WO2021068261A1 - 频域传输资源配置的方法以及装置 - Google Patents

频域传输资源配置的方法以及装置 Download PDF

Info

Publication number
WO2021068261A1
WO2021068261A1 PCT/CN2019/110883 CN2019110883W WO2021068261A1 WO 2021068261 A1 WO2021068261 A1 WO 2021068261A1 CN 2019110883 W CN2019110883 W CN 2019110883W WO 2021068261 A1 WO2021068261 A1 WO 2021068261A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
resource
transmission
indication
resources
Prior art date
Application number
PCT/CN2019/110883
Other languages
English (en)
French (fr)
Inventor
纪刘榴
施弘哲
杭海存
任翔
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/110883 priority Critical patent/WO2021068261A1/zh
Priority to CN201980101047.8A priority patent/CN114467344A/zh
Publication of WO2021068261A1 publication Critical patent/WO2021068261A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • This application relates to the field of wireless communication, and more specifically, to a method and device for frequency domain transmission resource configuration.
  • the frequency domain transmission resources used by network devices to transmit data on different time units are the same, while the quality of frequency domain transmission resources corresponding to different time units are different. More obviously, different network devices use different channels to transmit data to terminal devices. , The frequency domain transmission resources between channels have obvious differences, so it is not appropriate to use the same frequency domain transmission resources in the process of data transmission.
  • the present application provides a method and device for frequency domain transmission resource configuration, in order to improve data transmission performance.
  • a method for frequency domain transmission resource configuration is provided.
  • the method may be executed by the terminal device, or may also be executed by a chip configured in the terminal device, which is not limited in this application.
  • the method includes: receiving indication information, the indication information includes N frequency domain resource indications, each frequency domain resource indication is associated with one or more transmission configuration indication states TCI State, and each TCI state corresponds to multiple transmission times Unit, each frequency domain resource indicator is used to indicate the frequency domain transmission resource in each transmission time unit of the multiple transmission time units corresponding to its associated TCI State; wherein, the N frequency domain resources indicate the indicated frequency domain Among the transmission resources, at least two frequency domain transmission resources are different, and N is an integer equal to or greater than 1, and the frequency domain transmission resources indicated by the N frequency domain resource indications are determined.
  • the frequency domain resources for data transmission can be flexibly selected for the network device, avoiding the same frequency domain resources used during data transmission, thereby helping to improve the robustness of data transmission.
  • this application provides a method for frequency domain transmission resource configuration. This method may be executed by a network device, or may also be executed by a chip configured in the network device, which is not limited in this application.
  • the method includes: generating indication information, the indication information includes N frequency domain resource indications, each frequency domain resource indication is associated with one or more transmission configuration indication states TCI State, and each TCI state corresponds to multiple A transmission time unit, where each frequency domain resource indication is used to indicate the frequency domain transmission resource in each transmission time unit of the multiple transmission time units corresponding to its associated TCI State; wherein, the N frequency domain resources In the frequency domain transmission resources indicated by the indication, at least two frequency domain transmission resources are different, and N is an integer equal to or greater than 1, and the indication information is sent to the terminal device.
  • the frequency domain resources for data transmission can be flexibly selected for the network device, avoiding the same frequency domain resources used during data transmission, thereby helping to improve the robustness of data transmission.
  • At least two frequency domain transmission resources are different, including: at least two frequency domain transmission resources in multiple transmission time units corresponding to the same TCI State are different.
  • At least two frequency domain transmission resources are different, including: at least two frequency domain transmission resources in a transmission time unit corresponding to different TCI States The frequency domain transmission resources are different.
  • the indication information includes N frequency domain indication fields for carrying the N frequency domain resource indications.
  • the indication information includes a frequency domain indication field for carrying the N frequency domain resource indications.
  • the indication information is downlink control information DCI.
  • the TCI states associated with the same frequency domain resource indication belong to a TCI state group.
  • the frequency domain resource indication is used to directly indicate the frequency domain transmission resource or indirectly indicate the frequency domain transmission resource; when the frequency domain resource indication is used to indirectly indicate the frequency domain transmission resource;
  • domain transmission resources determine the frequency domain transmission resources indicated by the N frequency domain resource indications, including: according to each frequency domain resource indication and its associated TCI state corresponding to multiple time domain units, each time domain unit corresponds to Determine the frequency domain transmission resources indicated by the N frequency domain resource indications.
  • the frequency domain resource indication is used to directly indicate the frequency domain transmission resource or indirectly indicate the frequency domain transmission resource.
  • a method for frequency domain transmission resource configuration is provided.
  • the method may be executed by the terminal device, or may also be executed by a chip configured in the terminal device, which is not limited in this application.
  • the method includes: receiving indication information, the indication information includes N frequency domain resource indications, each frequency domain resource indication is associated with one or more sounding reference signal resource indexes SRI, and each SRI corresponds to multiple transmission time units , Each frequency domain resource indicator is used to indicate the frequency domain transmission resource in each transmission time unit of the multiple transmission time units corresponding to its associated SRI; wherein, the N frequency domain resources indicate the indicated frequency domain transmission resource Wherein, at least two frequency domain transmission resources are different, and N is an integer equal to or greater than 1, and the frequency domain transmission resources indicated by the N frequency domain resource indications are determined.
  • the frequency-domain resource indication is associated with the SRI, and the frequency-domain resource for data transmission can be flexibly selected for the network device, avoiding the same frequency-domain resource used during data transmission, thereby helping to improve the robustness of data transmission.
  • this application provides a method for frequency domain transmission resource configuration. This method may be executed by a network device, or may also be executed by a chip configured in the network device, which is not limited in this application.
  • the method includes: generating indication information, the indication information includes N frequency domain resource indications, each frequency domain resource indication is associated with one or more sounding reference signal resource indexes SRI, and each SRI corresponds to multiple transmission time units , Each frequency domain resource indicator is used to indicate the frequency domain transmission resource in each transmission time unit of the multiple transmission time units corresponding to its associated SRI; wherein, the N frequency domain resources indicate the indicated frequency domain transmission resource Wherein, at least two frequency domain transmission resources are different, and N is an integer equal to or greater than 1, and the indication information is sent to the terminal device.
  • the frequency domain resource for data transmission can be flexibly selected, avoiding the same frequency domain resources used during data transmission, thereby helping to improve the robustness of data transmission.
  • At least two frequency domain transmission resources are different, including: at least two frequency domain transmission resources in multiple transmission time units corresponding to the same SRI are different.
  • At least two frequency domain transmission resources are different, including: among the frequency domain transmission resources in a transmission time unit corresponding to different SRIs, at least two frequency domain transmission resources The domain transmission resources are different.
  • the indication information includes N frequency domain indication fields, which are used to carry the N frequency domain resource indications.
  • the indication information includes a frequency domain indication field for carrying the N frequency domain resource indications.
  • the indication information is downlink control information DCI.
  • SRIs associated with the same frequency domain resource indication belong to an SRI group.
  • the frequency domain resource indication is used to directly indicate the frequency domain transmission resource or indirectly indicate the frequency domain transmission resource; when the frequency domain resource indication is used to indirectly indicate the frequency domain transmission resource
  • determining the frequency domain transmission resources indicated by the N frequency domain resource indications includes: according to each frequency domain resource indication and its associated SRI corresponding to the multiple time domain units corresponding to each time domain unit The frequency domain offset determines the frequency domain transmission resources indicated by the N frequency domain resource indications.
  • the frequency domain resource indication is used to directly indicate the frequency domain transmission resource or indirectly indicate the frequency domain transmission resource.
  • this application provides a method for cooperative transmission frequency domain resource configuration. This method may be executed by a network device, or may also be executed by a chip configured in the network device, which is not limited in this application.
  • the method includes: a first network device generates instruction information, the instruction information is used to instruct at least one second network device to perform a second frequency domain transmission resource for downlink data transmission, and the second frequency domain transmission resource is the same as the second frequency domain transmission resource.
  • the first frequency domain transmission resource for a network device to perform downlink data transmission is different; wherein, the second frequency domain transmission resource is corresponding to the at least one second network device in its corresponding second transmission configuration indication state TCI state Frequency domain transmission resources for downlink data transmission in multiple second transmission time units, each second network device corresponds to one TCI state, and each TCI state corresponds to multiple second transmission time units;
  • the first frequency domain transmission resource Is the frequency domain transmission resource for the first network device to perform downlink data transmission for the terminal device in the multiple first transmission time units corresponding to the corresponding first TCI state; the first network device sends the data to the at least one The second network device sends the instruction information.
  • this application provides a method for cooperative transmission frequency domain resource configuration. This method may be executed by a network device, or may also be executed by a chip configured in the network device, which is not limited in this application.
  • the method includes: the second network device receives instruction information from the first network device, where the instruction information is used to instruct the second network device to perform a second frequency domain transmission resource for downlink data transmission, and the second network device
  • the frequency domain transmission resource is different from the first frequency domain transmission resource for downlink data transmission by the first network device; wherein, the second frequency domain transmission resource is the second network device in its corresponding second transmission configuration indication state TCI Frequency domain transmission resources for downlink data transmission in multiple second transmission time units corresponding to the state; the first frequency domain transmission resources are multiple corresponding to the first network device in its corresponding first TCI state
  • the second frequency domain transmission resource is different from the first frequency domain transmission resource for downlink data transmission by the first network device, and includes the data in each second transmission time unit.
  • the second frequency domain transmission resource is different from the first frequency domain transmission resource in each first transmission time unit, or partly different.
  • the method further includes: the first network device receiving the second TCI state corresponding to the at least one second network device.
  • the method further includes: the second network device sending the second network device corresponding to the second network device to the first network device TCI state.
  • the present application provides a method for cooperative transmission frequency domain resource configuration. This method may be executed by a network device, or may also be executed by a chip configured in the network device, which is not limited in this application.
  • the method includes: a first network device generates instruction information, the instruction information is used to instruct at least one second network device to perform a second frequency domain transmission resource for uplink data transmission, and the second frequency domain transmission resource corresponds to the second frequency domain transmission resource.
  • the first frequency domain transmission resource for uplink data transmission of a network device is different; wherein, the second frequency domain transmission resource is the corresponding second sounding reference signal resource index SRI corresponding to the at least one second network device Frequency domain transmission resources for uplink data transmission in multiple second transmission time units, each second network device corresponds to one SRI, and each SRI corresponds to multiple second transmission time units;
  • the first frequency domain transmission resource is all The frequency domain transmission resources of the first network device for uplink data transmission for the terminal device within the multiple first transmission time units corresponding to the first SRI corresponding to the first network device; the first network device sends the frequency domain transmission resources to the at least one second network The device sends the instruction information.
  • the present application provides a method for cooperative transmission frequency domain resource configuration. This method may be executed by a network device, or may also be executed by a chip configured in the network device, which is not limited in this application.
  • the method includes: the second network device receives instruction information from the first network device, where the instruction information is used to instruct the second network device to perform a second frequency domain transmission resource for uplink data transmission, and the second network device
  • the frequency domain transmission resource is different from the first frequency domain transmission resource for uplink data transmission by the first network device; wherein, the second frequency domain transmission resource is the index of the second sounding reference signal resource corresponding to the second network device.
  • the second frequency domain transmission resource is different from the first frequency domain transmission resource used by the first network device for uplink data transmission, and includes The second frequency domain transmission resource is different from the first frequency domain transmission resource in each first transmission time unit, or partly different.
  • the method further includes: the first network device receiving the second SRI corresponding to the at least one second network device.
  • the method further includes: the second network device sending the second network device corresponding to the second network device to the first network device SRI.
  • a communication device which includes various modules or units for executing the method in any one of the possible implementation manners of the first aspect or the third aspect.
  • a communication device including a processor.
  • the processor is coupled with the memory, and can be used to execute instructions in the memory to implement the method in any one of the foregoing first aspect or the third aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication device is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip configured in a terminal device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication device including a method for executing the method in any one of the second, fourth, fifth, sixth, seventh, or eighth aspects. Individual modules or units.
  • a communication device including a processor.
  • the processor is coupled with the memory and can be used to execute instructions in the memory to implement any one of the above-mentioned second, fourth, fifth, sixth, seventh, or eighth aspects in the possible implementation manners.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication device is a network device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip configured in a network device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive signals through the input circuit, and transmit signals through the output circuit, so that the processor executes the first aspect, the second aspect, the third aspect, the fourth aspect, the fifth aspect, and the first aspect.
  • the above-mentioned processor may be a chip, the input circuit may be an input pin, the output circuit may be an output pin, and the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver, and the signal output by the output circuit may be, for example, but not limited to, output to the transmitter and transmitted by the transmitter, and the input circuit and output
  • the circuit can be the same circuit, which is used as an input circuit and an output circuit at different times.
  • the embodiments of the present application do not limit the specific implementation manners of the processor and various circuits.
  • a processing device including a processor and a memory.
  • the processor is used to read instructions stored in the memory, receive signals through a receiver, and transmit signals through a transmitter to execute the first aspect, second aspect, third aspect, fourth aspect, fifth aspect, and sixth aspect Aspect, seventh aspect, or eighth aspect, and any of the first, second, third, fourth, fifth, sixth, seventh, or eighth aspects method.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory and the processor may be provided separately.
  • the memory can be a non-transitory (non-transitory) memory, such as a read only memory (ROM), which can be integrated with the processor on the same chip, or can be set in different On the chip, the embodiment of the present application does not limit the type of the memory and the setting mode of the memory and the processor.
  • ROM read only memory
  • sending instruction information may be a process of outputting instruction information from the processor
  • receiving capability information may be a process of the processor receiving input capability information.
  • the data output by the processor can be output to the transmitter, and the input data received by the processor can come from the receiver.
  • the transmitter and receiver can be collectively referred to as a transceiver.
  • the processing device in the aforementioned fourteenth aspect may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software
  • the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated in the processor, may be located outside the processor, and exist independently.
  • a computer program product includes: a computer program (also called code, or instruction), which when the computer program is executed, causes a computer to execute the first aspect,
  • a computer program also called code, or instruction
  • the method in any one of the possible implementation manners of the sixth aspect, the seventh aspect, or the eighth aspect.
  • a computer-readable medium stores a computer program (also called code, or instruction) when it runs on a computer, so that the computer executes the above-mentioned first aspect
  • a computer program also called code, or instruction
  • the method in any one of the possible implementation manners of the sixth aspect, the seventh aspect, or the eighth aspect.
  • a communication system including the aforementioned network equipment and terminal equipment.
  • FIG. 1 is a schematic diagram of a communication system applicable to a method for configuring frequency domain transmission resources according to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a method 200 for configuring frequency domain transmission resources according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of the association relationship between a frequency domain resource indication method provided by an embodiment of the present application and different transmission time units corresponding to the TCI state;
  • FIG. 4 is a schematic diagram of the association relationship between another frequency domain resource indication method provided by an embodiment of the present application and different transmission time units corresponding to the TCI state;
  • FIG. 5 is a schematic diagram of the association relationship between another frequency domain resource indication method provided by an embodiment of the present application and different transmission time units corresponding to the TCI state;
  • FIG. 6 is a schematic diagram of the association relationship between another frequency domain resource indication method provided by an embodiment of the present application and different transmission time units corresponding to the TCI state;
  • FIG. 7 is a schematic diagram of a method for configuring frequency domain transmission resources according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another frequency domain transmission resource configuration method provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another frequency domain transmission resource configuration method provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another frequency domain transmission resource configuration method provided by an embodiment of the present application.
