WO2019137441A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2019137441A1
WO2019137441A1 PCT/CN2019/071185 CN2019071185W WO2019137441A1 WO 2019137441 A1 WO2019137441 A1 WO 2019137441A1 CN 2019071185 W CN2019071185 W CN 2019071185W WO 2019137441 A1 WO2019137441 A1 WO 2019137441A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
user equipment
reference signal
downlink reference
antenna port
Prior art date
Application number
PCT/CN2019/071185
Other languages
English (en)
French (fr)
Inventor
秦熠
窦圣跃
管鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19738250.0A priority Critical patent/EP3720219B1/en
Priority to CN201980007211.9A priority patent/CN111602449B/zh
Publication of WO2019137441A1 publication Critical patent/WO2019137441A1/zh
Priority to US16/925,404 priority patent/US11323222B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a communication method and apparatus.
  • a user equipment In a 5th generation (5th generation, 5G) mobile communication system, a user equipment (User Equipment, UE) can communicate with the network side using different receive beams or transmit beams.
  • the base station may configure multiple resources for a Channel State Information Reference Signal (CSI-RS), and the UE may receive CSI-RSs through different receiving beams, and obtain channel state information after being measured and fed back to the base station, and the base station is based on Obtaining channel state information indicates that the UE indicates the UE side transmit beam or transmits the used antenna port.
  • CSI-RS Channel State Information Reference Signal
  • the base station needs to know the resource corresponding to the receiving beam that the UE obtains the best measurement result.
  • the UE does not report the resource identifier corresponding to the best measurement result.
  • the transmit beam or antenna port indicated by the base station for the UE may not be optimal.
  • the present application provides an information transmission method and apparatus, which can implement a better beam indication or antenna port indication.
  • a communication method comprising:
  • the user equipment receives first indication information from the network device, where the first indication information indicates the first resource
  • the user equipment determines a second resource, where the second resource and the first resource belong to a same resource set configured by the network device, and the first resource and the second resource are used to transmit a first downlink Reference signal
  • the antenna port has a quasi co-address QCL relationship.
  • the downlink reference signal resource is selected by the user equipment, and the antenna port having the QCL relationship corresponding to the autonomously selected downlink reference signal resource is used in the subsequent transmission of the information, thereby improving the information receiving performance.
  • the user equipment determines the second resource and receives the second signal and/or the channel, or the user equipment determines the QCL hypothesis of the second antenna port and/or the third antenna port of the channel.
  • the first indication information is further used to indicate a QCL type
  • the QCL type includes a spatial receiving end parameter
  • the type of the QCL relationship is the QCL type.
  • the user equipment receives the first indication information from the network device, including:
  • the user equipment receives the transmission configuration indication TCI configuration information from the network device, and indicates a TCI status set for the user equipment, where the TCI status corresponds to at least one resource of the first downlink reference signal;
  • the user equipment receives TCI indication information from the network device, where the TCI indication information indicates a TCI status in the TCI status set, and the one TCI status corresponds to the first resource.
  • the first indication information includes a resource set identifier to which the first resource belongs and a resource identifier in the resource set .
  • the third antenna port and the second antenna port have a QCL relationship, including:
  • the third antenna port has a QCL relationship with an antenna port used by the first downlink reference signal that is transmitted or measured last time on the second resource before the user equipment receives the TCI configuration information;
  • the third antenna port has a QCL relationship with an antenna port used by the first downlink reference signal that is transmitted or measured last time on the second resource before the user equipment receives the TCI indication information;
  • a communication method including:
  • the network device sends the first indication information to the user equipment, where the first indication information indicates the first resource, so that the user equipment determines the second resource, where the second resource and the first resource belong to the network device configuration
  • the same resource set, the first resource and the second resource are used to transmit a first downlink reference signal
  • the second antenna port has a quasi co-address QCL relationship.
  • the first indication information is further used to indicate a QCL type, where the QCL type includes a spatial receiving end parameter, and the type of the QCL relationship is the QCL type.
  • the sending, by the network device, the first indication information to the user equipment includes:
  • the network device sends a transmission configuration indication TCI configuration information to the user equipment, and indicates a TCI status set for the user equipment, where the TCI status corresponds to at least one resource of the first downlink reference signal;
  • the network device sends TCI indication information to the user equipment, where the TCI indication information indicates a TCI status in the TCI status set, and the one TCI status corresponds to the first resource.
  • the first indication information includes a resource set identifier to which the first resource belongs and a resource in the resource set Logo.
  • the third antenna port and the second antenna port have a QCL relationship, including:
  • the third antenna port has a QCL relationship with an antenna port used by the first downlink reference signal that is transmitted or measured last time on the second resource before the user equipment receives the TCI configuration information;
  • the third antenna port has a QCL relationship with an antenna port used by the first downlink reference signal that is transmitted or measured last time on the second resource before the user equipment receives the TCI indication information;
  • a user equipment including:
  • a receiver configured to receive first indication information from a network device, where the first indication information indicates a first resource
  • a processor configured to determine a second resource, where the second resource and the first resource belong to a same resource set configured by the network device, and the first resource and the second resource are used to transmit a first resource Line reference signal
  • the receiver is further configured to receive, by the third resource, a second signal and/or a channel that is transmitted through the third antenna port, where the third antenna port and the second resource transmit the first downlink reference signal
  • the second antenna port has a quasi co-address QCL relationship.
  • the first indication information is further used to indicate a QCL type, where the QCL type includes a spatial receiving end parameter, and the type of the QCL relationship is the QCL type.
  • the receiving, by the receiver, the first indication information that is received by the network device includes:
  • the receiver is configured to receive a transmission configuration indication TCI configuration information from the network device, and indicate, to the user equipment, a TCI state set, where the TCI state corresponds to at least one resource of the first downlink reference signal;
  • the receiver is further configured to receive TCI indication information from the network device, where the TCI indication information indicates a TCI state in the TCI state set, and the one TCI state corresponds to the first resource.
  • the first indication information includes a resource set identifier to which the first resource belongs and a resource identifier in the resource set .
  • the third antenna port and the second antenna port have a QCL relationship, including:
  • the third antenna port has a QCL relationship with an antenna port used by the first downlink reference signal that is transmitted or measured last time on the second resource before the user equipment receives the TCI configuration information;
  • the third antenna port has a QCL relationship with an antenna port used by the first downlink reference signal that is transmitted or measured last time on the second resource before the user equipment receives the TCI indication information;
  • a network device including:
  • a processor configured to generate first indication information, where the first indication information indicates a first resource
  • a transmitter configured to send the first indication information to the user equipment, to enable the user equipment to determine a second resource, where the second resource and the first resource belong to a same resource set configured by the network device, The first resource and the second resource are used to transmit a first downlink reference signal;
  • the transmitter is further configured to send, by using a third antenna port, a second signal and/or a channel to the user equipment, where the third antenna port transmits the first downlink and the second resource.
  • the second antenna port of the reference signal has a quasi co-address QCL relationship.
  • the first indication information is further used to indicate a QCL type, where the QCL type includes a spatial receiving end parameter, and the type of the QCL relationship is the QCL type.
  • the sending by the sending, the sending, by the sending, the first indication information to the user equipment,
  • the transmitter is configured to send, to the user equipment, a transmission configuration indication TCI configuration information, where the user equipment indicates a TCI status set, where the TCI status corresponds to at least one resource of the first downlink reference signal;
  • the transmitter is further configured to send TCI indication information to the user equipment, where the TCI indication information indicates a TCI state in the TCI state set, where the one TCI state corresponds to the first resource.
  • the first indication information includes a resource set identifier to which the first resource belongs and a resource identifier in the resource set .
  • the third antenna port has a QCL relationship with the second antenna port, including:
  • the third antenna port has a QCL relationship with an antenna port used by the first downlink reference signal that is transmitted or measured last time on the second resource before the user equipment receives the TCI configuration information;
  • the third antenna port has a QCL relationship with an antenna port used by the first downlink reference signal that is transmitted or measured last time on the second resource before the user equipment receives the TCI indication information;
  • a communication method including:
  • the user equipment determines a second resource, where the second resource and the first resource belong to a same resource set configured by the base station, and the second resource and the first resource are used to transmit a first downlink reference signal;
  • the spatial dimensional transmission filter used in the first downlink reference signal is the same.
  • the downlink reference signal resource is selected by the user equipment autonomously, and the spatial dimension transmission filter that is the same as the spatial dimension transmission filter used when receiving the downlink reference signal on the selected downlink reference signal resource is used in the subsequent transmission of the information, Improve information transmission performance.
  • the user equipment determines the second resource and sends the second channel and/or the signal, or the user equipment determines the transmission beam or the spatial dimension transmission filter for transmitting the second signal and/or the channel on the third resource.
  • the user equipment receives the first indication information from the network device, including:
  • the user equipment receives second configuration information from the network device, and the second configuration information indicates the first resource in the resource set.
  • the second configuration information includes an identifier of the resource set and the first downlink reference signal in the resource set Resource ID.
  • the spatial dimension transmission filter used by the user equipment to send the second channel and/or the signal includes:
  • the spatial dimension transmission filter used by the user equipment to transmit the second channel and/or signal and the last transmission or measurement on the second resource before the user equipment receives the first configuration information The spatial dimension transmission filter used in the first downlink reference signal is the same;
  • the spatial dimension transmission filter used by the user equipment to send the second channel and/or signal and the last transmission or measurement on the second resource before the user equipment receives the second configuration information is the same;
  • the spatial transmission filter used by the user equipment when transmitting the second channel and/or signal and the last transmission on the second resource before the user equipment sends the second channel and/or signal is the same.
  • a communication method including:
  • the network device sends the first indication information to the user equipment, where the first indication information indicates the first resource, so that the user equipment determines the second resource, where the second resource and the first resource belong to the base station configuration a same resource set, where the second resource and the first resource are used to transmit a first downlink reference signal;
  • the sending, by the network device, the first indication information to the user equipment includes:
  • the network device sends second configuration information to the user equipment, where the second configuration information indicates the first resource in the resource set.
  • the second configuration information includes an identifier of the resource set and the first downlink reference signal in the resource set Resource ID.
  • the spatial dimension transmission filter used by the user equipment to send the second channel and/or the signal includes:
  • the spatial dimension transmission filter used by the user equipment to transmit the second channel and/or signal and the last transmission or measurement on the second resource before the user equipment receives the first configuration information The spatial dimension transmission filter used in the first downlink reference signal is the same;
  • the spatial dimension transmission filter used by the user equipment to send the second channel and/or signal and the last transmission or measurement on the second resource before the user equipment receives the second configuration information is the same;
  • the spatial transmission filter used by the user equipment when transmitting the second channel and/or signal and the last transmission on the second resource before the user equipment sends the second channel and/or signal is the same.
  • a user equipment including:
  • a receiver configured to receive first indication information from the network device, where the first indication information indicates the first resource
  • a processor configured to determine a second resource, where the second resource and the first resource belong to a same resource set configured by the base station, and the second resource and the first resource are used to transmit a first downlink Reference signal
  • a transmitter configured to send a second channel and/or a signal on the third resource, where the user equipment transmits the second channel and/or the spatial dimension transmission filter used and receives the signal on the second resource
  • the spatial dimension transmission filter used in the first downlink reference signal is the same.
  • the receiver is configured to receive the first indication information from the network device, including:
  • the receiver is configured to receive first configuration information from the network device, and indicate, by the user equipment, a resource set of the first downlink reference signal;
  • the receiver is further configured to receive second configuration information from the network device, where the second configuration information indicates the first resource in the resource set.
  • the second configuration information includes an identifier of the resource set and the first downlink reference signal in the resource set Resource ID.
  • the spatial dimension transmission filter used by the user equipment to send the second channel and/or the signal is The spatial dimension transmission filter used when receiving the first downlink reference signal on the second resource is the same, and includes:
  • the spatial dimension transmission filter used by the user equipment to transmit the second channel and/or signal and the last transmission or measurement on the second resource before the user equipment receives the first configuration information The spatial dimension transmission filter used in the first downlink reference signal is the same;
  • the spatial dimension transmission filter used by the user equipment to send the second channel and/or signal and the last transmission or measurement on the second resource before the user equipment receives the second configuration information is the same;
  • the spatial transmission filter used by the user equipment when transmitting the second channel and/or signal and the last transmission on the second resource before the user equipment sends the second channel and/or signal is the same.
  • a network device including:
  • a transmitter configured to send first indication information to the user equipment, where the first indication information indicates a first resource, so that the user equipment determines a second resource, where the second resource and the first resource belong to the The same resource set configured by the base station, where the second resource and the first resource are used to transmit the first downlink reference signal;
  • a receiver configured to receive a second channel and/or a signal sent by the user equipment on a third resource, where the user equipment sends a spatial dimension transmission filter and a signal used in transmitting the second channel and/or the signal
  • the spatial dimension transmission filter used when receiving the first downlink reference signal on the second resource is the same.
  • the sending, by the sending, the sending, by the sending, the first indication information includes:
  • the transmitter is configured to send first configuration information to the user equipment, and indicate, by the user equipment, a resource set of the first downlink reference signal;
  • the transmitter is further configured to send second configuration information to the user equipment, where the second configuration information indicates the first resource in the resource set.
  • the second configuration information includes an identifier of the resource set and the first downlink reference signal in the resource set Resource ID.
  • the spatial dimension transmission filter used by the user equipment to send the second channel and/or the signal The spatial dimension transmission filter used when receiving the first downlink reference signal on the second resource is the same, and includes:
  • the spatial dimension transmission filter used by the user equipment to transmit the second channel and/or signal and the last transmission or measurement on the second resource before the user equipment receives the first configuration information The spatial dimension transmission filter used in the first downlink reference signal is the same;
  • the spatial dimension transmission filter used by the user equipment to send the second channel and/or signal and the last transmission or measurement on the second resource before the user equipment receives the second configuration information is the same;
  • the spatial transmission filter used by the user equipment when transmitting the second channel and/or signal and the last transmission on the second resource before the user equipment sends the second channel and/or signal is the same.
  • the network device provided by the present application may include a module for performing the behavior of the network device in the above method design.
  • the module can be software and/or hardware.
  • the functions of the above network device may be implemented by one or more chips.
  • the user equipment provided by the present application may include a module for performing a terminal behavior in the above method design.
  • the module can be software and/or hardware.
  • the functionality of the user equipment described above may be implemented by one or more chips.
  • Yet another aspect of the present application provides a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform the methods described in the above aspects.
  • Yet another aspect of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods described in the various aspects above.
  • FIG. 1 is a schematic structural diagram of a possible system for implementing an embodiment of the present invention
  • FIG. 2 is a flowchart of a communication method according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of another communication method according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 1 shows a possible system network diagram of the present application.
  • at least one terminal 10 communicates with a radio access network (RAN).
  • the RAN comprises at least one network device 20, for the sake of clarity, only one network device and one user equipment UE are shown.
  • the RAN is connected to a core network (CN).
  • the CN may be coupled to one or more external networks, such as the Internet, a public switched telephone network (PSTN), and the like.
  • PSTN public switched telephone network
