WO2020164487A1 - 一种无线通信的方法和装置 - Google Patents

一种无线通信的方法和装置 Download PDF

Info

Publication number
WO2020164487A1
WO2020164487A1 PCT/CN2020/074772 CN2020074772W WO2020164487A1 WO 2020164487 A1 WO2020164487 A1 WO 2020164487A1 CN 2020074772 W CN2020074772 W CN 2020074772W WO 2020164487 A1 WO2020164487 A1 WO 2020164487A1
Authority
WO
WIPO (PCT)
Prior art keywords
search space
terminal device
space set
receiving antennas
parameter
Prior art date
Application number
PCT/CN2020/074772
Other languages
English (en)
French (fr)
Inventor
张旭
陈铮
薛丽霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020164487A1 publication Critical patent/WO2020164487A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0248Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal dependent on the time of the day, e.g. according to expected transmission activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of communication, and more specifically, to a method and apparatus for wireless communication, and communication equipment.
  • the access device may configure one or more search space sets (Search Space Set) for the terminal device, where each search space set includes one or more aggregation level search spaces.
  • Search Space Set search space sets
  • the search space set is semi-statically configured by the access device.
  • the quantity traffic dynamically changes and the semi-statically configured search space set cannot adapt to the dynamic changes of data traffic, thus, it may increase the communication delay. , Reduce the reliability of communication and affect user experience.
  • the present application provides a wireless communication method and device, which can adapt to dynamic changes in quantity traffic, reduce communication delay, improve communication reliability, and improve user experience.
  • a wireless communication method including: a terminal device determines a first search space set according to the number of receiving antennas currently in use; the terminal device detects a downlink control channel according to the first search space set .
  • the terminal device can select the search space set for PDCCH detection according to the number of antennas currently used, which can flexibly deal with different data flows. For example, the detection period of the search space set corresponding to a larger number of antennas is small.
  • the reliability of data transmission can be ensured, and the transmission delay can be reduced; the detection period of the search space set corresponding to the smaller number of antennas is smaller, thereby reducing the power consumption of the terminal device; for another example, the smaller number of antennas corresponds to The aggregation level of the search space set is larger, which can help improve the PDCCH detection performance and adaptability; the larger the number of antennas corresponds to the smaller the aggregation level of the search space set, which is conducive to saving system resources; for example, antennas
  • the resource mapping mode of the search space set with a small number is non-interlaced mapping, so that the access device can effectively utilize the scheduling gain; the resource mapping mode of the search space set with a large number of antennas is the interlaced mapping mode, so that The PDCCH with a lower aggregation level obtains diversity gain; thus, it can help improve the detection performance of the PDCCH, adapt to the dynamic change of the number of traffic, reduce communication delay, improve communication reliability, and improve user experience.
  • the first search space set may be one or multiple, which is not specifically limited in this application.
  • the terminal device determines the first search space set according to the number of receiving antennas currently used, including: the terminal device determines the first search space set from at least two search space sets according to the number of receiving antennas currently used A collection of search spaces.
  • each of the at least two search space sets is associated with a terminal device receiving antenna quantity set, wherein the terminal device receiving antenna quantity set includes at least one terminal device receiving antenna quantity, and
  • the first search space set is a search space in which the associated terminal device receiving antenna quantity set includes the receiving antenna quantity currently used by the terminal device.
  • the parameter includes: the detection period of the search space set, the aggregation level of the candidate downlink control channel, or The index of the control resource collection CORESET associated with the search space collection.
  • the method further includes: the terminal device receives first configuration information, where the first configuration information is used to indicate the terminal device receiving antenna associated with each search space set in the at least two search space sets Quantity collection.
  • the terminal device determines the first search space set according to the number of receiving antennas currently used, including: the terminal device determines the parameters of the first search space set according to the number of receiving antennas currently used, the parameters including At least one parameter of the detection period of the search space set, the aggregation level of candidate downlink control channels, and the index of the CORESET associated with the search space set.
  • the parameters of the first search space set include at least two parameter groups, and each parameter group is associated with a terminal device receiving antenna quantity set, wherein the terminal device receiving antenna quantity set includes at least one terminal device The number of receiving antennas, each parameter group includes the detection period of the search space set, the aggregation level of candidate downlink control channels and the parameter value of at least one of the CORESET index associated with the search space set, and the parameter value of the first search space
  • the parameter is a parameter in a parameter group in which the number of receiving antennas of the associated terminal device is set including the number of receiving antennas currently used by the terminal device.
  • the method further includes: the terminal device receiving second configuration information, where the second configuration information is used to indicate the number of receiving antennas associated with each parameter group in the at least two parameter groups.
  • the at least two search space sets are dedicated search space sets of the terminal device.
  • the detection period of the first search space set is greater than the detection period of the second search space set cycle.
  • the aggregation level of the first search space set is less than the aggregation level of the second search space set grade.
  • the resource mapping mode of the first search space set is non-interlaced mapping
  • the second The resource mapping method of the search space collection is interleaved mapping
  • the detection period of the first search space set is greater than or equal to the preset second threshold
  • the detection period of the first search space set is less than or equal to the preset fourth threshold, wherein the first threshold is less than the third threshold , The fourth threshold is less than the second threshold.
  • the aggregation level of the first search space set is greater than or equal to the preset sixth threshold, when all When the number of the first receiving antennas is greater than or equal to the preset seventh threshold, the aggregation level of the first search space set is less than or equal to the preset eighth threshold, wherein the fifth threshold is less than the seventh threshold , The eighth threshold is less than the sixth threshold.
  • the fifth threshold includes 2, the sixth threshold includes 4, the seventh threshold includes 4, and the eighth threshold includes 2.
  • the resource mapping mode of the first search space set is non-interlaced mapping
  • the resource mapping mode of the first search space set is interlaced mapping, wherein the ninth threshold is less than the tenth threshold.
  • the ninth threshold includes 2, and the tenth threshold includes 4.
  • an access device is provided to determine a first search space set according to the number of receiving antennas currently used by a terminal device; the access device sends a downlink control channel according to the first search space set.
  • the terminal device can select the search space set for PDCCH detection according to the number of antennas currently used, which can flexibly deal with different data flows. For example, the detection period of the search space set corresponding to a larger number of antennas is small.
  • the reliability of data transmission can be ensured, and the transmission delay can be reduced; the detection period of the search space set corresponding to the smaller number of antennas is smaller, thereby reducing the power consumption of the terminal device; for another example, the smaller number of antennas corresponds to The aggregation level of the search space set is larger, which can help improve the PDCCH detection performance and adaptability; the larger the number of antennas corresponds to the smaller the aggregation level of the search space set, which is conducive to saving system resources; for example, antennas
  • the resource mapping mode of the search space set with a small number is non-interlaced mapping, so that the access device can effectively utilize the scheduling gain; the resource mapping mode of the search space set with a large number of antennas is the interlaced mapping mode, so that The PDCCH with a lower aggregation level obtains diversity gain; thus, it can help improve the detection performance of the PDCCH, adapt to the dynamic change of the number of traffic, reduce communication delay, improve communication reliability, and improve user experience.
  • the first search space set may be one or multiple, which is not particularly limited in this application.
  • the access device determines the first search space set according to the number of receiving antennas currently used by the terminal device, including: the access device selects from at least two search space sets according to the number of receiving antennas currently used, Determine the first search space set.
  • each of the at least two search space sets is associated with a terminal device receiving antenna quantity set, wherein the terminal device receiving antenna quantity set includes at least one terminal device receiving antenna quantity, and
  • the first search space set is a search space in which the associated terminal device receiving antenna quantity set includes the receiving antenna quantity currently used by the terminal device.
  • the parameter includes: the detection period of the search space set, the aggregation level of the candidate downlink control channel, or The index of the control resource collection CORESET associated with the search space collection.
  • the method further includes: the access device sending first configuration information, where the first configuration information is used to indicate the number of receiving antennas associated with each search space set in the at least two search space sets .
  • the access device determining the first search space set according to the number of receiving antennas currently used by the terminal device includes: the access device determines the parameters of the first search space set according to the number of receiving antennas currently used by the terminal device
  • the parameter includes at least one of the detection period of the search space set, the aggregation level of candidate downlink control channels, and the index of the CORESET associated with the search space set.
  • the parameters of the first search space set include at least two parameter groups, and each parameter group is associated with a terminal device receiving antenna quantity set, wherein the terminal device receiving antenna quantity set includes at least one terminal device The number of receiving antennas, each parameter group includes the detection period of the search space set, the aggregation level of candidate downlink control channels and the parameter value of at least one of the CORESET index associated with the search space set, and the parameter value of the first search space
  • the parameter is a parameter in a parameter group in which the number of receiving antennas of the associated terminal device is set including the number of receiving antennas currently used by the terminal device.
  • the method further includes: the access device sending second configuration information, where the second configuration information is used to indicate the number of receiving antennas associated with each parameter group in the at least two parameter groups.
  • the at least two search space sets are dedicated search space sets of the terminal device.
  • the detection period of the first search space set is greater than the detection period of the second search space set cycle.
  • the aggregation level of the first search space set is less than the aggregation level of the second search space set grade.
  • the resource mapping mode of the first search space set is non-interlaced mapping
  • the second The resource mapping method of the search space collection is interleaved mapping
  • the detection period of the first search space set is greater than or equal to the preset second threshold
  • the detection period of the first search space set is less than or equal to the preset fourth threshold, wherein the first threshold is less than the third threshold , The fourth threshold is less than the second threshold.
  • the aggregation level of the first search space set is greater than or equal to the preset sixth threshold, when all When the number of the first receiving antennas is greater than or equal to the preset seventh threshold, the aggregation level of the first search space set is less than or equal to the preset eighth threshold, wherein the fifth threshold is less than the seventh threshold , The eighth threshold is less than the sixth threshold.
  • the fifth threshold includes 2, the sixth threshold includes 4, the seventh threshold includes 4, and the eighth threshold includes 2.
  • the resource mapping mode of the first search space set is non-interlaced mapping
  • the resource mapping mode of the first search space set is interlaced mapping, wherein the ninth threshold is less than the tenth threshold.
  • the ninth threshold includes 2, and the tenth threshold includes 4.
  • a wireless communication method which includes: a terminal device determines a first search space set according to a currently running discontinuous communication DRX timer; the terminal device determines a first search space set according to the first search space set, Detect the downlink control channel.
  • the terminal device can select the search space set for PDCCH detection according to the currently running DRX timer, which can flexibly deal with different data flows.
  • the detection period of the search space set corresponding to drx-InactivityTimer is small. Therefore, the reliability of data transmission can be ensured, and the transmission delay can be reduced.
  • the detection period of the search space set corresponding to drx-onDurationTimer is small, thereby reducing the power consumption of the terminal device; thus, it can help improve the detection performance of the PDCCH It can adapt to the dynamic changes of the volume flow, reduce the communication delay, improve the reliability of the communication, and improve the user experience.
  • the terminal device determining the first search space set according to the currently running DRX timer includes: the terminal device determines the first search space set from at least two search spaces according to the currently running DRX timer There is at least one different parameter between any two search space sets in the at least two search space sets, and the parameter includes a detection period of the search space set.
  • the method further includes: the terminal device receives first configuration information, where the first configuration information is used to indicate the mapping relationship between the timers of the at least two DRX and the at least two search space sets; The terminal device determines the search space set corresponding to the currently running DRX timer indicated by the first configuration information as the first search space set.
  • the terminal device determining the first search space set according to the currently running DRX timer includes: the terminal device determines the parameters of the first search space set according to the currently running DRX timer, and the parameters include detecting At least one parameter of period, aggregation level, or resource mapping mode.
  • the method further includes: the terminal device receives second configuration information, where the second configuration information is used to indicate a DRX timer corresponding to each parameter group in the plurality of parameter groups, wherein each parameter The group includes the value of the detection period of a search space set; the terminal device determines the parameter in the parameter group corresponding to the currently running DRX timer indicated by the second configuration information as the parameter of the first search space set .
  • the at least two search space sets are dedicated search space sets of the terminal device.
  • the detection period of the first search space set is greater than the detection period of the second search space set.
  • the DRX timer corresponding to the first search space set is drx-onDurationTimer
  • the DRX timer corresponding to the second search space set is drx-InactivityTimer.
  • the detection period of the first search space set is greater than or equal to a preset first threshold.
  • the detection period of the first search space set is less than or equal to a preset second threshold.
  • the first threshold includes 10 solts, and the second threshold includes 5 slots.
  • an access device is provided to determine a first search space set according to a timer for discontinuous reception of DRX currently running by the terminal device; the access device sends a downlink control channel according to the first search space set .
  • the terminal device can select the search space set for PDCCH detection according to the number of antennas currently used, which can flexibly deal with different data flows. For example, the detection period of the search space set corresponding to a larger number of antennas is small.
  • the reliability of data transmission can be ensured, and the transmission delay can be reduced; the detection period of the search space set corresponding to the smaller number of antennas is smaller, thereby reducing the power consumption of the terminal device; for another example, the smaller number of antennas corresponds to The aggregation level of the search space set is larger, which can help improve the PDCCH detection performance and adaptability; the larger the number of antennas corresponds to the smaller the aggregation level of the search space set, which is conducive to saving system resources; for example, antennas
  • the resource mapping mode of the search space set with a small number is non-interlaced mapping, so that the access device can effectively utilize the scheduling gain; the resource mapping mode of the search space set with a large number of antennas is the interlaced mapping mode, so that The PDCCH with a lower aggregation level obtains diversity gain; thus, it can help improve the detection performance of the PDCCH, adapt to the dynamic change of the number of traffic, reduce communication delay, improve communication reliability, and improve user experience.
  • the access device determines the first search space set according to the DRX timer currently running on the terminal device includes: the access device determines that the timer of the at least two DRX and the at least two search space sets are between There is at least one different parameter between any two search space sets in the at least two search space sets, and the parameter includes the detection period of the search space set; the access device will communicate with the The search space set corresponding to the DRX timer currently running on the terminal device is determined as the first search space set.
  • the method further includes: the access device sends first configuration information to the terminal device, where the first configuration information is used to indicate timers of the at least two DRX and at least two search spaces The mapping relationship between sets.
  • the access device determining the first search space set according to the DRX timer currently running on the terminal device includes: the access device determining the DRX timer corresponding to each parameter group in the multiple parameter groups, where: Each parameter group includes the value of the detection period of a search space set; the access device determines the parameter in the parameter group corresponding to the DRX timer currently running on the terminal device as the first search space set parameter.
  • the method further includes: the access device sends second configuration information to the terminal device, where the second configuration information is used to indicate the DRX corresponding to each parameter group in the multiple parameter groups Timer.
  • the at least two search space sets are dedicated search space sets of the terminal device.
  • the detection period of the first search space set is greater than the detection period of the second search space set.
  • the DRX timer corresponding to the first search space set is drx-onDurationTimer
  • the DRX timer corresponding to the second search space set is drx-InactivityTimer.
  • the detection period of the first search space set is greater than or equal to a preset first threshold.
  • the detection period of the first search space set is less than or equal to a preset second threshold.
  • the first threshold includes 10 solts, and the second threshold includes 5 slots.
  • a wireless communication device including: a processing unit and a storage unit.
  • each unit in the device is respectively used to execute the above-mentioned first aspect and each step of the communication method in each implementation manner of the first aspect.
  • the device is a communication chip
  • the communication chip may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
  • the apparatus is a communication device, and the communication device may include a transmitter for sending information or data, and a receiver for receiving information or data.
  • a wireless communication device including: a processing unit and a storage unit.
  • each unit in the device is respectively used to execute the above-mentioned second aspect and each step of the communication method in each implementation manner of the second aspect.
  • the device is a communication chip
  • the communication chip may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
  • the apparatus is a communication device, and the communication device may include a transmitter for sending information or data, and a receiver for receiving information or data.
  • a wireless communication device which includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • each unit in the device is respectively used to execute the foregoing third aspect and each step of the communication method in each implementation manner of the third aspect.
  • the device is a communication chip
  • the communication chip may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
  • the apparatus is a communication device, and the communication device may include a transmitter for sending information or data, and a receiver for receiving information or data.
  • a wireless communication device which includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • each unit in the device is respectively used to execute the foregoing fourth aspect and each step of the communication method in each implementation manner of the fourth aspect.
  • the device is a communication chip
  • the communication chip may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
  • the apparatus is a communication device, and the communication device may include a transmitter for sending information or data, and a receiver for receiving information or data.
  • a wireless communication device including: a radio frequency unit and a baseband unit.
  • each unit in the device is used to execute each step of the communication method in each implementation manner of any one of the first aspect to the fourth aspect.
  • the device is a communication chip
  • the communication chip may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
  • the apparatus is a communication device, and the communication device may include a transmitter for sending information or data, and a receiver for receiving information or data.
  • a communication device including: a processor and a memory, the memory is used to store a computer program, the processor is used to call and run the computer program from the memory, so that the communication device executes the first aspect to the first aspect Any one of the four aspects and the communication methods in various possible implementations thereof.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory and the processor may be provided separately.
  • the forwarding device further includes a transmitter (transmitter) and a receiver (receiver).
  • a communication system including the communication device provided in the ninth aspect.
  • the communication system may also include other devices that interact with the communication device in the solution provided in the embodiments of the present application.
  • a computer program product includes: a computer program (also called code, or instruction), which when the computer program is executed, causes a computer to execute the first aspect to The method in any possible implementation manner in the fourth aspect.
  • a computer program also called code, or instruction
  • a computer-readable medium stores a computer program (also called code, or instruction) when it runs on a computer to enable the computer to execute the first aspect to The method in any possible implementation manner in the fourth aspect.
  • a computer program also called code, or instruction
  • a chip system including a memory and a processor, the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory so that the communication device installed with the chip system executes The method in any one of the possible implementation manners of the foregoing first aspect to the fourth aspect.
  • the chip system may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
  • Figure 1 is a schematic architecture diagram of the communication system of the present application.
  • Fig. 2 is a schematic diagram of an example of a resource division method.
  • FIG. 3 is a schematic diagram of an example of the structure of REG.
  • FIG. 4 is a schematic diagram of an example of possible positions of candidate PDCCHs under different aggregation levels.
  • FIG. 5 is a schematic diagram of an example of the correspondence relationship between PDCCH and CCE.
  • Fig. 6 is a schematic diagram of an example of the positions of candidate PDCCHs.
  • Fig. 7 is a schematic diagram of an example of the DRX cycle.
  • Fig. 8 is a schematic diagram of another example of the DRX cycle.
  • FIG. 9 is a schematic flowchart of an example of the PDCCH detection process of the present application.
  • Fig. 10 is a schematic diagram of an example of the correspondence relationship between the number of antennas and the detection period.
  • FIG. 11 is a schematic flowchart of another example of the PDCCH detection process of the present application.
  • FIG. 12 is a schematic flowchart of another example of the PDCCH detection process of the present application.
  • FIG. 13 is a schematic diagram of an example of the correspondence relationship between a timer and a detection period.
  • FIG. 14 is a schematic flowchart of another example of the PDCCH detection process of the present application.
  • Fig. 15 is a schematic block diagram of an example of a wireless communication device of the present application.
  • FIG. 16 is a schematic block diagram of another example of the wireless communication apparatus of the present application.
  • FIG. 17 is a schematic structural diagram of an example of a terminal device of the present application.
  • FIG. 18 is a schematic structural diagram of an example of an access device of the present application.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • the terminal equipment in the embodiments of the present application may refer to user equipment, access terminals, subscriber units, user stations, mobile stations, mobile stations, remote stations, remote terminals, and mobile devices. , User terminal, terminal, wireless communication equipment, user agent or user device.
  • the terminal device can also be a cellular phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (personal digital assistant, PDA), with wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network or future evolution of the public land mobile network (PLMN) Terminal equipment, etc., this embodiment of the present application does not limit this.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • the terminal device may also be a terminal device in the Internet of Things (IoT) system.
  • IoT Internet of Things
  • the IoT is an important part of the development of information technology in the future. Its main technical feature is to pass items through communication technology. Connect with the network to realize the intelligent network of human-machine interconnection and interconnection of things.
  • the IOT technology can achieve massive connections, deep coverage, and power saving of terminals through, for example, narrowband NB technology.
  • the NB only includes one resource block (resource block, RB), that is, the bandwidth of the NB is only 180KB.
  • the terminals must be discrete in access.
  • the communication method according to the embodiment of the present application can effectively solve the congestion problem of mass terminals of the IOT technology when accessing the network through the NB.
  • terminal equipment may also include sensors such as smart printers, train detectors, gas stations, etc.
  • the main functions include collecting data (part of the terminal equipment), receiving control information and downlink data from network equipment, and sending electromagnetic waves to Network equipment transmits uplink data.
  • the network device in the embodiment of the application may be a device used to communicate with a terminal device.
  • the network device may be a global system for mobile communications (GSM) system or code division multiple access (CDMA)
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • the base transceiver station (BTS) in the LTE system can also be the base station (NodeB, NB) in the wideband code division multiple access (WCDMA) system, or the evolved base station (evolved) in the LTE system.
  • NodeB, NB base station
  • WCDMA wideband code division multiple access
  • evolved evolved base station
  • NodeB, eNB or eNodeB it can also be a wireless controller in a cloud radio access network (CRAN) scenario, or the network device can be a relay station, access point, vehicle-mounted device, wearable device, and future
  • the network equipment in the 5G network or the network equipment in the future evolved PLMN network can be the access point (AP) in the WLAN, or the gNB in the new radio system (new radio, NR) system.
  • AP access point
  • gNB new radio system
  • the access network equipment provides services for the cell, and the terminal equipment communicates with the access network equipment through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • It can be a cell corresponding to an access network device (such as a base station).
  • the cell can belong to a macro base station or a base station corresponding to a small cell.
  • the small cell here can include: metro cell, micro cell ( Micro cells, pico cells, femto cells, etc. These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-rate data transmission services.
  • the carrier in the LTE system or the 5G system can have multiple cells working at the same frequency at the same time.
  • the concept of the above-mentioned carrier and the cell can also be considered equivalent.
  • CA carrier aggregation
  • the concept of carrier and cell can be considered to be equivalent.
  • the UE accessing a carrier is equivalent to accessing a cell.
  • the core network device can be connected to multiple access network devices to control the access network device, and can distribute data received from the network side (for example, the Internet) to the access network device.
  • the network side for example, the Internet
  • network equipment may include base stations (gNB), such as macro stations, micro base stations, indoor hotspots, and relay nodes, etc.
  • gNB base stations
  • the function is to send radio waves to terminal equipment, on the one hand to achieve downlink data transmission, and on the other
  • the aspect sends scheduling information to control uplink transmission, and receives radio waves sent by terminal equipment, and receives uplink data transmission.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution subject of the methods provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided according to the embodiments of the application.
  • the execution subject of the method provided in the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call and execute the program.
  • various aspects or features of the present application can be implemented as methods, devices, or products using standard programming and/or engineering techniques.
  • article of manufacture as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (DVD)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • multiple application programs can be run at the application layer.
  • the application program of the corresponding action may be a different application program.
  • FIG. 1 is a schematic diagram of a system 100 capable of applying the communication method according to the embodiment of the present application.
  • the system 100 includes an access network device 102, and the access network device 102 may include one antenna or multiple antennas, for example, antennas 104, 106, 108, 110, 112, and 114.
  • the access network device 102 may additionally include a transmitter chain and a receiver chain.
  • Those of ordinary skill in the art can understand that they can all include multiple components related to signal transmission and reception (such as processors, modulators, complex User, demodulator, demultiplexer or antenna, etc.).
  • the access network device 102 may communicate with multiple terminal devices (for example, the terminal device 116 and the terminal device 122). However, it is understood that the access network device 102 can communicate with any number of terminal devices similar to the terminal device 116 or the terminal device 122.
  • the terminal devices 116 and 122 may be, for example, cellular phones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other suitable for communication on the wireless communication system 100 equipment.