  • FIG. 11 is a schematic flowchart of a method 300 for configuring frequency domain transmission resources according to an embodiment of the present application
  • FIG. 12 is a schematic flowchart of a method 400 for configuring frequency domain resources for cooperative transmission according to an embodiment of the present application
  • FIG. 13 is a schematic flowchart of a method 500 for configuring frequency domain resources for cooperative transmission according to an embodiment of the present application
  • FIG. 14 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • Fig. 16 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • UMTS universal mobile telecommunication system
  • 5G fifth generation
  • NR new radio
  • the network device in the communication system can be any device with wireless transceiver function or a chip that can be installed in the device.
  • the device includes but is not limited to: evolved Node B (eNB), wireless Network controller (Radio Network Controller, RNC), Node B (Node B, NB), Base Station Controller (BSC), Base Transceiver Station (BTS), Home base station (for example, Home evolved NodeB) , Or Home Node B (HNB), BaseBand Unit (BBU), Access Point (AP), wireless relay node, wireless backhaul node, wireless fidelity (Wireless Fidelity, WIFI) system,
  • the transmission point (TP) or the transmission receiving point (TRP), etc. can also be 5G, such as NR, the gNB in the system, or the transmission point (TRP or TP), the base station in the 5G system
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layer functions
  • DU implements wireless link Channel control (radio link control, RLC), media access control (media access control, MAC) and physical (physical, PHY) layer functions.
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network equipment in the access network RAN, or the CU can be divided into network equipment in the core network CN, which is not limited here.
  • the terminal equipment in the communication system may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user Terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device in the embodiments of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( The wireless terminal in transportation safety, the wireless terminal in the smart city, the wireless terminal in the smart home, and so on.
  • the embodiments of this application do not limit the application scenarios.
  • TCI state is used to indicate the quasi-co location (QCL) relationship between the channel large-scale parameters of the data transmission process and one or two downlink reference signals. Therefore, the terminal can learn the indication information of the channel large-scale parameter relationship of the received signal based on the TCI state, and then demodulate the data carried by the signal based on the channel estimation.
  • Each TCI state may include a serving cell index (ServeCellIndex), a bandwidth part (bandwidth part, BWP) identifier (identifier, ID), and a reference signal resource identifier.
  • the reference signal resource identifier may be, for example, at least one of the following: non-zero power (NZP) CSI-RS reference signal resource identifier (NZP-CSI-RS-ResourceId), non-zero power CSI-RS reference signal Resource set identifier (NZP-CSI-RS-ResourceSetId) or SSB index (SSB-Index).
  • NZP non-zero power
  • NZP-CSI-RS-ResourceId non-zero power CSI-RS reference signal resource set identifier
  • SSB-Index SSB index
  • Sounding reference signal resource index (signal resource index, SRI): channel sounding reference signal (sounding reference signal, SRS) resource indicator.
  • SRI channel sounding reference signal
  • SRS sounding reference signal resource indicator.
  • the resource identifier used to indicate the SRS can be used as the indication information that the UE refers to when sending the physical uplink shared channel (PUSCH).
  • Quasi co-located The QCL relationship is used to indicate that multiple resources have one or more identical or similar communication characteristics. For example, if two antenna ports have a quasi co-location relationship, then the large-scale characteristics of the channel for one port to transmit a signal can be inferred from the large-scale characteristics of the channel for the other port to transmit a signal.
  • the signals corresponding to the antenna ports with the QCL relationship have the same parameters, or the parameters of one antenna port can be used to determine the parameters of the other antenna port that has the QCL relationship with the antenna port, or the two antenna ports have the same parameters , Or, the parameter difference between the two antenna ports is less than a certain threshold.
  • the parameters may include one or more of the following large-scale channel parameters: delay spread, Doppler spread, Doppler shift, average delay (average delay). delay), average gain, spatial reception parameters (spatial Rx parameters).
  • the spatial reception parameters can include the angle of arrival (AOA), the main emission angle (Dominant AoA), the average angle of arrival (Average AoA), the angle of arrival (Angle of departure, AOD), the channel correlation matrix, and the angle of arrival Power angle spread spectrum, average firing angle (Average AoD), power angle spread spectrum of departure angle, transmit channel correlation, receive channel correlation, transmit beamforming, receive beamforming, spatial channel correlation, spatial filter, or, One or more of spatial filtering parameters, or spatial reception parameters, etc.
  • Time domain/time unit at least include multiple time sampling points, which can be frames, radio frames, system frames, subframes, half frames, time slots, mini time slots, symbols, etc.
  • the time domain/time unit involved in the following expressions are all represented by slots.
  • Data can refer to codeword, transmission block, code block, code block group.
  • Frequency domain resources The frequency domain resources mentioned in the embodiments of this application may refer to physical frequency domain resources, or virtual frequency domain resources.
  • the 0th symbol in a certain time slot may refer to the first symbol of the time slot.
  • the specific implementation is not limited to this.
  • it can be numbered consecutively starting from 1.
  • the first symbol in a certain time slot can also refer to the first symbol of the time slot. Since the initial value of the number is different, the number corresponding to the same symbol in the time slot is also different.
  • the first, second, and various numerical numbers are only for easy distinction for description, and are not used to limit the scope of the embodiments of the present application. For example, distinguish different frequency domain resources, different TCI states, and so on.
  • pre-acquisition may include being indicated by network device signaling or pre-defined, for example, protocol definition.
  • pre-defined can be implemented by pre-saving corresponding codes, tables or other methods that can be used to indicate related information in the equipment (for example, including terminal equipment and network equipment). This application does not make any specific implementation methods. limited.
  • the "saving" involved in the embodiments of the present application may refer to storing in one or more memories.
  • the one or more memories may be provided separately, or integrated in an encoder or decoder, a processor, or a communication device.
  • the one or more memories may also be partly provided separately, and partly integrated in a decoder, a processor, or a communication device.
  • the type of the memory can be any form of storage medium, which is not limited in this application.
  • the “protocols” involved in the embodiments of the present application may refer to standard protocols in the communication field, for example, may include LTE protocol, NR protocol, and related protocols applied to future communication systems, which are not limited in this application.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • And/or describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • "The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • At least one of a, b, and c can mean: a, or, b, or, c, or, a and b, or, a and c, or, b and c, or, a , B, and c.
  • a, b, and c can be single or multiple.
  • FIG. 1 shows a schematic diagram of a communication system 100 applicable to the method for sending and receiving data in an embodiment of the present application.
  • the communication system 100 may include at least one terminal device, such as the terminal device 101 shown in the figure; the communication system 100 may also include at least one network device, such as the network device #1 102 or Network equipment #2 103.
  • the communication system 100 may include multiple network devices, such as network device #1 102 and network device #2 103 as shown in the figure.
  • the network equipment #1 102 and network equipment #2 103 may be network equipment in the same cell, or network equipment in different cells, which is not limited in this application.
  • the figure is only an example, showing an example in which network device #1102 and network device #2 103 are located in the same cell.
  • network devices use the same frequency domain resources to transmit data on different time units, but the quality of frequency domain resources corresponding to different time units is different. More obviously, different network devices use different channels to transmit data to terminal devices. The frequency domain resources between the two have obvious differences, so it is not appropriate to use the same frequency domain resources in the process of data transmission.
  • the terminal device receives the indication information.
  • the indication information includes N frequency domain resource indications.
  • Each frequency domain resource indication is associated with one or more transmission configuration indication states TCI State.
  • Each TCI state corresponds to multiple transmission time units.
  • the domain resource indicator is used to indicate the frequency domain transmission resource in each transmission time unit of the multiple transmission time units corresponding to its associated TCI State; wherein, among the frequency domain transmission resources indicated by the N frequency domain resource indicators, at least The two frequency domain transmission resources are different, and N is an integer equal to or greater than 1, and the frequency domain transmission resources indicated by the N frequency domain resource indications are determined.
  • FIG. 2 is a schematic flowchart of a data transmission method 200 provided by an embodiment of the present application from the perspective of device interaction. As shown in the figure, the method 200 may include step 210 and step 220. The steps in the method 200 are described in detail below.
  • the data transmission method provided in this application can be applied to a wireless communication system, for example, the communication system 100 shown in FIG. 1.
  • the communication devices in the communication system may have a wireless communication connection relationship.
  • the terminal device 101 shown in FIG. 1 may respectively have a wireless communication connection relationship with the network device #1 102 and the network device #2 103.
  • the network equipment #1 102 and the network equipment #2 103 may be an ideal backhaul link or a non-ideal backhaul link, which is not limited in this application.
  • the network device shown in the following may, for example, correspond to network device #1 102 and/or network device #2 103 in FIG. 1. It should be understood that, in the embodiments shown below, network device #1 102 and/or network device #2 103 configure frequency domain transmission resources for terminal device 101.
  • step 210 the terminal device receives the instruction information from the network device.
  • the network device sends instruction information to the terminal device.
  • the indication information includes N frequency domain resource indications, each frequency domain resource indication is associated with one or more transmission configuration indication states TCI State, and each TCI state corresponds to multiple transmission time units, and each frequency domain The resource indication is used to indicate the frequency domain transmission resource in each transmission time unit of the multiple transmission time units corresponding to its associated TCI State; wherein, among the frequency domain transmission resources indicated by the N frequency domain resource indications, At least two frequency domain transmission resources are different, and N is an integer equal to or greater than 1.
  • the following description takes the transmission time unit as a slot as an example. Those skilled in the art can understand that the transmission time unit may also include a symbol, a mini-slot, or a frame.
  • the indication information includes N frequency domain indication domains, which are used to carry N frequency domain resource indications.
  • An example is, as shown in Fig. 3, taking two frequency domain indication domains as examples, which are marked as frequency domain indication domain 1 and frequency domain indication domain 2, respectively.
  • Frequency domain indication domain 1 is used to indicate frequency domain transmission resource 1.
  • the frequency domain indication domain 2 is used to indicate the frequency domain transmission resource 2.
  • the frequency domain indication field 1 is used to indicate the frequency domain transmission resource 1
  • the frequency domain indication field 2 indicates a value, and the frequency domain transmission resource 2 is determined based on the frequency domain transmission resource 1 and the value.
  • the indication of the frequency domain indication domain 1 is associated with TCI state1, and the transmission time units corresponding to TCI state1 are slot1 and slot3; the indication of the frequency domain indication domain 2 is associated with TCI state2, and the transmission time units corresponding to TCI state2 are slot2 and slot4.
  • Another example is, as shown in Figure 5, taking two frequency domain indication domains as examples, which are respectively marked as frequency domain indication domain 1 and frequency domain indication domain 2.
  • Frequency domain indication domain 1 is used to indicate frequency domain transmission resource 1.
  • the frequency domain indication domain 2 is used to indicate the frequency domain transmission resource 2.
  • the indication of the frequency domain indicator field 1 is associated with TCI state1 and TCI state2, the transmission time units corresponding to TCI state1 and TCI state2 are slot1 and slot3; the indication of frequency domain indicator field 2 is associated with TCI state3, and the transmission time units corresponding to TCI state3 are slot2 and slot4.
  • the indication information includes 1 frequency domain indication domain, which is used to carry N frequency domain resource indications.
  • 1 frequency domain indication domain indicates frequency domain transmission resource 1 and frequency domain transmission resource 2 at the same time.
  • the indication of the frequency domain indication domain 1 is associated with TCI state1, and the transmission time units corresponding to TCI state1 are slot1 and slot3;
  • the indication of the frequency domain indication domain 2 is associated with TCI state2, and the transmission time units corresponding to TCI state2 are slot2 and slot4.
  • FIG. 6 one frequency domain indication domain indicates frequency domain transmission resource 1 and frequency domain transmission resource 2 at the same time.
  • the indication of the frequency domain indicator field 1 is associated with TCI state1 and TCI state2, the transmission time units corresponding to TCI state1 and TCI state2 are slot1 and slot3; the indication of frequency domain indicator field 2 is associated with TCI state3, and the transmission time units corresponding to TCI state3 are slot2 and slot4.
  • frequency domain transmission resource 1 and the frequency domain transmission resource 2 indicated by the domain resource are different frequency domain transmission resources.
  • the frequency domain transmission resource used for transmitting data in the transmission time units slot1 and slot3 corresponding to TCI state1 is frequency domain transmission resource 1
  • the frequency domain transmission resource used for transmitting data in the transmission time units slot2 and slot4 corresponding to TCI state2 is Frequency domain transmission resources 2. It can be seen that during data transmission in this embodiment, the transmission time units corresponding to different TCI states use different frequency domain transmission resources for data transmission.
  • the frequency domain transmission resource 1 and the frequency domain transmission resource 2 indicated by the frequency domain resource are the same frequency domain transmission resource, and each network device starts transmission in the first slot (for example, the corresponding TCI state1
  • the first slot of network device 1 is slot1
  • the first slot of network device 2 corresponding to TCI state2 is slot2
  • the frequency domain transmission resource used to transmit data in the transmission time unit slot1 corresponding to TCI state1 is frequency domain transmission resource 1
  • the frequency domain transmission resource used to transmit data in the transmission time unit slot3 corresponding to TCI state1 is through the frequency domain.
  • the transmission resource 1 and the frequency domain offset are jointly determined.
  • the frequency domain transmission resource used to transmit data in the transmission time unit slot2 corresponding to TCI state2 is frequency domain transmission resource 2
  • the frequency domain transmission resource used to transmit data in the transmission time unit slot4 corresponding to TCI state2 is through frequency domain transmission resource 2 and frequency domain offset.
  • the amount of movement is determined jointly.
  • the frequency domain offsets corresponding to other slots are different.
  • the frequency domain offset corresponding to each time domain unit may be uniformly configured by the network device to configure the common frequency domain offset, or configured by the network device for different time domain units, and may also be specified by the protocol, for example, according to the slot number
  • the parity corresponds to different offset adjustment coefficients (such as 0, 1, etc.).
  • the terminal device calculates the corresponding offset according to the frequency domain offset and the offset adjustment coefficient. Offset. It can be seen that during data transmission in this implementation manner, the frequency domain transmission resources used by the transmission time units corresponding to the same TCI state are different.
  • the frequency domain resource indication only indicates a frequency domain transmission resource 1.
  • the transmission time units corresponding to TCI state1 are slot1, slot2, slot3, and slot4, and data is transmitted in slot1.
  • the frequency domain transmission resource used is frequency domain transmission resource 1
  • the frequency domain transmission resource used to transmit data in the transmission time unit slot2 corresponding to TCI state1 is determined by the frequency domain transmission resource 1 and the frequency domain offset.
  • the transmission time units slot3 and slot4 corresponding to TCI state1 use frequency domain transmission resources to transmit data in the same manner as the frequency domain transmission resources determined by slot1 and slot2.
  • the offset can be determined according to the parity rule of the slot number, for example, the offset adjustment coefficient with an odd slot number. If the offset adjustment coefficient is 0, the even-numbered offset is 1.
  • the offset in the odd-numbered slot is 0, and the offset in the even-numbered slot is X.
  • the frequency domain offsets corresponding to other slots may be uniformly configured by the network equipment to configure the common frequency domain offsets or configured by the network equipment respectively for different time domain units. It can be seen that during data transmission in this implementation manner, the frequency domain transmission resources used by adjacent transmission time units corresponding to the same TCI state are different.
  • the frequency domain transmission resource 1 and the frequency domain transmission resource 2 indicated by the frequency domain resource are different frequency domain transmission resources, and each network device starts transmission in the first slot (such as the corresponding TCI state1).
  • the first slot of network device 1 is slot1
  • the first slot of network device 2 corresponding to TCI state2 is slot2
  • the frequency domain transmission resource used to transmit data in the transmission time unit slot1 corresponding to TCI state1 is frequency domain transmission resource 1
  • the frequency domain transmission resource used to transmit data in the transmission time unit slot3 corresponding to TCI state1 is through the frequency domain.
  • the transmission resource 1 and the frequency domain offset 1 are jointly determined.
  • the frequency domain transmission resource used to transmit data in the transmission time unit slot2 corresponding to TCI state2 is frequency domain transmission resource 2
  • the frequency domain transmission resource used to transmit data in the transmission time unit slot4 corresponding to TCI state2 is through frequency domain transmission resource 2 and frequency domain offset. Shift 2 is determined jointly.
  • the frequency domain offsets corresponding to other slots are the same and are not 0.
  • the frequency domain offset corresponding to each time domain unit may be uniformly configured by the network device to configure the common frequency domain offset, or configured by the network device for different time domain units, and may also be specified by the protocol, for example, according to the slot number
  • the parity corresponds to different offset adjustment coefficients (such as 0, 1, etc.).
  • the terminal device calculates the corresponding offset according to the frequency domain offset and the offset adjustment coefficient. Offset. It can be seen that in this embodiment, during data transmission, the transmission time units corresponding to the same TCI state use different frequency domain transmission resources; the transmission time units corresponding to different TCI states use different frequency domain transmission resources.
  • step 210 at least two frequency domain transmission resources are different, including: at least two frequency domain transmission resources in multiple transmission time units corresponding to the same TCI state are different.
  • the frequency domain transmission resources in slot1 and slot3 are different, that is, the frequency domain transmission resources of the transmission time unit slot1 corresponding to TCI state1 are f2-f4.
  • the frequency domain transmission resources of the transmission time unit slot3 corresponding to the TCI state1 are f1-f3.
  • At least two frequency domain transmission resources are different, including: among the frequency domain transmission resources in a transmission time unit corresponding to different TCI states, at least two frequency domain transmission resources are different.
  • the frequency domain transmission resources in slot1 and slot2 are different, that is, the frequency domain of the transmission time unit slot1 corresponding to TCI state1
  • the transmission resources are f2-f4
  • the frequency domain transmission resources of the transmission time unit slot2 corresponding to TCI state2 are f1-f3.
