the access network device 102 utilizes beamforming to selectively distribute the terminal devices 116 and 122 in the associated coverage area as compared to the manner in which the access network device transmits signals to all of its terminal devices through single antenna or multi-antenna transmit diversity.
  • beamforming When transmitting a signal, mobile devices in neighboring cells are subject to less interference.
  • the access network device 102, the terminal device 116, or the terminal device 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
  • the wireless communication transmitting device can encode the data for transmission.
  • the wireless communication transmitting device may acquire (eg, generate, receive from other communication devices, or store in memory, etc.) a certain number of data bits to be transmitted over the channel to the wireless communication receiving device.
  • Such data bits may be included in a transport block (or multiple transport blocks) of data that may be segmented to produce multiple code blocks.
  • the communication system 100 can be a PLMN network, a D2D network, an M2M network, an IoT network, or other networks.
  • FIG. 1 is only a simplified schematic diagram of an example, and the network may also include other access network devices, which are not shown in FIG.
  • a Resource Element may be the smallest physical resource, and one RE may correspond to one subcarrier within one OFDM symbol (hereinafter, simply referred to as a symbol).
  • the basic time unit for uplink/downlink resource scheduling in New Radio (NR) is one slot, and one slot is composed of 14 OFDM symbols in time.
  • the basic unit in the frequency domain is one subcarrier, and the subcarrier spacing may be 15 kHz, 30 kHz, and the like.
  • the unit of the downlink frequency domain resource is a Resource Block (RB).
  • each RB is composed of one symbol in the time domain and 12 consecutive subcarriers in the frequency domain.
  • the subcarrier is a basic unit in the frequency domain, and the subcarrier spacing (or the width of the subcarrier) may be 15 kHz, 30 kHz, 60 kHz, 120 kHz, 240 kHz, 480 kHz, and the like.
  • the communication method of the embodiments of the present application can be applied to, for example, a communication system of a large bandwidth.
  • an important aspect of the evolution of mobile communication to future 5G systems or NR systems is to support large bandwidth and bandwidth.
  • the bandwidth supported by the UE may be smaller than the carrier bandwidth in consideration of the cost of the UE and the traffic volume of the UE. The greater the bandwidth supported by the UE, the stronger the processing capability of the UE, the higher the data transmission rate of the UE, and the higher the design cost of the UE.
  • the carrier bandwidth may be up to 400 megahertz (MHz), and the UE's RF bandwidth capability may be 20 MHz, 50 MHz, or 100 MHz.
  • the radio frequency bandwidth capabilities of different UEs may be the same or different.
  • BWP Carrier Bandwidth Part
  • the terminal device cannot know the size of the system bandwidth, but only knows the size of the BWP. Therefore, the communication method provided by the present application can be applied to the BWP technology.
  • the base station may configure one or more downlink/uplink bandwidth parts (BWPs) for the terminal device, where the BWP is a subset of the system carrier bandwidth, and the multiple bandwidth parts are in the frequency domain. Can overlap.
  • the base station may activate one of the BWPs for the UE from the at least one BWP configured for the UE, and the UE may receive the physical downlink shared channel (PDSCH) and the physical downlink control channel (Physical Downlink Control Channel, PDCCH) in the activated BWP.
  • the UE may send an uplink shared channel (PUSCH) and a physical uplink control channel (PUCCH) to the base station in the activated BWP.
  • PUSCH uplink shared channel
  • PUCCH physical uplink control channel
  • the control resource set is composed of a plurality of consecutive or discontinuous segments, wherein each segment consists of consecutive RBs in the frequency domain and consecutive OFDM symbols in the time domain; the base station can configure one or more controls for each terminal device. Resource set. The base station can send a control channel to the terminal device by controlling the resource set.
  • the PDCCH transmitted in each UE CORSET is composed of a REG (Resource Element Group), and the REG is composed of one OFDM symbol in the time domain and one RB in the frequency domain, and the REG includes a PDCCH for demodulating the PDCCH.
  • REG Resource Element Group
  • the technique provided by the present application can be applied to a process of determining a reference signal sequence unit corresponding to each RE in each REG.
  • a terminal device that has been connected to a network device for example, an access network device, hereinafter, referred to as a network device #A for ease of understanding and explanation
  • a network device #A for ease of understanding and explanation
  • the method 200 of channel estimation for device #A is described in detail.
  • the network device #A may determine the location of the RE mapped by the reference signal.
  • each step of the method 200 will be described in detail by taking the processing procedure for the RE#A as an example.
  • terminal device #A can determine the location of the RE#A.
  • network device #A may determine a reference signal sequence r(m) corresponding to the RE#A. Where m is the index of the element in the reference signal sequence r(m).
  • the index m can be determined by the following parameters.
  • the resource block index may refer to a resource block in which the RE#A is located (hereinafter, for ease of understanding and distinction, denoted as RB#A) in the BWP where it is located (hereinafter, for ease of understanding and distinction) , as an index in BWP#A).
  • the resource block index may be defined with respect to the BWP in which it is located. Specifically, the resource block index may be defined with respect to a minimum RB index or a maximum RB index or a central location RB index of the BWP;
  • the BWP #A may include a plurality of PRBs (including the PRB #A), and the plurality of PRBs may have a number in the BWP #A, for example, by way of example and not limitation, in order from low frequency to high frequency.
  • the number of the PRBs in the BWP#A is numbered, that is, the number of the PRBs corresponding to the numbering start positions of the PRBs in the BWP#A may be 0.
  • the BWP#A The PRB corresponding to the start position of each PRB is denoted as PRB#0. That is, the resource block index can be determined according to the offset of the PRB #A with respect to PRB #0.
  • the number of resource units of the reference signal in the resource block may refer to the number of resource units RE used by the reference signal in one resource block RB (for example, PRB#A).
  • the number of resource units used in different resource blocks may be the same or different; in addition, the locations of resource units used in different resource blocks may be the same or different;
  • the number of resource units of the reference signal in the resource block may be 3. More specifically, for example, if a PRB includes 12 subcarriers, numbered from 0 to 11, the REs carrying the reference signals may correspond to subcarriers numbered 1, 5, and 9; or may be numbers 0, 4, and 8 or 2, 7 and 10 subcarriers; and the number of resource elements of the reference signal in the resource block may be 4, wherein 4 REs are subcarriers numbered 0, 3, 6, and 9 or numbered 1, 4 , 7 and 10 or 2, 5, 8 and 11 subcarriers.
  • the resource block offset is an offset of the resource block relative to a reference point in the frequency domain
  • the offset may be predefined, or may be implicitly derived by higher layer signaling such as RRC signaling, or system message such as MIB or RMSI or SIB, or dynamic signaling such as DCI notification or by other parameters, or One of the combinations of modes is obtained;
  • higher layer signaling such as RRC signaling, or system message such as MIB or RMSI or SIB, or dynamic signaling such as DCI notification or by other parameters, or One of the combinations of modes is obtained;
  • the reference point may be predefined, or may be through high layer signaling such as RRC signaling, or system message such as MIB or RMSI or SIB, or dynamic signaling such as DCI notification or implicitly derived by other parameters, or the above manner One of the combinations;
  • the resource block offset may be an offset of the BWP relative to the carrier RB index 0; or may be a minimum RB index of the BWP relative to the carrier RB (Carrier RB) The offset.
  • the reference point may be a carrier RB (Carrier RB) index 0;
  • the resource block offset may be an offset from a minimum RB index of the BWP, where the offset value is 0;
  • the resource block offset may be an offset from a minimum RB index of a Synchronization Signal Block (SS Block) or an SS, where the offset value may be an offset of the BWP relative to the sync block;
  • SS Block Synchronization Signal Block
  • the resource block offset may be determined according to any one of the following manners.
  • the BWP offset may indicate the offset of BWP#A relative to a reference point (hereinafter, referred to as reference point #A for ease of understanding and explanation).
  • reference point #A a reference point
  • the BWP offset is the offset of the start position PRB of BWP#A (ie, the above PRB #0) with respect to a reference point.
  • the network device #A may set the reference point #A in the following manner.
  • the reference point #A may be a carrier resource block (Carrier RB); specifically, it may be an RB with the smallest index value in a carrier resource block (Carrier RB).
  • the network device #A may number the RBs in the used carriers in order of increasing or decreasing frequency, thereby obtaining a Carrier RB index.
  • a network device or base station within one carrier may configure one or more BWPs for different UEs.
  • each BWP can be notified by higher layer signaling; for example, the starting position or bandwidth of the BWP is notified by RRC signaling;
  • the location of the initial BWP may be implicitly derived; for example, the control resource set is notified through a broadcast channel or MIB; the location of the initial BWP is obtained by controlling the frequency domain starting location and bandwidth of the resource set;
  • the index of the RB may be defined with respect to each BWP.
  • the RBs in the BWP may be sequentially defined as PRB 0, PRB 1, PRB2... in the order of increasing or decreasing frequency;
  • the frequency domain position corresponding to the Synchronization Signal Block can be determined.
  • the network device #A can notify the terminal device #A of the offset of the common physical resource block in the frequency domain with respect to the synchronization signal block (hereinafter, referred to as offset #1 for ease of understanding and distinction).
  • the network device #A may transmit the indication information of the offset #1 to a plurality of terminal devices including the terminal device #A by, for example, Radio Resource Control (RRC).
  • RRC Radio Resource Control
  • the terminal device #A can determine the common physical resource block based on the frequency domain position of the synchronization signal block and the offset #1.
  • the network device #A may determine one PRB in the common physical resource block, for example, a PRB with a carrier RB index of 0 as the reference point #A.
  • the terminal device #A can determine the reference point #A based on the instruction of the network device #A.
  • the reference point #A may be a preset PRB in the plurality of common physical resource blocks.
  • the reference point #A may be a PRB specified by a communication protocol among a plurality of common physical resource blocks.
  • the network device #A may send the indication information #1 to the terminal device #A, and the indication information #1 may be used to indicate the location of the reference point #A.
  • the indication information #1 may be specifically used to indicate the location of the PRB whose Common PRB index is 0.
  • the terminal device #A may determine the PRB indicated by the indication information #1 as a PRB with a Common PRB index of 0. And the PRB is determined as reference point #A.
