WO2021244201A1 - 波束测量方法和装置 - Google Patents
波束测量方法和装置 Download PDFInfo
- Publication number
- WO2021244201A1 WO2021244201A1 PCT/CN2021/091617 CN2021091617W WO2021244201A1 WO 2021244201 A1 WO2021244201 A1 WO 2021244201A1 CN 2021091617 W CN2021091617 W CN 2021091617W WO 2021244201 A1 WO2021244201 A1 WO 2021244201A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- measurement
- resource
- resources
- terminal
- resource set
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/08—Testing, supervising or monitoring using real traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0426—Power distribution
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0426—Power distribution
- H04B7/043—Power distribution using best eigenmode, e.g. beam forming or beam steering
Definitions
- This application relates to the field of communications, and more specifically, to a method and device for beam measurement.
- NR new radio
- terminal equipment and network equipment can achieve data transmission through beam alignment.
- network equipment needs to use beamforming technology to send downlink signals.
- beamforming technology to send downlink signals.
- the analog beam which forms different beams by adjusting the analog weight in the analog domain
- the digital beam which is adjusted in the digital domain.
- the weights form different beams.
- the number of digital beams may be much greater than the number of analog beams.
- the terminal device needs to feed back the index of the beam to the network device. Since the digital domain can reconfirm the weight when receiving the signal, the network device only needs to know the index of the analog beam, and does not need to know the index of the digital beam. Therefore, according to the existing feedback mechanism, the index of the digital beam needs to be reported. Because the number of digital beams is large and the bits are occupied, the existing feedback mechanism reports redundant information, and the reporting efficiency is low.
- the present application provides a method and device for beam measurement, which reduces feedback overhead by performing combined measurement on multiple resources.
- a method for beam measurement including: a terminal device receives measurement configuration information sent by a network device, the measurement configuration information includes configuration information of multiple resource sets, and each resource set includes one or more resources; The resources in each resource set are combined and measured, and one or more resource sets are selected and reported to the network device according to the measurement result.
- the network device sends the measurement configuration information to the terminal device, and receives the one or more resource sets reported by the terminal device.
- the one or more resource sets selected to be reported may be resource sets whose measurement results meet the quality requirements, for example: resource sets with the best measurement results, or resource sets whose measurement results are greater than or equal to a set threshold; the one may be reported The index of a collection of or more resources.
- the terminal device performs combined measurement on the resources in each resource set through one receiving beam or multiple simultaneously generated receiving beams.
- the above resources are reference signal resources, which can be downlink reference signal resources or uplink reference signal resources; for example: CSI-RS (channel state information-reference signal, channel state information reference signal) resources, SRS (sounding reference signal, channel) Sounding reference signal) resources; resource collections can also be called resource groups.
- CSI-RS channel state information-reference signal, channel state information reference signal
- SRS sounding reference signal, channel
- At least one resource set includes multiple resources, or each resource set includes multiple resources; the multiple is two or more.
- each resource set in the resource configuration information corresponds to one resource classification information, which is used to indicate whether the resource set is used for combined measurement or whether it can be used for combined measurement.
- resources in the same set or group can also be used for combined measurement by default, and resources in different sets or groups cannot be used for combined measurement.
- the measurement configuration information may also include the configuration information of multiple resources, and each resource corresponds to one resource classification information.
- the terminal device combines multiple resources with the same resource classification information for measurement, and reports the configuration information of multiple resources.
- the foregoing resource classification information may also be referred to as a combined measurement identifier.
- One or more resources of b are combined and measured, and the common index of the resource set with good measurement results and one or more resources is reported.
- the set index may be used, or the index of one of the resources may be used as the common index.
- the measurement configuration information may also include indication information for indicating that a certain resource and/or resource set can be used for combined measurement, which may be included in the resource configuration information of the resource and/or resource set, or It is issued separately by the network device; in this case, if the terminal device detects that the measurement configuration information contains a combined measurement instruction, or receives a combined measurement instruction issued by the network device, the terminal starts the combined measurement, otherwise it does not start the combined measurement.
- the combined measurement instruction may also be included in the report configuration in the measurement configuration information, or may be separately issued by the network device to the terminal device, for example: through RRC (radio resource control, radio resource control), MAC-CE (Media Access) Control control element (MAC control element) or DCI (downlink control information, downlink control information), etc., sends a combined measurement instruction to the terminal device.
- RRC radio resource control, radio resource control
- MAC-CE Media Access
- DCI downlink control information, downlink control information
- DCI downlink control information, downlink control information
- the method further includes: receiving instruction information issued by the network device, where the instruction information is used to instruct the terminal device to start the combined measurement;
- the indication information can be RRC, MAC-CE, or DCI.
- the terminal device may also report the selected combined measurement result of the one or more resource sets to the network device; the combined measurement result may include the effective measurement resources in the one or more resource sets. information.
- the measurement configuration information further includes beam information corresponding to each resource set.
- the resource configuration information of each resource set also includes beam information corresponding to the resource set.
- the aforementioned measurement configuration information may also include one or more of the following: the starting time for the combined measurement to take effect, the measurement quantity of the combined measurement (such as reference signal reception quality, signal to interference noise ratio, reference signal reception power, etc.), The amount of feedback, etc.
- the combined measurement can measure each resource separately, and average each measurement result, or average the parts of each measurement result, such as taking the first N better measurement results and average , N can also be configured by the network device, or determined by the terminal device itself, or agreed in advance by the protocol.
- the network device can use one or more resource sets reported by the terminal device for beam indication, for example: the beam configuration information delivered by the network device to the terminal device, where the beam configuration information includes the one or more The relationship between the resource set and the uplink channel (or signal) or downlink channel (or signal).
- the terminal device may use the receive beams corresponding to the one or more resource sets to receive the associated channel or signal, or the terminal device may use the receive beams associated with the one or more resource sets.
- the transmit beam transmits the associated channel or signal.
- the terminal device uses the receive beam (one or more simultaneously generated receive beams) during beam measurement to receive the downlink channel associated with the one or more resource sets issued by the network device, or uses the beam One or more sending beams corresponding to the receiving beam during the measurement send the uplink channel associated with the one or more resource sets to the network device.
- a processor is provided, which is configured to execute the above beam measurement method or the methods in various implementations thereof.
- a terminal device in a third aspect, includes a module for executing the beam measurement method described above or the methods in various implementation manners thereof.
- the transceiver module (which may include a sending module and a receiving module) is used to perform the signal or information transceiving operations in the above-mentioned solution; the processing module is used to perform operations other than the receiving and sending in the above-mentioned solution, such as combined measurement.
- a network device in a fourth aspect, includes a module for executing the beam measurement method described above or the methods in its various implementation manners.
- the transceiver module (which may include a sending module and a receiving module) is used to perform the signal or information transceiving operations in the above solution; the processing module is used to perform operations other than the receiving and sending in the above solution, such as configuring resources.
- a communication device may be a terminal device in the above method design, or a chip set in the terminal device.
- the communication device includes a processor, which is coupled to a memory, and can be used to execute a computer program or instruction in the memory to implement a method executed by a terminal device in any one of the possible implementation manners of the foregoing solution.
- the communication device further includes a memory.
- the communication device further includes a communication interface, and the processor is coupled with the communication interface.
- the communication interface may be a transceiver, or an input/output interface, used for signal transmission and reception, or input/output of computer programs or instructions.
- the communication interface may be an input/output interface, used for signal transmission and reception, or input/output of computer programs or instructions, where the input corresponds to the operation received or acquired, and the output Corresponding to the operation of sending.
- the transceiver may be a transceiver circuit.
- the input/output interface may be an input/output circuit.
- a communication device may be a network device designed in the above method, or a chip set in the network device.
- the communication device includes a processor, coupled with a memory, and can be used to execute computer programs or instructions in the memory to implement the method executed by the network device in the above solution.
- the communication device further includes a memory.
- the communication device further includes a communication interface, and the processor is coupled with the communication interface.
- the communication interface may be a transceiver, or an input/output interface, used for signal transmission and reception, or input and output of computer programs or instructions.
- the communication interface may be an input/output interface for signal transmission and reception, or input and output of computer programs or instructions.
- the transceiver may be a transceiver circuit.
- the input/output interface may be an input/output circuit.
- a computer program is provided, when the program is executed by a processor, it is used to execute the above beam measurement method.
- a computer program product includes: computer program code.
- the program code is used by a communication unit, a processing unit or a transceiver, or a processing
- the communication device is caused to execute any one of the possible implementations of the above-mentioned beam measurement method.
- a computer-readable storage medium stores a computer program or instruction that causes a communication device (for example, a terminal device or a network device) to perform the aforementioned beam measurement Any of the methods and their possible implementations.
- Fig. 1 is a system architecture diagram to which an embodiment of the present application is applied.
- Figure 2 is a schematic diagram of a digital-analog hybrid transmitter.
- FIG. 3 is a schematic diagram of a base station using digital and analog beam weight service terminals at the same time according to an embodiment of the present application.
- Fig. 4 is a flowchart of a beam measurement method according to an embodiment of the present application.
- Fig. 5 is a schematic diagram of combining single-port (left) and dual-port (right) reference signal resources according to an embodiment of the present application.
- Fig. 6 is a schematic structural diagram of a simplified communication device provided by an embodiment of the present application.
- FIG. 7 is a schematic block diagram of a terminal device provided by an embodiment of the application.
- FIG. 8 is another schematic block diagram of a terminal device provided by an embodiment of the application.
- FIG. 9 is a schematic block diagram of a processor provided by an embodiment of the application.
- FIG. 10 is a schematic block diagram of a processing device provided by an embodiment of this application.
- LTE long term evolution
- FDD frequency division duplex
- UMTS universal mobile telecommunication system
- WiMAX worldwide interoperability for microwave access
- 5G fifth generation
- NR new radio
- the terminal equipment in the embodiments of the present application may refer to user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal, wireless Communication equipment, user agent or user device.
- the terminal device can also be a cellular phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (personal digital assistant, PDA), with wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network, or future evolution of the public land mobile network (PLMN) Terminal equipment, etc., this embodiment of the present application does not limit this.
- PLMN public land mobile network
- the network equipment in the embodiments of this application may be equipment used to communicate with terminal equipment, it may be an evolved NodeB (eNB or eNodeB) in an LTE system, or it may be a cloud radio access network (cloud radio access network).
- CRAN the wireless controller in the scenario, or the network equipment can be a relay station, an access point, an in-vehicle device, a wearable device, and a network device in a 5G network or a network device in a PLMN network that will evolve in the future.
- This application is implemented The examples are not limited.
- the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
- the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
- the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating systems, Unix operating systems, Android operating systems, iOS operating systems, or windows operating systems.
- the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
- the embodiments of this application do not specifically limit the specific structure of the execution body of the methods provided in the embodiments of this application, as long as it can be provided according to the embodiments of this application by running a program that records the codes of the methods provided in the embodiments of this application.
- the execution subject of the method provided in the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call and execute the program.
- various aspects or features of the present application can be implemented as methods, devices, or products using standard programming and/or engineering techniques.
- article of manufacture used in this application encompasses a computer program accessible from any computer-readable device, carrier, or medium.
- computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (DVD) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
- various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
- machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
- FIG 1 is a system architecture diagram applying an embodiment of the present application.
- the system includes a network device and at least one terminal device (two terminal devices are illustrated in Figure 1).
- the terminal device is connected to the network device in a wireless manner.
- the terminal device and the network device can use beams for communication, including uplink (that is, terminal device to network device) communication and downlink (network device to terminal device) communication.
- the terminal device can be a fixed location, or it can be movable.
- FIG. 1 is only a schematic diagram, and the system may also include other devices, such as core network devices, wireless relay devices, and wireless backhaul devices (not shown in FIG. 1).
- the embodiment of the present application does not limit the number of network devices and terminal devices included in the system.
- the network device may send measurement configuration information to the terminal device in advance, and the measurement configuration information may include measurement resource configuration information and measurement report configuration information.
- the network device sends a measurement reference signal to the terminal device based on the measurement configuration information.
- the measurement resource configuration information includes the related configuration of the measurement resource.
- the measurement resource can be configured as a three-level resource structure: resource setting (Resource setting), resource set (Resource set) and resource (Resource).
- the network device can configure one or more resource settings for the terminal device, each resource setting can include one or more resource sets, and each resource set can include one or more resources.
- each Resource may also be a resource of one or more ports.
- the measurement report configuration information includes relevant information that needs to be measured and reported by the terminal device.
- the measurement report configuration information includes one or more of the following: report quantity (report quantity), indication information of the calculation method adopted for the report quantity, measurement resource associated with the measurement report configuration information (for example, the One or more resource settings and/or resource sets and/or resources associated with the measurement report configuration).
- the reported amount may include one or more of the following information: channel measurement reference signal resource identifier, interference resource identifier, reference signal receiving power (RSRP), reference signal receiving quality (reference signal receiving) quality, RSRQ), signal to interference plus noise ratio (SINR), received signal strength indicator (RSSI), channel status information (channel status information, CSI), channel quality indicator (channel quality indicator, CQI), precoding matrix indicator (precoding matrix indicator, PMI), precoding type indicator (PTI), diversity indicator (rank indicator, RI), LI, il, where LI is the layer indicator, used To indicate a data layer index (which can be used to configure the phase tracking reference signal), i1 is a wideband codebook. PMI is used to select multiple-input multiple-output (MIMO) codebooks.
- MIMO multiple-input multiple-output
- PTI is used to indicate the type of precoding.
- RI is used to indicate the rank of the antenna matrix in multi-antenna MIMO. It should be understood that the foregoing is only an example of information that may be included in the measurement report configuration information, and the measurement report configuration information may also include other information, which is not limited in the embodiment of the present application.
- the terminal device After receiving the measurement configuration information of the network device, the terminal device can perform measurement based on the measurement configuration information. For example, if the measurement report configuration information in the measurement configuration information includes RSRQ and SINR, the terminal device needs to measure the resources indicated by the measurement resource configuration information and report the measured RSRQ and SINR to the network device.
