WO2022082386A1 - 一种无线通信的方法与装置 - Google Patents

一种无线通信的方法与装置 Download PDF

Info

Publication number
WO2022082386A1
WO2022082386A1 PCT/CN2020/121989 CN2020121989W WO2022082386A1 WO 2022082386 A1 WO2022082386 A1 WO 2022082386A1 CN 2020121989 W CN2020121989 W CN 2020121989W WO 2022082386 A1 WO2022082386 A1 WO 2022082386A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
information
mac
signaling
dci
Prior art date
Application number
PCT/CN2020/121989
Other languages
English (en)
French (fr)
Inventor
樊波
袁世通
张希
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080106280.8A priority Critical patent/CN116368766A/zh
Priority to PCT/CN2020/121989 priority patent/WO2022082386A1/zh
Priority to EP20957975.4A priority patent/EP4228188A4/en
Publication of WO2022082386A1 publication Critical patent/WO2022082386A1/zh
Priority to US18/302,072 priority patent/US20230262678A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of communication, and in particular, designs a method and apparatus for wireless communication.
  • the fifth generation mobile communication system can use high-frequency communication, that is, use ultra-high frequency (>6GHz) signals to transmit data.
  • a major problem with high-frequency communication is that the signal energy drops sharply with the transmission distance, resulting in short signal transmission distances.
  • high-frequency communication adopts analog beam technology. By weighting the antenna array, the signal energy is concentrated in a small angle range to form a beam-like signal (called analog beam, or simply beam for short). ), thereby increasing the transmission distance. Both network equipment and terminal equipment use beams for transmission.
  • the network device determines the type of the transmit beam, and the network device informs the terminal device of the type of the receive beam of the target reference signal resource used by the terminal device to receive the beam. Specifically, the network device sends a downlink control information (Downlink control information, DCI) signaling to the terminal device, which includes a transmission configuration index (Transmission configuration index, TCI) field.
  • DCI Downlink control information
  • TCI Transmission configuration index
  • the TCI field is used to indicate a configuration indication state (TCI-state).
  • a TCI-state includes a target reference signal resource, indicating that the receiving beam of the target reference signal resource is used as the receiving beam.
  • the receiving beam of the target reference signal resource is known, so the terminal device can determine the current transmission. receive beam.
  • the network device can configure multiple TCI-states for the terminal device, including different target reference signal resources. When the network device wants the terminal device to use the receiving beam of a certain target reference signal resource to receive, the corresponding TCI-state can be set. Indicates to terminal equipment, eg, configuration, activation and indication of TCI-state.
  • the network device In uplink transmission, the network device needs to inform the terminal device of the type of transmit beam used.
  • the indication of the uplink transmit beam is achieved by indicating the spatial relation to the terminal equipment.
  • the spatial relation includes a target reference signal resource, and the transmit beam of this uplink transmission is determined according to the target reference signal resource.
  • the target reference signal resource may be an uplink reference signal resource, such as a sounding reference signal (Sounding reference signal, SRS), or a downlink reference signal resource, such as a synchronization signal and a broadcast channel resource block (Synchronization Signal and PBCH Block, SSB) ) and channel state information-reference signal (Channel status information reference signal, CSI-RS).
  • the terminal device uses the transmission beam of the SRS resource for transmission, and the transmission beam of the SRS is known. If it is an SSB or CSI-RS, it means that the receiving beam of the SSB/CSI-RS is used for transmission. The receive beam of the SSB or CSI-RS is known.
  • the network device needs to update the beam used for uplink and downlink transmission through signaling, so as to ensure that the beam used by the terminal device is always the best. How to efficiently perform beam notification is the main problem to be solved by this application.
  • the present application provides a method and apparatus for wireless communication, which can uniformly indicate beams of each channel/reference signal, which can simplify implementation and reduce signaling overhead.
  • a method for wireless communication comprising: receiving first information, where the first information is used to configure parameters of a first beam set, the first beam set includes at least one first beam, the The first beam is a beam shared by multiple channels and/or multiple reference signals; receiving second information, and determining information of a first beam subset according to the second information, where the first beam subset belongs to the A first beam set; receiving third information, and determining information of the first beam according to the third information, where the first beam belongs to the first beam subset.
  • the beams of each channel/reference signal can be indicated uniformly, which can simplify implementation and reduce signaling overhead.
  • the parameters of the first beam set include a mode of the first beam of the first beam set, the mode of the first beam of the first beam set It includes at least one of the following: uplink and downlink transmissions use the same first beam, and uplink and downlink transmissions use independent first beams.
  • the parameters of the first beam set further include an identifier of the first beam of the first beam set.
  • the determining the information of the first beam subset according to the second information includes: determining the first beam subset according to the second information
  • the type of the first beam of the set including at least one of the following: a first beam for uplink and downlink transmission, a first beam for uplink or downlink transmission, a first beam for uplink transmission, and a the first beam for downlink transmission.
  • the second information is carried by the first medium access control layer MAC control element CE signaling.
  • the determining the type of the first beam of the first beam subset according to the second information includes: according to the first MAC CE signaling
  • the corresponding logical channel identifier LCID determines the type of the first beam of the first beam subset, and the type includes at least one of the following: the first beam used for uplink and downlink transmission, the first beam used for uplink or downlink transmission The first beam for transmission, the first beam for uplink transmission, and the first beam for downlink transmission.
  • the determining the type of the first beam of the first beam subset according to the second information includes: according to the first MAC CE signaling
  • the type of the first beam of the first beam subset is determined according to the mode of the first beam of the first beam set, and the type includes at least the following Item: the first beam for uplink and downlink transmission, the first beam for uplink or downlink transmission, the first beam for uplink transmission, and the first beam for downlink transmission beam.
  • fourth information is sent, where the fourth information includes a first parameter, and the first parameter of the fourth information is used to indicate whether an uplink beam and a downlink beam exist reciprocity.
  • the type of the first beam of the first beam subset is determined according to the first parameter of the fourth information, where the type includes at least one of the following: The first beam for uplink and downlink transmission, the first beam for uplink or downlink transmission, the first beam for uplink transmission, and the first beam for downlink transmission.
  • the type of the first beam of the first beam subset is determined according to the second field of the first MAC CE signaling, and the type includes at least the following Item: the first beam used for uplink transmission, and the first beam used for downlink transmission.
  • the first MAC CE signaling further includes an index of the first beam subset; or, the first MAC CE signaling further includes a bit Figure, the one bitmap is used to indicate the first beam of the first beam subset.
  • the first MAC CE signaling includes one or two types of the first beam; it is determined according to the third field of the first MAC CE signaling
  • the first beam included in the first MAC CE signaling is one or two.
  • the two types of the first beams are: the first beam for uplink transmission and the first beam for downlink transmission.
  • the first beam used for uplink transmission is indicated according to the first bit of the first MAC CE signaling, and according to the first MAC CE signaling
  • the second bit indicates the first beam used for downlink transmission; or, according to the first bit of the first MAC CE signaling indicates the first beam used for downlink transmission, according to the first MAC CE signaling
  • the second bit of signaling indicates the first beam used for uplink transmission.
  • the first beam included in the first MAC CE signaling determined according to the third field of the first MAC CE signaling is a kind of Or both, including: determining whether the second bit of the first MAC CE signaling exists according to the third field of the first MAC CE signaling.
  • the first bit of the first MAC CE signaling indicates that the The first beam for transmission is also the first beam used for downlink transmission.
  • the third information is carried by first downlink control information DCI, where the first DCI includes at least one of the following fields: used to determine the A field for the type of the first beam, the field for determining the type of the first beam includes a DCI format identification field; or, a field for indicating the function of the first DCI, the function of the first DCI It includes at least one of the following: used to indicate the first beam, used to indicate scheduling data, and used to indicate the first beam and the scheduling data; or, a field used to indicate the identifier of the first beam; or, an activation or deactivation field, the activation or deactivation field is used to indicate that the first DCI is used to activate the first beam or to deactivate the first beam; or, the carrier field, the carrier field is used to indicate At least one of the following: a carrier corresponding to the first beam, a carrier group corresponding to the first beam, a carrier group corresponding to the first beam; or, a frequency band field
  • a second DCI before receiving the first DCI, a second DCI is received, the second DCI is used to indicate the first beam, and the second DCI is temporally adjacent to the first DCI.
  • the first DCI when the first DCI and the first beam indicated by the second DCI are the same, and the value of the NDI field is flipped, the the first DCI is used to instruct to deactivate the first beam; or, when the first DCI is different from the first beam indicated by the second DCI, the first DCI is used to instruct to activate the first beam first beam.
  • the first beam takes effect within a first period of time when the first moment is the start moment,
  • the first moment includes any one of the following: the time slot or symbol sent by the first DCI, the time slot or symbol sent by the HARQ feedback message corresponding to the first DCI, and the time slot or symbol corresponding to the first DCI
  • the first duration is determined according to the first DCI; or, the first duration is determined according to configuration information.
  • the first DCI when the first DCI includes scheduling information of data transmission, fifth information is sent, and the fifth information is ACK/Non-ack NACK information for data ; or, when the first DCI does not include scheduling information of the data transmission, send sixth information, where the sixth information is ACK/NACK information of the first DCI.
  • whether the first DCI includes scheduling information of the data transmission is determined by a condition, and the condition includes at least one of the following: The value of the frequency domain resource allocation field is 0, and the value of the time domain resource allocation field of the first DCI is 0.
  • a method for wireless communication including: sending first information, where the first information is used to configure parameters of a first beam set, the first beam set includes at least one first beam, the The first beam is a beam shared by multiple channels and/or multiple reference signals; second information is sent, where the second information is used to determine the information of the first beam subset, and the first beam subset belongs to all the first beam set; and sending third information, where the third information is used to determine one piece of information about the first beam, and the first beam belongs to the first beam subset.
  • the beams of each channel/reference signal can be indicated uniformly, which can simplify implementation and reduce signaling overhead.
  • the parameters of the first beam set include a pattern of the first beam of the first beam set, the pattern of the first beam of the first beam set It includes at least one of the following: uplink and downlink transmissions use the same first beam, and uplink and downlink transmissions use independent first beams.
  • the parameters of the first beam set further include an identifier of the first beam of the first beam set.
  • the second information is used to determine a type of the first beam of the first beam subset, where the type includes at least one of the following: A first beam for uplink and downlink transmission, a first beam for uplink or downlink transmission, a first beam for uplink transmission, and a first beam for downlink transmission.
  • the second information is carried by the first medium access control layer MAC control element CE signaling.
  • the logical channel identifier LCID corresponding to the first MAC CE signaling is used to determine the type of the first beam of the first beam subset, and the type Including at least one of the following: the first beam for uplink and downlink transmission, the first beam for uplink or downlink transmission, the first beam for uplink transmission, and the first beam for downlink transmission the first beam.
  • the first field corresponding to the first MAC CE signaling is used to determine the type of the first beam of the first beam subset, and the type includes At least one of the following: the first beam for uplink and downlink transmission, the first beam for uplink or downlink transmission, the first beam for uplink transmission, and the first beam for downlink transmission first beam.
  • the mode of the first beam of the first beam set is used to determine the type of the first beam of the first beam subset, and the type includes the following At least one item: the first beam used for uplink and downlink transmission, the first beam used for uplink or downlink transmission, the first beam used for uplink transmission, and the first beam used for downlink transmission a beam.
  • fourth information is received, the fourth information includes a first parameter, and the first parameter of the fourth information is used to indicate whether an uplink beam and a downlink beam exist reciprocity.
  • the first parameter of the fourth information is used to determine the type of the first beam of the group of the first beams, and the type includes at least the following Item: the first beam for uplink and downlink transmission, the first beam for uplink or downlink transmission, the first beam for uplink transmission, and the first beam for downlink transmission beam.
  • the second field of the first MAC CE signaling is used to determine the type of the first beam of the first beam subset, and the type includes the following At least one item: the first beam used for uplink transmission, and the first beam used for downlink transmission.
  • the first MAC CE signaling further includes an index of the first beam subset; or, the first MAC CE signaling further includes a bit Figure, the one bitmap is used to indicate the first beam of the first beam subset.
  • the first MAC CE signaling includes one or two types of the first beam
  • the third field of the first MAC CE signaling is used for It is determined that the first beam included in the first MAC CE signaling is one type or two types.
  • the two types of the first beams are: the first beam for uplink transmission and the first beam for downlink transmission.
  • the first bit of the first MAC CE signaling is used to indicate the first beam used for uplink transmission, and the first MAC CE signaling The second bit is used to indicate the first beam used for downlink transmission; or, the first bit of the first MAC CE signaling is used to indicate the first beam used for downlink transmission, the first The second bit of the MAC CE signaling is used to indicate the first beam used for uplink transmission.
  • the third field of the first MAC CE signaling is used to determine whether the second bit of the first MAC CE signaling exists.
  • the fourth field of the first MAC CE signaling is used to determine that the first bit of the first MAC CE signaling indicates that the The first beam for uplink transmission is also the first beam used for downlink transmission.
  • the third information is carried by first downlink control information DCI, where the first DCI includes at least one of the following fields: used to determine the A field of the first beam type, the field used for determining the first beam type includes a DCI format identification field; or, a field used to indicate the function of the first DCI, where the function of the first DCI includes the following At least one item: used to indicate the first beam, used to indicate scheduling data, and used to indicate the first beam and scheduling data; or, used to indicate the first beam identifier field; or, activated or A deactivation field, the activation or deactivation field is used to indicate that the first DCI is used for activating the first beam or deactivating the first beam; or a carrier field, the carrier field is used to indicate at least the following Item: the carrier corresponding to the first beam, the carrier group corresponding to the first beam, the carrier group corresponding to the first beam; or, the frequency band field, the frequency band field is used to indicate the first beam
  • the first field of the first DCI when the first field of the first DCI is multiplexed to indicate activation or deactivation of the first beam, the first field of the first DCI is The fields include at least one of the following: frequency domain resource allocation field, time domain resource allocation field, modulation and coding strategy MCS field, new data information NDI field, redundancy version RV field, hybrid automatic repeat request HARQ process field, data allocation identifier DAI field, physical uplink control channel PUCCH resource field, HARQ feedback time indication field, antenna port, demodulation reference signal DMRS sequence initialization field.
  • a second DCI before receiving the first DCI, a second DCI is sent, the second DCI is used to indicate the first beam, and the second DCI is temporally adjacent to the first DCI.
  • the first DCI when the first DCI is the same as the first beam indicated by the second DCI, and the value of the NDI field is flipped, the the first DCI is used to instruct to deactivate the first beam; or, when the first DCI is different from the first beam indicated by the second DCI, the first DCI is used to instruct to activate the first beam first beam.
  • the first beam takes effect within a first duration of the start moment in the first moment,
  • the first moment includes any one of the following: the time slot or symbol sent by the first DCI, the time slot or symbol sent by the HARQ feedback message corresponding to the first DCI, and the time slot or symbol corresponding to the first DCI
  • the first DCI type includes information of the first duration; the first duration is determined according to configuration information.
  • the first DCI when the first DCI includes scheduling information of data transmission, fifth information is received, and the fifth information is ACK/NACK information of the data; or, When the first DCI does not include scheduling information of the data transmission, sixth information is received, where the sixth information is ACK/NACK information of the first DCI.
  • a condition is used to determine whether the first DCI includes scheduling information of the data transmission, and the condition includes at least one of the following: the first DCI The value of the frequency domain resource allocation field of the first DCI is 0, and the value of the time domain resource allocation field of the first DCI is 0.
  • a method for wireless communication comprising: receiving fifth information, where the fifth information is used to configure parameters of a second beam set, the second beam set includes at least one second beam, the The second beam is a beam shared by multiple channels and/or multiple reference signals; receiving sixth information, and determining information of the one or more second beams according to the sixth information.
  • the beams of each channel/reference signal can be indicated uniformly, which can simplify implementation and reduce signaling overhead.
  • the parameter of the second beam set includes a pattern of the second beam of the second beam set, the pattern of the second beam of the second beam set It includes at least one of the following: the same second beam is used for uplink and downlink transmission, and the independent second beam is used for uplink and downlink transmission.
  • the parameter of the second beam set further includes an identifier of the second beam of the second beam set.
  • the type of the one or more second beams is determined according to the sixth information, and the type of the one or more second beams includes at least one of the following item:
  • a second beam for uplink and downlink transmission a second beam for uplink or downlink transmission, a second beam for uplink transmission, and a second beam for downlink transmission.
  • the sixth information is carried by the second MAC CE signaling.
  • the type of the one or more second beams is determined according to the LCID corresponding to the second MAC CE signaling, and the one or more second beams
  • the type includes at least one of the following: the second beam for uplink and downlink transmission, the second beam for uplink or downlink transmission, the second beam for uplink transmission, and the second beam for uplink transmission Second beam for downlink transmission.
  • the type of the one or more second beams is determined according to the first field corresponding to the second MAC CE signaling, and the one or more first beams are Types of two beams include at least one of the following: the second beam for uplink and downlink transmission, the second beam for uplink or downlink transmission, the first beam for uplink transmission, and the Second beam for downlink transmission.
  • the type of the one or more second beams is determined according to the mode of the second beam, and the type of the one or more second beams includes the following At least one item: the second beam for uplink and downlink transmission, the second beam for uplink or downlink transmission, the second beam for uplink transmission, and the first beam for downlink transmission Two beams.
  • seventh information is sent, where the seventh information includes a first parameter, and the first parameter of the seventh information is used to indicate whether an uplink beam and a downlink beam exist reciprocity.
  • the type of the one or more second beams is determined according to the first parameter of the seventh information, and the type of the one or more second beams is Including at least one of the following: the second beam for uplink and downlink transmission, the second beam for uplink or downlink transmission, the second beam for uplink transmission, and the second beam for downlink transmission the second beam.
  • the type of the one or more second beams is determined according to the second field of the second MAC CE signaling, the one or more second beams are The type of beam includes at least one of the following: the second beam used for uplink transmission, and the second beam used for downlink transmission.
  • the second MAC CE signaling further includes an index of the one or more second beams; or, the second MAC CE signaling further includes a bitmap for indicating the one or more second beams.
  • the second MAC CE signaling includes one or both of the one or more second beams; according to the second MAC CE signaling
  • the third field determines that the one or more second beams included in the second MAC CE signaling are one or two.
  • the second MAC CE signaling when the second MAC CE signaling includes two types of the one or more second beams, the two types of the one or more first beams are respectively: the second beam used for uplink transmission and the second beam used for downlink transmission.
  • the second beam used for uplink transmission is indicated according to the first bit of the second MAC CE signaling, and according to the second MAC CE signaling
  • the second bit indicates the second beam for downlink transmission; or, according to the first bit of the second MAC CE signaling indicates the second beam for downlink transmission, according to the second MAC CE signaling
  • the second bit of signaling indicates the second beam used for uplink transmission.
  • the one or more second MAC CE signaling included in the second MAC CE signaling is determined according to a third field of the second MAC CE signaling.
  • the first bit of the second MAC CE signaling indicates that the The second beam for transmission is also the second beam used for downlink transmission.
  • a method for wireless communication comprising: sending fifth information, where the fifth information is used to configure parameters of a second beam set, the second beam set includes at least one second beam, the The second beam is a beam shared by multiple channels and/or multiple reference signals; sixth information is sent, where the sixth information is used to determine the information of the one or more second beams.
  • the beams of each channel/reference signal can be indicated uniformly, which can simplify implementation and reduce signaling overhead.
  • the parameter of the second beam set includes a pattern of the second beam of the second beam set, the pattern of the second beam of the second beam set It includes at least one of the following: the same second beam is used for uplink and downlink transmission, and the independent second beam is used for uplink and downlink transmission.
  • the parameter of the second beam set further includes an identifier of the second beam of the second beam set.
  • the sixth information is used to determine the type of the one or more second beams, and the type of the one or more second beams includes at least the following One item: a second beam for uplink and downlink transmission, a second beam for uplink or downlink transmission, a second beam for uplink transmission, and a second beam for downlink transmission.
  • the sixth information is carried by the second MAC CE signaling.
  • the LCID corresponding to the second MAC CE signaling is used to determine the type of the one or more second beams, the one or more second beams
  • the types of beams include at least one of the following: the second beam for uplink and downlink transmission, the first beam for uplink or downlink transmission, the second beam for uplink transmission, and the the second beam for downlink transmission.
  • the first field corresponding to the second MAC CE is used to determine the type of the one or more second beams, the one or more second beams
  • the types of beams include at least one of the following: the second beam for uplink and downlink transmission, the second beam for uplink or downlink transmission, the first beam for uplink transmission, and the second beam for downlink transmission.
  • the mode of the second beam is used to determine the type of the one or more second beams, and the type of the one or more second beams includes At least one of the following: the second beam for uplink and downlink transmission, the second beam for uplink or downlink transmission, the second beam for uplink transmission, and the second beam for downlink transmission second beam.
  • seventh information is received, where the seventh information includes a first parameter, and the first parameter of the seventh information is used to indicate whether an uplink beam and a downlink beam exist reciprocity.
  • the first parameter of the seventh information is used to determine the type of the one or more second beams, and the Types include at least one of the following: the second beam for uplink and downlink transmission, the second beam for uplink or downlink transmission, the second beam for uplink transmission, and the second beam for downlink transmission the second beam of transmission.
  • the second field of the second MAC CE signaling is used to determine the type of the one or more second beams, the one or more first beams
  • the type of the two beams includes at least one of the following: the second beam used for uplink transmission, and the second beam used for downlink transmission.
  • the second MAC CE signaling further includes an index of the one or more second beams; or, the second MAC CE signaling further includes a bitmap for indicating one or more of the second beams.
  • the second MAC CE signaling includes one or two types of the one or more second beams
  • the first part of the second MAC CE signaling includes The three fields are used to determine that the one or more second beams included in the second MAC CE signaling are one or two.
  • the second MAC CE signaling when the second MAC CE signaling includes two types of the one or more second beams, the two types of the one or more first beams are respectively: the second beam used for uplink transmission and the second beam used for downlink transmission.
  • the first bit of the second MAC CE signaling is used to indicate the second beam used for uplink transmission, and the second MAC CE signaling The second bit is used to indicate the second beam used for downlink transmission; or, the first bit of the second MAC CE signaling is used to indicate the second beam used for downlink transmission, the second The second bit of the MAC CE signaling is used to indicate the second beam used for uplink transmission.
  • the third field of the second MAC CE signaling is used to determine whether the second bit of the second MAC CE signaling exists.
  • the fourth field of the second MAC CE signaling is used to determine that the first bit of the second MAC CE signaling indicates that the The second beam for uplink transmission is also the second beam used for downlink transmission.
  • a communication apparatus configured to execute the communication methods provided in the above-mentioned first to fourth aspects.
  • the communication apparatus may include a module for executing the communication methods provided in the above-mentioned first to fourth aspects.
  • a communication device including a processor.
  • the processor is coupled to the memory, and can be used to execute the instructions in the memory, so as to implement the communication method in the above-mentioned first aspect to the fourth aspect and any possible implementation manner of the above-mentioned first aspect to the fourth aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface to which the processor is coupled, and the communication interface is used for inputting and/or outputting information.
  • the information includes at least one of instructions and data.
  • the communication apparatus is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip or a system of chips.
  • the communication interface may be an input/output interface, and may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit on the chip or a chip system, etc.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the communication apparatus is a chip or a chip system configured in the terminal device.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication apparatus including a processor.
  • the processor is coupled to the memory and can be used to execute instructions in the memory to implement the second aspect and the communication method in any possible implementation manner of the second aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface to which the processor is coupled, and the communication interface is used for inputting and/or outputting information.
  • the information includes at least one of instructions and data.
  • the communication apparatus is a network device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip or a system of chips.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit on the chip or a chip system.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the communication apparatus is a chip or a chip system configured in a network device.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a communication device, the communication device enables the communication device to implement the above-mentioned first to fourth aspects, and the above-mentioned first aspect To the communication method in any possible implementation manner of the fourth aspect.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a communication device, the communication device enables the communication device to implement the above-mentioned first to fourth aspects, and the above-mentioned first aspect To the communication method in any possible implementation manner of the fourth aspect.
  • a tenth aspect provides a computer program product comprising instructions, which when executed by a computer cause a communication apparatus to implement the communication methods provided in the first to fourth aspects above.
  • a computer program product comprising instructions, which, when executed by a computer, cause a communication apparatus to implement the communication methods provided in the first to fourth aspects above.
  • a twelfth aspect provides a communication system, including the aforementioned network device and terminal device.
  • FIG. 1 shows a schematic diagram of a wireless communication system 100 suitable for an embodiment of the present application.
  • FIG. 2 shows a schematic diagram of a wireless communication system 200 suitable for an embodiment of the present application.
  • FIG. 3 shows a schematic diagram of a MAC CE structure 300 for activating TCI applicable to an embodiment of the present application.
  • FIG. 4 shows an example diagram of a method 400 for beam indication applicable to an embodiment of the present application.
  • FIG. 5 shows a schematic flowchart of a method 500 for wireless communication provided by an embodiment of the present application.
  • FIG. 6 shows a schematic diagram of the position 600 of the first field of the first MAC CE signaling applicable to the embodiment of the present application.
  • FIG. 7 shows a schematic diagram of the position 700 of the second field of the first MAC CE signaling applicable to the embodiment of the present application.
  • FIG. 8 shows a schematic diagram of the position 800 of the third field of the first MAC CE signaling applicable to the embodiment of the present application.
  • FIG. 9 shows a schematic flowchart of a method 900 for wireless communication provided by an embodiment of the present application.
  • FIG. 10 shows a schematic diagram of the position 900 of the second field of the second MAC CE signaling applicable to the embodiment of the present application.
  • FIG. 11 shows a schematic diagram of the location 1000 of the third field of the second MAC CE signaling applicable to the embodiment of the present application.
  • FIG. 12 shows a schematic flowchart of a method 1200 for wireless communication provided by an embodiment of the present application.
  • FIG. 13 shows a schematic flowchart of a method 1300 for wireless communication provided by an embodiment of the present application.
  • FIG. 14 shows a schematic block diagram of a communication apparatus 1400 provided by an embodiment of the present application.
  • FIG. 15 shows a schematic block diagram of another communication apparatus 1500 provided by an embodiment of the present application.
  • FIG. 16 shows a schematic block diagram of another communication apparatus 1600 provided by an embodiment of the present application.
  • FIG. 17 shows a schematic block diagram of another communication apparatus 1700 provided by an embodiment of the present application.
  • 5th generation 5G
  • 5G fifth generation
  • LTE long term evolution
  • FDD Frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • FIG. 1 and FIG. 2 To facilitate understanding of the embodiments of the present application, a communication system applicable to the embodiments of the present application is first described in detail with reference to FIG. 1 and FIG. 2 .
  • FIG. 1 is a schematic diagram of a wireless communication system 100 suitable for an embodiment of the present application.
  • the wireless communication system 100 may include at least one network device, such as the network device 111 shown in FIG. 1 , and the wireless communication system 100 may also include at least one terminal device, such as the terminal device 121 shown in FIG. 1 . with terminal equipment 122. Both network equipment and terminal equipment can be configured with multiple antennas, and network equipment and terminal equipment can communicate using multi-antenna technology.
  • FIG. 2 is a schematic diagram of a wireless communication system 200 suitable for an embodiment of the present application.
  • the wireless communication system 200 may include at least one network device, such as network devices 211 , 212 , and 213 shown in FIG. 2 , and the wireless communication system 200 may also include at least one terminal device, such as shown in FIG. 2 . terminal equipment 221. Both the network device and the terminal device can be configured with multiple antennas, and the network device and the terminal device can communicate using the multi-antenna technology.
  • the network device in the wireless communication system may be any device having a wireless transceiver function.
  • the equipment includes but is not limited to: evolved Node B (evolved Node B, eNB), Radio Network Controller (Radio Network Controller, RNC), Node B (Node B, NB), Base Station Controller (Base Station Controller, BSC) , Base Transceiver Station (BTS), home base station (for example, Home evolved NodeB, or Home Node B, HNB), baseband unit (BaseBand Unit, BBU), wireless fidelity (Wireless Fidelity, WIFI) system Access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP), etc., and can also be 5G, such as NR , a gNB in the system, or, a transmission point (TRP or TP), one or a group of (including multiple antenna panels) antenna panels of a base station in a 5G system, or, it can also be a network
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (active antenna unit, AAU for short).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implementing functions of radio resource control (RRC) and packet data convergence protocol (PDCP) layers.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, the media access control (MAC) layer and the physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • the higher-layer signaling such as the RRC layer signaling
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in an access network (radio access network, RAN), and the CU can also be divided into network devices in a core network (core network, CN), which is not limited in this application.
  • the terminal equipment in the wireless communication system may also be referred to as user equipment (UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile equipment, User terminal, terminal, wireless communication device, user agent or user equipment.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation security ( Wireless terminals in transportation safety), wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the embodiments of the present application do not limit application scenarios.
  • the embodiment of the beam in the NR protocol can be a spatial domain filter, or a spatial filter, or a spatial domain parameter, a spatial parameter, and a spatial setting ( spatial domain setting), spatial setting, or Quasi-colocation (QCL) information, QCL assumption, QCL indication, etc.
  • the beam can be indicated by transmitting the TCI-state parameter, or by the spatial relation parameter. Therefore, in this application, beams can be replaced by spatial filters, spatial filters, spatial parameters, spatial parameters, spatial settings, spatial settings, QCL information, QCL assumptions, QCL indications, TCI-state (including uplink TCI-state, downlink TCI-state, TCI-state), spatial relationship, etc.
  • the above terms are also equivalent to each other.
  • the beam can also be replaced with other terms representing the beam, which is not limited in this application.
  • the beam used to transmit the signal can be called the transmission beam (Transmission beam, Tx beam), also can be called the spatial domain transmission filter (Spatial domain transmission filter), the spatial transmission filter (Spatial transmission filter), the spatial domain transmission parameter (Spatial domain) transmission parameter) or Spatial transmission parameter, Spatial domain transmission setting or Spatial transmission setting.
  • Downlink transmit beams can be indicated by TCI-state.
  • the beam used to receive the signal can be called the receiving beam (Reception beam, Rx beam), also can be called the spatial domain reception filter (Spatial domain reception filter), the spatial reception filter (Spatial reception filter), the spatial domain reception parameter (Spatial domain) reception parameter) or Spatial reception parameter, Spatial domain reception setting or Spatial reception setting.
  • the uplink transmit beam may be indicated by spatial relationship, or uplink TCI-state, or SRS resource (representing the transmit beam using the SRS). Therefore, the uplink beam can also be replaced with SRS resources.
  • the transmitting beam may refer to the distribution of signal strength in different directions in space after the signal is transmitted by the antenna
  • the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space.
  • the beams may be broad beams, or narrow beams, or other types of beams.
  • the beamforming technique may be beamforming or other techniques.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, or a hybrid digital/analog beamforming technology.
  • Beams generally correspond to resources. For example, when performing beam measurement, network equipment uses different resources to measure different beams. The terminal equipment feeds back the measured resource quality, and the network equipment knows the quality of the corresponding beam. When data is transmitted, beam information is also indicated by its corresponding resources. For example, the network device indicates the information of the physical downlink sharing channel (PDSCH) beam of the terminal device through the TCI field in the DCI.
  • PDSCH physical downlink sharing channel
  • multiple beams with the same or similar communication characteristics are considered as one beam.
  • One or more antenna ports may be included in a beam for transmitting data channels, control channels, sounding signals, and the like.
  • One or more antenna ports forming a beam can also be viewed as a set of antenna ports.
  • a beam refers to a beam sent by a network device.
  • each beam sent by the network device corresponds to a resource. Therefore, the beam corresponding to the resource can be determined according to the index of the resource.
  • TCI-state (used to indicate the downlink beam)
  • Network equipment can generate different beams, pointing in different directions of transmission.
  • downlink data transmission when a network device uses a specific beam to send data to a terminal device, it needs to notify the terminal device of the information of the transmit beam it uses, so that the terminal device can use the receive beam corresponding to the transmit beam to send data to the terminal device.
  • the network device indicates to the terminal device the relevant information of the transmission beam it uses through the TCI field in the DCI.
  • the size of the TCI field is 3 bits, which can specifically represent 8 different field values (codepoints).
  • TCI-state index can uniquely identify a TCI-state.
  • a TCI-state includes several parameters through which information about the transmit beam can be determined.
  • TCI-state is configured by network devices to each terminal device. The structure of TCI-state is as follows:
  • Each TCI-state includes an own index tci-StateId, and two QCL-Infos.
  • Each QCL-Info includes a cell (cell) field and a bwp-Id, which respectively indicate which bandwidth part (BWP) of which cell the TCI-state applies to, that is, different cells or different BWPs of the same cell can be configured differently QCL-Info.
  • the QCL-Info also includes a reference signal (referenceSignal), which is used to indicate which reference signal resource forms a quasi-co-location (QCL) relationship with.
  • referenceSignal reference signal
  • beams are generally replaced by other terms. For example, in data transmission and channel measurement, beams correspond to reference signal resources, and one beam corresponds to one reference signal resource.
  • the QCL relationship means that two reference signal resources (or two antenna ports, and there is a one-to-one correspondence between antenna ports and reference signal resources) have some of the same spatial parameters, and which spatial parameters are the same depends on the type of the QCL-Info, That is, another field qcl-Type of QCL-Info.
  • qcl-Type can have four values ⁇ typeA, typeB, typeC, typeD ⁇ . Taking typeD as an example, typeD indicates that the two reference signal resources have the same spatial reception parameter information, that is, the two beams have the same reception beam. At most one of the two QCL-Infos included in the TCI-state is TypeD.
  • An example is given below to illustrate how a network device based on the R15/R16 protocol indicates to a terminal device the receiving beam information of the data transmission beam through TCI-state, including the configuration, activation and indication of TCI-state.
  • TCI-state configuration The network device configures multiple TCI-states to the terminal device through RRC (Radio resource control, resource control) signaling. Each of these TCI-states includes a QCL-Info of typeD.
  • RRC Radio resource control, resource control
  • Each of these TCI-states includes a QCL-Info of typeD.
  • the network device may also be configured with TCI-states that do not include QCL-info of type D, but these TCI-states are not indications for data transmission beams, so they are not further described here.
  • TCI-state activation After the network device is configured with multiple TCI-states, it needs to activate 8 of the TCI-states through MAC-CE (Medium access control-Control element, medium access control-control element).
  • the 8 TCI-states are in one-to-one correspondence with the 8 values of the TCI field in the DCI. That is, which 8 TCI-states correspond to the 8 values of the TCI field of the DCI is determined through CE signaling of the MAC control element of the medium access control layer.
  • FIG. 3 is a schematic structural diagram of a MAC CE for activating TCI applicable to an embodiment of the present application. As shown in FIG.
  • the fields T 0 to T (N-2)*8+07 correspond to the respective TCI-states whose indices configured in the first step are 0 to (N-2)*8+7, respectively.
  • the size of the field is 1 bit and the value can be 0 or 1.
  • a value of 1 indicates that the TCI-state is activated, and a value of 0 indicates that the TCI-state is not activated.
  • Each MAC CE can theoretically have 8 activation fields with a value of 1, and the rest are all 0s.
  • the TCI-states corresponding to the eight fields whose value is 1 are the eight TCI-states corresponding to the eight values of the TCI field in the DCI.
  • the minimum value of 000 in the TCI field corresponds to the TCI-state with the smallest index activated in the MAC CE, and so on, one-to-one correspondence.
  • the network device indicates a specific TCI-state through the TCI field in the DCI.
  • the value of the TCI field in the DCI sent by the network device to the terminal device is 000, which indicates the TCI-state corresponding to 000 adopted by the data transmission beam.
  • the reference Signal contained in the QCL-Info of type D in the TCI-state is the channel state information-reference signal (CSI-RS) with index #1, indicating the beam used for data transmission
  • CSI-RS channel state information-reference signal
  • the receive beam corresponding to the CSI-RS with index #1 is the same.
  • the receive beam corresponding to the CSI-RS with index #1 can be determined through the beam measurement process, which is known to the terminal device. Therefore, through the specific value of the TCI field, the terminal device can determine the receiving beam corresponding to the data transmission beam, so as to use the corresponding receiving beam to receive data.
  • the transmit beam of uplink transmission is indicated by spatial relation, which is similar in function to TCI-state, and is used to inform the terminal equipment what transmit beam to use for uplink transmission.
  • the target reference signal resource (which may be one of SRS/SSB/CSI-RS) is used to indicate the corresponding uplink beam. If spatial relation #1 is used for uplink transmission, and the spatial relation #1 includes a target reference signal resource #2, it means that the transmission beam used for uplink transmission is the transmission/reception beam of the target reference signal.
  • the target reference signal resource is an uplink resource SRS
  • the target reference signal resources are downlink resources such as SSB/CSI-RS, indicating that the transmit beam used for uplink transmission is the receive beam of the SSB/CSI-RS (the receive beam of the SSB/CSI-RS is known).
  • Network devices can configure multiple spatial relations for end devices. Then activate one of them for the corresponding data transmission through the MAC CE.
  • Uplink transmission includes physical uplink control channel (PUCCH), sounding reference signal (SRS), physical uplink sharing channel (PUSCH), etc., all of which require corresponding spatial relation.
  • the spatial relation of PUCCH is indicated by MAC CE signaling.