  • the PRB corresponding to the reference point #A may also refer to the PRB with the smallest PRB index among the carriers used by the network device #A.
  • the determining method and process of the reference point #A enumerated above are merely exemplary descriptions, and the present application is not limited thereto.
  • the reference point #A may be any PRB in the system bandwidth
  • the network device# A can cause the terminal device #A to determine the frequency domain position of the reference point #A by informing the terminal device #A of the offset between the reference point #A and the sync signal block.
  • the terminal device #A can determine the position of the frequency domain position of the reference point #A.
  • the network device may configure a control resource set (CORESET) for the terminal device in a BWP allocated to a terminal device (for example, the terminal device #A), where the CORESET may be used for carrying The PDCCH for the terminal device, that is, the CORESET may be referred to as the proprietary CORESET of the terminal device.
  • the above reference point #A may be a reference point for determining the CORESET of the plurality of terminal devices.
  • the network device #A can determine the offset of the above PRB #0 with respect to the reference point #A (hereinafter, referred to as offset #2 for ease of understanding and explanation).
  • the network device #A takes the offset #2 as the resource block offset.
  • the terminal device #A can also determine the above offset #2 as a resource block offset.
  • Fig. 3 shows a schematic diagram of each of the above offsets.
  • the network device #A may send the indication information #2 to the terminal device #A, the indication information #2 may be used to indicate the value of the resource block offset, so that the terminal device #A may determine the resource based on the indication information #2. Block offset.
  • the foregoing indication information #1 and the indication information #2 may be used at the same time, or when the resource block offset is determined, only the indication information #1 and the indication information # may be used.
  • One of the two is not particularly limited to this application.
  • the indication information #1 and the instruction information #2 may be carried in the same message or signaling, or the indication information #1 and the instruction information #2 are also It can be carried in different messages or signaling, and is not specifically limited in this application.
  • the inter-symbol offset (referred to as ⁇ ) is used to indicate an offset value parameter of the reference signal sequence index between adjacent time domain symbols;
  • the inter-symbol offset ⁇ can be determined by any of the following methods.
  • the network device #A and the terminal device #A can determine a mapping relationship between a plurality of system information and a plurality of system information (remember, mapping relationship #A).
  • the network device #A and the terminal device #A can determine the currently used system preset parameter ⁇ according to the system information corresponding to the RE#A.
  • the system information may include information of any one of a system parameter numerology, a subcarrier interval, or a Cyclic Prefix (CP).
  • CP Cyclic Prefix
  • Table 1 below shows an example of the mapping relationship #A.
  • the subcarrier spacing used by the terminal device #A (that is, the subcarrier spacing corresponding to the RE#A) is taken as an example of a 15 kHz subcarrier.
  • the maximum bandwidth in the system includes the number of PRBs being 4*275, and thus, it can be determined that ⁇ 4* 275.
  • the mapping relationship #A may be specified by the communication protocol, or the mapping relationship #A may also be input by the administrator or the user into the network device #A and the terminal device #A, or The above mapping relationship #A may also be set by the manufacturer or the operator in the network device #A and the terminal device #A, and the present application is not particularly limited as long as the mapping relationship determined by the network device #A and the terminal device #A is ensured. #A can be consistent.
  • a unique inter-symbol offset ⁇ may be specified in the communication system.
  • the inter-symbol offset ⁇ may be greater than or equal to the maximum value that may occur in the offset #2, for example, if the offset #2 The maximum possible value is 4*275 and the latter 4*276, then ⁇ 4*275 or ⁇ 4*276.
  • the value of the inter-symbol offset ⁇ may be greater than or equal to the value of N*M, where N is the ratio of the maximum subcarrier spacing supported by the carrier to the minimum subcarrier spacing, eg, a carrier
  • the maximum and minimum subcarrier spacings are 60 kHz and 15 kHz, respectively, and the value of N is 4.
  • the value of M may be a preset value.
  • the value of M may be greater than or equal to the bandwidth of BWP#A.
  • M 275 or 276 or an integral multiple of 275 or 276;
  • the terminal device When the terminal device initially accesses the system, the terminal device needs to acquire the PDCCH in a CORESET, so as to correctly receive the PDSCH to obtain a Remaining minimum system information (RMSI), which may be referred to as an RMSI CORESET.
  • RMSI CORESET is located in the initial downlink BWP (Initial DL BWP), and the bandwidth and frequency domain position of the RMSI CORESET are the same as the Initial DL BWP. For all UEs accessing the same carrier, the RMSI CORESET within the Initial DL BWP needs to receive the PDCCH.
  • the inter-symbol offset can be the bandwidth (in RB) of the BWP where the RMSI CORESET is located.
  • the network device #A and the terminal device #A can determine the index m of the reference signal sequence based on Equation 1 below.
  • n is an index of the reference signal sequence
  • l represents a time domain symbol index of the resource unit RE#A
  • n PRB is a resource block index
  • K represents the number of resource units in the resource block RB carrying reference signals
  • n offset and ⁇ are resource block offsets or inter-symbol offsets, respectively.
  • n PRB can be defined relative to the BWP; l is defined relative to the start symbol of the time slot.
  • n offset represents the above resource block offset.
  • represents the above-described inter-symbol offset.
  • the network device #A and the terminal device #A can determine the reference sequence r(m) based on the above index m.
  • the reference signal sequence may be generated based on a Gold sequence.
  • c(i) represents the Gold sequence with index i.
  • the manner of generating the reference signal sequence enumerated above is only an exemplary description, and the present application is not limited thereto, and other manners capable of generating a reference signal sequence fall within the protection scope of the present application, for example, the reference signal sequence is also It can be generated based on sequences such as pseudo-random sequences.
  • the network device #A can map the sequence r(m) to the resource (k, l) according to the following formulas 2 to 4.
  • p is the antenna port number of the transmission reference signal
  • is the index number corresponding to the subcarrier spacing of the reference signal
  • is the index number of the system parameter of the subcarrier corresponding to RE#A.
  • is a preset value determined by a power factor and/or an orthogonal superposition code (OCC).
  • OCC orthogonal superposition code
  • N represents the number of symbols in a slot in CORESET occupied
  • the network device #A l #A the value 0, for example, such as RRC signaling and notifies the terminal equipment The value of N.
  • Equation 4 Indicates the number of subcarriers included in one PRB, for example, in the embodiment of the present application, The value of the value can be 12.
  • terminal device #A can determine the modulation symbols that need to be mapped on the REs used to carry the reference signal in the CORESET.
  • network device #A can transmit the modulation symbols of the reference signals generated as described above within CORESET (including RE#A).
  • Fig. 4 shows an example of a pattern of a reference signal in CORESET.
  • the terminal device #A may determine the reference signal sequence unit corresponding to RE#A, that is, r(m) based on the above formula 1, and the terminal device #A may be based on the reference signal received on the RE#A and the r ( m), performing channel estimation or channel measurement, and the specific method and process of the channel estimation may be similar to the prior art.
  • the specific method and process of the channel estimation may be similar to the prior art.
  • detailed description thereof is omitted.
  • a terminal device that initially accesses a network device for example, an access network device, hereinafter, referred to as a network device #B for ease of understanding and explanation
  • a network device #B for ease of understanding and explanation
  • the channel estimation method is described in detail.
  • n offset in the above formula 1 is different from the above method 200.
  • the value of n offset is mainly described in detail.
  • the network device #A may determine the values of n PRB and n offset in any of the following manners.
  • the BWP used by the terminal device #B is an initial downlink (Initial DL) BWP.
  • the network device #B can notify the terminal device #B of the frequency domain position of the Initial DL BWP (for example, the starting frequency domain position and the maximum frequency domain position).
  • the process may be similar to the prior art.
  • the frequency domain position of the Initial DL BWP may be determined based on a SS block (Synchronization Signal Block), and a detailed description thereof is omitted herein to avoid redundancy.
  • the network device #B and the terminal device #B can determine the value of n offset in any of the following ways.
  • the network device #B and the terminal device #B can determine the above-mentioned reference point #A of the initial position of the Initial DL BWP, as shown by the reference point #0 in FIG.
  • n offset the value of n offset
  • n offset 0 or the bandwidth of the RMSI CORESET or the bandwidth of the initial BWP;
  • the inter-symbol offset is ⁇ N ⁇ M, where N ⁇ 4, N ⁇ 275 or N ⁇ 276; or
  • Inter-symbol offset ⁇ RMSI The bandwidth of CORESET or the bandwidth of the initial BWP.
  • the network device #B and the terminal device #B can determine the start position of the SS Block as the above-mentioned reference point #A, as shown by the reference point #1 in FIG.
  • n offset may be the offset between the start position of the SS Block and the start position of the Initial DL BWP.
  • the inter-symbol offset can be the number of PRBs included in the Initial DL BWP.
  • the n offset can be obtained by the frequency domain position parameter [DL-BWP-loc] of the high layer signaling parameter BWP.
  • the inter-symbol offset is ⁇ N ⁇ M, where N ⁇ 4, N ⁇ 275 or N ⁇ 276.
  • FIG. 6 is a schematic diagram of a mapping manner of reference signals in the present scenario.
  • the process of channel estimation or channel measurement can be completed without the terminal device having to know the size of the system bandwidth. Since the network device does not need to inform the terminal device system of the bandwidth size, and can support flexible changes of the carrier bandwidth, the spectrum usage method can be adjusted, and the signaling overhead for indicating the system bandwidth can be reduced.
  • FIG. 7 is a schematic diagram 1 of a communication device 10 according to an embodiment of the present application.
  • the device 10 may be a terminal device (for example, the terminal device #A), or may be a chip or a circuit. For example, it can be set on a chip or circuit of a terminal device.
  • the terminal device may correspond to the terminal device in the foregoing method.
  • the apparatus 10 can include a processor 11 (i.e., an example of a processing unit) and a memory 12.
  • the memory 12 is for storing instructions for executing the instructions stored by the memory 12 to cause the apparatus 20 to implement the steps performed by the terminal device (e.g., terminal device #A) in the corresponding method of FIG.