  • At least two frequency domain transmission resources are different, including: at least two frequency domain transmission resources in multiple transmission time units corresponding to the same TCI state are different, and frequency domain transmission resources in one transmission time unit corresponding to different TCI states respectively , At least two frequency domain transmission resources are different.
  • the transmission time units slot1 and slot3 corresponding to TCI state1 have different frequency domain transmission resources, namely
  • the frequency domain transmission resources of the transmission time unit slot1 corresponding to TCI state1 are f4-f8, and the frequency domain transmission resources of the transmission time unit slot3 corresponding to TCI state1 are f3-f7.
  • the frequency domain transmission resources in the transmission time unit slot2 and slot4 corresponding to TCI state2 are different, that is, the frequency domain transmission resources of the transmission time unit slot2 corresponding to TCI state2 are f2-f6, and the frequency domain transmission resources of the transmission time unit slot4 corresponding to TCI state2 For f1-f5.
  • the frequency domain transmission resource of the transmission time unit slot1 corresponding to TCI state1 is f4-f8, and the frequency domain transmission resource of the transmission time unit slot2 corresponding to TCI state2 is f2-f6.
  • the TCI states associated with the same frequency domain resource indication belong to a TCI state group; the TCI state group is divided according to a predetermined grouping rule, or is configured by a network device.
  • the indication information is downlink control information DCI.
  • step 220 the terminal device determines the frequency domain transmission resources indicated by the N frequency domain resource indications.
  • the frequency domain resource indication is used to directly indicate frequency domain transmission resources or indirectly indicate frequency domain transmission resources.
  • the frequency domain resource indication is used to directly indicate frequency domain transmission resources.
  • the terminal device directly performs data transmission according to the frequency domain transmission resource indicated by the frequency domain resource.
  • the frequency domain resource indication is used to indirectly indicate frequency domain transmission resources.
  • the frequency domain resource indication indicates the frequency domain transmission resource, according to the frequency domain transmission resource indicated by the frequency domain resource indication domain and the frequency domain offset corresponding to each time domain unit among multiple time domain units corresponding to the frequency domain transmission resource indicated by the frequency domain resource indication domain and its associated TCI state , Determine the frequency domain transmission resources indicated by the N frequency domain resource indications.
  • the frequency domain transmission resources configured for terminal devices can be the same or different.
  • the frequency domain offset corresponding to each time domain unit may be configured uniformly or separately by high-level signaling, and the configured frequency domain offset may be the same or different.
  • FIG. 11 is a schematic flowchart of a data transmission method 300 provided by an embodiment of the present application from the perspective of device interaction. As shown in the figure, the method 300 may include step 310 and step 320. The steps in the method 300 are described in detail below.
  • the terminal device receives indication information from the network device.
  • the indication information includes N frequency domain resource indications.
  • Each frequency domain resource indication is associated with one or more sounding reference signal resource indexes SRI, and each SRI corresponds to a number of SRIs.
  • Transmission time units each frequency domain resource indicator is used to indicate the frequency domain transmission resource in each transmission time unit of the multiple transmission time units corresponding to its associated SRI; wherein, the N frequency domain resource indicators indicate Among the frequency domain transmission resources, at least two frequency domain transmission resources are different, and N is an integer equal to or greater than 1, and the frequency domain transmission resources indicated by the N frequency domain resource indicators are determined.
  • the indication information includes N frequency domain indication domains, which are used to carry N frequency domain resource indications.
  • the indication information includes 1 frequency domain indication domain, which is used to carry N frequency domain resource indications.
  • At least two frequency domain transmission resources are different, including: at least two frequency domain transmission resources in multiple transmission time units corresponding to the same TCI state are different.
  • At least two frequency domain transmission resources are different, including: among the frequency domain transmission resources in a transmission time unit corresponding to different TCI states, at least two frequency domain transmission resources are different.
  • step 210 the specific implementation of the above optional steps is the same as that of step 210, except that the TCI state is replaced with SRI.
  • step 320 the terminal device determines the frequency domain transmission resources indicated by the N frequency domain resource indications.
  • the frequency domain resource indication is used to directly indicate frequency domain transmission resources or indirectly indicate frequency domain transmission resources.
  • step 220 the specific implementation of the above optional steps is the same as that of step 220, except that the TCI state is replaced with SRI.
  • FIG. 12 is a schematic flowchart of a method 400 for configuring frequency domain resources for cooperative transmission according to an embodiment of the present application from the perspective of device interaction. As shown in the figure, the method 400 may include step 410 and step 420. The steps in the method 400 are described in detail below.
  • the first network device generates indication information.
  • the indication information is used to instruct at least one second network device to perform a second frequency domain transmission resource for downlink data transmission, where the second frequency domain transmission resource is different from the first frequency domain transmission resource for the first network device to perform downlink data transmission;
  • the second frequency domain transmission resource is a frequency domain transmission resource for at least one second network device to perform downlink data transmission in multiple second transmission time units corresponding to its corresponding second transmission configuration indication state TCI state, each second network The device corresponds to one TCI state, and each TCI state corresponds to multiple second transmission time units;
  • the first frequency domain transmission resource is that the first network device has multiple first transmission time units corresponding to its corresponding first TCI state. Frequency domain transmission resources for the terminal equipment to perform downlink data transmission.
  • the second frequency domain transmission resource is different from the first frequency domain transmission resource used by the first network device for downlink data transmission, and includes the second frequency domain transmission resource in each second transmission time unit and each first transmission time unit
  • the first frequency domain transmission resources within are all different or partly different.
  • the first network device receives the second TCI state corresponding to at least one second network device.
  • the second network device sends the second TCI state corresponding to the second network device to the first network device.
  • step 420 the first network device sends the instruction information to the at least one second network device.
  • FIG. 13 is a schematic flowchart of a method 500 for cooperative transmission frequency domain resource configuration according to an embodiment of the present application, shown from the perspective of device interaction. As shown in the figure, the method 500 may include step 510 and step 520. The steps in the method 500 are described in detail below.
  • the first network device generates instruction information, the instruction information is used to instruct at least one second network device to perform a second frequency domain transmission resource for uplink data transmission, and the second frequency domain transmission resource to perform uplink data with the first network device
  • the transmitted first frequency domain transmission resources are different; where the second frequency domain transmission resource is at least one second network device performing uplink in multiple second transmission time units corresponding to its corresponding second sounding reference signal resource index SRI Frequency domain transmission resources for data transmission.
  • Each second network device corresponds to one SRI, and each SRI corresponds to multiple second transmission time units;
  • the first frequency domain transmission resource is the first network device corresponding to its corresponding first SRI
  • the plurality of first transmission time units are frequency domain transmission resources for the terminal device to perform uplink data transmission; the first network device sends the instruction information to at least one second network device.
  • the second frequency domain transmission resource is different from the first frequency domain transmission resource used by the first network device for uplink data transmission, and includes the second frequency domain transmission resource in each second transmission time unit and each first transmission time unit
  • the first frequency domain transmission resources within are all different or partly different.
  • the first network device receives the second SRI corresponding to at least one second network device.
  • the second network device sends the second SRI corresponding to the second network device to the first network device.
  • step 520 the first network device sends the indication information to the at least one second network device.
  • FIG. 14 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1000 may include a communication unit 1100 and a processing unit 1200.
  • the communication device 1000 may correspond to the terminal device in the above method embodiment, for example, it may be a terminal device or a chip configured in the terminal device.
  • the communication device 1000 may correspond to the terminal device in the method 200 and/or method 300 according to the embodiment of the present application, and the communication device 1000 may include a method for executing the method 200 in FIG. 2 and/or the terminal device in FIG. 11 The unit of the method executed by the terminal device in the method 300.
  • the units in the communication device 1000 and the other operations and/or functions described above are used to implement the corresponding procedures of the method 200 in FIG. 2 and/or the method 300 in FIG. 11, respectively.
  • the communication unit 1100 may be used to execute step 210 in the method 200
  • the processing unit 1200 may be used to execute step 220 in the method 200.
  • the communication unit 1100 can be used to execute step 310 in the method 300
  • the processing unit 1200 can be used to execute step 320 in the method 300.
  • the communication unit 1100 in the communication device 1000 may correspond to the transceiver 2020 in the terminal device 2000 shown in FIG. 15, and the processing unit 1200 in the communication device 1000 may be It corresponds to the processor 2010 in the terminal device 2000 shown in FIG. 15.
  • the communication unit 1100 in the communication device 1000 may be an input/output interface.
  • the communication device 1000 may correspond to the network device in the above method embodiment, for example, it may be a network device or a chip configured in the network device.
  • the communication apparatus 1000 may correspond to the network equipment in the method 200 and/or the method 300 and/or the method 400 and/or the method 500 according to the embodiment of the present application, and the communication apparatus 1000 may include The method 200 and/or the method 300 in FIG. 11 and/or the method 400 in FIG. 12 and/or the unit of the method executed by the network device in the method 500 in FIG. 13.
  • each unit in the communication device 1000 and other operations and/or functions described above are used to implement the method 200 in FIG. 2 and/or the method 300 in FIG. 11 and/or the method 400 in FIG. 12 and/or the method 400 in FIG. 13 respectively.
  • the corresponding process of the method 500 are used to implement the method 200 in FIG. 2 and/or the method 300 in FIG. 11 and/or the method 400 in FIG. 12 and/or the method 400 in FIG. 13 respectively.
  • the communication unit 1100 may be used to execute step 210 in the method 200
  • the processing unit 1200 may be used to execute step 220 in the method 200.
  • the communication unit 1100 can be used to execute step 310 in the method 300
  • the processing unit 1200 can be used to execute step 320 in the method 300.
  • the communication unit 1100 may be used to execute step 420 in the method 400
  • the processing unit 1200 may be used to execute step 410 in the method 400.
  • the communication unit 1100 may be used to execute step 520 in the method 500
  • the processing unit 1200 may be used to execute step 510 in the method 500. It should be understood that the specific process of each unit performing the foregoing corresponding steps has been described in detail in the foregoing method embodiment, and is not repeated here for brevity.
  • the communication unit in the communication device 1000 may correspond to the transceiver 3200 in the network device 3000 shown in FIG. 16, and the processing unit 1200 in the communication device 1000 may be It corresponds to the processor 3100 in the network device 3000 shown in FIG. 16.
  • the communication unit 1100 in the communication device 1000 may be an input/output interface.
  • FIG. 15 is a schematic structural diagram of a terminal device 2000 provided by an embodiment of the present application.
  • the terminal device 2000 can be applied to the system shown in FIG. 1 to perform the functions of the terminal device in the foregoing method embodiment.
  • the terminal device 2000 includes a processor 2010 and a transceiver 2020.
  • the terminal device 2000 further includes a memory 2030.
  • the processor 2010, the transceiver 2020, and the memory 2030 can communicate with each other through internal connection paths to transfer control and/or data signals.
  • the memory 2030 is used for storing computer programs, and the processor 2010 is used for downloading from the memory 2030. Call and run the computer program to control the transceiver 2020 to send and receive signals.
  • the terminal device 2000 may further include an antenna 2040 for transmitting the uplink data or uplink control signaling output by the transceiver 2020 through a wireless signal.
  • the above-mentioned processor 2010 and the memory 2030 may be combined into one processing device, and the processor 2010 is configured to execute the program code stored in the memory 2030 to realize the above-mentioned functions.
  • the memory 2030 may also be integrated in the processor 2010 or independent of the processor 2010.
  • the processor 2010 may correspond to the processing unit in FIG. 14.
  • the above transceiver 2020 may correspond to the communication unit in FIG. 14, and may also be referred to as a transceiver unit.
  • the transceiver 2020 may include a receiver (or receiver, receiving circuit) and a transmitter (or transmitter, transmitting circuit). Among them, the receiver is used to receive signals, and the transmitter is used to transmit signals.
  • the terminal device 2000 shown in FIG. 15 can implement various processes related to the terminal device in the embodiments of the method 200 shown in FIG. 2 and/or the method 300 shown in FIG. 11.
  • the operations and/or functions of the various modules in the terminal device 2000 are respectively for implementing the corresponding processes in the foregoing method embodiments.
  • the above-mentioned processor 2010 can be used to execute the actions described in the previous method embodiments implemented by the terminal device, and the transceiver 2020 can be used to execute the terminal device described in the previous method embodiments to send to or receive from the network device. action.
  • the transceiver 2020 can be used to execute the terminal device described in the previous method embodiments to send to or receive from the network device. action.
  • the aforementioned terminal device 2000 may further include a power supply 2050 for providing power to various devices or circuits in the terminal device.
  • the terminal device 2000 may also include one or more of an input unit 2060, a display unit 2070, an audio circuit 2080, a camera 2090, and a sensor 2100.
  • the audio circuit It may also include a speaker 2082, a microphone 2084, and so on.
  • FIG. 16 is a schematic structural diagram of a network device provided by an embodiment of the present application, for example, it may be a schematic structural diagram of a base station.
  • the base station 3000 can be applied to the system shown in FIG. 1 to perform the functions of the network equipment in the foregoing method embodiment.
  • the base station 3000 may include one or more radio frequency units, such as a remote radio unit (RRU) 3100 and one or more baseband units (BBU) (also known as digital units). ,Digital unit,DU)3200.
  • the RRU 3100 may be called a transceiver unit, and corresponds to the communication unit 1200 in FIG. 14.
  • the transceiver unit 3100 may also be called a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 3101 and a radio frequency unit 3102.
  • the transceiver unit 3100 may include a receiving unit and a transmitting unit, the receiving unit may correspond to a receiver (or receiver, receiving circuit), and the transmitting unit may correspond to a transmitter (or transmitter or transmitting circuit).
  • the RRU 3100 part is mainly used for sending and receiving of radio frequency signals and conversion of radio frequency signals and baseband signals, for example, for sending instruction information to terminal equipment.
  • the 3200 part of the BBU is mainly used for baseband processing, control of the base station, and so on.
  • the RRU 3100 and the BBU 3200 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 3200 is the control center of the base station, and may also be called a processing unit, which may correspond to the processing unit 1100 in FIG. 14, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU processing unit
  • the BBU may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment, for example, to generate the foregoing indication information.
  • the BBU 3200 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network (such as an LTE network) of a single access standard, or support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 3200 also includes a memory 3201 and a processor 3202.
  • the memory 3201 is used to store necessary instructions and data.
  • the processor 3202 is configured to control the base station to perform necessary actions, for example, to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 3201 and the processor 3202 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the base station 3000 shown in FIG. 16 can implement the method 200 in FIG. 2 and/or the method 300 in FIG. 11 and/or the method 400 in FIG. 12 and/or the method 500 in FIG.
  • the operations and/or functions of the various modules in the base station 3000 are respectively for implementing the corresponding procedures in the foregoing method embodiments.
  • the above-mentioned BBU 3200 can be used to perform the actions described in the previous method embodiments implemented by the network device, and the RRU 3100 can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • the RRU 3100 can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • An embodiment of the present application also provides a processing device, including a processor and an interface; the processor is configured to execute the communication method in the foregoing method embodiment.
  • the processing device may be a chip.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or It is a central processor unit (CPU), it can also be a network processor (NP), it can also be a digital signal processing circuit (digital signal processor, DSP), or it can be a microcontroller (microcontroller unit). , MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processing circuit
  • microcontroller unit microcontroller unit
  • MCU programmable logic device
  • PLD programmable logic device
  • each step of the above method can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product.
  • the computer program product includes: computer program code, which when the computer program code runs on a computer, causes the computer to execute FIG. 2, FIG. 11, and FIG. The method of any one of the embodiments shown in FIG. 12 and FIG. 13.
  • the present application also provides a computer-readable medium storing program code, which when the program code runs on a computer, causes the computer to execute FIG. 2, FIG. 11, and FIG. The method of any one of the embodiments shown in FIG. 12 and FIG. 13.
  • the present application also provides a system, which includes the aforementioned one or more terminal devices and one or more network devices.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disc), SSD)) etc.
  • the network equipment in each of the above-mentioned device embodiments corresponds completely to the network equipment or terminal equipment in the terminal equipment and method embodiments, and the corresponding modules or units execute the corresponding steps.
  • the communication unit executes the receiving or the terminal equipment in the method embodiments.
  • the processing unit executes the functions of specific units, refer to the corresponding method embodiments. Among them, there may be one or more processors.
  • component used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, a processor, an object, an executable file, an execution thread, a program, and/or a computer running on a processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or threads of execution, and components may be located on one computer and/or distributed among two or more computers.
  • these components can be executed on various computer-readable media having various data structures stored thereon.
  • a component can pass through a signal with one or more data packets (for example, data from two components that interact with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Local and/or remote processes to communicate.
  • data packets for example, data from two components that interact with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal
  • Local and/or remote processes to communicate.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • each functional unit may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions (programs).
  • programs When the computer program instructions (programs) are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website site, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种频域传输资源配置的方法,有利于提高数据传输的鲁棒性。该方法包括:终端设备接收指示信息,指示信息包含N个频域资源指示,每个频域资源指示与一个或多个传输配置指示状态TCI State相关联,每一TCI state对应多个传输时间单元,每个频域资源指示用于指示其关联的TCI State所对应的多个传输时间单元中每个传输时间单元内的频域传输资源;其中,N个频域资源指示所指示的频域传输资源中,至少两个频域传输资源不同,N为等于或大于1的整数。通过将频域资源关联TCI state,解决了数据传输过程中频域资源的分配问题,从而有利于提高数据传输的鲁棒性。