- the measurement report configuration information in the measurement configuration information includes RSRQ and SINR
- a beam is a communication resource.
- the beam can be a wide beam, or a narrow beam, or other types of beams.
- the beam forming technology may be beamforming technology or other technical means.
- the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, and a hybrid digital/analog beamforming technology. Different beams can be considered as different resources.
- the same information or different information can be sent through different beams.
- multiple beams with the same or similar communication characteristics may be regarded as one beam.
- a beam can include one or more antenna ports for transmitting data channels, control channels, and sounding signals.
- a transmit beam can refer to the distribution of signal strengths formed in different directions in space after a signal is emitted by an antenna.
- the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space. It is understandable that one or more antenna ports forming a beam can also be regarded as an antenna port set. The embodiment of the beam in the agreement can still be a spatial filter.
- the information of the beam can be identified by index information.
- the index information may correspond to the resource identifier of the configured UE.
- the index information may correspond to the ID or resource of the configured channel status information reference signal (channel status information reference signal, CSI-RS), or it may correspond to The ID or resource of the configured uplink sounding reference signal (sounding reference signal, SRS).
- the index information may also be index information that is displayed or implicitly carried by a signal or channel carried by a beam.
- the index information may be a synchronization signal sent by a beam or a broadcast channel indicating the beam. Index information.
- the identification of the beam information includes the absolute index of the beam, the relative index of the beam, the logical index of the beam, the index of the antenna port corresponding to the beam, the index of the antenna port group corresponding to the beam, and the downlink synchronization signal block.
- FIG. 1 shows a network system architecture involved in this application, and this application is applicable to the beam-based multi-carrier communication system shown in FIG. 1, such as 5G new air interface NR.
- the system includes uplink (terminal device to network device) and downlink (access network device to terminal device) communication in the communication system.
- uplink communication includes the transmission of uplink physical channels and uplink signals.
- the uplink physical channel includes random access channel (PRACH), uplink control channel (physical uplink control channel, PUCCH), uplink data channel (physical uplink shared channel, PUSCH), etc.
- uplink signals include channel sounding signal SRS, Uplink control channel demodulation reference signal (PUCCH de-modulation reference signal, PUCCH-DMRS), uplink data channel demodulation reference signal PUSCH-DMRS, uplink phase noise tracking signal (phase noise tracking reference signal, PTRS), etc.
- Downlink communication includes the transmission of downlink physical channels and downlink signals.
- the downlink physical channel includes the broadcast channel (physical broadcast channel, PBCH), the downlink control channel (physical downlink control channel, PDCCH), the downlink data channel (physical downlink shared channel, PDSCH), etc., and the downlink signal includes the primary synchronization signal (primary synchronization signal).
- PBCH physical broadcast channel
- PDCCH physical downlink control channel
- PDSCH physical downlink shared channel
- the downlink signal includes the primary synchronization signal (primary synchronization signal).
- PSS secondary synchronization signal
- SSS secondary synchronization signal
- PDCCH-DMRS downlink control channel demodulation reference signal
- PDSCH-DMRS downlink data channel demodulation reference signal
- phase noise tracking signal PTRS channel state information reference signal ( channel status information reference signal, CSI-RS), cell reference signal (CRS) (no NR), fine synchronization signal (time/frequency tracking reference signal, TRS) (no LTE), etc.
- CSI-RS channel state information reference signal
- CRS cell reference signal
- TRS fine synchronization signal
- the beam used by the downlink channel or the beam indication of the beam corresponding to the reference signal transmission is realized by associating the reference resource index in the transmission configuration indicator (transmission configuration indicator, TCI) state table.
- the base station configures a TCI state table (corresponding to TCI-states in 38.331) through radio resource control (radio resource control, RRC) high-level signaling.
- Each TCI state table contains several TCI states (corresponding to TCI in 38.331). -RS-Set).
- Each TCI status includes TCI status ID (TCI-RS-SetID), one or two quasi-co-location (QCL) type indications (QCL-type A/B/C/D), and various type indications
- TCI status ID TCI status ID
- QCL quasi-co-location
- QCL-type A/B/C/D quasi-co-location
- the corresponding reference RS-ID QCL types include the following:
- QCL-Type A ⁇ Doppler frequency shift, Doppler spread, average delay, delay spread ⁇
- QCL-type D stands for spatial quasi-colocation.
- the base station indicates one of the TCI statuses containing spatial quasi-co-location information through high-level signaling or control information, and the UE reads the reference RS-ID corresponding to QCL-type D according to the TCI status, and then the UE can follow The currently maintained spatial receiving configuration (receiving beam) corresponding to the RS-ID is received.
- the corresponding reference RS of the QCL-type may be an SS/PBCH Block or a periodic or semi-continuous CSI-RS.
- the beam indication (TCI indication) of different downlink channels is completed at different positions:
- the beam indication of the PDCCH is the high-level signaling tci-States configured by the RRC.
- the PDCCH is associated with one or more TCI states. When the number of associated TCI states is greater than 1, the MAC-CE high-level signaling selects one of them.
- the beam indication of the PDSCH is indicated by the state associated with the TCI field in the DCI transmitted by the PDCCH.
- the length of the TCI field contained in the DCI in the NR standard is 3 bits (corresponding to 8 TCI states).
- the activated TCI state is directly mapped to the TCI field, otherwise the upper layer information Let indicate up to 8 TCI states participating in the mapping.
- the UE reuses the beam indication of the control channel for data channel reception.
- NR For uplink transmission, NR has not yet defined the spatial quasi-colocation relationship, and the uplink beam indication is directly implemented through the reference signal resource identifier:
- the beam indication of PUCCH is indicated by the RRC parameter PUCCH-Spatial-relation-info.
- This parameter may include one or more reference signal resource identifiers. When multiple reference signal resource identifiers are included, the MAC-CE high-level signaling selects one of them .
- the PUCCH beam indication content may be an uplink or downlink reference signal resource identifier, including SSB Index, CRI or SRS Index, indicating that the UE is recommended to use the corresponding beam for receiving/sending the downlink/uplink reference signal resource for uplink transmission.
- the beam information of the PUSCH is configured through the SRS Index in the DCI.
- Quasi-co-location (QCL): A quasi-co-location relationship is used to indicate that multiple resources have one or more identical or similar communication features. For multiple resources with a quasi-co-location relationship, the same or similar can be used Communication configuration. For example, if two antenna ports have a co-location relationship, then the large-scale characteristics of the channel transmitting one symbol on one port can be inferred from the large-scale characteristics of the channel transmitting one symbol on the other port.
- the co-location indication is used to indicate whether the at least two sets of antenna ports have a co-location relationship: the co-location indication is used to indicate whether the channel state information reference signals sent by the at least two sets of antenna ports come from the same transmission point , Or the parity indication is used to indicate whether the channel state information reference signals sent by the at least two groups of antenna ports are from the same beam group.
- Spatial QCL can be considered as a type of QCL. There are two angles to understand spatial: from the sending end or from the receiving end. From the perspective of the transmitting end, if the two antenna ports are quasi-co-located in space, it means that the corresponding beam directions of the two antenna ports are spatially consistent. From the perspective of the receiving end, if the two antenna ports are spatially quasi-co-located, it means that the receiving end can receive the signals sent by the two antenna ports in the same beam direction.
- a typical transmitter architecture is depicted in Figure 2. Among them, the digital weight is adjusted in the digital domain, and the analog weight is adjusted in the analog domain through a phase shifter.
- the base station usually has both the digital beam weight and the analog beam weight, and the digital beam and the analog beam are not mutually exclusive.
- the base station may first perform digital weighting on the signal in the digital domain to form a digital beam, and then perform analog weighting in the analog domain to form an analog beam.
- the signal transmitted by the base station actually contains the weighting effect of the digital beam and the analog beam at the same time.
- the high-frequency system may tend to use a smaller number of digital weights and a larger number of analog weights.
- a larger number of digital weights or even a base station architecture with only digital weights may be used (ie, digital beamforming architecture, Digital beamforming, DBF) .
- the terminal equipment When performing beam measurement, the terminal equipment does not distinguish between analog beams and digital beams.
- the terminal measures a set of reference signal resources and feeds back the reference signal resources whose measurement results meet the quality requirements.
- the terminal device Using digital beams and analog beams to send the reference signal resource, the terminal device has no perception. As shown in Figure 3, the terminal device can only distinguish one resource, and cannot distinguish whether the resource is sent by the digital beam or the analog beam.
- a high-frequency system usually has a larger number of analog weights and a smaller number of digital weights. Therefore, beam management in a high-frequency system is to determine an analog beam through beam scanning.
- the number of digital beams may be far greater than the number of analog beams.
- Figure 3 Take the schematic diagram of Figure 3 as an example.
- the terminal device recognizes a combined signal of digital and analog beams, for example (digital beam 1 + analog beam 1) , Different combinations of digital and analog beams can only be distinguished by configuring different reference signal resources at the base station, which cannot be sensed on the terminal side, as shown in Table 1:
- the terminal device can measure the above five resources separately, and feed back the resource number with the best signal quality (for example, resource 3) to the base station, and the base station can know that the digital beam 3 and the analog beam 1 are used to combine and receive the signal sent by the terminal.
- the base station since the weight can be reconfirmed in the digital domain during the signal reception process, when receiving the signal, the base station only needs to know which analog beam (ie, analog beam 1) should be used for reception, and does not need to know the digital beam index. The redundant information was reported according to the existing feedback mechanism, and the reporting efficiency was low.
- the index reported by the terminal equipment is the analog beam index, and there is no redundant information. However, the number of analog beams in the low-frequency system is very small and the beams are very wide. If the digital beam is not used for concentrated energy transmission, the terminal equipment may not be able to receive the signal.
- This application proposes a beam measurement method, which reduces feedback overhead and improves measurement reporting efficiency by performing combined measurement on multiple resources.
- FIG. 4 shows a schematic flowchart of a method 200 for beam measurement according to an embodiment of the present application.
- the method includes:
- the base station issues measurement configuration information to the terminal; including: measurement resource configuration information, measurement report configuration information, etc.
- the measurement resource configuration information includes multiple resource sets for combined measurement, and each resource set includes one or more resources; in this application, the resource set may also be referred to as a resource group, and the embodiments of this application use resources as reference signals
- the resource is taken as an example for description, such as CSI-RS resource.
- each resource set includes multiple resources; or, some resource sets include multiple resources, and some resource sets include only one resource, and a set that includes only one resource can be regarded as a single resource; multiple resources are 2 Or 2 or more.
- the base station allocates 7 resources to the terminal, resources 1, 2, and 3 are resource set 1, resources 4 and 5 are resource set 2, resource 7 is resource set 3, and all three resource sets are used for combined measurement.
- the resource set 3 can be regarded as a single resource, and measurement can be performed on the single resource.
- each resource set corresponds to an analog beam
- each resource in a set corresponds to a digital beam.
- resource set 1 corresponds to analog beam 1
- resources 1, 2, and 3 correspond to digital beams 1, 2, and 3 respectively
- resource set 2 corresponds to analog beam 2
- resources 4 and 5 correspond to digital beams 4, 5.
- the measurement resource configuration information may include resource classification information, which is used to indicate which resources and/or resource sets can be combined for measurement.
- the resource classification information is used to indicate different resource types, including resources that can be combined (or resource Collection) and non-combinable resources (or collections of resources).
- the terminal can combine multiple resources and/or resource sets that can be combined for combined measurement, and obtain a measurement result.
- the base station allocates 5 resources to the terminal.
- the types of resources 1, 2, and 3 are resources that can be combined, and the types of resources 4 and 5 are non-combinable resources.
- the terminal can combine resources 1, 2, and 3 for measurement .
- the base station allocates 7 resources to the terminal. If the type of resource set 1 is a combinable resource set, and resource set 3 (ie resource 7) is a combinable resource, the terminal can allocate resources 1, 2, 3, and 7. Take a combined measurement.
- the base station may also indicate which resources to perform combined measurement by configuring grouping. For example, resources in the same group can be combined for measurement, and resources in different groups cannot be combined for measurement; or by default, resources in the same group can be combined for measurement, and resources in different groups cannot be combined for measurement.
- the resource classification information may indicate whether multiple resources and/or resource sets can be combined, and indicate which resources and/or resource sets can be combined. For example:
- ⁇ Combination On ⁇ or ⁇ Combination Off ⁇ is not configured for a resource or resource set, it means that the resource or resource set cannot be used for combined measurement.
- the base station may configure the combinable resource set and/or resource as a new set or group, and notify the terminal (or through a protocol agreement) that the resources in the set or group are combinable and measurable.
- the combined measurement identifier can be set to indicate to the terminal that the resources in the collection or group can be combined for measurement; a notification message can also be sent separately for notification.
- the base station configures the resource set ⁇ CSI-RS#1, CSI-RS#2... ⁇ , and indicates through protocol agreement or a message that the resources in the set can be combined for measurement.
- the base station can also configure multiple resources used for combined measurement as a multi-port measurement resource, such as a multi-port reference signal resource; then each port of the reference signal resource should use the combined measurement method Take measurements.
- a multi-port measurement resource such as a multi-port reference signal resource
- the base station can configure multiple multi-port reference signal resources, and each resource includes multiple ports that can be combined for measurement.
- the measurement configuration information may also include a combined measurement indication, and the combined measurement indication may be included in the measurement report configuration information.
- the measurement report volume configuration includes a combined measurement indication; when the terminal detects the combined measurement indication, the combined measurement is performed. It can be indicated by 1bit, 1 means to turn on the combined measurement, 0 means not to turn on. Or, whether to include a combined measurement instruction to indicate whether to turn on the measurement instruction.
- the inclusion of the combined measurement indication means that the combined measurement is turned on, and the absence of the combined measurement indication means that the combined measurement is not turned on.
- the terminal detects that the measurement report configuration information includes a combined measurement indication, the terminal performs combined measurement on the resource and/or resource set indicated by the combined measurement identifier.
- the aforementioned measurement configuration information may also include one or more of the following: the start time when the combined measurement takes effect, the resources participating in the combined measurement and/or resource groups (including which groups can be combined), the measurement amount of the combined measurement, and feedback Quantity and so on.