  • the device 10 may further include an input port 13 (ie, an example of a communication unit) and an output port 14 (ie, another example of a communication unit).
  • the processor 11, memory 12, input port 13 and output port 14 can communicate with one another via internal connection paths to communicate control and/or data signals.
  • the memory 12 is configured to store a computer program, and the processor 11 can be used to call and run the computer program from the memory 12 to control the input port 13 to receive signals, and control the output port 14 to send signals to complete the terminal device in the above method.
  • the memory 12 can be integrated in the processor 11 or can be provided separately from the processor 11.
  • the input port 13 is a receiver
  • the output port 14 is a transmitter.
  • the receiver and the transmitter may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the input port 13 is an input interface
  • the output port 14 is an output interface
  • the functions of the input port 13 and the output port 14 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • the processor 11 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • the terminal device provided by the embodiment of the present application may be implemented by using a general-purpose computer.
  • the program code that implements the functions of the processor 11, the input port 13, and the output port 14 is stored in the memory 12, and the general purpose processor implements the functions of the processor 11, the input port 13, and the output port 14 by executing the code in the memory 12.
  • the functions and operations of the modules or units in the communication device 10 are only exemplified.
  • the modules or units in the communication device 10 can be used to perform the actions or processes performed by the terminal device in the method 200.
  • a detailed description thereof will be omitted.
  • FIG. 8 is a schematic structural diagram of a terminal device 20 provided by the present application.
  • the terminal device 20 can be applied to the system shown in FIG.
  • FIG. 8 shows only the main components of the terminal device.
  • the terminal device 20 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used for processing the communication protocol and the communication data, and controlling the entire terminal device, executing the software program, and processing the data of the software program, for example, in the embodiment of the indication method for supporting the terminal device to perform the foregoing transmission precoding matrix.
  • the memory is primarily used to store software programs and data, such as the codebooks described in the above embodiments.
  • the control circuit is mainly used for converting baseband signals and radio frequency signals and processing radio frequency signals.
  • the control circuit together with the antenna can also be called a transceiver, and is mainly used for transmitting and receiving RF signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 8 shows only one memory and processor for ease of illustration. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, and the like.
  • the processor may include a baseband processor and a central processing unit, and the baseband processor is mainly used to process the communication protocol and the communication data, and the central processing unit is mainly used to control and execute the entire terminal device.
  • the processor in FIG. 8 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and interconnected by technologies such as a bus.
  • the terminal device may include a plurality of baseband processors to accommodate different network standards, and the terminal device may include a plurality of central processors to enhance its processing capabilities, and various components of the terminal devices may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the functions of processing the communication protocol and the communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • the antenna and control circuit having the transceiving function can be regarded as the transceiving unit 201 of the terminal device 20, and the processor having the processing function is regarded as the processing unit 202 of the terminal device 20.
  • the terminal device 20 includes a transceiver unit 201 and a processing unit 202.
  • the transceiver unit can also be referred to as a transceiver, a transceiver, a transceiver, and the like.
  • the device for implementing the receiving function in the transceiver unit 201 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 201 is regarded as a sending unit, that is, the transceiver unit 201 includes a receiving unit and a sending unit.
  • the receiving unit may also be referred to as a receiver, a receiver, a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit or the like.
  • FIG. 9 is a schematic diagram 2 of a communication device 30 according to an embodiment of the present disclosure.
  • the device 30 may be a network device (for example, the network device #A), or may be a chip or a circuit. Such as a chip or circuit that can be placed in a network device.
  • the network device corresponds to the network device in the foregoing method (for example, the network device #A described above).
  • the apparatus 30 can include a processor 31 (ie, an example of a processing unit) and a memory 32.
  • the memory 32 is configured to store instructions for executing the instructions stored by the memory 32 to cause the apparatus 30 to implement the steps performed by the network device (e.g., network device #A) in the aforementioned method of FIG. .
  • the device 30 may further include an input port 33 (ie, an example of a communication unit) and an output port 33 (ie, another example of the processing unit).
  • the processor 31, memory 32, input port 33, and output port 34 can communicate with one another via internal connection paths to communicate control and/or data signals.
  • the memory 32 is used to store a computer program, and the processor 31 can be used to call and run the computer program from the memory 32 to control the input port 33 to receive signals, and control the output port 34 to send signals to complete the network in the method 200.
  • the memory 32 can be integrated in the processor 31 or can be provided separately from the processor 31.
  • the input port 33 is a receiver
  • the output port 34 is a transmitter.
  • the receiver and the transmitter may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the input port 33 is an input interface
  • the output port 34 is an output interface
  • the device 30 may not include the memory 32, and the processor 31 may read an instruction (program or code) in the memory external to the chip to implement the foregoing The function of the network device in the corresponding method in 2.
  • the functions of the input port 33 and the output port 34 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • the processor 31 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • a network device provided by an embodiment of the present application may be implemented by using a general-purpose computer.
  • the program code that implements the functions of the processor 31, the input port 33, and the output port 34 is stored in a memory, and the general purpose processor implements the functions of the processor 31, the input port 33, and the output port 34 by executing code in the memory.
  • the modules or units in the communication device 30 can be used to perform various operations or processes performed by the network device in the above method 200. Here, in order to avoid redundancy, detailed descriptions thereof are omitted.
  • FIG. 10 is a schematic structural diagram of a network device according to an embodiment of the present disclosure, which may be used to implement the functions of the network device in the foregoing method.
  • the base station can be a schematic diagram of a base station.
  • the base station can be applied to the system as shown in FIG. 1.
  • the base station 40 includes one or more radio frequency units, such as a remote radio unit (RRU) 401 and one or more baseband units (BBUs) (also referred to as digital units, DUs) 402. .
  • RRU remote radio unit
  • BBUs baseband units
  • DUs digital units
  • the RRU 401 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 4011 and a radio frequency unit 4012.
  • the RRU 401 is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals, for example, for transmitting the signaling messages described in the foregoing embodiments to the terminal device.
  • the BBU 402 portion is mainly used for performing baseband processing, controlling a base station, and the like.
  • the RRU 401 and the BBU 402 may be physically disposed together or physically separated, that is, distributed base stations.
  • the BBU 402 is a control center of a base station, and may also be referred to as a processing unit, and is mainly used to perform baseband processing functions such as channel coding, multiplexing, modulation, spreading, and the like.
  • the BBU (processing unit) 402 can be used to control the base station 40 to perform the operation procedure of the network device in the foregoing method embodiment.
  • the BBU 402 may be composed of one or more boards, and multiple boards may jointly support a single access standard radio access network (such as an LTE system or a 5G system), or may support different ones. Access to the standard wireless access network.
  • the BBU 402 also includes a memory 4021 and a processor 4022.
  • the memory 4021 is used to store necessary instructions and data.
  • the memory 4021 stores the codebook or the like in the above embodiment.
  • the processor 4022 is configured to control the base station to perform necessary actions, for example, to control the base station to perform an operation procedure about the network device in the foregoing method embodiment.
  • the memory 4021 and the processor 4022 can serve one or more boards. That is, the memory and processor can be individually set on each board. It is also possible that multiple boards share the same memory and processor. In addition, the necessary circuits can be set on each board.
  • SoC System-on-chip
  • all or part of the functions of the 402 part and the 401 part may be implemented by the SoC technology, for example, by a base station function chip.
  • the base station function chip integrates a processor, a memory, an antenna interface and the like.
  • the program of the base station related function is stored in the memory, and the processor executes the program to implement the related functions of the base station.
  • the base station function chip can also read the memory external to the chip to implement related functions of the base station.
  • FIG. 10 the structure of the base station illustrated in FIG. 10 is only one possible form, and should not be construed as limiting the embodiments of the present application. This application does not preclude the possibility of other forms of base station architecture that may arise in the future.
  • the embodiment of the present application further provides a communication system including the foregoing network device and one or more terminal devices.
  • the processor may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated integration.
  • DSPs digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (ROMM), an erasable programmable read only memory (erasable PROM, EPROM), or an electrical Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory can be a random access memory (RAM) that acts as an external cache.
  • RAM random access memory
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic randomness synchronous dynamic randomness.
  • Synchronous DRAM SDRAM
  • DDR SDRAM double data rate synchronous DRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory Take memory
  • DR RAM direct memory bus random access memory
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer instructions or computer programs.
  • the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that contains one or more sets of available media.
  • the usable medium can be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium.
  • the semiconductor medium can be a solid state hard drive.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including The instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a removable hard disk, a read only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.