Description

频域传输资源配置的方法以及装置 技术领域
本申请涉及无线通信领域,并且更具体地,涉及频域传输资源配置的方法以及装置。
背景技术
随着通信技术的发展,对数据传输的鲁棒性提出了更高的要求。目前,网络设备在不同时间单元上传输数据所使用的频域传输资源相同,而不同时间单元对应的频域传输资源质量不同,更明显的,不同网络设备给终端设备传输数据所使用的信道不同,信道之间的频域传输资源具有明显的差异性,因而在数据传输的过程中使用相同的频域传输资源不合适。
因此,针对现有技术方案存在的问题,数据传输的频域传输资源如何分配,是亟需解决的问题。
发明内容
本申请提供一种频域传输资源配置的方法以及装置,以期提高数据传输性能。
第一方面,提供了一种频域传输资源配置的方法。该方法可以由终端设备执行,或者也可以由配置于终端设备中的芯片执行,本申请对此不作限定。
具体地,该方法包括:接收指示信息,指示信息包含N个频域资源指示,每个频域资源指示与一个或多个传输配置指示状态TCI State相关联,每一TCI state对应多个传输时间单元,每个频域资源指示用于指示其关联的TCI State所对应的多个传输时间单元中每个传输时间单元内的频域传输资源;其中,N个频域资源指示所指示的频域传输资源中,至少两个频域传输资源不同,N为等于或大于1的整数;确定N个频域资源指示所指示的频域传输资源。
因此,通过频域资源指示关联TCI state,可以针对网络设备灵活的选择数据传输的频域资源,避免数据传输时使用的频域资源相同,从而有利于提高数据传输的鲁棒性。
第二方面,本申请提供了一种频域传输资源配置的方法。该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片执行,本申请对此不作限定。
具体地,该方法包括:生成指示信息,所述指示信息包含N个频域资源指示,每个频域资源指示与一个或多个传输配置指示状态TCI State相关联,每一TCI state对应多个传输时间单元,所述每个频域资源指示用于指示其关联的TCI State所对应的多个传输时间单元中每个传输时间单元内的频域传输资源;其中,所述N个频域资源指示所指示的频域传输资源中,至少两个频域传输资源不同,N为等于或大于1的整数;向终端设备发送所述指示信息。
因此,通过频域资源指示关联TCI state,可以针对网络设备灵活的选择数据传输的频域资源,避免数据传输时使用的频域资源相同,从而有利于提高数据传输的鲁棒性。
结合第一方面或第二方面,在某些可能的实现方式中,至少两个频域传输资源不同, 包括:同一TCI State对应的多个传输时间单元内的至少两个频域传输资源不同。
结合第一方面或第二方面,在某些可能的实现方式中,至少两个频域传输资源不同,包括:不同TCI State分别对应的一个传输时间单元内的频域传输资源中,至少两个频域传输资源不同。
结合第一方面或第二方面,在某些可能的实现方式中,指示信息包括N个频域指示域,用于承载所述N个频域资源指示。
结合第一方面或第二方面,在某些可能的实现方式中,指示信息包括一个频域指示域,用于承载所述N个频域资源指示。
结合第一方面或第二方面,在某些可能的实现方式中,指示信息为下行控制信息DCI。
结合第一方面或第二方面,在某些可能的实现方式中,关联同一频域资源指示的TCI state属于一个TCI state组。
结合第一方面,在某些可能的实现方式中,频域资源指示用于直接指示所述频域传输资源或间接指示所述频域传输资源;当频域资源指示用于间接指示所述频域传输资源时,确定N个频域资源指示所指示的频域传输资源,包括:根据各频域资源指示和其所关联的TCI state所对应的多个时域单元中,各时域单元对应的频域偏移量,确定N个频域资源指示所指示的频域传输资源。
结合第二方面,在某些可能的实现方式中,频域资源指示用于直接指示所述频域传输资源或间接指示所述频域传输资源。
第三方面,提供了一种频域传输资源配置的方法。该方法可以由终端设备执行,或者也可以由配置于终端设备中的芯片执行,本申请对此不作限定。
具体地,该方法包括:接收指示信息,指示信息包含N个频域资源指示,每个频域资源指示与一个或多个探测参考信号资源索引SRI相关联,每一SRI对应多个传输时间单元,每个频域资源指示用于指示其关联的SRI所对应的多个传输时间单元中每个传输时间单元内的频域传输资源;其中,N个频域资源指示所指示的频域传输资源中,至少两个频域传输资源不同,N为等于或大于1的整数;确定N个频域资源指示所指示的频域传输资源。
因此,通过频域资源指示关联SRI,可以针对网络设备灵活的选择数据传输的频域资源,避免数据传输时使用的频域资源相同,从而有利于提高数据传输的鲁棒性。
第四方面,本申请提供了一种频域传输资源配置的方法。该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片执行,本申请对此不作限定。
具体地,该方法包括:生成指示信息,指示信息包含N个频域资源指示,每个频域资源指示与一个或多个探测参考信号资源索引SRI相关联,每一SRI对应多个传输时间单元,每个频域资源指示用于指示其关联的SRI所对应的多个传输时间单元中每个传输时间单元内的频域传输资源;其中,N个频域资源指示所指示的频域传输资源中,至少两个频域传输资源不同,N为等于或大于1的整数;向终端设备发送指示信息。
因此,通过频域资源指示关联SRI,可以灵活的选择数据传输的频域资源,避免数据传输时使用的频域资源相同,从而有利于提高数据传输的鲁棒性。
结合第三方面或第四方面,在某些可能的实现方式中,至少两个频域传输资源不同,包括:同一SRI对应的多个传输时间单元内的至少两个频域传输资源不同。
结合第三方面或第四方面,在某些可能的实现方式中,至少两个频域传输资源不同,包括:不同SRI分别对应的一个传输时间单元内的频域传输资源中,至少两个频域传输资源不同。
结合第三方面或第四方面,在某些可能的实现方式中,指示信息包括N个频域指示域,用于承载所述N个频域资源指示。
结合第三方面或第四方面,在某些可能的实现方式中,指示信息包括一个频域指示域,用于承载所述N个频域资源指示。
结合第三方面或第四方面,在某些可能的实现方式中,指示信息为下行控制信息DCI。
结合第三方面或第四方面,在某些可能的实现方式中,关联同一频域资源指示的SRI属于一个SRI组。
结合第三方面,在某些可能的实现方式中,频域资源指示用于直接指示所述频域传输资源或间接指示所述频域传输资源;当频域资源指示用于间接指示所述频域传输资源时,确定N个频域资源指示所指示的频域传输资源,包括:根据各频域资源指示和其所关联的SRI所对应的多个时域单元中,各时域单元对应的频域偏移量,确定N个频域资源指示所指示的频域传输资源。
结合第四方面,在某些可能的实现方式中,频域资源指示用于直接指示所述频域传输资源或间接指示所述频域传输资源。
第五方面,本申请提供了一种协作传输频域资源配置的方法。该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片执行,本申请对此不作限定。
具体地,该方法包括:第一网络设备生成指示信息,所述指示信息用于指示至少一个第二网络设备进行下行数据传输的第二频域传输资源,所述第二频域传输资源与第一网络设备进行下行数据传输的第一频域传输资源不同;其中,所述第二频域传输资源为所述至少一个第二网络设备在其对应的第二传输配置指示状态TCI state所对应的多个第二传输时间单元内进行下行数据传输的频域传输资源,每个第二网络设备对应一个TCI state,每个TCI state对应多个第二传输时间单元;所述第一频域传输资源为所述第一网络设备在其对应的第一TCI state所对应的多个第一传输时间单元内为终端设备进行下行数据传输的频域传输资源;所述第一网络设备向所述至少一个第二网络设备发送所述指示信息。
第六方面,本申请提供了一种协作传输频域资源配置的方法。该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片执行,本申请对此不作限定。
具体地,该方法包括:第二网络设备接收来自第一网络设备的指示信息,所述指示信息用于指示所述第二网络设备进行下行数据传输的第二频域传输资源,所述第二频域传输资源与第一网络设备进行下行数据传输的第一频域传输资源不同;其中,所述第二频域传输资源为所述第二网络设备在其对应的第二传输配置指示状态TCI state所对应的多个第二传输时间单元内进行下行数据传输的频域传输资源;所述第一频域传输资源为所述第一网络设备在其对应的第一TCI state所对应的多个第一传输时间单元内进行下行数据传输的频域传输资源;所述第二网络设备确定所述指示信息所指示的所述第二频域传输资源。
可选的,对于第五方面和/或第六方面,所述第二频域传输资源与第一网络设备进行下行数据传输的第一频域传输资源不同,包括各第二传输时间单元内的第二频域传输资源与 各第一传输时间单元内的第一频域传输资源均不同,或者部分不同。
可选的,对于第五方面,在某些可能的实现方式中,所述方法还包括:所述第一网络设备接收所述至少一个第二网络设备对应的所述第二TCI state。
可选的,对于第六方面,在某些可能的实现方式中,所述方法还包括:所述第二网络设备向所述第一网络设备发送所述第二网络设备对应的所述第二TCI state。
第七方面,本申请提供了一种协作传输频域资源配置的方法。该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片执行,本申请对此不作限定。
具体地,该方法包括:第一网络设备生成指示信息,所述指示信息用于指示至少一个第二网络设备进行上行数据传输的第二频域传输资源,所述第二频域传输资源与第一网络设备进行上行数据传输的第一频域传输资源不同;其中,所述第二频域传输资源为所述至少一个第二网络设备在其对应的第二探测参考信号资源索引SRI所对应的多个第二传输时间单元内进行上行数据传输的频域传输资源,每个第二网络设备对应一个SRI,每个SRI对应多个第二传输时间单元;所述第一频域传输资源为所述第一网络设备在其对应的第一SRI所对应的多个第一传输时间单元内为终端设备进行上行数据传输的频域传输资源;所述第一网络设备向所述至少一个第二网络设备发送所述指示信息。
第八方面,本申请提供了一种协作传输频域资源配置的方法。该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片执行,本申请对此不作限定。
具体地,该方法包括:第二网络设备接收来自第一网络设备的指示信息,所述指示信息用于指示所述第二网络设备进行上行数据传输的第二频域传输资源,所述第二频域传输资源与第一网络设备进行上行数据传输的第一频域传输资源不同;其中,所述第二频域传输资源为所述第二网络设备在其对应的第二探测参考信号资源索引SRI所对应的多个第二传输时间单元内进行上行数据传输的频域传输资源;所述第一频域传输资源为所述第一网络设备在其对应的第一SRI所对应的多个第一传输时间单元内进行上行数据传输的频域传输资源;所述第二网络设备确定所述指示信息所指示的所述第二频域传输资源。
可选的,对于第七方面和/或第八方面,所述第二频域传输资源与第一网络设备进行上行数据传输的第一频域传输资源不同,包括各第二传输时间单元内的第二频域传输资源与各第一传输时间单元内的第一频域传输资源均不同,或者部分不同。
可选的,对于第七方面,在某些可能的实现方式中,所述方法还包括:所述第一网络设备接收所述至少一个第二网络设备对应的所述第二SRI。
可选的,对于第八方面,在某些可能的实现方式中,所述方法还包括:所述第二网络设备向所述第一网络设备发送所述第二网络设备对应的所述第二SRI。
第九方面,提供了一种通信装置,包括用于执行第一方面或第三方面中任一种可能实现方式中的方法的各个模块或单元。
第十方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面或第三方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,所述通信 接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片。当该通信装置为配置于终端设备中的芯片时,所述通信接口可以是输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第十一方面,提供了一种通信装置,包括用于执行第二方面、第四方面、第五方面、第六方面、第七方面或第八方面中任一种可能实现方式中的方法的各个模块或单元。
第十二方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面、第四方面、第五方面、第六方面、第七方面或第八方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为网络设备。当该通信装置为网络设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片。当该通信装置为配置于网络设备中的芯片时,所述通信接口可以是输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第十三方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述处理器执行第一方面、第二方面、第三方面、第四方面、第五方面、第六方面、第七方面或第八方面,以及第一方面、第二方面、第三方面、第四方面、第五方面、第六方面、第七方面或第八方面任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第十四方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行第一方面、第二方面、第三方面、第四方面、第五方面、第六方面、第七方面或第八方面,以及第一方面、第二方面、第三方面、第四方面、第五方面、第六方面、第七方面或第八方面任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不 同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理器输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第十四方面中的处理装置可以是一个芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第十五方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面、第二方面、第三方面、第四方面、第五方面、第六方面、第七方面或第八方面,以及第一方面、第二方面、第三方面、第四方面、第五方面、第六方面、第七方面或第八方面中任一种可能实现方式中的方法。
第十六方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面、第二方面、第三方面、第四方面、第五方面、第六方面、第七方面或第八方面,以及第一方面、第二方面、第三方面、第四方面、第五方面、第六方面、第七方面或第八方面中任一种可能实现方式中的方法。
第十七方面,提供了一种通信系统,包括前述的网络设备和终端设备。
附图说明
图1是适用于本申请实施例的频域传输资源配置的方法的通信系统的示意图;
图2是本申请实施例提供的频域传输资源配置的方法200的示意性流程图;
图3是本申请实施例提供的一种频域资源指示方式与TCI state对应的不同传输时间单元的关联关系示意图;
图4是本申请实施例提供的另一种频域资源指示方式与TCI state对应的不同传输时间单元的关联关系示意图;
图5是本申请实施例提供的另一种频域资源指示方式与TCI state对应的不同传输时间单元的关联关系示意图;
图6是本申请实施例提供的另一种频域资源指示方式与TCI state对应的不同传输时间单元的关联关系示意图;
图7是本申请实施例提供的一种频域传输资源配置的方法的示意图;
图8是本申请实施例提供的另一种频域传输资源配置的方法的示意图;
图9是本申请实施例提供的另一种频域传输资源配置的方法的示意图;
图10是本申请实施例提供的另一种频域传输资源配置的方法的示意图;
图11是本申请实施例提供的频域传输资源配置的方法300的示意性流程图;
图12是本申请实施例提供的协作传输频域资源配置的方法400的示意性流程图;
图13是本申请实施例提供的协作传输频域资源配置的方法500的示意性流程图;
图14是本申请实施例提供的通信装置的示意性框图;
图15是本申请实施例提供的终端设备的结构示意图;
图16是本申请实施例提供的网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、第五代(5th generation,5G)系统或新无线(new radio,NR)等。
