WO2020207369A1 - 一种信道测量方法和通信装置 - Google Patents

一种信道测量方法和通信装置 Download PDF

Info

Publication number
WO2020207369A1
WO2020207369A1 PCT/CN2020/083466 CN2020083466W WO2020207369A1 WO 2020207369 A1 WO2020207369 A1 WO 2020207369A1 CN 2020083466 W CN2020083466 W CN 2020083466W WO 2020207369 A1 WO2020207369 A1 WO 2020207369A1
Authority
WO
WIPO (PCT)
Prior art keywords
precoding
granularity
resource
reference signal
measured
Prior art date
Application number
PCT/CN2020/083466
Other languages
English (en)
French (fr)
Inventor
黄宗浩
庞继勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020207369A1 publication Critical patent/WO2020207369A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting

Definitions

  • This application relates to the field of communication, and more specifically, to a channel measurement method and communication device.
  • Massive MIMO massive multiple-input multiple output
  • network equipment can reduce interference between multiple users and interference between multiple signal streams of the same user through precoding technology. Thereby improving signal quality, realizing space division multiplexing, and improving spectrum utilization.
  • the terminal device may perform channel measurement according to the received reference signal to determine the precoding vector to be fed back.
  • the reference signal received by the terminal device may be a pre-coded reference signal, which may be called a beamformed reference signal or a pre-coded reference signal.
  • the network equipment uses the same precoding vector to precode the downlink reference signal on the broadband, and the obtained feedback of the terminal equipment to the channel state information (CSI) may not be necessarily Can reflect the most real channel state. Therefore, the data transmission performance of the communication system may decrease.
  • CSI channel state information
  • the present application provides a channel measurement method and communication device, in order to obtain accurate feedback of the terminal equipment on the channel state, thereby improving data transmission performance.
  • a channel measurement method is provided.
  • the method may be executed by the terminal device, or may also be executed by a chip configured in the terminal device. This application does not limit this.
  • the method includes: receiving first indication information, the first indication information is used to indicate a first granularity, the first granularity is a granularity corresponding to a precoding vector, and the precoding vector is used to transmit
  • the pre-configured reference signal on the resource to be measured is pre-coded; the pre-coded reference signal transmitted on the resource to be measured is obtained by precoding the reference signal with one or more precoding vectors, and the resource to be measured includes multiple The time-frequency resources used to transmit the precoding reference signal in the resource block RB, and the time-frequency resources used to transmit the precoding reference signal in any two RBs in the plurality of RBs are relative to each other in the RB to which they belong The positions are the same; the multiple RBs corresponding to the resource to be measured include multiple frequency domain units corresponding to the first granularity, and the precoding reference signals transmitted on the same frequency domain unit correspond to the same precoding vector; Channel measurement is performed on the precoding reference signal received on the resource to be measured, and channel state information
  • a channel measurement method is provided.
  • the method can be executed by a network device, or can also be executed by a chip configured in the network device. This application does not limit this.
  • the method includes: generating first indication information, the first indication information is used to indicate a first granularity, the first granularity is a granularity corresponding to a precoding vector, and the precoding vector is used to transmit
  • the pre-configured reference signal on the resource to be measured is pre-coded; the pre-coded reference signal transmitted on the resource to be measured is obtained by precoding the reference signal with one or more precoding vectors, and the resource to be measured includes multiple The time-frequency resources used to transmit the precoding reference signal in the resource block RB, and the time-frequency resources used to transmit the precoding reference signal in any two RBs of the plurality of RBs are in the respective RBs to which they belong
  • the relative positions of the RBs are the same; the multiple RBs corresponding to the resource to be measured include multiple frequency domain units corresponding to the first granularity, and the precoding reference signals transmitted on the same frequency domain unit are pre-coding by the same precoding vector Obtained by encoding; sending the first indication information.
  • the network device can use different precoding vectors for the reference signals configured on different frequency domain resources for the same CSI-RS resource to perform precoding, so as to be compatible with different frequency domain resources.
  • the state of the channel is adapted to the frequency selection characteristics of the channel.
  • the terminal device may independently perform channel measurement based on the frequency domain unit corresponding to the first granularity. Therefore, it is beneficial to obtain accurate feedback of the channel state when the channel frequency selection characteristic is obvious. This helps to improve the data transmission performance of the system.
  • the method further includes: receiving second indication information, where the second indication information is used to indicate that the second indication information is configured for the resource to be measured.
  • the second indication information is used to indicate that the second indication information is configured for the resource to be measured.
  • the method further includes: sending second indication information, where the second indication information is used to indicate that the first indication is configured for the resource to be measured. granularity.
  • the network device can independently choose whether to configure the first granularity for the resource to be measured, that is, whether to configure different precoding vectors for the resource to be measured on different frequency domain units.
  • the terminal device may determine the channel measurement method based on the second indication information. For example, when the frequency domain resources occupy a large bandwidth and the frequency selection characteristics are obvious, the network equipment can use different precoding vectors to precode the reference signal of the same port, and the terminal equipment can use independent processing to perform the channel Measurement to obtain channel state feedback that better matches the channel frequency selection characteristics; when frequency domain resources occupy a small bandwidth and frequency domain correlation is better, network equipment can use the same precoding vector to perform reference signals on the same port.
  • the terminal equipment can also use joint processing to perform channel measurement to improve measurement accuracy. Therefore, the frequency domain resources of different bandwidths can be adapted to meet different requirements, and the switching is very flexible. At the same time, more accurate feedback of channel state information can also be obtained, which is beneficial to improve data transmission performance.
  • the precoding reference signals transmitted on at least two frequency domain units in the resource to be measured correspond to different precoding vectors.
  • the precoding vector corresponding to each frequency domain unit may be the same or different.
  • the precoding reference signal transmitted on each frequency domain unit may be obtained by precoding the reference signal based on the same or different precoding vectors. This application does not limit this.
  • the precoding vectors corresponding to the precoding reference signals transmitted on each frequency domain unit in the resource to be measured are different from each other.
  • each frequency domain unit corresponding to the first granularity may be configured with a different precoding vector to generate the precoding reference signal.
  • the precoding vector corresponding to each frequency domain unit can be adapted to the channel state of this frequency domain unit, thereby facilitating accurate feedback from the terminal device.
  • the first granularity is the same as the second granularity
  • the second granularity is the granularity of the frequency domain unit on which the CSI reporting is based.
  • the frequency domain unit granularity corresponding to the precoding vector and the frequency domain unit granularity corresponding to the CSI report may be the same granularity.
  • the first granularity and the second granularity can be used at the same time through only one field.
  • the first granularity and the second granularity are indicated by the same field. Indicate two granularities through the same field, which helps to save signaling overhead.
  • first granularity and the second granularity are the same, the first granularity and the second granularity can also be indicated through different fields or different signaling, which is not limited in this application.
  • the first indication information is carried in the CSI reporting configuration.
  • the first indication information may be a field carried in the CSI report configuration, for example, an existing field may be reused, or a newly added field may be used. This application does not limit this.
  • the frequency domain unit is a subband
  • the first indication information is carried by a subband granularity field in the CSI reporting configuration.
  • the first indication information may be carried by the subband granularity field in the CSI reporting configuration defined in the existing protocol.
  • the granularity indicated by the subband granularity is the first granularity or the second granularity described above.
  • the first indication information is carried in the channel state information reference signal CSI-RS resource mapping configuration.
  • the first indication information may carry a field in the CSI-RS resource mapping configuration, for example, an existing field may be reused, or a newly added field may be used. This application does not limit this.
  • a channel measurement method is provided.
  • the method may be executed by the terminal device, or may also be executed by a chip configured in the terminal device. This application does not limit this.
  • the method includes: receiving second indication information, the second indication information being used to indicate whether a first granularity is configured for the resource to be measured; the resource to be measured includes a plurality of resource blocks RB used for transmission precoding The time-frequency resources of the reference signal, and the time-frequency resources used to transmit the precoding reference signal in any two RBs of the multiple RBs are the same; the first granularity is the granularity corresponding to the precoding vector; when When the resource to be measured is configured with the first granularity, the precoding reference signal transmitted on the resource to be measured is obtained by precoding the reference signal with one or more precoding vectors, and corresponds to the first granularity The precoding reference signal transmitted on a frequency domain unit corresponding to the same precoding vector; when the resource to be measured is not configured with the first granularity, the precoding reference signal transmitted on the resource to be measured is composed of a precoding vector The reference signal is obtained by precoding; performing channel measurement according to the precoding reference signal received on the resource to be measured
  • a channel measurement method is provided.
  • the method can be executed by a network device, or can also be executed by a chip configured in the network device. This application does not limit this.
  • the method includes: generating second indication information, where the second indication information is used to indicate whether a first granularity is configured for the resource to be measured; the resource to be measured includes a plurality of resource blocks RB used for transmission precoding The time-frequency resources of the reference signal, and the time-frequency resources used to transmit the precoding reference signal in any two RBs of the multiple RBs are the same; the first granularity is the granularity corresponding to the precoding vector; when When the resource to be measured is configured with the first granularity, the precoding reference signal transmitted on the resource to be measured is obtained by precoding the reference signal with one or more precoding vectors, and corresponds to the first granularity The precoding reference signal transmitted on a frequency domain unit corresponding to the same precoding vector; when the resource to be measured is not configured with the first granularity, the precoding reference signal transmitted on the resource to be measured is composed of a precoding vector The reference signal is obtained by precoding; and the second indication information is sent.
  • the terminal device can determine whether the network device is configured with the first granularity for the resource to be transmitted based on the second indication information. That is, whether to configure different precoding vectors on different frequency domain units for the resource to be measured.
  • the terminal device may determine the channel measurement method based on the second indication information. For example, when the frequency domain resources occupy a large bandwidth and the frequency selection characteristics are obvious, the network equipment can use different precoding vectors to precode the reference signal of the same port, and the terminal equipment can use independent processing to perform the channel Measurement to obtain channel state feedback that better matches the channel frequency selection characteristics; when frequency domain resources occupy a small bandwidth and frequency domain correlation is better, network equipment can use the same precoding vector to perform reference signals on the same port.
  • the terminal equipment can also use joint processing to perform channel measurement to improve measurement accuracy. Therefore, the frequency domain resources of different bandwidths can be adapted to meet different requirements, and the switching is very flexible. At the same time, more accurate feedback of channel state information can also be obtained, which is beneficial to improve data transmission performance.
  • the precoding reference signal transmitted in the resource to be measured corresponds to the same port.
  • the same port may refer to a port corresponding to reference signals carried on multiple REs with the same relative position on each RB in the same CSI-RS resource.
  • the reference signal mentioned here may be, for example, a precoding reference signal.
  • the precoding reference signal of the same port may be obtained by performing precoding based on different precoding vectors. In other words, the precoding reference signal of the same port can correspond to different precoding vectors.
  • a communication device which includes various modules or units for executing the method in the first aspect or the third aspect and any one of the first aspect or the third aspect.
  • a communication device including a processor.
  • the processor is coupled with the memory, and can be used to execute instructions in the memory to implement the method in any one of the foregoing first aspect or third aspect and any one of the first aspect or third aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication device is a terminal device.
  • the communication interface may be a transceiver or an input/output interface.
  • the communication device is a chip configured in a terminal device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication device which includes various modules or units for executing the method in the second aspect or the fourth aspect, and any one of the second aspect or the fourth aspect.
  • a communication device including a processor.
  • the processor is coupled with the memory, and can be used to execute instructions in the memory to implement the method in any one of the foregoing second aspect or fourth aspect and the second aspect or fourth aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication device is a network device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip configured in a network device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes any one of the first aspect to the fourth aspect and any one of the first aspect to the fourth aspect Method in.
  • the above-mentioned processor can be one or more chips
  • the input circuit can be an input pin
  • the output circuit can be an output pin
  • the processing circuit can be a transistor, a gate circuit, a flip-flop, and various logic circuits, etc.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver
  • the signal output by the output circuit may be, for example, but not limited to, output to and transmitted by the transmitter
  • the circuit can be the same circuit, which is used as an input circuit and an output circuit at different times.
  • the embodiments of the present application do not limit the specific implementation manners of the processor and various circuits.
  • a processing device including a processor and a memory.
  • the processor is used to read instructions stored in the memory, receive signals through a receiver, and transmit signals through a transmitter to execute any one of the first to fourth aspects and any one of the first to fourth aspects.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory and the processor may be provided separately.
  • the memory can be a non-transitory (non-transitory) memory, such as a read only memory (ROM), which can be integrated with the processor on the same chip, or can be set in different On the chip, the embodiment of the present application does not limit the type of memory and the setting mode of the memory and the processor.
  • ROM read only memory
  • sending instruction information may be a process of outputting instruction information from the processor
  • receiving capability information may be a process of the processor receiving input capability information.
  • the data output by the processor can be output to the transmitter, and the input data received by the processor can come from the receiver.
  • the transmitter and receiver can be collectively referred to as a transceiver.
  • the processing device in the above tenth aspect may be one or more chips.
  • the processor in the processing device can be implemented by hardware or software.
  • the processor may be a logic circuit, integrated circuit, etc.; when implemented by software, the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory, and the memory may Integrated in the processor, can be located outside of the processor, and exist independently.
  • a computer program product includes: a computer program (also called code, or instruction), which when the computer program is executed, causes the computer to execute the first aspect to The fourth aspect and the method in any one of the possible implementation manners of the first to fourth aspects.
  • a computer program also called code, or instruction
  • a computer-readable medium stores a computer program (also called code, or instruction) when it runs on a computer, so that the computer executes the first aspect to The fourth aspect and the method in any one of the possible implementation manners of the first to fourth aspects.
  • a computer program also called code, or instruction
  • a communication system including the aforementioned network equipment and terminal equipment.
  • FIG. 1 is a schematic diagram of a communication system applicable to the channel measurement method provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of the correspondence between CSI-RS resources, ports, and precoding vectors provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of time-frequency resources of precoding reference signals of multiple ports in multiple RBs according to an embodiment of the present application
  • FIG. 4 is a schematic flowchart of a method provided by an embodiment of the present application.
  • 5 is a schematic diagram of the correspondence between resources to be measured, ports, and precoding vectors provided by an embodiment of the present application
  • FIG. 6 is a schematic diagram of the first granularity and the second granularity provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a channel measurement method provided by another embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • FIG. 1 is a schematic diagram of a communication system 100 applicable to a vector indication method for constructing a precoding vector according to an embodiment of the present application.
  • the communication system 100 may include at least one network device, such as the network device 110 shown in FIG. 1; the communication system 100 may also include at least one terminal device, such as the terminal device 120 shown in FIG. 1.
  • the network device 110 and the terminal device 120 may communicate through a wireless link.
  • Each communication device, such as the network device 110 or the terminal device 120 can be equipped with multiple antennas.
  • the configured multiple antennas may include at least one transmitting antenna for transmitting signals and at least one receiving antenna for receiving signals. Therefore, the communication devices in the communication system 100, such as the network device 110 and the terminal device 120, can communicate through multi-antenna technology.
  • the network device in the wireless communication system may be any device with a wireless transceiver function.
  • the equipment includes, but is not limited to: evolved Node B (eNB), Radio Network Controller (RNC), Node B (Node B, NB), Base Station Controller (BSC) , Base transceiver station (Base Transceiver Station, BTS), home base station (for example, Home evolved NodeB, or Home Node B, HNB), baseband unit (BaseBand Unit, BBU), wireless fidelity (Wireless Fidelity, WIFI) system Access point (Access Point, AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), etc., can also be 5G, such as NR ,
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU for short).
  • CU implements some functions of gNB
  • DU implements some functions of gNB.
  • CU is responsible for processing non-real-time protocols and services, implementing radio resource control (RRC), and packet data convergence protocol (PDCP) The function of the layer.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and realizes the functions of the radio link control (RLC) layer, media access control (MAC) layer, and physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • the network device may be a device that includes one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network equipment in an access network (radio access network, RAN), or the CU can be divided into network equipment in a core network (core network, CN), which is not limited in this application.
  • the terminal equipment in the wireless communication system may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, User terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in unmanned driving (self-driving), wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( Wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and wireless terminals configured in transportation.
  • the embodiment of this application does not limit the application scenario.
  • FIG. 1 is only a simplified schematic diagram of an example for ease of understanding, and the communication system 100 may also include other network devices or other terminal devices, which are not shown in FIG. 1.
  • the processing procedure of the downlink signal at the physical layer before transmission may be executed by a network device, or may be executed by a chip configured in the network device.
  • the following are collectively referred to as network devices.
  • the codeword may be coded bits that have been coded (for example, including channel coding).
  • the codeword is scrambling to generate scrambled bits.
  • the scrambled bits undergo modulation mapping (modulation mapping) to obtain modulation symbols.
  • Modulation symbols are mapped to multiple layers, or transmission layers, through layer mapping.
  • the modulation symbols after layer mapping are precoding (precoding) to obtain a precoded signal.
  • the precoded signal is mapped to multiple REs after resource element (resource element, RE) mapping. These REs are then modulated by orthogonal frequency division multiplexing (OFDM) and then transmitted through an antenna port (antenna port).
  • OFDM orthogonal frequency division multiplexing
  • Channel state information (CSI) report In a wireless communication system, a receiving device (such as a terminal device) reports to a sending device (such as a network device) the channel attributes used to describe the communication link Information.
  • the CSI report may also be referred to as CSI for short.
  • the CSI report and CSI can express the same meaning.
  • CSI may include, but is not limited to, precoding matrix indicator (PMI), rank indicator (rank indication, RI), channel quality indicator (CQI), channel state information reference signal (channel state information reference signal) signal, CSI-RS resource indicator (CSI-RS resource indicator, CRI) and layer indicator (layer indicator, LI), etc.
  • PMI precoding matrix indicator
  • rank indicator rank indication, RI
  • CQI channel quality indicator
  • channel state information reference signal channel state information reference signal
  • CSI-RS resource indicator CRI
  • layer indicator layer indicator
  • the terminal device may report one or more CSI reports in a time unit (such as a slot), and each CSI report may correspond to a configuration condition for CSI reporting.
  • the configuration condition of the CSI report may be determined by, for example, the CSI report configuration (CSI-ReportConfig).
  • the terminal device can generate a CSI report based on a CSI report configuration.
  • CSI reporting configuration resources for channel measurement (resourceForChannelMeasurement) can be configured.
  • a CSI resource configuration identifier (CSI-ResourceConfigId) can be associated in the CSI report configuration to associate one or more resource sets defined by the CSI resource configuration, such as non-zero power (NZP) CSI -RS resource set (NZP-CSI-RS-ResourceSets). Since each resource set can include one or more resources, one or more resources can be associated with one CSI report configuration.
  • each NZP-CSI-RS resource set may include one or more NZP-CSI-RS resources (NZP-CSI-RS resources), and the same CSI reporting configuration may be associated with one or more NZP-CSI-RS resources.
  • NZP-CSI-RS Since zero power (ZP)-CSI-RS is not involved in this application, NZP-CSI-RS is referred to as CSI-RS for short.
  • the CSI-RS resource in the embodiment of the present application may be embodied in the protocol specifically as NZP-CSI-RS resource.
  • the CSI-RS resource can be determined by reporting the identifier of the configuration associated CSI resource configuration on the CSI.
  • the CSI-RS resource can be used to configure the transmission attributes of the CSI-RS. For example, time-frequency resource location, port mapping relationship, power factor, scrambling code, etc. For details, refer to the prior art.
  • the network device may send CSI-RS based on CSI-RS resources, and the terminal device may receive CSI-RS based on CSI-RS resources.
  • the time-frequency resource used to carry the reference signal may be determined, and may specifically be a resource element (RE).
  • the time-frequency resource used to carry the reference signal is recorded as the resource to be measured.
  • the reference signal transmitted through the resource to be measured is used for channel measurement.
  • the network device may, for example, configure the resource to be measured for the terminal device through the foregoing CSI resource configuration. In other words, the terminal device may determine the resource to be measured through the foregoing CSI resource configuration, for example.
  • the CSI reporting configuration may be an information element (information element, IE) in the RRC message.
  • IE information element
  • the CSI report configuration can be carried in the RRC message.
  • This application does not limit the signaling that carries the CSI report configuration. At the same time, this application does not limit the name of the CSI report configuration. This application does not exclude the possibility of using other possible terms to replace the CSI reporting configuration to achieve the same or similar functions.
  • the CSI resource configuration is the configuration signaling used to configure the transmission resource of the CSI-RS in the current protocol. For example, it can be carried in an RRC message.
  • this application does not limit the configuration signaling used to configure the transmission resource of the CSI-RS.
  • the signaling used to configure the transmission resources of the CSI-RS may be CSI-RS resource configuration or other signaling.
  • this application does not limit the specific signaling that carries the CSI resource configuration.
  • this application does not limit the name of the CSI resource configuration. This application does not exclude the possibility of using other possible attributes to replace the CSI resource configuration to achieve the same or similar functions.
  • Precoding reference signal also known as beamformed reference signal.
  • the beamforming reference signal may be a reference signal that has undergone precoding processing, and may be similar to a Class B (Class B) reference signal in the LTE protocol.
  • Class B Class B
  • the reference signal that has not undergone precoding processing may be similar to the Class A reference signal in the LTE protocol.
  • the precoded reference signal is referred to as a precoded reference signal; the reference signal that has not been precoded is referred to as a reference signal for short.
  • the reference signal involved in the embodiment of the present application may be a reference signal used for channel measurement.
