WO2020233500A1 - 一种通信方法及通信装置 - Google Patents

一种通信方法及通信装置 Download PDF

Info

Publication number
WO2020233500A1
WO2020233500A1 PCT/CN2020/090390 CN2020090390W WO2020233500A1 WO 2020233500 A1 WO2020233500 A1 WO 2020233500A1 CN 2020090390 W CN2020090390 W CN 2020090390W WO 2020233500 A1 WO2020233500 A1 WO 2020233500A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
receiving antennas
terminal device
network device
value
Prior art date
Application number
PCT/CN2020/090390
Other languages
English (en)
French (fr)
Inventor
刘建琴
陈铮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020233500A1 publication Critical patent/WO2020233500A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0675Space-time coding characterised by the signaling
    • H04L1/0693Partial feedback, e.g. partial channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station

Definitions

  • This application relates to the field of communication, and more specifically, to a communication method and communication device.
  • the channel state information reference signal (channel-state information reference signal, CSI-RS) is a reference signal used to measure the downlink channel.
  • the terminal device can perform downlink channel measurement based on the CSI-RS sent by the network device to obtain channel state information (CSI) of the downlink channel, and report the CSI to the network device, and the network device schedules downlink resources according to the CSI.
  • CSI channel state information
  • the energy consumption of the terminal device is different.
  • the energy consumption is 70% of that of 2Rx.
  • the receiving antenna of the terminal device may change dynamically. The current CSI measurement and reporting mechanism is not reasonable enough, and within a period of time after the number of receiving antennas is switched, the accuracy of network equipment scheduling or data transmission may be affected.
  • This application provides a communication method and communication device. After the number of receiving antennas used by the terminal device changes, the network device can use more accurate CSI to schedule downlink data with the terminal device, thereby improving the user experience .
  • a communication method is provided, which may be executed by a terminal device, or may also be executed by a chip or a circuit configured in the terminal device, which is not limited in this application.
  • the method includes: after the number of receiving antennas used by the terminal device to receive the PDSCH sent by the network device changes, the terminal device determines the first CSI according to the changed number of receiving antennas, and the first CSI is the terminal device according to the change The CSI reported to the network device as a result of the number of receiving antennas measuring the CSI-RS; the terminal device receives the PDSCH sent by the network device according to the first CSI.
  • the terminal device after the number of receiving antennas used by the terminal device to receive the PDSCH sent by the network device is changed, the terminal device will determine the first CSI according to the changed number of receiving antennas.
  • the first CSI and the changed receiving antenna The number of antennas has a corresponding relationship.
  • the first CSI is the CSI reported by the terminal device to the network device, and the terminal device receives the CSI-RS with the changed number of receiving antennas, and measures the CSI-RS, generates and reports to the network device according to the measurement result The CSI.
  • the network device can send downlink data with the terminal device according to the first CSI, and the terminal device can also receive data according to the receiving algorithm corresponding to the first CSI. Since the first CSI used by the network device and the terminal device has a corresponding relationship with the current number of receiving antennas, the first CSI matches the current real channel quality relatively, so after the number of receiving antennas of the terminal device changes, the network device can Use more accurate CSI to perform downlink data scheduling with terminal equipment, thereby improving user experience.
  • the terminal device determines the first CSI according to the changed number of receiving antennas, including: before the terminal device performs CSI-RS according to the changed number of receiving antennas The measurement result reports the CSI to the network device, and when the PDCCH sent by the network device is received, the terminal device determines the first CSI according to the changed number of receiving antennas; the terminal device receives the PDSCH sent by the network device according to the first CSI, including: The terminal device receives the PDSCH scheduled by the PDCCH according to the first CSI.
  • the changed number of receiving antennas is the first receiving antenna number
  • the method further includes: the terminal device determines the first receiving antenna number according to the first CSI resource configuration The terminal device measures the first CSI-RS in the first CSI resource configuration sent by the network device with the first number of receiving antennas; the terminal device reports the first CSI-RS to the network device according to the measurement result of the first CSI-RS .
  • the first CSI resource configuration is associated with (or corresponds to) the first receiving antenna number, and the terminal device can only use the first receiving antenna number to match the first CSI resource configuration in the first CSI resource configuration.
  • the CSI-RS is received and measured, but other receiving antenna numbers cannot be used to receive and measure the first CSI-RS in the first CSI resource configuration. If the number of receiving antennas used by the terminal device to receive the PDSCH sent by the network device during measurement (receiving the first CSI-RS in the first CSI resource configuration) is not the first receiving antenna number, the terminal device should advance the number of receiving antennas Switch to the number of first receiving antennas, and then receive the first CSI-RS and perform measurement.
  • the high-level signaling may configure the number of its associated terminal equipment receiving antennas.
  • the terminal device may support the use of multiple receiving antennas, and under different circumstances may choose to use one or more of the multiple receiving antennas to receive the PDSCH transmitted by the network device.
  • the first number of receiving antennas may be any one of the number of receiving antennas that can be used by the terminal device.
  • the first number of receiving antennas may be the maximum number of receiving antennas that can be used by the terminal device.
  • the first number of receiving antennas may be any number of receiving antennas other than the minimum receiving number that can be used by the terminal device.
  • the first number of receiving antennas may be the smallest number of receiving antennas that can be used by the terminal device.
  • the first CSI resource configuration may include related parameters of the time domain behavior of transmitting the first CSI-RS.
  • the first CSI-RS may be sent periodically, or the first CSI-RS may be semi-persistently scheduled, or the first CSI-RS may be sent aperiodically.
  • the first CSI may be reported to the network device according to the first CSI report configuration.
  • the first CSI report configuration may be associated with the first CSI resource configuration.
  • the first CSI report configuration may include time-domain behavior of CSI feedback, measurement constraint configuration, and CSI feedback parameters.
  • the time domain behavior of CSI feedback includes configuring the CSI feedback as periodic, semi-continuous or aperiodic CSI feedback.
  • the changed number of receiving antennas is the second number of receiving antennas
  • the method further includes: the terminal device uses the second number of receiving antennas to send the second number of receiving antennas to the network device.
  • the second CSI-RS in the CSI resource configuration is measured, and the second receiving antenna number is the number of receiving antennas used by the terminal device to receive the PDSCH sent by the network device during the measurement; the terminal device measures the second CSI-RS according to As a result, the first CSI is reported to the network device.
  • the second CSI resource configuration is associated with the number of receiving antennas (or, in other words, the number of receiving antennas currently used) that the terminal device uses to receive the PDSCH sent by the network device when performing the measurement.
  • the terminal device receives and measures the second CSI-RS in the second CSI resource configuration with the number of receiving antennas used to receive the PDSCH sent by the network device.
  • the terminal device when the measurement is performed, the terminal device receives the PDSCH sent by the network device with the second number of receiving antennas, then the terminal device can continue to use the second number of receiving antennas to receive the second CSI-RS in the second CSI resource configuration. measuring.
  • the second number of receiving antennas may be any one of the number of receiving antennas that can be used by the terminal device, for example, the maximum number of receiving antennas or the minimum number of receiving antennas.
  • the number of the second receiving antennas may be the same as the number of the first receiving antennas.
  • the second CSI resource configuration may include related parameters of the time domain behavior of transmitting the second CSI-RS.
  • the second CSI-RS may be transmitted periodically, or the second CSI-RS may be semi-persistently scheduled, or the second CSI-RS may be transmitted aperiodically.
  • the first CSI-RS and the second CSI-RS are both periodically transmitted, and the transmission period of the first CSI-RS is greater than the transmission period of the second CSI-RS, which can reduce -RS measures the number of times the number of receiving antennas are switched, reducing the impact on downlink data transmission between network equipment and terminal equipment.
  • the first CSI may be reported to the network device according to the second CSI report configuration.
  • the second CSI report configuration may be associated with the second CSI resource configuration.
  • the second CSI report configuration may include time-domain behavior of CSI feedback, measurement constraint configuration, and CSI feedback parameters.
  • the time domain behavior of CSI feedback includes configuring the CSI feedback as periodic, semi-continuous or aperiodic CSI feedback.
  • the terminal device reports the first CSI to the network device according to the result of measuring the second CSI-RS, including: the terminal device determines the first resource area, and the first resource The resource size of the area is greater than or equal to the resources occupied by the first PUCCH.
  • the first PUCCH carries the CSI obtained by measuring the second CSI-RS by the terminal device according to the maximum number of receiving antennas that the terminal device can use; the terminal device is in the first
  • the second PUCCH is sent on all or part of the resource area, and the second PUCCH carries the first CSI.
  • the first resource area can be configured in advance, and the size of the first resource area can be restricted to a certain extent.
  • the second PUCCH may also be used to carry the CSI obtained by the terminal device measuring the second CSI-RS according to the maximum number of receiving antennas that it can use, that is, the size of the first PUCCH may be equal to
  • the second PUCCH is the same.
  • the first CSI includes a first RI value
  • the maximum value of the first RI value is based on the RI limit value in the CSI report configuration used for reporting the first CSI and
  • the terminal device measures the CSI-RS corresponding to the first CSI, the number of receiving antennas used to receive the PDSCH sent by the network device is determined.
  • the first RI value in the first CSI of the terminal device cannot be greater than the RI limit value in the CSI report configuration used to report the first CSI and the CSI-RS corresponding to the first CSI is used to receive the network device.
  • the first CSI includes a first RI value
  • the maximum value of the first RI value is the RI limit value in the CSI report configuration used for reporting the first CSI and the terminal
  • the device measures the CSI-RS corresponding to the first CSI, the smaller value among the number of receiving antennas used to receive the PDSCH sent by the network device.
  • the maximum value of the first RI value is the RI limit value in the CSI report configuration used for reporting the first CSI.
  • the maximum value of the first RI value is the number of receiving antennas used to receive the PDSCH sent by the network device when the terminal device measures the CSI-RS corresponding to the first CSI.
  • a communication method is provided, which may be executed by a terminal device, or may also be executed by a chip or circuit configured in the terminal device, which is not limited in this application.
  • the method includes: when the number of receiving antennas used by the terminal device to receive the PDSCH sent by the network device changes, the terminal device determines the first CSI, where the first CSI is the terminal device reporting to the network device according to the first CSI report configuration The first CSI report configuration is associated with the first transmission scheme; the terminal device receives the PDSCH sent by the network device according to the first CSI.
  • the terminal device determines the first CSI and receives the PDSCH according to the first CSI.
  • the first CSI is the CSI reported by the terminal device to the network device according to the first CSI report configuration, and the first CSI report configuration is associated with the first transmission scheme. That is, the report parameter combination configuration included in the first CSI report configuration is associated with the first transmission scheme, and therefore the parameter combination included in the first CSI report configuration is associated with the first transmission scheme.
  • the first transmission scheme may be a transmit diversity scheme.
  • the first transmission scheme may be an open-loop transmission scheme or a semi-open-loop transmission scheme.
  • the first CSI report configuration includes a report parameter, and the report parameter is used to indicate the parameter combination cri-RI-i1-CQI or the parameter combination cri-RI-CQI.
  • the network device in the embodiment of the present application performs downlink data transmission with the terminal device according to the first CSI, and the terminal device may also perform data reception according to a receiving algorithm corresponding to the first CSI. Since the parameter combination included in the first CSI is associated with the first transmission scheme, the network device can perform downlink data scheduling with the terminal device through the first transmission scheme, and the first transmission scheme may be a transmit diversity scheme ( For example, open-loop transmission scheme or semi-open-loop transmission scheme), so the accuracy of CSI is low, network equipment can roughly precode PDSCH based on limited CSI, and then perform downlink data scheduling with terminal equipment Therefore, the adverse impact on data transmission caused by the mismatch between the used CSI and the actual channel quality is reduced, thereby improving the user experience.
  • a transmit diversity scheme For example, open-loop transmission scheme or semi-open-loop transmission scheme
  • the terminal device determining the first CSI includes: reporting to the network device the result of measuring the CSI-RS with the changed number of receiving antennas before the terminal device CSI, when the PDCCH sent by the network device is received, the terminal device determines the first CSI; the terminal device receives the PDSCH sent by the network device according to the first CSI, including: the terminal device receives the PDCCH scheduled according to the first CSI PDSCH.
  • the method before the terminal device determines the first CSI, the method further includes: the terminal device reports the first CSI to the network device according to the first CSI report configuration; and the terminal device Report the second CSI to the network device according to the second CSI report configuration, and the second CSI is associated with the second transmission scheme.
  • the first transmission scheme is a transmit diversity scheme; and/or, the second transmission scheme is a non-transmit diversity scheme.
  • the first transmission scheme is an open-loop transmission scheme or a semi-open-loop transmission scheme.
  • the report parameter in the second CSI report configuration is used to indicate one of the following CSI parameter combinations: cri-RI-PMI-CQI, cri-RI-i1, cri-RSRP, ssb-Index-RSRP, cri- RI-LI-PMI-CQI.
  • a communication method is provided, which may be executed by a network device, or may also be executed by a chip or circuit configured in the network device, which is not limited in this application.
  • the method includes: after the number of receiving antennas used by the terminal device to receive the PDSCH sent by the network device is changed, the network device determines the first CSI according to the changed number of receiving antennas, and the first CSI is the terminal device according to the change The CSI reported to the network device as a result of measuring the CSI-RS by the number of receiving antennas; the network device sends PDSCH to the terminal device according to the first CSI.
  • the network device determines the first CSI according to the changed number of receiving antennas, including: the terminal device has not performed the CSI-RS according to the changed number of receiving antennas.
  • the measurement results report the CSI to the network device, and when the PDCCH sent by the network device is received, the network device determines the first CSI according to the changed number of receiving antennas; the network device sends PDSCH to the terminal device according to the first CSI, including: network The device sends the PDSCH scheduled by the PDCCH to the terminal device according to the first CSI.
  • the first CSI includes a first RI value
  • the first RI value is based on the RI limit value and the terminal device measurement in the CSI report configuration used to report the first CSI
  • the CSI-RS corresponding to the first CSI is determined by the number of receiving antennas used to receive the PDSCH sent by the network device.
  • the first CSI includes a first RI value
  • the maximum value of the first RI value is the RI limit value in the CSI report configuration used for reporting the first CSI and the terminal
  • the device measures the CSI-RS corresponding to the first CSI, the smaller value among the number of receiving antennas used to receive the PDSCH sent by the network device.
  • a communication method is provided, which may be executed by a network device, or may also be executed by a chip or circuit configured in the network device, which is not limited in this application.
  • the method includes: when the number of receiving antennas used by the terminal device to receive the PDSCH sent by the network device changes, the network device determines the first CSI, and the first CSI is the terminal device reporting to the network device according to the first CSI report configuration CSI, the first CSI report configuration is associated with the first transmission scheme; the network device sends the PDSCH to the terminal device according to the first CSI.
  • the network device determining the first CSI includes: reporting to the network device the result of measuring the CSI-RS with the changed number of receiving antennas before the terminal device CSI, when the PDCCH sent by the network device is received, the network device determines the first CSI; the network device sends the PDSCH to the terminal device according to the first CSI, including: the network device sends the PDSCH scheduled by the PDSCH to the terminal device according to the first CSI .
  • the method before the network device determines the first CSI, the method further includes: the network device receives the first CSI reported by the terminal device according to the first CSI report configuration; The second CSI reported by the terminal device according to the second CSI report configuration is received, and the second CSI is associated with the second transmission scheme.
  • the first transmission scheme is a transmit diversity scheme; and/or, the second transmission scheme is a non-transmit diversity scheme.
  • the first transmission scheme is an open-loop transmission scheme or a semi-open-loop transmission scheme.
  • the report parameter in the first CSI report configuration is used to indicate one of the following CSI parameter combinations: cri-RI-i1-CQI, cri-RI-CQI;
  • the report parameter in the second CSI report configuration is used to indicate one of the following CSI parameter combinations: cri-RI-PMI-CQI, cri-RI-i1, cri-RSRP, ssb-Index-RSRP, cri-RI-LI- PMI-CQI.
  • a communication device which may be a terminal device or a chip in the terminal device.
  • the device may include a processing unit and a transceiving unit.
  • the processing unit may be a processor, and the transceiving unit may be a transceiver;
  • the terminal device may also include a storage unit, which may be a memory; the storage unit is used to store instructions, and the processing unit executes what is stored in the storage unit. , So that the terminal device executes the method of the first aspect or the second aspect.
  • the processing unit can be a processor, and the transceiver unit can be an input/output interface, a pin or a circuit, etc.; the processing unit executes the instructions stored in the storage unit to make the terminal device execute the first
  • the storage unit may be a storage unit in the chip (for example, a register, a cache, etc.), or a storage unit located outside the chip in a terminal device (for example, read-only memory, random access Memory, etc.).
  • a communication device may be a network device or a chip in the network device.
  • the device may include a processing unit and a transceiving unit.
  • the processing unit may be a processor
  • the transceiver unit may be a transceiver
  • the network device may also include a storage unit, and the storage unit may be a memory; the storage unit is used to store instructions, and the processing unit executes what is stored in the storage unit. , So that the network device executes the method in the third aspect or the fourth aspect.
  • the processing unit may be a processor, and the transceiver unit may be an input/output interface, pin or circuit, etc.; the processing unit executes the instructions stored in the storage unit, so that the network device executes the third
  • the storage unit may be a storage unit in the chip (for example, a register, a cache, etc.), or a storage unit located outside the chip in a network device (for example, read-only memory, random access Memory, etc.).
  • a computer program product includes computer program code, which when the computer program code runs on a computer, causes the computer to execute the methods in the foregoing aspects.
  • the above-mentioned computer program code may be stored in whole or in part on a first storage medium, where the first storage medium may be packaged with the processor or separately packaged with the processor. This embodiment of the application does not deal with this. Specific restrictions.
  • a computer-readable medium stores program code, which when the computer program code runs on a computer, causes the computer to execute the methods in the above aspects.
  • Fig. 1 shows a schematic diagram of a communication system suitable for embodiments of the present application.
  • Figure 2 is a schematic diagram of a downlink time-frequency resource grid.
  • Figure 3 is a schematic diagram of the physical layer processing of the PDSCH.
  • Fig. 4 is a schematic diagram of the association relationship between CSI configuration and CSI-RS configuration.
  • Fig. 5 is a schematic diagram of the relationship between CSI-RS and CSI in a scenario where the terminal device switches the number of receiving antennas.
  • Fig. 6 is a schematic flowchart of an example of the communication method provided by the present application.
  • Fig. 7 is a schematic diagram of a specific example of the embodiment shown in Fig. 6.
  • FIG. 8 is a schematic flowchart of another example of the communication method provided by the present application.
  • Fig. 9 is a schematic diagram of a specific example of the embodiment shown in Fig. 8.
  • Fig. 10 is a schematic diagram of a communication device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • Fig. 12 is a schematic diagram of a communication device according to another embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • LTE frequency division duplex FDD
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • Fig. 1 shows a schematic diagram of a suitable communication system suitable for embodiments of the present application.
  • the communication system 100 may include at least one network device, such as the network device 110 shown in FIG. 1; the communication system 100 may also include at least one terminal device, such as the terminal device 120 shown in FIG. 1.
  • the network device 110 and the terminal device 120 may communicate through a wireless link.
  • Each communication device, such as the network device 110 or the terminal device 120 may be configured with multiple antennas, and the multiple antennas may include at least one transmitting antenna for transmitting signals and at least one receiving antenna for receiving signals.
  • each communication device additionally includes a transmitter chain and a receiver chain.
  • Those of ordinary skill in the art can understand that they can all include multiple components related to signal transmission and reception (such as processors, modulators, multiplexers). , Demodulator, demultiplexer or antenna, etc.). Therefore, the network device 110 and the terminal device 120 can communicate through multi-antenna technology.
  • the network device in the wireless communication system may be any device with a wireless transceiver function.
  • the equipment includes but is not limited to: evolved NodeB (eNB or eNodeB), radio network controller (RNC), node B (NodeB, NB), base station controller (BSC) ), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), wireless fidelity (WIFI) system
  • the access point (AP), wireless relay node, wireless backhaul node, transmission point (TP), or transmission and reception point (TRP), etc. can also be 5G, such as , NR, gNB in the system, or transmission point (TRP or TP), one or a group of antenna panels (including multiple antenna panels) of the base station in the 5G system, or it can also be a network that constitutes a gNB or transmission point Nodes, such as baseband unit (BBU), or distributed unit (DU), etc.
  • RNC
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layer functions
  • DU implements wireless link
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU implements wireless link
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network equipment in an access network (radio access network, RAN), and the CU can also be divided into network equipment in a core network (core network, CN), which is not limited in this application.
  • the terminal equipment in the wireless communication system may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, User terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in unmanned driving (self-driving), wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( Wireless terminals in transportation safety, wireless terminals in smart cities, and wireless terminals in smart homes.
  • the embodiment of this application does not limit the application scenario.
  • Figure 2 is a schematic diagram of a downlink time-frequency resource grid.
  • the basic unit in the frequency domain is a subcarrier, and the subcarrier spacing (SCS) can be 15KHz, 30KHz, etc. .
  • the unit of uplink or downlink frequency domain resources is a physical resource block (PRB), and each PRB is composed of 12 consecutive subcarriers in the frequency domain.
  • PRB physical resource block
  • each element on the resource grid is called a resource element (resource element, RE).
  • RE is the smallest physical resource and includes an orthogonal frequency division multiplexing (OFDM) symbol One sub-carrier within.
  • OFDM orthogonal frequency division multiplexing
  • the uplink time-frequency resource grid is similar to the downlink and will not be repeated here.
  • the basic time unit of downlink resource scheduling in NR is a slot. Generally speaking, a slot can be composed of 14 OFDM symbols in time.
  • FIG. 2 is only an exemplary schematic diagram shown for introducing physical resources, and does not constitute any limitation to the application.
  • the base station transmits the physical downlink shared channel (PDSCH) and the physical downlink control channel (PDCCH) for the terminal equipment.
  • PDSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • the terminal device needs to demodulate the PDCCH first.
  • the downlink control information (DCI) carried by the PDCCH contains the relevant information needed to receive the PDSCH (such as the location and size of the PDSCH time-frequency resources, multiple antenna configuration information, etc.) ).
  • Figure 3 is a schematic diagram of the physical layer processing of the PDSCH.
  • the data of the physical layer is organized in the form of transport blocks (TB).
  • One TB will be sent in one slot. If the terminal device does not support space division multiplexing, one slot will transmit at most one TB; if the terminal device supports space division multiplexing, one slot will transmit at most 2 TB.
  • a codeword is to insert CRC (cyclic redundancy check, cyclic redundancy check) for a TB sent on a slot, divide the code block, and insert CRC, channel coding, and rate matching for each code block. , The data obtained. Each codeword corresponds to a TB, so a terminal device sends at most 2 codewords in a slot.
  • Precoding is a process of mapping a layer (layer) to an antenna port (antenna port) using a precoding matrix.
  • the antenna port is a logical concept.
  • An antenna port can be a physical transmitting antenna or a combination of multiple physical transmitting antennas. In both cases, the receiver of the terminal device will not decompose the signal from the same antenna port, because from the perspective of the terminal, it does not matter whether the channel is formed by a single physical transmitting antenna or by multiple antennas.
  • the antenna port is defined by the reference signal (RS) corresponding to the antenna port, and the terminal can obtain the channel estimation of the antenna port based on the reference signal.
  • RS reference signal
  • Each antenna port has its own reference signal, and the terminal needs to perform channel estimation and data demodulation based on the reference signal corresponding to this antenna port.
  • the base station When the base station schedules downlink data to the terminal device, it needs to select the downlink transmission configuration and related parameters based on real-time downlink channel conditions including interference conditions, including modulation and coding scheme (MCS), redundancy version ( redundancy version) etc.
  • MCS modulation and coding scheme
  • redundancy version redundancy version
  • terminal devices To support downlink scheduling based on channel conditions, terminal devices need to provide channel-state information (CSI) to the base station, and the base station will formulate downlink data scheduling strategies based on these CSI.
  • CSI channel-state information
  • Channel state information is information used to describe channel attributes of a communication link reported by a receiving end (such as a terminal device) to a sending end (such as a network device) in a wireless communication system.
  • the network device may send a channel-state information reference signal (CSI-RS) to the terminal device, and the terminal device may perform downlink channel measurement based on the CSI-RS sent by the network device to obtain the CSI of the downlink channel. And report the CSI to the network device, and the network device schedules downlink resources according to the CSI.
  • CSI-RS channel-state information reference signal