  • the spatial relation of SRS is also indicated by MAC CE signaling.
  • a specific SRS is associated with PUSCH transmission, and the spatial relation of the SRS is used for transmission.
  • Panel refers to an antenna panel, which can be an antenna panel of a network device or an antenna panel of a terminal device.
  • This antenna array can generate simulated beams pointing in different directions. That is to say, multiple analog beams can be formed on each antenna panel, and the best analog beam for the antenna panel can be determined by beam measurement.
  • the terminal device can be equipped with multiple antenna panels, which can be distributed in different positions and face different directions. This ensures that no matter which direction the terminal device faces, at least one antenna panel is facing the network device and can be connected with the network device. data transfer.
  • the terminal device can turn on all antenna panels at the same time for transmission.
  • the terminal device can also use only a single antenna panel for transmission at a time, and other unused antenna panels can be turned off. Whether the antenna panel of the terminal device is in an open or closed state generally needs to be notified to the network device, that is, the state information of the antenna panel generally needs to be exchanged between the terminal device and the network device.
  • the antenna panel is the antenna panel of the terminal device.
  • Antenna panels can also be represented by panel index, etc.
  • the antenna panel can also be implicitly represented in other ways.
  • the antenna panel can also use antenna ports (such as CSI-RS ports, SRS ports, demodulation reference signal (DMRS) ports, phase tracking Reference signal (phase tracking reference signal, PTRS) port, CRS port, time-frequency tracking reference signal (tracking reference signal, TRS port, SSB port, etc.) or antenna port group to characterize, can also be represented by resources (such as CSI-RS resources , SRS resource, DMRS resource, PTRS resource, cell reference signal (CRS) resource, time-frequency tracking reference signal (TRS) resource, synchronization signal and broadcast channel resource block (Synchronization signal and PBCH Block, SSB) resources, etc.) or resource groups, it can also be characterized by a certain channel (such as PUCCH, PUSCH, Physical random access
  • the network device is a device deployed in a wireless access network to provide a wireless communication function for a terminal device.
  • the network equipment may include various forms of macro base stations, micro base stations (also called small cells), relay stations, access points, and the like.
  • the names of network devices may vary, such as GSM (Global System for Mobile Communication) or CDMA (Code Division Multiple Access, Code Division Multiple Access) networks
  • BTS Base Transceiver Station, Base Transceiver Station
  • WCDMA Wideband Code Division Multiple Access
  • NB NodeB
  • WCDMA Wideband Code Division Multiple Access
  • eNB or eNodeB Long Term Evolution
  • the network device may also be a wireless controller in a CRAN (Cloud Radio Access Network, cloud radio access network) scenario.
  • the network device may also be a base station device in a future 5G network or a network device in a future evolved PLMN network.
  • the network device can also be a wearable device or a vehicle-mounted device.
  • the network device can also transmit the receiving node (Transmission and reception point, TRP).
  • TRP Transmission and reception point
  • the involved terminal devices may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to a wireless modem.
  • the terminal can be a mobile station (Mobile Station, MS), a subscriber unit (subscriber unit), a cellular phone (cellular phone), a smart phone (smart phone), a wireless data card, a personal digital assistant (Personal Digital Assistant, referred to as: PDA) computer , tablet computer, wireless modem (modem), handheld device (handset), laptop computer (laptop computer), machine type communication (Machine Type Communication, MTC) terminal and so on.
  • PDA Personal Digital Assistant
  • each channel is indicated by a separate beam.
  • the beams of PDCCH and PDSCH are indicated by TCI-state, and the beams of PUCCH and PUSCH are indicated by spatial relation.
  • Each channel has its own corresponding beam.
  • a common beam is defined, which is used for multiple uplink and downlink channels at the same time.
  • Common beam The same beam commonly used by multiple/multiple channels and/or multiple/multiple reference signals.
  • the multiple/multiple channels/reference signals include but are not limited to one or more of the following channels/signals: PDCCH, PDSCH, PUCCH, PUSCH, PRACH, random access message 2, random access message 3, random access Incoming message 4, SSB, CSI-RS, DMRS, Phase Tracking Reference Signal (PTRS), TRS, SRS, etc.
  • Uplink and downlink common beams used for the transmission of one or more channels of uplink and downlink at the same time, such as PDCCH, PDSCH, PUCCH and PUSCH.
  • Uplink common beam used for transmission of multiple or multiple uplink channels at the same time, such as PUCCH and PUSCH.
  • Downlink common beam used for transmission of multiple/multiple downlink channels at the same time, such as PDCCH and PDSCH.
  • Control channel common beam used for the transmission of multiple/multiple control channels at the same time, the control channels include PDCCH, PUCCH, etc.
  • Data channel common beam used for the transmission of multiple/multiple data channels at the same time, the data channels include PDSCH, PUSCH, etc.
  • Common beams are divided into two categories according to the beam coverage angle.
  • the beam with a larger coverage angle is called a wide common beam;
  • Narrow Common Beam Common beams are divided into two categories according to the beam coverage angle. The beam with a smaller coverage angle is called a narrow common beam;
  • the common beam in this application may refer to any one of the above. May also refer to other types of common beams.
  • the network device may configure/activate/indicate a common beam for the terminal device, and the one common beam is an uplink and downlink common beam.
  • the network equipment can configure/activate/indicate multiple common beams for the terminal equipment, the multiple common beams are different types of common beams, such as uplink common beams and downlink common beams, or control channel common beams and data channel common beams.
  • the multiple common beams may also be of the same type, that is, to configure/activate/indicate multiple common beams of the same type for the terminal device.
  • the common beam can be a newly defined structure (different from the existing TCI-state and spatial relation structures).
  • the public beam includes relevant information of uplink and downlink beam indications, including but not limited to one or more of the following: public beam ID, logical cell ID (cell ID), physical cell ID, frequency component ID (bandwidth part, BWP ) to determine the reference signal resources of the uplink and downlink beams, the Quasi colocation (QCL) type, and parameters related to uplink power control (such as path loss measurement reference signal resources, p0, closedLoopIndex, etc.).
  • the common beam can be cell-level, that is, one common beam is used for transmission of multiple channels in a cell.
  • Common beams can be BWP-level for transmission of multiple beams within a BWP.
  • Common beams can also be cross-cell, ie used for transmission of multiple channels of multiple cells.
  • the plurality of cells may be a plurality of cells within a band.
  • the multiple cells may also be multiple cells across frequency bands.
  • the common beam may be of CORESET level, that is, all PDCCHs corresponding to the CORESET, and/or all PDSCHs scheduled by the PDCCH of the CORESET, and/or all PUSCHs scheduled by the PDCCH of the CORESET, and/or, the CORESET
  • the PUCCH/PUSCH of the ACK/NACK transmission of the PDSCH scheduled by the PDCCH all use the same common beam.
  • Common beams are also represented by TCI-state or spatial relation.
  • the downlink common beam is represented by TCI-state.
  • the uplink common beam is represented by spatial relation.
  • the embodiment of the common beam in the protocol may be TCI-state or spatial relation, or other parameters used to indicate uplink/downlink transmission beams.
  • the beams defined in the R15 and R16 protocols are called ordinary beams.
  • Ordinary beams are used for the transmission of a single channel, and are not used for the transmission of multiple channels or multiple reference signals at the same time.
  • the network device needs to individually indicate a common beam for each channel for transmission.
  • FIG. 4 is an example diagram of a method for beam indication applicable to an embodiment of the present application.
  • the network device indicates beams for PDCCH, PDSCH, PUCCH and PUSCH respectively through different signaling. Since different signaling is used for each channel, a large signaling overhead is caused. However, in general, the beams corresponding to multiple different channels are often the same, so there is no need to separately indicate them separately, which wastes signaling overhead.
  • the present application provides a solution to avoid complex and redundant configuration/indication signaling through efficient uplink and downlink beam indication.
  • first beam, the second beam, the third beam, and the fourth beam in the embodiments of the present application all refer to a common beam.
  • FIG. 5 is a schematic flowchart of the method applicable to the wireless communication provided by the embodiment of the present application.
  • Method 500 may include the following steps.
  • the first beam is a common beam.
  • the first beam used for uplink and downlink transmission the first beam used for uplink or downlink transmission, the first beam used for uplink transmission, and the first beam used for downlink transmission.
  • One common beam type is used as an example to illustrate, but other types of common beams are not excluded.
  • the embodiments of the present application are also applicable to the distinction of other types of common beams.
  • the embodiments of the present application can also be used to distinguish activation signaling of common beams, and only need to replace common beams with common beams.
  • the first beam used for uplink and downlink transmission is equal to the uplink and downlink common beam
  • the first beam used for uplink or downlink transmission is equal to the uplink and downlink independent public beam, which is used for uplink transmission
  • the first beam of is equivalent to the uplink common beam
  • the first beam used for downlink transmission is equivalent to the downlink common beam
  • the network device will send first information to the terminal device, where the first information is used to configure parameters of a first beam set, the first beam set includes at least one first beam, the first beam is at least one channel, and /or, a beam shared by at least one reference signal, that is, the first beam is a common beam.
  • the network device may configure some parameters related to the first beam, such as the number and type of the first beam, through RRC signaling.
  • the network device may configure the mode of the first beam of the first beam set by using the first information.
  • the same first beam is used for uplink and downlink transmission
  • the independent first beam is used for uplink and downlink transmission.
  • the use of the same first beam for uplink and downlink transmission means that the same first beam is used for uplink transmission and downlink transmission.
  • one or more uplink channels and one or more downlink channels may use the same first beam.
  • the use of independent first beams for uplink/downlink transmission means that uplink transmission and downlink transmission use different common beams.
  • one or more uplink channels use an uplink first beam
  • one or more downlink channels use a downlink first beam.
  • the above-mentioned one or more uplink channels may be at least one of a PUSCH channel, a PUCCH channel, and a PRACH channel.
  • the one or more downlink channels may be at least one of a PDSCH channel and a PDCCH channel.
  • the network device may configure the mode of the first beam to be at least one of the above modes through RRC signaling, and may also configure a switch for each mode. When the switch is configured to be turned on, it indicates that the mode of this common beam is adopted.
  • the network device may configure the number of the first beam set through the first information.
  • the network device may configure one or more first beam sets according to the first information, each first beam set includes one or more first beam subsets, and each first beam subset includes one or more first beam subsets beam.
  • Each first beam set or first beam subset corresponds to a channel, such as a PDCCH channel, a PDSCH channel, a PUCCH channel, a PUSCH channel, an uplink channel, a downlink channel, a control channel, a data channel, and the like.
  • each beam set or beam subset corresponds to one kind of reference signal, such as CSI-RS, SSB, and SRS.
  • the above CSI-RS may be specifically the CSI-RS in the resource set configured with the repetition parameter; the repetition parameter is configured as the CSI-RS in the resource set of 'on', and the repetition parameter is configured as the CSI-RS in the resource set of "off" CSI-RS; CSI-RS in the resource set with the trs-info parameter configured; CSI-RS in the resource set without the repetition parameter and trs-info parameter configured; CSI-RS for mobility measurement; no beam configured Information CSI-RS; CSI-RS configured with beam information; periodic CSI-RS; semi-persistent (SP) CSI-RS; aperiodic CSI-RS; used for reference signal received power CSI-RS measured by (Reference signal receiving power, RSRP)/Signal to Interference plus Noise Ratio (SINR), used for channel state information reference signal/Channel Quality Indicator (CQI)/precoding CSI-RS measured by Precoding Matrix Indicator (PMI)/Channel Rank In
  • the above-mentioned SRS can specifically be the SRS of the codebook (codebook), the SRS of the non-codebook (nonCodebook), the SRS of the beam management (beam management), the SRS of the antenna switch (antenna switch), the periodic SRS, the semi-persistent SRS SRS, aperiodic SRS, SRS not configured with beam information, SRS configured with beam information, SRS not configured with path loss measurement resources, and SRS configured with path loss measurement resources.
  • the network device may further configure the identifier of the first beam of the first beam set by using the first information.
  • the terminal device after receiving the first information, configures the parameters of the first beam set according to the first information.
  • the parameter may include at least one of a mode, a quantity, and an identifier of the first beam of the first beam set.
  • the network device will send the second information to the terminal device, and after configuring the parameters of the first beam set according to the first information, the terminal device determines the first beam subset by receiving the second information. For example, the network device may determine the information of the first beam subset through signaling (such as MAC CE signaling).
  • the first subset of beams includes one or more first beams. Since there are many different types of common beams, for example, the first beam for uplink and downlink transmission, the first beam for uplink or downlink transmission, the first beam type for uplink transmission and the first beam for downlink transmission For a beam, the terminal device needs to determine, through signaling, which common beam the type of the first beam of the first beam subset indicated by the second information is.
  • the second information indicates the first beam subset, which can also be regarded as activating the first beam subset.
  • the terminal device determines the first beam subset according to the second information.
  • the second information is carried by the first MAC CE signaling, and the type of the first beam in the first beam subset indicated by the second information is determined according to the LCID corresponding to the first MAC CE signaling.
  • the type is at least one of the following: a first beam for uplink and downlink transmission, a first beam for uplink transmission, and a first beam for downlink transmission.
  • the MAC CE signaling corresponding to different types of public beams adopts different LCIDs, and the terminal device can judge the type of the first beam of the first beam subset indicated by the first MAC CE signaling through the LCID.
  • the second information is carried by the first MAC CE signaling, and the type of the first beam of the first beam subset is determined according to the LCID corresponding to the first MAC CE signaling, and the type is at least one of the following One: the first beam used for uplink and downlink transmission, and the first beam used for uplink or downlink transmission.
  • the MAC CE signaling corresponding to different types of public beams adopts different LCIDs, and the terminal device can judge the type of the first beam of the first beam subset indicated by the first MAC CE signaling through the LCID.
  • the terminal device may determine the type of the first beam of the first beam subset according to the first field of the first MAC CE, and the type of the first beam of the first beam subset is at least the following One: a first beam for uplink and downlink transmission, a first beam for uplink transmission, and a first beam for downlink transmission.
  • the terminal device can distinguish the type of the first beam of the first beam subset according to the first field in the first MAC CE signaling, and each field value represents a common beam type, where the first field can be 2 bits.
  • the first field can be 2 bits.
  • the first beam for uplink and downlink transmission, the first beam for uplink transmission, and the first beam for downlink transmission may be distinguished by the first field.
  • 6 is a schematic diagram of the location of the first field of the first MAC CE signaling applicable to the embodiment of the present application, where the first field may be the first 2 bits of the first byte in the first MAC CE signaling or The last 2 bits, or the first 2 bits or the last 2 bits of the second byte, or the first 2 bits or the last 2 bits of the third byte.
  • the 2 bits can also be composed of one bit from any two bytes, for example, the first bit or the last bit of the two bytes.
  • the two bytes can be the first and second words. section, the second and third bytes, the third and fourth bytes, the last two bytes, or other adjacent two bytes, etc. As shown in FIG. 6, the 2 bits are formed using the first bits of the second and third bytes.
  • the common beam included in the first MAC CE signaling may also be the first beam used for uplink transmission and the first beam used for downlink transmission, that is, the first beam used for uplink transmission and the first beam used for downlink transmission at the same time. For a beam, this type can be indicated by a field, such as the first field described above.
  • two parts of bits may be used to respectively indicate the first beam for uplink transmission and the first beam for downlink transmission.
  • the two bits of bits may be used to indicate the beam IDs of the first beams used for uplink and downlink transmission, or may be two bitmaps, which respectively indicate the first beam used for uplink transmission and the first beam used for downlink transmission.
  • the public beam ID when used to indicate the public beam, in the byte where the last public beam ID is located, one bit may be used to indicate whether there is the next public beam ID. If it does not exist, it means that the current public beam ID is the last one of the active public beams.
  • the type of the first beam of the first beam subset indicated by the second information is determined by the mode of the first beam configured by the network device. Specifically, if the mode of the first beam of the first beam set is to use the same first beam for uplink and downlink transmission, the type of the first beam of the first beam subset indicated by the second information is for uplink and downlink transmission. the first beam. If the mode of the first beam of the first beam set uses independent first beams for uplink and downlink transmission, the type of the first beam of the first beam subset indicated by the second information is the first beam used for uplink or downlink transmission. beam. Whether it is the first beam used for uplink transmission or the first beam used for downlink transmission is not yet determined, and can be determined by further combining with other methods.
  • the terminal device may determine the type of the first beam of the first beam subset according to the sent fourth information, where the type of the first beam of the first beam subset is at least one of the following: A first beam for uplink and downlink transmission, a first beam for uplink transmission or downlink transmission, a first beam for uplink transmission, and a first beam for downlink transmission.
  • the fourth information may be capability reporting information of the terminal device, that is, the terminal device determines the type of the first beam of the first beam subset by sending the reporting capability information. For example, if the terminal device reports that the same first beam is used for uplink and downlink transmission or reports that the uplink beam and the downlink beam are reciprocal, optionally, the type of the first beam of the first beam subset indicated by the second information is the first beam used for uplink and downlink transmission; if the terminal equipment reports that it does not support the use of the same first beam for uplink and downlink transmission, or reports that there is no reciprocity between the uplink beam and the downlink beam, optionally, the second information
  • the type of the first beam of the indicated first beam subset is the first beam used for uplink or downlink transmission, that is, the activation signaling activates the first beam for uplink transmission or the first beam for downlink transmission . Whether it is the first beam used for uplink transmission or the first beam used for downlink transmission is not yet determined, and can be determined by further combining with other
  • the terminal equipment may directly determine the type of the first beam of the first beam subset without performing capability reporting, and the terminal equipment may also directly determine the first beam subset without reciprocity between the uplink beam and the downlink beam.
  • the type of the first beam of the set is not limited in this application.
  • the terminal device may determine the type of the first beam of the first beam subset according to the index of the first beam of the first beam subset in the second information, where the type is at least one of the following One: a first beam for uplink and downlink transmission, a first beam for uplink transmission or downlink transmission, a first beam for uplink transmission, and a first beam for downlink transmission.
  • the terminal device may determine the type of the first beam of the first beam subset through a bitmap in the second information, where the type is at least one of the following: A first beam, a first beam for uplink or downlink transmission, a first beam for uplink transmission, and a first beam for downlink transmission.
  • the method further determines the type of the first beam of the first beam subset.
  • the first MAC CE is determined by reporting the specific uplink/downlink beam reciprocity by the terminal, or configuring the first beam mode of the first beam set according to the network device to use independent first beams for uplink and downlink. What is activated is the first beam used for uplink or downlink transmission. At this time, it can be further combined with the LCID of the first MAC CE to determine whether it is the first beam used for uplink transmission or the first beam used for downlink transmission.
  • one MAC CE can only activate one of the first beam for uplink transmission and the first beam for downlink transmission.
  • the second field in the MAC CE is used to distinguish whether the MAC CE activates the first beam for uplink transmission or the first beam for downlink transmission, wherein the second field may be 1 bit.
  • the second field may be the first bit or the last bit of the first byte in the MAC CE, or the first bit or the last bit of the second byte, or the first bit or the last bit of the third byte. One bit or the last 1 bit.
  • FIG. 7 is a schematic diagram of the location of the second field of the first MAC CE signaling applicable to the embodiment of the present application. As shown in FIG. 7 , the first bit (shaded part) of the second byte is used to distinguish the Whether the MAC CE activates the first beam for uplink transmission or the first beam for downlink transmission.
  • the above MAC CE can also be used to activate the first beam for uplink and downlink transmission. That is to say, when the LCID corresponding to the MAC CE represents the first beam used for uplink and downlink transmission, or when the mode of the first beam is that the same first beam is used for uplink and downlink transmission, the terminal device can determine whether the MAC CE has the same first beam.
  • the active common beam is the first beam used for uplink and downlink transmission.
  • the terminal device can ignore this 1 bit, or this 1 bit can be used for other indication information, the specific indication What information is not limited in this application.
  • the terminal device may determine the type of the first beam of the first beam subset according to the third field and the fourth field of the second information, and the type of the first beam of the first beam subset is at least one of the following: a first beam used for uplink transmission, and a first beam used for downlink transmission.
  • the terminal device can indicate through the third field in the MAC CE signaling whether one or both of the first beam used for uplink transmission and the first beam used for downlink transmission are activated, wherein the third field Can be 1 bit.
  • the first MAC CE signaling includes two parts of bits, which are a first bit and a second bit. Both the first bit and the second bit include multiple bytes, and each byte includes 8 bits. The first bit is used to indicate the first beam used for uplink transmission, and the second bit is used to indicate the first beam used for downlink transmission; or, the first bit is used to indicate the first beam used for downlink transmission, and the second bit is used to indicate the first beam used for downlink transmission. Used to indicate the first beam used for uplink transmission.
  • the first bit is always present, and the presence or absence of the second bit can be indicated by the third field.
  • the third field can be the first bit or the last bit of the first byte in the MAC CE signaling, or the first bit or the last bit of the second byte, or the third byte.
  • FIG. 8 is a schematic diagram of the location of the third field of the first MAC CE signaling applicable to the embodiment of the present application. As shown in FIG. 8, the third field is the first bit (shaded part) of the first byte in the first bit.
  • the meanings of the first bit and the second bit may be: the first bit indicates the first beam used for uplink transmission, and the second bit indicates the first beam used for downlink transmission; or, the first bit indicates the first beam used for downlink transmission.
  • One or two of the first beams for downlink transmission For example, a value of 0 in the third field indicates that the second bit does not exist, and a value of 1 in the third field indicates that the second bit exists.
  • the fourth field may be used to indicate the type of the first beam corresponding to the first bit, or used to indicate the type of the first beam corresponding to the second bit.
  • the fourth field is used to indicate the first beam used for uplink transmission corresponding to the first bit, then the second bit corresponds to the first beam used for downlink transmission; if the fourth field is used to indicate the first beam corresponding to the first bit is the first beam used for downlink transmission, then the second bit corresponds to the first beam used for uplink transmission.
  • the fourth field may be 1 bit. In other words, it is determined through the fourth field whether the indicated first beam is used for uplink transmission or the first beam used for downlink transmission.
  • the fourth field can be the first bit or the last bit of the first byte in the MAC CE signaling, or the first bit or the last bit of the second byte, or the third byte.
  • the first bit and the second bit may include the beam ID of the first beam, or may be a bitmap, and each bitmap is used to indicate whether the activated first beam is used for uplink transmission or is used for downlink transmission.
  • the transmitted first beam for example, the bit value of 1 indicates that the first beam of the type of the first beam corresponding to the bit is activated.
  • the above MAC CE signaling can also be used to activate the first beam for uplink and downlink transmission. That is to say, when the MAC CE signaling confirms that the activated first beam is used for uplink and downlink transmission, or when the mode of the first beam is to use the same first beam for uplink and downlink transmission, the terminal device can determine The first beam activated in the MAC CE signaling is the first beam used for uplink and downlink transmission.
  • the terminal device When used for activating the first beam for uplink and downlink transmission, the above third and fourth fields have no specific meaning (because there is no need to distinguish the first beam for uplink transmission and the first beam for downlink transmission, There is no second bit), the terminal device may ignore the third field and the fourth field, or the third field and the fourth field may be used for other indication information, and what information is specifically indicated is not limited in this application.
  • the above-mentioned various methods for determining the type of the first beam of the first beam subset can be freely combined, for example, firstly, use an independent first beam for uplink and downlink transmission through the mode of the first beam of the first beam set , it can be determined that the type of the first beam is the first beam used for uplink transmission or the first beam used for downlink transmission; further, by combining the LCID or MAC CE signaling of the first MAC CE signaling carrying the second information
  • the field in determines whether the first beam of the first beam subset is the first beam used for uplink transmission or the first beam used for downlink transmission.
  • both TRPs must indicate a common beam.
  • the common beam of two TRPs also requires MAC CE signaling to indicate. That is, a set of first beams for uplink transmission is activated for each of the two TRPs, or a set of first beams for downlink transmission are determined for each of the two TRPs.
  • two TRPs each activate a set of first beams for uplink transmission, or when two TRPs each activate a set of first beams for downlink transmission, the above-mentioned activation for uplink and downlink transmission can be used.
  • the beam method including the method of judging the first beam type and MAC CE signaling, only needs to replace the first beam used for uplink/downlink transmission in the above method/MAC CE signaling with the first TRP/second
  • a common beam of TRPs is sufficient. For example, through the LCID or the field in the MAC CE, determine whether the type of the first beam indicated in the MAC CE is the public beam of the first TRP or the public beam of the second TRP, or determine whether the type of the first beam indicated in the MAC CE is the public beam of the first TRP or the public beam of the second TRP.
  • the type of beam is the common beam of one TRP or the common beam of two TRPs.
  • the MAC CE can include at most 4 groups of common beams.
  • the 4 groups of common beams correspond to 4 parts of bits, and each part of the bits indicates an ID of a group of first beams, or each part of the bits is a bitmap for activating a group of first beams.
  • a field may be used to indicate whether the first beam of the second TRP exists. Alternatively, a field is used to indicate whether there is a first beam for uplink transmission or a first beam for downlink transmission.
  • a field is used to indicate whether there is a first beam for uplink transmission or a first beam for downlink transmission of a certain (first or second) TRP.
  • the terminal device may determine the type of the first beam of a group of the first beams according to the mode of the first beam, where the type includes at least one of the following: a first beam used for uplink and downlink transmission A beam, a first beam for uplink or downlink transmission, a first beam for uplink transmission, and a first beam for uplink transmission.
  • the network device sends third information, where the third information is used to indicate information of one or more first beams.
  • the third information may be downlink control information DCI used to indicate the first beam.
  • the third information is carried in the DCI, and the DCI is scrambled by a special wireless network temporary identification RNTI.
  • the terminal device receives a DCI scrambled by the special RNTI, it can determine that the DCI is used to indicate the first beam.
  • the third information may be the DCI indicating the first beam scrambled by the common RNTI.
  • the terminal device determines the first beam according to the third information.
  • the terminal device may directly receive the third information, without determining the first beam through the indication of the second information.
  • the third information may be DCI used to indicate the first beam.
  • the format of the downlink control information may be format 0-3, or format 1-3, or format 2-6, or format 4.
  • formats 0-3 indicate the first beam for uplink transmission
  • formats 1-3 indicate the first beam for downlink transmission
  • Formats 2-6 or Format 4 indicate the first beam used for uplink and downlink transmission.
  • the field used to indicate the format of the downlink control information of the first beam includes but is not limited to one or more of the following:
  • a field used to distinguish the first beam type such as a field used to distinguish the first beam used for uplink transmission and the first beam used for downlink transmission
  • this field can multiplex the field of the identifier of the DCI format; or, used to refer to the first beam
  • the first DCI function includes at least one of the following: used to indicate the first beam, used to indicate scheduling data, used to indicate the first beam and scheduling data; or, used to indicate the first beam identifier field, which can include a common beam field to indicate that uplink and downlink use the same first beam, the first beam used for uplink transmission, and the first beam used for downlink transmission; it can also include two
  • the common beam field indicates the first beam used for uplink transmission and the first beam used for downlink transmission.
  • the above-mentioned multiple common beam fields may also be two parts of one field.
  • the number of the first beam indication fields included is related to whether the mode/terminal capability reporting of the first beam of the first beam set of the RRC configuration used satisfies the uplink/downlink beam reciprocity.
  • RRC When RRC is used to configure the first beam of the first beam set using the same first beam for uplink and downlink transmission, there is only one first beam indication field in the DCI; when RRC is used to configure the first beam of the first beam set When the mode uses independent first beams for uplink and downlink transmission, there are two first beam indication fields in the DCI; or, when the terminal capability report satisfies the uplink/downlink beam reciprocity, there is only one first beam in the DCI. Beam indication field; when the terminal capability report does not satisfy the uplink/downlink beam reciprocity, there are two first beam indication fields in the DCI;
  • an activation or deactivation field where the activation or deactivation field is used to indicate that the first DCI is used to activate the first beam or deactivate the first beam;
  • the carrier field is used to indicate at least one of the following: the carrier corresponding to the first beam, the carrier group corresponding to the first beam, the carrier group corresponding to the first beam; the function of this field
  • the Carrier field is used to indicate the scheduled carrier; when there is no scheduling data, the Carrier field is used to indicate which carrier's common beam is indicated by the DCI.
  • Whether the DCI has scheduling data can be judged by the values of some fields in the DCI, for example, the value of the frequency domain resource allocation field is all 0 or all 1;
  • the frequency band field is used to indicate the frequency band corresponding to the first beam
  • the BWP field of the bandwidth part indicates which BWP the first beam indicated by the DCI is used for, that is, the first beam of which BWP is indicated.
  • the function of this field can be various: when the DCI schedules data, the BWP field is used to indicate the scheduled carrier; when there is no scheduling data, the BWP field is used to indicate which BWP first beam the DCI indicates . Whether the DCI has scheduling data can be judged by the values of some fields in the DCI, for example, the value of the frequency domain resource allocation field is all 0 or all 1;
  • PUCCH resource indication field is used to indicate the PUCCH resource used for feeding back the ACK/NACK information of the first DCI
  • the HARQ feedback time indication field is used to indicate the sending time interval between feeding back the ACK/NACK information of the first DCI and the first DCI; or, the HARQ feedback time indication field is used to indicate the feedback of the first DCI
  • the transmission time interval between the ACK/NACK information of one DCI and the PDSCH scheduled by the first DCI may be determined according to whether the DCI schedules the PDSCH. Specifically, when the DCI does not schedule data, it represents the first type; when the DCI schedules data, it represents the second type.
  • the first DCI indicates a first beam, indicating that the first beam is activated or deactivated.
  • the specific activation or deactivation can be determined by any one of the following methods.
  • whether the DCI is used to activate or deactivate the first beam is determined through a field in the DCI.
  • the field can be the above-mentioned activation or deactivation field, or other fields can be multiplexed, including any one or more of the following: frequency domain resource allocation field, time domain resource allocation field, modulation and coding strategy MCS field, new data information NDI field, redundancy RV field, hybrid automatic repeat request HARQ process field, data adapter interface DAI field, physical uplink control channel PUCCH resource field, HARQ feedback time indication field, antenna port, demodulation reference signal DMRS sequence initialization field.
  • the terminal device may compare the DCI with the latest DCI received before receiving the DCI through the DCI, that is, the DCI adjacent to the DCI in time and before receiving the DCI, when When the first beams indicated by the two DCIs are the same and the values of the NDI fields of the two DCIs are inverted, the above-mentioned DCIs are used to instruct the deactivation of the first beams; when the first beams indicated by the two DCIs are different, the above-mentioned DCIs are used to deactivate the first beams. to instruct to activate the first beam.
  • the above DCI when the first beams indicated by the two DCIs are the same, the above DCI is used to instruct the deactivation of the first beam; when the first beams indicated by the two DCIs are different, the above DCI is used to instruct the activation of the first beam beam.
  • the first DCI indicates a first beam, or it may only indicate that the first beam is activated without deactivating through DCI alignment.
  • the deactivation can be aligned by a timer.
  • a timer is started once activated, and the first beam is deactivated after the duration of the timer reaches a first duration.
  • the first beam takes effect within a first time period starting from the first moment, where the first moment includes: the time slot or symbol sent by the DCI, the time slot or symbol sent by the HARQ feedback message corresponding to the DCI The time slot or symbol, and the sum of the time slot or symbol sent by the HARQ feedback message corresponding to the DCI and K milliseconds, where K may be a value specified by the protocol, for example, a value related to the subcarrier spacing. K may also be a value indicated in the DCI, and K may also be an integer greater than or equal to 1, which is not limited in this application.
  • the first duration may be indicated by DCI, may be reported by terminal equipment, configured by RRC signaling, or may be pre-configured for the system, which is not limited in this application.
  • the network device After receiving the DCI indicating the first beam, the network device needs to feed back ACK/NACK information to the network device.
  • the terminal device adopts different ACK/NACK feedback mechanisms. For example, when the DCI includes scheduling information of data transmission, the terminal device sends ACK/NACK information of the data to the network device. Specifically, the ACK/NACK is sent to the network device in time slot n+k. Where n is the time slot for PDSCH transmission, and k is the time interval for PDSCH and HARQ feedback indicated in the DCI.
  • the terminal device sends the ACK/NACK information of the DCI to the network device.
  • the ACK/NACK is sent to the network device at time slot n+k.
  • n is the time slot for DCI transmission
  • k is the time interval between DCI and HARQ feedback indicated in the DCI.
  • whether the DCI includes scheduling information for data transmission may be determined by a first condition, and the first condition may include a combination of one or more of the following: the value of the frequency domain resource allocation field of the DCI is 0, and the time domain of the DCI The value of the resource allocation field is 0.
  • the PUCCH on which the ACK is fed back may be the PUCCH indicated in the DCI, or may be a pre-configured PUCCH, which is not limited in this application.
  • DCI indicates the first beam and there is no scheduled data
  • DCI indicates the first beam and data is scheduled, ACK does not need to be fed back specifically for DCI, because PDSCH itself needs to feed back ACK/NACK.
  • a field may be used to indicate whether data is scheduled, or a field may be used to indicate whether the DCI indicates the first beam.
  • the combination of the one or more items may be a logical AND operation on the multiple items, a logical OR operation, or a mixed operation including a logical AND and a logical OR.
  • the third information may be the DCI for indicating the first beam scrambling the RNTI for indicating the first beam.
  • the value of RNTI can be a value in the range of 0001-FFF2 (hexadecimal), or a fixed value, such as 0001, FFF2, FFF3 or FFFD.
  • RNTI can be CB-RNTI or BI-RNTI.
  • the third information may be the existing RNTI scrambled to indicate the DCI of the first beam.
  • the same DCI can be used to schedule data transmission, and can also be used to indicate the first beam.
  • the terminal device needs to determine whether the DCI schedules data transmission or indicates the first beam. Specifically, when the second condition is satisfied, it is determined that the DCI indicates the first beam, and when the third condition is satisfied, it is determined that the DCI indicates the scheduling data.
  • the second condition includes but is not limited to a combination of one or more of the following: the first beam is configured to support the use of the first beam, for example, the switch of the first beam is configured to be on; the PDSCH is configured to support the use of the first beam; the PDSCH is the first beam The target channel of the beam; there is a field in the DCI that specifically indicates whether the first beam indicated by the TCI field is a normal beam/PDSCH beam/PDSCH TCI-state, and the value of this field indicates that the TCI field indicates the first beam.
  • the third condition can be the opposite of the second condition, that is, the third condition is naturally satisfied if the second condition is not satisfied.
  • the second condition may also include, but is not limited to, a combination of one or more of the following: the first beam is not configured to support the use of the first beam, for example, the switch of the first beam is configured to be off; the PDSCH is not configured to support the use of the first beam, or is configured to not support the use of the first beam PDSCH uses the first beam; PDSCH is not the target channel of the first beam; there is a field in DCI that specifically indicates whether the first beam indicated by the TCI field is a normal beam/PDSCH beam/PDSCH TCI-state, and the value of this field indicates the TCI field Indicated is normal beam/PDSCH beam//PDSCH TCI-state.
  • the combination of the one or more items may be a logical AND operation on the multiple items, a logical OR operation, or a mixed operation including a logical AND and a logical OR.
  • DCI can also have three functions: scheduling data transmission and indicating the first beam, scheduling data transmission and indicating the first beam.
  • One of the three functions can be indicated by a field (eg, 2 bits).
  • the third information is the DCI used to indicate the RNTI scrambling of the first beam and used to indicate the first beam, or the existing RNTI scrambled DCI used to indicate the first beam, it can be limited that only downlink scheduling can be used.
  • the meanings of each field of the DCI are as follows:
  • DCI format identification field indicates whether the DCI indicates the first beam for uplink transmission or the first beam for downlink transmission; Transport field: indicates which carrier the first beam indicated by DCI is used for, that is, which carrier is indicated For the first beam, this field can be just one carrier or one carrier group. For example, this field contains an identifier of a carrier, which is used to indicate the carrier group in which the carrier belongs.
  • the function of this field can be various: when the DCI schedules data, the transport field is used to indicate the scheduled carrier; when there is no scheduling data, the transport field is used to indicate which carrier's common beam the DCI indicates. Whether the DCI has scheduling data can be judged by the values of some fields in the DCI.
  • the value of the frequency domain resource allocation field is all 0 or all 1; the BWP field: indicates which BWP the first beam indicated by the DCI is used for, that is, the indicated Which BWP is the first beam of.
  • the function of this field can be various: when the DCI schedules data, the BWP field is used to indicate the scheduled carrier; when there is no scheduling data, the BWP field is used to indicate which BWP first beam the DCI indicates .
  • Whether the DCI has scheduling data can be judged by the values of some fields in the DCI, for example, the value of the frequency domain resource allocation field is all 0 or all 1; the TCI field: used to indicate the first beam.
  • a TCI field may be included to indicate one of the first beam used for uplink or downlink transmission, the first beam used for uplink transmission and the first beam used for downlink transmission.
  • Two TCI fields may also be included, indicating the first beam used for uplink and downlink transmission.
  • Multiple TCI fields can also be two parts of one TCI field.
  • the number of TCI fields included is related to whether the adopted /RRC configuration common beam mode/terminal capability report satisfies the beam reciprocity of the uplink beam and the downlink beam. When /RRC is used to configure the common beam mode as the first beam for uplink and downlink, there is only one TCI field in the DCI.
  • the terminal capability report When /RRC is used to configure the common beam mode as the first beam of uplink or downlink, there are two first beam indication fields in the DCI.
  • the terminal capability report satisfies the reciprocity of the uplink and downlink beams, there is only one TCI field in the DCI.
  • the terminal capability report does not satisfy the reciprocity of the uplink and downlink beams, there are two TCI fields in the DCI. It may be specified that when it is determined through the first information that the first beam is to be adopted, the TCI field value is used to indicate the first beam. Otherwise, the TCI field value is used to indicate the normal beam, ie the TCI-state of a single channel (eg PDSCH).
  • the value of the TCI field is used to indicate the first beam.
  • the value of the TCI field is used to indicate the normal beam; the activation/deactivation field: used to indicate whether the DCI is suitable for activating the first beam or deactivating the first beam. If it is activated, the public first beam indicated in the DCI will be activated, and if it is deactivated, the first beam indicated in the DCI will be deactivated.
  • PUCCH resource indication field used to indicate the PUCCH resource used to feed back the Ack information or NAck information of the DCI
  • PDCCH-to-HARQ feedback field used to indicate the difference between the time for feeding back the Ack information or NAck information of the DCI and the PDCCH transmission time time interval between.
  • the network device and the terminal device need to switch to the first beam for transmission and reception at the same time at a predetermined time, so as to avoid transmission failure caused by asynchrony of switching.
  • the above-mentioned validating means that one or more channels/reference signals start to use the indicated first beam for transmission.
  • the agreed time may be a period of time after the above-mentioned feedback Ack time, such as N symbols/slots.
  • the agreed time may also be the time when the DCI is received (eg, the first or last symbol sent by the DCI) plus a period of time, such as N symbols/slots.
  • the following method may be used to determine whether the data should use the first beam indicated by the DCI or the first beam indicated last time.