  • the reference signal may be a channel state information reference signal (CSI-RS) or a sounding reference signal (sounding reference signal, SRS).
  • CSI-RS channel state information reference signal
  • SRS sounding reference signal
  • Antenna port referred to as port. It can be understood as a virtual antenna recognized by the receiving end. Or transmit antennas that can be distinguished in space. One antenna port can be configured for each virtual antenna. Each virtual antenna can be a weighted combination of multiple physical antennas. Each antenna port can correspond to a reference signal. Therefore, each antenna port (or port for short) can be called A reference signal port.
  • the reference signal of the same port may refer to the time-frequency resource used to carry the reference signal, such as resource element (RE), in multiple transmission blocks.
  • the relative positions of (resource block, RB) are the same. Specifically, it may mean that in any two RBs used to transmit reference signals of the same port, the REs used to carry the reference signals are at the same distance from the start position of the respective RB in the frequency domain, and are relative to the time of the respective RB. The starting position of the domain is the same distance.
  • the REs used to carry the reference signal have the same number of subcarriers as the start subcarrier interval of the RB to which they belong, and the number of The number of symbols is also the same.
  • the reference signal of the same port corresponds to the time-frequency resource with the same relative position in multiple RBs.
  • the antenna port may refer to the port of the reference signal after precoding.
  • the reference signal of each port may be a precoding reference signal obtained by precoding the reference signal based on the same precoding vector.
  • the precoding reference signal of each port can be transmitted through one or more RBs.
  • the precoding reference signal of the same port transmitted on the resource to be measured may be obtained by precoding the reference signal based on the same precoding vector.
  • Figure 2 shows an example of the correspondence between CSI-RS resources, ports, and precoding vectors.
  • the terminal device can determine the time-frequency resource used to carry the reference signal according to the CSI-RS resource configuration, that is, the aforementioned resource to be measured.
  • the reference signal transmitted based on the CSI-RS resource may be a CSI-RS.
  • the CSI-RS may be a pre-coded CSI-RS.
  • the port corresponding to the CSI-RS may be a CSI-RS port.
  • the network device can configure one or more CSI-RS resources for one CSI-RS resource set.
  • Fig. 2 shows an example in which one CSI-RS resource set includes two CSI-RS resources. Based on one CSI-RS resource, precoding reference signals corresponding to one or more ports can be transmitted.
  • Fig. 2 shows an example in which a precoding reference signal transmitted based on one CSI-RS resource corresponds to one port.
  • the frequency domain occupied bandwidth of each CSI-RS resource may include one or more subbands, and each subband may include one or more RBs.
  • the precoding reference signal transmitted based on CSI-RS resource 1 corresponds to CSI-RS port 1.
  • the precoding reference signal corresponding to the port 1 may be obtained by precoding the reference signal with the precoding vector 1.
  • the precoding reference signal corresponding to this port 1 is mapped to subband 1 and subband 2.
  • the ports corresponding to the precoding reference signals transmitted in subband 1 and subband 2 are configured by CSI-RS resource 1.
  • the precoding reference signal transmitted based on CSI-RS resource 2 corresponds to CSI-RS port 2.
  • the precoding reference signal corresponding to the port 2 may be obtained by precoding the reference signal by the precoding vector 2.
  • the precoding reference signal corresponding to this port 2 is mapped to subband 3 and subband 4.
  • the ports corresponding to the precoding reference signals transmitted in subband 3 and subband 4 are configured by CSI-RS resource 2.
  • the precoding reference signal corresponding to the same port is always obtained by precoding the reference signal with the same precoding vector on the frequency domain occupied bandwidth of the CSI-RS resource. Therefore, when the precoding reference signal transmitted based on a certain CSI-RS resource corresponds to a port, the precoding reference signal transmitted based on the CSI-RS resource may be obtained by precoding the reference signal based on a precoding vector.
  • FIG. 2 is only an example, showing an example in which a precoding reference signal transmitted based on one CSI-RS resource corresponds to one port.
  • the precoding reference signal transmitted based on one CSI-RS resource may also correspond to multiple ports.
  • the precoding reference signal transmitted based on one CSI-RS resource corresponds to multiple ports, among the multiple RBs included in the frequency domain occupied bandwidth of the CSI-RS resource, the precoding reference signal transmitted on each RB can be Corresponds to multiple ports.
  • the precoding reference signal of each port is carried in multiple RBs through time-frequency resources with the same relative position.
  • the precoding reference signals of the multiple ports in the same RB can be used to distinguish different ports by methods such as time division multiplexing (TDM) or frequency division multiplexing (FDM).
  • TDM time division multiplexing
  • FDM frequency division multiplexing
  • the resource to be measured is the time-frequency resource used to carry the reference signal of the same port.
  • the resource to be measured may include multiple REs distributed in the multiple RBs.
  • the resource to be measured may correspond to multiple RBs.
  • the relative positions of the time-frequency resources used to carry the precoding reference signal of the same port in the respective RBs are the same.
  • FIG. 3 shows an example of time-frequency resources of precoding reference signals of multiple ports in multiple RBs. As shown in the figure, two subbands, subband 1 and subband 2 are exemplarily shown in FIG. 3.
  • Subband 1 includes RB 1 and RB 2
  • subband 2 includes RB 3 and RB 4.
  • the two subbands are configured by the same CSI-RS resource, and can be used to transmit reference signals of 4 ports, for example, including port 1 to port 4.
  • the relative positions of the REs occupied by the reference signals of the same port in the respective RBs are the same.
  • the REs with the same shading in Figure 3 correspond to the same port.
  • the RE occupied by the reference signal of the port 1 occupies the first subcarrier and the first symbol of each RB in RB1, RB2, RB3, and RB4.
  • I will not list them one by one here. Therefore, the REs with the same shading in Fig. 3 can be regarded as an example of the resource to be measured.
  • Figure 3 shows four resources to be measured corresponding to four ports.
  • FIG. 3 is only for ease of understanding, and shows several examples of resources to be measured. But this should not constitute any limitation to this application.
  • the number of RBs corresponding to the resource to be measured in the frequency domain is not limited to that shown in FIG. 3.
  • the network device configures one or more port reference signals for the terminal device through one CSI-RS resource
  • the RBs distributed by the REs used to carry the reference signals of the same port all correspond to the resource to be measured.
  • the obtained feedback may not be able to accurately reflect the most true channel state. This situation may be particularly noticeable in, for example, frequency division duplexing (FDD) mode. Therefore, it is desirable to be able to use different precoding vectors to precode the reference signal on different frequency domain resources.
  • FDD frequency division duplexing
  • the network device can, for example, configure more CSI-RS resources for the terminal device according to the method described above, and set each CSI -RS resource is configured with precoding reference signals of one or more ports, and the precoding reference signal of each port corresponds to one port.
  • the network device wants to precode the reference signals carried on the time-frequency resources with the same relative position in subband 1, subband 2, subband 3, and subband 4 through different precoding vectors, they can be subbands respectively.
  • Band 1, subband 2, subband 3, and subband 4 configure one CSI-RS resource. That is, it is configured by 4 CSI-RS resources.
  • this application provides a channel measurement method, in order to use different precoding vectors to precode the reference signal on different frequency domain resources, so as to obtain accurate feedback of the terminal equipment on the channel state without incurring overhead.
  • This application provides a channel measurement method, in order to use different precoding vectors to precode the reference signal on different frequency domain resources, so as to obtain accurate feedback of the terminal equipment on the channel state without incurring overhead. The substantial increase.
  • serial numbers can be started from 1.
  • K CSI-RS resources may include CSI-RS resource 1 to CSI-RS resource K.
  • the N subbands may include subband 1 to subband N and so on. And so on.
  • I will not illustrate them one by one.
  • the specific implementation is not limited to this, for example, the serial number may also start from 0. It should be understood that the above descriptions are all settings for convenience of describing the technical solutions provided by the embodiments of the present application, and are not used to limit the scope of the present application.
  • used to indicate may include used for direct indication and used for indirect indication.
  • the indication information may directly indicate I or indirectly indicate I, but it does not mean that I must be carried in the indication information.
  • the information indicated by the instruction information is called the information to be indicated.
  • the information to be indicated can be directly indicated, such as the information to be indicated or the information to be indicated. Indicates the index of the information, etc.
  • the information to be indicated can also be indicated indirectly by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, and other parts of the information to be indicated are known or agreed in advance. For example, it is also possible to realize the indication of specific information by means of the pre-arranged order (for example, stipulated in the agreement) of various information, thereby reducing the indication overhead to a certain extent. At the same time, it can also identify the common parts of each information and give unified instructions, so as to reduce the instruction overhead caused by separately indicating the same information.
  • the specific indication manner may also be various existing indication manners, such as, but not limited to, the foregoing indication manner and various combinations thereof.
  • the specific details of the various indication modes can be referred to the prior art, which will not be repeated here. It can be seen from the above that, for example, when multiple pieces of information of the same type need to be indicated, a situation where different information is indicated in different ways may occur.
  • the required instruction method can be selected according to specific needs.
  • the embodiment of the application does not limit the selected instruction method.
  • the instruction method involved in the embodiment of the application should be understood as covering the instructions to be Various methods for obtaining information to be indicated.
  • the information to be instructed can be sent together as a whole, or divided into multiple sub-information to be sent separately, and the sending period and/or sending timing of these sub-information can be the same or different.
  • the specific sending method is not limited in this application.
  • the sending period and/or sending timing of these sub-information may be pre-defined, for example, pre-defined according to a protocol, or configured by the transmitting end device by sending configuration information to the receiving end device.
  • the configuration information may include, but is not limited to, radio resource control signaling, such as RRC signaling, MAC layer signaling, such as MAC-CE signaling and physical layer signaling, such as downlink control information (DCI) One or a combination of at least two of them.
  • radio resource control signaling such as RRC signaling
  • MAC layer signaling such as MAC-CE signaling
  • DCI downlink control information
  • the first, second, and various numerical numbers are only for easy distinction for description, and are not used to limit the scope of the embodiments of the present application. For example, distinguish different indication information, distinguish different granularity, and so on.
  • pre-definition can be implemented by pre-saving corresponding codes, tables, or other methods that can be used to indicate related information in devices (for example, including terminal devices and network devices).
  • saving may refer to saving in one or more memories.
  • the one or more memories may be provided separately, or integrated in an encoder or decoder, a processor, or a communication device.
  • the one or more memories may also be partly provided separately, and partly integrated in the decoder, processor, or communication device.
  • the type of the memory may be any form of storage medium, which is not limited in this application.
  • the “protocols” involved in the embodiments of the present application may refer to standard protocols in the communication field, for example, may include LTE protocol, NR protocol, and related protocols applied to future communication systems, which are not limited in this application.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • And/or describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, both A and B exist, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are in an “or” relationship.
  • "The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or plural items (a).
  • At least one of a, b, and c can mean: a, or, b, or, c, or, a and b, or, a and c, or, b and c, or, a , B, and c.
  • a, b, and c can be single or multiple.
  • the embodiments of the present application are only for ease of understanding, and the CSI-RS is used as an example of a reference signal used for channel measurement to describe in detail the channel measurement method provided by the present application.
  • the transmission resources of the CSI-RS can be configured through CSI-RS resource configuration or the like. But this should not constitute any limitation to this application.
  • the aforementioned CSI-RS can also be replaced with SRS or a signal that can be used to implement the same or similar functions.
  • the corresponding CSI-RS resources can also be replaced with SRS resources or reference signal resources that can be used to implement the same or similar functions.
  • the method provided by the embodiment of the present application may be applied to a system that communicates through multiple antenna technology, for example, the communication system 100 shown in FIG. 1.
  • the communication system may include at least one network device and at least one terminal device. Multi-antenna technology can be used to communicate between network equipment and terminal equipment.
  • the method provided in the embodiments of the present application is not limited to the communication between the network device and the terminal device, and can also be applied to the communication between the terminal device and the terminal device.
  • the application does not limit the application scenarios of the method. In the embodiments shown below, only for ease of understanding and description, the interaction between a network device and a terminal device is taken as an example to describe in detail the channel measurement method provided in the embodiments of the present application.
  • the embodiments shown below do not particularly limit the specific structure of the execution body of the method provided by the embodiments of the present application, as long as the program that records the code of the method provided by the embodiments of the present application can be run according to the present application.
  • the method provided in the application embodiment only needs to communicate.
  • the execution subject of the method provided in the embodiment of the application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call and execute the program.
  • the interaction between the network device and the terminal device is taken as an example to describe in detail the channel measurement method provided in the embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a channel measurement method 400 provided by an embodiment of the present application from the perspective of device interaction. As shown in FIG. 4, the method 400 may include step 410 to step 460. The steps in the method 400 are described in detail below.
  • step 410 the network device generates first indication information, where the first indication information is used to indicate the first granularity.
  • the first granularity is defined for the convenience of distinguishing from the granularity of CSI reporting mentioned later.
  • the first granularity is the granularity corresponding to the precoding vector.
  • the precoding vector mentioned here may refer to a precoding vector used to precode a reference signal transmitted on a pre-configured resource to be measured.
  • the first granularity may refer to the frequency domain granularity.
  • multiple RBs corresponding to the resource to be measured in the frequency domain can be divided into one or more frequency domain units.
  • Each frequency domain unit may include one or more RBs.
  • Each frequency domain unit can be called a subband.
  • the frequency domain unit divided based on the first granularity may be referred to as a subband corresponding to the first granularity.
  • the multiple RBs corresponding to the resource to be measured in the frequency domain may refer to that when the reference signal is configured by the CSI-RS resource, it is distributed by the REs with the same CSI-RS resource configuration and the same relative position in each RB Of multiple RBs.
  • one resource to be measured in FIG. 3 may include 4 RBs, that is, RB 1 to RB 4.
  • the precoding reference signal transmitted on each subband can be obtained by precoding the reference signal with the same precoding vector.
  • the precoding reference signal of the same port transmitted on different subbands may be obtained by precoding the reference signal with the same precoding vector, or may be obtained by precoding the reference signal with different precoding vectors. Therefore, the precoding reference signals transmitted on the corresponding multiple RBs on the resource to be measured may be obtained by precoding the reference signals with one or more precoding vectors.
  • the above-mentioned first granularity is the granularity corresponding to the precoding vector.
  • the precoding reference signal carried by one resource to be measured corresponds to the same port. That is to say, in a resource to be measured, although the precoding reference signal may be obtained by precoding the reference signal through different precoding vectors, it can still be defined as a precoding reference signal of one port.
  • the definition of the precoding reference signal carried by one resource to be measured as the precoding reference signal of one port is only a possible way of definition, and this application should not constitute any limitation.
  • This application also does not rule out the possibility that multiple REs with the same relative position among multiple RBs used for transmitting reference signals in the same CSI-RS resource configuration in future protocols carry precoding reference signals of multiple ports. In this case, the same precoding vector can correspond to one port.
  • a precoding reference signal carried by a resource to be measured is defined as a port precoding reference signal.
  • Figure 5 shows the correspondence between ports, subbands and precoding vectors.
  • the network device may configure one or more CSI-RS resources for one CSI-RS resource set.
  • Fig. 4 shows an example in which a network device configures one CSI-RS resource for one CSI-RS resource set.
  • the precoding reference signal transmitted on one CSI-RS resource may correspond to one or more ports.
  • FIG. 4 shows an example in which the precoding reference signal transmitted on the CSI-RS resource corresponds to one port.
  • the RB corresponding to the resource to be measured determined based on the CSI-RS resource in the frequency domain may be divided into 4 subbands based on the first granularity, that is, including subband 1 to subband 4. It can be understood that the relative positions of the REs used to carry the precoding reference signal in the respective RBs in the 4 subbands are the same.
  • the precoding reference signals transmitted in the 4 subbands may correspond to the same port, such as port 1 as shown in FIG. 4.
  • Each subband in Figure 4 may correspond to a precoding vector.
  • the precoding reference signal transmitted on each subband may be obtained by precoding the reference signal based on a precoding vector.
  • the precoding reference signal corresponding to port 1 in subband 1 may be obtained by precoding the reference signal with precoding vector 1.
  • the precoding reference signal corresponding to port 1 in subband 2 may be obtained by precoding the reference signal with precoding vector 2.
  • the precoding reference signal corresponding to port 1 in subband 3 may be obtained by precoding the reference signal with precoding vector 3.
  • the precoding reference signal corresponding to port 1 in subband 4 may be obtained by precoding the reference signal with precoding vector 4.
  • precoding vectors acting on different subbands may be the same or different.
  • the four precoding vectors in the aforementioned precoding vector 1 to precoding vector 4 may be different from each other, may be partially the same, or may be completely the same.
  • the terminal device still considers The precoding reference signals received on the four subbands are generated based on four different precoding vectors. Therefore, the terminal equipment still performs channel estimation separately based on the precoding reference channel received on each subband.
  • FIG. 4 is only an example, showing an example in which the precoding reference signal transmitted on each subband corresponds to one port.
  • the precoding reference signal transmitted on each subband can also correspond to multiple ports.
  • the precoding reference signal transmitted on subband 1 may be obtained by precoding the reference signal by precoding vector 1 and another precoding vector (such as precoding vector 5); the precoding reference signal transmitted on subband 2 It can be obtained by precoding the reference signal from precoding vector 2 and another precoding vector (such as precoding vector 6); the precoding reference signal transmitted on subband 3 can be obtained by precoding vector 3 and another precoding
  • the vector (such as precoding vector 7) is obtained by precoding the reference signal; the precoding reference signal transmitted on subband 4 can be obtained by precoding vector 4 and another precoding vector (such as precoding vector 8). Precoded.
  • precoding vector 1 to precoding vector 4 may correspond to one port (such as port 1 described above), and precoding vector 5 to precoding vector 8 may correspond to another port (for example, de
  • the precoding reference signal mapped to the same time-frequency resource in each RB in the resource to be measured is recorded as the precoding reference signal of the same port. That is to say, the precoding reference signal of the same port transmitted on the resource to be measured may be obtained by precoding the reference signal based on one or more precoding vectors. This is equivalent to extending the definition of ports.
  • one port is not limited to correspond to one precoding vector, but can also correspond to multiple precoding vectors.
  • one port may be associated with one precoding vector.
  • the precoding reference signal of the same port transmitted on the subband corresponding to the first granularity may correspond to a precoding vector.
  • precoding vector 1 and precoding vector 5 are different, precoding vector 2 is different from precoding vector 6, precoding vector 3 is different from precoding vector 7, and precoding vector 4 is different from precoding vector 8.
  • this application does not limit the relationship between precoding vector 1 and precoding vector 6 to precoding vector 8, nor does it limit the relationship between precoding vector 2 and precoding vector 5, precoding vector 7 and precoding vector 8.
  • the relationship between precoding vector 3 and precoding vector 5, precoding vector 6, and precoding vector 8 is not limited, and the relationship between precoding vector 4 and precoding vector 5 to precoding vector 7 is also not limited.
  • the precoding reference signals of the same port transmitted on at least two subbands in the resource to be measured correspond to different precoding vectors. That is to say, the precoding reference signal of the same port transmitted on at least two subbands in the resource to be measured is obtained by precoding the reference signal with different precoding vectors. Taking the example shown in FIG. 4 as an example, among the precoding vectors 1 to 4 respectively corresponding to subband 1 to subband 4, at least two precoding vectors are different.
  • the precoding vectors corresponding to the precoding reference signals of the same port transmitted on each subband in the resource to be measured are different from each other. Taking the example shown in FIG. 4 as an example, in the precoding vector 1 to precoding vector 4 respectively corresponding to subband 1 to subband 4, any two precoding vectors are different from each other.
  • the network device may indicate the foregoing first granularity through existing signaling, for example. That is, the first indication information can be carried in existing signaling.
  • the network device may also indicate the first granularity through newly added signaling. That is, the first indication information may also be carried in the newly added signaling. This application does not limit the specific signaling used to carry the first indication information.
  • the first granularity is the same as the second granularity.
  • the second granularity is named for the convenience of distinguishing from the above-mentioned first granularity.
  • the second granularity may specifically refer to the granularity of the subband on which CSI reporting is based.
  • the subbands divided based on the second granularity may be referred to as subbands corresponding to the second granularity.
  • the network device can indicate the second granularity through the CSI report configuration.
  • the CSI report configuration includes a subband size (subband size) field, and the granularity specifically indicated by the subband size field is the foregoing second granularity. If the first granularity and the second granularity are defined as the same granularity, the granularity corresponding to the precoding vector and the granularity on which the CSI reporting is based may be the same frequency domain granularity.
  • the network device may multiplex the subband granularity field to indicate the first granularity and the second granularity at the same time. That is, optionally, the first indication information is carried in the subband granularity field of the CSI report configuration. In other words, the network device can reuse existing fields in existing signaling to indicate the first granularity.
  • any one of the aforementioned subband 1 to subband 4 can be a subband corresponding to the first granularity or corresponding to the second granularity.
  • Subband the terminal device may perform channel estimation based on each subband of subband 1 to subband 4, and may report CSI based on each subband of subband 1 to subband 4 respectively. Defining the first granularity and the second granularity as the same granularity can reduce the signaling overhead caused by indicating the first granularity.
  • the granularity of the terminal device's precoding vector and the granularity of the CSI feedback can be unified, which is convenient for the terminal Treatment of equipment.
  • the first granularity is different from the second granularity.
  • the network device may also indicate the first granularity in the CSI reporting configuration. That is, optionally, the first indication information is carried in the CSI reporting configuration.
  • the network device indicates the first granularity by adding a new field in the CSI report configuration, for example.
  • the CSI reporting configuration may include a first granularity field and a second granularity field.
  • the first granularity field may be used to indicate the first granularity
  • the second granularity field may be used to indicate the second granularity.
  • the second granularity field may be a subband granularity field in the CSI reporting configuration in the current protocol.
  • the network device may also indicate the first granularity in the CSI-RS resource mapping. That is, optionally, the first indication information is carried in the CSI-RS resource mapping.
  • the network device may add a subband granularity field in the CSI-RS resource mapping to indicate the first granularity.
  • the subband granularity field can be expressed as:
  • Subband granularity enumeration ⁇ value 1, value 2 ⁇ (subbandSize ENUMERATED ⁇ value 1, value 2 ⁇ ).
  • value 1 and value 2 can be understood as two optional values of the first granularity.
  • the network device may indicate, through the signaling, which value of the two optional values the first granularity is specifically.
  • the value 1 and value 2 may be, for example, 0 and 1, respectively, corresponding to two optional values. For example, if 0 is carried in the signaling, it means the first value of the two optional values is used; if 1 is carried in the signaling, it means the second of the two optional values is used value.
  • the first granularity may have a corresponding relationship with a bandwidth part (BWP).
  • the protocol can predefine the correspondence between the bandwidth part (BWP) and the first granularity.
