WO2020134944A1 - 干扰测量的方法和通信装置 - Google Patents

干扰测量的方法和通信装置 Download PDF

Info

Publication number
WO2020134944A1
WO2020134944A1 PCT/CN2019/123334 CN2019123334W WO2020134944A1 WO 2020134944 A1 WO2020134944 A1 WO 2020134944A1 CN 2019123334 W CN2019123334 W CN 2019123334W WO 2020134944 A1 WO2020134944 A1 WO 2020134944A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference measurement
terminal device
resource
measurement resource
interference
Prior art date
Application number
PCT/CN2019/123334
Other languages
English (en)
French (fr)
Inventor
王晓娜
管鹏
樊波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020134944A1 publication Critical patent/WO2020134944A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present application relates to the communication field, and more specifically, to a method and a communication device for interference measurement in the communication field.
  • the fifth generation mobile communication system uses high-frequency communication based on analog beams.
  • the network device can simultaneously transmit multiple analog beams through multiple radio frequency channels to transmit data for multiple users, and the multiple analog beam signals transmitted simultaneously will interfere with each other. This interference is called "intra-cell interference".
  • the network equipment needs to measure the interference in the cell to accurately obtain the channel quality under the influence of the interference in the cell, and to prevent multiple beams transmitted simultaneously from causing strong interference with each other, thereby performing efficient data transmission.
  • the network device side Since the terminal device side receives based on analog beams, the network device side does not know in advance which analog beams will cause interference, so the network device needs to configure the corresponding measurement configuration information to the terminal device to inform the terminal device to measure the corresponding pilot resources, and Report measurement results to obtain intra-cell interference.
  • CSI-RS channel state information reference signal
  • the present application provides a method and a communication device for interference measurement, which can reduce system signaling overhead and pilot overhead.
  • an interference measurement method including:
  • the first terminal device receives first configuration information from a network device, where the first configuration information is used to indicate an interference measurement resource of the first terminal device, and the frequency domain of the interference measurement resource is that the first terminal device is currently activated
  • the first terminal device performs interference measurement on the interference measurement resource.
  • the network device indicates the interference measurement resource of the first terminal device by sending the first configuration information to the first terminal device, where the frequency domain of the interference measurement resource is the currently activated bandwidth of the first terminal device Part of the full bandwidth of the BWP. Then, the first terminal device performs interference measurement on the interference measurement resource, so that the first terminal device may not perform interference measurement on the pilot resource of the interference beam, thereby reducing system signaling overhead. Moreover, the network device does not need to configure pilot resources for interference measurement, which can reduce system pilot overhead.
  • the first configuration information includes first indication information, where the first indication information is used to indicate a frequency domain location of the interference measurement resource.
  • the interference measurement resources are continuously distributed in the frequency domain.
  • the value of the first indication information is -1 or an invalid value. That is to say, when the value of the indication information of the frequency domain position of the interference measurement resource is a newly added value -1 or an invalid value, the frequency domain of the default interference measurement resource is the entire BWP activated by the current serving cell of the first terminal device. bandwidth.
  • the value of the parameter in the existing resource format (resource) is added to indicate the frequency domain position of the interference measurement resource, and the existing resource format (resource) can be used to indicate interference Measurement resources.
  • the time domain of the interference measurement resource includes a single symbol, or multiple symbols that are continuous or non-contiguous.
  • the first configuration information includes second indication information, where the second indication information is used to indicate a symbol position of the interference measurement resource.
  • the indication of the frequency domain position or time domain position of the interference measurement resource may also be implemented through the newly defined resource format.
  • interference measurement resources may include interference measurement CSI-IM resources (CSI-IM-ResourcesForInterference), interference measurement NZP-CSI-RS resources (NZP-CSI-RS-ResourceForInterference) or interference measurement ZP-CSI-RS resources (ZP -CSI-RS-ResourceForInterference), this embodiment of the present application does not limit this.
  • CSI-IM-ResourcesForInterference interference measurement CSI-IM resources
  • NZP-CSI-RS-ResourceForInterference interference measurement NZP-CSI-RS resources
  • ZP-CSI-RS-ResourceForInterference interference measurement ZP-CSI-RS resources
  • the first configuration information further includes third indication information, where the third indication information is used to indicate a time domain attribute of the interference measurement resource, the Time domain attributes include periodic, aperiodic, or semi-static.
  • the period and time offset (periodicityAndOffset) of the interference measurement resource need to be configured accordingly.
  • the first configuration information when the time domain attribute of the interference measurement resource is periodic, the first configuration information further includes a quasi-co-located QCL indication of the interference measurement resource.
  • the quasi-co-located QCL indication is used to instruct the first terminal device to receive the receiving beam information of the interference measurement resource. Therefore, in this embodiment of the present application, the network device may be configured to receive the reception beam information of the interference measurement resource.
  • the first terminal device performing interference measurement on the interference measurement resource includes:
  • the first terminal device uses the same receive beam as the current data channel or control channel of the first terminal device to receive a signal transmitted on the interference measurement resource, and performs interference measurement on the signal.
  • the first terminal device may receive the interference measurement resource based on the receive beam of the current data channel or the control channel, and based on this, the QCL indication default may be implemented, thereby saving resources.
  • the interference measurement resource is used for data transmission by a second terminal device other than the first terminal device.
  • the first terminal device can perform interference measurement on the resources for data transmission of other terminal devices, thereby saving pilot overhead.
  • the first terminal device performing interference measurement on the interference measurement resource includes:
  • the first terminal device performs interference measurement on the multiple symbols to obtain the total received power of the multiple symbols, or the symbol-level average received power of the multiple symbols, or the resource element level of the multiple symbols Average received power.
  • the method further includes:
  • the first terminal device receives second configuration information from the network device, where the second configuration information is used to instruct the first terminal device to report an interference measurement value corresponding to the interference measurement resource.
  • the interference measurement value is the received energy of the interference measurement resource.