应理解,该通信系统中的网络设备可以是任意一种具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(Radio Network Controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU),无线保真(Wireless Fidelity,WIFI)系统中的接入点(Access Point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者传输发送接收点(Transmission receiving point,TRP)等,还可以为5G,如NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
还应理解,该通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的 无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。
为便于理解本申请实施例,首先对本申请中涉及的几个术语做简单说明。
1、传输配置指示状态(transmission configuration indicator,TCI state):TCI state用于指示数据传输过程的信道大尺度参数与一个或两个下行参考信号的准共位置(quasi co location,QCL)关系。从而,终端能够基于该TCI state,获知所接收信号的信道大尺度参数关系的指示信息,进而基于信道估计,解调出信号携带的数据。每个TCI state中可以包括服务小区的索引(ServeCellIndex)、带宽部分(band width part,BWP)标识(identifier,ID)和参考信号资源标识。其中,参考信号资源标识例如可以为以下至少一项:非零功率(non-zero power,NZP)CSI-RS参考信号资源标识(NZP-CSI-RS-ResourceId)、非零功率CSI-RS参考信号资源集标识(NZP-CSI-RS-ResourceSetId)或SSB索引(SSB-Index)。以下表达中不同的TCI state对应不同的TRP。
2、探测参考信号资源索引(signal resource index,SRI):信道探测参考信号(sounding reference signal,SRS)资源指示。用于指示SRS的资源标识,可以用来作为UE发送物理上行共享信道(physical uplink shared channel,PUSCH)时所参考的指示信息。
3、准共址(quasi co-located,QCL):QCL关系用于表示多个资源之间具有一个或多个相同或者相类似的通信特征。例如,如果两个天线端口具有准共址关系,那么一个端口传送一个信号的信道大尺度特性可以从另一个端口传送一个信号的信道大尺度特性推断出来。具有QCL关系的天线端口对应的信号中具有相同的参数,或者,一个天线端口的参数可用于确定与该天线端口具有QCL关系的另一个天线端口的参数,或者,两个天线端口具有相同的参数,或者,两个天线端口间的参数差小于某阈值。其中,所述参数可以包括以下一项或多项信道大尺度参数:时延扩展(delay spread),多普勒扩展(Doppler spread),多普勒频移(Doppler shift),平均时延(average delay),平均增益,空间接收参数(spatial Rx parameters)。其中,空间接收参数可以包括发射角(Angle of arrival,AOA)、主发射角(Dominant AoA)、平均到达角(Average AoA)、到达角(Angle of departure,AOD)、信道相关矩阵,到达角的功率角度扩展谱,平均触发角(Average AoD)、出发角的功率角度扩展谱、发射信道相关性、接收信道相关性、发射波束成型、接收波束成型、空间信道相关性、空间滤波器,或,空间滤波参数,或,空间接收参数等中的一项或多项。
4、时域/时间单元:至少包括多个时间采样点,可以是帧、无线帧、系统帧、子帧、半帧、时隙、迷你时隙、符号等。以下表达中涉及时域/时间单元均用slot表示。
5、数据:可以是指码字、传输块、码块code block、码块组code block group。
6、频域资源:本申请实施例中提到的频域资源可以是指物理频域资源,或,虚拟频域资源。
此外,为了便于理解本申请实施例,作出以下几点说明。
第一,在本申请中,为便于描述,在涉及编号时,可以从0开始连续编号。例如,某一时隙中的第0个符号,可以是指该时隙的首个符号。当然,具体实现时不限于此。例如,也可以从1开始连续编号。例如,某一时隙中的第1个符号,也可以是指该时隙的首个符 号。由于编号的起始值不同,同一个符号在时隙中所对应的编号也不同。
应理解,上文所述均为便于描述本申请实施例提供的技术方案而进行的设置,而并非用于限制本申请的范围。
第二,在下文示出的实施例中第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的频域资源、不同的TCI state等。
第三,在下文示出的实施例中,“预先获取”可包括由网络设备信令指示或者预先定义,例如,协议定义。其中,“预先定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
第四,本申请实施例中涉及的“保存”,可以是指的保存在一个或者多个存储器中。所述一个或者多个存储器,可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或通信装置中。所述一个或者多个存储器,也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
第五,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
第六,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b和c中的至少一项(个),可以表示:a,或,b,或,c,或,a和b,或,a和c,或,b和c,或,a、b和c。其中a、b和c分别可以是单个,也可以是多个。
为便于理解本申请实施例,下面以图1示出的通信系统为例详细说明适用于本申请实施例提供的数据传输方法的通信系统。图1示出了适用于本申请实施例的发送和接收数据的方法的通信系统100的示意图。如图所示,该通信系统100可以包括至少一个终端设备,如图中所示的终端设备101;该通信系统100还可以包括至少一个网络设备,如图中所示的网络设备#1 102或网络设备#2 103。
可选地,该通信系统100可以包括多个网络设备,如图中所示的网络设备#1 102和网络设备#2 103。该网络设备#1 102和网络设备#2 103可以是同一个小区中的网络设备,也可以是不同小区中的网络设备,本申请对此不作限定。图中仅为示例,示出了网络设备#1102和网络设备#2 103位于同一个小区中的示例。
目前,网络设备在不同时间单元上传输数据所使用的频域资源相同,而不同时间单元对应的频域资源质量不同,更明显的,不同网络设备给终端设备传输数据所使用的信道不同,信道之间的频域资源具有明显的差异性,因而在数据传输的过程中使用相同的频域资源不合适。
因此,提出一种频域资源指示关联TCI state的频域资源分配方案。终端设备接收指示信息,指示信息包含N个频域资源指示,每个频域资源指示与一个或多个传输配置指示状 态TCI State相关联,每一TCI state对应多个传输时间单元,每个频域资源指示用于指示其关联的TCI State所对应的多个传输时间单元中每个传输时间单元内的频域传输资源;其中,N个频域资源指示所指示的频域传输资源中,至少两个频域传输资源不同,N为等于或大于1的整数;确定N个频域资源指示所指示的频域传输资源。
图2是从设备交互的角度示出的本申请实施例提供的数据传输的方法200的示意性流程图。如图所示,该方法200可以包括步骤210和步骤220。下面详细说明方法200中的各步骤。
需要说明的是,本申请提供的数据传输的方法可以应用于无线通信系统中,例如,图1中所示的通信系统100中。处于通信系统中的通信装置之间可具有无线通信连接关系。例如,图1中所示的终端设备101分别可以与网络设备#1 102和网络设备#2 103之间具有无线通信连接关系。网络设备#1 102和网络设备#2 103之间可以是理想回程链路,也可以是非理想回程链路,本申请对此不作限定。
下文中示出的网络设备例如可以对应于图1中的网络设备#1 102和/或网络设备#2 103。应理解,在下文示出的实施例中,网络设备#1 102和/或网络设备#2 103为终端设备101配置频域传输资源。
在步骤210中,终端设备接收来自网络设备的指示信息。相应地,网络设备向终端设备发送指示信息。
具体的,指示信息包含N个频域资源指示,每个频域资源指示与一个或多个传输配置指示状态TCI State相关联,每一TCI state对应多个传输时间单元,所述每个频域资源指示用于指示其关联的TCI State所对应的多个传输时间单元中每个传输时间单元内的频域传输资源;其中,所述N个频域资源指示所指示的频域传输资源中,至少两个频域传输资源不同,N为等于或大于1的整数。
下面以传输时间单元是时隙(slot)为例进行描述,本领域技术人员可以理解,传输时间单元还可以包括符号(symbol)、小时隙(mini-slot)或帧(frame)等。
可选的,指示信息包括N个频域指示域,用于承载N个频域资源指示。一种示例为,如图3所示,以两个频域指示域为例,分别记为频域指示域1和频域指示域2,频域指示域1用于指示频域传输资源1,频域指示域2用于指示频域传输资源2。或,频域指示域1用于指示频域传输资源1,频域指示域2指示一个数值,基于频域传输资源1和该数值确定频域传输资源2。频域指示域1的指示关联TCI state1,TCI state1对应的传输时间单元为slot1和slot3;频域指示域2的指示关联TCI state2,TCI state2对应的传输时间单元为slot2和slot4。另一种示例为,如图5所示,以两个频域指示域为例,分别记为频域指示域1和频域指示域2,频域指示域1用于指示频域传输资源1,频域指示域2用于指示频域传输资源2。频域指示域1的指示关联TCI state1和TCI state2,TCI state1和TCI state2对应的传输时间单元为slot1和slot3;频域指示域2的指示关联TCI state3,TCI state3对应的传输时间单元为slot2和slot4。
可选的,指示信息包括1个频域指示域,用于承载N个频域资源指示。一种示例为,如图4所示,1个频域指示域同时指示频域传输资源1和频域传输资源2。频域指示域1的指示关联TCI state1,TCI state1对应的传输时间单元为slot1和slot3;频域指示域2的指示 关联TCI state2,TCI state2对应的传输时间单元为slot2和slot4。另一种示例为,如图6所示,1个频域指示域同时指示频域传输资源1和频域传输资源2。频域指示域1的指示关联TCI state1和TCI state2,TCI state1和TCI state2对应的传输时间单元为slot1和slot3;频域指示域2的指示关联TCI state3,TCI state3对应的传输时间单元为slot2和slot4。
在一种可能的实施方式中,不考虑频域偏移量(offet)或者从另外一个角度统一配置或默认频域偏移量为0的情况下,为了实现不同网络设备间的跳频,频域资源指示的频域传输资源1和频域传输资源2为不同的频域传输资源。如图7所示,TCI state1对应的传输时间单元slot1和slot3传输数据所用的频域传输资源为频域传输资源1,TCI state2对应的传输时间单元slot2和slot4传输数据所用的频域传输资源为频域传输资2。可见,该实施方式在数据传输时,不同的TCI state对应的传输时间单元传输数据所用的频域传输资源不同。
在另一种可能的实施方式中,频域资源指示的频域传输资源1和频域传输资源2为相同的频域传输资源,各网络设备开始传输的第一个slot(如TCI state1对应的网络设备1的第一个slot为slot1,TCI state2对应的网络设备2的第一个slot为slot2)不涉及频域偏移量或者可以认为其频域偏移量为0,而除各网络设备对应的第一个slot外,其他slot所对应的频域偏移量相同,且不为0。则如图8所示,TCI state1对应的传输时间单元slot1传输数据所用的频域传输资源为频域传输资源1,TCI state1对应的传输时间单元slot3传输数据所用的频域传输资源是通过频域传输资源1和频域偏移量共同确定的。TCI state2对应的传输时间单元slot2传输数据所用的频域传输资源为频域传输资源2,TCI state2对应的传输时间单元slot4传输数据所用的频域传输资源是通过频域传输资源2和频域偏移量共同确定的。可选的,其他slot所对应的频域偏移量不同。可选的,各时域单元对应的频域偏移量可以由网络设备统一配置共用的频域偏移量、或由网络设备针对不同时域单元分别配置,还可以由协议规定例如根据slot编号的奇偶分别对应不同的偏移量调节系数(例如0,1等),在网络设备配置频域偏移量后,终端设备根据频域偏移量与偏移量调节系数进行运算后获得对应的偏移量。可见,该实施方式在数据传输时,同一TCI state对应的传输时间单元所用的频域传输资源不同。
在另一种可能的实施方式中,频域资源指示仅指示一份频域传输资源1,如图9所示,TCI state1对应的传输时间单元为slot1、slot2、slot3、slot4,slot1内传输数据所用的频域传输资源为频域传输资源1,TCI state1对应的传输时间单元slot2传输数据所用的频域传输资源是通过频域传输资源1和频域偏移量共同确定的。TCI state1对应的传输时间单元slot3和slot4传输数据所用的频域传输资源与slot1和slot2确定的频域传输资源方式相同,可以根据slot编号的奇偶规则确定offset,例如slot编号为奇数的offset调节系数为0,为偶数的offset调节系数为1,则如果网络设备配置了统一的offset值例如X,则编号为奇数的slot内offset为0,编号为偶数的slot内offset为X,当然还可以有其他规则,只要保证TCI state1对应的不同slot上的频域传输资源存在跳频(即不完全相同)即可。可选的,其他slot所对应的频域偏移量可以由网络设备统一配置共用的频域偏移量或由网络设备分别配置针对不同时域单元分别配置等。可见,该实施方式在数据传输时,同一TCI state对应的相邻传输时间单元所用的频域传输资源不同。
在另一种可能的实施方式中,频域资源指示的频域传输资源1和频域传输资源2为不 同的频域传输资源,各网络设备开始传输的第一个slot(如TCI state1对应的网络设备1的第一个slot为slot1,TCI state2对应的网络设备2的第一个slot为slot2)不涉及频域偏移量或者可以认为其频域偏移量为0,而除各网络设备对应的第一个slot外,其他slot所对应的频域偏移量不同,且不为0。则如图10所示,TCI state1对应的传输时间单元slot1传输数据所用的频域传输资源为频域传输资源1,TCI state1对应的传输时间单元slot3传输数据所用的频域传输资源是通过频域传输资源1和频域偏移量1共同确定的。TCI state2对应的传输时间单元slot2传输数据所用的频域传输资源为频域传输资源2,TCI state2对应的传输时间单元slot4传输数据所用的频域传输资源是通过频域传输资源2和频域偏移量2共同确定的。可选的,其他slot所对应的频域偏移量相同,且不为0。可选的,各时域单元对应的频域偏移量可以由网络设备统一配置共用的频域偏移量、或由网络设备针对不同时域单元分别配置,还可以由协议规定例如根据slot编号的奇偶分别对应不同的偏移量调节系数(例如0,1等),在网络设备配置频域偏移量后,终端设备根据频域偏移量与偏移量调节系数进行运算后获得对应的偏移量。可见,该实施方式在数据传输时,同一TCI state对应的传输时间单元所用的频域传输资源不同;不同TCI state对应的传输时间单元所用的频域传输资源不同。
为便于区分和说明,在步骤210中,至少两个频域传输资源不同,包括:同一TCI state对应的多个传输时间单元内的至少两个频域传输资源不同。
如图8所示,以TCI state1对应的传输时间单元slot1和slot3为例,slot1和slot3内的频域传输资源不同,即TCI state1对应的传输时间单元slot1的频域传输资源为f2-f4,TCI state1对应的传输时间单元slot3的频域传输资源为f1-f3。
至少两个频域传输资源不同,包括:不同TCI State分别对应的一个传输时间单元内的频域传输资源中,至少两个频域传输资源不同。