- the base station can also separately issue instruction information to instruct the terminal to start the combined measurement.
- the indication information can be an RRC message, a MAC-CE, or DCI.
- the base station can use a special DCI format to instruct the terminal to start the combined measurement.
- the terminal detects the special DCI format, it starts the combined measurement, for example:
- the terminal detects the DCI format indicating that the combined measurement is turned on, the terminal responds to the resource and/or resource indicated by the combined measurement identifier Assemble for combined measurement.
- the base station can also use MAC-CE to instruct the terminal to perform combined measurement, for example:
- the terminal After receiving the MAC-CE instructing the terminal to perform combined measurement, the terminal enters the combined measurement mode. Similar to the above example of DCI, the terminal performs combined measurement on the resource and/or resource set indicated by the combined measurement identifier.
- the MAC-CE instructs the terminal to perform combined measurement, and may further indicate which resources to perform combined measurement.
- the indication method can be indicated by a one-to-one mapping of a binary string and a resource set.
- the first bit in the bit string corresponds to the first resource set (or a resource set with an ID of 0).
- the bit value of this position is 1, it means that the set should be measured using the combined measurement method.
- the base station when the terminal does not enter the combined measurement, it may only perform measurement on the first two or the previous port, and report the measurement result.
- the terminal When the terminal enters the combined measurement mode (for example, after receiving the above-mentioned indication information indicating combined measurement), the terminal performs combined measurement on multiple ports.
- the base station may implicitly trigger the terminal to enter the combined measurement, for example, instruct the terminal to perform the combined measurement through some special signaling combinations, as described below with an example.
- the terminal when the base station configures the terminal to measure and report multiple reference signal resource sets (for example, the reported amount is RSRP), and each reference signal resource set includes a configuration indication repetition On, the terminal should use the combined measurement method to report the The RSRP and collection index of the collection, not the resource index in a certain collection.
- the reported amount for example, the reported amount is RSRP
- each reference signal resource set includes a configuration indication repetition
- the terminal should use the combined measurement method to report the The RSRP and collection index of the collection, not the resource index in a certain collection.
- the terminal when the base station configures the terminal to measure and report multiple reference signal resource sets (for example, the reported amount is RSRP), and the beam indications of the reference signals in each reference signal resource set (for example, spatial quasi-colocation) are the same reference signal
- the terminal should use the combined measurement method to report the RSRP and/or resource collection index of the resource collection instead of the resource index in a certain collection.
- the terminal when the base station configures the terminal to measure N>1 reference signal resource sets for measurement report (for example, the reported amount is RSRP), the terminal should use the combined measurement method to report the RSRP and/or resource set index of the resource set instead of a certain The index of the resource in the collection.
- the base station configures the terminal to measure N>1 reference signal resource sets for measurement report (for example, the reported amount is RSRP)
- the terminal should use the combined measurement method to report the RSRP and/or resource set index of the resource set instead of a certain The index of the resource in the collection.
- each resource can be individually configured to receive and/or transmit beam information, or a common receive and/or transmit beam information can be configured for the reference signal resources participating in the combined measurement.
- a common receive and/or transmit beam information can be configured for the reference signal resources participating in the combined measurement.
- only one of the resources or resource sets can be configured to receive and/or send beam information, and the terminal should assume that the resources participating in the combined measurement are all used for the resource or resource set. The same receiving and/or transmitting beam is used for transmission.
- the base station does not configure a common receiving and/or transmitting beam information for the reference signal resources participating in the combined measurement.
- the base station activates the combined measurement through signaling or configuration
- the terminal enters In the combined measurement mode, it should be assumed that the resources participating in the combined measurement use the same receiving and/or transmitting beams. If the beams configured by the base station for these resources are different, the terminal should assume that the reference signal resources participating in the combined measurement are sent using the following beams:
- the base station may also indicate corresponding transmission and/or reception beams for one or more resources or resource sets when activating combined measurement. For example, it can be indicated by the aforementioned RRC, MAC-CE or DCI.
- the indication mode of the beam can be indicated by a reference signal.
- the beam may be indicated by the CSI-RS, and the CSI-RS may be used to indicate the transmission beam (or its corresponding reception beam) when the base station transmits the CSI-RS, and/or the reception used by the terminal to receive the CSI-RS Beam (or its corresponding transmit beam).
- beam indication can also be performed through SRS.
- the SRS can be used to instruct the terminal to transmit the SRS (or its corresponding receive beam), or the base station to receive the SRS (or its corresponding transmit beam). ).
- the measurement configuration information may also include the reported amount.
- the base station can configure a dedicated reporting volume (or called a measurement volume) for combined measurement, or can configure a common reporting volume.
- a dedicated reporting volume or called a measurement volume
- the base station can configure information such as RSRP, RSSI, RSRQ, and SINR, and notify the terminal that these measurement quantities need to be measured in a combined measurement manner.
- the base station may also define a new combined measurement variable, such as ⁇ RSRP, RSSI, RSRQ or SINR ⁇ -SET, which indicates that the terminal should use combined measurement to measure the RSRP, RSSI, RSRQ or SINR of a resource set.
- the definition of measurement volume can follow the way of 3GPP 38.215. The difference is that the terminal can use the measurement volume of any resource in the resource set as the measurement volume of the resource set, or treat each resource in the resource set as a resource for overall measurement and report. .
- the measurement configuration information may include a measurement method for the reported quantity.
- the measurement report configuration information configured by the base station includes:
- the measurement resource contains the index information of the resource or resource collection used for the combined measurement.
- the base station can also configure a common reported amount, and activate the combined measurement mode by triggering or indicating.
- the base station configures the reported amount for the terminal to be RSRP, and the combined measurement is enabled through the trigger mode
- the terminal uses the combined measurement mode to perform combined measurement on the reported amount.
- RRC Radio Resource Control
- MAC-CE Packet Control Entity
- the base station may configure a combined measurement resource set index for the terminal, which may be included in the measurement report configuration, for example, the reported amount is configured as a special combined measurement resource set index, such as CSI-RS resource set index (CRSI)
- CRSI CSI-RS resource set index
- the terminal performs combined measurement on multiple resource sets respectively according to the measurement configuration information.
- the combined measurement may be performed through one receiving beam of the terminal or multiple receiving beams generated at the same time.
- the measurement resource configuration information includes 3 resource sets for combined measurement, and the configured measurement quantity is RSRP, then the resources in the 3 resource sets are combined and measured to obtain the measurement results of 3 RSRP, and according to the measurement As a result, one or more resource sets are selected to report, and the index or number of the resource set can be reported; for example, the index of the resource set with the best measurement result is reported to the base station; further, the corresponding measurement result can also be reported. Or report one or more resource sets whose measurement results are higher than a preset threshold.
- the terminal when the base station instructs the terminal to perform combined measurement, that is, when the terminal receives a combined measurement instruction issued by the base station, the terminal should perform combined measurement of the resources and/or resource sets used for combined measurement.
- a set of reference signal resources includes 4 reference signal resources: ⁇ CSI-RS#1,CSI-RS#2,CSI-RS#3,CSI-RS#4 ⁇ , when the base station instructs the terminal to When aggregated RSRP is used for combined measurement, the terminal should treat the four resources of CSI-RS#1, CSI-RS#2, CSI-RS#3 and CSI-RS#4 as one equivalent resource for measurement, for example: 4.
- the RE (resource element, resource element) of each resource is combined as a whole RE to perform RSRP measurement, that is, to measure the equivalent resource, as shown in A on the left side of FIG. 5.
- the terminal treats the resources of multiple ports as one resource for combined measurement, as shown in B on the right side of FIG. 5.
- the way to combine measurements is as follows:
- the RSRP of each resource in the resource set is measured separately, and the RSRPs of multiple resources in the resource set are added together and the average value is taken. It is also possible for the terminal to select one or more resources in the set, respectively measure RSRP, and add the results to obtain an average value, or add the RSRPs of the N resources with the largest measurement results to obtain an average value, and so on. N can be agreed upon by agreement, or configured by the base station for the terminal, or determined by the terminal itself.
- the base station may configure a multi-port resource for the terminal and notify the terminal to perform combined measurement.
- the base station configures a resource of N>1 or N>2 ports for the terminal.
- the terminal should perform combined measurement on the resources of the N ports, such as selecting one of them Or multiple ports, after measuring RSRP, add up to get the average value, or select the largest N ports' RSRP to add up to get the average value, etc.
- N can be agreed upon by agreement, or the base station can configure the terminal, or the terminal can determine it by itself.
- the terminal When the combined measurement is not effective, the terminal only measures the first two or the first port; among them, the specific measurement of one port (for example: port 1) or two ports (port 1 and port 2) can be configured through the base station or through a protocol Agreement, for example: The first two ports are measured by default by agreement.
- the terminal selects one or more resource sets to report according to the measurement result
- the base station is configured with two resource sets:
- CSI-RS resource set #1 ⁇ CSI-RS resource#1,CSI-RS resource#2 ⁇
- the terminal may select a better measurement result from the two resource sets to report according to the combined measurement result, and the report content includes the index and/or measurement result of the selected resource set.
- the terminal measures RSRP for resource set 1 and resource set 2 respectively, and determines the resource set to be reported.
- the RSRP measurement result of resource set 1 is better than resource set 2, at this time, the terminal feeds back the index of resource set 2 through the uplink channel (for example, PUSCH or PUCCH), and further, the measurement result of resource set 2 can also be reported.
- the uplink channel for example, PUSCH or PUCCH
- one bit may be used to indicate the selected resource set, for example, bit 0 indicates resource set 1, and bit 1 indicates resource set 2. This method saves feedback resources and improves reporting efficiency.
- the resource information in the resource set may also be reported.
- the resource information is used to indicate that the reported measurement result is measured using the reported resource, or that the terminal considers the reported resource in the resource set to be an effective measurement resource; for example, the effective measurement resource can satisfy one or more of the following conditions or Function: Contribute the most to the measurement result, or the terminal believes that the reported measurement result is determined mainly by the reported resource, or suggest that the base station use the reported resource for transmission.
- the base station configures 4 resource sets, each set contains 2 reference signal resources, and configures or instructs the terminal to perform combined measurement on each resource set.
- the terminal measures, it selects resource set 2 to report, and at the same time reports 1 resource (for example, resource 2) or multiple resources (for example, resources 2, 3) of reference signal set 2, it means that the terminal according to resource 2 (or resource 2, 3) )
- resource set 2 for example, resource 2
- multiple resources for example, resources 2, 3) of reference signal set 2
- the measurement result is obtained, or the terminal recommends that the base station use the beam corresponding to resource 2 (or resource 2, 3) for signal transmission.
- the identifier or index of the resource set reported by the terminal may be associated with the combined measurement indication configured by the base station.
- the base station configures multiple multi-port reference signal resources, and instructs the terminal to start combined measurement for each multi-port reference signal resource and report N resources of the multiple resources. Then the terminal should report the index and/or measurement result of N resources after measuring each reference signal resource separately.
- N can be agreed by agreement, or the base station can configure the terminal, or the terminal can determine by itself.
- an effective measurement port can meet one or more of the following conditions or functions: it contributes the most to the measurement result, or the terminal believes that the reported port determines the reported measurement result, or it is recommended that the base station use the reported port to perform Signal transmission.
- the base station configures four 4-port reference signal resources for the terminal, and configures or instructs the terminal to perform combined measurement on each 4-port reference signal resource.
- the base station may use the reported resource set for beam indication (not shown in the figure).
- the base station sends beam configuration information to the terminal, where the beam configuration information includes the reported resource set and the association relationship between the uplink channel or the downlink channel. Specifically, it may be the association relationship between the terminal receive beam corresponding to the resource set reported by the terminal and the transmit beam of the terminal's uplink channel, or the association relationship between the terminal receive beam corresponding to the resource set reported by the terminal and the receive beam of the terminal's downlink channel.
- the base station can configure the resource set 2 in the transmission status indication (TCI), for example:
- the base station can associate the channel or reference signal resource of the terminal to the TCI state, which indicates that the terminal should use the receiving beam corresponding to the reference signal resource set 2 to receive the associated channel or signal.
- the receiving beam corresponding to the reference signal resource set 2 may be a receiving beam used by the terminal to receive and measure the reference signal resource set 2.
- the method of association is not limited in this application, and it can be used to directly configure the association relationship, or use DCI, MAC-CE, or DCI to indicate through the associated TCI status.
- the base station may also associate the reference signal resource set 2 as a beam indicator or spatial transmission information to a downlink signal (channel) or an uplink signal (channel), for example, the above-mentioned association relationship can be realized through a QCL indicator.
- the base station configures SRS (sounding RS) resources for the terminal, and associates the transmission beam information of the SRS resource with reference signal resource set 2, the terminal should use the corresponding transmission beam to measure the receiving beam associated with the reference signal resource set 2.
- SRS sounding RS
- the base station may not use the index of the resource set to indicate, but use the index of a certain resource in the resource set to indicate, and the resource set where the resource is located is a resource set that can be combined for measurement.
- the base station configures reference signal resource set 2: ⁇ CSI-RS#1, CSI-RS#2 ⁇ , and indicates that this set is a reference signal resource set that can be combined for measurement.
- the terminal uses CSI-RS#1 as the reference signal for the uplink or downlink signal beam indication, the terminal should use the receiving beam of the measurement reference signal set 2 to receive the signal or channel associated with CSI-RS#1, or use the measurement reference signal
- the transmission beam corresponding to the reception beam of signal set 2 transmits the channel or signal associated with CSI-RS#1.
- the descriptions in the embodiments of this application are all based on downlink reference signal descriptions.
- the downlink reference signals are listed as CSI-RS, and other downlink reference signals are also applicable.
- the same mechanism can be used for uplink reference signals (such as SRS, etc.). That is, the base station configures one or more SRS resource sets, and after the terminal sends the SRS resource set, the base station selects the corresponding resource set according to the measurement result to perform uplink or downlink beam indication.
- the base station configures multiple SRS resource sets for the terminal, and each set includes one or more SRS resources.