  • the BWP may be specifically represented by the number of physical resource blocks (PRBs) included in the BWP, and the first granularity may be specifically represented by the number of PRBs included in the subband corresponding to the first granularity.
  • PRBs physical resource blocks
  • BWP(PRBs) First granularity (PRBs) ⁇ 24 Not applicable (not applicable, N/A) 24-72 4, 8 73-144 8, 16 145-275 16, 32
  • the network device may also indirectly indicate the two optional values of the first granularity through the BWP.
  • the terminal device determines the BWP, it can also determine the two optional values of the first granularity according to the predefined correspondence.
  • the terminal device may further determine the first granularity according to the value indicated in the CSI-RS resource mapping.
  • the above is only an example, showing an example where the first granularity corresponds to BWP. But this should not constitute any limitation to this application.
  • This application does not limit the number of PRBs included in the first granularity corresponding to the BWP when it includes different PRBs.
  • the first granularity is not limited to corresponding to BWP, but can also correspond to other parameters. For the sake of brevity, it is not listed here.
  • the first particle size is greater than or equal to the second particle size.
  • Fig. 6 shows an example of the first particle size and the second particle size.
  • subband 1 to subband 4 are subbands divided based on the first granularity.
  • Subband I to Subband VIII are subbands divided based on the second granularity. It can be seen that each subband corresponding to the first granularity may include two subbands corresponding to the second granularity.
  • the same CSI-RS port corresponds to different precoding vectors in subband 1 to subband 4, respectively.
  • the terminal device may perform channel measurement based on the precoding reference signal received on subband 1, and obtain the CSI measurement results corresponding to subband I and subband II respectively.
  • the terminal device can feed back the CSI corresponding to subband I to the network device; at the same time, the terminal device can also feed back the CSI corresponding to subband II to the network device.
  • the terminal device can feed back the CSI corresponding to subband I to the network device; at the same time, the terminal device can also feed back the CSI corresponding to subband II to the network device.
  • step 420 the terminal device receives the first indication information.
  • the network device sends the first indication information.
  • the first indication information is used to indicate the first granularity.
  • the network device may, for example, carry the first indication information through high-level signaling to indicate the first granularity to the terminal device.
  • the specific signaling used to carry the first indication information is listed in step 410 above. For the sake of brevity, details are not repeated here.
  • the method further includes: step 430, the network device sends a precoding reference signal on the resource to be transmitted.
  • the terminal device receives the precoding reference signal on the resource to be transmitted.
  • the precoding reference signal transmitted on the resource to be transmitted may be obtained by precoding the reference signal with one or more precoding vectors.
  • the network device can precode the reference signal of the same port based on the first granularity.
  • the precoding reference signals on the same subband are generated based on the same precoding vector; the precoding reference signals on different subbands can be based on the same or different precoding vectors generate.
  • the network equipment can independently select the precoding vector used to precode the reference signal on each subband according to the frequency selection characteristics of the channel. Therefore, although the precoding reference signal transmitted on the resource to be transmitted is the precoding reference signal of the same port, it may correspond to one or more precoding vectors.
  • the terminal device may receive the precoding reference signal on the resource to be transmitted, and in step 440, perform channel measurement according to the precoding reference signal received on the resource to be measured.
  • the terminal device may estimate the channel matrix according to the precoding reference signal received on the resource to be measured, and then determine the CSI according to the estimated channel matrix.
  • the CSI may include, for example, one or more of the following: RI, CQI, PMI, CRI, LI, and so on.
  • the following describes in detail the difference between the processing modes of the terminal device when the first granularity is not configured and the first granularity is configured.
  • the corresponding relationship between the port, the precoding vector, and the subband may refer to FIG. 2, for example.
  • the terminal device can perform channel measurement based on the reference CSI-RS received on each CSI-RS pilot RE on the time-frequency resource corresponding to the CSI-RS port 1. Then, the channel measurement results can be obtained separately based on subband 1 and subband 2.
  • the measurement results obtained based on the subband 1 and the subband 2 may be jointly filtered to obtain the channel measurement result after the filtering process.
  • the channel measured by the terminal device based on the precoding reference signal is the equivalent channel, that is, the channel on which the precoding operation has been performed. Thereafter, the terminal device may perform CSI feedback based on the channel measurement result obtained after the filtering process.
  • the method in which the terminal equipment performs joint channel measurement on the time-frequency resource corresponding to one CSI-RS port is recorded as the joint processing channel measurement method. It is understandable that filtering the measurement results of multiple subbands takes advantage of the correlation of the channel in the frequency domain. However, if the channel frequency selection characteristics are obvious and the frequency domain correlation is not good, the CSI obtained by filtering the measurement results of multiple subbands may not be very accurate.
  • the corresponding relationship between the port, the precoding vector, and the subband may refer to FIG. 6, for example. Take the correspondence between CSI-RS resource 1, port 1, precoding vectors 1 to 4, subband 1 to 4, and subband I to subband VIII shown in FIG. 6 as an example.
  • the terminal device may perform channel measurement based on the precoding reference signals received on subband 1, subband 2, subband 3, and subband 4, respectively, to obtain channel measurement results corresponding to each subband. Therefore, the network device can configure different precoding vectors for the reference signals transmitted on different subbands according to the frequency selection characteristics of the channel to obtain more accurate feedback from the terminal device.
  • the terminal device may perform CSI feedback based on the channel measurement results obtained from each subband measurement from subband 1 to subband 4 using the second granularity as the granularity. That is, the channel measurement results are fed back based on subband I to subband VIII.
  • the method in which the terminal device estimates the channel based on the first granularity and performs channel measurement is referred to as the independent processing channel measurement method. It is understandable that in the case of obvious channel frequency selection characteristics, if a separate precoding vector is used for precoding for each subband to perform channel measurement of each subband, compared to the channel measurement method of joint processing In other words, the CSI feedback obtained is more accurate.
  • the network equipment can reuse existing signaling and existing fields to indicate the first granularity. If the network device does not additionally notify the terminal device that the first granularity has been configured for the resource to be measured. The terminal device may still perform CSI measurement and feedback based on the second granularity only. Therefore, the network device can notify the terminal device that the first granularity has been configured for the resource to be measured.
  • the method further includes: step 450, the terminal device receives second indication information, where the second indication information is used to indicate that the network device configures the first granularity for the resource to be measured.
  • the network device sends the second indication information, which is used to indicate that the first granularity is configured for the resource to be measured.
  • the network device may notify the terminal device whether the first granularity is configured through signaling.
  • the terminal device may determine the specific processing mode in the channel estimation and measurement process according to whether the first granularity is configured. It is understandable that if the network device configures the first granularity for the resource to be measured, the terminal device can determine that the precoding reference signal on the resource to be measured can be obtained by precoding the reference signal based on one or more precoding vectors.
  • the terminal device can use independent processing to perform channel measurement; if the network device does not configure the first granularity for the resource to be measured, the terminal device can determine that the precoding reference signal transmitted on the resource to be measured is based on a precoding vector pair If the reference signal is obtained by precoding, the terminal equipment can use joint processing to perform channel measurement.
  • the second indication information is carried in the CSI reporting configuration.
  • the second indication information may specifically be carried in a frequency domain restriction (freqRestrictionForChannelMeasurements) parameter used for channel measurement in the CSI reporting configuration.
  • the parameter can be specifically:
  • Frequency domain restriction enumeration ⁇ configured, not configured ⁇ (freqRestrictionForChannelMeasurements ENUMERATED ⁇ configured,notConfigured ⁇ ) for channel measurement.
  • the network device may indicate the frequency domain restriction parameter used for channel measurement in the CSI report configuration through a one-bit indication field. For example, when the indication field is 0, it means that it is not configured; when the indication field is 1, it means it is configured. It should be understood that the indication field exemplified here is only a possible implementation for indicating the frequency domain restriction parameter used for channel measurement, and the information indicated by different values in the indication field is only an example, and therefore is not This application shall constitute any limitation.
  • the terminal device can perform channel estimation based on the first granularity, and when performing channel measurement, independently process the channel matrices of each subband corresponding to the first granularity, and perform channel measurement based on the second granularity.
  • step 460 the terminal device sends CSI according to the result of the channel measurement.
  • the network device receives the CSI, which is obtained by channel measurement according to the precoding reference signal sent on the resource to be measured.
  • the feedback may be based on the second granularity.
  • the network device can determine the number of transmission layers, modulation and coding scheme (MCS), precoding matrix, etc. used when transmitting data through the subband Wait.
  • MCS modulation and coding scheme
  • the second granularity is the granularity of the subband on which the terminal device reports the CSI. But it does not mean that the terminal device needs to report CSI based on each subband corresponding to the second granularity among the multiple RBs corresponding to the resource to be transmitted.
  • FIG. 6 shows subband I to subband VIII corresponding to the second granularity.
  • the terminal device may, for example, determine the subband that needs to report the CSI according to an instruction of the network device, such as the CSI reporting bandwidth (csi-ReportingBand) in the CSI reporting configuration.
  • the subbands that need to report CSI may be part or all of the subbands corresponding to the second granularity in the RB corresponding to the resource to be measured.
  • the network device can use different precoding vectors for the reference signals configured on the same CSI-RS resource on different frequency domain resources to perform precoding to adapt to the channel.
  • the frequency selection characteristics When the terminal device performs channel measurement, it may also perform processing based on the first granularity and the second granularity. Therefore, it is beneficial to obtain accurate feedback of the channel state when the channel frequency selection characteristic is obvious. This helps to improve the data transmission performance of the system.
  • the network device may separately send the second indication information to the terminal device, so that the terminal device can determine the channel measurement mode.
  • FIG. 7 is a schematic flowchart of a channel measurement method 700 provided by another embodiment of the present application. As shown in FIG. 7, the method 700 may include step 710 to step 740.
  • step 710 the network device generates second indication information, which is used to indicate whether the first granularity is configured for the resource to be measured.
  • the related content of the resource to be measured, the first granularity, and the second indication information has been described in detail in the above method 400, and is not repeated here for brevity.
  • step 720 the network device sends the second indication information.
  • step 720 the terminal device receives the second indication information.
  • the network device may send the second indication information through high-layer signaling, for example.
  • high-layer signaling for example.
  • step 450 in the above method 400 describes in detail the specific process for the network device to send the second indication information, for brevity, the specific description of step 710 and step 720 is omitted here.
  • step 730 the terminal device performs channel measurement based on the received precoding reference signal.
  • the terminal device may perform channel measurement based on each subband corresponding to the first granularity according to the received precoding reference signal, and combine the subbands Independent processing with measurement results to determine CSI.
  • the terminal device may perform joint processing on the measurement result of the reference signal according to the received precoding reference signal to determine the CSI.
  • step 440 in the method 400 described above provides a detailed description of the specific process of the terminal device performing channel measurement, for the sake of brevity, the specific description of step 730 is omitted here.
  • step 740 the terminal device transmits CSI based on the result of the channel measurement.
  • the network device receives CSI, which is determined based on the result of channel measurement.
  • step 460 in the above method 400 describes in detail the specific process of the terminal device sending CSI, for brevity, the specific description of step 740 is omitted here.
  • the terminal device can determine whether the network device is configured with the first granularity for the resource to be transmitted based on the second indication information. That is to say, the terminal device can determine the method to perform channel measurement based on the second indication information, for example, Joint processing or independent processing.
  • the network equipment can use different precoding vectors to precode the reference signal of the same port, and the terminal equipment can use independent processing to perform channel measurement.
  • the network equipment can use the same precoding vector to precode the reference signal of the same port
  • the terminal equipment can also use joint processing to perform channel measurement to improve measurement accuracy. Therefore, the frequency domain resources of different bandwidths can be adapted to meet different requirements, and the switching is very flexible. At the same time, more accurate feedback of channel state information can also be obtained, which is beneficial to improve data transmission performance.
  • the size of the sequence number of each process does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation to the implementation process of the embodiments of this application. .
  • FIG. 8 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1000 may include a transceiving unit 1100 and a processing unit 1200.
  • the communication device 1000 may correspond to the terminal device in the above method embodiment, for example, it may be a terminal device or a chip configured in the terminal device.
  • the communication device 1000 may correspond to the terminal device in the method 400 or the method 700 according to an embodiment of the present application, and the communication device 1000 may include a terminal device for executing the method 400 in FIG. 4 or the method 700 in FIG. The unit of the method of execution.
  • each unit in the communication device 1000 and other operations and/or functions described above are used to implement the corresponding process of the method 400 in FIG. 4 or the method 700 in FIG. 7, respectively.
  • the transceiver unit 1100 can be used to execute steps 420 and 430, and steps 450 and 460 in the method 400, and the processing unit 1200 can be used to execute steps in the method 400.
  • Step 440 It should be understood that the specific process for each unit to execute the foregoing corresponding steps has been described in detail in the foregoing method embodiment, and is not repeated here for brevity.
  • the transceiver unit 1100 may be used to execute steps 720 and 740 in the method 700, and the processing unit 1200 may be used to execute step 730 in the method 700. It should be understood that the specific process for each unit to execute the foregoing corresponding steps has been described in detail in the foregoing method embodiment, and is not repeated here for brevity.
  • the transceiver unit 1100 in the communication device 1000 may correspond to the transceiver 2020 in the terminal device 2000 shown in FIG. 9, and the processing unit 1200 in the communication device 1000 may It corresponds to the processor 2010 in the terminal device 2000 shown in FIG. 9.
  • the transceiver unit 1100 in the communication device 1000 may be an input/output interface.
  • the communication device 1000 may correspond to the network device in the above method embodiment, for example, it may be a network device or a chip configured in the network device.
  • the communication device 1000 may correspond to the network device in the method 400 or the method 700 according to the embodiment of the present application, and the communication device 1000 may include a network device for executing the method 400 in FIG. 4 or the method 700 in FIG. The unit of the method of execution.
  • each unit in the communication device 1000 and other operations and/or functions described above are used to implement the corresponding process of the method 400 in FIG. 4 or the method 700 in FIG. 7, respectively.
  • the transceiver unit 1100 can be used to execute steps 420 and 430, and steps 450 and 460 in the method 400, and the processing unit 1200 can be used to execute steps in the method 400. Step 410. It should be understood that the specific process for each unit to execute the foregoing corresponding steps has been described in detail in the foregoing method embodiment, and is not repeated here for brevity.
  • the transceiver unit 1100 can be used to execute steps 720 and 740 in the method 700, and the processing unit 1200 can be used to execute step 710 in the method 700. It should be understood that the specific process for each unit to execute the foregoing corresponding steps has been described in detail in the foregoing method embodiment, and is not repeated here for brevity.
  • the transceiver unit in the communication device 1000 may correspond to the transceiver 3200 in the network device 3000 shown in FIG. 10, and the processing unit 1200 in the communication device 1000 may It corresponds to the processor 3100 in the network device 3000 shown in FIG. 10.
  • the transceiver unit 1100 in the communication device 1000 may be an input/output interface.
  • FIG. 9 is a schematic structural diagram of a terminal device 2000 provided by an embodiment of the present application.
  • the terminal device 2000 can be applied to the system shown in FIG. 1 to perform the functions of the terminal device in the foregoing method embodiment.
  • the terminal device 2000 includes a processor 2010 and a transceiver 2020.
  • the terminal device 2000 further includes a memory 2030.
  • the processor 2010, the transceiver 2002, and the memory 2030 can communicate with each other through internal connection paths to transfer control and/or data signals.
  • the memory 2030 is used for storing computer programs, and the processor 2010 is used for downloading from the memory 2030. Call and run the computer program to control the transceiver 2020 to send and receive signals.
  • the terminal device 2000 may further include an antenna 2040 for receiving wireless signals, so as to output downlink data or downlink signaling carried in the wireless signals to the transceiver 2020, and also for outputting the uplink data or the uplink data output by the transceiver 2020.
  • Uplink control signaling is sent out via wireless signals.
  • the aforementioned processor 2010 and the memory 2030 can be combined into a processing device, and the processor 2010 is configured to execute the program code stored in the memory 2030 to implement the aforementioned functions.
  • the memory 2030 may also be integrated in the processor 2010 or independent of the processor 2010.
  • the processor 2010 may correspond to the processing unit in FIG. 8.
  • the above transceiver 2020 may correspond to the transceiver unit in FIG. 8 and may also be referred to as a transceiver unit.
  • the transceiver 2020 may include a receiver (or called receiver, receiving circuit) and a transmitter (or called transmitter, transmitting circuit). Among them, the receiver is used to receive signals, and the transmitter is used to transmit signals.
  • the terminal device 2000 shown in FIG. 9 can implement various processes involving the terminal device in the method embodiment shown in FIG. 4 or FIG. 7.
  • the operations and/or functions of each module in the terminal device 2000 are respectively for implementing the corresponding processes in the foregoing method embodiments.
  • the above-mentioned processor 2010 can be used to execute the actions described in the previous method embodiments implemented by the terminal device, and the transceiver 2020 can be used to execute the terminal device described in the previous method embodiments to send or receive from the network device action.
  • the transceiver 2020 can be used to execute the terminal device described in the previous method embodiments to send or receive from the network device action.
  • the aforementioned terminal device 2000 may further include a power supply 2050 for providing power to various devices or circuits in the terminal device.
  • the terminal device 2000 may also include one or more of an input unit 2060, a display unit 2070, an audio circuit 2080, a camera 2090, and a sensor 2100.
  • the audio circuit A speaker 2082, a microphone 2084, etc. may also be included.
  • FIG. 10 is a schematic structural diagram of a network device provided by an embodiment of the present application, for example, it may be a schematic structural diagram of a base station.
  • the base station 3000 can be applied to the system shown in FIG. 1 to perform the functions of the network device in the foregoing method embodiment.
  • the base station 3000 may include one or more radio frequency units, such as a remote radio unit (RRU) 3100 and one or more baseband units (BBU) (also known as distributed unit (DU) )) 3200.
  • RRU remote radio unit
  • BBU baseband units
  • DU distributed unit
  • the RRU 3100 may be called a transceiver unit, and corresponds to the transceiver unit 1200 in FIG. 8.
  • the transceiver unit 3100 may also be called a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 3101 and a radio frequency unit 3102.
  • the transceiver unit 3100 may include a receiving unit and a transmitting unit, the receiving unit may correspond to a receiver (or receiver, receiving circuit), and the transmitting unit may correspond to a transmitter (or transmitter or transmitting circuit).
  • the RRU 3100 part is mainly used for sending and receiving of radio frequency signals and conversion of radio frequency signals and baseband signals, for example, for sending instruction information to terminal equipment.
  • the 3200 part of the BBU is mainly used for baseband processing and control of the base station.
  • the RRU 3100 and the BBU 3200 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 3200 is the control center of the base station, and may also be called a processing unit, which may correspond to the processing unit 1100 in FIG. 8, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU processing unit
  • the BBU may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment, for example, to generate the foregoing first indication information and second indication information, and to precode the reference signal.
  • the BBU 3200 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network with a single access standard (such as an LTE network), or support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 3200 also includes a memory 3201 and a processor 3202.
  • the memory 3201 is used to store necessary instructions and data.
  • the processor 3202 is configured to control the base station to perform necessary actions, for example, to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 3201 and the processor 3202 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the base station 3000 shown in FIG. 10 can implement various processes involving network devices in the method embodiment shown in FIG. 4 or FIG. 7.
  • the operations and/or functions of the various modules in the base station 3000 are used to implement the corresponding processes in the foregoing method embodiments.
  • the above-mentioned BBU 3200 can be used to perform the actions described in the previous method embodiments implemented by the network device, and the RRU 3100 can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • the RRU 3100 can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • the base station 3000 shown in FIG. 10 is only a possible architecture of network equipment, and should not constitute any limitation to this application.
  • the method provided in this application can be applied to network devices of other architectures.
  • network equipment including CU, DU, and active antenna unit (AAU). This application does not limit the specific architecture of the network device.
  • An embodiment of the present application also provides a processing device, including a processor and an interface; the processor is configured to execute the method in any of the foregoing method embodiments.
  • the aforementioned processing device may be one or more chips.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system on chip (SoC), or It is a central processor unit (CPU), it can also be a network processor (NP), it can also be a digital signal processing circuit (digital signal processor, DSP), or it can be a microcontroller (microcontroller unit). , MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processing circuit
  • microcontroller unit microcontroller unit
  • MCU programmable logic device
  • PLD programmable logic device
  • the steps of the above method can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • serial link DRAM SLDRAM
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code runs on a computer, the computer executes the steps shown in FIG. 4 or FIG. 7 Show the method in the embodiment.
  • the present application also provides a computer-readable medium that stores program code, and when the program code runs on a computer, the computer executes the steps shown in FIG. 4 or FIG. 7 Show the method in the embodiment.
  • the present application also provides a system, which includes the aforementioned one or more terminal devices and one or more network devices.
  • the network equipment in the above-mentioned device embodiments completely corresponds to the network equipment or terminal equipment in the terminal equipment and method embodiments, and the corresponding modules or units execute the corresponding steps.
  • the communication unit transmits the receiving or In the sending step, other steps except sending and receiving can be executed by the processing unit (processor).
  • the processing unit processor
  • component used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, a processor, an object, an executable file, an execution thread, a program, and/or a computer running on a processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or threads of execution, and components may be located on one computer and/or distributed among two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • the component may be based on, for example, a signal having one or more data packets (such as data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals) Communicate through local and/or remote processes.
  • a signal having one or more data packets (such as data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals) Communicate through local and/or remote processes.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • each functional unit may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions (programs).
  • programs When the computer program instructions (programs) are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, and a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk, SSD
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种信道测量方法和通信装置。该方法包括:终端设备接收第一指示信息,该第一指示信息用于指示与预编码向量对应的第一粒度。该待测量资源上传输的预编码参考信号为同一端口的预编码参考信号,且该待测量资源上传输的预编码参考信号由一个或多个预编码向量对参考信号做预编码得到。该待测量资源对应的多个RB包括与第一粒度对应的多个频域单元,同一频域单元上传输的预编码参考信号对应同一预编码向量;终端设备基于待测量资源上接收到的预编码参考信号进行信道测量,并基于信道测量的结果发送CSI。网络设备可以为同一端口的参考信号采用不同的预编码向量来做预编码,以适应信道的频选特性。从而有利于获得精准的CSI反馈。