如图6所示,以TCI state1对应的传输时间单元slot1和TCI state2对应的传输时间单元slot2为例,slot1和slot2内的频域传输资源不同,即TCI state1对应的传输时间单元slot1的频域传输资源为f2-f4,TCI state2对应的传输时间单元slot2的频域传输资源为f1-f3。
至少两个频域传输资源不同,包括:同一TCI state对应的多个传输时间单元内的至少两个频域传输资源不同,以及不同TCI State分别对应的一个传输时间单元内的频域传输资源中,至少两个频域传输资源不同。
如图9所示,以TCI state1对应的传输时间单元slot1、slot3和TCI state2对应的传输时间单元slot2、slot4为例,TCI state1对应的传输时间单元slot1和slot3内的频域传输资源不同,即TCI state1对应的传输时间单元slot1的频域传输资源为f4-f8,TCI state1对应的传输时间单元slot3的频域传输资源为f3-f7。TCI state2对应的传输时间单元slot2和slot4内的频域传输资源不同,即TCI state2对应的传输时间单元slot2的频域传输资源为f2-f6,TCI state2对应的传输时间单元slot4的频域传输资源为f1-f5。TCI state1对应的传输时间单元slot1的频域传输资源为f4-f8,TCI state2对应的传输时间单元slot2的频域传输资源为f2-f6。
可选的,关联同一频域资源指示的TCI state属于一个TCI state组;TCI state组根据预定分组规则划分,或由网络设备配置。可选的,指示信息为下行控制信息DCI。
在步骤220中,终端设备确定N个频域资源指示所指示的频域传输资源。
可选的,频域资源指示用于直接指示频域传输资源或间接指示频域传输资源。
在一种可能的实施方式中,频域资源指示用于直接指示频域传输资源。终端设备直接根据频域资源指示的频域传输资源进行数据传输。
在另一种可能的实施方式中,频域资源指示用于间接指示频域传输资源。频域资源指示指示频域传输资源,根据频域资源指示域指示的频域传输资源和其所关联的TCI state所对应的多个时域单元中,各时域单元对应的频域偏移量,确定N个频域资源指示所指示的频域传输资源。
针对不同的网络设备,为终端设备配置的频域传输资源可以相同或不同。各时域单元对应的频域偏移量可以由高层信令统一配置或分别配置,配置的频域偏移量可以相同或不同。
图11是从设备交互的角度示出的本申请实施例提供的数据传输的方法300的示意性流程图。如图所示,该方法300可以包括步骤310和步骤320。下面详细说明方法300中的各步骤。
在步骤310中,终端设备接收来自网络设备的指示信息,指示信息包含N个频域资源指示,每个频域资源指示与一个或多个探测参考信号资源索引SRI相关联,每一SRI对应多个传输时间单元,每个频域资源指示用于指示其关联的SRI所对应的多个传输时间单元中每个传输时间单元内的频域传输资源;其中,N个频域资源指示所指示的频域传输资源中,至少两个频域传输资源不同,N为等于或大于1的整数;确定N个频域资源指示所指示的频域传输资源。
可选的,指示信息包括N个频域指示域,用于承载N个频域资源指示。
可选的,指示信息包括1个频域指示域,用于承载N个频域资源指示。
可选的,至少两个频域传输资源不同,包括:同一TCI state对应的多个传输时间单元内的至少两个频域传输资源不同。
可选的,至少两个频域传输资源不同,包括:不同TCI State分别对应的一个传输时间单元内的频域传输资源中,至少两个频域传输资源不同。
在上行数据传输时,上述可选的步骤具体实施方式与步骤210相同,不同的是用SRI替换TCI state。
在步骤320中,终端设备确定N个频域资源指示所指示的频域传输资源。
可选的,频域资源指示用于直接指示频域传输资源或间接指示频域传输资源。
在上行数据传输时,上述可选的步骤具体实施方式与步骤220相同,不同的是用SRI替换TCI state。
图12是从设备交互的角度示出的本申请实施例提供的协作传输频域资源配置的方法400的示意性流程图。如图所示,该方法400可以包括步骤410和步骤420。下面详细说明方法400中的各步骤。
在步骤410中,第一网络设备生成指示信息。指示信息用于指示至少一个第二网络设备进行下行数据传输的第二频域传输资源,第二频域传输资源与第一网络设备进行下行数据传输的第一频域传输资源不同;其中,第二频域传输资源为至少一个第二网络设备在其 对应的第二传输配置指示状态TCI state所对应的多个第二传输时间单元内进行下行数据传输的频域传输资源,每个第二网络设备对应一个TCI state,每个TCI state对应多个第二传输时间单元;第一频域传输资源为第一网络设备在其对应的第一TCI state所对应的多个第一传输时间单元内为终端设备进行下行数据传输的频域传输资源。
可选的,第二频域传输资源与第一网络设备进行下行数据传输的第一频域传输资源不同,包括各第二传输时间单元内的第二频域传输资源与各第一传输时间单元内的第一频域传输资源均不同,或者部分不同。
可选的,第一网络设备接收至少一个第二网络设备对应的第二TCI state。第二网络设备向所述第一网络设备发送所述第二网络设备对应的所述第二TCI state。
在步骤420中,第一网络设备向所述至少一个第二网络设备发送所述指示信息。
图13是从设备交互的角度示出的本申请实施例提供的协作传输频域资源配置的方法500的示意性流程图。如图所示,该方法500可以包括步骤510和步骤520。下面详细说明方法500中的各步骤。
在步骤510中,第一网络设备生成指示信息,指示信息用于指示至少一个第二网络设备进行上行数据传输的第二频域传输资源,第二频域传输资源与第一网络设备进行上行数据传输的第一频域传输资源不同;其中,第二频域传输资源为至少一个第二网络设备在其对应的第二探测参考信号资源索引SRI所对应的多个第二传输时间单元内进行上行数据传输的频域传输资源,每个第二网络设备对应一个SRI,每个SRI对应多个第二传输时间单元;第一频域传输资源为第一网络设备在其对应的第一SRI所对应的多个第一传输时间单元内为终端设备进行上行数据传输的频域传输资源;第一网络设备向至少一个第二网络设备发送所述指示信息。
可选的,第二频域传输资源与第一网络设备进行上行数据传输的第一频域传输资源不同,包括各第二传输时间单元内的第二频域传输资源与各第一传输时间单元内的第一频域传输资源均不同,或者部分不同。
可选的,第一网络设备接收至少一个第二网络设备对应的所述第二SRI。第二网络设备向第一网络设备发送第二网络设备对应的第二SRI。
在步骤520中,第一网络设备向所述至少一个第二网络设备发送所述指示信息。
以上,结合图2至图13详细说明了本申请实施例提供的方法。以下,结合图14至图16详细说明本申请实施例提供的通信装置。
图14是本申请实施例提供的通信装置的示意性框图。如图所示,该通信装置1000可以包括通信单元1100和处理单元1200。
在一种可能的设计中,该通信装置1000可对应于上文方法实施例中的终端设备,例如,可以为终端设备,或者配置于终端设备中的芯片。
具体地,该通信装置1000可对应于根据本申请实施例的方法200和/或方法300中的终端设备,该通信装置1000可以包括用于执行图2中的方法200和/或图11中的方法300中的终端设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图2中的方法200和/或图11中的方法300的相应流程。
其中,当该通信装置1000用于执行图2中的方法200时,通信单元1100可用于执行 方法200中的步骤210,处理单元1200可用于执行方法200中的步骤220。
其中,当该通信装置1000用于执行图11中的方法300时,通信单元1100可用于执行方法300中的步骤310,处理单元1200可用于执行方法300中的步骤320。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000为终端设备时,该通信装置1000中的通信单元1100可对应于图15中示出的终端设备2000中的收发器2020,该通信装置1000中的处理单元1200可对应于图15中示出的终端设备2000中的处理器2010。
还应理解,该通信装置1000为配置于终端设备中的芯片时,该通信装置1000中的通信单元1100可以为输入/输出接口。
在另一种可能的设计中,该通信装置1000可对应于上文方法实施例中的网络设备,例如,可以为网络设备,或者配置于网络设备中的芯片。
具体地,该通信装置1000可对应于根据本申请实施例的方法200和/或方法300和/或方法400和/或方法500中的网络设备,该通信装置1000可以包括用于执行图2的方法200和/或图11中的方法300和/或图12中的方法400和/或图13中的方法500中的网络设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图2的方法200和/或图11中的方法300和/或图12中的方法400和/或图13中的方法500的相应流程。
其中,当该通信装置1000用于执行图2中的方法200时,通信单元1100可用于执行方法200中的步骤210,处理单元1200可用于执行方法200中的步骤220。
其中,当该通信装置1000用于执行图11中的方法300时,通信单元1100可用于执行方法300中的步骤310,处理单元1200可用于执行方法300中的步骤320。
其中,当该通信装置1000用于执行图12中的方法400时,通信单元1100可用于执行方法400中的步骤420,处理单元1200可用于执行方法400中的步骤410。
其中,当该通信装置1000用于执行图13中的方法500时,通信单元1100可用于执行方法500中的步骤520,处理单元1200可用于执行方法500中的步骤510。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000为网络设备时,该通信装置1000中的通信单元为可对应于图16中示出的网络设备3000中的收发器3200,该通信装置1000中的处理单元1200可对应于图16中示出的网络设备3000中的处理器3100。
还应理解,该通信装置1000为配置于网络设备中的芯片时,该通信装置1000中的通信单元1100可以为输入/输出接口。
图15是本申请实施例提供的终端设备2000的结构示意图。该终端设备2000可应用于如图1所示的系统中,执行上述方法实施例中终端设备的功能。
如图所示,该终端设备2000包括处理器2010和收发器2020。可选地,该终端设备2000还包括存储器2030。其中,处理器2010、收发器2020和存储器2030之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器2030用于存储计算机程序,该处理 器2010用于从该存储器2030中调用并运行该计算机程序,以控制该收发器2020收发信号。可选地,终端设备2000还可以包括天线2040,用于将收发器2020输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器2010和存储器2030可以合成一个处理装置,处理器2010用于执行存储器2030中存储的程序代码来实现上述功能。具体实现时,该存储器2030也可以集成在处理器2010中,或者独立于处理器2010。该处理器2010可以与图14中的处理单元对应。
上述收发器2020可以与图14中的通信单元对应,也可以称为收发单元。收发器2020可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
应理解,图15所示的终端设备2000能够实现图2所示方法200和/或图11所示方法300实施例中涉及终端设备的各个过程。终端设备2000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
上述处理器2010可以用于执行前面方法实施例中描述的由终端设备内部实现的动作,而收发器2020可以用于执行前面方法实施例中描述的终端设备向网络设备发送或从网络设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选地,上述终端设备2000还可以包括电源2050,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备2000还可以包括输入单元2060、显示单元2070、音频电路2080、摄像头2090和传感器2100等中的一个或多个,所述音频电路还可以包括扬声器2082、麦克风2084等。
图16是本申请实施例提供的网络设备的结构示意图,例如可以为基站的结构示意图。该基站3000可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。
如图所示,该基站3000可以包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)3100和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)3200。所述RRU 3100可以称为收发单元,与图14中的通信单元1200对应。可选地,该收发单元3100还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线3101和射频单元3102。可选地,收发单元3100可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。所述RRU 3100部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送指示信息。所述BBU 3200部分主要用于进行基带处理,对基站进行控制等。所述RRU 3100与BBU 3200可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 3200为基站的控制中心,也可以称为处理单元,可以与图14中的处理单元1100对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述指示信息等。
在一个示例中,所述BBU 3200可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 3200还包括存储器3201和处理器3202。所述存储器3201用以存储必要的指令和数据。所述处理器3202用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器3201和处理器3202可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图16所示的基站3000能够实现图2的方法200和/或图11中的方法300和/或图12中的方法400和/或图13中的方法500实施例中涉及网络设备的各个过程。基站3000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
上述BBU 3200可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而RRU 3100可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器,用于执行上述方法实施例中的通信的方法。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储 器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图2、图11、图12和图13所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图2、图11、图12和图13所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例 中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可在上面存储有各种数据结构的各种计算机可读介质执行。部件可根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,各功能单元的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令(程序)。在计算机上加载和执行所述计算机程序指令(程序)时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储 介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (33)