  • the terminal device 116 communicates with antennas 112 and 114, where the antennas 112 and 114 send information to the terminal device 116 through the forward link (also called downlink) 118, and through the reverse link (also called downlink).
  • Called uplink) 120 receives information from terminal device 116.
  • the terminal device 122 communicates with antennas 104 and 106, where the antennas 104 and 106 transmit information to the terminal device 122 through the forward link 124, and receive information from the terminal device 122 through the reverse link 126.
  • forward link 118 and reverse link 120 may use different frequency bands, and forward link 124 and reverse link 126 may use different frequency bands. ⁇ frequency band.
  • FDD frequency division duplex
  • the forward link 118 and the reverse link 120 can use a common frequency band, and the forward link 124 and the reverse link The link 126 may use a common frequency band.
  • Each antenna (or antenna group consisting of multiple antennas) and/or area designed for communication is referred to as a sector of the access network device 102.
  • the antenna group may be designed to communicate with terminal devices in a sector of the coverage area of the access network device 102.
  • the access network device can send signals to all terminal devices in its corresponding sector through a single antenna or multi-antenna transmit diversity.
  • the transmit antenna of the access network device 102 can also use beamforming to improve the forward links 118 and 124. Signal-to-noise ratio.
  • the access network device 102 uses beamforming to randomly distributed terminal devices 116 and 122 in the relevant coverage area. When sending signals, mobile devices in neighboring cells will experience less interference.
  • the access network device 102, the terminal device 116, or the terminal device 122 may be a wireless communication sending device and/or a wireless communication receiving device.
  • the wireless communication sending device can encode the data for transmission.
  • the wireless communication sending device can acquire (for example, generate, receive from other communication devices, or store in a memory, etc.) a certain number of data bits to be sent to the wireless communication receiving device through a channel.
  • Such data bits may be included in a transmission block (or multiple transmission blocks) of data, and the transmission block may be segmented to generate multiple code blocks.
  • the communication system 100 may be a PLMN network, a device-to-device (D2D) network, a machine-to-machine (M2M) network, an IoT network, or other networks.
  • D2D device-to-device
  • M2M machine-to-machine
  • IoT IoT network
  • Figure 1 is only a simplified schematic diagram of an example.
  • the network may also include other access network equipment, which is not shown in Figure 1.
  • data or information may be carried by time-frequency resources, where the time-frequency resources may include resources in the time domain and resources in the frequency domain.
  • the basic unit in the frequency domain may be one subcarrier, and in this application, the subcarrier spacing (SCS) may be 15KHz, 30KHz, etc.
  • SCS subcarrier spacing
  • the unit of frequency domain resources used for uplink transmission or downlink transmission may be a physical resource block (Physical Resource Block, PRB), and each PRB is composed of 12 consecutive subcarriers in the frequency domain.
  • PRB Physical Resource Block
  • FIG. 2 shows an example of the time-frequency resource division method of the present application.
  • each element on the resource grid is called a resource element (Resource Element, RE).
  • RE is the smallest physical resource, including one sub-carrier in an orthogonal frequency division multiplexing (OFDM) OFDM symbol.
  • OFDM orthogonal frequency division multiplexing
  • the basic time unit of resource scheduling may be a slot.
  • a slot is composed of 14 OFDM symbols in time.
  • the access device can transmit a physical downlink shared channel (PDSCH) and a physical downlink control channel (PDCCH) to the terminal device.
  • PDSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • the terminal device In order to receive the PDSCH correctly, the terminal device needs to demodulate the downlink control channel first.
  • the downlink control information (DCI) carried by the PDCCH contains the relevant information needed to receive the PDSCH, for example, the location and size of the time-frequency resources of the PDSCH. And multi-antenna configuration information, etc.
  • CORESET includes multiple PRBs in the frequency domain and one or more (for example, 2 or 3) OFDM symbols in the time domain.
  • the OFDM symbol corresponding to the PDCCH can be located anywhere in the slot.
  • a control channel element (Control-channel element, CCE) is a basic unit that constitutes a PDCCH, and each CCE in the CORESET has a corresponding index number.
  • a PDCCH can be composed of one or more (for example, 2, 4, 8, or 16) CCEs.
  • the number of CCEs included in a PDCCH can be determined by the DCI payload size of the PDCCH (DCI payload size) and /Or the coding rate required by the PDCCH is determined, and the number of CCEs constituting the PDCCH is also called aggregation level (AL).
  • the access device can adjust the aggregation level of the PDCCH according to the actual transmission wireless channel state to realize link adaptive transmission.
  • one CCE corresponds to 6 resource-element groups (REG) on physical resources.
  • REG resource-element groups
  • one REG occupies one OFDM symbol in the time domain and one resource block in the frequency domain (that is, includes 12 consecutive subcarriers in the frequency domain).
  • the mapping relationship between CCE and REG may include interleaved mapping and non-interleaved mapping, and the mapping relationship used in the actual transmission process may be configured through high-level signaling.
  • interleaving mapping the REGs after the CCE mapping can be dispersed in the entire CORESET, thereby obtaining frequency diversity gain.
  • non-interleaved mapping the REGs after CCE mapping can be gathered in part of the time-frequency resources in CORESET.
  • the search space is a collection of candidate PDCCHs under a certain aggregation level (AL). Since the aggregation level of the PDCCH actually sent by the access device is variable over time, and because there is no related signaling to inform the UE of the aggregation level, the UE needs to blindly detect the PDCCH under different aggregation levels, where the PDCCH to be blindly detected is called the candidate PDCCH , A certain aggregation level can have multiple PDCCH candidates. The UE will decode all candidate PDCCHs composed of CCEs in the search space, for example, Cyclic Redundancy Check (CRC) decoding.
  • CRC Cyclic Redundancy Check
  • the terminal device can consider the decoded PDCCH
  • the content of the PDCCH is valid for the terminal device, and the relevant information after decoding is processed.
  • FIG. 4 shows an example of possible positions of candidate PDCCHs under different aggregation levels.
  • the access device may configure one or more search space sets for the terminal device, where each search space set includes one or more aggregation level search spaces.
  • the search space set can be divided into two types: common search space set (common search space set) and user-specific search space set (UE-specific search space set).
  • common search space set common search space set
  • UE-specific search space set user-specific search space set
  • the PDCCH of the public search space set is mainly used to indicate the reception of system messages, random access responses, and paging messages.
  • the PDCCH in the user-specific search space set is used to schedule uplink data or downlink data for terminal equipment.
  • the terminal device detects the candidate PDCCH in the search space set at a certain time interval, so the configuration information may also include information about at least one of the following parameters:
  • the time interval for the terminal device to detect the search space collection, and the unit of the detection period may be slot.
  • the terminal device continuously detects the number of time slots in the search space set in one detection, where the value of the number of time slots is smaller than the value of the detection period.
  • Fig. 6 shows the positions of candidate PDCCHs, that is, as shown in Fig. 6, the terminal equipment can have indexes 0 and 7 in slots with indexes 3 and 4 in each detection period.
  • the candidate PDCCH in the search space set in CORESET is detected on the symbols of, and CORESET occupies 2 OFDM symbols in the time domain.
  • the configuration information may also include, but not limited to, information about one or more of the following parameters:
  • the aggregation level information included in each search space set configured by the access device for the terminal device for example, the value range of the aggregation level may be: ⁇ 1, 2, 4, 8, 16 ⁇ .
  • the terminal device can be in different states, one of which is the radio resource control connection (Radio Resource Control, RRC) connection state, referred to as the RRC_CONNECTED state.
  • RRC Radio Resource Control
  • the terminal device In the RRC_CONNECTED state, the terminal device has established an RRC context (context), that is, the parameters necessary for communication between the terminal device and the radio access network are known to both.
  • DRX Discontinuous Reception
  • the access device can configure the DRX cycle (cycle) for the terminal device in the RRC_CONNECTED state.
  • the DRX cycle contains a time zone called "On duration" or "Activation".
  • the UE can detect the PDCCH. That is, the terminal device can start a timer at the time start position of each DRX cycle (that is, the time start position of "On duration"), and the length of the timer is the time length of "on duration".
  • the device may be called a duration timer (drx-onDurationTimer), for example, the range of the drx-onDurationTimer may be 1 to 1200 milliseconds (ms).
  • the terminal device can detect the PDCCH within the time range during which the drx-onDurationTimer runs.
  • the terminal device can enter the sleep state, that is, the terminal device can turn off the receiving circuit during the rest of the DRX cycle, thereby Reduce the power consumption of the terminal.
  • the terminal device can start the inactivity timer (drx-InactivityTimer) in the DRX mechanism. If the terminal device continues to detect the PDCCH during the running time of the drx-InactivityTimer, the terminal device can reset (restart) the drx-InactivityTimer and restart timing. And, if the drx-InactivityTimer is in the running state, even if the drx-onDurationTimer expires (or overtime), that is, the "on duration" time expires, the terminal device continues to detect the PDCCH until the drx-InactivityTimer expires.
  • the terminal device continues to detect the PDCCH until the drx-InactivityTimer expires.
  • FIG. 9 shows a schematic diagram of an example of a method 200 for detecting a downlink control channel of the present application.
  • the access device #A may configure multiple search space sets for the terminal device #A.
  • the search space set may be a user-specific search space set of terminal device #A.
  • search space set parameters may include but are not limited to at least one of the following parameters:
  • the time interval for the terminal device to detect the search space collection, and the unit of the detection period may be slot.
  • the value of the aggregation level of the search space of the search space set in other words, the value of the number of CCEs included in the PDCCH in the search space set.
  • the value range of an aggregation level can be ⁇ 1, 2, 4, 8 ⁇ .
  • the value range of another aggregation level may be ⁇ 1, 2 ⁇ .
  • the value range of another aggregation level may be ⁇ 4, 8 ⁇ .
  • the terminal device can learn the mapping mode of the CCE and REG of the candidate control channel of the search space set, for example, it may include interleaved mapping and non-interleaved mapping.
  • different search space sets can correspond to different terminal device receiving antenna quantity sets, where each terminal device receiving antenna data set includes at least one terminal device receiving antenna quantity (specifically, the terminal device receiving antenna quantity).
  • the at least two search space sets have a one-to-one correspondence with the at least two terminal device receiving antenna quantity sets.
  • the search space set #A corresponds to the terminal device receiving antenna data set #A
  • at least one parameter of the search space set #A is determined according to the terminal device receiving antenna data set #A, which is taken as an example and not a limitation. At least one of the following determination methods can be listed.
  • the detection period of the search space set #A may be configured to be greater than or equal to the preset Threshold #B.
  • the detection period of the search space set #A may be configured to be less than or equal to the preset threshold. Threshold #D.
  • the threshold #A may be less than or equal to the threshold #C.
  • the threshold #B may be greater than or equal to the threshold #D.
  • the value of the threshold #A may be 2, and the value of the threshold #C may be 4.
  • the threshold #B can be 10 slots or 16 slots
  • the threshold #D can be 2 slots, 4 slots, or 5 slots.
  • the number of antennas used by the terminal device is small (for example, 2), it means that the amount of downlink data is small.
  • the detection period of search space set #A it can be reduced The power consumption of the terminal device.
  • the detection period of the search space set #A is set to a small value. , It can reduce the time delay of data transmission and improve the reliability of communication.
  • the aggregation level of the search space set #A may be configured to be greater than or equal to the preset Threshold #F.
  • the aggregation level of the search space set #A may be configured to be less than or equal to the preset Threshold #H.
  • the threshold #E may be less than or equal to the threshold #G.
  • the threshold #F may be greater than or equal to the threshold #H.
  • the value of the threshold #E may be 2, and the value of the threshold #G may be 4.
  • the value of the threshold #F can be 4, and the value of the threshold #H can be 2
  • the performance of the terminal device in detecting the PDCCH may be affected.
  • increasing the aggregation level is beneficial to improving the detection performance of the PDCCH.
  • the performance of the terminal device in detecting the PDCCH is enhanced.
  • reducing the aggregation level is beneficial to saving system resources.
  • the index of the CORESET associated with the search space set #A may be determined as the index #A, wherein, the CCE mapping mode of the CORESET of index #A is non-interlaced mapping, so the CCE resource mapping mode of the candidate control channels in the search space set is non-interlaced mapping.
  • the index of the CORESET associated with the search space set #A may be determined as the index #B, wherein, the CCE mapping mode of the CORESET of index #B is interleaving mapping, and the resource mapping mode of the CCEs of the candidate control channels in the search space set is interleaving mapping.
  • the threshold #I may be less than or equal to the threshold #J.
  • the value of the threshold #I may be 2, and the value of the threshold #J may be 4.
  • the access device can effectively utilize the scheduling gain.
  • the PDCCH with a lower aggregation level (for example, 2) can obtain diversity gain through interleaving mapping.
  • search space set #1 corresponds to the terminal device receiving antenna data set #1
  • search space set #2 corresponds to the terminal device receiving antenna data set #2
  • search space set #1 and search space set #2 can satisfy at least one of the following relationships.
  • the detection period of search space set #1 is greater than the detection period of search space set #2.
  • the detection time interval of search space set #1 is greater than the detection time interval of search space set #2.
  • the number of antennas used by the terminal equipment When the number of antennas used by the terminal equipment is large (for example, 4), it means that the data volume of the downlink data is large.
  • the number of antennas used by the terminal equipment when the number of antennas used by the terminal equipment is small (for example, 2), it means The data amount of the data is small, that is, when the value (for example, the maximum value) of the number of antennas in the terminal device receiving antenna data set #1 is smaller than the value (for example, the minimum value) of the number of antennas in the terminal device receiving antenna data set #2 ), it means that the amount of downlink transmission data corresponding to search space set #1 is less than the amount of downlink transmission data corresponding to search space set #1.
  • the search space set #1 when used, the number of terminal devices has a small traffic volume. In this case, by setting the detection period of the search space set #1 to a larger value, the power consumption of the terminal device can be reduced.
  • the search space set #2 when used, the number of terminal devices has a larger traffic. In this case, by setting the detection period of the search space set #2 to a smaller value, the data transmission delay can be reduced and the communication can be improved. Reliability.
  • the detection period of the search space set #1 may be 10 slots or 16 slots.
  • the detection period of the search space set #2 may be 2 slots, 4 slots, or 5 slots.
  • the value range of the aggregation level of the search space set #1 is smaller than the value range of the aggregation level of the search space set #2.
  • the value range of the aggregation level of the search space set #1 may be ⁇ 4, 8 ⁇ , or, The aggregation level of search space set #1 is 4 or 8.
  • the value range of the aggregation level of the search space set #2 may be ⁇ 1, 2, 4, 8 ⁇ , or In other words, the aggregation level of search space set #2 is one of 1, 2, 4, or 8.
  • the performance of the terminal device in detecting the PDCCH may be affected.
  • increasing the aggregation level is beneficial to improving the detection performance of the PDCCH.
  • the performance of the terminal device in detecting the PDCCH is enhanced.
  • reducing the aggregation level is beneficial to saving system resources.
  • the index of CORESET associated with search space set #1 indicates that the resource mapping mode is non-interlaced mapping
  • the index of CORESET associated with search space set #2 indicates the resource mapping mode is interlaced mapping
  • the access device can effectively utilize the scheduling gain.
  • the PDCCH with a lower aggregation level (for example, 2) can obtain diversity gain through interleaving mapping.
  • Table 1 shows an example of the mapping relationship between the number of receiving antennas and the search space set in this application.
  • Table 2 shows another example of the mapping relationship between the number of receiving antennas and the search space set in this application.
  • Table 3 shows another example of the mapping relationship between the number of receiving antennas and the search space set in this application.
  • Table 4 shows another example of the mapping relationship between the number of receiving antennas and the search space set in this application.
  • Table 5 shows another example of the mapping relationship between the number of receiving antennas and the search space set in this application.
  • the detection period of the search space set of index 1 may be greater than the detection period of the search space set of index 2.
  • the detection period of the search space set of index 1 may be 10 slots or 16 slots.
  • the detection period of the search space set of index 2 can be 2 slots, 4 slots, or 5 slots.
  • the aggregation level of the search space set of index 1 may be greater than the aggregation level of the search space set of index 2.
  • the aggregation level of the search space set of index 1 may be 4 or 8
  • the aggregation level of the search space set of index 2 may be It is 1, 2, 4, or 8.
  • the resource mapping mode of the search space set of index 1 may be non-interlaced mapping, and the resource mapping mode of the search space set of index 2 may be interlaced mapping.
  • the access device #A may send configuration information #A to the terminal device #A, and the configuration information #A may be used to indicate the parameter of each search space set in the at least two search space sets, where the parameter may be Including but not limited to at least one of the aforementioned parameters 1 to 6.
  • the configuration information #A may also indicate the mapping relationship between the at least two search space sets and the at least two terminal device receiving antenna quantity sets, or in other words, the configuration information #A may also indicate the at least two search spaces The collective quantity of the terminal device receiving antenna quantity corresponding to each search space set in the set.
  • access device #A when access device #A sends PDCCH to terminal device #A at time #A, access device #A can determine the number of receiving antennas used by terminal device #A at time #A (denoted as number #A ).
  • the access device #A can determine the number #A according to whether the PDCCH is sent to the terminal device #A at the time #B, where the time #B is the time before the time #A, and the time #B There is a preset time interval #A between the time #A and the time #A, where the time interval #A may be specified by the communication system or communication protocol, or may be determined by the administrator based on data statistics.
  • the access device #A can determine that the value of the number #A is X, where X can be the terminal device #A in The number of receiving antennas used when the data stream is large, for example, the value of X may be 4, where the value of X may be specified by the communication system or communication protocol, or may be determined by the administrator based on data statistics.
  • access device #A can determine that the value of number #A is Y, where Y can be terminal device #A when the data stream is small
  • the number of receiving antennas used for example, the value of Y may be 2, where the value of Y may be specified by the communication system or communication protocol, or may be determined by the administrator based on statistics.
  • the access device #A may instruct the terminal device #A to report the number #A.
  • terminal device #A may periodically report the number of receiving antennas used, so that access device #A may determine the number of receiving antennas that terminal device #A reported last time before time #A as quantity# A.
  • terminal device #A can determine the number of receiving antennas currently in use at time #A.
  • the terminal device #A can determine the number #A according to whether the PDCCH is detected at the time #B, where the time #B is the time before the time #A, and the difference between the time #B and the time #A There is a preset time interval #A between the two, where the time interval #A may be specified by the communication system or communication protocol, or may be determined by the administrator based on data statistics.
  • terminal device #A can determine the value of number #A as X, where X can be used by terminal device #A when the data stream is large
  • the number of receiving antennas for example, the value of X may be 4, where the value of X may be specified by the communication system or communication protocol, or may be determined by the administrator based on statistics.
  • terminal device #A can determine that the value of number #A is Y, where Y can be the number of receiving antennas used by terminal device #A when the data stream is small For example, the value of Y may be 2, where the value of Y may be specified by the communication system or communication protocol, or may be determined by the administrator based on data statistics.
  • the terminal device #A can determine the number #A arbitrarily, and the terminal device #A can report the number #A according to the instruction of the access device #A.
  • terminal device #A may periodically report the number of receiving antennas used, so that terminal device #A may determine the number of receiving antennas reported by terminal device #A for the last time before time #A as number #A .
  • the access device #A and the terminal device #A can determine the search space set (denoted as search space set #A) corresponding to the terminal device receiving antenna quantity set to which the number #A belongs according to the foregoing mapping relationship.
  • the access device #A can send the PDCCH on the search space set #A.
  • the terminal device #A can detect the PDCCH on the search space set #A.
  • the access device configures the terminal device with the mapping relationship between the number of multiple antennas and multiple search space sets.
  • the terminal device can select the corresponding number of antennas currently in use.
  • the search space set performs PDCCH detection.
  • the detection period of the search space set corresponding to a larger number of antennas is small, thereby ensuring the reliability of data transmission and reducing the transmission delay; the smaller number of antennas corresponds to the search space set The detection period is small, so that the power consumption of the terminal device can be reduced; for another example, the aggregation level of the search space set corresponding to a small number of antennas is larger, which can help improve the detection performance of the PDCCH and can adapt;
  • the aggregation level of the search space set corresponding to the number of antennas is small, which is conducive to saving system resources; for another example, the resource mapping method of the search space set with a small number of antennas is a non-interleaved mapping method, thereby enabling the access device to effectively use Scheduling gain; the resource mapping method of the search space set with a large number of antennas is an interleaved mapping method, so that the PDCCH with a lower aggregation level can obtain diversity gain; thus, it can help improve the detection performance of the P
  • FIG. 11 shows a schematic diagram of an example of the downlink control channel detection method 300 of the present application.
  • the access device #a may configure a search space set for the terminal device #a.
  • the search space set may be a user-specific search space set of the terminal device #a.
  • the access device #a may configure multiple parameter groups for the terminal device #a, where each parameter group includes at least one search space parameter and its parameter value.
  • search space set parameters may include but are not limited to at least one of the following parameters:
  • the time interval for the terminal device to detect the search space collection, and the unit of the detection period may be slot.
  • the value of the aggregation level of the search space of the search space set in other words, the value of the number of CCEs included in the PDCCH in the search space set.
  • the value range of an aggregation level can be ⁇ 1, 2, 4, 8 ⁇ .
  • the value range of another aggregation level may be ⁇ 1, 2 ⁇ .
  • the value range of another aggregation level may be ⁇ 4, 8 ⁇ .
  • the terminal device can learn the mapping mode of the CCE and REG of the candidate control channel of the search space set, for example, it may include interleaved mapping and non-interleaved mapping.
  • different parameter groups can correspond to different numbers of receiving antennas (specifically, the number of receiving antennas of the terminal device), or in other words, the at least two parameter groups and the number of at least two receiving antennas have one to one. Correspondence.
  • the parameter group #a corresponds to the terminal device receiving antenna data set #a
  • at least one parameter of the parameter group #a is determined according to the terminal device receiving antenna data set #a.
  • the detection period in the parameter group #a may be configured to be greater than or Equal to the preset threshold #b.
  • the detection period of the parameter group #a may be configured to be less than or equal to The preset threshold #d.
  • the threshold #a may be less than or equal to the threshold #c.
  • the threshold #b may be greater than or equal to the threshold #d.
  • the value of the threshold #a may be 2, and the value of the threshold #c may be 4.
  • the threshold #B can be 10 slots or 16 slots
  • the threshold #D can be 2 slots, 4 slots, or 5 slots.
  • the terminal device When the number of antennas used by the terminal device is small (for example, 2), it means that the amount of downlink data is small. In this case, by setting the detection period of parameter group #a to a larger value, the terminal can be reduced The power consumption of the device.
  • the number of antennas used by the terminal device is large (for example, 4), it means that the amount of downlink data is large.
  • the detection period of parameter group #a to a small value, It can reduce the time delay of data transmission and improve the reliability of communication.
  • the aggregation level of the parameter group #a can be configured to be greater than Or equal to the preset threshold #f.
  • the aggregation level of the parameter group #a may be configured to be less than Or equal to the preset threshold #h.
  • the threshold #e may be less than or equal to the threshold #g.
  • the threshold #f may be greater than or equal to the threshold #h.
  • the value of the threshold #e may be 2, and the value of the threshold #g may be 4.
  • the value of the threshold #f can be 4, and the value of the threshold #h can be 2
  • the performance of the terminal device in detecting the PDCCH may be affected.
  • increasing the aggregation level is beneficial to improving the detection performance of the PDCCH.
  • the performance of the terminal device in detecting the PDCCH is enhanced.
  • reducing the aggregation level is beneficial to saving system resources.
  • the index of the CORESET of the parameter group #a may be determined as Index #a, wherein the CCE mapping mode of the CORESET of index #a is non-interlaced mapping, so that the resource mapping mode of CCEs of candidate control channels based on the search space set of parameter set #a is non-interlaced mapping.
  • the index of the CORESET of the parameter group #a may be determined as Index #b, where the CCE mapping mode of the CORESET of index #b is interleaving mapping, so that the resource mapping mode of the CCE of the candidate control channel based on the search space set of parameter group #a is interleaving mapping.
  • the threshold #i may be less than or equal to the threshold #j.
  • the value of the threshold #i may be 2, and the value of the threshold #j may be 4.
  • the access device can effectively utilize the scheduling gain.
  • the PDCCH with a lower aggregation level (for example, 2) can obtain diversity gain through interleaving mapping.
  • the parameter group #1 corresponds to the terminal device receiving antenna data set #1
  • the parameter group #1 corresponds to the terminal device receiving antenna data set #2
  • the terminal device in the terminal device receiving antenna data set #1 receives The value (for example, the maximum value) of the quantity is smaller than the value (for example, the minimum value) of the terminal antenna reception quantity in the terminal device receiving antenna data set #2
  • the parameter group #a and the parameter group #a may satisfy at least one of the following Kind of relationship.
  • the detection period of parameter group #1 is greater than the detection period of parameter group #2.
  • the detection time interval of parameter group #1 is greater than the detection time interval of parameter group #2.
  • the number of antennas used by the terminal equipment When the number of antennas used by the terminal equipment is large (for example, 4), it means that the data volume of the downlink data is large.
  • the number of antennas used by the terminal equipment when the number of antennas used by the terminal equipment is small (for example, 2), it means The data amount of the data is small, that is, when the value (for example, the maximum value) of the terminal antenna reception number in the terminal device receiving antenna data set #1 is smaller than the value ( For example, the minimum value) indicates that the amount of downlink transmission data corresponding to parameter group #1 is less than the amount of downlink transmission data corresponding to parameter group #1.
  • the number of terminal devices has a small flow rate.
  • the detection period of the parameter group #1 is set to a larger value, the power consumption of the terminal device can be reduced.
  • parameter group #2 when parameter group #2 is used, the number of terminal devices is larger. In this case, by setting the detection period of parameter group #2 to a smaller value, the delay of data transmission can be reduced and the reliability of communication can be improved. Sex.
  • the detection period of the parameter group #1 may be 10 slots or 16 slots.
  • the detection period of the parameter group #2 may be 2 slots, 4 slots, or 5 slots .
  • the value range of the aggregation level of parameter group #1 is smaller than the value range of the aggregation level of parameter group #2.
  • the value range of the aggregation level of the parameter group #1 may be ⁇ 4, 8 ⁇ , or ,
  • the aggregation level of parameter group #1 is 4 or 8.
  • the value range of the aggregation level of the parameter group #2 may be ⁇ 1, 2, 4, 8 ⁇ , In other words, the aggregation level of parameter group #2 is one of 1, 2, 4, or 8.
  • the performance of the terminal device in detecting the PDCCH may be affected.
  • increasing the aggregation level is beneficial to improving the detection performance of the PDCCH.
  • the performance of the terminal device in detecting the PDCCH is enhanced.
  • reducing the aggregation level is beneficial to saving system resources.
  • the resource mapping mode of parameter group #1 is non-interlaced mapping, and the resource mapping mode of parameter group #2 is interlaced mapping.
  • the access device can effectively utilize the scheduling gain.
  • the PDCCH with a lower aggregation level (for example, 2) can obtain diversity gain through interleaving mapping.
  • the following table a shows an example of the mapping relationship between the number of receiving antennas and the parameter group in this application.
  • Table b shows another example of the mapping relationship between the number of receiving antennas and the parameter group in this application.
  • the following table c shows another example of the mapping relationship between the number of receiving antennas and the parameter group in this application.
  • the following table d shows another example of the mapping relationship between the number of receiving antennas and the parameter group in this application.
