WO2021027887A1 - 一种通信方法及通信装置 - Google Patents

一种通信方法及通信装置 Download PDF

Info

Publication number
WO2021027887A1
WO2021027887A1 PCT/CN2020/108960 CN2020108960W WO2021027887A1 WO 2021027887 A1 WO2021027887 A1 WO 2021027887A1 CN 2020108960 W CN2020108960 W CN 2020108960W WO 2021027887 A1 WO2021027887 A1 WO 2021027887A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
terminal device
indication information
duration
bwps
Prior art date
Application number
PCT/CN2020/108960
Other languages
English (en)
French (fr)
Inventor
张战战
铁晓磊
周涵
黄雯雯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20852654.1A priority Critical patent/EP4013133A4/en
Publication of WO2021027887A1 publication Critical patent/WO2021027887A1/zh
Priority to US17/669,445 priority patent/US20220166594A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/028Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a communication method and communication device.
  • the fifth generation (5th generation, 5G) mobile communication new radio (NR) system introduced the concept of bandwidth part (BWP).
  • a network device can configure one or more downlink BWPs and one or more uplink BWPs for a terminal device to meet the use requirements of the terminal devices for different services.
  • the network device needs to reserve a certain processing time for the terminal device. This processing time can be called the BWP switch delay (T BWPswitchDelay ), and the terminal device is within the switch delay No data is sent or received.
  • T BWPswitchDelay the BWP switch delay
  • the terminal device reports its own capability parameter (bwp-SwitchingDelay) to the network device, and the capability parameter can indicate whether the BWP switching delay capability type of the terminal device is type 1 or type 2, and the network device can switch according to the BWP
  • the delay capability type determines the handover delay of the terminal device between any two BWPs in a cell.
  • the above method for determining the handover delay is not flexible enough, and the determined result may not be accurate enough.
  • the handover delay determined by the network device according to the BWP handover delay capability type may be too large. At this time, even if the terminal device can complete the BWP handover in a short time, the network device cannot Dispatch terminal equipment faster, which will increase data service latency and reduce throughput.
  • the present application provides a communication method and communication device, which can flexibly indicate the handover delay of the BWP, so that the data transmission between the terminal device and the network device can be performed more efficiently.
  • a communication method is provided, which may be executed by a terminal device, or may also be executed by a chip or a circuit configured in the terminal device, which is not limited in this application.
  • the method includes: the terminal device sends first indication information to the network device, the first indication information is used to indicate that the handover delay between the first bandwidth part BWP and the second BWP is a first duration; the first BWP and the second BWP are The uplink BWP or downlink BWP used by the terminal device to send and receive data.
  • the terminal device in the embodiment of this application can target multiple BWPs in the serving cell (including The handover delay between certain two BWPs in the configured and to-be-configured BWP is instructed to the network equipment, and the network equipment can determine the handover delay of the BWP according to the indication, thereby making the determination of the BWP handover delay (indication )
  • the method is more flexible and the result is more accurate.
  • the terminal device switches between the above two BWPs, it can switch according to the reported switching delay, so that the terminal device and the network device can perform data more efficiently. Transmission.
  • the first indication information includes the identifier of the first BWP, the identifier of the second BWP, and the indication information of the first duration.
  • the identifier of the BWP may be the number of the BWP.
  • the BWP ID 1 and BWP ID 2 may be included in the first indication information.
  • the identification of the first BWP and the second BWP may also exist in other forms, which is not limited in this application. Specifically, for the first BWP or the second BWP, as long as the information of the first BWP or the second BWP can be identified, it can be counted as the identifier of the first BWP or the second BWP.
  • the identifier of the first BWP or the second BWP may also be other information of the first BWP or the second BWP.
  • the information that the first BWP can be distinguished from other BWPs may be regarded as the identifier of the first BWP, and the first BWP
  • the information of the second BWP that can be distinguished from other BWPs is used as the identifier of the second BWP.
  • the identifier of the first BWP or the second BWP may be a configuration parameter of the BWP.
  • it may be at least one of sub-carrier spacing (or ⁇ value), center frequency, bandwidth and other information.
  • the ⁇ value of multiple BWPs outside the first BWP in the current first serving cell is 1, and the ⁇ value of the first BWP is 2, then the ⁇ value 2 may be used as the identifier of the first BWP.
  • the method before the terminal device sends the first indication information to the network device, the method further includes: the terminal device determines the first duration.
  • the first BWP and the second BWP are any two of the multiple downlink BWPs configured by the network device to the terminal device in the first serving cell, Or the first BWP and the second BWP are any two of the multiple uplink BWPs configured by the network device to the terminal device in the first serving cell.
  • At least one BWP of the first BWP and the second BWP recommends the network device to the terminal device in the first serving cell Configured BWP.
  • the BWP that the terminal device recommends that the network device configure the terminal device includes the BWP that is about to be configured but has not yet been configured.
  • the at least one BWP may be a BWP that the terminal device suggests that the network device is about to configure the terminal device in the first serving cell, but has not yet been configured.
  • the method further includes: the terminal device sends second indication information to the network device, the second indication information is used to indicate at least one recommended configuration parameter of the BWP .
  • the method further includes: the terminal device receives a reconfiguration message sent by the network device, the reconfiguration message is used to configure the terminal according to the recommended configuration parameters The at least one BWP.
  • the first duration is less than the second duration
  • the second duration is determined according to the BWP switching delay capability type of the terminal device between the first BWP and the second BWP The switching delay between.
  • the handover delay determined by the BWP handover delay capability type may be too long (the terminal device may not need that long time for BWP handover), and the first duration of this application is less than the second duration.
  • the terminal device can complete the BWP switching faster, so that the data transmission between the terminal device and the network device can be realized faster, thereby reducing the data service delay and improving the data throughput.
  • the terminal device determines the first duration according to configuration parameters of the first BWP and the second BWP.
  • the configuration parameter may include at least one of bandwidth, center frequency, and subcarrier spacing.
  • the configuration parameters of the first BWP and the second BWP satisfy at least one of the following conditions: the difference between the center frequencies of the first BWP and the second BWP is less than or equal to The first threshold; the bandwidth difference between the first BWP and the second BWP is less than or equal to the second threshold; the difference between the subcarrier spacing of the first BWP and the second BWP is less than or equal to the third threshold.
  • the above-mentioned first threshold, second threshold, and third threshold may be specified by a protocol or system, or may be agreed between the network device and the terminal device, or may be determined by the terminal device according to its own capabilities. Not limited.
  • the aforementioned first threshold, second threshold, and third threshold may be zero. That is, at this time, the configuration parameters of the first BWP and the second BWP may satisfy at least one of the following conditions: the center frequency of the first BWP and the second BWP are the same; the bandwidth of the first BWP and the second BWP are the same; The subcarrier spacing of the first BWP and the second BWP is the same.
  • the method further includes: the terminal device receives a confirmation message sent by the network device, and the confirmation message is used to instruct the terminal device to switch between the first BWP and the second BWP
  • the time delay is the first time length.
  • the confirmation message may be carried in any of the following messages: radio resource control RRC message, medium access control element MAC CE message, and layer 1 message.
  • the RRC message may include, but is not limited to, any of the following messages: RRC establishment message, RRC rejection message, RRC reconfiguration message, RRC reestablishment message, RRC release message, and RRC recovery message.
  • the layer 1 message includes a downlink control message DCI.
  • the first serving cell is any one of a plurality of serving cells of the terminal device, and the first indication information further includes a cell identity of the first serving cell.
  • the indication information of the first duration includes a numerical value of the first duration or an index value of the first duration.
  • the first indication information is further used to indicate that the handover delay between the third BWP and the fourth BWP is the third duration.
  • the third duration may be equal to or not equal to the first duration.
  • the third duration is equal to the first duration.
  • the first indication information may carry the identifiers of the first BWP, the second BWP, the third BWP, and the fourth BWP, as well as a duration of indication information, thereby saving signaling Overhead.
  • the first indication information should also include the corresponding association relationship, so as to help the network device to determine which two BWPs are specifically applicable to handover between the above-mentioned indication information of one duration.
  • the terminal device and the network device are in the TDD system
  • the third BWP may be a BWP bound to the first BWP, that is, the BWP numbers of the third BWP and the first BWP are the same, one indicates the uplink BWP, and the other indicates
  • the fourth BWP may be a BWP bound to the second BWP, that is, the BWP numbers of the fourth BWP and the second BWP are the same, one represents the uplink BWP, and the other represents the downlink BWP.
  • one of the third BWP and the fourth BWP may be the same BWP as one of the first BWP and the second BWP.
  • a communication method is provided, which may be executed by a network device, or may also be executed by a chip or circuit configured in the network device, which is not limited in this application.
  • the method includes: a network device receives first indication information sent by a terminal device, the first indication information is used to indicate that the switching delay between the first bandwidth part BWP and the second BWP is a first duration; the first BWP and the second BWP It is the uplink BWP or downlink BWP used by the terminal device to send and receive data.
  • the first indication information includes the identifiers of the first BWP and the second BWP and the indication information of the first duration.
  • the first duration is determined by the terminal device.
  • the first BWP and the second BWP are any two of multiple downlink BWPs or multiple uplink BWPs configured by the network device to the terminal device in the first serving cell .
  • At least one BWP of the first BWP and the second BWP is a BWP that the terminal device recommends that the network device newly configure the terminal device in the first serving cell.
  • the method further includes: the network device receives second indication information sent by the terminal device, where the second indication information is used to indicate at least one recommended configuration parameter of the BWP.
  • the method further includes: the network device sends a reconfiguration message to the terminal device, where the reconfiguration message is used to configure the terminal according to the recommended configuration parameters. At least one BWP is mentioned.
  • the first duration is less than the second duration
  • the second duration is determined between the first BWP and the second BWP according to the BWP switching delay capability type of the terminal device The handover delay.
  • the first duration is determined according to configuration parameters of the first BWP and the second BWP.
  • the configuration parameters of the first BWP and the second BWP satisfy at least one of the following conditions: the difference between the center frequencies of the first BWP and the second BWP is less than or equal to The first threshold; the bandwidth difference between the first BWP and the second BWP is less than or equal to the second threshold; the difference between the subcarrier spacing of the first BWP and the second BWP is less than or equal to the third threshold.
  • the method further includes: the network device sends a confirmation message to the terminal device, where the confirmation message is used to instruct the terminal device to switch between the first BWP and the second BWP Delay for the first time.
  • the first serving cell is any one of a plurality of serving cells of the terminal device, and the first indication information further includes a cell identity of the first serving cell.
  • the indication information of the first duration includes the value of the first duration or the index value of the first duration.
  • the first indication information is further used to indicate that the handover delay between the third BWP and the fourth BWP is the third duration.
  • a communication method is provided, which may be executed by a terminal device, or may also be executed by a chip or circuit configured in the terminal device, which is not limited in this application.
  • the method includes: the terminal device determines the first MIMO layer number, the first MIMO layer number is the maximum MIMO layer number applicable to the BWP of the first bandwidth part, and the first BWP is the terminal device used to send and receive data in the first serving cell Uplink BWP or downlink BWP; the terminal device sends first indication information to the network device, where the first indication information includes the identifier of the first BWP and the indication information of the first MIMO layer number.
  • the terminal device in the embodiment of the present application can perform the measurement for the maximum number of MIMO layers of a specific BWP in the serving cell. Determine and indicate to the network device, thereby making the indication of the maximum MIMO layer number more flexible, and the result of the indication is more accurate, when the terminal device is activated in the first BWP, the more matching MIMO layer number can be used as the maximum MIMO layer Data transmission and reception can improve the data transmission performance between the terminal equipment and the network equipment, and the terminal equipment can turn off some unnecessary antennas to save the power consumption of the terminal equipment.
  • the first BWP may be any one of multiple BWPs configured for the terminal device by the first serving cell.
  • the first BWP may be any one of multiple downlink BWPs.
  • the first BWP may be any one of multiple uplink BWPs.
  • the first BWP may be the initial BWP.
  • the first BWP may be the default BWP.
  • the first BWP may suggest, for the terminal device, a BWP newly configured by the network device for the terminal device in the first serving cell.
  • the first MIMO layer number may only apply to the first BWP, and for other BWPs in the first serving cell, the first MIMO layer number is not applicable.
  • the indication information of the first MIMO layer number may include the value of the first MIMO layer number.
  • the first indication information may be sent through any one of multiple uplink BWPs on the first serving cell.
  • the first BWP may be an uplink BWP, and the first indication information may be sent on the first BWP.
  • the terminal device may be in a carrier aggregation scenario, that is, the terminal device may have multiple serving cells, and the first indication information may be sent through any serving cell other than the first serving cell among the multiple serving cells.
  • it may be sent through any uplink BWP on a serving cell other than the first serving cell.
  • the number of first MIMO layers is smaller than the number of second MIMO layers
  • the number of second MIMO layers is the maximum number of MIMO layers configured by the network device to the first serving cell.
  • the terminal device determines the maximum number of MIMO layers for the first BWP (that is, determines the number of the first MIMO layers), and the number of the first MIMO layers is smaller than the number of the second MIMO layers, thereby making the first BWP
  • the more matched MIMO layers can be used as the maximum number of MIMO layers for data transmission and reception, which improves the data transmission performance of the terminal device.
  • the terminal device can turn off some unnecessary antennas at this time (that is, the terminal device can use less Antenna), which can save the energy consumption of terminal equipment.
  • the first BWP is a downlink BWP
  • the second number of MIMO layers is the maximum number of MIMO layers configured by the terminal device in the first serving cell to receive PDSCH.
  • the first BWP is an uplink BWP
  • the second MIMO layer number is the maximum number of MIMO layers configured by the terminal device in the first serving cell to transmit PUSCH.
  • the number of the first MIMO layer is smaller than the number of the third MIMO layer, and the number of the third MIMO layer is the capability message reported by the terminal device for the first serving cell The maximum number of MIMO layers indicated in.
  • the first BWP is a downlink BWP
  • the third MIMO layer number is the maximum MIMO layer number for receiving PDSCH indicated in the capability message reported by the terminal device for the first serving cell.
  • the first BWP is an uplink BWP
  • the third MIMO layer number is the maximum number of MIMO layers for sending PUSCH indicated in the capability message reported by the terminal device for the first serving cell.
  • the terminal device determines the number of the first MIMO layer according to the configuration parameter of the first BWP.
  • the configuration parameter may include at least one of bandwidth, center frequency, and subcarrier spacing.
  • the number of first MIMO layers may be determined according to the bandwidth of the first BWP. For example, for a BWP with a smaller bandwidth, the data rate is generally lower, and a smaller number of first MIMO layers can be configured accordingly.
  • the number of first MIMO layers may be determined according to the subcarrier spacing of the first BWP. For example, for a BWP with a small sub-carrier spacing, the requirement for time delay may be low, and in this case, a small number of first MIMO layers can be configured accordingly.
  • the number of first MIMO layers may be determined according to the center frequency of the first BWP. For example, for a BWP with a lower center frequency, the requirement for delay may be lower, and a smaller number of first MIMO layers can be configured accordingly.
  • the method further includes: the terminal device receives a confirmation message sent by the network device, where the confirmation message is used to instruct the terminal device to use the first BWP as the first MIMO layer number. Maximum number of MIMO layers for data transmission and reception.
  • the first serving cell is any one of a plurality of serving cells of the terminal device, and the first indication information further includes a cell identity of the first serving cell.
  • the first indication information includes the identifier of the second BWP and the indication information of the fourth MIMO layer number, and the fourth MIMO layer number is determined by the terminal device The maximum number of MIMO layers applicable to the second BWP.
  • a communication method is provided, which may be executed by a network device, or may also be executed by a chip or circuit configured in the network device, which is not limited in this application.
  • the method includes: a network device receives first indication information sent by a terminal device, the first indication information includes an identifier of a first bandwidth part BWP and indication information of a first MIMO layer number, and the first BWP indicates that the terminal device is in the first service
  • the network device determines, according to the first indication information, that the terminal device uses the first MIMO layer number as the maximum MIMO layer number to send and receive data when the first BWP is activated.
  • the number of first MIMO layers is smaller than the number of second MIMO layers, and the number of second MIMO layers is the maximum number of MIMO layers configured by the network device to the first serving cell.
  • the number of the first MIMO layer is less than the number of the third MIMO layer, and the number of the third MIMO layer is the maximum indicated in the capability message reported by the terminal device for the first serving cell Number of MIMO layers.
  • the number of the first MIMO layer is determined according to the configuration parameter of the first BWP.
  • the method further includes: the network device sends a confirmation message to the terminal device, where the confirmation message is used to instruct the terminal device to use the first BWP as the maximum number of MIMO layers. MIMO layer number for data transmission and reception.
  • the first serving cell is any one of the multiple serving cells of the terminal device, and the first indication information further includes a cell identity of the first serving cell.
  • the first indication information includes the identifier of the second BWP and the indication information of the fourth MIMO layer number, and the fourth MIMO layer number is determined by the terminal device to be suitable for the second The maximum number of MIMO layers for BWP.
  • a communication method is provided, which may be executed by a terminal device, or may also be executed by a chip or circuit configured in the terminal device, which is not limited in this application.
  • the method includes: the terminal device determines the recommended configuration parameters of the N BWPs according to the first duration and the configuration parameters of the M BWPs, where the M BWPs are the BWPs that the network device has configured for the terminal device in the first serving cell, and M, N Is an integer greater than or equal to 1; the terminal device sends first indication information to the network device, the first indication information is used to indicate N BWP recommended configuration parameters; the terminal device sends second indication information to the network device, and the second indication information is used Indicating that the handover delay between the first BWP and the second BWP is the first duration, where at least one of the first BWP and the second BWP is the network device according to the recommended configuration parameters of the N BWPs to the terminal device in the first The newly configured BWP of the serving cell.
  • the terminal device can determine at least one BWP recommended configuration parameter according to the specific delay requirements and the currently configured BWP, and report the recommended configuration parameter of the BWP to the network device, and the network device can configure according to the recommended configuration parameter At least one new BWP, so that the handover delay between at least two BWPs in the serving cell can meet the usage requirements.
  • the method before the terminal device determines the recommended configuration parameters of the N BWPs according to the first duration and the configuration parameters of the M BWPs, the method further includes: the terminal device determines None of the switching delays between the M BWPs meets the first duration.
  • the terminal device can determine the recommended configuration parameters of the N BWPs only on the premise that the switching delays between the M BWPs do not satisfy the first duration, so that the signaling overhead can be saved.
  • the value of M is 1, and no other BWP can be switched at this time, and the terminal device may determine that the switching delay between the M BWPs does not satisfy the first duration.
  • the value of M may be greater than or equal to 2.
  • the terminal device may determine that the switching delay between any two of the M BWPs does not satisfy the first For a long time.
  • the handover delay between any two BWPs in the M BWPs does not satisfy the first duration, and it may be that the handover delay between any two BWPs in the M BWPs is not equal to the first duration.
  • the handover delay between any two BWPs in the M BWPs does not satisfy the first duration, and it may be that the handover delay between any two BWPs in the M BWPs are both greater than the first duration.
  • the handover delay between any two BWPs in the M BWPs does not satisfy the first time length, and it may be that the handover delay between any two BWPs in the M BWPs are both greater than the first time length, and The difference between the first duration and the handover delay is greater than the first threshold.
  • the handover delay between any two BWPs in the M BWPs does not satisfy the first time length, and it may be that the handover delay between any two BWPs in the M BWPs are all less than the first time length.
  • the handover delay between any two BWPs in the M BWPs does not meet the first time length, and it may be that the handover delay between any two BWPs in the M BWPs is less than the first time length, and The difference between the first duration and the handover delay is greater than the second threshold.
  • the above-mentioned first threshold and second threshold may be specified by a protocol or system, may also be agreed between the network device and the terminal device, or may be determined by the terminal device according to its own capabilities, which is not limited in this application.
  • the method further includes: the terminal device receives a confirmation message sent by the network device, where the confirmation message is used to indicate that the terminal device is between the first BWP and the second BWP
  • the handover delay of is the first duration.
  • the confirmation message may be carried in any of the following messages: RRC message, MAC CE message, and layer 1 message.
  • the RRC message may include, but is not limited to, any of the following messages: RRC establishment message, RRC rejection message, RRC reconfiguration message, RRC reestablishment message, RRC release message, and RRC recovery message.
  • the layer 1 message includes DCI.
  • the method further includes: the terminal device receives a reconfiguration message sent by the network device, where the reconfiguration message is used to configure the parameters according to the recommended N BWPs:
  • the terminal device is configured with at least one BWP.
  • the confirmation message includes a reconfiguration message.
  • the recommended configuration parameters of the N BWPs include bandwidth information and center frequency information of the N BWPs.
  • the recommended configuration parameters of the N BWPs include resource indication values corresponding to the N BWPs.
  • the recommended configuration parameters of the N BWPs include N BWP subcarrier spacing information.
  • the first indication information includes an identifier of the reference BWP
  • the recommended configuration parameters of the N BWPs include offset values relative to the configuration parameters of the reference BWP.
  • the identifier of the reference BWP is the number of the reference BWP, and the reference BWP is the BWP that the network device has configured for the terminal device.
  • the identifier of the reference BWP is a configuration parameter of the reference BWP
  • the reference BWP is a BWP that the network device has configured for the terminal device.
  • the identifier of the reference BWP is a recommended configuration parameter of the reference BWP
  • the reference BWP is a BWP that the terminal device recommends a new configuration for the network device.
  • the terminal device determines the recommended configuration parameters of the N BWPs according to the first duration and the configuration parameters of the M BWPs, including: the terminal device determines the recommended configuration parameters of the N BWPs according to the first duration and M The configuration parameters of the N BWPs determine the recommended configuration parameters and the recommended BWP numbers of the N BWPs; the first indication information further includes the recommended BWP numbers of the N BWPs.
  • the second indication information is further used to indicate that the handover delay between the third BWP and the fourth BWP is the second duration.
  • At least one of the third BWP and the fourth BWP is a BWP newly configured by the network device in the first serving cell for the terminal device according to the recommended configuration parameters of the N BWPs.
  • the third BWP and the fourth BWP are any two of multiple downlink BWPs or multiple uplink BWPs that the network device has configured for the terminal device in the first serving cell.
  • the second duration may be equal to or not equal to the first duration.
  • the second duration is equal to the first duration.
  • the second indication information may carry the identifiers of the first BWP, the second BWP, the third BWP, and the fourth BWP, as well as a duration of indication information, thereby saving signaling Overhead.
  • the second indication information should also include a corresponding association relationship, so as to help the network device determine which two BWPs are specifically applicable to handover between the above-mentioned indication information of one duration.
  • one of the third BWP and the fourth BWP may be the same BWP as one of the first BWP and the second BWP.
  • a communication method is provided.
  • the method may be executed by a network device, or may also be executed by a chip or circuit configured in the network device, which is not limited in this application.
  • the method includes: a network device receives first indication information sent by a terminal device, the first indication information is used to indicate recommended configuration parameters of N BWPs, where the recommended configuration parameters of N BWPs are based on a first duration and M BWPs Determined by the configuration parameters, the M BWPs are the BWPs configured by the network device for the terminal device in the first serving cell, and M and N are integers greater than or equal to 1; the network device receives the second indication information sent by the terminal device, and the second indication information It is used to indicate that the handover delay between the first BWP and the second BWP is the first duration, where at least one of the first BWP and the second BWP is the network device according to the recommended configuration parameters of the N BWPs to the terminal device A newly configured BWP of the serving cell; the network device determines, according to the second indication information, that the handover delay of the terminal device between the first BWP and the second BWP is the first duration.
  • the method further includes: the network device sends a confirmation message to the terminal device, where the confirmation message is used to indicate that the terminal device is between the first BWP and the second BWP.
  • the handover time delay between is the first time length.
  • the method further includes: the network device sends a reconfiguration message to the terminal device, where the reconfiguration message is used to configure parameters according to the recommended N BWPs At least one BWP is configured for the terminal device.
  • the recommended configuration parameters of the N BWPs include bandwidth information and center frequency information of the N BWPs.
  • the recommended configuration parameters of the N BWPs include resource indication values corresponding to the N BWPs.
  • the recommended configuration parameters of the N BWPs include N BWP subcarrier spacing information.
  • the first indication information includes an identifier of the reference BWP
  • the recommended configuration parameters of the N BWPs include offset values relative to the configuration parameters of the reference BWP.
  • the first indication information further includes suggested BWP numbers of the N BWPs.
  • the second indication information is further used to indicate that the handover delay between the third BWP and the fourth BWP is the second duration.
  • a communication device in a seventh aspect, includes: a transceiver unit, configured to send first indication information to a network device, where the first indication information is used to indicate the communication between the first bandwidth part BWP and the second BWP
  • the handover delay is a first duration; the first BWP and the second BWP are uplink BWPs or downlink BWPs used by the communication device to send and receive data.
  • the first indication information includes the identifiers of the first BWP and the second BWP and the indication information of the first duration.
  • the apparatus further includes a determining unit configured to determine the first duration before the sending unit sends the first indication information to the network device.
  • the first BWP and the second BWP are any two of multiple downlink BWPs or multiple uplink BWPs that the network device configures to the communication device in the first serving cell .
  • At least one of the first BWP and the second BWP is a BWP that the communication device recommends that the network device newly configure the communication device in the first serving cell.
  • the transceiver unit is further configured to send second indication information to the network device, where the second indication information is used to indicate at least one recommended configuration parameter of the BWP.
  • the transceiver unit is further configured to receive a reconfiguration message sent by the network device, and the reconfiguration message is used to configure the at least one BWP for the communication device according to the recommended configuration parameters.
  • the first duration is less than the second duration
  • the second duration is determined according to the BWP handover delay capability type of the communication device between the first BWP and the second BWP The handover delay.
  • the transceiver unit is further configured to receive a confirmation message sent by the network device, and the confirmation message is used to indicate the handover delay of the communication device between the first BWP and the second BWP Is the first duration.
  • the indication information of the first duration includes a numerical value of the first duration or an index value of the first duration.
  • the first indication information is further used to indicate that the handover delay between the third BWP and the fourth BWP is the third duration.
  • the determining unit determines the first duration according to configuration parameters of the first BWP and the second BWP.
  • the configuration parameters of the first BWP and the second BWP satisfy at least one of the following conditions: the difference between the center frequencies of the first BWP and the second BWP is less than or equal to The first threshold; the bandwidth difference between the first BWP and the second BWP is less than or equal to the second threshold; the difference between the subcarrier spacing of the first BWP and the second BWP is less than or equal to the third threshold.
  • the first serving cell is any one of the multiple serving cells of the communication device, and the first indication information further includes a cell identity of the first serving cell.
  • a communication device in an eighth aspect, includes: a transceiving unit, configured to receive first indication information sent by a terminal device, where the first indication information is used to indicate the communication between the first bandwidth part BWP and the second BWP
  • the handover delay is the first duration; the first BWP and the second BWP are the uplink BWP or the downlink BWP used by the terminal device to send and receive data.
  • the first indication information includes the identifier of the first BWP, the identifier of the second BWP, and the indication information of the first duration.
  • the first duration is determined by the terminal device.
  • the first BWP and the second BWP are any two of the multiple downlink BWPs configured to the terminal equipment by the communication device in the first serving cell, or the first BWP The and the second BWP are any two of the multiple uplink BWPs configured to the terminal equipment by the communication device in the first serving cell.
  • At least one of the first BWP and the second BWP is a BWP that the terminal device recommends that the communication device configure the terminal device in the first serving cell.
  • the transceiver unit is further configured to receive second indication information sent by the terminal device, where the second indication information is used to indicate at least one recommended configuration parameter of the BWP.
  • the transceiver unit is further configured to send a reconfiguration message to the terminal device, and the reconfiguration message is used to configure at least one BWP for the terminal device according to the recommended configuration parameters.
  • the first duration is less than the second duration
  • the second duration is determined between the first BWP and the second BWP according to the BWP switching delay capability type of the terminal device The handover delay.
  • the transceiver unit is further configured to send a confirmation message to the terminal device, where the confirmation message is used to indicate that the handover delay of the terminal device between the first BWP and the second BWP is The first duration.
  • the indication information of the first duration includes a value of the first duration or an index value of the first duration.
  • the first indication information is further used to indicate that the handover delay between the third BWP and the fourth BWP is the third duration.
  • the configuration parameters of the first BWP and the second BWP satisfy at least one of the following conditions: the difference between the center frequencies of the first BWP and the second BWP is less than or equal to The first threshold; the bandwidth difference between the first BWP and the second BWP is less than or equal to the second threshold; the difference between the subcarrier spacing of the first BWP and the second BWP is less than or equal to the third threshold.
  • the first serving cell is any one of a plurality of serving cells of the communication device, and the first indication information further includes a cell identity of the first serving cell.
  • a communication device in a ninth aspect, includes: a determining unit configured to determine a first MIMO layer number, where the first MIMO layer number is the maximum number of MIMO layers applicable to the first bandwidth portion BWP, and the first BWP The uplink BWP or downlink BWP used by the terminal device to send and receive data in the first serving cell; the transceiving unit is used to send first indication information to the network device, the first indication information including the identifier of the first BWP and the first MIMO layer Number of instructions.
  • the number of first MIMO layers is less than the number of second MIMO layers, and the number of second MIMO layers is the maximum number of MIMO layers configured by the network device to the first serving cell.
  • the number of the first MIMO layer is less than the number of the third MIMO layer, and the number of the third MIMO layer is indicated in the capability message reported by the communication device for the first serving cell Maximum number of MIMO layers.
  • the determining unit determines the first MIMO layer number according to the configuration parameter of the first BWP.
  • the transceiver unit is further configured to receive a confirmation message sent by the network device, where the confirmation message is used to instruct the communication device to use the first MIMO layer number when using the first BWP Data is sent and received as the maximum number of MIMO layers.
  • the first serving cell is any one of multiple serving cells of the communication device, and the first indication information further includes a cell identity of the first serving cell.
  • the first indication information includes the identifier of the second BWP and the indication information of the fourth MIMO layer number
  • the fourth MIMO layer number is determined by the determining unit and is suitable for the second The maximum number of MIMO layers for BWP.
  • a communication device in a tenth aspect, includes: a transceiver unit configured to receive first indication information sent by a terminal device.
  • the first indication information includes the identifier of the first bandwidth part BWP and the number of the first MIMO layer.
  • Indication information the first BWP is the uplink BWP or downlink BWP that the terminal device uses to send and receive data in the first serving cell; and the determining unit is configured to determine according to the first indication information that the terminal device uses the first BWP when the first BWP is activated.
  • the number of MIMO layers is used as the maximum number of MIMO layers for data transmission and reception.
  • the number of first MIMO layers is less than the number of second MIMO layers, and the number of second MIMO layers is the maximum number of MIMO layers configured by the communication device to the first serving cell.
  • the number of the first MIMO layer is smaller than the number of the third MIMO layer, and the number of the third MIMO layer is the maximum indicated in the capability message reported by the terminal device for the first serving cell Number of MIMO layers.
  • the number of the first MIMO layer is determined according to the configuration parameter of the first BWP.
  • the transceiver unit is further configured to send a confirmation message to the terminal device, and the confirmation message is used to instruct the terminal device to use the first MIMO layer as the maximum MIMO layer when using the first BWP Number for data transmission and reception.
  • the first serving cell is any one of a plurality of serving cells of the terminal device, and the first indication information further includes a cell identity of the first serving cell.
  • the first indication information includes the identifier of the second BWP and the indication information of the fourth MIMO layer number, and the fourth MIMO layer number is determined by the terminal device to be suitable for the second The maximum number of MIMO layers for BWP.
  • a communication device includes: a determining unit, configured to determine recommended configuration parameters of N BWPs according to a first duration and configuration parameters of M BWPs, where M BWPs are network devices For the BWP that the communication device has configured in the first serving cell, M and N are integers greater than or equal to 1; the transceiver unit is used to send first indication information to the network device, and the first indication information is used to indicate N BWP suggestions Configuration parameters; the transceiver unit is also used to send second indication information to the network device, the second indication information is used to indicate that the handover delay between the first BWP and the second BWP is the first duration, where the first BWP and the second At least one of the BWPs is a BWP newly configured by the network device in the first serving cell for the terminal device according to the recommended configuration parameters of the N BWPs.
  • the determining unit is further configured to determine that none of the handover delays between the M BWPs meets the first duration.
  • the transceiver unit is also used to receive a confirmation message sent by the network device, and the confirmation message is used to instruct the terminal device to switch between the first BWP and the second BWP
  • the time delay is the first time length.
  • the transceiver unit is further configured to receive a reconfiguration message sent by a network device, where the reconfiguration message is used to configure the parameters according to the recommended N BWPs:
  • the terminal device is configured with at least one BWP.
  • the confirmation message includes a reconfiguration message.
  • the recommended configuration parameters of the N BWPs include bandwidth information and center frequency information of the N BWPs.
  • the recommended configuration parameters of the N BWPs include resource indication values corresponding to the N BWPs.
  • the first indication information includes an identifier of the reference BWP
  • the recommended configuration parameters of the N BWPs include offset values relative to the configuration parameters of the reference BWP.
  • the determining unit is further configured to determine the recommended configuration parameters and recommended numbers of the N BWPs according to the first duration and the configuration parameters of the M BWPs; first indication information It also includes N BWP recommendations.
  • a communication device configured to receive first indication information sent by a terminal device, where the first indication information is used to indicate N recommended configuration parameters of BWP, where N The recommended configuration parameters of each BWP are determined according to the first duration and the configuration parameters of the M BWPs, the M BWPs are the BWPs configured by the communication device for the terminal equipment in the first serving cell, and M and N are integers greater than or equal to 1;
  • the transceiver unit is also used to receive second indication information sent by the terminal device.
  • the second indication information is used to indicate that the handover delay between the first BWP and the second BWP is the first duration, where the first BWP and the second BWP are At least one of is the newly configured BWP for the terminal device in the first serving cell by the communication device according to the recommended configuration parameters of the N BWPs; the determining unit is configured to determine that the terminal device is between the first BWP and the second BWP according to the second indication information
  • the handover delay is the first duration.
  • the transceiver unit is further configured to send a confirmation message to the terminal device, and the confirmation message is used to instruct the terminal device to switch between the first BWP and the second BWP Delay for the first time.
  • the transceiver unit is further configured to send a reconfiguration message to the terminal device, where the reconfiguration message is used to configure parameters according to the recommended configuration parameters of the N BWPs.
  • the terminal device is configured with at least one BWP.
  • the confirmation message includes a reconfiguration message.
  • the recommended configuration parameters of the N BWPs include bandwidth information and center frequency information of the N BWPs.
  • the recommended configuration parameters of the N BWPs include resource indication values corresponding to the N BWPs.
  • the first indication information includes an identifier of the reference BWP
  • the recommended configuration parameters of the N BWPs include offset values relative to the configuration parameters of the reference BWP.
  • a communication device may be a terminal device or a chip in the terminal device.
  • the device may include a processing unit and a transceiving unit.
  • the processing unit may be a processor, and the transceiving unit may be a transceiver;
  • the terminal device may also include a storage unit, and the storage unit may be a memory;
  • the processing unit executes the instructions stored by the storage unit, so that the terminal device executes the methods in the first, third, and fifth aspects.
  • the processing unit may be a processor, and the transceiving unit may be an input/output interface, a pin or a circuit, etc.; the processing unit executes the instructions stored in the storage unit to make
  • the terminal device executes the methods in the first, third, and fifth aspects, and the storage unit may be a storage unit in the chip (for example, a register, a cache, etc.), or a storage located outside the chip in the terminal device. Unit (for example, read only memory, random access memory, etc.).
  • a communication device may be a network device or a chip in the network device.
  • the device may include a processing unit and a transceiving unit.
  • the processing unit may be a processor, and the transceiving unit may be a transceiver;
  • the network device may also include a storage unit, and the storage unit may be a memory;
  • the processing unit executes the instructions stored by the storage unit, so that the network device executes the methods in the second, fourth, and sixth aspects.
  • the processing unit may be a processor, the transceiving unit may be an input/output interface, a pin or a circuit, etc.; the processing unit executes the instructions stored in the storage unit,
  • the storage unit may be a storage unit (for example, a register, a cache, etc.) in the chip, or a storage unit located in the network device.
  • a storage unit external to the chip for example, read-only memory, random access memory, etc.).
  • a communication device including at least one processor, which is configured to couple with a memory, read and execute instructions in the memory, so as to implement any one of the first to sixth aspects method.
  • the communication device further includes a memory.
  • a computer program product comprising: computer program code, when the computer program code runs on a computer, the computer executes any of the methods in the first to sixth aspects .
  • the above computer program code may be stored in whole or in part on a first storage medium, where the first storage medium may be packaged with the processor or separately packaged with the processor, and this application does not specifically limit this .
  • a computer-readable medium stores a program code, and when the computer program code runs on a computer, the computer executes any one of the first to sixth aspects method.
  • Fig. 1 shows a schematic diagram of a suitable communication system suitable for embodiments of the present application.
  • Figure 2 shows a schematic diagram of the structure of the next time slot with different subcarrier intervals.
  • FIG. 3 shows a schematic diagram of instructing a terminal device to switch BWP through DCI.
  • Fig. 4 is a schematic flowchart of an example of the communication method provided by the present application.
  • Fig. 5 is a schematic flowchart of another example of the communication method provided by the present application.
  • FIG. 6 is a schematic flowchart of another example of the communication method provided by the present application.
  • FIG. 7 is a schematic flowchart of another example of the communication method provided by the present application.
  • FIG. 8 is a schematic flowchart of another example of the communication method provided by the present application.
  • FIG. 9 is a schematic flowchart of another example of the communication method provided by the present application.
  • Fig. 10 is a schematic diagram of a communication device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • Fig. 12 is a schematic diagram of a communication device according to another embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • LTE frequency division duplex FDD
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G fifth generation
  • NR narrowband-internet of things
  • MTC machine type communication
  • Fig. 1 shows a schematic diagram of a suitable communication system suitable for embodiments of the present application.
  • the communication system 10 may include at least one network device, such as the network device 11 shown in FIG. 1; the communication system 10 may also include at least one terminal device, such as the terminal device 12 shown in FIG. 1.
  • the network device 11 and the terminal device 12 can communicate via a wireless link.
  • Each communication device, such as the network device 11 or the terminal device 12 may be configured with multiple antennas, and the multiple antennas may include at least one transmitting antenna for transmitting signals and at least one receiving antenna for receiving signals.
  • each communication device additionally includes a transmitter chain and a receiver chain.
  • Those of ordinary skill in the art can understand that they can all include multiple components related to signal transmission and reception (such as processors, modulators, multiplexers). , Demodulator, demultiplexer or antenna, etc.). Therefore, the network device 11 and the terminal device 12 can communicate through multi-antenna technology.
  • the network device in the wireless communication system may be any device with a wireless transceiver function.
  • the equipment includes but is not limited to: evolved NodeB (eNB or eNodeB), radio network controller (RNC), node B (NodeB, NB), base station controller (BSC) ), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), wireless fidelity (WIFI) system
  • the access point (AP), wireless relay node, wireless backhaul node, transmission point (TP), or transmission and reception point (TRP), etc. can also be 5G, such as , NR, gNB in the system, or transmission point (TRP or TP), one or a group of antenna panels (including multiple antenna panels) of the base station in the 5G system, or it can also be a network that constitutes a gNB or transmission point Nodes, such as baseband unit (BBU), or distributed unit (DU), etc.
  • RNC
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layer functions
  • DU implements wireless link
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU implements wireless link
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network equipment in an access network (radio access network, RAN), or the CU can be divided into network equipment in a core network (core network, CN), which is not limited in this application.
  • the terminal equipment in the wireless communication system may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, User terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in unmanned driving (self-driving), wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( Wireless terminals in transportation safety, wireless terminals in smart cities, and wireless terminals in smart homes.
  • the embodiment of this application does not limit the application scenario.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution subject of the methods provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided according to the embodiments of the application.
  • the execution subject of the method provided in the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call and execute the program.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CDs), digital versatile discs (digital versatile discs, DVDs) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • magnetic storage devices for example, hard disks, floppy disks, or tapes, etc.
  • optical disks for example, compact discs (CDs), digital versatile discs (digital versatile discs, DVDs) Etc.
  • smart cards and flash memory devices for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • the channel bandwidth of each carrier can reach a maximum of 400MHz, but the bandwidth required for terminal equipment to work under different data services is different.
  • a terminal device does not need to occupy the entire 400MHz bandwidth. If the terminal device uses a sampling rate corresponding to the 400MHz bandwidth, it is undoubtedly a waste of performance.
  • large bandwidth means high sampling rate, and high sampling rate means high power consumption.
  • bandwidth part (BWP) technology is introduced, which can successfully solve the above-mentioned problems.
  • BWP Bandwidth Part
  • Each BWP corresponds to a numerical configuration (numerology), bandwidth, and frequency location (frequency location).
  • network equipment can configure multiple downlink bandwidth parts (DL BWP) and multiple uplink bandwidth parts for terminal equipment. , UL BWP).
  • DL BWP downlink bandwidth parts
  • UL BWP uplink bandwidth parts
  • the network device can configure multiple downlink/uplink BWP pairs (DL/UL BWP pairs) for the terminal device, each of which is DL/UL
  • DL/UL BWP pairs downlink/uplink BWP pairs
  • the center frequency of DL BWP and UL BWP in a BWP pair are the same, and the BWP number is also the same, but the bandwidth and subcarrier spacing (SCS) may not be consistent.
  • SCS subcarrier spacing
  • an initial downlink BWP (initial DL BWP) and an initial uplink BWP (initial UL BWP).
  • the configuration information of the initial downlink BWP and the initial uplink BWP may be included in a system message (for example, system information block 1 (SIB1)), or may be included in an RRC message issued by a higher layer.
  • SIB1 system information block 1
  • the terminal device obtains the configuration information of the initial downlink BWP and the initial uplink BWP after reading the SIB1 in the initial access. After obtaining the initial downlink/uplink BWP configuration information in SIB1, the terminal device may also obtain the initial downlink/uplink BWP configuration information again in subsequent RRC messages.
  • the configuration information of the initial downlink/uplink BWP in the RRC message and the configuration information of the initial downlink/uplink BWP in the SIB1 may be the same or different, which is not limited in the present invention.
  • the network device can also configure up to 4 additional downlink/uplink BWPs through RRC messages.
  • the network device additionally configures 4 downlink/uplink BWPs through the RRC message, the terminal device has a total of 5 downlink BWPs and 5 uplink BWPs.
  • the network device may also configure more than four downlink BWPs and more than four uplink BWPs for the terminal device. For example, the network device may configure 5, 6, 7, 8 or even more for the terminal device. Multiple downlink/uplink BWPs are not limited in this application.
  • the size of the bandwidth may refer to the number of continuous physical resource blocks (PRBs) included in the BWP
  • the frequency domain position may refer to the position of the BWP in the center of the entire cell bandwidth or carrier bandwidth or the starting frequency domain position (starting from The position of the starting PRB).
  • a terminal device has at most one activated downlink BWP and one activated uplink BWP, and the terminal device can only receive and send data on the activated downlink BWP and uplink BWP.
  • a terminal device may have an activated downlink BWP and an activated uplink BWP at a certain moment in the same cell.
  • a terminal device may have an activated downlink BWP or an activated uplink BWP at a certain moment in the same cell.
  • a terminal device can be configured with multiple carriers through carrier aggregation (CA) technology, and the terminal device performs data transmission and reception through multiple serving cells corresponding to the multiple carriers.
  • CA carrier aggregation
  • the network device can configure one or more BWPs for the terminal device.
  • the terminal device can have at most one activated downlink BWP and one activated uplink BWP on each carrier, and the terminal device can only transmit data on the activated downlink and/or uplink BWP.
  • the network device can configure multiple BWPs for the terminal device, and the terminal device can perform data transmission on any one of the multiple BWPs.
  • the plurality of BWPs may include an initial BWP.
  • the multiple BWPs may also include a default (default) BWP, and the default BWP is usually a BWP with a relatively small bandwidth.
  • the network device may indicate one of the multiple BWPs configured in the RRC message as the default BWP.
  • the terminal device When the terminal device does not receive data for a long time or detects the physical downlink control channel (PDCCH), the terminal device will pass a timer (ie, BWP-InactivityTimer) from the current The activated BWP is switched to the default BWP to save power.
  • the terminal device regards the initial BWP as the default BWP.
  • the above multiple BWPs can be distinguished by different BWP numbers (identification, ID).
  • ID BWP numbers
  • the BWP ID of the initial BWP is 0, and the numbers of other BWP IDs range from 1 to the parameter maxNrofBWPs.
  • the network device may configure four downlink BWPs for the terminal device, and the BWP IDs corresponding to the four downlink BWPs may be 0, 1, 2, and 3, respectively.
  • numerology is a new concept introduced in NR, which can be understood as a set of parameters used in communication systems, such as subcarrier spacing, symbol length, cyclic prefix (CP) length, and resource block (resource block). , RB) number, time slot (solt) length, frame format, etc.
  • a cell can support one or multiple types of numerology, and one BWP will configure one type of numerology. It should be understood that the specific content contained in the numerology listed here is only an exemplary description and should not constitute any limitation to the application. For example, numerology may also include other granular parameters that can be supported in NR.
  • the NR system can support different SCS configurations, and different SCS can be applied to different scenarios. For high frequency bands and large bandwidth, relatively large SCS can be configured. In addition, large subcarrier spacing corresponds to a small symbol length in the time domain, which can meet the requirements of low-delay services.
  • the SCS configuration supported in the NR system may include 15KHz, 30KHz, 60KHz, 120KHz, 240KHz, 480KHz, etc.
  • a time slot in NR is composed of 14 symbols (corresponding to regular CP) or 12 symbols (corresponding to extended CP). For different SCS, the actual time length corresponding to a time slot is different.
  • FIG. 2 is a schematic diagram of the structure of a time slot under different subcarrier intervals according to an embodiment of the present application. As shown in Figure 2, for a subcarrier interval of 15KHz, a duration of 0.5ms includes 7 symbols, for a subcarrier interval of 30KHz, a duration of 0.5ms includes 14 symbols, and for a subcarrier interval of 60KHz, a duration of 0.5ms includes 28 symbols.
  • the symbol sequence numbers of different SCSs have a corresponding relationship.
  • the position of the first symbol (symbol 0) of 15KHz corresponds to the first and second symbols (symbols 0 and 1) of 30KHz, or the first to fourth symbols of 60KHz (symbols 0, 1, 2, and 3).
  • Figure 2 shows a time slot composed of 14 symbols under each SCS.
  • the absolute time length of a time slot is 1, 0.5, and 0.25 milliseconds (ms), respectively.
  • the numerical configuration numerology may include values associated with subcarrier characteristics, for example, it may be a parameter ⁇ .
  • Table 1 is a table of correspondences between different parameters ⁇ and different subcarrier intervals.
  • Table 1 also shows the absolute time length of a time slot corresponding to different subcarrier intervals.
  • the terminal device can perform data transmission on any one of the multiple configured BWPs.
  • the service volume of the terminal device is relatively large.
  • the network device can configure the terminal device with a large bandwidth BWP (for example, BWP1).
  • BWP1 bandwidth of the terminal device
  • BWP2 bandwidth BWP2
  • the aforementioned BWP1 and BWP2 may be uplink BWP or downlink BWP. It is worth mentioning that for TDD systems or asymmetric spectrum systems, the uplink BWP and the downlink BWP with the same BWP number are bound to each other. When the uplink (downlink) BWP is switched, the corresponding downlink (uplink) BWP also needs to be switched together. .
  • network equipment and terminal equipment can implement BWP switching including the following three methods.
  • Method 1 Use downlink control information (DCI) to dynamically control terminal equipment to switch between different BWPs. Specifically:
  • the DCI for downlink transmission is scheduled to control the terminal equipment to perform downlink BWP conversion.
  • the BWP ID can be included in the DCI for scheduling downlink transmission, so that the terminal device can be instructed to activate the downlink BWP corresponding to the BWP ID and receive the physical downlink shared channel (PDSCH) scheduled by the DCI on the downlink BWP.