  1. 一种频域传输资源配置的方法,其特征在于,包括:
    接收指示信息,所述指示信息包含N个频域资源指示,每个频域资源指示与一个或多个传输配置指示状态TCI State相关联,每一TCI state对应多个传输时间单元,所述每个频域资源指示用于指示其关联的TCI State所对应的多个传输时间单元中每个传输时间单元内的频域传输资源;其中,所述N个频域资源指示所指示的频域传输资源中,至少两个频域传输资源不同,N为等于或大于1的整数;
    确定所述N个频域资源指示所指示的频域传输资源。
  2. 如权利要求1所述的方法,其特征在于,所述至少两个频域传输资源不同,包括:同一TCI State对应的多个传输时间单元内的至少两个频域传输资源不同。
  3. 如权利要求1或2所述的方法,其特征在于,所述至少两个频域传输资源不同,包括:不同TCI State分别对应的一个传输时间单元内的频域传输资源中,至少两个频域传输资源不同。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述指示信息包括N个频域指示域,用于承载所述N个频域资源指示。
  5. 如权利要求1-3任一项所述的方法,其特征在于,指示信息包括一个频域指示域,用于承载所述N个频域资源指示。
  6. 如权利要求1所述的方法,其特征在于,所述指示信息为下行控制信息DCI。
  7. 如权利要求1所述的方法,其特征在于,关联同一频域资源指示的TCI state属于一个TCI state组。
  8. 如权利要求1所述的方法,其特征在于,所述频域资源指示用于直接指示所述频域传输资源或间接指示所述频域传输资源;
    当所述频域资源指示用于间接指示所述频域传输资源时,所述确定N个频域资源指示所指示的频域传输资源,包括:
    根据各所述频域资源指示和其所关联的TCI state所对应的多个时域单元中,各时域单元对应的频域偏移量,确定N个所述频域资源指示所指示的频域传输资源。
  9. 一种频域传输资源配置的方法,其特征在于,包括:
    生成指示信息,所述指示信息包含N个频域资源指示,每个频域资源指示与一个或多个传输配置指示状态TCI State相关联,每一TCI state对应多个传输时间单元,所述每个频域资源指示用于指示其关联的TCI State所对应的多个传输时间单元中每个传输时间单元内的频域传输资源;其中,所述N个频域资源指示所指示的频域传输资源中,至少两个频域传输资源不同,N为等于或大于1的整数;
    向终端设备发送所述指示信息。
  10. 如权利要求9所述的方法,其特征在于,所述至少两个频域传输资源不同,包括:同一TCI State对应的多个传输时间单元内的至少两个频域传输资源不同。
  11. 如权利要求9或10所述的方法,其特征在于,所述至少两个频域传输资源不同,包括:不同TCI State分别对应的一个传输时间单元内的频域传输资源中,至少两个频域传输资源不同。
  12. 如权利要求9-11任一项所述的方法,其特征在于,所述指示信息包括N个频域指示域,用于承载所述N个频域资源指示。
  13. 如权利要求9-11任一项所述的方法,其特征在于,指示信息包括一个频域指示域,用于承载所述N个频域资源指示。
  14. 如权利要求9所述的方法,其特征在于,所述指示信息为下行控制信息DCI。
  15. 如权利要求9所述的方法,其特征在于,关联同一频域资源指示的TCI state属于一个TCI state组。
  16. 如权利要求9所述的方法,其特征在于,所述频域资源指示用于直接指示所述频域传输资源或间接指示所述频域传输资源。
  17. 一种频域传输资源配置的装置,其特征在于,包括:
    通信单元,用于接收指示信息,所述指示信息包含N个频域资源指示,每个频域资源指示与一个或多个传输配置指示状态TCI State相关联,每一TCI state对应多个传输时间单元,所述每个频域资源指示用于指示其关联的TCI State所对应的多个传输时间单元中每个传输时间单元内的频域传输资源;其中,所述N个频域资源指示所指示的频域传输资源中,至少两个频域传输资源不同,N为等于或大于1的整数;
    处理单元,用于确定所述N个频域资源指示所指示的频域传输资源。
  18. 如权利要求17所述的装置,其特征在于,所述至少两个频域传输资源不同,包括:同一TCI State对应的多个传输时间单元内的至少两个频域传输资源不同。
  19. 如权利要求17或18所述的装置,其特征在于,所述至少两个频域传输资源不同,包括:不同TCI State分别对应的一个传输时间单元内的频域传输资源中,至少两个频域传输资源不同。
  20. 如权利要求17-19任一项所述的装置,其特征在于,所述指示信息包括N个频域指示域,用于承载所述N个频域资源指示。
  21. 如权利要求17-19任一项所述的装置,其特征在于,指示信息包括一个频域指示域,用于承载所述N个频域资源指示。
  22. 如权利要求17所述的装置,其特征在于,所述指示信息为下行控制信息DCI。
  23. 如权利要求17所述的装置,其特征在于,关联同一频域资源指示的TCI state属于一个TCI state组。
  24. 如权利要求17所述的装置,其特征在于,所述频域资源指示用于直接指示所述频域传输资源或间接指示所述频域传输资源;
    所述处理单元,还用于:当所述频域资源指示用于间接指示所述频域传输资源时,根据各所述频域资源指示和其所关联的TCI state所对应的多个时域单元中,各时域单元对应的频域偏移量,确定N个所述频域资源指示所指示的频域传输资源。
  25. 一种频域传输资源配置的装置,其特征在于,包括:
    处理单元,用于生成指示信息,所述指示信息包含N个频域资源指示,每个频域资源指示与一个或多个传输配置指示状态TCI State相关联,每一TCI state对应多个传输时间单元,所述每个频域资源指示用于指示其关联的TCI State所对应的多个传输时间单元中每个传输时间单元内的频域传输资源;其中,所述N个频域资源指示所指示的频域传输资源中, 至少两个频域传输资源不同,N为等于或大于1的整数;
    发送单元,用于向终端设备发送指示信息。
  26. 如权利要求25所述的装置,其特征在于,所述至少两个频域传输资源不同,包括:同一TCI State对应的多个传输时间单元内的至少两个频域传输资源不同。
  27. 如权利要求25或26所述的装置,其特征在于,所述至少两个频域传输资源不同,包括:不同TCI State分别对应的一个传输时间单元内的频域传输资源中,至少两个频域传输资源不同。
  28. 如权利要求25-27任一项所述的装置,其特征在于,所述指示信息包括N个频域指示域,用于承载所述N个频域资源指示。
  29. 如权利要求25-28任一项所述的装置,其特征在于,指示信息包括一个频域指示域,用于承载所述N个频域资源指示。
  30. 如权利要求25所述的装置,其特征在于,所述指示信息为下行控制信息DCI。
  31. 如权利要求25所述的装置,其特征在于,关联同一频域资源指示的TCI state属于一个TCI state组。
  32. 如权利要求25所述的装置,其特征在于,所述频域资源指示用于直接指示所述频域传输资源或间接指示所述频域传输资源。
  33. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至16中任一项所述的方法。
PCT/CN2019/110883 2019-10-12 2019-10-12 频域传输资源配置的方法以及装置 WO2021068261A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/110883 WO2021068261A1 (zh) 2019-10-12 2019-10-12 频域传输资源配置的方法以及装置
CN201980101047.8A CN114467344A (zh) 2019-10-12 2019-10-12 频域传输资源配置的方法以及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/110883 WO2021068261A1 (zh) 2019-10-12 2019-10-12 频域传输资源配置的方法以及装置