Description

一种信道测量方法和通信装置
本申请要求于2019年4月11日提交中国专利局、申请号为201910287572.5、申请名称为“一种信道测量方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种信道测量方法和通信装置。
背景技术
在大规模多输入多输出(massive multiple-input multiple output,Massive MIMO)技术中,网络设备可以通过预编码技术减小多用户之间的干扰以及同一用户的多个信号流之间的干扰。从而提高信号质量,实现空分复用,提高频谱利用率。
目前,已知一种信道测量方法。终端设备例如可以根据接收到的参考信号进行信道测量,确定待反馈的预编码向量。其中,终端设备接收到的参考信号可以是经过了预编码的参考信号,可以称为波束赋形(beamformed)参考信号或预编码参考信号。然而,由于信道的频选特性,网络设备在宽带上使用相同的预编码向量对下行参考信号做预编码,所获得的终端设备对信道状态信息(channel state information,CSI)的反馈可能并不一定能够反映出最真实的信道状态。因此可能导致该通信系统的数据传输性能下降。
发明内容
本申请提供一种信道测量方法和通信装置,以期获得终端设备对信道状态的精准反馈,从而提高数据传输性能。
第一方面,提供了一种信道测量方法。该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片执行。本申请对此不作限定。
具体地,该方法包括:接收第一指示信息,所述第一指示信息用于指示第一粒度,所述第一粒度是与预编码向量对应的粒度,所述预编码向量用于对传输在预先配置的待测量资源上的参考信号做预编码;所述待测量资源上传输的预编码参考信号由一个或多个预编码向量对参考信号做预编码得到,所述待测量资源包括多个资源块RB中用于传输预编码参考信号的时频资源,且所述多个RB中的任意两个RB中用于传输所述预编码参考信号的时频资源在各自所属的RB中的相对位置相同;所述待测量资源对应的所述多个RB包括与所述第一粒度对应的多个频域单元,且同一频域单元上传输的预编码参考信号对应同一预编码向量;根据在所述待测量资源上接收到的预编码参考信号进行信道测量,并基于所述信道测量的结果发送信道状态信息CSI。
第二方面,提供了一种信道测量方法。该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片执行。本申请对此不作限定。
具体地,该方法包括:生成第一指示信息,所述第一指示信息用于指示第一粒度,所述第一粒度是与预编码向量对应的粒度,所述预编码向量用于对传输在预先配置的待测量资源上的参考信号做预编码;所述待测量资源上传输的预编码参考信号由一个或多个预编码向量对参考信号做预编码得到,所述待测量资源包括多个资源块RB中用于传输所述预编码参考信号的时频资源,且所述多个RB中的任意两个RB中用于传输所述预编码参考信号的时频资源在各自所属的RB中的相对位置相同;所述待测量资源对应的所述多个RB包括与所述第一粒度对应的多个频域单元,且同一频域单元上传输的预编码参考信号由同一预编码向量预编码得到;发送所述第一指示信息。
因此,通过为待测量资源配置第一粒度,可以使得网络设备为同一CSI-RS资源在不同频域资源上配置的参考信号采用不同的预编码向量来做预编码,以与不同的频域资源上的信道状态相适配,从而适应信道的频选特性。终端设备在进行信道测量时,可以基于第一粒度对应的频域单元独立地进行信道测量。因此有利于在信道频选特性较明显的情况下获得对信道状态的精准反馈。从而有利于提高系统的数据传输性能。
结合第一方面,在第一方面的某些可能的实现方式中,所述方法还包括:接收第二指示信息,所述第二指示信息用于指示为所述待测量资源配置了所述第一粒度。
相对应地,在第二方面的某些可能的实现方式中,所述方法还包括:发送第二指示信息,所述第二指示信息用于指示为所述待测量资源配置了所述第一粒度。
也就是说,网络设备可以自主选择是否为待测量资源配置第一粒度,也就是,是否为待测量资源在不同的频域单元上配置不同的预编码向量。终端设备可以基于该第二指示信息来确定信道测量的方法。例如,当频域资源占用较大带宽时,频选特性较明显时,网络设备可以采用不同的预编码向量对同一端口的参考信号做预编码时,终端设备可以采用独立处理的方式来进行信道测量,以获得更加匹配信道频选特性的信道状态的反馈;当频域资源占用较小带宽时,频域相关性较好时,网络设备又可以采用同一预编码向量对同一端口的参考信号做预编码时,终端设备也可以采用联合处理的方式来进行信道测量,以提升测量精度。因此,可以适应不同带宽的频域资源,满足不同的需求,切换非常灵活。同时,还能够获得较精准的信道状态信息的反馈,有利于提高数据传输性能。
结合第一方面或第二方面,在某些可能的实现方式中,所述待测量资源中至少两个频域单元上传输的预编码参考信号对应不同的预编码向量。
也就是说,与第一粒度对应的多个频域单元中,各频域单元对应的预编码向量可以相同,也可以不同。各频域单元上传输从预编码参考信号可以是基于相同或不同的预编码向量对参考信号预编码得到。本申请对此不作限定。
在一种可能的设计中,所述待测量资源中各频域单元上传输从预编码参考信号对应的预编码向量彼此互不相同。
也就是说,可以对与第一粒度对应的每个频域单元配置不同的预编码向量来生成预编码参考信号。每个频域单元对应的预编码向量可以与这个频域单元的信道状态相适配,从而有利于获得终端设备的精准反馈。
结合第一方面或第二方面,在某些可能的实现方式中,所述第一粒度与第二粒度相同,所述第二粒度为CSI上报所基于的频域单元的粒度。
也就是说,与预编码向量对应的频域单元粒度和与CSI上报对应的频域单元粒度可以 是相同的粒度。在此情况下,可以只通过一个字段来同时第一粒度和第二粒度。可选地,所述第一粒度与所述第二粒度通过同一字段指示。通过同一字段指示两个粒度,有利于节省信令开销。
当然,在第一粒度与第二粒度相同的情况下,也可以通过不同的字段或不同的信令来指示第一粒度和第二粒度,本申请对此不作限定。
结合第一方面或第二方面,在某些可能的实现方式中,所述第一指示信息携带在CSI上报配置中。
例如,该第一指示信息可以是携带在CSI上报配置中的字段,例如可以复用已有字段,也可以是新增字段。本申请对此不作限定。
结合第一方面或第二方面,在某些可能的实现方式中,所述频域单元为子带,所述第一指示信息由所述CSI上报配置中的子带粒度字段承载。
即,该第一指示信息可通过现有协议中定义的CSI上报配置中的子带粒度字段来承载。此情况下,该子带粒度所指示的粒度也就是上文所述的第一粒度或第二粒度。
结合第一方面或第二方面,在某些可能的实现方式中,所述第一指示信息携带在信道状态信息参考信号CSI-RS资源映射配置中。
例如,该第一指示信息可以是携带CSI-RS资源映射配置中的字段,例如可以复用已有字段,也可以是新增字段。本申请对此不作限定。
上文列举了用于携带该第一指示信息的两种可能的信令。但这不应对本申请构成任何限定。本申请对于用于携带该第一指示信息的具体信令不作限定。
第三方面,提供了一种信道测量方法。该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片执行。本申请对此不作限定。
具体地,该方法包括:接收第二指示信息,所述第二指示信息用于指示是否为待测量资源配置了第一粒度;所述待测量资源包括多个资源块RB中用于传输预编码参考信号的时频资源,且所述多个RB中的任意两个RB中用于传输所述预编码参考信号的时频资源相同;所述第一粒度是与预编码向量对应的粒度;当所述待测量资源配置了所述第一粒度时,所述待测量资源上传输的预编码参考信号由一个或多个预编码向量对参考信号做预编码得到,且与所述第一粒度对应的一个频域单元上传输的预编码参考信号对应同一预编码向量;当所述待测量资源未配置所述第一粒度时,所述待测量资源上传输的预编码参考信号由一个预编码向量对参考信号做预编码得到;根据所述待测量资源上接收到的预编码参考信号进行信道测量,并基于所述信道测量的结果发送信道状态信息CSI。
第四方面,提供了一种信道测量方法。该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片执行。本申请对此不作限定。
具体地,该方法包括:生成第二指示信息,所述第二指示信息用于指示是否为待测量资源配置了第一粒度;所述待测量资源包括多个资源块RB中用于传输预编码参考信号的时频资源,且所述多个RB中的任意两个RB中用于传输所述预编码参考信号的时频资源相同;所述第一粒度是与预编码向量对应的粒度;当所述待测量资源配置了所述第一粒度时,所述待测量资源上传输的预编码参考信号由一个或多个预编码向量对参考信号做预编码得到,且与所述第一粒度对应的一个频域单元上传输的预编码参考信号对应同一预编码向量;当所述待测量资源未配置所述第一粒度时,所述待测量资源上传输的预编码参考信 号由一个预编码向量对参考信号做预编码得到;发送所述第二指示信息。
因此,终端设备可以基于第二指示信息确定网络设备是否为待传输资源配置了第一粒度。也就是,是否为待测量资源在不同的频域单元上配置不同的预编码向量。终端设备可以基于该第二指示信息来确定信道测量的方法。例如,当频域资源占用较大带宽时,频选特性较明显时,网络设备可以采用不同的预编码向量对同一端口的参考信号做预编码时,终端设备可以采用独立处理的方式来进行信道测量,以获得更加匹配信道频选特性的信道状态的反馈;当频域资源占用较小带宽时,频域相关性较好时,网络设备又可以采用同一预编码向量对同一端口的参考信号做预编码时,终端设备也可以采用联合处理的方式来进行信道测量,以提升测量精度。因此,可以适应不同带宽的频域资源,满足不同的需求,切换非常灵活。同时,还能够获得较精准的信道状态信息的反馈,有利于提高数据传输性能。
结合第一至第四方面,在某些可能的实现方式中,所述待测量资源中传输的预编码参考信号对应同一端口。
其中,同一端口可以是指在同一CSI-RS资源中的各个RB上相对位置相同的多个RE上承载的参考信号所对应的端口。这里所说的参考信号例如可以是预编码参考信号。在本申请实施例中,同一端口的预编码参考信号可以是基于不同的预编码向量进行预编码得到的。也就是说,同一端口的预编码参考信号可以对应不同的预编码向量。
第五方面,提供了一种通信装置,包括用于执行第一方面或第三方面以及第一方面或第三方面中任一种可能实现方式中的方法的各个模块或单元。
第六方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面或第三方面以及第一方面或第三方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片。当该通信装置为配置于终端设备中的芯片时,所述通信接口可以是输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第七方面,提供了一种通信装置,包括用于执行第二方面或第四方面以及第二方面或第四方面中任一种可能实现方式中的方法的各个模块或单元。
第八方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面或第四方面以及第二方面或第四方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为网络设备。当该通信装置为网络设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片。当该通信装置为配置于网络设备中的芯片时,所述通信接口可以是输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第九方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述处理器执行第一方面至第四方面以及第一方面至第四方面任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为一个或多个芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第十方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行第一方面至第四方面以及第一方面至第四方面任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理器输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第十方面中的处理装置可以是一个或多个芯片。该处理装置中的处理器可以通过硬件来实现也可以通过软件来实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第十一方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面至第四方面以及第一方面至第四方面中任一种可能实现方式中的方法。
第十二方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面至第四方面以及第一方面至第四方面中任一种可能实现方式中的方法。
第十三方面,提供了一种通信系统,包括前述的网络设备和终端设备。
附图说明
图1是适用于本申请实施例提供的信道测量方法的通信系统的示意图;
图2是本申请实施例提供的CSI-RS资源、端口与预编码向量的对应关系的示意图;
图3是本申请实施例提供的多个端口的预编码参考信号的时频资源在多个RB中的示意图;
图4是本申请实施例提供的方法的示意性流程图;
图5是本申请实施例提供的待测量资源、端口与预编码向量的对应关系的示意图;
图6是本申请实施例提供的第一粒度和第二粒度的示意图;
图7是本申请另一实施例提供的信道测量方法的示意性流程图;
图8是本申请实施例提供的通信装置的示意性框图;
图9是本申请实施例提供的终端设备的结构示意图;
图10是本申请实施例提供的网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。图1是适用于本申请实施例的用于构建预编码向量的向量指示方法的通信系统100的示意图。如图1所示,该通信系统100可以包括至少一个网络设备,例如图1所示的网络设备110;该通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备120。网络设备110与终端设备120可通过无线链路通信。各通信设备,如网络设备110或终端设备120,均可以配置多个天线。对于该通信系统100中的每一个通信设备而言,所配置的多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。因此,该通信系统100中的各通信设备之间,如网络设备110与终端设备120之间,可通过多天线技术通信。
应理解,该无线通信系统中的网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(Radio Network Controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU),无线保真(Wireless Fidelity,WIFI)系统中的接入点(Access Point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络 节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,简称AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。还应理解,该无线通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端以及配置在交通工具中的无线终端等等。本申请的实施例对应用场景不做限定。
还应理解,图1仅为便于理解而示例的简化示意图,该通信系统100中还可以包括其他网络设备或者还可以包括其他终端设备,图1中未予以画出。
为了便于理解本申请实施例,下面简单说明下行信号在发送之前在物理层的处理过程。应理解,下文所描述的对下行信号的处理过程可以由网络设备执行,也可以由配置于网络设备中的芯片执行。为方便说明,下文统称为网络设备。
网络设备在物理信道可对码字(code word)进行处理。其中,码字可以为经过编码(例如包括信道编码)的编码比特。码字经过加扰(scrambling),生成加扰比特。加扰比特经过调制映射(modulation mapping),得到调制符号。调制符号经过层映射(layer mapping),被映射到多个层(layer),或者称,传输层。经过层映射后的调制符号经过预编码(precoding),得到预编码后的信号。预编码后的信号经过资源元素(resource element,RE)映射后,被映射到多个RE上。这些RE随后经过正交复用(orthogonal frequency division multiplexing,OFDM)调制后通过天线端口(antenna port)发射出去。
应理解,上文所描述的对下行信号的处理过程仅为示例性描述,不应对本申请构成任何限定。对下行信号的处理过程具体可以参考现有技术,为了简洁,这里省略对其具体过程的详细说明。
为了便于理解本申请实施例,下面先对本申请实施例中涉及的术语做简单说明。
1、信道状态信息(channel state information,CSI)报告(report):在无线通信系统 中,由接收设备(如终端设备)向发送设备(如网络设备)上报的用于描述通信链路的信道属性的信息。CSI报告也可以简称为CSI。在本申请实施例中,CSI报告和CSI可以表达相同的含义。
CSI例如可以包括但不限于,预编码矩阵指示(precoding matrix indicator,PMI)、秩指示(rank indication,RI)、信道质量指示(channel quality indicator,CQI)、信道状态信息参考信号(channel state information reference signal,CSI-RS资源指示(CSI-RS resource indicator,CRI)以及层指示(layer indicator,LI)等。应理解,以上列举的CSI报告中包括的具体内容仅为示例性说明,不应对本申请构成任何限定。CSI报告可以包括上文所列举的一项或多项,也可以包括除上述列举之外的其他用于表征CSI的信息,本申请对此不作限定。
以终端设备向网络设备上报CSI为例。终端设备可以在一个时间单元(如时隙(slot))内上报一个或多个CSI报告,每个CSI报告可以对应一种CSI上报的配置条件。该CSI上报的配置条件例如可以由CSI上报配置(CSI-ReportConfig)来确定。终端设备可以基于一个CSI上报配置生成一个CSI报告。
2、CSI上报配置:可配置用于信道测量的资源(resourceForChannelMeasurement)。CSI上报配置中可以关联一个CSI资源配置的标识(CSI-ResourceConfigId),以用来关联由该CSI资源配置所定义的一个或多个资源集,如非零功率(non-zero power,NZP)CSI-RS资源集(NZP-CSI-RS-ResourceSets)。由于每个资源集可以包括一个或多个资源,故通过一个CSI上报配置可以关联一个或多个资源。例如,每个NZP-CSI-RS资源集可包括一个或多个NZP-CSI-RS资源(NZP-CSI-RS resources),同一CSI上报配置可以关联一个或多个NZP-CSI-RS资源。由于本申请中并不涉及零功率(zero power,ZP)-CSI-RS,因此将NZP-CSI-RS简称为CSI-RS。换句话说,本申请实施例中的CSI-RS资源在协议中的体现具体可以是NZP-CSI-RS资源。
通过在CSI上报配置关联CSI资源配置的标识,可以确定CSI-RS资源。该CSI-RS资源可用于配置CSI-RS的传输属性。例如,时频资源位置、端口映射关系、功率因子以及扰码等。具体可参考现有技术。网络设备可以基于CSI-RS资源发送CSI-RS,终端设备可以基于CSI-RS资源接收CSI-RS。
基于CSI-RS资源可以确定用于承载参考信号的时频资源,具体可以为资源元素(resource element,RE)。在本申请实施例中,为方便区分和说明,将用于承载参考信号的时频资源记作待测量资源。通过该待测量资源传输的参考信号用于进行信道测量。网络设备例如可以通过上述CSI资源配置来为终端设备配置待测量资源。或者说,终端设备例如可以通过上述CSI资源配置来确定待测量资源。
在一种可能的设计中,CSI上报配置可以是RRC消息中的一个信息元素(information element,IE)。换句话说,CSI上报配置可以携带在RRC消息中。本申请对于携带CSI上报配置的信令不作限定。同时,本申请对于CSI上报配置的名称不作限定。本申请并不排除采用其他可能的术语来替代CSI上报配置以实现相同或相似功能的可能。
此外,CSI资源配置是当前协议中用于配置CSI-RS的传输资源的配置信令。例如可以通过RRC消息携带。但应理解,本申请对用于配置CSI-RS的传输资源的配置信令也不做限定。用于配置CSI-RS的传输资源的信令可以是CSI-RS资源配置,也可以是其他信令。 同时,本申请对于携带CSI资源配置的具体信令不作限定。同时,本申请对于CSI资源配置的名称也不做限定。本申请并不排除采用其他可能的属于来替代CSI资源配置以实现相同或相似功能的可能。
3、预编码参考信号:又称波束赋形(beamformed)的参考信号。波束赋形的参考信号可以是一种经过了预编码处理后的参考信号,可以类似于LTE协议中的B类(Class B)参考信号。与之相对地,未经过预编码处理的参考信号可以类似于LTE协议中的A类(Class A)参考信号。
在本申请实施例中,为便于区分和说明,将经过预编码的参考信号称为预编码参考信号;将未经过预编码的参考信号简称为参考信号。