- the terminal uses the corresponding transmission beam to transmit SRS resources according to the beam indication configured by the base station.
- the beam indication method is not limited in this application, for example: By associating an SRS resource with a certain CSI-RS or a certain SRS, it means using the transmission beam corresponding to the reception beam receiving the CSI-RS, or using the transmission beam corresponding to the SRS to transmit the associated SRS resource.
- the base station receives the SRS resource set sent by the terminal and performs measurement, selects one or more resource sets according to the measurement result, and configures the index of the selected resource set to the terminal as the uplink/downlink channel or reference signal beam indicator, indicating The terminal should use any transmit beam in the SRS resource set to transmit the associated uplink channel or signal, or use the receive beam corresponding to any transmit beam in the SRS resource set to receive the associated downlink channel or signal.
- the terminal should use any transmit beam in the SRS resource set to transmit the associated uplink channel or signal, or use the receive beam corresponding to any transmit beam in the SRS resource set to receive the associated downlink channel or signal.
- the measurement result in the foregoing embodiment may be the measurement result of one or more of the following measurement variables: reference signal received power RSRP, reference signal received quality RSRQ, signal to interference noise ratio SINR, and received signal strength indicator RSSI.
- the instructions or notifications delivered by the base station to the terminal, or the base station triggers the terminal can be performed through RRC, DCI, or MAC-CE.
- the size of the sequence number of the foregoing processes does not mean the order of execution.
- the execution order of each process should be determined by its function and internal logic, and should not be implemented in this application.
- the implementation process of the example constitutes any limitation.
- the beam measurement method according to the embodiment of the present application is described in detail above.
- the beam measurement device according to the embodiment of the present application will be described below in conjunction with FIG. 6 to FIG. 8. It should be understood that the technical features described in the method embodiments are also applicable to the following device embodiments.
- Fig. 6 shows a schematic block diagram of an apparatus 400 for beam measurement according to an embodiment of the present application.
- the specific form of the apparatus 400 may be a terminal device or a chip in a terminal device, which is not limited in the embodiment of the present application.
- the device 400 includes:
- the processing module 410 is configured to perform operations other than receiving and sending in the method embodiment, such as performing a combined measurement on a resource set, etc.;
- the transceiver module 420 may include a sending module and a receiving module, and is used to perform operations of the transceiver type in the method embodiment, such as receiving the measurement configuration information sent by the network device, reporting the selected resource set, and so on.
- the device is the terminal device in the foregoing method embodiment, and the device includes:
- Receiving module used to receive measurement configuration information sent by a network device, where the measurement configuration information includes configuration information of multiple resource sets, and each resource set includes one or more resources;
- Processing module used to combine and measure the resources in each resource set through one receiving beam or multiple simultaneously generated receiving beams;
- Sending module used to select one or more resource sets to report to the network device according to the measurement result.
- the beam measurement apparatus 400 may correspond to the method of the terminal device in the foregoing method embodiment, for example, the method in FIG. 4.
- the above-mentioned and other management operations and/or functions of each module in the apparatus 400 are to implement the corresponding steps of the method of the terminal device in the foregoing method embodiment, and therefore can also achieve the beneficial effects in the foregoing method embodiment. For the sake of brevity, it is not described here. Go into details.
- each module in the device 400 may be implemented in the form of software and/or hardware, which is not specifically limited.
- the device 400 is presented in the form of functional modules.
- the "module” herein may refer to application-specific integrated circuits ASIC, circuits, processors and memories that execute one or more software or firmware programs, integrated logic circuits, and/or other devices that can provide the above-mentioned functions.
- the device 400 may adopt the form shown in FIG. 7.
- the processing module 410 may be implemented by the processor 501 and the memory 502 shown in FIG. 7.
- the transceiver module 420 may be implemented by the transceiver 503 shown in FIG. 7.
- the processor is implemented by executing a computer program stored in the memory.
- the function and/or implementation process of the transceiver module 420 may also be implemented by pins or circuits.
- the memory is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in the computer device, such as the memory shown in FIG. 7 502.
- FIG. 7 shows a schematic structural diagram of a terminal device 500 according to an embodiment of the present application.
- the terminal device 500 includes a processor 501, which can call an interface to perform the above-mentioned transceiving actions, where the called interface can be a logical interface or a physical interface, which is not limited.
- the physical interface can be implemented by a transceiver.
- the device 500 further includes a transceiver 503.
- the device 500 further includes a memory 502, and the memory 502 can store the program code in the foregoing method embodiment, so that the processor 501 can call it.
- the device 500 includes the processor 501, the memory 502, and the transceiver 503, the processor 501, the memory 502, and the transceiver 503 communicate with each other through an internal connection path to transfer control and/or data signals.
- the processor 501, the memory 502, and the transceiver 503 may be implemented by a chip.
- the memory 502 can store program codes, and the processor 501 calls the program codes stored in the memory 502 to implement corresponding functions of the terminal device.
- apparatus 500 may also be used to perform other steps and/or operations on the terminal device side in the foregoing embodiment, and for the sake of brevity, details are not described here.
- the aforementioned transceiver 503 may include a receiver and a transmitter, where the receiver is used to implement the receiving function, and the transmitter is used to implement the sending function.
- the network device also includes a transceiving unit (transceiver), which is used to implement transceiving operations in the method embodiment; a processing module (processor), which is used to implement other operations other than transceiving in the method embodiment, such as configuring resources. No more details.
- the embodiment of the present application also provides a communication device, and the communication device may be a terminal device or a circuit.
- the communication device may be used to perform the actions performed by the terminal device in the foregoing method embodiments.
- FIG. 8 shows a simplified schematic diagram of the structure of the terminal device. It is easy to understand and easy to illustrate.
- the terminal device uses a mobile phone as an example.
- the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
- the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
- the memory is mainly used to store software programs and data.
- the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
- the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
- Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
- the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
- the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
- the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
- FIG. 8 only one memory and processor are shown in FIG. 8. In an actual terminal device product, there may be one or more processors and one or more memories.
- the memory may also be referred to as a storage medium or storage device.
- the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
- the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal device
- the processor with the processing function can be regarded as the processing unit of the terminal device.
- the terminal device includes a transceiver unit 1610 and a processing unit 1620.
- the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
- the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
- the device for implementing the receiving function in the transceiver unit 1610 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1610 as the sending unit, that is, the transceiver unit 1610 includes a receiving unit and a sending unit.
- the transceiver unit may sometimes be referred to as a transceiver, a transceiver, or a transceiver circuit.
- the receiving unit may sometimes be referred to as a receiver, a receiver, or a receiving circuit.
- the sending unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
- transceiving unit 1610 is used to perform the sending and receiving operations on the terminal device side in the foregoing method embodiment
- processing unit 1620 is used to perform other operations on the terminal device in the foregoing method embodiment except for the transceiving operation.
- the chip When the communication device is a chip, the chip includes a transceiver unit and a processing unit.
- the transceiver unit may be an input/output circuit or a communication interface;
- the processing unit is a processor, microprocessor, or integrated circuit integrated on the chip.
- the chip includes: a processor and an interface circuit; the interface circuit is used to receive and transmit code instructions to the processor; the processor is used to run the code instructions to implement the beam measurement method described above.
- the code instructions may be stored in the memory, and the processor may be directly read from the memory, or may be read indirectly through other devices.
- the interface circuit is a signal transmission interface circuit between the communication processor and the transceiver, the interface circuit is used to receive data or information from the receiver and transmit it to the processor; the processor is used to The data or information is processed and the processing result is output; the interface circuit is also used to transmit the processing result to the transmitter.
- the chip includes: a processor and an interface, the processor is coupled to the memory through the interface, and the processor is used to execute the computer program or code in the memory.
- the computer program or code When executed, the above beam measurement method is executed.
- the device shown in FIG. 9 can be referred to.
- the device can perform functions similar to the processor 502 in FIG. 7.
- the device includes a processor 1701, a data sending processor 1703, and a data receiving processor 1705.
- the transceiving module 420 in the foregoing embodiment may be the sending data processor 1703 and/or the receiving data processor 1705 in FIG. 9.
- FIG. 9 shows a channel encoder, a channel decoder, a symbol generation module, and a channel estimation module, it can be understood that these modules do not constitute a restrictive description of this embodiment, and are only illustrative.
- the processing device 1800 includes modules such as a modulation subsystem, a central processing subsystem, and a peripheral subsystem.
- the communication device in this embodiment can be used as a modulation subsystem therein.
- the modulation subsystem may include a processor 1803 and an interface 1804.
- the interface 1804 completes the function of the above-mentioned transceiver module 420, or serves as an input/output interface for input and output of signals or computer program instructions.
- the modulation subsystem includes a memory 1806, a processor 1803, and a program stored in the memory 1806 and running on the processor. When the processor 1803 executes the program, the terminal device side in the above method embodiment is implemented. Methods. It should be noted that the memory 1806 can be non-volatile or volatile, and its location can be located inside the modulation subsystem or in the processing device 1800, as long as the memory 1806 can be connected to the The processor 1803 is fine.
- a transceiver or a transceiver module can be replaced with an input/output interface, the received operation corresponds to input or acquisition, and the sending operation corresponds to output.
- a computer-readable storage medium is provided, and an instruction is stored thereon.
- the instruction is executed, the method on the terminal device side in the foregoing method embodiment is executed.
- a computer program product containing instructions is provided, and when the instructions are executed, the method on the terminal device side in the foregoing method embodiment is executed.
- a computer-readable storage medium is provided, and an instruction is stored thereon.
- the instruction is executed, the method on the network device side in the foregoing method embodiment is executed.
- a computer program product containing instructions is provided, and when the instructions are executed, the method on the network device side in the foregoing method embodiment is executed.
- the methods disclosed in the foregoing embodiments of the present application may be applied to a processor or implemented by a processor.
- the processor may be an integrated circuit chip with signal processing capabilities.
- the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
- the aforementioned processor may be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (field programmable gate array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components, can also be a system on chip (SoC), a central processing unit (CPU), or a network processor (network processor).
- SoC system on chip
- CPU central processing unit
- network processor network processor
- processor can also be a digital signal processing circuit (digital signal processor, DSP), can also be a microcontroller (microcontroller unit, MCU), can also be a programmable controller (programmable logic device, PLD) or other Integrated chip.
- DSP digital signal processor
- MCU microcontroller unit
- PLD programmable controller
- the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
- the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
- the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
- the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
- the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
- the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
- the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
- the volatile memory may be random access memory (RAM), which is used as an external cache.
- RAM random access memory
- static random access memory static random access memory
- dynamic RAM dynamic RAM
- DRAM dynamic random access memory
- synchronous dynamic random access memory synchronous DRAM, SDRAM
- double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
- enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
- synchronous connection dynamic random access memory serial DRAM, SLDRAM
- direct rambus RAM direct rambus RAM
- the disclosed system, device, and method can be implemented in other ways.