  • CSI includes but is not limited to channel-quality indicator (CQI), precoding-matrix indicator (PMI), rank indicator (rank indicator, RI), CSI-RS resource indicator (CSI) -RS resource indicator (CRI), layer indicator (layer indicator, LI) and other parameters.
  • CQI channel-quality indicator
  • PMI precoding-matrix indicator
  • rank indicator rank indicator
  • CSI-RS resource indicator CSI
  • CRI layer indicator
  • LI layer indicator
  • the CSI may include one or more of the above listed, and may also include other information used to characterize the CSI in addition to the above listed, which is not limited in this application. The following introduces some of the parameters that will be mentioned later in this application.
  • RI used to indicate the optimal number of layers for downlink data transmission to terminal equipment
  • PMI provide the base station with an indication of the best precoding matrix that can be used under the condition of the number of layers indicated by the RI;
  • CQI indicates the highest MCS that can be used to ensure that the error rate of downlink data reception does not exceed 10% when the recommended RI and PMI are used.
  • the precoding matrix suggested by the terminal device will not be directly sent to the base station. Instead, the index number pointing to a certain matrix in a set of pre-defined matrices (called a codebook) is sent. The number of ports selects the best precoding matrix from this set of matrices.
  • W 1 represents some long-term/broadband factors such as beamforming
  • W 2 represents some short-term/frequency selection such as polarization properties temper band properties
  • Type I codebooks are regular-precision CSI feedback, which is used to maintain the link, that is, single user multiple input multiple output (single user multiple input multiple output).
  • Type II codebook is a high-precision CSI feedback, used for multi-user multiple-input multiple-output (MU-MIMO) performance .
  • the base station can determine the technical solution that can be supported in the transmission process, that is, the downlink transmission solution, according to the CSI acquisition capability.
  • downlink transmission schemes include transmit diversity schemes (for example, half-open-loop transmission schemes, open-loop transmission schemes), closed-loop transmission schemes, and multi-user transmission schemes.
  • the transmit diversity scheme is mainly involved, and its meaning is introduced below:
  • the base station may only be able to rely on limited CSI (such as the first-level precoding matrix for broadband feedback, ie W 1 ) Perform rough precoding.
  • CSI such as the first-level precoding matrix for broadband feedback, ie W 1
  • W 1 the first-level precoding matrix for broadband feedback
  • Such a precoding method based on coarse CSI may be referred to as a transmit diversity scheme (for example, a semi-open loop, an open loop transmission scheme).
  • the terminal device can assume that W 1 depends on the reported broadband PMI when calculating the CQI, and W 2 is randomly selected.
  • NR supports multiple combinations of CSI parameters reported by terminal equipment, such as "cri-RI-PMI-CQI”, “cri-RI-i1”, and “cri- RI-i1-CQI”, “cri-RI-CQI”, “cri-RI-LI-PMI-CQI”, etc., where the “cri-RI-PMI-CQI” parameter combination corresponds to the closed-loop transmission scheme, and the “cri-RI The parameter combination of "-i1-CQI” and “cri-RI-CQI” corresponds to the transmit diversity scheme.
  • the following uses "cri-RI-i1-CQI" as an example to introduce its meaning:
  • the terminal device When the terminal device is configured by the base station to report the CSI parameter combination "cri-RI-i1-CQI", the "i1" in the combination represents the first-level codebook in the two-level codebook.
  • the terminal device will report a wideband PMI indication as the indication of the first-level codebook in the two-level codebook.
  • the terminal device will report the CQI at the frequency granularity of a precoding resource block group (PRG), and each PRG may include one or more consecutive PRBs.
  • PRG precoding resource block group
  • each PRG may include one or more consecutive PRBs.
  • the terminal device assumes that the precoding on each PRG of the PDSCH sent by the base station is randomly selected from N p precodings (it can be regarded as a transmit diversity scheme).
  • the base station In order to realize the CSI reporting of terminal equipment, the base station needs to configure N (N ⁇ 1, and N is an integer) CSI reporting settings (CSI reporting settings) for reporting different measurement results for each terminal equipment through high-level signaling, NR standard It is called "CSI-ReportConfig".
  • the CSI reporting configuration may include the configuration of the following parameters: codebook configuration, time domain behavior of CSI feedback, frequency domain granularity of CQI and PMI, measurement constraint configuration, CSI feedback parameters, etc.
  • the time-domain behavior of CSI feedback includes configuring CSI feedback as periodic, semi-persistent, or aperiodic CSI feedback.
  • CSI feedback parameters can be indicated by the signaling reportQuantity in the CSI configuration, which indicates the combination of parameters included in the CSI reported by the terminal equipment, for example, may include the aforementioned "cri-RI-i1-CQI” and " cri-RI-CQI” and other parameter combinations.
  • the base station limits the range of the RI value reported by the terminal device according to the characteristics of the channel state and the type of the antenna array that transmits the data, which is called the RI restriction value.
  • the CSI configuration includes Bitmap (bitmap) parameter typeI-SinglePanel-ri-Restriction, this parameter is the bit sequence r 7 ,...,r 1 ,r 0 , where each bit r i corresponds to a layer, when the value of bit r i is 0, the terminal device and the RI PMI reported not r i associated with the corresponding layer, the number of bits in the bit sequence is the maximum value of 1 RI reported by the terminal device, namely RI restriction value.
  • Other types of codebooks such as Type I multi-Panel Codebook, Type II Codebook, etc., also include the corresponding bitmap parameters ri-
  • the base station In order to report the CSI of terminal devices, the base station also needs to configure M (M ⁇ 1, and M is an integer) CSI resource settings for each terminal device through high-level information, which is called "CSI resource setting" in the NR standard. -ResourceConfig".
  • each CSI resource configuration can include S (S ⁇ 1, and S is an integer) CSI resource sets (CSI resource sets), and each CSI resource set includes K (K ⁇ 1, and K is an integer ) CSI-RS resources, the CSI-RS resources may be non-zero-power (None-Zero-Power, NZP) CSI-RS or CSI Interference Measurement (CSI-IM).
  • the parameter resourceType in the CSI resource configuration is used to indicate the time domain behavior of all CSI-RS resources it contains, that is, periodic, semi-persistent, and aperiodic configurations.
  • Each CSI report configuration is associated with one or more CSI resource configurations for channel and interference measurement and reporting, that is, the report result of the CSI report configuration of each terminal device is the CSI- configured by the terminal device according to the associated CSI resource configuration.
  • the RS resource is obtained by measurement, as shown in Figure 4.
  • Figure 4 is a schematic diagram of the association relationship between CSI reporting configuration and CSI resource configuration.
  • CSI reporting configuration #1 and CSI reporting configuration #2 there are two CSI reporting configurations including CSI reporting configuration #1 and CSI reporting configuration #2, including three CSI resource configurations including CSI resource configuration #1, CSI resource configuration #2, and CSI resource configuration #3.
  • CSI-RS resources included in CSI resource configuration #1 and CSI resource configuration #3 are NZP CSI-RS, and CSI-RS resources included in CSI resource configuration #2 are CSI-IM.
  • CSI report configuration #1 may be associated with CSI resource configuration #1
  • CSI resource configuration #2 may be associated with CSI resource configuration #1
  • CSI resource configuration #3 may be associated with CSI resource configuration #1.
  • the network device can instruct the terminal device to switch the receiving antenna through display signaling or implicit methods. For example, when the channel status is good or the amount of data to be transmitted is small, the network device can instruct the terminal device to use fewer receiving antennas The number of communication with network equipment.
  • the network device can instruct the terminal device to use a larger number of receiving antennas to communicate with the network device. Therefore, the power consumption of the terminal equipment can be reduced while ensuring that the data is received correctly and reliably.
  • the receiving antenna of the terminal device can be regarded as the receiving antenna used to receive the PDSCH.
  • the current CSI measurement and reporting mechanism may not be reasonable.
  • the accuracy of network equipment scheduling or data transmission may be affected .
  • Fig. 5 is a schematic diagram of the relationship between CSI-RS and CSI in a scenario where the terminal device switches the number of receiving antennas.
  • the network device first configures at least one CSI resource configuration (for example, including CSI resource configuration #1) for the terminal device through high-level signaling (for example, radio resource control (RRC) message), and CSI resource configuration #1 includes multiple CSI-RS resources.
  • the multiple CSI-RS resources can be configured periodically, semi-persistently or aperiodicly.
  • the terminal device receives the CSI-RS resources according to the time domain behavior indicated in CSI resource configuration #1
  • the multiple CSI-RSs are measured, and finally the CSI is reported to the network device according to the measurement result.
  • the terminal device receives a CSI-RS at time 0 and time 2, and measures the CSI-RS, generates the corresponding CSI according to the measurement result, and reports to the network device at time 1 and time 3.
  • the CSI is a schematic diagram of the relationship between CSI-RS and
  • the terminal device can report the CSI according to the CSI reporting configuration #1 pre-configured by the network device.
  • the CSI report configuration #1 may be associated with the CSI resource configuration #1, and the terminal device obtains the result according to the measurement of the CSI-RS resource in the CSI resource configuration #1, and sends the result to the network device according to the CSI report configuration #1 Report the corresponding measurement results.
  • the CSI reporting configuration #1 may include related parameters of the time domain behavior of the CSI feedback, and the time domain behavior of the CSI feedback may include configuring the CSI feedback as periodic, semi-continuous or aperiodic CSI feedback.
  • CSI report configuration #1 may also include configurations such as CSI feedback parameters.
  • the network device can periodically send CSI-RS to the terminal device (for example, send CSI-RS at the same time interval 0, 2, 6, 8 respectively), the terminal device receives the CSI-RS, and Perform measurement and periodically feed back CSI to the network device (for example, feed back CSI at times 1, 3, 7, and 9 at the same time interval).
  • the terminal device needs to switch the number of its receiving antennas from 2Rx to 4Rx for some reason.
  • the network device may need to perform downlink data transmission.
  • the network device may report the CSI for 2Rx (denoted as CSI#1) before the switchover.
  • the CSI#1 may be The CSI reported at time 3) performs downlink data scheduling, and the terminal device may receive data according to the CSI#1.
  • CSI#1 may not match, which will affect the network.
  • time 5 is the time between time 4 and time 7.
  • the network device sends the PDCCH scheduling PDSCH to the terminal device, but the terminal device does not send the PDSCH between time 4 and time 5.
  • the CSI for 4Rx is reported. Therefore, the network device may send the PDSCH scheduled by the PDCCH according to the CSI reported at time 3 before the handover, and the terminal device may receive the PDSCH according to the CSI reported at time 3. It is easy to understand that the CSI reported at time 3 is for 2Rx, and the number of receiving antennas at this time becomes 4Rx.
  • the current channel quality may not match the CSI reported at time 3, which will affect network equipment and terminal equipment.
  • FIG. 6 is a schematic flowchart of a communication method 200 according to an embodiment of the present application.
  • the method 200 shown in FIG. 6 includes step 201 to step 230.
  • step 210 after the number of receiving antennas used by the terminal device to receive the PDSCH sent by the network device is changed, the network device determines the first CSI according to the changed number of receiving antennas, and the first CSI is the terminal device according to the changed receiving antenna number.
  • step 220 after the number of receiving antennas used by the terminal device to receive the PDSCH sent by the network device is changed, the terminal device determines the first CSI according to the changed number of receiving antennas;
  • step 230 the network device sends a PDSCH to the terminal device according to the first CSI.
  • the terminal device receives the PDSCH sent by the network device according to the first CSI.
  • the number of receiving antennas used by the terminal device may change.
  • the number of receiving antennas used by the terminal device can be increased or decreased correspondingly according to the size of the amount of data to be transmitted or the channel state conditions.
  • both the network device and the terminal device will determine the first CSI according to the changed number of receiving antennas, and the network device will determine the first CSI according to the changed number of receiving antennas.
  • a CSI sends the PDSCH to the terminal device, and the terminal device receives the PDSCH according to the first CSI.
  • the first CSI has a corresponding relationship with the changed number of receiving antennas.
  • the first CSI is the CSI reported by the terminal device to the network device, and the terminal device receives the CSI-RS with the changed number of receiving antennas, and measures the CSI-RS, generates and reports to the network device according to the measurement result The CSI.
  • the terminal device receives the CSI-RS with the changed number of receiving antennas, measures the CSI-RS, generates and reports at least one CSI to the network device according to the measurement result, and the network device and the terminal device can One of the CSI is determined as the first CSI. It is easy to understand that the protocol can specify that the first CSI determined by the network device and the terminal device is the same CSI.
  • the network device transmits downlink data with the terminal device according to the first CSI, and the terminal device may also perform data reception according to a receiving algorithm corresponding to the first CSI. Since the first CSI used by the network device and the terminal device has a corresponding relationship with the current number of receiving antennas, the first CSI matches the current real channel quality relatively, so after the number of receiving antennas of the terminal device changes, the network device can Use more accurate CSI to perform downlink data scheduling with terminal equipment, thereby improving user experience.
  • the network device may send the CSI-RS resource configuration information, such as the CSI resource configuration listed above, to the terminal device in advance through high-level signaling (for example, an RRC message).
  • the terminal device can determine the CSI-RS resource according to the CSI resource configuration. Then, the terminal device can receive the CSI-RS based on the CSI-RS resource and complete the measurement, and report the CSI to the network device according to the measurement result.
  • the CSI resource configuration includes a first CSI resource configuration and a second CSI resource configuration.
  • the first CSI resource configuration is associated with (or corresponding) to the first receiving antenna number, and the terminal device can only receive and measure the first CSI-RS in the first CSI resource configuration with the first receiving antenna number, However, other numbers of receiving antennas cannot be used to receive and measure the first CSI-RS in the first CSI resource configuration. If the number of receiving antennas used by the terminal device to receive the PDSCH sent by the network device during measurement (receiving the first CSI-RS in the first CSI resource configuration) is not the first receiving antenna number, the terminal device should advance the number of receiving antennas Switch to the number of first receiving antennas, and then receive the first CSI-RS and perform measurement. When configuring the first first CSI resource configuration, the higher layer signaling may configure the number of its associated terminal equipment receiving antennas.
  • the terminal device may support the use of multiple receiving antennas, and under different circumstances may choose to use one or more of the multiple receiving antennas to receive the PDSCH transmitted by the network device.
  • the first number of receiving antennas may be any one of the number of receiving antennas that can be used by the terminal device.
  • the first number of receiving antennas may be the maximum number of receiving antennas that can be used by the terminal device.
  • the first number of receiving antennas may be any number of receiving antennas other than the minimum receiving number that can be used by the terminal device.
  • the first number of receiving antennas may be the smallest number of receiving antennas that can be used by the terminal device.
  • the first receiving antenna number can be any one of 1Rx, 2Rx, and 4Rx.
  • the second CSI resource configuration is associated with the number of receiving antennas (or in other words, the number of receiving antennas currently used) that the terminal device uses to receive the PDSCH sent by the network device when performing the measurement.
  • the terminal device receives and measures the second CSI-RS in the second CSI resource configuration with the number of receiving antennas used to receive the PDSCH sent by the network device.
  • the terminal device when the measurement is performed, the terminal device receives the PDSCH sent by the network device with the second number of receiving antennas, then the terminal device can continue to use the second number of receiving antennas to receive the second CSI-RS in the second CSI resource configuration. measuring.
  • the second number of receiving antennas may be any one of the number of receiving antennas that can be used by the terminal device, for example, the maximum number of receiving antennas or the minimum number of receiving antennas.
  • the number of the second receiving antennas may be the same as the number of the first receiving antennas.
  • the CSI resource configuration #1 in the related introduction of FIG. 5 can be used as an example of the second resource configuration in this embodiment.
  • the terminal device measures the CSI-RS resources in CSI resource configuration #1 at times 0, 2, 6, and 8 according to CSI resource configuration #1, and the CSI resource configuration #1 is compared During the measurement, the number of receiving antennas used by the terminal device to receive the PDSCH sent by the network device is related, that is to say, the terminal device will measure the CSI-RS resource with the currently used 2Rx at time 0, 2, and 8, and At time 6, the terminal device will measure the CSI-RS resource with the currently used 4Rx.
  • the first CSI resource configuration may include parameters related to the time domain behavior of transmitting the first CSI-RS
  • the second CSI resource configuration may include parameters related to the time domain behavior of transmitting the second CSI-RS.
  • the first CSI-RS may be sent periodically, or the first CSI-RS may be semi-persistently scheduled, or the first CSI-RS may be sent aperiodically.
  • the second CSI-RS may be transmitted periodically, or the second CSI-RS may be semi-persistently scheduled, or the second CSI-RS may be transmitted aperiodically.
  • the first CSI-RS and the second CSI-RS are both periodically transmitted, and the transmission period of the first CSI-RS is greater than the transmission period of the second CSI-RS, which can reduce -RS measures the number of times the number of receiving antennas are switched, reducing the impact on downlink data transmission between network equipment and terminal equipment.
  • Method 200 also includes:
  • step 201 the network device sends the first CSI-RS in the first CSI resource configuration to the terminal device.
  • the terminal device determines the first receiving antenna quantity according to the first CSI resource configuration, and uses the first receiving antenna quantity to measure the first CSI-RS in the first CSI resource configuration sent by the network device. .
  • step 202 the terminal device reports CSI#1 to the network device according to the measurement result of the first CSI-RS.
  • step 202 the network device receives CSI#1 reported by the terminal device.
  • the first CSI resource configuration in this embodiment is associated with the number of first receiving antennas.
  • the terminal device may first determine the first receiving antenna number according to the first CSI resource configuration, and measure the first CSI-RS sent by the network device with the first receiving antenna number, and then report CSI#1 to the network device according to the measurement result ,
  • the CSI#1 is the CSI with the first number of receiving antennas for the receiving antenna.
  • the terminal device should also switch the number of receiving antennas to the number of the first receiving antenna in advance, so that it can Receive and measure the first CSI-RS with the first number of receiving antennas.
  • the terminal device may first determine the number of receiving antennas used to receive the PDSCH sent by the network device during the measurement, and determine whether the number of receiving antennas used to receive the PDSCH sent by the network device during the measurement is the first antenna number. No, the terminal device may switch the number of receiving antennas to the first receiving antenna number in advance according to the time domain behavior of sending the first CSI-RS indicated by the first CSI resource configuration.
  • the terminal device may switch the number of receiving antennas from the first receiving antenna number back to the original number of receiving antennas used to receive the PDSCH sent by the network device.
  • the terminal device reports CSI#1 to the network device according to the measurement result of the first CSI-RS, and the terminal device can report the CSI#1 to the terminal device using the first CSI report configuration.
  • the first CSI report configuration may be associated with the first CSI resource configuration.
  • the first CSI report configuration may include time-domain behavior of CSI feedback, measurement constraint configuration, and CSI feedback parameters. Among them, the time domain behavior of CSI feedback includes configuring the CSI feedback as periodic, semi-continuous or aperiodic CSI feedback.
  • the first CSI report configuration also includes an RI restriction value.
  • the CSI#1 includes the first RI value.
  • the first RI value in CSI#1 reported by the terminal device cannot be greater than the RI limit value in the first CSI resource configuration and the number of receiving antennas used to receive the PDSCH sent by the network device when measuring the first CSI-RS (i.e. The minimum value of the number of first receiving antennas.
  • the first RI value may be determined according to the RI limit value and the number of first receiving antennas.
  • the maximum value of the first RI value may be the smaller value of the RI limit value and the number of first receiving antennas.
  • the maximum value of the first RI value may be the RI limit value or the number of the first receiving antennas.
  • step 203 the network device sends the second CSI-RS in the second CSI resource configuration to the terminal device.
  • the terminal device measures the second CSI-RS in the second CSI resource configuration sent by the network device with the second number of receiving antennas, and the second number of receiving antennas is used by the terminal device when performing the measurement.
  • the number of receiving antennas that receive the PDSCH sent by the network device is not limited.
  • step 204 the terminal device reports CSI#2 to the network device according to the measurement result of the second CSI-RS.
  • the network device receives CSI#2 reported by the terminal device.
  • the second CSI resource configuration in this embodiment is associated with the number of receiving antennas used by the terminal device to receive the PDSCH sent by the network device when performing the measurement.
  • the number of receiving antennas used by the terminal device to receive the PDSCH sent by the network device is the second receiving antenna number. Therefore, the terminal device uses the second receiving antenna number to measure the second CSI-RS sent by the network device, and then according to the measurement The result of CSI#2 is reported to the network device, and the CSI#2 is the CSI with the second number of receiving antennas for the receiving antenna.
  • the terminal device reports CSI#2 to the network device according to the measurement result of the second CSI-RS, and the terminal device can report the CSI#2 to the terminal device using the second CSI report configuration.
  • the second CSI report configuration may be associated with the second CSI resource configuration. Similar to the first CSI report configuration, the second CSI report configuration may include time-domain behavior of CSI feedback, measurement constraint configuration, and CSI feedback parameters.
  • the time-domain behavior of CSI feedback includes configuring the CSI feedback as periodic, semi-continuous or aperiodic CSI feedback.
  • PUCCH Physical uplink control channel, physical uplink control channel
  • the resource allocation of PUCCH carrying CSI is semi-static configuration. That is, high-level signaling directly configures a PUCCH resource, and at the same time configures a period and an offset in this period for this resource, this resource will take effect periodically.
  • some other information will be configured, such as: PUCCH start symbol index in the time slot, time domain duration, start PRB index, number of occupied PRB, etc.
  • the reporting of CSI#2 configured in the second CSI report configuration can be periodic or semi-continuous reporting. Therefore, one PUCCH resource can be semi-statically configured to carry CSI#2.
  • the size of the resource occupied by CSI#2 corresponding to the second CSI report configuration is related to the number of Rx antennas when the terminal device measures CSI-RS. When the number of Rx antennas of the terminal equipment is different, and the number of information bits of CSI#2 is different, then the time-frequency resources that need to be occupied by the PUCCH carrying CSI#2 may be different.
  • the network device may pre-configure the first resource area, the resource size of the first resource area is greater than or equal to the resource occupied by the first PUCCH, and the first PUCCH bears the terminal device according to the maximum number of receiving antennas it can use CSI obtained by measuring the second CSI-RS.
  • the first resource area can be configured in advance, and the size of the first resource area can be restricted to a certain extent.
  • the terminal device may first determine the first resource region, and send a second PUCCH on all or part of the first resource region, and the second PUCCH carries the CSI#2.
  • the second PUCCH may also be used to carry the CSI obtained by the terminal device measuring the second CSI-RS according to the maximum number of receiving antennas that it can use, that is, the size of the first PUCCH may be equal to
  • the second PUCCH is the same.
  • the network device may allocate the remaining resources in the first resource area to other terminal devices, so as to improve PUCCH resource usage efficiency.
  • the second CSI report configuration also includes an RI restriction value.
  • the CSI#2 includes the first RI value.
  • the terminal device can determine the first RI value according to the minimum value of the RI limit value and the number of second receiving antennas.
  • the number of second receiving antennas is the number of receiving antennas used by the terminal device to receive the PDSCH sent by the network device during the measurement. Therefore, the value of the second receiving antenna number can vary with the measurement timing. of. For example, with different measurement occasions, the number of second receiving antennas may be greater than, less than or equal to the RI limit value.
  • the first RI value may be determined according to the RI limit value and the number of second receiving antennas.
  • the maximum value of the first RI value may be the smaller value of the RI limit value and the number of second receiving antennas.
  • the maximum value of the first RI value may be the RI limit value or the second receiving antenna number.
  • both the first CSI-RS and the second CSI-RS may include multiple CSI-RSs.
  • both CSI#1 and CSI#2 may include multiple CSIs.
  • the first CSI-RS And CSI#1 are the CSI-RS and CSI configured for the first CSI resource
  • the second CSI-RS and CSI#2 are the CSI-RS and CSI configured for the second CSI resource.
  • the difference is as described above, mainly in:
  • the terminal device measures the CSI-RS with the number of receiving antennas determined according to the first CSI resource configuration to obtain CSI.
  • the number of receiving antennas may be exactly the same as the number of receiving antennas used to receive PDSCH during measurement. , But not limited to the number of receiving antennas used to receive the PDSCH; for the second CSI resource configuration, the terminal device measures the CSI-RS according to the number of receiving antennas used to receive the PDSCH during measurement to obtain CSI.
  • the number of first receiving antennas and the number of second receiving antennas are terms used for the convenience of expressing the number of receiving antennas used when measuring the first CSI-RS and the second CSI-RS, not for State the specific values of the number of two different receiving antennas (for example, 2Rx, 4Rx).
  • the number of receiving antennas used to receive the PDSCH may be different when measuring each CSI-RS.
  • the number of second receiving antennas may also be different. Different from each other.
  • the concepts of the number of first receiving antennas and the number of second antennas are different, the actual number of receiving antennas may also be the same.
  • the first CSI-RS is measured at time 0, and The number of receiving antennas determined according to the first CSI resource configuration is 4Rx, so for the first CSI-RS at time 0, the number of first receiving antennas is 4Rx, and the second CSI-RS is measured at time 6, which is used for receiving
  • the number of receiving antennas for the PDSCH is 4Rx, so for the second CSI-RS at time 6, the number of second receiving antennas is 4Rx.
  • the terminal device and the network device can determine one of the one or more CSIs (CSI#1 and/or CSI#2) as the first CSI, which corresponds to
  • the number of receiving antennas (that is, the number of receiving antennas used in the process of measuring the CSI-RS to obtain the CSI) is the number of receiving antennas after the change.
  • the CSI reported last time before the number of receiving antennas of the PDSCH sent by the network device is changed may be determined as the first CSI.
  • the CSI reported at other frequencies such as the penultimate time may also be determined as the first CSI, which is not limited in this application.
  • step 210 when the terminal device has not reported the CSI to the network device according to the result of measuring the CSI-RS with the changed number of receiving antennas, and received the PDCCH sent by the network device, the network device has The changed number of receiving antennas determines the first CSI.