应理解,本申请实施例中涉及的参考信号可以是用于信道测量的参考信号。例如,该参考信号可以是信道状态信息参考信号(channel state information reference signal,CSI-RS)或探测参考信号(sounding reference signal,SRS)。但应理解,上文列举仅为示例,不应对本申请构成任何限定,本申请并不排除在未来的协议中定义其他参考信号以实现相同或相似功能的可能。
4、天线端口(antenna port):简称端口。可以理解为被接收端所识别的虚拟天线。或者在空间上可以区分的发射天线。针对每个虚拟天线可以配置一个天线端口,每个虚拟天线可以为多个物理天线的加权组合,每个天线端口可以与一个参考信号对应,因此,每个天线端口(或简称端口)可以称为一个参考信号端口。
同一端口的参考信号(包括未经过预编码的参考信号和经过预编码的参考信号)可以是指用于承载参考信号的时频资源,如资源元素(resource element,RE),在多个传输块(resource block,RB)的相对位置相同。具体可以是指,用于传输同一端口的参考信号的任意两个RB中,用于承载参考信号的RE相对于各自所属RB的频域起始位置的距离相同,且相对于各自所属RB的时域起始位置的距离相同。例如,用于传输同一端口的参考信号的任意两个RB中,用于承载参考信号的RE与各自所属的RB的起始子载波间隔的子载波数目相同,且与各自所属的起始符号的符号数目也相同。简单来说,同一端口的参考信号在多个RB中对应相对位置相同的时频资源。
在本申请实施例中,天线端口可以是指经过预编码之后的参考信号的端口。当前技术中,每个端口的参考信号可以是基于同一个预编码向量对参考信号做预编码得到的预编码参考信号。每个端口的预编码参考信号可以通过一个或多个RB传输。或者说,待测量资源上传输的同一端口的预编码参考信号可以是基于同一预编码向量对参考信号做预编码得到的。
图2示出了CSI-RS资源、端口与预编码向量的对应关系的一例。如前所述,终端设备可以根据CSI-RS资源配置来确定用于承载参考信号的时频资源,即上述待测量资源。基于该CSI-RS资源传输的参考信号可以是CSI-RS。在本申请实施例中,该CSI-RS可以是预编码后的CSI-RS。该CSI-RS对应的端口可以是CSI-RS端口。
网络设备可以为一个CSI-RS资源集配置一个或多个CSI-RS资源。图2中示出了一个CSI-RS资源集包括两个CSI-RS资源的一例。基于一个CSI-RS资源可以传输对应于一个或多个端口的预编码参考信号。图2中示出了基于一个CSI-RS资源传输的预编码参考信号对应于一个端口的一例。每个CSI-RS资源的频域占用带宽可以包括一个或多个子带, 每个子带可以包括一个或多个RB。
具体地,基于CSI-RS资源1传输的预编码参考信号对应于CSI-RS端口1。该端口1对应的预编码参考信号可以是由预编码向量1对参考信号做预编码得到的。该端口1对应的预编码参考信号被映射至子带1和子带2。也就是说,子带1和子带2中传输的预编码参考信号所对应的端口由CSI-RS资源1配置。
基于CSI-RS资源2传输的预编码参考信号对应于CSI-RS端口2。该端口2对应的预编码参考信号可以是由预编码向量2对参考信号做预编码得到的。该端口2对应的预编码参考信号被映射至子带3和子带4。也就是说,子带3和子带4中传输的预编码参考信号所对应的端口由CSI-RS资源2配置。
在一种实现方式中,同一端口对应的预编码参考信号在CSI-RS资源的频域占用带宽上始终由同一预编码向量对参考信号做预编码得到。因此,当基于某一CSI-RS资源传输的预编码参考信号与一个端口对应时,基于该CSI-RS资源传输的预编码参考信号可以基于一个预编码向量对参考信号做预编码得到。
应理解,图2仅为示例,示出了基于一个CSI-RS资源传输的预编码参考信号对应于一个端口的一例。事实上,基于一个CSI-RS资源传输的预编码参考信号也可以对应于多个端口。当基于一个CSI-RS资源传输的预编码参考信号对应于多个端口时,该CSI-RS资源的频域占用带宽所包括的多个RB中,每个RB上传输的预编码参考信号均可以对应多个端口。每个端口的预编码参考信号在多个RB中通过相对位置相同的时频资源来承载。且该多个端口的预编码参考信号在同一RB中例如可以通过时分复用(time division multiplexing,TDM)或频分复用(frequency division multiplexing,FDM)等方法来区分不同端口。
如前所述,待测量资源是用于承载同一端口的参考信号的时频资源。当基于CSI-RS资源确定的资源包括多个RB时,该待测量资源可以包括分布于多个RB中的多个RE。也就是说,该待测量资源可以对应多个RB。在该多个RB中,用于承载同一端口的预编码参考信号的时频资源在各自所述的RB中的相对位置相同。图3示出了多个端口的预编码参考信号的时频资源在多个RB中的一例。如图所示,图3中示例性地示出了两个子带,子带1和子带2。子带1包括RB 1和RB 2,子带2包括RB 3和RB 4。该两个子带由同一CSI-RS资源配置,可用于传输4个端口的参考信号,如包括端口1至端口4。如图3所示,同一端口的参考信号所占用的RE在各自所属的RB中的相对位置相同。图3中带有相同阴影的RE对应于同一端口。例如,端口1的参考信号所占用的RE在RB 1、RB 2、RB 3和RB 4中均占用了每个RB的首个子载波和首个符号。以此类推,这里不再一一列举。因此,图3中带有相同阴影的RE可视为待测量资源的一例。图3中示出了对应于四个端口的四个待测量资源。
应理解,图3仅为便于理解,示出了待测量资源的几例。但这不应对本申请构成任何限定。待测量资源在频域上对应的RB数并不仅限于图3所示。当网络设备通过一个CSI-RS资源为终端设备配置一个或多个端口的参考信号时,用于承载同一端口的参考信号的RE所分布的RB均与该待测量资源对应。
然而,考虑到信道的频选特性,若在宽带上使用相同的预编码向量对参考信号做预编码,所获得的反馈可能并不一定能够准确反映最真实的信道状态。这种情况在例如频分双 工(frequency division duplexing,FDD)模式下可能尤为明显。因此,希望能够在不同的频域资源上采用不同的预编码向量对参考信号做预编码。
为了引入不同的预编码向量对不同的频域资源上传输的参考信号做预编码,网络设备例如可以按照上文所述的方法为终端设备配置更多的CSI-RS资源,并为每个CSI-RS资源配置一个或多个端口的预编码参考信号,每个端口的预编码参考信号对应一个端口。例如,若网络设备希望在子带1、子带2、子带3和子带4分别通过不同的预编码向量对相对位置相同的时频资源上承载的参考信号做预编码,则可以分别为子带1、子带2、子带3和子带4配置一个CSI-RS资源。即,通过4个CSI-RS资源来配置。
由此可见,若引入更多的预编码向量来对参考信号做预编码,则需要配置更多的CSI-RS资源。这将大大增加用于配置CSI-RS资源的信令开销。
基于此,本申请提供一种信道测量方法,以期在不同的频域资源上采用不同的预编码向量对参考信号做预编码,从而获得终端设备对信道状态的精准反馈,同时不会带来开销的大幅增加。
下面将结合附图详细说明本申请实施例提供的信道测量方法。
在介绍本申请实施例之前,首先做出以下几点说明。
第一,在本实施例中,为便于描述,在涉及编号时,可以从1开始连续编号。例如,K个CSI-RS资源可以包括CSI-RS资源1至CSI-RS资源K。N个子带可以包括子带1至子带N等。以此类推。为了简洁,这里不再一一举例说明。当然,具体实现时不限于此,例如,也可以从0开始连续编号。应理解,上文所述均为便于描述本申请实施例提供的技术方案而进行的设置,而并非用于限制本申请的范围。
第二,在本申请实施例中,“用于指示”可以包括用于直接指示和用于间接指示。例如,当描述某一指示信息用于指示信息I时,可以包括该指示信息直接指示I或间接指示I,而并不代表该指示信息中一定携带有I。
将指示信息所指示的信息称为待指示信息,则具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。同时,还可以识别各个信息的通用部分并统一指示,以降低单独指示同样的信息而带来的指示开销。
此外,具体的指示方式还可以是现有各种指示方式,例如但不限于,上述指示方式及其各种组合等。各种指示方式的具体细节可以参考现有技术,本文不再赘述。由上文所述可知,举例来说,当需要指示相同类型的多个信息时,可能会出现不同信息的指示方式不相同的情形。具体实现过程中,可以根据具体的需要选择所需的指示方式,本申请实施例对选择的指示方式不做限定,如此一来,本申请实施例涉及的指示方式应理解为涵盖可以使得待指示方获知待指示信息的各种方法。
待指示信息可以作为一个整体一起发送,也可以分成多个子信息分开发送,而且这些子信息的发送周期和/或发送时机可以相同,也可以不同。具体发送方法本申请不进行限 定。其中,这些子信息的发送周期和/或发送时机可以是预先定义的,例如根据协议预先定义的,也可以是发射端设备通过向接收端设备发送配置信息来配置的。其中,该配置信息可以例如但不限于包括无线资源控制信令,例如RRC信令、MAC层信令,例如MAC-CE信令和物理层信令,例如下行控制信息(downlink control information,DCI)中的一种或者至少两种的组合。
第三,在下文示出的实施例中,第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的指示信息、区分不同的粒度等。
第四,在下文示出的实施例中,“预先定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。其中,“保存”可以是指,保存在一个或者多个存储器中。所述一个或者多个存储器可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或通信装置中。所述一个或者多个存储器也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
第五,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
第六,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b和c中的至少一项(个),可以表示:a,或,b,或,c,或,a和b,或,a和c,或,b和c,或,a、b和c。其中a、b和c分别可以是单个,也可以是多个。
第七,本申请实施例仅为便于理解,以CSI-RS作为用于信道测量的参考信号的一例,详细说明了本申请提供的信道测量方法。与此对应地,该CSI-RS的传输资源可通过CSI-RS资源配置等来配置。但这不应对本申请构成任何限定。例如,上述CSI-RS也可以替换为SRS或可用于实现相同或相似功能的信号。与之对应的CSI-RS资源也可以替换为SRS资源或可用于实现相同或相似功能的参考信号资源。
下面将结合附图详细说明本申请实施例提供的信道测量方法。
本申请实施例提供的方法可以应用于通过多天线技术通信的系统,例如,图1中所示的通信系统100。该通信系统可以包括至少一个网络设备和至少一个终端设备。网络设备和终端设备之间可通过多天线技术通信。
应理解,本申请实施例提供的方法并不仅限于在网络设备与终端设备之间的通信,还可应用于终端设备与终端设备之间的通信等。本申请对于该方法所应用的场景并不做限定。下文示出的实施例中,仅为便于理解和说明,以网络设备与终端设备之间的交互为例详细说明本申请实施例提供的信道测量方法。
还应理解,下文示出的实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是 终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
以下,不失一般性,以网络设备与终端设备之间的交互为例详细说明本申请实施例提供的信道测量方法。
图4是从设备交互的角度示出的本申请一实施例提供的信道测量方法400的示意性流程图。如图4所示,该方法400可以包括步骤410至步骤460。下面详细说明方法400中的各步骤。
在步骤410中,网络设备生成第一指示信息,该第一指示信息用于指示第一粒度。
具体地,该第一粒度是为了便于与后文涉及的CSI上报粒度区分而定义的。在本申请实施例中,该第一粒度是与预编码向量对应的粒度。这里所说的预编码向量可以是指,用于对传输在预先配置的待测量资源上的参考信号做预编码的预编码向量。在本申请实施例中,该第一粒度可以是指频域粒度。基于该第一粒度,可以将待测量资源在频域上对应的多个RB划分为一个或多个频域单元。每个频域单元可以包括一个或多个RB。每个频域单元可以称为一个子带。基于第一粒度划分的频域单元可以称为与第一粒度对应的子带。
其中,该待测量资源在频域上对应的多个RB可以是指,当通过CSI-RS资源配置参考信号时,由同一CSI-RS资源配置且在各RB中的相对位置相同的RE所分布的多个RB。例如,图3中的一个待测量资源可以包括4个RB,即,RB 1至RB 4。
在待测量资源中,每个子带上传输的预编码参考信号可以由同一预编码向量对参考信号做预编码得到。不同子带上传输的同一端口的预编码参考信号可以由同一预编码向量对参考信号做预编码得到,也可以由不同的预编码向量对参考信号做预编码得到。因此,该待测量资源上对应的多个RB上传输的预编码参考信号可以是由一个或多个预编码向量对参考信号做预编码得到。简单地说,上述第一粒度是与预编码向量对应的粒度。
在本申请实施例中,一个待测量资源承载的预编码参考信号对应于同一个端口。也就是说,在一个待测量资源中,预编码参考信号虽然有可能是经由不同的预编码向量对参考信号做预编码得到,但仍然可将其定义为一个端口的预编码参考信号。但应理解,将该一个待测量资源承载的预编码参考信号定义为一个端口的预编码参考信号仅为一种可能的定义方式,不应对本申请构成任何限定。本申请也不排除在未来的协议中同一CSI-RS资源配置中的用于传输参考信号的多个RB中相对位置相同的多个RE承载多个端口的预编码参考信号的可能。在此情况下,同一预编码向量可对应一个端口。本领域的技术人员可以理解,无论对端口如何定义,并不影响对本申请中与预编码向量对应的第一粒度的理解。下文中为便于理解和说明,将一个待测量资源承载的预编码参考信号定义为一个端口的预编码参考信号。
为便于理解,下面结合附图详细说明端口、子带和预编码参考信号的关系。图5示出了端口、子带与预编码向量的对应关系。如图4所示,网络设备可以为一个CSI-RS资源集配置一个或多个CSI-RS资源。图4中示出了网络设备为一个CSI-RS资源集配置一个CSI-RS资源的一例。一个CSI-RS资源上传输的预编码参考信号可以对应于一个或多个端口。图4中示出了CSI-RS资源上传输的预编码参考信号对应于一个端口的一例。基于CSI-RS资源所确定的待测量资源在频域上所对应的RB可以基于第一粒度被划分为4个子带,即包括子带1至子带4。可以理解的是,该4个子带中用于承载预编码参考信号的RE 在各自所属的RB中的相对位置是相同的。该4个子带中传输的预编码参考信号可对应于同一端口,如图4中示出的端口1。
图4中每个子带可以对应一个预编码向量。每个子带上传输的预编码参考信号可以是基于一个预编码向量对参考信号做预编码得到的。如图4所示,子带1中对应于端口1的预编码参考信号可以是由预编码向量1对参考信号做预编码得到。子带2中对应于端口1的预编码参考信号可以是由预编码向量2对参考信号做预编码得到。子带3中对应于端口1的预编码参考信号可以是由预编码向量3对参考信号做预编码得到。子带4中对应于端口1的预编码参考信号可以是由预编码向量4对参考信号做预编码得到。以此类推,为了简洁,这里不再一一列举。
应理解,作用于不同子带的预编码向量可以相同,也可以不同。例如,上述预编码向量1至预编码向量4中的四个预编码向量可以两两互不相同,也可以部分相同,或者,还可以完全相同。
需要注意的是,尽管作用于不同子带的预编码向量可以是完全相同的,如上述预编码向量1至预编码向量4中的四个预编码向量是相同的预编码向量,终端设备仍然认为该四个子带上接收到的预编码参考信号是基于四个不同的预编码向量生成的。因此,终端设备仍然基于每个子带上接收到的预编码参考信道,分别进行信道估计。
还应理解,图4仅为示例,示出了每个子带上传输的预编码参考信号对应一个端口的一例。事实上,每个子带上传输的预编码参考信号也可以对应多个端口。例如,子带1上传输的预编码参考信号可以是由预编码向量1和另一预编码向量(如预编码向量5)对参考信号做预编码得到;子带2上传输的预编码参考信号可以是由预编码向量2和另一预编码向量(如预编码向量6)对参考信号做预编码得到;子带3上传输的预编码参考信号可以是由预编码向量3和另一预编码向量(如预编码向量7)对参考信号做预编码得到;子带4上传输的预编码参考信号可以是由预编码向量4和另一预编码向量(如预编码向量8)对参考信号做预编码得到。此时,预编码向量1至预编码向量4可对应于一个端口(如上述端口1),预编码向量5至预编码向量8可对应于另一端口(例如记作端口2)。
由此可以看到,本申请实施例中,将被映射到待测量资源中每个RB内相同的时频资源的预编码参考信号记作同一端口的预编码参考信号。也就是说,待测量资源上传输的同一端口的预编码参考信号可以是基于一个或多个预编码向量对参考信号做预编码得到的。这也就相当于对端口的定义做了扩展。在待测量资源中,一个端口并不仅限于与一个预编码向量对应,还可以与多个预编码向量对应。而在基于第一粒度划分的子带内,一个端口可以与一个预编码向量。或者说,与第一粒度对应的子带上传输的同一端口的预编码参考信号可以对应一个预编码向量。
需要说明的是,当端口数大于1时,作用于同一子带的多个预编码向量互不相同。例如,上述预编码向量1和预编码向量5不同,预编码向量2与预编码向量6不同,预编码向量3与预编码向量7不同,预编码向量4与预编码向量8不同。
但应理解,本申请并不限定预编码向量1与预编码向量6至预编码向量8的关系,也不限定预编码向量2与预编码向量5、预编码向量7和预编码向量8的关系,也不限定预编码向量3与预编码向量5、预编码向量6和预编码向量8的关系,还不限定预编码向量4与预编码向量5至预编码向量7的关系。
在一个可选的实施例中,待测量资源中至少有两个子带上传输的同一端口的预编码参考信号对应不同的预编码向量。也就是说,待测量资源中至少有两个子带上传输的同一端口的预编码参考信号是由不同的预编码向量对参考信号做预编码得到。以图4中所示为例,与子带1至子带4所分别对应的预编码向量1至预编码向量4中,至少有两个预编码向量是不同的。
进一步地,待测量资源中各子带上传输的同一端口的预编码参考信号对应的预编码向量彼此互不相同。以图4中所示为例,与子带1至子带4所分别对应的预编码向量1至预编码向量4中,任意两个预编码向量互不相同。
在待测量资源的频域占用带宽较大时,通过不同的预编码向量对传输在不同频域资源上的参考信号做预编码,便于网络设备使用不同的预编码向量对参考信号做预编码。这充分考虑到了信道的频选特性,使得CSI-RS上作用的预编码向量可以与不同频段的信道状态相匹配。尤其是在系统带宽较宽或是信道多径时延较大的情况下,有利于终端设备更精准地反馈,使得终端设备反馈的CSI能够更大程度地接近于真实的信道。精准的反馈有利于网络设备采用与信道状态相适配的预编码矩阵进行数据传输,从而有利于提高数据传输性能。
网络设备例如可以通过已有的信令来指示上述第一粒度。即,该第一指示信息可以携带在已有信令中。网络设备也可以通过新增的信令来指示第一粒度。即,该第一指示信息也可以携带在新增信令中。本申请对于用于携带第一指示信息的具体信令不作限定。
在一种可能的设计中,该第一粒度与第二粒度相同。这里,第二粒度是为了便于和上述第一粒度区分而命名。第二粒度具体可以是指CSI上报所基于的子带的粒度。基于第二粒度划分的子带可以称为与第二粒度对应的子带。
在NR协议中,网络设备可以通过CSI上报配置来指示第二粒度。具体地,该CSI上报配置中包括子带粒度(subband size)字段,该子带粒度字段具体指示的粒度即为上述第二粒度。若将第一粒度和第二粒度定义为相同的粒度,与预编码向量对应的粒度和CSI上报所基于的粒度可以是相同的频域粒度。在此情况下,网络设备可以复用该子带粒度字段来同时指示第一粒度和第二粒度。即,可选地,该第一指示信息携带在CSI上报配置的子带粒度字段中。也就是说,网络设备可以复用已有信令中的已有字段来指示该第一粒度。
再看图5,当第一粒度与第二粒度相同时,上述子带1至子带4中的任意一个子带可以是与第一粒度对应的子带,也可以是与第二粒度对应的子带。也就是说,终端设备可以基于子带1至子带4中的每个子带进行信道估计,并可以分别基于子带1至子带4中的每个子带上报CSI。将第一粒度和第二粒度定义为相同的粒度,可以减少指示第一粒度带来的信令开销,同时,也可以将终端设备进行预编码向量的粒度与CSI反馈的粒度相统一,方便终端设备的处理。
在另一种可能的设计中,第一粒度与第二粒度不同。
当第一粒度与第二粒度不同时,网络设备也可以在CSI上报配置中指示该第一粒度。即,可选地,该第一指示信息携带在CSI上报配置中。网络设备例如通过在CSI上报配置中新增字段来指示该第一粒度。具体地,CSI上报配置可以包括第一粒度字段和第二粒度字段。其中,第一粒度字段可用于指示第一粒度,第二粒度字段可用于指示第二粒度。可选地,该第二粒度字段可以是当前协议中的CSI上报配置中的子带粒度字段。
当第一粒度与第二粒度不同时,网络设备还可以在CSI-RS资源映射中指示该第一粒度。即,可选地,该第一指示信息携带在CSI-RS资源映射中。
在一种实现方式中,网络设备可以在CSI-RS资源映射中增加子带粒度字段,以指示第一粒度。例如,该子带粒度字段可以表示为:
子带粒度枚举{值1,值2}(subbandSize ENUMERATED{value 1,value 2})。
其中,value 1和value 2可以理解为是第一粒度的两个可选的取值。网络设备可以通过该信令指示该第一粒度具体为这两个可选的取值中的哪个值。该value 1和value 2例如可以分别为0和1,分别与两个可选的取值对应。例如,若在信令中携带0,则表示采用两个可选的取值中的第一个值;若在信令中携带1,则表示采用两个可选的取值中的第二个值。