  • PDSCH physical downlink shared channel
  • the DCI of the uplink transmission is scheduled to control the terminal equipment to perform the conversion of the uplink BWP.
  • the BWP ID may be included in the DCI for scheduling uplink transmission, so that the terminal device can be instructed to activate the uplink BWP corresponding to the BWP ID and transmit the physical uplink shared channel (PUSCH) scheduled by the DCI on the uplink BWP.
  • PUSCH physical uplink shared channel
  • Timer-based method The network configures a BWP inactive timer bwp-InactivityTimer. If the terminal device times out in the bwp-InactivityTimer of the current BWP, the terminal device can switch to the default BWP.
  • Method 3 Indicate through RRC signaling: The network device instructs the terminal device to perform BWP switching by sending RRC signaling.
  • the switching of BWP can also be understood as the activation and deactivation of BWP.
  • the terminal device receives a BWP ID contained in the DCI for scheduling downlink transmission as BWP2
  • the terminal device's BWP handover means that the terminal device needs to deactivate the downlink BWP1 and activate the downlink BWP2.
  • the BWP used by the terminal device can be quickly adjusted.
  • the BWP switching requires a certain time.
  • the time for BWP switching includes: PDCCH demodulation and DCI decoding time, baseband processing time (such as parameter calculation, etc.), radio frequency transition time, etc.
  • the network device needs to reserve a certain processing time for the terminal device to complete the BWP switching, and the above-mentioned processing time reserved for the terminal device may be referred to as the BWP switching delay (T BWPswitchDelay ).
  • Fig. 3 shows a schematic diagram of instructing a terminal device to switch BWP through DCI.
  • the terminal device needs to be able to receive the PDSCH on the new BWP after the start time of the time slot n+T BWPswitchDelay ( For downlink BWP switching) or PUSCH can be transmitted (for uplink BWP switching).
  • n For timer-based BWP switching, use n to represent the first downlink subframe (FR1) or the first time slot number of the downlink half-subframe (FR2) after the bwp-InactivityTimer expires. The same goes for the terminal
  • the device needs to be able to receive PDSCH (for downlink BWP handover) or send PUSCH (for uplink BWP handover) on a new BWP after the start time of time slot n+T BWPswitchDelay .
  • the terminal device is not required to send uplink signals or receive downlink signals.
  • the currently activated BWP is BWP1
  • the DCI transmitted by the PDCCH indicates the BWP switching, switching from BWP1 to BWP2, and the DCI schedules a PDSCH at the same time.
  • the BWP switching delay T BWPswitchDelay 2 slots.
  • the terminal equipment needs to ensure that the BWP switching is completed within the BWP switching delay and can receive the downlink data PDSCH on the BWP2 after the start time of the n+2 time slot.
  • the network device should schedule the data after the start time of the n+T BWPswitchDelay time slot, because the terminal device does not receive data within the BWP switching delay.
  • Table 2 is the handover delay table of BWP. According to different terminal equipment capabilities, the NR system currently defines two different BWP handover delay capability types, as shown in Table 2, they are type 1 and type 2. The specific type of BWP handover delay capability to be used is determined according to the terminal equipment capability report. The terminal device will report a capability parameter bwp-SwitchingDelay to the network device. The capability parameter can indicate whether the BWP switching delay capability type of the terminal device is type 1 or type 2, that is, it can indicate whether type 1 or type 2 is used to determine its own Handover delay.
  • the parameter ⁇ is associated with the subcarrier spacing.
  • the value of ⁇ is 0, 1, 2, and 3 respectively corresponding to carriers with sub-carrier spacing of 15KHz, 30KHz, 60KHz, and 120KHz.
  • the BWP handover delay should be determined according to the larger value of the BWP subcarrier intervals before and after the handover.
  • the BWP used by the terminal device is switched from BWP1 to BWP2. If the subcarrier spacing of BWP1 and BWP2 are the same, both are 30KHz, and the capability parameter reported by the terminal device indicates type 1, then the network device can determine the switching of the terminal device
  • the method for the network device to determine the handover delay of the terminal device through the handover delay type of the terminal device and the subcarrier interval of the BWP is not flexible and accurate.
  • the BWP switching delay corresponding to different ⁇ values in Table 2 is usually determined according to the worst-case BWP switching delay. Even if the BWP handover can be completed with a short delay between the two BWPs, the network equipment cannot dispatch the terminal equipment faster, which will increase the data service delay and reduce the throughput.
  • BWP switching may include multiple different scenarios. For example, scenario 1: BWP switching involves changes in the center frequency and/or bandwidth of the BWP; scenario 2: BWP switching only involves subcarrier spacing Change, the center frequency and bandwidth of BWP remain unchanged; Scenario 3: BWP switching only involves changes in baseband parameters, and the center frequency, bandwidth, and SCS of BWP remain unchanged.
  • BWP switching under scenario 1 involves radio frequency (RF) conversion time
  • BWP switching under scenario 2 and scenario 3 involves less or no RF conversion time.
  • RF radio frequency
  • BWP handover delay can be reduced, and terminal equipment can complete BWP handover in a shorter time.
  • the baseband processing and RF conversion time are very related to the realization of the terminal equipment, so for the switching between two BWPs with a certain interval but a small interval or a small change in the bandwidth of the center frequency, a terminal with a strong realization ability The device can also complete BWP switching in a shorter time.
  • the network equipment can determine the handover delay between any two BWPs of all BWPs on a serving cell by the BWP handover delay capability type reported by the terminal equipment.
  • the above-mentioned BWP handover delay capability type The report is for all BWPs on all cells, which makes the determination of the BWP handover delay by the network equipment not flexible enough.
  • the switching delay determined by the network device according to the BWP switching delay capability type reported by the terminal device may not be accurate. Even if the terminal device can complete the BWP switching in a shorter time, the network device cannot dispatch the terminal device faster. This will increase data service latency and reduce throughput.
  • a certain condition can be preset, and the BWP switching that meets the condition can follow the preset shorter BWP handover delay.
  • BWP switching does not require RF conversion or required RF conversion Less time.
  • the protocol can define a new shorter BWP switching delay, and then make the BWP switching that meets certain conditions follow the shorter BWP switching delay through network configuration or instructions.
  • pre-setting certain conditions cannot cover all BWP handovers that can achieve a shorter handover delay.
  • the BWP handover delay largely depends on the capabilities of the terminal device, for BWP handover in different scenarios, terminal devices with different capabilities have different switching times. For example, for switching between two BWPs with a certain interval of center frequencies but a small interval, or a small change in bandwidth, a terminal device with stronger implementation capability can also complete the BWP switching in a shorter time.
  • the terminal device may still want to reserve a certain amount of time when switching between such two BWPs.
  • the terminal device hopes to complete the maximum number of multiple-input multiple-output (MIMO) layers when switching between two BWPs, and the switching of the maximum number of MIMO layers involves the RF link It takes a certain amount of time to switch, and to turn on and off the antenna.
  • MIMO multiple-input multiple-output
  • Number of MIMO layers It can also be called transmission layer, spatial layer, layer, transmission stream, spatial stream, stream, etc.
  • the terminal device may determine the rank of the channel matrix according to the channel obtained by channel estimation.
  • the network device can refer to the rank of the channel matrix fed back by the terminal device to determine the maximum number of MIMO layers that can be used for communication between the network device and the terminal device.
  • the maximum number of MIMO layers that a network device can use when communicating with a terminal device can be determined by the number of transmit antennas configured by the network device and the number of receive antennas configured by the terminal device.
  • the maximum number of MIMO layers may be less than or equal to the smaller number of the number of transmit antennas configured by the network device and the number of receive antennas configured by the terminal device.
  • the NR system protocol supports the maximum number of MIMO layers that can be reported by terminal equipment.
  • the reporting granularity is at the carrier level, that is, the maximum number of MIMO layers supported by the terminal device is applicable to one component carrier (CC). If there are multiple BWPs on the CC, it means that these multiple BWPs all support the same maximum number of MIMO layers.
  • the terminal equipment report includes the maximum number of uplink MIMO layers supported by the uplink CC and the maximum number of downlink MIMO layers supported by the downlink CC.
  • the information unit FeatureSetDownlinkPerCC includes the maximum number of MIMO layers that can be supported for the PDSCH transmitted on the downlink CC, that is, MIMO-LayersDL.
  • the information unit FeatureSetUplinkPerCC includes the maximum number of MIMO layers that can be supported for the PUSCH transmitted on the uplink CC, that is, MIMO-LayerUL.
  • the maximum number of MIMO layers that can be supported by PUSCH is divided into two types: codebook transmission and non-codebook transmission.
  • the network After the terminal device reports the capability, the network will configure the maximum number of MIMO layers on a serving cell in RRC signaling, and configure the maximum number of MIMO layers for downlink PDSCH and uplink PUSCH respectively.
  • the maximum number of MIMO layers configured by the RRC signaling is applicable to all BWPs on the serving cell.
  • the maximum number of supported MIMO layers reported by the terminal equipment is the cell level, and the maximum number of MIMO layers configured by the network through RRC signaling is also the cell level.
  • the network is configured with the maximum number of MIMO layers, data transmission and reception on all BWPs in a serving cell are performed according to the maximum number of MIMO layers.
  • BWPs On some BWPs (such as the BWP with a smaller bandwidth, the data rate is generally lower) may not need to send and receive data according to the maximum number of MIMO layers, and the terminal device can transmit and receive data with fewer antennas on these BWPs to save power consumption of the terminal device.
  • the terminal device in order to support the configured maximum number of MIMO layers, the terminal device cannot turn off part of the antenna, which makes the terminal device insufficient energy saving.
  • the network may schedule PDSCH or PUSCH for the terminal device with the maximum MIMO layer number, so the terminal device needs to estimate the downlink channel state information reference signal (channel state information-reference signal, CSI-RS) with the maximum MIMO layer number to feed back the channel Estimated to the base station, let the base station send PDSCH according to the channel information fed back by the terminal device, or the terminal device needs to send the uplink sounding reference signal (SRS) with the maximum number of MIMO layers, so that the terminal device can transmit with the maximum number of MIMO layers PUSCH.
  • CSI-RS channel state information-reference signal
  • a terminal device can indicate a specific handover delay between two BWPs in a serving cell to a network device.
  • the network device can determine the BWP handover delay according to the indication, thereby making The method for determining the BWP handover delay is more flexible, and the result is more accurate, which is conducive to more efficient data transmission for network equipment and terminal equipment.
  • the network device in the embodiment may be the network device 11 in FIG. 1, and the terminal device may be the terminal device 12 in FIG. 1.
  • FIG. 4 is a schematic flowchart of a communication method 200 provided by the present application.
  • the communication method 200 provided by the embodiment of the present application is described with reference to FIG. 4, and the method 200 includes:
  • Step 210 The terminal device sends first indication information to the network device, where the first indication information is used to indicate that the handover delay between the first bandwidth part BWP and the second BWP is the first duration; the first BWP and the second BWP are the terminal The uplink BWP or downlink BWP used by the device to send and receive data.
  • the network device receives the first indication information sent by the terminal device.
  • the terminal equipment and network equipment in the embodiments of the present application may be communication equipment belonging to the TDD system, communication equipment belonging to the FDD system, or communication equipment belonging to any other system. Not limited.
  • the network device may configure multiple downlink BWPs and multiple uplink BWPs (for example, 4 downlink BWPs and 4 uplink BWPs, respectively) on the first serving cell for the terminal device to meet different usage requirements of the terminal device.
  • the foregoing multiple BWPs may include an initial BWP, and the initial BWP is an initial BWP configured in a system message or an initial BWP configured in an RRC message.
  • the above multiple BWPs may include a default BWP, so that the terminal device can switch from the current activated BWP to the default BWP, so as to achieve the effect of saving power.
  • the terminal device may be in a carrier aggregation scenario, the terminal device may have multiple serving cells, and the first serving cell may be one of the multiple serving cells.
  • the network device may configure multiple uplink BWPs and multiple downlink BWPs for the terminal device on other serving cells except the first serving cell.
  • the first BWP and the second BWP are uplink BWPs or downlink BWPs used by the terminal device to send and receive data.
  • the uplink BWP or downlink BWP used for sending and receiving data may be a BWP that the network device has configured for the terminal device.
  • the uplink BWP or downlink BWP used to send and receive data may also be a BWP that the network device is about to configure for the terminal device, but has not yet been configured.
  • the uplink BWP or downlink BWP used to send and receive data may be a terminal device. It is recommended that the network equipment give itself a newly configured BWP.
  • the first BWP and the second BWP may be any two of a plurality of downlink BWPs configured by the network device to the terminal device in the first serving cell.
  • the first BWP and the second BWP may be any two of multiple uplink BWPs configured by the network device to the terminal device in the first serving cell.
  • the first BWP and the second BWP may be two of multiple downlink BWPs.
  • the first BWP and the second BWP may be two of multiple uplink BWPs.
  • the first BWP or the second BWP may be the initial BWP.
  • the first BWP or the second BWP may be the default BWP.
  • At least one of the first BWP and the second BWP may also be a BWP that the terminal device recommends that the network device configure the terminal device in the first serving cell.
  • the BWP that the terminal device recommends that the network device configure the terminal device includes the BWP that is about to be configured but has not yet been configured.
  • At least one of the first BWP and the second BWP may be a BWP that is about to be configured but has not yet been configured.
  • the first BWP (or second BWP) may be the BWP that the terminal device recommends that the network device configure the terminal device in the first serving cell (about to be configured, but the configuration has not yet been completed), and the second BWP (or first BWP) It may be a BWP that the network device has configured in the first serving cell.
  • the first BWP and the second BWP may both be BWPs that the terminal device recommends that the network device configure the terminal device in the first serving cell. At this time, the first BWP and the second BWP may both be configured but not yet configured. BWP.
  • the first indication information is used to indicate that the handover delay between the first BWP and the second BWP is the first duration, that is, the first duration is applicable to the first BWP and the second BWP
  • the network device may determine the handover delay between the first BWP and the second BWP as the first duration according to the first indication information.
  • the first duration is applicable to the handover delay between the first BWP and the second BWP, where the handover delay between the first BWP and the second BWP includes the handover from the first BWP to the second BWP Time delay, or handover time delay from the second BWP to the first BWP.
  • the first duration may be As the handover delay, the terminal device and the network device perform BWP switching according to the first duration, and perform data transmission according to the first duration.
  • the first duration may be T time slots (T is an integer greater than or equal to 0). If the network device instructs the terminal device to switch from the first BWP to the second BWP, the time slot of the DCI indicating the BWP switch is n , The terminal device completes the handover in the T time slots, and can receive the PDSCH on the new BWP (ie, the second BWP) after the start time of the n+T time slot (the first BWP and the second BWP are downlink BWP) or PUSCH (when the first BWP and the second BWP are uplink BWP), and the network device may schedule the PDSCH or schedule the PUSCH on the second BWP after the start time of the n+T timeslot.
  • T is an integer greater than or equal to 0.
  • the first duration may be T time slots (T is an integer greater than or equal to 0).
  • n is used to represent the first downlink after the timer (for example, bwp-InactivityTimer) expires.
  • the first time slot number of the subframe or the downlink half-subframe the same, the terminal device can receive the PDSCH or send the PUSCH on the new BWP (ie, the second BWP) after the start time of the n+T time slot, The network device can schedule the PDSCH or schedule the PUSCH after the start time of the n+T time slot.
  • the terminal device in the embodiment of the present application sends first indication information to the network device.
  • the first indication information is used to indicate that the handover delay of the terminal device between the first BWP and the second BWP is the first duration, and the network After receiving the first indication information, the device can determine that the handover delay between the first BWP and the second BWP is the first duration.
  • the terminal device in the embodiment of this application can target multiple BWPs in the serving cell (including The handover delay between certain two BWPs in the configured and to-be-configured BWP is instructed to the network equipment, and the network equipment can determine the handover delay of the BWP according to the indication, thereby making the determination of the BWP handover delay (indication )
  • the method is more flexible and the result is more accurate.
  • the terminal device switches between the above two BWPs, it can switch according to the reported switching delay, so that the terminal device and the network device can perform data more efficiently. Transmission.
  • FIG. 5 is a schematic flowchart of the communication method 300 of the present application, and the embodiment shown in FIG. 5 can be regarded as a further description of the embodiment shown in FIG. 4 (ie, the method 200).
  • a communication method 300 provided by an embodiment of the present application will be described with reference to FIG. 5.
  • the method 300 includes:
  • Step 310 The terminal device sends first indication information to the network device, where the first indication information is used to indicate that the handover delay between the first bandwidth part BWP and the second BWP is a first duration; where the first BWP and the second BWP Any two of the multiple downlink BWPs or multiple uplink BWPs configured to the terminal device for the network device in the first serving cell.
  • the network device receives the first indication information sent by the terminal device.
  • step 310 can be understood with reference to step 210 in the method 200, and the differences are explained here.
  • the first BWP and the second BWP are any two of the multiple downlink BWPs or the multiple uplink BWPs that the network device configures to the terminal device in the first serving cell. That is, the first BWP and the second BWP may be BWPs that the network device has configured for the terminal device in the first serving cell.
  • the first BWP and the second BWP may be two of a plurality of downlink BWPs that have been configured.
  • the first BWP and the second BWP may be two of a plurality of configured uplink BWPs.
  • the first BWP or the second BWP may be an initial BWP that has been configured.
  • the first BWP or the second BWP may be a default BWP that has been configured.
  • the first indication information is used to indicate that the handover delay between the first BWP and the second BWP is the first duration, that is, the first duration is applicable to the first BWP and the second BWP
  • the network device may determine the handover delay between the first BWP and the second BWP as the first duration according to the first indication information.
  • the terminal device in the embodiment of this application can target certain two that have been configured in the serving cell.
  • the handover delay between two BWPs is instructed to the network equipment, and the network equipment can determine the handover delay of the BWP according to the indication, thereby making the determination (indication) method of the BWP handover delay more flexible and the result more accurate.
  • the terminal device switches between the above two BWPs, it can switch according to the reported switching delay, so that the terminal device and the network device can transmit data more efficiently.
  • the method 300 before step 310, that is, before the terminal device sends the first indication information to the network device, the method 300 further includes:
  • Step 301 The terminal device determines the first duration.
  • the first duration is applicable to the handover delay between the first BWP and the second BWP.
  • the terminal device may determine the first duration, and use the first duration as the switching delay, and the terminal device and the network device perform BWP switching according to the first duration, And data transmission is performed according to the first duration.
  • the terminal device may determine the specific time length of the handover delay between the first BWP and the second BWP.
  • the first time length may be an absolute time length, for example, the first time length may be 100, 200, 300, 400 microseconds (us), or 0.5, 0.75, 1.0, 1.25 milliseconds, etc.
  • the first duration may also be several time slots.
  • the first duration may be 1, 2, 3, or 4 time slots.
  • the absolute time length corresponding to a time slot of the first BWP and the second BWP is not the same.
  • the first time length can be the length of several first BWPs. Time slot, or the first time length can be several time slots of the second BWP, or the first time length can be several time slots corresponding to the BWP with the larger subcarrier interval in the first BWP and the second BWP This application is not limited.
  • the first duration may be zero.
  • the first duration may only apply to the handover delay between the first BWP and the second BWP, and the first duration is not applicable to the handover delay between other BWPs in the first serving cell.
  • the first duration may be less than the second duration, where the second duration is the handover delay between the first BWP and the second BWP determined according to the BWP handover delay capability type of the terminal device.
  • the first time length determined by the terminal device is 1 time slot
  • the BWP handover delay capability type of the terminal device is Type 1
  • the subcarrier spacing of the first BWP and the second BWP are both 30KHz (that is, the value of ⁇ is 1. )
  • the handover delay between the first BWP and the second BWP is 2 time slots (that is, the second duration is 2 time slots), that is, the first duration may be less than the second duration.
  • the handover delay determined by the BWP handover delay capability type may be too long (the terminal device may not need that long time for BWP handover), and the first duration of this application is less than the second duration.
  • the terminal device can complete the BWP switching faster, so that the data transmission between the terminal device and the network device can be realized faster, thereby reducing the data service delay and improving the data throughput.
  • the terminal device determines the handover delay between the first BWP and the second BWP (that is, determines the first duration) instead of the network device.
  • This application determines the first BWP and the second BWP for the terminal device.
  • the method of handover delay between BWPs is not limited.
  • the terminal device may determine the first duration according to configuration parameters of the first BWP and the second BWP.
  • the terminal device can determine which configuration parameters of the first BWP and the second BWP have changed according to the configuration parameters of the first BWP and the second BWP, and can further determine the magnitude of the change, and thus can determine the first BWP
  • the calculation amount and processing time involved in switching with the second BWP can then be combined with the calculation and processing capabilities of the terminal device itself to determine the first duration.
  • the configuration parameter may include at least one of bandwidth, center frequency, and subcarrier spacing.
  • the configuration parameters of the first BWP and the second BWP may satisfy at least one of the following conditions:
  • the difference between the center frequencies of the first BWP and the second BWP is less than or equal to the first threshold
  • the difference between the bandwidth of the first BWP and the second BWP is less than or equal to the second threshold
  • the difference between the subcarrier spacing of the first BWP and the second BWP is less than or equal to the third threshold.
  • the configuration parameters of the first BWP and the second BWP are the same or similar, which can reduce the amount of calculation and the radio frequency conversion time involved in the handover, that is, the first BWP and the second BWP that meet the above conditions are in the handover.
  • the required time may be less.
  • the handover delay determined by the BWP handover delay capability type of the terminal device may be too large (greater than the actual processing time required during handover), it is not conducive to the data transmission between the terminal device and the network device .
  • the first BWP and the second BWP that meet the above conditions are determined by the terminal device to determine the handover delay (that is, to determine the first duration), and the result can be more accurate, which is beneficial to efficient data transmission between the terminal device and the network device. .
  • the above-mentioned first threshold, second threshold, and third threshold may be specified by a protocol or system, or may be agreed between the network device and the terminal device, or may be determined by the terminal device according to its own capabilities. Not limited.
  • the foregoing first threshold, second threshold, and third threshold may be zero. That is to say, at this time, the configuration parameters of the first BWP and the second BWP may satisfy at least one of the following conditions:
  • the center frequencies of the first BWP and the second BWP are the same;
  • the bandwidth of the first BWP and the second BWP are the same;
  • the subcarrier spacing of the first BWP and the second BWP is the same.
  • the first indication information includes the identifier of the first BWP, the identifier of the second BWP, and the indication information of the first duration.
  • the terminal device can report to the network device so that the network device can determine the switching between the first BWP and the second BWP according to the reported content (that is, according to the first indication information) duration.
  • the first indication information includes the identifiers of the first BWP and the second BWP.
  • the identifier of the BWP may be the number of the BWP. For example, if the identifiers of the first BWP and the second BWP are BWP ID 1 and BWP ID 2 respectively, the BWP ID 1 and BWP ID 2 may be included in the first indication information.
  • the identifiers of the first BWP and the second BWP may also exist in other forms, which is not limited in the present application. Specifically, for the first BWP or the second BWP, as long as the information of the first BWP or the second BWP can be identified, it can be counted as the identifier of the first BWP or the second BWP.
  • the identifier of the first BWP or the second BWP may also be other information of the first BWP or the second BWP.
  • the information that the first BWP can be distinguished from other BWPs may be regarded as the identifier of the first BWP, and the first BWP
  • the information of the second BWP that can be distinguished from other BWPs is used as the identifier of the second BWP.
  • the identifier of the first BWP or the second BWP may be a configuration parameter of the BWP.
  • it may be at least one of sub-carrier spacing (or ⁇ value), center frequency, bandwidth and other information.
  • the ⁇ value of multiple BWPs outside the first BWP in the current first serving cell is 1, and the ⁇ value of the first BWP is 2, then the ⁇ value 2 may be used as the identifier of the first BWP.
  • the first indication information in the embodiment of the present application further includes indication information of the first duration.
  • the indication information of the first duration may indicate the first duration, and the indication information of the first duration may exist in various forms, which is not limited in this application.
  • the indication information of the first duration may include a numerical value of the first duration.
  • the indication information of the first duration may include a field composed of M bits, where M may be an integer greater than or equal to 1, and the value of the first duration may be a decimal value represented by the M-bit field .
  • M may be an integer greater than or equal to 1
  • the value of the first duration may be a decimal value represented by the M-bit field .
  • M is equal to 2
  • the first duration may include an index value of the first duration.
  • the network device can determine the first duration by indexing the index value to a value in a predefined table.
  • the value in the predefined table can be a time slot or an absolute time.
  • the index value of the first duration may also be a field composed of M bits, where M may be an integer greater than or equal to 1.
  • Table 3 is a table of correspondence between the index value of the first duration and the first duration, where the unit of the first duration corresponding to the index value of the first duration in Table 3 is a time slot.
  • the index value of the first duration may be "01"
  • the network device can determine that the first duration is 2 time slots according to the index value and in conjunction with Table 3.
  • the first duration (unit: time slot) 00 1 01 2 10 3 11 4
  • the protocol may define which subcarrier interval corresponds to the first duration of the time slot as the unit indicated by the M bits.
  • it may be a larger value or a smaller value among the subcarrier intervals corresponding to the first BWP and the second BWP, or a predefined reference subcarrier interval value.
  • Table 4 is a table of correspondence between the index value of the first duration and the first duration, where the unit of the first duration corresponding to the index value of the first duration in Table 4 is microseconds.
  • the index value of the first duration may be "10"
  • the network device can determine that the first duration is 300 microseconds according to the index value and in conjunction with Table 4.
  • the first duration (unit: microsecond) 00 100 01 200 10 300 11 400
  • the index value of the first duration may also indirectly indicate the magnitude of the first duration value. Similar to the aforementioned Table 2, the system or protocol can specify a new BWP handover delay capability type 3 (type 3), for example, the handover delay of Type 3 is not greater than the corresponding handover delay of Type 1 and Type 2 .
  • the index value of the first duration may include the type 3, and the network device may indirectly determine the value of the first duration according to the type 3.
  • Table 5 shows the handover delay table including the type 3 BWP provided by this application.
  • the indication information of the first duration includes the index value of the first duration, and the index value is type 3.
  • the network device can determine indirectly according to the index value (ie type 3) The switching delay between the first BWP and the second BWP (that is, the value of the first duration). For example, the terminal device first determines that the subcarrier interval of the first BWP and the second BWP are both 30KHz (that is, the value of ⁇ is 1), then according to Table 5, it can determine that the first duration is 1 time slot corresponding to the subcarrier interval of 30KHz.
  • the network device can correspond to the BWP with the larger subcarrier spacing
  • the type 3 handover delay determines the value of the first duration. For example, according to Table 5, it can be determined that the value of the first duration at this time corresponds to 2 time slots with a sub-carrier interval of 60 KHz.
  • the first serving cell is any one of a plurality of serving cells of the terminal device, and the first indication information further includes an identification of the first serving cell, and the identification may be a cell ID.
  • the terminal device may have multiple serving cells (the first serving cell may be one of the multiple serving cells), and each serving cell may include multiple BWPs.
  • the first indication information may also include the identity of the first serving cell, which can help the network device clarify the first Which serving cell the BWP and the second BWP belong to.
  • the first indication information may be carried in the RRC message, or carried in other messages, which is not limited in this application.
  • the RRC message may include, but is not limited to, any of the following messages: UE assistance information (UEAssistanceInformation), UE capability information (UECapabilityInformation).
  • the first indication information may be sent through any one of multiple uplink BWPs on the first serving cell.
  • the first BWP and the second BWP may be uplink BWPs, and the first indication information may be sent on the first BWP or the second BWP.
  • the terminal device may be in a carrier aggregation scenario, that is, the terminal device may have multiple serving cells, and the first indication information may be sent through any serving cell other than the first serving cell among the multiple serving cells.
  • it may be sent through any uplink BWP on a serving cell other than the first serving cell.
  • the first indication information includes the identifiers of the first BWP and the second BWP, and also includes indication information of the first duration.
  • the network device After receiving the first instruction information including the above content, according to the system or protocol regulations, or through the agreement between the network device and the terminal device, the network device can determine that the switching delay of the terminal device between the first BWP and the second BWP is The first duration.
  • protocol in the embodiment of the present application may refer to a standard protocol in the communication field, for example, may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, which are not limited in this application.
  • the network device and the terminal device may perform data transmission according to the first duration.
  • the network device may feed back a confirmation message to the terminal device After receiving the confirmation message, the terminal device considers that the handover delay between the first BWP and the second BWP is the first duration to take effect.
  • the method 300 further includes:
  • Step 320 The network device sends a confirmation message to the terminal device, where the confirmation message is used to indicate that the handover delay of the terminal device between the first BWP and the second BWP is the first duration;
  • step 320 the terminal device receives the confirmation message sent by the network device.
  • the confirmation message may be carried in any one of the following messages: RRC message, media access control element (MAC control element, MAC CE) message, layer 1 (layer 1) message.
  • RRC message media access control element (MAC control element, MAC CE) message
  • layer 1 (layer 1) message may be carried in any one of the following messages: RRC message, media access control element (MAC control element, MAC CE) message, layer 1 (layer 1) message.
  • MAC control element media access control element
  • MAC CE media access control element
  • layer 1 layer 1
  • the RRC message may include, but is not limited to, any of the following messages: RRC Setup (RRCSetup) message, RRC Reject (RRCReject) message, RRC Reconfiguration (RRCReconfiguration) message, RRC Reestablishment message (RRCReestablishment), RRC release message (RRCRelease), RRC resume message (RRCResume).
  • the layer 1 message includes DCI.
  • the network device may inform the terminal device through an implicit indication that the network device has received the first indication information and determines that the terminal device is in the first indication information.
  • the handover delay between the first BWP and the second BWP takes effect for the first duration.
  • the terminal device reports the switching delay between the first BWP and the second BWP as the first duration T, the terminal device also reports its own BWP switching delay capability type, and the BWP switching delay capability type of the terminal device determines the BWP switching
  • the time delay is T1, that is, the second duration is T1, and T is less than T1.
  • the network device does not need to send an additional confirmation message to the terminal device. Instead, it directly indicates the scheduled data (PDSCH or PUSCH) in the DCI that instructs the terminal device to switch from the first BWP to the second BWP. ) Is located at a certain time domain position between the start time of the n+T time slot and the start time of n+T1.
  • the terminal device receives such a DCI indicating BWP switching, it can be considered that the network device has updated the switching delay between the first BWP and the second BWP from the second duration to the first according to the first instruction information reported by the terminal device. duration. Otherwise, if the network equipment still schedules the data scheduled by the DCI indicating the BWP handover after the start time of the n+T1 time slot, the terminal equipment cannot assume that the handover delay between the first BWP and the second BWP is the first duration Take effect.
  • the terminal device can be stipulated by the agreement that when the terminal device successfully sends the first indication information and the network device successfully receives the first indication information, the terminal device and the network device will determine whether the first BWP and the second BWP The handover delay between BWPs takes effect for the first duration. In this way, no matter whether the network equipment schedules the data scheduled by the DCI indicating the BWP switch after the start time of the n+T1 time slot, or it is scheduled at the start time of the n+T time slot and the start time of the n+T1 In the meantime, the terminal device thinks that the handover delay between the first BWP and the second BWP is the first duration has taken effect.
  • the terminal device in addition to determining the handover delay between the first BWP and the second BWP, the terminal device can also determine the handover delay between other BWPs (for example, between the third BWP and the fourth BWP), and then forward The network device reports, which is not limited in this application.
  • the terminal device may also determine a third duration, and the third duration is applicable to the handover delay between the third BWP and the fourth BWP.
  • the third BWP and the fourth BWP are any two of the multiple downlink BWPs or the multiple uplink BWPs that the network device configures to the terminal device in the first serving cell.
  • the first indication information further includes the identifiers of the third BWP and the fourth BWP and the indication information of the third duration.
  • the first indication information may also carry the identifiers of the third BWP and the fourth BWP and the indication information of the third duration, thereby Can save signaling overhead.
  • the identifiers of the first BWP and the second BWP should be associated with the indication information of the first duration, and the identifiers of the third BWP and the fourth BWP should be associated with the indication information of the third duration. This can help the network device determine the specific correspondence.
  • the third duration may be equal to or not equal to the first duration.
  • the third duration is equal to the first duration.
  • the first indication information may carry the identifiers of the first BWP, the second BWP, the third BWP, and the fourth BWP, as well as a duration of indication information, thereby saving signaling Overhead.
  • the first indication information should also include the corresponding association relationship, so as to help the network device to determine which two BWPs are specifically applicable to handover between the above-mentioned indication information of one duration.
  • the terminal device and the network device are in a TDD system
  • the third BWP may be a BWP bound to the first BWP
  • the fourth BWP may be a BWP bound to the second BWP.
  • one of the third BWP and the fourth BWP may be the same BWP as one of the first BWP and the second BWP.
  • the terminal device is configured with four downlink BWPs in the first serving cell, and the identities are BWP ID 0, BWP ID 1, BWP ID 2, BWP ID 3.
  • the first BWP and the second BWP correspond to BWPs identified as BWP ID 0 and BWP ID 1, respectively, and the first duration is the handover delay between BWPs identified as BWP ID 0 and BWP ID 1.
  • the third BWP and the fourth BWP may respectively correspond to BWPs identified as BWP ID 1, BWP ID 2, and the third duration is the handover delay between BWPs identified as BWP ID 1, BWP ID 2.
  • the terminal device may only determine the handover delay between partial BWPs of the first serving cell, but not all.
  • the third BWP and the fourth BWP may also be any two of multiple downlink BWPs or multiple uplink BWPs configured to the terminal device for the serving cell of the network device outside the first serving cell .
  • the first indication information should also include the first BWP, the identity of the first serving cell where the second BWP is located, and the third BWP and the fourth BWP The identity of the serving cell.
  • the terminal device may continue to report its own BWP handover delay capability type to the network device, so that the network device can determine, according to the BWP handover delay capability type, one of the other BWPs not indicated by the first indication information. Time delay of handover between other BWPs that are not determined by the terminal equipment.
  • FIG. 6 is a schematic flowchart of the communication method 400 of the present application, and the embodiment shown in FIG. 6 can be regarded as a further description of the embodiment shown in FIG. 4 (ie, the method 200).
  • a communication method 400 provided by an embodiment of the present application will be described with reference to FIG. 6.
  • the method 400 includes:
  • Step 410 The terminal device sends first indication information to the network device, where the first indication information is used to indicate that the handover delay between the first bandwidth part BWP and the second BWP is a first duration; where the first BWP and the second BWP At least one BWP in is a BWP that the terminal device suggests that the network device newly configure the terminal device in the first serving cell.
  • the network device receives the first indication information sent by the terminal device.
  • step 410 can be understood with reference to step 210 in the method 200 and step 310 in the method 300, and the differences are explained here.
  • At least one BWP of the first BWP and the second BWP may also be a BWP that the terminal device recommends that the network device configure the terminal device in the first serving cell.
  • the BWP that the terminal device recommends that the network device configure the terminal device includes the BWP that is about to be configured but has not yet been configured.
  • At least one of the first BWP and the second BWP may be a BWP that is about to be configured but has not yet been configured.
  • the first BWP (or the second BWP) may be the BWP that the terminal device recommends that the network device configure the terminal device in the first serving cell (may be configured soon, but the configuration has not yet been completed), and the second BWP (or the first BWP) may be a BWP that the network device has configured in the first serving cell.
  • the first BWP and the second BWP may both be BWPs that the terminal device recommends that the network device configure the terminal device in the first serving cell. At this time, the first BWP and the second BWP may both be configured but not yet configured. BWP.
  • the first BWP and/or the second BWP may be an uplink BWP that the terminal device recommends that the network device configure the terminal device in the first serving cell.
  • the first BWP and/or the second BWP may be a downlink BWP that the terminal device recommends that the network device configure the terminal device in the first serving cell.
  • the first indication information is used to indicate that the handover delay between the first BWP and the second BWP is the first duration, that is, the first duration is applicable to the first BWP and the second BWP
  • the network device may determine the handover delay between the first BWP and the second BWP as the first duration according to the first indication information.
  • the first duration is applicable to the handover delay between the first BWP and the second BWP, where the handover delay between the first BWP and the second BWP includes the handover from the first BWP to the second BWP Time delay, or handover time delay from the second BWP to the first BWP.
  • the terminal device in the embodiment of the present application sends first indication information to the network device, where the first indication information is used to indicate that the handover delay of the terminal device between the first BWP and the second BWP is the first duration, where At least one of the first BWP and the second BWP may be a BWP that the terminal device recommends that the network device configure the terminal device in the first serving cell.
  • the network device can determine the first BWP The handover delay between the second BWP and the second BWP is the first duration.
  • the terminal device in the embodiment of this application can suggest a new one for at least one terminal device in the serving cell.
  • the configured handover delay between the BWP and other BWPs is instructed to the network device, and the network device can determine the BWP handover delay according to the instruction, thereby making the method for determining (indicating) the BWP handover delay more flexible, and as a result It is also more accurate.
  • the terminal device switches between the above two BWPs, it can switch according to the reported switching delay, so that the terminal device and the network device can transmit data more efficiently.
  • the method 400 before step 410, that is, before the terminal device sends the first indication information to the network device, the method 400 further includes:
  • Step 401 The terminal device determines the first duration.
  • step 401 can be understood with reference to step 301 in the method 300, and the differences are explained here.
  • the terminal device may determine the first duration according to the configuration parameters of the first BWP and the second BWP.
  • the difference from the aforementioned embodiment shown in FIG. 5 is that in this embodiment, at least one of the first BWP and the second BWP is a BWP that the terminal device suggests that the network device newly configure the terminal device in the first serving cell. That is, when step 401 is performed, that is, when the terminal device determines the first duration, the at least one BWP is a new BWP that the terminal device suggests to the network device to configure, but has not yet been configured.
  • the terminal device determines the first duration according to the configuration parameters of the first BWP and the second BWP, where the configuration parameter of the at least one BWP (that is, the newly configured BWP) may be the recommended configuration parameter of the terminal device for the BWP.
  • the recommended configuration parameters may include at least one of bandwidth, center frequency, and subcarrier spacing.
  • the first indication information includes the identifiers of the first BWP and the second BWP and the indication information of the first duration.
  • the difference from the aforementioned embodiment shown in FIG. 5 is that in this embodiment, at least one of the first BWP and the second BWP is a BWP that the terminal device suggests that the network device newly configure the terminal device in the first serving cell. At this time, because the at least one newly configured BWP has not been configured yet, the corresponding BWP ID (BWP ID) has not been assigned.
  • the identification of the at least one newly configured BWP may be other information of the first BWP or the second BWP, for example, the first BWP can be distinguished
  • the information of other BWPs is regarded as the identifier of the first BWP
  • the information of the second BWP that can be distinguished from other BWPs is regarded as the identifier of the second BWP.
  • the identifier of the at least one newly configured BWP may be a configuration parameter of the BWP.
  • it may be at least one of sub-carrier spacing (or ⁇ value), center frequency, bandwidth and other information.
  • the identifier of the at least one newly configured BWP may also be a BWP number recommended to be configured by the terminal device.
  • the current terminal device has been configured with two downlink BWPs, numbered 0 and 1, respectively.
  • the first BWP is the configured BWP numbered 0.
  • the terminal device is recommended to configure a second BWP.
  • the identifier of the second BWP is BWP Number 2 means that the terminal device recommends that the network device newly configure a downstream BWP numbered 2.
  • the first BWP and/or the second BWP are configured BWPs
  • the first BWP and/or the second BWP identification refers to the embodiment shown in the method 300 in FIG. 5, and details are not described again.
  • the method 400 further includes:
  • Step 411 The terminal device sends second indication information to the network device, where the second indication information is used to indicate the recommended configuration parameter of the at least one newly configured BWP.
  • the network device receives the second indication information sent by the terminal device.
  • the at least one newly configured BWP is the terminal device recommending that the network device give itself a newly configured BWP in the first serving cell. Therefore, the terminal device can use the second indication information to set the recommended configuration parameters of the newly configured BWP Send to the network device, and the network device may generate a BWP reconfiguration message according to the second indication information.
  • the recommended configuration parameters may include bandwidth and center frequency.
  • the recommended configuration parameters may include bandwidth and center frequency, but not subcarrier spacing.
  • the bandwidth and center frequency involve a relatively large amount of calculation and radio frequency conversion time, which has a greater impact on the switching delay, while the subcarrier spacing involves a relatively small amount of calculation and has a small impact on the switching delay.
  • the configuration parameters may not include the sub-carrier spacing information, and the network equipment can determine the sub-carrier spacing of the new BWP by itself, thereby saving signaling overhead.
  • the recommended configuration parameters may include bandwidth, center frequency, and subcarrier spacing.
  • the bandwidth and the center frequency may be separately indicated, for example, the size of the bandwidth and the position of the center frequency are indicated respectively.
  • the bandwidth and center frequency may also be indicated jointly, for example, may indicate a resource indicator value (RIV) corresponding to the proposed BWP.
  • RIV resource indicator value
  • the frequency domain position of the recommended BWP can also be indicated in other ways.
  • the recommended configuration parameters can include the frequency domain start position of the BWP, or indicate a reference frequency domain position and the The frequency offset value of the reference frequency domain position.
  • the second indication information may be sent before the first indication information, or may be sent after the first indication information.
  • the second instruction information may be sent simultaneously with the first instruction information, or may be sent separately, which is not limited in this application.
  • the second indication information and the first indication information may be carried in the same message, or carried in different messages.
  • the second indication information and the first indication information are sent at the same time, and both are carried in the RRC message.
  • the RRC message may include, but is not limited to, any of the following messages: UE assistance information and UE capability information.
  • the method 400 further includes:
  • Step 412 The network device sends a reconfiguration message to the terminal device, where the reconfiguration message is used to configure the at least one newly configured BWP for the terminal device according to the recommended configuration parameters.
  • the terminal device receives the reconfiguration message sent by the network device.
  • the network device may generate a reconfiguration message according to the second instruction information, and send it to the terminal device.
  • the terminal device may reconfigure the BWP currently in the first serving cell, for example, add a new BWP, or update an existing BWP.
  • the method 400 further includes:
  • Step 420 The network device sends a confirmation message to the terminal device, where the confirmation message is used to indicate that the handover delay of the terminal device between the first BWP and the second BWP is the first duration;
  • step 420 the terminal device receives the confirmation message sent by the network device.
  • step 420 can be understood with reference to step 320 in the method 300, and the differences are explained here.
  • the confirmation message may include a reconfiguration message.
  • the reconfiguration message can be used as the confirmation message to instruct the terminal device to switch between the first BWP and the second BWP for the first duration to take effect. At this time, no additional special confirmation message can be sent, so that Save signaling overhead.
  • the terminal device After the terminal device sends the first instruction information and the second instruction information, if the terminal device receives a reconfiguration message and the newly configured BWP meets the parameter configuration recommended by the terminal device, the terminal device can assume the first BWP and The handover delay between the second BWP takes effect for the first duration.
  • the terminal device After the terminal device sends the first instruction information and the second instruction information, if the terminal device does not receive the reconfiguration message, or the reconfigured BWP does not meet the parameter configuration recommended by the terminal device, the terminal device cannot assume the first The handover delay between the BWP and the second BWP takes effect for the first duration.
  • the first indication information may also be used to indicate that the handover delay between the third BWP and the fourth BWP is the third duration, and the third BWP and the fourth BWP are used by the terminal device Uplink BWP or downlink BWP for sending and receiving data.
  • the third BWP and the fourth BWP may be any two of multiple downlink BWPs or multiple uplink BWPs configured to the terminal device in the first serving cell (or other serving cell) by the network device.
  • At least one BWP of the third BWP and the fourth BWP may suggest a new BWP configured for the terminal device by the network device in the first serving cell (or other serving cell) for the terminal device.
  • the terminal device may determine that the handover delay between two BWPs (for example, the first BWP and the second BWP) is the first duration, and report to the network device.
  • the first duration may not meet the usage requirements of the terminal device.
  • the first duration may be too long, which may not meet the requirement of the terminal device for low handover delay.
  • This application also provides a communication method.
  • the terminal device can generate the recommended configuration parameters of the BWP according to its own demand for handover delay, and report the recommended configuration parameters of the BWP to the network device, and the network device can configure according to the recommended configuration parameters A new BWP, so that the handover delay between at least two BWPs in the serving cell can meet its own needs.
  • FIG. 7 is a schematic flowchart of a communication method 500 provided in this application.
  • a communication method 500 provided by an embodiment of the present application will be described with reference to FIG. 7.
  • the method 500 includes:
  • Step 510 The terminal device determines the recommended configuration parameters of the N BWPs according to the first duration and the configuration parameters of the M BWPs, where the M BWPs are the BWPs that the network device has configured for the terminal device in the first serving cell, and M and N are An integer greater than or equal to 1;
  • Step 520 The terminal device sends first indication information to the network device, where the first indication information is used to indicate the recommended configuration parameters of the N BWPs;
  • the network device receives the first indication information sent by the terminal device.
  • Step 530 The terminal device sends second indication information to the network device.
  • the second indication information is used to indicate that the handover delay of the terminal device between the first BWP and the second BWP is the first duration, where the first BWP and the second BWP At least one of the BWPs is a BWP newly configured by the network device in the first serving cell for the terminal device according to the recommended configuration parameters of the N BWPs;
  • the network device receives the second indication information sent by the terminal device.
  • Step 540 The network device determines, according to the second indication information, that the handover delay of the terminal device between the first BWP and the second BWP is the first duration.
  • the terminal equipment and network equipment in the embodiments of the present application may be communication equipment belonging to the TDD system, communication equipment belonging to the FDD system, or communication equipment belonging to any other system. Not limited.
  • the network device may configure M downlink BWPs or M uplink BWPs on the first serving cell for the terminal device, where M is an integer greater than or equal to 1.
  • the value of M may be 1, that is, at this time, the network device configures only one uplink BWP or one downlink BWP for the terminal device in the first serving cell.
  • the one BWP may be the initial BWP.
  • the value of M may be 4, that is, the network device may configure 4 downlink BWPs or 4 uplink BWPs for the terminal device on the first serving cell.
  • step 510 the terminal device determines the recommended configuration parameters of the N BWPs according to the first duration and the configuration parameters of the M BWPs.
  • the terminal device determines the recommended configuration parameters of N BWPs according to the first duration and the configuration parameters of the M BWPs, so that the network device can generate a new BWP according to the recommended configuration parameters of the N BWPs, so that the At least the handover delay between two BWPs can meet the first duration.
  • the terminal device can determine the calculation amount and processing time of the terminal device during the BWP handover according to the first duration and its own calculation and processing capabilities, and the terminal device can further determine two BWPs based on the calculation amount and processing time. Which of the configuration parameters can be the same and which can be different, how much the difference between the different configuration parameters can be, and combined with related information such as the bandwidth of the first serving cell, the recommended configuration parameters of N BWPs can be determined.
  • the value of N can be 1, that is, it is recommended that the network device configure a new BWP.
  • one of the current M BWPs can be used as a reference point, based on the calculation amount and processing time determined above.
  • the reference point can determine the recommended configuration parameters for 1 BWP.
  • the value of N can be 2, that is, it is recommended that the network device configure two new BWPs.
  • the M BWPs that have been configured in the first serving cell are not considered.
  • the terminal device can combine the foregoing calculation amount and processing time with the first The information of a serving cell arbitrarily determines the recommended configuration information of two BWPs.
  • the value of N can be 2, that is, it is recommended that the network device configure two new BWPs.
  • one of the current M BWPs can be used as a reference point, based on the aforementioned determined calculation amount and processing time
  • the recommended configuration parameter of one BWP can be determined, and then the determined recommended configuration parameter of one BWP can be used as a reference point to determine the recommended configuration parameter of the remaining BWP.
  • the terminal device determines the recommended configuration parameters of the N BWPs according to the first duration and the configuration parameters of the M BWPs comes from the internal implementation of the terminal device itself, which is not limited in this application.
  • the value of N may also be an integer greater than 2, for example, the value of N may be 3 or 4. That is, it is recommended that the network device be configured with 3 or 4 new BWPs, which is not limited in this application.
  • the terminal device determines the recommended configuration parameters of the N BWPs according to the first duration and the configuration parameters of the M BWPs, which can be implemented in the following manner: the terminal device determines the recommended configuration of the N BWPs according to the first duration The parameters are compared with the configuration parameters of the current M BWPs, so as to ensure that the newly determined recommended configuration parameters of the N BWPs are different from the configured parameters of the M BWPs that have already been configured. The configured M BWPs are different.
  • the recommended configuration parameters of the N BWPs may include the bandwidth and center frequency of the N BWPs.