- the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
- the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
- the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
- the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
- the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
- the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Power Engineering (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请提供了一种波束测量的方法,包括:终端接收网络设备发送测量配置信息,所述测量配置信息包括多个资源集合的配置信息,每个资源集合包括一个或多个资源;通过一个接收波束,或者多个同时产生的接收波束对每个资源集合中的资源进行合并测量,并根据测量结果选择一个或多个的资源集合上报给所述网络设备;本申请还提供了一种波束测量的装置;上述方法和装置减小了反馈开销。
Description
本申请涉及通信领域,并且更具体地,涉及一种波束测量的方法和装置。
在NR(new radio)系统中,终端设备与网络设备可以通过波束对准实现数据传输。为了提升信号的覆盖能力,网络设备需要使用波束成型技术来发送下行信号。从网络设备的波束成型方式来看,波束分为两种,一种为模拟波束,通过在模拟域上调整模拟权值形成不同的波束;另一种为数字波束,通过在数字域上调整数字权值形成不同波束。
一些低频系统中,数字波束的数量可能远远大于模拟波束的数量,波束测量过程中,终端设备需要向网络设备反馈波束的索引。由于在接收信号时,数字域可以重新确认权值,网络设备只需要知道模拟波束的索引,并不需要知道数字波束的索引。因此,按照现有反馈机制需要上报数字波束的索引,由于数字波束数量较多,占用的比特较多,因此现有反馈机制上报了冗余信息,上报效率低。
发明内容
本申请提供一种波束测量的方法和装置,通过对多个资源进行合并测量,减小反馈开销。
一方面,公开了一种波束测量的方法,包括:终端设备接收网络设备发送测量配置信息,所述测量配置信息包括多个资源集合的配置信息,每个资源集合包括一个或多个资源;对每个资源集合中的资源进行合并测量,并根据测量结果选择一个或多个的资源集合上报给所述网络设备。
相应的,网络设备向所述终端设备发送所述测量配置信息,并且接收终端设备上报的所述一个或多个资源集合。
选择上报的一个或多个资源集合可以为测量结果符合质量要求的资源集合,例如:测量结果最好的资源集合,或者测量结果大于或等于设定门限值的资源集合;可以上报所述一个或多个的资源集合的索引。
结合上述方案,终端设备通过一个接收波束,或者多个同时产生的接收波束对每个资源集合中的资源进行合并测量。
上述资源为参考信号资源,可以为下行参考信号资源,也可以为上行参考信号资源;例如:CSI-RS(channel state information-reference signal,信道状态信息参考信号)资源,SRS(sounding reference signal,信道探测参考信号)资源;资源集合也可以称为资源组。
另外,上述多个资源集合中,至少有一个资源集合包括多个资源,或者每个资源集合均包括多个资源;多个为2个或2个以上。
结合上述方法,所述资源配置信息中的每个资源集合对应一个资源分类信息,用于 指示该资源集合是否用于合并测量或是否能用于合并测量。终端设备可以对指示合并测量的资源集合进行合并测量。例如,将配置了Combination On=a的资源集合中的多个资源进行合并测量,a也可以为其他值;如果某个集合没有配置Combination On或配置了Combination Off,则该资源集合不能进行合并测量。
另外一个方案中,也可以默认同一集合或分组内的资源用于合并测量,不同的集合或分组内的资源不能用于合并测量。
在另一个方案中,测量配置信息也可以包括多个资源的配置信息,每个资源对应一个资源分类信息,终端设备将具有相同资源分类信息的多个资源进行合并测量,并上报多个资源的共同索引,可以用其中一个资源的索引作为该共同索引。例如:将配置了Combination On=a的多个资源合并测量,测量结果为A;将配置了Combination On=b的多个资源合并测量;测量结果为B;如果A优于B,则上报Combination On=a的多个资源的共同索引,可以用所述多个资源中一个资源的索引作为共同索引。
上述资源分类信息也可以称为合并测量标识。
另一个例子中,也可以将配置了Combination On=a的资源集合与配置了Combination On=a的一个或多个资源进行合并测量,将配置了Combination On=b的资源集合与配置了Combination On=b的一个或多个资源进行合并测量,并上报测量结果较好的资源集合与一个或多个资源的共同索引,可以用集合索引,也可以用其中一个资源的索引作为共同索引。
进一步的,还可以上报资源分类信息对应的标识来表示相应的进行合并测量的资源的共同索引;例如:通过上报与Combination On=a对应的标识来表示Combination On=a的多个资源,通过上报与Combination On=b对应的标识来表示Combination On=b的多个资源;例如:比特0表示Combination On=a的多个资源,比特1表示Combination On=b的多个资源。
进一步的,所述测量配置信息中还可以包括用于指示某个资源和/或资源集合能用于合并测量的指示信息,可以包含在该资源和/或资源集合的资源配置信息中,也可以由网络设备单独下发;这种情况下,如果终端设备检测到测量配置信息中包含合并测量指示,或者接收到网络设备下发的合并测量指示,则终端启动合并测量,否则不启动合并测量。
例如,所述测量配置信息中还包括合并测量指示,例如:CombinationOn=1,用于指示终端设备启动合并测量;终端设备检测到合并测量指示,然后启动合并测量;如果没有检测到该合并测量指示,则不启动合并测量。
所述合并测量指示还可以包含在测量配置信息中的上报配置中,也可以由网络设备单独下发给终端设备,例如:通过RRC(radio resource control,无线资源控制),MAC-CE(Media Access Control control element,MAC控制元素)或DCI(downlink control information,下行控制信息)等下发合并测量指示给终端设备。
若网络设备单独下发合并测量指示给终端设备,则结合上述方法,终端设备进行合并测量之前,进一步包括:接收网络设备下发的指示信息,所述指示信息用于指示终端设备启动合并测量;指示信息可以为RRC、MAC-CE或DCI等。
结合上述方法,终端设备还可以向网络设备上报选择的所述一个或多个的资源集合的合并测量结果;所述合并测量结果中可以包括所述一个或多个的资源集合中有效测量 资源的信息。
结合上述方法,所述测量配置信息还包括各个资源集合分别对应的波束信息,例如:每个资源集合的资源配置信息还包括该资源集合对应的波束信息。
进一步的,上述测量配置信息还可以包含以下一项或多项:合并测量生效的起始时间、合并测量的测量量(如参考信号接收质量、信号与干扰噪声比、参考信号接收功率等)、反馈量等。
结合上述方法,所述合并测量,可以将各个资源分别测量,将各个测量结果取平均值,也可以将各个测量结果中的部分取平均值,如取前N个较好的测量结果取平均值,N也可以由网络设备配置,也可以由终端设备自己确定,或者协议预先约定。
结合上述方法,网络设备可以将终端设备上报的一个或多个的资源集合用于波束指示,例如:网络设备向终端设备下发的波束配置信息,所述波束配置信息包括所述一个或多个的资源集合与上行信道(或信号)或下行信道(或信号)的关联关系。所述终端设备可以使用所述一个或多个的资源集合对应的接收波束接收被关联的信道或信号,或者,所述终端设备可以使用所述一个或多个的资源集合对应的接收波束关联的发送波束发送被关联的信道或信号。
结合上述方法,所述终端设备使用波束测量时的接收波束(一个或多个同时产生的接收波束)接收网络设备下发的与所述一个或多个的资源集合关联的下行信道,或使用波束测量时的接收波束对应的一个或多个发送波束向所述网络设备发送所述一个或多个的资源集合关联的上行信道。
上述波束测量的方法,由于对资源集合中的资源进行合并测量,并根据测量结果上报资源集合,减小了反馈开销。
第二方面,提供了一种处理器,用于执行上述波束测量方法或其各种实现方式中的方法。
第三方面,提供了一种终端设备,所述终端设备包括用于执行上述波束测量方法或其各种实现方式中的方法的模块。如收发模块(可以包括发送模块和接收模块),用于执行上述方案中信号或信息收发的操作;处理模块,用于执行上述方案中除收发之外的操作,如合并测量等。
第四方面,提供了一种网络设备,所述终端设备包括用于执行上述波束测量方法或其各种实现方式中的方法的模块。如收发模块(可以包括发送模块和接收模块),用于执行上述方案中信号或信息收发的操作;处理模块,用于执行上述方案中除收发之外的操作,如配置资源等。
第五方面,提供一种通信装置,该通信装置可以为上述方法设计中的终端设备,或者,为设置在终端设备中的芯片。该通信装置包括:处理器,与存储器耦合,可用于执行存储器中的计算机程序或指令,以实现上述方案其任意一种可能的实现方式中终端设备所执行的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
当该通信装置为终端设备时,该通信接口可以是收发器,或,输入/输出接口,用于信号的收发,或计算机程序或指令的输入/输出。
当该通信装置为设置于终端设备中的芯片时,该通信接口可以是输入/输出接口,用 于信号的收发,或计算机程序或指令的输入/输出,其中输入对应接收或获取的操作,输出对应发送的操作。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第六方面,提供一种通信装置,该通信装置可以为上述方法设计中的网络设备,或者,为设置在网络设备中的芯片。该通信装置包括:处理器,与存储器耦合,可用于执行存储器中的计算机程序或指令,以实现上述方案中网络设备所执行的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
当该通信装置为网络设备时,该通信接口可以是收发器,或,输入/输出接口,用于信号的收发,或计算机程序或指令的输入输出。
当该通信装置为设置于网络设备中的芯片时,该通信接口可以是输入/输出接口,用于信号的收发,或计算机程序或指令的输入输出。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第七方面,提供了一种计算机程序,该程序在被处理器执行时,用于执行上述波束测量方法。
第八方面,提供了一种计算机程序产品,所述程序产品包括:计算机程序代码,当所述程序代码被通信装置(例如,终端设备或者网络设备)的通信单元、处理单元或收发器、处理器运行时,使得通信设备执行上述波束测量方法其可能的实施方式中的任一方法。
第九方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序或指令,所述计算机程序或指令使得通信装置(例如,终端设备或者网络设备)执行上述波束测量方法及其可能的实施方式中的任一方法。
图1是应用本申请实施例的系统架构图。
图2是一种的数模混合发射机示意图。
图3是本申请实施例基站同时使用数字和模拟波束权值服务终端示意图。
图4是本申请实施例的波束测量方法流程图。
图5是本申请实施例的单端口(左)与双端口(右)参考信号资源合并示意图。
图6是本申请实施例提供的一种简化的通信装置的结构示意图。
图7为本申请实施例提供的终端设备的一个示意性框图。
图8为本申请实施例提供的终端设备的另一示意性框图。
图9为本申请实施例提供的处理器的一个示意性框图。
图10为本申请实施例提供的处理装置的一个示意性框图。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统或新空口(new radio,NR)等。
本申请实施例中的终端设备可以指用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
具体地,本申请实施例可应用于基于波束的多载波通信系统。图1是应用本申请实施例的一个系统架构图。如图1所示,该系统包括网络设备和至少一个终端设备(图1中示例出两个终端设备)。终端设备通过无线的方式与网络设备相连。终端设备与网络 设备之间可以使用波束进行通信,包括上行(即终端设备到网络设备)通信和下行(网络设备到终端设备)通信。终端设备可以是固定位置的,也可以是可移动的。
应理解,图1只是示意图,该系统中还可以包括其它设备,比如还可以包括核心网设备、无线中继设备和无线回传设备(图1中未示出)等。本申请的实施例对该系统中包括的网络设备和终端设备的数量不做限定。
在波束测量中,网络设备可向终端设备提前发送测量配置信息,该测量配置信息中可以包括测量资源配置信息和测量上报配置信息。网络设备基于该测量配置信息向终端设备发送测量参考信号。
其中,测量资源配置信息中包括测量资源的相关配置。比如,测量资源可以被配置为三级资源结构:资源设置(Resource setting)、资源集(Resource set)和资源(Resource)。网络设备可以为终端设备配置一个或多个Resource setting,每个Resource setting中可以包括一个或多个Resource set,每个Resource set中可以包括一个或多个Resource。可选地,每个Resource还可以为一个或多个端口(port)的资源。
测量上报配置信息中包括需要终端设备测量上报的相关信息。可选地,该测量上报配置信息中包括以下中的一项或多项:上报量(report quantity)、上报量采用的计算方法指示信息、该测量上报配置信息所关联的测量资源(比如,该测量上报配置所关联的一个或多个Resource setting和/或resource set和/或resource)。其中,所述上报量可以包括以下信息中的一项或多项:信道测量参考信号资源标识、干扰资源标识、参考信号接收功率(reference signal receiving power,RSRP)、参考信号接收质量(reference signal receiving quality,RSRQ)、信号与干扰噪声比(signal to interference plus noise ratio,SINR)、接收信号强度指示(received signal strength indicator,RSSI)、信道状态信息(channel status information,CSI)、信道质量指示(channel quality indicator,CQI)、预编码矩阵指示(precoding matrix indicator,PMI)、预编码类型指示(precoding type indicator,PTI)、分集指示(rank indication,RI)、LI、il,其中LI为层指示,用于指示一个数据层索引(可以用于配置相位跟踪参考信号),i1为宽带码本。PMI用于选择多天线多入多出(multiple-input multiple-output,MIMO)的码本。PTI用于指示预编码类型。RI用于指示多天线MIMO中天线矩阵的秩。应理解,上述只是示例性地给出测量上报配置信息中可能包括的信息,测量上报配置信息中还可以包括其他信息,本申请实施例对此不作限定。
终端设备在收到网络设备的测量配置信息后,可以基于测量配置信息进行测量。比如,若测量配置信息中的测量上报配置信息中包括RSRQ、SINR,则终端设备需要对测量资源配置信息指示的资源进行测量,并向网络设备上报测量的RSRQ、SINR。
为了便于理解,现将本申请实施例涉及到的术语或概念统一进行解释。
波束(beam):波束是一种通信资源。波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束成形技术或者其他技术手段。波束成形技术可以具体为数字波束成形技术,模拟波束成形技术,混合数字/模拟波束成形技术。不同的波束可以认为是不同的资源。通过不同的波束可以发送相同的信息或者不同的信息。可选的,可以将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束内可以包括一个或多个天线端口,用于传输数据信道,控制信道和探测信号等,例如,发射波束可 以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。可以理解的是,形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。波束在协议中的体现还是可以空域滤波器(spatial filter)。