  • User equipment (English: User Equipment, UE for short) is a terminal device with communication function, which can also be called a terminal. It can include a handheld device with wireless communication function, an in-vehicle device, a wearable device, a computing device, or a connection to Other processing devices of the wireless modem, and the like.
  • User equipment can be called different names in different networks, such as: terminals, mobile stations, subscriber units, stations, cellular phones, personal digital assistants, wireless modems, wireless communication devices, handheld devices, laptops, cordless phones, Wireless local loop station, etc.
  • the network device may be a base station (BS), a wireless access device in a cloud network, or a relay station or the like having a wireless transceiver function.
  • a base station which may also be referred to as a base station device, is a network device deployed in a wireless access network to provide wireless communication functions.
  • the name of the base station may be different in different wireless access systems, for example, in a Universal Mobile Telecommunications System (UMTS) network, the base station is called a Node B (NodeB), in the LTE network.
  • UMTS Universal Mobile Telecommunications System
  • the base station is called an evolved Node B (abbreviated as eNB or eNodeB), and may be referred to as a Transit Reception Point (TRP), a network node, or a g-Node B (gNodeB, gNB) in a future 5G system.
  • TRP Transit Reception Point
  • the network device in the device may also be a user device in the device to Device D2D (Device to Device).
  • the network device and the user equipment in the present invention may also be a relay device, or a network device or a user device that implements a relay function.
  • the beam in the present application may also be referred to as a spatial domain transmission filter.
  • the transmit beam may be referred to as a spatial dimension transmit filter
  • the receive beam may be referred to as a spatial dimension receive filter.
  • the identifier of the resource in the present application may be an identifier of a reference signal transmitted on the resource, such as a reference signal identity (RS ID).
  • RS ID reference signal identity
  • the embodiment of the invention provides a communication method. This method can be applied to the system shown in FIG.
  • the following is a description of the method in which the base station and the user equipment communicate with each other, and the downlink reference signal is a CSI-RS.
  • the method includes:
  • Step 201 The base station configures multiple CSI-RS resources for the CSI-RS.
  • the base station configures the CSI-RS resource to configure a CSI-RS resource set, and one CSI-RS resource set includes at least one CSI-RS resource (CSI-RS resource).
  • the CSI-RS resource may be a non-zero power CSI-RS resource, a zero-power CSI-RS resource.
  • the base station may also configure a CSI resource setting for configuring one or more CSI-RS resource sets.
  • the base station can also be configured with a CSI report setting (Reporting setting), which is used to configure the reporting mode or report content of the measurement information reported by the user equipment.
  • CSI report setting Reporting setting
  • the base station can also be configured with a measurement link, which is used to configure the correspondence between CSI report settings and resource settings, and the type of measurement (such as interference measurement, channel measurement).
  • a measurement link which is used to configure the correspondence between CSI report settings and resource settings, and the type of measurement (such as interference measurement, channel measurement).
  • Step 202 The base station sends a CSI-RS on multiple CSI-RS resources.
  • each CSI-RS resource has a corresponding antenna port, and the base station sends the CSI-RS on the CSI-RS resource by using the corresponding antenna port.
  • Step 203 The user equipment performs measurement on multiple CSI-RS resources to obtain a measured value.
  • the user equipment When the user equipment receives the CSI-RS on each CSI-RS resource, the corresponding receiving beam is used, and different receiving beams can be used for different CSI-RS resources.
  • the user equipment measures the received CSI-RS to obtain a measured value.
  • the measured value may include at least one of the following: Reference Signal Received Power (RSRP), RSRP Quantization Value, Channel Quality Indicator (CQI), Signal to Interference and Noise Ratio (Signal to Interference and Noise Ratio, SINR), SINR quantization value, Precoding Matrix Indicator (PMI), Rank Indicator (RI), Layer Indicator (LI), Received Signal Strength Indicator (RSSI), etc. .
  • RSRP Reference Signal Received Power
  • CQI Channel Quality Indicator
  • SINR Signal to Interference and Noise Ratio
  • SINR SINR quantization value
  • PMI Precoding Matrix Indicator
  • RI Rank Indicator
  • LI Layer Indicator
  • RSSI Received Signal Strength Indicator
  • the user equipment may feed back some or all of the measured values to the base station.
  • the identifier of the CSI-RS resource corresponding to the measured value for example, a CSI-RS Resource Indicator (CRI), may be fed back together.
  • CRI CSI-RS Resource Indicator
  • Step 204 The base station sends the first indication information to the user equipment, where the first indication information indicates the first CSI-RS resource.
  • the first indication information may also indicate a quasi co-location (QCL) type, the QCL type including a spatial receiver parameter.
  • the base station transmits the CSI-RS through the first antenna port on the first resource, and the user equipment receives the CSI-RS by using the first receive beam.
  • the base station indicates that the user equipment receives the subsequent signal and/or the channel still uses the first receive beam by indicating the first CSI-RS resource and the QCL type.
  • the first CSI-RS resource may be one or more CSI-RS resources.
  • the base station when the base station selects the first CSI-RS resource, the base station may be based on the measured value fed back by the UE, or may be based on other criteria.
  • Step 205 The user equipment determines a second CSI-RS resource, where the second CSI-RS resource and the first CSI-RS resource belong to the same CSI-RS resource set configured by the base station, and the first CSI-RS resource And the second CSI-RS resource is used to transmit a CSI-RS.
  • the CSI-RS resource with the best channel state that is, the CSI-RS resource with the best measured value
  • the best CSI-RS resource of the RSRP is selected.
  • the receiving beam used by the user equipment is most advantageous for receiving signals and/or channels.
  • the user equipment may determine the second CSI-RS resource according to the measured CQI, and may also determine the second CSI-RS resource according to the measured CQI and/or RI.
  • the base station sends a CSI-RS on the CSI-RS resource in the CSI-RS resource set, where the user equipment measures the sent CSI-RS, the second CSI-RS resource and the first CSI -
  • the RS resource belongs to the same CSI-RS resource set, which is beneficial for the user equipment to select the appropriate CSI-RS resource.
  • the second CSI-RS resource and the first CSI-RS resource belong to the same CSI Resource setting; when the CSI Resource setting corresponds to one CSI-RS resource set When a CSI Resource setting corresponds to one CSI Reporting setting, the second CSI-RS resource and the first CSI-RS resource correspond to the same CSI Reporting setting.
  • Step 206 The base station sends a second signal and/or channel to the terminal device by using a third antenna port on the third resource, where the third antenna port transmits the CSI-RS on the second CSI-RS resource.
  • the two antenna ports have a quasi co-location (QCL) relationship.
  • the type of the QCL relationship may be a QCL type indicated by the first indication information.
  • the user equipment selects a second CSI-RS resource, and the third antenna port has a QCL relationship with the second antenna port, so that the user equipment receives the second signal and/or channel.
  • the received beam is the same as the receive beam used when receiving the CSI-RS transmitted through the second antenna port on the second CSI-RS resource.
  • the foregoing step 206 may also be that the user equipment receives the second signal and/or the receiving beam that is the same as the receiving beam used when receiving the CSI-RS transmitted through the second antenna port on the second CSI-RS resource. Or channel.
  • the base station may indicate to the user equipment which antenna ports have a QCL relationship with the second antenna port.
  • the second signal and/or channel may be: a Demodulation Reference Signal (DMRS), a Physical Downlink Shared Channel (PDSCH), and a Physical Downlink Control Channel (PDCCH). ), control resource set (CORESET), other downlink reference signals such as CSI-RS, phase tracking reference signal (PT-RS), and the like.
  • DMRS Demodulation Reference Signal
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • CORESET control resource set
  • other downlink reference signals such as CSI-RS, phase tracking reference signal (PT-RS), and the like.
  • steps 201-203 are optional steps.
  • the downlink reference signal (for example, CSI-RS) resource is selected by the user equipment, and the antenna port having the QCL relationship corresponding to the autonomously selected CSI-RS resource is used in the subsequent transmission of the information, thereby improving information. Receive performance.
  • CSI-RS downlink reference signal
  • the base station sends the first indication information to the user equipment to indicate the first CSI-RS resource, which may be implemented in multiple manners.
  • the base station sends a Transmission Configuration Indicator (TCI) configuration information to the user equipment, and indicates a TCI status set for the terminal, where the TCI status corresponds to or indicates at least one resource of the first downlink reference signal;
  • TCI Transmission Configuration Indicator
  • the base station sends TCI indication information to the user equipment, where the TCI indication information indicates a TCI status in the TCI status set, and the one TCI status corresponds to or indicates the first resource.
  • the base station sends a Transmission Configuration Indicator (TCI) configuration information to the user equipment, and indicates a TCI status set for the terminal, where the TCI status corresponds to or indicates at least one resource of the first downlink reference signal;
  • TCI Transmission Configuration Indicator
  • the base station sends TCI subset indication information to the user equipment, and indicates, to the user equipment, a subset of the foregoing TCI state set;
  • the base station sends TCI indication information to the user equipment, where the TCI indication information indicates a TCI status in the TCI status subset, and the one TCI status corresponds to or indicates the first resource.
  • the TCI indication information in the foregoing Embodiments 1 and 2 may further indicate QCL information of the third resource, where the QCL information includes information of a QCL type, and an antenna that transmits the second channel and/or the signal on the third resource.
  • the port has information about the reference signal or reference signal resource transmitted on the antenna port of the QCL relationship.
  • the foregoing configuration information or indication information may be through a Media Access Control Control Element (MAC CE) signaling, Radio Resource Control (RRC) signaling, or Downlink Control Information (DCI). )carry.
  • MAC CE Media Access Control Control Element
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • the TCI configuration information is carried by the RRC signaling
  • the TCI subset indication information or the TCI indication information is carried by the MAC CE signaling or the DCI.
  • one TCI state may include one or more downlink reference signal (eg, CSI-RS) resource identifiers, and/or one or more QCL types.
  • CSI-RS downlink reference signal
  • QCL-Type A ⁇ Doppler shift, Doppler spread, average delay, delay spread ⁇ ;
  • QCL-Type B ⁇ Doppler shift, Doppler spread ⁇
  • QCL-Type C ⁇ Doppler shift, average delay ⁇
  • QCL-Type D ⁇ space receiver parameter ⁇ .
  • the downlink reference signal resource identifier may include a CSI-RS resource set identifier and a CSI-RS resource identifier of the CSI-RS in the CSI-RS resource set, or may include only a unified CSI-RS resource identifier, and one
  • the unified CSI-RS resource identifier may uniquely identify one CSI-RS resource in one or more CSI-RS resource sets.
  • the base station may send the CSI-RS resource multiple times.
  • the CSI-RS may perform channel measurement and select a second CSI-RS resource according to the CSI-RS transmitted by the user equipment, and may be implemented in multiple manners, for example:
  • the third antenna port is in the second before the user equipment receives the TCI configuration information, according to a CSI-RS that is transmitted or measured last time on the second resource before receiving the TCI configuration information.
  • the antenna port used by the CSI-RS that was last transmitted or measured on the resource has a QCL relationship;
  • the third antenna port is in the foregoing before the user equipment receives the TCI indication information.
  • the antenna port used by the CSI-RS transmitted or measured last time on the second resource has a QCL relationship;
  • the third antenna port receives the second signal at the user equipment according to a CSI-RS that is transmitted or measured last time on the second resource before receiving the second signal and/or channel.
  • the antenna port used by the CSI-RS that was transmitted or measured most recently on the second resource before the channel has a QCL relationship.
  • the CSI-RS transmitted on the second resource before the TCI configuration information is received or the K-th transmission on the second resource before receiving the TCI indication information.
  • the CSI-RS, or the CSI-RS transmitted at the Kth time on the second resource before receiving the second signal and/or channel, K is an integer greater than or equal to 1.
  • the foregoing implementation manner may be that one of the predefined ones is used, or one of the configurations is determined according to configuration information of the base station.
  • the scheme related to the embodiment of the present invention is described by taking the downlink reference signal CSI-RS as an example.
  • the downlink reference signal may also be replaced by a Synchronizing Signal/Physical Broadcast Channel Block (SSB), and the corresponding CSI.
  • SSB Synchronizing Signal/Physical Broadcast Channel Block
  • the -RS resource is replaced with the SSB resource.
  • steps 205 and 206 are performed:
  • the parameter CSI-RS-ResourceRep of the resource set to which the downlink reference signal (for example, CSI-RS) resource belongs in the latest TCI state configuration is configured to be ON, that is, the network device uses the same transmit beam or the same spatial dimension transmission filter. Transmitting a reference signal on the resource in the resource set, or the user equipment may consider that the network device sends the reference signal on the resource in the resource set by using the same transmit beam or the same spatial dimension transmission filter;
  • Condition 2 the above parameter CSI-RS-ResourceRep is set to ON, and the QCL type is type D;
  • Condition 3 The CSI-RS resource indicator is not reported after the UE measures the resource set
  • Condition 4 the UE does not report the CRI after measuring the resource set, and the QCL type is type D;
  • Condition 5 The parameter ReportQuantity of the UE is set to not report No Report, that is, the user equipment does not perform any report after performing CSI-RS measurement;
  • step 207 is performed:
  • Step 207 The base station sends a second signal and/or a channel to the terminal device by using a fourth antenna port on the fourth resource, where the fourth antenna port transmits the CSI-RS on the first CSI-RS resource.
  • An antenna port has a QCL relationship.
  • the third resource and the fourth resource may be the same.
  • the third resource or the fourth resource may be allocated by the base station to the user equipment.
  • the user equipment selects a better resource or a receive beam for information transmission, or the user equipment determines the QCL hypothesis of the antenna port transmitting the second signal and/or channel on the third resource.
  • the information is transmitted using the corresponding resources indicated by the base station.
  • the steps 205-206 may also be that the user equipment determines the QCL hypothesis of the second antenna port and/or the third antenna port of the third antenna port transmitted on the third resource.
  • the QCL hypothesis may include a QCL type, or which antenna port of which CSI-RS resource has a QCL relationship, and the like.
  • the third antenna port that transmits the second signal and/or the channel and the CSI-RS resource that is in the CSI-RS resource set where the first CSI-RS resource is located on the third resource determined by the user equipment for example, the foregoing
  • the antenna port on which the CSI-RS is transmitted on the two CSI-RS resources has a QCL relationship.
  • the third antenna port that transmits the second signal and/or the channel on the third resource and the channel state in the CSI-RS resource set where the first CSI-RS resource is located may be selected as the best.
  • the antenna port transmitting the CSI-RS on the CSI-RS resource has a QCL relationship, that is, a CSI-RS resource with the best measured value. For example, the best CSI-RS resource of the RSRP is selected.
  • the receiving beam used by the user equipment is most advantageous for receiving signals and/or channels.
  • the second CSI-RS resource and the first CSI-RS resource belong to the same CSI Resource setting; when the CSI Resource setting corresponds to one CSI-RS resource set When a CSI Resource setting corresponds to one CSI Reporting setting, the second CSI-RS resource and the first CSI-RS resource correspond to the same CSI Reporting setting.
  • the above embodiment is a scheme for selecting a resource, an antenna port or a beam for downlink transmission, and an embodiment related to uplink transmission is further given below.
  • the following is a communication method between the base station and the terminal, and the downlink reference signal is a CSI-RS.
  • the method is as shown in FIG. 3.
  • the embodiment of the present invention provides a communication method, including:
  • Step 301 The base station configures multiple CSI-RS resources for the CSI-RS.
  • Step 302 The base station sends a CSI-RS on multiple CSI-RS resources.
  • Step 303 The user equipment performs measurement on multiple CSI-RS resources to obtain a measured value.
  • Step 304 The base station sends the first indication information to the user equipment, where the first indication information indicates the first CSI-RS resource.
  • Step 305 The user equipment determines a second CSI-RS resource, where the second CSI-RS resource and the first CSI-RS resource belong to the same CSI-RS resource set configured by the base station, and the second The CSI-RS resource and the first CSI-RS resource are used to transmit a CSI-RS;
  • Step 306 The user equipment sends a second channel and/or a signal on the third resource, and the spatial domain transmission filter used by the user equipment to send the second channel and/or the signal is The spatial dimension transmission filters used when receiving the CSI-RS on the second resource are the same.
  • a transmit beam (a spatial dimensional transmission filter) used by the user equipment to transmit the second channel and/or the signal, and a receive beam used when the CSI-RS is received on the second CSI-RS resource may also be considered (
  • the spatial dimension transmission filter) has reciprocity (same). That is, the user equipment may determine a beam or spatial dimension transmission filter used to transmit the second channel and/or the signal on the third resource according to the receive beam or the spatial dimension transmission filter on the second CSI-RS resource.
  • steps 301 to 303 may refer to steps 201-203 in the foregoing embodiment, and details are not described herein again. Steps 301-303 are optional steps.
  • the downlink reference signal (for example, CSI-RS) resource is selected by the user equipment, and the spatial dimension transmission filter used when receiving the downlink reference signal on the selected downlink reference signal resource is used in subsequent transmission of the information.
  • the same spatial dimension transmission filter improves information transmission performance.
  • step 304 the sending, by the base station, the first indication information to the user equipment may be implemented in multiple manners, for example:
  • the base station sends the first configuration information to the user equipment, and indicates the CSI-RS resource set for the user equipment;
  • the user equipment receives second configuration information from the network device, and the second configuration information indicates one or more CSI-RS resources in the CSI-RS resource set.
  • the first indication information may include a CSI-RS resource set identifier and a CSI-RS resource identifier of the CSI-RS in the CSI-RS resource set, or may include only a unified CSI-RS resource identifier, and a unified
  • the CSI-RS resource identifier may uniquely identify one CSI-RS resource in one or more CSI-RS resource sets.
  • the base station when the base station selects the first CSI-RS resource, the base station may be based on the measured value fed back by the UE, or may be based on other criteria.
  • the CSI-RS resource with the best channel state may be selected. For example, select the best CSI-RS resource for RSRP.
  • the user equipment may determine the second CSI-RS resource according to the CQI, and may also determine the second CSI-RS resource according to the CQI and/or the RI.
  • the second CSI-RS resource and the first CSI-RS resource belong to the same CSI-RS Resource setting; when the CSI-RS Resource setting corresponds to When a CSI-RS resource setting corresponds to one CSI-RS Reporting setting, the second CSI-RS resource and the first CSI-RS resource belong to the same CSI-RS Reporting setting.
  • the second channel and/or the signal may be: a Physical Uplink Shared Channel (PUSCH), a Physical Uplink Control Channel (PUCCH), and a Physical Random Access Channel (Physical Random Access Channel).