  • step 220 when the terminal device has not reported the CSI to the network device according to the result of measuring the CSI-RS with the changed number of receiving antennas, and has received the PDCCH sent by the network device, the terminal device receives the PDCCH according to the changed The number of receiving antennas determines the first CSI.
  • step 230 the network device sends the PDSCH scheduled by the PDCCH to the terminal device according to the first CSI.
  • the terminal device receives the PDSCH scheduled by the PDCCH according to the first CSI. That is, the terminal device assumes that the network device determines the PDSCH scheduled by the PDCCH according to the first CSI.
  • the terminal device After the number of receiving antennas used by the terminal device to receive the PDSCH sent by the network device is changed, until the PDCCH sent by the network device is received, if the terminal device has not adjusted the CSI according to the changed number of receiving antennas -RS (including the first CSI-RS and/or the second CSI-RS) report the CSI (including CSI#1 and/or CSI#2) to the network device as the result of the measurement performed by the RS (including the first CSI-RS and/or the second CSI-RS).
  • the first CSI is determined by the number of receiving antennas, and the PDSCH scheduled by the PDCCH is transmitted according to the first CSI.
  • the terminal device adjusts the CSI- RS (including the first CSI-RS and/or the second CSI-RS) has reported the CSI (including CSI#1 and/or CSI#2) to the network device as the result of the measurement, then the network device and the terminal device Data transmission can be performed according to the reported CSI.
  • the CSI- RS including the first CSI-RS and/or the second CSI-RS
  • the network device and the terminal device Data transmission can be performed according to the reported CSI.
  • FIG. 7 is a schematic diagram of a specific example of the communication method 200 provided by the present application.
  • the terminal device can use 2Rx (where Rx represents the receiving antenna of the terminal device) and 4Rx to receive downlink data sent by the network device, and The number of receiving antennas used may change. For example, at time 4, the number of receiving antennas used by the terminal device changes from 2Rx to 4Rx.
  • the number of first receiving antennas may be 4Rx, so the first CSI resource configuration may be associated with the number of receiving antennas of 4Rx, that is, the terminal device can only use the number of receiving antennas of 4Rx to compare the first CSI resource.
  • the first CSI-RS in the configuration is measured, but other receiving antenna numbers (for example, 2Rx) cannot be used to measure the first CSI-RS.
  • the number of receiving antennas used by the terminal equipment to receive the PDSCH sent by the network equipment is 2Rx, then the terminal equipment should switch the number of receiving antennas to 4Rx in advance, and use 4Rx to transmit data from the network equipment at time 0 and time 10.
  • the first CSI-RS is measured.
  • the terminal device may switch the number of receiving antennas from 4Rx back to the previous 2Rx.
  • the second CSI resource configuration is associated with the number of receiving antennas used by the terminal device to receive the PDSCH sent by the network device during measurement.
  • the terminal device measures the second CSI-RS in the second CSI resource configuration with the number of receiving antennas used to receive the PDSCH sent by the network device. Specifically, at time 2 and time 8, the terminal device can measure the second CSI-RS with the current 2Rx, and at time 6, the terminal device can measure the second CSI-RS with 4Rx.
  • both the first CSI-RS and the second CSI-RS are transmitted periodically, and the transmission period of the first CSI-RS is greater than the transmission period of the second CSI-RS.
  • -RS measures the number of times the number of receiving antennas are switched, reducing the impact on downlink data transmission between network equipment and terminal equipment.
  • the terminal device measures the first CSI-RS sent by the network device at time 0 with 4Rx, and reports CSI#1 to the network device at time 1 according to the measurement result.
  • the terminal device uses 2Rx to measure the second CSI-RS sent by the network device at time 2 and time 8, and reports CSI#2 to the network device according to the measurement result at time 3 and time 9.
  • the terminal device measures the second CSI-RS sent by the network device at time 6 with 4Rx, and reports CSI#2 to the network device at time 7 according to the measurement result.
  • the terminal device can report CSI#1 and CSI#2 to the network device periodically according to the first CSI report configuration and the second CSI report configuration.
  • the first CSI report configuration and the second CSI report configuration can include the RI limit value.
  • the RI limit value may both be 4.
  • Both CSI#1 and CSI#2 include the first RI value, and the maximum value of the first RI value may be the RI limit value and the terminal device is used to receive the network device when the first CSI-RS or the second CSI-RS is measured The smaller value among the number of receiving antennas of the PDSCH to be transmitted.
  • the included first RI value is not greater than 2.
  • the included first RI value is not greater than 2.
  • the included first RI value is not greater than 4.
  • the number of receiving antennas used by the terminal device is switched from 2Rx to 4Rx.
  • the terminal device receives the PDCCH sent by the network device, but in the period between time 4 and time 5, the terminal device has not measured the CSI-RS according to the changed number of receiving antennas (ie 4Rx) The result of the CSI has been reported to the network device.
  • the terminal device and the network device can determine the first CSI according to 4Rx, and the CSI#1 reported by the terminal device at time 1 can be determined as the first CSI, and the network device can be based on The reported CSI#1 transmits the PDSCH scheduled by the PDCCH, and at the same time, the terminal device can receive the PDSCH scheduled by the PDCCH according to the CSI#1 reported at time 1.
  • the network device can perform downlink data with the terminal device with a more accurate CSI Scheduling, thereby improving the user experience.
  • the network device and the terminal device can transmit the PDSCH scheduled by the PDCCH according to the reported CSI at this time.
  • the terminal device reports CSI#2 to the network device according to the result of the 4Rx measurement of the second CSI-RS.
  • the network device and the terminal device can report CSI# according to the CSI-RS reported at time 7. 2 Transmit the PDSCH scheduled by the PDCCH.
  • FIG. 8 is a schematic flowchart of a communication method 300 according to an embodiment of the present application.
  • the method 300 shown in FIG. 8 includes step 301 to step 330.
  • step 310 when the number of receiving antennas used by the terminal device to receive the PDSCH sent by the network device changes, the network device determines the first CSI, which is the CSI reported by the terminal device to the network device according to the first CSI report configuration,
  • the first CSI report configuration is associated with the first transmission scheme.
  • step 320 when the number of receiving antennas used by the terminal device to receive the PDSCH sent by the network device changes, the terminal device determines the first CSI.
  • step 330 the network device sends the PDSCH to the terminal device according to the first CSI.
  • the terminal device receives the PDSCH sent by the network device according to the first CSI.
  • the number of receiving antennas used by the terminal device may change.
  • the number of receiving antennas used by the terminal device can be increased or decreased correspondingly according to the size of the amount of data to be transmitted or the channel state conditions.
  • both the network device and the terminal device determine the first CSI, and the network device sends the PDSCH to the terminal device according to the first CSI. , And the terminal device receives the PDSCH according to the first CSI.
  • the first CSI is the CSI reported by the terminal device to the network device according to the first CSI report configuration, and the first CSI report configuration is associated with the first transmission scheme. That is, the report parameter combination configuration included in the first CSI report configuration is associated with the first transmission scheme, and therefore the parameter combination included in the first CSI report configuration is associated with the first transmission scheme.
  • the first transmission scheme may be a transmit diversity scheme.
  • the first transmission scheme may be an open-loop transmission scheme or a semi-open-loop transmission scheme.
  • the first CSI report configuration includes a report parameter, and the report parameter is used to indicate the parameter combination cri-RI-i1-CQI or the parameter combination cri-RI-CQI.
  • the network device in the embodiment of the present application performs downlink data transmission with the terminal device according to the first CSI, and the terminal device may also perform data reception according to a receiving algorithm corresponding to the first CSI. Since the parameter combination included in the first CSI is associated with the first transmission scheme, the network device can perform downlink data scheduling with the terminal device through the first transmission scheme, and the first transmission scheme may be a transmit diversity scheme ( For example, open-loop transmission scheme or semi-open-loop transmission scheme), so the accuracy of CSI is low, network equipment can roughly precode PDSCH based on limited CSI, and then perform downlink data scheduling with terminal equipment Therefore, the adverse impact on data transmission caused by the mismatch between the used CSI and the actual channel quality is reduced, thereby improving the user experience.
  • a transmit diversity scheme For example, open-loop transmission scheme or semi-open-loop transmission scheme
  • the method 300 further includes:
  • step 301 the terminal device reports the first CSI to the network device according to the first CSI report configuration.
  • the network device receives the first CSI reported by the terminal device.
  • step 302 the terminal device reports the second CSI to the network device according to the second CSI report configuration.
  • the network device receives the second CSI reported by the terminal device.
  • the terminal device first reports the first CSI and the second CSI to the network device according to the first CSI report configuration and the second CSI report configuration. It is easy to understand that the first CSI And the second CSI is determined by the terminal device according to the measurement result of the CSI-RS.
  • the first CSI report configuration is associated with the first transmission scheme
  • the second CSI report configuration may be associated with the second transmission scheme.
  • the second transmission scheme may be a non-transmit diversity scheme.
  • the second transmission scheme may be any one of a closed-loop transmission scheme, a multi-user transmission scheme, and the like.
  • the second CSI report configuration includes a report parameter, and the report parameter is used to indicate one of the following parameter combinations: cri-RI-PMI-CQI, cri-RI-i1, cri-RSRP, ssb-Index-RSRP ,cri-RI-LI-PMI-CQI.
  • the second transmission scheme is different from the first transmission scheme.
  • step 310-step 330 when the number of receiving antennas used by the terminal device to receive the PDSCH sent by the network device changes, the terminal device and the network device can determine the first CSI, and the network device can determine the first CSI according to the The terminal device sends the PDSCH, and the terminal device receives the PDSCH sent by the network device according to the first CSI.
  • the network device and the terminal device can perform data transmission according to the first CSI reported last time.
  • the network device and the terminal device may also perform data transmission according to the first CSI reported at other frequencies such as the penultimate time, which is not limited in this application.
  • step 310 when the terminal device has not reported the CSI to the network device according to the result of measuring the CSI-RS with the changed number of receiving antennas, the network device determines that the PDCCH sent by the network device is received The first CSI.
  • step 320 in the case that the terminal device has not reported the CSI to the network device according to the result of measuring the CSI-RS with the changed number of receiving antennas, and received the PDCCH sent by the network device, the terminal device determines the first CSI .
  • step 330 the network device sends the PDSCH scheduled by the PDCCH to the terminal device according to the first CSI.
  • the terminal device receives the PDSCH scheduled by the PDCCH according to the first CSI.
  • the terminal device and the network device can determine the first CSI, and transmit the PDSCH scheduled by the PDCCH according to the first CSI.
  • the terminal device adjusts the CSI-
  • the result of the RS measurement has reported the CSI (including the first CSI and the second CSI) to the network device, and at this time, the network device and the terminal device can perform data transmission according to the reported CSI.
  • the terminal device reports the first CSI to the network device according to the result of measuring the CSI-RS with the changed number of receiving antennas, then the network device and the terminal device can communicate according to the first CSI-RS Perform data transfer.
  • the terminal device reports the second CSI to the network device according to the result of measuring the CSI-RS with the changed number of receiving antennas, the network device and the terminal device can communicate with each other according to the second CSI.
  • CSI performs data transmission.
  • FIG. 9 is a schematic diagram of a specific example of the communication method 300 provided by the present application.
  • the terminal device can use 2Rx and 4Rx to receive downlink data sent by the network device, and the number of receiving antennas used can be changed. For example, at time 4, the number of receiving antennas used by the terminal device changes from 2Rx to 4Rx.
  • the terminal device periodically reports the first CSI to the network device according to the first CSI report configuration, and the terminal device periodically reports the second CSI to the network device according to the second CSI report configuration.
  • the first CSI report configuration is associated with the first transmission scheme, and the first transmission scheme may be a transmit diversity scheme.
  • the second CSI report configuration is associated with a second transmission scheme, which may be a non-transmit diversity scheme (for example, a closed loop transmission scheme).
  • the terminal device reports the first CSI to the network device at time 0 and time 5, and reports the second CSI to the network device at time 1 and time 4.
  • the number of receiving antennas used by the terminal device is switched from 2Rx to 4Rx.
  • the terminal device receives the PDCCH sent by the network device, but in the period between time 2 and time 3, the terminal device has not measured the CSI-RS according to the changed number of receiving antennas (ie 4Rx) As a result, the CSI has been reported to the network device.
  • the terminal device and the network device can determine the first CSI.
  • the network device can send the PDSCH scheduled by the PDCCH according to the first CSI reported at time 0.
  • the terminal device can The first CSI reported at time 0 receives the PDSCH scheduled by the PDCCH.
  • the first CSI reported by the terminal device at time 0 is associated with the first transmission scheme, and data can be transmitted between the network device and the terminal device through the first transmission scheme, because the first transmission scheme is accurate to the CSI.
  • the network device can roughly precode the PDSCH according to the limited CSI, and then perform downlink data scheduling with the terminal device, thereby reducing the mismatch between the used CSI and the actual channel quality. The undesirable effects caused by data transmission have improved the user experience.
  • the network device and the terminal device can transmit the PDSCH scheduled by the PDCCH according to the reported CSI at this time.
  • the terminal device reports the second CSI to the network device based on the result of the 4Rx CSI-RS measurement.
  • the network device and the terminal device can transmit the second CSI according to the second CSI reported at time 4. PDSCH scheduled by this PDCCH.
  • the processing unit 1110 in the communication device 1100 shown in FIG. 10 may perform step 220 in FIG. 6, and the transceiver unit 1120 may perform steps 201-204 and 230 in FIG. 6.
  • the processing unit 1310 in the communication device 1300 shown in FIG. 12 may perform step 210 in FIG. 6, and the transceiving unit 1320 may perform steps 201-204 and 230 in FIG. 6.
  • FIG. 10 is a schematic diagram of a communication device according to an embodiment of the present application.
  • the communication device 1100 shown in FIG. 10 includes a processing unit 1110 and a transceiver unit 1120. After the number of receiving antennas used by the communication device 1100 to receive the PDSCH sent by the network device is changed, the processing unit 1110 is configured to determine the first CSI according to the changed number of receiving antennas. CSI reported to the network device as a result of the number of antennas measuring CSI-RS;
  • the transceiver unit 1120 is configured to receive the PDSCH sent by the network device according to the first CSI.
  • processing The unit 1110 is further configured to determine the first CSI according to the changed number of receiving antennas; the transceiver unit 1120 is also configured to receive the PDSCH scheduled by the PDCCH according to the first CSI.
  • the changed number of receiving antennas is the number of first receiving antennas
  • the processing unit 1110 is further configured to determine the number of first receiving antennas according to the first CSI resource configuration
  • the transceiver unit 1120 is also configured to The first CSI-RS in the first CSI resource configuration sent by the network device is measured by the first receiving antenna number; and the first CSI-RS is reported to the network device according to the measurement result of the first CSI-RS.
  • the first number of receiving antennas is the maximum number of receiving antennas that the communication device 1100 can use.
  • the changed number of receiving antennas is the number of second receiving antennas, where the transceiver unit 1120 is further configured to use the second number of receiving antennas to send the second CSI resource configuration to the network device.
  • the second CSI-RS is measured, the second receiving antenna number is the number of receiving antennas used by the communication device 1100 to receive the PDSCH sent by the network device during the measurement; the first CSI is reported to the network device according to the measurement result of the second CSI-RS .
  • the processing unit 1110 is further configured to determine a first resource area, where the resource size of the first resource area is greater than or equal to the resource occupied by the first PUCCH, and the first PUCCH bearer communication apparatus can according to the communication apparatus 1100
  • the CSI obtained by measuring the second CSI-RS using the largest number of receiving antennas; the transceiver unit 1120 is further configured to send a second PUCCH on all or part of the first resource region, and the second PUCCH carries the first CSI .
  • the first CSI includes a first RI value
  • the maximum value of the first RI value is based on the RI limit value in the CSI report configuration used to report the first CSI and the first CSI measured by the communication device 1100.
  • the corresponding CSI-RS is determined by the number of receiving antennas used to receive the PDSCH sent by the network device.
  • the first CSI includes a first RI value
  • the maximum value of the first RI value is the RI limit value in the CSI report configuration used to report the first CSI and the communication device 1100 measures the first CSI.
  • the corresponding CSI-RS is the smaller value among the number of receiving antennas used to receive the PDSCH sent by the network device.
  • the processing unit 1110 is used to determine the first CSI.
  • the first CSI is the communication device 1100 according to the first CSI report configuration.
  • the first CSI report configuration is associated with the first transmission scheme; the transceiver unit 1120 is configured to receive the PDSCH sent by the network device according to the first CSI.
  • processing The unit 1110 is also used to determine the first CSI; the transceiver unit 1120 is also used to receive the PDSCH scheduled by the PDCCH according to the first CSI.
  • the transceiver unit 1120 before the communication apparatus 1100 determines the first CSI, the transceiver unit 1120 is further configured to report the first CSI to the network device according to the first CSI report configuration; the transceiver unit 1120 is further configured to report the first CSI according to the second The CSI report configuration reports the second CSI to the network device, and the second CSI is associated with the second transmission scheme.
  • the first transmission scheme is a transmit diversity scheme; and/or, the second transmission scheme is a non-transmit diversity scheme.
  • the first transmission scheme is an open-loop transmission scheme or a semi-open-loop transmission scheme.
  • the report parameter in the first CSI report configuration is used to indicate one of the following CSI parameter combinations: cri-RI-i1-CQI, cri-RI-CQI; in the second CSI report configuration
  • the reported parameter is used to indicate one of the following CSI parameter combinations: cri-RI-PMI-CQI, cri-RI-i1, cri-RSRP, ssb-Index-RSRP, cri-RI-LI-PMI-CQI.
  • the aforementioned communication device 1100 may be a terminal device 70, wherein the function of the processing unit 1110 may be implemented by the processor 702 in the terminal device, and the function of the transceiver unit 1120 may be implemented by the transceiver 701 ( That is, the control circuit is implemented together with the antenna.
  • the processing unit 1110 may be implemented by the processor 702 in the terminal device
  • the function of the transceiver unit 1120 may be implemented by the transceiver 701 (That is, the control circuit is implemented together with the antenna.
  • FIG. 11 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • the terminal device can be applied to the system shown in FIG. 1 to perform the functions of the terminal device in the foregoing method embodiment.
  • FIG. 11 only shows the main components of the terminal device.
  • the terminal device 70 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal device, execute the software program, and process the data of the software program, for example, to support the terminal device to perform the actions described in the above method embodiment.
  • the memory is mainly used to store software programs and data.
  • the control circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the control circuit and the antenna together can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 11 only shows one memory and one processor. In an actual terminal device, there may be multiple processors and multiple memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processing unit is mainly used to control the entire terminal device and execute Software program, processing the data of the software program.
  • the processor in FIG. 11 can integrate the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and are interconnected by technologies such as a bus.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple central processors to enhance its processing capabilities, and various components of the terminal device may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • FIG. 12 is a schematic diagram of a communication device according to another embodiment of the present application.
  • the communication device 1300 shown in FIG. 12 includes a processing unit 1310 and a transceiver unit 1320. After the number of receiving antennas used by the terminal equipment to receive the PDSCH sent by the communication device 1300 changes:
  • the processing unit 1310 is configured to determine the first CSI according to the changed number of receiving antennas, and the first CSI is the CSI reported by the terminal device to the communication device 1300 according to the result of measuring the CSI-RS with the changed number of receiving antennas;
  • the transceiver unit 1320 is configured to send PDSCH to the terminal device according to the first CSI.
  • the processing unit 1310 is further configured to determine the first CSI according to the changed number of receiving antennas; the transceiving unit 1320 is further configured to send the PDSCH scheduled by the PDCCH to the terminal device according to the first CSI.
  • the first CSI includes a first RI value
  • the first RI value is based on the RI limit value in the CSI report configuration used to report the first CSI and the corresponding measurement of the first CSI by the terminal device.
  • CSI-RS is determined by the number of receiving antennas used to receive the PDSCH transmitted by the communication device 1300.
  • the first CSI includes a first RI value
  • the maximum value of the first RI value corresponds to the RI limit value in the CSI report configuration used for reporting the first CSI and the first CSI measured by the terminal device CSI-RS is the smaller value among the number of receiving antennas used to receive the PDSCH transmitted by the communication device 1300.
  • the processing unit 1310 is used to determine the first CSI.
  • the first CSI is the terminal device communicating according to the first CSI report configuration.
  • the first CSI report configuration is associated with the first transmission scheme; the transceiver unit 1320 is configured to send the PDSCH to the terminal device according to the first CSI.
  • the processing unit 1310 is further configured to determine the first CSI; the transceiver unit 1320 is further configured to send the PDSCH scheduled by the PDSCH to the terminal device according to the first CSI.
  • the transceiver unit 1320 before the communication apparatus 1300 determines the first CSI, is further configured to receive the first CSI reported by the terminal equipment according to the first CSI report configuration; the transceiver unit 1320 is also configured to receive the terminal equipment According to the second CSI reported by the second CSI report configuration, the second CSI is associated with the second transmission scheme.
  • the first transmission scheme is a transmit diversity scheme; and/or, the second transmission scheme is a non-transmit diversity scheme.
  • the first transmission scheme is an open-loop transmission scheme or a semi-open-loop transmission scheme.
  • the report parameter in the first CSI report configuration is used to indicate one of the following CSI parameter combinations: cri-RI-i1-CQI, cri-RI-CQI; in the second CSI report configuration
  • the reported parameter is used to indicate one of the following CSI parameter combinations: cri-RI-PMI-CQI, cri-RI-i1, cri-RSRP, ssb-Index-RSRP, cri-RI-LI-PMI-CQI.
  • the aforementioned communication device 1300 may be a network device, such as the base station 80 below, where the function of the processing unit 1310 may be implemented by the processor 8022 in the base station, and the function of the transceiver unit 1320 may be implemented by the base station 80.
  • the RRU 801 is realized. The following describes the structure of the network device of the embodiment of the present application in conjunction with FIG. 13.
  • FIG. 13 is a schematic structural diagram of a network device according to an embodiment of the present application, for example, it may be a schematic structural diagram of a base station. As shown in FIG. 13, the base station can be applied to the system shown in FIG. 1 to perform the functions of the network device in the foregoing method embodiment.
  • the base station 80 may include one or more radio frequency units, such as a remote radio unit (RRU) 801 and one or more baseband units (BBU) (also referred to as digital units, digital units, DU) 802.
  • RRU 801 may be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 8011 and a radio frequency unit 8012.
  • the RRU 801 part is mainly used for receiving and sending of radio frequency signals and conversion of radio frequency signals and baseband signals, for example, for sending the signaling messages described in the foregoing embodiments to terminal equipment.
  • the 802 part of the BBU is mainly used to perform baseband processing and control the base station.
  • the RRU 801 and the BBU 802 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 802 is the control center of the base station, and may also be called a processing unit, which is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU (processing unit) 802 may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the BBU 802 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network with a single access indication (such as an LTE network), and may also support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 802 further includes a memory 8021 and a processor 8022, and the memory 8021 is used to store necessary instructions and data.
  • the memory 8021 stores the corresponding relationship between the codebook index and the precoding matrix in the foregoing embodiment.
  • the processor 8022 is used to control the base station to perform necessary actions, for example, to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 8021 and the processor 8022 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the processor in the embodiment of the present application may be a central processing unit (Central Processing Unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), and dedicated integration Circuit (application specific integrated circuit, ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • Access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory Take memory (synchlink DRAM, SLDRAM) and direct memory bus random access memory (direct rambus RAM, DR RAM).
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code runs on a computer, the computer executes the steps shown in FIGS. 6 and 8 The method of any one of the embodiments.
  • the present application also provides a computer-readable medium, the computer-readable medium stores a program code, when the program code runs on a computer, the computer executes the steps shown in FIGS. 6 and 8 The method of any one of the embodiments.
  • the present application also provides a system, which includes the aforementioned one or more terminal devices and one or more network devices.
  • the foregoing embodiments can be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above-mentioned embodiments may be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions or computer programs.
  • the computer instructions or computer programs are loaded or executed on a computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center that includes one or more sets of available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium.
  • the semiconductor medium may be a solid state drive.
  • CSI channel state information
  • CSI-RS channel state information reference signal
  • PDCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • RRC wireless Resource control
  • the "communication protocol” involved in the embodiments of the present application may refer to a standard protocol in the communication field, for example, may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, which are not limited in this application.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not correspond to the implementation process of the embodiments of the present application. Constitute any limitation.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法及装置,该方法包括:在终端设备用于接收网络设备发送的PDSCH的接收天线数量发生变化后,所述终端设备根据变化后的接收天线数量确定第一CSI,所述第一CSI为所述终端设备根据以所述变化后的接收天线数量对CSI-RS进行测量的结果向所述网络设备上报的CSI;所述终端设备根据所述第一CSI接收所述网络设备发送的PDSCH。本申请在终端设备所使用的接收天线数量发生变化后,网络设备能够以较为准确的CSI进行与终端设备之间的下行数据调度,从而提高了用户的使用体验。