作为一个实施例,第一粒度可以与带宽部分(bandwidth part,BWP)具有对应关系。协议可以预先定义的带宽部分(bandwidth part,BWP)与第一粒度的对应关系。其中,BWP具体可以通过BWP中包含的物理资源块(physical resource block,PRB)数目来表示,第一粒度具体可以通过与第一粒度对应的子带中包含的PRB数目来表示。下表示出了BWP与第一粒度的对应关系的一例:
BWP(PRBs) 第一粒度(PRBs)
<24 不适用(not applicable,N/A)
24-72 4,8
73-144 8,16
145-275 16,32
因此,网络设备也可以通过BWP来间接地指示第一粒度的两个可选的取值。当终端设备确定了BWP,也就可以根据该预先定义的对应关系,确定该第一粒度的两个可选的取值。终端设备可进一步根据该CSI-RS资源映射中指示的值,确定第一粒度。
应理解,上文仅为示例,示出了第一粒度与BWP对应的一例。但这不应对本申请构成任何限定。本申请对于BWP在包含不同PRB的情况下所对应的第一粒度包含的PRB数不作限定。第一粒度也并不仅限于与BWP对应,还可以与其他参数对应,为了简洁,这里不一一列举。
可选地,第一粒度大于或等于第二粒度。
图6示出了第一粒度和第二粒度的一例。如图6所示,子带1至子带4是基于第一粒度划分的子带。子带I至子带VIII是基于第二粒度划分的子带。可以看到,每个与第一粒度对应的子带可以包括两个与第二粒度对应的子带。同一CSI-RS端口在子带1至子带4上分别对应不同的预编码向量。终端设备可以基于子带1上接收到的预编码参考信号进行信道测量,分别得到与子带I和子带II相对应的CSI测量结果。此后,终端设备可以将与子带I相对应的CSI反馈给网络设备;同时终端设备也可以将与子带II相对应的CSI反馈给网络设备。以此类推,为了简洁,这里不再一一列举。
在步骤420中,终端设备接收第一指示信息。相应地,在步骤420中,网络设备发送该第一指示信息。该第一指示信息用于指示该第一粒度。
网络设备例如可以通过高层信令来携带该第一指示信息,以向终端设备指示第一粒度。上文步骤410中列举了用于携带第一指示信息的具体信令,为了简洁,这里不再赘述。
可选地,该方法还包括:步骤430,网络设备在待传输资源上发送预编码参考信号。相应地,终端设备在待传输资源上接收预编码参考信号。该待传输资源上传输的预编码参考信号可以是由一个或多个预编码向量对参考信号做预编码得到。
网络设备可以基于第一粒度,对同一端口的参考信号做预编码。如前所述,与第一粒度对应的子带中,同一子带上的预编码参考信号基于相同的预编码向量生成;不同子带上的预编码参考信号可以基于相同或不同的预编码向量生成。网络设备可以根据信道的频选特性,自主选择用来对每个子带上的参考信号做预编码的预编码向量。因此,在该待传输资源上传输的预编码参考信号虽然是同一个端口的预编码参考信号,但可以对应于一个或多个预编码向量。
终端设备可以在该待传输资源上接收预编码参考信号,并在步骤440中,根据在待测量资源接收到的预编码参考信号进行信道测量。
具体来说,终端设备可以根据在待测量资源上接收到的预编码参考信号估计信道矩阵,进而根据估计得到的信道矩阵确定CSI。该CSI例如可以包括以下一项或多项:RI、CQI、PMI、CRI和LI等。
下文详细说明未配置第一粒度和配置了第一粒度两种情况下终端设备处理方式的不同。
若网络设备没有配置第一粒度,端口、预编码向量与子带的对应关系例如可以参考图2。以图2中示出的CSI-RS资源1、端口1、预编码向量1与子带1、子带2的对应关系为例。终端设备可以基于CSI-RS端口1所对应的时频资源上的每一个CSI-RS导频RE上接收到的参考CSI-RS做信道测量。则基于子带1和子带2可以分别得到信道测量结果。并且,为了提升测量精度,可以将基于子带1和子带2得到测量结果做联合滤波,得到滤波处理后的信道测量结果。可以理解的是,终端设备基于预编码参考信号所测量的信道为等效信道,也就是进行了预编码操作的信道。此后,终端设备可以基于滤波处理后得到的信道测量结果进行CSI反馈。为便于区分和说明,这里将终端设备在一个CSI-RS端口所对应的时频资源上进行联合信道测量的方式记作联合处理的信道测量方式。可以理解的是,对多个子带的测量结果做滤波处理利用了信道在频域的相关性。但若信道频选特性较明显,频域相关性不好,对多个子带的测量结果做滤波处理所获得的CSI可能并不是非常准确。
若网络设备配置了该第一粒度,端口、预编码向量与子带的对应关系例如可以参考图6。以图6中示出的CSI-RS资源1、端口1、预编码向量1至4以及子带1至4、子带I至子带VIII的对应关系为例。终端设备可以分别基于子带1、子带2、子带3和子带4上接收到的预编码参考信号进行信道测量,得到各子带对应的信道测量结果。因此,网络设备可以根据信道的频选特性,对不同子带上传输的参考信号配置不同的预编码向量,以获得终端设备更加精准的反馈。此后,终端设备可以将基于子带1至子带4中每个子带测量得到的信道测量结果以第二粒度为粒度来进行CSI反馈。即,基于子带I至子带VIII反馈信道测量结果。为便于与上述联合处理区分,这里将终端设备基于第一粒度估计信道并进行信道测量的方式称为独立处理的信道测量方式。可以理解的是,在信道频选特性较明显的情况下,若对每个子带采用单独的预编码向量来做预编码,以进行各个子带的信道测量,相比于联合处理的信道测量方式而言,所获得CSI反馈更为精准。
应理解,联合处理和独立处理仅为终端设备进行信道测量时的两种不同的处理方式。本申请中仅为区分这两种不同的处理方式而命名,该命名不应对本申请构成任何限定。
如前所述,网络设备可以复用已有的信令、已有的字段指示第一粒度。若网络设备不额外地通知终端设备已经为待测量资源配置了第一粒度。终端设备可能还是仅基于第二粒度进行CSI测量和反馈。因此,网络设备可以通知终端设备已经为该待测量资源配置了第一粒度。
可选地,该方法还包括:步骤450,终端设备接收第二指示信息,该第二指示信息用于指示网络设备为待测量资源配置了第一粒度。相应地,在步骤450中,网络设备发送该第二指示信息,该第二指示信息用于指示为待测量资源配置了第一粒度。
网络设备可以通过信令通知终端设备是否配置了第一粒度。终端设备可以根据是否配置了第一粒度来确定信道估计和测量过程中的具体处理方式。可以理解的是,若网络设备为待测量资源配置了第一粒度,则终端设备可以确定该待测量资源上的预编码参考信号可以是基于一个或多个预编码向量对参考信号做预编码得到的,终端设备可以采用独立处理的方式进行信道测量;若网络设备没有为待测量资源配置第一粒度,则终端设备可以确定该待测量资源上传输的预编码参考信号是基于一个预编码向量对参考信号做预编码得到的,终端设备可以采用联合处理的方式进行信道测量。
在一种可能的设计中,该第二指示信息携带在CSI上报配置中。该第二指示信息具体可以携带在CSI上报配置中用于信道测量的频域限制(freqRestrictionForChannelMeasurements)参数中。例如,该参数具体可以为:
用于信道测量的频域限制枚举{配置,未配置}(freqRestrictionForChannelMeasurements ENUMERATED{configured,notConfigured})。
例如,网络设备可以通过一个比特的指示字段来指示该CSI上报配置中的用于信道测量的频域限制参数。如当该指示字段为0时,表示未配置;当该指示字段为1时,表示已配置。应理解,这里示例的指示字段仅为用于指示用于信道测量的频域限制参数的一种可能的实现方式,该指示字段中的不同取值所指示的信息也仅为示例,因此均不应对本申请构成任何限定。
还应理解,通过CSI上报配置来携带该第二指示信息也仅为一种可能的实现方式,不应对本申请构成任何限定。本申请对于携带该第二指示信息的具体信令和具体指示方式均不做限定。
由此,终端设备可以基于第一粒度进行信道估计,并在进行信道测量时,将与第一粒度对应的各子带的信道矩阵分别独立处理,并基于第二粒度进行信道测量。
在步骤460中,终端设备根据信道测量的结果发送CSI。相应地,在步骤460中,网络设备接收该CSI,该CSI是根据待测量资源上发送的预编码参考信号进行信道测量得到的。
如前所述,终端设备在反馈CSI时可以基于第二粒度来反馈。对于与第二粒度对应的每个子带分别反馈以下一项或多项:RI、CQI、PMI、CRI和LI等。当终端设备基于第二粒度对应的子带反馈CSI之后,网络设备便可以确定通过该子带传输数据时所使用的传输层数、调制编码方式(modulation and coding scheme,MCS)、预编码矩阵等等。
需要说明的是,第二粒度是终端设备上报CSI所基于的子带的粒度。但并不表示终端 设备需要基于该待传输资源所对应的多个RB中与第二粒度对应的每个子带上报CSI。例如,图6中示出了与第二粒度对应的子带I至子带VIII。但并不代表终端设备需要基于子带I至子带VIII中的每个子带上报CSI。终端设备例如可以根据网络设备的指示,如CSI上报配置中的CSI上报带宽(csi-ReportingBand),确定需要上报CSI的子带。需要上报CSI的子带可以是上述与待测量资源对应的RB中与第二粒度对应的部分或全部子带。
因此,本申请实施例通过为待测量资源配置第一粒度,可以使得网络设备为同一CSI-RS资源在不同频域资源上配置的参考信号采用不同的预编码向量来做预编码,以适应信道的频选特性。终端设备在进行信道测量时,也可以基于第一粒度和第二粒度来进行处理。因此有利于在信道频选特性较明显的情况下获得对信道状态的精准反馈。从而有利于提高系统的数据传输性能。
上文结合图4至图6详细说明了本申请实施例提供的信道测量方法。应理解,上述第二指示信息与第一指示信息并不一定要配合使用。网络设备可以单独向终端设备发送第二指示信息,以便于终端设备确定信道测量的方式。
图7是本申请另一实施例提供的信道测量方法700的示意性流程图。如图7所示,该方法700可以包括步骤710至步骤740。
在步骤710中,网络设备生成第二指示信息,该第二指示信息用于指示是否为待测量资源配置了第一粒度。
关于待测量资源、第一粒度以及第二指示信息的相关内容在上文方法400中已经做了详细说明,为了简洁,这里不再赘述。
在步骤720中,网络设备发送该第二指示信息。相应地,在步骤720中,终端设备接收该第二指示信息。
网络设备例如可以通过高层信令发送该第二指示信息。如上文方法400中所列举的CSI上报配置等。本申请对于携带该第二指示信息的具体信令不作限定。
由于上文方法400中的步骤450对网络设备发送该第二指示信息的具体过程做了详细说明,为了简洁,这里省略对步骤710和步骤720的具体说明。
在步骤730中,终端设备基于根据接收到的预编码参考信号进行信道测量。
具体地,若该第二指示信息指示为待测量资源配置了第一粒度,则终端设备可以根据接收到的预编码参考信号,基于与第一粒度对应的每个子带进行信道测量,并将子带测量结果独立处理,以确定CSI。
若该第二指示信息指示没有为待测量资源配置第一粒度,则终端设备可以根据接收到的预编码参考信号,对参考信号的测量结果做联合处理,以确定CSI。
由于上文方法400中的步骤440对终端设备进行信道测量的具体过程做了详细说明,为了简洁,这里省略对步骤730的具体说明。
在步骤740中,终端设备基于信道测量的结果发送CSI。相应地,网络设备接收CSI,该CSI是基于信道测量的结果确定的。
由于上文方法400中的步骤460对终端设备发送CSI的具体过程做了详细说明,为了简洁,这里省略对步骤740的具体说明。
基于上述技术方案,终端设备可以基于第二指示信息确定网络设备是否为待传输资源配置了第一粒度,也就是说,终端设备可以基于第二指示信息确定采用怎样的方式进行信 道测量,例如采用联合处理的方式或是采用独立处理的方式。当频域资源占用较大带宽时,频选特性较明显时,网络设备可以采用不同的预编码向量对同一端口的参考信号做预编码时,终端设备可以采用独立处理的方式来进行信道测量,以获得更加匹配信道频选特性的信道状态的反馈;当频域资源占用较小带宽时,频域相关性较好时,网络设备又可以采用同一预编码向量对同一端口的参考信号做预编码时,终端设备也可以采用联合处理的方式来进行信道测量,以提升测量精度。因此,可以适应不同带宽的频域资源,满足不同的需求,切换非常灵活。同时,还能够获得较精准的信道状态信息的反馈,有利于提高数据传输性能。
应理解,上述实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上,结合图4至图7详细说明了本申请实施例提供的信道测量方法。以下,结合图8至图10详细说明本申请实施例提供的通信装置。
图8是本申请实施例提供的通信装置的示意性框图。如图所示,该通信装置1000可以包括收发单元1100和处理单元1200。
在一种可能的设计中,该通信装置1000可对应于上文方法实施例中的终端设备,例如,可以为终端设备,或者配置于终端设备中的芯片。
具体地,该通信装置1000可对应于根据本申请实施例的方法400或方法700中的终端设备,该通信装置1000可以包括用于执行图4中的方法400或图7中方法700中终端设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图4中的方法400或图7中的方法700的相应流程。
其中,当该通信装置1000用于执行图4中的方法400时,收发单元1100可用于执行方法400中的步骤420和步骤430以及步骤450和步骤460,处理单元1200可用于执行方法400中的步骤440。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该通信装置1000用于执行图7中的方法700时,收发单元1100可用于执行方法700中的步骤720和步骤740,处理单元1200可用于执行方法700中的步骤730。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000为终端设备时,该通信装置1000中的收发单元1100可对应于图9中示出的终端设备2000中的收发器2020,该通信装置1000中的处理单元1200可对应于图9中示出的终端设备2000中的处理器2010。
还应理解,该通信装置1000为配置于终端设备中的芯片时,该通信装置1000中的收发单元1100可以为输入/输出接口。
在另一种可能的设计中,该通信装置1000可对应于上文方法实施例中的网络设备,例如,可以为网络设备,或者配置于网络设备中的芯片。
具体地,该通信装置1000可对应于根据本申请实施例的方法400或方法700中的网络设备,该通信装置1000可以包括用于执行图4中的方法400或图7中方法700中网络设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图4中的方法400或图7中方法700的相应流程。
其中,当该通信装置1000用于执行图4中的方法400时,收发单元1100可用于执行方法400中的步骤420和步骤430以及步骤450和步骤460,处理单元1200可用于执行方法400中的步骤410。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该通信装置1000用于执行图7中的方法700时,收发单元1100可用于执行方法700中的步骤720和步骤740,处理单元1200可用于执行方法700中的步骤710。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000为网络设备时,该通信装置1000中的收发单元为可对应于图10中示出的网络设备3000中的收发器3200,该通信装置1000中的处理单元1200可对应于图10中示出的网络设备3000中的处理器3100。
还应理解,该通信装置1000为配置于网络设备中的芯片时,该通信装置1000中的收发单元1100可以为输入/输出接口。
图9是本申请实施例提供的终端设备2000的结构示意图。该终端设备2000可应用于如图1所示的系统中,执行上述方法实施例中终端设备的功能。如图所示,该终端设备2000包括处理器2010和收发器2020。可选地,该终端设备2000还包括存储器2030。其中,处理器2010、收发器2002和存储器2030之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器2030用于存储计算机程序,该处理器2010用于从该存储器2030中调用并运行该计算机程序,以控制该收发器2020收发信号。可选地,终端设备2000还可以包括天线2040,用于接收无线信号,以将无线信号中承载的下行数据或下行信令输出至收发器2020,还用于将收发器2020输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器2010可以和存储器2030可以合成一个处理装置,处理器2010用于执行存储器2030中存储的程序代码来实现上述功能。具体实现时,该存储器2030也可以集成在处理器2010中,或者独立于处理器2010。该处理器2010可以与图8中的处理单元对应。
上述收发器2020可以与图8中的收发单元对应,也可以称为收发单元。收发器2020可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
应理解,图9所示的终端设备2000能够实现图4或图7所示方法实施例中涉及终端设备的各个过程。终端设备2000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述处理器2010可以用于执行前面方法实施例中描述的由终端设备内部实现的动作,而收发器2020可以用于执行前面方法实施例中描述的终端设备向网络设备发送或从网络设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选地,上述终端设备2000还可以包括电源2050,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备2000还可以包括输入单 元2060、显示单元2070、音频电路2080、摄像头2090和传感器2100等中的一个或多个,所述音频电路还可以包括扬声器2082、麦克风2084等。
图10是本申请实施例提供的网络设备的结构示意图,例如可以为基站的结构示意图。该基站3000可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。如图所示,该基站3000可以包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)3100和一个或多个基带单元(BBU)(也可称为分布式单元(DU))3200。
所述RRU 3100可以称为收发单元,与图8中的收发单元1200对应。可选地,该收发单元3100还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线3101和射频单元3102。可选地,收发单元3100可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。所述RRU 3100部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送指示信息。所述BBU 3200部分主要用于进行基带处理,对基站进行控制等。所述RRU 3100与BBU 3200可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 3200为基站的控制中心,也可以称为处理单元,可以与图8中的处理单元1100对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述第一指示信息和第二指示信息、对参考信号进行预编码等。
在一个示例中,所述BBU 3200可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 3200还包括存储器3201和处理器3202。所述存储器3201用以存储必要的指令和数据。所述处理器3202用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器3201和处理器3202可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图10所示的基站3000能够实现图4或图7所示方法实施例中涉及网络设备的各个过程。基站3000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述BBU 3200可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而RRU 3100可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
应理解,图10所示出的基站3000仅为网络设备的一种可能的架构,而不应对本申请构成任何限定。本申请所提供的方法可适用于其他架构的网络设备。例如,包含CU、DU和有源天线单元(AAU)的网络设备等。本申请对于网络设备的具体架构不作限定。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器用于执行上述任一方法实施例中的方法。
应理解,上述处理装置可以是一个或多个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific  integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图4或图7所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图4或图7所示 实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,各功能单元的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令(程序)。在计算机上加载和执行所述计算机程序指令(程序)时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机 指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (92)