Abstract

本申请提供了一种接收参考信号的方法和发送参考信号的方法,该接收参考信号的方法包括:终端设备确定参考信号所映射的资源单元的位置;所述终端设备确定与所述资源单元对应的参考信号序列,其中参考信号序列中各个元素的索引由所述资源单元对应的资源块的资源块索引、所述资源块内承载参考信号的资源单元的数量、资源块偏移量或者符号间偏移量确定;所述终端设备通过所述资源单元接收参考信号,并根据所接收的参考信号和所述参考信号序列进行信道估计或者信道测量,从而,能够使终端设备在不获知系统带宽的情况下,完成信道估计。

Description

接收参考信号的方法和发送参考信号的方法
本申请要求于2017年11月17日提交中国专利局、申请号为201711147779.X、申请名称为“接收参考信号的方法和发送参考信号的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且,更具体地,涉及接收参考信号的方法和发送参考信号的方法,以及通信装置。
背景技术
目前,已知一种通信技术,终端设备可以获取系统带宽,进而根据系统带宽确定资源单元(Resource Element,RE)对应的参考信号序列,从而,可以基于该资源单元上承载的参考信号与该参考信号序列元进行信道估计或信道测量。
但是,在该技术中,由于终端设备需要获知系统带宽。而在NR技术中,终端设备是无法获知系统带宽消息。
因此,希望提供一种技术,能够使终端设备在不获知系统带宽的情况下,完成信道估计或信道测量。
发明内容
本申请提供一种通信方法和通信装置,能够使终端设备在不获知系统带宽的情况下,完成信道估计或信道测量。
第一方面,提供一种参考信号的接收方法,包括:终端设备确定参考信号所映射的资源单元的位置;该终端设备确定与该资源单元对应的参考信号序列,其中参考信号序列中各个元素的索引由该资源单元对应的资源块的资源块索引、该资源块内承载参考信号的资源单元的数量、资源块偏移量和/或符号间偏移量确定;该终端设备通过该资源单元接收参考信号,并根据所接收的参考信号和该参考信号序列进行信道估计或者信道测量。
其中,该参考信号是基于该参考序列生成的。
从而,能够在终端设备无需获知系统带宽的大小的情况下,信道估计或信道测量。由于网络设备无需告知终端设备系统带宽的大小,能够支持载波带宽的灵活变化,可以调整频谱的使用方法,并且能够减少用于指示系统带宽的信令开销。
可选地,该资源块索引为该资源块在所属于的带宽部分(BWP,Bandwidth Part)中的索引。
可选地,资源块偏移量也可以称为BWP偏移量。
可选地,该资源块偏移量为该资源单元所在的BWP的起始位置相对于参考点的偏移量。
其中,该资源单元所在的BWP可以是指网络设备分配给终端设备的BWP。
可选地,该参考点是根据载波的公共资源块Common RB的位置确定的。
可选地,该参考点包括公共资源块的起始位置。
可选地,该参考点是基于同步信号块的位置确定的。
可选地,该符号间偏移量为同一子载波上的任意两个在时域上相邻的资源单元上该承载的参考序列单元的索引之间的偏移量。
可选地,该终端设备确定与该资源单元对应的参考信号序列,包括:该终端设备确定与该资源单元的位置(k,l)对应的参考信号序列r(m)的索引为
m=K·(n PRB+n offset)+K·l·Δ+m′,m′=0,...,K-1
其中,k为该资源单元对应的子载波索引,l为该资源单元对应的时域符号索引,为该参考信号序列的索引,为该资源块索引,表示该资源块内承载参考信号的资源单元的数量,为该资源块偏移量,为该符号间偏移量。
可选地,该资源单元的子载波索引和该资源块索引相对于该资源单元所在的带宽部分BWP定义。
或者说,该资源单元的子载波索引和该资源块索引是基于该资源单元所在的BWP确定的。
可选地,该资源单元对应的时域符号索引相对于该资源单元所在的时隙的起始符号定义。
或者说,该资源单元对应的时域符号索引是基于该资源单元所在的时隙的起始符号确定的。
可选地,该符号间偏移量的取值根据该资源块对应的子载波间隔确定的。
可选地,该的值大于或等于该资源单元所在的BWP的带宽。
可选地,该符号间偏移量的值大于或等于N*M,其中N为载波使用的最大子载波间隔与最小子载波间隔的比值,M大于或者等于该资源单元所在的BWP的带宽。
可选地,该符号间偏移量的值大于或等于L*M,其中L为载波可配置的最大BWP个数,M大于或者等于该资源单元所在的BWP的带宽。
可选地,该资源块偏移量为该资源单元所在的BWP的最小RB索引和最小载波RB索引之间的偏移。
可选地,该资源块偏移量由高层信令通知。
可选地,该资源块偏移量为高层信令配置的该资源单元所在的BWP的频域位置的值。
可选地,该资源单元所在的BWP为初始BWP,该资源块偏移量的值为0。
第二方面,提供一种参考信号的接收方法,包括:网络设备确定参考信号所映射的资源单元的位置;该网络设备确定与该资源单元对应的参考信号序列,其中参考信号序列中各个元素的索引由该资源单元对应的资源块的资源块索引、该资源块内承载参考信号的资源单元的数量、资源块偏移量和/或符号间偏移量确定;该网络设备通过该资源单元发送参考信号。
其中,该参考信号是基于该参考序列生成的。
从而,能够在终端设备无需获知系统带宽的大小的情况下,信道估计或信道测量。由 于网络设备无需告知终端设备系统带宽的大小,能够支持载波带宽的灵活变化,可以调整频谱的使用方法,并且能够减少用于指示系统带宽的信令开销。
可选地,该资源块索引为该资源块在所属于的带宽部分(BWP,Bandwidth Part)中的索引。
可选地,资源块偏移量也可以称为BWP偏移量。
可选地,该资源块偏移量为该资源单元所在的BWP的起始位置相对于参考点的偏移量。
其中,该资源单元所在的BWP可以是指网络设备分配给网络设备的BWP。
可选地,该参考点是根据载波的公共资源块Common RB的位置确定的。
可选地,该参考点包括公共资源块的起始位置。
可选地,该参考点是基于同步信号块的位置确定的。
可选地,该符号间偏移量为同一子载波上的任意两个在时域上相邻的资源单元上该承载的参考序列单元的索引之间的偏移量。
可选地,该网络设备确定与该资源单元对应的参考信号序列,包括:该网络设备确定与该资源单元的位置(k,l)对应的参考信号序列r(m)的索引为
m=K·(n PRB+n offset)+K·l·Δ+m′,m′=0,...,K-1
其中,k为该资源单元对应的子载波索引,l为该资源单元对应的时域符号索引,为该参考信号序列的索引,为该资源块索引,表示该资源块内承载参考信号的资源单元的数量,为该资源块偏移量,为该符号间偏移量。
可选地,该资源单元的子载波索引和该资源块索引相对于该资源单元所在的带宽部分BWP定义。
或者说,该资源单元的子载波索引和该资源块索引是基于该资源单元所在的BWP确定的。
可选地,该资源单元对应的时域符号索引相对于该资源单元所在的时隙的起始符号定义。
或者说,该资源单元对应的时域符号索引是基于该资源单元所在的时隙的起始符号确定的。
可选地,该符号间偏移量的取值根据该资源块对应的子载波间隔确定的。
可选地,该的值大于或等于该资源单元所在的BWP的带宽。
可选地,该符号间偏移量的值大于或等于N*M,其中N为载波使用的最大子载波间隔与最小子载波间隔的比值,M大于或者等于该资源单元所在的BWP的带宽。
可选地,该符号间偏移量的值大于或等于L*M,其中L为载波可配置的最大BWP个数,M大于或者等于该资源单元所在的BWP的带宽。
可选地,该资源块偏移量为该资源单元所在的BWP的最小RB索引和最小载波RB索引之间的偏移。
可选地,该资源块偏移量由高层信令通知。
可选地,该资源块偏移量为高层信令配置的该资源单元所在的BWP的频域位置的值。
可选地,该资源单元所在的BWP为初始BWP,该资源块偏移量的值为0。
第三方面,提供了一种通信装置,包括用于执行上述第一方面或第二方面及其各实现方式中的各步骤的单元。
第四方面,提供了一种通信设备,包括处理器,用于从存储器中调用并运行计算机程序,使得通信设备执行上述第一方面或第二方面及其各实现方式中的方法。
第五方面,提供了一种芯片系统,包括处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片系统的设备执行上述第一方面或第二方面及其各实现方式中的方法。
第六方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码被通信设备(例如,终端设备或网络设备)的通信单元、处理单元或收发器、处理器运行时,使得通信设备执行上述第一方面或第二方面及其各实现方式中的方法。
第七方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有程序,该程序使得通信设备(例如,终端设备或网络设备)执行上述第一方面或第二方面及其各实现方式中的方法。
根据本申请提供的方案能够在终端设备无需获知系统带宽的大小的情况下,完成信道估计或信道测量的过程。由于网络设备无需告知终端设备系统带宽的大小,能够支持载波带宽的灵活变化,可以调整频谱的使用方法,并且能够减少用于指示系统带宽的信令开销。
附图说明
图1是本申请的通信系统的一例的示意性结构图。
图2是本申请的通信方法的一例的示意性交互图。
图3是本申请的资源配置的一例的示意图。
图4是本申请的参考信号的映射方式的一例的示意图。
图5是本申请的资源配置的另一例的示意图。
图6是本申请的参考信号的映射方式的另一例的示意图。
图7是本申请通信装置的一例的示意性框图。
图8是本申请实施例的终端设备的一例的示意性框图。
图9是本申请通信装置的另一例的示意性框图。
图10是本申请实施例的网络设备的另一例的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX) 通信系统、未来的第五代(5th Generation,5G)系统或新无线(New Radio,NR)等。
作为示例而非限定,在本申请实施例中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,5G网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是物联网(Internet of Things,IoT)系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。
在本申请实施例中,IOT技术可以通过例如窄带(Narrow Band)NB技术,做到海量连接,深度覆盖,终端省电。例如,NB只包括一个资源块(Resource Block,RB),即,NB的带宽只有180KB。要做到海量接入,必须要求终端在接入上是离散的,根据本申请实施例的通信方法,能够有效解决IOT技术海量终端在通过NB接入网络时的拥塞问题。
在本申请实施例中,网络设备可以包括接入网设备或核心网设备。
接入网设备可以是接入网设备等用于与移动设备通信的设备,接入网设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),或者是新型无线系统(New Radio,NR)系统中的gNB,还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的接入网设备或者未来演进的PLMN网络中的接入网设备等。
另外,在本申请实施例中,接入网设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与接入网设备进行通信,该小区可以是接入网设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
此外,LTE系统或5G系统中的载波上可以同时有多个小区同频工作,在某些特殊场 景下,也可以认为上述载波与小区的概念等同。例如在载波聚合(Carrier Aggregation,CA)场景下,当为UE配置辅载波时,会同时携带辅载波的载波索引和工作在该辅载波的辅小区的小区标识(Cell Indentify,Cell ID),在这种情况下,可以认为载波与小区的概念等同,比如UE接入一个载波和接入一个小区是等同的。
核心网设备可以与多个接入网设备连接,用于控制接入网设备,并且,可以将从网络侧(例如,互联网)接收到的数据分发至接入网设备。
其中,以上列举的终端设备、接入网设备和核心网设备的功能和具体实现方式仅为示例性说明,本申请并未限定于此。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(Central Processing Unit,CPU)、内存管理单元(Memory Management Unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(Process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
此外,本申请实施例的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(Compact Disc,CD)、数字通用盘(Digital Versatile Disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
需要说明的是,在本申请实施例中,在应用层可以运行多个应用程序,此情况下,执行本申请实施例的通信方法的应用程序与用于控制接收端设备完成所接收到的数据所对应的动作的应用程序可以是不同的应用程序。