  • the recommended configuration parameters of the N BWPs may include the bandwidth and center frequency of the N BWPs, but not the subcarrier spacing of the N BWPs.
  • the bandwidth and center frequency involve a relatively large amount of calculation and radio frequency conversion time, which has a greater impact on the switching delay, while the subcarrier spacing involves a relatively small amount of calculation and has a small impact on the switching delay.
  • the recommended configuration parameters of the N BWPs may not include the subcarrier spacing, and the network equipment can determine the subcarrier spacing of the new BWP by itself, thereby saving signaling overhead.
  • the recommended configuration parameters of the N BWPs may include the bandwidth, center frequency, and subcarrier spacing of the N BWPs.
  • the terminal device may carry the recommended BWP bandwidth size, the starting position of the recommended BWP (the position of the starting physical resource block (PRB)), and the center position (center frequency or center frequency) in the first indication information. Point the common resource block (common resource block, CRB number), etc.
  • the recommended configuration parameters of the N BWPs may include resource indicator values (RIV) corresponding to the N BWPs.
  • RIV resource indicator values
  • the terminal device reports a resource indicator value (RIV, resource indicator value).
  • RAV resource indicator value
  • the resource indicator value the subcarrier interval recommended by the terminal device for the BWP, the carrier offset corresponding to the recommended subcarrier interval, and the set BWP bandwidth constant
  • the bandwidth start position of the recommended BWP can be calculated ( Starting PRB) and its bandwidth size (indicated by the number of resource blocks (RB)).
  • the first indication information may include an identifier of a reference BWP
  • the recommended configuration parameter of the BWP includes an offset value relative to the configuration parameter of the reference BWP.
  • the offset value may include the difference in bandwidth relative to the reference point BWP, the offset value relative to the center frequency of the reference point BWP, and the difference in subcarrier spacing relative to the reference point BWP (for example, it may be ⁇ Value difference) and so on.
  • the reference BWP may be any one of M BWPs.
  • the reference BWP may not belong to the M BWPs.
  • the first indication information may include the BWP number of the reference BWP.
  • the identifier of the reference BWP is the number of the reference BWP, and the reference BWP is the BWP that the network device has configured for the terminal device.
  • the identifier of the reference BWP is a configuration parameter of the reference BWP
  • the reference BWP is a BWP that the network device has configured for the terminal device.
  • the identifier of the reference BWP is a recommended configuration parameter of the reference BWP
  • the reference BWP is a BWP that the terminal device recommends a new configuration for the network device.
  • the network device may configure a new BWP for the terminal device in the first serving cell according to the first indication information.
  • N new BWPs may be configured, where the N new BWPs may include a BWP that reconfigures the original M BWPs, or a newly-added BWP, which is not limited in this application.
  • the network device may send a BWP reconfiguration message (for example, carried in an RRC message) to the terminal device, and the terminal device may update the configuration parameters of the BWP according to the reconfiguration message. For example, release the previously configured BWP and add a new BWP.
  • a BWP reconfiguration message for example, carried in an RRC message
  • the terminal device sends second indication information to the network device.
  • the second indication information is used to indicate that the handover delay of the terminal device between the first BWP and the second BWP is the first duration, where the first BWP and At least one of the second BWPs is a BWP newly configured by the network device for the terminal device in the first serving cell according to the recommended configuration parameters of the N BWPs.
  • one of the first BWP and the second BWP is a BWP newly configured by the network device in the first serving cell according to the recommended configuration parameters of the N BWPs, and the other is one of the original M BWPs.
  • two of the first BWP and the second BWP are BWPs newly configured by the network device in the first serving cell according to the recommended configuration parameters of the N BWPs (in this case, N is greater than or equal to 2).
  • At least one of the first BWP and the second BWP is a BWP that the network device configures for the terminal device in the first serving cell according to the recommended configuration parameters of the N BWPs. It can also be understood as the first BWP and the second BWP. At least one of the BWPs belongs to the N BWPs.
  • the N BWPs may include BWP#1 and BWP#2, and the first BWP and the second BWP may be BWP#1 and BWP#2, respectively.
  • At least one of the first BWP and the second BWP is a newly configured BWP for the terminal device in the first serving cell by the network device according to the recommended configuration parameters of the N BWPs, which does not mean that the current network device has completed Configuration of N BWPs.
  • the network device when sending the second indication information, the network device has not provided the terminal device with the newly configured BWP in the first serving cell according to the recommended configuration parameters of the N BWPs.
  • the first indication information and the second indication information may be sent separately.
  • the first indication information and the second indication information may be carried in the same message and sent at the same time.
  • the first indication information and the second indication information may be carried in the same RRC message.
  • the network device may determine, according to the second indication information, that the handover delay of the terminal device between the first BWP and the second BWP is the first duration.
  • the network device determines that the switching delay of the terminal device between the first BWP and the second BWP is the first duration, when the BWP used by the terminal device switches between the first BWP and the second BWP When the time, the network device and the terminal device can perform data transmission according to the first duration.
  • the terminal device can determine at least one BWP recommended configuration parameter according to the specific delay requirements and the currently configured BWP, and report the recommended configuration parameter of the BWP to the network device, and the network device can configure according to the recommended configuration parameter At least one new BWP, so that the handover delay between at least two BWPs in the serving cell can meet the usage requirements.
  • the method 500 further includes:
  • step 501 the terminal device determines that the handover delay between M BWPs does not satisfy the first duration.
  • the terminal device may determine the recommended configuration parameters of the N BWPs only on the premise that the switching delays between the M BWPs do not meet the first duration, so that signaling overhead can be saved.
  • the value of M is 1, and no other BWP can be switched at this time, and the terminal device may determine that the switching delay between the M BWPs does not satisfy the first duration.
  • the value of M may be greater than or equal to 2.
  • the terminal device may determine that the switching delay between any two of the M BWPs does not satisfy the first For a long time.
  • the terminal device may determine the handover delay between any two BWPs according to the configuration parameters of the M BWPs.
  • BWP#1 and BWP#2 can be any two of the M BWPs.
  • the terminal device can determine which configuration parameters of BWP#1 and BWP#2 are the same, which are different, and the magnitude of the difference between the different configuration parameters, and then can determine the amount of calculation involved when switching between BWP#1 and BWP#2.
  • RF conversion time After that, the handover delay between BWP#1 and BWP#2 can be determined by combining the computing and processing capabilities of the terminal device itself.
  • the terminal device can determine the handover delay between any two BWPs of the M BWPs by the above method, and then compare with the first time length respectively, and determine that the handover delay between any two BWPs does not meet the first time length Requirements.
  • the handover delay between any two BWPs in the M BWPs does not satisfy the first duration, and it may be that the handover delay between any two BWPs in the M BWPs is not equal to the first duration.
  • the handover delay between any two BWPs in the M BWPs does not satisfy the first duration, and it may be that the handover delay between any two BWPs in the M BWPs are both greater than the first duration.
  • the handover delay between any two BWPs in the M BWPs does not satisfy the first time length, and may be the difference between the handover delay between any two BWPs in the M BWP and the first time length Both are greater than the first threshold.
  • the handover delay between any two BWPs in the M BWPs does not satisfy the first time length, and it may be that the handover delay between any two BWPs in the M BWPs are all less than the first time length.
  • the handover delay between any two BWPs in the M BWPs does not meet the first time length, and it may be that the handover delay between any two BWPs in the M BWPs is less than the first time length, and The difference between the first duration and the handover delay is greater than the second threshold.
  • the above-mentioned first threshold and second threshold may be specified by a protocol or system, may also be agreed between the network device and the terminal device, or may be determined by the terminal device according to its own capabilities, which is not limited in this application.
  • step 501 it may also include the step of the terminal device determining the first duration.
  • the terminal device determines that the switching delay between any two BWPs of the M BWPs does not meet the first duration.
  • the specific length of the first duration can be determined according to specific requirements, which is not limited in this application.
  • the first duration determined by the terminal device should be greater than the processing time required for switching the maximum MIMO layer number. Switching the maximum MIMO layer number involves the switching of the RF radio link and the opening and closing of the antenna, which requires a certain amount of time.
  • the terminal device may also determine the recommended BWP numbers of the N BWPs. For example, the terminal device may determine the recommended BWP numbers of the N BWPs according to the configuration of the BWP in the first serving cell.
  • the first indication information is used to indicate the recommended configuration parameters of the N BWPs and the recommended BWP number.
  • the number of BWPs configured by the network device may be limited, and the recommended BWP numbers of the N BWPs can be determined according to the current configuration of the BWP of the terminal device.
  • the unused BWP numbers can be assigned to the N BWPs as suggested numbers.
  • some BWPs should be reconfigured, or in other words, the configured BWPs can be replaced with the recommended BWPs. At this time, at least one of the recommended numbers of the N BWPs should be the same At least one of the configured M BWPs has the same number.
  • the values of M and N may both be 2, and the numbers of the M configured BWPs may be BWP ID 0 and BWP ID 1, respectively, and the terminal device is configured (uplink or downlink) BWP in the same cell
  • the maximum number of is 5, then the remaining BWP numbers BWP ID 2 and BWP ID 3 (or BWP ID 4) can be assigned as suggested numbers to the two BWPs to be configured.
  • the value of M can be 3, the value of N can be 2, and the numbers of the M configured BWPs can be BWP ID 0, BWP ID 1, BWP ID 2, and the terminal device is configured in the same cell ( Upstream or downstream)
  • the maximum number of BWPs is 5, then the number of the remaining BWP BWP ID 3 (or BWP ID 4) can be assigned as the recommended number to the 1 BWP to be configured.
  • the number of 3 Any one of the two BWPs is reconfigured (for example, the BWP numbered BWP ID 2), so the number BWP ID 2 can be assigned as a recommended number to the remaining BWP to be configured.
  • the value of M can be 4, the value of N can be 2, and the numbers of the M configured BWPs can be BWP ID 0, BWP ID 1, BWP ID 2, BWP ID 3.
  • you can Any two of the four BWPs are reconfigured (for example, BWPs numbered BWP ID 1 and BWP ID 2), so the numbers BWP ID 1 and BWP ID 2 can be allocated to the two BWPs to be configured.
  • the first indication information may also include N recommended numbers of BWPs.
  • the network device can assign the recommended numbers to the corresponding BWPs according to the recommended configuration parameters and recommended numbers of the N BWPs. And generate a BWP reconfiguration message.
  • the first indication information is used to indicate the recommended configuration parameters and recommended numbers of at least two BWPs. Therefore, in the first indication information, the recommended configuration parameters of the same BWP and It is suggested that the number should have an association relationship, so as to help the network equipment determine the specific corresponding relationship.
  • the second indication information may include the identifiers of the first BWP and the second BWP and indication information of the first duration.
  • the BWP number of at least one of the first BWP and the second BWP is the same as at least one of the recommended numbers of the N BWPs.
  • the number of at least one of the first BWP and the second BWP belongs to the recommended number of N BWPs.
  • At least one of the first BWP and the second BWP is a BWP newly configured by the network device in the first serving cell according to the recommended configuration parameters and recommended numbers of the N BWPs.
  • the recommended configuration parameters and recommended numbers of each BWP configure the BWP for the terminal device in the first serving cell.
  • At least one of the first BWP and the second BWP is a BWP newly configured by the network device in the first serving cell for the terminal device according to the recommended configuration parameters and recommended numbers of the N BWPs, or It is that the network device has not been configured yet and the terminal device will be newly configured with the BWP in the first serving cell according to the recommended configuration parameters and recommended numbers of the N BWPs.
  • the method 500 further includes:
  • step 550 the network device sends a confirmation message to the terminal device, where the confirmation message is used to indicate that the handover delay of the terminal device between the first BWP and the second BWP is the first duration;
  • step 550 the terminal device receives the confirmation message sent by the network device.
  • the confirmation message may be carried in any of the following messages: RRC message, MAC CE message, and layer 1 message.
  • the RRC message may include, but is not limited to, any of the following messages: RRC establishment message, RRC rejection message, RRC reconfiguration message, RRC reestablishment message, RRC release message, and RRC recovery message.
  • the layer 1 message includes DCI.
  • the confirmation message may include a reconfiguration message.
  • the reconfiguration message may be used as a confirmation message to indicate that the handover delay of the terminal device between the first BWP and the second BWP is the first duration to take effect.
  • the terminal device After the terminal device sends the first instruction information and the second instruction information, if the terminal device receives a reconfiguration message and the newly configured BWP meets the parameter configuration recommended by the terminal device, the terminal device can assume the first BWP and The handover delay between the second BWP takes effect for the first duration.
  • the terminal device After the terminal device sends the first instruction information and the second instruction information, if the terminal device does not receive the reconfiguration message, or the reconfigured BWP does not meet the parameter configuration recommended by the terminal device, the terminal device cannot assume the first The handover delay between the BWP and the second BWP takes effect for the first duration.
  • the embodiment of the present application also provides a communication method.
  • the terminal device can report to the network device the maximum number of MIMO layers applicable to a specific BWP in the serving cell, thereby making the terminal device’s indication of the maximum number of MIMO layers more flexible , Accurately, when the BWP is activated, the more matching MIMO layer number can be used as the maximum MIMO layer number for data transmission and reception, which is beneficial to improving the transmission performance of the terminal device.
  • the terminal device performs data transmission and reception in a BWP with a smaller maximum MIMO layer number, some antennas can be turned off to save the power consumption of the terminal device.
  • FIG. 8 is a schematic flowchart of a communication method 600 provided by the present application.
  • the method 600 includes:
  • Step 610 The terminal device determines the first MIMO layer number, where the first MIMO layer number is the maximum MIMO layer number applicable to the first BWP, and the terminal device uses the uplink BWP or downlink BWP for sending and receiving data in the first serving cell.
  • Step 620 The terminal device sends first indication information to the network device, where the first indication information includes the identifier of the first BWP and the indication information of the first MIMO layer number;
  • the network device receives the first indication information sent by the terminal device.
  • Step 630 The network device determines, according to the first indication information, that the terminal device uses the first MIMO layer number as the maximum MIMO layer number to perform data transmission and reception when the first BWP is activated.
  • the terminal equipment and network equipment in the embodiments of the present application may be communication equipment belonging to the TDD system, communication equipment belonging to the FDD system, or communication equipment belonging to any other system. Not limited.
  • the network device may configure multiple downlink BWPs and multiple uplink BWPs on the first serving cell for the terminal device to meet different usage requirements of the terminal device.
  • the foregoing multiple BWPs may include an initial BWP, which is used for the BWP after the terminal device initially accesses a cell or a broadband carrier from the idle mode.
  • the above multiple BWPs may include a default BWP, so that the terminal device can switch from the current activated BWP to the default BWP, so as to achieve the effect of saving power.
  • the terminal device may be in a carrier aggregation scenario, the terminal device may have multiple serving cells, and the first serving cell may be one of the multiple serving cells.
  • the network device may configure multiple uplink BWPs and multiple downlink BWPs for the terminal device on other serving cells except the first serving cell.
  • the first BWP may be any one of multiple downlink BWPs or multiple uplink BWPs configured by the network device to the terminal device in the first serving cell.
  • the first BWP may be any one of multiple downlink BWPs.
  • the first BWP may be any one of multiple uplink BWPs.
  • the first BWP may be the initial BWP.
  • the first BWP may be the default BWP.
  • the first BWP may also suggest a new BWP configured by the network device for the terminal device in the first serving cell for the terminal device.
  • the terminal device may determine the first MIMO layer number, where the first MIMO layer number is the maximum MIMO layer number applicable to the first BWP.
  • the first MIMO layer number is the maximum MIMO layer number applicable to the first BWP, that is, when the terminal device uses the first BWP, the first MIMO layer number can be used as the maximum MIMO layer number for data transmission and reception. . In other words, when the first BWP is activated, the first MIMO layer number can be used as the maximum MIMO layer number for data transmission and reception.
  • the first MIMO layer number may only apply to the first BWP, and for other BWPs in the first serving cell, the first MIMO layer number is not applicable.
  • the terminal device sends first indication information to the network device, where the first indication information includes the identifier of the first BWP and the indication information of the first MIMO layer number.
  • the terminal device after the terminal device determines the number of the first MIMO layer, it can report to the network device, so that the network device can determine the maximum MIMO layer applicable to the first BWP according to the content of the report (that is, according to the first indication information) number.
  • the first indication information includes the identifier of the first BWP.
  • the identifier of the BWP may be the number of the BWP. For example, if the identifier of the first BWP is BWP ID 1, the BWP ID 1 may be included in the first indication information.
  • the identifier of the BWP may also be other indication information, for example, the configuration parameters of the BWP, as described above, and will not be repeated.
  • the first indication information in the embodiment of the present application also includes indication information of the first MIMO layer number.
  • the indication information of the number of the first MIMO layer may indicate the number of the first MIMO layer, and the indication information of the number of the first MIMO layer may exist in various forms, which is not limited in this application.
  • the indication information of the first MIMO layer number may include the value of the first MIMO layer number.
  • the indication information of the first MIMO layer number may include a string of fields, and the value of the first MIMO layer number may be a decimal value represented by the field.
  • fields 001, 010, 011, and 100 may be used to indicate that the values of the first MIMO layer number are 1, 2, 3, and 4 respectively.
  • the indication information of the first MIMO layer number may be an index value of the first MIMO layer number.
  • an index value of 0 indicates that the first MIMO layer number is 4, and an index value of 1 indicates that the first MIMO layer number is 2.
  • the first serving cell may be any one of multiple serving cells of the terminal device, and the first indication information may further include the identity of the first serving cell.
  • the network device may not know which serving cell the first BWP belongs to. Therefore, the first indication information may also include the identity of the first serving cell, thereby It can help the network device to determine which serving cell the first BWP specifically belongs to.
  • the first indication information may be carried in the RRC message, or carried in other messages, which is not limited in this application.
  • the RRC message may include but is not limited to any of the following messages: UE assistance information and UE capability information.
  • the first indication information may be sent through any one of multiple uplink BWPs on the first serving cell.
  • the first BWP may be an uplink BWP, and the first indication information may be sent on the first BWP.
  • the terminal device may be in a carrier aggregation scenario, that is, the terminal device may have multiple serving cells, and the first indication information may be sent through any serving cell other than the first serving cell among the multiple serving cells.
  • it may be sent through any uplink BWP on a serving cell other than the first serving cell.
  • the network device may determine, according to the first indication information, that the terminal device uses the first MIMO layer number as the maximum MIMO layer number to perform data transmission and reception when the first BWP is activated.
  • the first indication information includes the identifier of the first BWP, and also includes the indication information of the number of the first MIMO layer.
  • the network device After receiving the first instruction information including the above content, according to the system or protocol regulations, or through the agreement between the network device and the terminal device, the network device can determine that the terminal device uses the first MIMO layer number as the maximum MIMO when the first BWP is activated. The number of layers for data transmission and reception.
  • protocol in the embodiments of the present application may refer to a standard protocol in the communication field, for example, it may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, which are not limited in this application.
  • the network device and the terminal device can perform data transmission according to the first MIMO layer number. That is, after the terminal device successfully sends the first indication information, and after the network device successfully receives the first indication information, the terminal device uses the first MIMO layer number as the maximum MIMO layer number for data transmission and reception when the first BWP is activated.
  • the first BWP is a downlink BWP
  • the terminal device may use the first MIMO layer number as the maximum MIMO layer number to receive the PDSCH sent by the network device.
  • the first BWP is an uplink BWP
  • the terminal device may use the first MIMO layer number as the maximum MIMO layer number to send the PUSCH to the network device.
  • the terminal device determines the first MIMO layer number, where the first MIMO layer number is the maximum MIMO layer number applicable to the first BWP, and sends the first indication information to the network device.
  • the indication information includes the identifier of the first BWP and the indication information of the first MIMO layer number.
  • the network device can determine that the first MIMO layer number is used as the maximum MIMO layer number when the first BWP is activated. Send and receive data.
  • the terminal device in the embodiment of the present application can perform the measurement for the maximum number of MIMO layers of a specific BWP in the serving cell. Determine and indicate to the network device, thereby making the indication of the maximum MIMO layer number more flexible, and the result of the indication is more accurate, when the terminal device is activated in the first BWP, the more matching MIMO layer number can be used as the maximum MIMO layer Data transmission and reception can improve the data transmission performance between the terminal equipment and the network equipment, and can save the power consumption of the terminal equipment.
  • the number of the first MIMO layer may be smaller than the number of the second MIMO layer, and the second MIMO layer number is the maximum number of MIMO layers configured by the network device to the first serving cell.
  • the number of first MIMO layers determined by the terminal device is 2, and the maximum number of MIMO layers configured by the network device for the terminal device for the first serving cell can be 4, that is, the number of first MIMO layers is smaller than the number of second MIMO layers. .
  • the maximum number of MIMO layers for the first serving cell configured by the network equipment for the terminal device is based on the cell granularity.
  • the maximum number of MIMO layers applies to all BWPs on the first serving cell, but different BWPs
  • the configuration parameters are different, and the maximum number of MIMO layers may not be reasonable for some BWPs.
  • using the same maximum number of MIMO layers to send and receive data in different BWPs is not conducive to saving power consumption of the terminal equipment.
  • the terminal device may not need to send and receive data with the maximum MIMO layer number in some BWPs (such as the BWP with a smaller bandwidth, and the data rate is generally lower). At this time, the terminal device has to support the configured maximum MIMO layer number. Turn on some unnecessary antennas, which makes the terminal equipment energy-efficient.
  • the first BWP is a downlink BWP
  • the second number of MIMO layers is the maximum number of MIMO layers configured by the terminal device in the first serving cell to receive PDSCH.
  • the first BWP is an uplink BWP
  • the second number of MIMO layers is the maximum number of MIMO layers configured by the terminal device in the first serving cell to transmit PUSCH.
  • the terminal device determines the maximum number of MIMO layers for the first BWP (that is, determines the number of the first MIMO layers), and the number of the first MIMO layers is smaller than the number of the second MIMO layers, thereby making the first BWP
  • the more matched MIMO layers can be used as the maximum number of MIMO layers for data transmission and reception, which improves the data transmission performance of the terminal device.
  • the terminal device can turn off some unnecessary antennas at this time (that is, the terminal device can use less Antenna), which can save the energy consumption of terminal equipment.
  • the number of the first MIMO layer is less than the number of the third MIMO layer, and the number of the third MIMO layer is the maximum number of MIMO layers indicated in the capability message reported by the terminal device for the first serving cell.
  • the network equipment may not be able to configure the second MIMO layer number for the terminal device in the future.
  • the terminal device needs to determine the first MIMO layer number.
  • the third MIMO layer number can be used as a benchmark to determine that the first MIMO layer number is less than this The third MIMO layer number.
  • the first BWP is a downlink BWP
  • the third MIMO layer number is the maximum MIMO layer number for receiving PDSCH indicated in the capability message reported by the terminal device for the first serving cell.
  • the first BWP is an uplink BWP
  • the third MIMO layer number is the maximum number of MIMO layers for sending PUSCH indicated in the capability message reported by the terminal device for the first serving cell.
  • This application does not limit the method for the terminal device to determine the first MIMO layer number.
  • the terminal device may determine the first number of MIMO layers according to the configuration parameters of the first BWP.
  • the configuration parameter may include at least one of bandwidth, center frequency, and subcarrier spacing.
  • the number of first MIMO layers may be determined according to the bandwidth of the first BWP. For example, for a BWP with a smaller bandwidth, the data rate is generally lower, and a smaller number of first MIMO layers can be configured accordingly.
  • the number of first MIMO layers may be determined according to the subcarrier spacing of the first BWP. For example, for a BWP with a small sub-carrier spacing, the requirement for time delay may be low, and in this case, a small number of first MIMO layers can be configured accordingly.
  • the number of first MIMO layers may be determined according to the center frequency of the first BWP. For example, for a BWP with a lower center frequency, the requirement for delay may be lower, and a smaller number of first MIMO layers can be configured accordingly.
  • the terminal device after the terminal device has sent the first indication information, it may assume that the network device has received the first indication information by default, and determine that the terminal device uses the first MIMO layer number as the maximum MIMO when the first BWP is activated.
  • the layer number takes effect for data transmission and reception.
  • the network device after the network device receives the first indication information, and determines according to the first indication information that the terminal device uses the first MIMO layer number as the maximum MIMO layer number for data transmission and reception when the first BWP is activated, A confirmation message can be fed back to the terminal device, and the terminal device considers the first MIMO layer to which the first BWP is applied to be effective after receiving the confirmation message.
  • the method 600 further includes:
  • Step 640 The network device sends a confirmation message to the terminal device, where the confirmation message is used to instruct the terminal device to use the first MIMO layer as the maximum MIMO layer for data transmission and reception when using the first BWP;
  • step 440 the terminal device receives the confirmation message sent by the network device.
  • the confirmation message may be carried in any of the following messages: RRC message, MAC CE message, and layer 1 message.
  • the RRC message may include, but is not limited to, any of the following messages: RRC establishment message, RRC rejection message, RRC reconfiguration message, RRC reestablishment message, RRC release message, and RRC recovery message.
  • the layer 1 message includes DCI.
  • the terminal device in addition to determining the maximum number of MIMO layers applicable to the first BWP, can also determine the maximum number of MIMO layers applicable to other BWPs, and then report to the network device, which is not limited in this application.
  • the terminal device may also determine the fourth MIMO layer number, where the fourth MIMO layer number is the maximum MIMO layer number applicable to the second BWP.
  • the second BWP is any one of multiple downlink BWPs or multiple uplink BWPs that the network device configures to the terminal device in the first serving cell.
  • the terminal device and the network device are in a TDD system
  • the first BWP is a downlink BWP
  • the second BWP may be an uplink BWP bound to the first BWP
  • the two BWPs have the same identifier and the same center frequency.
  • the first indication information further includes the identifier of the second BWP and the indication information of the fourth MIMO layer number.
  • the first indication information can also carry the identifier of the second BWP and the indication information of the fourth MIMO layer number together, thereby saving information. Order overhead.
  • the identifier of the first BWP should be associated with the indication information of the first MIMO layer number, and the identifier of the second BWP should be associated with the indication information of the fourth MIMO layer number, so as to help the network
  • the device determines the specific correspondence.
  • the number of the first MIMO layer is equal to the number of the fourth MIMO layer.
  • the first indication information may carry the identifiers of the first BWP, the second BWP, and one MIMO layer number indication information, thereby saving signaling overhead.
  • the terminal device may only determine the maximum number of MIMO layers used by part of the BWP of the first serving cell, instead of all.
  • the second BWP may also be any one of multiple downlink BWPs or multiple uplink BWPs configured for the terminal device in a serving cell other than the first serving cell by the network device.
  • the first indication information should also include the identity of the first serving cell where the first BWP is located, and the identity of the serving cell where the second BWP is located.
  • the terminal device may also continue to report a capability message to the network device, which is used to indicate the maximum number of MIMO layers supported by the first serving cell, so that the network device can configure other unsubscribed MIMO layers according to the maximum number of MIMO layers.
  • the first BWP may also be a BWP that the terminal device recommends a new configuration for the network device.
  • the terminal device may determine a recommended configuration parameter of a new BWP, and determine the maximum number of MIMO layers of the recommended configuration of the BWP, that is, the first number of MIMO layers.
  • the identifier of the first BWP included in the first indication information may be a suggested BWP configuration parameter.
  • the network device can configure a new BWP according to the recommended configuration parameters, and determine that the new BWP uses the first MIMO layer number as the maximum MIMO layer number to send and receive data.
  • the confirmation information may include a BWP reconfiguration message.
  • the first indication information may also include the recommended BWP number of the recommended BWP.
  • the reconfiguration information of the BWP the recommended BWP number of the recommended BWP
  • the first MIMO layer number as the maximum number of MIMO layers when the first BWP is activated.
  • the embodiments shown in Fig. 6 and Fig. 7 will not be repeated here.
  • FIG. 9 is a schematic flowchart of a communication method 700 provided by the present application.
  • a communication method 700 provided by an embodiment of the present application will be described with reference to FIG. 9.
  • the method 700 includes:
  • Step 710 The terminal device determines a first duration.
  • the first duration is the handover delay applicable to the first BWP and the second BWP.
  • the first BWP and the second BWP are the values configured by the network device to the terminal device in the first serving cell. Any two of multiple downlink BWPs or multiple uplink BWPs.
  • Step 720 The terminal device determines the first MIMO layer number, where the first MIMO layer number is the maximum MIMO layer number applicable to the first BWP, and the first BWP is the number of BWPs configured by the network device for the terminal device in the first serving cell. anyone.
  • Step 730 The terminal device sends first indication information to the network device, where the first indication information includes the identifiers of the first BWP and the second BWP and the indication information of the first duration;
  • the network device receives the first indication information sent by the terminal device.
  • Step 740 The terminal device sends second indication information to the network device, where the second indication information includes the identifier of the first BWP and the indication information of the first MIMO layer number;
  • the network device receives the second indication information sent by the terminal device.
  • Step 750 The network device determines, according to the first indication information, that the handover delay between the first BWP and the second BWP is the first duration.
  • Step 760 The network device determines according to the second indication information that the terminal device uses the first MIMO layer number as the maximum MIMO layer number to perform data transmission and reception when the first BWP is activated.
  • steps 710-760 can be understood with reference to steps 301-320 and 610-630 in the method 300 and the method 600, and the differences are explained here.
  • the first indication information and the second indication information may be sent separately, for example, may be carried in different report messages.
  • the first instruction information and the second instruction information may also be sent at the same time. For example, it can be carried in the same report message.
  • the report message may be an RRC message.
  • the RRC message may be UE assistance information or UE capability information.
  • the first duration should have a minimum value.
  • the first duration should be greater than or equal to the processing time required by the terminal device to switch the maximum number of MIMO layers, so as to ensure that within the first duration, The terminal device can realize the switching of the maximum number of MIMO layers.
  • the processing time required to switch the maximum number of MIMO layers includes the time for PDCCH demodulation and DCI decoding, and the opening or closing time of the RF link, for example, the time for opening or closing the antenna.
  • the first BWP and the second BWP are downlink BWPs
  • the maximum number of MIMO layers that the network device configures to the first serving cell to receive PDSCH is 4 (that is, other BWPs on the first serving cell (for example, the second BWP)
  • the maximum applicable MIMO layer number is 4
  • the first duration is 3 time slots
  • the first MIMO layer number is 2.
  • the terminal device needs to complete the BWP switch within 3 time slots, and to ensure that after switching to the first BWP, the terminal device receives the maximum MIMO layer of the PDSCH
  • the number is 2. That is, it is necessary to complete the adjustment of the RF link within the three time slots, such as adjusting the number of antennas.
  • the method 700 further includes:
  • Step 770 The network device sends a confirmation message to the terminal device, where the confirmation message is used to indicate that the handover delay between the first BWP and the second BWP is the first time length, and is used to instruct the terminal device to use the first BWP when using the first BWP.
  • the number of MIMO layers is used as the maximum number of MIMO layers for data transmission and reception.
  • step 770 the terminal device receives the confirmation message sent by the network device.
  • the confirmation message may be carried in an RRC message, a MAC CE message, or a DCI message.
  • the terminal device may also send confirmation messages to the terminal device for the first indication information and the second indication information, which is not limited in this application.
  • the information reported by the UE should also include an indication that the BWP is an uplink BWP or a downlink BWP.
  • FIG. 10 is a schematic diagram of a communication device according to an embodiment of the present application.
  • the communication device 1500 shown in FIG. 10 includes a determining unit 1510 and a transceiver unit 1520.
  • the transceiver unit 1520 is configured to send first indication information to the network device, where the first indication information is used to indicate that the handover delay between the first bandwidth part BWP and the second BWP is a first duration; the first BWP and the second BWP
  • the BWP is an uplink BWP or a downlink BWP used by the communication device to send and receive data.
  • the first indication information includes the identifier of the first BWP, the identifier of the second BWP, and the indication information of the first duration.
  • the determining unit 1510 is configured to determine the first duration before the sending unit 1520 sends the first indication information to the network device.
  • the first BWP and the second BWP are any two of the multiple downlink BWPs configured to the communication apparatus 1500 by the network device in the first serving cell, or the first BWP and the second BWP are the network devices in the first serving cell.
  • the cell is allocated to any two of the plurality of uplink BWPs of the communication device 1500.
  • At least one BWP of the first BWP and the second BWP is a BWP that the communication apparatus 1500 suggests that the network device configures the communication apparatus 1500 in the first serving cell.
  • the transceiving unit 1520 is further configured to send second indication information to the network device, where the second indication information is used to indicate at least one recommended configuration parameter of the BWP.
  • the transceiver unit 1520 is further configured to receive a reconfiguration message sent by the network device, where the reconfiguration message is used to configure the at least one BWP for the communication apparatus 1500 according to the recommended configuration parameters.
  • the first duration is less than the second duration
  • the second duration is the handover delay between the first BWP and the second BWP determined according to the BWP handover delay capability type of the communication device 1500.
  • the determining unit 1510 determines the first duration according to configuration parameters of the first BWP and the second BWP.
  • the configuration parameters of the first BWP and the second BWP satisfy at least one of the following conditions: the difference between the center frequencies of the first BWP and the second BWP is less than or equal to the first threshold; the first BWP and the second BWP The bandwidth difference is less than or equal to the second threshold; the difference between the subcarrier spacing of the first BWP and the second BWP is less than or equal to the third threshold.
  • the transceiver unit 1520 is further configured to receive a confirmation message sent by the network device, where the confirmation message is used to indicate that the handover delay of the communication device 1500 between the first BWP and the second BWP is the first duration.
  • the first serving cell is any one of multiple serving cells of the communication device 1500, and the first indication information further includes the cell identity of the first serving cell.
  • the indication information of the first duration includes a numerical value of the first duration or an index value of the first duration.
  • the first indication information is also used to indicate that the handover delay between the third BWP and the fourth BWP is the third duration.
  • the determining unit 1510 is configured to determine the first MIMO layer number, the first MIMO layer number is the maximum MIMO layer number applicable to the BWP of the first bandwidth part, and the first BWP is the terminal device in the first service Uplink BWP or downlink BWP used by the cell to send and receive data;
  • the transceiver unit 1520 is configured to send first indication information to a network device, where the first indication information includes the identifier of the first BWP and the indication information of the first MIMO layer number.
  • the number of first MIMO layers is smaller than the number of second MIMO layers, and the second number of MIMO layers is the maximum number of MIMO layers configured by the network device to the first serving cell.
  • the number of the first MIMO layer is smaller than the number of the third MIMO layer, and the number of the third MIMO layer is the maximum number of MIMO layers indicated in the capability message reported by the communication device 500 for the first serving cell.
  • the determining unit 1510 determines the number of first MIMO layers according to the configuration parameters of the first BWP.
  • the transceiving unit 1520 is further configured to receive a confirmation message sent by the network device, where the confirmation message is used to instruct the communication device 1500 to use the first MIMO layer number as the maximum MIMO layer number for data transmission and reception when using the first BWP.
  • the first serving cell is any one of multiple serving cells of the communication device 1500, and the first indication information further includes the cell identity of the first serving cell.
  • the first indication information includes the identifier of the second BWP and the indication information of the fourth MIMO layer number, where the fourth MIMO layer number is the maximum number of MIMO layers that is determined by the determining unit 1510 and is suitable for the second BWP.
  • the determining unit 1510 is configured to determine the recommended configuration parameters of the N BWPs according to the first duration and the configuration parameters of the M BWPs, where the M BWPs indicate that the network device is the communication device 1500 in the first serving cell.
  • M and N are integers greater than or equal to 1;
  • the transceiver unit 1520 is configured to send first indication information to a network device, where the first indication information is used to indicate recommended configuration parameters of N BWPs;
  • the transceiver unit 1520 is further configured to send second indication information to the network device.
  • the second indication information is used to indicate that the handover delay between the first BWP and the second BWP is the first duration, where the first BWP and the second BWP At least one of them is a BWP newly configured by the network device in the first serving cell for the communication device 500 according to the recommended configuration parameters of the N BWPs.
  • the determining unit 1510 is further configured to determine that none of the handover delays between the M BWPs meets the first duration.
  • the transceiver unit 1520 is further configured to receive a confirmation message sent by the network device, where the confirmation message is used to indicate that the handover delay of the communication device 1500 between the first BWP and the second BWP is the first duration.
  • the transceiver unit 1520 is further configured to receive a reconfiguration message sent by a terminal device, where the reconfiguration message is used to configure at least one BWP for the terminal device according to the recommended configuration parameters of the N BWPs.
  • the confirmation message includes a reconfiguration message.
  • the recommended configuration parameters include bandwidth information and center frequency information of N BWPs.
  • the recommended configuration parameters include resource indication values corresponding to N BWPs.
  • the first indication information includes a configuration parameter of the reference BWP
  • the recommended configuration parameter includes an offset value relative to the configuration parameter of the reference BWP
  • the above-mentioned communication device 1500 may be a terminal device 70, wherein the function of the processing unit may be realized by the processor 702 in the terminal device, and the function of the transceiver unit may be implemented by the transceiver 701 of the terminal device (ie, control The circuit is implemented together with the antenna.
  • the function of the processing unit may be realized by the processor 702 in the terminal device
  • the function of the transceiver unit may be implemented by the transceiver 701 of the terminal device (ie, control The circuit is implemented together with the antenna.
  • FIG. 11 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • the terminal device can be applied to the system shown in FIG. 1 to perform the functions of the terminal device in the foregoing method embodiment.
  • Figure 11 only shows the main components of the terminal device.
  • the terminal device 70 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal device, execute the software program, and process the data of the software program, for example, to support the terminal device to perform the actions described in the above method embodiment.
  • the memory is mainly used to store software programs and data.
  • the control circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the control circuit and the antenna together can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 11 only shows one memory and one processor. In an actual terminal device, there may be multiple processors and multiple memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processing unit is mainly used to control the entire terminal device and execute Software program, processing the data of the software program.
  • the processor in FIG. 11 can integrate the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and are interconnected by technologies such as a bus.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple central processors to enhance its processing capabilities, and various components of the terminal device may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • FIG. 12 is a schematic diagram of a communication device according to an embodiment of the present application.
  • the communication device 1600 shown in FIG. 12 includes a transceiving unit 1610 and a determining unit 1620.
  • the transceiver unit 1610 is configured to receive first indication information sent by the terminal device, where the first indication information is used to indicate that the switching delay between the first bandwidth part BWP and the second BWP is a first duration; the first BWP and the second BWP It is the uplink BWP or downlink BWP used by the terminal device to send and receive data.
  • the determining unit 1620 is configured to determine the handover delay between the first BWP and the second BWP as the first duration according to the first indication information.
  • the first indication information includes identifiers of the first BWP and the second BWP and indication information of the first duration.
  • the first duration is determined by the terminal device.
  • the first BWP and the second BWP are any two of a plurality of downlink BWPs or a plurality of uplink BWPs configured to the terminal device by the communication apparatus 1600 in the first serving cell.
  • At least one BWP of the first BWP and the second BWP is a BWP that the terminal device suggests that the communication apparatus 1600 newly configure the terminal device in the first serving cell.
  • the transceiving unit 1610 is further configured to receive second indication information sent by the terminal device, where the second indication information is used to indicate at least one recommended configuration parameter of the BWP.
  • the transceiver unit 1610 is further configured to send a reconfiguration message to the terminal device, and the reconfiguration message is used to configure at least one BWP for the terminal device according to the recommended configuration parameters.
  • the first duration is less than the second duration
  • the second duration is the handover delay between the first BWP and the second BWP determined according to the BWP handover delay capability type of the terminal device.
  • the first duration is determined according to configuration parameters of the first BWP and the second BWP.
  • the configuration parameters of the first BWP and the second BWP satisfy at least one of the following conditions: the difference between the center frequencies of the first BWP and the second BWP is less than or equal to the first threshold; the first BWP and the second BWP The bandwidth difference is less than or equal to the second threshold; the difference between the subcarrier spacing of the first BWP and the second BWP is less than or equal to the third threshold.
  • the transceiver unit 1610 is further configured to send a confirmation message to the terminal device, where the confirmation message is used to indicate that the handover delay of the terminal device between the first BWP and the second BWP is the first duration.
  • the first serving cell is any one of multiple serving cells of the terminal device, and the first indication information further includes a cell identity of the first serving cell.
  • the indication information of the first duration includes a numerical value of the first duration or an index value of the first duration.
  • the first indication information is also used to indicate that the handover delay between the third BWP and the fourth BWP is the third duration.
  • the transceiver unit 1610 is configured to receive the first indication information sent by the terminal device.
  • the first indication information includes the identifier of the first bandwidth part BWP and the indication information of the first MIMO layer number, and the first BWP is the The uplink BWP or the downlink BWP used by the terminal equipment to send and receive data in the first serving cell;
  • the determining unit 1620 is configured to determine, according to the first indication information, that the terminal device uses the first MIMO layer number as the maximum MIMO layer number to perform data transmission and reception when the first BWP is activated.
  • the first number of MIMO layers is smaller than the second number of MIMO layers, and the second number of MIMO layers is the maximum number of MIMO layers configured by the communication device 1600 to the first serving cell.
  • the number of the first MIMO layer is smaller than the number of the third MIMO layer, and the number of the third MIMO layer is the maximum number of MIMO layers indicated in the capability message reported by the terminal device for the first serving cell.
  • the number of the first MIMO layer is determined according to the configuration parameter of the first BWP.
  • the transceiving unit 1610 is further configured to send a confirmation message to the terminal device, where the confirmation message is used to instruct the terminal device to use the first MIMO layer number as the maximum MIMO layer number for data transmission and reception when using the first BWP.
  • the first serving cell is any one of multiple serving cells of the terminal device, and the first indication information further includes a cell identity of the first serving cell.
  • the first indication information includes the identifier of the second BWP and the indication information of the fourth MIMO layer number, where the fourth MIMO layer number is the maximum number of MIMO layers determined by the terminal device and applicable to the second BWP.
  • the transceiver unit 1610 is configured to receive first indication information sent by the terminal device, where the first indication information is used to indicate recommended configuration parameters of N BWPs, where the recommended configuration parameters of N BWPs are based on the first The duration and the configuration parameters of the M BWPs are determined, the M BWPs are the BWPs configured by the communication device for the terminal equipment in the first serving cell, and M and N are integers greater than or equal to 1;
  • the transceiver unit 1610 is further configured to receive second indication information sent by the terminal device.
  • the second indication information is used to indicate that the handover delay between the first BWP and the second BWP is the first time length, where the first BWP and the second BWP At least one of the BWPs is a BWP newly configured by the communication device 1600 in the first serving cell for the terminal device according to the recommended configuration parameters of the N BWPs;
  • the determining unit 1620 is configured to determine, according to the second indication information, that the handover delay of the terminal device between the first BWP and the second BWP is the first duration.
  • the transceiver unit 1610 is further configured to send a confirmation message to the terminal device, where the confirmation message is used to indicate that the handover delay of the terminal device between the first BWP and the second BWP is the first duration.
  • the transceiver unit 1610 is further configured to send a reconfiguration message to the terminal device, where the reconfiguration message is used to configure at least one BWP for the terminal device according to the recommended configuration parameters of the N BWPs.
  • the confirmation message includes a reconfiguration message.
  • the recommended configuration parameters include bandwidth information and center frequency information of N BWPs.
  • the recommended configuration parameters include resource indication values corresponding to N BWPs.
  • the first indication information includes a configuration parameter of the reference BWP
  • the recommended configuration parameter includes an offset value relative to the configuration parameter of the reference BWP
  • the above-mentioned communication device 1600 may be a network device, such as the base station 80 below, where the function of the processing unit may be implemented by the processor 8022 in the base station, and the function of the transceiver unit may be implemented by the RRU of the base station 80. 801 implementation.
  • the following describes the structure of the network device of the embodiment of the present application in conjunction with FIG. 13.
  • FIG. 13 is a schematic structural diagram of a network device according to an embodiment of the present application, such as a schematic structural diagram of a base station.
  • the base station 80 can be applied to the system shown in FIG. 1 to perform the functions of the network device in the foregoing method embodiment.
  • the base station 80 may include one or more radio frequency units, such as a remote radio unit (RRU) 801 and one or more baseband units (BBU) (also referred to as digital units, digital units, DU) 802.
  • RRU 801 may be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 8011 and a radio frequency unit 8012.
  • the RRU 801 part is mainly used for receiving and sending of radio frequency signals and conversion of radio frequency signals and baseband signals, for example, for sending the signaling messages described in the foregoing embodiments to terminal equipment.
  • the 802 part of the BBU is mainly used to perform baseband processing and control the base station.
  • the RRU 801 and the BBU 802 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 802 is the control center of the base station, and may also be called a processing unit, which is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU (processing unit) 802 may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the BBU 802 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network with a single access indication (such as an LTE network), and may also support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 802 further includes a memory 8021 and a processor 8022, and the memory 8021 is used to store necessary instructions and data.
  • the memory 8021 stores the corresponding relationship between the codebook index and the precoding matrix in the foregoing embodiment.
  • the processor 8022 is used to control the base station to perform necessary actions, for example, to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 8021 and the processor 8022 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the processor in the embodiment of the present application may be a central processing unit (Central Processing Unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), and dedicated integration Circuit (application specific integrated circuit, ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • Access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory Take memory (synchlink DRAM, SLDRAM) and direct memory bus random access memory (direct rambus RAM, DR RAM).
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code runs on a computer, the computer is caused to execute as shown in Figure 4-9 The method of any one of the embodiments.
  • the present application also provides a computer-readable medium, the computer-readable medium stores a program code, when the program code runs on a computer, the computer executes the steps shown in Figure 4-9 The method of any one of the embodiments.
  • the present application also provides a system, which includes the aforementioned one or more terminal devices and one or more network devices.
  • the foregoing embodiments can be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above-mentioned embodiments may be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions or computer programs.
  • the computer instructions or computer programs are loaded or executed on a computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center that includes one or more sets of available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium.
  • the semiconductor medium may be a solid state drive.
  • "indication” may include direct indication and indirect indication, and may also include explicit indication and implicit indication.
  • the information indicated by a certain information (such as the "instruction information" in the preceding text) is called the information to be indicated.
  • the information to be indicated In the specific implementation process, there are many ways to indicate the information to be indicated. For example, but not limited to, you can directly indicate Instruction information, such as the information to be instructed itself or the index of the information to be instructed, etc.
  • the information to be indicated can also be indicated indirectly by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, and other parts of the information to be indicated are known or agreed in advance. For example, it is also possible to realize the indication of specific information by means of the pre-arranged order (for example, stipulated in the agreement) of various information, thereby reducing the indication overhead to a certain extent.
  • bandwidth part BWP
  • MIMO multiple input multiple output
  • DCI downlink control information
  • MAC CE medium access control control element
  • RRC radio resource control
  • PDSCH Physical Downlink Shared Channel
  • the "communication protocol” involved in the embodiments of the present application may refer to a standard protocol in the communication field, for example, may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, which are not limited in this application.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not correspond to the implementation process of the embodiments of the present application. Constitute any limitation.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法和装置,该方法包括:终端设备向网络设备发送第一指示信息,所述第一指示信息用于指示第一带宽部分BWP和第二BWP之间的切换时延为第一时长;所述第一BWP和所述第二BWP为所述终端设备用于收发数据的上行BWP或下行BWP。本申请终端设备能够针对服务小区内具体的某两个BWP之间切换时延向网络设备进行指示,由此使得对BWP切换时延的确定方法更加灵活,并且结果也更加准确,使得终端设备和网络设备之间能够更加高效的进行数据的传输。