  1. 一种信道测量方法,其特征在于,包括:
    接收第一指示信息,所述第一指示信息用于指示第一粒度,所述第一粒度是与预编码向量对应的粒度,所述预编码向量用于对传输在预先配置的待测量资源上的参考信号做预编码;所述待测量资源上传输的预编码参考信号由一个或多个预编码向量对参考信号做预编码得到,所述待测量资源包括多个资源块RB中用于传输预编码参考信号的时频资源,且所述多个RB中的任意两个RB中用于传输所述预编码参考信号的时频资源在各自所属的RB中的相对位置相同;所述待测量资源对应的所述多个RB包括与所述第一粒度对应的多个频域单元,且同一频域单元上传输的预编码参考信号对应同一预编码向量;
    根据在所述待测量资源上接收到的预编码参考信号进行信道测量,并基于所述信道测量的结果发送信道状态信息CSI。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    接收第二指示信息,所述第二指示信息用于指示为所述待测量资源配置了所述第一粒度。
  3. 如权利要求2所述的方法,其特征在于,所述第二指示信息携带在CSI上报配置中的用于信道测量的频域限制参数中。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,所述待测量资源中至少两个频域单元上传输的预编码参考信号对应不同的预编码向量。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,所述第一粒度与第二粒度相同,所述第二粒度为CSI上报所基于的频域单元的粒度。
  6. 如权利要求5所述的方法,其特征在于,所述第一粒度与所述第二粒度通过同一字段指示。
  7. 如权利要求1至6中任一项所述的方法,其特征在于,所述第一指示信息携带在CSI上报配置中。
  8. 如权利要求7所述的方法,其特征在于,所述频域单元为子带,所述第一指示信息由所述CSI上报配置中的子带粒度字段承载。
  9. 如权利要求1至5中任一项所述的方法,其特征在于,所述第一指示信息携带在信道状态信息参考信号CSI-RS资源映射配置中。
  10. 如权利要求1至9中任一项所述的方法,其特征在于,所述待测量资源中传输的预编码参考信号对应同一端口。
  11. 一种信道测量方法,其特征在于,包括:
    生成第一指示信息,所述第一指示信息用于指示第一粒度,所述第一粒度是与预编码向量对应的粒度,所述预编码向量用于对传输在预先配置的待测量资源上的参考信号做预编码;所述待测量资源上传输的预编码参考信号由一个或多个预编码向量对参考信号做预编码得到,所述待测量资源包括多个资源块RB中用于传输所述预编码参考信号的时频资源,且所述多个RB中的任意两个RB中用于传输所述预编码参考信号的时频资源在各自所属的RB中的相对位置相同;所述待测量资源对应的所述多个RB包括与所述第一粒度 对应的多个频域单元,且同一频域单元上传输的预编码参考信号由同一预编码向量预编码得到;
    发送所述第一指示信息。
  12. 如权利要求11所述的方法,其特征在于,所述方法还包括:
    发送第二指示信息,所述第二指示信息用于指示为所述待测量资源配置了所述第一粒度。
  13. 如权利要求12所述的方法,其特征在于,所述第二指示信息携带在CSI上报配置中的用于信道测量的频域限制参数中。
  14. 如权利要求11至13中任一项所述的方法,其特征在于,所述待测量资源中至少两个频域单元上传输的预编码参考信号对应不同的预编码向量。
  15. 如权利要求11至14中任一项所述的方法,其特征在于,所述第一粒度与第二粒度相同,所述第二粒度为CSI上报所基于的频域单元的粒度。
  16. 如权利要求15所述的方法,其特征在于,所述第一粒度与所述第二粒度通过同一字段指示。
  17. 如权利要求11至16中任一项所述的方法,其特征在于,所述第一指示信息携带在CSI上报配置中。
  18. 如权利要求17所述的方法,其特征在于,所述频域单元为子带,所述第一指示信息由所述CSI上报配置中的子带粒度字段承载。
  19. 如权利要求11至15中任一项所述的方法,其特征在于,所述第一指示信息携带在信道状态信息参考信号CSI-RS资源映射配置中。
  20. 如权利要求11至19中任一项所述的方法,其特征在于,所述待测量资源中传输的预编码参考信号对应同一端口。
  21. 一种信道测量方法,其特征在于,包括:
    接收第二指示信息,所述第二指示信息用于指示是否为待测量资源配置了第一粒度;所述待测量资源包括多个资源块RB中用于传输预编码参考信号的时频资源,且所述多个RB中的任意两个RB中用于传输所述预编码参考信号的时频资源相同;所述第一粒度是与预编码向量对应的粒度;当所述待测量资源配置了所述第一粒度时,所述待测量资源上传输的预编码参考信号由一个或多个预编码向量对参考信号做预编码得到,且与所述第一粒度对应的一个频域单元上传输的预编码参考信号对应同一预编码向量;当所述待测量资源未配置所述第一粒度时,所述待测量资源上传输的预编码参考信号由一个预编码向量对参考信号做预编码得到;
    根据所述待测量资源上接收到的预编码参考信号进行信道测量,并基于所述信道测量的结果发送信道状态信息CSI。
  22. 如权利要求21所述的方法,其特征在于,所述待测量资源中传输的预编码参考信号对应同一端口。
  23. 一种信道测量方法,其特征在于,包括:
    生成第二指示信息,所述第二指示信息用于指示是否为待测量资源配置了第一粒度;所述待测量资源包括多个资源块RB中用于传输预编码参考信号的时频资源,且所述多个RB中的任意两个RB中用于传输所述预编码参考信号的时频资源相同;所述第一粒度是 与预编码向量对应的粒度;当所述待测量资源配置了所述第一粒度时,所述待测量资源上传输的预编码参考信号由一个或多个预编码向量对参考信号做预编码得到,且与所述第一粒度对应的一个频域单元上传输的预编码参考信号对应同一预编码向量;当所述待测量资源未配置所述第一粒度时,所述待测量资源上传输的预编码参考信号由一个预编码向量对参考信号做预编码得到;
    发送所述第二指示信息。
  24. 如权利要求23所述的方法,其特征在于,所述待测量资源中传输的预编码参考信号对应同一端口。
  25. 一种通信装置,其特征在于,包括:
    收发单元,用于接收第一指示信息,所述第一指示信息用于指示第一粒度,所述第一粒度是与预编码向量对应的粒度,所述预编码向量用于对传输在预先配置的待测量资源上的参考信号做预编码;所述待测量资源上传输的预编码参考信号由一个或多个预编码向量对参考信号做预编码得到,所述待测量资源包括多个资源块RB中用于传输预编码参考信号的时频资源,且所述多个RB中的任意两个RB中用于传输所述预编码参考信号的时频资源在各自所属的RB中的相对位置相同;所述待测量资源对应的所述多个RB包括与所述第一粒度对应的多个频域单元,且同一频域单元上传输的预编码参考信号对应同一预编码向量;
    处理单元,用于根据在所述待测量资源上接收到的预编码参考信号进行信道测量,并基于所述信道测量的结果发送信道状态信息CSI。
  26. 如权利要求25所述的装置,其特征在于,所述收发单元还用于接收第二指示信息,所述第二指示信息用于指示为所述待测量资源配置了所述第一粒度。
  27. 如权利要求26所述的装置,其特征在于,所述第二指示信息携带在CSI上报配置中的用于信道测量的频域限制参数中。
  28. 如权利要求25至27中任一项所述的装置,其特征在于,所述待测量资源中至少两个频域单元上传输的预编码参考信号对应不同的预编码向量。
  29. 如权利要求25至28中任一项所述的装置,其特征在于,所述第一粒度与第二粒度相同,所述第二粒度为CSI上报所基于的频域单元的粒度。
  30. 如权利要求29所述的装置,其特征在于,所述第一粒度与所述第二粒度通过同一字段指示。
  31. 如权利要求25至30中任一项所述的装置,其特征在于,所述第一指示信息携带在CSI上报配置中。
  32. 如权利要求31所述的装置,其特征在于,所述频域单元为子带,所述第一指示信息由所述CSI上报配置中的子带粒度字段承载。
  33. 如权利要求25至29中任一项所述的装置,其特征在于,所述第一指示信息携带在信道状态信息参考信号CSI-RS资源映射配置中。
  34. 如权利要求25至33中任一项所述的装置,其特征在于,所述待测量资源中传输的预编码参考信号对应同一端口。
  35. 一种通信装置,其特征在于,包括:
    处理单元,用于生成第一指示信息,所述第一指示信息用于指示第一粒度,所述第一 粒度是与预编码向量对应的粒度,所述预编码向量用于对传输在预先配置的待测量资源上的参考信号做预编码;所述待测量资源上传输的预编码参考信号由一个或多个预编码向量对参考信号做预编码得到,所述待测量资源包括多个资源块RB中用于传输所述预编码参考信号的时频资源,且所述多个RB中的任意两个RB中用于传输所述预编码参考信号的时频资源在各自所属的RB中的相对位置相同;所述待测量资源对应的所述多个RB包括与所述第一粒度对应的多个频域单元,且同一频域单元上传输的预编码参考信号由同一预编码向量预编码得到;
    收发单元,用于发送所述第一指示信息。
  36. 如权利要求35所述的装置,其特征在于,所述收发单元还用于接收第二指示信息,所述第二指示信息用于指示为所述待测量资源配置了所述第一粒度。
  37. 如权利要求36所述的装置,其特征在于,所述第二指示信息携带在CSI上报配置中的用于信道测量的频域限制参数中。
  38. 如权利要求35至37中任一项所述的装置,其特征在于,所述待测量资源中至少两个频域单元上传输的预编码参考信号对应不同的预编码向量。
  39. 如权利要求35至38中任一项所述的装置,其特征在于,所述第一粒度与第二粒度相同,所述第二粒度为CSI上报所基于的频域单元的粒度。
  40. 如权利要求39所述的装置,其特征在于,所述第一粒度与所述第二粒度通过同一字段指示。
  41. 如权利要求35至40中任一项所述的装置,其特征在于,所述第一指示信息携带在CSI上报配置中。
  42. 如权利要求41所述的装置,其特征在于,所述频域单元为子带,所述第一指示信息由所述CSI上报配置中的子带粒度字段承载。
  43. 如权利要求35至39中任一项所述的装置,其特征在于,所述第一指示信息携带在信道状态信息参考信号CSI-RS资源映射配置中。
  44. 如权利要求35至43中任一项所述的装置,其特征在于,所述待测量资源中传输的预编码参考信号对应同一端口。
  45. 一种通信装置,其特征在于,包括:
    收发单元,用于接收第二指示信息,所述第二指示信息用于指示是否为待测量资源配置了第一粒度;所述待测量资源包括多个资源块RB中用于传输预编码参考信号的时频资源,且所述多个RB中的任意两个RB中用于传输所述预编码参考信号的时频资源相同;所述第一粒度是与预编码向量对应的粒度;当所述待测量资源配置了所述第一粒度时,所述待测量资源上传输的预编码参考信号由一个或多个预编码向量对参考信号做预编码得到,且与所述第一粒度对应的一个频域单元上传输的预编码参考信号对应同一预编码向量;当所述待测量资源未配置所述第一粒度时,所述待测量资源上传输的预编码参考信号由一个预编码向量对参考信号做预编码得到;
    处理单元,用于根据所述待测量资源上接收到的预编码参考信号进行信道测量,并基于所述信道测量的结果发送信道状态信息CSI。
  46. 如权利要求45所述的装置,其特征在于,所述待测量资源中传输的预编码参考信号对应同一端口。
  47. 一种通信装置,其特征在于,包括:
    处理单元,用于生成第二指示信息,所述第二指示信息用于指示是否为待测量资源配置了第一粒度;所述待测量资源包括多个资源块RB中用于传输预编码参考信号的时频资源,且所述多个RB中的任意两个RB中用于传输所述预编码参考信号的时频资源相同;所述第一粒度是与预编码向量对应的粒度;当所述待测量资源配置了所述第一粒度时,所述待测量资源上传输的预编码参考信号由一个或多个预编码向量对参考信号做预编码得到,且与所述第一粒度对应的一个频域单元上传输的预编码参考信号对应同一预编码向量;当所述待测量资源未配置所述第一粒度时,所述待测量资源上传输的预编码参考信号由一个预编码向量对参考信号做预编码得到;
    收发单元,用于发送所述第二指示信息。
  48. 如权利要求47所述的装置,其特征在于,所述待测量资源中传输的预编码参考信号对应同一端口。
  49. 一种通信装置,其特征在于,包括:
    收发器,用于接收第一指示信息,所述第一指示信息用于指示第一粒度,所述第一粒度是与预编码向量对应的粒度,所述预编码向量用于对传输在预先配置的待测量资源上的参考信号做预编码;所述待测量资源上传输的预编码参考信号由一个或多个预编码向量对参考信号做预编码得到,所述待测量资源包括多个资源块RB中用于传输预编码参考信号的时频资源,且所述多个RB中的任意两个RB中用于传输所述预编码参考信号的时频资源在各自所属的RB中的相对位置相同;所述待测量资源对应的所述多个RB包括与所述第一粒度对应的多个频域单元,且同一频域单元上传输的预编码参考信号对应同一预编码向量;
    处理器,用于根据在所述待测量资源上接收到的预编码参考信号进行信道测量,并基于所述信道测量的结果发送信道状态信息CSI。
  50. 如权利要求49所述的装置,其特征在于,所述收发器还用于接收第二指示信息,所述第二指示信息用于指示为所述待测量资源配置了所述第一粒度。
  51. 如权利要求50所述的装置,其特征在于,所述第二指示信息携带在CSI上报配置中的用于信道测量的频域限制参数中。
  52. 如权利要求49至51中任一项所述的装置,其特征在于,所述待测量资源中至少两个频域单元上传输的预编码参考信号对应不同的预编码向量。
  53. 如权利要求49至52中任一项所述的装置,其特征在于,所述第一粒度与第二粒度相同,所述第二粒度为CSI上报所基于的频域单元的粒度。
  54. 如权利要求53所述的装置,其特征在于,所述第一粒度与所述第二粒度通过同一字段指示。
  55. 如权利要求49至54中任一项所述的装置,其特征在于,所述第一指示信息携带在CSI上报配置中。
  56. 如权利要求55所述的装置,其特征在于,所述频域单元为子带,所述第一指示信息由所述CSI上报配置中的子带粒度字段承载。
  57. 如权利要求49至53中任一项所述的装置,其特征在于,所述第一指示信息携带在信道状态信息参考信号CSI-RS资源映射配置中。
  58. 如权利要求49至57中任一项所述的装置,其特征在于,所述待测量资源中传输的预编码参考信号对应同一端口。
  59. 一种通信装置,其特征在于,包括:
    处理器,用于生成第一指示信息,所述第一指示信息用于指示第一粒度,所述第一粒度是与预编码向量对应的粒度,所述预编码向量用于对传输在预先配置的待测量资源上的参考信号做预编码;所述待测量资源上传输的预编码参考信号由一个或多个预编码向量对参考信号做预编码得到,所述待测量资源包括多个资源块RB中用于传输所述预编码参考信号的时频资源,且所述多个RB中的任意两个RB中用于传输所述预编码参考信号的时频资源在各自所属的RB中的相对位置相同;所述待测量资源对应的所述多个RB包括与所述第一粒度对应的多个频域单元,且同一频域单元上传输的预编码参考信号由同一预编码向量预编码得到;
    收发器,用于发送所述第一指示信息。
  60. 如权利要求59所述的装置,其特征在于,所述收发器还用于接收第二指示信息,所述第二指示信息用于指示为所述待测量资源配置了所述第一粒度。
  61. 如权利要求60所述的装置,其特征在于,所述第二指示信息携带在CSI上报配置中的用于信道测量的频域限制参数中。
  62. 如权利要求59至61中任一项所述的装置,其特征在于,所述待测量资源中至少两个频域单元上传输的预编码参考信号对应不同的预编码向量。
  63. 如权利要求59至62中任一项所述的装置,其特征在于,所述第一粒度与第二粒度相同,所述第二粒度为CSI上报所基于的频域单元的粒度。
  64. 如权利要求63所述的装置,其特征在于,所述第一粒度与所述第二粒度通过同一字段指示。
  65. 如权利要求59至64中任一项所述的装置,其特征在于,所述第一指示信息携带在CSI上报配置中。
  66. 如权利要求65所述的装置,其特征在于,所述频域单元为子带,所述第一指示信息由所述CSI上报配置中的子带粒度字段承载。
  67. 如权利要求59至63中任一项所述的装置,其特征在于,所述第一指示信息携带在信道状态信息参考信号CSI-RS资源映射配置中。
  68. 如权利要求59至67中任一项所述的装置,其特征在于,所述待测量资源中传输的预编码参考信号对应同一端口。
  69. 一种通信装置,其特征在于,包括:
    收发器,用于接收第二指示信息,所述第二指示信息用于指示是否为待测量资源配置了第一粒度;所述待测量资源包括多个资源块RB中用于传输预编码参考信号的时频资源,且所述多个RB中的任意两个RB中用于传输所述预编码参考信号的时频资源相同;所述第一粒度是与预编码向量对应的粒度;当所述待测量资源配置了所述第一粒度时,所述待测量资源上传输的预编码参考信号由一个或多个预编码向量对参考信号做预编码得到,且与所述第一粒度对应的一个频域单元上传输的预编码参考信号对应同一预编码向量;当所述待测量资源未配置所述第一粒度时,所述待测量资源上传输的预编码参考信号由一个预编码向量对参考信号做预编码得到;
    处理器,用于根据所述待测量资源上接收到的预编码参考信号进行信道测量,并基于所述信道测量的结果发送信道状态信息CSI。
  70. 如权利要求69所述的装置,其特征在于,所述待测量资源中传输的预编码参考信号对应同一端口。
  71. 一种通信装置,其特征在于,包括:
    处理器,用于生成第二指示信息,所述第二指示信息用于指示是否为待测量资源配置了第一粒度;所述待测量资源包括多个资源块RB中用于传输预编码参考信号的时频资源,且所述多个RB中的任意两个RB中用于传输所述预编码参考信号的时频资源相同;所述第一粒度是与预编码向量对应的粒度;当所述待测量资源配置了所述第一粒度时,所述待测量资源上传输的预编码参考信号由一个或多个预编码向量对参考信号做预编码得到,且与所述第一粒度对应的一个频域单元上传输的预编码参考信号对应同一预编码向量;当所述待测量资源未配置所述第一粒度时,所述待测量资源上传输的预编码参考信号由一个预编码向量对参考信号做预编码得到;
    收发器,用于发送所述第二指示信息。
  72. 如权利要求71所述的装置,其特征在于,所述待测量资源中传输的预编码参考信号对应同一端口。
  73. 一种通信装置,其特征在于,所述装置用于实现如权利要求1至10中任一项所述的方法。
  74. 一种通信装置,其特征在于,所述装置用于实现如权利要求11至20中任一项所述的方法。
  75. 一种通信装置,其特征在于,所述装置用于实现如权利要求21或22所述的方法。
  76. 一种通信装置,其特征在于,所述装置用于实现如权利要求23或24所述的方法。
  77. 一种处理装置,其特征在于,包括至少一个处理器,所述至少一个处理器用于执行如权利要求1至10中任一项所述的方法。
  78. 一种处理装置,其特征在于,包括至少一个处理器,所述至少一个处理器用于执行如权利要求11至20中任一项所述的方法。
  79. 一种处理装置,其特征在于,包括至少一个处理器,所述至少一个处理器用于执行如权利要求21或22所述的方法。
  80. 一种处理装置,其特征在于,包括至少一个处理器,所述至少一个处理器用于执行如权利要求23或24所述的方法。
  81. 一种处理装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于从所述存储器调用并运行所述计算机程序,以使得所述装置实现如权利要求1至10中任一项所述的方法。
  82. 一种处理装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于从所述存储器调用并运行所述计算机程序,以使得所述装置实现如权利要求11至20中任一项所述的方法。
  83. 一种处理装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于从所述存储器调用并运行所述计算机程序,以使得所述装置实现如权利要求21或22所述的方法。
  84. 一种处理装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于从所述存储器调用并运行所述计算机程序,以使得所述装置实现如权利要求23或24所述的方法。
  85. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至10中任一项所述的方法。
  86. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求11至20中任一项所述的方法。
  87. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求21或22所述的方法。
  88. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求23或24所述的方法。
  89. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求1至10中任一项所述的方法。
  90. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求11至20中任一项所述的方法。
  91. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求21或22所述的方法。
  92. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求23或24所述的方法。
PCT/CN2020/083466 2019-04-11 2020-04-07 一种信道测量方法和通信装置 WO2020207369A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910287572.5A CN111817798B (zh) 2019-04-11 2019-04-11 一种信道测量方法和通信装置
CN201910287572.5 2019-04-11