波束的信息可以通过索引信息进行标识。可选地,所述索引信息可以对应配置UE的资源标识,比如,所述索引信息可以对应配置的信道状态信息参考信号(channel status information reference signal,CSI-RS)的ID或者资源,也可以对应配置的上行探测参考信号(sounding reference signal,SRS)的ID或者资源。或者,可选地,所述索引信息也可以是通过波束承载的信号或信道显示或隐式承载的索引信息,比如,所述索引信息可以是通过波束发送的同步信号或者广播信道指示该波束的索引信息。
或者,可选地,波束的信息的标识包括可以通过波束的绝对索引、波束的相对索引,波束的逻辑索引,波束对应的天线端口的索引,波束对应的天线端口组的索引,下行同步信号块的时间索引,波束对连接(beam pair link,BPL)信息,波束对应的发送参数(Tx parameter),波束对应的接收参数(Rx parameter),波束对应的发送权重(weight),权重矩阵(weight vector),权重向量(weight matrix),波束对应的接收权重,或者它们的索引,波束对应的发送码本(codebook),波束对应的接收码本,或者它们的索引。
上述图1给出了本申请涉及的一种网络系统架构,本申请适用于如图1所示的基于波束的多载波通信系统,例如5G新空口NR。该系统中包括通信系统中的上行(终端设备到网络设备)和下行(接入网络设备到终端设备)通信。根据长期演进LTE/NR的协议,在物理层,上行通信包括上行物理信道和上行信号的传输。其中上行物理信道包括随机接入信道(random access channel,PRACH),上行控制信道(physical uplink control channel,PUCCH),上行数据信道(physical uplink shared channel,PUSCH)等,上行信号包括信道探测信号SRS,上行控制信道解调参考信号(PUCCH de-modulation reference signal,PUCCH-DMRS),上行数据信道解调参考信号PUSCH-DMRS,上行相位噪声跟踪信号(phase noise tracking reference signal,PTRS)等。下行通信包括下行物理信道和下行信号的传输。其中下行物理信道包括广播信道(physical broadcast channel,PBCH),下行控制信道(physical downlink control channel,PDCCH),下行数据信道(physical downlink shared channel,PDSCH)等,下行信号包括主同步信号(primary synchronization signal,简称PSS)/辅同步信号(secondary synchronization signal,SSS),下行控制信道解调参考信号PDCCH-DMRS,下行数据信道解调参考信号PDSCH-DMRS,相位噪声跟踪信号PTRS,信道状态信息参考信号(channel status information reference signal,CSI-RS),小区信号(cell reference signal,CRS)(NR没有),精同步信号(time/frequency tracking reference signal,TRS)(LTE没有)等。
在NR中,下行信道所使用的波束或参考信号发送对应的波束的波束指示是通过关联传输配置指示(transmission configuration indicator,TCI)状态表中的参考资源索引实现的。
具体而言,基站通过无线资源控制(radio resource control,RRC)高层信令配置了一个TCI状态表(对应38.331中的TCI-states),每个TCI状态表包含若干个TCI状态(对应38.331中TCI-RS-Set)。每个TCI状态包括TCI状态ID(TCI-RS-SetID)、一种或两 种准同位(quasi-co-location,QCL)类型指示(QCL-type A/B/C/D)以及各个类型指示对应的参考RS-ID。QCL类型包含了以下几种:
QCL-Type A:{多普勒频移,多普勒扩展,平均时延,时延扩展}
QCL-Type B:{多普勒频移,多普勒扩展}
QCL-Type C:{平均时延,多普勒频移}
QCL-Type D:{空间接收参数}
其中,QCL-type D表示空间准同位。当需要指示接收波束时,基站通过高层信令或控制信息指示其中的一个包含空间准同位信息的TCI状态,UE根据该TCI状态读取QCL-type D对应的参考RS-ID,然后UE可以根据当前维护的与RS-ID相对应的空间接收配置(接收波束)进行接收。根据38.214,如果一个TCI状态中含有空间准同位指示(QCL-type D),那么该空间准同位指示的对应参考RS可能是一个SS/PBCH Block或是一个周期或半持续的CSI-RS。不同的下行信道的波束指示(TCI指示)在不同位置完成:
PDCCH的波束指示由RRC配置的高层信令tci-StatesPDCCH与一个或多个TCI状态关联,当关联的TCI状态数大于1时,由MAC-CE高层信令选择其中一个。
PDSCH的波束指示由PDCCH传输的DCI中的TCI字段关联的状态进行指示。NR标准中DCI中包含的TCI字段的长度为3bit(对应8个TCI状态),当RRC信令包含的TCI状态数量M小于8时,激活的TCI状态直接映射到TCI字段中,否则由高层信令指示最多8种参与映射的TCI状态。当高层信令提示TCI字段未在DCI中出现时,UE重用控制信道的波束指示进行数据信道接收。
对于上行传输,NR尚未定义空间准同位关系,上行的波束指示直接通过参考信号资源标识实现:
PUCCH的波束指示通过RRC参数PUCCH-Spatial-relation-info指示,该参数可能包括了一个或者多个参考信号资源标识,当包含多个参考信号资源标识时,由MAC-CE高层信令选择其中一个。PUCCH的波束指示内容可能是上行或下行的参考信号资源标识,包括SSB Index,CRI或者SRS Index,表示建议UE使用接收/发送该下行/上行参考信号资源的对应波束进行上行传输。
PUSCH的波束信息通过DCI中的SRS Index进行配置。准同位(quasi-co-location,QCL):同位关系用于表示多个资源之间具有一个或多个相同或者相类似的通信特征,对于具有同位关系的多个资源,可以采用相同或者类似的通信配置。例如,如果两个天线端口具有同位关系,那么一个端口传送一个符号的信道大尺度特性可以从另一个端口传送一个符号的信道大尺度特性推断出来。大尺度特性可以包括:延迟扩展,平均延迟,多普勒扩展,多普勒频移,平均增益,接收参数,终端设备接收波束编号,发射/接收信道相关性,接收到达角,接收机天线的空间相关性,主到达角(angel-of-arrival,AoA),平均到达角,AoA的扩展等。具体地,所述同位指示用于指示所述至少两组天线端口是否具有同位关系为:所述同位指示用于指示所述至少两组天线端口发送的信道状态信息参考信号是否来自相同的传输点,或所述同位指示用于指示所述至少两组天线端口发送的信道状态信息参考信号是否来自相同的波束组。
空域准同位(spatial QCL):spatial QCL可以认为是QCL的一种类型。对于spatial有 两个角度可以理解:从发送端或者从接收端。从发送端来看,如果说两个天线端口是空域准同位的,那么是指这两个天线端口的对应的波束方向在空间上是一致的。从接收端来看,如果说两个天线端口是空域准同位的,那么是指接收端能够在相同的波束方向上接收到这两个天线端口发送的信号。
图2中描述了一种典型的发射机架构。其中,数字权值在数字域进行调整,而模拟权值在模拟域通过移相器进行调整。
因此,基站通常同时有数字波束权值和模拟波束权值,数字波束和模拟波束并非互斥关系。例如,在图2的基站架构中,基站可以先在数字域上对信号进行数字加权形成数字波束,再在模拟域上进行模拟加权形成模拟波束。此时,基站发射出去的信号其实是同时包含了数字波束和模拟波束的加权效果。
在高频系统中,由于数字权值增加实现带来功耗和成本大量增加,因此高频系统可能倾向使用较小数量的数字权值和较大数量的模拟权值。对于一些低频段系统,由于数字通道的功耗和成本相对可承受,可能会使用较多数量的数字权值甚至使用只有数字权值的基站架构(即全数字波束成型架构,Digital beamforming,DBF)。
进行波束测量时,终端设备并不对模拟波束和数字波束进行区分,终端对一组参考信号资源进行测量,并反馈测量结果符合质量要求的参考信号资源,至于基站实际使用数字波束或模拟波束,还是使用数字波束加模拟波束发送该参考信号资源,终端设备并无感知,如图3所示,终端设备只能区分一个资源,无法区分该资源由数字波束发送还是由模拟波束发送。
高频系统通常拥有较大数量的模拟权值,和较小数量的数字权值,因此高频系统中的波束管理为通过波束扫描确定一个模拟波束。
对于一些使用了模拟波束+数字权值架构的低频系统,数字波束的数量可能远远大于模拟波束的数量。以图3的示意图举例,图3中基站侧有5个数字波束,分别属于2个不同模拟波束,终端设备识别的是一个数字和模拟波束的合并信号,例如(数字波束1+模拟波束1),不同的数字和模拟波束组合只能通过基站配置不同的参考信号资源区分,终端侧是无法感知的,如表1所示:
表1:资源和数字模拟波束对应关系
终端设备可以对上述5个资源分别测量,并向基站反馈其中信号质量最好的资源编号(例如资源3),基站便可以知道使用数字波束3和模拟波束1合并接收终端发送的信号。然而,由于在信号接收过程中数字域可以重新确认权值,因此在接收信号时,基站只需要知道应该使用哪个一个模拟波束(即模拟波束1)来进行接收,并不需要知道数字波束索引,按照现有反馈机制上报了冗余信息,上报效率低。
如果基站不使用数字波束,只是用模拟波束发送不同资源,这样终端设备上报的索引就是模拟波束索引,没有冗余信息。但是,低频系统的模拟波束数量很少,波束很宽,如果不使用数字波束集中能量发送,终端设备可能无法收到信号。
本申请提出一种波束测量的方法,通过对多个资源进行合并测量,减小反馈开销,提高测量上报效率。
图4示出了根据本申请实施例的波束测量的方法200的示意性流程图。该方法包括:
101:基站给终端下发测量配置信息;包括:测量资源配置信息,测量上报配置信息等。
所述测量资源配置信息包括多个用于合并测量的资源集合,每个资源集合包括一个或多个资源;本申请中,资源集合也可以称为资源组,本申请实施例以资源为参考信号资源为例进行说明,例如CSI-RS资源。
一个例子中,每个资源集合都包括多个资源;或者,部分资源集合包括多个资源,部分资源集合仅包括一个资源,仅包括一个资源的集合看成单个资源即可;多个为2个或2个以上。
例如:基站为终端分配了7个资源,资源1、2、3为资源集合1,资源4、5为资源集合2,资源7为资源集合3,三个资源集合均用于合并测量。包括资源集合3可以看成单个资源,可以对该单个资源进行测量。
可选的,每个资源集合对应一个模拟波束,一个集合内的每个资源对应一个数字波束。例如,参考图3,资源集合1对应模拟波束1,资源1、2、3分别对应的数字波束1、2、3;资源集合2对应模拟波束2,资源4、5分别对应的数字波束4、5。
一个例子中,测量资源配置信息可以包括资源分类信息,用于指示哪些资源和/或资源集合能进行合并测量,例如:资源分类信息用于指示不同的资源类型,包括可合并的资源(或资源集合)和不可合并的资源(或资源集合)。终端可以将可合并的多个资源和/或资源集合进行合并测量,并得到一个测量结果。
例如:基站为终端分配了5个资源,其中资源1、2、3的类型为可合并的资源,资源4、5的类型为不可合并的资源,终端可以将资源1、2、3进行合并测量。
上面例子中,基站为终端分配了7个资源,如果资源集合1的类型为可合并资源集合,资源集合3(即资源7)为可合并资源,则终端可以将资源1、2、3、7进行合并测量。
另一个例子中,基站也可以通过配置分组的方式指示哪些资源进行合并测量。例如,同一个分组内的资源可以合并测量,不同分组的资源不能合并测量;或者默认同一个分组内的资源可以合并测量,不同分组的资源不能合并测量。
以下举例进行说明:
资源分类信息可以指示多个资源和/或资源集合是否能合并,并指示哪些资源和/或资源集合之间可以合并。例如:
将包含了参数{Combination On=a}的资源和/或资源集合用于合并测量,例如:CSI-RS#1的配置信息中包含{Combination On=a},则表示CSI-RS#1可以与所有配置了{Combination On=a}的资源和/或资源集合合并测量;a也可以用其他参数替换,例如:将包含了参数{Combination On=b}的资源和/或资源集合用于合并测量。
例如:基站为终端分配了5个资源,其中资源1,2,3的参数{Combination On=a},资源4,5的参数{Combination On=b},则将资源1,2,3进行合并测量,将资源4,5进行合并测量。
如果某个资源或资源集合未配置{Combination On}或配置了{Combination Off},则表示该资源或资源集合不能用于合并测量。
又一个例子中,基站可以将可合并的资源集合和/或资源配置为一个新的集合或分组,并通知终端(或通过协议约定)该集合或分组中的资源是可合并测量的。可以通过设置合并测量标识指示终端该集合或分组中的资源是可合并测量的;也可以单独下发通知消息进行通知。
一种可能的方案如下:
基站配置资源集合{CSI-RS#1,CSI-RS#2…},并通过协议约定或下发消息指示该集合内的资源可合并测量,例如:基站通过RRC配置该集合的合并测量标识(CombinationOn=1),表示该资源集合中的资源可以进行合并测量,也可以通过其他消息进行配置,如DCI,MAC-CE等。
另一实施例中,基站也可以将用于合并测量的多个资源配置为一个多端口的测量资源,如:多端口的参考信号资源;则该参考信号资源的各个端口应使用合并测量的方式进行测量。
基站可以配置多个多端口的参考信号资源,每个资源包括多个可合并测量的端口。
进一步的,测量配置信息中还可以包括合并测量指示,该合并测量指示可以包含在测量上报配置信息中。例如:在测量上报量配置中包含合并测量指示;当终端检测到合并测量指示后,才进行合并测量。可以用1bit来指示,1表示开启合并测量,0表示不开启。或者可以通过是否包含合并测量指示表示是否开启测量指示。例如,包含合并测量指示表示开启合并测量,不包含合并测量指示表示不开启合并测量。当终端检测到测量上报配置信息中包含了合并测量指示,则终端对合并测量标识指示的资源和/或资源集合进行合并测量。
进一步的,上述测量配置信息还可以包含以下一项或多项:合并测量生效的起始时间、参与合并测量的资源和/或资源分组(包括哪些分组可以合并)、合并测量的测量量、反馈量等。
另外,基站也单独可以下发指示信息指示终端启动合并测量。该指示信息可以是一个RRC消息,也可以是一个MAC-CE,也可以是DCI。
例如:基站可以使用一个特殊DCI格式,用于指示终端开启合并测量,当终端检测到该特殊DCI格式时,启动合并测量,例如:
如果基站针对可合并的资源和/或资源集合配置了合并测量标识(例如:CombinationOn=1),当终端检测到指示合并测量开启的DCI格式时,终端对合并测量标识指示的资源和/或资源集合进行合并测量。
可选的,基站也可以使用MAC-CE指示终端进行合并测量,例如:
终端接收到指示终端进行合并测量的MAC-CE后,进入合并测量模式,与上述DCI例子类似,终端对合并测量标识指示的资源和/或资源集合进行合并测量。
进一步的,MAC-CE指示终端进行合并测量,还可以进一步指示哪些资源进行合并 测量。指示方式可以通过二进制字符串和资源集合一一映射的方式进行指示,例如,比特字符串中的第1个比特为与第1个资源集合(或ID为0的资源集合)对应。当该位置的比特值为1时,表示该集合应使用合并测量的方式进行测量。
另一个实施例中,如果基站配置了多端口的参考信号资源,当终端未进入合并测量时,可以仅对前两个或前一个端口进行测量,并上报测量结果。当终端进入合并测量模式时(例如接收到上述指示合并测量的指示信息后),终端对多个端口进行合并测量。
另外,另一些实施例中,基站可以通过隐式方式触发终端进入合并测量,例如:通过一些特别的信令组合指示终端进行合并测量,以下举例进行说明。
例如,当基站配置终端对多个参考信号资源集合进行测量上报(例如上报量为RSRP),且每个参考信号资源集合中包括配置指示repetition On,此时终端应使用合并测量的方式,上报该集合的RSRP和集合索引,而非某个集合中的资源索引。
例如,当基站配置终端对多个参考信号资源集合进行测量上报(例如上报量为RSRP),且每个参考信号资源集合中的参考信号的波束指示(例如:空间准同位)为同一个参考信号时(和/或集合自身配置了波束指示时),终端应使用合并测量的方式,上报资源集合的RSRP和/或资源集合索引,而非某个集合中的资源索引。
例如,当基站配置终端测量N>1个参考信号资源集合进行测量上报(例如上报量为RSRP),终端应使用合并测量的方式,上报资源集合的RSRP和/或资源集合索引,而非某个集合中的资源索引。