Description

一种通信方法及通信装置
本申请要求于2019年08月14日提交中国专利局、申请号为201910749650.9、申请名称为“一种通信方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种通信方法及通信装置。
背景技术
第五代(5th generation,5G)移动通信新空口(new radio,NR)系统为了适应更加多样化的场景和业务需求,引入了带宽部分(bandwidth part,BWP)的概念。在一个小区网络设备可以为一个终端设备配置一个或多个下行BWP,和一个或多个上行BWP,以满足终端设备针对不同业务的使用需求。当终端在不同的BWP之间进行切换时,网络设备需要预留给终端设备一定的处理时间,该处理时间可以被称为BWP的切换时延(T BWPswitchDelay),在该切换时延内终端设备不进行数据的收发。
现有技术中,终端设备向网络设备上报自身的能力参数(bwp-SwitchingDelay),该能力参数能够指示该终端设备的BWP切换时延能力类型为类型1还是类型2,网络设备可以根据该BWP切换时延能力类型来确定该终端设备在一个小区内的任意两个BWP之间的切换时延。然而,上述切换时延的确定方法不够灵活,确定的结果也可能不够准确。例如,针对某两个BWP之前的切换,网络设备根据该BWP切换时延能力类型所确定的切换时延可能过大,此时即使终端设备可以以较短的时间完成BWP切换,网络设备也不能更快的调度终端设备,这会增大数据服务时延和降低吞吐量。
发明内容
本申请提供一种通信方法和通信装置,能够灵活的对BWP的切换时延进行指示,使得终端设备和网络设备之间能够更加高效的进行数据的传输。
第一方面,提供了一种通信方法,该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或电路执行,本申请对此不作限定。
该方法包括:终端设备向网络设备发送第一指示信息,第一指示信息用于指示第一带宽部分BWP和第二BWP之间的切换时延为第一时长;第一BWP和第二BWP为终端设备用于收发数据的上行BWP或下行BWP。
相对于终端设备上报自身的BWP切换时延能力类型并且由网络设备确定一个服务小区内任意两个BWP之间的切换时延,本申请实施例终端设备能够针对服务小区内多个BWP(包括已经配置好以及即将配置的BWP)中的某两个BWP之间切换时延向网络设备进行指示,网络设备能够根据该指示确定BWP的切换时延,由此使得对BWP切换时 延的确定(指示)方法更加灵活,并且结果也更加准确,当终端设备在上述两个BWP之间进行切换时,可以按照该上报的切换时延进行切换,使得终端设备和网络设备之间能够更加高效的进行数据的传输。
结合第一方面,在第一方面的某些实现方式中,第一指示信息包括第一BWP的标识、第二BWP的标识和第一时长的指示信息。
可选地,BWP的标识可以为BWP的编号。例如,第一BWP和第二BWP的标识分别为BWP ID 1和BWP ID 2,则在第一指示信息中可以包括该BWP ID 1和BWP ID 2。
应理解,在本申请中,除了上述BWP ID编号以外,第一BWP和第二BWP的标识还可以通过其他形式存在,本申请对此并不限定。具体地,对于第一BWP或者第二BWP,只要能够识别出该第一BWP或第二BWP的信息都可以算作第一BWP或者第二BWP的标识。
也就是说,该第一BWP或者第二BWP的标识还可以是第一BWP或者第二BWP的其他信息,例如可以将第一BWP能够区别于其他BWP的信息当成第一BWP的标识,将第二BWP能够区别于其他BWP的信息当成第二BWP的标识。
作为示例,该第一BWP或者第二BWP的标识可以是BWP的配置参数。例如,可以是子载波间隔(或者μ值)、中心频率、带宽等信息中的至少一种。
例如,当前第一服务小区内第一BWP之外的多个BWP的μ值均为1,而第一BWP的μ值为2,则可以将该μ值2作为第一BWP的标识。
结合第一方面,在第一方面的某些实现方式中,终端设备向网络设备发送第一指示信息之前,该方法还包括:终端设备确定所述第一时长。
结合第一方面,在第一方面的某些实现方式中,第一BWP和所述第二BWP为网络设备在第一服务小区配置给所述终端设备的多个下行BWP中的任意两个,或者第一BWP和第二BWP为网络设备在第一服务小区配置给所述终端设备的多个上行BWP中的任意两个。
结合第一方面,在第一方面的某些实现方式中,第一BWP和所述第二BWP中的至少一个BWP为所述终端设备建议所述网络设备在第一服务小区给所述终端设备配置的BWP。
应理解,在申请中,终端设备建议网络设备给终端设备配置的BWP包括即将配置,但是还未配置完成的BWP。
例如,该至少一个BWP可以是终端设备建议网络设备在第一服务小区给终端设备即将配置,但是还未配置完成的BWP。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:所述终端设备向所述网络设备发送第二指示信息,第二指示信息用于指示至少一个BWP的建议配置参数。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:终端设备接收所述网络设备发送的重新配置消息,重新配置消息用于按照所述建议配置参数为所述终端配置所述至少一个BWP。
结合第一方面,在第一方面的某些实现方式中,第一时长小于第二时长,第二时长为根据终端设备的BWP切换时延能力类型确定的在第一BWP和所述第二BWP之间的切换时延。根据前文的描述可知,通过BWP切换时延能力类型确定的切换时延可能时间过长 (终端设备可能并不需要那么长的时间进行BWP切换),而本申请的第一时长小于第二时长,终端设备可以更快的完成BWP的切换,进而使得终端设备和网络设备之间可以更快的实现数据的传输,从而能够降低数据服务时延和提高数据吞吐量。
结合第一方面,在第一方面的某些实现方式中,终端设备根据第一BWP和所述第二BWP的配置参数确定所述第一时长。
可选地,该配置参数可以包括带宽、中心频率、子载波间隔中的至少一种。
结合第一方面,在第一方面的某些实现方式中,第一BWP和第二BWP的配置参数满足以下条件中的至少一种:第一BWP和第二BWP的中心频率之差小于或者等于第一阈值;第一BWP和第二BWP的带宽之差小于或者等于第二阈值;第一BWP和第二BWP的子载波间隔之差小于或者等于第三阈值。
可选地,上述第一阈值、第二阈值、第三阈值可以由协议或者系统规定,也可以由网络设备和终端设备之间进行约定,也可以由终端设备根据自己能力确定,本申请对此并不限定。
可选地,上述第一阈值、第二阈值、第三阈值可以为0。也就是说,此时,第一BWP和第二BWP的配置参数可以满足以下条件中的至少一种:第一BWP和第二BWP的中心频率相同;第一BWP和第二BWP的带宽相同;第一BWP和第二BWP的子载波间隔相同。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:终端设备接收网络设备发送的确认消息,确认消息用于指示终端设备在第一BWP和第二BWP之间的切换时延为所述第一时长。
可选地,该确认消息可以携带于以下消息中的任意一种:无线资源控制RRC消息、媒体接入控制元素MAC CE消息、层1消息。
可选地,该RRC消息可以包括但不限于以下消息中的任意一种:RRC建立消息、RRC拒绝消息、RRC重配置消息、RRC重新建立消息、RRC释放消息、RRC恢复消息。
可选地,该层1消息包括下行控制消息DCI。
结合第一方面,在第一方面的某些实现方式中,第一服务小区为终端设备多个服务小区中的任意一个,第一指示信息还包括第一服务小区的小区标识。
结合第一方面,在第一方面的某些实现方式中,第一时长的指示信息包括第一时长的数值或第一时长的索引值。
结合第一方面,在第一方面的某些实现方式中,第一指示信息还用于指示第三BWP和第四BWP之间的切换时延为第三时长。
可选地,该第三时长可以等于或者不等于第一时长。
可选地,第三时长等于第一时长,此时第一指示信息可以携带第一BWP、第二BWP、第三BWP、第四BWP的标识,以及一个时长的指示信息,从而可以节约信令开销。此时第一指示信息还应当包括相应的关联关系,从而能够帮助网络设备确定上述一个时长的指示信息具体适用于哪两个BWP之间进行切换。
可选地,终端设备和网络设备处于TDD系统中,第三BWP可以是和第一BWP互相绑定的BWP,即第三BWP和第一BWP的BWP编号相同,一个表示上行BWP,另一个表示下行BWP,第四BWP可以是第二BWP互相绑定的BWP,即第四BWP和第二BWP 的BWP编号相同,一个表示上行BWP,另一个表示下行BWP。以上设置的好处是,对于TDD系统,当第一BWP和第二BWP进行切换时,其所绑定的BWP也要进行切换,此时可以对上行和下行的两对切换的切换时延同时进行指示。
可选地,该第三BWP和第四BWP中的一个可以和第一BWP和第二BWP中的一个为同一个BWP。
第二方面,提供了一种通信方法,该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片或电路执行,本申请对此不作限定。
该方法包括:网络设备接收终端设备发送的第一指示信息,第一指示信息用于指示第一带宽部分BWP和第二BWP之间的切换时延为第一时长;第一BWP和第二BWP为终端设备用于收发数据的上行BWP或下行BWP。
结合第二方面,在第二方面的某些实现方式中,第一指示信息包括第一BWP和第二BWP的标识和第一时长的指示信息。
结合第二方面,在第二方面的某些实现方式中,第一时长由终端设备进行确定。
结合第二方面,在第二方面的某些实现方式中,第一BWP和第二BWP为网络设备在第一服务小区配置给终端设备的多个下行BWP或者多个上行BWP中的任意两个。
结合第二方面,在第二方面的某些实现方式中,第一BWP和第二BWP中的至少一个BWP为终端设备建议网络设备在第一服务小区给终端设备新配置的BWP。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:网络设备接收终端设备发送的第二指示信息,第二指示信息用于指示至少一个BWP的建议配置参数。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:网络设备向终端设备发送重新配置消息,所述重新配置消息用于按照所述建议配置参数为所述终端配置所述至少一个BWP。
结合第二方面,在第二方面的某些实现方式中,第一时长小于第二时长,第二时长为根据终端设备的BWP切换时延能力类型确定的在第一BWP和第二BWP之间的切换时延。
结合第二方面,在第二方面的某些实现方式中,第一时长根据第一BWP和第二BWP的配置参数确定。
结合第二方面,在第二方面的某些实现方式中,第一BWP和第二BWP的配置参数满足以下条件中的至少一种:第一BWP和第二BWP的中心频率之差小于或者等于第一阈值;第一BWP和第二BWP的带宽之差小于或者等于第二阈值;第一BWP和第二BWP的子载波间隔之差小于或者等于第三阈值。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:网络设备向终端设备发送确认消息,确认消息用于指示终端设备在第一BWP和第二BWP之间的切换时延为第一时长。
结合第二方面,在第二方面的某些实现方式中,第一服务小区为终端设备多个服务小区中的任意一个,第一指示信息还包括第一服务小区的小区标识。
结合第二方面,在第二方面的某些实现方式中,第一时长的指示信息包括第一时长的数值或所述第一时长的索引值。
结合第二方面,在第二方面的某些实现方式中,第一指示信息还用于指示第三BWP 和第四BWP之间的切换时延为第三时长。
第三方面,提供了一种通信方法,该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或电路执行,本申请对此不作限定。
该方法包括:终端设备确定第一MIMO层数,第一MIMO层数为适用于第一带宽部分BWP的最大MIMO层数,第一BWP为所述终端设备在第一服务小区用于收发数据的上行BWP或下行BWP;终端设备向网络设备发送第一指示信息,第一指示信息包括第一BWP的标识和第一MIMO层数的指示信息。
相对于终端设备上报小区粒度的最大MIMO层数(该最大MIMO层数适用于该小区下的所有BWP),本申请实施例终端设备能够针对服务小区内具体的某个BWP的最大MIMO层数进行确定并且向网络设备进行指示,由此使得对最大MIMO层数的指示更加灵活,并且指示的结果也更加准确,当终端设备在第一BWP激活时可以以更加匹配的MIMO层数作为最大MIMO层数进行数据收发,能够提高终端设备和网络设备之间的数据传输性能,并且可以使终端设备关闭部分不必要的天线,节省终端设备的功耗。
可选地,第一BWP可以为第一服务小区配置给终端设备的多个BWP中的任意一个。
可选地,该第一BWP可以为多个下行BWP中的任意一个。
可选地,该第一BWP可以为多个上行BWP中任意一个。
可选地,该第一BWP可以为初始BWP。
可选地,该第一BWP可以为默认BWP。
可选地,第一BWP可以为所述终端设备建议网络设备在第一服务小区给终端设备新配置的BWP。
可选地,该第一MIMO层数可以只适用于第一BWP,对于第一服务小区内其他BWP,该第一MIMO层数不适用。
可选地,该第一MIMO层数的指示信息可以包括第一MIMO层数的数值。
可选地,第一指示信息可以通过第一服务小区上的多个上行BWP中的任意一个进行发送。
可选地,第一BWP可以为上行BWP,第一指示信息可以在第一BWP上进行发送。
可选地,终端设备可以处于载波聚合的场景下,即终端设备可以具有多个服务小区,第一指示信息可以通过多个服务小区中第一服务小区以外的任意一个服务小区进行发送。
例如,可以通过第一服务小区以外的一个服务小区上的任意一个上行BWP进行发送。
结合第三方面,在第三方面的某些实现方式中,第一MIMO层数小于第二MIMO层数,第二MIMO层数为所述网络设备配置给第一服务小区的最大MIMO层数。在本申请实施例中,由终端设备确定针对第一BWP的最大MIMO层数(即确定第一MIMO层数),该第一MIMO层数小于第二MIMO层数,由此使得在第一BWP激活时能够以更加匹配的MIMO层数作为最大MIMO层数进行数据收发,提高了终端设备的数据传输性能,此外,此时终端设备可以关闭一些不必要的天线(即终端设备可以使用更少的天线),从而能够节约终端设备的能耗。
可选地,第一BWP为下行BWP,第二MIMO层数为终端设备在第一服务小区配置的接收PDSCH的最大MIMO层数。
可选地,第一BWP为上行BWP,第二MIMO层数为终端设备在第一服务小区配置 的发送PUSCH的最大MIMO层数。
结合第三方面,在第三方面的某些实现方式中,第一MIMO层数小于第三MIMO层数,第三MIMO层数为所述终端设备针对所述第一服务小区所上报的能力消息中指示的最大MIMO层数。
可选地,第一BWP为下行BWP,第三MIMO层数为终端设备针对第一服务小区所上报的能力消息中指示的接收PDSCH的最大MIMO层数。
可选地,第一BWP为上行BWP,第三MIMO层数为终端设备针对第一服务小区所上报的能力消息中指示的发送PUSCH的最大MIMO层数。
结合第三方面,在第三方面的某些实现方式中,终端设备根据所述第一BWP的配置参数确定所述第一MIMO层数。
可选地,该配置参数可以包括带宽、中心频率、子载波间隔中的至少一种。
可选地,可以根据第一BWP的带宽确定第一MIMO层数。例如,对于带宽较小的BWP,数据速率一般较低,此时可以相应地配置较小的第一MIMO层数。
可选地,可以根据第一BWP的子载波间隔确定第一MIMO层数。例如,对于子载波间隔较小的BWP,对时延的要求可能较低,此时可以相应地配置较小的第一MIMO层数。
可选地,可以根据第一BWP的中心频率确定第一MIMO层数。例如,对于中心频率较低的BWP,对时延的要求可能较低,此时可以相应地配置较小的第一MIMO层数。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:终端设备接收网络设备发送的确认消息,确认消息用于指示终端设备使用第一BWP时以第一MIMO层数作为最大MIMO层数进行数据收发。
结合第三方面,在第三方面的某些实现方式中,第一服务小区为终端设备多个服务小区中的任意一个,第一指示信息还包括所述第一服务小区的小区标识。
结合第三方面,在第三方面的某些实现方式中,第一指示信息包括第二BWP的标识和第四MIMO层数的指示信息,所述第四MIMO层数为所述终端设备确定的适用于所述第二BWP的最大MIMO层数。
第四方面,提供了一种通信方法,该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片或电路执行,本申请对此不作限定。
该方法包括:网络设备接收终端设备发送的第一指示信息,第一指示信息包括第一带宽部分BWP的标识和第一MIMO层数的指示信息,第一BWP为所述终端设备在第一服务小区用于收发数据的上行BWP或下行BWP;网络设备根据第一指示信息确定终端设备在第一BWP激活时以第一MIMO层数作为最大MIMO层数进行数据收发。
结合第四方面,在第四方面的某些实现方式中,第一MIMO层数小于第二MIMO层数,第二MIMO层数为网络设备配置给第一服务小区的最大MIMO层数。
结合第四方面,在第四方面的某些实现方式中,第一MIMO层数小于第三MIMO层数,第三MIMO层数为终端设备针对第一服务小区所上报的能力消息中指示的最大MIMO层数。
结合第四方面,在第四方面的某些实现方式中,第一MIMO层数根据第一BWP的配置参数确定。
结合第四方面,在第四方面的某些实现方式中,该方法还包括:网络设备向终端设备 发送确认消息,确认消息用于指示终端设备使用第一BWP时以第一MIMO层数作为最大MIMO层数进行数据收发。
结合第四方面,在第四方面的某些实现方式中,第一服务小区为终端设备多个服务小区中的任意一个,第一指示信息还包括第一服务小区的小区标识。
结合第四方面,在第四方面的某些实现方式中,第一指示信息包括第二BWP的标识和第四MIMO层数的指示信息,第四MIMO层数为终端设备确定的适用于第二BWP的最大MIMO层数。
第五方面,提供了一种通信方法,该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或电路执行,本申请对此不作限定。
该方法包括:终端设备根据第一时长和M个BWP的配置参数确定N个BWP的建议配置参数,其中,M个BWP为网络设备为终端设备在第一服务小区已配置的BWP,M、N为大于或者等于1的整数;终端设备向网络设备发送第一指示信息,第一指示信息用于指示N个BWP的建议配置参数;终端设备向网络设备发送第二指示信息,第二指示信息用于指示第一BWP和第二BWP之间的切换时延为第一时长,其中,第一BWP和第二BWP中的至少一个为网络设备根据N个BWP的建议配置参数给终端设备在第一服务小区新配置的BWP。
根据本申请实施例,终端设备可以根据具体的时延要求和当前已经被配置的BWP确定至少一个BWP建议配置参数,并且向网络设备上报BWP的建议配置参数,网络设备可以根据该建议配置参数配置至少一个新的BWP,从而使得在该服务小区上至少有两个BWP之间的切换时延能够满足使用需求。
结合第五方面,在第五方面的某些实现方式中,所述终端设备根据第一时长和M个BWP的配置参数确定N个BWP的建议配置参数之前,该方法还包括:终端设备确定所述M个BWP之间的切换时延均不满足第一时长。终端设备可以在确定M个BWP之间的切换时延均不满足第一时长的前提下,才确定N个BWP的建议配置参数,从而可以节约信令开销。
例如,该M的值为1,此时不存在其他BWP可以进行切换,则终端设备可以确定M个BWP之间的切换时延均不满足第一时长。
再例如,M的值可以大于或者等于2,此时具有多个BWP可供终端设备进行切换,则此时终端设备可以确定M个BWP中的任意两个之间的切换时延均不满足第一时长。
可选地,M个BWP中的任意两个BWP之间的切换时延均不满足第一时长,可以是M个BWP中的任意两个BWP之间的切换时延均不等于第一时长。
可选地,M个BWP中的任意两个BWP之间的切换时延均不满足第一时长,可以是M个BWP中的任意两个BWP之间的切换时延均大于第一时长。
可选地,M个BWP中的任意两个BWP之间的切换时延均不满足第一时长,可以是M个BWP中的任意两个BWP之间的切换时延均大于第一时长,并且第一时长与该切换时延的差值均大于第一阈值。
可选地,M个BWP中的任意两个BWP之间的切换时延均不满足第一时长,可以是M个BWP中的任意两个BWP之间的切换时延均小于第一时长。
可选地,M个BWP中的任意两个BWP之间的切换时延均不满足第一时长,可以是 M个BWP中的任意两个BWP之间的切换时延均小于第一时长,并且第一时长与该切换时延的差值均大于第二阈值。
可选地,上述第一阈值、第二阈值可以由协议或者系统规定,也可以由网络设备和终端设备之间进行约定,也可以由终端设备根据自己能力确定,本申请对此并不限定。
结合第五方面,在第五方面的某些实现方式中,该方法还包括:终端设备接收网络设备发送的确认消息,确认消息用于指示所述终端设备在第一BWP和第二BWP之间的切换时延为所述第一时长。
可选地,该确认消息可以携带于以下消息中的任意一种:RRC消息、MAC CE消息、层1消息。
可选地,该RRC消息可以包括但不限于以下消息中的任意一种:RRC建立消息、RRC拒绝消息、RRC重配置消息、RRC重新建立消息、RRC释放消息、RRC恢复消息。
可选地,该层1消息包括DCI。
结合第五方面,在第五方面的某些实现方式中,该方法还包括:终端设备接收网络设备发送的重新配置消息,所述重新配置消息用于按照所述N个BWP的建议配置参数为所述终端设备配置至少一个BWP。
可选地,确认消息包括重新配置消息。
结合第五方面,在第五方面的某些实现方式中,N个BWP的建议配置参数包括N个BWP的带宽信息和中心频率信息。
结合第五方面,在第五方面的某些实现方式中,N个BWP的建议配置参数包括N个BWP对应的资源指示值。
结合第五方面,在第五方面的某些实现方式中,N个BWP的建议配置参数包括N个BWP子载波间隔信息。
结合第五方面,在第五方面的某些实现方式中,第一指示信息包括参考BWP的标识,N个BWP的建议配置参数包括相对所述参考BWP的配置参数的偏移值。
可选的,所述参考BWP的标识为参考BWP的编号,所述参考BWP为网络设备已经为终端设备配置的BWP。
可选的,所述参考BWP的标识为参考BWP的配置参数,所述参考BWP为网络设备已经为终端设备配置的BWP。
可选的,所述参考BWP的标识为参考BWP的建议配置参数,所述参考BWP为终端设备建议网络设备新配置的BWP。结合第五方面,在第五方面的某些实现方式中,终端设备根据第一时长和M个BWP的配置参数确定N个BWP的建议配置参数,包括:所述终端设备根据第一时长和M个BWP的配置参数确定N个BWP的建议配置参数和建议BWP编号;所述第一指示信息还包括所述N个BWP的建议BWP编号。
结合第五方面,在第五方面的某些实现方式中,第二指示信息还用于指示第三BWP和第四BWP之间的切换时延为第二时长。
可选的,第三BWP和第四BWP中的至少一个为网络设备根据N个BWP的建议配置参数给终端设备在第一服务小区新配置的BWP。
可选的,第三BWP和第四BWP为网络设备在第一服务小区已配置给所述终端设备的多个下行BWP或者多个上行BWP中的任意两个。
可选地,该第二时长可以等于或者不等于第一时长。
可选地,第二时长等于第一时长,此时第二指示信息可以携带第一BWP、第二BWP、第三BWP、第四BWP的标识,以及一个时长的指示信息,从而可以节约信令开销。此时第二指示信息还应当包括相应的关联关系,从而能够帮助网络设备确定上述一个时长的指示信息具体适用于哪两个BWP之间进行切换。
可选地,该第三BWP和第四BWP中的一个可以和第一BWP和第二BWP中的一个为同一个BWP。
第六方面,提供了一种通信方法,该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片或电路执行,本申请对此不作限定。
该方法包括:网络设备接收终端设备发送的第一指示信息,第一指示信息用于指示N个BWP的建议配置参数,其中,N个BWP的建议配置参数是根据第一时长和M个BWP的配置参数确定的,M个BWP为网络设备为终端设备在第一服务小区配置的BWP,M、N为大于或者等于1的整数;网络设备接收终端设备发送的第二指示信息,第二指示信息用于指示第一BWP和第二BWP之间的切换时延为第一时长,其中,第一BWP和第二BWP中的至少一个为网络设备根据N个BWP的建议配置参数给终端设备在第一服务小区新配置的BWP;网络设备根据第二指示信息确定终端设备在第一BWP和第二BWP之间的切换时延为第一时长。
结合第六方面,在第六方面的某些实现方式中,该方法还包括:网络设备向所述终端设备发送确认消息,确认消息用于指示终端设备在第一BWP和所述第二BWP之间的切换时延为所述第一时长。
结合第六方面,在第六方面的某些实现方式中,该方法还包括:网络设备向所述终端设备发送重新配置消息,所述重新配置消息用于按照所述N个BWP的建议配置参数为所述终端设备配置至少一个BWP。
结合第六方面,在第六方面的某些实现方式中,N个BWP的建议配置参数包括N个BWP的带宽信息和中心频率信息。
结合第六方面,在第六方面的某些实现方式中,N个BWP的建议配置参数包括N个BWP对应的资源指示值。
结合第六方面,在第六方面的某些实现方式中,N个BWP的建议配置参数包括N个BWP子载波间隔信息。
结合第六方面,在第六方面的某些实现方式中,第一指示信息包括参考BWP的标识,N个BWP的建议配置参数包括相对参考BWP的配置参数的偏移值。
结合第六方面,在第六方面的某些实现方式中,第一指示信息还包括所述N个BWP的建议BWP编号。
结合第六方面,在第六方面的某些实现方式中,第二指示信息还用于指示第三BWP和第四BWP之间的切换时延为第二时长。
第七方面,提供了一种通信装置,该用通信装置包括:收发单元,用于向网络设备发送第一指示信息,第一指示信息用于指示第一带宽部分BWP和第二BWP之间的切换时延为第一时长;第一BWP和所述第二BWP为通信装置用于收发数据的上行BWP或下行BWP。
结合第七方面,在第七方面的某些实现方式中,第一指示信息包括第一BWP和第二BWP的标识和第一时长的指示信息。
结合第七方面,在第七方面的某些实现方式中,该装置还包括确定单元,用于在发送单元向网络设备发送第一指示信息之前确定所述第一时长。
结合第七方面,在第七方面的某些实现方式中,第一BWP和第二BWP为网络设备在第一服务小区配置给通信装置的多个下行BWP或者多个上行BWP中的任意两个。
结合第七方面,在第七方面的某些实现方式中,第一BWP和第二BWP中的至少一个BWP为通信装置建议网络设备在第一服务小区给通信装置新配置的BWP。
结合第七方面,在第七方面的某些实现方式中,收发单元还用于向网络设备发送第二指示信息,第二指示信息用于指示至少一个BWP的建议配置参数。
结合第七方面,在第七方面的某些实现方式中,收发单元还用于接收网络设备发送的重新配置消息,重新配置消息用于按照建议配置参数为通信装置配置所述至少一个BWP。
结合第七方面,在第七方面的某些实现方式中,第一时长小于第二时长,第二时长为根据通信装置的BWP切换时延能力类型确定的在第一BWP和第二BWP之间的切换时延。
结合第七方面,在第七方面的某些实现方式中,收发单元还用于接收网络设备发送的确认消息,确认消息用于指示通信装置在第一BWP和第二BWP之间的切换时延为第一时长。
结合第七方面,在第七方面的某些实现方式中,第一时长的指示信息包括第一时长的数值或第一时长的索引值。
结合第七方面,在第七方面的某些实现方式中,第一指示信息还用于指示第三BWP和第四BWP之间的切换时延为第三时长。
结合第七方面,在第七方面的某些实现方式中,确定单元根据第一BWP和第二BWP的配置参数确定第一时长。
结合第七方面,在第七方面的某些实现方式中,第一BWP和第二BWP的配置参数满足以下条件中的至少一种:第一BWP和第二BWP的中心频率之差小于或者等于第一阈值;第一BWP和第二BWP的带宽之差小于或者等于第二阈值;第一BWP和第二BWP的子载波间隔之差小于或者等于第三阈值。
结合第七方面,在第七方面的某些实现方式中,第一服务小区为通信装置多个服务小区中的任意一个,第一指示信息还包括第一服务小区的小区标识。
第八方面,提供了一种通信装置,该通信装置包括:收发单元,用于接收终端设备发送的第一指示信息,第一指示信息用于指示第一带宽部分BWP和第二BWP之间的切换时延为第一时长;第一BWP和第二BWP为终端设备用于收发数据的上行BWP或下行BWP。
结合第八方面,在第八方面的某些实现方式中,第一指示信息包括第一BWP的标识、第二BWP的标识和第一时长的指示信息。
结合第八方面,在第八方面的某些实现方式中,第一时长由终端设备进行确定。
结合第八方面,在第八方面的某些实现方式中,第一BWP和第二BWP为通信装置在第一服务小区配置给终端设备的多个下行BWP中的任意两个,或者第一BWP和第二 BWP为通信装置在第一服务小区配置给终端设备的多个上行BWP中的任意两个。
结合第八方面,在第八方面的某些实现方式中,第一BWP和第二BWP中的至少一个BWP为终端设备建议通信装置在第一服务小区给终端设备配置的BWP。
结合第八方面,在第八方面的某些实现方式中,收发单元还用于接收终端设备发送的第二指示信息,第二指示信息用于指示至少一个BWP的建议配置参数。
结合第八方面,在第八方面的某些实现方式中,收发单元还用于向终端设备发送重新配置消息,重新配置消息用于按照建议配置参数为终端设备配置至少一个BWP。
结合第八方面,在第八方面的某些实现方式中,第一时长小于第二时长,第二时长为根据终端设备的BWP切换时延能力类型确定的在第一BWP和第二BWP之间的切换时延。
结合第八方面,在第八方面的某些实现方式中,收发单元还用于向终端设备发送确认消息,确认消息用于指示终端设备在第一BWP和第二BWP之间的切换时延为所述第一时长。
结合第八方面,在第八方面的某些实现方式中,第一时长的指示信息包括第一时长的数值或第一时长的索引值。
结合第八方面,在第八方面的某些实现方式中,第一指示信息还用于指示第三BWP和第四BWP之间的切换时延为第三时长。
结合第八方面,在第八方面的某些实现方式中,第一BWP和第二BWP的配置参数满足以下条件中的至少一种:第一BWP和第二BWP的中心频率之差小于或者等于第一阈值;第一BWP和第二BWP的带宽之差小于或者等于第二阈值;第一BWP和第二BWP的子载波间隔之差小于或者等于第三阈值。
结合第八方面,在第八方面的某些实现方式中,第一服务小区为通信装置多个服务小区中的任意一个,第一指示信息还包括第一服务小区的小区标识。
第九方面,提供了一种通信装置,该通信装置包括:确定单元,用于确定第一MIMO层数,第一MIMO层数为适用于第一带宽部分BWP的最大MIMO层数,第一BWP为所述终端设备在第一服务小区用于收发数据的上行BWP或下行BWP;收发单元,用于向网络设备发送第一指示信息,第一指示信息包括第一BWP的标识和第一MIMO层数的指示信息。
结合第九方面,在第九方面的某些实现方式中,第一MIMO层数小于第二MIMO层数,第二MIMO层数为网络设备配置给第一服务小区的最大MIMO层数。
结合第九方面,在第九方面的某些实现方式中,第一MIMO层数小于第三MIMO层数,第三MIMO层数为该通信装置针对第一服务小区所上报的能力消息中指示的最大MIMO层数。
结合第九方面,在第九方面的某些实现方式中,确定单元根据第一BWP的配置参数确定第一MIMO层数。
结合第九方面,在第九方面的某些实现方式中,收发单元还用于接收所述网络设备发送的确认消息,确认消息用于指示该通信装置使用第一BWP时以第一MIMO层数作为最大MIMO层数进行数据收发。
结合第九方面,在第九方面的某些实现方式中,第一服务小区为该通信装置多个服务 小区中的任意一个,第一指示信息还包括第一服务小区的小区标识。
结合第九方面,在第九方面的某些实现方式中,第一指示信息包括第二BWP的标识和第四MIMO层数的指示信息,第四MIMO层数为确定单元确定的适用于第二BWP的最大MIMO层数。
第十方面,提供了一种通信装置,该通信装置包括:收发单元,用于接收终端设备发送的第一指示信息,第一指示信息包括第一带宽部分BWP的标识和第一MIMO层数的指示信息,第一BWP为所述终端设备在第一服务小区用于收发数据的上行BWP或下行BWP;;确定单元,用于根据第一指示信息确定终端设备在第一BWP激活时以第一MIMO层数作为最大MIMO层数进行数据收发。
结合第十方面,在第十方面的某些实现方式中,第一MIMO层数小于第二MIMO层数,第二MIMO层数为通信装置配置给第一服务小区的最大MIMO层数。
结合第十方面,在第十方面的某些实现方式中,第一MIMO层数小于第三MIMO层数,第三MIMO层数为终端设备针对第一服务小区所上报的能力消息中指示的最大MIMO层数。
结合第十方面,在第十方面的某些实现方式中,第一MIMO层数根据第一BWP的配置参数确定。
结合第十方面,在第十方面的某些实现方式中,收发单元还用于向终端设备发送确认消息,确认消息用于指示终端设备使用第一BWP时以第一MIMO层数作为最大MIMO层数进行数据收发。
结合第十方面,在第十方面的某些实现方式中,第一服务小区为终端设备多个服务小区中的任意一个,第一指示信息还包括第一服务小区的小区标识。
结合第十方面,在第十方面的某些实现方式中,第一指示信息包括第二BWP的标识和第四MIMO层数的指示信息,第四MIMO层数为终端设备确定的适用于第二BWP的最大MIMO层数。
第十一方面,提供了一种通信装置,该通信装置包括:确定单元,用于根据第一时长和M个BWP的配置参数确定N个BWP的建议配置参数,其中,M个BWP为网络设备为通信装置在第一服务小区已配置的BWP,M、N为大于或者等于1的整数;收发单元,用于向网络设备发送第一指示信息,第一指示信息用于指示N个BWP的建议配置参数;收发单元还用于向网络设备发送第二指示信息,第二指示信息用于指示第一BWP和第二BWP之间的切换时延为第一时长,其中,第一BWP和第二BWP中的至少一个为网络设备根据N个BWP的建议配置参数给终端设备在第一服务小区新配置的BWP。
结合第十一方面,在第十一方面的某些实现方式中,确定单元还用于确定所述M个BWP之间的切换时延均不满足第一时长。
结合第十一方面,在第十一方面的某些实现方式中,收发单元还用于接收网络设备发送的确认消息,确认消息用于指示终端设备在第一BWP和第二BWP之间的切换时延为所述第一时长。
结合第十一方面,在第十一方面的某些实现方式中,收发单元还用于接收网络设备发送的重新配置消息,所述重新配置消息用于按照所述N个BWP的建议配置参数为所述终端设备配置至少一个BWP。
可选地,确认消息包括重新配置消息。
结合第十一方面,在第十一方面的某些实现方式中,N个BWP的建议配置参数包括N个BWP的带宽信息和中心频率信息。
结合第十一方面,在第十一方面的某些实现方式中,N个BWP的建议配置参数包括N个BWP对应的资源指示值。
结合第十一方面,在第十一方面的某些实现方式中,第一指示信息包括参考BWP的标识,N个BWP的建议配置参数包括相对参考BWP的配置参数的偏移值。
结合第十一方面,在第十一方面的某些实现方式中,确定单元还用于根据第一时长和M个BWP的配置参数确定N个BWP的建议配置参数和建议编号;第一指示信息还包括N个BWP的建议编号。
第十二方面,提供了一种通信装置,该通信装置包括:收发单元,用于接收终端设备发送的第一指示信息,第一指示信息用于指示N个BWP的建议配置参数,其中,N个BWP的建议配置参数是根据第一时长和M个BWP的配置参数确定的,M个BWP为通信装置为终端设备在第一服务小区配置的BWP,M、N为大于或者等于1的整数;收发单元还用于接收终端设备发送的第二指示信息,第二指示信息用于指示第一BWP和第二BWP之间的切换时延为第一时长,其中,第一BWP和第二BWP中的至少一个为通信装置根据N个BWP的建议配置参数给终端设备在第一服务小区新配置的BWP;确定单元,用于根据第二指示信息确定终端设备在第一BWP和第二BWP之间的切换时延为第一时长。
结合第十二方面,在第十二方面的某些实现方式中,收发单元还用于向终端设备发送确认消息,确认消息用于指示终端设备在第一BWP和第二BWP之间的切换时延为第一时长。
结合第十二方面,在第十二方面的某些实现方式中,收发单元还用于向终端设备发送重新配置消息,所述重新配置消息用于按照所述N个BWP的建议配置参数为所述终端设备配置至少一个BWP。
可选地,确认消息包括重新配置消息。
结合第十二方面,在第十二方面的某些实现方式中,N个BWP的建议配置参数包括N个BWP的带宽信息和中心频率信息。
结合第十二方面,在第十二方面的某些实现方式中,N个BWP的建议配置参数包括N个BWP对应的资源指示值。
结合第十二方面,在第十二方面的某些实现方式中,第一指示信息包括参考BWP的标识,N个BWP的建议配置参数包括相对所述参考BWP的配置参数的偏移值。
第十三方面,提供一种通信装置,该装置可以是终端设备,也可以是终端设备内的芯片。该装置可以包括处理单元和收发单元。当所述装置是终端设备时,所述处理单元可以是处理器,所述收发单元可以是收发器;所述终端设备还可以包括存储单元,所述存储单元可以是存储器;所述存储单元用于存储指令,所述处理单元执行所述存储单元所存储的指令,以使所述终端设备执行第一、三、五方面中的方法。当所述装置是终端设备内的芯片时,所述处理单元可以是处理器,所述收发单元可以是输入/输出接口、管脚或电路等;处理单元执行存储单元所存储的指令,以使终端设备执行第一、三、五方面中的方法,存 储单元可以是所述芯片内的存储单元(例如,寄存器、缓存等),也可以是所述终端设备内的位于所述芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第十四方面,提供一种通信装置,该装置可以是网络设备,也可以是网络设备内的芯片。该装置可以包括处理单元和收发单元。当所述装置是网络设备时,所述处理单元可以是处理器,所述收发单元可以是收发器;所述网络设备还可以包括存储单元,所述存储单元可以是存储器;所述存储单元用于存储指令,所述处理单元执行所述存储单元所存储的指令,以使所述网络设备执行第二、四、六方面中的方法。当所述装置是网络设备内的芯片时,所述处理单元可以是处理器,所述收发单元可以是输入/输出接口、管脚或电路等;所述处理单元执行存储单元所存储的指令,以使所述网络设备执行第二、四、六方面中的方法,所述存储单元可以是所述芯片内的存储单元(例如,寄存器、缓存等),也可以是所述网络设备内的位于所述芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第十五方面,提供一种通信装置,包括至少一个处理器,该至少一个处理器用于与存储器耦合,读取并执行所述存储器中的指令,以实现第一至六方面中的任一种方法。
可选地,该通信装置还包括存储器。
第十六方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行第一至六方面中的任一种方法。
需要说明的是,上述计算机程序代码可以全部或者部分存储在第一存储介质上,其中第一存储介质可以与处理器封装在一起的,也可以与处理器单独封装,本申请对此不作具体限定。
第十七方面,提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行第一至六方面中的任一种方法。
附图说明
图1示出了适用于本申请实施例的适用的通信系统的示意图。
图2示出了不同的子载波间隔下一个时隙的结构的示意图。
图3示出了通过DCI来指示终端设备切换BWP的示意图。
图4是本申请提供的通信方法的一例的示意性流程图。
图5是本申请提供的通信方法的另一例的示意性流程图。
图6是本申请提供的通信方法的再一例的示意性流程图。
图7是本申请提供的通信方法的再一例的示意性流程图。
图8是本申请提供的通信方法的再一例的示意性流程图。
图9是本申请提供的通信方法的再一例的示意性流程图。
图10是本申请实施例的通信设备的示意图。
图11是本申请实施例的一种终端设备的结构示意图。
图12是本申请另一实施例的通信设备的示意图。
图13是本申请实施例的一种网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)通信系统或未来的新无线接入技术(new radio access technology,NR)、窄带物联网(narrow band-internet of things,NB-IoT)系统、机器类通信(machine type communication,MTC)系统等。
为便于理解本申请实施例,首先结合图1详细说明适用于本申请实施例的通信系统。图1示出了适用于本申请实施例的适用的通信系统的示意图。如图1所示,该通信系统10可以包括至少一个网络设备,例如图1所示的网络设备11;该通信系统10还可以包括至少一个终端设备,例如图1所示的终端设备12。网络设备11与终端设备12可通过无线链路通信。各通信设备,如网络设备11或终端设备12,可以配置多个天线,该多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。另外,各通信设备还附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。因此,网络设备11与终端设备12可通过多天线技术通信。
应理解,该无线通信系统中的网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved NodeB,eNB或eNodeB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,例如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+CU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网(radio access network,RAN) 中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
还应理解,该无线通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
为便于理解本申请实施例,首先对本申请中涉及到的相关技术内容作简单说明。
一、部分带宽
在NR系统中,每个载波的信道带宽(channel bandwidth)最大可达到400MHz,但是不同的数据业务下需要终端设备工作的带宽是不同的。针对数据速率较低的业务或对时延不敏感的业务,一个终端设备不需要占满整个400MHz带宽,如果终端设备采用400MHz带宽对应的采样率,无疑是对性能的浪费。此外,大带宽意味着高采样率,高采样率意味着高功耗。
在该背景下,带宽部分(bandwidth part,BWP)技术被引出,能够成功的解决上述问题。
带宽部分(BWP):由于NR中同一小区中不同终端设备接受的数据服务类型可能是 不同的,并且同一个终端设备在不同时刻接受的数据服务类型也可能不同,因而,系统可以为每个终端设备配置相应的带宽,这一部分配置给终端设备的带宽称为BWP,终端设备在BWP上传输数据。BWP可以是载波上一组连续的频域资源,不同的BWP可以占用的频域资源可以部分重叠,也可以互不重叠。不同的BWP占用的频域资源的带宽可以相同,也可以不同,本申请对此不作限定。
每个BWP对应于一个数值配置(numerology)、带宽和频域位置(frequency location)。对于频分双工(frequency division duplexing,FDD)系统或对称频谱(paired spectrum)系统,网络设备可以为终端设备配置多个下行BWP(downlink bandwidth part,DL BWP)和多个上行BWP(uplink bandwidth part,UL BWP)。对于时分双工(time division duplexing,TDD)系统或非对称频谱(unpaired spectrum)系统,网络设备可以为终端设备配置多个下行/上行BWP对(DL/UL BWP pair),其中每个DL/UL BWP pair中DL BWP和UL BWP的中心频点是一样的,且BWP编号也是一样的,但是带宽和子载波间隔(subcarrier spacing,SCS)可以不一致。
除了网络设备通过RRC信令配置的BWP,还有一个初始下行BWP(initial DL BWP)和初始上行BWP(initial UL BWP)。初始下行BWP和初始上行BWP的配置信息可以包括在系统消息中(例如,系统消息块1(system information block 1,SIB1)中),也可以包括在高层下发的RRC消息中。终端设备在初始接入读取完SIB1之后,即获得初始下行BWP和初始上行BWP的配置信息。终端设备在获得SIB1中的初始下行/上行BWP的配置信息之后,还可能在后续的RRC消息中再次获得初始下行/上行BWP的配置信息。RRC消息中的初始下行/上行BWP的配置信息和SIB1中的初始下行/上行BWP的配置信息可以相同,也可以不同,本发明对此不做限制。除了初始下行/上行BWP,网络设备还可以通过RRC消息额外配置至多4个下行/上行BWP。当网络设备通过RRC消息额外配置4个下行/上行BWP时,终端设备一共有5个下行BWP和5个上行BWP。
应理解,在其他可能的实施方式中,网络设备也可能为终端设备配置大于四个的下行BWP和大于四个的上行BWP,例如,网络设备为终端设备配置5、6、7、8甚至更多个下行/上行BWP,本申请对此并不限定。
其中,带宽的大小可以指该BWP包含的连续物理资源块(physical resource block,PRB)的数量,频域位置可以指该BWP在整个小区带宽或者载波带宽中心的位置或者起始频域位置(起始PRB的位置)。
通常情况下,在同一小区的某一时刻,终端设备最多拥有一个激活的下行BWP和一个激活的上行BWP,终端设备只能在该激活的下行BWP和上行BWP上接收和发送数据。例如,对于FDD系统或对称频谱系统,在同一小区的某一时刻终端设备可以拥有一个激活的下行BWP和一个激活的上行BWP。对于TDD系统或非对称频谱系统,在同一小区的某一时刻终端设备可以拥有一个激活的下行BWP或者一个激活的上行BWP。
此外,在NR系统中,可以通过载波聚合(carrier aggregation,CA)技术为终端设备配置多个载波,终端设备通过该多个载波对应的多个服务小区进行数据收发。在每个载波(服务小区)上,网络设备可以为终端设备配置一个或者多个BWP。类似地,在某一时刻,终端设备可以在每个载波上最多拥有一个激活的下行BWP和一个激活的上行BWP,终端设备只能在该激活的下行和/或上行BWP上传输数据。
网络设备可以给终端设备配置多个BWP,终端设备可以在该多个BWP中的任意一个上进行数据传输。该多个BWP可以包括初始(initial)BWP。
此外,该多个BWP中还可以包括一个默认(default)BWP,该默认BWP通常是具有相对较小带宽的BWP。例如,网络设备可以从RRC消息配置的多个BWP中指示一个为默认BWP。当终端设备长时间没有收到数据或者检测到物理下行控制信道(physical downlink control channel,PDCCH)时,终端设备会通过一个定时器(timer)(即,BWP非激活定时器BWP-InactivityTimer)从当前的激活BWP切换至默认BWP,从而达到省电的效果。当网络设备没有明确指示默认BWP时,终端设备将初始BWP认为是默认BWP。
可以通过不同的BWP编号(identification,ID)来对上述多个BWP进行区分。上述初始BWP的BWP ID为0,其他BWP ID的编号从1到参数maxNrofBWPs。例如,在FDD系统或对称频谱系统中,网络设备可以为终端设备配置四个下行BWP,该四个下行BWP对应的BWP ID可以分别为0,1,2,3。
为了支持不同的业务,不同的BWP可能会支持不同的数值配置numerology。其中,numerology是在NR中新引入的一个概念,具体可理解为通信系统所用的一套参数,例如可包括子载波间隔、符号长度、循环前缀(cyclic prefix,CP)长度、资源块(resource block,RB)数、时隙(solt)长度、帧格式等。一个小区可以支持一种或者多种numerology,一个BWP会配置一种numerology。应理解,这里所列举的numerology所包含的具体内容仅为示例性说明,不应对本申请构成任何限定。例如,numerology还可包括NR中所能支持的其他粒度的参数。
NR系统可以支持不同的SCS配置,不同的SCS可以适用于不同的场景。对于高频段大带宽可以配置相对大一些的SCS,此外,大的子载波间隔在时域对应于小的符号长度,可以满足低时延业务的要求。
例如,NR系统中支持的SCS配置可以包括15KHz,30KHz,60KHz,120KHz,240KHz,480KHz等。
每种子载波间隔对应的符号时间长度是不同的。NR中一个时隙由14个符号(对应常规的CP)或者12个符号(对应扩展的CP)组成。对于不同的SCS,一个时隙对应的实际的时间长度是不一样的。