Publications (1)

Publication Number Publication Date
WO2020207369A1 true WO2020207369A1 (zh) 2020-10-15

Family

ID=72750914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083466 WO2020207369A1 (zh) 2019-04-11 2020-04-07 一种信道测量方法和通信装置

Country Status (2)

Country Link
CN (1) CN111817798B (zh)
WO (1) WO2020207369A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114614955A (zh) * 2020-12-08 2022-06-10 华为技术有限公司 一种传输数据的方法和装置
WO2022198412A1 (zh) * 2021-03-22 2022-09-29 北京小米移动软件有限公司 一种联合信道估计方法及其装置
CN113273130B (zh) * 2021-04-19 2022-12-09 北京小米移动软件有限公司 信道测量方法、装置、设备及可读存储介质
CN113992249B (zh) * 2021-09-30 2023-04-18 展讯半导体(南京)有限公司 信道状态信息的处理方法、装置、电子设备、存储介质
CN116346290A (zh) * 2021-12-23 2023-06-27 维沃移动通信有限公司 Csi预测方法、装置、通信设备及可读存储介质
WO2023155106A1 (zh) * 2022-02-17 2023-08-24 北京小米移动软件有限公司 信道状态指示反馈信息传输方法、通信设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016183880A1 (en) * 2015-05-15 2016-11-24 Qualcomm Incorporated Enhanced csi procedures for fd-mimo
CN109150265A (zh) * 2017-06-15 2019-01-04 华为技术有限公司 发送和接收参考信号的方法、网络设备和终端设备
CN109302220A (zh) * 2017-07-25 2019-02-01 华为技术有限公司 用于数据传输的方法、装置和系统
CN109474315A (zh) * 2017-09-07 2019-03-15 华为技术有限公司 一种指示及确定预编码矩阵的方法和设备
CN109495149A (zh) * 2017-09-11 2019-03-19 华为技术有限公司 通信方法、网络设备、终端设备和系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3512154B2 (ja) * 1999-01-25 2004-03-29 松下電器産業株式会社 基地局装置
US8090049B2 (en) * 2007-02-12 2012-01-03 Broadcom Corporation Method and system for an alternating delta quantizer for limited feedback MIMO pre-coders
CN101931442B (zh) * 2009-06-22 2013-07-31 电信科学技术研究院 一种信息指示的方法及装置
CN102025404B (zh) * 2009-09-15 2014-06-11 中兴通讯股份有限公司 一种码本生成方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016183880A1 (en) * 2015-05-15 2016-11-24 Qualcomm Incorporated Enhanced csi procedures for fd-mimo
CN109150265A (zh) * 2017-06-15 2019-01-04 华为技术有限公司 发送和接收参考信号的方法、网络设备和终端设备
CN109302220A (zh) * 2017-07-25 2019-02-01 华为技术有限公司 用于数据传输的方法、装置和系统
CN109474315A (zh) * 2017-09-07 2019-03-15 华为技术有限公司 一种指示及确定预编码矩阵的方法和设备
CN109495149A (zh) * 2017-09-11 2019-03-19 华为技术有限公司 通信方法、网络设备、终端设备和系统

Also Published As

Publication number Publication date
CN111817798A (zh) 2020-10-23
CN111817798B (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
US11290156B2 (en) Communications method and device
WO2020207369A1 (zh) 一种信道测量方法和通信装置
US11239950B2 (en) Method for configuring channel state information reporting band and communications apparatus
WO2020200059A1 (zh) 一种上报终端设备能力的方法和通信装置
WO2020125422A1 (zh) 一种信道状态信息csi上报的配置方法和通信装置
US10511411B2 (en) Method for configuring channel state information reporting band and communications apparatus
WO2019137441A1 (zh) 一种通信方法及装置
WO2020143577A1 (zh) 参数配置方法和通信装置
WO2020143580A1 (zh) 用于构建预编码向量的向量指示方法和通信装置
US20220014251A1 (en) Communication method and communications apparatus
WO2020057375A1 (zh) 一种资源配置方法及通信装置
WO2020233500A1 (zh) 一种通信方法及通信装置
WO2022082775A1 (zh) 一种信道状态信息上报方法及装置
US11290906B2 (en) Channel measurement method
WO2021223084A1 (zh) 一种发送和接收上行参考信号的方法及通信装置
WO2020143461A1 (zh) 指示和确定预编码向量的方法以及通信装置
WO2019219022A1 (zh) 通信方法、终端设备和网络设备
WO2020135101A1 (zh) 用于构建预编码向量的向量指示方法以及通信装置
WO2018039860A1 (zh) 信道质量的测量和反馈方法和装置
US20230013510A1 (en) Method for indicating channel state information csi measurement and communication apparatus
WO2015003367A1 (zh) 反馈信道状态信息csi的方法、用户设备和基站
WO2021068261A1 (zh) 频域传输资源配置的方法以及装置
WO2019105215A1 (zh) 传输指示方法、设备及系统、存储介质
WO2021036934A1 (zh) 发送和接收指示的方法和装置
WO2023226833A1 (zh) 探测参考信号传输的方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20787421

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20787421

Country of ref document: EP

Kind code of ref document: A1