Description

一种通信方法及通信装置
本申请要求于2019年05月20日提交中国专利局、申请号为201910419636.2、申请名称为“一种通信方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种通信方法及通信装置。
背景技术
信道状态信息参考信号(channel-state information reference signal,CSI-RS)是用于测量下行信道的一种参考信号。终端设备可以基于网络设备发送的CSI-RS进行下行信道测量,以获取下行信道的信道状态信息(channel state information,CSI),并且向网络设备上报该CSI,网络设备根据CSI来调度下行资源。
终端设备的接收天线(Receiver,Rx)的数量不一样时,终端设备的耗能不同,例如,终端设备的接收天线为1Rx时的能耗是2Rx时的70%。出于节省能耗等因素的考虑,在未来的通信系统中,终端设备的接收天线可能会动态变化。目前的CSI测量和上报的机制不够合理,在接收天线的数量发生切换后的一段时间内,网络设备进行调度或者数据传输的准确性可能会受到影响。
发明内容
本申请提供一种通信方法及通信装置,在终端设备所使用的接收天线数量发生变化后,网络设备能够以较为准确的CSI进行与终端设备之间的下行数据调度,从而提高了用户的使用体验。
第一方面,提供了一种通信方法,该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或电路执行,本申请对此不作限定。
具体地,该方法包括:在终端设备用于接收网络设备发送的PDSCH的接收天线数量发生变化后,终端设备根据变化后的接收天线数量确定第一CSI,该第一CSI为终端设备根据以变化后的接收天线数量对CSI-RS进行测量的结果向网络设备上报的CSI;终端设备根据第一CSI接收所述网络设备发送的PDSCH。
在本申请实施例中,在终端设备用于接收网络设备发送的PDSCH的接收天线数量发生变化后,终端设备会根据变化后的接收天线数量确定第一CSI,该第一CSI和变化后的接收天线数量具有对应关系。具体地,该第一CSI为终端设备向网络设备上报的CSI,终端设备以变化后的接收天线数量接收CSI-RS,并且对该CSI-RS进行测量,根据测量的结果生成并且向网络设备上报该CSI。
网络设备可以根据该第一CSI进行与终端设备之间的下行数据发送,而终端设备也可 以根据与该第一CSI对应的接收算法来进行数据接收。由于网络设备和终端设备所使用的第一CSI与当前的接收天线数量具有对应关系,该第一CSI和当前真实的信道质量比较匹配,因此在终端设备的接收天线数量发生变化后,网络设备能够以较为准确的CSI进行与终端设备之间的下行数据调度,从而提高了用户的使用体验。
结合第一方面,在第一方面的某些实现方式中,终端设备根据变化后的接收天线数量确定第一CSI,包括:在终端设备还未根据以变化后的接收天线数量对CSI-RS进行测量的结果向网络设备上报CSI,就接收到网络设备发送的PDCCH的情况下,终端设备根据变化后的接收天线数量确定第一CSI;终端设备根据第一CSI接收网络设备发送的PDSCH,包括:终端设备根据第一CSI接收该PDCCH所调度的PDSCH。
结合第一方面,在第一方面的某些实现方式中,变化后的接收天线数量为第一接收天线数量,其中,该方法还包括:终端设备根据第一CSI资源配置确定第一接收天线数量;终端设备以第一接收天线数量对网络设备发送的第一CSI资源配置中的第一CSI-RS进行测量;终端设备根据对第一CSI-RS进行测量的结果向网络设备上报该第一CSI。
具体地,在本申请实施例中,第一CSI资源配置与第一接收天线数量相关联(或者说相对应),终端设备只能以第一接收天线数量对第一CSI资源配置中的第一CSI-RS进行接收以及测量,而不能使用其他接收天线数量对第一CSI资源配置中的第一CSI-RS进行接收以及测量。若进行测量(接收第一CSI资源配置中的第一CSI-RS)时终端设备用于接收网络设备发送的PDSCH的接收天线数量不是为该第一接收天线数量,终端设备应当提前将接收天线数量切换为该第一接收天线数量,然后再接收第一CSI-RS并进行测量。高层信令在配置第一CSI资源配置时可以配置其相关联的终端设备接收天线数目。
容易理解的,终端设备可能支持使用多个接收天线数量,并且在不同的情况下可以选择使用该多个接收天线中的一个或者多个天线接收网络设备发送的PDSCH。该第一接收天线数量可以为终端设备能够使用的接收天线数量中的任意一种。
可选地,该第一接收天线数量可以为终端设备能够使用的最大接收天线数量。
可选地,该第一接收天线数量可以为终端设备能够使用的非最小接收数量之外的任意一种接收天线数量。
可选地,该第一接收天线数量可以为终端设备能够使用的最小接收天线数量。
可选地,第一CSI资源配置可以包括发送第一CSI-RS的时域行为的相关参数。
可选地,该第一CSI-RS可以是周期发送的,或者,该第一CSI-RS可以是半持续调度的,或者该第一CSI-RS可以是非周期发送的。
可选地,可以根据第一CSI报告配置向网络设备上报该第一CSI。
可选地,该第一CSI报告配置可以与第一CSI资源配置相关联。该第一CSI报告配置可以包括CSI反馈的时域行为、测量约束配置和CSI反馈参数等。其中,CSI反馈的时域行为包括了配置CSI反馈为周期、半持续或非周期CSI反馈。
结合第一方面,在第一方面的某些实现方式中,变化后的接收天线数量为第二接收天线数量,其中,该方法还包括:终端设备以第二接收天线数量对网络设备发送的第二CSI资源配置中的第二CSI-RS进行测量,第二接收天线数量为进行测量时终端设备用于接收网络设备发送的PDSCH的接收天线数量;终端设备根据对第二CSI-RS进行测量的结果向网络设备上报第一CSI。
具体地,第二CSI资源配置与进行测量时终端设备用于接收网络设备发送的PDSCH的接收天线数量(或者说,与当前所使用的接收天线数量)相关联。测量时终端设备以用于接收网络设备发送的PDSCH的接收天线数量对第二CSI资源配置中的第二CSI-RS进行接收以及测量。
例如,进行测量时终端设备以第二接收天线数量接收网络设备发送的PDSCH,则此时终端设备可以继续用该第二接收天线数量对第二CSI资源配置中的第二CSI-RS进行接收以及测量。该第二接收天线数量可以为终端设备能够使用的接收天线数量中的任意一种,例如最大接收天线数量或者最小接收天线数量。
可选地,该第二接收天线数量可以和第一接收天线数量相同。
可选地,第二CSI资源配置中可以包括发送第二CSI-RS的时域行为的相关参数。
可选地,该第二CSI-RS可以是周期发送的,或者,该第二CSI-RS可以是半持续调度的,或者该第二CSI-RS可以是非周期发送的。
可选地,该第一CSI-RS、第二CSI-RS均是周期发送的,并且第一CSI-RS的发送周期大于第二CSI-RS的发送周期,从而可以减少因为要对第一CSI-RS进行测量而切换接收天线数量的次数,降低对网络设备和终端设备之间下行数据传输的影响。
可选地,可以根据第二CSI报告配置向网络设备上报该第一CSI。
可选地,该第二CSI报告配置可以与第二CSI资源配置相关联。该第二CSI报告配置可以包括CSI反馈的时域行为、测量约束配置和CSI反馈参数等。其中,CSI反馈的时域行为包括了配置CSI反馈为周期、半持续或非周期CSI反馈。
结合第一方面,在第一方面的某些实现方式中,终端设备根据对第二CSI-RS进行测量的结果向网络设备上报第一CSI,包括:终端设备确定第一资源区域,第一资源区域的资源大小大于或等于第一PUCCH所占用的资源,第一PUCCH承载终端设备根据终端设备能够使用的最大的接收天线数量对第二CSI-RS进行测量所获得的CSI;终端设备在第一资源区域的全部或部分上发送第二PUCCH,第二PUCCH承载第一CSI。
具体地,由于在不同的测量时机,终端设备所使用的接收天线数量可能不同,因此上报的第一CSI所占用的资源可能不同,那么承载该第一CSI的PUCCH所需要占用的时频资源就有可能不同。因此,可以预先配置该第一资源区域,并且可以对该第一资源区域的大小进行一定的限制。
可选地,该第二PUCCH也可以用于承载终端设备根据自身能够使用的最大的接收天线数量对第二CSI-RS进行测量所获得的CSI,也就是说,该第一PUCCH的大小可以和第二PUCCH相同。
结合第一方面,在第一方面的某些实现方式中,第一CSI包括第一RI值,第一RI值的最大值是根据上报第一CSI所使用的CSI报告配置中的RI限制值和终端设备测量第一CSI所对应的CSI-RS时用于接收网络设备发送的PDSCH的接收天线数量确定的。
具体地,考虑到RI的值是不能大于接收天线数量的,因为如果网络设备传输数据的层数大于终端设备的接收天线数量,那么由于其它层所传输数据的干扰,终端设备会很难解调出网络设备各层传输的数据。因此终端设备第一CSI中的第一RI值是不能大于上报第一CSI所使用的CSI报告配置中的RI限制值与测量该第一CSI所对应的CSI-RS时用于接收网络设备发送的PDSCH的接收天线数量的最小值。
结合第一方面,在第一方面的某些实现方式中,第一CSI包括第一RI值,第一RI值的最大值为上报第一CSI所使用的CSI报告配置中的RI限制值与终端设备测量第一CSI所对应的CSI-RS时用于接收所述网络设备发送的PDSCH的接收天线数量之中较小的值。
可选地,第一RI值的最大值为上报第一CSI所使用的CSI报告配置中的RI限制值。
可选地,第一RI值的最大值为终端设备测量第一CSI所对应的CSI-RS时用于接收所述网络设备发送的PDSCH的接收天线数量。
第二方面,提供了一种通信方法,该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或电路执行,本申请对此不作限定。
具体地,该方法包括:当终端设备用于接收网络设备发送的PDSCH的接收天线数量发生变化后,终端设备确定第一CSI,该第一CSI为终端设备根据第一CSI报告配置向网络设备上报的CSI,该第一CSI报告配置与第一传输方案相关联;终端设备根据第一CSI接收网络设备发送的PDSCH。
在本实施例中,在终端设备用于接收网络设备发送的PDSCH的接收天线数量发生变化后,终端设备会确定第一CSI,并且根据该第一CSI接收该PDSCH。
具体地,第一CSI为终端设备根据第一CSI报告配置向网络设备上报的CSI,第一CSI报告配置与第一传输方案相关联。也就是说,第一CSI报告配置中包括的上报参数组合配置与第一传输方案相关联,因此第一CSI中包括的参数组合与该第一传输方案相关联。
可选地,该第一传输方案可以是发射分集方案。
可选地,该第一传输方案可以是开环传输方案或半开环传输方案。
可选地,第一CSI报告配置中包括上报参数,该上报参数用于指示参数组合cri-RI-i1-CQI或者参数组合cri-RI-CQI。
本申请实施例的网络设备根据该第一CSI进行与终端设备之间的下行数据发送,而终端设备也可以根据与该第一CSI对应的接收算法来进行数据接收。由于该第一CSI中包括的参数组合与第一传输方案相关联,因此网络设备可以通过该第一传输方案进行与终端设备之间的下行数据调度,该第一传输方案可以是发射分集方案(例如,开环传输方案或半开环传输方案),因此对CSI的精确度要求较低,网络设备可以根据有限的CSI对PDSCH进行粗略的预编码,进而进行与终端设备之间的下行数据调度,由此减少了因为所使用的的CSI与实际的信道质量不匹配而对数据传输造成的不良影响,由此提高了用户的使用体验。
结合第二方面,在第二方面的某些实现方式中,终端设备确定第一CSI,包括:在终端设备还未根据以变化后的接收天线数量对CSI-RS进行测量的结果向网络设备上报CSI,就接收到网络设备发送的PDCCH的情况下,终端设备确定所述第一CSI;终端设备根据第一CSI接收网络设备发送的PDSCH,包括:终端设备根据第一CSI接收该PDCCH所调度的PDSCH。
结合第二方面,在第二方面的某些实现方式中,在终端设备确定第一CSI之前,该方法还包括:终端设备根据第一CSI报告配置向网络设备上报所述第一CSI;终端设备根据第二CSI报告配置向网络设备上报第二CSI,该第二CSI与第二传输方案相关联。
可选地,第一传输方案是发射分集方案;并且/或者,第二传输方案是非发射分集方 案。
可选地,第一传输方案是开环传输方案或半开环传输方案。
可选地,第二CSI报告配置中的上报参数用于指示下述CSI参数组合之一:cri-RI-PMI-CQI,cri-RI-i1,cri-RSRP,ssb-Index-RSRP,cri-RI-LI-PMI-CQI。
第三方面,提供了一种通信方法,该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片或电路执行,本申请对此不作限定。
具体地,该方法包括:在终端设备用于接收网络设备发送的PDSCH的接收天线数量发生变化后,网络设备根据变化后的接收天线数量确定第一CSI,该第一CSI为终端设备根据以变化后的接收天线数量对CSI-RS进行测量的结果向所述网络设备上报的CSI;网络设备根据第一CSI向终端设备发送PDSCH。
结合第三方面,在第三方面的某些实现方式中,网络设备根据变化后的接收天线数量确定第一CSI,包括:在终端设备还未根据以变化后的接收天线数量对CSI-RS进行测量的结果向网络设备上报CSI,就接收到网络设备发送的PDCCH的情况下,网络设备根据变化后的接收天线数量确定第一CSI;网络设备根据第一CSI向终端设备发送PDSCH,包括:网络设备根据第一CSI向终端设备发送PDCCH所调度的PDSCH。
结合第三方面,在第三方面的某些实现方式中,第一CSI包括第一RI值,第一RI值是根据上报第一CSI所使用的CSI报告配置中的RI限制值和终端设备测量第一CSI所对应的CSI-RS时用于接收所述网络设备发送的PDSCH的接收天线数量确定的。
结合第三方面,在第三方面的某些实现方式中,第一CSI包括第一RI值,第一RI值的最大值为上报第一CSI所使用的CSI报告配置中的RI限制值与终端设备测量第一CSI所对应的CSI-RS时用于接收网络设备发送的PDSCH的接收天线数量之中较小的值。
第四方面,提供了一种通信方法,该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片或电路执行,本申请对此不作限定。
具体地,该方法包括:当终端设备用于接收网络设备发送的PDSCH的接收天线数量发生变化后,网络设备确定第一CSI,第一CSI为终端设备根据第一CSI报告配置向网络设备上报的CSI,第一CSI报告配置与第一传输方案相关联;网络设备根据第一CSI向终端设备发送PDSCH。
结合第四方面,在第四方面的某些实现方式中,网络设备确定第一CSI,包括:在终端设备还未根据以变化后的接收天线数量对CSI-RS进行测量的结果向网络设备上报CSI,就接收到网络设备发送的PDCCH的情况下,网络设备确定第一CSI;网络设备根据第一CSI向终端设备发送PDSCH,包括:网络设备根据第一CSI向终端设备发送PDSCH所调度的PDSCH。
结合第四方面,在第四方面的某些实现方式中,在网络设备确定第一CSI之前,该方法还包括:网络设备接收终端设备根据第一CSI报告配置所上报的第一CSI;网络设备接收终端设备根据第二CSI报告配置所上报的第二CSI,第二CSI与第二传输方案相关联。
结合第四方面,在第四方面的某些实现方式中,第一传输方案是发射分集方案;并且/或者,第二传输方案是非发射分集方案。
结合第四方面,在第四方面的某些实现方式中,第一传输方案是开环传输方案或半开环传输方案。
结合第四方面,在第四方面的某些实现方式中,第一CSI报告配置中的上报参数用于指示下述CSI参数组合之一:cri-RI-i1-CQI,cri-RI-CQI;第二CSI报告配置中的上报参数用于指示下述CSI参数组合之一:cri-RI-PMI-CQI,cri-RI-i1,cri-RSRP,ssb-Index-RSRP,cri-RI-LI-PMI-CQI。
第五方面,提供一种通信装置,该装置可以是终端设备,也可以是终端设备内的芯片。该装置可以包括处理单元和收发单元。当该装置是终端设备时,处理单元可以是处理器,收发单元可以是收发器;终端设备还可以包括存储单元,存储单元可以是存储器;存储单元用于存储指令,处理单元执行存储单元所存储的指令,以使终端设备执行第一方面或第二方面的方法。当该装置是终端设备内的芯片时,处理单元可以是处理器,收发单元可以是输入/输出接口、管脚或电路等;处理单元执行存储单元所存储的指令,以使终端设备执行第一方面或第二方面中的方法,存储单元可以是芯片内的存储单元(例如,寄存器、缓存等),也可以是终端设备内的位于芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第六方面,提供一种通信装置,该装置可以是网络设备,也可以是网络设备内的芯片。该装置可以包括处理单元和收发单元。当该装置是网络设备时,处理单元可以是处理器,收发单元可以是收发器;网络设备还可以包括存储单元,存储单元可以是存储器;存储单元用于存储指令,处理单元执行存储单元所存储的指令,以使网络设备执行第三方面或第四方面中的方法。当该装置是网络设备内的芯片时,处理单元可以是处理器,收发单元可以是输入/输出接口、管脚或电路等;处理单元执行存储单元所存储的指令,以使网络设备执行第三方面或第四方面中的方法,存储单元可以是芯片内的存储单元(例如,寄存器、缓存等),也可以是网络设备内的位于芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第七方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行上述各方面中的方法。
需要说明的是,上述计算机程序代码可以全部或者部分存储在第一存储介质上,其中第一存储介质可以与处理器封装在一起的,也可以与处理器单独封装,本申请实施例对此不作具体限定。
第八方面,提供了一种计算机可读介质,该计算机可读介质存储有程序代码,当计算机程序代码在计算机上运行时,使得计算机执行上述各方面中的方法。
附图说明
图1示出了适用于本申请实施例的通信系统的示意图。
图2是下行时频资源网格示意图。
图3是PDSCH的物理层处理过程的示意图。
图4是CSI配置与CSI-RS配置的关联关系示意图。
图5是终端设备切换接收天线数量的场景下CSI-RS与CSI的关系示意图。
图6是本申请提供的通信方法的一例的示意性流程图。
图7是图6所示实施例的一个具体示例的示意图。
图8是本申请提供的通信方法的另一例的示意性流程图。
图9是图8所示实施例的一个具体示例的示意图。
图10是本申请实施例的通信装置的示意图。
图11是本申请实施例的一种终端设备的结构示意图。
图12是本申请另一实施例的通信装置的示意图。
图13是本申请实施例的一种网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)通信系统或新无线接入技术(new radio access technology,NR)等。
为便于理解本申请实施例,首先结合图1详细说明适用于本申请实施例的通信系统。图1示出了适用于本申请实施例的适用的通信系统的示意图。如图1所示,该通信系统100可以包括至少一个网络设备,例如图1所示的网络设备110;该通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备120。网络设备110与终端设备120可通过无线链路通信。各通信设备,如网络设备110或终端设备120,可以配置多个天线,该多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。另外,各通信设备还附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。因此,网络设备110与终端设备120可通过多天线技术通信。
应理解,该无线通信系统中的网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved NodeB,eNB或eNodeB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议 (packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+CU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
还应理解,该无线通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。
为便于理解本申请实施例,首先对本申请中涉及到的相关技术内容作简单说明。
图2为下行时频资源网格示意图。如图2所示,在以第五代无线接入系统标准NR为例的通信系统中,频域上的基本单位为一个子载波,子载波间隔(subcarrier spacing,SCS)可以为15KHz、30KHz等。在NR物理层中,上行或者下行频域资源的单位是物理资源块(physical resource block,PRB),每个PRB由频域上12个连续子载波组成。
如图2所示,资源网格上的每个元素称为一个资源元素(resource element,RE),RE为最小的物理资源,包含一个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号内的一个子载波。上行时频资源网格与下行类似,此处不再赘述。NR中下行资源调度的基本时间单位是一个时隙(slot),一般而言,一个时隙在时间上可以由14个OFDM符号组成。
应理解,图2只是为了介绍物理资源而示出的一种示例性的示意图,不对本申请构成任何限定。
基站为终端设备传输物理下行共享信道(physical downlink shared channel,PDSCH)和物理下行控制信道(physical downlink control channel,PDCCH)。为了正确接收PDSCH,终端设备需要先解调PDCCH,PDCCH携带的下行控制信息(downlink control information,DCI)中包含接收PDSCH所需要的相关信息(比如PDSCH时频资源位置和大小,多天线配置信息等)。
图3为PDSCH的物理层处理过程的示意图。
在图3中,物理层的数据是以传输块(transport block,TB)的形式组织的。一个TB会在一个slot内发送。如果终端设备不支持空分复用,则一个slot至多会发送一个TB;如果终端设备支持空分复用,则一个slot至多会发送2个TB。一个码字(codeword)是对在一个slot上发送的一个TB进行CRC(cyclic redundancy check,循环冗余码校验)插 入、码块分割并为每个码块插入CRC、信道编码、速率匹配之后,得到的数据。每个码字与一个TB相对应,因此一个终端设备在一个slot至多发送2个码字。
对1个或2个码字进行加扰(scrambling)和调制映射(modulation mapper)之后得到的复数符号(调制符号)进行层映射(layer mapping)后,会映射到一个或多个传输层(transmission layer,通常也称为layer)。每层对应一条有效的数据流。预编码(precoding)是使用预编码矩阵将层(layer)映射到天线端口(antenna port)的过程。天线端口是逻辑上的概念,一个天线端口可以是一个物理发射天线,也可以是多个物理发射天线的合并。在这两种情况下,终端设备的接收机(receiver)都不会去分解来自同一个天线端口的信号,因为从终端的角度来看,不管信道是由单个物理发射天线形成的,还是由多个物理发射天线合并而成的,这个天线端口对应的参考信号(reference signal,RS)就定义了这个天线端口,终端都可以根据这个参考信号得到这个天线端口的信道估计。每个天线端口有其独自的参考信号,终端需要根据这个天线端口对应的参考信号进行信道估计和数据解调。
基站给终端设备调度下行数据时,需要基于实时的包括干扰状况在内的下行信道条件来选取下行传输的配置以及相关参数,包括调制和编码方式(modulation and coding scheme,MCS)、冗余版本(redundancy version)等。要支持基于信道条件的下行调度就需要终端设备提供给基站信道状态信息(channel-state information,CSI),基站会基于这些CSI制定下行数据调度策略。
信道状态信息是在无线通信系统中,由接收端(如终端设备)向发送端(如网络设备)上报的用于描述通信链路的信道属性的信息。
例如,网络设备可以向终端设备发送信道状态信息参考信号(channel-state information reference signal,CSI-RS),终端设备可以基于网络设备发送的CSI-RS进行下行信道测量,以获取下行信道的CSI,并且向网络设备上报该CSI,网络设备根据该CSI来调度下行资源。
在NR中,CSI包括但不限于信道质量指示(channel-quality indicator,CQI)、预编码矩阵指示(precoding-matrix indicator,PMI)、秩指示(rank indicator,RI)、CSI-RS资源指示(CSI-RS resource indicator,CRI)、层指示(layer indicator,LI)等多种参数。应理解,以上列举的CSI的具体内容仅为示例性说明,不应对本申请构成任何限定。CSI可以包括上文所列举的一项或多项,也可以包括除上述列举之外的其他用于表征CSI的信息,本申请对此不作限定。下面对本申请下文中即将涉及到的部分参数进行介绍。
RI:用于指示给终端设备的下行数据传输的最佳的层数;
PMI:为基站提供在由RI所指示的层数条件下可采用的最佳的预编码矩阵的指示;
CQI:指示在采用了所建议的RI和PMI的情况下为确保下行数据接收的误码率不超过10%可采用的最高的MCS。
其中,对于由终端设备所建议的预编码矩阵不会直接发送给基站,取而代之发送的是指向一组事先定义好的矩阵(被称为码本)中某个矩阵的索引号,终端设备根据天线端口的数目从这组矩阵中选取最佳的预编码矩阵。在NR中,采用了两级码本形式W=W 1W 2,其中W 1表示一些诸如波束赋形的长期/宽带方面的因素,而W 2表示一些诸如极化属性方面的短期/频率选择性子带的性质,可对W 1中的波束进行列选择和相位调整。在NR中,定义了两种码本类型,Type I码本和Type II码本,其中Type I码本为常规精度的CSI反馈, 用于链路的保持即单用户多输入多输出(single user multiple-input multiple-output,SU-MIMO)传输,而Type II码本为高精度的CSI反馈,用于多用户多输入多输出(multi-user multiple-input multiple-output,MU-MIMO)的性能。