NR中要求各个子载波的时域符号在0.5ms粒度上对齐。如图2所示,图2是本申请一个实施例的不同的子载波间隔下一个时隙的结构的示意图。如图2所示,对于15KHz的子载波间隔,0.5ms的时长包括7个符号,对于30KHz的子载波间隔,0.5ms的时长包括14个符号,对于60KHz的子载波间隔,0.5ms的时长包括28个符号。由于子载波间隔的选择都是15KHz的倍数或分数,在上述对齐的约束下,不同的SCS的符号序号有对应关系。比如15KHz的第一个符号(符号0)的位置对应30KHz的第一个和第二个符号(符号0和1),或者60KHz的第一个至第四个符号(符号0,1,2,3)。图2中画出了每种SCS下14个符号组成的一个时隙。
根据图2可知,对于15KHz、30KHz、60KHz的子载波间隔,一个时隙的绝对时间长度分别为1,0.5,0.25毫秒(ms)。
数值配置numerology可以包括与子载波特性相关联的值,例如,可以是一个参数μ。如表1所示,表1是不同的参数μ与不同的子载波间隔的对应关系表。此外,表1中还示 出了不同的子载波间隔所对应的一个时隙的绝对时间长度。
表1
Numerology(μ) 子载波间隔(KHz) 时隙长度(ms)
0 15 1
1 30 0.5
2 60 0.25
3 120 0.125
4 240 0.0625
5 480 0.03125
根据具体需求,终端设备可以在被配置的多个BWP中的任意一个BWP上进行数据传输。例如,在第一时刻,终端设备的业务量比较大,此时网络设备可以给终端设备配置一个大带宽的BWP(例如,BWP1)。在第二时刻,终端设备的业务量较小,网络设备可以给终端设备配置一个小带宽的BWP(例如BWP2),终端设备可以在该多个WBP之间进行切换,例如,从BWP1切换到BWP2。
前述的BWP1和BWP2可以为上行的BWP,也可以为下行的BWP。值得一提的是,对于TDD系统或非对称频谱系统,具有相同BWP编号的上行BWP和下行BWP是互相绑定的,当上行(下行)BWP切换时对应的下行(上行)BWP也需要一起切换。
目前,网络设备和终端设备实现BWP的切换可以包括以下三种方法。
方法1、通过下行控制信息(downlink control information,DCI)来动态的控制终端设备在不同BWP间进行切换。具体可以为:
(1.1)调度下行传输的DCI来控制终端设备进行下行BWP的转换。例如可以在调度下行传输的DCI中包含BWP ID,这样可以指示终端设备激活该BWP ID对应的下行BWP并在该下行BWP上接收该DCI调度的物理下行共享信道(physical downlink shared channel,PDSCH)。
(1.2)调度上行传输的DCI来控制终端设备进行上行BWP的转换。例如可以在调度上行传输的DCI中包含BWP ID,这样可以指示终端设备激活该BWP ID对应的上行BWP并在该上行BWP上传输该DCI调度的物理上行共享信道(physical uplink shared channel,PUSCH)。
方法2、基于定时器的方法:网络配置一个BWP非激活定时器bwp-InactivityTimer。如果终端设备在当前BWP的bwp-InactivityTimer超时,则终端设备可以切换到默认BWP。
方法3、通过RRC信令指示:网络设备通过发送RRC信令指示终端设备进行BWP切换。
BWP的切换也可以理解为BWP的激活和去激活。例如,假设终端设备当前激活的下行BWP为BWP1。当终端设备收到一个调度下行传输的DCI中包含的BWP ID为BWP2时,那么终端设备进行BWP的切换意味着终端设备需要去激活下行BWP1,并激活下行BWP2。通过动态激活/去激活的方式,可以快速调整终端设备使用的BWP。
BWP切换需要一定的时间,BWP切换的时间包括:PDCCH解调与DCI译码时间、基带处理时间(比如参数计算等)、射频转换时间(radio frequency transition time)等。网络设备需要给终端设备预留一定的处理时间以完成BWP的切换,上述预留给终端设备的处理 时间可以被称为BWP的切换时延(T BWPswitchDelay)。
图3示出了通过DCI来指示终端设备切换BWP的示意图。如图3所示,针对DCI指示的BWP切换,如果指示BWP切换的DCI所在时隙为n,则终端设备需能够在时隙n+T BWPswitchDelay的起始时刻之后在新的BWP上接收PDSCH(针对下行BWP切换)或者能够发送PUSCH(针对上行BWP切换)。
针对基于定时器的BWP切换,用n表示bwp-InactivityTimer超时之后的第一个下行子帧(FR1)或者下行半子帧half-subframe(FR2)的第一个时隙编号,则同样的,终端设备需能够在时隙n+T BWPswitchDelay的起始时刻之后在新的BWP上接收PDSCH(针对下行BWP切换)或者能够发送PUSCH(针对上行BWP切换)。
在BWP的切换时延内(即T BWPswitchDelay的时间段),不要求终端设备发送上行信号或接收下行信号。
例如,如图3所示,当前激活的BWP为BWP1,PDCCH传输的DCI指示BWP切换,从BWP1切换到BWP2,该DCI同时调度了一个PDSCH。图3中BWP切换时延T BWPswitchDelay=2slots。对于终端设备来说,终端设备需保证在BWP切换时延内完成BWP切换,在n+2时隙的起始时刻之后能够在BWP2上接收下行数据PDSCH。对于网络设备来说,网络设备应该将数据调度在n+T BWPswitchDelay时隙的起始时刻之后,因为在BWP切换时延内,终端设备不接收数据。
表2为BWP的切换时延表。根据终端设备能力的不同,NR系统目前定义了两种不同的BWP切换时延能力类型,如表2所示,分别为类型1和类型2。具体采用哪种BWP切换时延能力类型是根据终端设备能力上报来决定的。终端设备会向网络设备上报一个能力参数bwp-SwitchingDelay,该能力参数能够指示该终端设备的BWP切换时延能力类型为类型1还是类型2,即能够指示具体采用类型1还是类型2来确定自身的切换时延。
表2
Figure PCTCN2020108960-appb-000001
在表2中,参数μ与子载波间隔相关联。μ的值为0,1,2,3分别对应子载波间隔为15KHz,30KHz,60KHz,120KHz的载波。
此外,如果切换前后的两个BWP的子载波间隔不同,那么BWP的切换时延应当根据切换前后的BWP的子载波间隔中的较大值来确定。
例如,终端设备使用的BWP由BWP1切换为BWP2,如果BWP1和BWP2的子载波间隔相同,均为30KHz,并且终端设备上报的能力参数指示类型1,则此时网络设备能够确定该终端设备的切换时延应该为30KHz下的两个时隙,即切换时延的长度为0.5*2=1毫秒(ms)。
再例如,终端设备使用的BWP由BWP1切换为BWP2,如果BWP1和BWP2的子载波间隔不相同,BWP1的子载波间隔为30KHz,BWP2的子载波间隔为60KHz,并且终端设备上报的能力参数指示类型1,则此时网络设备能够确定该终端设备的切换时延应该 为60KHz下的3个时隙,即切换时延的长度为0.25*3=0.75ms。
然而,在上述表2的基础上,网络设备通过终端设备的切换时延类型和BWP的子载波间隔来确定终端设备的切换时延的方法不够灵活、准确。
表2中不同μ值对应的BWP切换时延通常按照最差情况的BWP切换时延来确定。即使两个BWP之间可以以较短的时延完成BWP切换,网络设备也不能更快的调度终端设备,这会增大数据服务时延和降低吞吐量。
具体地,一旦确定了终端设备的BWP切换时延能力类型(例如为类型1或者类型2),则网络设备对该终端设备在一个服务小区的所有BWP之间的切换时延均按照所述能力类型确定。而BWP切换可能包含不同的多个场景,例如,场景1:BWP切换涉及到BWP的中心频率(center frequency)和/或带宽(bandwidth)大小的变化;场景2:BWP切换只涉及子载波间隔的改变,BWP的中心频率和带宽都不变;场景3:BWP切换只涉及基带参数的变化,BWP的中心频率、带宽与SCS都不变。
场景1下的BWP切换涉及到射频(radio frequency,RF)转换时间,而场景2和场景3下的BWP切换涉及的RF转换时间较少或者不涉及RF转换时间,显然,对于场景2和场景3,BWP切换时延可以减少,终端设备可以在更短的时间内完成BWP切换。另外,基带处理和RF转换时间与终端设备的实现非常相关,所以针对中心频率有一定间隔但间隔较小,或者带宽大小变化较小的两个BWP之间的切换,具有较强实现能力的终端设备也可以在更短的时间内完成BWP切换。
综上所述,网络设备可以通过终端设备上报的BWP切换时延能力类型来确定终端设备在一个服务小区上的所有BWP中任意两个BWP之间的切换时延,上述BWP切换时延能力类型的上报是针对所有小区上的所有的BWP而进行的,由此使得网络设备对BWP切换时延的确定不够灵活。网络设备根据终端设备上报的BWP切换时延能力类型确定的切换时延可能结果并不准确,即使终端设备可以以较短的时间完成BWP切换,此时网络设备也不能更快的调度终端设备,这会增大数据服务时延和降低吞吐量。
目前,为了更加灵活的确定BWP的切换时延,作为一种实施方式,可以通过预先设定一定的条件,满足该条件的BWP切换可以遵循预设的较短的BWP切换时延。
具体地,如果两个BWP切换只涉及基带参数的变化,不涉及BWP带宽、频率和SCS的变化,或者两个BWP切换只涉及带宽的变化,则BWP切换就不需要RF转换或者需要的RF转换时间较少。
这样,针对这种符合一定条件的BWP切换,协议可以定义一个新的较短的BWP切换时延,然后通过网络配置或指示的方式使符合一定条件的BWP切换遵循较短的BWP切换时延。
然而,预先设定一定的条件并不能涵盖所有可以实现较短切换时延的BWP切换。因为BWP切换时延很大程度上取决于终端设备的能力,针对不同场景的BWP切换,不同能力的终端设备切换时间不同。例如,针对中心频率有一定间隔但间隔较小,或者带宽大小变化较小的两个BWP之间的切换,具有较强实现能力的终端设备也可以在更短的时间内完成BWP切换。
另外,即使两个BWP的参数配置的一样,这样的两个BWP之间不需要切换时延,但是终端设备可能仍然想要在这样的两个BWP之间切换时预留一定的时间。例如,终端 设备希望在两个BWP切换时完成最大多输入多输出层数(maximum number of multiple-input multiple-output(MIMO)layers)的切换,而切换最大MIMO层数涉及到RF射频链路的切换,以及天线的打开和关闭,需要一定的时间。
二、最大MIMO层数
MIMO层数:也可以称为传输层、空间层、层、传输流、空间流、流等。终端设备可以根据信道估计所得到的信道确定信道矩阵的秩(rank)。网络设备可以参考终端设备反馈的信道矩阵的秩,确定用于网络设备与终端设备之间通信时能够使用的最大MIMO层数。通常情况下,网络设备与终端设备通信时能够使用的最大MIMO层数可以由网络设备所配置的发射天线数以及终端设备所配置的接收天线数所决定。例如,最大MIMO层数可以小于或等于网络设备所配置的发射天线数和终端设备所配置的接收天线数中较小的那个数。
目前,NR系统协议支持终端设备上报可以支持的最大MIMO层数。该上报的粒度为载波级别,即终端设备支持的最大MIMO层数适用于一个成分载波(component carrier,CC)。如果该CC上有多个BWP,则表示这多个BWP都支持这个相同的最大MIMO层数。
终端设备上报包括对上行CC支持的最大上行MIMO层数和对下行CC支持的最大下行MIMO层数。例如,在信息单元FeatureSetDownlinkPerCC包括针对下行CC上传输的PDSCH可以支持的最大MIMO层数,即MIMO-LayersDL。在信息单元FeatureSetUplinkPerCC包括针对上行CC上传输的PUSCH可以支持的最大MIMO层数,即MIMO-LayerUL。针对PUSCH可以支持的最大MIMO层数又分为码本传输和非码本传输两种类型。
在终端设备上报能力之后,网络会在RRC信令中配置一个服务小区(serving cell)上的最大MIMO层数,分别针对下行PDSCH和上行PUSCH配置最大MIMO层数。该RRC信令配置的最大MIMO层数适用于该服务小区上的所有BWP。
如前所述,终端设备上报的支持的最大MIMO层数是小区级别,而网络通过RRC信令配置的最大MIMO层数也是小区级别。一旦网络配置了最大MIMO层数,则一个服务小区上的所有BWP上的数据收发都按照最大MIMO层数进行。
在某些BWP(比如带宽较小的BWP,数据速率一般较低)上可能不需要按照最大MIMO层数收发数据,终端设备可以在这些BWP以较少天线收发数据以节省终端设备功耗。
然而,在现有机制下,终端设备为了支持所配置的最大MIMO层数是不能关闭部分天线的,由此使得终端设备不够节能。这是因为网络可能会以最大MIMO层数给终端设备调度PDSCH或PUSCH,所以终端设备需要以最大MIMO层数估计下行信道状态信息参考信号(channel state information-reference signal,CSI-RS)以反馈信道估计给基站,让基站根据终端设备反馈的信道信息发送PDSCH,或终端设备需要以最大MIMO层数发送上行探测参考信号(sounding reference signal,SRS),为的是终端设备能够以最大MIMO层数发送PUSCH。
应理解,前述对BWP、最大MIMO层数等的相关介绍只是为了便于理解本申请的技术方案,而不对本申请构成任何限定。
本申请实施例提供一种通信方法,终端设备能够针对服务小区内具体的某两个BWP之间切换时延向网络设备进行指示,网络设备可以根据该指示确定BWP的切换时延,由此使得对BWP切换时延的确定方法更加灵活,并且结果更加准确,有利于网络设备和终端设备更加高效的进行数据传输。
下面结合附图介绍本申请实施例提供的通信方法,实施例中的网络设备可以是图1中的网络设备11,终端设备可以是图1中的终端设备12。
图4是本申请提供的通信方法200的示意性流程图。以下,结合图4阐述本申请实施例提供的通信方法200,该方法200包括:
步骤210,终端设备向网络设备发送第一指示信息,第一指示信息用于指示第一带宽部分BWP和第二BWP之间的切换时延为第一时长;第一BWP和第二BWP为终端设备用于收发数据的上行BWP或下行BWP。
相应地,在步骤210中,网络设备接收终端设备发送的第一指示信息。
具体地,本申请实施例中的终端设备和网络设备可以是属于TDD系统中的通信设备,也可以是属于FDD系统中的通信设备,或者是属于其他任意系统中的通信设备,本申请对此并不限定。
进一步地,网络设备可以给终端设备在第一服务小区上配置多个下行BWP和多个上行BWP(例如,分别配置4个下行BWP和4个上行BWP),以满足终端设备不同的使用需求。
可选地,上述多个BWP中可以包括初始BWP,初始BWP为系统消息中配置的初始BWP或RRC消息中配置的初始BWP。
可选地,上述多个BWP中可以包括默认BWP,以用于终端设备从当前的激活BWP切换至该默认BWP,从而达到省电的效果。
可选地,终端设备可以处于载波聚合的场景下,该终端设备可以具有多个服务小区,该第一服务小区可以为该多个服务小区中的一个。
可选地,网络设备可以给终端设备在第一服务小区之外的其他服务小区上均配置多个上行的BWP和多个下行的BWP。
在本申请实施例中,第一BWP和第二BWP为终端设备用于收发数据的上行BWP或下行BWP。其中,该用于收发数据的上行BWP或下行BWP可以是网络设备已经给终端设备配置完成的BWP。或者,该用于收发数据的上行BWP或下行BWP也可以是网络设备即将给终端设备进行配置,但是还未配置完成的BWP,例如,该用于收发数据的上行BWP或下行BWP可以是终端设备建议网络设备给自己新配置的BWP。
可选地,第一BWP和第二BWP可以是网络设备在第一服务小区配置给终端设备的多个下行BWP中的任意两个。
可选地,第一BWP和第二BWP可以是网络设备在第一服务小区配置给终端设备的多个上行BWP中的任意两个。
例如,该第一BWP和第二BWP可以为多个下行BWP中的两个。
再例如,该第一BWP和第二BWP可以为多个上行BWP中的两个。
再例如,该第一BWP或者第二BWP可以为初始BWP。
再例如,该第一BWP或者第二BWP可以为默认BWP。
可选地,第一BWP和第二BWP中的至少一个BWP还可以是终端设备建议网络设备在第一服务小区给终端设备配置的BWP。
应理解,在申请中,终端设备建议网络设备给终端设备配置的BWP包括即将配置,但是还未配置完成的BWP。
可选地,在终端设备向网络设备发送第一指示信息时,该第一BWP和第二BWP中的至少一个BWP可以是即将配置但是还未配置完成的BWP。
例如,第一BWP(或者第二BWP)可以是终端设备建议网络设备在第一服务小区给终端设备配置(即将配置,但是还未配置完成)的BWP,而第二BWP(或者第一BWP)可以是网络设备在第一服务小区已经配置完成的BWP。
再例如,第一BWP和第二BWP可以都是终端设备建议网络设备在第一服务小区给终端设备配置的BWP,此时第一BWP和第二BWP可以均为即将配置但是还未配置完成的BWP。
在本申请实施例中,第一指示信息用于指示第一BWP和第二BWP之间的切换时延为第一时长,也就是说,该第一时长为适用于第一BWP和第二BWP之间的切换时延,在网络设备接收到该第一指示信息之后,可以根据该第一指示信息确定第一BWP和第二BWP之间的切换时延为第一时长。
应理解,第一时长为适用于第一BWP和第二BWP之间的切换时延,其中,第一BWP和第二BWP之间的切换时延包括由第一BWP切换至第二BWP的切换时延,或者,由第二BWP切换至第一BWP的切换时延。
进一步地,当第一BWP和第二BWP之间进行切换,例如终端设备使用的BWP由第一BWP切换至第二BWP,或者由第二BWP切换至第一BWP时,可以将该第一时长作为切换时延,终端设备和网络设备按照该第一时长进行BWP切换,并且根据该第一时长进行数据传输。
例如,该第一时长可以为T个时隙(T为大于或者等于0的整数),如果网络设备指示终端设备从第一BWP切换到第二BWP,指示BWP切换的DCI所在的时隙为n,则终端设备在该T个时隙内完成切换,并且可以在n+T时隙的起始时刻之后在新的BWP(即第二BWP)上接收PDSCH(第一BWP和第二BWP为下行BWP时)或者发送PUSCH(第一BWP和第二BWP为上行BWP时),而网络设备可以在n+T时隙的起始时刻之后在第二BWP上调度PDSCH或者调度PUSCH。
再例如,该第一时长可以为T个时隙(T为大于或者等于0的整数),针对基于定时器的BWP切换,用n表示定时器(例如bwp-InactivityTimer)超时之后的第一个下行子帧或者下行半子帧的第一个时隙编号,则同样的,终端设备可以在n+T时隙的起始时刻之后在新的BWP(即第二BWP)上接收PDSCH或者发送PUSCH,而网络设备可以在n+T时隙的起始时刻之后调度PDSCH或者调度PUSCH。
综上所述,本申请实施例终端设备向网络设备发送第一指示信息,该第一指示信息用于指示终端设备在第一BWP和第二BWP之间的切换时延为第一时长,网络设备在收到该第一指示信息后,能够确定第一BWP和第二BWP之间的切换时延为第一时长。
相对于终端设备上报自身的BWP切换时延能力类型并且由网络设备确定一个服务小区内任意两个BWP之间的切换时延,本申请实施例终端设备能够针对服务小区内多个 BWP(包括已经配置好以及即将配置的BWP)中的某两个BWP之间切换时延向网络设备进行指示,网络设备能够根据该指示确定BWP的切换时延,由此使得对BWP切换时延的确定(指示)方法更加灵活,并且结果也更加准确,当终端设备在上述两个BWP之间进行切换时,可以按照该上报的切换时延进行切换,使得终端设备和网络设备之间能够更加高效的进行数据的传输。
图5是本申请的通信方法300的示意性流程图,图5所示实施例可以看作是图4所示实施例(即方法200)的更进一步说明。以下,结合图5说明本申请实施例提供的通信方法300,方法300包括:
步骤310,终端设备向网络设备发送第一指示信息,第一指示信息用于指示第一带宽部分BWP和第二BWP之间的切换时延为第一时长;其中,第一BWP和第二BWP为网络设备在第一服务小区配置给终端设备的多个下行BWP或者多个上行BWP中的任意两个。
相应地,在步骤310中,网络设备接收所述终端设备发送的第一指示信息。
上述步骤310可参考方法200中的步骤210进行理解,在此阐述不同之处。
在本申请实施例中,第一BWP和第二BWP为网络设备在第一服务小区配置给终端设备的多个下行BWP或者多个上行BWP中的任意两个。也就是说,该第一BWP和第二BWP可以是网络设备已经给终端设备在第一服务小区配置完成的BWP。
例如,该第一BWP和第二BWP可以为多个已经配置完成的下行BWP中的两个。
再例如,该第一BWP和第二BWP可以为多个已经配置完成的上行BWP中的两个。
再例如,该第一BWP或者第二BWP可以为已经配置完成的初始BWP。
再例如,该第一BWP或者第二BWP可以为已经配置完成的默认BWP。
在本申请实施例中,第一指示信息用于指示第一BWP和第二BWP之间的切换时延为第一时长,也就是说,该第一时长为适用于第一BWP和第二BWP之间的切换时延,在网络设备接收到该第一指示信息之后,可以根据该第一指示信息确定第一BWP和第二BWP之间的切换时延为第一时长。
相对于终端设备上报自身的BWP切换时延能力类型并且由网络设备确定一个服务小区内任意两个BWP之间的切换时延,本申请实施例终端设备能够针对服务小区内已经配置好的某两个BWP之间切换时延向网络设备进行指示,网络设备能够根据该指示确定BWP的切换时延,由此使得对BWP切换时延的确定(指示)方法更加灵活,并且结果也更加准确,当终端设备在上述两个BWP之间进行切换时,可以按照该上报的切换时延进行切换,使得终端设备和网络设备之间能够更加高效的进行数据的传输。
可选地,参见图5,在步骤310之前,即在终端设备向网络设备发送第一指示信息之前,方法300还包括:
步骤301,终端设备确定第一时长。
具体地,该第一时长为适用于第一BWP和第二BWP之间的切换时延,当第一BWP和第二BWP之间进行切换,例如终端设备使用的BWP由第一BWP切换至第二BWP,或者由第二BWP切换至第一BWP时,可以由终端设备确定该第一时长,并且将该第一时长作为切换时延,终端设备和网络设备按照该第一时长进行BWP切换,并且根据该第一时长进行数据传输。
在本申请实施例中,终端设备可以对第一BWP和第二BWP之间的切换时延的具体时间长度进行确定。例如,该第一时长可以为绝对时间长度,例如,该第一时长可以为100、200、300、400微秒(us),或者0.5、0.75、1.0、1.25毫秒等。
再例如,该第一时长还可以为若干个时隙。例如,该第一时长可以为1、2、3、4个时隙。
当第一BWP和第二BWP的子载波间隔不同时,则第一BWP和第二BWP的一个时隙对应的绝对时间长度不相同,此时,该第一时长可以为若干个第一BWP的时隙,或者该第一时长可以为若干个第二BWP的时隙,或者,该第一时长可以为第一BWP和第二BWP中具有较大子载波间隔的BWP所对应的若干个时隙,本申请对此并不限定。
可选地,该第一时长可以为0。
可选地,该第一时长可以只适用于第一BWP和第二BWP之间的切换时延,对于第一服务小区内其他BWP之间的切换时延,该第一时长不适用。
在本申请实施例中,第一时长可以小于第二时长,其中,第二时长为根据终端设备的BWP切换时延能力类型所确定的在第一BWP和第二BWP之间的切换时延。
例如,终端设备确定的第一时长为1个时隙,而终端设备的BWP切换时延能力类型为类型1,并且第一BWP和第二BWP的子载波间隔均为30KHz(即μ值为1),则根据前述的表2可得第一BWP和第二BWP的切换时延为2个时隙(即第二时长为2个时隙),即此时第一时长可以小于第二时长。
根据前文的描述可知,通过BWP切换时延能力类型确定的切换时延可能时间过长(终端设备可能并不需要那么长的时间进行BWP切换),而本申请的第一时长小于第二时长,终端设备可以更快的完成BWP的切换,进而使得终端设备和网络设备之间可以更快的实现数据的传输,从而能够降低数据服务时延和提高数据吞吐量。
在本申请实施例中,由终端设备确定第一BWP和第二BWP之间的切换时延(即确定第一时长)而非由网络设备进行,本申请对终端设备确定第一BWP和第二BWP之间的切换时延的方法并不限定。作为示例,终端设备可以根据第一BWP和第二BWP的配置参数确定第一时长。
具体地,终端设备根据第一BWP和第二BWP的配置参数能够确定第一BWP和第二BWP的配置参数之间哪些发生了变化,并且可以进一步确定变化幅度的大小,进而能够确定第一BWP和第二BWP进行切换时涉及到的计算量和处理时间,之后可以结合终端设备自身的计算和处理能力,确定该第一时长。
可选地,该配置参数可以包括带宽、中心频率、子载波间隔中的至少一种。
在本申请实施例中,第一BWP和第二BWP的配置参数可以满足以下条件中的至少一种:
第一BWP和第二BWP的中心频率之差小于或者等于第一阈值;
第一BWP和第二BWP的带宽之差小于或者等于第二阈值;
第一BWP和第二BWP的子载波间隔之差小于或者等于第三阈值。
应理解,第一BWP和第二BWP的配置参数相同或者相近能够减少进行切换时涉及到的计算量以及射频转换时间,也就是说,满足上述条件的第一BWP和第二BWP在进行切换时,需要的时间可能较少,此时如果通过终端设备的BWP切换时延能力类型确定 的切换时延可能过大(大于切换时实际需要的处理时间),不利于终端设备与网络设备的数据传输。而此时满足上述条件的第一BWP和第二BWP由终端设备来确定切换时延(即确定第一时长),结果可以更加准确,从而有利于终端设备与网络设备之间进行高效的数据传输。
可选地,上述第一阈值、第二阈值、第三阈值可以由协议或者系统规定,也可以由网络设备和终端设备之间进行约定,也可以由终端设备根据自己能力确定,本申请对此并不限定。
作为一种可能的实施方式,上述第一阈值、第二阈值、第三阈值可以为0。也就是说,此时,第一BWP和第二BWP的配置参数可以满足以下条件中的至少一种:
第一BWP和第二BWP的中心频率相同;
第一BWP和第二BWP的带宽相同;
第一BWP和第二BWP的子载波间隔相同。
可选地,在步骤310中,第一指示信息包括第一BWP的标识、第二BWP的标识和所述第一时长的指示信息。
具体地,在终端设备确定了第一时长以后,可以向网络设备进行上报,以使得网络设备可以根据该上报的内容(即根据第一指示信息)确定第一BWP和第二BWP之间的切换时长。在本申请实施例中,第一指示信息包括第一BWP和第二BWP的标识。所述BWP的标识可以为BWP的编号。例如,第一BWP和第二BWP的标识分别为BWP ID 1和BWP ID 2,则在第一指示信息中可以包括该BWP ID 1和BWP ID 2。
应理解,在本申请实施例中,除了上述BWP ID编号以外,第一BWP和第二BWP的标识还可以通过其他形式存在,本申请对此并不限定。具体地,对于第一BWP或者第二BWP,只要能够识别出该第一BWP或第二BWP的信息都可以算作第一BWP或者第二BWP的标识。
也就是说,该第一BWP或者第二BWP的标识还可以是第一BWP或者第二BWP的其他信息,例如可以将第一BWP能够区别于其他BWP的信息当成第一BWP的标识,将第二BWP能够区别于其他BWP的信息当成第二BWP的标识。
作为示例,该第一BWP或者第二BWP的标识可以是BWP的配置参数。例如,可以是子载波间隔(或者μ值)、中心频率、带宽等信息中的至少一种。
例如,当前第一服务小区内第一BWP之外的多个BWP的μ值均为1,而第一BWP的μ值为2,则可以将该μ值2作为第一BWP的标识。
此外,本申请实施例的第一指示信息还包括第一时长的指示信息。该第一时长的指示信息可以对第一时长进行指示,该第一时长的指示信息可以以多种形式存在,本申请对此并不限定。
可选地,该第一时长的指示信息可以包括第一时长的数值。
例如,该第一时长的指示信息可以包括由M个比特组成的字段,其中,M可以为大于或者等于1的整数,该第一时长的数值可以为该M个比特的字段代表的十进制的值。比如M等于2,可以指示第一时长的范围为{0,1,2,3}个时隙的大小,即可以通过字段00、01、10、11分别指示第一时长的数值为0,1,2,3个时隙。
可选地,该第一时长可以包括第一时长的索引值。网络设备可以通过将该索引值索引 到一个预定义的表格中的一个值从而确定第一时长。该预定义的表格中的值可以是时隙,也可以是绝对时间。可选地,该第一时长的索引值也可以为M个比特组成的字段,其中,M可以为大于或者等于1的整数。
表3为第一时长的索引值与第一时长的对应关系表,其中,表3中第一时长的索引值对应的第一时长的单位为时隙。例如,该第一时长的索引值可以为“01”,网络设备根据该索引值并且结合表3能够确定第一时长为2个时隙。
表3
第一时长的索引值 第一时长(单位:时隙)
00 1
01 2
10 3
11 4
当第一BWP和第二BWP的子载波间隔不同时,协议可以定义这M个比特指示的单位为时隙的第一时长对应于哪个子载波间隔。可选的,可以是第一BWP和第二BWP对应的子载波间隔中的较大值,或者较小值,或者是预定义的一个参考子载波间隔值。
表4为第一时长的索引值与第一时长的对应关系表,其中,表4中第一时长的索引值对应的第一时长的单位为微秒。例如,该第一时长的索引值可以为“10”,网络设备根据该索引值并且结合表4能够确定第一时长为300微秒。
表4
第一时长的索引值 第一时长(单位:微秒)
00 100
01 200
10 300
11 400
作为一种可能的实施方式,该第一时长的索引值还可以间接指示第一时长数值的大小。类似于前述的表2所示,系统或者协议可以规定一种新的BWP切换时延能力类型3(type 3),例如类型3的切换时延不大于对应的类型1和类型2的切换时延。该第一时长的索引值可以包括该类型3,网络设备可以根据类型3来间接确定第一时长的数值的大小。表5示出了包含本申请提供的类型3的BWP的切换时延表。
表5
Figure PCTCN2020108960-appb-000002
作为具体的示例,第一时长的指示信息包括该第一时长的索引值,并且索引值为类型3,网络设备在收到该指示信息以后,可以根据该索引值(即类型3)来间接确定第一BWP和第二BWP的切换时延(即第一时长的数值)。例如,终端设备首先确定第一BWP和第二BWP的子载波间隔均为30KHz(即μ值为1),则根据表5能够确定第一时长为对应子载波间隔为30KHz的1个时隙。
再例如,如果第一BWP和第二BWP的子载波间隔分别30KHz、60KHz(即第一BWP和第二BWP的子载波间隔不同),则网络设备可以按照子载波间隔较大的那个BWP对应的类型3的切换时延来确定第一时长的数值。例如,根据表5可以确定此时第一时长的数值为对应子载波间隔为60KHz的2个时隙。
可选地,第一服务小区为终端设备多个服务小区中的任意一个,该第一指示信息还包括第一服务小区的标识,该标识可以为小区编号(cell ID)。
容易理解的,根据前文的相关描述可知,终端设备可能具有多个服务小区(第一服务小区可以为该多个服务小区中的一个),每个服务小区可能均包括多个BWP,此时,如果仅上报BWP的标识给网络设备,网络设备可能并不清楚该BWP具体属于哪个服务小区,因此,该第一指示信息中还可以包括第一服务小区的标识,从而能够帮助网络设备明确第一BWP和第二BWP具体属于哪个服务小区。
在本申请实施例中,第一指示信息可以携带于RRC消息中,或者携带于其他消息中,本申请对此并不限定。作为示例,当第一指示信息携带于RRC消息中时,该RRC消息可以包括但不限于以下消息中的任意一种:UE辅助信息(UEAssistanceInformation)、UE能力信息(UECapabilityInformation)。
应理解,本申请实施例对第一指示信息在哪个BWP上进行发送并不限定。
可选地,第一指示信息可以通过第一服务小区上的多个上行BWP中的任意一个进行发送。
可选地,第一BWP和第二BWP可以为上行BWP,第一指示信息可以在第一BWP或者第二BWP上进行发送。
可选地,终端设备可以处于载波聚合的场景下,即终端设备可以具有多个服务小区,第一指示信息可以通过多个服务小区中第一服务小区以外的任意一个服务小区进行发送。
例如,可以通过第一服务小区以外的一个服务小区上的任意一个上行BWP进行发送。
在本申请实施例中,第一指示信息包括第一BWP和第二BWP的标识,同时还包括第一时长的指示信息。在收到包括上述内容的第一指示信息以后,根据系统或者协议规定,或者通过网络设备和终端设备的约定,网络设备能够确定终端设备在第一BWP和第二BWP之间的切换时延为该第一时长。
应理解,本申请实施例中的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
进一步地,网络设备在确定了终端设备在第一BWP和第二BWP之间的切换时延为该第一时长之后,网络设备和终端设备之间可以根据该第一时长进行数据传输。
可选地,网络设备在接收到第一指示信息,并且根据第一指示信息确定终端设备在第一BWP和第二BWP之间的切换时延为第一时长之后,可以向终端设备反馈确认消息,终端设备在收到该确认消息以后才认为第一BWP和第二BWP之间的切换时延为第一时 长生效。
可选地,参见图5,方法300还包括:
步骤320,网络设备向终端设备发送确认消息,确认消息用于指示终端设备在第一BWP和第二BWP之间的切换时延为第一时长;
相应地,在步骤320中,终端设备接收网络设备发送的确认消息。
可选地,该确认消息可以携带于以下消息中的任意一种:RRC消息、媒体接入控制元素(MAC control element,MAC CE)消息、层1(layer 1)消息。
可选地,该RRC消息可以包括但不限于以下消息中的任意一种:RRC建立(RRCSetup)消息、RRC拒绝(RRCReject)消息、RRC重配置(RRCReconfiguration)消息、RRC重新建立消息(RRCReestablishment)、RRC释放消息(RRCRelease)、RRC恢复消息(RRCResume)。
可选地,该层1消息包括DCI。
此外,作为另一种实施方式,终端设备在发送了第一指示信息以后,网络设备可以通过隐式指示的方式通知终端设备,网络设备已经收到该第一指示信息,并且确定终端设备在第一BWP和第二BWP之间的切换时延为第一时长生效。
例如,终端设备上报第一BWP和第二BWP之间切换的时延为第一时长T,终端设备同时上报自身的BWP切换时延能力类型,终端设备的BWP切换时延能力类型确定的BWP切换时延为T1,即第二时长为T1,T小于T1。网络设备在收到第一指示信息后,不需要额外向终端设备发送确认消息,而是直接在指示终端设备从第一BWP切换到第二BWP的DCI中,指示所调度的数据(PDSCH或PUSCH)位于n+T时隙的起始时刻与n+T1的起始时刻之间的某个时域位置。终端设备如果收到这样的指示BWP切换的DCI,即可以认为网络设备已经按照终端设备上报的第一指示信息将第一BWP和第二BWP之间的切换时延从第二时长更新为第一时长。否则,如果网络设备仍然将指示BWP切换的DCI所调度的数据调度在n+T1时隙的起始时刻之后,终端设备不能假设第一BWP和第二BWP之间的切换时延为第一时长生效。
此外,作为另一种实施方式,可以通过协议规定,当终端设备成功发送第一指示信息,网络设备成功接收到第一指示信息之后,终端设备和网络设备就会确定在第一BWP和第二BWP之间的切换时延为第一时长生效。该方式下,不管网络设备将指示BWP切换的DCI所调度的数据调度在n+T1时隙的起始时刻之后,还是调度在n+T时隙的起始时刻与n+T1的起始时刻之间,终端设备都认为第一BWP和第二BWP之间的切换时延为第一时长已经生效。
本申请实施例中,终端设备除了确定第一BWP和第二BWP之间的切换时延,还可以确定其他BWP之间(例如第三BWP和第四BWP之间)的切换时延,之后向网络设备进行上报,本申请对此并不限定。
可选地,在步骤301中,终端设备还可以确定第三时长,该第三时长为适用于第三BWP和第四BWP之间的切换时延。其中,第三BWP和第四BWP为网络设备在第一服务小区配置给终端设备的多个下行BWP或者多个上行BWP中的任意两个。
可选地,在步骤310中,第一指示信息还包括第三BWP和第四BWP的标识和第三时长的指示信息。
也就是说,第一指示信息除了携带第一BWP和第二BWP的标识和第一时长的指示信息之外,还可以携带第三BWP和第四BWP的标识和第三时长的指示信息,从而可以节约信令开销。
应理解,此时在第一指示信息中,第一BWP和第二BWP的标识应当关联到第一时长的指示信息,第三BWP和第四BWP的标识应当关联到第三时长的指示信息,从而能够帮助网络设备确定具体的对应关系。
可选地,该第三时长可以等于或者不等于第一时长。
可选地,第三时长等于第一时长,此时第一指示信息可以携带第一BWP、第二BWP、第三BWP、第四BWP的标识,以及一个时长的指示信息,从而可以节约信令开销。此时第一指示信息还应当包括相应的关联关系,从而能够帮助网络设备确定上述一个时长的指示信息具体适用于哪两个BWP之间进行切换。
可选地,终端设备和网络设备处于TDD系统中,第三BWP可以是和第一BWP互相绑定的BWP,第四BWP可以是第二BWP互相绑定的BWP。以上设置的好处是,对于TDD系统,当第一BWP和第二BWP进行切换时,其所绑定的BWP也要进行切换,此时可以对上行和下行的两对切换的切换时延同时进行指示。
可选地,该第三BWP和第四BWP中的一个可以和第一BWP和第二BWP中的一个为同一个BWP。
例如,终端设备在第一服务小区被配置有四个下行的BWP,标识分别为BWP ID 0、BWP ID 1、BWP ID 2、BWP ID 3。该第一BWP和第二BWP分别对应标识为BWP ID 0、BWP ID 1的BWP,第一时长为标识为BWP ID 0、BWP ID 1的BWP之间的切换时延。而该第三BWP和第四BWP可以分别对应标识为BWP ID 1、BWP ID 2的BWP,该第三时长为标识为BWP ID 1、BWP ID 2的BWP之间的切换时延。
可选地,终端设备可以仅确定第一服务小区的部分BWP之间的切换时延,而非全部。
可选地,对于载波聚合场景,第三BWP和第四BWP也可以为网络设备在第一服务小区之外的服务小区配置给终端设备的多个下行BWP或者多个上行BWP中的任意两个。
可选地,对于载波聚合场景,当终端设备具有多个服务小区时,第一指示信息还应当包括第一BWP、第二BWP所在的第一服务小区的标识,以及第三BWP和第四BWP所在的服务小区的标识。
在本申请实施例中,终端设备还可以继续向网络设备上报自身的BWP切换时延能力类型,以用于网络设备根据该BWP切换时延能力类型确定其他未被第一指示信息指示的BWP之间(即终端设备未确定的其他BWP之间)的切换时延。
图6是本申请的通信方法400的示意性流程图,图6所示实施例可以看作是图4所示实施例(即方法200)的更进一步说明。以下,结合图6说明本申请实施例提供的通信方法400,方法400包括:
步骤410,终端设备向网络设备发送第一指示信息,第一指示信息用于指示第一带宽部分BWP和第二BWP之间的切换时延为第一时长;其中,第一BWP和第二BWP中的至少一个BWP为终端设备建议网络设备在第一服务小区给终端设备新配置的BWP。
相应地,在步骤410中,网络设备接收所述终端设备发送的第一指示信息。
上述步骤410可参考方法200中的步骤210、方法300中的步骤310进行理解,在此 阐述不同之处。
在本申请实施例中,第一BWP和第二BWP中的至少一个BWP还可以是终端设备建议网络设备在第一服务小区给终端设备配置的BWP。
应理解,在申请中,终端设备建议网络设备给终端设备配置的BWP包括即将配置,但是还未配置完成的BWP。
可选地,在终端设备向网络设备发送第一指示信息时,该第一BWP和第二BWP中的至少一个BWP可以是即将配置但是还未配置完成的BWP。
例如,第一BWP(或者第二BWP)可以是终端设备建议网络设备在第一服务小区给终端设备配置(可以是即将配置,但是还未配置完成)的BWP,而第二BWP(或者第一BWP)可以是网络设备在第一服务小区已经配置完成的BWP。
再例如,第一BWP和第二BWP可以都是终端设备建议网络设备在第一服务小区给终端设备配置的BWP,此时第一BWP和第二BWP可以均为即将配置但是还未配置完成的BWP。
再例如,该第一BWP和/或第二BWP可以是终端设备建议网络设备在第一服务小区给终端设备配置的上行BWP。
再例如,该第一BWP和/或第二BWP可以是终端设备建议网络设备在第一服务小区给终端设备配置的下行BWP。
在本申请实施例中,第一指示信息用于指示第一BWP和第二BWP之间的切换时延为第一时长,也就是说,该第一时长为适用于第一BWP和第二BWP之间的切换时延,在网络设备接收到该第一指示信息之后,可以根据该第一指示信息确定第一BWP和第二BWP之间的切换时延为第一时长。
应理解,第一时长为适用于第一BWP和第二BWP之间的切换时延,其中,第一BWP和第二BWP之间的切换时延包括由第一BWP切换至第二BWP的切换时延,或者,由第二BWP切换至第一BWP的切换时延。
综上所述,本申请实施例终端设备向网络设备发送第一指示信息,该第一指示信息用于指示终端设备在第一BWP和第二BWP之间的切换时延为第一时长,其中,第一BWP和第二BWP中的至少一个BWP可以是终端设备建议网络设备在第一服务小区给终端设备新配置的BWP,网络设备在收到该第一指示信息后,能够确定第一BWP和第二BWP之间的切换时延为第一时长。
相对于终端设备上报自身的BWP切换时延能力类型并且由网络设备确定一个服务小区内任意两个BWP之间的切换时延,本申请实施例终端设备能够针对服务小区内至少一个终端设备建议新配置的BWP与其他BWP之间的切换时延向网络设备进行指示,网络设备能够根据该指示确定BWP的切换时延,由此使得对BWP切换时延的确定(指示)方法更加灵活,并且结果也更加准确,当终端设备在上述两个BWP之间进行切换时,可以按照该上报的切换时延进行切换,使得终端设备和网络设备之间能够更加高效的进行数据的传输。
可选地,参见图6,在步骤410之前,即在终端设备向网络设备发送第一指示信息之前,方法400还包括:
步骤401,终端设备确定第一时长。
上述步骤401可参考方法300中的步骤301进行理解,在此阐述不同之处。
类似地,终端设备可以根据第一BWP和第二BWP的配置参数确定第一时长。
与前述图5所示的实施例不同的是,在本实施例中,第一BWP和第二BWP中的至少一个BWP为终端设备建议网络设备在第一服务小区给终端设备新配置的BWP,也就是说,在执行步骤401时,也即终端设备在确定第一时长时,该至少一个BWP是终端设备建议网络设备进行配置,但是还未配置的新的BWP。
因此,终端设备根据第一BWP和第二BWP的配置参数确定第一时长,其中该至少一个BWP(即新配置的BWP)的配置参数可以是终端设备针对该BWP的建议配置参数。
类似地,该建议配置参数可以包括带宽、中心频率、子载波间隔中的至少一种。
可选地,在步骤410中,第一指示信息包括第一BWP和第二BWP的标识和所述第一时长的指示信息。
与前述图5所示的实施例不同的是,在本实施例中,第一BWP和第二BWP中的至少一个BWP为终端设备建议网络设备在第一服务小区给终端设备新配置的BWP,此时该至少一个新配置的BWP因为还未配置完成,因此,还未分配相应的BWP编号(BWP ID)。
因此,在本实施例中,该至少一个新配置的BWP(即第一BWP和/或第二BWP)的标识可以是第一BWP或者第二BWP的其他信息,例如可以将第一BWP能够区别于其他BWP的信息当成第一BWP的标识,将第二BWP能够区别于其他BWP的信息当成第二BWP的标识。
作为示例,该至少一个新配置的BWP的标识可以是BWP的配置参数。例如,可以是子载波间隔(或者μ值)、中心频率、带宽等信息中的至少一种。
作为另一个实施方式,该至少一个新配置的BWP的标识也可以是终端设备建议配置的BWP编号。例如,当前终端设备已经被配置了两个下行BWP,编号分别为0和1,第一BWP为已经配置的编号为0的BWP,终端设备建议新配置第二BWP,第二BWP的标识为BWP编号2,表示终端设备建议网络设备新配置一个编号为2的下行BWP。
若第一BWP和/或第二BWP为已经配置的BWP,则第一BWP和/或第二BWP标识参考图5中方法300所示的实施例,不再赘述。
所述第一时长的指示信息参考图5中方法300所示的实施例,不再赘述。
可选地,参见图6,方法400还包括:
步骤411,所述终端设备向所述网络设备发送第二指示信息,第二指示信息用于指示该至少一个新配置的BWP的建议配置参数。
相应地,在步骤411中,网络设备接收终端设备发送的第二指示信息。
参见前文的描述可知,该至少一个新配置的BWP为终端设备建议网络设备给自身在第一服务小区新配置的BWP,因此,终端设备可以通过第二指示信息将新配置的BWP的建议配置参数发送给网络设备,网络设备可以根据第二指示信息生成BWP的重新配置消息。
可选地,该建议配置参数可以包括带宽和中心频率。
可选地,该建议配置参数可以包括带宽和中心频率,而不包括子载波间隔。不同BWP的切换时,带宽和中心频率涉及到的计算量和射频转换时间比较大,对切换时延的影响较大,而子载波间隔涉及的计算量比较小,对切换时延的影响较小,此时建议配置参数可以 不包括子载波间隔信息,网络设备可以自行确定新BWP的子载波间隔,从而能够节约信令开销。
可选地,建议配置参数可以包括带宽、中心频率和子载波间隔。
所述带宽和中心频率可以单独指示,例如分别指示带宽大小和中心频率的位置。所述带宽和中心频率也可以联合指示,例如,可以指示建议的BWP对应的资源指示值(resource indicator value,RIV)。也就是说,可以采用联合编码的形式上报上述建议配置参数。
可以理解的是,关于建议BWP的频域位置除了指示中心频率,也可以通过其他方式指示,例如,建议配置参数可以包括BWP的频域起始位置,或者,指示一个参考频域位置和针对该参考频域位置的频率偏移值。
可选地,该第二指示信息可以在第一指示信息之前进行发送,也可以在第一指示信息之后进行发送。
可选地,该第二指示信息可以和第一指示信息同时发送,也可以分开进行发送,本申请对此不做限定。
或者说,第二指示信息和第一指示信息可以携带于同一条消息中,或者携带于不同的消息中。
可选地,该第二指示信息和第一指示信息同时发送,并且均携带于RRC消息中。例如,该RRC消息可以包括但不限于以下消息中的任意一种:UE辅助信息、UE能力信息。
可选地,参见图6,方法400还包括:
步骤412,网络设备向终端设备发送重新配置消息,重新配置消息用于按照该建议配置参数为终端设备配置该至少一个新配置的BWP。
相应地,在步骤412中,终端设备接收网络设备发送的重新配置消息。
具体地,网络设备在接收到终端设备发送的第二指示信息之后,可以根据该第二指示信息生成重新配置消息,并且向终端设备进行发送。终端设备接收到该重新配置消息以后,可以对当前在第一服务小区的BWP进行重新配置,例如,添加新的BWP,或者更新已存在的BWP。
可选地,参见图6,方法400还包括:
步骤420,网络设备向终端设备发送确认消息,确认消息用于指示终端设备在第一BWP和第二BWP之间的切换时延为第一时长;
相应地,在步骤420中,终端设备接收网络设备发送的确认消息。
上述步骤420可参考方法300中的步骤320进行理解,在此阐述不同之处。
在本实施例中,该确认消息可以包括重新配置消息。也就是说,可以将重新配置消息作为确认消息,指示终端设备在第一BWP和第二BWP之间的切换时延为第一时长生效,此时可以不再额外发送专门的确认消息,从而可以节约信令开销。
例如,终端设备在发送了第一指示信息、第二指示信息以后,如果终端设备接收到重新配置消息,且新配置的BWP满足终端设备建议的参数配置,则终端设备就可以假设第一BWP和第二BWP之间的切换时延为第一时长生效。
再例如,终端设备在发送了第一指示信息、第二指示信息以后,如果终端设备没有接收到重新配置消息,或者重新配置的BWP不满足终端设备建议的参数配置,则终端设备不能假设第一BWP和第二BWP之间的切换时延为第一时长生效。
类似地,在本实施例中,该第一指示信息还可以用于指示第三BWP和第四BWP之间的切换时延为第三时长,该第三BWP和第四BWP为终端设备用于收发数据的上行BWP或下行BWP。
可选地,该第三BWP和第四BWP可以是网络设备在第一服务小区(或者其他服务小区)配置给终端设备的多个下行BWP或者多个上行BWP中的任意两个。
可选地,该第三BWP和第四BWP中的至少一个BWP可以为终端设备建议网络设备在第一服务小区(或者其他服务小区)给终端设备新配置的BWP。
前述实施例提供的通信方法中终端设备可以确定两个BWP(例如第一BWP和第二BWP)之间的切换时延为第一时长,并且向网络设备进行上报。然而,该第一时长可能并不满足终端设备的使用需求,例如,该第一时长可能过长,从而可能不满足终端设备对低切换时延的要求。
本申请还提供一种通信方法,终端设备能够根据自身对切换时延的使用需求,生成BWP的建议配置参数,并且向网络设备上报该BWP的建议配置参数,网络设备可以根据该建议配置参数配置新的BWP,从而使得在该服务小区上至少有两个BWP之间的切换时延能够满足自身的需求。
图7是本申请提供的通信方法500的示意性流程图。以下,结合图7阐述本申请实施例提供的通信方法500,该方法500包括:
步骤510,终端设备根据第一时长和M个BWP的配置参数确定N个BWP的建议配置参数,其中,M个BWP是网络设备为终端设备在第一服务小区已配置的BWP,M、N为大于或者等于1的整数;
步骤520,终端设备向网络设备发送第一指示信息,所述第一指示信息用于指示该N个BWP的建议配置参数;
相应地,在步骤520中,网络设备接收终端设备发送的第一指示信息。