  • the following table e shows another example of the mapping relationship between the number of receiving antennas and the search space set in this application.
  • the detection period of the parameter group of index 1 may be greater than the detection period of the parameter group of index 2.
  • the detection period of the parameter group of index 1 may be 10 slots or 16 slots, index 2
  • the detection period of the parameter group can be 2 slots, 4 slots or 5 slots.
  • the aggregation level of the parameter group of index 1 may be greater than the aggregation level of the parameter group of index 2.
  • the aggregation level of the parameter group of index 1 may be 4 or 8
  • the aggregation level of the parameter group of index 2 may be 1, 2. , 4 or 8.
  • the resource mapping mode of the parameter group of index 1 may be non-interlaced mapping, and the resource mapping mode of the parameter group of index 2 may be interlaced mapping.
  • the access device #a may send configuration information #a to the terminal device #a, and the configuration information #a may be used to indicate a search space set configured for the terminal device #a (denoted as search space set #a ).
  • the configuration information #a may also indicate the mapping relationship between the at least two parameter groups and the at least two terminal device receiving antenna quantity sets, or in other words, the configuration information #a may also indicate the at least two parameter groups A collection of the number of terminal equipment receiving antennas corresponding to each parameter group.
  • the access device #a when the access device #a sends the PDCCH to the terminal device #a at time #a, the access device #a can determine the number of receiving antennas used by the terminal device #a at time #a (denoted as number #a ).
  • the access device #a may determine the number #a according to whether the PDCCH is sent to the terminal device #a at the time #b, where the time #b is the time before the time #a, and the time #b There is a preset time interval #a between the time #a and the time #a, where the time interval #a may be specified by the communication system or communication protocol, or may be determined by the administrator based on data statistics.
  • the access device #a can determine that the value of the number #a is X, where X can be the terminal device #a in The number of receiving antennas used when the data stream is large, for example, the value of X may be 4, where the value of X may be specified by the communication system or communication protocol, or may be determined by the administrator based on data statistics.
  • the access device #a can determine that the value of the number #a is Y, where Y can be the terminal device #a when the data stream is small
  • the number of receiving antennas used for example, the value of Y may be 2, where the value of Y may be specified by the communication system or communication protocol, or may be determined by the administrator based on statistics.
  • the access device #a may instruct the terminal device #a to report the number #a.
  • terminal device #a may periodically report the number of receiving antennas used, so that access device #a may determine the number of receiving antennas that terminal device #a reported last time before time #a as quantity# a.
  • terminal device #a can determine the number of receiving antennas currently in use at time #a.
  • the terminal device #a can determine the number #a according to whether the PDCCH is detected at the time #b, where the time #Bb is the time before the time #a, and the time #b and the time #a There is a preset time interval #a between them, where the time interval #a may be specified by the communication system or communication protocol, or may be determined by the administrator based on data statistics.
  • terminal device #a can determine the value of number #a as X, where X can be used by terminal device #a when the data stream is large
  • the number of receiving antennas for example, the value of X may be 4, where the value of X may be specified by the communication system or communication protocol, or may be determined by the administrator based on statistics.
  • terminal device #a can determine the value of number #a as Y, where Y can be the number of receiving antennas used by terminal device #a when the data stream is small For example, the value of Y may be 2, where the value of Y may be specified by the communication system or communication protocol, or may be determined by the administrator based on data statistics.
  • the terminal device #a can determine the number #a arbitrarily, and the terminal device #a can report the number #a according to the instruction of the access device #a.
  • terminal device #a may periodically report the number of receiving antennas used, so that terminal device #a may determine the number of receiving antennas that terminal device #a reported last time before time #a as quantity #a .
  • the access device #a and the terminal device #a can determine the parameter group (denoted as parameter group #a) corresponding to the set of terminal device receiving antenna quantity to which the quantity #a belongs according to the foregoing mapping relationship.
  • the access device #a can use the parameter group #a to send the PDCCH on the search space set #a.
  • the terminal device #a can use the parameter group #a to detect the PDCCH on the search space set #a.
  • the access device configures the terminal device with the mapping relationship between the number of multiple antennas and multiple search space sets.
  • the terminal device can select the corresponding number of antennas currently in use.
  • the search space set performs PDCCH detection.
  • the detection period of the search space set corresponding to a larger number of antennas is small, thereby ensuring the reliability of data transmission and reducing the transmission delay; the smaller number of antennas corresponds to the search space set The detection period is small, so that the power consumption of the terminal device can be reduced; for another example, the aggregation level of the search space set corresponding to a small number of antennas is larger, which can help improve the detection performance of the PDCCH and can adapt;
  • the aggregation level of the search space set corresponding to the number of antennas is small, which is conducive to saving system resources; for another example, the resource mapping method of the search space set with a small number of antennas is a non-interleaved mapping method, thereby enabling the access device to effectively use Scheduling gain; the resource mapping method of the search space set with a large number of antennas is an interleaved mapping method, so that the PDCCH with a lower aggregation level can obtain diversity gain; thus, it can help improve the detection performance of the P
  • FIG. 12 shows a schematic diagram of an example of a method 400 for detecting a downlink control channel of the present application.
  • the access device #1 may configure multiple search space sets for the terminal device #1.
  • the search space set may be a user-specific search space set of terminal device #1.
  • the search space set parameter may include a detection period.
  • the time interval for the terminal device to detect the search space collection, and the unit of the detection period may be slot.
  • different search space sets may correspond to different timers (for example, drx-onDurationTimer and drx-InactivityTimer), or in other words, the at least two search space sets have a one-to-one correspondence with at least two timers.
  • At least one parameter of the search space set #1 is determined according to the timer #1.
  • the detection period of the search space set #1 can be configured to be greater than or equal to the preset threshold #2.
  • the detection period of the search space set #1 can be configured to be less than or equal to the preset threshold #4.
  • the threshold #1 may be less than or equal to the threshold #3.
  • the threshold #2 may be greater than or equal to the threshold #4.
  • the value of the threshold #1 may be 2, and the value of the threshold #3 may be 4.
  • the threshold #2 can be 10 slots or 16 slots
  • the threshold #4 can be 2 slots, 4 slots, or 5 slots.
  • drx-onDurationTimer When drx-onDurationTimer is running (or starting), it means that the amount of downlink data is small. In this case, by setting the detection period of search space set #1 to a larger value, the function of the terminal device can be reduced. Consumption.
  • the detection period of search space set #a is greater than the detection period of search space set #b.
  • the detection time interval of the search space set #a is greater than the detection time interval of the search space set #b.
  • Table 6 shows an example of the mapping relationship between the timer and the search space set of the present application.
  • Timer Search space collection index Detection cycle (unit: slot) drx-onDurationTimer Index 1 10 or 16 drx-InactivityTimer Index 2 2, 4 or 5
  • Table 7 shows another example of the mapping relationship between the timer and the search space set of the present application.
  • the detection period of the search space set of index 1 may be greater than the detection period of the search space set of index 2.
  • the detection period of the search space set of index 1 may be 10 slots or 16 slots.
  • the detection period of the search space set of index 2 can be 2 slots, 4 slots, or 5 slots.
  • the access device #1 may send configuration information #1 to the terminal device #1, and the configuration information #1 may be used to indicate a parameter of each search space set in the at least two search space sets, where the parameter may be Including but not limited to at least one of the aforementioned parameters 1 to 6.
  • configuration information #1 may also indicate the mapping relationship between the at least two search space sets and the at least two timers, or in other words, the configuration information #1 may also indicate each of the at least two search space sets. The timer corresponding to the set of search spaces.
  • access device #1 when access device #1 sends PDCCH to terminal device #1 at time #1, access device #1 can determine the timer started by terminal device #1 at time #1 (denoted as timer #X) .
  • access device #1 can determine the timer #X according to the DRX cycle configured for terminal device #1 and whether to send PDCCH to terminal device #1 at time #2, where time #2 is at time #1, and there is a preset time interval #1 between the time #2 and the time #1, where the time interval #1 can be specified by the communication system or communication protocol, or it can be based on the administrator The statistics are determined.
  • the access device #1 may determine that the timer #X is drx-InactivityTimer.
  • the access device #1 may determine that the timer #X is drx-onDurationTimer.
  • the terminal device #1 can determine the timer #X running at the time #1.
  • timer #X the timer #X determined by access device #1 and terminal device #1 is consistent OK.
  • the access device #1 and the terminal device #1 can determine the search space set (denoted as search space set #1) corresponding to the timer #X according to the above mapping relationship.
  • the access device #1 can transmit the PDCCH on the search space set #1.
  • the terminal device #1 can detect the PDCCH on the search space set #1.
  • the terminal device by configuring the mapping relationship between multiple timers and multiple search space sets for the terminal device by the access device, when detecting the PDCCH, the terminal device can select the corresponding timer according to the currently used timer.
  • the search space collection performs PDCCH detection.
  • the detection period of the search space collection corresponding to drx-InactivityTimer is small, thereby ensuring the reliability of data transmission and reducing the transmission delay; the detection period of the search space collection corresponding to drx-onDurationTimer is small Therefore, the power consumption of the terminal device can be reduced, and thus, the detection performance of the PDCCH can be improved, and the detection performance of the PDCCH can be adapted to the dynamic change of the number traffic, the communication delay is reduced, the reliability of the communication is improved, and the user experience is improved.
  • FIG. 14 shows a schematic diagram of an example of a method 500 for detecting a downlink control channel of the present application.
  • the access device #m can configure a search space set for the terminal device #m (denoted as: search space #m ).
  • the search space set may be a user-specific search space set of the terminal device #m.
  • the access device #m may configure multiple parameter groups for the terminal device #m, where each parameter group includes at least one search space parameter and its parameter value.
  • the search space set parameters may include but are not limited to the detection period.
  • the time interval for the terminal device to detect the search space collection, and the unit of the detection period may be slot.
  • different parameter groups may correspond to different timers (for example, drx-onDurationTimer and drx-InactivityTimer), or in other words, the at least two parameter groups have a one-to-one correspondence with at least two timers.
  • the parameter group #m corresponds to the timer #m
  • at least one parameter of the parameter group #m is determined according to the timer #m.
  • the detection period of the parameter group #m can be configured to be greater than or equal to the preset threshold #2.
  • the detection period of the parameter group #m can be configured to be less than or equal to the preset threshold #4.
  • the threshold #m may be less than or equal to the threshold #3.
  • the threshold #2 may be greater than or equal to the threshold #4.
  • the value of the threshold #m may be 2, and the value of the threshold #3 may be 4.
  • the threshold #2 can be 10 slots or 16 slots
  • the threshold #4 can be 2 slots, 4 slots, or 5 slots.
  • drx-onDurationTimer When drx-onDurationTimer is running (or starting), it means that the amount of downlink data is small. In this case, by setting the detection period of parameter group #m to a larger value, the power consumption of the terminal device can be reduced .
  • drx-InactivityTimer when running, it means that the amount of downlink data is large.
  • the detection period of parameter group #m by setting the detection period of parameter group #m to a smaller value, the data transmission delay can be reduced, and the communication can be improved. Reliability.
  • the detection period of parameter group #a is greater than the detection period of parameter group #b.
  • the detection time interval of the search space set #a is greater than the detection time interval of the parameter combination #b.
  • the following table f shows an example of the mapping relationship between the timer and the parameter group in this application.
  • Timer Index of the parameter group Detection cycle (unit: slot) drx-onDurationTimer Index 1 10 or 16 drx-InactivityTimer Index 2 2, 4 or 5
  • the following table g shows another example of the mapping relationship between the timer and the parameter group in this application.
  • Timer Index of the parameter group drx-onDurationTimer Index 1 drx-InactivityTimer Index 2
  • the detection period of the parameter group of index 1 may be greater than the detection period of the parameter group of index 2.
  • the detection period of the parameter group of index 1 may be 10 slots or 16 slots, index 2
  • the detection period of the parameter group can be 2 slots, 4 slots or 5 slots.
  • the access device #m may send configuration information #m to the terminal device #m, and the configuration information #m may be used to refer to the parameters of the search space #m, where the parameters may include, but are not limited to, the above parameters 1 to parameters At least one parameter in 6.
  • the configuration information #m may also indicate the mapping relationship between the at least two parameter groups and the at least two timers, or in other words, the configuration information #m may also indicate each parameter in the at least two parameter groups. The timer corresponding to the group.
  • the access device #m when the access device #m sends the PDCCH to the terminal device #m at the time #m, the access device #m can determine the timer started by the terminal device #m at the time #m (denoted as timer #m) .
  • the access device #m can determine the timer #m according to the DRX cycle configured for the terminal device #m and whether the PDCCH is sent to the terminal device #m at the time #n, where the time #n is located at the time #m before the time, and there is a preset time interval #m between the time #n and the time #m, where the time interval #m can be specified by the communication system or communication protocol, or it can be based on the administrator The statistics are determined.
  • the access device #m can determine that the timer #m is drx-InactivityTimer.
  • the access device #m can determine that the timer #m is drx-onDurationTimer.
  • the terminal device #m can determine the timer #m that runs at the time #m.
  • the access device #m and the terminal device #m can determine the parameter group (denoted as parameter group #m) corresponding to the timer #X according to the foregoing mapping relationship.
  • the access device #m can use the parameter group #m to send the PDCCH on the search space set #m.
  • the terminal device #m can use the parameter group #m to detect the PDCCH on the search space set #m.
  • the terminal device by configuring the mapping relationship between multiple timers and multiple search space sets for the terminal device by the access device, when detecting the PDCCH, the terminal device can select the corresponding timer according to the currently used timer.
  • the search space collection performs PDCCH detection.
  • the detection period of the search space collection corresponding to drx-InactivityTimer is small, thereby ensuring the reliability of data transmission and reducing the transmission delay; the detection period of the search space collection corresponding to drx-onDurationTimer is small Therefore, the power consumption of the terminal device can be reduced, and thus, the detection performance of the PDCCH can be improved, and the detection performance of the PDCCH can be adapted to the dynamic change of the number traffic, the communication delay is reduced, the reliability of the communication is improved, and the user experience is improved.
  • FIG. 15 is a schematic diagram of a wireless communication apparatus 500 provided in an embodiment of this application.
  • the device 600 may be a terminal device, or a chip or circuit, for example, a chip or circuit that can be provided in a terminal device.
  • the device 600 may include a processing unit 610 (that is, an example of a processing unit) and a storage unit 620.
  • the storage unit 620 is used to store instructions.
  • the processing unit 610 is configured to execute the instructions stored in the storage unit 620, so that the apparatus 600 implements the steps performed by the terminal device (for example, terminal device #A or terminal device #1) in the foregoing method.
  • the terminal device for example, terminal device #A or terminal device #1
  • the device 600 may further include an input port 630 (ie, an example of a communication unit) and an output port 640 (ie, another example of a communication unit).
  • the processing unit 610, the storage unit 620, the input port 630, and the output port 640 can communicate with each other through internal connection paths, and transmit control and/or data signals.
  • the storage unit 620 is used to store a computer program, and the processing unit 610 can be used to call and run the calculation program from the storage unit 620 to control the input port 630 to receive signals and the output port 640 to send signals to complete the above method Steps for terminal equipment.
  • the storage unit 620 may be integrated in the processing unit 610, or may be provided separately from the processing unit 610.
  • the apparatus 600 is a communication device (for example, a terminal device)
  • the input port 630 is a receiver
  • the output port 640 is a transmitter.
  • the receiver and transmitter may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the input port 630 is an input interface
  • the output port 640 is an output interface
  • the functions of the input port 630 and the output port 640 may be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • the processing unit 610 may be implemented by a dedicated processing chip, a processing circuit, a processing unit, or a general-purpose chip.
  • a general-purpose computer may be considered to implement the communication device (for example, an access device or a terminal device) provided in the embodiment of the present application.
  • the program codes that realize the functions of the processing unit 610, the input port 630, and the output port 640 are stored in the storage unit 620.
  • the general processing unit implements the functions of the processing unit 610, the input port 630 and the output port 640 by executing the code in the storage unit 620. .
  • the processing unit 610 is configured to determine the first search space set according to the number of currently used receiving antennas; the processing unit 610 is configured to control the input port 630 to detect the downlink control channel according to the first search space set.
  • the processing unit 610 is configured to determine a first search space set from at least two search space sets according to the number of receiving antennas currently in use, between any two search space sets in the at least two search space sets There is at least one different parameter, and the parameter includes:
  • Detection period aggregation level or resource mapping method or search space collection index.
  • the input port 630 is used to receive first configuration information, where the first configuration information is used to indicate a mapping relationship between the number of at least two receiving antennas and the at least two search space sets;
  • the processing unit 610 is configured to determine, by the terminal device, a search space set corresponding to the number of receiving antennas currently in use indicated by the first configuration information as a first search space set.
  • the processing unit 610 is configured to determine a parameter of the first search space set according to the number of currently used receiving antennas, the parameter including at least one of a detection period, an aggregation level, or a resource mapping manner.
  • the input port 630 is used to receive second configuration information, and the second configuration information is used to indicate the number of receiving antennas corresponding to each parameter group in the multiple parameter groups, where each parameter group includes a detection period, an aggregation Parameter value of at least one parameter in the level or resource mapping mode;
  • the processing unit 610 is configured to determine the parameters in the parameter group corresponding to the number of currently used receiving antennas indicated by the second configuration information as the parameters of the first search space set.
  • the at least two search space sets are dedicated search space sets of the terminal device.
  • the device 600 is configured in or is a terminal device by itself, and each module or unit in the device 600 can be used to execute the terminal device in the above method. (For example, terminal device #A or terminal device #z1) each action or processing performed by the terminal device, in order to avoid redundant description, the detailed description is omitted.
  • FIG. 16 is a schematic diagram of a wireless communication apparatus 700 provided in an embodiment of this application.
  • the apparatus 700 may be an access device (for example, access device #A or access device #1), or a chip or circuit, such as a chip or circuit that can be provided in an access device.
  • an access device for example, access device #A or access device #1
  • a chip or circuit such as a chip or circuit that can be provided in an access device.
  • the apparatus 700 may include a processing unit 710 (that is, an example of a processing unit) and a storage unit 720.
  • the storage unit 720 is used to store instructions.
  • the processing unit 710 is configured to execute the instructions stored in the storage unit 720, so that the apparatus 700 implements the steps performed by the access device in the foregoing method.
  • the device 700 may further include an input port 730 (ie, an example of a communication unit) and an output port 740 (ie, another example of a communication unit).
  • the processing unit 710, the storage unit 720, the input port 730, and the output port 740 can communicate with each other through internal connection paths to transfer control and/or data signals.
  • the storage unit 720 is used to store a computer program, and the processing unit 710 can be used to call and run the calculation program from the storage unit 720 to control the input port 730 to receive signals and to control the output port 740 to send signals to complete the above method. Steps for terminal equipment.
  • the storage unit 720 may be integrated in the processing unit 710, or may be provided separately from the processing unit 710.
  • the apparatus 700 is a communication device (for example, an access device)
  • the input port 730 is a receiver
  • the output port 740 is a transmitter.
  • the receiver and transmitter may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the input port 730 is an input interface
  • the output port 740 is an output interface
  • the functions of the input port 730 and the output port 740 may be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • the processing unit 710 may be implemented by a dedicated processing chip, a processing circuit, a processing unit, or a general-purpose chip.
  • a general-purpose computer may be considered to implement the communication device (for example, an access device) provided in the embodiment of the present application.
  • the program codes that realize the functions of the processing unit 710, the input port 730, and the output port 740 are stored in the storage unit 720.
  • the general processing unit implements the functions of the processing unit 710, the input port 730 and the output port 740 by executing the code in the storage unit 720. .
  • the processing unit 710 is configured to determine the first search space set according to the number of receiving antennas currently used by the terminal device;
  • the processing unit 710 is configured to control the output port 740 to send a downlink control channel according to the first search space set.
  • the processing unit 710 is configured to determine a mapping relationship between the number of at least two receiving antennas and the at least two search space sets, where there is at least one between any two search space sets in the at least two search space sets.
  • the parameters include: detection period, aggregation level or resource mapping mode or search space set index; and are used to determine the search space set corresponding to the number of receiving antennas currently used as the first search space set.
  • the output port 740 is used to send first configuration information to the terminal device, where the first configuration information is used to indicate a mapping relationship between the number of the at least two receiving antennas and the at least two search space sets.
  • the processing unit 710 is configured to determine the number of receiving antennas corresponding to each parameter group in the multiple parameter groups, where each parameter group includes a parameter value of at least one of a detection period, an aggregation level, or a resource mapping manner And used to determine the parameters in the parameter group corresponding to the number of receiving antennas currently used by the terminal device as the parameters of the first search space set.
  • the output port 740 is used to send second configuration information to the terminal device, where the second configuration information is used to indicate the number of receiving antennas corresponding to each parameter group in the multiple parameter groups.
  • the at least two search space sets are dedicated search space sets of the terminal device.
  • the functions and actions of the modules or units in the apparatus 700 listed above are only exemplary.
  • the modules or units in the apparatus 700 can be used to execute the above methods.
  • Each action or processing procedure performed by the middle access device for example, access device #A or access device #1, here, in order to avoid redundant description, detailed description is omitted.
  • FIG. 17 is a schematic structural diagram of a terminal device 800 provided by this application.
  • the foregoing apparatus 600 may be configured in the terminal device 800, or the foregoing apparatus 600 itself may be the terminal device 800.
  • the terminal device 800 can execute the actions performed by the terminal device in the foregoing methods 200, 300, 400, or 500.
  • FIG. 17 only shows the main components of the terminal device.
  • the terminal device 800 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal device, execute the software program, and process the data of the software program, for example, to support the terminal device to execute the above-mentioned transmission precoding matrix instruction method embodiment The described action.
  • the memory is mainly used to store software programs and data, for example, to store the codebook described in the above embodiments.
  • the control circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the control circuit and the antenna together can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 17 only shows a memory and a processor. In actual terminal devices, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processing unit is mainly used to control the entire terminal device, execute software programs, and process software programs. data.
  • the processor in FIG. 17 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors and are interconnected by technologies such as buses.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple central processors to enhance its processing capabilities, and various components of the terminal device may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and control circuit with the transceiver function may be regarded as the transceiver unit 810 of the terminal device 800, and the processor with the processing function may be regarded as the processing unit 820 of the terminal device 800.
  • the terminal device 800 includes a transceiver unit 810 and a processing unit 820.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver, and so on.
  • the device for implementing the receiving function in the transceiver unit 810 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 810 can be regarded as the sending unit, that is, the transceiver unit includes the receiving unit and the sending unit.
  • the receiving unit may also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • FIG. 18 is a schematic structural diagram of an access device 900 provided by an embodiment of the application, which may be used to implement the functions of the access device (for example, access device #A or access device #1) in the foregoing method.
  • the access device 900 includes one or more radio frequency units, such as a remote radio unit (RRU) 910 and one or more baseband units (BBU) (also referred to as digital units, digital units, DU). )920.
  • RRU 910 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 911 and a radio frequency unit 912.
  • the RRU910 part is mainly used for receiving and sending radio frequency signals and converting radio frequency signals and baseband signals, for example, for sending the signaling messages described in the foregoing embodiments to terminal equipment.
  • the BBU920 part is mainly used for baseband processing and control of the base station.
  • the RRU 910 and the BBU 920 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 920 is the control center of the base station, and may also be called a processing unit, which is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU (processing unit) 920 may be used to control the base station 40 to execute the operation procedure of the network device in the foregoing method embodiment.
  • the BBU 920 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network of a single access standard (such as an LTE system or a 5G system), and may also support different access networks. Enter the standard wireless access network.
  • the BBU 920 further includes a memory 921 and a processor 922.
  • the memory 921 is used to store necessary instructions and data.
  • the memory 921 stores the codebook and the like in the foregoing embodiment.
  • the processor 922 is used to control the base station to perform necessary actions, for example, used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 921 and the processor 922 may serve one or more boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • SoC system-on-chip
  • all or part of the functions of part 920 and part 910 can be realized by SoC technology, for example, a base station function chip
  • the base station function chip integrates a processor, a memory, an antenna interface and other devices, the program of the base station related functions is stored in the memory, and the processor executes the program to realize the relevant functions of the base station.
  • the base station function chip can also read a memory external to the chip to implement related functions of the base station.
  • FIG. 18 It should be understood that the structure of the access device illustrated in FIG. 18 is only a possible form, and should not constitute any limitation in the embodiment of the present application. This application does not exclude the possibility of other base station structures that may appear in the future.
  • the embodiment of the present application also provides a communication system, which includes the aforementioned access device and one or more terminal devices.
  • the processor may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), and dedicated integrated Circuit (application specific integrated circuit, ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • Access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory Take memory (synchlink DRAM, SLDRAM) and direct memory bus random access memory (direct rambus RAM, DR RAM).
  • the foregoing embodiments can be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above-mentioned embodiments may be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions or computer programs.
  • the computer instructions or computer programs are loaded or executed on a computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center that includes one or more sets of available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium.
  • the semiconductor medium may be a solid state drive.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, rather than corresponding to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit. If the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.