在实际应用中,基站可依据CSI的获取能力决定传输过程中能够支持的技术方案,即下行传输方案。NR中,下行传输方案包括发射分集方案(例如,半开环传输方案、开环传输方案)、闭环传输方案、多用户传输方案等。在本申请中主要涉及发射分集方案,下面介绍其含义:
对于高速移动系统以及高频段的遮挡效应等场景,由于信道变化较快,基站及时获取准确的CSI较为困难,因此基站可能只能依据有限的CSI(如宽带反馈的第一级预编码矩阵,即W 1)进行粗略的预编码。这种基于粗略CSI进行的预编码方式可以称为发射分集方案(例如,半开环、开环传输方案)。此时终端设备在计算CQI时可以假设W 1取决于上报的宽带PMI,W 2则随机进行选择。
根据NR支持的下行传输方案以及终端设备所上报的CSI,NR中支持多种终端设备上报的CSI参数组合,比如“cri-RI-PMI-CQI”、“cri-RI-i1”、“cri-RI-i1-CQI”、“cri-RI-CQI”、“cri-RI-LI-PMI-CQI”等,其中“cri-RI-PMI-CQI”参数组合对应闭环传输方案,而“cri-RI-i1-CQI”、“cri-RI-CQI”参数组合对应发射分集方案,下面以“cri-RI-i1-CQI”为例介绍其含义:
当终端设备被基站配置为上报CSI参数组合“cri-RI-i1-CQI”时,组合中“i1”表示两级码本中的第一级码本。终端设备将上报一个宽带的PMI指示,来作为两级码本中的第一级码本的指示。终端设备将以预编码资源组(precoding resource block group,PRG)的频率粒度上报CQI,每个PRG可包括一个或多个连续的PRB。同时对于第二级码本预编码W 2,终端设备假设基站发送的PDSCH的每个PRG上的预编码为从N p个预编码中随机选择的(可看作一种发射分集的方案)。因此在计算每个PRG上报的CQI时,终端设备需要依据上报的RI以及W=W 1W 2来计算上报的CQI值,其中W 1即为终端设备上报的宽带PMI所指示的预编码矩阵,根据i1值来确定,W 2则为N p个预编码中随机选择的一个。
为了实现终端设备的CSI上报,基站需要通过高层信令为每个终端设备配置N(N≥1,且N为整数)个用于上报不同测量结果的CSI上报配置(CSI reporting setting),NR标准中被称为“CSI-ReportConfig”。
CSI上报配置可以包括以下参数的配置:码本配置、CSI反馈的时域行为、CQI和PMI的频域粒度、测量约束配置和CSI反馈参数等。
其中,CSI反馈的时域行为包括了配置CSI反馈为周期(periodic)、半持续(semi-persistent)或非周期(aperiodic)CSI反馈。NR中,CSI反馈参数可以由CSI配置中的信令reportQuantity指示,该信令指示终端设备上报的CSI中包括的参数组合,例如可以包括前文所述的“cri-RI-i1-CQI”、“cri-RI-CQI”等参数组合。
基站根据信道状态的特征以及发送数据的天线阵的类型,来限制终端设备所上报的RI的值的范围,称为RI限制(RI restriction)值。比如对于Type I码本,当基站天线为单天线阵面(single-panel)时(此时码本称为Type I单天线阵面码本(Type I Single-Panel Codebook)),CSI配置中包含位图(bitmap)参数typeI-SinglePanel-ri-Restriction,该参数为比特序列r 7,...,r 1,r 0,其中每一个比特r i与一个层相对应,当比特r i的值为0时,则 终端设备上报的PMI与RI不会与该r i所对应的层相关,因此该比特序列中值为1的比特数量即为终端设备所上报RI的最大值,即为RI限制值。其它类型的码本比如Type I多天线阵面码本(Type I multi-Panel Codebook),Type II码本(Type II Codebook)等,也包含相应的位图参数ri-Restriction、typeII-RI-Restriction来指示RI限制值。
为了实现终端设备的CSI上报,基站同时还需要通过高层信息为每个终端设备配置M(M≥1,且M为整数)个CSI资源配置(CSI resource setting),NR标准中被称为“CSI-ResourceConfig”。
而对于CSI资源配置,每个CSI资源配置可包含S(S≥1,且S为整数)个CSI资源集合(CSI resource set),每个CSI资源集合包含K(K≥1,且K为整数)个CSI-RS资源,该CSI-RS资源可以为非零功率(none-zero-power,NZP)CSI-RS或者CSI干扰测量(CSI interference measurement,CSI-IM)。其中CSI资源配置中的参数resourceType用于指示其所包含的所有CSI-RS资源的时域行为(Time domain behaviour),即周期、半持续和非周期的配置。
每个CSI上报配置与一个或多个CSI资源配置相关联,用于信道和干扰测量与上报,即每个终端设备的CSI上报配置的上报结果是终端设备根据对所关联CSI资源配置的CSI-RS资源进行测量来获取的,如图4所示。
图4是CSI上报配置与CSI资源配置的关联关系示意图。
在图4中,包括CSI上报配置#1、CSI上报配置#2共两个CSI上报配置,包括CSI资源配置#1、CSI资源配置#2、CSI资源配置#3共三个CSI资源配置,其中,CSI资源配置#1、CSI资源配置#3中包含的CSI-RS资源为NZP CSI-RS,CSI资源配置#2中包含的CSI-RS资源为CSI-IM。
进一步地,CSI上报配置#1可以与CSI资源配置#1、CSI资源配置#2、CSI资源配置#3相关联,而CSI上报配置#2可以与CSI资源配置#1相关联。
应理解,上文对CSI上报配置和CSI资源配置的相关介绍只是为了便于理解本申请的技术方案,而不对本申请构成任何限定。
在通信系统中,由于终端设备的电池容量是有限的,如何减少终端设备的能耗是业界比较关注的问题之一。目前提供了一种减少终端设备的能耗的方式。该方式基于终端设备的接收天线的数量不同时,接收天线消耗的终端设备的能量是不同的这一现象,使得终端设备的接收天线的数量可以随实际通信情况的变化而动态变化。网络设备可以通过显示信令或者隐式方法指示终端设备切换接收天线,例如,在信道状态较好,或者待传输的数据量较少的情况下,网络设备可以指示终端设备使用较少的接收天线的数量与网络设备进行通信。在信道状态较差,或者待传输的数据量较多的情况下,网络设备可以指示终端设备使用较多的接收天线的数量与网络设备进行通信。从而在保证数据的被正确可靠地接收的同时也能减少终端设备的能耗。在这里终端设备的接收天线可以认为是接收PDSCH所用的接收天线。
基于上述终端设备切换接收天线数量的场景,目前的CSI测量和上报的机制可能不够合理,当接收天线的数量发生切换后的一段时间内,网络设备进行调度或者数据传输的准确性可能会受到影响。
图5是终端设备切换接收天线数量的场景下CSI-RS与CSI的关系示意图。在图5中, 网络设备首先通过高层信令(例如,无线资源控制(radio resource control,RRC)消息)为终端设备配置至少一个CSI资源配置(例如,包括CSI资源配置#1),CSI资源配置#1中包括多个CSI-RS资源,该多个CSI-RS资源可以是周期、半持续或者非周期配置的,终端设备根据CSI资源配置#1中指示的CSI-RS资源的时域行为接收该多个CSI-RS,并且执行测量,最终根据测量的结果向网络设备上报CSI。例如,在图5中,终端设备在时刻0和时刻2分别接收一个CSI-RS,并且对CSI-RS进行测量,根据测量的结果生成相应的CSI,并且在时刻1和时刻3向网络设备上报该CSI。
在图5中,终端设备可以根据网络设备预先配置的CSI上报配置#1对CSI进行上报。具体地,该CSI上报配置#1可以与CSI资源配置#1相关联,终端设备根据对CSI资源配置#1中的CSI-RS资源进行测量来获取结果,并且根据CSI上报配置#1向网络设备上报相应的测量结果。
该CSI上报配置#1可以包括CSI反馈的时域行为的相关参数,该CSI反馈的时域行为可以包括配置CSI反馈为周期、半持续或非周期CSI反馈。此外,CSI上报配置#1还可以包括CSI反馈参数等配置。
在图5中,网络设备可以周期性的向终端设备发送CSI-RS(例如,在间隔相同时间的时刻0、2、6、8分别发送CSI-RS),终端设备接收该CSI-RS,并且进行测量,同时周期性的向网络设备反馈CSI(例如在间隔相同时间的时刻1、3、7、9分别反馈CSI)。在时刻4,终端设备因为某种原因需要将其接收天线的数量由2Rx切换为4Rx,在切换后的时刻4到时刻7这段时间内,由于终端设备还没有上报最新的针对4Rx的CSI,但在该时间段内网络设备可能需要进行下行数据传输,因此,按照目前的协议,网络设备可能会根据在切换前上报的针对2Rx的CSI(记作CSI#1,例如该CSI#1可以是时刻3上报的CSI)进行下行数据调度,而终端设备可能会根据该CSI#1进行数据接收,此时会产生一个问题,当前的真实信道质量和CSI#1可能不匹配,由此会影响网络设备调度或者数据传输的准确性。
作为示例,如图5所示,时刻5为在时刻4和时刻7之间的时刻,在时刻5网络设备向终端设备发送调度PDSCH的PDCCH,而在时刻4和时刻5之间终端设备并未上报针对4Rx的CSI,因此,网络设备可能根据在切换前的时刻3上报的CSI来发送该PDCCH所调度的PDSCH,并且终端设备根据时刻3上报的CSI来接收该PDSCH。容易理解的,时刻3所上报的CSI是针对2Rx的,而此时接收天线的数量变为4Rx,当前的信道质量可能和时刻3所上报的CSI不匹配,由此会影响网络设备与终端设备之间的调度或者数据传输的准确性。
为了避免上述问题,本申请提供了一种通信方法。下文将结合图6、7进行介绍。
图6是本申请实施例的通信方法200的示意性流程图。图6所示的方法200包括步骤201至步骤230。
在步骤210中,在终端设备用于接收网络设备发送的PDSCH的接收天线数量发生变化后,网络设备根据变化后的接收天线数量确定第一CSI,第一CSI为终端设备根据以变化后的接收天线数量对CSI-RS进行测量的结果向网络设备上报的CSI;
在步骤220中,在终端设备用于接收网络设备发送的PDSCH的接收天线数量发生变化后,终端设备根据变化后的接收天线数量确定该第一CSI;
在步骤230中,网络设备根据第一CSI向终端设备发送PDSCH。
相应地,在步骤230中,终端设备根据第一CSI接收网络设备发送的PDSCH。
基于节能等因素的考量,终端设备所使用的接收天线的数量(例如,接收网络设备发送的PDSCH的接收天线数量)可能会发生变化。例如,可以根据待传输的数据量的大小或信道状态条件相应的增加或者减少终端设备所使用的接收天线的数量。
在本实施例中,在终端设备用于接收网络设备发送的PDSCH的接收天线数量发生变化后,网络设备和终端设备均会根据变化后的接收天线数量确定第一CSI,并且网络设备根据该第一CSI向终端设备发送PDSCH,而终端设备根据该第一CSI接收该PDSCH。
该第一CSI和变化后的接收天线数量具有对应关系。具体地,该第一CSI为终端设备向网络设备上报的CSI,终端设备以变化后的接收天线数量接收CSI-RS,并且对该CSI-RS进行测量,根据测量的结果生成并且向网络设备上报该CSI。
或者说,终端设备以变化后的接收天线数量接收CSI-RS,并且对该CSI-RS进行测量,根据测量的结果生成并且向网络设备上报至少一个CSI,网络设备和终端设备可以将该至少一个CSI中的一个确定为第一CSI。容易理解的,协议可以规定网络设备和终端设备确定的第一CSI为同一个CSI。
网络设备根据该第一CSI进行与终端设备之间的下行数据发送,而终端设备也可以根据与该第一CSI对应的接收算法来进行数据接收。由于网络设备和终端设备所使用的第一CSI与当前的接收天线数量具有对应关系,该第一CSI和当前真实的信道质量比较匹配,因此在终端设备的接收天线数量发生变化后,网络设备能够以较为准确的CSI进行与终端设备之间的下行数据调度,从而提高了用户的使用体验。
为便于理解本实施例,在进一步说明上述步骤210至步骤230之前,下面将结合图6和图7,首先介绍终端设备接收CSI-RS以及上报CSI的具体过程。
网络设备可预先通过高层信令(例如RRC消息)向终端设备发送CSI-RS的资源配置信息,如上文所列举的CSI资源配置。终端设备可以根据该CSI资源配置确定CSI-RS资源。继而,终端设备可以基于CSI-RS资源接收CSI-RS并且完成测量,根据测量的结果向网络设备上报CSI。
在本实施例中,CSI资源配置包括第一CSI资源配置和第二CSI资源配置。
其中,第一CSI资源配置与第一接收天线数量相关联(或者说相对应),终端设备只能以第一接收天线数量对第一CSI资源配置中的第一CSI-RS进行接收以及测量,而不能使用其他接收天线数量对第一CSI资源配置中的第一CSI-RS进行接收以及测量。若进行测量(接收第一CSI资源配置中的第一CSI-RS)时终端设备用于接收网络设备发送的PDSCH的接收天线数量不是为该第一接收天线数量,终端设备应当提前将接收天线数量切换为该第一接收天线数量,然后再接收第一CSI-RS并进行测量。高层信令在配置第一第一CSI资源配置时可以配置其相关联的终端设备接收天线数目。
容易理解的,终端设备可能支持使用多个接收天线数量,并且在不同的情况下可以选择使用该多个接收天线中的一个或者多个天线接收网络设备发送的PDSCH。该第一接收天线数量可以为终端设备能够使用的接收天线数量中的任意一种。
可选地,该第一接收天线数量可以为终端设备能够使用的最大接收天线数量。
可选地,该第一接收天线数量可以为终端设备能够使用的非最小接收数量之外的任意 一种接收天线数量。
可选地,该第一接收天线数量可以为终端设备能够使用的最小接收天线数量。
例如,假设终端设备可以使用的接收天线数量为1Rx、2Rx、4Rx,则该第一接收天线数量可以为1Rx、2Rx、4Rx中的任意一个。
其中,第二CSI资源配置与进行测量时终端设备用于接收网络设备发送的PDSCH的接收天线数量(或者说,与当前所使用的接收天线数量)相关联。测量时终端设备以用于接收网络设备发送的PDSCH的接收天线数量对第二CSI资源配置中的第二CSI-RS进行接收以及测量。
例如,进行测量时终端设备以第二接收天线数量接收网络设备发送的PDSCH,则此时终端设备可以继续用该第二接收天线数量对第二CSI资源配置中的第二CSI-RS进行接收以及测量。该第二接收天线数量可以为终端设备能够使用的接收天线数量中的任意一种,例如最大接收天线数量或者最小接收天线数量。
可选地,该第二接收天线数量可以和第一接收天线数量相同。
前述图5相关介绍中的CSI资源配置#1可以作为本实施例的第二资源配置的一个示例。具体地,在图5中,终端设备根据CSI资源配置#1在时刻0、2、6、8分别对CSI资源配置#1中的CSI-RS资源进行测量,而该CSI资源配置#1与进行测量时终端设备用于接收网络设备发送的PDSCH的接收天线数量相关联,也就是说,在时刻0、2、8终端设备将以当前所使用的2Rx来对CSI-RS资源进行测量,而在时刻6终端设备将以当前所使用的4Rx来对CSI-RS资源进行测量。
第一CSI资源配置可以包括发送第一CSI-RS的时域行为的相关参数,第二CSI资源配置中可以包括发送第二CSI-RS的时域行为的相关参数。
可选地,该第一CSI-RS可以是周期发送的,或者,该第一CSI-RS可以是半持续调度的,或者该第一CSI-RS可以是非周期发送的。
可选地,该第二CSI-RS可以是周期发送的,或者,该第二CSI-RS可以是半持续调度的,或者该第二CSI-RS可以是非周期发送的。
可选地,该第一CSI-RS、第二CSI-RS均是周期发送的,并且第一CSI-RS的发送周期大于第二CSI-RS的发送周期,从而可以减少因为要对第一CSI-RS进行测量而切换接收天线数量的次数,降低对网络设备和终端设备之间下行数据传输的影响。
在前述对第一CSI资源配置和第二CSI资源配置的介绍的基础上,下面结合附图6继续介绍本申请实施例提供的通信方法200。方法200还包括:
在步骤201中,网络设备向终端设备发送第一CSI资源配置中的第一CSI-RS。
相应地,在步骤201中,终端设备根据第一CSI资源配置确定第一接收天线数量,并且以该第一接收天线数量对网络设备发送的第一CSI资源配置中的第一CSI-RS进行测量。
在步骤202中,终端设备根据对第一CSI-RS进行测量的结果向网络设备上报CSI#1。
相应地,在步骤202中,网络设备接收终端设备上报的CSI#1。
具体地,参见前文的相关表述,本实施例中的第一CSI资源配置与第一接收天线数量相关联。终端设备可以先根据第一CSI资源配置确定第一接收天线数量,并且以该第一接收天线数量对网络设备发送的第一CSI-RS进行测量,之后根据测量的结果向网络设备上报CSI#1,该CSI#1为针对接收天线为第一接收天线数量的CSI。
容易理解的,进行测量时,若终端设备用于接收网络设备发送的PDSCH的接收天线数量不是为第一接收天线数量,终端设备还应当提前将接收天线数量切换至第一接收天线数量,从而能够以第一接收天线数量接收第一CSI-RS并且对其进行测量。
具体地,终端设备可以先确定进行测量时用于接收网络设备发送的PDSCH的接收天线数量,并且判断进行测量时用于接收网络设备发送的PDSCH的接收天线数量是否为第一天线数量,若为否,终端设备可以根据第一CSI资源配置指示的发送第一CSI-RS的时域行为提前将接收天线的数量切换为第一接收天线数量。
可选地,为了减少对下行数据传输的影响,在测量完成后,终端设备可以将接收天线的数量由第一接收天线数量切换回原来的用于接收网络设备发送的PDSCH的接收天线数量。
具体地,在步骤202中,终端设备根据对第一CSI-RS进行测量的结果向网络设备上报CSI#1,并且终端设备可以使用第一CSI报告配置向终端设备上报该CSI#1。
该第一CSI报告配置可以与第一CSI资源配置相关联。该第一CSI报告配置可以包括CSI反馈的时域行为、测量约束配置和CSI反馈参数等。其中,CSI反馈的时域行为包括了配置CSI反馈为周期、半持续或非周期CSI反馈。
可选地,该第一CSI报告配置中还包括RI限制值。
可选地,该CSI#1中包括第一RI值。
具体地,考虑到RI的值是不能大于接收天线数量的,因为如果网络设备传输数据的层数大于终端设备的接收天线数量,那么由于其它层所传输数据的干扰,终端设备会很难解调出网络设备各层传输的数据。因此终端设备上报的CSI#1中的第一RI值是不能大于第一CSI资源配置中的RI限制值与测量该第一CSI-RS时用于接收网络设备发送的PDSCH的接收天线数量(即第一接收天线数量)的最小值。
可选地,可以根据该RI限制值和第一接收天线数量确定该第一RI值。
可选地,该第一RI值的最大值可以为该RI限制值与第一接收天线数量之中较小的值。例如,该第一RI值的最大值可以为该RI限制值,或者为该第一接收天线数量。
在步骤203中,网络设备向终端设备发送第二CSI资源配置中的第二CSI-RS。
相应地,在步骤203中,终端设备以第二接收天线数量对网络设备发送的第二CSI资源配置中的第二CSI-RS进行测量,该第二接收天线数量为进行测量时终端设备用于接收网络设备发送的PDSCH的接收天线数量。
在步骤204中,终端设备根据对第二CSI-RS进行测量的结果向网络设备上报CSI#2。
相应地,在步骤202中,网络设备接收终端设备上报的CSI#2。
具体地,参见前文的相关表述,本实施例中的第二CSI资源配置与进行测量时终端设备用于接收网络设备发送的PDSCH的接收天线数量相关联。进行测量时终端设备用于接收网络设备发送的PDSCH的接收天线数量为第二接收天线数量,因此终端设备以该第二接收天线数量对网络设备发送的第二CSI-RS进行测量,之后根据测量的结果向网络设备上报CSI#2,该CSI#2为针对接收天线为第二接收天线数量的CSI。
具体地,在步骤202中,终端设备根据对第二CSI-RS进行测量的结果向网络设备上报CSI#2,并且终端设备可以使用第二CSI报告配置向终端设备上报该CSI#2。
该第二CSI报告配置可以与第二CSI资源配置相关联。类似于第一CSI报告配置,该 第二CSI报告配置可以包括CSI反馈的时域行为、测量约束配置和CSI反馈参数等。
可选地,CSI反馈的时域行为包括了配置CSI反馈为周期、半持续或非周期CSI反馈。
在NR中,PUCCH(physical uplink control channel,物理上行控制信道)可以用于承载周期或半持续CSI,而承载CSI的PUCCH的资源分配为半静态配置。即高层信令直接配置一个PUCCH资源,同时为这个资源配置一个周期和在这个周期内的偏移,这个资源就会周期性的生效。同时还会配置一些其它信息,例如:PUCCH在时隙内的起始符号索引、时域持续长度、起始的PRB的索引、占用的PRB的数量等。
对于第二CSI报告配置所配置的CSI#2上报,可以为周期或半持续上报,因此可以半静态配置一个PUCCH资源来承载CSI#2。但第二CSI报告配置所对应的CSI#2所占资源的大小与终端设备测量CSI-RS时的Rx天线数有关。当终端设备的Rx天线数不同时,CSI#2的信息比特数不同,那么承载CSI#2的PUCCH所需要占用的时频资源就有可能不同。
可选地,网络设备可以预先配置第一资源区域,该第一资源区域的资源大小大于或等于第一PUCCH所占用的资源,该第一PUCCH承载终端设备根据自身能够使用的最大的接收天线数量对第二CSI-RS进行测量所获得的CSI。
具体地,由于在不同的测量时机,终端设备所使用的接收天线数量可能不同,因此上报的CSI#2所占用的资源可能不同,那么承载该CSI#2的PUCCH所需要占用的时频资源就有可能不同。因此,可以预先配置该第一资源区域,并且可以对该第一资源区域的大小进行一定的限制。
终端设备可以先确定该第一资源区域,并且在该第一资源区域的全部或者部分上发送第二PUCCH,该第二PUCCH承载该CSI#2。
可选地,该第二PUCCH也可以用于承载终端设备根据自身能够使用的最大的接收天线数量对第二CSI-RS进行测量所获得的CSI,也就是说,该第一PUCCH的大小可以和第二PUCCH相同。
可选地,如果该第二PUCCH所占的资源小于第一资源区域,网络设备可以将第一资源区域剩余的资源分配给其他的终端设备,以提高PUCCH资源使用效率。
可选地,该第二CSI报告配置中还包括RI限制值。
可选地,该CSI#2中包括第一RI值。
类似的,考虑到RI的值是不能大于接收天线数量的,因为如果网络设备传输数据的层数大于终端设备的接收天线数量,那么由于其它层所传输数据的干扰,终端设备会很难解调出网络设备各层传输的数据。因此终端设备发送的CSI#2中的第一RI值是不能大于第二CSI资源配置中的RI限制值与测量该第二CSI-RS时用于接收网络设备发送的PDSCH的接收天线数量(即第二接收天线数量)的最小值。因此终端设备可以根据该RI限制值与第二接收天线数量中的最小值来确定该第一RI值。
容易理解的,该第二接收天线数量为进行测量时终端设备用于接收网络设备发送的PDSCH的接收天线数量,因此该第二接收天线数量随着测量时机的不同其值的大小是可以发生变化的。例如,随着测量时机的不同,第二接收天线数量可以大于、小于或者等于该RI限制值。
可选地,可以根据该RI限制值和第二接收天线数量确定该第一RI值。
可选地,该第一RI值的最大值可以为该RI限制值与第二接收天线数量之中较小的值。例如,该第一RI值的最大值可以为该RI限制值,或者为该第二接收天线数量。
如上所述,第一CSI-RS和第二CSI-RS均可以包括多个CSI-RS,相应地,CSI#1和CSI#2均可以包括多个CSI,可以理解为,第一CSI-RS和CSI#1是针对第一CSI资源配置的CSI-RS和CSI,第二CSI-RS和CSI#2是针对第二CSI资源配置的CSI-RS和CSI,其差别如上所述,主要在于:针对第一CSI资源配置,终端设备以根据第一CSI资源配置确定的接收天线数量对CSI-RS进行测量以获得CSI,该接收天线数量可能恰好与进行测量时用于接收PDSCH的接收天线数量相同,但并不受限于用于接收PDSCH的接收天线数量;针对第二CSI资源配置,终端设备以进行测量时用于接收PDSCH的接收天线数量对CSI-RS进行测量以获得CSI。
应理解的是,第一接收天线数量和第二接收天线数量是为了方便表述对第一CSI-RS和第二CSI-RS进行测量时所使用的接收天线数量而使用的术语,而非用于表述两种不同的接收天线数量的具体数值(例如,2Rx、4Rx)。当第二CSI-RS包括多个CSI-RS时,由于测量各个CSI-RS时用于接收PDSCH的接收天线数量有可能是不同的,针对各个CSI-RS而言,第二接收天线数量也可能彼此不同。第一接收天线数量和第二天线数量尽管概念不同,但实际指代的接收天线数量的具体数值也可能相同,例如,假设在图5中,在时刻0对第一CSI-RS进行测量,而根据第一CSI资源配置确定的接收天线数量为4Rx,因此针对时刻0的第一CSI-RS,第一接收天线数量为4Rx,在时刻6对第二CSI-RS进行测量,此时用于接收PDSCH的接收天线数量为4Rx,因此针对时刻6的第二CSI-RS,第二接收天线数量为4Rx。
综合上述分析,在步骤210-步骤230中,终端设备和网络设备则可以将一个或多个CSI(CSI#1和/或CSI#2)中的某个CSI确定为第一CSI,该CSI对应的接收天线数量(即,对CSI-RS进行测量以获得该CSI的测量过程中所使用的接收天线数量)为变化后的接收天线数量。
可选地,可以将这些CSI中接收网络设备发送的PDSCH的接收天线数量发生变化之前最后一次上报的CSI确定为第一CSI。此外,还可以将倒数第二次等其他频次上报的CSI确定为第一CSI,本申请对此并不限定。
进一步地,在步骤210中,在终端设备还未根据以变化后的接收天线数量对CSI-RS进行测量的结果向网络设备上报CSI,就接收到网络设备发送的PDCCH的情况下,网络设备根据变化后的接收天线数量确定第一CSI。
在步骤220中,在终端设备还未根据以变化后的接收天线数量对CSI-RS进行测量的结果向网络设备上报CSI,就接收到网络设备发送的PDCCH的情况下,终端设备根据变化后的接收天线数量确定第一CSI。