  • Method 1 Use the first beam indicated by the DCI. Even if the data transmission time is before the effective time of the first beam, the first beam is used.
  • Method 2 The first beam indicated last time is used; if the first beam has not been indicated before, or the first beam has not been indicated within a period of time, the first beam indicated by the current DCI is used.
  • Method 3 Judging according to the data transmission time and the effective time of the first beam. If the data transmission is before the effective time of the first beam, the first beam indicated last time is used; otherwise, the beam indicated this time is used.
  • the first beam used for downlink transmission can only be indicated by the DCI scheduled for downlink (such as one or more of DCI 1-0, DCI1-1, and DCI1-2); the first beam used for uplink transmission
  • the beam can only be indicated by the uplink scheduled DCI (such as one or more of DCI 0-0, DCI0-1, and DCI0-2).
  • a beam indication field (not in the current protocol) is introduced into the DCI scheduled for uplink to indicate the first beam.
  • uplink data can also be scheduled, and the uplink data is transmitted by using the first beam. If the network device receives the data correctly, it will send confirmation information to the terminal device.
  • the confirmation information can be a DCI, and the HARQ ID included is the same as the HARQ ID in the above-mentioned uplink scheduling DCI, and the NDI field is set to toggled.
  • the terminal device receives K symbols/timeslots after the determination information, the first beam used for uplink transmission takes effect.
  • the value of K can be an integer greater than or equal to 1.
  • both the first beam used for uplink transmission and the first beam used for downlink transmission are indicated by downlink scheduling DCI (eg, one or more of DCI 1-0, DCI1-1, and DCI1-2).
  • both the first beam used for uplink transmission and the first beam used for downlink transmission are indicated by uplink scheduling DCI (such as one or more of DCI 0-0, DCI 0-1, and DCI 0-2). .
  • the beams of each channel/reference signal can be unified, and the uplink and downlink beams can be indicated efficiently, avoiding complex redundancy. configuration/indication directives, saving extra overhead.
  • FIG. 9 is another schematic flowchart of a method for wireless communication provided by an embodiment of the present application.
  • Method 900 may include the following steps.
  • a second beam for uplink and downlink transmission a second beam for uplink or downlink transmission
  • a second beam for uplink transmission a second beam for uplink transmission
  • a second beam for downlink transmission a second beam for downlink transmission.
  • One common beam type is used as an example to illustrate, but other types of common beams are not excluded.
  • the embodiments of the present application are also applicable to the distinction of other types of common beams.
  • the embodiments of the present application can also be used to distinguish activation signaling of common beams, and only need to replace common beams with common beams.
  • the second beam used for uplink and downlink transmission is equivalent to the uplink and downlink common beam
  • the second beam used for uplink or downlink transmission is equivalent to the uplink and downlink independent public beam, which is used for uplink transmission
  • the second beam of is equivalent to the uplink common beam
  • the second beam used for downlink transmission is equivalent to the downlink common beam
  • the second beam is the common beam
  • the network device will send fifth information to the terminal device, where the fifth information is used to configure parameters of the second beam set, where the second beam set includes at least one second beam, and the second beam is at least one channel, and/ Or, the beam shared by at least one reference signal, that is, the second beam is a common beam.
  • the network device may configure some parameters related to the second beam, such as the number and type of the second beam, through RRC signaling.
  • the network device may configure the mode of the second beam of the second beam set by using the fifth information.
  • the same second beam is used for uplink and downlink transmission
  • an independent second beam is used for uplink and downlink transmission.
  • the use of the same second beam for uplink and downlink transmission means that the same second beam is used for uplink transmission and downlink transmission.
  • one or more uplink channels and one or more downlink channels may use the same second beam.
  • the use of an independent second beam for uplink/downlink transmission means that different common beams are used for uplink transmission and downlink transmission.
  • one or more uplink channels use an uplink second beam
  • one or more downlink channels use a downlink second beam.
  • the above-mentioned one or more uplink channels may be at least one of a PUSCH channel, a PUCCH channel, and a PRACH channel.
  • the one or more downlink channels may be at least one of a PDSCH channel and a PDCCH channel.
  • the network device may configure the mode of the second beam to at least one of the above modes through RRC signaling, and may also configure a switch for each mode, and when the switch is configured to be turned on, it indicates that the mode of this common beam is used.
  • the network device may configure the number of the second beam set through the first information.
  • the network device may configure one or more second beam sets according to the first information, each second beam set may include one or more second beam subsets, and each second beam subset may include one or more second beam subsets Two beams.
  • Each second beam set or second beam subset corresponds to a channel, such as a PDCCH channel, a PDSCH channel, a PUCCH channel, a PUSCH channel, an uplink channel, a downlink channel, a control channel, a data channel, and the like.
  • each beam group or beam subset corresponds to one kind of reference signal, such as CSI-RS, SSB, and SRS.
  • the above CSI-RS may be specifically the CSI-RS in the resource set configured with the repetition parameter; the repetition parameter is configured as the CSI-RS in the resource set of 'on', and the repetition parameter is configured as the CSI-RS in the resource set of "off" CSI-RS; CSI-RS in the resource set with the trs-info parameter configured; CSI-RS in the resource set without the repetition parameter and trs-info parameter configured; CSI-RS for mobility measurement; no beam configured Information CSI-RS; CSI-RS configured with beam information; periodic CSI-RS; semi-persistent (SP) CSI-RS; aperiodic CSI-RS; used for reference signal received power CSI-RS measured by (Reference signal receiving power, RSRP)/Signal to Interference plus Noise Ratio (SINR), used for channel state information reference signal/Channel Quality Indicator (CQI)/precoding CSI-RS measured by Precoding Matrix Indicator (PMI)/Channel Rank In
  • the above-mentioned SRS can specifically be the SRS of the codebook (codebook), the SRS of the non-codebook (nonCodebook), the SRS of the beam management (beam management), the SRS of the antenna switch (antenna switch), the periodic SRS, the semi-persistent SRS SRS, aperiodic SRS, SRS not configured with beam information, SRS configured with beam information, SRS not configured with path loss measurement resources, and SRS configured with path loss measurement resources.
  • the network device may further configure the identifier of the second beam by using the first information.
  • the terminal device after receiving the first information, configures the parameters of the second beam according to the first information.
  • the parameter may include at least one of a mode, a quantity, and an identifier of the second beam set.
  • the network device will send sixth information to the terminal device, and after configuring the parameters of the second beam set according to the fifth information, the terminal device determines one or more second beams by receiving the sixth information.
  • the network device may determine information of a second beam through signaling (eg, MAC CE signaling). Since there are many different types of common beams, for example, the second beam for uplink and downlink transmission, the second beam for uplink or downlink transmission, the second beam type for uplink transmission and the first beam for downlink transmission With two beams, the terminal device needs to determine, through signaling, which common beam the type of the second beam indicated by the sixth information is.
  • the second information indicates a second beam, which can also be considered as activating a first beam.
  • the terminal device determines one or more second beams according to the sixth information.
  • the second information is carried by the second MAC CE signaling, and a type of the second beam indicated by the sixth information is determined according to the LCID corresponding to the second MAC CE signaling, and the type is at least one of the following Types: a second beam for uplink and downlink transmission, a second beam for uplink transmission, and a second beam for downlink transmission.
  • the MAC CE signaling corresponding to different types of public beams adopts different LCIDs, and the terminal device can judge the type of the second beam indicated by the second MAC CE signaling through the LCID.
  • determining one or more second beams according to the sixth information can also be understood as activating one or more second beams.
  • the second information is carried by the second MAC CE signaling, and the type of the second beam is determined according to the LCID corresponding to the second MAC CE signaling, and the type is at least one of the following: used for uplink and a second beam for downlink transmission, a second beam for uplink or downlink transmission.
  • the MAC CE signaling corresponding to different types of public beams adopts different LCIDs, and the terminal device can judge the type of the second beam indicated by the second MAC CE signaling through the LCID.
  • the terminal device may determine the type of the second beam according to the first field of the second MAC CE, where the type of the second beam is at least one of the following: a second beam for uplink and downlink transmission beam, a second beam for uplink transmission, and a second beam for downlink transmission.
  • the terminal device can distinguish the types of various public beams according to the first field in the second MAC CE signaling, wherein the method for distinguishing the various public beam types by the first field in the second MAC CE signaling can be Referring to the method for distinguishing various common beam types in the first field in the first MAC CE signaling in step S504, for the sake of indirection, this application will not repeat them here.
  • the type of the second beam indicated by the sixth information is determined by the mode of the second beam configured by the network device. Specifically, if the mode of the second beam is to use the same second beam for uplink and downlink transmission, the beam type indicated by the sixth information is the second beam used for uplink and downlink transmission. If the mode of the second beam is to use an independent second beam for uplink and downlink transmission, the beam type indicated by the sixth information is the second beam used for uplink or downlink transmission. Whether it is the second beam used for uplink transmission or the second beam used for downlink transmission is not yet determined, and can be further determined in combination with other methods.
  • the terminal device may determine the type of the second beam according to the sent seventh information, where the type of the second beam is at least one of the following: a second beam used for uplink and downlink transmission, used for A second beam for uplink transmission or downlink transmission, a second beam for uplink transmission, and a second beam for downlink transmission.
  • the seventh information is the terminal capability information, and the terminal device can determine the second beam type according to the method of sending the seventh information.
  • the terminal device can determine the first beam type by sending the fourth information. For the sake of brevity , and will not be repeated here.
  • the terminal device may determine the type of the second beam by using an index of a second beam in the second information, where the type is at least one of the following: a second beam used for uplink and downlink transmission , a second beam for uplink transmission or downlink transmission, a second beam for uplink transmission, and a second beam for downlink transmission.
  • the terminal device may determine the type of the second beam through a bitmap in the second information, where the type is at least one of the following: a second beam used for uplink and downlink transmission, used for A second beam for uplink transmission or downlink transmission, a second beam for uplink transmission, and a second beam for downlink transmission.
  • the second beam indicated by the sixth message is one of the second beam used for uplink transmission or the second beam used for downlink transmission, it is necessary to further determine which one is in particular.
  • One or more of the following methods may be employed.
  • the terminal reports the specific uplink and downlink beam reciprocity, or configures the second beam mode according to the network device to use an independent second beam for uplink and downlink, and determines whether the second MAC CE is activated for uplink or downlink.
  • the second beam for transmission at this time, it is further determined whether it is the second beam used for uplink transmission or the second beam used for downlink transmission in combination with the LCID of the above-mentioned second MAC CE.
  • one MAC CE can only activate one of the second beam for uplink transmission and the second beam for downlink transmission.
  • the second field in the MAC CE is used to distinguish whether the MAC CE activates the second beam for uplink transmission or the second beam for downlink transmission, where the second field may be 1 bit.
  • the second field may be the first bit or the last bit of the first byte in the MAC CE, or the first bit or the last bit of the second byte, or the first bit or the last bit of the third byte.
  • the 1 bit may be the first bit or the last 1 bit in the byte containing the common beam ID.
  • 10 is a schematic diagram of the location of the second field of the second MAC CE signaling applicable to the embodiment of the present application. As shown in Figure 10, the first bit (shaded part) of the second byte is used to distinguish whether the MAC CE activates the second beam for uplink transmission or the second beam for downlink transmission.
  • the above MAC CE can also be used to activate the second beam for uplink and downlink transmission. That is to say, when the LCID corresponding to the MAC CE indicates the second beam used for uplink and downlink transmission, or when the mode of the second beam is that the same second beam is used for uplink and downlink transmission, the terminal device can determine whether the MAC CE is in the second beam.
  • the active common beam is the second beam used for uplink and downlink transmission.
  • the terminal device can ignore this 1 bit, or this 1 bit can be used for other indication information, the specific indication What information is not limited in this application.
  • the terminal device may determine the type of the second beam according to the third field and the fourth field of the sixth information, where the type of the second beam is at least one of the following: the first beam used for uplink transmission Two beams, and a second beam for downlink transmission.
  • the terminal device may indicate through the third field in the second MAC CE signaling whether one or both of the second beam used for uplink transmission and the second beam used for downlink transmission are activated, wherein the first beam
  • the three fields may be 1 bit.
  • the second MAC CE signaling includes two parts of bits, which are a first bit and a second bit. Both the first bit and the second bit include multiple bytes, and each byte includes 8 bits. The first bit is used to indicate the second beam used for uplink transmission, and the second bit is used to indicate the second beam used for downlink transmission; or, the first bit is used to indicate the second beam used for downlink transmission, and the second bit is used to indicate the second beam used for downlink transmission. Used to indicate the second beam used for uplink transmission.
  • the first bit is always present, and the presence or absence of the second bit can be indicated by the third field.
  • the third field can be the first bit or the last bit of the first byte in the MAC CE signaling, or the first bit or the last bit of the second byte, or the third byte.
  • FIG. 11 is a schematic diagram of the location of the third field of the second MAC CE signaling applicable to the embodiment of the present application. As shown in 11, one MAC CE signaling may include two common beam IDs.
  • the meanings of the first bit and the second bit may be: the first bit indicates the second beam used for uplink transmission, and the second bit indicates the second beam used for downlink transmission; or, the first bit indicates the second beam used for downlink transmission.
  • the second beam, the second bit indicates the second beam used for uplink transmission, and whether the second bit exists can be determined through the third field, so as to determine whether the second beam used for uplink transmission and the second beam used for uplink transmission are activated by MAC CE signaling.
  • the fourth field may be used to indicate the type of the first beam corresponding to the first bit, or used to indicate the type of the first beam corresponding to the second bit. For example, the fourth field is used to indicate that the first bit corresponds to the uplink common beam, then the second bit corresponds to the downlink common beam; the fourth field is used to indicate that the first bit corresponds to the downlink common beam, then the second bit corresponds to the downlink common beam.
  • the fourth field may be 1 bit. In other words, it is determined by the fourth field whether the indicated second beam for uplink transmission or the second beam for downlink transmission is indicated.
  • the fourth field can be the first bit or the last bit of the first byte in the MAC CE signaling, or the first bit or the last bit of the second byte, or the third byte. The first bit or the last 1 bit, or the first bit or the last bit of the first byte in the first bit, or the first bit or the last bit of the last byte in the first bit .
  • the above MAC CE signaling can also be used to activate the second beam for uplink and downlink transmission. That is to say, when the MAC CE signaling confirms that the activated second beam is used for uplink and downlink transmission, or when the mode of the second beam is to use the same second beam for uplink and downlink transmission, the terminal device can determine The second beam activated in the MAC CE signaling is the second beam used for uplink and downlink transmission.
  • the terminal device When used to activate the second beam for uplink and downlink transmission, the above third and fourth fields have no specific meaning (because there is no need to distinguish the second beam for uplink transmission and the second beam for downlink transmission, There is no second bit), the terminal device can ignore the third field and the fourth field, or the third field and the fourth field can be used for other indication information, and what information is specifically indicated is not limited in this application.
  • the configured second beam mode uses an independent second beam for uplink and downlink transmission, and the type of the second beam is determined to be the second beam used for uplink transmission.
  • beam or the second beam for downlink transmission after that, determine the second beam as the second beam for uplink transmission in combination with the LCID of the second MAC CE signaling carrying the sixth information or the field of the second MAC CE signaling Second beam for downlink transmission.
  • both TRPs must indicate a common beam.
  • the common beam of two TRPs also requires MAC CE signaling to indicate. That is, a second beam for uplink transmission is activated for each of the two TRPs, or a second beam for downlink transmission is determined for each of the two TRPs.
  • the above-mentioned activation of the second beam for uplink and downlink transmission can be used.
  • the method including the method for judging the second beam type and MAC CE signaling, only needs to replace the second beam used for uplink/downlink transmission in the above method/MAC CE signaling with the first TRP/second TRP respectively of the public beam. For example, through the LCID or the field in the MAC CE, determine whether the type of the second beam indicated in the MAC CE is the public beam of the first TRP or the public beam of the second TRP, or determine whether the type of the second beam indicated in the MAC CE is the public beam of the first TRP or the public beam of the second TRP.
  • the type of beam is the common beam of one TRP or the common beam of two TRPs.
  • the MAC CE can include at most 4 groups of common beams.
  • the 4 groups of common beams correspond to 4 parts of bits, each part of the bit indicates the ID of a group of second beams, or each part of the bit is a bitmap for activating a group of second beams.
  • a field may be used to indicate whether there is a second beam of the second TRP. Alternatively, a field is used to indicate whether there is a second beam for uplink transmission or a second beam for downlink transmission.
  • a field is used to indicate whether there is a second beam for uplink transmission or a second beam for downlink transmission of a certain (first or second) TRP.
  • the terminal device may determine the type of the second beam of a group of the second beams according to the mode of the second beam, where the type includes at least one of the following: a first beam used for uplink and downlink transmissions. Two beams, a second beam for uplink or downlink transmission, a second beam for uplink transmission, and a second beam for uplink transmission.
  • the beams of each channel/reference signal can be unified, and the instructions of the uplink and downlink beams can be efficiently performed, avoiding complex and redundant configuration/instruction instructions and saving extra s expenses.
  • FIG. 12 is a schematic flowchart of a wireless communication method provided by an embodiment of the present application.
  • Method 1200 may include the following steps.
  • the first beam used for uplink and downlink transmission the first beam used for uplink or downlink transmission, the first beam used for uplink transmission, and the first beam used for downlink transmission.
  • One common beam type is used as an example to illustrate, but other types of common beams are not excluded.
  • the embodiments of the present application are also applicable to the distinction of other types of common beams.
  • the embodiments of the present application can also be used to distinguish activation signaling of common beams, and only need to replace common beams with common beams.
  • the first beam used for uplink and downlink transmission is equal to the uplink and downlink common beam
  • the first beam used for uplink or downlink transmission is equal to the uplink and downlink independent public beam, which is used for uplink transmission
  • the first beam of is equivalent to the uplink common beam
  • the first beam used for downlink transmission is equivalent to the downlink common beam
  • the network device will send eighth information to the terminal device, where the eighth information is used to configure parameters of a third beam of the third beam set, where the third beam is at least one channel and/or shared by at least one reference signal , that is, the third beam is the common beam.
  • the network device may configure some parameters related to the third beam of the third beam set, such as quantity, type, etc., through RRC signaling.
  • the eighth information configures the parameters of the third beam set, reference may be made to how the first information configures the parameters of the first beam set in step S501. For brevity, details are not repeated here.
  • the terminal device configures the parameters of the third beam set according to the eighth information.
  • the parameter may include at least one of a mode, a quantity, and an identifier of the third beam of the third beam set.
  • the network device will send ninth information to the terminal device, and after configuring the parameters of the third beam set according to the eighth information, the terminal device determines the third beam subset by receiving the ninth information, where the third beam subset includes at least one third beam.
  • the network device may determine the information of the third beam subset through signaling (such as MAC CE signaling).
  • the type of the third beam of the third beam subset the third beam for uplink and downlink transmission, the third beam for uplink or downlink transmission, the third beam for uplink transmission and the third beam for downlink transmission
  • the terminal device needs to determine which common beam the third beam of the third beam subset indicated by the ninth message is.
  • the ninth information indicates the third beam subset, which can also be regarded as activating the third beam subset.
  • the terminal device After receiving the ninth information, the terminal device will determine the third beam subset according to the ninth information. For how the terminal device determines the third beam according to the ninth information, reference may be made to the method for determining the first beam in S504, which is not repeated here for brevity.
  • the network device sends tenth information, where the tenth information is used to indicate information of one or more third beams.
  • the third beam belongs to the third subset of beams.
  • the terminal device determines one or more third beams according to the tenth message.
  • the tenth message may be MAC CE signaling, and how the terminal device determines one or more third beams according to the tenth information (MAC CE signaling) can refer to the method for determining the second beam in S904. For brevity, It will not be repeated here.
  • the beams of each channel/reference signal can be unified, and the instructions of the uplink and downlink beams can be efficiently performed, avoiding complex and redundant configuration/instruction instructions and saving extra s expenses.
  • FIG. 13 is another schematic flowchart of a wireless communication method provided by an embodiment of the present application.
  • Method 1300 may include the following steps.
  • the first beam used for uplink and downlink transmission the first beam used for uplink or downlink transmission, the first beam used for uplink transmission, and the first beam used for downlink transmission.
  • One common beam type is used as an example to illustrate, but other types of common beams are not excluded.
  • the embodiments of the present application are also applicable to the distinction of other types of common beams.
  • the embodiments of the present application can also be used to distinguish activation signaling of common beams, and only need to replace common beams with common beams.
  • the first beam used for uplink and downlink transmission is equal to the uplink and downlink common beam
  • the first beam used for uplink or downlink transmission is equal to the uplink and downlink independent public beam, which is used for uplink transmission
  • the first beam of is equivalent to the uplink common beam
  • the first beam used for downlink transmission is equivalent to the downlink common beam
  • the network device will send eleventh information to the terminal device, where the eleventh information is used to configure parameters of a fourth beam, where the fourth beam is at least one channel and/or a beam shared by at least one reference signal, That is, the fourth beam is a common beam.
  • the network device may configure some parameters related to the fourth beam, such as the number and type of the fourth beam, through RRC signaling.
  • the terminal device configures the parameters of the fourth beam set according to the eleventh information.
  • the parameter may include at least one of a mode, a quantity, and an identifier of the fourth beam of the fourth beam set.
  • the network device may send twelfth information, where the twelfth information is used to indicate information of one or more fourth beams.
  • the twelfth information For the introduction of the twelfth information, reference may be made to the introduction of the third information in step S505. For brevity, details are not repeated here.
  • the terminal device determines one or more fourth beams according to the twelfth information.
  • the method for how the terminal device determines the fourth beam by using the twelfth information reference may be made to the description in step S506 about the terminal device determining the first beam by using the third information. For brevity, details are not repeated here.
  • the beams of each channel/reference signal can be unified, and the instructions of the uplink and downlink beams can be efficiently performed, avoiding complex and redundant configuration/instruction instructions and saving extra s expenses.
  • the methods and operations implemented by the terminal device can also be implemented by components (such as chips or circuits) that can be used in the terminal device, and the methods and operations implemented by the network device can also be implemented by A component (eg, chip or circuit) implementation that can be used in a network device.
  • components such as chips or circuits
  • a component eg, chip or circuit
  • each network element such as a transmitter device or a receiver device
  • each network element includes hardware structures and/or software modules corresponding to performing each function in order to implement the above functions.
  • Those skilled in the art should realize that the present application can be implemented in hardware or a combination of hardware and computer software with the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the transmitting-end device or the receiving-end device may be divided into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module. middle.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation. The following description will be given by taking as an example that each function module is divided corresponding to each function.
  • FIG. 14 is a schematic block diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication device 1400 includes a transceiver unit 1410 and a processing unit 1420 .
  • the transceiver unit 1410 can implement corresponding communication functions, and the processing unit 1410 is used for data processing.
  • Transceiver unit 1410 may also be referred to as a communication interface or a communication unit.
  • the communication apparatus 1400 may further include a storage unit, which may be used to store instructions and/or data, and the processing unit 1420 may read the instructions and/or data in the storage unit, so that the communication apparatus implements the foregoing method Example.
  • a storage unit which may be used to store instructions and/or data
  • the processing unit 1420 may read the instructions and/or data in the storage unit, so that the communication apparatus implements the foregoing method Example.
  • the communication apparatus 1400 may be used to perform the actions performed by the terminal device in the above method embodiments.
  • the communication apparatus 1400 may be a terminal device or a component that can be configured in the terminal device, and the transceiver unit 1410 is used to perform the above method.
  • the processing unit 1420 is configured to perform the operations related to the processing on the side of the terminal device in the above method embodiments.
  • the communication apparatus 1400 may be used to perform the actions performed by the network equipment in the above method embodiments.
  • the communication apparatus 1400 may be a network equipment or a component configurable in the network equipment, and the transceiver unit 1410 is used to perform the above
  • the processing unit 1420 is configured to perform the operations related to the processing on the network device side in the above method embodiments.
  • the communication apparatus 1400 is used to perform the actions performed by the terminal device in the embodiment shown in FIG. 5 above.
  • the transceiver unit 1410 is used for: S501, S503, and S505;
  • the processing unit 1420 is used for: S502, S504, S506.
  • the communication apparatus 1400 is configured to perform the actions performed by the terminal device in the embodiment shown in FIG. 9 above, the transceiver unit 1410 is used for: S901, S903; the processing unit 1420 is used for: S902, S904.
  • the communication apparatus 1400 is configured to perform the actions performed by the terminal device in the above embodiment shown in FIG. 12 , the transceiver unit 1410 is used for: S1201, S1203, and S1205; the processing unit 1420 is used for: S1202, S1204, S1206.
  • the communication apparatus 1400 is configured to perform the actions performed by the terminal device in the embodiment shown in FIG. 13 above, the transceiver unit 1410 is used for: S1301, S1303; the processing unit 1420 is used for: S1302, S1304.
  • the communication apparatus 1400 may implement the steps or processes corresponding to the method 500 , the method 900 , the method 120 and the method 1300 according to the embodiments of the present application performed by the terminal device.
  • the communication apparatus 1400 may include a method for executing the method 500 in FIG. 5 . , the unit of the method performed by the terminal device in the method 900 in FIG. 9 , the method 1200 in FIG. 12 and the method 1300 in FIG. 13 .
  • each unit in the communication device 1400 and the above-mentioned other operations and/or functions are respectively to implement the corresponding methods of the method 500 in FIG. 5 , the method 900 in FIG. 9 , the method 1200 in FIG. 12 and the method 1300 in FIG. 13 . process.
  • the transceiver unit 1410 can be used to execute steps S501 , S503 , and S505 in the method 500
  • the processing unit 1420 can be used to execute steps S502 , S504 , and S504 of the method 500 .
  • the transceiver unit 1410 can be used to perform steps S901 and S903 in the method 900
  • the processing unit 1420 can be used to perform steps S902 and S904 of the method 900 .
  • the transceiver unit 1410 can be used to perform steps S1201 , S1203 and S1205 in the method 1200
  • the processing unit 1420 can be used to perform steps S1202 , S1204 and S1206 of the method 1200 .
  • the transceiver unit 1410 can be used to execute steps S1301 and S1303 in the method 1300
  • the processing unit 1420 can be used to execute steps S1302 and S1304 of the method 1300 .
  • the communication apparatus 1400 is configured to perform the actions performed by the network device in the embodiment shown in FIG. 5 above, and the transceiver unit 1410 is configured to: S501 , S503 , and S505 .
  • the communication apparatus 1400 is configured to perform the actions performed by the network device in the embodiment shown in FIG. 9 above, and the transceiver unit 1410 is configured to: S901 and S903.
  • the communication apparatus 1400 is configured to perform the actions performed by the network device in the above embodiment shown in FIG. 12 , and the transceiver unit 1410 is configured to: S1201 , S1203 , and S1205 .
  • the communication apparatus 1400 is configured to perform the actions performed by the network device in the embodiment shown in FIG. 13 above, and the transceiver unit 1410 is configured to: S1301 and S1303.
  • the communication apparatus 1400 may implement steps or processes corresponding to the method 500 , the method 900 , the method 1200 , and the method 1200 and the method 1300 according to the embodiments of the present application. , the method 900 in FIG. 9 , the method 1200 in FIG. 12 , and the unit of the method performed by the network device in the method 1300 in FIG. 13 . In addition, each unit in the communication device 1400 and the above-mentioned other operations and/or functions are respectively to implement the method 500 in FIG. 5 , the method 900 in FIG. 9 , the method 1200 in FIG. 12 and the method 1300 in FIG. 13 . process.
  • the processing unit 1420 in the above embodiments may be implemented by at least one processor or processor-related circuits.
  • the transceiver unit 1410 may be implemented by a transceiver or a transceiver-related circuit.
  • Transceiver unit 1410 may also be referred to as a communication unit or a communication interface.
  • the storage unit may be implemented by at least one memory.
  • an embodiment of the present application further provides a communication apparatus 1500 .
  • the communication device 1500 includes a processor 1510 coupled with a memory 1520 for storing computer programs or instructions and/or data, and the processor 1510 for executing the computer programs or instructions and/or data stored in the memory 1520, The methods in the above method embodiments are caused to be executed.
  • the communication apparatus 1500 includes one or more processors 1510 .
  • the communication apparatus 1500 may further include a memory 1520 .
  • the communication device 1500 may include one or more memories 1520 .
  • the memory 1520 may be integrated with the processor 1510, or provided separately.
  • the communication apparatus 1500 may further include a transceiver 1530, and the transceiver 1530 is used for signal reception and/or transmission.
  • the processor 1510 is used to control the transceiver 1530 to receive and/or transmit signals.
  • the communication apparatus 1500 is configured to implement the operations performed by the terminal device in the above method embodiments.
  • the processor 1510 is configured to implement the processing-related operations performed by the terminal device in the above method embodiments
  • the transceiver 1530 is configured to implement the above-mentioned method embodiments performed by the terminal device.
  • the communication apparatus 1500 is configured to implement the operations performed by the network device in the above method embodiments.
  • the processor 1510 is configured to implement the processing-related operations performed by the network device in the above method embodiments
  • the transceiver 1530 is configured to implement the transceiving-related operations performed by the network device in the above method embodiments.
  • This embodiment of the present application further provides a communication apparatus 1600, where the communication apparatus 1600 may be a terminal device or a chip.
  • the communication apparatus 1600 may be used to perform the operations performed by the terminal device in the foregoing method embodiments.
  • FIG. 16 shows a schematic structural diagram of a simplified terminal device.
  • the terminal device includes a processor, a memory, and a transceiver, wherein the memory can store computer program codes, and the transceiver includes a transmitter, a receiver, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control terminal equipment, execute software programs, and process data of software programs.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal equipment may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the antenna and the radio frequency circuit with a transceiver function may be regarded as a transceiver unit of the terminal device, and the processor with a processing function may be regarded as a processing unit of the terminal device.
  • the terminal device includes a processor 1610 , a memory 1620 and a transceiver 1630 .
  • the processor 1610 may also be referred to as a processing unit, a processing board, a processing module, a processing device, and the like
  • the transceiver 1630 may also be referred to as a transceiver unit, a transceiver, a transceiver device, and the like.
  • the device for implementing the receiving function in the transceiver 1630 may be regarded as a receiving unit, and the device for implementing the transmitting function in the transceiver 1630 may be regarded as a transmitting unit, that is, the transceiver 1630 includes a receiver and a transmitter.
  • a transceiver may also sometimes be referred to as a transceiver, a transceiver unit, or a transceiver circuit.
  • a receiver may also sometimes be referred to as a receiver, a receiving unit, or a receiving circuit, or the like.
  • a transmitter may also sometimes be referred to as a transmitter, a transmitter unit, or a transmitter circuit.
  • the processor 1610 is configured to perform the processing actions on the terminal device side in FIG. 5 .
  • the processor 1610 is configured to perform the processing steps in steps S502, S504, and S506 in FIG. 5 ;
  • the transceiver 163 is configured to perform the transceiving operations in steps S501, S503, and S505 in FIG. 5 .
  • the processor 1610 is configured to perform the processing steps in steps S902 and S904 in FIG. 9 ; the transceiver 163 is configured to perform the transceiving operations in steps S901 and S903 in FIG. 9 .
  • the processor 1610 is configured to perform the processing steps in steps S1202, S1204, and S1206 in FIG. 12; the transceiver 163 is configured to perform the transceiving in steps S1201, S1203, and S1205 in FIG. operate.
  • the processor 1610 is configured to perform the processing steps in steps S1302 and S1304 in FIG. 13 ; the transceiver 163 is configured to perform the transceiving operations in steps S1301 and S1303 in FIG. 13 .
  • FIG. 16 is only an example and not a limitation, and the above-mentioned terminal device including a transceiver unit and a processing unit may not depend on the structure shown in FIG. 16 .
  • the chip When the communication device 1600 is a chip, the chip includes a processor, a memory and a transceiver.
  • the transceiver may be an input/output circuit or a communication interface;
  • the processor may be a processing unit or a microprocessor or an integrated circuit integrated on the chip.
  • This embodiment of the present application further provides a communication apparatus 1700, where the communication apparatus 1700 may be a network device or a chip.
  • the communication apparatus 1700 may be configured to perform the operations performed by the network device in the foregoing method embodiments.
  • Fig. 17 shows a simplified schematic diagram of the structure of a base station.
  • the base station includes part 1710, part 1720 and part 1730.
  • the 1710 part is mainly used for baseband processing, controlling the base station, etc.
  • the 1710 part is usually the control center of the base station, which can usually be called a processor, and is used to control the base station to perform the processing operations on the network device side in the above method embodiments.
  • Section 1720 is primarily used to store computer program code and data.
  • the 1730 part is mainly used for the transmission and reception of radio frequency signals and the conversion of radio frequency signals and baseband signals; the 1730 part can usually be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver.
  • the transceiver unit of the 1710 part which may also be called a transceiver or a transceiver, etc., includes an antenna and a radio frequency circuit, where the radio frequency circuit is mainly used for radio frequency processing.
  • the device used for implementing the receiving function in part 1730 may be regarded as a receiver, and the device used for implementing the transmitting function may be regarded as a transmitter, that is, part 1710 includes a receiver and a transmitter.
  • the receiver may also be referred to as a receiving unit, a receiver, or a receiving circuit, and the like
  • the transmitter may be referred to as a transmitting unit, a transmitter, or a transmitting circuit, and the like.
  • Sections 1710 and 1720 may include one or more single boards, each of which may include one or more processors and one or more memories.
  • the processor is used to read and execute the program in the memory to realize the baseband processing function and control the base station. If there are multiple boards, each board can be interconnected to enhance the processing capability.
  • one or more processors may be shared by multiple boards, or one or more memories may be shared by multiple boards, or one or more processors may be shared by multiple boards at the same time. device.
  • part 1710 is used to execute the steps related to the processing performed by the network device in the embodiment shown in FIG. 4 ; the transceiver unit of part 1730 is used to execute the steps performed by the network device in the embodiment shown in FIG. 4 .
  • the processor in part 1710 is used to execute the steps related to the processing performed by the network device in the embodiment shown in FIG. 5 ; the part 1730 is used for executing the steps performed by the network device in the embodiment shown in FIG. The steps related to sending and receiving.
  • FIG. 17 is only an example and not a limitation, and the above-mentioned network device including a processor, a memory and a transceiver may not depend on the structure shown in FIG. 17 .
  • the chip When the communication device 1700 is a chip, the chip includes a transceiver, a memory and a processor.
  • the transceiver may be an input/output circuit or a communication interface;
  • the processor may be a processor or a microprocessor or an integrated circuit integrated on the chip.
  • Embodiments of the present application further provide a computer-readable storage medium, on which computer instructions for implementing the method executed by the terminal device or the method executed by the network device in the foregoing method embodiments are stored.
  • the computer when the computer program is executed by a computer, the computer can implement the method executed by the terminal device or the method executed by the network device in the above method embodiments.
  • Embodiments of the present application further provide a computer program product including instructions, which, when executed by a computer, cause the computer to implement the method executed by the terminal device or the method executed by the network device in the above method embodiments.
  • An embodiment of the present application further provides a communication system, where the communication system includes the network device and the terminal device in the above embodiments.
  • the terminal device or the network device may include a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer may include hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also called main memory).
  • the operating system of the operating system layer may be any one or more computer operating systems that implement business processing through processes, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer may include applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the present application do not specifically limit the specific structure of the execution body of the methods provided by the embodiments of the present application, as long as the program in which the codes of the methods provided by the embodiments of the present application are recorded can be executed to execute the methods according to the embodiments of the present application.
  • the execution body of the method provided by the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call a program and execute the program.
  • aspects or features of the present application may be implemented as methods, apparatus, or articles of manufacture using standard programming and/or engineering techniques.
  • article of manufacture as used herein may encompass a computer program accessible from any computer-readable device, carrier or media.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server, data center, etc., which includes one or more available mediums integrated.
  • Useful media may include, but are not limited to, magnetic media or magnetic storage devices (eg, floppy disks, hard disks (eg, removable hard disks), magnetic tapes), optical media (eg, optical disks, compact discs) , CD), digital versatile disc (digital versatile disc, DVD), etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), card, stick or key drive, etc. ), or semiconductor media (such as solid state disk (SSD), etc., U disk, read-only memory (ROM), random access memory (RAM), etc. that can store programs medium of code.
  • SSD solid state disk
  • Various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • processors mentioned in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), application-specific integrated circuits ( application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM).
  • RAM can be used as an external cache.
  • RAM may include the following forms: static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (SDRAM) , double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (synchlink DRAM, SLDRAM) and Direct memory bus random access memory (direct rambus RAM, DR RAM).
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • Direct memory bus random access memory direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module
  • memory described herein is intended to include, but not be limited to, these and any other suitable types of memory.
  • the disclosed apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the above-mentioned units is only a logical function division.
  • multiple units or components may be combined or may be Integration into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, which may be in electrical, mechanical or other forms.
  • the units described above as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to implement the solution provided in this application.
  • each functional unit in each embodiment of the present application may be integrated into one unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer may be a personal computer, a server, or a network device or the like.
  • Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website site, computer, server, or data center over a wire (e.g.
  • coaxial cable fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • DSL digital subscriber line
  • wireless eg, infrared, wireless, microwave, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种无线通信的方法,该方法可以包括:接收第一信息,所述第一信息用于配置第一波束集合的参数,所述第一波束集合包括至少一个第一波束,所述第一波束为多个信道,和/或,多个参考信号共用的波束;接收第二信息,根据所述第二信息确定第一波束子集的信息,所述第一波束子集属于所述第一波束集合;接收第三信息,根据所述第三信息确定所述第一波束的信息,所述第一波束属于所述第一波束子集。其中,第一波束为公共波束。在本申请中,通过对公共波束的配置、激活、指示,可以统一指示各个信道/参考信号的波束,能够简化实现,降低信令开销。