Abstract

本申请提供了一种无线通信的方法和装置,该方法,包括:终端设备根据当前使用的接收天线数量,确定第一搜索空间集合;所述终端设备根据所述第一搜索空间集合,检测下行控制信道,从而,终端设备可以根据当前使用的天线数量,选择搜索空间集合进行PDCCH检测,能够灵活应对不同的数据流量,例如,较大的天线数量对应的搜索空间集合的检测周期小,从而能够确保数据传输的可靠性降低传输时延,较小的天线数量对应的搜索空间集合的检测周期较小,从而能够降低终端设备的功耗,能够适应数量流量的动态变化,降低通信时延,提高通信的可靠性,改善用户体验。

Description

一种无线通信的方法和装置
本申请要求于2019年02月15日提交中国专利局、申请号为201910118116.8、申请名称为“一种无线通信的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,并且更具体地,涉及无线通信的方法和装置以及通信设备。
背景技术
为了降低盲检测下行控制信道的复杂度,接入设备可以为终端设备配置一个或多个搜索空间集合(Search Space Set),其中,每个搜索空间集合包括一个或多个聚合等级的搜索空间。
在现有技术中,该搜索空间集合是接入设备半静态配置的,然而,数量流量动态变化,该半静态配置的搜索空间集合无法适应数据流量的动态变化,从而,可能增大通信时延,降低通信的可靠性,影响用户体验。
发明内容
本申请提供一种无线通信的方法和装置,能够适应数量流量的动态变化,降低通信时延,提高通信的可靠性,改善用户体验。
第一方面,提供了种一种无线通信的方法,包括:终端设备根据当前使用的接收天线数量,确定第一搜索空间集合;所述终端设备根据所述第一搜索空间集合,检测下行控制信道。
根据本申请提供的方案,终端设备可以根据当前使用的天线数量,选择搜索空间集合进行PDCCH检测,能够灵活应对不同的数据流量,例如,较大的天线数量对应的搜索空间集合的检测周期小,从而,能够确保数据传输的可靠性,降低传输时延;较小的天线数量对应的搜索空间集合的检测周期较小,从而,能够降低终端设备的功耗;再例如,较小的天线数量对应的搜索空间集合的聚合等级较大,从而,能够有利于提高PDCCH的检测性能能够适应;较大的天线数量对应的搜索空间集合的聚合等级较小,从而有利于节约系统资源;再例如,天线数量较小的搜索空间集合的资源映射方式为非交织映射方式,从而,能够使接入设备有效利用调度增益;天线数量较大的搜索空间集合的资源映射方式为交织映射方式,从而,能够使聚合等级较低的PDCCH获得分集增益;由此,能够有利于提高PDCCH的检测性能能够适应数量流量的动态变化,降低通信时延,提高通信的可靠性,改善用户体验。
其中,第一搜索空间集合可以是一个也可以是多个,本申请并未特别限定。
可选地,所述终端设备根据当前使用的接收天线数量,确定第一搜索空间集合,包括:所述终端设备根据当前使用的接收天线数量,从至少两个搜索空间集合中,确定所述第一搜索空间集合。
可选地,所述至少两个搜索空间集合中的每个搜索空间集合与一个终端设备接收天线数量集合相关联,其中,所述终端设备接收天线数量集合包括至少一个终端设备接收天线数量,以及所述第一搜索空间集合为所关联的终端设备接收天线数量集合包括所述终端设备当前使用的接收天线数量的搜索空间。
可选地,所述至少两个搜索空间集合中的任意两个搜索空间集合之间存在至少一种不同的参数,所述参数包括:搜索空间集合的检测周期、候选下行控制信道的聚合等级或搜索空间集合所关联的控制资源集合CORESET的索引。
可选地,所述方法还包括:所述终端设备接收第一配置信息,所述第一配置信息用于指示所述至少两个搜索空间集合中每个搜索空间集合所关联的终端设备接收天线数量集合。
可选地,所述终端设备根据当前使用的接收天线数量,确定第一搜索空间集合,包括:所述终端设备根据当前使用的接收天线数量,确定第一搜索空间集合的参数,所述参数包括搜索空间集合的检测周期、候选下行控制信道的聚合等级和搜索空间集合所关联CORESET的索引中的至少一种参数。
可选地,所述第一搜索空间集合的参数包括至少两个参数组,每个参数组与一个终端设备接收天线数量集合相关联,其中,所述终端设备接收天线数量集合包括至少一个终端设备接收天线数量,每个参数组包括搜索空间集合的检测周期、候选下行控制信道的聚合等级和搜索空间集合所关联CORESET的索引中的至少一种参数的参数值,以及所述第一搜索空间的参数为所关联的终端设备接收天线数量集合包括所述终端设备当前使用的接收天线数量的参数组中的参数。
可选地,所述方法还包括:所述终端设备接收第二配置信息,所述第二配置信息用于指示所述至少两个参数组中每个参数组所关联的接收天线数量。
可选地,所述至少两个搜索空间集合为所述终端设备的专用搜索空间集合。
可选地,如果第一搜索空间集合对应第一接收天线数量小于第二搜索空间集合对应第二接收天线数量,则所述第一搜索空间集合的检测周期大于所述第二搜索空间集合的检测周期。
可选地,如果第一搜索空间集合对应第一接收天线数量小于第二搜索空间集合对应第二接收天线数量,则所述第一搜索空间集合的聚合等级小于所述第二搜索空间集合的聚合等级。
可选地,如果第一搜索空间集合对应第一接收天线数量小于第二搜索空间集合对应第二接收天线数量,则所述第一搜索空间集合的资源映射方式为非交织映射,所述第二搜索空间集合的资源映射方式为交织映射。
可选地,当第一搜索空间集合对应的第一接收天线数量小于或等于预设的第一阈值时,所述第一搜索空间集合的检测周期大于或等于预设的第二阈值,当所述第一接收天线数量大于或等于预设的第三阈值时,所述第一搜索空间集合的检测周期小于或等于预设的第四阈值,其中,所述第一阈值小于所述第三阈值,所述第四阈值小于所述第二阈值。
可选地,当第一搜索空间集合对应的第一接收天线数量小于或等于预设的第五阈值时,所述第一搜索空间集合的聚合等级大于或等于预设的第六阈值,当所述第一接收天线数量大于或等于预设的第七阈值时,所述第一搜索空间集合的聚合等级小于或等于预设的第八阈值,其中,所述第五阈值小于所述第七阈值,所述第八阈值小于所述第六阈值。
可选地,所述第五阈值包括2,所述第六阈值包括4,所述第七阈值包括4,所述第八阈值包括2。
可选地,当第一搜索空间集合对应的第一接收天线数量小于或等于预设的第九阈值时,所述第一搜索空间集合的资源映射方式为非交织映射,当所述第一接收天线数量大于或等于预设的第十阈值时,所述第一搜索空间集合的资源映射方式为交织映射,其中,所述第九阈值小于所述第十阈值。
可选地,所述第九阈值包括2,所述第十阈值包括4。
第二方面,提供了一种接入设备根据终端设备当前使用的接收天线数量,确定第一搜索空间集合;所述接入设备根据所述第一搜索空间集合,发送下行控制信道。
根据本申请提供的方案,终端设备可以根据当前使用的天线数量,选择搜索空间集合进行PDCCH检测,能够灵活应对不同的数据流量,例如,较大的天线数量对应的搜索空间集合的检测周期小,从而,能够确保数据传输的可靠性,降低传输时延;较小的天线数量对应的搜索空间集合的检测周期较小,从而,能够降低终端设备的功耗;再例如,较小的天线数量对应的搜索空间集合的聚合等级较大,从而,能够有利于提高PDCCH的检测性能能够适应;较大的天线数量对应的搜索空间集合的聚合等级较小,从而有利于节约系统资源;再例如,天线数量较小的搜索空间集合的资源映射方式为非交织映射方式,从而,能够使接入设备有效利用调度增益;天线数量较大的搜索空间集合的资源映射方式为交织映射方式,从而,能够使聚合等级较低的PDCCH获得分集增益;由此,能够有利于提高PDCCH的检测性能能够适应数量流量的动态变化,降低通信时延,提高通信的可靠性,改善用户体验。
其中,该第一搜索空间集合可以是一个也可以是多个,本申请并未特别限定。
可选地,所述接入设备根据终端设备当前使用的接收天线数量,确定第一搜索空间集合,包括:所述接入设备根据当前使用的接收天线数量,从至少两个搜索空间集合中,确定第一搜索空间集合。
可选地,所述至少两个搜索空间集合中的每个搜索空间集合与一个终端设备接收天线数量集合相关联,其中,所述终端设备接收天线数量集合包括至少一个终端设备接收天线数量,以及所述第一搜索空间集合为所关联的终端设备接收天线数量集合包括所述终端设备当前使用的接收天线数量的搜索空间。
可选地,所述至少两个搜索空间集合中的任意两个搜索空间集合之间存在至少一种不同的参数,所述参数包括:搜索空间集合的检测周期、候选下行控制信道的聚合等级或搜索空间集合所关联的控制资源集合CORESET的索引。
可选地,所述方法还包括:所述接入设备发送第一配置信息,所述第一配置信息用于指示所述至少两个搜索空间集合中每个搜索空间集合所关联的接收天线数量。
可选地,接入设备根据终端设备当前使用的接收天线数量,确定第一搜索空间集合包括:所述接入设备根据所述终端设备当前使用的接收天线数量,确定第一搜索空间集合的 参数,所述参数包括搜索空间集合的检测周期、候选下行控制信道的聚合等级和搜索空间集合所关联CORESET的索引中的至少一种参数。
可选地,所述第一搜索空间集合的参数包括至少两个参数组,每个参数组与一个终端设备接收天线数量集合相关联,其中,所述终端设备接收天线数量集合包括至少一个终端设备接收天线数量,每个参数组包括搜索空间集合的检测周期、候选下行控制信道的聚合等级和搜索空间集合所关联CORESET的索引中的至少一种参数的参数值,以及所述第一搜索空间的参数为所关联的终端设备接收天线数量集合包括所述终端设备当前使用的接收天线数量的参数组中的参数。
可选地,所述方法还包括:所述接入设备发送第二配置信息,所述第二配置信息用于指示所述至少两个参数组中每个参数组所关联的接收天线数量。
可选地,所述至少两个搜索空间集合为所述终端设备的专用搜索空间集合。
可选地,如果第一搜索空间集合对应第一接收天线数量小于第二搜索空间集合对应第二接收天线数量,则所述第一搜索空间集合的检测周期大于所述第二搜索空间集合的检测周期。
可选地,如果第一搜索空间集合对应第一接收天线数量小于第二搜索空间集合对应第二接收天线数量,则所述第一搜索空间集合的聚合等级小于所述第二搜索空间集合的聚合等级。
可选地,如果第一搜索空间集合对应第一接收天线数量小于第二搜索空间集合对应第二接收天线数量,则所述第一搜索空间集合的资源映射方式为非交织映射,所述第二搜索空间集合的资源映射方式为交织映射。
可选地,当第一搜索空间集合对应的第一接收天线数量小于或等于预设的第一阈值时,所述第一搜索空间集合的检测周期大于或等于预设的第二阈值,当所述第一接收天线数量大于或等于预设的第三阈值时,所述第一搜索空间集合的检测周期小于或等于预设的第四阈值,其中,所述第一阈值小于所述第三阈值,所述第四阈值小于所述第二阈值。
可选地,当第一搜索空间集合对应的第一接收天线数量小于或等于预设的第五阈值时,所述第一搜索空间集合的聚合等级大于或等于预设的第六阈值,当所述第一接收天线数量大于或等于预设的第七阈值时,所述第一搜索空间集合的聚合等级小于或等于预设的第八阈值,其中,所述第五阈值小于所述第七阈值,所述第八阈值小于所述第六阈值。
可选地,所述第五阈值包括2,所述第六阈值包括4,所述第七阈值包括4,所述第八阈值包括2。
可选地,当第一搜索空间集合对应的第一接收天线数量小于或等于预设的第九阈值时,所述第一搜索空间集合的资源映射方式为非交织映射,当所述第一接收天线数量大于或等于预设的第十阈值时,所述第一搜索空间集合的资源映射方式为交织映射,其中,所述第九阈值小于所述第十阈值。
可选地,所述第九阈值包括2,所述第十阈值包括4。
第三方面,提供了种一种无线通信的方法,包括:终端设备根据当前运行的非连续通信DRX的定时器,确定第一搜索空间集合;所述终端设备根据所述第一搜索空间集合,检测下行控制信道。
根据本申请提供的方案,终端设备可以根据当前运行的DRX的定时器,选择搜索空 间集合进行PDCCH检测,能够灵活应对不同的数据流量,例如,drx-InactivityTimer对应的搜索空间集合的检测周期小,从而,能够确保数据传输的可靠性,降低传输时延,drx-onDurationTimer对应的搜索空间集合的检测周期较小,从而,能够降低终端设备的功耗;由此,能够有利于提高PDCCH的检测性能能够适应数量流量的动态变化,降低通信时延,提高通信的可靠性,改善用户体验。
可选地,所述终端设备根据当前运行的DRX的定时器,确定第一搜索空间集合包括:终端设备根据当前运行的DRX的定时器,从至少两种搜索空间中,确定第一搜索空间集合,所述至少两个搜索空间集合中的任意两个搜索空间集合之间存在至少一种不同的参数,所述参数包括搜索空间集合的检测周期。
可选地,所述方法还包括:所述终端设备接收第一配置信息,所述第一配置信息用于指示至少两种DRX的定时器与至少两个搜索空间集合之间的映射关系;所述终端设备将所述第一配置信息指示的与当前运行的DRX的定时器对应的搜索空间集合,确定为第一搜索空间集合。
可选地,终端设备根据当前运行的DRX的定时器,确定第一搜索空间集合包括:所述终端设备根据当前运行的DRX的定时器,确定第一搜索空间集合的参数,所述参数包括检测周期、聚合等级或资源映射方式中的至少一种参数。
可选地,所述方法还包括:所述终端设备接收第二配置信息,所述第二配置信息用于指示多个参数组中每个参数组对应的DRX的定时器,其中,每个参数组包括一个搜索空间集合的检测周期的值;所述终端设备将所述第二配置信息指示的与当前运行的DRX的定时器对应的参数组中的参数,确定为第一搜索空间集合的参数。
可选地,所述至少两个搜索空间集合为所述终端设备的专用搜索空间集合。
可选地,所述第一搜索空间集合的检测周期大于所述第二搜索空间集合的检测周期。其中,所述第一搜索空间集合对应的DRX的定时器为drx-onDurationTimer,所述第二搜索空间集合对应的DRX的定时器为drx-InactivityTimer。
可选地,第一搜索空间集合对应的drx-onDurationTimer时,所述第一搜索空间集合的检测周期大于或等于预设的第一阈值。
可选地,当第一搜索空间集合对应drx-InactivityTimer时,所述第一搜索空间集合的检测周期小于或等于预设的第二阈值。
所述第一阈值包括10个solt,所述第二阈值包括5个slot。
第四方面,提供了一种接入设备根据终端设备当前运行的非连续接收DRX的定时器,确定第一搜索空间集合;所述接入设备根据所述第一搜索空间集合,发送下行控制信道。
根据本申请提供的方案,终端设备可以根据当前使用的天线数量,选择搜索空间集合进行PDCCH检测,能够灵活应对不同的数据流量,例如,较大的天线数量对应的搜索空间集合的检测周期小,从而,能够确保数据传输的可靠性,降低传输时延;较小的天线数量对应的搜索空间集合的检测周期较小,从而,能够降低终端设备的功耗;再例如,较小的天线数量对应的搜索空间集合的聚合等级较大,从而,能够有利于提高PDCCH的检测性能能够适应;较大的天线数量对应的搜索空间集合的聚合等级较小,从而有利于节约系统资源;再例如,天线数量较小的搜索空间集合的资源映射方式为非交织映射方式,从而,能够使接入设备有效利用调度增益;天线数量较大的搜索空间集合的资源映射方式为交织 映射方式,从而,能够使聚合等级较低的PDCCH获得分集增益;由此,能够有利于提高PDCCH的检测性能能够适应数量流量的动态变化,降低通信时延,提高通信的可靠性,改善用户体验。
可选地,所述接入设备根据终端设备当前运行的DRX的定时器,确定第一搜索空间集合包括:所述接入设备确定至少两种DRX的定时器与至少两个搜索空间集合之间的映射关系,所述至少两个搜索空间集合中的任意两个搜索空间集合之间存在至少一种不同的参数,所述参数包括搜索空间集合的检测周期;所述接入设备将与所述终端设备当前运行的DRX的定时器对应的搜索空间集合,确定为第一搜索空间集合。
可选地,所述方法还包括:所述接入设备向所述终端设备发送第一配置信息,所述第一配置信息用于指示所述至少两种DRX的定时器与至少两个搜索空间集合之间的映射关系。
可选地,接入设备根据终端设备当前运行的DRX的定时器,确定第一搜索空间集合包括:所述接入设备确定多个参数组中每个参数组对应的DRX的定时器,其中,每个参数组包括一个搜索空间集合的检测周期的值;所述接入设备将与所述终端设备备当前运行的DRX的定时器对应的参数组中的参数,确定为第一搜索空间集合的参数。
可选地,所述方法还包括:所述接入设备向所述终端设备发送第二配置信息,所述第二配置信息用于指示所述多个参数组中每个参数组对应的DRX的定时器。
可选地,所述至少两个搜索空间集合为所述终端设备的专用搜索空间集合。
可选地,所述第一搜索空间集合的检测周期大于所述第二搜索空间集合的检测周期。其中,所述第一搜索空间集合对应的DRX的定时器为drx-onDurationTimer,所述第二搜索空间集合对应的DRX的定时器为drx-InactivityTimer。
可选地,第一搜索空间集合对应的drx-onDurationTimer时,所述第一搜索空间集合的检测周期大于或等于预设的第一阈值。
可选地,当第一搜索空间集合对应drx-InactivityTimer时,所述第一搜索空间集合的检测周期小于或等于预设的第二阈值。
所述第一阈值包括10个solt,所述第二阈值包括5个slot。
第五方面,提供了一种无线通信的装置,包括:处理单元,存储单元。
其中,该装置中的各单元分别用于执行上述第一方面以及第一方面的各实现方式中的通信方法的各步骤。
在一种设计中,该装置为通信芯片,通信芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
在另一种设计中,所述装置为通信设备,通信设备可以包括用于发送信息或数据的发射机,以及用于接收信息或数据的接收机。
第六方面,提供了一种无线通信的装置,包括:处理单元,存储单元。
其中,该装置中的各单元分别用于执行上述第二方面以及第二方面的各实现方式中的通信方法的各步骤。
在一种设计中,该装置为通信芯片,通信芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
在另一种设计中,所述装置为通信设备,通信设备可以包括用于发送信息或数据的发 射机,以及用于接收信息或数据的接收机。
第七方面,提供了一种无线通信的装置,包括:处理器、存储器、控制电路、天线以及输入输出装置。
其中,该装置中的各单元分别用于执行上述第三方面以及第三方面的各实现方式中的通信方法的各步骤。
在一种设计中,该装置为通信芯片,通信芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
在另一种设计中,所述装置为通信设备,通信设备可以包括用于发送信息或数据的发射机,以及用于接收信息或数据的接收机。
第八方面,提供了一种无线通信的装置,包括:处理器、存储器、控制电路、天线以及输入输出装置。
其中,该装置中的各单元分别用于执行上述第四方面以及第四方面的各实现方式中的通信方法的各步骤。
在一种设计中,该装置为通信芯片,通信芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
在另一种设计中,所述装置为通信设备,通信设备可以包括用于发送信息或数据的发射机,以及用于接收信息或数据的接收机。
第九方面,提供了一种无线通信的装置,包括:射频单元,基带单元。
其中,该装置中的各单元分别用于执行上述第一方面至第四方面中的任一方面的各实现方式中的通信方法的各步骤。
在一种设计中,该装置为通信芯片,通信芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
在另一种设计中,所述装置为通信设备,通信设备可以包括用于发送信息或数据的发射机,以及用于接收信息或数据的接收机。
第十方面,提供了一种通信设备,包括:处理器、存储器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该通信设备执行第一方面至第四方面中的任一方面及其各种可能实现方式中的通信方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
可选的,该转发设备还包括,发射机(发射器)和接收机(接收器)。
第十一方面,提供了一种通信系统,包括上述第九方面提供的通信设备。
在一个可能的设计中,该通信系统还可以包括本申请实施例提供的方案中与通信设备进行交互的其他设备。
第十二方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面至第四方面中任一种可能实现方式中的方法。
第十三方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面至第四方 面中任一种可能实现方式中的方法。
第十四方面,提供了一种芯片系统,包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得安装有该芯片系统的通信设备执行上述第一方面至第四方面中任一种可能实现方式中的方法。
其中,该芯片系统可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
附图说明
图1是本申请的通信系统的示意性架构图。
图2是资源划分方式的一例的示意图。
图3是REG的结构的一例的示意图。
图4是不同聚合等级下候选PDCCH的可能的位置的一例的示意图。
图5是PDCCH与CCE的对应关系的一例的示意图。
图6是候选PDCCH的位置的一例的示意图。
图7是DRX周期的一例的示意图。
图8是DRX周期的另一例的示意图。
图9是本申请的PDCCH的检测过程的一例的示意性流程图。
图10是天线数量与检测周期的对应的关系的一例的示意图。
图11是本申请的PDCCH的检测过程的另一例的示意性流程图。
图12是本申请的PDCCH的检测过程的另一例的示意性流程图。
图13是定时器与检测周期的对应的关系的一例的示意图。
图14是本申请的PDCCH的检测过程的另一例的示意性流程图。
图15是本申请的无线通信的装置的一例的示意性框图。
图16是本申请的无线通信的装置的另一例的示意性框图。
图17是本申请的终端设备的一例的示意性结构图。
图18是本申请的接入设备的一例的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
作为示例而非限定,在本申请实施例中,本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终 端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。
在本申请实施例中,IOT技术可以通过例如窄带(narrow band)NB技术,做到海量连接,深度覆盖,终端省电。例如,NB只包括一个资源块(resource block,RB),即,NB的带宽只有180KB。要做到海量接入,必须要求终端在接入上是离散的,根据本申请实施例的通信方法,能够有效解决IOT技术海量终端在通过NB接入网络时的拥塞问题。
此外,在本申请中,终端设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通信(global system for mobile communications,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,可以是WLAN中的接入点(access point,AP),可以是新型无线系统(new radio,NR)系统中的gNB本申请实施例并不限定。
另外,在本申请实施例中,接入网设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与接入网设备进行通信,该小区可以是接入网设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
此外,LTE系统或5G系统中的载波上可以同时有多个小区同频工作,在某些特殊场景下,也可以认为上述载波与小区的概念等同。例如在载波聚合(carrier aggregation,CA)场景下,当为UE配置辅载波时,会同时携带辅载波的载波索引和工作在该辅载波的辅小区的小区标识(cell indentification,Cell ID),在这种情况下,可以认为载波与小区的概念等同,比如UE接入一个载波和接入一个小区是等同的。
核心网设备可以与多个接入网设备连接,用于控制接入网设备,并且,可以将从网络侧(例如,互联网)接收到的数据分发至接入网设备。
此外,在本申请中,网络设备可以包括基站(gNB),例如宏站、微基站、室内热点、以及中继节点等,功能是向终端设备发送无线电波,一方面实现下行数据传输,另一方面发送调度信息控制上行传输,并接收终端设备发送的无线电波,接收上行数据传输。
其中,以上列举的终端设备、接入网设备和核心网设备的功能和具体实现方式仅为示例性说明,本申请并未限定于此。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
需要说明的是,在本申请实施例中,在应用层可以运行多个应用程序,此情况下,执行本申请实施例的通信方法的应用程序与用于控制接收端设备完成所接收到的数据所对应的动作的应用程序可以是不同的应用程序。
图1是能够适用本申请实施例通信方法的系统100的示意图。如图1所示,该系统100包括接入网设备102,接入网设备102可包括1个天线或多个天线例如,天线104、106、108、110、112和114。另外,接入网设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
接入网设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。然 而,可以理解,接入网设备102可以与类似于终端设备116或终端设备122的任意数目的终端设备通信。终端设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路(也称为下行链路)118向终端设备116发送信息,并通过反向链路(也称为上行链路)120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在频分双工(frequency division duplex,FDD)系统中,例如,前向链路118可与反向链路120使用不同的频带,前向链路124可与反向链路126使用不同的频带。
再例如,在时分双工(time division duplex,TDD)系统和全双工(full duplex)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每个天线(或者由多个天线组成的天线组)和/或区域称为接入网设备102的扇区。例如,可将天线组设计为与接入网设备102覆盖区域的扇区中的终端设备通信。接入网设备可以通过单个天线或多天线发射分集向其对应的扇区内所有的终端设备发送信号。在接入网设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,接入网设备102的发射天线也可利用波束成形来改善前向链路118和124的信噪比。此外,与接入网设备通过单个天线或多天线发射分集向它所有的终端设备发送信号的方式相比,在接入网设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,接入网设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
此外,该通信系统100可以是PLMN网络、设备到设备(device-to-device,D2D)网络、机器到机器(machine to machine,M2M)网络、IoT网络或者其他网络,图1只是举例的简化示意图,网络中还可以包括其他接入网设备,图1中未予以画出。
在本申请实施例中,数据或信息可以通过时频资源来承载,其中,该时频资源可以包括时域上的资源和频域上的资源。
在本申请中,频域上的基本单位可以为一个子载波,并且,在本申请中,子载波间隔(Subcarrier Spacing,SCS)可以为15KHz、30KHz等。
在本申请中,并且,上行传输或下行传输所使用的频域资源的单位可以是物理资源块(Physical Resource Block,PRB),每个PRB由频域上12个连续子载波组成。
图2示出了本申请的时频资源的划分方式的一例,如图2所示,资源网格上的每个元素称为一个资源元素(Resource Element,RE)。其中,RE为最小的物理资源,包含一个正交频分复用(orthogonal frequency division multiplexing,OFDM)OFDM符号内的一个 子载波。
在本申请中,资源调度(例如,下行资源调度)的基本时间单位可以是一个时隙(slot),例如,一个slot在时间上由14个OFDM符号组成。
接入设备可以向终端设备传输物理下行共享信道(physical downlink shared channel,PDSCH)和物理下行控制信道(physical downlink control channel,PDCCH)。
为了正确接收PDSCH,终端设备需要先解调下行控制信道,PDCCH携带的下行控制信息(downlink control information,DCI)中包含接收PDSCH所需要的相关信息,例如,PDSCH的时频资源的位置和大小,以及多天线配置信息等。