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • Physical Random Access Channel Physical Random Access Channel
  • PRACH uplink reference signals such as Sounding Reference Signal (SRS), DMRS, PT-RS, and the like.
  • the second CSI-RS resource is determined by the user equipment, and the uplink transmission resource is further determined, so that the uplink transmission performance can be improved.
  • the base station may send the CSI-RS multiple times on the CSI-RS resource, and the CSI-RS according to the transmission of the user equipment.
  • Performing channel measurement and selecting the second CSI-RS resource can be implemented in various ways, for example:
  • a spatial dimension transmission filter used by the user equipment to transmit the second channel and/or signal according to a CSI-RS that is transmitted or measured last time on the second resource before receiving the foregoing first configuration information is the same;
  • a spatial dimension transmission filter used by the user equipment to send the second channel and/or signal according to a CSI-RS that is transmitted or measured last time on the second resource before receiving the second configuration information is the same;
  • the CSI-RS that is transmitted or measured last time on the second resource before sending the second signal and/or the channel, where the user equipment sends the second channel and/or signal Spatial dimensional transmission filter used by the spatial dimension transmission filter and the first downlink reference signal transmitted or measured last time on the second resource before the user equipment transmits the second channel and/or signal the same.
  • the CSI-RS may be transmitted on the second resource before receiving the foregoing first configuration information, and the CSI may be transmitted on the second resource before receiving the second configuration information.
  • -RS, K is an integer greater than or equal to 1 according to the CSI-RS received at the Kth time on the second resource before transmitting the second signal and/or channel.
  • the foregoing implementation manner may be that one of the predefined ones is used, or one of the configurations is determined according to configuration information of the base station.
  • the scheme related to the embodiment of the present invention is described by taking the downlink reference signal CSI-RS as an example.
  • the downlink reference signal may also be replaced by the synchronization signal block SSB, and the corresponding CSI-RS resource is replaced by the SSB resource.
  • the solution steps are similar to those described in the foregoing embodiment, and are not described herein again.
  • the CSI-RS can also be replaced with an uplink reference signal, such as a Sounding Reference Signal (SRS).
  • steps 301 to 303 are replaced by: the base station configures the SRS resource, the base station receives the SRS, and performs measurement, step 304 to 305 is replaced by the base station indicating the first SRS resource, and the user equipment determines the second SRS resource.
  • steps 305 and 306 are performed:
  • the parameter CSI-RS-ResourceRep of the resource set to which the downlink reference signal (for example, CSI-RS) resource belongs in the latest TCI state configuration is configured to be ON, that is, the network device uses the same transmit beam or the same spatial dimension transmission filter. Transmitting a reference signal on the resource in the resource set, or the user equipment may consider that the network device sends the reference signal on the resource in the resource set by using the same transmit beam or the same spatial dimension transmission filter;
  • Condition 2 the above parameter CSI-RS-ResourceRep is set to ON, and the QCL type is type D;
  • Condition 3 The CSI-RS resource indicator is not reported after the UE measures the resource set
  • Condition 4 the UE does not report the CRI after measuring the resource set, and the QCL type is type D;
  • Condition 5 The parameter ReportQuantity of the UE is set to not report No Report, that is, the user equipment does not perform any report after performing CSI-RS measurement;
  • step 307 is performed:
  • Step 307 The user equipment sends a second channel and/or a signal on the fourth resource, where the user equipment sends the second channel and/or the spatial dimension transmission filter used in the signal and the first resource.
  • the spatial dimension transmission filter used when receiving the CSI-RS is the same.
  • the fourth resource and the third resource are the same.
  • the third resource or the fourth resource may be allocated by the base station to the user equipment.
  • the user equipment selects a better resource or a transmit beam for information transmission, or the user equipment determines the QCL hypothesis of the antenna signal of the second signal and/or channel transmitted on the third resource.
  • the corresponding resources indicated by the base station are used for uplink transmission.
  • the steps 305-306 may be: the user equipment determines, by itself, a transmit beam or a spatial dimension transmission filter for transmitting the second signal and/or the channel on the third resource.
  • the spatial dimension transmission filter that transmits the second signal and/or the channel on the third resource determined by the user equipment and the CSI-RS resource that receives the CSI-RS resource set in which the first CSI-RS resource is located (for example, the foregoing The spatial dimension transmission filter of the CSI-RS on the second CSI-RS resource is the same.
  • the third signal and/or the channel of the channel and the CSI-RS resource of the CSI-RS resource set in which the first CSI-RS resource is located are transmitted on the third resource determined by the user equipment (for example, the foregoing second
  • the beam of the CSI-RS on the CSI-RS resource has reciprocity.
  • the spatial dimension transmission filter for transmitting the second signal and/or the channel and the CSI-RS resource where the first CSI-RS resource is located may be selected on the third resource.
  • the spatial dimension transmission filter of the best CSI-RS resource in the set channel state is the same, that is, the CSI-RS resource with the best measured value. For example, the best CSI-RS resource of the RSRP is selected.
  • the receiving beam used by the user equipment is most advantageous for receiving signals and/or channels.
  • the beam transmitting the second signal and/or channel on the selected third resource has mutual interference with the beam of the CSI-RS resource with the best channel state in the CSI-RS resource set in which the first CSI-RS resource is located. Easiness.
  • the second CSI-RS resource and the first CSI-RS resource belong to the same CSI Resource setting; when the CSI Resource setting corresponds to one CSI-RS resource set When a CSI Resource setting corresponds to one CSI Reporting setting, the second CSI-RS resource and the first CSI-RS resource correspond to the same CSI Reporting setting.
  • Embodiments of the present invention further provide an apparatus embodiment for implementing the steps and methods in the foregoing method embodiments.
  • the method, the steps, the technical details, the technical effects and the like of the foregoing method embodiments are also applicable to the device embodiments. Only a brief description of the device embodiments is given below. For specific technical details, reference may be made to the foregoing method embodiments.
  • FIG. 4 shows a schematic structural diagram of a network device that can be applied to the system shown in FIG. 1.
  • Network device 20 includes one or more remote radio units (RRUs) 701 and one or more baseband units (BBUs) 702.
  • the RRU 701 may be referred to as a transceiver unit, a transceiver, a transceiver circuit or a transceiver, etc., which may include at least one antenna 7011 and a radio frequency unit 7012.
  • the RRU 701 is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals, for example, for transmitting signaling indications or reference signals in the foregoing embodiments to the terminal.
  • the BBU 702 part is mainly used for baseband processing, network device control, and the like.
  • the RRU 701 and the BBU 702 may be physically disposed together or physically separated, that is, distributed base stations.
  • the BBU 702 is a control center of a network device, and may also be referred to as a processing unit, and is mainly used to perform baseband processing functions such as channel coding, multiplexing, modulation, and spreading.
  • the BBU 702 may be configured by one or more boards, and multiple boards may jointly support a single access standard radio access network (such as a 5G network), or may separately support wireless access of different access systems. network.
  • the BBU 702 also includes a memory 7021 and a processor 7022.
  • the memory 7021 is used to store necessary instructions and data.
  • the processor 7022 is configured to control the network device to perform necessary actions.
  • Memory 7021 and processor 7022 can serve one or more boards. That is, the memory and processor can be individually set on each board. It is also possible that multiple boards share the same memory and processor.
  • the necessary circuits are also provided on each board.
  • the above network device may have a simplified structure, such as only a processor, a transceiver, and the like.
  • the network device may be used to implement the method in the foregoing method embodiment.
  • the network device may be used to implement the method in the foregoing method embodiment.
  • a processor configured to generate first indication information, where the first indication information indicates a first resource
  • a transmitter configured to send the first indication information to the user equipment, to enable the user equipment to determine a second resource, where the second resource and the first resource belong to a same resource set configured by the network device, The first resource and the second resource are used to transmit a first downlink reference signal;
  • the transmitter is further configured to send, by using a third antenna port, a second signal and/or a channel to the user equipment, where the third antenna port transmits the first downlink and the second resource.
  • the second antenna port of the reference signal has a quasi co-address QCL relationship.
  • the first indication information is further used to indicate a QCL type, where the QCL type includes a spatial receiving end parameter, and the type of the QCL relationship is the QCL type.
  • the sending, by the sender, the first indication information to the user equipment including:
  • the transmitter is configured to send, to the user equipment, a transmission configuration indication TCI configuration information, where the user equipment indicates a TCI status set, where the TCI status corresponds to at least one resource of the first downlink reference signal;
  • the transmitter is further configured to send TCI indication information to the user equipment, where the TCI indication information indicates a TCI state in the TCI state set, where the one TCI state corresponds to the first resource.
  • the first indication information includes a resource set identifier to which the first resource belongs and a resource identifier in the resource set.
  • the third antenna port has a QCL relationship with the second antenna port, and includes:
  • the third antenna port has a QCL relationship with an antenna port used by the first downlink reference signal that is transmitted or measured last time on the second resource before the user equipment receives the TCI configuration information;
  • the third antenna port has a QCL relationship with an antenna port used by the first downlink reference signal that is transmitted or measured last time on the second resource before the user equipment receives the TCI indication information;
  • the foregoing network device may also be used to implement the solution corresponding to the foregoing method embodiment in FIG. 3, specifically:
  • a transmitter configured to send first indication information to the user equipment, where the first indication information indicates a first resource, so that the user equipment determines a second resource, where the second resource and the first resource belong to the The same resource set configured by the base station, where the second resource and the first resource are used to transmit the first downlink reference signal;
  • a receiver configured to receive a second channel and/or a signal sent by the user equipment on a third resource, where the user equipment sends a spatial dimension transmission filter and a signal used in transmitting the second channel and/or the signal
  • the spatial dimension transmission filter used when receiving the first downlink reference signal on the second resource is the same.
  • the sending, by the sender, the first indication information to the user equipment including:
  • the transmitter is configured to send first configuration information to the user equipment, and indicate, by the user equipment, a resource set of the first downlink reference signal;
  • the transmitter is further configured to send second configuration information to the user equipment, where the second configuration information indicates the first resource in the resource set.
  • the second configuration information includes an identifier of the resource set and a resource identifier of the first downlink reference signal in the resource set.
  • the spatial dimension transmission filter used by the user equipment to send the second channel and/or signal and the spatial dimension transmission filter used when receiving the first downlink reference signal on the second resource including:
  • the spatial dimension transmission filter used by the user equipment to transmit the second channel and/or signal and the last transmission or measurement on the second resource before the user equipment receives the first configuration information The spatial dimension transmission filter used in the first downlink reference signal is the same;
  • the spatial dimension transmission filter used by the user equipment to send the second channel and/or signal and the last transmission or measurement on the second resource before the user equipment receives the second configuration information is the same;
  • the spatial transmission filter used by the user equipment when transmitting the second channel and/or signal and the last transmission on the second resource before the user equipment sends the second channel and/or signal is the same.
  • FIG. 5 provides a schematic structural diagram of a terminal.
  • the terminal can be adapted for use in the system shown in FIG.
  • FIG. 5 shows only the main components of the terminal.
  • the terminal 10 includes a processor, a memory, a control circuit or an antenna, and an input and output device.
  • the processor is mainly used for processing communication protocols and communication data, and controlling the entire terminal, executing software programs, and processing data of the software programs.
  • the memory is primarily used to store software programs and data, such as the codebooks described in the above embodiments.
  • the control circuit is mainly used for converting baseband signals and radio frequency signals and processing radio frequency signals.
  • the control circuit together with the antenna can also be called a transceiver, and is mainly used for transmitting and receiving RF signals in the form of electromagnetic waves.
  • the input and output device such as a touch screen, a display screen or a keyboard, is mainly used for receiving data input by a user and outputting data to the user.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 5 shows only one memory and processor for ease of illustration. In an actual terminal, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, and the like.
  • the processor may include a baseband processor and a central processing unit, and the baseband processor is mainly used to process communication protocols and communication data, and the central processing unit is mainly used to control the entire terminal and execute the software.
  • the processor in FIG. 5 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and interconnected by technologies such as a bus.
  • the terminal may include multiple baseband processors to accommodate different network standards.
  • the terminal may include multiple central processors to enhance its processing capabilities, and various components of the terminal may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the functions of processing the communication protocol and the communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • the antenna and control circuit having the transceiving function can be regarded as the transceiving unit 801 of the terminal 10, and the processor having the processing function is regarded as the processing unit 802 of the terminal 10.
  • the terminal 10 includes a transceiver unit 801 and a processing unit 802.
  • the transceiver unit can also be referred to as a transceiver, transceiver or transceiver.
  • the device for implementing the receiving function in the transceiver unit 801 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 801 is regarded as a sending unit, that is, the transceiver unit 801 includes a receiving unit and a sending unit.
  • the receiving unit may also be referred to as a receiver, a receiver or a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit.
  • the foregoing user equipment may be used to implement the method in the foregoing method embodiment, and the method corresponding to FIG. 2 is:
  • a receiver configured to receive first indication information from a network device, where the first indication information indicates a first resource
  • a processor configured to determine a second resource, where the second resource and the first resource belong to a same resource set configured by the network device, and the first resource and the second resource are used to transmit a first resource Line reference signal
  • the receiver is further configured to receive, by the third resource, a second signal and/or a channel that is transmitted through the third antenna port, where the third antenna port and the second resource transmit the first downlink reference signal
  • the second antenna port has a quasi co-location QCL relationship
  • the first indication information is further used to indicate a QCL type, where the QCL type includes a spatial receiving end parameter, and the type of the QCL relationship is the QCL type.
  • the receiver is configured to receive the first indication information from the network device, including:
  • the receiver is configured to receive a transmission configuration indication TCI configuration information from the network device, and indicate, to the user equipment, a TCI state set, where the TCI state corresponds to at least one resource of the first downlink reference signal;
  • the receiver is further configured to receive TCI indication information from the network device, where the TCI indication information indicates a TCI state in the TCI state set, and the one TCI state corresponds to the first resource.
  • the first indication information includes a resource set identifier to which the first resource belongs and a resource identifier in the resource set.
  • the third antenna port has a QCL relationship with the second antenna port, and includes:
  • the third antenna port has a QCL relationship with an antenna port used by the first downlink reference signal that is transmitted or measured last time on the second resource before the user equipment receives the TCI configuration information;
  • the third antenna port has a QCL relationship with an antenna port used by the first downlink reference signal that is transmitted or measured last time on the second resource before the user equipment receives the TCI indication information;
  • the foregoing user equipment may also be used to implement the method corresponding to FIG. 3 in the foregoing method embodiment, specifically:
  • a receiver configured to receive first indication information from the network device, where the first indication information indicates the first resource
  • a processor configured to determine a second resource, where the second resource and the first resource belong to a same resource set configured by the base station, and the second resource and the first resource are used to transmit a first downlink Reference signal
  • a transmitter configured to send a second channel and/or a signal on the third resource, where the user equipment transmits the second channel and/or the spatial dimension transmission filter used and receives the signal on the second resource
  • the spatial dimension transmission filter used in the first downlink reference signal is the same.
  • the receiver is configured to receive the first indication information from the network device, including:
  • the receiver is configured to receive first configuration information from the network device, and indicate, by the user equipment, a resource set of the first downlink reference signal;
  • the receiver is further configured to receive second configuration information from the network device, where the second configuration information indicates the first resource in the resource set.
  • the second configuration information includes an identifier of the resource set and a resource identifier of the first downlink reference signal in the resource set.
  • the spatial dimension transmission filter used by the user equipment to send the second channel and/or signal and the spatial dimension transmission filter used when receiving the first downlink reference signal on the second resource including:
  • the spatial dimension transmission filter used by the user equipment to transmit the second channel and/or signal and the last transmission or measurement on the second resource before the user equipment receives the first configuration information The spatial dimension transmission filter used in the first downlink reference signal is the same;
  • the spatial dimension transmission filter used by the user equipment to send the second channel and/or signal and the last transmission or measurement on the second resource before the user equipment receives the second configuration information is the same;
  • the spatial transmission filter used by the user equipment when transmitting the second channel and/or signal and the last transmission on the second resource before the user equipment sends the second channel and/or signal is the same.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Abstract