Description

一种无线通信的方法与装置 技术领域
本申请涉及通信领域,具体地,设计一种无线通信的方法与装置。
背景技术
第五代移动通信系统(5th generation,5G)可以采用高频通信,即采用超高频段(>6GHz)信号传输数据。高频通信的一个主要问题是信号能量随传输距离急剧下降,导致信号传输距离短。为了克服这个问题,高频通信采用模拟波束技术,通过对天线阵列进行加权处理,将信号能量集中在一个较小的角度范围内,形成一个类似于光束一样的信号(称为模拟波束,简称波束),从而提高传输距离。网络设备和终端设备都要采用波束进行传输。
在进行上下行数据传输时,需要采用特定的波束来进行。例如,下行传输中,网络设备决定发送波束的类型,终端设备接收波束采用的目标参考信号资源的接收波束的类型是由网络设备告知终端设备的。具体的,网络设备向终端设备发送一个下行控制信息(Downlink control information,DCI)信令,其中包含传输配置编号(Transmission configuration index,TCI)字段。TCI字段用于指示一个配置指示状态(TCI-state)。一个TCI-state中包括一个目标参考信号资源,表示采用该目标参考信号资源的接收波束来作为接收波束,该目标参考信号资源的接收波束是已知的,因此,终端设备可以确定本次传输的接收波束。网络设备可以为终端设备配置多个TCI-state,其中,包括不同的目标参考信号资源,当网络设备希望终端设备采用某个目标参考信号资源的接收波束来接收时,可以将对应的TCI-state指示给终端设备,例如,TCI-state的配置,激活以及指示。
在上行传输中,网络设备需要告知终端设备使用的发送波束的类型。上行发送波束的指示是通过向终端设备指示空间关系(spatial relation)来实现的。spatial relation包括一个目标参考信号资源,根据该目标参考信号资源确定本次上行传输的发送波束。该目标参考信号资源可以是一个上行参考信号资源,如探测参考信号(Sounding reference signal,SRS),也可以是一个下行参考信号资源,如同步信号和广播信道资源块(Synchronization Signal and PBCH Block,SSB)和信道状态信息-参考信号(Channel status information reference signal,CSI-RS)。如果是SRS,则表示终端设备使用该SRS资源的发送波束进行发送,该SRS的发送波束是已知的。如果是SSB或CSI-RS,表示使用该SSB/CSI-RS的接收波束进行发送。该SSB或CSI-RS的接收波束是已知的。
当终端设备移动时,各个波束质量会发生变化,导致最佳波束发生变换。最佳波束发送变化时,网络设备需要通过信令更新上下行传输使用的波束,以便保证终端设备使用的波束总是最佳的。如何高效的进行波束的通知,是本申请解决的主要问题。
发明内容
本申请提供一种无线通信的方法与装置,能够统一指示各个信道/参考信号的波束, 可以简化实现,降低信令开销。
第一方面,提供了一种无线通信的方法,包括:接收第一信息,所述第一信息用于配置第一波束集合的参数,所述第一波束集合包括至少一个第一波束,所述第一波束为多个信道,和/或,多个参考信号共用的波束;接收第二信息,根据所述第二信息确定第一波束子集的信息,所述第一波束子集属于所述第一波束集合;接收第三信息,根据所述第三信息确定所述第一波束的信息,所述第一波束属于所述第一波束子集。
基于上述技术方案,通过对第一波束集合的参数的配置,第一波束子集的指示,以及第一波束的指示,能够统一指示各个信道/参考信号的波束,可以简化实现,并且降低信令开销。
结合第一方面,在第一方面的某些实现方式中,所述第一波束集合的参数包括所述第一波束集合的第一波束的模式,所述第一波束集合的第一波束的模式包括以下至少一项:上行和下行传输使用相同的第一波束,上行和下行传输使用独立的第一波束。
结合第一方面,在第一方面的某些实现方式中,所述第一波束集合的参数还包括所述第一波束集合的第一波束的标识。
结合第一方面,在第一方面的某些实现方式中,所述根据所述第二信息确定所述第一波束子集的信息,包括:根据所述第二信息确定所述第一波束子集的第一波束的类型,所述类型包括以下至少一项:用于上行和下行传输的第一波束,用于上行或下行传输的第一波束,用于上行传输的第一波束,以及用于下行传输的第一波束。
结合第一方面,在第一方面的某些实现方式中,所述第二信息通过第一介质访问控制层MAC控制单元CE信令承载。
结合第一方面,在第一方面的某些实现方式中,所述根据所述第二信息确定所述第一波束子集的第一波束的类型,包括:根据所述第一MAC CE信令对应的逻辑信道标识LCID确定所述第一波束子集的第一波束的类型,所述类型包括以下至少一项:所述用于上行和下行传输的第一波束,所述用于上行或下行传输的第一波束,所述用于上行传输的第一波束,以及所述用于下行传输的第一波束。
结合第一方面,在第一方面的某些实现方式中,所述根据所述第二信息确定所述第一波束子集的第一波束的类型,包括:根据所述第一MAC CE信令的第一字段确定所述第一波束子集的第一波束的类型,所述类型包括以下至少一项:所述用于上行和下行传输的第一波束,所述用于上行或下行传输的第一波束,所述用于上行传输的第一波束,以及所述用于下行传输的第一波束。
结合第一方面,在第一方面的某些实现方式中,根据所述第一波束集合的第一波束的模式确定所述第一波束子集的第一波束的类型,所述类型包括以下至少一项:所述用于上行和下行传输的第一波束,所述用于上行或下行传输的第一波束,所述用于上行传输的第一波束,以及所述用于下行传输的第一波束。
结合第一方面,在第一方面的某些实现方式中,发送第四信息,所述第四信息包括第一参数,所述第四信息的第一参数用于指示上行波束和下行波束是否存在互易性。
结合第一方面,在第一方面的某些实现方式中,根据所述第四信息的第一参数确定所述第一波束子集的第一波束的类型,所述类型包括以下至少一项:所述用于上行和下行传输的第一波束,所述用于上行或下行传输的第一波束,所述用于上行传输的第一波束,以 及所述用于下行传输的第一波束。
结合第一方面,在第一方面的某些实现方式中,根据所述第一MAC CE信令的第二字段确定所述第一波束子集的第一波束的类型,所述类型包括以下至少一项:所述用于上行传输的第一波束,以及所述用于下行传输的第一波束。
结合第一方面,在第一方面的某些实现方式中,所述第一MAC CE信令还包括所述第一波束子集的索引;或,所述第一MAC CE信令还包括一个位图,所述一个位图用于指示所述第一波束子集的第一波束。
结合第一方面,在第一方面的某些实现方式中,所述第一MAC CE信令包括一种或两种所述第一波束;根据所述第一MAC CE信令的第三字段确定所述第一MAC CE信令包括的所述第一波束为一种或两种。
结合第一方面,在第一方面的某些实现方式中,当所述第一MAC CE信令包括两种所述第一波束时,所述两种所述第一波束分别为:所述用于上行传输的第一波束以及所述用于下行传输的第一波束。
结合第一方面,在第一方面的某些实现方式中,根据所述第一MAC CE信令的第一比特指示所述用于上行传输的第一波束,根据所述第一MAC CE信令的第二比特指示所述用于下行传输的第一波束;或,根据所述第一MAC CE信令的第一比特指示所述用于下行传输的第一波束,根据所述第一MAC CE信令的第二比特指示所述用于上行传输的第一波束。
结合第一方面,在第一方面的某些实现方式中,所述根据所述第一MAC CE信令的第三字段确定所述第一MAC CE信令包括的所述第一波束为一种或两种,包括:根据所述第一MAC CE信令的第三字段确定所述第一MAC CE信令的第二比特是否存在。
结合第一方面,在第一方面的某些实现方式中,根据所述第一MAC CE信令的第四字段确定所述第一MAC CE信令的第一比特指示的是所述用于上行传输的第一波束还是所述用于下行传输的第一波束。
结合第一方面,在第一方面的某些实现方式中,所述第三信息通过第一下行控制信息DCI承载,所述第一DCI包括以下字段中的至少一项:用于确定所述第一波束的类型的字段,所述用于确定所述第一波束的类型的字段包括DCI格式标识字段;或,用于指示所述第一DCI的功能的字段,所述第一DCI的功能包括以下至少一项:用于指示所述第一波束,用于指示调度数据,以及用于指示所述第一波束与调度数据;或,用于指示所述第一波束标识的字段;或,激活或去激活字段,所述激活或去激活字段用于指示所述第一DCI用于激活所述第一波束或去激活所述第一波束;或,载波字段,所述载波字段用于指示以下至少一项:所述第一波束对应的载波,所述第一波束对应的载波组,所述第一波束对应的载波的载波组;或,频段字段,所述频段字段用于指示所述第一波束对应的频段;或,带宽部分BWP字段,所述BWP字段用于指示所述第一波束对应的带宽部分;或,物理上行控制信道PUCCH资源指示字段,所述PUCCH资源指示字段用于指示反馈所述第一DCI的ACK/NACK信息所采用的PUCCH资源;或,HARQ反馈时间指示字段,所述HARQ反馈时间指示字段用于指示所述反馈所述第一DCI的ACK/NACK信息与所述第一DCI之间的发送时间间隔。
结合第一方面,在第一方面的某些实现方式中,在接收所述第一DCI之前,接收第二 DCI,所述第二DCI用于指示所述第一波束,所述第二DCI在时间上相邻于所述第一DCI。
结合第一方面,在第一方面的某些实现方式中,当所述第一DCI与所述第二DCI指示的所述第一波束相同时,且所述NDI字段的值发生翻转时,所述第一DCI用于指示去激活所述第一波束;或,当所述第一DCI与所述第二DCI指示的所述第一波束不同时,所述第一DCI用于指示激活所述第一波束。
结合第一方面,在第一方面的某些实现方式中,在所述第一DCI激活所述第一波束之后,所述第一波束在第一时刻作为起始时刻的第一时长内生效,其中,所述第一时刻包括以下任意一项:所述第一DCI发送的时隙或符号,所述第一DCI对应的HARQ反馈消息发送的时隙或符号,以及所述第一DCI对应的HARQ反馈消息发送的时隙或符号与K毫秒之和,K≥1。
结合第一方面,在第一方面的某些实现方式中,根据所述第一DCI确定所述第一时长;或,根据配置信息确定所述第一时长。
结合第一方面,在第一方面的某些实现方式中,当所述第一DCI包括数据传输的调度信息时,发送第五信息,所述第五信息为数据的应答ACK/非应答NACK信息;或,当所述第一DCI不包括所述数据传输的调度信息时,发送第六信息,所述第六信息为所述第一DCI的ACK/NACK信息。
结合第一方面,在第一方面的某些实现方式中,通过条件确定所述第一DCI中是否包括所述数据传输的调度信息,所述条件包括以下至少一项:所述第一DCI的频域资源分配字段的值为0,以及所述第一DCI的时域资源分配字段的值为0。
第二方面,提供了一种无线通信的方法,包括:发送第一信息,所述第一信息用于配置第一波束集合的参数,所述第一波束集合包括至少一个第一波束,所述第一波束为多个信道,和/或,多个参考信号共用的波束;发送第二信息,所述第二信息用于确定第一波束子集的信息,所述第一波束子集属于所述第一波束集合;发送第三信息,所述第三信息用于确定一个所述第一波束的信息,所述第一波束属于所述第一波束子集。
基于上述技术方案,通过对第一波束集合的参数的配置,第一波束子集的指示,以及第一波束的指示,能够统一指示各个信道/参考信号的波束,可以简化实现,并且降低信令开销。
结合第二方面,在第二方面的某些实现方式中,所述第一波束集合的参数包括所述第一波束集合的第一波束的模式,所述第一波束集合的第一波束的模式包括以下至少一项:上行和下行传输使用相同的第一波束,上行和下行传输使用独立的第一波束。
结合第二方面,在第二方面的某些实现方式中,所述第一波束集合的参数还包括所述第一波束集合的第一波束的标识。
结合第二方面,在第二方面的某些实现方式中,所述第二信息用于确定所述所述第一波束子集的第一波束的类型,所述类型包括以下至少一项:用于上行和下行传输的第一波束,用于上行或下行传输的第一波束,用于上行传输的第一波束,以及用于下行传输的第一波束。
结合第二方面,在第二方面的某些实现方式中,所述第二信息通过第一介质访问控制层MAC控制单元CE信令承载。
结合第二方面,在第二方面的某些实现方式中,所述第一MAC CE信令对应的逻辑 信道标识LCID用于确定所述第一波束子集的第一波束的类型,所述类型包括以下至少一项:所述用于上行和下行传输的第一波束,所述用于上行或下行传输的第一波束,所述用于上行传输的第一波束,以及所述用于下行传输的第一波束。
结合第二方面,在第二方面的某些实现方式中,所述第一MAC CE信令对应的第一字段用于确定所述第一波束子集的第一波束的类型,所述类型包括以下至少一项:所述用于上行和下行传输的第一波束,所述用于上行或下行传输的第一波束,所述用于上行传输的第一波束,以及所述用于下行传输的第一波束。
结合第二方面,在第二方面的某些实现方式中,所述第一波束集合的第一波束的模式用于确定所述第一波束子集的第一波束的类型,所述类型包括以下至少一项:所述用于上行和下行传输的第一波束,所述用于上行或下行传输的第一波束,所述用于上行传输的第一波束,以及所述用于下行传输的第一波束。
结合第二方面,在第二方面的某些实现方式中,接收第四信息,所述第四信息包括第一参数,所述第四信息的第一参数用于指示上行波束和下行波束是否存在互易性。
结合第二方面,在第二方面的某些实现方式中,所述第四信息的第一参数用于确定所述一组所述第一波束的第一波束的类型,所述类型包括以下至少一项:所述用于上行和下行传输的第一波束,所述用于上行或下行传输的第一波束,所述用于上行传输的第一波束,以及所述用于下行传输的第一波束。
结合第二方面,在第二方面的某些实现方式中,所述第一MAC CE信令的第二字段用于确定所述第一波束子集的第一波束的类型,所述类型包括以下至少一项:所述用于上行传输的第一波束,以及所述用于下行传输的第一波束。
结合第二方面,在第二方面的某些实现方式中,所述第一MAC CE信令还包括所述第一波束子集的索引;或,所述第一MAC CE信令还包括一个位图,所述一个位图用于指示所述第一波束子集的第一波束。
结合第二方面,在第二方面的某些实现方式中,所述第一MAC CE信令包括一种或两种所述第一波束,所述第一MAC CE信令的第三字段用于确定所述第一MAC CE信令包括的所述第一波束为一种或两种。
结合第二方面,在第二方面的某些实现方式中,当所述第一MAC CE信令包括两种所述第一波束时,所述两种所述第一波束分别为:所述用于上行传输的第一波束以及所述用于下行传输的第一波束。
结合第二方面,在第二方面的某些实现方式中,所述第一MAC CE信令的第一比特用于指示所述用于上行传输的第一波束,所述第一MAC CE信令的第二比特用于指示所述用于下行传输的第一波束;或,所述第一MAC CE信令的第一比特用于指示所述用于下行传输的第一波束,所述第一MAC CE信令的第二比特用于指示所述用于上行传输的第一波束。
结合第二方面,在第二方面的某些实现方式中,所述第一MAC CE信令的第三字段用于确定所述第一MAC CE信令的第二比特是否存在。
结合第二方面,在第二方面的某些实现方式中,所述第一MAC CE信令的第四字段用于确定所述第一MAC CE信令的第一比特指示的是所述用于上行传输的第一波束还是所述用于下行传输的第一波束。
结合第二方面,在第二方面的某些实现方式中,所述第三信息通过第一下行控制信息DCI承载,所述第一DCI包括以下字段中的至少一项:用于确定所述第一波束类型的字段,所述用于确定所述第一波束类型的字段包括DCI格式标识字段;或,用于指示所述第一DCI的功能的字段,所述第一DCI的功能包括以下至少一项:用于指示所述第一波束,用于指示调度数据,以及用于指示所述第一波束与调度数据;或,用于指示所述第一波束标识的字段;或,激活或去激活字段,所述激活或去激活字段用于指示所述第一DCI用于激活所述第一波束或去激活所述第一波束;或,载波字段,所述载波字段用于指示以下至少一项:所述第一波束对应的载波,所述第一波束对应的载波组,所述第一波束对应的载波的载波组;或,频段字段,所述频段字段用于指示所述第一波束对应的频段;或,带宽部分BWP字段,所述BWP字段用于指示所述第一波束对应的带宽部分;或,物理上行控制信道PUCCH资源指示字段,所述PUCCH资源指示字段用于指示反馈所述第一DCI的ACK/NACK信息所采用的PUCCH资源;或,HARQ反馈时间指示字段,所述HARQ反馈时间指示字段用于指示所述反馈所述第一DCI的ACK/NACK信息与所述第一DCI之间的发送时间间隔。
结合第二方面,在第二方面的某些实现方式中,当复用所述第一DCI的第一字段来指示激活或去激活字段所述第一波束时,所述第一DCI的第一字段包括以下至少一项:频域资源分配字段,时域资源分配字段,调制与编码策略MCS字段,新数据信息NDI字段,冗余版本RV字段,混合自动重传请求HARQ进程字段,数据分配标识DAI字段,物理上行控制信道PUCCH资源字段,HARQ反馈时间指示字段,天线端口,解调参考信号DMRS序列初始化字段。
结合第二方面,在第二方面的某些实现方式中,在接收所述第一DCI之前,发送第二DCI,所述第二DCI用于指示所述第一波束,所述第二DCI在时间上相邻于所述第一DCI。
结合第二方面,在第二方面的某些实现方式中,当所述第一DCI与所述第二DCI指示的所述第一波束相同时,且所述NDI字段的值发生翻转时,所述第一DCI用于指示去激活所述第一波束;或,当所述第一DCI与所述第二DCI指示的所述第一波束不同时,所述第一DCI用于指示激活所述第一波束。
结合第二方面,在第二方面的某些实现方式中,在所述第一DCI激活所述第一波束之后,所述第一波束在第一时刻中起始时刻的第一时长内生效,其中,所述第一时刻包括以下任意一项:所述第一DCI发送的时隙或符号,所述第一DCI对应的HARQ反馈消息发送的时隙或符号,以及所述第一DCI对应的HARQ反馈消息发送的时隙或符号与K毫秒之和,K≥1。
结合第二方面,在第二方面的某些实现方式中,所述第一DCI种包括所述第一时长的信息;所述第一时长根据配置信息确定。
结合第二方面,在第二方面的某些实现方式中,当所述第一DCI包括数据传输的调度信息时,接收第五信息,所述第五信息为数据的ACK/NACK信息;或,当所述第一DCI不包括所述数据传输的调度信息时,接收第六信息,所述第六信息为所述第一DCI的ACK/NACK信息。
结合第二方面,在第二方面的某些实现方式中,条件用于确定所述第一DCI中是否包括所述数据传输的调度信息,所述条件包括以下至少一项:所述第一DCI的频域资源分配 字段的值为0,以及所述第一DCI的时域资源分配字段的值为0。
第三方面,提供了一种无线通信的方法,包括:接收第五信息,所述第五信息用于配置第二波束集合的参数,所述第二波束集合包括至少一个第二波束,所述第二波束为多个信道,和/或,多个参考信号共用的波束;接收第六信息,根据所述第六信息确定所述一个或多个第二波束的信息。
基于上述技术方案,通过对第二波束集合的参数的配置,以及第二波束的指示,能够统一指示各个信道/参考信号的波束,可以简化实现,并且降低信令开销。
结合第三方面,在第三方面的某些实现方式中,所述第二波束集合的参数包括所述第二波束集合的第二波束的模式,所述第二波束集合的第二波束的模式包括以下至少一项:上行和下行传输使用相同的第二波束,上行和下行传输使用独立的第二波束。
结合第三方面,在第三方面的某些实现方式中,所述第二波束集合的参数还包括所述第二波束集合的第二波束的标识。
结合第三方面,在第三方面的某些实现方式中,根据所述第六信息确定所述一个或多个第二波束的类型,所述一个或多个第二波束的类型包括以下至少一项:
用于上行和下行传输的第二波束,用于上行或下行传输的第二波束,用于上行传输的第二波束,以及用于下行传输的第二波束。
结合第三方面,在第三方面的某些实现方式中,所述第六信息通过第二MAC CE信令承载。
结合第三方面,在第三方面的某些实现方式中,根据所述第二MAC CE信令对应的LCID确定所述一个或多个第二波束的类型,所述一个或多个第二波束的类型包括以下至少一项:所述用于上行和下行传输的第二波束,所述用于上行或下行传输的第二波束,所述用于上行传输的第二波束,以及所述用于下行传输的第二波束。
结合第三方面,在第三方面的某些实现方式中,根据所述第二MAC CE信令对应的第一字段确定所述一个或多个第二波束的类型,所述一个或多个第二波束的类型包括以下至少一项:所述用于上行和下行传输的第二波束,所述用于上行或下行传输的第二波束,所述用于上行传输的第一波束,以及所述用于下行传输的第二波束。
结合第三方面,在第三方面的某些实现方式中,根据所述第二波束的模式确定所述一个或多个第二波束的类型,所述一个或多个第二波束的类型包括以下至少一项:所述用于上行和下行传输的第二波束,所述用于上行或下行传输的第二波束,所述用于上行传输的第二波束,以及所述用于下行传输的第二波束。
结合第三方面,在第三方面的某些实现方式中,发送第七信息,所述第七信息包括第一参数,所述第七信息的第一参数用于指示上行波束和下行波束是否存在互易性。
结合第三方面,在第三方面的某些实现方式中,根据所述第七信息的第一参数确定所述一个或多个第二波束的类型,所述一个或多个第二波束的类型包括以下至少一项:所述用于上行和下行传输的第二波束,所述用于上行或下行传输的第二波束,所述用于上行传输的第二波束,以及所述用于下行传输的第二波束。
结合第三方面,在第三方面的某些实现方式中,根据所述第二MAC CE信令的第二字段确定所述一个或多个第二波束的类型,所述一个或多个第二波束的类型包括以下至少一项:所述用于上行传输的第二波束,以及所述用于下行传输的第二波束。
结合第三方面,在第三方面的某些实现方式中,所述第二MAC CE信令还包括所述一个或多个第二波束的索引;或,所述第二MAC CE信令还包括一个位图,所述一个位图用于指示所述一个或多个第二波束。
结合第三方面,在第三方面的某些实现方式中,所述第二MAC CE信令包括一种或两种所述一个或多个第二波束;根据所述第二MAC CE信令的第三字段确定所述第二MAC CE信令包括的所述一个或多个第二波束为一种或两种。
结合第三方面,在第三方面的某些实现方式中,当所述第二MAC CE信令包括两种所述一个或多个第二波束时,所述两种所述一个或多个第二波束分别为:所述用于上行传输的第二波束以及所述用于下行传输的第二波束。
结合第三方面,在第三方面的某些实现方式中,根据所述第二MAC CE信令的第一比特指示所述用于上行传输的第二波束,根据所述第二MAC CE信令的第二比特指示所述用于下行传输的第二波束;或,根据所述第二MAC CE信令的第一比特指示所述用于下行传输的第二波束,根据所述第二MAC CE信令的第二比特指示所述用于上行传输的第二波束。
结合第三方面,在第三方面的某些实现方式中,所述根据所述第二MAC CE信令的第三字段确定所述第二MAC CE信令包括的所述一个或多个第二波束为一种或两种,包括:根据所述第二MAC CE信令的第三字段确定所述第二MAC CE信令的第二比特是否存在。
结合第三方面,在第三方面的某些实现方式中,根据所述第二MAC CE信令的第四字段确定所述第二MAC CE信令的第一比特指示的是所述用于上行传输的第二波束还是所述用于下行传输的第二波束。
第四方面,提供了一种无线通信的方法,包括:发送第五信息,所述第五信息用于配置第二波束集合的参数,所述第二波束集合包括至少一个第二波束,所述第二波束为多个信道,和/或,多个参考信号共用的波束;发送第六信息,所述第六信息用于确定所述一个或多个第二波束的信息。
基于上述技术方案,通过对第二波束集合的参数的配置,以及第二波束的指示,能够统一指示各个信道/参考信号的波束,可以简化实现,并且降低信令开销。
结合第四方面,在第四方面的某些实现方式中,所述第二波束集合的参数包括所述第二波束集合的第二波束的模式,所述第二波束集合的第二波束的模式包括以下至少一项:上行和下行传输使用相同的第二波束,上行和下行传输使用独立的第二波束。
结合第四方面,在第四方面的某些实现方式中,所述第二波束集合的参数还包括所述第二波束集合的第二波束的标识。
结合第四方面,在第四方面的某些实现方式中,所述第六信息用于确定所述一个或多个第二波束的类型,所述一个或多个第二波束的类型包括以下至少一项:用于上行和下行传输的第二波束,用于上行或下行传输的第二波束,用于上行传输的第二波束,以及用于下行传输的第二波束。
结合第四方面,在第四方面的某些实现方式中,所述第六信息通过第二MAC CE信令承载。
结合第四方面,在第四方面的某些实现方式中,所述第二MAC CE信令对应的LCID用于确定所述一个或多个第二波束的类型,所述一个或多个第二波束的类型包括以下至少一项:所述用于上行和下行传输的第二波束,所述用于上行或下行传输的第一波束,所述用于上行传输的第二波束,以及所述用于下行传输的第二波束。
结合第四方面,在第四方面的某些实现方式中,所述第二MAC CE对应的第一字段用于确定所述一个或多个第二波束的类型,所述一个或多个第二波束的类型包括以下至少一项:所述用于上行和下行传输的第二波束,所述用于上行或下行传输的第二波束,所述用于上行传输的第一波束,以及所述用于下行传输的第二波束。
结合第四方面,在第四方面的某些实现方式中,所述第二波束的模式用于确定所述一个或多个第二波束的类型,所述一个或多个第二波束的类型包括以下至少一项:所述用于上行和下行传输的第二波束,所述用于上行或下行传输的第二波束,所述用于上行传输的第二波束,以及所述用于下行传输的第二波束。
结合第四方面,在第四方面的某些实现方式中,接收第七信息,所述第七信息包括第一参数,所述第七信息的第一参数用于指示上行波束和下行波束是否存在互易性。
结合第四方面,在第四方面的某些实现方式中,所述第七信息的第一参数用于确定所述一个或多个第二波束的类型,所述一个或多个第二波束的类型包括以下至少一项:所述用于上行和下行传输的第二波束,所述用于上行或下行传输的第二波束,所述用于上行传输的第二波束,以及所述用于下行传输的第二波束。
结合第四方面,在第四方面的某些实现方式中,所述第二MAC CE信令的第二字段用于确定所述一个或多个第二波束的类型,所述一个或多个第二波束的类型包括以下至少一种:所述用于上行传输的第二波束,以及所述用于下行传输的第二波束。
结合第四方面,在第四方面的某些实现方式中,所述第二MAC CE信令还包括所述一个或多个第二波束的索引;或,所述第二MAC CE信令还包括一个位图,所述一个位图用于指示一个或多个所述第二波束。
结合第四方面,在第四方面的某些实现方式中,所述第二MAC CE信令包括一种或两种所述一个或多个第二波束,所述第二MAC CE信令的第三字段用于确定所述第二MAC CE信令包括的所述一个或多个第二波束为一种或两种。
结合第四方面,在第四方面的某些实现方式中,当所述第二MAC CE信令包括两种所述一个或多个第二波束时,所述两种所述一个或多个第二波束分别为:所述用于上行传输的第二波束以及所述用于下行传输的第二波束。
结合第四方面,在第四方面的某些实现方式中,所述第二MAC CE信令的第一比特用于指示所述用于上行传输的第二波束,所述第二MAC CE信令的第二比特用于指示所述用于下行传输的第二波束;或,所述第二MAC CE信令的第一比特用于指示所述用于下行传输的第二波束,所述第二MAC CE信令的第二比特用于指示所述用于上行传输的第二波束。
结合第四方面,在第四方面的某些实现方式中,所述第二MAC CE信令的第三字段用于确定所述第二MAC CE信令的第二比特是否存在。
结合第四方面,在第四方面的某些实现方式中,所述第二MAC CE信令的第四字段用于确定所述第二MAC CE信令的第一比特指示的是所述用于上行传输的第二波束还是 所述用于下行传输的第二波束。
第五方面,提供一种通信装置,所述通信装置用于执行上述第一方面至第四方面提供的通信方法。具体地,所述通信装置可以包括用于执行上述第一方面至第四方面提供的通信方法的模块。
第六方面,提供一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面至第四方面以及上述第一方面至第四方面中任一种可能实现方式中的通信方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合,所述通信接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为芯片或芯片系统。当该通信装置为芯片或芯片系统时,所述通信接口可以是输入/输出接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片或芯片系统。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第七方面,提供一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面以及第二方面中任一种可能实现方式中的通信方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合,所述通信接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。
在一种实现方式中,该通信装置为网络设备。当该通信装置为网络设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为芯片或芯片系统。当该通信装置为芯片或芯片系统时,所述通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片或芯片系统。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第八方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置实现上述第一方面至第四方面,以及上述第一方面至第四方面的任一可能的实现方式中的通信方法。
第九方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置实现上述第一方面至第四方面,以及上述第一方面至第四方面的任一可能的实现方式中的通信方法。
第十方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得通信装置实现上述第一方面至第四方面提供的通信方法。
第十一方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得通信装置实现上述第一方面至第四方面提供的通信方法。
第十二方面,提供了一种通信系统,包括前述的网络设备和终端设备。
附图说明
图1示出了适用于本申请实施例的无线通信系统100的一示意图。
图2示出了适用于本申请实施例的无线通信系统200的一示意图。
图3示出了适用于本申请实施例的用于激活TCI的MAC CE结构300的一示意图。
图4示出了适用于本申请实施例的用于波束指示的方法400的一示例图。
图5示出了本申请实施例提供的无线通信的方法500的一种示意性流程图。
图6示出了适用于本申请实施例的第一MAC CE信令的第一字段的位置600的一示意图。
图7示出了适用于本申请实施例的第一MAC CE信令的第二字段的位置700的一示意图。