在步骤230中,网络设备根据第一CSI向终端设备发送所述PDCCH所调度的PDSCH。
相应地,在步骤230中,终端设备根据第一CSI接收该PDCCH所调度的PDSCH。即终端设备假定网络设备根据第一CSI来确定所述PDCCH所调度的PDSCH。
具体地,在终端设备用于接收网络设备发送的PDSCH的接收天线数量发生变化后,到接收到网络设备发送的PDCCH这段时间内,若终端设备还未根据以变化后的接收天线数量对CSI-RS(包括第一CSI-RS和/或第二CSI-RS)进行测量的结果向网络设备上报CSI (包括CSI#1和/或CSI#2),则终端设备和网络设备可以根据变化后的接收天线数量确定第一CSI,并且根据该第一CSI来传输该PDCCH所调度的PDSCH。
可选地,在终端设备用于接收网络设备发送的PDSCH的接收天线数量发生变化后,到接收到网络设备发送的PDCCH这段时间内,若终端设备根据以变化后的接收天线数量对CSI-RS(包括第一CSI-RS和/或第二CSI-RS)进行测量的结果向网络设备上报过CSI(包括CSI#1和/或CSI#2),则此时网络设备和终端设备之间可以根据该上报过的CSI进行数据传输。
为了便于理解本申请实施例提供的通信方法200,下面将结合具体示例对方法200进行介绍。图7是本申请提供的通信方法200的一个具体示例的示意图,在图7中,终端设备可以使用2Rx(这里Rx代表终端设备的接收天线)和4Rx来接收网络设备发送的下行数据,并且所使用的接收天线的数量可以发生变化,例如,在时刻4,终端设备所使用的接收天线数量由2Rx变化为4Rx。
在图7中,第一接收天线数量可以为4Rx,因此第一CSI资源配置可以与4Rx的接收天线数量相关联,也就是说,终端设备只能以4Rx的接收天线数量来对第一CSI资源配置中的第一CSI-RS进行测量,而不能使用其他接收天线数量(例如2Rx)来对第一CSI-RS进行测量。
在时刻0和时刻10,终端设备用于接收网络设备发送的PDSCH的接收天线数量为2Rx,则终端设备应当提前将接收天线数量切换为4Rx,以4Rx来对时刻0和时刻10网络设备发送的第一CSI-RS进行测量。而为了减少对下行数据传输的影响,在对第一CSI-RS的测量完成以后,终端设备可以将接收天线的数量由4Rx切换回之前的2Rx。
而第二CSI资源配置与进行测量时终端设备用于接收网络设备发送的PDSCH的接收天线数量相关联。测量时终端设备以用于接收网络设备发送的PDSCH的接收天线数量对第二CSI资源配置中的第二CSI-RS进行测量。具体地,在时刻2和时刻8,终端设备可以以当前的2Rx来对第二CSI-RS进行测量,而在时刻6,终端设备则会以4Rx来对第二CSI-RS进行测量。
在图7中,第一CSI-RS、第二CSI-RS均是周期发送的,并且第一CSI-RS的发送周期大于第二CSI-RS的发送周期,从而可以减少因为要对第一CSI-RS进行测量而切换接收天线数量的次数,降低对网络设备和终端设备之间下行数据传输的影响。
在图7中,终端设备以4Rx来对时刻0由网络设备发送的第一CSI-RS进行测量,并且在时刻1根据测量的结果向网络设备上报CSI#1。
类似的,终端设备以2Rx来对时刻2、时刻8由网络设备发送的第二CSI-RS进行测量,并且在时刻3、时刻9根据测量的结果向网络设备上报CSI#2。终端设备以4Rx来对时刻6由网络设备发送的第二CSI-RS进行测量,并且在时刻7根据测量的结果向网络设备上报CSI#2。
终端设备可以根据第一CSI报告配置、第二CSI报告配置来分别向网络设备周期性的上报CSI#1和CSI#2,该第一CSI报告配置、第二CSI报告配置中可以包括RI限制值,例如,该RI限制值可以均为4。
CSI#1和CSI#2中均包括第一RI值,该第一RI值的最大值可以为RI限制值和终端设备测量该第一CSI-RS或第二CSI-RS时用于接收网络设备发送的PDSCH的接收天线数 量之中较小的值。
因此,对于在时刻1上报的第一CSI,其包括的第一RI值不大于2。
对于在时刻3和时刻9上报的第二CSI,其包括的第一RI值不大于2。
对于在时刻7上报的第二CSI,其包括的第一RI值不大于4。
在图7中的时刻4,终端设备所使用的接收天线数量由2Rx切换为4Rx。在时刻5,终端设备收到网络设备发送的PDCCH,而在时刻4和时刻5之间这段时间内,终端设备还未根据以变化后的接收天线数量(即4Rx)对CSI-RS进行测量的结果向网络设备上报过CSI,此时终端设备和网络设备可以根据4Rx确定第一CSI,可以将终端设备在时刻1上报的CSI#1确定为第一CSI,并且网络设备可以根据在时刻1上报的CSI#1来发送该PDCCH所调度的PDSCH,同时,终端设备可以根据在时刻1上报的CSI#1来接收该PDCCH所调度的PDSCH。
容易理解的,由于时刻1上报的CSI#1和当前真实的信道质量比较匹配,因此在终端设备的接收天线数量发生变化后,网络设备能够以较为准确的CSI进行与终端设备之间的下行数据调度,从而提高了用户的使用体验。
可选地,若在时刻4和时刻5之间的这段时间内,若终端设备已经根据4Rx对CSI-RS进行测量的结果向网络设备上报过CSI(无论是CSI#1还是CSI#2),则此时网络设备和终端设备之间可以根据该上报过的CSI传输该PDCCH所调度的PDSCH。
此外,在时刻7,终端设备根据4Rx对第二CSI-RS进行测量的结果向网络设备上报CSI#2,则在时刻7之后,网络设备和终端设备之间可以根据在时刻7上报的CSI#2传输该PDCCH所调度的PDSCH。
图8是本申请实施例的通信方法300的示意性流程图。图8所示的方法300包括步骤301至步骤330。
在步骤310中,当终端设备用于接收网络设备发送的PDSCH的接收天线数量发生变化后,网络设备确定第一CSI,第一CSI为终端设备根据第一CSI报告配置向网络设备上报的CSI,第一CSI报告配置与第一传输方案相关联。
在步骤320中,当终端设备用于接收网络设备发送的PDSCH的接收天线数量发生变化后,终端设备确定该第一CSI。
在步骤330中,网络设备根据第一CSI向终端设备发送PDSCH。
相应地,在步骤330中,终端设备根据第一CSI接收网络设备发送的PDSCH。
基于节能等因素的考量,终端设备所使用的接收天线的数量(例如,接收网络设备发送的PDSCH的接收天线数量)可能会发生变化。例如,可以根据待传输的数据量的大小或信道状态条件相应的增加或者减少终端设备所使用的接收天线的数量。
在本实施例中,在终端设备用于接收网络设备发送的PDSCH的接收天线数量发生变化后,网络设备和终端设备均会确定第一CSI,并且网络设备根据该第一CSI向终端设备发送PDSCH,而终端设备根据该第一CSI接收该PDSCH。
具体地,第一CSI为终端设备根据第一CSI报告配置向网络设备上报的CSI,第一CSI报告配置与第一传输方案相关联。也就是说,第一CSI报告配置中包括的上报参数组合配置与第一传输方案相关联,因此第一CSI中包括的参数组合与该第一传输方案相关联。
可选地,该第一传输方案可以是发射分集方案。
可选地,该第一传输方案可以是开环传输方案或半开环传输方案。
可选地,第一CSI报告配置中包括上报参数,该上报参数用于指示参数组合cri-RI-i1-CQI或者参数组合cri-RI-CQI。
本申请实施例的网络设备根据该第一CSI进行与终端设备之间的下行数据发送,而终端设备也可以根据与该第一CSI对应的接收算法来进行数据接收。由于该第一CSI中包括的参数组合与第一传输方案相关联,因此网络设备可以通过该第一传输方案进行与终端设备之间的下行数据调度,该第一传输方案可以是发射分集方案(例如,开环传输方案或半开环传输方案),因此对CSI的精确度要求较低,网络设备可以根据有限的CSI对PDSCH进行粗略的预编码,进而进行与终端设备之间的下行数据调度,由此减少了因为所使用的的CSI与实际的信道质量不匹配而对数据传输造成的不良影响,由此提高了用户的使用体验。
在终端设备和网络设备确定第一CSI之前,方法300还包括:
在步骤301中,终端设备根据第一CSI报告配置向网络设备上报第一CSI。
相应地,在步骤301中,网络设备接收终端设备上报的该第一CSI。
在步骤302中,终端设备根据第二CSI报告配置向网络设备上报第二CSI。
相应地,在步骤302中,网络设备接收终端设备上报的该第二CSI。
具体地,在终端设备和网络设备确定第一CSI之前,终端设备首先根据第一CSI报告配置和第二CSI报告配置向网络设备上报第一CSI和第二CSI,容易理解的,该第一CSI和第二CSI是终端设备根据对CSI-RS进行测量的结果确定的。其中第一CSI报告配置与第一传输方案相关联,而第二CSI报告配置可以与第二传输方案相关联。
可选地,第二传输方案可以是非发射分集方案。
可选地,第二传输方案可以是闭环传输方案、多用户传输方案等中的任意一种。
可选地,第二CSI报告配置中包括上报参数,该上报参数用于指示下述参数组合之一:cri-RI-PMI-CQI,cri-RI-i1,cri-RSRP,ssb-Index-RSRP,cri-RI-LI-PMI-CQI。
即第二传输方案与第一传输方案是不一样的。
综合上述分析,在步骤310-步骤330中,当终端设备用于接收网络设备发送的PDSCH的接收天线数量发生变化后,终端设备和网络设备可以确定第一CSI,并且网络设备根据第一CSI向终端设备发送PDSCH,终端设备根据第一CSI接收网络设备发送的PDSCH。
可选地,若第一CSI包括多个,则此时网络设备和终端设备之间可以根据最后一次上报的第一CSI进行数据传输。此外,网络设备和终端设备之间还可以根据倒数第二次等其他频次上报的第一CSI进行数据传输,本申请对此并不限定。
进一步地,在步骤310中,在终端设备还未根据以变化后的接收天线数量对CSI-RS进行测量的结果向网络设备上报CSI,就接收到网络设备发送的PDCCH的情况下,网络设备确定第一CSI。
在步骤320中,在终端设备还未根据以变化后的接收天线数量对CSI-RS进行测量的结果向网络设备上报CSI,就接收到网络设备发送的PDCCH的情况下,终端设备确定第一CSI。
在步骤330中,网络设备根据第一CSI向终端设备发送该PDCCH所调度的PDSCH。
相应地,在步骤330中,终端设备根据第一CSI接收该PDCCH所调度的PDSCH。
具体地,在终端设备用于接收网络设备发送的PDSCH的接收天线数量发生变化后,到接收到网络设备发送的PDCCH这段时间内,若终端设备还未根据以变化后的接收天线数量对CSI-RS进行测量的结果向网络设备上报CSI(包括第一CSI和第二CSI),则终端设备和网络设备可以确定第一CSI,并且根据该第一CSI来传输该PDCCH所调度的PDSCH。
可选地,在终端设备用于接收网络设备发送的PDSCH的接收天线数量发生变化后,到接收到网络设备发送的PDCCH这段时间内,若终端设备根据以变化后的接收天线数量对CSI-RS进行测量的结果向网络设备上报过CSI(包括第一CSI和第二CSI),则此时网络设备和终端设备之间可以根据该上报过的CSI进行数据传输。
例如,若在该时间段内,终端设备根据以变化后的接收天线数量对CSI-RS进行测量的结果向网络设备上报过第一CSI,则网络设备和终端设备之间可以根据该第一CSI进行数据传输。
再例如,若在该时间段内,终端设备根据以变化后的接收天线数量对CSI-RS进行测量的结果向网络设备上报过第二CSI,则网络设备和终端设备之间可以根据该第二CSI进行数据传输。
为了便于理解本申请实施例提供的通信方法300,下面将结合具体示例对方法300进行介绍。图9是本申请提供的通信方法300的一个具体示例的示意图,在图9中,终端设备可以使用2Rx和4Rx来接收网络设备发送的下行数据,并且所使用的接收天线的数量可以发生变化,例如,在时刻4,终端设备所使用的接收天线数量由2Rx变化为4Rx。
在图9中,终端设备根据第一CSI报告配置周期性的向网络设备上报第一CSI,终端设备根据第二CSI报告配置周期性的向网络设备上报第二CSI。并且第一CSI报告配置与第一传输方案相关联,该第一传输方案可以是发射分集方案。第二CSI报告配置与第二传输方案相关联,该第二传输方案可以是非发射分集方案(例如闭环传输方案)。
具体地,终端设备分别在时刻0和时刻5向网络设备上报第一CSI,在时刻1和时刻4向网络设备上报第二CSI。
在图9中的时刻2,终端设备所使用的接收天线数量由2Rx切换为4Rx。在时刻3,终端设备收到网络设备发送的PDCCH,而在时刻2和时刻3之间这段时间内,终端设备还未根据以变化后的接收天线数量(即4Rx)对CSI-RS进行测量的结果向网络设备上报过CSI,此时终端设备和网络设备可以确定第一CSI,网络设备可以根据在时刻0上报的第一CSI来发送该PDCCH所调度的PDSCH,同时,终端设备可以根据在时刻0上报的第一CSI来接收该PDCCH所调度的PDSCH。
容易理解的,终端设备在时刻0上报的第一CSI与第一传输方案相关联,网络设备和终端设备之间可以通过该第一传输方案进行数据传输,由于该第一传输方案对CSI的精确度要求较低,网络设备可以根据有限的CSI对PDSCH进行粗略的预编码,进而进行与终端设备之间的下行数据调度,由此减少了因为所使用的CSI与实际的信道质量不匹配而对数据传输造成的不良影响,由此提高了用户的使用体验。
可选地,若在时刻2和时刻3之间的这段时间内,若终端设备已经根据4Rx对CSI-RS进行测量的结果向网络设备上报过CSI(无论是第一CSI还是第二CSI),则此时网络设 备和终端设备之间可以根据该上报过的CSI传输该PDCCH所调度的PDSCH。
此外,在时刻4,终端设备根据4Rx对CSI-RS进行测量的结果向网络设备上报第二CSI,则在时刻4之后,网络设备和终端设备之间可以根据在时刻4上报的第二CSI传输该PDCCH所调度的PDSCH。
上文结合图1至图9详细描述了本申请实施例的通信方法,下面结合图10至图13,详细描述本申请实施例的装置。应理解,图10至图13所示的装置能够实现图6、8所示的方法流程中的一个或者多个的步骤。为避免重复,在此不再详细赘述。
例如,图10所示的通信装置1100中的处理单元1110可以执行图6中的步骤220,收发单元1120可以执行图6中的步骤201-204,230。图12所示的通信装置1300中的处理单元1310可以执行图6中的步骤210,收发单元1320可以执行图6中的步骤201-204,230。
图10是本申请实施例的通信装置的示意图,图10所示的通信装置1100包括:处理单元1110和收发单元1120。在通信装置1100用于接收网络设备发送的PDSCH的接收天线数量发生变化后,处理单元1110用于根据变化后的接收天线数量确定第一CSI,该第一CSI为通信装置根据以变化后的接收天线数量对CSI-RS进行测量的结果向网络设备上报的CSI;
收发单元1120用于根据第一CSI接收所述网络设备发送的PDSCH。
可选地,作为一个实施例,在通信装置1100还未根据以变化后的接收天线数量对CSI-RS进行测量的结果向网络设备上报CSI,就接收到网络设备发送的PDCCH的情况下,处理单元1110还用于:根据变化后的接收天线数量确定第一CSI;收发单元1120还用于根据第一CSI接收所述PDCCH所调度的PDSCH。
可选地,作为一个实施例,该变化后的接收天线数量为第一接收天线数量,其中,处理单元1110还用于根据第一CSI资源配置确定第一接收天线数量;收发单元1120还用于以第一接收天线数量对网络设备发送的第一CSI资源配置中的第一CSI-RS进行测量;根据对第一CSI-RS进行测量的结果向网络设备上报所述第一CSI。
可选地,作为一个实施例,第一接收天线数量为通信装置1100能够使用的最大的接收天线数量。
可选地,作为一个实施例,该变化后的接收天线数量为第二接收天线数量,其中,收发单元1120还用于以第二接收天线数量对网络设备发送的第二CSI资源配置中的第二CSI-RS进行测量,第二接收天线数量为进行测量时通信装置1100用于接收网络设备发送的PDSCH的接收天线数量;根据对第二CSI-RS进行测量的结果向网络设备上报第一CSI。
可选地,作为一个实施例,处理单元1110还用于确定第一资源区域,第一资源区域的资源大小大于或等于第一PUCCH所占用的资源,第一PUCCH承载通信装置根据通信装置1100能够使用的最大的接收天线数量对第二CSI-RS进行测量所获得的CSI;收发单元1120还用于在第一资源区域的全部或部分上发送第二PUCCH,第二PUCCH承载所述第一CSI。
可选地,作为一个实施例,第一CSI包括第一RI值,第一RI值的最大值是根据上报第一CSI所使用的CSI报告配置中的RI限制值和通信装置1100测量第一CSI所对应的CSI-RS时用于接收网络设备发送的PDSCH的接收天线数量确定的。
可选地,作为一个实施例,第一CSI包括第一RI值,第一RI值的最大值为上报第一CSI所使用的CSI报告配置中的RI限制值与通信装置1100测量第一CSI所对应的CSI-RS时用于接收网络设备发送的PDSCH的接收天线数量之中较小的值。
在其他实施例中,当通信装置1100用于接收网络设备发送的PDSCH的接收天线数量发生变化后,处理单元1110用于确定第一CSI,第一CSI为通信装置1100根据第一CSI报告配置向网络设备上报的CSI,第一CSI报告配置与第一传输方案相关联;收发单元1120用于根据所述第一CSI接收所述网络设备发送的PDSCH。
可选地,作为一个实施例,在通信装置1100还未根据以变化后的接收天线数量对CSI-RS进行测量的结果向网络设备上报CSI,就接收到网络设备发送的PDCCH的情况下:处理单元1110还用于确定所述第一CSI;收发单元1120还用于根据所述第一CSI接收该PDCCH所调度的PDSCH。
可选地,作为一个实施例,在通信装置1100确定第一CSI之前,收发单元1120还用于根据第一CSI报告配置向网络设备上报所述第一CSI;收发单元1120还用于根据第二CSI报告配置向网络设备上报第二CSI,第二CSI与第二传输方案相关联。
可选地,作为一个实施例,第一传输方案是发射分集方案;并且/或者,第二传输方案是非发射分集方案。
可选地,作为一个实施例,第一传输方案是开环传输方案或半开环传输方案。
可选地,作为一个实施例,第一CSI报告配置中的上报参数用于指示下述CSI参数组合之一:cri-RI-i1-CQI,cri-RI-CQI;第二CSI报告配置中的上报参数用于指示下述CSI参数组合之一:cri-RI-PMI-CQI,cri-RI-i1,cri-RSRP,ssb-Index-RSRP,cri-RI-LI-PMI-CQI。
在一种可能的实现方式中,上述通信装置1100可以为终端设备70,其中处理单元1110的功能可以由终端设备中的处理器702实现,收发单元1120的功能可以通过终端设备的收发器701(即控制电路与天线一起)实现。下文结合图11介绍本申请实施例的终端设备的结构。
图11是本申请实施例的一种终端设备的结构示意图。该终端设备可适用于图1所示出的系统中,执行上述方法实施例中终端设备的功能。为了便于说明,图11仅示出了终端设备的主要部件。如图11所示,终端设备70包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述方法实施例中所描述的动作。存储器主要用于存储软件程序和数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图11仅示出了一个存储器和一个处理器。在实际的终端设备中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限定。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图11中的处理器可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
图12是本申请另一实施例的通信装置的示意图,图12所示的通信装置1300包括:处理单元1310和收发单元1320。在终端设备用于接收通信装置1300发送的PDSCH的接收天线数量发生变化后:
处理单元1310用于根据变化后的接收天线数量确定第一CSI,第一CSI为终端设备根据以变化后的接收天线数量对CSI-RS进行测量的结果向通信装置1300上报的CSI;
收发单元1320用于根据所述第一CSI向终端设备发送PDSCH。
可选地,作为一个实施例,在终端设备还未根据以变化后的接收天线数量对CSI-RS进行测量的结果向通信装置1300上报CSI,就接收到通信装置1300发送的PDCCH的情况下,处理单元1310还用于根据变化后的接收天线数量确定第一CSI;收发单元1320还用于根据第一CSI向终端设备发送所述PDCCH所调度的PDSCH。
可选地,作为一个实施例,第一CSI包括第一RI值,第一RI值是根据上报所述第一CSI所使用的CSI报告配置中的RI限制值和终端设备测量第一CSI所对应的CSI-RS时用于接收通信装置1300发送的PDSCH的接收天线数量确定的。
可选地,作为一个实施例,第一CSI包括第一RI值,第一RI值的最大值为上报第一CSI所使用的CSI报告配置中的RI限制值与终端设备测量第一CSI所对应的CSI-RS时用于接收通信装置1300发送的PDSCH的接收天线数量之中较小的值。
在其他实施例中,当终端设备用于接收通信装置1300发送的PDSCH的接收天线数量发生变化后,处理单元1310用于确定第一CSI,第一CSI为终端设备根据第一CSI报告配置向通信装置1300上报的CSI,第一CSI报告配置与第一传输方案相关联;收发单元1320用于根据所述第一CSI向所述终端设备发送PDSCH。
可选地,作为一个实施例,在终端设备还未根据以变化后的接收天线数量对CSI-RS进行测量的结果向通信装置1300上报CSI,就接收到通信装置1300发送的PDCCH的情况下,处理单元1310还用于确定第一CSI;收发单元1320还用于根据第一CSI向终端设备发送该PDSCH所调度的PDSCH。
可选地,作为一个实施例,在通信装置1300确定第一CSI之前,收发单元1320还用于接收终端设备根据第一CSI报告配置所上报的第一CSI;收发单元1320还用于接收终 端设备根据第二CSI报告配置所上报的第二CSI,第二CSI与第二传输方案相关联。
可选地,作为一个实施例,第一传输方案是发射分集方案;并且/或者,第二传输方案是非发射分集方案。
可选地,作为一个实施例,第一传输方案是开环传输方案或半开环传输方案。
可选地,作为一个实施例,第一CSI报告配置中的上报参数用于指示下述CSI参数组合之一:cri-RI-i1-CQI,cri-RI-CQI;第二CSI报告配置中的上报参数用于指示下述CSI参数组合之一:cri-RI-PMI-CQI,cri-RI-i1,cri-RSRP,ssb-Index-RSRP,cri-RI-LI-PMI-CQI。
在一种可能的实现方式中,上述通信装置1300可以为网络设备,例如下文中的基站80,其中处理单元1310的功能可以由基站中的处理器8022实现,收发单元1320的功能可以通过基站80的RRU 801实现。下文结合图13介绍本申请实施例的网络设备的结构。
图13是本申请实施例的一种网络设备的结构示意图,如可以为基站的结构示意图。如图13所示,该基站可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。基站80可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)801和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)802。所述RRU 801可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线8011和射频单元8012。所述RRU 801部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送上述实施例中所述的信令消息。所述BBU 802部分主要用于进行基带处理,对基站进行控制等。所述RRU 801与BBU 802可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 802为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)802可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
在一个实例中,所述BBU 802可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 802还包括存储器8021和处理器8022,所述存储器8021用于存储必要的指令和数据。例如存储器8021存储上述实施例中的码本索引与预编码矩阵的对应关系。所述处理器8022用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器8021和处理器8022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,在本申请实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只 读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图6、8所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图6、8所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
在本申请实施例中,各术语及英文缩略语,例如信道状态信息(CSI)、信道状态信息参考信号(CSI-RS)、物理下行控制信道(PDCCH)、物理下行共享信道(PDSCH)、无线资源控制(RRC)等,均为方便描述而给出的示例性举例,不应对本申请构成任何限定。本申请并不排除在已有或未来的协议中定义其它能够实现相同或相似功能的术语的可能。
在本申请实施例中,“第一”、“第二”以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的CSI、不同的CSI-RS等。
本申请实施例中涉及的“通信协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关 系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (26)