步骤530,终端设备向网络设备发送第二指示信息,第二指示信息用于指示终端设备在第一BWP和第二BWP之间的切换时延为第一时长,其中,第一BWP和第二BWP中的至少一个为网络设备根据该N个BWP的建议配置参数给终端设备在第一服务小区新配置的BWP;
相应地,在步骤530中,网络设备接收终端设备发送的第二指示信息。
步骤540,网络设备根据第二指示信息确定终端设备在第一BWP和第二BWP之间的切换时延为第一时长。
具体地,本申请实施例中的终端设备和网络设备可以是属于TDD系统中的通信设备,也可以是属于FDD系统中的通信设备,或者是属于其他任意系统中的通信设备,本申请对此并不限定。
进一步地,网络设备可以给终端设备在第一服务小区上配置M个下行BWP或者M个上行的BWP,其中,M为大于或者等于1的整数。
可选地,该M的值可以为1,即此时网络设备给终端设备在第一服务小区仅配置了1个上行BWP或者1个下行BWP,例如,该1个BWP可以为初始BWP。
可选地,该M的值可以为4,即网络设备可以给终端设备在第一服务小区上配置4个下行BWP或者4个上行的BWP。
在步骤510中,终端设备根据第一时长和该M个BWP的配置参数确定N个BWP的建议配置参数。
具体地,终端设备根据第一时长和该M个BWP的配置参数确定N个BWP的建议配置参数,以供网络设备根据该N个BWP的建议配置参数生成新的BWP,使得在第一服务小区至少有两个BWP之间的切换时延能够满足第一时长。
容易理解的,终端设备根据第一时长并且结合自身的计算和处理能力,能够确定终端设备在进行BWP切换时的计算量和处理时间,终端设备可以进一步根据该计算量和处理时间确定两个BWP的配置参数之间哪些可以相同,哪些可以不同,不同的配置参数之间相差的幅度可以多大,并且结合第一服务小区的带宽等相关信息,能够确定N个BWP的建议配置参数。
例如,该N的值可以为1,即建议网络设备配置一个新的BWP,此时可以将当前的M个BWP中的一个作为参考点,在前述确定的计算量和处理时间的基础上根据该参考点能够确定1个BWP的建议配置参数。
可选地,该N的值可以为2,即建议网络设备配置两个新的BWP,此时不考虑第一服务小区已经配置的M个BWP,终端设备可以结合上述计算量和处理时间以及第一服务小区的信息任意确定两个BWP的建议配置信息。
可选地,该N的值可以为2,即建议网络设备配置两个新的BWP,此时可以将当前的M个BWP中的一个作为参考点,在前述确定的计算量和处理时间的基础上根据该参考点能够确定1个BWP的建议配置参数,之后可以将该已经确定的1个BWP的建议配置参数作为参考点,确定剩下的一个BWP的建议配置参数。
应理解,以上示例的列举是为了更加方便的理解本申请,而非构成对本申请的限定。终端设备如何根据第一时长和该M个BWP的配置参数确定N个BWP的建议配置参数来自于终端设备自身的内部实现,本申请对此并不限定。此外,N的值也可以为大于2的整数,例如N的值可以为3或者4,即建议网络设备配置3或者4个新的BWP,本申请对此并不限定。
作为一种可能的实施方式,终端设备根据第一时长和该M个BWP的配置参数确定N个BWP的建议配置参数,可以通过以下方式实现:终端设备根据第一时长确定N个BWP的建议配置参数,并且与当前的M个BWP的配置参数进行比对,从而保证新确定的N个BWP的建议配置参数与已经配置的M个BWP的配置参数不相同,即保证新建议配置的BWP与已经配置的M个BWP不相同。
可选地,N个BWP的建议配置参数可以包括N个BWP的带宽和中心频率。
可选地,N个BWP的建议配置参数可以包括N个BWP的带宽和中心频率,而不包括N个BWP的子载波间隔。不同BWP的切换时,带宽和中心频率涉及到的计算量和射频转换时间比较大,对切换时延的影响较大,而子载波间隔涉及的计算量比较小,对切换时延的影响较小,此时N个BWP的建议配置参数可以不包括子载波间隔,网络设备可以自行确定新BWP的子载波间隔,从而能够节约信令开销。
可选地,N个BWP的建议配置参数可以包括N个BWP的带宽、中心频率和子载波间隔。
例如,终端设备可以在第一指示信息中携带建议的BWP的带宽大小、建议BWP的 起始位置(起始物理资源块(physical resource block,PRB)所在位置)、中心位置(中心频率或中心频点位置的公共资源块(common resource block,CRB)编号)等。
作为另一种实施方式,N个BWP的建议配置参数可以包括该N个BWP对应的资源指示值(resource indicator value,RIV)。也就是说,可以采用联合编码的形式上报上述建议配置参数。
具体地,针对一个建议的BWP,终端设备上报一个资源指示值(RIV,resource indicator value)。通过该资源指示值、终端设备针对该BWP建议的子载波间隔、对应于该建议的子载波间隔的载波偏移、以及设定的BWP带宽常数,可以计算出该建议BWP的带宽起始位置(起始PRB)以及其带宽大小(以资源块(resource block,RB)个数表示)。
作为另一种实施方式,第一指示信息可以包括参考BWP的标识,所述BWP的建议配置参数包括相对所述参考BWP的配置参数的偏移值。例如,该偏移值可以包括相对于参考点BWP的带宽的差值、相对于参考点BWP的中心频率的偏移值、相对于参考点BWP的子载波间隔的差值(例如,可以为μ值之差)等。
可选地,该参考BWP可以为M个BWP中的任意一个。
可选地,该参考BWP也可以不属于该M个BWP。
可选地,第一指示信息可以包括参考BWP的BWP编号。
可选的,所述参考BWP的标识为参考BWP的编号,所述参考BWP为网络设备已经为终端设备配置的BWP。
可选的,所述参考BWP的标识为参考BWP的配置参数,所述参考BWP为网络设备已经为终端设备配置的BWP。
可选的,所述参考BWP的标识为参考BWP的建议配置参数,所述参考BWP为终端设备建议网络设备新配置的BWP。在收到该第一指示信息之后,网络设备可以根据第一指示信息对终端设备在第一服务小区配置新的BWP。例如,可以配置N个新的BWP,其中,该N个新的BWP中可以包括对原有的M个BWP进行重新配置的BWP,或者是新增的BWP,本申请对此并不限定。
具体地,网络设备可以向终端设备发送BWP的重新配置消息(比如携带于RRC消息中),终端设备可以根据该重新配置消息更新BWP的配置参数。例如释放掉之前配置的BWP,增加新的BWP。
在步骤530中,终端设备向网络设备发送第二指示信息,第二指示信息用于指示终端设备在第一BWP和第二BWP之间的切换时延为第一时长,其中,第一BWP和第二BWP中的至少一个为网络设备根据该N个BWP的建议配置参数给终端设备在第一服务小区新配置的BWP。
可选地,第一BWP和第二BWP中的一个为网络设备根据该N个BWP的建议配置参数给终端设备在第一服务小区新配置的BWP,另一个为原来M个BWP中的一个。
可选地,第一BWP和第二BWP中的两个均为网络设备根据该N个BWP的建议配置参数给终端设备在第一服务小区新配置的BWP(此时N大于或者等于2)。
具体地,第一BWP和第二BWP中的至少一个为网络设备根据该N个BWP的建议配置参数给终端设备在第一服务小区新配置的BWP,也可以理解为,第一BWP和第二BWP中的至少一个属于该N个BWP。例如,该N个BWP可以包括BWP#1、BWP#2,该第一 BWP和第二BWP可以分别为BWP#1和BWP#2。
应理解,第一BWP和第二BWP中的至少一个为网络设备根据该N个BWP的建议配置参数给终端设备在第一服务小区新配置的BWP,并不代表当前网络设备已经完成了对该N个BWP的配置。
可选地,在发送第二指示信息时,网络设备还未根据该N个BWP的建议配置参数给终端设备在第一服务小区新配置的BWP。
可选地,该第一指示信息和第二指示信息可以分别发送。
可选地,该第一指示信息和第二指示信息可以携带于同一个消息中同时进行发送。例如,该第一指示信息和第二指示信息可以携带于同一条RRC消息中。
在步骤540中,在接收到第二指示信息以后,网络设备可以根据该第二指示信息确定终端设备在第一BWP和第二BWP之间的切换时延为第一时长。
进一步地,网络设备在确定了终端设备在第一BWP和第二BWP之间的切换时延为该第一时长之后,当终端设备所使用的BWP在第一BWP和第二BWP之间进行切换时,网络设备和终端设备之间可以根据该第一时长进行数据传输。
根据本申请实施例,终端设备可以根据具体的时延要求和当前已经被配置的BWP确定至少一个BWP建议配置参数,并且向网络设备上报BWP的建议配置参数,网络设备可以根据该建议配置参数配置至少一个新的BWP,从而使得在该服务小区上至少有两个BWP之间的切换时延能够满足使用需求。
可选地,在步骤510之前,方法500还包括:
在步骤501中,终端设备确定M个BWP之间的切换时延均不满足第一时长。
具体地,终端设备可以在确定M个BWP之间的切换时延均不满足第一时长的前提下,才确定N个BWP的建议配置参数,从而可以节约信令开销。
例如,该M的值为1,此时不存在其他BWP可以进行切换,则终端设备可以确定M个BWP之间的切换时延均不满足第一时长。
再例如,M的值可以大于或者等于2,此时具有多个BWP可供终端设备进行切换,则此时终端设备可以确定M个BWP中的任意两个之间的切换时延均不满足第一时长。
具体地,终端设备可以根据M个BWP的配置参数确定任意两个BWP之间的切换时延。例如,BWP#1和BWP#2可以为该M个BWP中的任意两个。终端设备可以确定BWP#1和BWP#2的配置参数哪些相同,哪些不同,不同的配置参数相差的幅度大小,进而能够确定BWP#1和BWP#2进行切换时涉及到的计算量射频转换时间,之后可以结合终端设备自身的计算能力和处理能力,确定BWP#1和BWP#2之间的切换时延。终端设备可以通过上述方法确定M个BWP中的任意两个BWP之间的切换时延,之后分别与第一时长进行比较,并且确定任意两个BWP之间的切换时延均不满足第一时长的要求。
可选地,M个BWP中的任意两个BWP之间的切换时延均不满足第一时长,可以是M个BWP中的任意两个BWP之间的切换时延均不等于第一时长。
可选地,M个BWP中的任意两个BWP之间的切换时延均不满足第一时长,可以是M个BWP中的任意两个BWP之间的切换时延均大于第一时长。
可选地,M个BWP中的任意两个BWP之间的切换时延均不满足第一时长,可以是M个BWP中的任意两个BWP之间的切换时延与第一时长的差值均大于第一阈值。
可选地,M个BWP中的任意两个BWP之间的切换时延均不满足第一时长,可以是M个BWP中的任意两个BWP之间的切换时延均小于第一时长。
可选地,M个BWP中的任意两个BWP之间的切换时延均不满足第一时长,可以是M个BWP中的任意两个BWP之间的切换时延均小于第一时长,并且第一时长与该切换时延的差值大于第二阈值。
可选地,上述第一阈值、第二阈值可以由协议或者系统规定,也可以由网络设备和终端设备之间进行约定,也可以由终端设备根据自己能力确定,本申请对此并不限定。
可选地,在步骤501中,还可以包括终端设备确定第一时长的步骤,终端设备在确定M个BWP中的任意两个BWP之间的切换时延均不满足第一时长之前,终端设备可以根据具体需求确定第一时长的具体长度,本申请对此不做限定。例如,终端设备确定的第一时长应当大于最大MIMO层数切换所需要的处理时间,切换最大MIMO层数涉及到RF射频链路的切换,以及天线的打开和关闭,需要一定的时间。
可选地,在步骤510中,终端设备还可以确定该N个BWP的建议BWP编号。例如,终端设备可以根据在第一服务小区的BWP的配置情况确定该N个BWP的建议BWP编号。
可选地,在步骤520中,第一指示信息用于指示N个BWP的建议配置参数和建议BWP编号。
具体地,在同一个服务小区,网络设备配置的BWP的个数可能有限,可以根据当前终端设备的BWP的配置情况确定该N个BWP的建议BWP编号。
例如,若当前已经配置的BWP的个数(即M值)未达到上限,则可以将未被使用的BWP编号作为建议编号分配给该N个BWP。
若当前已经配置BWP的个数已经达到上限,则应当重配置一些BWP,或者说,此时可以用建议的BWP替换已配置的BWP,此时N个BWP的建议编号中至少有一个应当和已配置的M个BWP中的至少一个的编号相同。
作为具体示例,例如,M和N的值可以均为2,M个已经配置的BWP的编号可以分别为BWP ID 0和BWP ID 1,而终端设备在同一个小区配置的(上行或下行)BWP的最大个数为5,则此时可以将剩余的BWP的编号BWP ID 2和BWP ID 3(或BWP ID 4)作为建议编号分配给即将配置的2个BWP。
再例如,M的值可以为3,N的值可以为2,M个已经配置的BWP的编号可以分别为BWP ID 0、BWP ID 1、BWP ID 2,而终端设备在同一个小区配置的(上行或下行)BWP的最大个数为5,则此时可以将剩余的BWP的编号BWP ID 3(或BWP ID 4)作为建议编号分配给即将配置的1个BWP,此时可以对已经配置3个BWP中的任意一个进行重配置(例如编号为BWP ID 2的BWP),因此可以将编号BWP ID 2作为建议编号分配给剩余的一个即将配置的BWP。
再例如,M的值可以为4,N的值可以为2,M个已经配置的BWP的编号可以分别为BWP ID 0、BWP ID 1、BWP ID 2、BWP ID 3,此时可以对已经配置的4个BWP中的任意两个进行重配置(例如编号为BWP ID 1和BWP ID 2的BWP),因此可以将编号BWP ID 1、BWP ID 2分配给即将配置的两个BWP。
在第一指示信息中,还可以包括N个BWP的建议编号,网络设备收到该第一指示信息之后,可以根据N个BWP的建议配置参数和建议编号,将建议编号分配给相应的BWP, 并且生成BWP重新配置消息。
应理解,当N的值大于1时,此时第一指示信息用于指示至少两个BWP的建议配置参数和建议编号,因此,在该第一指示信息中,同一个BWP的建议配置参数以及建议编号应当具有关联关系,从而帮助网络设备确定具体的对应关系。
可选地,在步骤530中,第二指示信息可以包括第一BWP和第二BWP的标识和第一时长的指示信息。
例如,第一BWP和第二BWP中的至少一个的BWP编号与N个BWP的建议编号中的至少一个相同。
或者说,第一BWP和第二BWP中的至少一个的编号属于N个BWP的建议编号。
应理解,第一BWP和第二BWP中的至少一个为网络设备根据该N个BWP的建议配置参数和建议编号给终端设备在第一服务小区新配置的BWP,可以是网络设备已经根据该N个BWP的建议配置参数和建议编号给终端设备在第一服务小区新配置了BWP。
作为另一种可能的实施方式,第一BWP和第二BWP中的至少一个为网络设备根据该N个BWP的建议配置参数和建议编号给终端设备在第一服务小区新配置的BWP,也可以是网络设备还未配置并且即将根据该N个BWP的建议配置参数和建议编号给终端设备在第一服务小区新配置BWP。
可选地,方法500还包括:
在步骤550中,网络设备向终端设备发送确认消息,确认消息用于指示终端设备在第一BWP和第二BWP之间的切换时延为第一时长;
相应地,在步骤550中,终端设备接收网络设备发送的确认消息。
可选地,该确认消息可以携带于以下消息中的任意一种:RRC消息、MAC CE消息、层1消息。
可选地,该RRC消息可以包括但不限于以下消息中的任意一种:RRC建立消息、RRC拒绝消息、RRC重配置消息、RRC重新建立消息、RRC释放消息、RRC恢复消息。
可选地,该层1消息包括DCI。
作为一种可能的实施方式,该确认消息可以包括重新配置消息。也就是说,可以将重新配置消息作为确认消息,指示终端设备在第一BWP和第二BWP之间的切换时延为第一时长生效。
例如,终端设备在发送了第一指示信息、第二指示信息以后,如果终端设备接收到重新配置消息,且新配置的BWP满足终端设备建议的参数配置,则终端设备就可以假设第一BWP和第二BWP之间的切换时延为第一时长生效。
再例如,终端设备在发送了第一指示信息、第二指示信息以后,如果终端设备没有接收到重新配置消息,或者重新配置的BWP不满足终端设备建议的参数配置,则终端设备不能假设第一BWP和第二BWP之间的切换时延为第一时长生效。
本申请实施例还提供一种通信方法,终端设备能够针对服务小区内具体的某个BWP向网络设备上报其所适用的最大MIMO层数,由此使得终端设备对最大MIMO层数的指示更加灵活、准确,当该BWP被激活时,能够以更加匹配的MIMO层数作为最大MIMO层数进行数据收发,从而有利于提高终端设备的传输性能。当终端设备在一个BWP以较小的最大MIMO层数进行数据收发时,可以关闭部分的天线,节省终端设备的功耗。
图8是本申请提供的通信方法600的示意性流程图。以下,结合图8阐述本申请实施例提供的通信方法600,该方法600包括:
步骤610,终端设备确定第一MIMO层数,该第一MIMO层数为适用于第一BWP的最大MIMO层数,所述终端设备在第一服务小区用于收发数据的上行BWP或下行BWP。
步骤620,终端设备向所述网络设备发送第一指示信息,第一指示信息包括第一BWP的标识和第一MIMO层数的指示信息;
相应地,在步骤620中,网络设备接收终端设备发送的第一指示信息。
步骤630,网络设备根据第一指示信息确定终端设备在第一BWP激活时以第一MIMO层数作为最大MIMO层数进行数据收发。
具体地,本申请实施例中的终端设备和网络设备可以是属于TDD系统中的通信设备,也可以是属于FDD系统中的通信设备,或者是属于其他任意系统中的通信设备,本申请对此并不限定。
进一步地,网络设备可以给终端设备在第一服务小区上配置多个下行BWP和多个上行的BWP,以满足终端设备不同的使用需求。
可选地,上述多个BWP中可以包括初始BWP,以用于终端设备从空闲模式初始接入一个小区或者一个宽带载波之后的BWP。
可选地,上述多个BWP中可以包括默认BWP,以用于终端设备从当前的激活BWP切换至该默认BWP,从而达到省电的效果。
可选地,终端设备可以处于载波聚合的场景下,该终端设备可以具有多个服务小区,该第一服务小区可以为该多个服务小区中的一个。
可选地,网络设备可以给终端设备在第一服务小区之外的其他服务小区上均配置多个上行的BWP和多个下行的BWP。
在本申请实施例中,第一BWP可以是网络设备在第一服务小区配置给终端设备的多个下行BWP或者多个上行BWP中的任意一个。
例如,该第一BWP可以为多个下行BWP中的任意一个。
再例如,该第一BWP可以为多个上行BWP中任意一个。
再例如,该第一BWP可以为初始BWP。
再例如,该第一BWP可以为默认BWP。
可选地,第一BWP还可以为所述终端设备建议网络设备在第一服务小区给终端设备新配置的BWP。
在步骤610中,终端设备可以确定第一MIMO层数,该第一MIMO层数为适用于第一BWP的最大MIMO层数。
具体地,该第一MIMO层数为适用于第一BWP的最大MIMO层数,也就是说,当终端设备使用第一BWP时,可以将该第一MIMO层数作为最大MIMO层数进行数据收发。或者说,当第一BWP被激活时,可以以第一MIMO层数作为最大MIMO层数进行数据收发。
可选地,该第一MIMO层数可以只适用于第一BWP,对于第一服务小区内其他BWP,该第一MIMO层数不适用。
在步骤620中,终端设备向网络设备发送第一指示信息,第一指示信息包括第一BWP 的标识和第一MIMO层数的指示信息。
具体地,在终端设备确定了第一MIMO层数以后,可以向网络设备进行上报,以使得网络设备可以根据该上报的内容(即根据第一指示信息)确定第一BWP所适用的最大MIMO层数。在本申请实施例中,第一指示信息包括第一BWP的标识。所述BWP的标识可以为BWP的编号。例如,第一BWP的标识为BWP ID 1,则在第一指示信息中可以包括该BWP ID 1。
可以理解的是,BWP的标识也可以是其他指示信息,例如是BWP的配置参数,如前所述,不再赘述。
此外,本申请实施例的第一指示信息还包括第一MIMO层数的指示信息。该第一MIMO层数的指示信息可以对第一MIMO层数进行指示,该第一MIMO层数的指示信息可以以多种形式存在,本申请对此并不限定。
可选地,该第一MIMO层数的指示信息可以包括第一MIMO层数的数值。
例如,该第一MIMO层数的指示信息可以包括一串字段,该第一MIMO层数的数值可以为该字段代表的十进制的值。例如可以通过字段001、010、011、100分别指示第一MIMO层数的数值为1,2,3、4。
再例如,该第一MIMO层数的指示信息可以是第一MIMO层数的索引值。例如,索引值为0表示第一MIMO层数为4,索引值为1表示第一MIMO层数为2。
可选地,载波聚合场景下,第一服务小区可以为终端设备多个服务小区中的任意一个,该第一指示信息还可以包括第一服务小区的标识。
容易理解的,如果仅上报第一BWP的标识给网络设备,网络设备可能并不清楚第一BWP具体属于哪个服务小区,因此,该第一指示信息中还可以包括第一服务小区的标识,从而能够帮助网络设备明确第一BWP具体属于哪个服务小区。
在本申请实施例中,第一指示信息可以携带于RRC消息中,或者携带于其他消息中,本申请对此并不限定。作为示例,当第一指示信息携带于RRC消息中时,该RRC消息可以包括但不限于以下消息中的任意一种:UE辅助信息、UE能力信息。
应理解,本申请实施例对第一指示信息在哪个BWP上进行发送并不限定。
可选地,第一指示信息可以通过第一服务小区上的多个上行BWP中的任意一个进行发送。
可选地,第一BWP可以为上行BWP,第一指示信息可以在第一BWP上进行发送。
可选地,终端设备可以处于载波聚合的场景下,即终端设备可以具有多个服务小区,第一指示信息可以通过多个服务小区中第一服务小区以外的任意一个服务小区进行发送。
例如,可以通过第一服务小区以外的一个服务小区上的任意一个上行BWP进行发送。
在步骤530中,网络设备可以根据第一指示信息确定终端设备在第一BWP激活时以第一MIMO层数作为最大MIMO层数进行数据收发。
具体地,第一指示信息包括第一BWP的标识,同时还包括第一MIMO层数的指示信息。在收到包括上述内容的第一指示信息以后,根据系统或者协议规定,或者通过网络设备和终端设备的约定,网络设备能够确定终端设备在第一BWP激活时以第一MIMO层数作为最大MIMO层数进行数据收发。
应理解,本申请实施例中的“协议”可以是指通信领域的标准协议,例如可以包括 LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
进一步地,网络设备在确定了终端设备在第一BWP激活时以第一MIMO层数作为最大MIMO层数进行数据收发以后,网络设备和终端设备之间可以根据该第一MIMO层数进行数据传输。即,终端设备成功发送第一指示信息之后,网络设备成功接收第一指示信息之后,终端设备在第一BWP激活时以第一MIMO层数作为最大MIMO层数进行数据收发生效。
例如,第一BWP为下行BWP,当第一BWP被激活时,终端设备可以以第一MIMO层数作为最大MIMO层数接收网络设备发送的PDSCH。
再例如,第一BWP为上行BWP,当第一BWP被激活时,终端设备可以以第一MIMO层数作为最大MIMO层数向网络设备发送PUSCH。
综上所述,本申请实施例通过终端设备确定第一MIMO层数,该第一MIMO层数为适用于第一BWP的最大MIMO层数,并且向网络设备发送第一指示信息,该第一指示信息包括第一BWP的标识以及该第一MIMO层数的指示信息,网络设备在收到该第一指示信息后,能够确定在第一BWP激活时以第一MIMO层数作为最大MIMO层数进行数据收发。
相对于终端设备上报小区粒度的最大MIMO层数(该最大MIMO层数适用于该小区下的所有BWP),本申请实施例终端设备能够针对服务小区内具体的某个BWP的最大MIMO层数进行确定并且向网络设备进行指示,由此使得对最大MIMO层数的指示更加灵活,并且指示的结果也更加准确,当终端设备在第一BWP激活时可以以更加匹配的MIMO层数作为最大MIMO层数进行数据收发,能够提高终端设备和网络设备之间的数据传输性能,并且可以节省终端设备的功耗。
在本申请实施例中,第一MIMO层数可以小于第二MIMO层数,该第二MIMO层数为网络设备配置给第一服务小区的最大MIMO层数。
例如,终端设备确定的第一MIMO层数为2,而网络设备给终端设备配置的针对第一服务小区的最大MIMO层数可以为4,即此时第一MIMO层数小于第二MIMO层数。
根据前文的描述可知,网络设备给终端设备配置的针对第一服务小区的最大MIMO层数是以小区为粒度的,该最大MIMO层数适用于第一服务小区上的所有BWP,然而不同的BWP的配置参数是不同的,对于部分BWP该最大MIMO层数可能并不合理。另外,在不同的BWP以相同的最大MIMO层数进行数据收发也不利于节省终端设备的功耗。
例如,终端设备在某些BWP(比如带宽较小的BWP,数据速率一般较低)可能不需要以该最大的MIMO层数收发数据,此时终端设备为了支持所配置的最大MIMO层数不得不打开一些不必要的天线,由此使得终端设备不够节能。
可选地,第一BWP为下行BWP,第二MIMO层数为终端设备在第一服务小区配置的接收PDSCH的最大MIMO层数。
可选地,第一BWP为上行BWP,第二MIMO层数为终端设备在第一服务小区配置的发送PUSCH的最大MIMO层数。
在本申请实施例中,由终端设备确定针对第一BWP的最大MIMO层数(即确定第一MIMO层数),该第一MIMO层数小于第二MIMO层数,由此使得在第一BWP激活时能够以更加匹配的MIMO层数作为最大MIMO层数进行数据收发,提高了终端设备的数 据传输性能,此外,此时终端设备可以关闭一些不必要的天线(即终端设备可以使用更少的天线),从而能够节约终端设备的能耗。
在其他实施方式中,第一MIMO层数小于第三MIMO层数,该第三MIMO层数为终端设备针对第一服务小区所上报的能力消息中指示的最大MIMO层数。
一些情况下,网络设备可能还未来得及给终端设备配置第二MIMO层数终端设备就需要确定第一MIMO层数,此时可以以第三MIMO层数为基准,确定第一MIMO层数小于该第三MIMO层数。
可选地,第一BWP为下行BWP,第三MIMO层数为终端设备针对第一服务小区所上报的能力消息中指示的接收PDSCH的最大MIMO层数。
可选地,第一BWP为上行BWP,第三MIMO层数为终端设备针对第一服务小区所上报的能力消息中指示的发送PUSCH的最大MIMO层数。
本申请对终端设备确定第一MIMO层数的方法并不限定。作为示例,终端设备可以根据第一BWP的配置参数确定第一MIMO层数。
可选地,该配置参数可以包括带宽、中心频率、子载波间隔中的至少一种。
可选地,可以根据第一BWP的带宽确定第一MIMO层数。例如,对于带宽较小的BWP,数据速率一般较低,此时可以相应地配置较小的第一MIMO层数。
可选地,可以根据第一BWP的子载波间隔确定第一MIMO层数。例如,对于子载波间隔较小的BWP,对时延的要求可能较低,此时可以相应地配置较小的第一MIMO层数。
可选地,可以根据第一BWP的中心频率确定第一MIMO层数。例如,对于中心频率较低的BWP,对时延的要求可能较低,此时可以相应地配置较小的第一MIMO层数。
在本申请实施例中,终端设备在发送了第一指示信息以后,可以默认网络设备已经收到该第一指示信息,并且确定终端设备在第一BWP激活时以第一MIMO层数作为最大MIMO层数进行数据收发生效。
此外,作为另一种实施方式,网络设备在接收到第一指示信息,并且根据第一指示信息确定终端设备在第一BWP激活时以第一MIMO层数作为最大MIMO层数进行数据收发之后,可以向终端设备反馈确认消息,终端设备在收到该确认消息以后才认为第一BWP所适用的第一MIMO层数生效。
可选地,参见图8,方法600还包括:
步骤640,网络设备向终端设备发送确认消息,确认消息用于指示终端设备使用第一BWP时以第一MIMO层数作为最大MIMO层数进行数据收发;
相应地,在步骤440中,终端设备接收网络设备发送的确认消息。
可选地,该确认消息可以携带于以下消息中的任意一种:RRC消息、MAC CE消息、层1消息。
可选地,该RRC消息可以包括但不限于以下消息中的任意一种:RRC建立消息、RRC拒绝消息、RRC重配置消息、RRC重新建立消息、RRC释放消息、RRC恢复消息。
可选地,该层1消息包括DCI。
本申请实施例中,终端设备除了确定第一BWP适用的最大MIMO层数,还可以确定其他BWP适用的最大MIMO层数,之后向网络设备进行上报,本申请对此并不限定。
可选地,在步骤610中,终端设备还可以确定第四MIMO层数,该第四MIMO层数 为适用于第二BWP的最大MIMO层数。其中,第二BWP为网络设备在第一服务小区配置给终端设备的多个下行BWP或者多个上行BWP中的任意一个。
例如,终端设备和网络设备处于TDD系统中,第一BWP为下行BWP,而该第二BWP可以为与第一BWP绑定的上行BWP,这两个BWP的标识相同,中心频率相同。以上设置的好处在于,对于TDD系统,当下行/上行BWP发生切换时,其所绑定的上行/下行BWP也需要一起进行切换,则此时可以对互相绑定的上行和下行BWP所适用的最大MIMO层数一起进行指示。
在步骤620中,第一指示信息还包括第二BWP的标识和第四MIMO层数的指示信息。
也就是说,第一指示信息除了携带第一BWP的标识和第一MIMO层数的指示信息之外,还可以一起携带第二BWP的标识和第四MIMO层数的指示信息,从而可以节约信令开销。
应理解,此时在第一指示信息中,第一BWP的标识应当关联到第一MIMO层数的指示信息,第二BWP的标识应当关联到第四MIMO层数的指示信息,从而能够帮助网络设备确定具体的对应关系。
可选地,第一MIMO层数等于第四MIMO层数,此时第一指示信息可以携带第一BWP、第二BWP的标识,以及一个MIMO层数的指示信息,从而可以节约信令开销。
可选地,终端设备可以仅确定第一服务小区的部分BWP所使用的最大MIMO层数,而非全部。
可选地,对于载波聚合场景,第二BWP也可以为网络设备在第一服务小区之外的服务小区配置给终端设备的多个下行BWP或者多个上行BWP中的任意一个。
可选地,对于载波聚合场景,当终端设备具有多个服务小区时,第一指示信息还应当包括第一BWP所在的第一服务小区的标识,以及第二BWP所在的服务小区的标识。
在本申请实施例中,终端设备还可以继续向网络设备上报能力消息,用于指示第一服务小区所支持的最大MIMO层数,以用于网络设备根据该最大MIMO层数配置其他未被第一指示信息指示的BWP所适用的最大MIMO层数。
作为另一个实施例,第一BWP也可以是终端设备建议网络设备新配置的BWP。具体地,终端设备可以确定一个新的BWP的建议配置参数,并确定该建议配置的BWP的最大MIMO层数,即第一MIMO层数。则,第一指示信息所包括的第一BWP的标识可以是建议的BWP配置参数。这样,网络设备可以根据该建议配置参数配置一个新的BWP,并且确定该新的BWP以第一MIMO层数作为最大MIMO层数收发数据。相应的,所述确认信息可以包括BWP的重新配置消息。此外,第一指示信息还可以包括建议配置的BWP的建议BWP编号。
关于建议的BWP配置参数、BWP的重新配置信息、建议配置的BWP的建议BWP编号、以及第一BWP激活时以第一MIMO层数作为最大MIMO层数收发数据生效等确定方法以及流程可以参照图6和图7所示实施例,此处不再赘述。
图9是本申请提供的通信方法700的示意性流程图。以下,结合图9阐述本申请实施例提供的通信方法700,该方法700包括:
步骤710,终端设备确定第一时长,第一时长为适用于第一BWP和第二BWP之间的切换时延,第一BWP和第二BWP为网络设备在第一服务小区配置给终端设备的多个下 行BWP或者多个上行BWP中的任意两个。
步骤720,终端设备确定第一MIMO层数,第一MIMO层数为适用于第一BWP的最大MIMO层数,第一BWP为网络设备在第一服务小区配置给终端设备的多个BWP中的任意一个。
步骤730,终端设备向网络设备发送第一指示信息,第一指示信息包括第一BWP和第二BWP的标识和第一时长的指示信息;
相应地,在步骤730中,网络设备接收终端设备发送的第一指示信息。
步骤740,终端设备向所网络设备发送第二指示信息,第二指示信息包括第一BWP的标识和第一MIMO层数的指示信息;
相应地,在步骤740中,网络设备接收终端设备发送的第二指示信息。
步骤750,网络设备根据第一指示信息确定第一BWP和第二BWP的切换时延为第一时长。
步骤760,网络设备根据第二指示信息确定终端设备在第一BWP激活时以第一MIMO层数作为最大MIMO层数进行数据收发。
其中,上述步骤710-760可以参考方法300和方法600中的步骤301-320、610-630进行理解,这里阐述不同之处。
在本申请实施例中,第一指示信息和第二指示信息可以分别进行发送,例如可以承载于不同的上报消息中。此外,第一指示信息和第二指示信息也可以同时进行发送。例如可以承载于相同的上报消息中。
可选地,该上报消息可以为RRC消息。例如,该RRC消息可以是UE辅助信息或者UE能力信息。
在本申请实施例中,第一时长应当具有一个最小值,例如,该第一时长要大于或者等于终端设备因为切换最大MIMO层数而需要的处理时间,从而能够保证在该第一时长内,终端设备能够实现最大MIMO层数的切换。
其中,切换最大MIMO层数所需要的处理时间包括PDCCH解调和DCI译码的时间,以及RF链路的打开或者关闭时间,例如包括打开或者关闭天线的时间。
作为具体示例,该第一BWP和第二BWP为下行BWP,网络设备配置给第一服务小区的接收PDSCH的最大MIMO层数为4(即第一服务小区上的其他BWP(例如第二BWP)适用的最大MIMO层数为4),该第一时长为3个时隙,该第一MIMO层数为2。那么在终端设备使用的BWP由第二BWP切换至第一BWP时,终端设备需要在3个时隙内完成BWP切换,并且要保证在切换至第一BWP后,终端设备接收PDSCH的最大MIMO层数为2。即需要在该3个时隙内,完成RF链路的调整,例如调整天线的数量。
可选地,方法700还包括:
步骤770,网络设备向终端设备发送确认消息,该确认消息用于指示第一BWP和第二BWP之间的切换时延为第一时长,以及用于指示终端设备使用第一BWP时以第一MIMO层数作为最大MIMO层数进行数据收发。
相应地,在步骤770中,终端设备接收网络设备发送的确认消息。
可选地,该确认消息可以承载于RRC消息、MAC CE消息或者DCI消息中。
可选地,在其他实施方式中,终端设备也可以针对第一指示信息和第二指示信息向终 端设备分别发送确认消息,本申请对此并不限定。
可以理解的是,本发明所描述的实施例中,UE上报的信息中除了指示一个BWP的标识,还应包括指示该BWP为上行BWP或下行BWP。
上文结合图1至图9详细描述了本申请实施例的通信方法,下面结合图10至图13,详细描述本申请实施例的装置。应理解,图10至图13所示的装置能够实现图4-9所示的方法流程中的一个或者多个的步骤。为避免重复,在此不再详细赘述。
图10是本申请实施例的通信设备的示意图,图10所示的通信装置1500包括:确定单元1510和收发单元1520。
收发单元1520,用于向网络设备发送第一指示信息,第一指示信息用于指示第一带宽部分BWP和第二BWP之间的切换时延为第一时长;第一BWP和所述第二BWP为通信装置用于收发数据的上行BWP或下行BWP。
可选地,第一指示信息包括第一BWP的标识、第二BWP的标识和第一时长的指示信息。
可选地,确定单元1510,用于在发送单元1520向网络设备发送第一指示信息之前确定所述第一时长。
可选地,第一BWP和第二BWP为网络设备在第一服务小区配置给通信装置1500的多个下行BWP中的任意两个,或者第一BWP和第二BWP为网络设备在第一服务小区配置给通信装置1500的多个上行BWP中的任意两个。
可选地,第一BWP和第二BWP中的至少一个BWP为通信装置1500建议网络设备在第一服务小区给通信装置1500配置的BWP。
可选地,收发单元1520还用于向网络设备发送第二指示信息,第二指示信息用于指示至少一个BWP的建议配置参数。
可选地,收发单元1520还用于接收网络设备发送的重新配置消息,重新配置消息用于按照建议配置参数为通信装置1500配置所述至少一个BWP。
可选地,第一时长小于第二时长,第二时长为根据通信装置1500的BWP切换时延能力类型确定的在第一BWP和第二BWP之间的切换时延。
可选地,确定单元1510根据第一BWP和第二BWP的配置参数确定第一时长。
可选地,第一BWP和第二BWP的配置参数满足以下条件中的至少一种:第一BWP和第二BWP的中心频率之差小于或者等于第一阈值;第一BWP和第二BWP的带宽之差小于或者等于第二阈值;第一BWP和第二BWP的子载波间隔之差小于或者等于第三阈值。
可选地,收发单元1520还用于接收该网络设备发送的确认消息,该确认消息用于指示通信装置1500在第一BWP和第二BWP之间的切换时延为第一时长。
可选地,第一服务小区为通信装置1500多个服务小区中的任意一个,第一指示信息还包括第一服务小区的小区标识。
可选地,第一时长的指示信息包括第一时长的数值或第一时长的索引值。
可选地,第一指示信息还用于指示第三BWP和第四BWP的之间的切换时延为第三时长。
在其他实施方式中,确定单元1510,用于确定第一MIMO层数,第一MIMO层数为 适用于第一带宽部分BWP的最大MIMO层数,第一BWP为所述终端设备在第一服务小区用于收发数据的上行BWP或下行BWP;
收发单元1520,用于向网络设备发送第一指示信息,第一指示信息包括第一BWP的标识和第一MIMO层数的指示信息。
可选地,第一MIMO层数小于第二MIMO层数,第二MIMO层数为网络设备配置给第一服务小区的最大MIMO层数。
可选地,第一MIMO层数小于第三MIMO层数,第三MIMO层数为通信装置500针对第一服务小区所上报的能力消息中指示的最大MIMO层数。
可选地,确定单元1510根据第一BWP的配置参数确定第一MIMO层数。
可选地,收发单元1520还用于接收网络设备发送的确认消息,确认消息用于指示通信装置1500使用第一BWP时以第一MIMO层数作为最大MIMO层数进行数据收发。
可选地,第一服务小区为通信装置1500多个服务小区中的任意一个,第一指示信息还包括第一服务小区的小区标识。
可选地,第一指示信息包括第二BWP的标识和第四MIMO层数的指示信息,第四MIMO层数为确定单元1510确定的适用于第二BWP的最大MIMO层数。
在其他实施方式中,确定单元1510,用于根据第一时长和M个BWP的配置参数确定N个BWP的建议配置参数,其中,M个BWP为网络设备为通信装置1500在第一服务小区已配置的BWP,M、N为大于或者等于1的整数;
收发单元1520,用于向网络设备发送第一指示信息,第一指示信息用于指示N个BWP的建议配置参数;
收发单元1520,还用于向网络设备发送第二指示信息,第二指示信息用于指示第一BWP和第二BWP之间的切换时延为第一时长,其中,第一BWP和第二BWP中的至少一个为网络设备根据N个BWP的建议配置参数给通信装置500在第一服务小区新配置的BWP。
可选地,确定单元1510还用于确定M个BWP之间的切换时延均不满足第一时长。
可选地,收发单元1520还用于接收网络设备发送的确认消息,确认消息用于指示通信装置1500在第一BWP和第二BWP之间的切换时延为所述第一时长。
可选地,收发单元1520还用于接收终端设备发送的的重新配置消息,所述重新配置消息用于按照所述N个BWP的建议配置参数为所述终端设备配置至少一个BWP。
可选地,确认消息包括重新配置消息。
可选地,建议配置参数包括N个BWP的带宽信息和中心频率信息。
可选地,建议配置参数包括N个BWP对应的资源指示值。
可选地,第一指示信息包括参考BWP的配置参数,建议配置参数包括相对参考BWP的配置参数的偏移值。
在一种可能的实现方式中,上述通信装置1500可以为终端设备70,其中处理单元的功能可以由终端设备中的处理器702实现,收发单元的功能可以通过终端设备的收发器701(即控制电路与天线一起)实现。下文结合图11介绍本申请实施例的终端设备的结构。
图11是本申请实施例的一种终端设备的结构示意图。该终端设备可适用于图1所示出的系统中,执行上述方法实施例中终端设备的功能。为了便于说明,图11仅示出了终 端设备的主要部件。如图11所示,终端设备70包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述方法实施例中所描述的动作。存储器主要用于存储软件程序和数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图11仅示出了一个存储器和一个处理器。在实际的终端设备中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限定。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图11中的处理器可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
图12是本申请实施例的通信设备的示意图,图12所示的通信装置1600包括:收发单元1610和确定单元1620。
收发单元1610,用于接收终端设备发送的第一指示信息,第一指示信息用于指示第一带宽部分BWP和第二BWP之间的切换时延为第一时长;第一BWP和第二BWP为终端设备用于收发数据的上行BWP或下行BWP。
确定单元1620,用于根据第一指示信息确定第一BWP和第二BWP之间的切换时延为第一时长。
可选地,第一指示信息包括第一BWP和第二BWP的标识和第一时长的指示信息。
可选地,第一时长由终端设备进行确定。
可选地,第一BWP和第二BWP为通信装置1600在第一服务小区配置给终端设备的多个下行BWP或者多个上行BWP中的任意两个。
可选地,第一BWP和第二BWP中的至少一个BWP为终端设备建议通信装置1600在第一服务小区给终端设备新配置的BWP。
可选地,收发单元1610还用于接收终端设备发送的第二指示信息,第二指示信息用于指示至少一个BWP的建议配置参数。
可选地,收发单元1610还用于向终端设备发送重新配置消息,重新配置消息用于按照建议配置参数为终端设备配置至少一个BWP。
可选地,第一时长小于第二时长,第二时长为根据终端设备的BWP切换时延能力类型确定的在第一BWP和所述第二BWP之间的切换时延。
可选地,第一时长根据第一BWP和第二BWP的配置参数确定。
可选地,第一BWP和第二BWP的配置参数满足以下条件中的至少一种:第一BWP和第二BWP的中心频率之差小于或者等于第一阈值;第一BWP和第二BWP的带宽之差小于或者等于第二阈值;第一BWP和第二BWP的子载波间隔之差小于或者等于第三阈值。
可选地,收发单元1610还用于向终端设备发送确认消息,确认消息用于指示终端设备在第一BWP和第二BWP之间的切换时延为第一时长。
可选地,第一服务小区为终端设备多个服务小区中的任意一个,第一指示信息还包括第一服务小区的小区标识。
可选地,第一时长的指示信息包括第一时长的数值或第一时长的索引值。
可选地,第一指示信息还用于指示第三BWP和第四BWP的切换时延为第三时长。
在其他实施方式中,收发单元1610,用于接收终端设备发送的第一指示信息,第一指示信息包括第一带宽部分BWP的标识和第一MIMO层数的指示信息,第一BWP为所述终端设备在第一服务小区用于收发数据的上行BWP或下行BWP;
确定单元1620,用于根据第一指示信息确定终端设备在第一BWP激活时以第一MIMO层数作为最大MIMO层数进行数据收发。
可选地,第一MIMO层数小于第二MIMO层数,第二MIMO层数为通信装置1600配置给第一服务小区的最大MIMO层数。
可选地,第一MIMO层数小于第三MIMO层数,第三MIMO层数为终端设备针对第一服务小区所上报的能力消息中指示的最大MIMO层数。
可选地,第一MIMO层数根据第一BWP的配置参数确定。
可选地,收发单元1610还用于向终端设备发送确认消息,确认消息用于指示终端设备使用第一BWP时以第一MIMO层数作为最大MIMO层数进行数据收发。
可选地,第一服务小区为终端设备多个服务小区中的任意一个,第一指示信息还包括第一服务小区的小区标识。
可选地,第一指示信息包括第二BWP的标识和第四MIMO层数的指示信息,第四MIMO层数为终端设备确定的适用于第二BWP的最大MIMO层数。
在其他实施方式中,收发单元1610,用于接收终端设备发送的第一指示信息,第一指示信息用于指示N个BWP的建议配置参数,其中,N个BWP的建议配置参数是根据第一时长和M个BWP的配置参数确定的,M个BWP为通信装置为终端设备在第一服务小区配置的BWP,M、N为大于或者等于1的整数;
收发单元1610,还用于接收终端设备发送的第二指示信息,第二指示信息用于指示第一BWP和第二BWP之间的切换时延为第一时长,其中,第一BWP和第二BWP中的 至少一个为通信装置1600根据N个BWP的建议配置参数给终端设备在第一服务小区新配置的BWP;
确定单元1620,用于根据第二指示信息确定终端设备在第一BWP和第二BWP之间的切换时延为第一时长。
可选地,收发单元1610还用于向终端设备发送确认消息,确认消息用于指示终端设备在第一BWP和第二BWP之间的切换时延为第一时长。
可选地,收发单元1610还用于向终端设备发送重新配置消息,所述重新配置消息用于按照所述N个BWP的建议配置参数为所述终端设备配置至少一个BWP。
可选地,确认消息包括重新配置消息。
可选地,建议配置参数包括N个BWP的带宽信息和中心频率信息。
可选地,建议配置参数包括N个BWP对应的资源指示值。
可选地,第一指示信息包括参考BWP的配置参数,建议配置参数包括相对参考BWP的配置参数的偏移值。
在一种可能的实现方式中,上述通信装置1600可以为网络设备,例如下文中的基站80,其中处理单元的功能可以由基站中的处理器8022实现,收发单元的功能可以通过基站80的RRU 801实现。下文结合图13介绍本申请实施例的网络设备的结构。
图13是本申请实施例的一种网络设备的结构示意图,如可以为基站的结构示意图。如图13所示,该基站可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。基站80可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)801和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)802。所述RRU 801可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线8011和射频单元8012。所述RRU 801部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送上述实施例中所述的信令消息。所述BBU 802部分主要用于进行基带处理,对基站进行控制等。所述RRU 801与BBU 802可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 802为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)802可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
在一个实例中,所述BBU 802可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 802还包括存储器8021和处理器8022,所述存储器8021用于存储必要的指令和数据。例如存储器8021存储上述实施例中的码本索引与预编码矩阵的对应关系。所述处理器8022用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器8021和处理器8022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,在本申请实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列 (field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图4-9所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图4-9所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
为了便于理解,下文中对本申请介绍方案的过程中涉及的名词进行说明。
在本申请实施例中,“指示”可以包括直接指示和间接指示,也可以包括显式指示和隐式指示。将某一信息(如前文中的“指示信息”)所指示的信息称为待指示信息,则具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指 示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。
在本申请实施例中,各术语及英文缩略语,如带宽部分(BWP)、多输入多输出(MIMO)、下行控制信息(DCI)、媒体接入控制控制元素(MAC CE)、无线资源控制(RRC)、物理下行共享信道(PDSCH)等,均为方便描述而给出的示例性举例,不应对本申请构成任何限定。本申请并不排除在已有或未来的协议中定义其它能够实现相同或相似功能的术语的可能。
在本申请实施例中,“第一”、“第二”以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的BWP、时长、阈值、MIMO层数、指示信息等。
本申请实施例中涉及的“通信协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (36)