图1是能够适用本申请实施例通信方法的系统100的示意图。如图1所示,该系统100包括接入网设备102,接入网设备102可包括1个天线或多个天线例如,天线104、106、108、110、112和114。另外,接入网设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
接入网设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。然而,可以理解,接入网设备102可以与类似于终端设备116或终端设备122的任意数目的终端设备通信。终端设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信 系统100上通信的任意其它适合设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路(也称为下行链路)118向终端设备116发送信息,并通过反向链路(也称为上行链路)120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在频分双工(Frequency Division Duplex,FDD)系统中,例如,前向链路118可与反向链路120使用不同的频带,前向链路124可与反向链路126使用不同的频带。
再例如,在时分双工(Time Division Duplex,TDD)系统和全双工(Full Duplex)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每个天线(或者由多个天线组成的天线组)和/或区域称为接入网设备102的扇区。例如,可将天线组设计为与接入网设备102覆盖区域的扇区中的终端设备通信。接入网设备可以通过单个天线或多天线发射分集向其对应的扇区内所有的终端设备发送信号。在接入网设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,接入网设备102的发射天线也可利用波束成形来改善前向链路118和124的信噪比。此外,与接入网设备通过单个天线或多天线发射分集向它所有的终端设备发送信号的方式相比,在接入网设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,接入网设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
此外,该通信系统100可以是PLMN网络、D2D网络、M2M网络、IoT网络或者其他网络,图1只是举例的简化示意图,网络中还可以包括其他接入网设备,图1中未予以画出。
下面,对本申请的通信方法使用的资源进行详细说明。
在本申请实施例中,资源单元(Resource Element,RE)可以是最小的物理资源,一个RE可以对应一个OFDM符号(以下,简称符号)内的一个子载波。
在新空口(New Radio,NR)中上/下行资源调度的基本时间单位是一个时隙(slot),一个slot在时间上由14个OFDM符号组成。
在第五代无线接入系统标准NR中,频域上的基本单位为一个子载波,子载波间隔可以为15KHz、30KHz等。在NR物理层中,下行频域资源的单位是资源块(Resource Block,RB)。
在本申请实施例中,每个RB由时域上一个符号、频域上12个连续子载波组成。
其中,子载波是频域上的基本单位,子载波间隔(或者说,子载波的宽度)可以为15KHz、30KHz、60KHz、120KHz、240KHz、480KHz等。
作为示例而非限定,本申请实施例的通信方法可以应用于例如大带宽的通信系统中。
具体地说,随着移动用户的增加,以及大容量业务的出现(比如高清视频业务等),移动通信向未来的5G系统或NR系统等的演进需要的一个重要的方面就是支持大带宽,带宽越大,用于进行数据传输的带宽资源就越多,能够支持的业务量就越大。在载波带宽为大带宽的通信系统中,考虑到UE的成本以及UE的业务量,UE支持的带宽可能小于载波带宽。其中,UE支持的带宽越大,UE的处理能力越强,UE的数据传输速率可能越高,UE的设计成本可能越高。例如,在5G系统中,载波带宽最大可能为400兆赫兹(MHz),UE的射频带宽能力可能为20MHz、50MHz或100MHz等。在无线通信系统中,不同UE的射频带宽能力可以相同也可以不同。
在载波带宽为大带宽的通信系统中,由于UE的射频带宽能力小于载波带宽,提出了带宽部分(Bandwidth Part或carrier Bandwidth Part,BWP)的概念,即,一个BWP包括频域上的连续若干个RB。
在该技术中,终端设备无法获知系统带宽的大小,而仅知道BWP的大小,因此,本申请提供的通信方法可以应用于BWP技术中。
在本申请实施例中,基站可为终端设备配置一个或多个下行/上行带宽部分(BWP),所述BWP为系统载波带宽内的一个子集,且所述多个带宽部分在频域上可以重叠(overlap)。基站可以从为UE配置的至少一个BWP中为UE激活其中一个BWP,UE可以在激活的BWP中接收物理下行共享信道(Physical Downlink Shared Channel,PDSCH)和物理下行控制信道(Physical Downlink Control Channel,PDCCH),UE可以在激活的BWP向基站发送上行共享信道(PUSCH)和上行控制信道(Physical Uplink Control Channel,PUCCH)。
NR提出了控制资源集合(CORESET,Control Resource Set)的概念。控制资源集合由多个连续或者不连续的分段构成,其中每个分段由频域上连续的RB和时域上连续的OFDM符号组成;基站可以为每个终端设备配置一个或多个控制资源集合.基站可以通过控制资源集合,向终端设备发送控制信道。
在NR中,每个UE CORSET内所传输的PDCCH由REG(Resource Element Group,资源元素组)组成,REG由时域上一个OFDM符号,频域上一个RB组成,REG内包含用于解调PDCCH的DMRS信号。
本申请提供的技术可以应用于各REG中的各RE对应的参考信号序列单元的确定过程。
下面,结合图2对已接入一个网络设备(例如,接入网设备,以下,为了便于理解和说明,记做网络设备#A)的终端设备(以下,为了便于理解和说明,记做终端设备#A)的信道估计的方法200进行详细说明。
在S210,网络设备#A可以确定参考信号所映射的RE的位置,以下,为了便于理解和说明,以针对RE#A的处理过程为例,对方法200的各步骤进行详细说明。
类似地,终端设备#A可以确定该RE#A的位置。
在S220,网络设备#A可以确定与所述RE#A对应的参考信号序列r(m)。其中,m为参考信号序列r(m)中元素的索引。
在本申请实施例中,该索引m可以由以下参数确定。
A.资源块索引
在本申请实施例中,该资源块索引可以是指该RE#A所在的资源块(以下,为了便于理解和区分,记作RB#A)在所位于的BWP(以下,为了便于理解和区分,记作BWP#A)中的索引。所述资源块索引可以相对于所在的BWP定义,具体地,资源块索引可以相对于BWP的最小RB索引或者最大RB索引或者中心位置RB索引定义;
该BWP#A可以包括多个PRB(包括该PRB#A),并且,该多个PRB在该BWP#A中可以具有编号,例如,作为示例而非限定,可以按照从低频到高频的顺序,对该BWP#A中的各PRB进行编号,即,BWP#A中的各PRB的编号起始位置对应的PRB的编号可以为0,以下,为了便于理解和区分,将BWP#A中的各PRB的编号起始位置对应的PRB记作PRB#0。即,该资源块索引可以根据该PRB#A相对于PRB#0的偏移量确定。
B.资源块内参考信号的资源单元的数量
在本申请实施例中,资源块内参考信号的资源单元的数量,可以是指一个资源块RB(例如,PRB#A)内,参考信号使用的资源单元RE的数量。不同的资源块内使用的资源单元个数可以相同或者不同;此外,不同的资源块内使用的资源单元的位置可以相同,也可以不同;
作为示例而非限定,在本申请实施例中,资源块内参考信号的资源单元数量可以为3。更具体地,例如,如果一个PRB包括12个子载波,编号为0到11,则承载有参考信号的RE可以对应编号为1、5、9号的子载波;也可以是编号为0、4和8或者2、7和10的子载波;再如资源块内参考信号的资源单元数量可以为4,其中4个RE分别为编号为0、3、6和9的子载波或者编号为1、4、7和10或者2、5、8和11的子载波。
C.资源块偏移量
资源块偏移为所述资源块在频域上相对于某一参考点的偏移;
所述偏移量可以是预定义的、也可以是通过高层信令如RRC信令、或者系统消息如MIB或者RMSI或者SIB、或者动态信令如DCI通知或者通过其它参数隐式导出、或者上述方式的组合之一得到;
所述参考点可以是预定义的、也可以是通过高层信令如RRC信令、或者系统消息如MIB或者RMSI或者SIB、或者动态信令如DCI通知或者通过其它参数隐式导出、或者上述方式的组合之一;
在本申请实施例中,该资源块偏移量可以是BWP相对于载波RB(Carrier RB)索引0的偏移;也可以是BWP的最小RB索引相对于载波RB(Carrier RB)的最小RB索引的偏移量。所述参考点可以是载波RB(Carrier RB)索引0;
该资源块偏移量可以是相对于BWP的最小RB索引的偏移,此时偏移值为0;
该资源块偏移量可以是相对于同步块(Synchronization Signal Block,SS Block)或者SS的最小RB索引的偏移,此时偏移值可以BWP相对于同步块的偏移;
作为示例而非限定,在本申请实施例中,可以基于以下任意一种方式确定该资源块偏移量。
方式1
在本申请实施例中,该BWP偏移量可以指示BWP#A相对于一个参考点(以下,为了便于理解和说明,记作参考点#A)的偏移量。比如,BWP偏移量为BWP#A的起始位置PRB(即上述PRB#0)相对于一个参考点的偏移量。
作为示例而非限定,在本申请实施例中,网络设备#A可以采用以下方法方式设置参考点#A。
方法a
该参考点#A可以是载波资源块(Carrier RB);具体地,可以是载波资源块(Carrier RB)中索引值最小的RB。
具体地说,网络设备#A可以为所使用的载波内的RB按照频率增加或者降低的顺序进行编号,从而得到Carrier RB索引。在一个载波内网络设备或者基站可以为不同的UE配置一个或多个BWP。
每个BWP的位置可以通过高层信令通知;如通过RRC信令通知BWP的起始位置或者带宽;
初始BWP的位置可以隐式导出;例如通过广播信道或者MIB通知控制资源集合;初始BWP的位置由控制资源集合的频域起始位置和带宽得到;
RB的索引可以相对于每个BWP定义,例如可以按照频率增加或者减小的顺序将BWP内的RB依次定义为PRB 0,PRB 1,PRB2…;
作为示例而非限定,在终端设备#A接入网络设备#A时,可以确定同步信号块(Synchronization Signal Block,SSB)所对应的频域位置。
并且,网络设备#A可以通知终端设备#A该公共物理资源块在频域上相对于该同步信号块的偏移量(以下,为了便于理解和区分,记作偏移量#1)。
作为示例而非限定,网络设备#A可以通过例如无线资源控制(Radio Resource Control,RRC)向包括终端设备#A在内的多个终端设备发送该偏移量#1的指示信息。
从而,终端设备#A可以基于该同步信号块的频域位置和该偏移量#1,确定公共物理资源块。
在本申请实施例中,网络设备#A可以将该公共物理资源块中的一个PRB,例如,Carrier RB index为0的PRB确定为参考点#A。
从而,终端设备#A可以基于网络设备#A的指示确定参考点#A。
或者,该参考点#A可以是该多个公共物理资源块中预设的PRB,例如,该参考点#A可以是多个公共物理资源块中由通信协议规定的PRB。
可选地,在本申请实施例中,网络设备#A可以向终端设备#A发送指示信息#1,该指示信息#1可以用于指示该参考点#A的位置。
例如,该指示信息#1可以具体用于指示Common PRB index为0的PRB的位置,此情况下,终端设备#A可以将该指示信息#1指示的PRB确定为Common PRB index为0的PRB,并将该PRB确定为参考点#A。
需要说明的是,参考点#A对应的PRB(例如,Common PRB index为0的PRB)也可以是指网络设备#A所使用的载波中PRB索引最小的PRB。
应理解,以上列举的参考点#A的确定方法和过程仅为示例性说明,本申请并未限定于此,例如,该参考点#A可以是系统带宽中的任意PRB,并且,网络设备#A可以通过告知终端设备#A该参考点#A与同步信号块之间的偏移量,使终端设备#A确定该参考点#A的频域位置。
由此,终端设备#A能够确定参考点#A的频域位置的位置。
需要说明的是,在本申请实施例中,网络设备可以在分配给某个终端设备(例如,终端设备#A)的BWP内为终端设备配置控制资源集合(CORESET),该CORESET可以用于承载针对该终端设备的PDCCH,即,该CORESET可以称为该终端设备的专有CORESET。此情况下,上述参考点#A可以为用于确定多个终端设备的CORESET的参考点。
从而,网络设备#A可以确定上述PRB#0相对于参考点#A的偏移量(以下,为了便于理解和说明,记作偏移量#2)。
并且,网络设备#A将该偏移量#2作为资源块偏移量。
类似地,终端设备#A也可以确定上述偏移量#2并将其作为资源块偏移量。
图3示出了上述各偏移量的示意图。
方法b
网络设备#A可以向终端设备#A发送指示信息#2,该指示信息#2可以用于指示该资源块偏移量的值,从而,终端设备#A可以基于该指示信息#2,确定资源块偏移量。