本申请提供了一种通信方法及装置。通信方法包括:用户设备接收来自于网络设备的第一指示信息,所述第一指示信息指示第一资源;所述用户设备确定第二资源,所述第二资源与所述第一资源属于所述网络设备配置的同一个资源集合,所述第一资源与所述第二资源用于传输第一下行参考信号;所述用户设备在第三资源上接收通过第三天线端口传输的第二信号和/或信道,所述第三天线端口与所述第二资源上传输所述第一下行参考信号的第二天线端口具有准共址QCL关系。本方案中,通过用户设备自主选择下行参考信号资源,并在后续传输信息时使用与上述自主选择的下行参考信号资源对应的天线端口具有QCL关系的天线端口,提高了信息接收性能。

Description

一种通信方法及装置
本申请要求于2018年01月12日提交中国国家知识产权局、申请号为201810032282.1、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在第五代(5th generation,5G)移动通信系统中,用户设备(User Equipment,UE)可以使用不同的接收波束或者发送波束与网络侧通信。例如,基站可以为信道测量参考信号(Channel State Information Reference Signal,CSI-RS)配置多个资源,UE可以通过不同的接收波束接收CSI-RS,测量后得到信道状态信息并反馈给基站,基站基于得到信道状态信息为UE指示UE侧发送波束或者发送所使用的天线端口。
上述方案中,基站需要知道UE得到最好测量结果的接收波束对应的资源,但在一些场景下,UE并不上报对应最好的测量结果的资源标识。此时,基站为UE指示的发送波束或天线端口可能不是最优的。
发明内容
有鉴于此,本申请提供了一种信息传输方法及装置,可以实现更优的波束指示或者天线端口指示。
第一方面,提供了一种通信方法,包括:
用户设备接收来自于网络设备的第一指示信息,所述第一指示信息指示第一资源;
所述用户设备确定第二资源,所述第二资源与所述第一资源属于所述网络设备配置的同一个资源集合,所述第一资源与所述第二资源用于传输第一下行参考信号;
所述用户设备在第三资源上接收通过第三天线端口传输的第二信号和/或信道,所述第三天线端口与所述第二资源上传输所述第一下行参考信号的第二天线端口具有准共址QCL关系。
上述方案中,通过用户设备自主选择下行参考信号资源,并在后续传输信息时使用与上述自主选择的下行参考信号资源对应的天线端口具有QCL关系的天线端口,提高了信息接收性能。
上述方案中,用户设备确定第二资源及接收第二信号和/或信道,也可以是,用户设备自行确定第三资源上传输的第二信号和/或信道的第三天线端口的QCL假设。
结合第一方面,在第一种可能的实现方式中,所述第一指示信息还用于指示QCL类型,所述QCL类型包括空间接收端参数,所述QCL关系的类型是所述QCL类型。
结合第一方面或第一方面第一种可能的实现方式中,在第二种可能的实现方式中, 所述用户设备接收来自于网络设备的第一指示信息,包括:
所述用户设备接收来自于所述网络设备的传输配置指示TCI配置信息,为所述用户设备指示TCI状态集合,所述TCI状态对应所述第一下行参考信号的至少一个资源;
所述用户设备接收来自于所述网络设备的TCI指示信息,所述TCI指示信息指示所述TCI状态集合中的一个TCI状态,所述一个TCI状态对应所述第一资源。
结合第一方面第二种可能的实现方式中,在第三种可能的实现方式中,所述第一指示信息包括所述第一资源所属的资源集合标识和在所述资源集合内的资源标识。
结合第一方面第二种或第三种可能的实现方式中,在第四种可能的实现方式中,所述第三天线端口与所述第二天线端口具有QCL关系,包括:
所述第三天线端口与在所述用户设备接收所述TCI配置信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号使用的天线端口具有QCL关系;
或者,所述第三天线端口与在所述用户设备接收所述TCI指示信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号使用的天线端口具有QCL关系;
或者,所述第三天线端口与在所述用户设备接收所述第二信号和/或信道之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号使用的天线端口具有QCL关系。
第二方面,提供了一种通信方法,包括:
网络设备向用户设备发送第一指示信息,所述第一指示信息指示第一资源,以使得所述用户设备确定第二资源,所述第二资源与所述第一资源属于所述网络设备配置的同一个资源集合,所述第一资源与所述第二资源用于传输第一下行参考信号;
所述网络设备在第三资源上通过第三天线端口向所述用户设备发送第二信号和/或信道,所述第三天线端口与所述第二资源上传输所述第一下行参考信号的第二天线端口具有准共址QCL关系。
结合第二方面,在第一种可能的实现方式中,所述第一指示信息还用于指示QCL类型,所述QCL类型包括空间接收端参数,所述QCL关系的类型是所述QCL类型。
结合第二方面或第二方面第一种可能的实现方式中,在第二种可能的实现方式中,所述网络设备向所述用户设备发送第一指示信息,包括:
所述网络设备向所述用户设备发送传输配置指示TCI配置信息,为所述用户设备指示TCI状态集合,所述TCI状态对应所述第一下行参考信号的至少一个资源;
所述网络设备向所述用户设备发送TCI指示信息,所述TCI指示信息指示所述TCI状态集合中的一个TCI状态,所述一个TCI状态对应所述第一资源。
结合第二方面第二种可能的实现方式中,在第三种可能的实现方式中,,所述第一指示信息包括所述第一资源所属的资源集合标识和在所述资源集合内的资源标识。
结合第二方面第二种或第三种可能的实现方式中,在第四种可能的实现方式中,所述第三天线端口与所述第二天线端口具有QCL关系,包括:
所述第三天线端口与在所述用户设备接收所述TCI配置信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号使用的天线端口具有QCL关系;
或者,所述第三天线端口与在所述用户设备接收所述TCI指示信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号使用的天线端口具有QCL关系;
或者,所述第三天线端口与在所述用户设备接收所述第二信号和/或信道之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号使用的天线端口具有QCL关系。
第三方面,提供了一种用户设备,包括:
接收器,用于接收来自于网络设备的第一指示信息,所述第一指示信息指示第一资源;
处理器,用于确定第二资源,所述第二资源与所述第一资源属于所述网络设备配置的同一个资源集合,所述第一资源与所述第二资源用于传输第一下行参考信号;
所述接收器,还用于在第三资源上接收通过第三天线端口传输的第二信号和/或信道,所述第三天线端口与所述第二资源上传输第一下行参考信号的第二天线端口具有准共址QCL关系。
结合第三方面,在第一种可能的实现方式中,所述第一指示信息还用于指示QCL类型,所述QCL类型包括空间接收端参数,所述QCL关系的类型是所述QCL类型。
结合第三方面或第三方面第一种可能的实现方式中,在第二种可能的实现方式中,所述接收器用于接收来自于所述网络设备的第一指示信息,包括:
所述接收器,用于接收来自于所述网络设备的传输配置指示TCI配置信息,为所述用户设备指示TCI状态集合,所述TCI状态对应所述第一下行参考信号的至少一个资源;
所述接收器,还用于接收来自于所述网络设备的TCI指示信息,所述TCI指示信息指示所述TCI状态集合中的一个TCI状态,所述一个TCI状态对应所述第一资源
结合第三方面第二种可能的实现方式中,在第三种可能的实现方式中,所述第一指示信息包括所述第一资源所属的资源集合标识和在所述资源集合内的资源标识。
结合第三方面第二种或第三种可能的实现方式中,在第四种可能的实现方式中,所述第三天线端口与所述第二天线端口具有QCL关系,包括:
所述第三天线端口与在所述用户设备接收所述TCI配置信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号使用的天线端口具有QCL关系;
或者,所述第三天线端口与在所述用户设备接收所述TCI指示信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号使用的天线端口具有QCL关系;
或者,所述第三天线端口与在所述用户设备接收所述第二信号和/或信道之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号使用的天线端口具有QCL关系。
第四方面,提供了一种网络设备,包括:
处理器,用于生成第一指示信息,所述第一指示信息指示第一资源;
发送器,用于向用户设备发送所述第一指示信息,以使得所述用户设备确定第二资源,所述第二资源与所述第一资源属于所述网络设备配置的同一个资源集合,所述 第一资源与所述第二资源用于传输第一下行参考信号;
所述发送器,还用于在第三资源上通过第三天线端口向所述用户设备发送第二信号和/或信道,所述第三天线端口与所述第二资源上传输第一下行参考信号的第二天线端口具有准共址QCL关系。
结合第四方面,在第一种可能的实现方式中,所述第一指示信息还用于指示QCL类型,所述QCL类型包括空间接收端参数,所述QCL关系的类型是所述QCL类型。
结合第四方面或第四方面第一种可能的实现方式中,在第二种可能的实现方式中,所述发送器用于向所述用户设备发送第一指示信息,包括:
所述发送器,用于向所述用户设备发送传输配置指示TCI配置信息,为所述用户设备指示TCI状态集合,所述TCI状态对应所述第一下行参考信号的至少一个资源;
所述发送器,还用于向所述用户设备发送TCI指示信息,所述TCI指示信息指示所述TCI状态集合中的一个TCI状态,所述一个TCI状态对应所述第一资源。
结合第四方面第二种可能的实现方式中,在第三种可能的实现方式中,所述第一指示信息包括所述第一资源所属的资源集合标识和在所述资源集合内的资源标识。
结合第四方面第二种或第三种可能的实现方式中,在第四种可能的实现方式中,所述第三天线端口与所述第二天线端口具有QCL关系,包括:
所述第三天线端口与在所述用户设备接收所述TCI配置信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号使用的天线端口具有QCL关系;
或者,所述第三天线端口与在所述用户设备接收所述TCI指示信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号使用的天线端口具有QCL关系;
或者,所述第三天线端口与在所述用户设备接收所述第二信号和/或信道之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号使用的天线端口具有QCL关系。
第五方面,提供了一种通信方法,包括:
用户设备接收来自于网络设备第一指示信息,所述第一指示信息指示第一资源;
所述用户设备确定第二资源,所述第二资源和所述第一资源属于所述基站配置的同一个资源集合,所述第二资源与所述第一资源用于传输第一下行参考信号;
所述用户设备在第三资源上发送第二信道和/或信号,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与在所述第二资源上接收所述第一下行参考信号时使用的空间维传输滤波器相同。
上述方案中,通过用户设备自主选择下行参考信号资源,并在后续发送信息时使用与在选择的下行参考信号资源上接收下行参考信号时使用的空间维传输滤波器相同的空间维传输滤波器,提高了信息传输性能。
上述方案中,用户设备确定第二资源及发送第二信道和/或信号,也可以是,用户设备自行确定第三资源上传输第二信号和/或信道的发送波束或空间维传输滤波器。
结合第五方面,在第一种可能的实现方式中,所述用户设备接收来自于网络设备第一指示信息,包括:
所述用户设备接收来自于所述网络设备的第一配置信息,为所述用户设备指示所 述第一下行参考信号的资源集合;
所述用户设备接收来自于所述网络设备的第二配置信息,所述第二配置信息指示所述资源集合中的所述第一资源。
结合第五方面第一种可能的实现方式,第二种可能的实现方式中,所述第二配置信息包括所述资源集合的标识和所述第一下行参考信号在所述资源集合内的资源标识。
结合第五方面第一种或第二种可能的实现方式,第三种可能的实现方式中,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与在所述第二资源上接收所述第一下行参考信号时使用的空间维传输滤波器相同,包括:
所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与所述用户设备接收所述第一配置信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号时使用的空间维传输滤波器相同;
或者,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与所述用户设备接收所述第二配置信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号时使用的空间维传输滤波器相同;
或者,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与所述用户设备发送所述第二信道和/或信号之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号时使用的空间维传输滤波器相同。
第六方面,提供了一种通信方法,包括:
网络设备向用户设备发送第一指示信息,所述第一指示信息指示第一资源,以使得所述用户设备确定第二资源,所述第二资源和所述第一资源属于所述基站配置的同一个资源集合,所述第二资源与所述第一资源用于传输第一下行参考信号;
所述网络设备接收所述用户设备在第三资源上发送的第二信道和/或信号,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与在所述第二资源上接收所述第一下行参考信号时使用的空间维传输滤波器相同。
结合第六方面,在第一种可能的实现方式中,所述网络设备向所述用户设备发送第一指示信息,包括:
所述网络设备向所述用户设备发送第一配置信息,为所述用户设备指示所述第一下行参考信号的资源集合;
所述网络设备向所述用户设备发送第二配置信息,所述第二配置信息指示所述资源集合中的所述第一资源。
结合第六方面第一种可能的实现方式,第二种可能的实现方式中,所述第二配置信息包括所述资源集合的标识和所述第一下行参考信号在所述资源集合内的资源标识。
结合第六方面第一种或第二种可能的实现方式,第三种可能的实现方式中,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与在所述第二资源上接收所述第一下行参考信号时使用的空间维传输滤波器相同,包括:
所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与所述用户设备接收所述第一配置信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号时使用的空间维传输滤波器相同;
或者,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与所 述用户设备接收所述第二配置信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号时使用的空间维传输滤波器相同;
或者,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与所述用户设备发送所述第二信道和/或信号之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号时使用的空间维传输滤波器相同。
第七方面,提供了一种用户设备,包括:
接收器,用于接收来自于网络设备第一指示信息,所述第一指示信息指示第一资源;
处理器,用于确定第二资源,所述第二资源和所述第一资源属于所述基站配置的同一个资源集合,所述第二资源与所述第一资源用于传输第一下行参考信号;
发送器,用于在第三资源上发送第二信道和/或信号,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与在所述第二资源上接收所述第一下行参考信号时使用的空间维传输滤波器相同。
结合第七方面,在第一种可能的实现方式中,所述接收器用于接收来自于网络设备第一指示信息,包括:
所述接收器,用于接收来自于所述网络设备的第一配置信息,为所述用户设备指示所述第一下行参考信号的资源集合;
所述接收器,还用于接收来自于所述网络设备的第二配置信息,所述第二配置信息指示所述资源集合中的所述第一资源。
结合第七方面第一种可能的实现方式,第二种可能的实现方式中,所述第二配置信息包括所述资源集合的标识和所述第一下行参考信号在所述资源集合内的资源标识。
结合第七方面第一种或第二种可能的实现方式,第三种可能的实现方式中,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与在所述第二资源上接收所述第一下行参考信号时使用的空间维传输滤波器相同,包括:
所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与所述用户设备接收所述第一配置信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号时使用的空间维传输滤波器相同;
或者,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与所述用户设备接收所述第二配置信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号时使用的空间维传输滤波器相同;
或者,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与所述用户设备发送所述第二信道和/或信号之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号时使用的空间维传输滤波器相同。
第八方面,提供了一种网络设备,包括:
发送器,用于向用户设备发送第一指示信息,所述第一指示信息指示第一资源,以使得所述用户设备确定第二资源,所述第二资源和所述第一资源属于所述基站配置的同一个资源集合,所述第二资源与所述第一资源用于传输第一下行参考信号;
接收器,用于接收所述用户设备在第三资源上发送的第二信道和/或信号,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与在所述第二资源上 接收所述第一下行参考信号时使用的空间维传输滤波器相同。
结合第八方面,在第一种可能的实现方式中,所述发送器用于向所述用户设备发送第一指示信息,包括:
所述发送器,用于向所述用户设备发送第一配置信息,为所述用户设备指示所述第一下行参考信号的资源集合;
所述发送器,还用于向所述用户设备发送第二配置信息,所述第二配置信息指示所述资源集合中的所述第一资源。
结合第八方面第一种可能的实现方式,第二种可能的实现方式中,所述第二配置信息包括所述资源集合的标识和所述第一下行参考信号在所述资源集合内的资源标识。
结合第八方面第一种或第二种可能的实现方式,第三种可能的实现方式中,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与在所述第二资源上接收所述第一下行参考信号时使用的空间维传输滤波器相同,包括:
所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与所述用户设备接收所述第一配置信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号时使用的空间维传输滤波器相同;
或者,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与所述用户设备接收所述第二配置信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号时使用的空间维传输滤波器相同;