  1. 一种通信方法,其特征在于,包括:
    终端设备向网络设备发送第一指示信息,所述第一指示信息用于指示第一带宽部分BWP和第二BWP之间的切换时延为第一时长;
    所述第一BWP和所述第二BWP为所述终端设备用于收发数据的上行BWP或下行BWP。
  2. 根据权利要求1所述的方法,其特征在于,所述第一指示信息包括所述第一BWP的标识、所述第二BWP的标识和所述第一时长的指示信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述终端设备向网络设备发送第一指示信息之前,所述方法还包括:所述终端设备确定所述第一时长。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述第一BWP和所述第二BWP为所述网络设备在第一服务小区配置给所述终端设备的多个下行BWP中的任意两个,或者所述第一BWP和所述第二BWP为所述网络设备在第一服务小区配置给所述终端设备的多个上行BWP中的任意两个。
  5. 根据权利要求1-3中任一项所述的方法,其特征在于,所述第一BWP和所述第二BWP中的至少一个BWP为所述终端设备建议所述网络设备在第一服务小区给所述终端设备配置的BWP。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备发送第二指示信息,所述第二指示信息用于指示所述至少一个BWP的建议配置参数。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的重新配置消息,所述重新配置消息用于按照所述建议配置参数为所述终端设备配置所述至少一个BWP。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述第一时长小于第二时长,所述第二时长为根据所述终端设备的BWP切换时延能力类型确定的在所述第一BWP和所述第二BWP之间的切换时延。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的确认消息,所述确认消息用于指示所述终端设备在所述第一BWP和所述第二BWP之间的切换时延为所述第一时长。
  10. 根据权利要求2所述的方法,其特征在于,所述第一时长的指示信息包括所述第一时长的数值或所述第一时长的索引值。
  11. 根据权利要求1-10中任一项所述的方法,其特征在于,所述第一指示信息还用于指示第三BWP和第四BWP之间的切换时延为第三时长。
  12. 一种通信方法,其特征在于,包括:
    网络设备接收终端设备发送的第一指示信息,所述第一指示信息用于指示第一带宽部分BWP和第二BWP之间的切换时延为第一时长;
    所述第一BWP和所述第二BWP为所述终端设备用于收发数据的上行BWP或下行 BWP。
  13. 根据权利要求12所述的方法,其特征在于,所述第一指示信息包括所述第一BWP的标识、所述第二BWP的标识和所述第一时长的指示信息。
  14. 根据权利要求12或13所述的方法,其特征在于,所述第一时长由所述终端设备进行确定。
  15. 根据权利要求12-14中任一项所述的方法,其特征在于,所述第一BWP和所述第二BWP为所述网络设备在第一服务小区配置给所述终端设备的多个下行BWP中的任意两个,或者所述第一BWP和所述第二BWP为所述网络设备在第一服务小区配置给所述终端设备的多个上行BWP中的任意两个。
  16. 根据权利要求12-14中任一项所述的方法,其特征在于,所述第一BWP和所述第二BWP中的至少一个BWP为所述终端设备建议所述网络设备在第一服务小区给所述终端设备配置的BWP。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备发送的第二指示信息,所述第二指示信息用于指示所述至少一个BWP的建议配置参数。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送重新配置消息,所述重新配置消息用于按照所述建议配置参数为所述终端设备配置所述至少一个BWP。
  19. 根据权利要求12-18中任一项所述的方法,其特征在于,所述第一时长小于第二时长,所述第二时长为根据所述终端设备的BWP切换时延能力类型确定的在所述第一BWP和所述第二BWP之间的切换时延。
  20. 根据权利要求12-19中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送确认消息,所述确认消息用于指示所述终端设备在所述第一BWP和所述第二BWP之间的切换时延为所述第一时长。
  21. 根据权利要求13所述的方法,其特征在于,所述第一时长的指示信息包括所述第一时长的数值或所述第一时长的索引值。
  22. 根据权利要求12-21中任一项所述的方法,其特征在于,所述第一指示信息还用于指示第三BWP和第四BWP之间的切换时延为第三时长。
  23. 一种通信方法,其特征在于,包括:
    终端设备确定第一MIMO层数,所述第一MIMO层数为适用于第一带宽部分BWP的最大MIMO层数,所述第一BWP为所述终端设备在第一服务小区用于收发数据的上行BWP或下行BWP;
    所述终端设备向网络设备发送第一指示信息,所述第一指示信息包括所述第一BWP的标识和所述第一MIMO层数的指示信息。
  24. 根据权利要求23所述的方法,其特征在于,所述第一MIMO层数小于第二MIMO层数,所述第二MIMO层数为所述网络设备配置给所述第一服务小区的最大MIMO层数。
  25. 根据权利要求23所述的方法,其特征在于,所述第一MIMO层数小于第三MIMO层数,所述第三MIMO层数为所述终端设备针对所述第一服务小区所上报的能力消息中指示的最大MIMO层数。
  26. 根据权利要求23-25中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的确认消息,所述确认消息用于指示所述终端设备使用所述第一BWP时以所述第一MIMO层数作为最大MIMO层数进行数据收发。
  27. 根据权利要求23-26中任一项所述的方法,其特征在于,所述第一指示信息包括第二BWP的标识和第四MIMO层数的指示信息,所述第四MIMO层数为所述终端设备确定的适用于所述第二BWP的最大MIMO层数。
  28. 一种通信方法,其特征在于,包括:
    网络设备接收终端设备发送的第一指示信息,所述第一指示信息包括第一带宽部分BWP的标识和第一MIMO层数的指示信息,所述第一BWP为所述终端设备在第一服务小区用于收发数据的上行BWP或下行BWP;
    所述网络设备根据所述第一指示信息确定所述终端设备在所述第一BWP激活时以所述第一MIMO层数作为最大MIMO层数进行数据收发。
  29. 根据权利要求28所述的方法,其特征在于,所述第一MIMO层数小于第二MIMO层数,所述第二MIMO层数为所述网络设备配置给所述第一服务小区的最大MIMO层数。
  30. 根据权利要求28所述的方法,其特征在于,所述第一MIMO层数小于第三MIMO层数,所述第三MIMO层数为所述终端设备针对所述第一服务小区所上报的能力消息中指示的最大MIMO层数。
  31. 根据权利要求28-30中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送确认消息,所述确认消息用于指示所述终端设备使用所述第一BWP时以所述第一MIMO层数作为最大MIMO层数进行数据收发。
  32. 根据权利要求28-31中任一项所述的方法,其特征在于,所述第一指示信息包括第二BWP的标识和第四MIMO层数的指示信息,所述第四MIMO层数为所述终端设备确定的适用于所述第二BWP的最大MIMO层数。
  33. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至32中任意一项所述的方法。
  34. 一种芯片系统,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片系统的通信设备执行如权利要求1至32中任意一项所述的方法。
  35. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器用于与存储器耦合,读取并执行所述存储器中的指令,以实现如权利要求1至32中任一项所述的方法。
  36. 如权利要求35所述的通信装置,其特征在于,还包括所述存储器。
PCT/CN2020/108960 2019-08-14 2020-08-13 一种通信方法及通信装置 WO2021027887A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20852654.1A EP4013133A4 (en) 2019-08-14 2020-08-13 COMMUNICATION METHOD AND COMMUNICATION APPARATUS
US17/669,445 US20220166594A1 (en) 2019-08-14 2022-02-11 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910749650.9A CN112399569A (zh) 2019-08-14 2019-08-14 一种通信方法及通信装置
CN201910749650.9 2019-08-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/669,445 Continuation US20220166594A1 (en) 2019-08-14 2022-02-11 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2021027887A1 true WO2021027887A1 (zh) 2021-02-18