需要说明的是,在确定资源块偏移量时可以同时使用上述指示信息#1和指示信息#2,或者,在确定资源块偏移量时也可以仅使用上述指示信息#1和指示信息#2中的一方,本申请并未特别限定。并且,在同时使用上述指示信息#1和指示信息#2是,上述指示信息#1和指示信息#2可以承载于同一消息或信令中,或者,上述指示信息#1和指示信息#2也可以承载于不同消息或信令中,本申请并未特别限定。
D.符号间偏移量
具体地说,该符号间偏移量(记作Δ)用于指示相邻时域符号间参考信号序列索引的偏移值参数;
在本申请实施例中,可以采用以下任意一种方式确定符号间偏移量Δ。
方式1
网络设备#A和终端设备#A可以确定多种系统信息与多种系统信息之间的映射关系(记做,映射关系#A)。
从而,网络设备#A和终端设备#A可以根据RE#A对应的系统信息,确定当前使用的系统预设参数Δ。
这里,系统信息可以包括系统参数numerology,子载波间隔或循环前缀(Cyclic Prefix,CP)中的任意一种参数的信息。
作为实例而非限定,以下表1示出了该映射关系#A的一例
表1
系统参数的索引 子载波间隔(kHz) 系统预设参数Δ(个PRB)
0 15 ≥4*275
1 30 ≥2*275
2 60 ≥275
3 120 ≥276
4 240 ≥138
5 480 ≥69
此情况下,以终端设备#A使用的子载波间隔(即,RE#A对应的子载波间隔)为15kHz子载波为例。
由于系统可能同时支持子载波间隔为15kHz和60kHz的子载波,因此,对于终端设备#A而言,系统中的最大带宽包括的PRB的数量为4*275,从而,可以确定,Δ≥4*275。
在本申请实施例中,上述映射关系#A可以是通信协议规定的,或者,上述映射关系#A也可以是管理员或使用者输入至网络设备#A和终端设备#A中的,或者,上述映射关系#A也可以是制造商或运营商设置在网络设备#A和终端设备#A中的,本申请并未特别限定,只要确保网络设备#A和终端设备#A所确定的映射关系#A一致即可。
方式2
通信系统中可以规定唯一的符号间偏移量Δ,此情况下,该符号间偏移量Δ,可以大于或等于上述偏移量#2可能出现的最大值,例如,如果偏移量#2可能的最大值为4*275后者4*276,则Δ≥4*275或者Δ≥4*276。
应理解,以上列举的系统预设参数Δ的取值仅为示例性说明,本申请并未限定于此组,可以根据实际需要对系统预设参数Δ的取值进行适当变更。
作为示例而非限定,例如,该符号间偏移量Δ的值可以大于或等于N*M的值,其中N为载波所支持的最大子载波间隔与最小子载波间隔的比值,例如,设载波中最大和最小的子载波间隔分别为60kHz和15kHz,则,N的取值为4。M的取值可以是预设值,例如,M的值可以大于或者等于BWP#A的带宽。再例如M=275或者276或者275或者276的整数倍;
再例如,该符号间偏移量Δ的值可以大于或等于L*M,其中L为载波可能配置的最大BWP个数,例如,如果系统带宽为60kHz,通信系统中可能存在使用15kHz的子载波间隔的终端设备,可以能够配置的频域上不重叠的BWP的最大个数为60/15=4,则L的取值为4。例如载波配置至多4个BWP;M的取值可以是预设值,例如,M的值可以大于或者等于BWP#A的带宽。再例如M=275或者276或者275或者276的整数倍;
当终端设备初始接入系统时,终端设备需要在一个CORESET中获取PDCCH,从而正确接收PDSCH以得到系统消息(Remaining minimum system information,RMSI),该CORESET可以称之为RMSI CORESET。RMSI CORESET位于初始下行BWP(Initial DL BWP)中,RMSI CORESET的带宽与频域位置均与Initial DL BWP一样。对于接入同一载波的所有UE,均需要在Initial DL BWP内的RMSI CORESET接收PDCCH。
需要说明的是,在RMSI CORESET的情况下符号间偏移量可以为RMSI CORESET所在BWP的带宽(以RB为单位)。
从而,网络设备#A和终端设备#A可以基于以下公式1,确定参考信号序列的索引m。
m=K·(n PRB+n offset)+K·l·Δ+m′,m′=0,1,K-1     公式1
其中,m为所述参考信号序列的索引,l表示资源单元RE#A的时域符号索引,
n PRB为资源块索引,K表示所述资源块RB中承载有参考信号的资源单元的数量,n offset和Δ分别为资源块偏移或者符号间偏移量。n PRB可以相对于BWP定义;l相对于时隙的起始符号定义。
作为实例而非限定,例如,当RE#A用于承载PDCCH的参考信号时,K的取值可以 为3。n offset表示上述资源块偏移量。Δ表示上述符号间偏移量。
从而,网络设备#A和终端设备#A可以基于上述索引m,确定参考序列r(m)。
作为实例而非限定,该参考信号序列可以是基于古德(Gold)序列生成的。
即,
Figure PCTCN2018115819-appb-000001
其中,c(i)表示索引为i的Gold序列。
应理解,以上列举的参考信号序列的生成方式仅为示例性说明,本申请并未限定于此,其他能够生成参考信号序列的方式均落入本申请的保护范围内,例如,参考信号序列也可以是基于伪随机序列等序列生成的。
再S230,网络设备#A可以根据以下公式2~4将序列r(m)映射到资源(k,l)上。
Figure PCTCN2018115819-appb-000002
m=K·(n PRB+n offset)+K·l·Δ+m′,m′=0,1,K-1
l=l 0+l′,l′=0,...,N-1
Figure PCTCN2018115819-appb-000003
其中
Figure PCTCN2018115819-appb-000004
表示参考信号映射到资源单元位置(k,l)的符号,k和l分别为所述资源单元对应的子载波索引和时域符号索引。即,l表示RE#A对应的符号的序号,k表示RE#A对应的子载波的序号。p为发送参考信号的天线端口号,μ为参考信号的子载波间隔所对应的索引号,或者说μ为RE#A对应的子载波的系统参数的索引号。β为预设值,由功率因子和/或正交叠加码(OCC)决定。r(m)表示承载于RE#A上的参考信号序列单元,m表示该参考信号序列单元的索引。
l 0表示CORESET在slot中的起始符号的索引,N表示CORESET在slot中所占用的符号数,并且,网络设备#A可以通过例如RRC信令等通知终端设备#A该l 0的值和N的值。
在公式4中,
Figure PCTCN2018115819-appb-000005
表示一个PRB包括的子载波的数量,例如,在本申请实施例中,
Figure PCTCN2018115819-appb-000006
的值的值可以为12。P 0,P 1,...P K-1分别为PRB#A内承载有参考信号的RE的位置,例如,对于承载PDCCH参考信号,k′=P 1,P 2,P 3,作为示例而非限定,在本申请实施例中,可以使P 1=1,P 2=5,P 3=9。
类似地,终端设备#A可以确定CORESET中用于承载参考信号的各RE上所需要映射的调制符号。
其后,网络设备#A可以在CORESET(包括RE#A)内发送如上所示生成的参考信号的调制符号。图4示出了参考信号在CORESET内的图案的一例。
终端设备#A可以基于上述公式1确定RE#A对应的参考信号序列单元,即,r(m),并且,终端设备#A可以基于该RE#A上所接收到的参考信号和该r(m),进行信道估计或信道测量,并且,该信道估计的具体方法和过程可以与现有技术相似,这里,为了避免赘述,省略其详细说明。
下面,对初始接入一个网络设备(例如,接入网设备,以下,为了便于理解和说明,记做网络设备#B)的终端设备(以下,为了便于理解和说明,记做终端设备#B)的信道估计方法进行详细说明。
在该场景中,上述公式1中n offset的取值与上述方法200相异,这里,主要对n offset的取值进行详细说明。
在本申请实施例中,网络设备#A可以采用以下任意一种方式确定n PRB和n offset的取值。
在初始接入过程中,终端设备#B使用的BWP为初始下行(Initial DL)BWP。并且,网络设备#B可以通知终端设备#B该Initial DL BWP的频域位置(例如,起始频域位置和最大频域位置)。并且,该过程可以与现有技术相似,例如,可以基于同步信号块(SS Block,Synchronization signal Block)确定Initial DL BWP的频域位置,这里为了避免赘述,省略其详细说明。
此情况下,网络设备#B和终端设备#B可以采用以下任意方式确定n offset的值。
方式A
网络设备#B和终端设备#B可以将该Initial DL BWP的起始位置确定的上述参考点#A,如图5中的参考点#0所示。
此情况下,n offset的值可以为0。
对于RMSI CORESET或者初始接入的UE,n offset=0或者RMSI CORESET的带宽或者初始BWP的带宽;
符号间偏移量为Δ≥N·M,其中N≥4,N≥275或者N≥276;或者
符号间偏移量ΔRMSI CORESET的带宽或者初始BWP的带宽。
方式B
网络设备#B和终端设备#B可以将SS Block的起始位置确定为上述参考点#A,如图5中的参考点#1所示。
此情况下,n offset的值可以为SS Block的起始位置与Initial DL BWP的起始位置之间的偏移量。
此外,在方法300中,符号间偏移量可以为该Initial DL BWP包括的PRB的数量。
n offset可以通过高层信令参数BWP的频域位置参数[DL-BWP-loc]得到。
符号间偏移量为Δ≥N·M,其中N≥4,N≥275或者N≥276。
图6是本场景的参考信号的映射方式的示意图。
根据本申请提供的方案能够在终端设备无需获知系统带宽的大小的情况下,完成信道估计或信道测量的过程。由于网络设备无需告知终端设备系统带宽的大小,能够支持载波带宽的灵活变化,可以调整频谱的使用方法,并且能够减少用于指示系统带宽的信令开销。
根据前述方法,图7为本申请实施例提供的通信装置10的示意图一,如图7所示,该装置10可以为终端设备(例如,上述终端设备#A),也可以为芯片或电路,比如可设置于终端设备的芯片或电路。其中,该终端设备可以对应上述方法中的终端设备。
该装置10可以包括处理器11(即,处理单元的一例)和存储器12。该存储器12用于存储指令,该处理器11用于执行该存储器12存储的指令,以使该装置20实现如图2中对应的方法中终端设备(例如,终端设备#A)执行的步骤。
进一步的,该装置10还可以包括输入口13(即,通信单元的一例)和输出口14(即,通信单元的另一例)。进一步的,该处理器11、存储器12、输入口13和输出口14可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器12用于存储计算机程序, 该处理器11可以用于从该存储器12中调用并运行该计算计程序,以控制输入口13接收信号,控制输出口14发送信号,完成上述方法中终端设备的步骤。该存储器12可以集成在处理器11中,也可以与处理器11分开设置。
可选地,若该装置10为终端设备,该输入口13为接收器,该输出口14为发送器。其中,接收器和发送器可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
可选地,若该装置10为芯片或电路,该输入口13为输入接口,该输出口14为输出接口。
作为一种实现方式,输入口13和输出口14的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器11可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的终端设备。即将实现处理器11、输入口13和输出口14功能的程序代码存储在存储器12中,通用处理器通过执行存储器12中的代码来实现处理器11、输入口13和输出口14的功能。
其中,以上列举的通信装置10中各模块或单元的功能和动作仅为示例性说明,通信装置10中各模块或单元可以用于执行上述方法200中终端设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
该装置10所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
图8为本申请提供的一种终端设备20的结构示意图。该终端设备20可应用于图1所示出的系统中。为了便于说明,图8仅示出了终端设备的主要部件。如图8所示,终端设备20包括处理器、存储器、控制电路、天线以及输入输出装置。
处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述传输预编码矩阵的指示方法实施例中所描述的动作。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述的码本。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图8仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主 要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图8中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端设备20的收发单元201,将具有处理功能的处理器视为终端设备20的处理单元202。如图8所示,终端设备20包括收发单元201和处理单元202。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元201中用于实现接收功能的器件视为接收单元,将收发单元201中用于实现发送功能的器件视为发送单元,即收发单元201包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