  1. 一种通信方法,其特征在于,包括:
    在终端设备用于接收网络设备发送的PDSCH的接收天线数量发生变化后,所述终端设备根据变化后的接收天线数量确定第一CSI,所述第一CSI为所述终端设备根据以所述变化后的接收天线数量对CSI-RS进行测量的结果向所述网络设备上报的CSI;
    所述终端设备根据所述第一CSI接收所述网络设备发送的PDSCH。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备根据变化后的接收天线数量确定第一CSI,包括:
    在所述终端设备还未根据以所述变化后的接收天线数量对CSI-RS进行测量的结果向所述网络设备上报CSI,就接收到所述网络设备发送的PDCCH的情况下,所述终端设备根据变化后的接收天线数量确定第一CSI;
    所述终端设备根据所述第一CSI接收所述网络设备发送的PDSCH,包括:
    所述终端设备根据所述第一CSI接收所述PDCCH所调度的PDSCH。
  3. 根据权利要求1或2所述的方法,其特征在于,所述变化后的接收天线数量为第一接收天线数量,其中,所述通信方法还包括:
    终端设备根据第一CSI资源配置确定所述第一接收天线数量;
    所述终端设备以所述第一接收天线数量对网络设备发送的所述第一CSI资源配置中的第一CSI-RS进行测量;
    所述终端设备根据对所述第一CSI-RS进行测量的结果向所述网络设备上报所述第一CSI。
  4. 根据权利要求3所述的方法,其特征在于,所述第一接收天线数量为所述终端设备能够使用的最大的接收天线数量。
  5. 根据权利要求1或2所述的方法,其特征在于,所述变化后的接收天线数量为第二接收天线数量,其中,所述通信方法还包括:
    所述终端设备以所述第二接收天线数量对所述网络设备发送的第二CSI资源配置中的第二CSI-RS进行测量,所述第二接收天线数量为进行所述测量时所述终端设备用于接收所述网络设备发送的PDSCH的接收天线数量;
    所述终端设备根据对所述第二CSI-RS进行测量的结果向所述网络设备上报所述第一CSI。
  6. 根据权利要求5所述的方法,其特征在于,所述终端设备根据对所述第二CSI-RS进行测量的结果向所述网络设备上报所述第一CSI,包括:
    所述终端设备确定第一资源区域,所述第一资源区域的资源大小大于或等于第一PUCCH所占用的资源,所述第一PUCCH承载所述终端设备根据所述终端设备能够使用的最大的接收天线数量对所述第二CSI-RS进行测量所获得的CSI;
    所述终端设备在所述第一资源区域的全部或部分上发送第二PUCCH,所述第二PUCCH承载所述第一CSI。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一CSI包括第一 RI值,所述第一RI值的最大值是根据上报所述第一CSI所使用的CSI报告配置中的RI限制值和所述终端设备测量所述第一CSI所对应的CSI-RS时用于接收所述网络设备发送的PDSCH的接收天线数量确定的。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一CSI包括第一RI值,所述第一RI值的最大值为上报所述第一CSI所使用的CSI报告配置中的RI限制值与所述终端设备测量所述第一CSI所对应的CSI-RS时用于接收所述网络设备发送的PDSCH的接收天线数量之中较小的值。
  9. 一种通信方法,其特征在于,包括:
    在终端设备用于接收网络设备发送的PDSCH的接收天线数量发生变化后,所述网络设备根据变化后的接收天线数量确定第一CSI,所述第一CSI为所述终端设备根据以所述变化后的接收天线数量对CSI-RS进行测量的结果向所述网络设备上报的CSI;
    所述网络设备根据所述第一CSI向所述终端设备发送PDSCH。
  10. 根据权利要求9所述的方法,其特征在于,所述网络设备根据变化后的接收天线数量确定第一CSI,包括:
    在所述终端设备还未根据以所述变化后的接收天线数量对CSI-RS进行测量的结果向所述网络设备上报CSI,就接收到所述网络设备发送的PDCCH的情况下,所述网络设备根据变化后的接收天线数量确定第一CSI;
    所述网络设备根据所述第一CSI向所述终端设备发送PDSCH,包括:
    所述网络设备根据所述第一CSI向所述终端设备发送所述PDCCH所调度的PDSCH。
  11. 根据权利要求9或10所述的方法,其特征在于,所述第一CSI包括第一RI值,所述第一RI值是根据上报所述第一CSI所使用的CSI报告配置中的RI限制值和所述终端设备测量所述第一CSI所对应的CSI-RS时用于接收所述网络设备发送的PDSCH的接收天线数量确定的。
  12. 根据权利要求9或10所述的方法,其特征在于,所述第一CSI包括第一RI值,所述第一RI值的最大值为上报所述第一CSI所使用的CSI报告配置中的RI限制值与所述终端设备测量所述第一CSI所对应的CSI-RS时用于接收所述网络设备发送的PDSCH的接收天线数量之中较小的值。
  13. 一种通信装置,其特征在于,在所述通信装置用于接收网络设备发送的PDSCH的接收天线数量发生变化后,包括:
    处理单元,用于根据变化后的接收天线数量确定第一CSI,所述第一CSI为所述通信装置根据以所述变化后的接收天线数量对CSI-RS进行测量的结果向所述网络设备上报的CSI;
    收发单元,用于根据所述第一CSI接收所述网络设备发送的PDSCH。
  14. 根据权利要求13所述的装置,其特征在于,在所述通信装置还未根据以所述变化后的接收天线数量对CSI-RS进行测量的结果向所述网络设备上报CSI,就接收到所述网络设备发送的PDCCH的情况下,所述处理单元还用于:根据变化后的接收天线数量确定第一CSI;
    所述收发单元还用于:根据所述第一CSI接收所述PDCCH所调度的PDSCH。
  15. 根据权利要求13或14所述的装置,其特征在于,所述变化后的接收天线数量为 第一接收天线数量,其中,所述处理单元还用于:根据第一CSI资源配置确定所述第一接收天线数量;
    所述收发单元还用于:以所述第一接收天线数量对网络设备发送的所述第一CSI资源配置中的第一CSI-RS进行测量;
    根据对所述第一CSI-RS进行测量的结果向所述网络设备上报所述第一CSI。
  16. 根据权利要求15所述的装置,其特征在于,所述第一接收天线数量为所述通信装置能够使用的最大的接收天线数量。
  17. 根据权利要求13或14所述的装置,其特征在于,所述变化后的接收天线数量为第二接收天线数量,其中,所述收发单元还用于:
    以所述第二接收天线数量对所述网络设备发送的第二CSI资源配置中的第二CSI-RS进行测量,所述第二接收天线数量为进行所述测量时所述通信装置用于接收所述网络设备发送的PDSCH的接收天线数量;
    根据对所述第二CSI-RS进行测量的结果向所述网络设备上报所述第一CSI。
  18. 根据权利要求17所述的装置,其特征在于,所述处理单元还用于:
    确定第一资源区域,所述第一资源区域的资源大小大于或等于第一PUCCH所占用的资源,所述第一PUCCH承载所述通信装置根据所述通信装置能够使用的最大的接收天线数量对所述第二CSI-RS进行测量所获得的CSI;
    所述收发单元还用于:在所述第一资源区域的全部或部分上发送第二PUCCH,所述第二PUCCH承载所述第一CSI。
  19. 根据权利要求13至18中任一项所述的装置,其特征在于,所述第一CSI包括第一RI值,所述第一RI值的最大值是根据上报所述第一CSI所使用的CSI报告配置中的RI限制值和所述通信装置测量所述第一CSI所对应的CSI-RS时用于接收所述网络设备发送的PDSCH的接收天线数量确定的。
  20. 根据权利要求13至19中任一项所述的装置,其特征在于,所述第一CSI包括第一RI值,所述第一RI值的最大值为上报所述第一CSI所使用的CSI报告配置中的RI限制值与所述通信装置测量所述第一CSI所对应的CSI-RS时用于接收所述网络设备发送的PDSCH的接收天线数量之中较小的值。
  21. 一种通信装置,其特征在于,在终端设备用于接收所述通信装置发送的PDSCH的接收天线数量发生变化后,包括:
    处理单元,用于根据变化后的接收天线数量确定第一CSI,所述第一CSI为所述终端设备根据以所述变化后的接收天线数量对CSI-RS进行测量的结果向所述通信装置上报的CSI;
    收发单元,用于根据所述第一CSI向所述终端设备发送PDSCH。
  22. 根据权利要求21所述的装置,其特征在于,在所述终端设备还未根据以所述变化后的接收天线数量对CSI-RS进行测量的结果向所述通信装置上报CSI,就接收到所述通信装置发送的PDCCH的情况下,所述处理单元还用于:根据变化后的接收天线数量确定第一CSI;所述收发单元还用于:根据所述第一CSI向所述终端设备发送所述PDCCH所调度的PDSCH。
  23. 根据权利要求21或22所述的装置,其特征在于,所述第一CSI包括第一RI值, 所述第一RI值是根据上报所述第一CSI所使用的CSI报告配置中的RI限制值和所述终端设备测量所述第一CSI所对应的CSI-RS时用于接收所述通信装置发送的PDSCH的接收天线数量确定的。
  24. 根据权利要求21或22所述的装置,其特征在于,所述第一CSI包括第一RI值,所述第一RI值的最大值为上报所述第一CSI所使用的CSI报告配置中的RI限制值与所述终端设备测量所述第一CSI所对应的CSI-RS时用于接收所述通信装置发送的PDSCH的接收天线数量之中较小的值。
  25. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机指令,所述计算机指令使得通信设备执行如权利要求1至12中任一项所述的方法。
  26. 一种通信装置,其特征在于,所述通信装置包括处理器和存储介质,所述存储介质存储有指令,所述指令被所述处理器运行时,使得所述处理器执行如权利要求1至12中任一项所述的方法。
PCT/CN2020/090390 2019-05-20 2020-05-15 一种通信方法及通信装置 WO2020233500A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910419636.2A CN111970036A (zh) 2019-05-20 2019-05-20 一种通信方法及通信装置
CN201910419636.2 2019-05-20