图8示出了适用于本申请实施例的第一MAC CE信令的第三字段的位置800的一示意图。
图9示出了本申请实施例提供的无线通信的方法900的一种示意性流程图。
图10示出了适用于本申请实施例的第二MAC CE信令的第二字段的位置900的一示意图。
图11示出了适用于本申请实施例的第二MAC CE信令的第三字段的位置1000的一示意图。
图12示出了本申请实施例提供的无线通信的方法1200的一种示意性流程图。
图13示出了本申请实施例提供的无线通信的方法1300的一种示意性流程图。
图14示出了本申请实施例提供的一种通信装置1400的示意性框图。
图15示出了本申请实施例提供的另一种通信装置1500的示意性框图。
图16示出了本申请实施例提供的另一种通信装置1600的示意性框图。
图17示出了本申请实施例提供的另一种通信装置1700的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)系统或新无线(new radio,NR)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)等。
为便于理解本申请实施例,首先结合图1和图2详细说明适用于本申请实施例的通信系统。
图1是适用于本申请实施例的无线通信系统100的一示意图。如图1所示,该无线通信系统100可以包括至少一个网络设备,例如图1所示的网络设备111,该无线通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备121与终端设备122。网络 设备和终端设备均可配置多个天线,网络设备与终端设备可使用多天线技术通信。
图2是适用于本申请实施例的无线通信系统200的一示意图。如图2所示,该无线通信系统200可以包括至少一个网络设备,例如图2所示的网络设备211、212、213,该无线通信系统200还可以包括至少一个终端设备,例如图2所示的终端设备221。网络设备和终端设备均可配置多个天线,网络设备与终端设备可使用多天线技术通信。
还应理解,该无线通信系统中的网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(Radio Network Controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU),无线保真(Wireless Fidelity,WIFI)系统中的接入点(Access Point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,简称AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
还应理解,该无线通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。
为便于理解本申请实施例,下面首先对本申请中涉及的几个术语做简单介绍。
1、波束
波束在NR协议中的体现可以是空域滤波器(spatial domain filter),或者称为空间滤 波器(spatial filter),或者称为空域参数(spatial domain parameter),空间参数(spatial parameter),空域设置(spatial domain setting),空间设置(spatial setting),或准共址(Quasi-colocation,QCL)信息,QCL假设,QCL指示等。波束可以通过传输TCI-state参数来指示,或者通过spatial relation参数来指示。因此,本申请中,波束可以替换为空域滤波器,空间滤波器,空域参数,空间参数,空域设置,空间设置,QCL信息,QCL假设,QCL指示,TCI-state(包括上行TCI-state,下行TCI-state),空间关系等。上述术语之间也相互等效。波束也可以替换为其他表示波束的术语,本申请在此不作限定。
用于发送信号的波束可以称为发送波束(Transmission beam,Tx beam),也可以称为空域发送滤波器(Spatial domain transmission filter),空间发送滤波器(Spatial transmission filter),空域发送参数(Spatial domain transmission parameter)或者空间发送参数(Spatial transmission parameter),空域发送设置(Spatial domain transmission setting)或者空间发送设置(Spatial transmission setting)。下行发送波束可以通过TCI-state来指示。
用于接收信号的波束可以称为接收波束(Reception beam,Rx beam),也可以称为空域接收滤波器(Spatial domain reception filter),空间接收滤波器(Spatial reception filter),空域接收参数(Spatial domain reception parameter)或者空间接收参数(Spatial reception parameter),空域接收设置(Spatial domain reception setting)或者空间接收设置(Spatial reception setting)。上行发送波束可以通过空间关系,或者上行TCI-state,或者SRS资源(表示使用该SRS的发送波束)来指示。因此,上行波束还可以替换为SRS资源。
发送波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。
此外,波束可以是宽波束,或者窄波束,或者其他类型的波束。形成波束的技术可以是波束赋形技术或者其他技术。波束赋形技术具体可以为数字波束赋形技术、模拟波束赋形技术或者混合数字/模拟波束赋形技术等。
波束一般和资源对应,例如进行波束测量时,网络设备通过不同的资源来测量不同的波束,终端设备反馈测得的资源质量,网络设备就知道对应的波束的质量。当数据传输时,波束信息也是通过其对应的资源来进行指示的。例如,网络设备通过DCI中的TCI字段,来指示终端设备物理下行共享信道(Physical downlink sharing channel,PDSCH)波束的信息。
在可能实现的一种方式中,将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束内可以包括一个或者多个天线端口,用于传输数据信道、控制信道和探测信号等。形成一个波束的一个或者多个天线端口也可以看作是一个天线端口集。
在本申请中,若未做出特别说明,波束是指网络设备发送的波束。在波束测量中,网络设备发送的每一个波束都对应一个资源,因此,可以根据资源的索引确定该资源对应的波束。
2、TCI-state(用于指示下行波束)
网络设备可以生成不同的波束,指向不同的传输方向。在下行数据传输中,当网络设备使用一个特定的波束向终端设备发送数据时,需要通知终端设备其使用的发送波束的信息,由此,终端设备才能使用与该发送波束相对应的接收波束来接收网络设备发送的数据。在3GPP R15/R16协议中,网络设备通过DCI中的TCI字段向终端设备指示其使用的发送 波束的相关信息。具体的,TCI字段大小为3比特,可以具体表示8个不同的字段值(codepoint)。TCI字段的每个值对应一个TCI-state的索引,一个TCI-state索引可以唯一标识一个TCI-state。一个TCI-state包括若干参数,通过这些参数可以确定发送波束的相关信息。TCI-state是由网络设备配置给各个终端设备的,TCI-state的结构如下所示:
Figure PCTCN2020121989-appb-000001
每个TCI-state包括一个自身的索引tci-StateId,和两个QCL-Info。每个QCL-Info包括一个小区(cell)字段和bwp-Id,分别表示该TCI-state应用于哪个cell的哪个带宽部分(Bandwidth part,BWP),即不同cell或相同cell的不同BWP可以配置不同的QCL-Info。QCL-Info还包括一个参考信号(referenceSignal),用于表示与哪个参考信号资源构成准同位(quasi-co-location,QCL)关系。在R15/R16协议中,波束一般是通过其他术语进行代替的。例如,在数据传输和信道测量中,波束都是与参考信号资源对应的,一个波束对应一个参考信号资源。因此,此处表示与哪个参考信号资源构成QCL关系,实质是指与哪个波束构成QCL关系。QCL关系是指两个参考信号资源(或两个天线端口,天线端口和参考信号资源也是一一对应的)具有某些相同的空间参数,具体哪些空间参数相同取决于该QCL-Info的类型,即QCL-Info的另一个字段qcl-Type。qcl-Type可以有四种取值{typeA,typeB,typeC,typeD}。以typeD为例,typeD表示两个参考信号资源具有相同的空间接收参数信息,即两个波束具有相同的接收波束。TCI-state包括的两个QCL-Info中最多只能有一个是TypeD。
下面以一个示例来具体阐述,基于R15/R16协议网络设备是如何通过TCI-state来向一个终端设备指示数据传输波束的接收波束信息的,包括TCI-state的配置,激活和指示。
TCI-state配置:网络设备通过RRC(Radio resource control,资源控制)信令向终端设备配置多个TCI-state。这些TCI-state均包括一个类型为typeD的QCL-Info。网络设备也可以配置不包括类型为typeD的QCL-info的TCI-state,不过这些TCI-state不是用于数据传输波束的指示,故此处不进一步阐述。
TCI-state激活:网络设备配置多个TCI-state后,还需要通过MAC-CE(Medium access control-Control element,介质接入控制-控制单元)激活其中8个TCI-state。这8个TCI-state与DCI中的TCI字段的8个值是一一对应的。即,DCI的TCI字段的8个值对应的是哪8个TCI-state,是通过介质访问控制层MAC控制单元CE信令来确定的。图3适用于本申请实施例的用于激活TCI的MAC CE的一种结构示意图。如图3所示,其中字段T 0至T (N-2)*8+07分别对应第一步配置的索引分别为0至(N-2)*8+7的各个TCI-state,每个字段的大小为1比特,值可以是0或1。取值为1表示激活该TCI-state,取值为0表示不激活该TCI-state。每个MAC CE理论上可以有8个取值为1的激活字段,其余全为0。这8个取值为1的字段对应的TCI-state即为DCI中TCI字段的8个值对应的8个TCI-state。例如,TCI字段的最小值000对应MAC CE中激活的索引最小的TCI-state,以此类推,一一对应。MAC CE的类型有很多,除了用于TCI-state激活的MAC CE,还有许多其他用途的MAC CE。本申请只涉及用于TCI-state/TCI-state组合激活的MAC CE。因此,若无特别说明,本申请所述的MAC CE均指这类MAC CE。
TCI-state指示:网络设备通过DCI中的TCI字段来指示一个具体的TCI-state。例如,网络设备发送给终端设备的DCI中的TCI字段的值为000,表示数据传输波束采用的000对应的那个TCI-state。该TCI-state内的类型为typeD的那个QCL-Info所包含的reference Signal是索引为#1的信道状态信息-参考信号(Channel state information–reference signal,CSI-RS),表示数据传输采用的波束与索引为#1的CSI-RS对应的接收波束是相同的。索引为#1的CSI-RS对应的接收波束可通过波束测量流程来确定,对终端设备来说是已知的。因此,通过TCI字段的具体取值,终端设备就可以确定数据传输波束对应的接收波束,从而采用相应的接收波束来接收数据。
3、Spatial relation(用于指示上行波束)
在当前协议中,上行传输的发送波束通过spatial relation来指示,其功能类似于TCI-state,用于告知终端设备采用什么发送波束来进行上行传输。
Spatial relation也需要先通过RRC信令进行配置。其配置结构如下所示:
Figure PCTCN2020121989-appb-000002
包括spatial relation的id,小区id,目标参考信号资源,路损测量参考信号,功控参数等。其中,目标参考信号资源(可以是SRS/SSB/CSI-RS中的一个)用于指示对应的上行波束。如果上行传输采用spatial relation#1,该spatial relation#1中包括一个目标参考信号资源#2,则表示采用该上行传输的发送波束是该目标参考信号的发送/接收波束。例如,目标参考信号资源为上行资源SRS时,表示上行传输采用的发送波束是该SRS的发送波束(该SRS的发送波束是已知的)。又例如,目标参考信号资源为SSB/CSI-RS等下行资源,表示上行传输采用的发送波束是该SSB/CSI-RS的接收波束(该SSB/CSI-RS的接收波束是已知的)。
网络设备可以为终端设备配置多个spatial relation。然后通过MAC CE激活其中的一个用于对应的数据传输。上行传输包括物理上行控制信道(physical uplink control channel,PUCCH),探测参考信号(sounding reference signal,SRS),物理上行共享信道(physical uplink sharing channel,PUSCH)等,都需要对应的spatial relation。PUCCH的spatial relation是通过MAC CE信令指示的。SRS的spatial relation也是通过MAC CE信令指示的。PUSCH传输时会关联特定的SRS,并采用该SRS的spatial relation进行传输。
4、panel
Panel是指天线面板,可以是网络设备的天线面板,也可以是终端设备的天线面板。一个天线面板上一般有一个或多个天线,这些天线排列成天线阵列,进行波束赋形,从而形成模拟波束。该天线阵列可以生成指向不同方向的模拟波束。也就是说每个天线面板上都可以形成多个模拟波束,可以通过波束测量来确定该天线面板采用哪个模拟波束是最好的。终端设备可以配备多个天线面板,这些天线面板可以分布在不同的位置,朝向不同的方向,这可以保证无论终端设备朝向哪个方向,都至少有一个天线面板是朝向网络设备的,可以与网络设备进行数据传输。终端设备可以同时开启所有天线面板进行传输。或者,为了降低终端设备功耗,终端设备也可以一次只采用单个天线面板进行传输,其他未使用的天线面板可以进行关闭。终端设备的天线面板处于打开还是关闭状态一般需要通知给网络设备,也就是说,终端设备和网络设备之间一般需要交互天线面板的状态信息。
在本申请实施例中,若未做出特别说明,天线面板均值终端设备的天线面板。天线面板也可以用panel index等来表示。除此之外,也可以通过其他方式来隐含表示天线面板,例如天线面板也可以通过天线端口(如CSI-RS端口,SRS端口,解调参考信号(demodulation reference signal,DMRS)端口,相位跟踪参考信号(phase tracking reference signal,PTRS)端口,CRS端口,时频跟踪参考信号(tracking reference signal,TRS)端口,SSB端口等)或天线端口组来表征,也可以通过资源(如CSI-RS资源,SRS资源,DMRS资源,PTRS资源,小区参考信号(cell reference signal,CRS)资源,时频跟踪参考信号(tracking reference signal,TRS)资源,同步信号和广播信道资源块(Synchronization signal and PBCH Block,SSB)资源等)或资源组来表征,也可以通过某个信道表征(如PUCCH,PUSCH,物理随机接入信道(Physical random access channel,PRACH),物理下行控制信道(Physical downlink sharing channel,PDSCH),物理下行控制信道(Physical downlink control channel,PDCCH),物理广播信道(Physical broadcast channel,PBCH)等),也可以通过波束,QCL,TCI-state,spatial relation或配置在QCL,TCI-state,spatial relation中的某个index来表征。也可以通过波束组,QCL组,TCI-state组,spatial relation组等来表征。也就是说,本申 请中所述的天线面板/panel标识可以换未上述内容的标识。
本申请实施例中,网络设备是一种部署在无线接入网中为终端设备提供无线通信功能的装置。网络设备可以包括各种形式的宏基站,微基站(也称为小站),中继站,接入点等。在采用不同的无线接入技术的系统中,网络设备的名称可能会有所不同,例如GSM(Global System for Mobile Communication,全球移动通信系统)或CDMA(Code Division Multiple Access,码分多址)网络中的BTS(Base Transceiver Station,基站收发信台),WCDMA(Wideband Code Division Multiple Access,宽带码分多址)中的NB(NodeB),LTE(Long Term Evolution,长期演进)中的eNB或eNodeB(Evolutional NodeB)。网络设备还可以是CRAN(Cloud Radio Access Network,云无线接入网络)场景下的无线控制器。网络设备还可以是未来5G网络中的基站设备或者未来演进的PLMN网络中的网络设备。网络设备还可以是可穿戴设备或车载设备。网络设备还可以传输接收节点(Transmission and reception point,TRP)。
本申请实施例中,所涉及到的终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。终端可以是移动站(Mobile Station,MS)、用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(Personal Digital Assistant,简称:PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(Machine Type Communication,MTC)终端等。
5、公共波束
在现有技术中,每个信道都采用单独的波束指示。例如,PDCCH和PDSCH的波束通过TCI-state来指示,PUCCH和PUSCH的波束通过spatial relation来指示。每个信道都有自己对应的波束。在本申请中,定义一种公共波束,同时用于上下行多个信道。
公共波束:多个/多种信道和/或多个/多种参考信号共同采用的同一个波束。所述多个/多种信道/参考信号包括但不限于以下信道/信号中的一个或多个:PDCCH、PDSCH、PUCCH、PUSCH、PRACH、随机接入消息2、随机接入消息3、随机接入消息4、SSB、CSI-RS、DMRS、相位跟踪参考信号(Phase Tracking Reference Signal,PTRS)、TRS、SRS等。
公共波束可以细分为以下类别。若无特别说明,后续提到的公共波束可以指其中任意一种。
上下行公共波束:同时用于上行和下行的一个或多个信道的传输,如PDCCH,PDSCH,PUCCH和PUSCH。
上行公共波束:同时用于上行多个/多种信道的传输,例如PUCCH和PUSCH。
下行公共波束:同时用于下行多个/多种信道的传输,例如PDCCH和PDSCH。
控制信道公共波束:同时用于多个/多种控制信道的传输,所述控制信道包括PDCCH,PUCCH等。
数据信道公共波束:同时用于多个/多种数据信道的传输,所述数据信道包括PDSCH,PUSCH等。
宽公共波束:根据波束覆盖角度,将公共波束分为两类。其中覆盖角度较大的波束称为宽公共波束;
窄公共波束:根据波束覆盖角度,将公共波束分为两类。其中覆盖角度较小的波束称为窄公共波束;
本申请中的公共波束可以是指上述任意一种。也可以指其他类型的公共波束。
公共波束数量
网络设备可以为终端设备配置/激活/指示一个公共波束,所述一个公共波束为上下行公共波束。网络设备可以为终端设备配置/激活/指示多个公共波束,所述多个公共波束为不同类型的公共波束,例如上行公共波束和下行公共波束,或控制信道公共波束和数据信道公共波束。所述多个公共波束也可以同一类型的公共波束,即可以为终端设备配置/激活/指示多个同一类型的公共波束。
公共波束的形式
公共波束可以是一种新定义的结构(不同于现有的TCI-state和spatial relation的结构)。例如,公共波束中包括上下行波束指示的相关信息,包括但不限于以下一种或多种:公共波束ID,逻辑小区ID(cell ID),物理小区ID,频率分量ID(bandwidth part,,BWP)确定上下行波束的参考信号资源,准同位(Quasi colocation,QCL)类型,上行功控相关参数(如路损测量参考信号资源,p0,closedLoopIndex等)。
公共波束的应用范围
公共波束可以是小区级的,即一个共公波束用于一个小区内多个信道的传输。公共波束可以是BWP级的,用于一个BWP内多个波束的传输。公共波束也可以是跨小区的,即用于多个小区的多个信道的传输。所述多个小区可以是一个频段(band)内的多个小区。所述多个小区也可以是跨频段的多个小区。所述公共波束可以是CORESET级的,即该CORESET对应的所有PDCCH,和/或,该CORESET的PDCCH调度的所有PDSCH,和/或,该CORESET的PDCCH调度的所有PUSCH,和/或,该CORESET的PDCCH调度的PDSCH的ACK/NACK传输的PUCCH/PUSCH都采用同一个公共波束。
公共波束也采用TCI-state或spatial relation来表示。例如,下行公共波束通过TCI-state来表示。上行公共波束通过spatial relation来表示。
也就是说,本申请中的公共波束在协议中的体现形式可以是TCI-state或spatial relation,或者其他用于指示上/下行传输波束的参数。
相对于公共波束,R15和R16协议中定义的波束,如TCI-state,spatial relation,spatial filter,被称为普通波束。普通波束用于单个信道的传输,不同同时用于多个信道或多个参考信号的传输。网络设备需要为各个信道单独指示一个普通波束来进行传输。
图4是适用于本申请实施例的用于波束指示的方法的示例图。如图4所示,网络设备通过不同的信令为PDCCH,PDSCH,PUCCH,PUSCH分别指示波束。由于每种信道都采用不同的信令,导致较大的信令开销。然而,通常情况下,多个不同的信道对应的波束往往是同一个,没必要分开进行单独指示,浪费信令开销。
有鉴于,本申请提供一种方案,通过高效的上下行波束指示,避免复杂冗余的配置/指示信令。
应理解,本申请实施例中的第一波束,第二波束,第三波束以及第四波束均指公共波束。
图5为适用于本申请实施例提供的无线通信的方法的一种示意性流程图。方法500可 以包括如下步骤。其中,第一波束为公共波束。
在本申请的实施例中,以用于上行和下行传输的第一波束、用于上行或下行传输的第一波束、用于上行传输的第一波束以及用于下行传输的第一波束这四种公共波束类型为例进行阐述,但是,并不排除其他类型的公共波束。本申请的实施例也适用于其他类型的公共波束的区分。除了区分公共波束,本申请的实施例也可以用于区分普通波束的激活信令,只需要将公共波束替换普通波束即可。
应理解,在本申请的实施例中,用于上行和下行传输的第一波束等同于上下行公共波束,用于上行或下行传输的第一波束等同于上下行独立公共波束,用于上行传输的第一波束等同于上行公共波束,用于下行传输的第一波束等同于下行公共波束。
S501、发送第一信息。
示例地,网络设备会向终端设备发送第一信息,该第一信息用于配置第一波束集合的参数,第一波束集合中包括至少一个第一波束,该第一波束为至少一个信道,和/或,至少一个参考信号共用的波束,即,第一波束为公共波束。网络设备可以通过RRC信令配置一些与第一波束相关的参数,如第一波束的数量,类型等。
在可能实现的一种方式中,网络设备可以通过第一信息配置第一波束集合的第一波束的模式。例如,至少可以配置两种公共模式:上行和下行传输使用相同的第一波束,上行和下行传输使用独立的第一波束。上行和下行传输使用相同的第一波束是指上行传输和下行传输采用相同的第一波束。例如,一个或多个上行信道和一个或多个下行信道可以采用同一个第一波束。上行/下行传输使用独立的第一波束是指上行传输和下行传输使用不同的公共波束。例如,一个或多个上行信道采用一个上行第一波束,一个或多个下行信道采用一个下行第一波束。上述一个或多个上行信道可以是PUSCH信道、PUCCH信道,PRACH信道中的至少一个信道。所述一个或多个下行信道可以是PDSCH信道、PDCCH信道中的至少一个信道。网络设备可以通过RRC信令将第一波束的模式配置成上述至少一种模式,也可以为每种模式配置一个开关,开关配置为开启时表示采用这种公共波束的模式。
在可能实现的另一种方式中,网络设备可以通过第一信息配置第一波束集合的数量。例如,网络设备可以通过第一信息配置一个或多个第一波束集合,每个第一波束集合包括一个或多个第一波束子集,每个第一波束子集包括一个或多个第一波束。每个第一波束集合或第一波束子集对应一种信道,如PDCCH信道,PDSCH信道,PUCCH信道,PUSCH信道,上行信道,下行信道,控制信道,数据信道等。或者,每个波束集合或波束子集对应一种参考信号,如CSI-RS,SSB,SRS。
其中,上述CSI-RS可以具体是配置了repetition参数的resource set中的CSI-RS;repetition参数配置为‘on’的resource set中的CSI-RS,repetition参数配置为“off”的resource set中的CSI-RS;配置了trs-info参数的resource set中的CSI-RS;没有配置repetition参数和trs-info参数的resource set中的CSI-RS;用于移动性测量的CSI-RS;未配置波束信息的CSI-RS;配置了波束信息的CSI-RS;周期性的CSI-RS;半持续(Semi-persistent,SP)的CSI-RS;非周期性的CSI-RS;用于参考信号接收功率(Reference signal receiving power,RSRP)/信号干扰噪声比(Signal to Interference plus Noise Ratio,SINR)测量的CSI-RS,用于信道状态信息参考信号/信道质量标识(Channel Quality Indicator,CQI)/预编码矩阵标识 (Precoding Matrix Indicator,PMI)/信道的秩的标识(Rank Indicator,RI)测量的CSI-RS。
其中,上述SRS可以具体是密码本(codebook)的SRS,非密码本(nonCodebook)的SRS,波束管理(beam management)的SRS,天线开关(antenna switch)的SRS,周期性的SRS,半持续的SRS,非周期的SRS,未配置波束信息的SRS,配置波束信息的SRS,未配置路损测量资源的SRS,配置了路损测量资源的SRS。
在可能实现的另一种方式中,网络设备还可以通过第一信息配置第一波束集合的第一波束的标识。
S502、配置第一波束集合的参数。
示例地,终端设备在接收第一信息之后,会根据第一信息配置第一波束集合的参数。其中,参数可以包括第一波束集合的第一波束的模式、数量以及标识中的至少一项。
S503、发送第二信息。
示例地,网络设备会向终端设备发送第二信息,终端设备在根据第一信息配置第一波束集合的参数之后,通过接收第二信息,确定第一波束子集。例如,网络设备可以通过信令(如MAC CE信令)确定第一波束子集的信息。第一波束子集包括一个或多个第一波束。由于存在多种不同类型的公共波束,例如,用于上行和下行传输的第一波束,用于上行或下行传输的第一波束,用于上行传输的第一波束类型以及用于下行传输的第一波束,终端设备需要通过信令确定第二信息指示的第一波束子集的第一波束的类型是哪种公共波束。第二信息指示第一波束子集,也可以认为是激活第一波束子集。
S504、确定第一波束子集。
示例地,终端设备在接收到第二信息之后,会根据第二信息确定第一波束子集。
在可能实现的一种方式中,第二信息通过第一MAC CE信令承载,根据第一MAC CE信令对应的LCID确定第二信息指示的第一波束子集中的第一波束的类型,该类型为以下至少一种:用于上行和下行传输的第一波束,用于上行传输的第一波束,以及用于下行传输的第一波束。
其中,不同类型的公共波束对应的MAC CE信令采用不同的LCID,终端设备可以通过LCID判断第一MAC CE信令指示的该第一波束子集的第一波束的类型。
在可能实现的另一种方式中,第二信息通过第一MAC CE信令承载,根据第一MAC CE信令对应的LCID确定第一波束子集的第一波束的类型,该类型为以下至少一种:用于上行和下行传输的第一波束,用于上行或下行传输的第一波束。其中,不同类型的公共波束对应的MAC CE信令采用不同的LCID,终端设备可以通过LCID判断第一MAC CE信令指示的该第一波束子集的第一波束的类型。
在可能实现的另一种方式中,终端设备可以根据第一MAC CE的第一字段确定第一波束子集的第一波束的类型,该第一波束子集的第一波束的类型为以下至少一种:用于上行和下行传输的第一波束,用于上行传输的第一波束,以及用于下行传输的第一波束。
具体地,终端设备可以根据第一MAC CE信令中的第一字段来区分第一波束子集的第一波束的类型,每个字段值表示一种公共波束类型,其中,第一字段可以是2比特。例如,可以通过第一字段来区分用于上行和下行传输的第一波束,用于上行传输的第一波束,以及用于下行传输的第一波束。图6为适用于本申请实施例的第一MAC CE信令的第一字段的位置的一示意图,该第一字段可以是第一MAC CE信令中第一个字节的前2个比 特或最后2个比特,或者第二个字节的前2个比特或最后2个比特,或者第三个字节的前2个比特或最后2个比特。该2比特也可以是其中任意两个字节中各取一个比特组成,譬如,取两个字节的第一个比特或最后一个比特组成,该两个字节可以是第一和第二字节,第二和第三字节,第三和第四字节,最后两个字节,或其他相邻的两个字节等。如图6所示,采用第二和第三字节的第一个比特组成该2比特。第一MAC CE信令包括的公共波束还可以是用于上行传输的第一波束和用于下行传输的第一波束,即,同时包括用于上行传输的第一波束和用于下行传输的第一波束,可以通过一个字段,如上述第一字段,来指示这种类型。当同时包括用于上行传输的第一波束和用于下行传输的第一波束时,可以采用两部分比特来分别指示用于上行传输的第一波束和用于下行传输的第一波束。两部分比特可以用于指示用于上行和下行传输的第一波束的波束ID,也可以是两个位图,分别指示用于上行传输的第一波束与用于下行传输的第一波束。