或者,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与所述用户设备发送所述第二信道和/或信号之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号时使用的空间维传输滤波器相同。
在一个可能的设计中,本申请提供的网络设备可以包含用于执行上述方法设计中网络设备行为相对应的模块。所述模块可以是软件和/或是硬件。
在一种可能的设计中,上述网络设备的功能可以由一块或多块芯片实现。
在一个可能的设计中,本申请提供的用户设备可以包含用于执行上述方法设计中终端行为相对应的模块。所述模块可以是软件和/或是硬件。
在一种可能的设计中,上述用户设备的功能可以由一块或多块芯片实现。
本申请的又一方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本申请的又一方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为实现本发明实施例的一种可能的系统结构示意图;
图2为本发明实施例提供的一种通信方法流程图;
图3为本发明实施例提供的另一种通信方法流程图;
图4为本发明实施例提供的一种网络设备的结构示意图;
图5为本发明实施例提供的一种终端的结构示意图。
具体实施方式
下面结合附图,对本发明提供的实施例做详细说明。本发明实施例描述的网络架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
图1示出了本申请的一种可能的系统网络示意图。如图1所示,至少一个终端10与无线接入网(Radio access network,简称RAN)进行通信。所述RAN包括至少一个网络设备20,为清楚起见,图中只示出一个网络设备和一个用户设备UE。所述RAN与核心网络(core network,简称CN)相连。可选的,所述CN可以耦合到一个或者更多的外部网络(External Network),例如英特网Internet,公共交换电话网(public switched telephone network,简称PSTN)等。
为便于理解下面对本申请中涉及到的一些名词做些说明。
本申请中,名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。用户设备(英文:User Equipment,简称:UE)是一种具有通信功能的终端设备,也可以称为终端,可以包括具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备等。在不同的网络中用户设备可以叫做不同的名称,例如:终端,移动台,用户单元,站台,蜂窝电话,个人数字助理,无线调制解调器,无线通信设备,手持设备,膝上型电脑,无绳电话,无线本地环路台等。为描述方便,本申请中简称为用户设备UE或终端。网络设备可以是基站(base station,简称BS)、云网络中的无线接入设备或中继站等具有无线收发功能的设备。基站也可称为基站设备,是一种部署在无线接入网用以提供无线通信功能的网络设备。在不同的无线接入系统中基站的名称可能有所不同,例如在而在通用移动通讯系统(Universal Mobile Telecommunications System,简称:UMTS)网络中基站称为节点B(NodeB),在LTE网络中的基站称为演进的节点B(evolved NodeB,简称:eNB或者eNodeB),在未来5G系统中可以称为收发节点(Transmission Reception Point,TRP)、网络节点或g节点B(gNodeB,gNB)。可选的,本发明中的网络设备还可以是设备到设备D2D(Device to Device)中的用户设备。可选的,本发明中的网络设备和用户设备还可以是中继设备,或实现中继功能的网络设备或用户设备。
本申请中的波束,还可以称为空间维传输滤波器(spatial domain transmission filter)。可选的,发送波束可以称为空间维发送滤波器,接收波束可以称为空间维接收滤波器。
本申请中资源的标识可以是资源上传输的参考信号的标识,例如reference signal identity(RS ID)。
本发明实施例提供了一种通信方法。该方法可以应用于图1所示的系统。下面以基站和用户设备间通信,下行参考信号为CSI-RS为例,对该方法进行说明。如图2所示,该方法包括:
步骤201、基站为CSI-RS配置多个CSI-RS资源。
基站配置CSI-RS资源可以配置CSI-RS资源集合,一个CSI-RS资源集合包含至少一个CSI-RS资源(CSI-RS resource)。CSI-RS资源可以是非零功率的CSI-RS资源,零功率的CSI-RS资源。
基站还可以配置CSI资源设置(Resource setting),用于配置一个或多个CSI-RS资源集合。
基站还可以配置CSI上报设置(Reporting setting),用于配置用户设备上报测量信息的上报方式或上报内容。
基站还可以配置测量链接(Measurement link),用于配置CSI上报设置和资源设置的对应关系,以及测量的类型(例如干扰测量、信道测量)等。
步骤202、基站在多个CSI-RS资源上发送CSI-RS。
基站发送CSI-RS时,每个CSI-RS资源都有对应的天线端口,基站在CSI-RS资源上使用相应的天线端口发送CSI-RS。
步骤203、用户设备在多个CSI-RS资源上进行测量,得到测量值。
用户设备在每个CSI-RS资源上接收CSI-RS时,会使用相应的接收波束,针对不同的CSI-RS资源可以使用不同的接收波束。用户设备对接收到的CSI-RS进行测量得到测量值。
测量值可以包括以下信息至少之一:参考信号接收功率(Reference Signal Received Power,RSRP),RSRP量化值,信道质量指示(Channel quality Indicator,CQI),信干噪比(Signal to Interference and Noise Ratio,SINR),SINR量化值,预编码矩阵指示(Precoding Matrix Indicator,PMI),秩指示(Rank Indicator,RI),层指示(Layer indicator,LI),接收信号强度指示(Received Signal Strength Indicator,RSSI)等。
可选的,用户设备可以将部分或全部测量值反馈给基站。用户设备反馈测量值时,可以将测量值对应的CSI-RS资源的标识,例如CSI-RS资源指示(CSI-RS Resource Indicator,CRI)一同反馈。
步骤204、基站向用户设备发送发送第一指示信息,所述第一指示信息指示第一CSI-RS资源。
第一指示信息还可以指示准共址(quasi co-location,QCL)类型,所述QCL类型包括空间接收端参数。基站在第一资源上通过第一天线端口传输CSI-RS,用户设备使用第一接收波束接收上述CSI-RS。基站通过指示第一CSI-RS资源及QCL类型,指示用户设备接收后续的信号和/或信道依然使用上述第一接收波束。
可选的,第一CSI-RS资源可以是一个或者多个CSI-RS资源。
可选的,基站选择第一CSI-RS资源时,可以基于UE反馈的测量值,也可以基于其它准则。
步骤205、用户设备确定第二CSI-RS资源,所述第二CSI-RS资源与所述第一CSI-RS资源属于基站配置的同一个CSI-RS资源集合,所述第一CSI-RS资源与所述第二CSI-RS资源用于传输CSI-RS。
可选的,用户设备选择第二CSI-RS资源时,可以选择对应的信道状态最好的CSI-RS资源,即测量值最优的CSI-RS资源。例如选择RSRP最好的CSI-RS资源,此时,用户设备使用的接收波束最有利于接收信号和/或信道。用户设备可以根据测量得 到的CQI确定第二CSI-RS资源,也可以根据测量得到的CQI和/或RI确定第二CSI-RS资源。
可选的,基站在上述CSI-RS资源集合中的CSI-RS资源上发送CSI-RS,用户设备对上述发送的CSI-RS进行测量,所述第二CSI-RS资源与所述第一CSI-RS资源属于同一个CSI-RS资源集合,有利于用户设备选择到合适的CSI-RS资源。
可选的,当CSI Resource setting对应一个CSI-RS资源集合时,第二CSI-RS资源与所述第一CSI-RS资源属于同一个CSI Resource setting;当CSI Resource setting对应一个CSI-RS资源集合,且一个CSI Resource setting对应一个CSI Reporting setting时,第二CSI-RS资源与所述第一CSI-RS资源对应同一个CSI Reporting setting。
步骤206、基站在第三资源上通过第三天线端口向所述终端设备发送第二信号和/或信道,所述第三天线端口与所述第二CSI-RS资源上传输CSI-RS的第二天线端口具有准共址(quasi co-location,QCL)关系。
可选的,QCL关系的类型可以是第一指示信息指示的QCL类型。
当所述QCL类型包括空间接收端参数,用户设备选择第二CSI-RS资源,且上述第三天线端口与上述第二天线端口具有QCL关系,目的是使用户设备接收第二信号和/或信道时,使用的接收波束与接收上述第二CSI-RS资源上通过上述第二天线端口传输的CSI-RS时使用的接收波束相同。可选的,上述步骤206也可以表述为,用户设备使用与接收第二CSI-RS资源上通过第二天线端口传输的CSI-RS时使用的接收波束相同的接收波束,接收第二信号和/或信道。
可选的,基站可以向用户设备指示哪些天线端口与上述第二天线端口有QCL关系。
可选的,第二信号和/或信道可以是:解调参考信号(Demodulation Reference Signal,DMRS),物理下行共享信道(Physical Downlink Shared Channel,PDSCH),物理下行控制信道(Physical Downlink Control Channel,PDCCH),控制资源集合(control resource set,CORESET),其它下行参考信号如CSI-RS,相位跟踪参考信号(phase tracking reference signal,PT-RS)等。
前述实施例中,步骤201-203为可选步骤。
上述方案中,通过用户设备自主选择下行参考信号(例如CSI-RS)资源,并在后续传输信息时使用与上述自主选择的CSI-RS资源对应的天线端口具有QCL关系的天线端口,提高了信息接收性能。
上述方案中可选的,基站向用户设备发送发送第一指示信息,指示第一CSI-RS资源,可以有多种实现方式,下面举例进行说明。
实现方式一:
基站向用户设备发送传输配置指示(Transmission Configuration Indicator,TCI)配置信息,为所述终端指示TCI状态集合,所述TCI状态对应或指示第一下行参考信号的至少一个资源;
基站向用户设备发送TCI指示信息,所述TCI指示信息指示所述TCI状态集合中的一个TCI状态,所述一个TCI状态对应或指示上述第一资源。
实现方式二:
基站向用户设备发送传输配置指示(Transmission Configuration Indicator,TCI) 配置信息,为所述终端指示TCI状态集合,所述TCI状态对应或指示第一下行参考信号的至少一个资源;
基站向用户设备发送TCI子集指示信息,为所述用户设备指示上述TCI状态集合的子集;
基站向用户设备发送TCI指示信息,所述TCI指示信息指示所述TCI状态子集中的一个TCI状态,所述一个TCI状态对应或指示上述第一资源。
可选的,上述实施方式一和二中的TCI指示信息,还可以指示第三资源的QCL信息,QCL信息包括QCL类型的信息,以及与第三资源上传输第二信道和/或信号的天线端口具有QCL关系的天线端口上传输的参考信号或参考信号资源的信息。
上述配置信息或指示信息可以通过媒体接入控制控制单元(Media Access Control Control Element,MAC CE)信令,无线资源控制(Radio Resource Control,RRC)信令,或下行控制信息(Downlink Control Information,DCI)携带。可选的,TCI配置信息由RRC信令携带,TCI子集指示信息或TCI指示信息由MAC CE信令或者DCI携带。
上述实现方式中,一个TCI状态可以包含一个或多个下行参考信号(例如CSI-RS)资源标识,和/或一个或多个QCL类型。
不同QCL类型可以包含不同的参数,例如:
QCL-Type A:{多普勒偏移,多普勒扩展,平均时延,时延扩展};
QCL-Type B:{多普勒偏移,多普勒扩展};
QCL-Type C:{多普勒偏移,平均时延};
QCL-Type D:{空间接收端参数}。
TCI状态中,下行参考信号资源标识可以包括CSI-RS资源集合标识和CSI-RS在所述CSI-RS资源集合内的CSI-RS资源标识,也可以仅包括统一的CSI-RS资源标识,一个统一的CSI-RS资源标识可以在一个或多个CSI-RS资源集合中唯一标识出一个CSI-RS资源。
本发明实施例中可选的,基站在第三CSI-RS资源上通过第三天线端口向所述终端设备发送第二信号和/或信道之前,基站可能在CSI-RS资源上多次发送了CSI-RS,用户设备具体依据哪次传输的CSI-RS进行信道测量和选择第二CSI-RS资源,可以有多种实现方式,例如:
依据接收所述TCI配置信息之前在所述第二资源上最近一次传输或测量的CSI-RS,则所述第三天线端口与在所述用户设备接收所述TCI配置信息之前在所述第二资源上最近一次传输或测量的CSI-RS使用的天线端口具有QCL关系;
或者,依据接收所述TCI指示信息之前在所述第二资源上最近一次传输或测量的CSI-RS,则所述第三天线端口与在所述用户设备接收所述TCI指示信息之前在所述第二资源上最近一次传输或测量的CSI-RS使用的天线端口具有QCL关系;
或者,依据接收所述第二信号和/或信道之前在所述第二资源上最近一次传输或测量的CSI-RS,则所述第三天线端口与在所述用户设备接收所述第二信号和/或信道之前在所述第二资源上最近一次传输或测量的CSI-RS使用的天线端口具有QCL关系。
可选的,还可以依据接收所述TCI配置信息之前在所述第二资源上第K次传输的 CSI-RS,或者依据接收所述TCI指示信息之前在所述第二资源上第K次传输的CSI-RS,或者依据接收所述第二信号和/或信道之前在所述第二资源上第K次传输的CSI-RS,K为大于等于1的整数。
可选的,上述的实现方式可以是预定义采用其中的一种,或者根据基站的配置信息确定采用其中的一种。
上述实施例中,是以下行参考信号CSI-RS为例对本发明实施例涉及的方案进行说明,下行参考信号还可以替换为同步信号块(Synchronizing Signal/Physical Broadcast Channel Block,SSB),相应的CSI-RS资源则替换为SSB资源,具体方案步骤与上述实施例描述的类似,此处不再赘述。
上述实施例中,可选的,在步骤204之后,当满足下列条件至少之一时,执行步骤205和206:
条件1:最近一次TCI状态配置中的下行参考信号(例如CSI-RS)资源所属的资源集合的参数CSI-RS-ResourceRep配置为ON,即网络设备采用相同的发送波束或相同的空间维传输滤波器发送所述资源集合中的资源上的参考信号,或用户设备可以认为网络设备采用相同的发送波束或相同的空间维传输滤波器发送所述资源集合中的资源上的参考信号;
条件2:上述参数CSI-RS-ResourceRep设置为ON,且QCL类型为类型D;
条件3:UE测量所述资源集合后未上报CSI-RS资源指示CRI(CSI-RS Resource Indicator);
条件4:UE测量所述资源集合后未上报CRI,且QCL类型为类型D;
条件5:UE的参数ReportQuantity设置为不上报No Report,即用户设备进行CSI-RS测量后不进行任何上报;
条件6:UE的参数ReportQuantity设置为不上报No Report,且QCL类型为类型D。
当不满足上述条件时,则执行步骤207:
步骤207、基站在第四资源上通过第四天线端口向所述终端设备发送第二信号和/或信道,所述第四天线端口与所述第一CSI-RS资源上传输CSI-RS的第一天线端口具有QCL关系。
可选的,第三资源和第四资源可以相同。第三资源或第四资源可以由基站分配给用户设备。
即当满足上述条件时,用户设备选择更优的资源或接收波束进行信息传输,或用户设备自行确定在第三资源上传输第二信号和/或信道的天线端口的QCL假设。当不满足上述条件时,则使用基站指示的相应资源进行信息传输。
可选的,前述实施例中,步骤205-206也可以是,用户设备自行确定第三资源上传输的第二信号和/或信道的第三天线端口的QCL假设。QCL假设可以包括QCL类型,或与哪个CSI-RS资源的哪个天线端口具有QCL关系等。例如,用户设备确定的第三资源上传输第二信号和/或信道的第三天线端口与第一CSI-RS资源所在的CSI-RS资源集合中的某一个CSI-RS资源(例如上述的第二CSI-RS资源)上传输CSI-RS的天线 端口具有QCL关系。
可选的,用户设备确定QCL假设时,可以选择第三资源上传输第二信号和/或信道的第三天线端口与第一CSI-RS资源所在的CSI-RS资源集合中的信道状态最好的CSI-RS资源上传输CSI-RS的天线端口具有QCL关系,即测量值最优的CSI-RS资源。例如选择RSRP最好的CSI-RS资源,此时,用户设备使用的接收波束最有利于接收信号和/或信道。
可选的,当CSI Resource setting对应一个CSI-RS资源集合时,第二CSI-RS资源与所述第一CSI-RS资源属于同一个CSI Resource setting;当CSI Resource setting对应一个CSI-RS资源集合,且一个CSI Resource setting对应一个CSI Reporting setting时,第二CSI-RS资源与所述第一CSI-RS资源对应同一个CSI Reporting setting。
上述实施例是为下行传输选择资源、天线端口或波束的方案,下面进一步给出上行传输相关的实施例。
下面以基站和终端间通信,下行参考信号为CSI-RS为例,对该方法进行说明如图3所示,本发明实施例提供了一种通信方法,包括:
步骤301、基站为CSI-RS配置多个CSI-RS资源。
步骤302、基站在多个CSI-RS资源上发送CSI-RS。
步骤303、用户设备在多个CSI-RS资源上进行测量,得到测量值。
步骤304、基站向用户设备发送发送第一指示信息,所述第一指示信息指示第一CSI-RS资源。
步骤305、所述用户设备确定第二CSI-RS资源,所述第二CSI-RS资源和所述第一CSI-RS资源属于所述基站配置的同一个CSI-RS资源集合,所述第二CSI-RS资源与所述第一CSI-RS资源用于传输CSI-RS;
步骤306、所述用户设备在第三资源上发送第二信道和/或信号,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器(spatial domain transmission filter)与在所述第二资源上接收所述CSI-RS时使用的空间维传输滤波器相同。
步骤306中,也可以认为用户设备发送第二信道和/或信号时使用的发送波束(空间维传输滤波器),与在上述第二CSI-RS资源上接收CSI-RS时使用的接收波束(空间维传输滤波器)具有互易性(相同)。即用户设备可以根据第二CSI-RS资源上的接收波束或空间维传输滤波器确定在第三资源上发送第二信道和/或信号所使用的波束或空间维传输滤波器。
上述方案中,步骤301至303可以参考前述实施例中的步骤201-203,具体细节不再赘述。步骤301-303为可选步骤。
上述方案中,通过用户设备自主选择下行参考信号(例如CSI-RS)资源,并在后续发送信息时使用与在所述选择的下行参考信号资源上接收下行参考信号时使用的空间维传输滤波器相同的空间维传输滤波器,提高了信息传输性能。
步骤304中,基站向用户设备发送发送第一指示信息可以有多种实现方式,例如:
基站向用户设备发送第一配置信息,为所述用户设备指示CSI-RS资源集合;
所述用户设备接收来自于所述网络设备的第二配置信息,所述第二配置信息指示所述CSI-RS资源集合中的一个或多个CSI-RS资源。
可选的,第一指示信息可以包括CSI-RS资源集合标识和CSI-RS在所述CSI-RS资源集合内的CSI-RS资源标识,也可以仅包括统一的CSI-RS资源标识,一个统一的CSI-RS资源标识可以在一个或多个CSI-RS资源集合中唯一标识出一个CSI-RS资源。