其中,PDCCH在控制资源集合(control-resource set,CORESET)中传输,CORESET在频域上包括多个PRB,在时域上包括一个或多个(例如,2个或3个)OFDM符号,其中,该PDCCH对应的OFDM符号可位于slot内的任意位置。
在本申请中,控制信道单元(Control-channel element,CCE)是构成PDCCH的基本单位,在CORESET中的每个CCE都会有一个对应的索引号。
在本申请中,一个PDCCH可由一个或多个(例如,2,4,8或16个)CCE构成,例如,一个PDCCH包括的CCE的数量可以由该PDCCH的DCI载荷大小(DCI payload size)和/或该PDCCH所需的编码速率决定,构成PDCCH的CCE数量也被称为聚合等级(aggregation level,AL)。
接入设备可以根据实际传输的无线信道状态,对PDCCH的聚合等级进行调整,实现链路自适应传输。
并且,一个CCE与物理资源上6个资源单元组(resource-element group,REG)相对应。如图3所示,一个REG在时域占用一个OFDM符号,在频域占用一个资源块(即,包括频域连续的12个子载波)。
CCE与REG的映射关系可以包括交织式映射(Interleaved mapping)和非交织式映射(Non-interleaved mapping),实际传输过程中使用的映射关系可以通过高层信令配置。通过交织映射,能够将CCE映射后的REG分散在整个CORESET内,进而可获得频率分集增益。通过非交织式映射下,能够将CCE映射后的REG聚集在CORESET内的部分时频资源。
搜索空间(search space)是某个聚合等级(AL)下候选(candidate)PDCCH的集合。由于接入设备实际发送的PDCCH的聚合等级随时间可变,而且由于没有相关信令告知UE该聚合等级,UE需在不同聚合等级下盲检PDCCH,其中,待盲检的PDCCH称为候选PDCCH,某个聚合等级可以有多个候选PDCCH。UE会在搜索空间内对由CCE构成的所有候选PDCCH进行译码,例如,循环冗余校验(Cyclic Redundancy Check,CRC)译码,如果CRC校验通过,则终端设备可以认为所译码的PDCCH的内容对该终端设备有效,并处理译码后相关信息。例如图4示出了不同聚合等级下候选PDCCH的可能的位置的一例。
为了降低下行控制信道的盲检测复杂度,接入设备可为终端设备配置一个或多个搜索空间集合(search space set),其中,每个搜索空间集合包括一个或多个聚合等级的搜索空间。
搜索空间集合可以分为公共搜索空间集合(common search space set)和用户专用搜索 空间集合(UE-specific search space set)这两种类型。其中,公共搜索空间集合的PDCCH主要用于指示接收系统消息,随机接入响应,以及寻呼消息等。用户专用搜索空间集合的PDCCH用于为终端设备调度上行数据或下行数据。
接入设备可以向终端设备发送搜索空间集合的配置信息,该配置信息可以包括接入设备为终端设备配置的每个搜索空间集合的索引号以及每个搜索空间集合关联的CORESET的索引号。例如,设一个CORESET包括24个CCE,搜索空间集合中对应聚合等级AL=2,候选PDCCH的数量为6,则图5示出了候选PDCCH对应的CCE的一例。
在时域上,终端设备以一定的时间间隔检测搜索空间集合中的候选PDCCH,因此该配置信息还可以包括以下至少一种参数的信息:
参数1、检测周期
即,终端设备检测搜索空间集合的时间间隔,该检测周期的单位可以为slot。
参数2、时隙偏移
即,从检测周期的起始时刻到终端设备首次检测搜索空间集合的时刻之间的时间偏移量,其中,该时隙偏移量的值小于检测周期的取值。
参数3、时隙数量
即,终端设备在一次检测中连续检测搜索空间集合的时隙的数量,其中,该时隙数量的值小于检测周期的取值。
参数4、符号位置
即,每个slot内,搜索空间集合关联的CORESET起始符号的位置。
例如,设检测周期为10个slot,时隙偏移为3个slot,时隙数量为2个slot,搜索空间集合相关联的CORESET为一个占用2个OFDM符号的CORESET,符号位置为slot内OFDM符号0和OFDM符号7,则图6示出了候选PDCCH的位置,即,如图6所示,终端设备可以在每个检测周期内的索引为3和4的slot内的索引为0和7的符号上检测CORESET内搜索空间集合的候选PDCCH,且CORESET在时域上占用2个OFDM符号。
可选地,除上述信息之外,配置信息还可以包括但不限于以下一种或多种参数的信息:
参数5、聚合等级大小
即,接入设备为终端设备配置的每个搜索空间集合包括的聚合等级的信息,例如,该聚合等级的取值范围可以为:{1,2,4,8,16}。
参数6、候选控制信道数量
具体地说,是每个聚合等级的搜索空间内的候选PDCCH的数量。
在本申请中,终端设备可以处于不同的状态,其中一种状态为无线资源控制连接无线资源控制(Radio Resource Control,RRC)连接状态,简称RRC_CONNECTED状态。在RRC_CONNECTED状态下,终端设备已经建立了RRC上下文(context),即终端设备与无线接入网之间通信所必需的参数对于两者是已知的。
一般而言,基于包的数据流通常是突发性的,即,可能出现在一段时间内有数据传输,但在接下来的一段较长时间内没有数据传输。因此在本申请中,可以使用非连续接收(Discontinuous Reception,DRX)机制,即,在没有数据传输的时候,可以通过使终端设备停止检测PDCCH并停止接收相应数据传输来降低功耗,从而提升电池使用时间。
如图7所示,在DRX中,接入设备可为处于RRC_CONNECTED状态的终端设备配 置DRX周期(cycle),DRX cycle中包含一个称为“唤醒(On duration)”或者“激活”的时间区域。
在“on duration”的时间内,UE可以检测PDCCH。即,终端设备可以在每一个DRX cycle的时间起始位置(即“On duration”的时间起始位置)开启一个定时器,该定时器的时间长度即为“on duration”的时间长度,该定时器可以称之为持续时间定时器(drx-onDurationTimer),例如,该drx-onDurationTimer的范围可以为1~1200毫秒(ms)。
从而,终端设备可以在drx-onDurationTimer运行的时间范围内对PDCCH进行检测。
如果终端设备没有在drx-onDurationTimer运行的时间范围内检测到PDCCH,那么drx-onDurationTimer到时后,终端设备可以进入睡眠状态,即,终端设备在DRX cycle的其余时间段内可以关闭接收电路,从而降低终端的功耗。
如图8所示,如果终端设备在drx-onDurationTimer运行的时间范围内检测到PDCCH,那么终端设备可以开启DRX机制中的非激活定时器(drx-InactivityTimer)。如果在drx-InactivityTimer的运行时间内,终端设备继续检测到了PDCCH,那么终端设备可以重置(restart)该drx-InactivityTimer,并重新开始计时。并且,如果drx-InactivityTimer处于运行状态,则即使drx-onDurationTimer到时(或者说,超时),即“on duration”时间结束,终端设备仍然继续检测PDCCH,直到drx-InactivityTimer超时。
图9示出了本申请的下行控制信道的检测方法200的一例的示意图,如图9所示,接入设备#A可以为终端设备#A配置多个搜索空间集合。
作为示例而非限定,该搜索空间集合可以为终端设备#A的用户专用搜索空间集合。
在本申请中,该多个搜索空间集合中的任意两个搜索空间集合之间,至少存在一个不同的搜索空间集合参数。
并且,在本申请中,该搜索空间集合参数可以包括但不限于以下至少一种参数:
A、搜索空间集合的检测周期
即,终端设备检测搜索空间集合的时间间隔,该检测周期的单位可以为slot。
B、候选下行控制信道的聚合等级
即,搜索空间集合的搜索空间的聚合等级的取值,或者说,搜索空间集合中PDCCH包括的CCE的数量的取值。
例如,一种聚合等级的取值范围可以为{1,2,4,8}。
再例如,另一种聚合等级的取值范围可以为{1,2}。
再例如,另一种聚合等级的取值范围可以为{4,8}。
C、搜索空间集合所关联CORESET的索引
其中,通过搜索空间集合所关联CORESET的索引,终端设备可以获知该搜索空间集合的候选控制信道的CCE与REG的映射方式,例如,可以包括交织式映射和非交织式映射。
在本申请中,不同的搜索空间集合可以对应不同的终端设备接收天线数量集合,其中,每个终端设备接收天线数据集合包括至少一个终端设备接收天线数量(具体地说,是终端设备接收天线数量的值),或者说,该至少两个搜索空间集合与至少两种终端设备接收天线数量集合具有一一对应关系。
例如,设搜索空间集合#A与终端设备接收天线数据集合#A对应,则该搜索空间集合 #A的至少一种参数是根据终端设备接收天线数据集合#A确定的,作为示例而非限定,可以列举以下至少一种确定方式。
方式1
当终端设备接收天线数据集合#A中的天线数量的值(例如,最大值)小于或等于预设的阈值#A时,可以将搜索空间集合#A的检测周期配置为大于或等于预设的阈值#B。
当终端设备接收天线数据集合#A中的天线数量的值(例如,最小值)大于或等于预设的阈值#C时,可以将搜索空间集合#A的检测周期配置为小于或等于预设的阈值#D。
其中,阈值#A可以小于或等于阈值#C。
该阈值#B可以大于或等于该阈值#D。
例如,该阈值#A的取值可以为2,阈值#C的取值可以为4。
再例如,阈值#B可以为10个slot或16个slot,阈值#D可以为2个slot、4个slot或5个slot。
当终端设备使用的天线数量较少(例如,为2)时,表示当下行数据的数据量较小,此情况下,通过将搜索空间集合#A的检测周期设置为较大的值,能够降低终端设备的功耗。
相应地,当终端设备使用的天线数量较多(例如,为4)时,表示当下行数据的数据量较大,此情况下,通过将搜索空间集合#A的检测周期设置为较小的值,能够减少数据传输的时延,提高通信的可靠性。
方式2
当终端设备接收天线数据集合#A中的天线数量的值(例如,最大值)小于或等于预设的阈值#E时,可以将搜索空间集合#A的聚合等级配置为大于或等于预设的阈值#F。
当终端设备接收天线数据集合#A中的天线数量的值(例如,最小值)大于或等于预设的阈值#G时,可以将搜索空间集合#A的聚合等级配置为小于或等于预设的阈值#H。
其中,阈值#E可以小于或等于阈值#G。
该阈值#F可以大于或等于该阈值#H。
例如,该阈值#E的取值可以为2,阈值#G的取值可以为4。
此情况下,该阈值#F的取值可以为4,阈值#H的取值可以为2
当终端设备使用的天线数量较少(例如,为2)时,终端设备检测PDCCH的性能可能会受到影响,此情况下,增大聚合等级有利于提高PDCCH的检测性能。
当终端设备使用的天线数量较多(例如,为4)时,终端设备检测PDCCH的性能增强,此情况下,降低聚合等级有利于节约系统资源。
方式3
当终端设备接收天线数据集合#A中的天线数量的值(例如,最大值)小于或等于预设的阈值#I时,可以将搜索空间集合#A所关联CORESET的索引确定为索引#A,其中,索引#A的CORESET的CCE映射方式为非交织映射,从而搜索空间集合的候选控制信道的CCE的资源映射方式为非交织映射。
当终端设备接收天线数据集合#A中的天线数量的值(例如,最小值)大于或等于预设的阈值#J时,可以将搜索空间集合#A所关联CORESET的索引确定为索引#B,其中,索引#B的CORESET的CCE映射方式为交织映射,从而搜索空间集合的候选控制信道的 CCE的资源映射方式为交织映射。
其中,阈值#I可以小于或等于阈值#J。
例如,该阈值#I的取值可以为2,阈值#J的取值可以为4。
当终端设备使用的天线数量较少(例如,为2)时,通过使用非交织映射方式,能够使接入设备有效利用调度增益。
当终端设备使用的天线数量较多(例如,为4)时,能够通过交织映射使聚合等级较低(例如,2)的PDCCH获得分集增益。
再例如,设搜索空间集合#1与终端设备接收天线数据集合#1对应,设搜索空间集合#2与终端设备接收天线数据集合#2对应,则如果终端设备接收天线数据集合#1小于终端设备接收天线数据集合#2,则搜索空间集合#1和搜索空间集合#2之间可以满足以下至少一种关系。
关系1
如图10所示,搜索空间集合#1的检测周期大于搜索空间集合#2的检测周期。
或者说,搜索空间集合#1的检测时间间隔大于搜索空间集合#2的检测时间间隔。
当终端设备使用的天线数量较多(例如,为4)时,表示当下行数据的数据量较大,相应地,当终端设备使用的天线数量较少(例如,为2)时,表示当下行数据的数据量较小,即,当终端设备接收天线数据集合#1中的天线数量的值(例如,最大值)小于终端设备接收天线数据集合#2中的天线数量的值(例如,最小值)时,表示搜索空间集合#1所对应的下行传输的数据量小于搜索空间集合#1所对应的下行传输的数据量。
由此可知,使用搜索空间集合#1时终端设备的数量流量较小,此情况下,通过将搜索空间集合#1的检测周期设置为较大的值,能够降低终端设备的功耗。
与此相对,使用搜索空间集合#2时终端设备的数量流量较大,此情况下,通过将搜索空间集合#2的检测周期设置为较小的值,能够减少数据传输的时延,提高通信的可靠性。
例如,当终端设备接收天线数据集合#1中的天线数量的值(例如,最大值)为2时,搜索空间集合#1的检测周期可以为10个slot或16个slot。
再例如,当终端设备接收天线数据集合#2中的天线数量的值(例如,最小值)为4时,搜索空间集合#2的检测周期可以为2个slot、4个slot或5个slot。
关系2
搜索空间集合#1的聚合等级的取值范围小于搜索空间集合#2的聚合等级的取值范围。
例如,当终端设备接收天线数据集合#1中的天线数量的值(例如,最大值)为2时,搜索空间集合#1的聚合等级的取值范围可以为{4,8},或者说,搜索空间集合#1的聚合等级的取值为4或8。
当终端设备接收天线数据集合#2中的天线数量的值(例如,最小值)为4时,搜索空间集合#2的聚合等级的取值范围可以为{1,2,4,8},或者说,搜索空间集合#2的聚合等级的取值为1、2、4或8中的一种。
当终端设备使用的天线数量较少(例如,为2)时,终端设备检测PDCCH的性能可能会受到影响,此情况下,增大聚合等级有利于提高PDCCH的检测性能。
当终端设备使用的天线数量较多(例如,为4)时,终端设备检测PDCCH的性能增强,此情况下,降低聚合等级有利于节约系统资源。
关系3
搜索空间集合#1所关联CORESET的索引指示资源映射方式为非交织映射,搜索空间集合#2所关联CORESET的索引指示的资源映射方式为交织映射。
当终端设备使用的天线数量较少(例如,为2)时,通过使用非交织映射方式,能够使接入设备有效利用调度增益。
当终端设备使用的天线数量较多(例如,为4)时,能够通过交织映射使聚合等级较低(例如,2)的PDCCH获得分集增益。
以下表1示出了本申请的接收天线数与搜索空间集合的映射关系的一例。
表1
接收天线数 搜索空间集合的索引 检测周期(单位:slot)
2 索引1 10或16
4 索引2 2、4或5
以下表2示出了本申请的接收天线数与搜索空间集合的映射关系的另一例。
表2
接收天线数 搜索空间集合的索引 聚合等级
2 索引1 4或8
4 索引2 1、2、4或8
以下表3示出了本申请的接收天线数与搜索空间集合的映射关系的另一例。
表3
接收天线数 搜索空间集合的索引 CORESET的索引 资源映射方式
2 索引1 索引a 非交织映射
4 索引2 索引b 交织映射
以下表4示出了本申请的接收天线数与搜索空间集合的映射关系的另一例。
表4
接收天线数 搜索空间集合的索引 检测周期(单位:slot) 聚合等级 资源映射方式
2 索引1 10或16 4或8 非交织映射
4 索引2 2、4或5 1、2、4或8 交织映射
以下表5示出了本申请的接收天线数与搜索空间集合的映射关系的另一例。
表5
接收天线数 搜索空间集合的索引
2 索引1
4 索引2
在表5所示映射关系中,索引1的搜索空间集合的检测周期可以大于索引2的搜索空间集合的检测周期,例如,索引1的搜索空间集合的检测周期可以为10个slot或16个slot,索引2的搜索空间集合的检测周期可以为2个slot、4个slot或5个slot。
或者,索引1的搜索空间集合的聚合等级可以大于索引2的搜索空间集合的聚合等级,例如,索引1的搜索空间集合的聚合等级可以为4或8,索引2的搜索空间集合的聚合等级可以为1、2、4或8。
或者,索引1的搜索空间集合的资源映射方式可以为非交织映射,索引2的搜索空间集合的资源映射方式可以为交织映射。
在S210,接入设备#A可以向终端设备#A发送配置信息#A,该配置信息#A可以用于指示该至少两个搜索空间集合中每个搜索空间集合的参数,其中,该参数可以包括但不限于上述参数1至参数6中的至少一种参数。
并且,该配置信息#A还可以指示该至少两个搜索空间集合与至少两个终端设备接收天线数量集合之间的映射关系,或者说,该配置信息#A还可以指示该至少两个搜索空间集合中的每个搜索空间集合所对应的终端设备接收天线数量集合量。
在S220,当接入设备#A在时刻#A向终端设备#A发送PDCCH时,接入设备#A可以确定终端设备#A在时刻#A使用的接收天线的数量(记做,数量#A)。
例如,接入设备#A可以根据在时刻#B是否向终端设备#A发送PDCCH的情况,确定该数量#A,其中,时刻#B是位于时刻#A之前的时刻,并且,该时刻#B与时刻#A之间具有预设的时间间隔#A,其中,该时间间隔#A可以是通信系统或通信协议规定的,也可以是管理员根据数据统计确定的。
具体地说,如果接入设备#A在时刻#B向终端设备#A发送了PDCCH,则接入设备#A可以确定数量#A的值为X,其中,该X可以是终端设备#A在数据流较大时使用的接收天线的数量,例如,该X的值可以为4,其中,该X的值可以是通信系统或通信协议规定的,也可以是管理员根据数据统计确定的。
如果接入设备#A在时刻#B没有向终端设备#A发送PDCCH,则接入设备#A可以确定数量#A的值为Y,其中,该Y可以是终端设备#A在数据流较小时使用的接收天线的数量,例如,该Y的值可以为2,其中,该Y的值可以是通信系统或通信协议规定的,也可以是管理员根据数据统计确定的。
再例如,接入设备#A可以指示终端设备#A上报该数量#A。
再例如,终端设备#A可以周期性上报所使用的接收天线的数量,从而,接入设备#A可以将终端设备#A在时刻#A之前最后一次上报的接收天线的数量,确定为数量#A。
类似地,终端设备#A在时刻#A可以确定当前使用的接收天线的数量。
例如,终端设备#A可以根据在时刻#B是否检测到PDCCH的情况,确定该数量#A,其中,时刻#B是位于时刻#A之前的时刻,并且,该时刻#B与时刻#A之间具有预设的时间间隔#A,其中,该时间间隔#A可以是通信系统或通信协议规定的,也可以是管理员根据数据统计确定的。
具体地说,如果终端设备#A在时刻#B检测到PDCCH,则终端设备#A可以确定数量#A的值为X,其中,该X可以是终端设备#A在数据流较大时使用的接收天线的数量,例如,该X的值可以为4,其中,该X的值可以是通信系统或通信协议规定的,也可以是管 理员根据数据统计确定的。
如果终端设备#A在时刻#B没有检测到PDCCH,则终端设备#A可以确定数量#A的值为Y,其中,该Y可以是终端设备#A在数据流较小时使用的接收天线的数量,例如,该Y的值可以为2,其中,该Y的值可以是通信系统或通信协议规定的,也可以是管理员根据数据统计确定的。
再例如,终端设备#A可以任意确定数量#A,并且,终端设备#A可以根据接入设备#A的指示上报该数量#A。
再例如,终端设备#A可以周期性上报所使用的接收天线的数量,从而,终端设备#A可以将终端设备#A在时刻#A之前最后一次上报的接收天线的数量,确定为数量#A。
应理解,以上列举的确定数量#A的方法和过程仅为示例性说明,本申请并未限定于此,只要能够确保接入设备#A和终端设备#A所确定的数量#A一致即可。
其后,接入设备#A和终端设备#A可以根据上述映射关系,确定与该数量#A所属于的终端设备接收天线数量集合对应的搜索空间集合(记做,搜索空间集合#A)。
从而,在S230,接入设备#A可以在搜索空间集合#A上发送PDCCH。
相应地,终端设备#A可以在搜索空间集合#A上检测PDCCH。
根据本申请提供的方案,通过由接入设备为终端设备配置多个天线数量与多个搜索空间集合之间的映射关系,终端设备在检测PDCCH时,可以根据当前使用的天线数量,选择对应的搜索空间集合进行PDCCH检测,例如,较大的天线数量对应的搜索空间集合的检测周期小,从而,能够确保数据传输的可靠性,降低传输时延;较小的天线数量对应的搜索空间集合的检测周期较小,从而,能够降低终端设备的功耗;再例如,较小的天线数量对应的搜索空间集合的聚合等级较大,从而,能够有利于提高PDCCH的检测性能能够适应;较大的天线数量对应的搜索空间集合的聚合等级较小,从而有利于节约系统资源;再例如,天线数量较小的搜索空间集合的资源映射方式为非交织映射方式,从而,能够使接入设备有效利用调度增益;天线数量较大的搜索空间集合的资源映射方式为交织映射方式,从而,能够使聚合等级较低的PDCCH获得分集增益;由此,能够有利于提高PDCCH的检测性能能够适应数量流量的动态变化,降低通信时延,提高通信的可靠性,改善用户体验。
图11示出了本申请的下行控制信道的检测方法300的一例的示意图,如图11所示,接入设备#a可以为终端设备#a配置一个搜索空间集合。
作为示例而非限定,该搜索空间集合可以为终端设备#a的用户专用搜索空间集合。
并且,接入设备#a可以为终端设备#a配置多个参数组,其中,每个参数组包括至少一种搜索空间参数及其参数值。
并且,在本申请中,该搜索空间集合参数可以包括但不限于以下至少一种参数:
A、搜索空间集合的检测周期
即,终端设备检测搜索空间集合的时间间隔,该检测周期的单位可以为slot。
B、候选下行控制信道的聚合等级
即,搜索空间集合的搜索空间的聚合等级的取值,或者说,搜索空间集合中PDCCH包括的CCE的数量的取值。
例如,一种聚合等级的取值范围可以为{1,2,4,8}。
再例如,另一种聚合等级的取值范围可以为{1,2}。
再例如,另一种聚合等级的取值范围可以为{4,8}。
C、搜索空间集合所关联的CORESET的索引
其中,通过搜索空间集合所关联CORESET的索引,终端设备可以获知该搜索空间集合的候选控制信道的CCE与REG的映射方式,例如,可以包括交织式映射和非交织式映射。
在本申请中,不同的参数组可以对应不同的接收天线数量(具体地说,是终端设备的接收天线的数量),或者说,该至少两个参数组与至少两种接收天线数量具有一一对应关系。
例如,设参数组#a与终端设备接收天线数据集合#a对应,则该参数组#a的至少一种参数是根据终端设备接收天线数据集合#a确定的,作为示例而非限定,可以列举以下至少一种确定方式。
方式1
当终端设备接收天线数据集合#a中的终端设备接收天线的数量的值(例如,最大值)小于或等于预设的阈值#a时,可以将参数组#a中的检测周期配置为大于或等于预设的阈值#b。
当终端设备接收天线数据集合#a中的终端设备接收天线的数量的值(例如,最小值)大于或等于预设的阈值#c时,可以将参数组#a的检测周期配置为小于或等于预设的阈值#d。
其中,阈值#a可以小于或等于阈值#c。
该阈值#b可以大于或等于该阈值#d。
例如,该阈值#a的取值可以为2,阈值#c的取值可以为4。
再例如,阈值#B可以为10个slot或16个slot,阈值#D可以为2个slot、4个slot或5个slot。
当终端设备使用的天线数量较少(例如,为2)时,表示当下行数据的数据量较小,此情况下,通过将参数组#a的检测周期设置为较大的值,能够降低终端设备的功耗。
相应地,当终端设备使用的天线数量较多(例如,为4)时,表示当下行数据的数据量较大,此情况下,通过将参数组#a的检测周期设置为较小的值,能够减少数据传输的时延,提高通信的可靠性。
方式2
当终端设备接收天线数据集合#a中的终端设备接收天线的数量的值(例如,最大值)的数量小于或等于预设的阈值#e时,可以将参数组#a的聚合等级配置为大于或等于预设的阈值#f。
当终端设备接收天线数据集合#a中的终端设备接收天线的数量的值(例如,最小值)的数量大于或等于预设的阈值#g时,可以将参数组#a的聚合等级配置为小于或等于预设的阈值#h。
其中,阈值#e可以小于或等于阈值#g。
该阈值#f可以大于或等于该阈值#h。
例如,该阈值#e的取值可以为2,阈值#g的取值可以为4。
此情况下,该阈值#f的取值可以为4,阈值#h的取值可以为2
当终端设备使用的天线数量较少(例如,为2)时,终端设备检测PDCCH的性能可能会受到影响,此情况下,增大聚合等级有利于提高PDCCH的检测性能。
当终端设备使用的天线数量较多(例如,为4)时,终端设备检测PDCCH的性能增强,此情况下,降低聚合等级有利于节约系统资源。
方式3
当终端设备接收天线数据集合#a中的终端设备接收天线的数量的值(例如,最大值)的数量小于或等于预设的阈值#i时,可以将参数组#a的CORESET的索引确定为索引#a,其中,索引#a的CORESET的CCE映射方式为非交织映射,从而基于参数组#a的搜索空间集合的候选控制信道的CCE的资源映射方式为非交织映射。
当终端设备接收天线数据集合#a中的终端设备接收天线的数量的值(例如,最小值)的数量大于或等于预设的阈值#j时,可以将参数组#a的CORESET的索引确定为索引#b,其中,索引#b的CORESET的CCE映射方式为交织映射,从而基于参数组#a的搜索空间集合的候选控制信道的CCE的资源映射方式为交织映射。
其中,阈值#i可以小于或等于阈值#j。
例如,该阈值#i的取值可以为2,阈值#j的取值可以为4。
当终端设备使用的天线数量较少(例如,为2)时,通过使用非交织映射方式,能够使接入设备有效利用调度增益。
当终端设备使用的天线数量较多(例如,为4)时,能够通过交织映射使聚合等级较低(例如,2)的PDCCH获得分集增益。
再例如,设参数组#1与终端设备接收天线数据集合#1对应,设参数组#1与终端设备接收天线数据集合#2对应,则如果终端设备接收天线数据集合#1中的终端天线接收数量的值(例如,最大值)小于终端设备接收天线数据集合#2中的终端天线接收数量的值(例如,最小值),则参数组#a和参数组#a之间可以满足以下至少一种关系。
关系1
如图10所示,参数组#1的检测周期大于参数组#2的检测周期。
或者说,参数组#1的检测时间间隔大于参数组合#2的检测时间间隔。
当终端设备使用的天线数量较多(例如,为4)时,表示当下行数据的数据量较大,相应地,当终端设备使用的天线数量较少(例如,为2)时,表示当下行数据的数据量较小,即,当终端设备接收天线数据集合#1中的终端天线接收数量的值(例如,最大值)小于终端设备接收天线数据集合#2中的终端天线接收数量的值(例如,最小值)时,表示参数组#1所对应的下行传输的数据量小于参数组#1所对应的下行传输的数据量。
由此可知,使用参数组#1时终端设备的数量流量较小,此情况下,通过将参数组#1的检测周期设置为较大的值,能够降低终端设备的功耗。
与此相对,使用参数组#2时终端设备的数量流量较大,此情况下,通过将参数组#2的检测周期设置为较小的值,能够减少数据传输的时延,提高通信的可靠性。
例如,当终端设备接收天线数据集合#1中的终端天线接收数量的值(例如,最大值)为2时,参数组#1的检测周期可以为10个slot或16个slot。
再例如,当终端设备接收天线数据集合#2中的终端天线接收数量的值(例如,最小 值)为4时,参数组#2的检测周期可以为2个slot、4个slot或5个slot。
关系2
参数组#1的聚合等级的取值范围小于参数组#2的聚合等级的取值范围。
例如,当终端设备接收天线数据集合#1中的终端天线接收数量的值(例如,最大值)为2时,参数组#1的聚合等级的取值范围可以为{4,8},或者说,参数组#1的聚合等级的取值为4或8。
当终端设备接收天线数据集合#2中的终端天线接收数量的值(例如,最小值)为4时,参数组#2的聚合等级的取值范围可以为{1,2,4,8},或者说,参数组#2的聚合等级的取值为1、2、4或8中的一种。
当终端设备使用的天线数量较少(例如,为2)时,终端设备检测PDCCH的性能可能会受到影响,此情况下,增大聚合等级有利于提高PDCCH的检测性能。
当终端设备使用的天线数量较多(例如,为4)时,终端设备检测PDCCH的性能增强,此情况下,降低聚合等级有利于节约系统资源。
关系3
参数组#1的资源映射方式为非交织映射,参数组#2的资源映射方式为交织映射。
当终端设备使用的天线数量较少(例如,为2)时,通过使用非交织映射方式,能够使接入设备有效利用调度增益。
当终端设备使用的天线数量较多(例如,为4)时,能够通过交织映射使聚合等级较低(例如,2)的PDCCH获得分集增益。
以下表a示出了本申请的接收天线数与参数组的映射关系的一例。
表a
接收天线数 参数组的索引 检测周期(单位:slot)
2 索引1 10或16
4 索引2 2、4或5
以下表b示出了本申请的接收天线数与参数组的映射关系的另一例。
表b
接收天线数 参数组的索引 聚合等级
2 索引1 4或8
4 索引2 1、2、4或8