其中,当采用公共波束ID来指示公共波束时,可以在最后一个公共波束ID所在的字节中,通过1个比特指示是否存在下一个公共波束ID。如果不存在,则表示当前公共波束ID是激活的公共波束中最后一个。
在可能实现的另一种方式中,通过网络设备配置的第一波束的模式来确定第二信息指示的第一波束子集的第一波束的类型。具体地,如果第一波束集合的第一波束的模式为上行和下行传输使用相同的第一波束,则第二信息指示的第一波束子集的第一波束的类型为用于上行和下行传输的第一波束。如果第一波束集合的第一波束的模式为上行和下行传输使用独立的第一波束,则第二信息指示的第一波束子集的第一波束的类型为用于上行或下行传输的第一波束。具体是用于上行传输的第一波束还是用于下行传输的第一波束还不能确定,可以进一步结合其他方法来确定。
在可能实现的另一种方式中,终端设备可以根据发送的第四信息确定第一波束子集的第一波束的类型,该第一波束子集的第一波束的类型为以下至少一种:用于上行和下行传输的第一波束,用于上行传输或下行传输的第一波束,用于上行传输的第一波束,以及用于下行传输的第一波束。
具体地,第四信息可以为终端设备的能力上报信息,即,终端设备通过发送上报能力信息,确定第一波束子集的第一波束的类型。例如,如果终端设备上报支持上行和下行传输使用相同的第一波束或上报上行波束和下行波束存在互易性,可选地,则第二信息指示的第一波束子集的第一波束的类型为用于上行和下行传输的第一波束;如果终端设备上报不支持上行和下行传输使用相同的第一波束,或上报上行波束和下行波束不存在互易性,可选地,则第二信息指示的第一波束子集的第一波束的类型为用于上行或下行传输的第一波束,即,激活信令激活的是用于上行传输的第一波束或用于下行传输的第一波束。具体是用于上行传输的第一波束还是用于下行传输的第一波束还不能确定,可以进一步结合其他方法来确定。
应理解,终端设备也可以不进行能力上报,直接确定第一波束子集的第一波束的类型,本终端设备也可以不根据上行波束与下行波束是否具有互易性,直接确定第一波束子集的第一波束的类型,本申请在此不做限定。
在可能实现的另一种方式中,终端设备可以通过第二信息中一组第一波束子集的第一波束的索引,确定第一波束子集的第一波束的类型,该类型为以下至少一种:用于上行和 下行传输的第一波束,用于上行传输或下行传输的第一波束,用于上行传输的第一波束,以及用于下行传输的第一波束。
在可能实现的另一种方式中,终端设备可以通过第二信息中的一个位图确定第一波束子集的第一波束的类型,该类型为以下至少一种:用于上行和下行传输的第一波束,用于上行或下行传输的第一波束,用于上行传输的第一波束,以及用于下行传输的第一波束。
当已经确定第二信息指示的第一波束子集的第一波束是用于上行传输的第一波束,或用于下行传输的第一波束中的一种时,可以通过以下一种或多种方法,进一步确定该第一波束子集的第一波束的类型。
在可能实现的一种方式中,根据第一MAC CE信令对应的LCID确定该第一波束子集的第一波束的类型为用于上行传输的第一波束,还是用于下行传输的第一波束。例如,结合上面的方法,通过终端上报具体上/下行波束互易性,或根据网络设备配置第一波束集合的第一波束的模式为上行和下行使用独立的第一波束,判断第一MAC CE激活的是用于上行或下行传输的第一波束,此时,可以进一步结合上述第一MAC CE的LCID判断具体是用于上行传输的第一波束,还是用于下行传输的第一波束。
在可能实现的另一种方式中,一个MAC CE只能激活用于上行传输的第一波束和用于下行传输的第一波束中的一种。通过采用MAC CE中的第二字段来区分该MAC CE激活的是用于上行传输的第一波束还是用于下行传输的第一波束,其中,第二字段可以为1比特。该第二字段可以是MAC CE中第一个字节的第一个比特或最后1个比特,或者第二个字节的第一个比特或最后1个比特,或者第三个字节的第一个比特或最后1个比特。图7为适用于本申请实施例的第一MAC CE信令的第二字段的位置的一示意图,如图7所示,采用第二个字节的第一个比特(阴影部分)来区分该MAC CE激活的是用于上行传输的第一波束还是用于下行传输的第一波束。
上述MAC CE也可以用于激活用于上行和下行传输的第一波束。也就是说,该MAC CE对应的LCID表示用于上行和下行传输的第一波束时,或者第一波束的模式为上行和下行传输使用相同的第一波束时,终端设备可以判断该MAC CE中激活的公共波束是用于上行和下行传输的第一波束。当用于上行和下行传输的第一波束激活时,上述1比特没有具体含义(因为不需要区分上下行),终端设备可以忽略该1比特,或者该1比特可以用于其他指示信息,具体指示什么信息本申请在此不做限定。
在可能实现的另一种方式中,终端设备可以根据第二信息的第三字段与第四字段确定第一波束子集的第一波束的类型,该第一波束子集的第一波束的类型为以下至少一种:用于上行传输的第一波束,以及用于下行传输的第一波束。
具体地,终端设备可以通过MAC CE信令中的第三字段指示激活的是用于上行传输的第一波束和用于下行传输的第一波束中的一种还是两种,其中,第三字段可以为1比特。例如,第一MAC CE信令中包括两部分比特,为第一比特与第二比特,第一比特和第二比特都包括多个字节,每个字节包括8个比特。第一比特用于指示用于上行传输的第一波束,第二比特用于指示用于下行传输的第一波束;或,第一比特用于指示用于下行传输的第一波束,第二比特用于指示用于上行传输的第一波束。第一比特总是存在,第二比特是否存在可以通过第三字段来指示。第三字段可以是MAC CE信令中第一个字节的第一个比特或最后1个比特,或者第二个字节的第一个比特或最后1个比特,或者第三个字节的 第一个比特或最后1个比特,或者第一比特中第一个字节的第一个比特或最后1个比特,或者第一比特中最后一个字节的第一个比特或最后1个比特。图8为适用于本申请实施例的第一MAC CE信令的第三字段的位置的一示意图。如图8所示,第三字段为第一比特中第一个字节的第一个比特(阴影部分)。上述第一比特和第二比特的含义可以是:第一比特指示用于上行传输的第一波束,第二比特指示用于下行传输的第一波束;或者,第一比特指示用于下行传输的第一波束,第二比特指示用于上行传输的第一波束,可以通过第三字段确定第二比特是否存在,以此确定MAC CE信令激活的是用于上行传输的第一波束和用于下行传输的第一波束中的一种还是两种。例如,第三字段值为0则表示第二比特不存在,第三字段值为1则表示第二比特存在。
当第二比特不存在时,需要区分第一比特对应的是哪种类型的第一波束,即,是用于上行传输的第一波束还是用于下行传输的第一波束。当第二比特存在时,也需要区分第一比特和第二比特分别对应的第一波束的类型。此时,可以通过第四字段来区分。第四字段可以用于指示第一比特对应的第一波束的类型,或者用于指示第二比特对应的第一波束的类型。例如,第四字段用于指示第一比特对应的用于上行传输的第一波束,那么第二比特对应的就是用于下行传输的第一波束;如果第四字段用于指示第一比特对应的是用于下行传输的第一波束,那么,第二比特对应的就是用于上行传输的第一波束。其中,第四字段可以为1比特。换句话说,通过第四字段确定指示的是用于上行传输的第一波束还是用于下行传输的第一波束。第四字段可以是MAC CE信令额中第一个字节的第一比特或最后1个比特,或者第二个字节的第一个比特或最后1个比特,或者第三个字节的第一个比特或最后1个比特,或者第一比特中第一个字节的第一个比特或最后1个比特,或者第一比特中最后一个字节的第一个比特或最后1个比特。可选地,第一比特和第二比特可以包括的是第一波束的波束ID,也可以是位图,每个位图用于指示激活的是用于上行传输的第一波束还是用于下行传输的第一波束,例如比特值为1表示该比特对应的第一波束的类型的第一波束被激活。
上述MAC CE信令也可以用于激活用于上行和下行传输的第一波束。也就是说,当该MAC CE信令确认激活的为用于上行和下行传输的第一波束时,或者当第一波束的模式为上行和下行传输使用相同的第一波束时,终端设备可以判断该MAC CE信令中激活的第一波束是用于上行和下行传输的第一波束。当用于激活用于上行和下行传输的第一波束时,上述第三字段和第四字段没有具体含义(因为不需要区分用于上行传输的第一波束与用于下行传输的第一波束,也没有第二比特),终端设备可以忽略第三字段和第四字段,或者第三字段和第四字段可以用于其他指示信息,具体指示什么信息本申请在此不做限定。
应理解,上述各种确定第一波束子集的第一波束的类型的方法可以进行自由组合,例如,首先通过第一波束集合的第一波束的模式为上行和下行传输使用独立的第一波束,可以确定第一波束的类型为用于上行传输的第一波束或用于下行传输的第一波束;进一步地,通过结合承载第二信息的第一MAC CE信令的LCID或MAC CE信令中的字段确定该第一波束子集的第一波束是用于上行传输的第一波束还是用于下行传输的第一波束。
在多站传输场景下,两个TRP都要指示公共波束。两个TRP的公共波束也需要MAC CE信令来指示。即,为两个TRP各自激活一组用于上行传输的第一波束,或者为两个TRP 各自确定一组用于下行传输的第一波束。当两个TRP各自激活一组用于上行传输的第一波束时,或者当两个TRP各自激活一组用于下行传输的第一波束时,可以使用上述激活用于上行和下行的传输第一波束的方法,包括判断第一波束类型的方法和MAC CE信令,只需要将上述方法/MAC CE信令中的用于上行/下行传输的第一波束分别替换为第一个TRP/第二个TRP的公共波束即可。例如,通过LCID或MAC CE中的字段,判断该MAC CE中指示的第一波束的类型为第一个TRP的公共波束还是第二个TRP的公共波束,或者判断该MAC CE中指示的第一波束的类型是一个TRP的公共波束还是两个TRP的公共波束。
也可以通过一个MAC CE同时激活两个TRP的用于上行传输的第一波束和用于下行传输的第一波束,即MAC CE中可以最多包括4组公共波束。这4组公共波束对应4部分比特,每部分比特指示一组第一波束的ID,或者每部分比特是一个比特位图,用于激活一组第一波束。可以用一个字段来指示是否存在第二个TRP的第一波束。或者,用一个字段来指示是否存在用于上行传输的第一波束或用于下行传输的第一波束。或者,用一个字段来指示是否存在某一个(第一个或第二个)TRP的用于上行传输的第一波束或用于下行传输的第一波束。在可能实现的另一种方式中,终端设备可以根据第一波束的模式确定一组所述第一波束的第一波束的类型,该类型包括以下至少一种:用于上行和下行传输的第一波束,用于上行或下行传输的第一波束,用于上行传输的第一波束,以及用于上行传输的第一波束。
S505、发送第三信息。
示例地,终端设备根据第二信息激活第一波束子集后,网络设备会发送第三信息,该第三信息用于指示一个或多个第一波束的信息。
在可能实现的一种方式中,第三信息可以是用于指示第一波束的下行控制信息DCI。
在可能实现的另一种方式中,第三信息承载在DCI中,该DCI通过一个专门的无线网络临时标识RNTI加扰。当终端设备收到一个通过该专门的RNTI加扰的DCI时,即可确定该DCI是用于指示第一波束。
在可能实现的另一种方式中,第三信息可以是通过公用的RNTI加扰的用于指示第一波束的DCI。
S506、确定第一波束。
示例地,终端设备接收第三信息后,根据第三信息确定第一波束。
可选地,如果只存在一个第一波束时,终端设备在接收第一信息后,可以直接接收第三信息,无需通过第二信息的指示,确定第一波束。
在可能实现的一种方式中,第三信息可以为用于指示第一波束的DCI。该下行控制信息的格式可以是格式0-3,或格式1-3,或格式2-6,或格式4。例如,格式0-3指示用于上行传输的第一波束,格式1-3指示用于下行传输的第一波束。格式2-6或格式4指示用于上行和下行传输的第一波束。其中,所述用于指示第一波束的下行控制信息的格式的字段包括但不限于以下一种或多种:
用于区分第一波束类型的字段,如区分用于上行传输的第一波束和用于下行传输的第一波束的字段,该字段可以复用DCI格式的标识的字段;或,用于指第一DCI的功能的字段,第一DCI的功能包括以下至少一项:用于指示第一波束,用于指示调度数据,用于 指示第一波束与调度数据;或,用于指示第一波束标识的字段,可以包括一个公共波束字段,用于指示上行和下行使用相同的第一波束、用于上行传输的第一波束和用于下行传输的第一波束中的一种;也可以包括两个公共波束字段,指示用于上行传输的第一波束和用于下行传输的第一波束。上述多个公共波束字段也可以是一个字段的两部分。包括的第一波束指示字段数与采用的RRC配置的第一波束集合的第一波束的模式/终端能力上报是否满足上/下行波束互易性有关。当采用RRC配置第一波束集合的第一波束的模式为上行和下行传输使用相同的第一波束时,该DCI中只有一个第一波束指示字段;当采用RRC配置第一波束集合的第一波束的模式为上行和下行传输使用独立的第一波束时,该DCI中有两个第一波束指示字段;或者,当终端能力上报满足上/下行波束互易性时,该DCI中只有一个第一波束指示字段;当终端能力上报不满足上/下行波束互易性时,则DCI中有两个第一波束指示字段;
激活或去激活字段,所述激活或去激活字段用于指示所述第一DCI用于激活所述第一波束或去激活所述第一波束;
载波字段,所述载波字段用于指示以下至少一项:所述第一波束对应的载波,所述第一波束对应的载波组,所述第一波束对应的载波的载波组;该字段的功能可以是多种:当该DCI调度数据时,该Carrier字段用于指示被调度的载波;当没有调度数据时,该Carrier字段用于表示该DCI指示的是哪个载波的公共波束。DCI是否有调度数据,可以通过DCI中一些字段的值来判断,例如频域资源分配字段的值为全0或全1;
频段字段,所述频段字段用于指示第一波束对应的频段;
带宽部分BWP字段,表示DCI指示的第一波束用于哪个BWP,即指示的是哪个BWP的第一波束。该字段的功能可以是多种:当该DCI调度数据时,该BWP字段用于指示被调度的载波;当没有调度数据时,该BWP字段用于表示该DCI指示的是哪个BWP的第一波束。DCI是否有调度数据,可以通过DCI中一些字段的值来判断,例如频域资源分配字段的值为全0或全1;
物理上行控制信道PUCCH资源指示字段,所述PUCCH资源指示字段用于指示反馈所述第一DCI的ACK/NACK信息所采用的PUCCH资源;
HARQ反馈时间指示字段,所述HARQ反馈时间指示字段用于指示反馈所述第一DCI的ACK/NACK信息与第一DCI之间的发送时间间隔;或者,HARQ反馈时间指示字段用于指示反馈第一DCI的ACK/NACK信息与第一DCI调度的PDSCH之间的发送时间间隔。可以根据DCI是否调度了PDSCH确定该字段指示的是上述哪一种。具体的,DCI未调度数据时,表示第一种;DCI调度了数据时,表示第二种。
第一DCI指示一个第一波束,表示对该第一波束进行激活或去激活。具体是激活还是去激活,可以通过以下方法中的任意一种来判断。
在可能实现的一种方式中,通过DCI中的字段来判断该DCI是用于激活还是去激活第一波束。所述字段可以是上述激活或去激活字段,也可以复用其他字段,包括以下任意一种或多种:频域资源分配字段,时域资源分配字段,调制与编码策略MCS字段,新数据信息NDI字段,冗余度RV字段,混合自动重传请求HARQ进程字段,数据适配器接口DAI字段,物理上行控制信道PUCCH资源字段,HARQ反馈时间指示字段,天线端口,解调参考信号DMRS序列初始化字段。
在可能实现的另一种方式中,终端设备可以通过上述DCI与接收上述DCI之前接收的最近一次的DCI进行对比,即,在时间上相邻与上述DCI且在接收上述DCI之前的DCI,当两个DCI指示的第一波束相同时,且两个DCI的NDI字段的值发生翻转时,上述DCI用于指示去激活第一波束;当两个DCI指示的第一波束不同时,上述DCI用于指示激活第一波束。或者,不结合NDI指示,当两个DCI指示的第一波束相同时,上述DCI用于指示去激活第一波束;当两个DCI指示的第一波束不同时,上述DCI用于指示激活第一波束。
第一DCI指示一个第一波束,也可以仅表示对该第一波束进行激活,而不需要通过DCI对齐进行去激活。对于激活的第一波束,可以通过一个计时器来对齐进行去激活。对于一个激活的第一波束,一旦激活后就启动一个计时器,该计时器持续时间达到第一时长后,该第一波束就被去激活。具体地,在上述DCI激活第一波束之后,第一波束在第一时刻开始的第一时长内生效,其中,第一时刻包括:DCI发送的时隙或符号,DCI对应的HARQ反馈消息发送的时隙或符号,以及DCI对应的HARQ反馈消息发送的时隙或符号与K毫秒之和,其中,K可以为协议规定的值,例如,与子载波间隔有关的值。K也可以是DCI中指示的值,K也可以是大于或者等于1的整数,本申请在此不做限定。第一时长可以通过DCI指示,可以通过终端设备上报,RRC信令配置,也可以为系统预配置,本申请在此不做限定。
收到指示第一波束的DCI后,网络设备需要反馈ACK/NACK信息给网络设备。根据该DCI在指示第一波束的同时是否还调度了数据传输,终端设备采用不同的ACK/NACK反馈机制。例如,当DCI包括数据传输的调度信息时,终端设备发送数据的ACK/NACK信息给网络设备。具体的,在时隙n+k发送ACK/NACK给网络设备。其中n为PDSCH发送的时隙,k为DCI中指示的PDSCH和HARQ反馈的时间间隔。当DCI不包括数据传输的调度信息时,终端设备发送DCI的ACK/NACK信息给网络设备。具体地,在时隙n+k发送ACK/NACK给网络设备。其中n为DCI发送的时隙,k为DCI中指示的DCI和HARQ反馈的时间间隔。其中,可以通过第一条件确定DCI中是否包括数据传输的调度信息,该第一条件可以包括以下一项或多项的组合:DCI的频域资源分配字段的值为0,以及DCI的时域资源分配字段的值为0。反馈ACK的PUCCH可以是DCI中指示的PUCCH,也可以是预配置的PUCCH,本申请在此不做限定。如果DCI指示第一波束,并且没有调度数据,那么针对该DCI反馈ACK给基站。即,如果成功接收上述DCI,反馈ACK。如果DCI指示第一波束,且调度了数据,不用专门针对DCI反馈ACK,因为PDSCH本身就需要反馈ACK/NACK。可以通过一个字段来指示是否调度了数据,或者通过一个字段来指示该DCI是否指示第一波束。所述一项或多项的组合可以是对多项进行逻辑与运算,或逻辑或运算,或进行包含逻辑与和逻辑或的混合运算。
在可能实现的另一种方式中,第三信息可以是用于指示第一波束的RNTI加扰的用于指示第一波束的DCI。其中RNTI的取值可以是取值范围0001–FFF2(十六进制)内的一个值,或者是一个固定值,如0001,FFF2,FFF3或FFFD。RNTI可以是CB-RNTI或BI-RNTI。
在可能实现的另一种方式中,第三信息可以是已有的RNTI加扰用于指示第一波束的DCI。
具体地,同一种DCI可以用于调度数据传输,也可以用于指示第一波束。终端设备需 要判断该DCI是调度数据传输还是指示第一波束。具体的,当满足第二条件时,判定DCI是指示第一波束,当满足第三条件时,判定DCI是指示调度数据。其中,第二条件包括但不限于以下一项或多项的组合:配置了支持使用第一波束,例如,第一波束的开关配置为开启;配置了支持PDSCH使用第一波束;PDSCH是第一波束的目标信道;在DCI中有一个字段专门指示TCI字段指示的第一波束还是普通波束/PDSCH波束/PDSCH TCI-state,并且该字段的值表示TCI字段指示的是第一波束。第三条件可以是第二条件的反面,即不满足第二条件就自然满足第三条件。第二条件也可以包括但不限于以下一项或多项的组合:未配置支持使用第一波束,例如第一波束的开关配置为关闭;未配置支持PDSCH使用第一波束,或者配置为不支持PDSCH使用第一波束;PDSCH不是第一波束的目标信道;在DCI中有一个字段专门指示TCI字段指示的第一波束还是普通波束/PDSCH波束/PDSCH TCI-state,并且该字段的值表示TCI字段指示的是普通波束/PDSCH波束//PDSCH TCI-state。所述一项或多项的组合可以是对多项进行逻辑与运算,或逻辑或运算,或进行包含逻辑与和逻辑或的混合运算。
DCI也可以有三种功能:调度数据传输与指示第一波束,调度数据传输,指示第一波束。可以通过一个字段(如2比特)来指示三种功能中的一种。
当第三信息为用于指示第一波束的RNTI加扰的用于指示第一波束的DCI或是已有的RNTI加扰用于指示第一波束的DCI时,可以限定只能使用下行调度的DCI来进行第一波束的指示。即使用DCI格式1-0/1-1/1-2中的一种或多种来指示第一波束。也可以不限定,而是使用下行调度的DCI来指示用于下行传输的第一波束,使用上行调度的DCI来指示用于上行传输的第一波束。该DCI的各个字段的含义如下:
DCI格式标识字段:表示该DCI指示的是用于上行传输的第一波束还是用于下行传输的第一波束;运输字段:表示DCI指示的第一波束用于哪个载波,即指示的是哪个载波的第一波束,该字段可以只是一个载波或一个载波组。例如,该字段包含一个载波的标识,用于指示该载波所在的载波组。该字段的功能可以是多种:当该DCI调度数据时,该运输字段用于指示被调度的载波;当没有调度数据时,该运输字段用于表示该DCI指示的是哪个载波的公共波束。DCI是否有调度数据,可以通过DCI中一些字段的值来判断,例如频域资源分配字段的值为全0或全1;BWP字段:表示DCI指示的第一波束用于哪个BWP,即指示的是哪个BWP的第一波束。该字段的功能可以是多种:当该DCI调度数据时,该BWP字段用于指示被调度的载波;当没有调度数据时,该BWP字段用于表示该DCI指示的是哪个BWP的第一波束。DCI是否有调度数据,可以通过DCI中一些字段的值来判断,例如频域资源分配字段的值为全0或全1;TCI字段:用于指示第一波束。可以包括一个TCI字段,用于指示用于上行或下行传输的第一波束、用于上行传输的第一波束和用于下行传输的第一波束中的一种。也可以包括两个TCI字段,指示用于上行和下行传输的第一波束。多个TCI字段也可以是一个TCI字段的两部分。包括的TCI字段数与采用的/RRC配置的公共波束模式/终端能力上报是否满足上行波束与下行波束的波束互易性有关。当采用/RRC配置公共波束模式为用于上行和下行的第一波束时,则DCI中只有一个TCI字段。当采用/RRC配置公共波束模式为上行或下行的第一波束时,则DCI中有两个第一波束指示字段。或者,当终端能力上报满足上下行波束互易性时,则DCI中只有一个TCI字段。当终端能力上报不满足上下行波束互易性时,则DCI中有两个TCI字段。可以 规定,当通过第一信息确定要采用第一波束时,TCI字段值用于指示第一波束。否则,TCI字段值用于指示普通波束,即单个信道(如PDSCH)的TCI-state。或者,MAC CE信令激活了公共波束时,TCI字段值用于指示第一波束。MAC CE信令未激活第一波束时,TCI字段值用于指示普通波束;激活/去激活字段:用于指示该DCI适用于激活第一波束还是去激活第一波束。如果是激活,那么DCI中指示的公第一波束将被启用,如果是去激活,DCI中指示的第一波束将被停止使用。PUCCH资源指示字段:用于指示反馈该DCI的Ack信息或NAck信息所采用的PUCCH资源;PDCCH-to-HARQ反馈字段:用于指示反馈该DCI的Ack信息或NAck信息的时间与PDCCH发送时间之间的时间间隔。
指示第一波束后,网络设备和终端设备需要在一个约定的时间同时切换到第一波束上进行发送和接收,从而避免切换不同步导致的传输失败。上述生效是指一个或多个信道/参考信号开始使用指示的第一波束来进行传输。
约定的时间可以是上述反馈Ack的时间之后在加上一段时间,如N个符号/时隙。或者,约定的时间也可以是收到DCI的时间(如DCI发送的第一个或最后一个符号)加上一段时间,如N个符号/时隙。
如果DCI指示了第一波束,且调度了数据,可以通过以下方法确定该数据应该使用DCI指示的第一波束,还是上一次指示的第一波束。
方法一:采用DCI指示的第一波束。即使该数据传输的时间,是在第一波束生效时间之前,也采用该第一波束。
方法二:采用上一次指示的第一波束;如果之前未指示过第一波束,或者一段时间内未指示过第一波束,采用本次DCI指示的第一波束。
方法三:根据数据传输的时间和第一波束生效时间来判断。如果数据传输是在第一波束生效时间之前,则采用上一次指示的第一波束;反之,采用本次指示的波束。
可以规定,用于下行传输的第一波束只能通过下行调度的DCI(如DCI 1-0,DCI1-1,DCI1-2中的一种或多种)来指示;用于上行传输的第一波束只能通过上行调度的DCI(如DCI 0-0,DCI0-1,DCI0-2中的一种或多种)来指示。上行调度的DCI中引入一个波束指示字段(当前协议中没有)来指示第一波束。上行调度的DCI指示一个第一波束的同时,还可以调度上行数据,该上行数据采用该第一波束进行传输。网络设备如果正确接收数据,会发送确认信息给终端设备,该确认信息可以是一个DCI,其中包括的HARQ ID与上述上行调度DCI中的HARQ ID相同,并且NDI字段置为toggled。终端设备收到确定信息后的K个符号/时隙后,用于上行传输的第一波束生效。K的取值可以是大于等于1的整数。
或者规定,用于上行传输的第一波束和用于下行传输的第一波束都通过下行调度DCI(如DCI 1-0,DCI1-1,DCI1-2中的一种或多种)来指示。或者,用于上行传输的第一波束和用于下行传输的第一波束都通过上行调度DCI(如DCI 0-0,DCI 0-1,DCI 0-2中的一种或多种)来指示。
基于上述方案,通过配置第一波束的模式,确定一组第一波束,最后确定一个第一波束,可以统一各个信道/参考信号的波束,能够高效的进行上下行波束的指示,避免复杂冗余的配置/指示指令,节省额外的开销。
图9为本申请实施例提供的无线通信的方法的另一种示意性流程图。方法900可以包 括如下步骤。
在本申请的实施例中,以用于上行和下行传输的第二波束、用于上行或下行传输的第二波束、用于上行传输的第二波束以及用于下行传输的第二波束这四种公共波束类型为例进行阐述,但是,并不排除其他类型的公共波束。本申请的实施例也适用于其他类型的公共波束的区分。除了区分公共波束,本申请的实施例也可以用于区分普通波束的激活信令,只需要将公共波束替换普通波束即可。
应理解,在本申请的实施例中,用于上行和下行传输的第二波束等同于上下行公共波束,用于上行或下行传输的第二波束等同于上下行独立公共波束,用于上行传输的第二波束等同于上行公共波束,用于下行传输的第二波束等同于下行公共波束,第二波束为公共波束。
S901、发送第五信息。
示例地,网络设备会向终端设备发送第五信息,该第五信息用于配置第二波束集合的参数,第二波束集合包括至少一个第二波束,该第二波束为至少一个信道,和/或,至少一个参考信号共用的波束,即,第二波束为公共波束。网络设备可以通过RRC信令配置一些与第二波束相关的参数,如第二波束的数量,类型等。
在可能实现的一种方式中,网络设备可以通过第五信息配置第二波束集合的第二波束的模式。例如,至少可以配置两种公共模式:上行和下行传输使用相同的第二波束,上行和下行传输使用独立的第二波束。上行和下行传输使用相同的第二波束是指上行传输和下行传输采用相同的第二波束。例如,一个或多个上行信道和一个或多个下行信道可以采用同一个第二波束。上行/下行传输使用独立的第二波束是指上行传输和下行传输使用不同的公共波束。例如,一个或多个上行信道采用一个上行第二波束,一个或多个下行信道采用一个下行第二波束。上述一个或多个上行信道可以是PUSCH信道、PUCCH信道,PRACH信道中的至少一个信道。所述一个或多个下行信道可以是PDSCH信道、PDCCH信道中的至少一个信道。网络设备可以通过RRC信令将第二波束的模式配置成上述至少一种模式,也可以为每种模式配置一个开关,开关配置为开启时表示采用这种公共波束的模式。
在可能实现的另一种方式中,网络设备可以通过第一信息配置第二波束集合的数量。例如,网络设备可以通过第一信息配置一个或多个第二波束集合,每个第二波束集合可以包括一个或多个第二波束子集,每个第二波束子集包括一个或多个第二波束。每个第二波束集合或第二波束子集对应一种信道,如PDCCH信道,PDSCH信道,PUCCH信道,PUSCH信道,上行信道,下行信道,控制信道,数据信道等。或者,每个波束组或波束子集对应一种参考信号,如CSI-RS,SSB,SRS。
其中,上述CSI-RS可以具体是配置了repetition参数的resource set中的CSI-RS;repetition参数配置为‘on’的resource set中的CSI-RS,repetition参数配置为“off”的resource set中的CSI-RS;配置了trs-info参数的resource set中的CSI-RS;没有配置repetition参数和trs-info参数的resource set中的CSI-RS;用于移动性测量的CSI-RS;未配置波束信息的CSI-RS;配置了波束信息的CSI-RS;周期性的CSI-RS;半持续(Semi-persistent,SP)的CSI-RS;非周期性的CSI-RS;用于参考信号接收功率(Reference signal receiving power,RSRP)/信号干扰噪声比(Signal to Interference plus Noise Ratio,SINR)测量的CSI-RS,用 于信道状态信息参考信号/信道质量标识(Channel Quality Indicator,CQI)/预编码矩阵标识(Precoding Matrix Indicator,PMI)/信道的秩的标识(Rank Indicator,RI)测量的CSI-RS。
其中,上述SRS可以具体是密码本(codebook)的SRS,非密码本(nonCodebook)的SRS,波束管理(beam management)的SRS,天线开关(antenna switch)的SRS,周期性的SRS,半持续的SRS,非周期的SRS,未配置波束信息的SRS,配置波束信息的SRS,未配置路损测量资源的SRS,配置了路损测量资源的SRS。
在可能实现的另一种方式中,网络设备还可以通过第一信息配置第二波束的标识。
S902、配置第二波束集合的参数。
示例地,终端设备在接收第一信息之后,会根据第一信息配置第二波束的参数。其中,参数可以包括第二波束集合的模式、数量以及标识中的至少一项。
S903、发送第六信息。
示例地,网络设备会向终端设备发送第六信息,终端设备在根据第五信息配置第二波束集合的参数之后,通过接收第六信息,确定一个或多个第二波束。例如,网络设备可以通过信令(如MAC CE信令)确定一个第二波束的信息。由于存在多种不同类型的公共波束,例如,用于上行和下行传输的第二波束,用于上行或下行传输的第二波束,用于上行传输的第二波束类型以及用于下行传输的第二波束,终端设备需要通过信令确定第六信息指示的第二波束的类型是哪种公共波束。所述第二信息指示一个第二波束,也可以认为是激活一个第一波束。
S904、确定第二波束。