可选的,基站选择第一CSI-RS资源时,可以基于UE反馈的测量值,也可以基于其它准则。
步骤305中,用户设备选择第二CSI-RS资源时,可以选择信道状态最好的CSI-RS资源,即测量值最优的CSI-RS资源。例如选择RSRP最好的CSI-RS资源。用户设备可以根据CQI确定第二CSI-RS资源,也可以根据CQI和/或RI确定第二CSI-RS资源。
可选的,当CSI-RS Resource setting对应一个CSI-RS资源集合时,第二CSI-RS资源与所述第一CSI-RS资源属于同一个CSI-RS Resource setting;当CSI-RS Resource setting对应一个CSI-RS资源集合,且一个CSI-RS Resource setting对应一个CSI-RS Reporting setting时,第二CSI-RS资源与所述第一CSI-RS资源属于同一个CSI-RS Reporting setting。
步骤306中,第二信道和/或信号可以是:物理上行共享信道(Physical Uplink Shared Channel,PUSCH),物理上行控制信道(Physical Uplink Control Channel,PUCCH),物理随机接入信道(Physical Random Access Channel,PRACH),上行参考信号例如探测参考信号(Sounding Reference Signal,SRS),DMRS,PT-RS等。
上述方案中,通过用户设备确定第二CSI-RS资源,进一步确定上行传输的资源,可以提高上行传输性能。
上述方案中,所述用户设备在第三资源上发送第二信道和/或信号之前,基站可能在CSI-RS资源上多次发送了CSI-RS,用户设备具体依据哪次传输的CSI-RS进行信道测量和选择第二CSI-RS资源,可以有多种实现方式,例如:
依据接收上述第一配置信息之前在所述第二资源上最近一次传输或测量的CSI-RS,则所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与所述用户设备接收所述第一配置信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号时使用的空间维传输滤波器相同;
或者,依据接收上述第二配置信息之前在所述第二资源上最近一次传输或测量的CSI-RS,则所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与所述用户设备接收所述第二配置信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号时使用的空间维传输滤波器相同;
或者,依据发送所述第二信号和/或信道之前在所述第二资源上最近一次传输或测量的的CSI-RS,则所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与所述用户设备发送所述第二信道和/或信号之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号时使用的空间维传输滤波器相同。
可选的,还可以依据依据接收上述第一配置信息之前在所述第二资源上第K次传输CSI-RS,依据接收上述第二配置信息之前在所述第二资源上第K次传输CSI-RS,依据发送所述第二信号和/或信道之前在所述第二资源上第K次接收的CSI-RS,K为 大于等于1的整数。
可选的,上述的实现方式可以是预定义采用其中的一种,或者根据基站的配置信息确定采用其中的一种。
上述实施例中,是以下行参考信号CSI-RS为例对本发明实施例涉及的方案进行说明,下行参考信号还可以替换为同步信号块SSB,相应的CSI-RS资源则替换为SSB资源,具体方案步骤与上述实施例描述的类似,此处不再赘述。CSI-RS还可以替换为上行参考信号,例如探测参考信号(Sounding Reference Signal,SRS),相应的,步骤301至303则替换为,基站配置SRS资源,基站接收SRS,并进行测量,步骤304至305替换为基站指示第一SRS资源,用户设备确定第二SRS资源。
上述实施例中,可选的,在步骤304之后,当满足下列条件至少之一时,执行步骤305和306:
条件1:最近一次TCI状态配置中的下行参考信号(例如CSI-RS)资源所属的资源集合的参数CSI-RS-ResourceRep配置为ON,即网络设备采用相同的发送波束或相同的空间维传输滤波器发送所述资源集合中的资源上的参考信号,或用户设备可以认为网络设备采用相同的发送波束或相同的空间维传输滤波器发送所述资源集合中的资源上的参考信号;
条件2:上述参数CSI-RS-ResourceRep设置为ON,且QCL类型为类型D;
条件3:UE测量所述资源集合后未上报CSI-RS资源指示CRI(CSI-RS Resource Indicator);
条件4:UE测量所述资源集合后未上报CRI,且QCL类型为类型D;
条件5:UE的参数ReportQuantity设置为不上报No Report,即用户设备进行CSI-RS测量后不进行任何上报;
条件6:UE的参数ReportQuantity设置为不上报No Report,且QCL类型为类型D。
当不满足上述条件时,则执行步骤307:
步骤307、所述用户设备在第四资源上发送第二信道和/或信号,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与在所述第一资源上接收所述CSI-RS时使用的空间维传输滤波器相同。
可选的,上述第四资源和第三资源相同。第三资源或第四资源可以由基站分配给用户设备。
即当满足上述条件时,用户设备选择更优的资源或发送波束进行信息传输,或用户设备自行确定在第三资源上传输的第二信号和/或信道的天线端口的QCL假设。当不满足上述条件时,则使用基站指示的相应资源进行上行传输。
可选的,前述实施例中,步骤305-306也可以是,用户设备自行确定第三资源上传输第二信号和/或信道的发送波束或空间维传输滤波器。例如,用户设备确定的第三资源上发送第二信号和/或信道的空间维传输滤波器与接收第一CSI-RS资源所在的CSI-RS资源集合中的某一个CSI-RS资源(例如上述第二CSI-RS资源)上的CSI-RS的空间维传输滤波器相同。也可以认为,用户设备确定的第三资源上发送第二信号和/或信道的波束与接收第一CSI-RS资源所在的CSI-RS资源集合中的某一个CSI-RS资 源(例如上述第二CSI-RS资源)上的CSI-RS的波束具有互易性。
可选的,用户设备确定波束或空间维传输滤波器时,可以选择第三资源上发送第二信号和/或信道的空间维传输滤波器与接收第一CSI-RS资源所在的CSI-RS资源集合中的信道状态最好的CSI-RS资源的空间维传输滤波器相同,即测量值最优的CSI-RS资源。例如选择RSRP最好的CSI-RS资源,此时,用户设备使用的接收波束最有利于接收信号和/或信道。也可以认为,选择的第三资源上发送第二信号和/或信道的波束与接收第一CSI-RS资源所在的CSI-RS资源集合中的信道状态最好的CSI-RS资源的波束具有互易性。
可选的,当CSI Resource setting对应一个CSI-RS资源集合时,第二CSI-RS资源与所述第一CSI-RS资源属于同一个CSI Resource setting;当CSI Resource setting对应一个CSI-RS资源集合,且一个CSI Resource setting对应一个CSI Reporting setting时,第二CSI-RS资源与所述第一CSI-RS资源对应同一个CSI Reporting setting。
本发明实施例进一步给出实现上述方法实施例中各步骤及方法的装置实施例。前述方法实施例的方法、步骤、技术细节以及技术效果等同样适用于装置实施例,下文仅给出装置实施例的简要描述,具体技术细节可参考前文方法实施例。
图4示出一种网络设备的结构示意图,该网络设备可应用于如图1所示的系统。网络设备20包括一个或多个远端射频单元(remote radio unit,RRU)701和一个或多个基带单元(baseband unit,BBU)702。RRU701可以称为收发单元、收发机、收发电路或者收发器等等,其可以包括至少一个天线7011和射频单元7012。RRU701分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端发送上述实施例中的信令指示或参考信号。BBU702部分主要用于进行基带处理,对网络设备进行控制等。RRU701与BBU702可以是可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
BBU702为网络设备的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。在一个示例中,BBU702可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如5G网络),也可以分别支持不同接入制式的无线接入网。BBU702还包括存储器7021和处理器7022。存储器7021用以存储必要的指令和数据。处理器7022用于控制网络设备进行必要的动作。存储器7021和处理器7022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板公用相同的存储器和处理器。此外每个单板上还设置有必要的电路。
实际系统中,上述网络设备可以有简化的结构,例如仅包含处理器、收发器等。
上述网络设备可以用于实现前述方法实施例的方法,针对图2对应的方案,具体的:
处理器,用于生成第一指示信息,所述第一指示信息指示第一资源;
发送器,用于向用户设备发送所述第一指示信息,以使得所述用户设备确定第二资源,所述第二资源与所述第一资源属于所述网络设备配置的同一个资源集合,所述第一资源与所述第二资源用于传输第一下行参考信号;
所述发送器,还用于在第三资源上通过第三天线端口向所述用户设备发送第二信号和/或信道,所述第三天线端口与所述第二资源上传输第一下行参考信号的第二天线端口具有准共址QCL关系。
可选的,所述第一指示信息还用于指示QCL类型,所述QCL类型包括空间接收端参数,所述QCL关系的类型是所述QCL类型。
可选的,所述发送器向所述用户设备发送第一指示信息,包括:
所述发送器,用于向所述用户设备发送传输配置指示TCI配置信息,为所述用户设备指示TCI状态集合,所述TCI状态对应所述第一下行参考信号的至少一个资源;
所述发送器,还用于向所述用户设备发送TCI指示信息,所述TCI指示信息指示所述TCI状态集合中的一个TCI状态,所述一个TCI状态对应所述第一资源。
可选的,所述第一指示信息包括所述第一资源所属的资源集合标识和在所述资源集合内的资源标识。
可选的,所述第三天线端口与所述第二天线端口具有QCL关系,包括:
所述第三天线端口与在所述用户设备接收所述TCI配置信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号使用的天线端口具有QCL关系;
或者,所述第三天线端口与在所述用户设备接收所述TCI指示信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号使用的天线端口具有QCL关系;
或者,所述第三天线端口与在所述用户设备接收所述第二信号和/或信道之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号使用的天线端口具有QCL关系。
上述网络设备还可以用于实现前述方法实施例种图3对应的方案,具体的:
发送器,用于向用户设备发送第一指示信息,所述第一指示信息指示第一资源,以使得所述用户设备确定第二资源,所述第二资源和所述第一资源属于所述基站配置的同一个资源集合,所述第二资源与所述第一资源用于传输第一下行参考信号;
接收器,用于接收所述用户设备在第三资源上发送的第二信道和/或信号,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与在所述第二资源上接收所述第一下行参考信号时使用的空间维传输滤波器相同。
可选的,所述发送器向所述用户设备发送第一指示信息,包括:
所述发送器,用于向所述用户设备发送第一配置信息,为所述用户设备指示所述第一下行参考信号的资源集合;
所述发送器,还用于向所述用户设备发送第二配置信息,所述第二配置信息指示所述资源集合中的所述第一资源。
可选的,所述第二配置信息包括所述资源集合的标识和所述第一下行参考信号在所述资源集合内的资源标识。
可选的,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与在所述第二资源上接收所述第一下行参考信号时使用的空间维传输滤波器相同,包括:
所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与所述用 户设备接收所述第一配置信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号时使用的空间维传输滤波器相同;
或者,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与所述用户设备接收所述第二配置信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号时使用的空间维传输滤波器相同;
或者,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与所述用户设备发送所述第二信道和/或信号之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号时使用的空间维传输滤波器相同。
图5提供了一种终端的结构示意图。该终端可适用于图1所示出的系统中。为了便于说明,图5仅示出了终端的主要部件。如图5所示,终端10包括处理器、存储器、控制电路或天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述的码本。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。具输入输出装置,例如触摸屏、显示屏或键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图5仅示出了一个存储器和处理器。在实际的终端中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本发明实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端进行控制,执行软件程序,处理软件程序的数据。图5中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端可以包括多个基带处理器以适应不同的网络制式,终端可以包括多个中央处理器以增强其处理能力,终端的各个部件可以通过各种总线连接。基带处理器也可以表述为基带处理电路或者基带处理芯片。中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,在发明实施例中,可以将具有收发功能的天线和控制电路视为终端10的收发单元801,将具有处理功能的处理器视为终端10的处理单元802。如图5所示,终端10包括收发单元801和处理单元802。收发单元也可以称为收发器、收发机或收 发装置等。可选的,可以将收发单元801中用于实现接收功能的器件视为接收单元,将收发单元801中用于实现发送功能的器件视为发送单元,即收发单元801包括接收单元和发送单元示例性的,接收单元也可以称为接收机、接收器或接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
上述用户设备可以用于实现前述方法实施例中的方法,针对图2对应的方法:
接收器,用于接收来自于网络设备的第一指示信息,所述第一指示信息指示第一资源;
处理器,用于确定第二资源,所述第二资源与所述第一资源属于所述网络设备配置的同一个资源集合,所述第一资源与所述第二资源用于传输第一下行参考信号;
所述接收器,还用于在第三资源上接收通过第三天线端口传输的第二信号和/或信道,所述第三天线端口与所述第二资源上传输第一下行参考信号的第二天线端口具有准共址QCL关系
可选的,所述第一指示信息还用于指示QCL类型,所述QCL类型包括空间接收端参数,所述QCL关系的类型是所述QCL类型。
可选的,所述接收器用于接收来自于所述网络设备的第一指示信息,包括:
所述接收器,用于接收来自于所述网络设备的传输配置指示TCI配置信息,为所述用户设备指示TCI状态集合,所述TCI状态对应所述第一下行参考信号的至少一个资源;
所述接收器,还用于接收来自于所述网络设备的TCI指示信息,所述TCI指示信息指示所述TCI状态集合中的一个TCI状态,所述一个TCI状态对应所述第一资源
可选的,所述第一指示信息包括所述第一资源所属的资源集合标识和在所述资源集合内的资源标识。
可选的,所述第三天线端口与所述第二天线端口具有QCL关系,包括:
所述第三天线端口与在所述用户设备接收所述TCI配置信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号使用的天线端口具有QCL关系;
或者,所述第三天线端口与在所述用户设备接收所述TCI指示信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号使用的天线端口具有QCL关系;
或者,所述第三天线端口与在所述用户设备接收所述第二信号和/或信道之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号使用的天线端口具有QCL关系。
上述用户设备还可以用于实现前述方法实施例中图3对应的方法,具体的:
接收器,用于接收来自于网络设备第一指示信息,所述第一指示信息指示第一资源;
处理器,用于确定第二资源,所述第二资源和所述第一资源属于所述基站配置的同一个资源集合,所述第二资源与所述第一资源用于传输第一下行参考信号;
发送器,用于在第三资源上发送第二信道和/或信号,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与在所述第二资源上接收所述第一下行参 考信号时使用的空间维传输滤波器相同。
可选的,所述接收器用于接收来自于网络设备第一指示信息,包括:
所述接收器,用于接收来自于所述网络设备的第一配置信息,为所述用户设备指示所述第一下行参考信号的资源集合;
所述接收器,还用于接收来自于所述网络设备的第二配置信息,所述第二配置信息指示所述资源集合中的所述第一资源。
可选的,所述第二配置信息包括所述资源集合的标识和所述第一下行参考信号在所述资源集合内的资源标识。
可选的,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与在所述第二资源上接收所述第一下行参考信号时使用的空间维传输滤波器相同,包括:
所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与所述用户设备接收所述第一配置信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号时使用的空间维传输滤波器相同;
或者,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与所述用户设备接收所述第二配置信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号时使用的空间维传输滤波器相同;
或者,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与所述用户设备发送所述第二信道和/或信号之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号时使用的空间维传输滤波器相同。
需要说明的是,本发明实施例中的“第一”、“第二”、“第三”等编号,仅仅是为了在一个实施例中区分具有相同名称的多个名词,并不表示次序或设备处理的顺序。不同实施例中具有不同编号的名词,可能具有相同的含义;不同实施例中具有相同编号的名词,也可能具有不同的含义。具体含义要根据具体方案确定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (40)