Family

ID=74570547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108960 WO2021027887A1 (zh) 2019-08-14 2020-08-13 一种通信方法及通信装置

Country Status (4)

Country Link
US (1) US20220166594A1 (zh)
EP (1) EP4013133A4 (zh)
CN (1) CN112399569A (zh)
WO (1) WO2021027887A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11764918B2 (en) * 2019-10-04 2023-09-19 Qualcomm Incorporated Carrier group based MIMO layers and antenna adaptation
US11818617B2 (en) 2021-12-21 2023-11-14 Nokia Solutions And Networks Oy Device and method for bandwidth part switch at terminal devices

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4014342A1 (en) * 2019-08-14 2022-06-22 Telefonaktiebolaget LM Ericsson (publ) Layer reduction criteria
US11825457B2 (en) * 2020-03-18 2023-11-21 Qualcomm Incorporated Dynamic coreset handling for BWP switching
US20220231871A1 (en) * 2021-01-19 2022-07-21 Qualcomm Incorporated Bandwidth parts for a groupcast sidelink network
US20240179693A1 (en) * 2021-03-17 2024-05-30 Beijing Xiaomi Mobile Software Co., Ltd. Bandwidth part configuration method, bandwidth part configuration apapratus, and storage medium
CN115150964A (zh) * 2021-03-31 2022-10-04 华为技术有限公司 通信方法、通信装置、计算机可读存储介质和芯片
CN115412213B (zh) * 2021-05-29 2024-05-24 华为技术有限公司 一种下行调度方法及装置
US11985597B2 (en) * 2021-08-05 2024-05-14 Qualcomm Incorporated Techniques for aperiodic discontinuous reception mode communications
CN116137946A (zh) * 2021-09-17 2023-05-19 北京小米移动软件有限公司 终端多输入多输出mimo传输层数的调整方法及装置
US11943761B2 (en) * 2021-09-21 2024-03-26 Qualcomm Incorporated SRS management for adaptive TX/RX diversity
CN116073969A (zh) * 2021-11-01 2023-05-05 中国移动通信有限公司研究院 一种数据传输的实现方法、装置和计算机可读存储介质
CN116095809A (zh) * 2021-11-04 2023-05-09 华为技术有限公司 一种无线通信的方法和装置
WO2023133745A1 (zh) * 2022-01-13 2023-07-20 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
CN116827361A (zh) * 2022-03-16 2023-09-29 华为技术有限公司 通信方法和装置
CN117203925A (zh) * 2022-04-07 2023-12-08 北京小米移动软件有限公司 一种传输用户设备能力的方法、装置及可读存储介质
CN115103414A (zh) * 2022-06-20 2022-09-23 展讯通信(上海)有限公司 Bwp切换方法、装置、设备及存储介质
WO2023248137A1 (en) * 2022-06-20 2023-12-28 Lenovo (Singapore) Pte. Ltd. Activating a bandwidth part based on transmission parameter requirements
CN117880908A (zh) * 2022-09-30 2024-04-12 大唐移动通信设备有限公司 载波切换方法、装置、终端及网络设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109586881A (zh) * 2017-09-29 2019-04-05 株式会社Kt 用于在新无线电中切换带宽部分的方法和装置
US20190132845A1 (en) * 2017-10-31 2019-05-02 Alireza Babaei Scheduling With Bandwidth Part Switching

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019061145A1 (en) * 2017-09-28 2019-04-04 Qualcomm Incorporated TECHNIQUES AND APPARATUS FOR MANAGING RADIO RESOURCES WITH MULTIPLE BANDWIDTH PARTS
EP3591887B1 (en) * 2017-11-09 2022-02-09 Beijing Xiaomi Mobile Software Co., Ltd. Methods and apparatuses for communications based on wireless device capabilities
EP4243325A3 (en) * 2017-11-15 2023-10-25 InterDigital Patent Holdings, Inc. Beam management in a wireless network

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109586881A (zh) * 2017-09-29 2019-04-05 株式会社Kt 用于在新无线电中切换带宽部分的方法和装置
US20190132845A1 (en) * 2017-10-31 2019-05-02 Alireza Babaei Scheduling With Bandwidth Part Switching

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATT: "Power saving scheme with UE adaptation to maximum MIMO layer", 3GPP TSG-RAN WG2 MEETING #97; R1-1906354, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 4 May 2019 (2019-05-04), Reno, USA; 20190513 - 20190517, XP051708389 *
HUAWEI, HISILICON: "RRM requirement on BWP switching", 3GPP TSG-RAN WG4 MEETING #87; R4-1807347, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 14 May 2018 (2018-05-14), Busan, Korea; 20180521 - 20180525, XP051577536 *
See also references of EP4013133A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11764918B2 (en) * 2019-10-04 2023-09-19 Qualcomm Incorporated Carrier group based MIMO layers and antenna adaptation
US11818617B2 (en) 2021-12-21 2023-11-14 Nokia Solutions And Networks Oy Device and method for bandwidth part switch at terminal devices

Also Published As

Publication number Publication date
CN112399569A (zh) 2021-02-23
EP4013133A1 (en) 2022-06-15
US20220166594A1 (en) 2022-05-26
EP4013133A4 (en) 2022-10-05

Similar Documents

Publication Publication Date Title
WO2021027887A1 (zh) 一种通信方法及通信装置
US9832762B2 (en) Terminal apparatus, base station apparatus, communication system, notification method, and integrated circuit
US10321502B2 (en) Terminal device, base station apparatus, communication system, communication control method, and integrated circuit
EP3726767B1 (en) Data transmission method and device and communication apparatus
US11962387B2 (en) Wireless communication method and apparatus
WO2020156378A1 (zh) 接收参考信号的方法、发送参考信号的方法和装置
EP3666007B1 (en) Command receipt confirmation in a wireless communication system
WO2021031048A1 (zh) 一种通信方法及装置
WO2022082386A1 (zh) 一种无线通信的方法与装置
WO2021027551A1 (zh) 一种通信方法及装置
WO2019096232A1 (zh) 通信方法和通信装置
CN113365307B (zh) 一种测量管理方法及装置、通信设备
WO2021200331A1 (en) A method, a user equipment, and a radio station for optimizing user equipment power consumption on activated secondary cells
US20200374915A1 (en) Scheduling latency determining method and apparatus
JP2022550879A (ja) クロススロットスケジューリング適応のためのデバイスおよび方法
WO2022213872A1 (zh) 通信方法和通信装置
WO2020164487A1 (zh) 一种无线通信的方法和装置
WO2022082511A1 (zh) 无线通信的方法及设备
EP3295595A1 (en) Methods to map cif and serving cells
CN114071667A (zh) 通信的方法、通信装置及系统
WO2019200507A1 (en) Control of d2d duplication
CN114270945A (zh) 一种通信方法及装置
WO2023143007A1 (zh) 信息传输方法和装置
EP4346143A1 (en) User equipment and base station involved in time-division communication
WO2024060224A1 (en) Aperiodic csi report with dormant bwp or scell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020852654

Country of ref document: EP

Effective date: 20220307