Publications (1)

Publication Number Publication Date
WO2020233500A1 true WO2020233500A1 (zh) 2020-11-26

Family

ID=73358176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090390 WO2020233500A1 (zh) 2019-05-20 2020-05-15 一种通信方法及通信装置

Country Status (2)

Country Link
CN (1) CN111970036A (zh)
WO (1) WO2020233500A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115039447A (zh) * 2021-01-05 2022-09-09 北京小米移动软件有限公司 一种天线切换配置的切换方法及设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113329483B (zh) * 2021-05-21 2022-08-16 Oppo广东移动通信有限公司 一种数据传输方法及终端、存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105122668A (zh) * 2013-04-05 2015-12-02 高通股份有限公司 Lte中的自适应天线管理
WO2018199626A1 (en) * 2017-04-25 2018-11-01 Samsung Electronics Co., Ltd. Method and apparatus for higher rank csi reporting in advanced wireless communication systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105122668A (zh) * 2013-04-05 2015-12-02 高通股份有限公司 Lte中的自适应天线管理
WO2018199626A1 (en) * 2017-04-25 2018-11-01 Samsung Electronics Co., Ltd. Method and apparatus for higher rank csi reporting in advanced wireless communication systems

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Power saving techniques", R1-1812231, 3GPP TSG RAN WG1 MEETING #95, 3 November 2018 (2018-11-03), XP051478387, DOI: 20200628164228X *
HUAWEI ET AL.: "UE dynamic adaptation to the maximum number of receive antennas", R1-1904702, 3GPP TSG RAN WG1 MEETING #96BIS, 2 April 2019 (2019-04-02), XP051707291, DOI: 20200628164031X *
HUAWEI ET AL.: "UE dynamic adaptation to the maximum number of receive antennas", R1-1906591, 3GPP TSG RAN WG1 MEETING #97, 3 May 2019 (2019-05-03), XP051708627, DOI: 20200628163854X *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115039447A (zh) * 2021-01-05 2022-09-09 北京小米移动软件有限公司 一种天线切换配置的切换方法及设备
CN115039447B (zh) * 2021-01-05 2024-05-07 北京小米移动软件有限公司 一种天线切换配置的切换方法及设备

Also Published As

Publication number Publication date
CN111970036A (zh) 2020-11-20

Similar Documents

Publication Publication Date Title
US11283503B2 (en) Communication method and communications apparatus
US11588601B2 (en) System and method for control signaling
AU2018361151B2 (en) System and method for indicating wireless channel status
WO2020200059A1 (zh) 一种上报终端设备能力的方法和通信装置
US20230246759A1 (en) Method and apparatus for processing channel state information, and terminal
US10911122B2 (en) Reference signal sending method, reference signal receiving method, network device, and terminal device
WO2020207369A1 (zh) 一种信道测量方法和通信装置
WO2011134322A1 (zh) 信道状态信息的反馈方法及终端
WO2012068880A1 (zh) 一种信道状态信息反馈方法及装置
JP6783945B2 (ja) 参照信号送信方法および装置
WO2022082386A1 (zh) 一种无线通信的方法与装置
WO2021244201A1 (zh) 波束测量方法和装置
WO2020057375A1 (zh) 一种资源配置方法及通信装置
US11290906B2 (en) Channel measurement method
US20240030984A1 (en) Channel State Information Reporting
WO2020233500A1 (zh) 一种通信方法及通信装置
WO2020192702A1 (zh) 通信方法和通信装置
WO2018039860A1 (zh) 信道质量的测量和反馈方法和装置
US20230078895A1 (en) Uplink reference signal sending method, uplink reference signal receiving method, and communication apparatus
WO2019085637A1 (zh) 一种信道测量方法和用户设备
WO2019105215A1 (zh) 传输指示方法、设备及系统、存储介质
US12127180B2 (en) System and method for indicating wireless channel status
WO2023093352A1 (zh) 一种用于信道状态信息csi上报的方法和装置
US20230327819A1 (en) Transmission method, terminal device, and network device
WO2023160692A1 (zh) 一种通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20809220

Country of ref document: EP

Kind code of ref document: A1