  1. 一种通信方法,其特征在于,包括:
    用户设备接收来自于网络设备的第一指示信息,所述第一指示信息指示第一资源;
    所述用户设备确定第二资源,所述第二资源与所述第一资源属于所述网络设备配置的同一个资源集合,所述第一资源与所述第二资源用于传输第一下行参考信号;
    所述用户设备在第三资源上接收通过第三天线端口传输的第二信号和/或信道,所述第三天线端口与所述第二资源上传输所述第一下行参考信号的第二天线端口具有准共址QCL关系。
  2. 根据权利要求1所述的方法,其特征在于,所述第一指示信息还用于指示QCL类型,所述QCL类型包括空间接收端参数,所述QCL关系的类型是所述QCL类型。
  3. 根据权利要求1或2所述的方法,其特征在于,所述用户设备接收来自于网络设备的第一指示信息,包括:
    所述用户设备接收来自于所述网络设备的传输配置指示TCI配置信息,为所述用户设备指示TCI状态集合,所述TCI状态对应所述第一下行参考信号的至少一个资源;
    所述用户设备接收来自于所述网络设备的TCI指示信息,所述TCI指示信息指示所述TCI状态集合中的一个TCI状态,所述一个TCI状态对应所述第一资源。
  4. 根据权利要求3所述的方法,其特征在于,所述第一指示信息包括所述第一资源所属的资源集合标识和在所述资源集合内的资源标识。
  5. 根据权利要求3或4所述的方法,其特征在于,所述第三天线端口与所述第二天线端口具有QCL关系,包括:
    所述第三天线端口与在所述用户设备接收所述TCI配置信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号使用的天线端口具有QCL关系;
    或者,所述第三天线端口与在所述用户设备接收所述TCI指示信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号使用的天线端口具有QCL关系;
    或者,所述第三天线端口与在所述用户设备接收所述第二信号和/或信道之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号使用的天线端口具有QCL关系。
  6. 一种通信方法,其特征在于,包括:
    网络设备向用户设备发送第一指示信息,所述第一指示信息指示第一资源,以使得所述用户设备确定第二资源,所述第二资源与所述第一资源属于所述网络设备配置的同一个资源集合,所述第一资源与所述第二资源用于传输第一下行参考信号;
    所述网络设备在第三资源上通过第三天线端口向所述用户设备发送第二信号和/或信道,所述第三天线端口与所述第二资源上传输所述第一下行参考信号的第二天线端口具有准共址QCL关系。
  7. 根据权利要求6所述的方法,其特征在于,所述第一指示信息还用于指示QCL类型,所述QCL类型包括空间接收端参数,所述QCL关系的类型是所述QCL类型。
  8. 根据权利要求6或7所述的方法,其特征在于,所述网络设备向所述用户设备发送第一指示信息,包括:
    所述网络设备向所述用户设备发送传输配置指示TCI配置信息,为所述用户设备指示TCI状态集合,所述TCI状态对应所述第一下行参考信号的至少一个资源;
    所述网络设备向所述用户设备发送TCI指示信息,所述TCI指示信息指示所述TCI状态集合中的一个TCI状态,所述一个TCI状态对应所述第一资源。
  9. 根据权利要求8所述的方法,其特征在于,所述第一指示信息包括所述第一资源所属的资源集合标识和在所述资源集合内的资源标识。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第三天线端口与所述第二天线端口具有QCL关系,包括:
    所述第三天线端口与在所述用户设备接收所述TCI配置信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号使用的天线端口具有QCL关系;
    或者,所述第三天线端口与在所述用户设备接收所述TCI指示信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号使用的天线端口具有QCL关系;
    或者,所述第三天线端口与在所述用户设备接收所述第二信号和/或信道之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号使用的天线端口具有QCL关系。
  11. 一种用户设备,其特征在于,包括:
    接收器,用于接收来自于网络设备的第一指示信息,所述第一指示信息指示第一资源;
    处理器,用于确定第二资源,所述第二资源与所述第一资源属于所述网络设备配置的同一个资源集合,所述第一资源与所述第二资源用于传输第一下行参考信号;
    所述接收器,还用于在第三资源上接收通过第三天线端口传输的第二信号和/或信道,所述第三天线端口与所述第二资源上传输第一下行参考信号的第二天线端口具有准共址QCL关系。
  12. 根据权利要求11所述的用户设备,其特征在于,所述第一指示信息还用于指示QCL类型,所述QCL类型包括空间接收端参数,所述QCL关系的类型是所述QCL类型。
  13. 根据权利要求11或12所述的用户设备,其特征在于,所述接收器用于接收来自于所述网络设备的第一指示信息,包括:
    所述接收器,用于接收来自于所述网络设备的传输配置指示TCI配置信息,为所述用户设备指示TCI状态集合,所述TCI状态对应所述第一下行参考信号的至少一个资源;
    所述接收器,还用于接收来自于所述网络设备的TCI指示信息,所述TCI指示信息指示所述TCI状态集合中的一个TCI状态,所述一个TCI状态对应所述第一资源
  14. 根据权利要求13所述的用户设备,其特征在于,所述第一指示信息包括所述第一资源所属的资源集合标识和在所述资源集合内的资源标识。
  15. 根据权利要求13或14所述的用户设备,其特征在于,所述第三天线端口与所述第二天线端口具有QCL关系,包括:
    所述第三天线端口与在所述用户设备接收所述TCI配置信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号使用的天线端口具有QCL关系;
    或者,所述第三天线端口与在所述用户设备接收所述TCI指示信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号使用的天线端口具有QCL关系;
    或者,所述第三天线端口与在所述用户设备接收所述第二信号和/或信道之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号使用的天线端口具有QCL关系。
  16. 一种网络设备,其特征在于,包括:
    处理器,用于生成第一指示信息,所述第一指示信息指示第一资源;
    发送器,用于向用户设备发送所述第一指示信息,以使得所述用户设备确定第二资源,所述第二资源与所述第一资源属于所述网络设备配置的同一个资源集合,所述第一资源与所述第二资源用于传输第一下行参考信号;
    所述发送器,还用于在第三资源上通过第三天线端口向所述用户设备发送第二信号和/或信道,所述第三天线端口与所述第二资源上传输第一下行参考信号的第二天线端口具有准共址QCL关系。
  17. 根据权利要求16所述的网络设备,其特征在于,所述第一指示信息还用于指示QCL类型,所述QCL类型包括空间接收端参数,所述QCL关系的类型是所述QCL类型。
  18. 根据权利要求16或17所述的网络设备,其特征在于,所述发送器用于向所述用户设备发送第一指示信息,包括:
    所述发送器,用于向所述用户设备发送传输配置指示TCI配置信息,为所述用户设备指示TCI状态集合,所述TCI状态对应所述第一下行参考信号的至少一个资源;
    所述发送器,还用于向所述用户设备发送TCI指示信息,所述TCI指示信息指示所述TCI状态集合中的一个TCI状态,所述一个TCI状态对应所述第一资源。
  19. 根据权利要求18所述的网络设备,其特征在于,所述第一指示信息包括所述第一资源所属的资源集合标识和在所述资源集合内的资源标识。
  20. 根据权利要求18或19所述的网络设备,其特征在于,所述第三天线端口与所述第二天线端口具有QCL关系,包括:
    所述第三天线端口与在所述用户设备接收所述TCI配置信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号使用的天线端口具有QCL关系;
    或者,所述第三天线端口与在所述用户设备接收所述TCI指示信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号使用的天线端口具有QCL关系;
    或者,所述第三天线端口与在所述用户设备接收所述第二信号和/或信道之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号使用的天线端口具有QCL关系。
  21. 一种通信方法,其特征在于,包括:
    用户设备接收来自于网络设备第一指示信息,所述第一指示信息指示第一资源;
    所述用户设备确定第二资源,所述第二资源和所述第一资源属于所述基站配置的同一个资源集合,所述第二资源与所述第一资源用于传输第一下行参考信号;
    所述用户设备在第三资源上发送第二信道和/或信号,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与在所述第二资源上接收所述第一下行参考信号时使用的空间维传输滤波器相同。
  22. 根据权利要求21所述的方法,其特征在于,所述用户设备接收来自于网络设备第一指示信息,包括:
    所述用户设备接收来自于所述网络设备的第一配置信息,为所述用户设备指示所述第一下行参考信号的资源集合;
    所述用户设备接收来自于所述网络设备的第二配置信息,所述第二配置信息指示所述资源集合中的所述第一资源。
  23. 根据权利要求22所述的方法,其特征在于,所述第二配置信息包括所述资源集合的标识和所述第一下行参考信号在所述资源集合内的资源标识。
  24. 根据权利要求22或23所述的方法,其特征在于,所述用户设备发送所述第二信 道和/或信号时使用的空间维传输滤波器与在所述第二资源上接收所述第一下行参考信号时使用的空间维传输滤波器相同,包括:
    所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与所述用户设备接收所述第一配置信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号时使用的空间维传输滤波器相同;
    或者,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与所述用户设备接收所述第二配置信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号时使用的空间维传输滤波器相同;
    或者,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与所述用户设备发送所述第二信道和/或信号之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号时使用的空间维传输滤波器相同。
  25. 一种通信方法,其特征在于,包括:
    网络设备向用户设备发送第一指示信息,所述第一指示信息指示第一资源,以使得所述用户设备确定第二资源,所述第二资源和所述第一资源属于所述基站配置的同一个资源集合,所述第二资源与所述第一资源用于传输第一下行参考信号;
    所述网络设备接收所述用户设备在第三资源上发送的第二信道和/或信号,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与在所述第二资源上接收所述第一下行参考信号时使用的空间维传输滤波器相同。
  26. 根据权利要求25所述的方法,其特征在于,所述网络设备向所述用户设备发送第一指示信息,包括:
    所述网络设备向所述用户设备发送第一配置信息,为所述用户设备指示所述第一下行参考信号的资源集合;
    所述网络设备向所述用户设备发送第二配置信息,所述第二配置信息指示所述资源集合中的所述第一资源。
  27. 根据权利要求26所述的方法,其特征在于,所述第二配置信息包括所述资源集合的标识和所述第一下行参考信号在所述资源集合内的资源标识。
  28. 根据权利要求26或27所述的方法,其特征在于,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与在所述第二资源上接收所述第一下行参考信号时使用的空间维传输滤波器相同,包括:
    所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与所述用户设备接收所述第一配置信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号时使用的空间维传输滤波器相同;
    或者,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与所述用户设备接收所述第二配置信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号时使用的空间维传输滤波器相同;
    或者,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与所述用户设备发送所述第二信道和/或信号之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号时使用的空间维传输滤波器相同。
  29. 一种用户设备,其特征在于,包括:
    接收器,用于接收来自于网络设备第一指示信息,所述第一指示信息指示第一资源;
    处理器,用于确定第二资源,所述第二资源和所述第一资源属于所述基站配置的同一个资源集合,所述第二资源与所述第一资源用于传输第一下行参考信号;
    发送器,用于在第三资源上发送第二信道和/或信号,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与在所述第二资源上接收所述第一下行参考信号时使用的空间维传输滤波器相同。
  30. 根据权利要求29所述的用户设备,其特征在于,所述接收器用于接收来自于网络设备第一指示信息,包括:
    所述接收器,用于接收来自于所述网络设备的第一配置信息,为所述用户设备指示所述第一下行参考信号的资源集合;
    所述接收器,还用于接收来自于所述网络设备的第二配置信息,所述第二配置信息指示所述资源集合中的所述第一资源。
  31. 根据权利要求30所述的用户设备,其特征在于,所述第二配置信息包括所述资源集合的标识和所述第一下行参考信号在所述资源集合内的资源标识。
  32. 根据权利要求30或31所述的用户设备,其特征在于,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与在所述第二资源上接收所述第一下行参考信号时使用的空间维传输滤波器相同,包括:
    所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与所述用户设备接收所述第一配置信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号时使用的空间维传输滤波器相同;
    或者,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与所述用户设备接收所述第二配置信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号时使用的空间维传输滤波器相同;
    或者,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与所述用户设备发送所述第二信道和/或信号之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号时使用的空间维传输滤波器相同。
  33. 一种网络设备,其特征在于,包括:
    发送器,用于向用户设备发送第一指示信息,所述第一指示信息指示第一资源,以使得所述用户设备确定第二资源,所述第二资源和所述第一资源属于所述基站配置的同一个资源集合,所述第二资源与所述第一资源用于传输第一下行参考信号;
    接收器,用于接收所述用户设备在第三资源上发送的第二信道和/或信号,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与在所述第二资源上接收所述第一下行参考信号时使用的空间维传输滤波器相同。
  34. 根据权利要求33所述的网络设备,其特征在于,所述发送器用于向所述用户设备发送第一指示信息,包括:
    所述发送器,用于向所述用户设备发送第一配置信息,为所述用户设备指示所述第一下行参考信号的资源集合;
    所述发送器,还用于向所述用户设备发送第二配置信息,所述第二配置信息指示所述资源集合中的所述第一资源。
  35. 根据权利要求34所述的网络设备,其特征在于,所述第二配置信息包括所述资源集合的标识和所述第一下行参考信号在所述资源集合内的资源标识。
  36. 根据权利要求34或35所述的网络设备,其特征在于,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与在所述第二资源上接收所述第一下行参考信号时使用的空间维传输滤波器相同,包括:
    所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与所述用户设备接收所述第一配置信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号时使用的空间维传输滤波器相同;
    或者,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与所述用户设备接收所述第二配置信息之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号时使用的空间维传输滤波器相同;
    或者,所述用户设备发送所述第二信道和/或信号时使用的空间维传输滤波器与所述用户设备发送所述第二信道和/或信号之前在所述第二资源上最近一次传输或测量的所述第一下行参考信号时使用的空间维传输滤波器相同。
  37. 一种计算机可读存储介质,包含指令,当其在计算机上运行时,使得计算机执行如权利要求1-10任一项所涉及的方法。
  38. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求1-10任一项所涉及的方法。
  39. 一种计算机可读存储介质,包含指令,当其在计算机上运行时,使得计算机执行如权利要求21-28任一项所涉及的方法。
  40. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求21-28任一项所涉及的方法。
PCT/CN2019/071185 2018-01-12 2019-01-10 一种通信方法及装置 WO2019137441A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19738250.0A EP3720219B1 (en) 2018-01-12 2019-01-10 Communication method and device
CN201980007211.9A CN111602449B (zh) 2018-01-12 2019-01-10 一种通信方法及装置
US16/925,404 US11323222B2 (en) 2018-01-12 2020-07-10 Communication method, and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810032282.1 2018-01-12
CN201810032282.1A CN110035518B (zh) 2018-01-12 2018-01-12 一种通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/925,404 Continuation US11323222B2 (en) 2018-01-12 2020-07-10 Communication method, and apparatus