根据前述方法,图9为本申请实施例提供的通信装置30的示意图二,如图9所示,该装置30可以为网络设备(例如,上述网络设备#A),也可以为芯片或电路,如可设置于网络设备内的芯片或电路。其中,该网络设备对应上述方法中的网络设备(例如,上述网络设备#A)。
该装置30可以包括处理器31(即,处理单元的一例)和存储器32。该存储器32用于存储指令,该处理器31用于执行该存储器32存储的指令,以使该装置30实现前述如图2中对应的方法中网络设备(例如,网络设备#A)执行的步骤。
进一步的,该装置30还可以包括输入口33(即,通信单元的一例)和输出口33(即,处理单元的另一例)。再进一步的,该处理器31、存储器32、输入口33和输出口34可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器32用于存储计算机程序,该处理器31可以用于从该存储器32中调用并运行该计算计程序,以控制输入口33接收信号,控制输出口34发送信号,完成上述方法200中网络设备的步骤。该存储器32可以集成在处理器31中,也可以与处理器31分开设置。
可选地,若该装置30为网络设备,该输入口33为接收器,该输出口34为发送器。其中,接收器和发送器可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
可选地,若该装置30为芯片或电路,该输入口33为输入接口,该输出口34为输出接口。
可选的,若该装置30为芯片或电路,所述装置30也可以不包括存储器32,所述处理器31可以读取该芯片外部的存储器中的指令(程序或代码)以实现前述如图2中对应的方法中网络设备的功能。
作为一种实现方式,输入口33和输出口34的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器31可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片 实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的网络设备。即将实现处理器31、输入口33和输出口34功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器31、输入口33和输出口34的功能。
其中,通信装置30中各模块或单元可以用于执行上述方法200中网络设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
该装置30所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
图10为本申请实施例提供的一种网络设备的结构示意图,可以用于实现上述方法中的网络设备的功能。如可以为基站的结构示意图。如图10所示,该基站可应用于如图1所示的系统中。基站40包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)401和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)402。所述RRU 401可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线4011和射频单元4012。所述RRU 401部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送上述实施例中所述的信令消息。所述BBU 402部分主要用于进行基带处理,对基站进行控制等。所述RRU 401与BBU 402可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 402为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如该BBU(处理单元)402可以用于控制基站40执行上述方法实施例中关于网络设备的操作流程。
在一个示例中,所述BBU 402可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE系统,或5G系统),也可以分别支持不同接入制式的无线接入网。所述BBU 402还包括存储器4021和处理器4022。所述存储器4021用以存储必要的指令和数据。例如存储器4021存储上述实施例中的码本等。所述处理器4022用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器4021和处理器4022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
在一种可能的实施方式中,随着片上系统(System-on-chip,SoC)技术的发展,可以将402部分和401部分的全部或者部分功能由SoC技术实现,例如由一颗基站功能芯片实现,该基站功能芯片集成了处理器、存储器、天线接口等器件,基站相关功能的程序存储在存储器中,由处理器执行程序以实现基站的相关功能。可选的,该基站功能芯片也能够读取该芯片外部的存储器以实现基站的相关功能。
应理解,图10示例的基站的结构仅为一种可能的形态,而不应对本申请实施例构成任何限定。本申请并不排除未来可能出现的其他形态的基站结构的可能。
根据本申请实施例提供的方法,本申请实施例还提供一种通信系统,其包括前述的网络设备和一个或多于一个终端设备。
应理解,本申请实施例中,该处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor, DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的 系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM)、随机存取存储器(RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种接收参考信号的方法,其特征在于,包括:
    终端设备确定参考信号所映射的资源单元的位置;
    所述终端设备确定与所述资源单元对应的参考信号序列,其中参考信号序列中各个元素的索引由所述资源单元对应的资源块的资源块索引、所述资源块内承载参考信号的资源单元的数量、资源块偏移量或者符号间偏移量确定;
    所述终端设备通过所述资源单元接收参考信号,并根据所接收的参考信号和所述参考信号序列进行信道估计或者信道测量。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备确定与所述资源单元对应的参考信号序列,包括:
    所述终端设备确定与所述资源单元的位置(k,l)对应的参考信号序列r(m)的索引m为:m=K·(n PRB+n offset)+K·l·Δ+m′,m′=0,...,K-1
    其中,k为所述资源单元对应的子载波索引,l为所述资源单元对应的时域符号索引,m为所述参考信号序列中元素的索引,n PRB为所述资源块索引,K表示所述资源块内承载参考信号的资源单元的数量,n offset为所述资源块偏移量,Δ为所述符号间偏移量。
  3. 根据权利要求2所述的方法,其特征在于,所述资源单元的子载波索引和所述资源块索引相对于带宽部分BWP定义,
    所述资源单元对应的时域符号索引相对于时隙的起始符号定义。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述符号间偏移量的取值根据所述资源块对应的子载波间隔确定的。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述符号间偏移量的值大于或等于BWP的带宽。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述符号间偏移量的值大于或等于N*M,其中N为载波使用的最大子载波间隔与最小子载波间隔的比值,M大于或者等于所述BWP的带宽。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述符号间偏移量的值大于或等于L*M,其中L为载波可配置的最大BWP个数,M大于或者等于BWP的带宽。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述资源块偏移量为所述BWP的最小RB索引和最小载波RB索引之间的偏移,或者
    所述资源块偏移量由高层信令通知。
  9. 根据权利要求1至7中任一项所述的方法,其特征在于,所述资源块偏移量为高层信令配置的BWP的频域位置的值。
  10. 根据权利要求1至7中任一项所述的方法,其特征在于,所述BWP为初始BWP,所述资源块偏移量的值为0。
  11. 一种发送参考信号的方法,其特征在于,包括:
    网络设备确定参考信号所映射的资源单元的位置;
    所述网络设备确定与所述资源单元对应的参考信号序列,其中参考信号序列中各个元 素的索引由所述资源单元对应的资源块的资源块索引、所述资源块内承载参考信号的资源单元的数量、资源块偏移量或者符号间偏移量确定;
    所述网络设备通过所述资源单元发送参考信号。
  12. 根据权利要求11所述的方法,其特征在于,所述网络设备确定与所述资源单元对应的参考信号序列,包括:
    所述网络设备确定与所述资源单元的位置(k,l)对应的参考信号序列r(m)的索引m为:m=K·(n PRB+n offset)+K·l·Δ+m′,m′=0,...,K-1
    其中,k为所述资源单元对应的子载波索引,l为所述资源单元对应的时域符号索引,m为所述参考信号序列的索引,n PRB为所述资源块索引,K表示所述资源块内承载参考信号的资源单元的数量,n offset为所述资源块偏移量,Δ为所述符号间偏移量。
  13. 根据权利要求12所述的方法,其特征在于,所述资源单元的子载波索引和所述资源块索引相对于带宽部分BWP定义,
    所述资源单元对应的时域符号索引相对于时隙的起始符号定义。
  14. 根据权利要求11至13中任一项所述的方法,其特征在于,所述符号间偏移量的取值根据所述资源块对应的子载波间隔确定的。
  15. 根据权利要求11至14中任一项所述的方法,其特征在于,所述符号间偏移量的值大于或等于BWP的带宽。
  16. 根据权利要求11至15中任一项所述的方法,其特征在于,所述符号间偏移量的值大于或等于N*M,其中N为载波使用的最大子载波间隔与最小子载波间隔的比值,M大于或者等于BWP的带宽。
  17. 根据权利要求11至16中任一项所述的方法,其特征在于,所述符号间偏移量的值大于或等于L*M,其中L为载波可配置的最大BWP个数,M大于或者等于BWP的带宽。
  18. 根据权利要求11至17中任一项所述的方法,其特征在于,所述资源块偏移量为BWP的最小RB索引和最小载波RB索引之间的偏移,或者
    所述资源块偏移量由高层信令通知。
  19. 根据权利要求11至17中任一项所述的方法,其特征在于,所述资源块偏移量为高层信令配置的BWP的频域位置的值。
  20. 根据权利要求11至17中任一项所述的方法,其特征在于,所述BWP为初始BWP,所述资源块偏移量的值为0。
  21. 一种通信装置,其特征在于,包括:
    处理器,用于执行存储器中存储的计算机程序,以使得所述通信装置执行权利要求1至20中任一项所述的方法。
  22. 一种计算机可读存储介质,其特征在于,包括计算机程序,当其在计算机上运行时,使得所述计算机执行如权利要求1至20中任意一项所述的方法。
  23. 一种芯片系统,其特征在于,包括:
    处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片系统的设备执行如权利要求1至20中任意一项所述的方法。
PCT/CN2018/115819 2017-11-17 2018-11-16 接收参考信号的方法和发送参考信号的方法 WO2019096235A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18879338.4A EP3605934B1 (en) 2017-11-17 2018-11-16 Receiving reference signal and transmitting reference signal
US16/876,087 US11323221B2 (en) 2017-11-17 2020-05-17 Method for receiving reference signal and method for sending reference signal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711147779.X 2017-11-17
CN201711147779.XA CN109802792B (zh) 2017-11-17 2017-11-17 接收参考信号的方法和发送参考信号的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/876,087 Continuation US11323221B2 (en) 2017-11-17 2020-05-17 Method for receiving reference signal and method for sending reference signal