Publications (1)

Publication Number Publication Date
WO2021068261A1 true WO2021068261A1 (zh) 2021-04-15

Family

ID=75437789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110883 WO2021068261A1 (zh) 2019-10-12 2019-10-12 频域传输资源配置的方法以及装置

Country Status (2)

Country Link
CN (1) CN114467344A (zh)
WO (1) WO2021068261A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024008151A1 (en) * 2022-07-08 2024-01-11 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Apparatus and methods of uplink transmission with multiple tcl states

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108199819A (zh) * 2018-02-26 2018-06-22 中兴通讯股份有限公司 控制信令的发送、接收以及信息的确定方法及装置
CN109962765A (zh) * 2017-12-22 2019-07-02 华为技术有限公司 一种通过pdsch传输无线信号的方法及装置
US20190222289A1 (en) * 2018-01-12 2019-07-18 Qualcomm Incorporated Transmission configuration indication based beam switching
CN110167091A (zh) * 2018-02-11 2019-08-23 维沃移动通信有限公司 下行信道的接收方法、发送方法、终端和基站
US20190281587A1 (en) * 2018-05-10 2019-09-12 Yushu Zhang User equipment (ue) downlink transmission configuration indication (tci)-state selection

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109962765A (zh) * 2017-12-22 2019-07-02 华为技术有限公司 一种通过pdsch传输无线信号的方法及装置
US20190222289A1 (en) * 2018-01-12 2019-07-18 Qualcomm Incorporated Transmission configuration indication based beam switching
CN110167091A (zh) * 2018-02-11 2019-08-23 维沃移动通信有限公司 下行信道的接收方法、发送方法、终端和基站
CN108199819A (zh) * 2018-02-26 2018-06-22 中兴通讯股份有限公司 控制信令的发送、接收以及信息的确定方法及装置
US20190281587A1 (en) * 2018-05-10 2019-09-12 Yushu Zhang User equipment (ue) downlink transmission configuration indication (tci)-state selection

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On multi-TRP and multi-panel", 3GPP DRAFT; R1-1907697 ON MULTI-TRP AND MULTI-PANEL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, US; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 24, XP051729002 *
INTEL CORPORATION: "Discussion on TCI State Switching Requirements", 3GPP DRAFT; R4-1902937 TCI STATE SWITCHING REQT, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Xi’an, China; 20190408 - 20190412, 1 April 2019 (2019-04-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051713432 *
TAKEDA KAZUKI; XU HUILIN; KIM TAEHYOUNG; SCHOBER KAROL; LIN XINGQIN: "Understanding the Heart of the 5G Air Interface: An Overview of Physical Downlink Control Channel for 5G New Radio", IEEE COMMUNICATIONS STANDARDS, IEEE, vol. 4, no. 3, 23 September 2020 (2020-09-23), pages 22 - 29, XP011810635, ISSN: 2471-2825, DOI: 10.1109/MCOMSTD.001.1900048 *

Also Published As

Publication number Publication date
CN114467344A (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
JP7061619B2 (ja) 信号送信方法、装置、およびシステム
WO2020034889A1 (zh) 信号传输的方法和通信装置
JP7283705B2 (ja) 端末デバイスの能力を報告する方法および通信装置
US11956794B2 (en) Data sending and receiving method and communication apparatus
WO2020134944A1 (zh) 干扰测量的方法和通信装置
WO2020155849A1 (zh) 发送和接收指示的方法和装置
WO2020143829A1 (zh) 发送和接收指示的方法和装置
WO2020207369A1 (zh) 一种信道测量方法和通信装置
WO2022007967A1 (zh) 一种参考信号资源的配置方法和装置
WO2020238992A1 (zh) 一种通信方法及装置
WO2021052473A1 (zh) 通信方法和通信装置
WO2020216130A1 (zh) 一种通信方法及装置
WO2021134626A1 (zh) 传输同步信号块的方法和装置
WO2021031048A1 (zh) 一种通信方法及装置
US20210337572A1 (en) Data transmission method and communication apparatus
EP3694279A1 (en) Communication method and device
WO2020192719A1 (zh) 更新波束的方法与通信装置
WO2020192702A1 (zh) 通信方法和通信装置
WO2021068261A1 (zh) 频域传输资源配置的方法以及装置
WO2021062766A1 (zh) 一种干扰测量上报的方法和通信装置
WO2022199346A1 (zh) 指示方法及相关产品
US20220174698A1 (en) Wireless Communication Method And Apparatus And Communication Device
WO2022147735A1 (zh) 确定发送功率的方法及装置
WO2020221261A1 (zh) 一种通信方法及装置
WO2020098662A1 (zh) 发送和接收物理下行控制信道的方法以及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19948648

Country of ref document: EP

Kind code of ref document: A1