Publications (1)

Publication Number Publication Date
WO2019137441A1 true WO2019137441A1 (zh) 2019-07-18

Family

ID=67219394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071185 WO2019137441A1 (zh) 2018-01-12 2019-01-10 一种通信方法及装置

Country Status (4)

Country Link
US (1) US11323222B2 (zh)
EP (1) EP3720219B1 (zh)
CN (2) CN110035518B (zh)
WO (1) WO2019137441A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10911119B2 (en) * 2015-04-03 2021-02-02 Sony Corporation Wireless communication device and method
WO2021062719A1 (en) * 2019-09-30 2021-04-08 Nec Corporation Methods for communication, terminal device, network device, and computer readable medium
WO2021159354A1 (en) * 2020-02-12 2021-08-19 Apple Inc. Single downlink control information (dci) multi-transmission and receipt point (multi-trp) time division multiplexing (tdm) enhancement
WO2021174409A1 (en) * 2020-03-03 2021-09-10 Qualcomm Incorporated Channel state information-reference signal resources with multiple transmission configuration indication states

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112994856A (zh) * 2019-12-12 2021-06-18 中国移动通信有限公司研究院 一种配置方法、终端及网络侧设备
CN113973369A (zh) * 2020-07-22 2022-01-25 维沃移动通信有限公司 获取、指示通信资源的方法、装置及电子设备
CN114982266A (zh) * 2020-11-20 2022-08-30 北京小米移动软件有限公司 波束指示方法、装置及通信设备
EP4280508A1 (en) * 2021-01-14 2023-11-22 Beijing Xiaomi Mobile Software Co., Ltd. Beam indication method and apparatus
WO2022155466A1 (en) * 2021-01-14 2022-07-21 Ofinno, Llc Pdcch reception for rrc connection made through small data transmission

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100002649A1 (en) * 2007-12-10 2010-01-07 Koon Hoo Teo Method and System for Generating Antenna Selection Signals in Wireless Networks
CN105940699A (zh) * 2014-02-07 2016-09-14 株式会社Ntt都科摩 用户装置、基站以及通信方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101890419B1 (ko) * 2012-01-16 2018-08-21 삼성전자주식회사 기준신호를 송수신하기 위한 방법 및 장치
WO2013119073A1 (ko) * 2012-02-11 2013-08-15 엘지전자 주식회사 채널상태정보를 보고하기 위한 방법, 이를 지원하기 위한 방법 및 이들을 위한 장치
CN103312481A (zh) 2012-03-13 2013-09-18 华为技术有限公司 信道搜索方法、设备和系统
KR102086518B1 (ko) 2012-10-25 2020-03-09 엘지전자 주식회사 무선 통신 시스템에서 하향링크 신호 송수신 방법 및 이를 위한 장치
WO2017165447A1 (en) * 2016-03-24 2017-09-28 Intel Corporation Measurement restrictions for comp
US11038557B2 (en) * 2016-03-31 2021-06-15 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving reference signals in wireless communication
CN107306177B (zh) * 2016-04-22 2023-11-10 华为技术有限公司 传输数据的方法、用户设备和网络侧设备
CN107342840B (zh) * 2016-04-29 2021-09-03 中兴通讯股份有限公司 准共位置类型的处理方法及装置
WO2018010162A1 (en) * 2016-07-15 2018-01-18 Qualcomm Incorporated Port indexing for csi-rs with larger number of antenna ports for efd-mimo
US10834716B2 (en) * 2016-07-28 2020-11-10 Lg Electronics Inc. Method for receiving reference signal in wireless communication system and device therefor
CN110050431B (zh) * 2016-12-08 2022-04-19 瑞典爱立信有限公司 可控制的csi-rs密度
US10708028B2 (en) * 2017-03-08 2020-07-07 Samsung Electronics Co., Ltd. Method and apparatus for reference signals in wireless system
EP3669484B1 (en) * 2017-08-18 2022-06-15 Ntt Docomo, Inc. Wireless communication method, user equipment, and base station
EP3829073A4 (en) * 2018-09-03 2021-09-29 Samsung Electronics Co., Ltd. METHOD AND DEVICE FOR CONFIGURING A TERMINAL ANTENNA IN A WIRELESS COMMUNICATION SYSTEM

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100002649A1 (en) * 2007-12-10 2010-01-07 Koon Hoo Teo Method and System for Generating Antenna Selection Signals in Wireless Networks
CN105940699A (zh) * 2014-02-07 2016-09-14 株式会社Ntt都科摩 用户装置、基站以及通信方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP: "3GPP Technical Specification Group Radio Access Network", 3GPP TS 38.214 V1.2.0, 31 December 2017 (2017-12-31), pages 310, XP055625138 *
See also references of EP3720219A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10911119B2 (en) * 2015-04-03 2021-02-02 Sony Corporation Wireless communication device and method
WO2021062719A1 (en) * 2019-09-30 2021-04-08 Nec Corporation Methods for communication, terminal device, network device, and computer readable medium
WO2021159354A1 (en) * 2020-02-12 2021-08-19 Apple Inc. Single downlink control information (dci) multi-transmission and receipt point (multi-trp) time division multiplexing (tdm) enhancement
WO2021174409A1 (en) * 2020-03-03 2021-09-10 Qualcomm Incorporated Channel state information-reference signal resources with multiple transmission configuration indication states

Also Published As

Publication number Publication date
CN111602449A (zh) 2020-08-28
CN111602449B (zh) 2022-11-11
EP3720219A4 (en) 2020-12-30
EP3720219A1 (en) 2020-10-07
EP3720219B1 (en) 2022-08-31
US11323222B2 (en) 2022-05-03
US20200366433A1 (en) 2020-11-19
CN110035518B (zh) 2022-05-24
CN110035518A (zh) 2019-07-19

Similar Documents

Publication Publication Date Title
US11323222B2 (en) Communication method, and apparatus
CN111201733B (zh) 参考信号的指示方法、用户设备及接入点
US11139945B2 (en) Communication method, terminal, and network device for determining a beam for an uplink channel
US11431453B2 (en) Reference signal transmission method, and apparatus
US11064499B2 (en) Communication method and apparatus
CN116800311A (zh) 传输预编码矩阵的指示方法和设备
WO2020207369A1 (zh) 一种信道测量方法和通信装置
WO2021052473A1 (zh) 通信方法和通信装置
KR102314568B1 (ko) 빔 포밍된 사운딩 참조 신호를 지원하기 위한 시스템 및 방법
WO2018137397A1 (zh) 一种配置信息的方法、装置及系统
CN112585884B (zh) 通信方法、装置、网络设备、终端设备及系统
WO2021013138A1 (zh) 无线网络通信方法和通信装置
WO2022153264A1 (en) Csi feedback for single dci based multi-trp transmission
WO2023273969A1 (zh) 资源测量方法和通信装置
WO2021097625A1 (zh) 信道确定的方法和通信装置
WO2020057284A1 (zh) 一种信道状态信息的确定方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19738250

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019738250

Country of ref document: EP

Effective date: 20200703