Publications (1)

Publication Number Publication Date
WO2019096235A1 true WO2019096235A1 (zh) 2019-05-23

Family

ID=66540037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115819 WO2019096235A1 (zh) 2017-11-17 2018-11-16 接收参考信号的方法和发送参考信号的方法

Country Status (4)

Country Link
US (1) US11323221B2 (zh)
EP (1) EP3605934B1 (zh)
CN (1) CN109802792B (zh)
WO (1) WO2019096235A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10419257B2 (en) 2018-02-15 2019-09-17 Huawei Technologies Co., Ltd. OFDM communication system with method for determination of subcarrier offset for OFDM symbol generation
US11503518B2 (en) * 2018-04-13 2022-11-15 Qualcomm Incorporated Reference point determination
CN110505642B (zh) * 2019-08-16 2022-02-11 展讯通信(上海)有限公司 接入资源的确定方法及装置、存储介质、终端
CN111010742B (zh) * 2019-12-09 2022-07-15 Oppo广东移动通信有限公司 用于确定随机接入资源的方法和终端设备
CN113259072B (zh) * 2020-02-07 2022-07-29 大唐移动通信设备有限公司 一种参考信号传输方法、终端及网络设备
CN115316026A (zh) * 2020-03-31 2022-11-08 华为技术有限公司 传输参考信号的方法和装置
CN111901874A (zh) * 2020-04-13 2020-11-06 中兴通讯股份有限公司 一种参考信号资源的配置方法、装置、设备及储存介质
CN114391284B (zh) * 2020-08-04 2024-01-16 北京小米移动软件有限公司 资源位置的确定方法、装置、通信设备和介质
CN114079545A (zh) * 2020-08-11 2022-02-22 北京紫光展锐通信技术有限公司 定位参考信号的发送方法、装置、设备及存储介质
CN114513392A (zh) * 2020-11-16 2022-05-17 华为技术有限公司 信号传输的方法和装置
CN116055014A (zh) * 2021-10-27 2023-05-02 中兴通讯股份有限公司 信号的发送方法和装置、接收方法和装置、存储介质
CN116155464B (zh) * 2022-12-02 2023-11-14 佰路威科技(上海)有限公司 探测参考信号发送方法及相关设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103973392A (zh) * 2013-01-24 2014-08-06 中兴通讯股份有限公司 参数发送方法和装置、上行解调参考信号发射方法和装置
CN105556887A (zh) * 2013-09-20 2016-05-04 高通股份有限公司 参考信号资源分配
WO2017171742A1 (en) * 2016-03-30 2017-10-05 Intel Corporation Systems and methods for uplink dmrs enhancement in fd-mimo

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8059524B2 (en) * 2008-01-04 2011-11-15 Texas Instruments Incorporated Allocation and logical to physical mapping of scheduling request indicator channel in wireless networks
CN101394263B (zh) * 2008-10-29 2012-02-29 中兴通讯股份有限公司 上行信道测量参考信号及其带宽范围频域位置的映射方法
US10530432B2 (en) * 2015-05-25 2020-01-07 Sony Corporation Wireless communication device, terminal device, and method
CN106656432A (zh) * 2015-10-29 2017-05-10 中兴通讯股份有限公司 一种信息传输方法及装置
US10601481B2 (en) 2015-11-03 2020-03-24 Lg Electronics Inc. Method of transmitting/receiving channel state information reference signal in wireless communication system and device for same
WO2018084604A1 (ko) * 2016-11-03 2018-05-11 엘지전자 주식회사 무선 통신 시스템에서 하향링크 제어 정보를 송신 또는 수신하는 방법 및 이를 위한 장치
US20180131488A1 (en) * 2016-11-04 2018-05-10 Electronics And Telecommunications Research Institute Method for transmitting and receiving reference signal
CN108365935B (zh) * 2017-01-26 2020-01-03 华为技术有限公司 一种参考信号配置方法、基站和终端
CN113225170A (zh) 2017-09-30 2021-08-06 中兴通讯股份有限公司 一种无线通信方法及装置
CN108260219B (zh) * 2018-01-12 2021-11-12 中兴通讯股份有限公司 一种参考信号的接收和发送方法、设备及计算机可读存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103973392A (zh) * 2013-01-24 2014-08-06 中兴通讯股份有限公司 参数发送方法和装置、上行解调参考信号发射方法和装置
CN105556887A (zh) * 2013-09-20 2016-05-04 高通股份有限公司 参考信号资源分配
WO2017171742A1 (en) * 2016-03-30 2017-10-05 Intel Corporation Systems and methods for uplink dmrs enhancement in fd-mimo

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3605934A4

Also Published As

Publication number Publication date
CN109802792B (zh) 2021-09-21
EP3605934A1 (en) 2020-02-05
US20200280415A1 (en) 2020-09-03
US11323221B2 (en) 2022-05-03
EP3605934B1 (en) 2022-08-17
CN109802792A (zh) 2019-05-24
EP3605934A4 (en) 2020-06-10

Similar Documents

Publication Publication Date Title
WO2019096235A1 (zh) 接收参考信号的方法和发送参考信号的方法
US10932251B2 (en) Data receiving method and apparatus thereof, and data sending method and apparatus thereof
EP3726767B1 (en) Data transmission method and device and communication apparatus
WO2020052514A1 (zh) 一种信息发送方法,信息接收的方法和装置
US11695500B2 (en) Communication method, terminal device, and network device
US10686918B2 (en) Media access control protocol data unit processing method and apparatus
WO2021163938A1 (zh) 天线切换方法、终端设备和通信设备
US20220053468A1 (en) Wireless communication method, terminal device and network device
US11477763B2 (en) Communication method and communications apparatus
CA3053919C (en) Communication method, network device, terminal device, computer readable storage medium, computer program product, processing apparatus and communication system
WO2018228533A1 (zh) 资源映射的方法和装置
US11770833B2 (en) Communication method, terminal device, and network device
US11381288B2 (en) Communication method, network device, and terminal device
US11553495B2 (en) Method and device for sending uplink channel, and method and device for receiving uplink channel
EP4216610A1 (en) Wireless communication method, terminal device, and network device
EP4017059A1 (en) Communication method and apparatus
CN113632409A (zh) 下行传输方法和终端设备
WO2019137299A1 (zh) 通信的方法和通信设备
WO2020056774A1 (zh) 信号传输的方法、终端设备和网络设备
US20230129834A1 (en) Method for determining antenna panel for transmission, and terminal device
WO2022141105A1 (zh) 无线通信方法、终端设备和网络设备
WO2021232321A1 (zh) 解调参考信号资源的确定方法、终端设备和网络设备
CN116671204A (zh) 无线通信的方法和装置
CN117769810A (zh) 无线通信的方法、终端设备和网络设备
CN112771963A (zh) 一种信息通知的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879338

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018879338

Country of ref document: EP

Effective date: 20191023

NENP Non-entry into the national phase

Ref country code: DE