以下表c示出了本申请的接收天线数与参数组的映射关系的另一例。
表c
接收天线数 参数组的索引 CORESET的索引 资源映射方式
2 索引1 索引a 非交织映射
4 索引2 索引b 交织映射
以下表d示出了本申请的接收天线数与参数组的映射关系的另一例。
表d
接收天线数 参数组的索引 检测周期(单位:slot) 聚合等级 资源映射方式
2 索引1 10或16 4或8 非交织映射
4 索引2 2、4或5 1、2、4或8 交织映射
以下表e示出了本申请的接收天线数与搜索空间集合的映射关系的另一例。
表e
接收天线数 搜索空间集合的索引
2 索引1
4 索引2
在表e所示映射关系中,索引1的参数组的检测周期可以大于索引2的参数组的检测周期,例如,索引1的参数组的检测周期可以为10个slot或16个slot,索引2的参数组的检测周期可以为2个slot、4个slot或5个slot。
或者,索引1的参数组的聚合等级可以大于索引2的参数组的聚合等级,例如,索引1的参数组的聚合等级可以为4或8,索引2的参数组的聚合等级可以为1、2、4或8。
或者,索引1的参数组的资源映射方式可以为非交织映射,索引2的参数组的资源映射方式可以为交织映射。
在S310,接入设备#a可以向终端设备#a发送配置信息#a,该配置信息#a可以用于指示为该终端设备#a配置的一个搜索空间集合(记做,搜索空间集合#a)。
并且,该配置信息#a还可以指示该至少两个参数组与至少两种终端设备接收天线数量集合之间的映射关系,或者说,该配置信息#a还可以指示该至少两个参数组中的每个参数组所对应的终端设备接收天线数量集合。
在S320,当接入设备#a在时刻#a向终端设备#a发送PDCCH时,接入设备#a可以确定终端设备#a在时刻#a使用的接收天线的数量(记做,数量#a)。
例如,接入设备#a可以根据在时刻#b是否向终端设备#a发送PDCCH的情况,确定该数量#a,其中,时刻#b是位于时刻#a之前的时刻,并且,该时刻#b与时刻#a之间具有预设的时间间隔#a,其中,该时间间隔#a可以是通信系统或通信协议规定的,也可以是管理员根据数据统计确定的。
具体地说,如果接入设备#a在时刻#b向终端设备#a发送了PDCCH,则接入设备#a可以确定数量#a的值为X,其中,该X可以是终端设备#a在数据流较大时使用的接收天线的数量,例如,该X的值可以为4,其中,该X的值可以是通信系统或通信协议规定的,也可以是管理员根据数据统计确定的。
如果接入设备#a在时刻#b没有向终端设备#a发送PDCCH,则接入设备#a可以确定数量#a的值为Y,其中,该Y可以是终端设备#a在数据流较小时使用的接收天线的数量,例如,该Y的值可以为2,其中,该Y的值可以是通信系统或通信协议规定的,也可以是管理员根据数据统计确定的。
再例如,接入设备#a可以指示终端设备#a上报该数量#a。
再例如,终端设备#a可以周期性上报所使用的接收天线的数量,从而,接入设备#a可以将终端设备#a在时刻#a之前最后一次上报的接收天线的数量,确定为数量#a。
类似地,终端设备#a在时刻#a可以确定当前使用的接收天线的数量。
例如,终端设备#a可以根据在时刻#b是否检测到PDCCH的情况,确定该数量#a,其中,时刻#Bb是位于时刻#a之前的时刻,并且,该时刻#b与时刻#a之间具有预设的时间间隔#a,其中,该时间间隔#a可以是通信系统或通信协议规定的,也可以是管理员根据数据统计确定的。
具体地说,如果终端设备#a在时刻#b检测到PDCCH,则终端设备#a可以确定数量#a的值为X,其中,该X可以是终端设备#a在数据流较大时使用的接收天线的数量,例如,该X的值可以为4,其中,该X的值可以是通信系统或通信协议规定的,也可以是管理员根据数据统计确定的。
如果终端设备#a在时刻#b没有检测到PDCCH,则终端设备#a可以确定数量#a的值为Y,其中,该Y可以是终端设备#a在数据流较小时使用的接收天线的数量,例如,该Y的值可以为2,其中,该Y的值可以是通信系统或通信协议规定的,也可以是管理员根据数据统计确定的。
再例如,终端设备#a可以任意确定数量#a,并且,终端设备#a可以根据接入设备#a的指示上报该数量#a。
再例如,终端设备#a可以周期性上报所使用的接收天线的数量,从而,终端设备#a可以将终端设备#a在时刻#a之前最后一次上报的接收天线的数量,确定为数量#a。
应理解,以上列举的确定数量#a的方法和过程仅为示例性说明,本申请并未限定于此,只要能够确保接入设备#a和终端设备#a所确定的数量#a一致即可。
其后,接入设备#a和终端设备#a可以根据上述映射关系,确定与该数量#a所属于的终端设备接收天线数量集合对应的参数组(记做,参数组#a)。
从而,在S330,接入设备#a可以在搜索空间集合#a上,使用参数组#a发送PDCCH。
相应地,终端设备#a可以在搜索空间集合#a上,使用参数组#a检测PDCCH。
根据本申请提供的方案,通过由接入设备为终端设备配置多个天线数量与多个搜索空间集合之间的映射关系,终端设备在检测PDCCH时,可以根据当前使用的天线数量,选择对应的搜索空间集合进行PDCCH检测,例如,较大的天线数量对应的搜索空间集合的检测周期小,从而,能够确保数据传输的可靠性,降低传输时延;较小的天线数量对应的搜索空间集合的检测周期较小,从而,能够降低终端设备的功耗;再例如,较小的天线数量对应的搜索空间集合的聚合等级较大,从而,能够有利于提高PDCCH的检测性能能够适应;较大的天线数量对应的搜索空间集合的聚合等级较小,从而有利于节约系统资源;再例如,天线数量较小的搜索空间集合的资源映射方式为非交织映射方式,从而,能够使接入设备有效利用调度增益;天线数量较大的搜索空间集合的资源映射方式为交织映射方式,从而,能够使聚合等级较低的PDCCH获得分集增益;由此,能够有利于提高PDCCH的检测性能能够适应数量流量的动态变化,降低通信时延,提高通信的可靠性,改善用户体验。
图12示出了本申请的下行控制信道的检测方法400的一例的示意图,如图12所示,接入设备#1可以为终端设备#1配置多个搜索空间集合。
作为示例而非限定,该搜索空间集合可以为终端设备#1的用户专用搜索空间集合。
在本申请中,该多个搜索空间集合中的任意两个搜索空间集合之间,至少存在一个不 同的搜索空间集合参数。
并且,在本申请中,该搜索空间集合参数可以包括检测周期。
即,终端设备检测搜索空间集合的时间间隔,该检测周期的单位可以为slot。
在本申请中,不同的搜索空间集合可以对应不同的定时器(例如,drx-onDurationTimer和drx-InactivityTimer),或者说,该至少两个搜索空间集合与至少两种定时器具有一一对应关系。
例如,设搜索空间集合#1与定时器#1对应,则该搜索空间集合#1的至少一种参数是根据定时器#1确定的。
当定时器#1为drx-onDurationTimer时,可以将搜索空间集合#1的检测周期配置为大于或等于预设的阈值#2。
当定时器#1为drx-InactivityTimer时,可以将搜索空间集合#1的检测周期配置为小于或等于预设的阈值#4。
其中,阈值#1可以小于或等于阈值#3。
该阈值#2可以大于或等于该阈值#4。
例如,该阈值#1的取值可以为2,阈值#3的取值可以为4。
再例如,阈值#2可以为10个slot或16个slot,阈值#4可以为2个slot、4个slot或5个slot。
当drx-onDurationTimer运行(或者,说启动)时,表示当下行数据的数据量较小,此情况下,通过将搜索空间集合#1的检测周期设置为较大的值,能够降低终端设备的功耗。
相应地,当drx-InactivityTimer运行时,表示当下行数据的数据量较大,此情况下,通过将搜索空间集合#1的检测周期设置为较小的值,能够减少数据传输的时延,提高通信的可靠性。
如图13所示,搜索空间集合#a的检测周期大于搜索空间集合#b的检测周期。
或者说,搜索空间集合#a的检测时间间隔大于搜索空间集合#b的检测时间间隔。
以下表6示出了本申请的定时器与搜索空间集合的映射关系的一例。
表6
定时器 搜索空间集合的索引 检测周期(单位:slot)
drx-onDurationTimer 索引1 10或16
drx-InactivityTimer 索引2 2、4或5
以下表7示出了本申请的定时器与搜索空间集合的映射关系的另一例。
表7
定时器 搜索空间集合的索引
drx-onDurationTimer 索引1
drx-InactivityTimer 索引2
在表7所示映射关系中,索引1的搜索空间集合的检测周期可以大于索引2的搜索空间集合的检测周期,例如,索引1的搜索空间集合的检测周期可以为10个slot或16个slot,索引2的搜索空间集合的检测周期可以为2个slot、4个slot或5个slot。
在S410,接入设备#1可以向终端设备#1发送配置信息#1,该配置信息#1可以用于指 示该至少两个搜索空间集合中每个搜索空间集合的参数,其中,该参数可以包括但不限于上述参数1至参数6中的至少一种参数。
并且,该配置信息#1还可以指示该至少两个搜索空间集合与至少两种定时器之间的映射关系,或者说,该配置信息#1还可以指示该至少两个搜索空间集合中的每个搜索空间集合所对应的定时器。
在S420,当接入设备#1在时刻#1向终端设备#1发送PDCCH时,接入设备#1可以确定终端设备#1在时刻#1启动的定时器(记做,定时器#X)。
例如,接入设备#1可以根据为终端设备#1配置的DRX周期,以及在时刻#2是否向终端设备#1发送PDCCH的情况,确定该定时器#X,其中,时刻#2是位于时刻#1之前的时刻,并且,该时刻#2与时刻#1之间具有预设的时间间隔#1,其中,该时间间隔#1可以是通信系统或通信协议规定的,也可以是管理员根据数据统计确定的。
具体地说,如果接入设备#1在时刻#2向终端设备#1发送了PDCCH,则接入设备#1可以确定定时器#X为drx-InactivityTimer。
如果接入设备#1在时刻#2没有向终端设备#1发送PDCCH,则接入设备#1可以确定定时器#X为drx-onDurationTimer。
并且,终端设备#1能够确定在时刻#1运行的定时器#X。
应理解,以上列举的确定定时器#X的方法和过程仅为示例性说明,本申请并未限定于此,只要能够确保接入设备#1和终端设备#1所确定的定时器#X一致即可。
其后,接入设备#1和终端设备#1可以根据上述映射关系,确定与该定时器#X对应的搜索空间集合(记做,搜索空间集合#1)。
从而,在S430,接入设备#1可以在搜索空间集合#1上发送PDCCH。
相应地,终端设备#1可以在搜索空间集合#1上检测PDCCH。
根据本申请提供的方案,通过由接入设备为终端设备配置多个定时器与多个搜索空间集合之间的映射关系,终端设备在检测PDCCH时,可以根据当前使用的定时器,选择对应的搜索空间集合进行PDCCH检测,例如,drx-InactivityTimer对应的搜索空间集合的检测周期小,从而,能够确保数据传输的可靠性,降低传输时延;drx-onDurationTimer对应的搜索空间集合的检测周期较小,从而,能够降低终端设备的功耗,由此,能够有利于提高PDCCH的检测性能能够适应数量流量的动态变化,降低通信时延,提高通信的可靠性,改善用户体验。
图14示出了本申请的下行控制信道的检测方法500的一例的示意图,如图12所示,接入设备#m可以为终端设备#m配置一个搜索空间集合(记做:搜索空间#m)。
作为示例而非限定,该搜索空间集合可以为终端设备#m的用户专用搜索空间集合。
并且,接入设备#m可以为终端设备#m配置多个参数组,其中,每个参数组包括至少一种搜索空间参数及其参数值。
并且,在本申请中,该搜索空间集合参数可以包括但不限于检测周期。
即,终端设备检测搜索空间集合的时间间隔,该检测周期的单位可以为slot。
在本申请中,不同的参数组可以对应不同的定时器(例如,drx-onDurationTimer和drx-InactivityTimer),或者说,该至少两个参数组与至少两种定时器具有一一对应关系。
例如,设参数组#m与定时器#m对应,则该参数组#m的至少一种参数是根据定时器 #m确定的。
当定时器#m为drx-onDurationTimer时,可以将参数组#m的检测周期配置为大于或等于预设的阈值#2。
当定时器#m为drx-InactivityTimer时,可以将参数组#m的检测周期配置为小于或等于预设的阈值#4。
其中,阈值#m可以小于或等于阈值#3。
该阈值#2可以大于或等于该阈值#4。
例如,该阈值#m的取值可以为2,阈值#3的取值可以为4。
再例如,阈值#2可以为10个slot或16个slot,阈值#4可以为2个slot、4个slot或5个slot。
当drx-onDurationTimer运行(或者,说启动)时,表示当下行数据的数据量较小,此情况下,通过将参数组#m的检测周期设置为较大的值,能够降低终端设备的功耗。
相应地,当drx-InactivityTimer运行时,表示当下行数据的数据量较大,此情况下,通过将参数组#m的检测周期设置为较小的值,能够减少数据传输的时延,提高通信的可靠性。
如图13所示,参数组#a的检测周期大于参数组#b的检测周期。
或者说,搜索空间集合#a的检测时间间隔大于参数组合#b的检测时间间隔。
以下表f示出了本申请的定时器与参数组的映射关系的一例。
表f
定时器 参数组的索引 检测周期(单位:slot)
drx-onDurationTimer 索引1 10或16
drx-InactivityTimer 索引2 2、4或5
以下表g示出了本申请的定时器与参数组的映射关系的另一例。
表g
定时器 参数组的索引
drx-onDurationTimer 索引1
drx-InactivityTimer 索引2
在表g所示映射关系中,索引1的参数组的检测周期可以大于索引2的参数组的检测周期,例如,索引1的参数组的检测周期可以为10个slot或16个slot,索引2的参数组的检测周期可以为2个slot、4个slot或5个slot。
在S510,接入设备#m可以向终端设备#m发送配置信息#m,该配置信息#m可以用于指搜索空间#m的参数,其中,该参数可以包括但不限于上述参数1至参数6中的至少一种参数。
并且,该配置信息#m还可以指示该至少两个参数组与至少两种定时器之间的映射关系,或者说,该配置信息#m还可以指示该至少两个参数组中的每个参数组所对应的定时器。
在S520,当接入设备#m在时刻#m向终端设备#m发送PDCCH时,接入设备#m可以确定终端设备#m在时刻#m启动的定时器(记做,定时器#m)。
例如,接入设备#m可以根据为终端设备#m配置的DRX周期,以及在时刻#n是否向终端设备#m发送PDCCH的情况,确定该定时器#m,其中,时刻#n是位于时刻#m之前的时刻,并且,该时刻#n与时刻#m之间具有预设的时间间隔#m,其中,该时间间隔#m可以是通信系统或通信协议规定的,也可以是管理员根据数据统计确定的。
具体地说,如果接入设备#m在时刻#n向终端设备#m发送了PDCCH,则接入设备#m可以确定定时器#m为drx-InactivityTimer。
如果接入设备#m在时刻#n没有向终端设备#m发送PDCCH,则接入设备#m可以确定定时器#m为drx-onDurationTimer。
并且,终端设备#m能够确定在时刻#m运行的定时器#m。
应理解,以上列举的确定定时器#m的方法和过程仅为示例性说明,本申请并未限定于此,只要能够确保接入设备#m和终端设备#m所确定的定时器#m一致即可。
其后,接入设备#m和终端设备#m可以根据上述映射关系,确定与该定时器#X对应的参数组(记做,参数组#m)。
从而,在S530,接入设备#m可以在搜索空间集合#m上,使用参数组#m发送PDCCH。
相应地,终端设备#m可以在搜索空间集合#m上,使用参数组#m检测PDCCH。
根据本申请提供的方案,通过由接入设备为终端设备配置多个定时器与多个搜索空间集合之间的映射关系,终端设备在检测PDCCH时,可以根据当前使用的定时器,选择对应的搜索空间集合进行PDCCH检测,例如,drx-InactivityTimer对应的搜索空间集合的检测周期小,从而,能够确保数据传输的可靠性,降低传输时延;drx-onDurationTimer对应的搜索空间集合的检测周期较小,从而,能够降低终端设备的功耗,由此,能够有利于提高PDCCH的检测性能能够适应数量流量的动态变化,降低通信时延,提高通信的可靠性,改善用户体验。
根据前述方法,图15为本申请实施例提供的无线通信的装置500的示意图。
其中,该装置600可以为终端设备,也可以为芯片或电路,比如可设置于终端设备的芯片或电路。
该装置600可以包括处理单元610(即,处理单元的一例)和存储单元620。该存储单元620用于存储指令。
该处理单元610用于执行该存储单元620存储的指令,以使装置600实现如上述方法中终端设备,(例如,终端设备#A或终端设备#1)执行的步骤。
进一步的,该装置600还可以包括输入口630(即,通信单元的一例)和输出口640(即,通信单元的另一例)。进一步的,该处理单元610、存储单元620、输入口630和输出口640可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储单元620用于存储计算机程序,该处理单元610可以用于从该存储单元620中调用并运行该计算计程序,以控制输入口630接收信号,控制输出口640发送信号,完成上述方法中终端设备的步骤。该存储单元620可以集成在处理单元610中,也可以与处理单元610分开设置。
可选地,若该装置600为通信设备(例如,终端设备),该输入口630为接收器,该输出口640为发送器。其中,接收器和发送器可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
可选地,若该装置600为芯片或电路,该输入口630为输入接口,该输出口640为输 出接口。
作为一种实现方式,输入口630和输出口640的功能可以考虑通过收发电路或者收发的专用芯片实现。处理单元610可以考虑通过专用处理芯片、处理电路、处理单元或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的通信设备(例如,接入设备或终端设备)。即将实现处理单元610、输入口630和输出口640功能的程序代码存储在存储单元620中,通用处理单元通过执行存储单元620中的代码来实现处理单元610、输入口630和输出口640的功能。
在一种实现方式中,处理单元610用于根据当前使用的接收天线数量,确定第一搜索空间集合;处理单元610用于控制输入口630根据所述第一搜索空间集合,检测下行控制信道。
可选地,处理单元610用于根据当前使用的接收天线数量,从至少两种搜索空间中,确定第一搜索空间集合,所述至少两个搜索空间集合中的任意两个搜索空间集合之间存在至少一种不同的参数,所述参数包括:
检测周期、聚合等级或资源映射方式或搜索空间集合索引。
可选地,输入口630用于接收第一配置信息,所述第一配置信息用于指示至少两种接收天线数量与至少两个搜索空间集合之间的映射关系;
处理单元610用于所述终端设备将所述第一配置信息指示的与当前使用的接收天线数量对应的搜索空间集合,确定为第一搜索空间集合。
可选地,处理单元610用于根据当前使用的接收天线数量,确定第一搜索空间集合的参数,所述参数包括检测周期、聚合等级或资源映射方式中的至少一种参数。
可选地,输入口630用于接收第二配置信息,所述第二配置信息用于指示多个参数组中每个参数组对应的接收天线数量,其中,每个参数组包括检测周期、聚合等级或资源映射方式中的至少一种参数的参数值;
处理单元610用于将所述第二配置信息指示的与当前使用的接收天线数量对应的参数组中的参数,确定为第一搜索空间集合的参数。
可选地,所述至少两个搜索空间集合为所述终端设备的专用搜索空间集合。
其中,以上列举的装置600中各模块或单元的功能和动作仅为示例性说明,该装置600配置在或本身即为终端设备,装置600中各模块或单元可以用于执行上述方法中终端设备(例如,终端设备#A或终端设备#z1)所执行的各动作或处理过程,为了避免赘述,省略其详细说明。
该装置600所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
根据前述方法,图16为本申请实施例提供的无线通信的装置700的示意图。
其中,该装置700可以为接入设备(例如,接入设备#A或接入设备#1),也可以为芯片或电路,比如可设置于接入设备的芯片或电路。
该装置700可以包括处理单元710(即,处理单元的一例)和存储单元720。该存储单元720用于存储指令。
该处理单元710用于执行该存储单元720存储的指令,以使装置700实现如上述方法 中接入设备执行的步骤。
进一步的,该装置700还可以包括输入口730(即,通信单元的一例)和输出口740(即,通信单元的另一例)。进一步的,该处理单元710、存储单元720、输入口730和输出口740可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储单元720用于存储计算机程序,该处理单元710可以用于从该存储单元720中调用并运行该计算计程序,以控制输入口730接收信号,控制输出口740发送信号,完成上述方法中终端设备的步骤。该存储单元720可以集成在处理单元710中,也可以与处理单元710分开设置。
可选地,若该装置700为通信设备(例如,接入设备),该输入口730为接收器,该输出口740为发送器。其中,接收器和发送器可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
可选地,若该装置700为芯片或电路,该输入口730为输入接口,该输出口740为输出接口。
作为一种实现方式,输入口730和输出口740的功能可以考虑通过收发电路或者收发的专用芯片实现。处理单元710可以考虑通过专用处理芯片、处理电路、处理单元或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的通信设备(例如,接入设备)。即将实现处理单元710、输入口730和输出口740功能的程序代码存储在存储单元720中,通用处理单元通过执行存储单元720中的代码来实现处理单元710、输入口730和输出口740的功能。
在一种实现方式中,处理单元710用于根据终端设备当前使用的接收天线数量,确定第一搜索空间集合;
处理单元710用于控制输出口740根据所述第一搜索空间集合,发送下行控制信道。
可选地,处理单元710用于确定至少两种接收天线数量与至少两个搜索空间集合之间的映射关系,所述至少两个搜索空间集合中的任意两个搜索空间集合之间存在至少一种不同的参数,所述参数包括:检测周期、聚合等级或资源映射方式或搜索空间集合索引;,并用于将与当前使用的接收天线数量对应的搜索空间集合,确定为第一搜索空间集合。
可选地,输出口740用于向所述终端设备发送第一配置信息,所述第一配置信息用于指示所述至少两种接收天线数量与至少两个搜索空间集合之间的映射关系。
可选地,处理单元710用于确定多个参数组中每个参数组对应的接收天线数量,其中,每个参数组包括检测周期、聚合等级或资源映射方式中的至少一种参数的参数值;并用于将与所述终端设备当前使用的接收天线数量对应的参数组中的参数,确定为第一搜索空间集合的参数。
可选地,输出口740用于向所述终端设备发送第二配置信息,所述第二配置信息用于指示所述多个参数组中每个参数组对应的接收天线数量。
可选地,所述至少两个搜索空间集合为所述终端设备的专用搜索空间集合。
其中,以上列举的装置700中各模块或单元的功能和动作仅为示例性说明,当该装置700配置在或本身即为接入设备时,装置700中各模块或单元可以用于执行上述方法中接入设备(例如,接入设备#A或接入设备#1)所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
该装置700所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
图17为本申请提供的一种终端设备800的结构示意图。上述装置600可以配置在该终端设备800中,或者,上述装置600本身可以即为该终端设备800。或者说,该终端设备800可以执行上述方法200、300、400或500中终端设备执行的动作。
为了便于说明,图17仅示出了终端设备的主要部件。如图17所示,终端设备800包括处理器、存储器、控制电路、天线以及输入输出装置。
处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述传输预编码矩阵的指示方法实施例中所描述的动作。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述的码本。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图17仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
例如,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图17中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端设备800的收发单元810,将具有处理功能的处理器视为终端设备800的处理单元820。如图800所示,终端设备800包括收发单元810和处理单元820。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元810中用于实现接收功能的器件视为接收单元,将收发单元810中用于实现发送功能的器件视为发送单元,即收发单元包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元 可以称为发射机、发射器或者发射电路等。
图18为本申请实施例提供的一种接入设备900的结构示意图,可以用于实现上述方法中的接入设备(例如,接入设备#A或接入设备#1)的功能。接入设备900包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)910和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)920。所述RRU910可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线911和射频单元912。所述RRU910部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送上述实施例中所述的信令消息。所述BBU920部分主要用于进行基带处理,对基站进行控制等。所述RRU910与BBU920可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU920为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如该BBU(处理单元)920可以用于控制基站40执行上述方法实施例中关于网络设备的操作流程。
在一个示例中,所述BBU920可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE系统,或5G系统),也可以分别支持不同接入制式的无线接入网。所述BBU920还包括存储器921和处理器922。所述存储器921用以存储必要的指令和数据。例如存储器921存储上述实施例中的码本等。所述处理器922用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器921和处理器922可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
在一种可能的实施方式中,随着片上系统(system-on-chip,SoC)技术的发展,可以将920部分和910部分的全部或者部分功能由SoC技术实现,例如由一颗基站功能芯片实现,该基站功能芯片集成了处理器、存储器、天线接口等器件,基站相关功能的程序存储在存储器中,由处理器执行程序以实现基站的相关功能。可选的,该基站功能芯片也能够读取该芯片外部的存储器以实现基站的相关功能。
应理解,图18示例的接入设备的结构仅为一种可能的形态,而不应对本申请实施例构成任何限定。本申请并不排除未来可能出现的其他形态的基站结构的可能。
根据本申请实施例提供的方法,本申请实施例还提供一种通信系统,其包括前述的接入设备和一个或多个终端设备。
应理解,本申请实施例中,该处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只 读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,本文中术语“……中的至少一个”或“……中至少一种”或类似表述,表示所列出的各项的任意组合,例如,A、B和C中的至少一个(或者A、B或C中的至少一个),可以表示:单独存在A,单独存在B,单独存在C,同时存在A和B,同时存在A和C,同时存在B和C,同时存在A、B和C这七种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的 划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (39)