进一步的,对于合并测量的参考信号资源,可以单独配置各个资源接收和/或发送波束信息,也可以为参与合并测量的参考信号资源配置一个公共的接收和/或发送波束信息。可选的,对于参与合并的测量的资源或资源集合,可以只为其中一个资源或资源集合配置接收和/或发送波束信息,终端应假设参与合并测量的资源都是用与该资源或资源集合相同的接收和/或发送波束进行传输。
可选的,对于各个资源独立配置的情况,基站没有为参与合并测量的参考信号资源配置一个公共的接收和/或发送波束信息,当基站通过信令或配置方式激活了合并测量时,终端进入合并测量模式,则应假设参与合并测量的资源使用相同的接收和/或发送波束。如果基站为这些资源配置的波束不同,则终端应假设参与合并测量的参考信号资源使用以下波束发送:
资源ID或资源集合ID最大或最小的
当前的下行控制信道波束
当前下行数据信道波束
初始接入的SSB(synchronization signal block,同步信号块)对应的发送波束,或
最低控制资源集合(Control resource set)ID对应的波束
另外,基站也可以在激活合并测量时,为一个或多个资源或资源集合指示对应的发送和/或接收波束。例如,可以通过前述RRC,MAC-CE或DCI进行指示。
波束的指示方式可以通过参考信号进行指示。例如,可以通过CSI-RS对波束进行指示,该CSI-RS可以用于指示基站发送CSI-RS时的发送波束(或其对应的接收波束),和/或终端接收该CSI-RS使用的接收波束(或其对应的发送波束)。类似的,可以还可 以通过SRS进行波束指示,该SRS可以用指示终端发送该SRS时的发送波束(或其对应的接收波束),或基站接收该SRS时的接收波束(或其对应的发送波束)。
测量配置信息还可以包括上报量。
进一步的,基站可以配置合并测量专用的上报量(或称为测量量),也可以配置普通的上报量。
可选的,基站可以配置RSRP,RSSI,RSRQ,SINR等信息,并通知终端这些测量量需要使用合并测量的方式进行测量。
基站也可以定义新的合并测量量,例如{RSRP,RSSI,RSRQ或SINR}-SET,该测量量表示终端应使用合并测量的方式测量一个资源集合的RSRP,RSSI,RSRQ或SINR。测量量的定义可以沿用3GPP 38.215的方式,区别在于终端可以使用资源集合内任意一个资源的测量量作为该资源集合的测量量,或将资源集合内各个资源视为一个资源进行整体的测量并上报。
可选的,测量配置信息中可以包含一个上报量的测量方式。例如,基站配置的测量上报配置信息包含:
{测量资源、上报量、上报使用的信道资源、上报周期、上报量的测量方式….},其中上报量测量方式可以指示该上报量使用合并测量还是非合并测量的方式。测量资源中包含了用于合并测量的资源或资源集合的索引信息。
可选的,基站也可以配置一个普通的上报量,通过触发或指示的方式激活合并测量方式。例如,当基站为终端配置了上报量为RSRP,并且通过触发方式开启了合并测量时,则终端使用合并测量方式对上报量进行合并测量。例如:可以通过RRC,MAC-CE,DCI等指示终端进行合并测量。
可选的,基站可以为终端配置一个合并测量的资源集合索引,可以包含在测量上报配置中,例如,上报量配置为特殊的合并测量的资源集合索引,例如CSI-RS resource set index(CRSI),当终端接收到的测量配置信息中包含该上报量时,则启动合并测量。
102:终端根据测量配置信息,对多个资源集合分别进行合并测量。
所述合并测量,可以通过终端的一个接收波束,或者多个同时产生的接收波束进行。
例如:测量资源配置信息包括3个用于合并测量的资源集合,并且配置的测量量为RSRP,则分别对3个资源集合中的资源进行合并测量,得到3个RSRP的测量结果,并根据测量结果选择其中一个或多个资源集合上报,可以上报资源集合的索引或编号;例如:将测量结果最好资源集合的索引上报给基站;进一步的可以将相应的测量结果也上报。或者将测量结果高于预设门限的一个或多个资源集合上报。
由于使用了合并测量,并且上报了资源集合的索引,因此减小了反馈开销。
另一个例子中,当基站指示终端进行合并测量时,即终端接收到基站下发的合并测量指示时,终端应将用于合并测量的资源和/或资源集合的进行合并测量。
例如,一个参考信号的资源的集合中包含了4个参考信号资源:{CSI-RS#1,CSI-RS#2,CSI-RS#3,CSI-RS#4},当基站指示终端对该集合的RSRP进行合并测量时,终端应将CSI-RS#1,CSI-RS#2,CSI-RS#3 CSI-RS#4四个资源的视为一个等效资源进行测量,例如:将4个资源的RE(resource element,资源单元)结合作为一个整体RE进行RSRP测量, 即对该等效资源的进行测量,如图5左侧A所示。
如果基站为终端配置的资源为多个多端口的参考信号资源,终端将多个端口的资源当成一个资源进行合并测量,如图5右侧B所示。
另一个例子中,合并测量的方式如下:
分别测量资源集合中各个资源的RSRP,将资源集合中的多个资源的RSRP相加后取平均值。也可以由终端选择集合中一个或多个资源,分别测量RSRP后,将结果相加取平均值,或将测量结果最大的N个资源的RSRP相加取平均值等。N可以通过协议约定,或基站为终端配置,或由终端自己确定。
在另一个实施例中,基站可以为终端配置一个多端口的资源,并通知终端进行合并测量。
例如,基站为终端配置一个N>1或N>2个端口的资源,当合并测量生效时(生效条件可以参考上述实施例),终端应将N个端口的资源进行合并测量,如选择其中一个或多个端口,测量RSRP后进行相加取平均值,或选择最大的N个端口的RSRP相加取平均等。N可以通过协议约定,或基站为终端配置,或终端自行确定。当合并测量未生效时,终端仅测量前两个或第一个端口;其中,具体测量一个端口(例如:端口1)还是两个端口(端口1和端口2)可以通过基站配置,或通过协议约定,例如:通过协议约定默认测量前两个端口。
103:终端根据测量结果,选择一个或多个资源集合上报
例如,基站配置了两个资源集合:
CSI-RS resource set #1{CSI-RS resource#1,CSI-RS resource#2}
CSI-RS resource set #2{CSI-RS resource#3,CSI-RS resource#4}
终端可以根据合并测量结果从两个资源集合中选择一个测量结果较好的上报,上报内容包括所选资源集合的索引和/或测量结果。
例如,终端对资源集合1和资源集合2分别测量RSRP,并确定上报的资源集合。如资源集合1的RSRP测量结果优于资源集合2,此时终端通过上行信道(例如PUSCH或PUCCH)反馈该资源集合2的索引,进一步的,还可以上报该资源集合2的测量结果。
例如,对于上述两个资源集合的场景,可以通过一个比特指示所选的资源集合,例如比特0表示资源集合1,比特1表示资源集合2。这种方式节约了反馈资源,提高了上报效率。
终端上报参考信号资源集合索引外还可以上报该资源集合中的资源信息。该资源信息用于表示所上报的测量结果是使用所上报的资源测量的,或终端认为该资源集合中被上报的资源为有效测量资源;例如:有效测量资源可以满足下面一个或多个条件或功能:对测量结果贡献最大,或终端认为主要由该上报的资源确定了上报的测量结果,或建议基站使用上报的资源进行传输。
例如,基站配置了4个资源集合,每个集合包含2个参考信号资源,并配置或指示终端对每个资源集合进行合并测量。终端测量后选择资源集合2进行上报,同时上报参考信号集合2的中1个资源(例如资源2)或多个资源(例如资源2,3),则表示终端根据资源2(或资源2,3)得到了测量结果,或终端推荐基站使用资源2(或资源2,3)对应 的波束进行信号传输。
终端上报的资源集合的标识或索引可以与基站配置的合并测量指示关联。例如,基站配置了Combination On=a和Combination On=b两个合并测量指示,终端对包含上述两种合并测量指示参考信号分别进行合并测量后,得到2个测量结果。如果终端要上报Combination On=a对应的多个资源的共同索引,则可以用与Combination On=a对应的标识来表示。例如:比特0表示Combination On=a的多个资源(或资源和资源集合的组合)。同样的,如果终端要上报Combination On=b对应的多个资源的共同索引,则可以用与Combination On=b对应的标识来表示,例如比特1表示Combination On=b的多个资源(或资源和资源集合的组合)。
另一个例子中,如果基站配置了多个多端口参考信号资源,并指示终端对每个多端口参考信号资源启动合并测量且上报所述多个资源中的N个资源。则终端应对每个参考信号资源分别测量后,上报N个资源的索引和/或测量结果,N可以通过协议约定,或基站为终端配置,或终端自行确定。N个资源可以为所述多个资源中测量结果最好N个,N=1时,则为测量结果最好的多端口参考信号资源。
可选的,终端上报资源索引外,还可以额外上报端口选择信息,用于指示所上报的测量结果是使用所上报的端口测量的,或终端认为该多端口参考信号资源中被上报的端口为有效测量端口;例如:有效测量端口可以满足下面一个或多个条件或功能:对测量结果贡献最大,或终端认为主要由该上报的端口确定了上报的测量结果,或建议基站使用上报的端口进行信号传输。
例如,基站为终端配置了4个4端口参考信号资源,并配置或指示终端对每个4端口参考信号资源进行合并测量。终端测量后选择参考信号资源3进行上报,同时上报参考信号资源3的N=2个端口,表示终端使用这两个端口得到的测量结果,或终端推荐基站使用这两个端口进行信号传输。
104,基站可以将上报的资源集合用于波束指示(图中未示出)。
例如:基站向终端下发波束配置信息,所述波束配置信息包括所述上报的资源集合与上行信道或下行信道的关联关系。具体的,可以为终端上报的资源集合对应的终端接收波束与终端的上行信道的发送波束的关联关系,或终端上报的资源集合对应的终端接收波束与终端的下行信道的接收波束的关联关系。
如果终端向基站上报了参考信号资源集合2,基站可以将资源集合2配置到传输状态指示(TCI)中,例如:
TCI#1
{参考信号:参考信号资源集合2
准同位信息:空域准同位}
基站可以将终端的信道或参考信号资源关联到该TCI状态下,表示终端应使用该参考信号资源集合2对应的接收波束接收被关联的信道或信号。所述参考信号资源集合2对应的接收波束可以为终端接收并测量参考信号资源集合2使用的接收波束。其中,关联方式本申请不限定,可以使用直接配置关联关系、或利用DCI、MAC-CE或DCI等通过关联TCI状态进行指示。
可选的,基站也可以将参考信号资源集合2作为波束指示或空间传输信息关联给下行信号(信道)或上行信号(信道),例如,通过QCL指示实现上述关联关系。
例如,基站为终端配置SRS(sounding RS)资源,并将SRS资源的发送波束信息关联到参考信号资源集合2,则终端应使用测量该参考信号资源集合2关联的接收波束所对应的发送波束发送被关联的SRS资源。
可选的,基站可以不使用资源集合的索引进行指示,而是使用资源集合中的某一个资源的索引进行指示,该资源所在资源集合为一个可合并测量的资源集合。例如,基站配置了参考信号资源集合2:{CSI-RS#1,CSI-RS#2},并指示该集合为可合并测量的参考信号资源集合。当基站使用CSI-RS#1作为上行或下行信号的波束指示的参考信号时,终端应使用测量该参考信号集合2的接收波束接收CSI-RS#1关联的信号或信道,或使用测量该参考信号集合2的接收波束所对应的发送波束发送CSI-RS#1关联的信道或信号。
本申请实施例所描述都是基于下行参考信号描述,下行参考信号以CSI-RS做了列举,其它下行参考信号也同样适用。另外,相同的机制可以用于上行参考信号(如SRS等)。即基站配置一个或多个SRS资源集合,终端发送SRS资源集合后,基站根据测量结果选择相应的资源集合进行上行或下行波束指示。
例如,基站为终端配置多个SRS资源集合,每个集合包括一个或多个SRS资源,终端根据基站配置的波束指示使用对应发送波束发送SRS资源,波束指示的方式本申请不限定,例如:可以通过将SRS资源关联到某CSI-RS或某SRS,表示使用接收该CSI-RS的接收波束对应的发送波束,或使用该SRS对应的发送波束,发送被关联的SRS资源。基站接收终端发送的SRS资源集合并进行测量,根据测量结果,选择其中一个或多个资源集合,并将选择的资源集合的索引配置给终端,作为上行/下行信道或参考信号的波束指示,表示终端应使用发送该SRS资源集合中的任意发送波束发送被关联的上行信道或信号,或使用发送该SRS资源集合中的任意发送波束对应的接收波束接收被关联的下行信道或信号。其它细节可参考上述方法实施例,不再详述。
上述实施例中的测量结果可以是以下测量量中的一项或多项的测量结果:参考信号接收功率RSRP、参考信号接收质量RSRQ、信号与干扰噪声比SINR和接收信号强度指示RSSI。
上述实施例中,基站向终端下发的指示或通知,或者基站触发终端,均可以通过RRC,DCI或MAC-CE进行。
还应理解,图3中的例子仅仅是为了便于本领域技术人员理解本申请实施例,并非要将本申请实施例限于例示的具体场景。本领域技术人员根据图3的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本申请实施例的范围内。
还应理解,本申请实施例的各个方案可以进行合理的组合使用,并且实施例中出现的各个术语的解释或说明可以在各个实施例中互相参考或解释,对此不作限定。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文详细描述了根据本申请实施例的波束测量的方法。下面将结合图6至图8描述根据本申请实施例的波束测量的装置。应理解,方法实施例所描述的技术特征同样适用 于以下装置实施例。
图6示出了根据本申请实施例的波束测量的装置400的示意性框图。可选地,所述装置400的具体形态可以是终端设备或终端设备中的芯片,本申请实施例对此不作限定。所述装置400包括:
处理模块410,用于执行方法实施例中除收发之外的操作,如对资源集合进行合并测量等;
收发模块420,可以包括发送模块和接收模块,用于执行方法实施例中收发类的操作,如接收网络设备发送测量配置信息,上报选择的资源集合等。
上述处理模块和收发模块的功能可以参考上述方法实施例。
在一个例子中,该装置为上述方法实施例中的终端设备,则该装置包括:
接收模块:用于接收网络设备发送测量配置信息,所述测量配置信息包括多个资源集合的配置信息,每个资源集合包括一个或多个资源;
处理模块:用于通过一个接收波束,或者多个同时产生的接收波束对每个资源集合中的资源进行合并测量;
发送模块:用于根据测量结果选择一个或多个的资源集合上报给所述网络设备。
应理解,根据本申请实施例的波束测量的装置400可对应于前述方法实施例中终端设备的方法,比如,图4中的方法。装置400中的各个模块的上述和其它管理操作和/或功能分别为了实现前述方法实施例中终端设备的方法的相应步骤,因此也可以实现前述方法实施例中的有益效果,为了简洁,这里不作赘述。
还应理解,装置400中的各个模块可以通过软件和/或硬件形式实现,对此不作具体限定。换言之,装置400是以功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路ASIC、电路、执行一个或多个软件或固件程序的处理器和存储器、集成逻辑电路,和/或其他可以提供上述功能的器件。可选地,在一个简单的实施例中,本领域的技术人员可以想到装置400可以采用图7所示的形式。处理模块410可以通过图7所示的处理器501和存储器502来实现。收发模块420可以通过图7所示的收发器503来实现。具体的,处理器通过执行存储器中存储的计算机程序来实现。可选地,当所述装置400是芯片时,那么收发模块420的功能和/或实现过程还可以通过管脚或电路等来实现。可选地,所述存储器为所述芯片内的存储单元,比如寄存器、缓存等,所述存储单元还可以是所述计算机设备内的位于所述芯片外部的存储单元,如图7所的存储器502。
图7示出了根据本申请实施例的终端设备500的示意性结构图。如图7所示,所述终端设备500包括:处理器501,所述处理器501可以调用接口执行上述收发动作,其中,调用的接口可以是逻辑接口或物理接口,对此不作限定。可选地,物理接口可以通过收发器实现。可选地,所述装置500还包括收发器503。
可选地,所述装置500还包括存储器502,存储器502中可以存储上述方法实施例中的程序代码,以便于处理器501调用。
具体地,若所述装置500包括处理器501、存储器502和收发器503,则处理器501、存储器502和收发器503之间通过内部连接通路互相通信,传递控制和/或数据信号。在一个可能的设计中,处理器501、存储器502和收发器503可以通过芯片实现。该存储器502可以存储程序代码,处理器501调用存储器502存储的程序代码,以实现该终端设备 的相应功能。
应理解,所述装置500还可用于执行前文实施例中终端设备侧的其他步骤和/或操作,为了简洁,这里不作赘述。
上述收发器503可以包括接收器和发送器,其中,接收器用于实现接收功能,发送器用于实现发送功能。
同样的,上述方法实施例中的网络设备,也可以参考图6,图7来实现。网络设备也包括收发单元(收发器),用于实现方法实施例中收发类操作;处理模块(处理器),用于实现方法实施例中除收发之外的其他操作,例如,配置资源等。不再详述。
本申请实施例还提供一种通信装置,该通信装置可以是终端设备也可以是电路。该通信装置可以用于执行上述方法实施例中由终端设备所执行的动作。