示例地,终端设备在接收到第六信息之后,会根据第六信息确定一个或多个第二波束。
在可能实现的一种方式中,第二信息通过第二MAC CE信令承载,根据第二MAC CE信令对应的LCID确定一个第六信息指示的第二波束的类型,该类型为以下至少一种:用于上行和下行传输的第二波束,用于上行传输的第二波束,以及用于下行传输的第二波束。
其中,不同类型的公共波束对应的MAC CE信令采用不同的LCID,终端设备可以通过LCID判断第二MAC CE信令指示的该第二波束的类型。
应理解,根据第六信息确定一个或多个第二波束,也可以理解为激活一个或多个第二波束。
在可能实现的另一种方式中,第二信息通过第二MAC CE信令承载,根据第二MAC CE信令对应的LCID确定第二波束的类型,该类型为以下至少一种:用于上行和下行传输的第二波束,用于上行或下行传输的第二波束。其中,不同类型的公共波束对应的MAC CE信令采用不同的LCID,终端设备可以通过LCID判断第二MAC CE信令指示的该第二波束的类型。
在可能实现的另一种方式中,终端设备可以根据第二MAC CE的第一字段确定第二波束的类型,该第二波束的类型为以下至少一种:用于上行和下行传输的第二波束,用于上行传输的第二波束,以及用于下行传输的第二波束。
具体地,终端设备可以根据第二MAC CE信令中的第一字段来区分各种公共波束的类型,其中,第二MAC CE信令中的第一字段区分各种公共波束类型的方法,可以参考步骤S504中关于第一MAC CE信令中的第一字段区分各种公共波束类型的方法,为了间接,本申请在此不做赘述。
在可能实现的另一种方式中,通过网络设备配置的第二波束的模式来确定第六信息指示的第二波束的类型。具体地,如果第二波束的模式为上行和下行传输使用相同的第二波束,则第六信息指示的波束类型为用于上行和下行传输的第二波束。如果第二波束的模式为上行和下行传输使用独立的第二波束,则第六信息指示的波束类型为用于上行或下行传输的第二波束。具体是用于上行传输的第二波束还是用于下行传输的第二波束还不能确定,可以进一步结合其他方法来确定。
在可能实现的另一种方式中,终端设备可以根据发送第七信息确定第二波束的类型,该第二波束的类型为以下至少一种:用于上行和下行传输的第二波束,用于上行传输或下行传输的第二波束,用于上行传输的第二波束,以及用于下行传输的第二波束。
具体地,第七信息为终端能力信息,终端设备可以根据发送第七信息确定第二波束类型的方法,可以参考S504中关于终端设备可以根据发送第四信息确定第一波束类型的方法,为了简洁,此处不再赘述。
在可能实现的另一种方式中,终端设备可以通过第二信息中一个第二波束的索引,确定第二波束的类型,该类型为以下至少一种:用于上行和下行传输的第二波束,用于上行传输或下行传输的第二波束,用于上行传输的第二波束,以及用于下行传输的第二波束。
在可能实现的另一种方式中,终端设备可以通过第二信息中的一个位图确定第二波束的类型,该类型为以下至少一种:用于上行和下行传输的第二波束,用于上行传输或下行传输的第二波束,用于上行传输的第二波束,以及用于下行传输的第二波束。
当已经确定第六消息指示的第二波束是用于上行传输的第二波束,或用于下行传输的第二波束中的一种时,需要进一步确定具体时哪一种。可以采用以下方法中的一种或多种。
在可能实现的另一种方式中,根据第二MAC CE信令对应的LCID确定该第二波束的类型为用于上行传输的第二波束,还是用于下行传输的第二波束。例如,结合上面的方法,通过终端上报具体上下行波束互易性,或根据网络设备配置第二波束模式为上下行采用独立的第二波束,判断第二MAC CE激活的是用于上行或下行传输的第二波束,这时进一步结合上述第二MAC CE的LCID判断具体是用于上行传输的第二波束,还是用于下行传输的第二波束。
在可能实现的一种方式中,一个MAC CE只能激活用于上行传输的第二波束和用于下行传输的第二波束中的一种。采用MAC CE中的第二字段来区分该MAC CE激活的是用于上行传输的第二波束还是用于下行传输的第二波束,其中,第二字段可以为1比特。该第二字段可以是MAC CE中第一个字节的第一个比特或最后1个比特,或者第二个字节的第一个比特或最后1个比特,或者第三个字节的第一个比特或最后1个比特。该1比特可以是包含公共波束ID的那个字节中的第一个比特或最后1个比特。图10为适用于本申请实施例的第二MAC CE信令的第二字段的位置的一示意图。如图10所示,使用第二个字节的第一个比特(阴影部分)来区分该MAC CE激活的是用于上行传输的第二波束还是用于下行传输的第二波束。
上述MAC CE也可以用于激活用于上行和下行传输的第二波束。也就是说,该MAC CE对应的LCID表示用于上行和下行传输的第二波束时,或者第二波束的模式为上行和下行传输使用相同的第二波束时,终端设备可以判断该MAC CE中激活的公共波束是用于上行和下行传输的第二波束。当用于上行和下行传输的第二波束激活时,上述1比特没 有具体含义(因为不需要区分上下行),终端设备可以忽略该1比特,或者该1比特可以用于其他指示信息,具体指示什么信息本申请在此不做限定。
在可能实现的另一种方式中,终端设备可以根据第六信息的第三字段与第四字段确定第二波束的类型,该第二波束的类型为以下至少一种:用于上行传输的第二波束,以及用于下行传输的第二波束。
具体地,终端设备可以通过第二MAC CE信令中的第三字段指示激活的是用于上行传输的第二波束和用于下行传输的第二波束中的一种还是两种,其中,第三字段可以为1比特。例如,第二MAC CE信令中包括两部分比特,为第一比特与第二比特,第一比特和第二比特都包括多个字节,每个字节包括8个比特。第一比特用于指示用于上行传输的第二波束,第二比特用于指示用于下行传输的第二波束;或,第一比特用于指示用于下行传输的第二波束,第二比特用于指示用于上行传输的第二波束。第一比特总是存在,第二比特是否存在可以通过第三字段来指示。第三字段可以是MAC CE信令中第一个字节的第一个比特或最后1个比特,或者第二个字节的第一个比特或最后1个比特,或者第三个字节的第一个比特或最后1个比特,或者第一比特中第一个字节的第一个比特或最后1个比特,或者第一比特中最后一个字节的第一个比特或最后1个比特。图11为适用于本申请实施例的第二MAC CE信令的第三字段的位置的一示意图。如11所示,一个MAC CE信令可能包括两个公共波束ID。第一个默认存在,第二个是否存在通过第一个公共波束ID所在的那个字节的第1个比特或最后1个比特来指示。上述第一比特和第二比特的含义可以是:第一比特指示用于上行传输的第二波束,第二比特指示用于下行传输的第二波束;或者,第一比特指示用于下行传输的第二波束,第二比特指示用于上行传输的第二波束,可以通过第三字段确定第二比特是否存在,以此确定MAC CE信令激活的是用于上行传输的第二波束和用于下行传输的第二波束中的一种还是两种。
当第二比特不存在时,需要区分第一比特对应的是哪种类型的第二波束,即是上行公共波束还是下行公共波束。第二比特存在时,也需要区分第一比特和第二比特分别对应的公共波束类型。可以通过第四字段来区分。第四字段可以用于指示第一比特对应的第一波束的类型,或者用于指示第二比特对应的第一波束的类型。例如,第四字段用于指示第一比特对应的是上行公共波束,那么第二比特对应的自然就是下行公共波束;第四字段用于指示第一比特对应的是下行公共波束,那么第二比特对应的自然就是上行公共波束。其中,第四字段可以为1比特。换句话说,通过第四字段确定指示的是用于上行传输的第二波束还是用于下行传输的第二波束。第四字段可以是MAC CE信令额中第一个字节的第一比特或最后1个比特,或者第二个字节的第一个比特或最后1个比特,或者第三个字节的第一个比特或最后1个比特,或者第一比特中第一个字节的第一个比特或最后1个比特,或者第一比特中最后一个字节的第一个比特或最后1个比特。
上述MAC CE信令也可以用于激活用于上行和下行传输的第二波束。也就是说,当该MAC CE信令确认激活的为用于上行和下行传输的第二波束时,或者当第二波束的模式为上行和下行传输使用相同的第二波束时,终端设备可以判断该MAC CE信令中激活的第二波束是用于上行和下行传输的第二波束。当用于激活用于上行和下行传输的第二波束时,上述第三字段和第四字段没有具体含义(因为不需要区分用于上行传输的第二波束与用于下行传输的第二波束,也没有第二比特),终端设备可以忽略第三字段和第四字段, 或者第三字段和第四字段可以用于其他指示信息,具体指示什么信息本申请在此不做限定。
上述各种确定第二波束的类型的方法可以进行组合,例如通过配置的第二波束的模式为上行和下行传输使用独立的第二波束,确定第二波束的类型为用于上行传输的第二波束或用于下行传输的第二波束;之后,结合承载第六信息的第二MAC CE信令的LCID或第二MAC CE信令的字段确定第二波束为用于上行传输的第二波束或用于下行传输的第二波束。
在多站传输场景下,两个TRP都要指示公共波束。两个TRP的公共波束也需要MAC CE信令来指示。即,为两个TRP各自激活一个用于上行传输的第二波束,或者为两个TRP各自确定一个用于下行传输的第二波束。当两个TRP各自激活一个用于上行传输的第二波束时,或者当两个TRP各自激活一个用于下行传输的第二波束时,可以使用上述激活用于上行和下行的传输第二波束的方法,包括判断第二波束类型的方法和MAC CE信令,只需要将上述方法/MAC CE信令中的用于上行/下行传输的第二波束分别替换为第一个TRP/第二个TRP的公共波束即可。例如,通过LCID或MAC CE中的字段,判断该MAC CE中指示的第二波束的类型为第一个TRP的公共波束还是第二个TRP的公共波束,或者判断该MAC CE中指示的第二波束的类型是一个TRP的公共波束还是两个TRP的公共波束。
也可以通过一个MAC CE同时激活两个TRP的用于上行传输的第二波束和用于下行传输的第二波束,即MAC CE中可以最多包括4组公共波束。这4组公共波束对应4部分比特,每部分比特指示一组第二波束的ID,或者每部分比特是一个比特位图,用于激活一组第二波束。可以用一个字段来指示是否存在第二个TRP的第二波束。或者,用一个字段来指示是否存在用于上行传输的第二波束或用于下行传输的第二波束。或者,用一个字段来指示是否存在某一个(第一个或第二个)TRP的用于上行传输的第二波束或用于下行传输的第二波束。在可能实现的另一种方式中,终端设备可以根据第二波束的模式确定一组所述第二波束的第二波束的类型,该类型包括以下至少一种:用于上行和下行传输的第二波束,用于上行或下行传输的第二波束,用于上行传输的第二波束,以及用于上行传输的第二波束。
基于上述方案,通过配置第二波束的模式,确定一个第二波束,可以统一各个信道/参考信号的波束,能够高效的进行上下行波束的指示,避免复杂冗余的配置/指示指令,节省额外的开销。
图12为本申请实施例提供的无线通信的方法的一种示意性流程图。方法1200可以包括如下步骤。
在本申请的实施例中,以用于上行和下行传输的第一波束、用于上行或下行传输的第一波束、用于上行传输的第一波束以及用于下行传输的第一波束这四种公共波束类型为例进行阐述,但是,并不排除其他类型的公共波束。本申请的实施例也适用于其他类型的公共波束的区分。除了区分公共波束,本申请的实施例也可以用于区分普通波束的激活信令,只需要将公共波束替换普通波束即可。
应理解,在本申请的实施例中,用于上行和下行传输的第一波束等同于上下行公共波束,用于上行或下行传输的第一波束等同于上下行独立公共波束,用于上行传输的第一波 束等同于上行公共波束,用于下行传输的第一波束等同于下行公共波束。
S1201、发送第八信息。
示例地,网络设备会向终端设备发送第八信息,该第八信息用于配置第三波束集合的第三波束的参数,该第三波束为至少一个信道,和/或,至少一个参考信号共用的波束,即,第三波束为公共波束。网络设备可以通过RRC信令配置一些与第三波束集合的第三波束相关的参数,如数量,类型等。第八信息如何配置第三波束集合的参数的方法描述,可以参考步骤S501中第一信息如何配置第一波束集合的参数,为了简洁,此处不再赘述。
S1202、配置第三波束集合的参数。
示例地,终端设备在接收第八信息之后,会根据第八信息配置第三波束集合的参数。其中,参数可以包括第三波束集合的第三波束的模式、数量以及标识中的至少一项。
S1203、发送第九信息。
示例地,网络设备会向终端设备发送第九信息,终端设备在根据第八信息配置第三波束集合的参数之后,通过接收第九信息,确定第三波束子集,该第三波束子集包括至少一个第三波束。例如,网络设备可以通过信令(如MAC CE信令)确定第三波束子集的信息。例如,第三波束子集的第三波束的类型:用于上行和下行传输的第三波束,用于上行或下行传输的第三波束,用于上行传输的第三波束以及用于下行传输的第三波束,终端设备需要确定第九消息指示的第三波束子集的第三波束是哪种公共波束。第九信息指示第三波束子集,也可以认为是激活第三波束子集。
S1204、确定第三波束子集。
示例地,终端设备在接收到第九信息之后,会根据第九信息确定第三波束子集。终端设备如何根据第九信息确定第三波束,可以参考S504中确定第一波束的方法,为了简洁,此处不再赘述。
S1205、发送第十消息。
示例地,终端设备根据第九信息指示/激活第三波束子集后,网络设备会发送第十信息,该第十信息用于指示一个或多个第三波束的信息。该第三波束属于第三波束子集。
S1206、确定第三波束。
终端设备根据第十消息确定一个或多个第三波束。可选地,第十消息可以是MAC CE信令,终端设备如何根据第十信息(MAC CE信令)确定一个或多个第三波束,可以参考S904中确定第二波束的方法,为了简洁,此处不再赘述。
基于上述方案,通过配置第三波束的模式,确定一个第三波束,可以统一各个信道/参考信号的波束,能够高效的进行上下行波束的指示,避免复杂冗余的配置/指示指令,节省额外的开销。
图13为本申请实施例提供的无线通信的方法的另一种示意性流程图。方法1300可以包括如下步骤。
在本申请的实施例中,以用于上行和下行传输的第一波束、用于上行或下行传输的第一波束、用于上行传输的第一波束以及用于下行传输的第一波束这四种公共波束类型为例进行阐述,但是,并不排除其他类型的公共波束。本申请的实施例也适用于其他类型的公共波束的区分。除了区分公共波束,本申请的实施例也可以用于区分普通波束的激活信令,只需要将公共波束替换普通波束即可。
应理解,在本申请的实施例中,用于上行和下行传输的第一波束等同于上下行公共波束,用于上行或下行传输的第一波束等同于上下行独立公共波束,用于上行传输的第一波束等同于上行公共波束,用于下行传输的第一波束等同于下行公共波束。
S1301、发送第十一信息。
示例地,网络设备会向终端设备发送第十一信息,该第十一信息用于配置第四波束的参数,该第四波束为至少一个信道,和/或,至少一个参考信号共用的波束,即,第四波束为公共波束。网络设备可以通过RRC信令配置一些与第四波束相关的参数,如第四波束的数量,类型等。关于网络设备如何通过第十一信息配置第四波束的参数的方法,可以参考S901中关于网络设备通过第五信息配置第二波束的参数的方法,为了简洁,此处不再赘述。
S1302、配置第四波束集合的参数。
示例地,终端设备在接收第十一信息之后,会根据第十一信息配置第四波束集合的参数。其中,参数可以包括第四波束集合的第四波束的模式、数量以及标识中的至少一项。
S1303、发送第十二信息。
示例地,网络设备会发送第十二信息,该第十二信息用于指示一个或多个第四波束的信息。关于第十二信息的介绍,可以参考步骤S505中关于第三信息的介绍。为了简洁,此处不再赘述。
S1304、确定第四波束。
示例地,终端设备接收第十二信息后,根据第十二信息确定一个或多个第四波束。关于终端设备如何通过第十二信息确定第四波束的方法,可以参考步骤S506中关于终端设备通过第三信息确定第一波束的描述。为了简洁,此处不再赘述。
基于上述方案,通过配置第四波束的模式,确定一个第四波束,可以统一各个信道/参考信号的波束,能够高效的进行上下行波束的指示,避免复杂冗余的配置/指示指令,节省额外的开销。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
以上,结合图5至图13详细说明了本申请实施例提供的方法。以下,结合图14至图17详细说明本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图14是本申请实施例提供的通信装置的示意性框图。该通信装置1400包括收发单元1410和处理单元1420。收发单元1410可以实现相应的通信功能,处理单元1410用于进行数据处理。收发单元1410还可以称为通信接口或通信单元。
可选地,该通信装置1400还可以包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元1420可以读取存储单元中的指令和/或数据,以使得通信装置实现前述方法实施例。
该通信装置1400可以用于执行上文方法实施例中终端设备所执行的动作,这时,该通信装置1400可以为终端设备或者可配置于终端设备的部件,收发单元1410用于执行上文方法实施例中终端设备侧的收发相关的操作,处理单元1420用于执行上文方法实施例中终端设备侧的处理相关的操作。
或者,该通信装置1400可以用于执行上文方法实施例中网络设备所执行的动作,这时,该通信装置1400可以为网络设备或者可配置于网络设备的部件,收发单元1410用于执行上文方法实施例中网络设备侧的收发相关的操作,处理单元1420用于执行上文方法实施例中网络设备侧的处理相关的操作。
作为一种设计,该通信装置1400用于执行上文图5所示实施例中终端设备所执行的动作,收发单元1410用于:S501、S503、S505;处理单元1420用于:S502、S504、S506。
作为一示例,该通信装置1400用于执行上文图9所示实施例中终端设备所执行的动作,收发单元1410用于:S901、S903;处理单元1420用于:S902、S904。
作为又一示例,该通信装置1400用于执行上文图12所示实施例中终端设备所执行的动作,收发单元1410用于:S1201、S1203、S1205;处理单元1420用于:S1202、S1204、S1206。
作为又一示例,该通信装置1400用于执行上文图13所示实施例中终端设备所执行的动作,收发单元1410用于:S1301、S1303;处理单元1420用于:S1302、S1304。
该通信装置1400可实现对应于根据本申请实施例的方法500、方法900、方法120与方法1300中的终端设备执行的步骤或者流程,该通信装置1400可以包括用于执行图5中的方法500、图9中的方法900、图12中的方法1200和图13中的方法1300中的终端设备执行的方法的单元。并且,该通信装置1400中的各单元和上述其他操作和/或功能分别为了实现图5中的方法500、图9中的方法900、图12中的方法1200和图13中的方法1300的相应流程。
其中,当该通信装置1400用于执行图5中的方法500时,收发单元1410可用于执行方法500中的步骤S501、S503、S505,处理单元1420可用于执行方法500中的步骤S502、S504、S506。
当该通信装置1400用于执行图9中的方法900时,收发单元1410可用于执行方法900中的步骤S901、S903,处理单元1420可用于执行方法900中的步骤S902、S904。
当该通信装置1400用于执行图12中的方法1200时,收发单元1410可用于执行方法1200中的步骤S1201、S1203、S1205,处理单元1420可用于执行方法1200中的步骤S1202、S1204、S1206。
当该通信装置1400用于执行图13中的方法1300时,收发单元1410可用于执行方法1300中的步骤S1301、S1303,处理单元1420可用于执行方法1300中的步骤S1302、S1304。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
作为另一种设计,通信装置1400用于执行上文图5所示实施例中网络设备所执行的动作,收发单元1410用于:S501、S503、S505。
作为一示例,通信装置1400用于执行上文图9所示实施例中网络设备所执行的动作,收发单元1410用于:S901、S903。
作为又一示例,通信装置1400用于执行上文图12所示实施例中网络设备所执行的动作,收发单元1410用于:S1201、S1203、S1205。
作为又一示例,通信装置1400用于执行上文图13所示实施例中网络设备所执行的动作,收发单元1410用于:S1301、S1303。
该通信装置1400可实现对应于根据本申请实施例的方法500、方法900、方法1200和方法1300中的网络设备执行的步骤或者流程,该通信装置1400可以包括用于执行图5中的方法500、图9中的方法900、图12中的方法1200和图13中的方法1300中的网络设备执行的方法的单元。并且,该通信装置1400中的各单元和上述其他操作和/或功能分别为了实现图5中的方法500、图9中的方法900、图12中的方法1200和图13中的方法1300的相应流程。
上文实施例中的处理单元1420可以由至少一个处理器或处理器相关电路实现。收发单元1410可以由收发器或收发器相关电路实现。收发单元1410还可称为通信单元或通信接口。存储单元可以通过至少一个存储器实现。
如图15所示,本申请实施例还提供一种通信装置1500。该通信装置1500包括处理器1510,处理器1510与存储器1520耦合,存储器1520用于存储计算机程序或指令和/或数据,处理器1510用于执行存储器1520存储的计算机程序或指令和/或数据,使得上文方法实施例中的方法被执行。
可选地,该通信装置1500包括的处理器1510为一个或多个。
可选地,如图15所示,该通信装置1500还可以包括存储器1520。
可选地,该通信装置1500包括的存储器1520可以为一个或多个。
可选地,该存储器1520可以与该处理器1510集成在一起,或者分离设置。
可选地,如图15所示,该通信装置1500还可以包括收发器1530,收发器1530用于信号的接收和/或发送。例如,处理器1510用于控制收发器1530进行信号的接收和/或发送。
作为一种方案,该通信装置1500用于实现上文方法实施例中由终端设备执行的操作。
例如,处理器1510用于实现上文方法实施例中由终端设备执行的处理相关的操作, 收发器1530用于实现上文方法实施例中由终端设备执行的收发相关的操作。
作为另一种方案,该通信装置1500用于实现上文方法实施例中由网络设备执行的操作。
例如,处理器1510用于实现上文方法实施例中由网络设备执行的处理相关的操作,收发器1530用于实现上文方法实施例中由网络设备执行的收发相关的操作。
本申请实施例还提供一种通信装置1600,该通信装置1600可以是终端设备也可以是芯片。该通信装置1600可以用于执行上述方法实施例中由终端设备所执行的操作。
当该通信装置1600为终端设备时,图16示出了一种简化的终端设备的结构示意图。如图16所示,终端设备包括处理器、存储器、收发器,其中存储器可以存储计算机程序代码,收发器包括发射机、接收机、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图16中仅示出了一个存储器、处理器和收发器,在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。
如图16所示,终端设备包括处理器1610、存储器1620和收发器1630。处理器1610也可以称为处理单元,处理单板,处理模块、处理装置等,收发器1630也可以称为收发单元、收发机、收发装置等。
可选地,可以将收发器1630中用于实现接收功能的器件视为接收单元,将收发器1630中用于实现发送功能的器件视为发送单元,即收发器1630包括接收器和发送器。收发器有时也可以称为收发机、收发单元、或收发电路等。接收器有时也可以称为接收机、接收单元、或接收电路等。发送器有时也可以称为发射机、发射单元或者发射电路等。
例如,在一种实现方式中,处理器1610用于执行图5中终端设备侧的处理动作。例如,处理器1610用于执行图5中的步骤S502、S504、S506中的处理步骤;收发器163用于执行图5中的步骤S501、S503、S505中的收发操作。
又如,在一种实现方式中,处理器1610用于执行图9中的步骤S902、S904中的处理步骤;收发器163用于执行图9中的步骤S901、S903中的收发操作。
又如,在一种实现方式中,处理器1610用于执行图12中的步骤S1202、S1204、S1206中的处理步骤;收发器163用于执行图12中的步骤S1201、S1203、S1205中的收发操作。
又如,在一种实现方式中,处理器1610用于执行图13中的步骤S1302、S1304中的处理步骤;收发器163用于执行图13中的步骤S1301、S1303中的收发操作。
应理解,图16仅为示例而非限定,上述包括收发单元和处理单元的终端设备可以不依赖于图16所示的结构。
当该通信装置1600为芯片时,该芯片包括处理器、存储器和收发器。其中,收发器可以是输入输出电路或通信接口;处理器可以为该芯片上集成的处理单元或者微处理器或者集成电路。
本申请实施例还提供一种通信装置1700,该通信装置1700可以是网络设备也可以是芯片。该通信装置1700可以用于执行上述方法实施例中由网络设备所执行的操作。
当该通信装置1700为网络设备时,例如为基站。图17示出了一种简化的基站结构示意图。基站包括1710部分、1720部分以及1730部分。1710部分主要用于基带处理,对基站进行控制等;1710部分通常是基站的控制中心,通常可以称为处理器,用于控制基站执行上述方法实施例中网络设备侧的处理操作。1720部分主要用于存储计算机程序代码和数据。1730部分主要用于射频信号的收发以及射频信号与基带信号的转换;1730部分通常可以称为收发单元、收发机、收发电路、或者收发器等。1710部分的收发单元,也可以称为收发机或收发器等,其包括天线和射频电路,其中射频电路主要用于进行射频处理。可选地,可以将1730部分中用于实现接收功能的器件视为接收机,将用于实现发送功能的器件视为发射机,即1710部分包括接收机和发射机。接收机也可以称为接收单元、接收器、或接收电路等,发送机可以称为发射单元、发射器或者发射电路等。
1710部分与1720部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器。处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增强处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,1710部分用于执行图4所示实施例中由网络设备执行的处理相关的步骤;1730部分的收发单元用于执行图4所示实施例中由网络设备执行的收发相关的步骤。
例如,在又一种实现方式中,1710部分的处理器用于执行图5所示实施例中由网络设备执行的处理相关的步骤;1730部分用于执行图5所示实施例中由网络设备执行的收发相关的步骤。
应理解,图17仅为示例而非限定,上述包括处理器、存储器以及收发器的网络设备可以不依赖于图17所示的结构。
当该通信装置1700为芯片时,该芯片包括收发器、存储器和处理器。其中,收发器可以是输入输出电路、通信接口;处理器为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法。
本申请实施例还提供一种通信系统,该通信系统包括上文实施例中的网络设备与终端设备。
所属领域的技术人员可以清楚地了解到,为描述方便和简洁,上述提供的任一种通信装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请实施例中,终端设备或网络设备可以包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。其中,硬件层可以包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。操作系统层的操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。应用层可以包含浏览器、通讯录、文字处理软件、即时通信软件等应用。
本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构进行特别限定,只要能够通过运行记录有本申请实施例提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可。例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本文中使用的术语“制品”可以涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。
其中,计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质(或者说计算机可读介质)例如可以包括但不限于:磁性介质或磁存储器件(例如,软盘、硬盘(如移动硬盘)、磁带)、光介质(例如,光盘、压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等)、智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)、或者半导体介质(例如固态硬盘(solid state disk,SSD)等、U盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)等各种可以存储程序代码的介质。
本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可以包括但不限于:无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字无线通信器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或 可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM可以包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,上述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元实现本申请提供的方案。
另外,在本申请各个实施例中的各功能单元可以集成在一个单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。
当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。例如,计算机可以是个人计算机,服务器,或者网络设备等。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。关于计算机可读存储介质,可以参考上文描述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求和说明书的保护范围 为准。