  1. 一种无线通信的方法,其特征在于,包括:
    终端设备根据当前使用的接收天线数量,确定第一搜索空间集合;
    所述终端设备根据所述第一搜索空间集合,检测下行控制信道。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备根据当前使用的接收天线数量,确定第一搜索空间集合,包括:
    所述终端设备根据当前使用的接收天线数量,从至少两个搜索空间集合中,确定所述第一搜索空间集合。
  3. 根据权利要求2所述的方法,所述至少两个搜索空间集合中的每个搜索空间集合与一个终端设备接收天线数量集合相关联,其中,所述终端设备接收天线数量集合包括至少一个终端设备接收天线数量,以及
    所述第一搜索空间集合为所关联的终端设备接收天线数量集合包括所述终端设备当前使用的接收天线数量的搜索空间集合。
  4. 根据权利要求2或3所述的方法,其特征在于,所述至少两个搜索空间集合中的任意两个搜索空间集合之间存在至少一种不同的参数,所述参数包括:
    搜索空间集合的检测周期、候选下行控制信道的聚合等级或搜索空间集合所关联的控制资源集合CORESET的索引。
  5. 根据权利要求2至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第一配置信息,所述第一配置信息用于指示所述至少两个搜索空间集合中每个搜索空间集合所关联的终端设备接收天线数量集合。
  6. 根据权利要求1所述的方法,其特征在于,所述终端设备根据当前使用的接收天线数量,确定第一搜索空间集合,包括:
    所述终端设备根据当前使用的接收天线数量,确定第一搜索空间集合的参数,所述参数包括搜索空间集合的检测周期、候选下行控制信道的聚合等级和搜索空间集合所关联CORESET的索引中的至少一种参数。
  7. 根据权利要求6所述的方法,其特征在于,所述第一搜索空间集合的参数包括至少两个参数组,每个参数组与一个终端设备接收天线数量集合相关联,其中,所述终端设备接收天线数量集合包括至少一个终端设备接收天线数量,每个参数组包括搜索空间集合的检测周期、候选下行控制信道的聚合等级和搜索空间集合所关联CORESET的索引中的至少一种参数的参数值,以及
    所述第一搜索空间集合的参数为所关联的终端设备接收天线数量集合包括所述终端设备当前使用的接收天线数量的参数组中的参数。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第二配置信息,所述第二配置信息用于指示所述至少两个参数组中每个参数组所关联的接收天线数量。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述至少两个搜索空间集合为所述终端设备的专用搜索空间集合。
  10. 一种无线通信的方法,其特征在于,包括:
    接入设备根据终端设备当前使用的接收天线数量,确定第一搜索空间集合;
    所述接入设备根据所述第一搜索空间集合,发送下行控制信道。
  11. 根据权利要求10所述的方法,其特征在于,所述接入设备根据终端设备当前使用的接收天线数量,确定第一搜索空间集合,包括:
    所述接入设备根据当前使用的接收天线数量,从至少两个搜索空间集合中,确定第一搜索空间集合。
  12. 根据权利要求11所述的方法,其特征在于,所述至少两个搜索空间集合中的每个搜索空间集合与一个终端设备接收天线数量集合相关联,其中,所述终端设备接收天线数量集合包括至少一个终端设备接收天线数量,以及
    所述第一搜索空间集合为所关联的终端设备接收天线数量集合包括所述终端设备当前使用的接收天线数量的搜索空间集合。
  13. 根据权利要求11或12所述的方法,其特征在于,所述至少两个搜索空间集合中的任意两个搜索空间集合之间存在至少一种不同的参数,所述参数包括:
    搜索空间集合的检测周期、候选下行控制信道的聚合等级或搜索空间集合所关联的控制资源集合CORESET的索引。
  14. 根据权利要求12或13所述的方法,其特征在于,所述方法还包括:
    所述接入设备发送第一配置信息,所述第一配置信息用于指示所述至少两个搜索空间集合中每个搜索空间集合所关联的接收天线数量。
  15. 根据权利要求10所述的方法,其特征在于,接入设备根据终端设备当前使用的接收天线数量,确定第一搜索空间集合包括:
    所述接入设备根据所述终端设备当前使用的接收天线数量,确定第一搜索空间集合的参数,所述参数包括搜索空间集合的检测周期、候选下行控制信道的聚合等级和搜索空间集合所关联CORESET的索引中的至少一种参数。
  16. 根据权利要求15所述的方法,其特征在于,所述第一搜索空间集合的参数包括至少两个参数组,每个参数组与一个终端设备接收天线数量集合相关联,其中,所述终端设备接收天线数量集合包括至少一个终端设备接收天线数量,每个参数组包括搜索空间集合的检测周期、候选下行控制信道的聚合等级和搜索空间集合所关联CORESET的索引中的至少一种参数的参数值,以及
    所述第一搜索空间集合的参数为所关联的终端设备接收天线数量集合包括所述终端设备当前使用的接收天线数量的参数组中的参数。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    所述接入设备发送第二配置信息,所述第二配置信息用于指示所述至少两个参数组中每个参数组所关联的接收天线数量。
  18. 根据权利要求10至17中任一项所述的方法,其特征在于,所述至少两个搜索空间集合为所述终端设备的专用搜索空间集合。
  19. 一种终端设备,其特征在于,包括:
    处理单元,用于根据所述终端设备当前使用的接收天线数量,确定第一搜索空间集合;
    收发单元,用于根据所述第一搜索空间集合,检测下行控制信道。
  20. 根据权利要求19所述的终端设备,其特征在于,所述处理单元还用于:
    根据所述终端设备当前使用的接收天线数量,从至少两个搜索空间集合中,确定所述第一搜索空间集合。
  21. 根据权利要求19所述的终端设备,所述至少两个搜索空间集合中的每个搜索空间集合与一个终端设备接收天线数量集合相关联,其中,接收天线数量集合包括至少一个终端设备接收天线数量,以及
    所述第一搜索空间集合为所关联的终端设备接收天线数量集合包括所述终端设备当前使用的接收天线数量的搜索空间集合。
  22. 根据权利要求20或21所述的终端设备,其特征在于,所述至少两个搜索空间集合中的任意两个搜索空间集合之间存在至少一种不同的参数,所述参数包括:
    搜索空间集合的检测周期、候选下行控制信道的聚合等级或搜索空间集合所关联的控制资源集合CORESET的索引。
  23. 根据权利要求20至22中任一项所述的终端设备,其特征在于,所述收发单元还用于:
    接收第一配置信息,所述第一配置信息用于指示所述至少两个搜索空间集合中每个搜索空间集合所关联的终端设备接收天线数量集合。
  24. 根据权利要求19所述的终端设备,其特征在于,所述处理单元还用于:
    根据所述终端设备当前使用的接收天线数量,确定第一搜索空间集合的参数,所述参数包括搜索空间集合的检测周期、候选下行控制信道的聚合等级和搜索空间集合所关联CORESET的索引中的至少一种参数。
  25. 根据权利要求24所述的终端设备,其特征在于,所述第一搜索空间集合的参数包括至少两个参数组,每个参数组与一个终端设备接收天线数量集合相关联,其中,所述终端设备接收天线数量集合包括至少一个终端设备接收天线数量,每个参数组包括搜索空间集合的检测周期、候选下行控制信道的聚合等级和搜索空间集合所关联CORESET的索引中的至少一种参数的参数值,以及
    所述第一搜索空间集合的参数为所关联的终端设备接收天线数量集合包括所述终端设备当前使用的接收天线数量的参数组中的参数。
  26. 根据权利要求25所述的终端设备,其特征在于,所述收发单元还用于:
    接收第二配置信息,所述第二配置信息用于指示所述至少两个参数组中每个参数组所关联的接收天线数量。
  27. 根据权利要求19至26中任一项所述的终端设备,其特征在于,所述至少两个搜索空间集合为所述终端设备的专用搜索空间集合。
  28. 一种接入设备,其特征在于,包括:
    处理单元,用于根据终端设备当前使用的接收天线数量,确定第一搜索空间集合;
    收发单元,用于根据所述第一搜索空间集合,发送下行控制信道。
  29. 根据权利要求28所述的接入设备,其特征在于,所述处理单元还用于:
    根据当前使用的接收天线数量,从至少两个搜索空间集合中,确定第一搜索空间集合。
  30. 根据权利要求29所述的接入设备,其特征在于,所述至少两个搜索空间集合中的每个搜索空间集合与一个终端设备接收天线数量集合相关联,其中,所述终端设备接收 天线数量集合包括至少一个终端设备接收天线数量,以及
    所述第一搜索空间集合为所关联的终端设备接收天线数量集合包括所述终端设备当前使用的接收天线数量的搜索空间集合。
  31. 根据权利要求29或30所述的接入设备,其特征在于,所述至少两个搜索空间集合中的任意两个搜索空间集合之间存在至少一种不同的参数,所述参数包括:
    搜索空间集合的检测周期、候选下行控制信道的聚合等级或搜索空间集合所关联的控制资源集合CORESET的索引。
  32. 根据权利要求30或31所述的接入设备,其特征在于,所述收发单元还用于:
    发送第一配置信息,所述第一配置信息用于指示所述至少两个搜索空间集合中每个搜索空间集合所关联的接收天线数量。
  33. 根据权利要求28所述的接入设备,其特征在于,所述处理单元还用于:
    根据所述终端设备当前使用的接收天线数量,确定第一搜索空间集合的参数,所述参数包括搜索空间集合的检测周期、候选下行控制信道的聚合等级和搜索空间集合所关联CORESET的索引中的至少一种参数。
  34. 根据权利要求33所述的接入设备,其特征在于,所述第一搜索空间集合的参数包括至少两个参数组,每个参数组与一个终端设备接收天线数量集合相关联,其中,所述终端设备接收天线数量集合包括至少一个终端设备接收天线数量,每个参数组包括搜索空间集合的检测周期、候选下行控制信道的聚合等级和搜索空间集合所关联CORESET的索引中的至少一种参数的参数值,以及
    所述第一搜索空间集合的参数为所关联的终端设备接收天线数量集合包括所述终端设备当前使用的接收天线数量的参数组中的参数。
  35. 根据权利要求34所述的接入设备,其特征在于,所述收发单元还用于:
    发送第二配置信息,所述第二配置信息用于指示所述至少两个参数组中每个参数组所关联的接收天线数量。
  36. 根据权利要求28至35中任一项所述的接入设备,其特征在于,所述至少两个搜索空间集合为所述终端设备的专用搜索空间集合。
  37. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,
    使得所述计算机执行如权利要求1至9中任意一项所述的方法,或者
    使得所述计算机执行如权利要求10至18中任意一项所述的方法。
  38. 一种芯片系统,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,
    使得安装有所述芯片系统的通信设备执行如权利要求1至9中任意一项所述的方法;或者
    使得安装有所述芯片系统的通信设备执行如权利要求10至18中任意一项所述的方法。
  39. 一种无线通信的装置,其特征在于,所述装置包括处理器和存储介质,所述存储介质存储有指令,所述指令被所述处理器运行时,
    使得所述处理器执行如权利要求1至9中任意一项所述的方法,或者
    使得所述处理器执行如权利要求10至18中任意一项所述的方法。
PCT/CN2020/074772 2019-02-15 2020-02-11 一种无线通信的方法和装置 WO2020164487A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910118116.8 2019-02-15
CN201910118116.8A CN111586853A (zh) 2019-02-15 2019-02-15 一种无线通信的方法和装置