当该通信装置为终端设备时,图8示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图8中,终端设备以手机作为例子。如图8所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图8中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。如图8所示,终端设备包括收发单元1610和处理单元1620。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1610中用于实现接收功能的器件视为接收单元,将收发单元1610中用于实现发送功能的器件视为发送单元,即收发单元1610包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1610用于执行上述方法实施例中终端设备侧的发送操作和接收操作,处理单元1620用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
当该通信装置为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
一个例子中,该芯片包括:处理器、接口电路;所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器用于运行所述代码指令以实现上述波束测量的方法。其中,代码指令可以存储在存储器中,处理器可以直接从存储器读取,也可以能经过其他器件间接读取。
另一个例子中,所述接口电路为通信处理器与收发机之间的信号传输接口电路,所述接口电路用于从接收机接收数据或信息,并传输至处理器;所述处理器用于对所述数据或信息进行处理,并输出处理结果;所述接口电路还用于将所述处理结果传输至发射器。
另一个例子中,该芯片包括:处理器和接口,所述处理器通过所述接口和存储器耦合,所述处理器用于执行所述存储器中的计算机程序或代码,当所述计算机程序或代码被执行时,上述波束测量的方法被执行。
本实施例中的通信装置为终端设备时,可以参照图9所示的设备。作为一个例子,该设备可以完成类似于图7中处理器502的功能。在图9中,该设备包括处理器1701,发送数据处理器1703,接收数据处理器1705。上述实施例中的收发模块420可以是图9中的发送数据处理器1703,和/或接收数据处理器1705。虽然图9中示出了信道编码器、信道解码器、符号生成模块、信道估计模块,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图10示出本实施例的另一种形式。处理装置1800中包括调制子系统、中央处理子系统、周边子系统等模块。本实施例中的通信装置可以作为其中的调制子系统。具体的,该调制子系统可以包括处理器1803,接口1804。其中接口1804完成上述收发模块420的功能,或者作为输入/输出接口,进行信号或计算机程序指令的输入输出。作为另一种变形,该调制子系统包括存储器1806、处理器1803及存储在存储器1806上并可在处理器上运行的程序,该处理器1803执行该程序时实现上述方法实施例中终端设备侧的方法。需要注意的是,所述存储器1806可以是非易失性的,也可以是易失性的,其位置可以位于调制子系统内部,也可以位于处理装置1800中,只要该存储器1806可以连接到所述处理器1803即可。
本申请实施例中,如果上述装置对应芯片,收发器或收发模块可以替换为输入/输出接口,则接收的操作对应输入或者获取,发送操作对应的是输出。
作为本实施例的另一种形式,提供一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述方法实施例中终端设备侧的方法。
作为本实施例的另一种形式,提供一种包含指令的计算机程序产品,该指令被执行时执行上述方法实施例中终端设备侧的方法。
作为本实施例的另一种形式,提供一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述方法实施例中网络设备侧的方法。
作为本实施例的另一种形式,提供一种包含指令的计算机程序产品,该指令被执行时执行上述方法实施例中网络设备侧的方法。
上述本申请实施例揭示的方法可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可 以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示 的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (13)
- 一种波束测量的方法,其特征在于,包括:接收网络设备发送测量配置信息,所述测量配置信息包括多个资源集合的配置信息,每个资源集合包括一个或多个资源;通过一个接收波束,或者多个同时产生的接收波束对每个资源集合中的资源进行合并测量,并根据测量结果选择一个或多个的资源集合上报给所述网络设备。
- 如权利要求1所述的方法,其特征在于,将所述一个或多个的资源集合对应的测量结果上报给所述网络设备。
- 根据权利要求1所述的方法,其特征在于,所述每个资源集合的配置信息包括一个资源分类信息,用于指示该资源集合用于合并测量。
- 根据权利要求1所述的方法,其特征在于,所述测量配置信息中还包括合并测量指示,用于指示终端启动合并测量。
- 根据权利要求1所述的方法,其特征在于,对每个资源集合中的资源进行合并测量之前,进一步包括:接收网络设备下发的指示信息,所述指示信息用于指示终端启动合并测量。
- 如权利要求1所述的方法,其特征在于,所述每个资源集合的配置信息还包括该资源集合对应的波束信息。
- 根据权利要求1所述的方法,其特征在于,对每个资源集合中的资源进行合并测量之前,进一步包括:接收网络设备下发的指示信息,所述指示信息用于各个资源集合对应的发送波束和/或接收波束。
- 如权利要求1所述的方法,其特征在于,接收网络设备下发的波束配置信息,所述波束配置信息包括所述一个或多个的资源集合与上行信道或下行信道的关联关系。
- 如权利要求8所述的方法,其特征在于,所述终端设备使用所述一个或多个同时产生的接收波束接收网络设备下发的与所述一个或多个的资源集合关联的下行信道,或使用所述一个或多个同时产生的接收波束对应的一个或多个发送波束向所述网络设备发送所述一个或多个的资源集合关联的上行信道。
- 如权利要求1所述的方法,其特征在于,还包括,将所述一个或多个的资源集合中的有效测量资源上报所述网络设备。
- 一种波束测量的装置,包括收发器、存储器、处理器及存储在存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时,所述装置实现如权利要求1至10中任一项所述的方法。
- 一种芯片,包括:处理器和接口,所述处理器通过所述接口和存储器耦合,所述处理器用于执行所述存储器中的计算机程序或代码,当所述计算机程序或代码被执行时,如权利要求1至10中任一项所述的方法被执行。
- 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现如权利要求1至10中任一项所述的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010480669.0A CN113747484B (zh) | 2020-05-30 | 2020-05-30 | 波束测量方法和装置 |
CN202010480669.0 | 2020-05-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021244201A1 true WO2021244201A1 (zh) | 2021-12-09 |
Family
ID=78727794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/091617 WO2021244201A1 (zh) | 2020-05-30 | 2021-04-30 | 波束测量方法和装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113747484B (zh) |
WO (1) | WO2021244201A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024027399A1 (zh) * | 2022-08-01 | 2024-02-08 | 华为技术有限公司 | 一种通信方法和装置 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022148420A1 (en) * | 2021-01-07 | 2022-07-14 | Mediatek Inc. | Apparatus and method for beam management in multi-beam system |
WO2024000156A1 (zh) * | 2022-06-28 | 2024-01-04 | 富士通株式会社 | 信息收发方法与装置 |
WO2024020913A1 (en) * | 2022-07-28 | 2024-02-01 | Qualcomm Incorporated | Connections between resources for predictive beam management |
CN117674930A (zh) * | 2022-08-29 | 2024-03-08 | 华为技术有限公司 | 参考信号处理方法、装置及系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014047794A1 (zh) * | 2012-09-26 | 2014-04-03 | 华为技术有限公司 | 反馈csi-rs资源组合的方法和装置、用户设备和基站 |
CN108111202A (zh) * | 2017-09-11 | 2018-06-01 | 中兴通讯股份有限公司 | 参考信号处理、信息配置方法及装置、终端、基站 |
CN109302726A (zh) * | 2017-07-25 | 2019-02-01 | 华为技术有限公司 | 测量方法、终端设备和接入网设备 |
CN109923896A (zh) * | 2016-11-04 | 2019-06-21 | 瑞典爱立信有限公司 | 针对参考信号组的测量报告触发 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013166709A1 (zh) * | 2012-05-11 | 2013-11-14 | 华为技术有限公司 | 测量上报的方法、网络设备和用户设备 |
US20160105817A1 (en) * | 2014-10-10 | 2016-04-14 | Telefonaktiebolaget L M Ericsson (Publ) | Method for csi feedback |
CN110022192B (zh) * | 2018-01-09 | 2020-11-17 | 维沃移动通信有限公司 | 参考信号资源的测量方法、网络侧设备及用户侧设备 |
CN111200872A (zh) * | 2018-11-19 | 2020-05-26 | 华为技术有限公司 | 波束上报的方法和通信装置 |
-
2020
- 2020-05-30 CN CN202010480669.0A patent/CN113747484B/zh active Active
-
2021
- 2021-04-30 WO PCT/CN2021/091617 patent/WO2021244201A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014047794A1 (zh) * | 2012-09-26 | 2014-04-03 | 华为技术有限公司 | 反馈csi-rs资源组合的方法和装置、用户设备和基站 |
CN109923896A (zh) * | 2016-11-04 | 2019-06-21 | 瑞典爱立信有限公司 | 针对参考信号组的测量报告触发 |
CN109302726A (zh) * | 2017-07-25 | 2019-02-01 | 华为技术有限公司 | 测量方法、终端设备和接入网设备 |
CN108111202A (zh) * | 2017-09-11 | 2018-06-01 | 中兴通讯股份有限公司 | 参考信号处理、信息配置方法及装置、终端、基站 |
Non-Patent Citations (1)
Title |
---|
INTERDIGITAL COMMUNICATIONS: "On CSI Measurement Setting for NR", 3GPP TSG RAN WG1 MEETING #88BIS, R1-1705508, 25 March 2017 (2017-03-25), XP051251965 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024027399A1 (zh) * | 2022-08-01 | 2024-02-08 | 华为技术有限公司 | 一种通信方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
CN113747484A (zh) | 2021-12-03 |
CN113747484B (zh) | 2024-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11283503B2 (en) | Communication method and communications apparatus | |
CN110839290B (zh) | 信号传输的方法和通信装置 | |
WO2021244201A1 (zh) | 波束测量方法和装置 | |
CN110912665B (zh) | 数据传输的方法和装置 | |
EP4090063A1 (en) | Resource configuration method and apparatus | |
WO2020103793A1 (zh) | 波束上报的方法和通信装置 | |
WO2020030050A1 (zh) | 训练天线面板的方法与装置 | |
WO2020029942A1 (zh) | 波束测量的方法和装置 | |
WO2020114294A1 (zh) | 一种天线面板及波束的管理方法和设备 | |
WO2019137441A1 (zh) | 一种通信方法及装置 | |
WO2022082386A1 (zh) | 一种无线通信的方法与装置 | |
WO2020248825A1 (zh) | 确定天线面板状态的方法和装置 | |
US11799520B2 (en) | Communication method and communications apparatus | |
WO2022077478A1 (zh) | 一种基于波束的通信方法以及相关装置 | |
US20220394504A1 (en) | Beam pair training method and communication apparatus | |
US11888565B2 (en) | Method for sending channel state information and related device | |
WO2016082224A1 (zh) | 一种资源配置的方法、用户设备及基站 | |
US20220225337A1 (en) | Interference measurement reporting method and communications apparatus | |
WO2022206577A1 (zh) | 信道测量方法及装置 | |
WO2020233500A1 (zh) | 一种通信方法及通信装置 | |
US20220140887A1 (en) | Method for determining receive parameter used for channel measurement and apparatus | |
WO2023093352A1 (zh) | 一种用于信道状态信息csi上报的方法和装置 | |
WO2024149042A1 (zh) | 通信方法和通信装置 | |
WO2023273969A1 (zh) | 资源测量方法和通信装置 | |
WO2021097625A1 (zh) | 信道确定的方法和通信装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21818085 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21818085 Country of ref document: EP Kind code of ref document: A1 |