Claims (86)

  1. 一种无线通信的方法,其特征在于,包括:
    接收第一信息,所述第一信息用于配置第一波束集合的参数,所述第一波束集合包括至少一个第一波束,所述第一波束为多个信道,和/或,多个参考信号共用的波束;
    接收第二信息,根据所述第二信息确定第一波束子集的信息,所述第一波束子集属于所述第一波束集合;
    接收第三信息,根据所述第三信息确定所述第一波束的信息,所述第一波束属于所述第一波束子集。
  2. 根据权利要求1所述的方法,其特征在于,所述第一波束集合的参数包括所述第一波束集合的第一波束的模式,所述第一波束集合的第一波束的模式包括以下至少一项:
    上行和下行传输使用相同的第一波束,上行和下行传输使用独立的第一波束。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一波束集合的参数还包括所述第一波束集合的第一波束的标识。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述根据所述第二信息确定所述第一波束子集的信息,包括:
    根据所述第二信息确定所述第一波束子集的第一波束的类型,所述类型包括以下至少一项:
    用于上行和下行传输的第一波束,用于上行或下行传输的第一波束,用于上行传输的第一波束,以及用于下行传输的第一波束。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第二信息通过第一介质访问控制层MAC控制单元CE信令承载。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述第二信息确定所述第一波束子集的第一波束的类型,包括:
    根据所述第一MAC CE信令对应的逻辑信道标识LCID确定所述第一波束子集的第一波束的类型,所述类型包括以下至少一项:
    所述用于上行和下行传输的第一波束,所述用于上行或下行传输的第一波束,所述用于上行传输的第一波束,以及所述用于下行传输的第一波束。
  7. 根据权利要求5所述的方法,其特征在于,所述根据所述第二信息确定所述第一波束子集的第一波束的类型,包括:
    根据所述第一MAC CE信令的第一字段确定所述第一波束子集的第一波束的类型,所述类型包括以下至少一项:
    所述用于上行和下行传输的第一波束,所述用于上行或下行传输的第一波束,所述用于上行传输的第一波束,以及所述用于下行传输的第一波束。
  8. 根据权利要求2至7中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述第一波束集合的第一波束的模式确定所述第一波束子集的第一波束的类型,所述类型包括以下至少一项:
    所述用于上行和下行传输的第一波束,所述用于上行或下行传输的第一波束,所述用 于上行传输的第一波束,以及所述用于下行传输的第一波束。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:
    发送第四信息,所述第四信息包括第一参数,所述第四信息的第一参数用于指示上行波束和下行波束是否存在互易性。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    根据所述第四信息的第一参数确定所述第一波束子集的第一波束的类型,所述类型包括以下至少一项:
    所述用于上行和下行传输的第一波束,所述用于上行或下行传输的第一波束,所述用于上行传输的第一波束,以及所述用于下行传输的第一波束。
  11. 根据权利要求4至10中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述第一MAC CE信令的第二字段确定所述第一波束子集的第一波束的类型,所述类型包括以下至少一项:
    所述用于上行传输的第一波束,以及所述用于下行传输的第一波束。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述第一MAC CE信令还包括所述第一波束子集的索引;或
    所述第一MAC CE信令还包括一个位图,所述一个位图用于指示所述第一波束子集的第一波束。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一MAC CE信令包括一种或两种所述第一波束;
    根据所述第一MAC CE信令的第三字段确定所述第一MAC CE信令包括的所述第一波束为一种或两种。
  14. 根据权利要求13所述的方法,其特征在于,当所述第一MAC CE信令包括两种所述第一波束时,所述两种所述第一波束分别为:
    所述用于上行传输的第一波束以及所述用于下行传输的第一波束。
  15. 根据权利要求14中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述第一MAC CE信令的第一比特指示所述用于上行传输的第一波束,根据所述第一MAC CE信令的第二比特指示所述用于下行传输的第一波束;或
    根据所述第一MAC CE信令的第一比特指示所述用于下行传输的第一波束,根据所述第一MAC CE信令的第二比特指示所述用于上行传输的第一波束。
  16. 根据权利要求15所述的方法,其特征在于,所述根据所述第一MAC CE信令的第三字段确定所述第一MAC CE信令包括的所述第一波束为一种或两种,包括:
    根据所述第一MAC CE信令的第三字段确定所述第一MAC CE信令的第二比特是否存在。
  17. 根据权利要求15或16所述的方法,其特征在于,所述方法还包括:
    根据所述第一MAC CE信令的第四字段确定所述第一MAC CE信令的第一比特指示的是所述用于上行传输的第一波束还是所述用于下行传输的第一波束。
  18. 根据权利要求1至17中任一项所述的方法,其特征在于,所述第三信息通过第一下行控制信息DCI承载,所述第一DCI包括以下字段中的至少一项:
    用于确定所述第一波束的类型的字段,所述用于确定所述第一波束的类型的字段包括 DCI格式标识字段;或
    用于指示所述第一DCI的功能的字段,所述第一DCI的功能包括以下至少一项:
    用于指示所述第一波束,用于指示调度数据,以及用于指示所述第一波束与调度数据;或
    用于指示所述第一波束标识的字段;或
    激活或去激活字段,所述激活或去激活字段用于指示所述第一DCI用于激活所述第一波束或去激活所述第一波束;或
    载波字段,所述载波字段用于指示以下至少一项:
    所述第一波束对应的载波,所述第一波束对应的载波组,所述第一波束对应的载波的载波组;或
    频段字段,所述频段字段用于指示所述第一波束对应的频段;或
    带宽部分BWP字段,所述BWP字段用于指示所述第一波束对应的带宽部分;或
    物理上行控制信道PUCCH资源指示字段,所述PUCCH资源指示字段用于指示反馈所述第一DCI的ACK/NACK信息所采用的PUCCH资源;或
    HARQ反馈时间指示字段,所述HARQ反馈时间指示字段用于指示所述反馈所述第一DCI的ACK/NACK信息与所述第一DCI之间的发送时间间隔。
  19. 根据权利要求18所述的方法,其特征在于,当复用所述第一DCI的第一字段来指示激活或去激活所述第一波束时,所述第一DCI的第一字段包括以下至少一项:
    频域资源分配字段,时域资源分配字段,调制与编码策略MCS字段,新数据信息NDI字段,冗余版本RV字段,混合自动重传请求HARQ进程字段,数据分配标识DAI字段,物理上行控制信道PUCCH资源字段,HARQ反馈时间指示字段,天线端口,解调参考信号DMRS序列初始化字段。
  20. 根据权利要求18或19所述的方法,其特征在于,在接收所述第一DCI之前,所述方法还包括:
    接收第二DCI,所述第二DCI用于指示所述第一波束,所述第二DCI在时间上相邻于所述第一DCI。
  21. 根据权利要求20所述的方法,其特征在于,当所述第一DCI与所述第二DCI指示的所述第一波束相同时,且所述NDI字段的值发生翻转时,所述第一DCI用于指示去激活所述第一波束;或
    当所述第一DCI与所述第二DCI指示的所述第一波束不同时,所述第一DCI用于指示激活所述第一波束。
  22. 根据权利要求18至21中任一项所述的方法,其特征在于,在所述第一DCI激活所述第一波束之后,所述第一波束在第一时刻作为起始时刻的第一时长内生效,其中,所述第一时刻包括以下任意一项:
    所述第一DCI发送的时隙或符号,所述第一DCI对应的HARQ反馈消息发送的时隙或符号,以及所述第一DCI对应的HARQ反馈消息发送的时隙或符号与K毫秒之和,K≥1。
  23. 根据权利要求22所述的方法,其特征在于,所述方法还包括:
    根据所述第一DCI确定所述第一时长;或
    根据配置信息确定所述第一时长。
  24. 根据权利要求18至23中任一项所述的方法,其特征在于,所述方法还包括:
    当所述第一DCI包括数据传输的调度信息时,发送第五信息,所述第五信息为数据的应答ACK/非应答NACK信息;或
    当所述第一DCI不包括所述数据传输的调度信息时,发送第六信息,所述第六信息为所述第一DCI的ACK/NACK信息。
  25. 根据权利要求24所述的方法,其特征在于,所述方法还包括:
    通过条件确定所述第一DCI中是否包括所述数据传输的调度信息,所述条件包括以下至少一项:
    所述第一DCI的频域资源分配字段的值为0,以及所述第一DCI的时域资源分配字段的值为0。
  26. 一种无线通信的方法,其特征在于,包括:
    发送第一信息,所述第一信息用于配置第一波束集合的参数,所述第一波束集合包括至少一个第一波束,所述第一波束为多个信道,和/或,多个参考信号共用的波束;
    发送第二信息,所述第二信息用于确定第一波束子集的信息,所述第一波束子集属于所述第一波束集合;
    发送第三信息,所述第三信息用于确定一个所述第一波束的信息,所述第一波束属于所述第一波束子集。
  27. 根据权利要求26所述的方法,其特征在于,所述第一波束集合的参数包括所述第一波束集合的第一波束的模式,所述第一波束集合的第一波束的模式包括以下至少一项:
    上行和下行传输使用相同的第一波束,上行和下行传输使用独立的第一波束。
  28. 根据权利要求26或27所述的方法,其特征在于,所述第一波束集合的参数还包括所述第一波束集合的第一波束的标识。
  29. 根据权利要求26至28中任一项所述的方法,其特征在于,所述第二信息用于确定所述所述第一波束子集的第一波束的类型,所述类型包括以下至少一项:
    用于上行和下行传输的第一波束,用于上行或下行传输的第一波束,用于上行传输的第一波束,以及用于下行传输的第一波束。
  30. 根据权利要求26至29中任一项所述的方法,其特征在于,所述第二信息通过第一介质访问控制层MAC控制单元CE信令承载。
  31. 根据权利要求30所述的方法,其特征在于,所述第一MAC CE信令对应的逻辑信道标识LCID用于确定所述第一波束子集的第一波束的类型,所述类型包括以下至少一项:
    所述用于上行和下行传输的第一波束,所述用于上行或下行传输的第一波束,所述用于上行传输的第一波束,以及所述用于下行传输的第一波束。
  32. 根据权利要求30所述的方法,其特征在于,所述第一MAC CE信令对应的第一字段用于确定所述第一波束子集的第一波束的类型,所述类型包括以下至少一项:
    所述用于上行和下行传输的第一波束,所述用于上行或下行传输的第一波束,所述用于上行传输的第一波束,以及所述用于下行传输的第一波束。
  33. 根据权利要求27至32中任一项所述的方法,其特征在于,所述第一波束集合的第一波束的模式用于确定所述第一波束子集的第一波束的类型,所述类型包括以下至少一项:
    所述用于上行和下行传输的第一波束,所述用于上行或下行传输的第一波束,所述用于上行传输的第一波束,以及所述用于下行传输的第一波束。
  34. 根据权利要求26至33中任一项所述的方法,其特征在于,所述方法还包括:
    接收第四信息,所述第四信息包括第一参数,所述第四信息的第一参数用于指示上行波束和下行波束是否存在互易性。
  35. 根据权利要求34所述的方法,其特征在于,所述第四信息的第一参数用于确定所述一组所述第一波束的第一波束的类型,所述类型包括以下至少一项:
    所述用于上行和下行传输的第一波束,所述用于上行或下行传输的第一波束,所述用于上行传输的第一波束,以及所述用于下行传输的第一波束。
  36. 根据权利要求31至35中任一项所述的方法,其特征在于,所述第一MAC CE信令的第二字段用于确定所述第一波束子集的第一波束的类型,所述类型包括以下至少一项:
    所述用于上行传输的第一波束,以及所述用于下行传输的第一波束。
  37. 根据权利要求26至36中任一项所述的方法,其特征在于,所述第一MAC CE信令还包括所述第一波束子集的索引;或
    所述第一MAC CE信令还包括一个位图,所述一个位图用于指示所述第一波束子集的第一波束。
  38. 根据权利要求26至37中任一项所述的方法,其特征在于,所述第一MAC CE信令包括一种或两种所述第一波束,所述第一MAC CE信令的第三字段用于确定所述第一MAC CE信令包括的所述第一波束为一种或两种。
  39. 根据权利要求38所述的方法,其特征在于,当所述第一MAC CE信令包括两种所述第一波束时,所述两种所述第一波束分别为:
    所述用于上行传输的第一波束以及所述用于下行传输的第一波束。
  40. 根据权利要求39中任一项所述的方法,其特征在于,所述第一MAC CE信令的第一比特用于指示所述用于上行传输的第一波束,所述第一MAC CE信令的第二比特用于指示所述用于下行传输的第一波束;或
    所述第一MAC CE信令的第一比特用于指示所述用于下行传输的第一波束,所述第一MAC CE信令的第二比特用于指示所述用于上行传输的第一波束。
  41. 根据权利要求40所述的方法,其特征在于,所述第一MAC CE信令的第三字段用于确定所述第一MAC CE信令的第二比特是否存在。
  42. 根据权利要求40或41所述的方法,其特征在于,所述第一MAC CE信令的第四字段用于确定所述第一MAC CE信令的第一比特指示的是所述用于上行传输的第一波束还是所述用于下行传输的第一波束。
  43. 根据权利要求26至42中任一项所述的方法,其特征在于,所述第三信息通过第一下行控制信息DCI承载,所述第一DCI包括以下字段中的至少一项:
    用于确定所述第一波束类型的字段,所述用于确定所述第一波束类型的字段包括DCI 格式标识字段;或
    用于指示所述第一DCI的功能的字段,所述第一DCI的功能包括以下至少一项:
    用于指示所述第一波束,用于指示调度数据,以及用于指示所述第一波束与调度数据;或
    用于指示所述第一波束标识的字段;或
    激活或去激活字段,所述激活或去激活字段用于指示所述第一DCI用于激活所述第一波束或去激活所述第一波束;或
    载波字段,所述载波字段用于指示以下至少一项:
    所述第一波束对应的载波,所述第一波束对应的载波组,所述第一波束对应的载波的载波组;或
    频段字段,所述频段字段用于指示所述第一波束对应的频段;或
    带宽部分BWP字段,所述BWP字段用于指示所述第一波束对应的带宽部分;或
    物理上行控制信道PUCCH资源指示字段,所述PUCCH资源指示字段用于指示反馈所述第一DCI的ACK/NACK信息所采用的PUCCH资源;或
    HARQ反馈时间指示字段,所述HARQ反馈时间指示字段用于指示所述反馈所述第一DCI的ACK/NACK信息与所述第一DCI之间的发送时间间隔。
  44. 根据权利要求43所述的方法,其特征在于,当复用所述第一DCI的第一字段来指示激活或去激活字段所述第一波束时,所述第一DCI的第一字段包括以下至少一项:
    频域资源分配字段,时域资源分配字段,调制与编码策略MCS字段,新数据信息NDI字段,冗余版本RV字段,混合自动重传请求HARQ进程字段,数据分配标识DAI字段,物理上行控制信道PUCCH资源字段,HARQ反馈时间指示字段,天线端口,解调参考信号DMRS序列初始化字段。
  45. 根据权利要求43或44所述的方法,其特征在于,在接收所述第一DCI之前,所述方法还包括:
    发送第二DCI,所述第二DCI用于指示所述第一波束,所述第二DCI在时间上相邻于所述第一DCI。
  46. 根据权利要求45所述的方法,其特征在于,当所述第一DCI与所述第二DCI指示的所述第一波束相同时,且所述NDI字段的值发生翻转时,所述第一DCI用于指示去激活所述第一波束;或
    当所述第一DCI与所述第二DCI指示的所述第一波束不同时,所述第一DCI用于指示激活所述第一波束。
  47. 根据权利要求43至46中任一项所述的方法,其特征在于,在所述第一DCI激活所述第一波束之后,所述第一波束在第一时刻中起始时刻的第一时长内生效,其中,所述第一时刻包括以下任意一项:
    所述第一DCI发送的时隙或符号,所述第一DCI对应的HARQ反馈消息发送的时隙或符号,以及所述第一DCI对应的HARQ反馈消息发送的时隙或符号与K毫秒之和,K≥1。
  48. 根据权利要求47所述的方法,其特征在于,所述第一DCI种包括所述第一时长的信息;所述第一时长根据配置信息确定。
  49. 根据权利要求43至48中任一项所述的方法,其特征在于,所述方法还包括:
    当所述第一DCI包括数据传输的调度信息时,接收第五信息,所述第五信息为数据的ACK/NACK信息;或
    当所述第一DCI不包括所述数据传输的调度信息时,接收第六信息,所述第六信息为所述第一DCI的ACK/NACK信息。
  50. 根据权利要求49所述的方法,其特征在于,条件用于确定所述第一DCI中是否包括所述数据传输的调度信息,所述条件包括以下至少一项:
    所述第一DCI的频域资源分配字段的值为0,以及所述第一DCI的时域资源分配字段的值为0。
  51. 一种无线通信的方法,其特征在于,包括:
    接收第五信息,所述第五信息用于配置第二波束集合的参数,所述第二波束集合包括至少一个第二波束,所述第二波束为多个信道,和/或,多个参考信号共用的波束;
    接收第六信息,根据所述第六信息确定所述一个或多个第二波束的信息。
  52. 根据权利要求51所述的方法,其特征在于,所述第二波束集合的参数包括所述第二波束集合的第二波束的模式,所述第二波束集合的第二波束的模式包括以下至少一项:
    上行和下行传输使用相同的第二波束,上行和下行传输使用独立的第二波束。
  53. 根据权利要求51或52所述的方法,其特征在于,所述第二波束集合的参数还包括所述第二波束集合的第二波束的标识。
  54. 根据权利要求51至53中任一项所述的方法,其特征在于,所述根据所述第六信息确定一个或多个第二波束的信息,包括:
    根据所述第六信息确定所述一个或多个第二波束的类型,所述一个或多个第二波束的类型包括以下至少一项:
    用于上行和下行传输的第二波束,用于上行或下行传输的第二波束,用于上行传输的第二波束,以及用于下行传输的第二波束。
  55. 根据权利要求51至54中任一项所述的方法,其特征在于,所述第六信息通过第二MAC CE信令承载。
  56. 根据权利要求55所述的方法,其特征在于,所述根据所述第六信息确定一个或多个第二波束的类型,包括:
    根据所述第二MAC CE信令对应的LCID确定所述一个或多个第二波束的类型,所述一个或多个第二波束的类型包括以下至少一项:
    所述用于上行和下行传输的第二波束,所述用于上行或下行传输的第二波束,所述用于上行传输的第二波束,以及所述用于下行传输的第二波束。
  57. 根据权利要求55所述的方法,其特征在于,所述根据所述第六信息确定一个或多个第二波束的类型,包括:
    根据所述第二MAC CE信令对应的第一字段确定所述一个或多个第二波束的类型,所述一个或多个第二波束的类型包括以下至少一项:
    所述用于上行和下行传输的第二波束,所述用于上行或下行传输的第二波束,所述用于上行传输的第一波束,以及所述用于下行传输的第二波束。
  58. 根据权利要求52至57中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述第二波束的模式确定所述一个或多个第二波束的类型,所述一个或多个第二波束的类型包括以下至少一项:
    所述用于上行和下行传输的第二波束,所述用于上行或下行传输的第二波束,所述用于上行传输的第二波束,以及所述用于下行传输的第二波束。
  59. 根据权利要求51至58中任一项所述的方法,其特征在于,所述方法还包括:
    发送第七信息,所述第七信息包括第一参数,所述第七信息的第一参数用于指示上行波束和下行波束是否存在互易性。
  60. 根据权利要求59所述的方法,其特征在于,所述方法还包括:
    根据所述第七信息的第一参数确定所述一个或多个第二波束的类型,所述一个或多个第二波束的类型包括以下至少一项:
    所述用于上行和下行传输的第二波束,所述用于上行或下行传输的第二波束,所述用于上行传输的第二波束,以及所述用于下行传输的第二波束。
  61. 根据权利要求54至60中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述第二MAC CE信令的第二字段确定所述一个或多个第二波束的类型,所述一个或多个第二波束的类型包括以下至少一项:
    所述用于上行传输的第二波束,以及所述用于下行传输的第二波束。
  62. 根据权利要求51至61中任一项所述的方法,其特征在于,所述第二MAC CE信令还包括所述一个或多个第二波束的索引;或
    所述第二MAC CE信令还包括一个位图,所述一个位图用于指示所述一个或多个第二波束。
  63. 根据权利要求51至62中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二MAC CE信令包括一种或两种所述一个或多个第二波束;
    根据所述第二MAC CE信令的第三字段确定所述第二MAC CE信令包括的所述一个或多个第二波束为一种或两种。
  64. 根据权利要求63所述的方法,其特征在于,当所述第二MAC CE信令包括两种所述一个或多个第二波束时,所述两种所述一个或多个第二波束分别为:
    所述用于上行传输的第二波束以及所述用于下行传输的第二波束。
  65. 根据权利要求64中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述第二MAC CE信令的第一比特指示所述用于上行传输的第二波束,根据所述第二MAC CE信令的第二比特指示所述用于下行传输的第二波束;或
    根据所述第二MAC CE信令的第一比特指示所述用于下行传输的第二波束,根据所述第二MAC CE信令的第二比特指示所述用于上行传输的第二波束。
  66. 根据权利要求65所述的方法,其特征在于,所述根据所述第二MAC CE信令的第三字段确定所述第二MAC CE信令包括的所述一个或多个第二波束为一种或两种,包括:
    根据所述第二MAC CE信令的第三字段确定所述第二MAC CE信令的第二比特是否存在。
  67. 根据权利要求65或66所述的方法,其特征在于,所述方法还包括:
    根据所述第二MAC CE信令的第四字段确定所述第二MAC CE信令的第一比特指示的是所述用于上行传输的第二波束还是所述用于下行传输的第二波束。
  68. 一种无线通信的方法,其特征在于,包括:
    发送第五信息,所述第五信息用于配置第二波束集合的参数,所述第二波束集合包括至少一个第二波束,所述第二波束为多个信道,和/或,多个参考信号共用的波束;
    发送第六信息,所述第六信息用于确定所述一个或多个第二波束的信息。
  69. 根据权利要求68所述的方法,其特征在于,所述第二波束集合的参数包括所述第二波束集合的第二波束的模式,所述第二波束集合的第二波束的模式包括以下至少一项:
    上行和下行传输使用相同的第二波束,上行和下行传输使用独立的第二波束。
  70. 根据权利要求68或69所述的方法,其特征在于,所述第二波束集合的参数还包括所述第二波束集合的第二波束的标识。
  71. 根据权利要求68至70中任一项所述的方法,其特征在于,所述第六信息用于确定所述一个或多个第二波束的类型,所述一个或多个第二波束的类型包括以下至少一项:
    用于上行和下行传输的第二波束,用于上行或下行传输的第二波束,用于上行传输的第二波束,以及用于下行传输的第二波束。
  72. 根据权利要求68至71中任一项所述的方法,其特征在于,所述第六信息通过第二MAC CE信令承载。
  73. 根据权利要求72所述的方法,其特征在于,所述第二MAC CE信令对应的LCID用于确定所述一个或多个第二波束的类型,所述一个或多个第二波束的类型包括以下至少一项:
    所述用于上行和下行传输的第二波束,所述用于上行或下行传输的第一波束,所述用于上行传输的第二波束,以及所述用于下行传输的第二波束。
  74. 根据权利要求72所述的方法,其特征在于,所述第二MAC CE对应的第一字段用于确定所述一个或多个第二波束的类型,所述一个或多个第二波束的类型包括以下至少一项:
    所述用于上行和下行传输的第二波束,所述用于上行或下行传输的第二波束,所述用于上行传输的第一波束,以及所述用于下行传输的第二波束。
  75. 根据权利要求69至74中任一项所述的方法,其特征在于,所述第二波束的模式用于确定所述一个或多个第二波束的类型,所述一个或多个第二波束的类型包括以下至少一项:
    所述用于上行和下行传输的第二波束,所述用于上行或下行传输的第二波束,所述用于上行传输的第二波束,以及所述用于下行传输的第二波束。
  76. 根据权利要求68至75中任一项所述的方法,其特征在于,所述方法还包括:
    接收第七信息,所述第七信息包括第一参数,所述第七信息的第一参数用于指示上行波束和下行波束是否存在互易性。
  77. 根据权利要求76所述的方法,其特征在于,所述第七信息的第一参数用于确定所述一个或多个第二波束的类型,所述一个或多个第二波束的类型包括以下至少一项:
    所述用于上行和下行传输的第二波束,所述用于上行或下行传输的第二波束,所述用 于上行传输的第二波束,以及所述用于下行传输的第二波束。
  78. 根据权利要求71至77中任一项所述的方法,其特征在于,所述第二MAC CE信令的第二字段用于确定所述一个或多个第二波束的类型,所述一个或多个第二波束的类型包括以下至少一种:
    所述用于上行传输的第二波束,以及所述用于下行传输的第二波束。
  79. 根据权利要求68至78中任一项所述的方法,其特征在于,所述第二MAC CE信令还包括所述一个或多个第二波束的索引;或
    所述第二MAC CE信令还包括一个位图,所述一个位图用于指示一个或多个所述第二波束。
  80. 根据权利要求68至79中任一项所述的方法,其特征在于,所述第二MAC CE信令包括一种或两种所述一个或多个第二波束,所述第二MAC CE信令的第三字段用于确定所述第二MAC CE信令包括的所述一个或多个第二波束为一种或两种。
  81. 根据权利要求80所述的方法,其特征在于,当所述第二MAC CE信令包括两种所述一个或多个第二波束时,所述两种所述一个或多个第二波束分别为:
    所述用于上行传输的第二波束以及所述用于下行传输的第二波束。
  82. 根据权利要求81中任一项所述的方法,其特征在于,所述第二MAC CE信令的第一比特用于指示所述用于上行传输的第二波束,所述第二MAC CE信令的第二比特用于指示所述用于下行传输的第二波束;或
    所述第二MAC CE信令的第一比特用于指示所述用于下行传输的第二波束,所述第二MAC CE信令的第二比特用于指示所述用于上行传输的第二波束。
  83. 根据权利要求82所述的方法,其特征在于,所述第二MAC CE信令的第三字段用于确定所述第二MAC CE信令的第二比特是否存在。
  84. 根据权利要求81或82所述的方法,其特征在于,所述第二MAC CE信令的第四字段用于确定所述第二MAC CE信令的第一比特指示的是所述用于上行传输的第二波束还是所述用于下行传输的第二波束。
  85. 一种通信装置,其特征在于,包括:
    存储器,用于存储计算机指令;
    处理器,用于执行所述存储器中存储的计算机指令,使得所述通信装置执行如权利要求1至25中任一项所述的方法或权利要求26至50中任一项所述的方法或权利要求51至67中任一项所述的方法或权利要求68至84中任一项所述的方法。
  86. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置执行如权利要求1至25中任一项所述的方法或权利要求26至50中任一项所述的方法或权利要求51至67中任一项所述的方法或权利要求68至84中任一项所述的方法。
PCT/CN2020/121989 2020-10-19 2020-10-19 一种无线通信的方法与装置 WO2022082386A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080106280.8A CN116368766A (zh) 2020-10-19 2020-10-19 一种无线通信的方法与装置
PCT/CN2020/121989 WO2022082386A1 (zh) 2020-10-19 2020-10-19 一种无线通信的方法与装置
EP20957975.4A EP4228188A4 (en) 2020-10-19 2020-10-19 METHOD AND DEVICE FOR WIRELESS COMMUNICATION
US18/302,072 US20230262678A1 (en) 2020-10-19 2023-04-18 Wireless communication method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/121989 WO2022082386A1 (zh) 2020-10-19 2020-10-19 一种无线通信的方法与装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/302,072 Continuation US20230262678A1 (en) 2020-10-19 2023-04-18 Wireless communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2022082386A1 true WO2022082386A1 (zh) 2022-04-28

Family

ID=81291357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121989 WO2022082386A1 (zh) 2020-10-19 2020-10-19 一种无线通信的方法与装置

Country Status (4)

Country Link
US (1) US20230262678A1 (zh)
EP (1) EP4228188A4 (zh)
CN (1) CN116368766A (zh)
WO (1) WO2022082386A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114557002B (zh) * 2019-08-30 2023-06-20 株式会社Ntt都科摩 终端以及无线通信方法
US20220141862A1 (en) * 2020-11-05 2022-05-05 Qualcomm Incorporated Techniques for signaling a common downlink and uplink beam
CN116686365A (zh) * 2021-01-14 2023-09-01 华为技术有限公司 波束管理方法与装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018145224A1 (en) * 2017-02-10 2018-08-16 Motorola Mobility Llc Downlink configuration
CN110474724A (zh) * 2018-05-10 2019-11-19 维沃移动通信有限公司 一种tci状态指示方法、终端及网络侧设备
CN110971361A (zh) * 2018-09-28 2020-04-07 华为技术有限公司 一种控制信道波束指示方法及设备
CN111435855A (zh) * 2019-03-25 2020-07-21 维沃移动通信有限公司 信道状态信息csi报告的传输方法、终端及网络设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018145224A1 (en) * 2017-02-10 2018-08-16 Motorola Mobility Llc Downlink configuration
CN110474724A (zh) * 2018-05-10 2019-11-19 维沃移动通信有限公司 一种tci状态指示方法、终端及网络侧设备
CN110971361A (zh) * 2018-09-28 2020-04-07 华为技术有限公司 一种控制信道波束指示方法及设备
CN111435855A (zh) * 2019-03-25 2020-07-21 维沃移动通信有限公司 信道状态信息csi报告的传输方法、终端及网络设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4228188A4 *
ZTE: "Enhancements on Multi-beam Operation", 3GPP DRAFT; R1-2005454, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 8 August 2020 (2020-08-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051917478 *

Also Published As

Publication number Publication date
EP4228188A1 (en) 2023-08-16
US20230262678A1 (en) 2023-08-17
CN116368766A (zh) 2023-06-30
EP4228188A4 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
US11438965B2 (en) User equipment in wireless communication system
CN111510267B (zh) 波束指示的方法和通信装置
WO2020143752A1 (zh) 信息传输的方法和通信装置
US20210219336A1 (en) Data Transmission Method And Apparatus
CN112771785A (zh) 用于经由物理共享信道传送用户数据的方法和设备
US20230045308A1 (en) Resource configuration method and apparatus
CN109845131B (zh) 用于在无线通信系统中报告信道状态信息的方法和设备
CN110932820B (zh) 发送和接收上行控制信息的方法以及通信装置
WO2022082386A1 (zh) 一种无线通信的方法与装置
EP4229774A2 (en) Methods and apparatus for multi-beam operation
WO2019127199A1 (zh) 用于上行数据传输的方法和终端设备
EP3860091B1 (en) Information receiving method and device and information sending method and device
CN111586858A (zh) 信号传输方法和通信装置
WO2022077478A1 (zh) 一种基于波束的通信方法以及相关装置
CN113825229A (zh) 传输配置指示状态TCI state切换的方法和装置
WO2019047819A1 (zh) 发送上行控制信道的方法和装置
US20230188197A1 (en) Data Transmission Method and Communication Apparatus
CN112399597A (zh) 更新波束信息的方法和通信装置
CN115004760A (zh) 使用下行链路控制信息动态启用和禁用物理下行链路共享信道调度
WO2020233500A1 (zh) 一种通信方法及通信装置
WO2020187125A1 (zh) 数据传输方法和装置
CN111436129B (zh) 数据传输方法和通信装置
CN112312441B (zh) 一种通信方法和通信装置
WO2023072116A1 (zh) 波束使用方法以及相关装置
WO2023206302A1 (zh) 信号发送、信号接收装置以及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957975

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020957975

Country of ref document: EP

Effective date: 20230509

NENP Non-entry into the national phase

Ref country code: DE