Publications (1)

Publication Number Publication Date
WO2020164487A1 true WO2020164487A1 (zh) 2020-08-20

Family

ID=72044572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074772 WO2020164487A1 (zh) 2019-02-15 2020-02-11 一种无线通信的方法和装置

Country Status (2)

Country Link
CN (1) CN111586853A (zh)
WO (1) WO2020164487A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115956381A (zh) * 2021-08-06 2023-04-11 北京小米移动软件有限公司 一种无线资源管理测量方法及其装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101981858A (zh) * 2008-03-27 2011-02-23 皇家飞利浦电子股份有限公司 用于在移动网络中通信的方法
US20110205978A1 (en) * 2010-02-20 2011-08-25 Motorola, Inc. Multi-Carrier Control Signaling in Wireless Communication System
CN102291736A (zh) * 2011-08-08 2011-12-21 中兴通讯股份有限公司 下行控制信道的检测方法、用户设备及基站
CN103312435A (zh) * 2012-03-09 2013-09-18 华为技术有限公司 一种控制信道的调制或传输层数的确定方法及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101981858A (zh) * 2008-03-27 2011-02-23 皇家飞利浦电子股份有限公司 用于在移动网络中通信的方法
US20110205978A1 (en) * 2010-02-20 2011-08-25 Motorola, Inc. Multi-Carrier Control Signaling in Wireless Communication System
CN102291736A (zh) * 2011-08-08 2011-12-21 中兴通讯股份有限公司 下行控制信道的检测方法、用户设备及基站
CN103312435A (zh) * 2012-03-09 2013-09-18 华为技术有限公司 一种控制信道的调制或传输层数的确定方法及设备

Also Published As

Publication number Publication date
CN111586853A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
WO2021027887A1 (zh) 一种通信方法及通信装置
WO2020143752A1 (zh) 信息传输的方法和通信装置
WO2020156378A1 (zh) 接收参考信号的方法、发送参考信号的方法和装置
US20220006602A1 (en) Discontinuous Reception for Carrier Aggregation
WO2020029890A1 (zh) 接收参考信号的方法和通信设备
WO2021023215A1 (zh) 无线通信的方法和装置
WO2019192501A1 (zh) 资源指示值的获取方法及装置
WO2021208821A1 (zh) 一种通信方法和通信装置
CN112771991B (zh) 使用节能参考信号降低功耗的系统及方法
EP3787212A1 (en) Communication method and communication device
CN113950856A (zh) 一种通信方法、通信装置和系统
US11784746B2 (en) Bandwidth puncture and response rules
WO2021027605A1 (zh) 接收、发送下行控制信息的方法和装置
WO2020164487A1 (zh) 一种无线通信的方法和装置
WO2022213872A1 (zh) 通信方法和通信装置
US11812438B2 (en) Specifying a transmission-time limit for uplink multi-user communication
WO2021031632A1 (zh) 一种下行控制信息dci的发送方法及装置
WO2021134437A1 (zh) 传输初始接入配置信息的方法和装置
WO2020088455A1 (zh) 通信方法和通信装置
CN114698104A (zh) 一种指示天线端口的方法、装置与系统
WO2023185344A1 (zh) 物理下行控制信道的监测方法及其装置
US20240032065A1 (en) Resource Determining Method and Apparatus
WO2022151390A1 (zh) 一种通信方法、装置及计算机可读存储介质
WO2021232208A1 (zh) 一种srs的配置方法及装置、网络设备、终端设备
WO2022109838A1 (zh) 无线通信的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20756042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20756042

Country of ref document: EP

Kind code of ref document: A1