  • the interference measurement value is, for example, the total received power of the above multiple symbols, or the symbol-level average received power of the multiple symbols, or the resource element-level average received power of the multiple symbols.
  • the second configuration information may also be used to instruct the first terminal device to report one or more of the following information: interference measurement resource identifier, interference measurement value, channel measurement resource identifier, channel quality indicator, signal and interference plus Noise ratio SINR, channel quality indicator CQI, precoding matrix indicator PMI, rank indicator RI, received signal strength indicator RSSI, reference signal received power RSRP.
  • the first terminal device when the interference measurement values are multiple, performs bit measurement on each of the multiple interference measurement values by using bits Quantify the report, or quantify the report through the difference method.
  • the first terminal device reports the interference measurement value in a quantized manner, which can reduce the occupation of the transmission bandwidth and can also improve the data transmission efficiency.
  • the first terminal device may select one or more interference measurement values for quantitative reporting based on the determined current interference measurement value.
  • the method further includes:
  • the first terminal device reports one or more of the following information to the network device: interference measurement resource identifier, interference measurement value, channel measurement resource identifier, channel quality indicator, signal to interference plus noise ratio SINR, channel quality Indication CQI, precoding matrix indication PMI, rank indication RI, received signal strength indication RSSI, reference signal received power RSRP.
  • a method for interference measurement including:
  • the network device determines first configuration information, where the first configuration information is used to indicate an interference measurement resource of the first terminal device, and the frequency domain of the interference measurement resource is the full bandwidth of the currently activated bandwidth part BWP of the first terminal device;
  • the network device sends the first configuration information to the first terminal device.
  • the network device indicates the interference measurement resource of the first terminal device by sending the first configuration information to the first terminal device, where the frequency domain of the interference measurement resource is the currently activated bandwidth of the first terminal device Part of the full bandwidth of the BWP. Then, the first terminal device performs interference measurement on the interference measurement resource, so that the first terminal device may not perform interference measurement on the pilot resource of the interference beam, thereby reducing system signaling overhead. Moreover, the network device does not need to configure pilot resources for interference measurement, which can reduce system pilot overhead.
  • the first configuration information includes first indication information, where the first indication information is used to indicate a frequency domain location of the interference measurement resource.
  • the interference measurement resources are continuously distributed in the frequency domain.
  • the value of the first indication information is -1 or an invalid value. That is to say, when the value of the indication information of the frequency domain position of the interference measurement resource is a newly added value -1 or an invalid value, the frequency domain of the default interference measurement resource is the entire BWP activated by the current serving cell of the first terminal device. bandwidth.
  • the value of the parameter in the existing resource format (resource) is added to indicate the frequency domain position of the interference measurement resource, and the existing resource format (resource) can be used to indicate interference Measurement resources.
  • the time domain of the interference measurement resource includes a single symbol, or multiple symbols that are continuous or non-contiguous.
  • the first configuration information includes second indication information, where the second indication information is used to indicate a symbol position of the interference measurement resource.
  • the indication of the frequency domain position or time domain position of the interference measurement resource may also be implemented through the newly defined resource format.
  • the first configuration information further includes third indication information, where the third indication information is used to indicate a time domain attribute of the interference measurement resource, the Time domain attributes include periodic, aperiodic, or semi-static.
  • the first configuration information when the time domain attribute of the interference measurement resource is periodic, the first configuration information further includes a quasi-co-located QCL indication of the interference measurement resource.
  • the quasi-co-located QCL indication is used to instruct the first terminal device to receive the receiving beam information of the interference measurement resource. Therefore, in this embodiment of the present application, the network device may be configured to receive the reception beam information of the interference measurement resource.
  • the interference measurement resource is used for data transmission by a second terminal device other than the first terminal device.
  • the first terminal device can perform interference measurement on the resources for data transmission of other terminal devices, thereby saving pilot overhead.
  • the method when the time domain of the interference measurement resource includes multiple symbols, the method further includes:
  • the network device receives the total received power of the multiple symbols reported by the first terminal device, or the symbol-level average received power of the multiple symbols, or the resource element-level average received power of the multiple symbols.
  • the method further includes:
  • the network device sends second configuration information to the first terminal device, where the second configuration information is used to instruct the first terminal device to report an interference measurement value corresponding to the interference measurement resource.
  • the interference measurement value is the received energy of the interference measurement resource.
  • the interference measurement value is, for example, the total received power of the above multiple symbols, or the symbol-level average received power of the multiple symbols, or the resource element-level average received power of the multiple symbols.
  • the second configuration information may also be used to instruct the first terminal device to report one or more of the following information: interference measurement resource identifier, interference measurement value, channel measurement resource identifier, channel quality indicator, signal and interference plus Noise ratio SINR, channel quality indicator CQI, precoding matrix indicator PMI, rank indicator RI, received signal strength indicator RSSI, reference signal received power RSRP.
  • the method further includes:
  • the network device receives one or more of the following information reported by the first terminal device: interference measurement resource identifier, interference measurement value, channel measurement resource identifier, channel quality indicator, signal to interference plus noise ratio SINR, channel The quality indicator CQI, the precoding matrix indicator PMI, the rank indicator RI, the received signal strength indicator RSSI, and the reference signal received power RSRP.
  • a communication device in a third aspect, may be a terminal device or a chip in the terminal device.
  • the device has the function of realizing the above-mentioned second aspect and various possible implementation manners. This function can be realized by hardware, and can also be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the device includes a transceiver module.
  • the device further includes a processing module.
  • the transceiver module may be, for example, at least one of a transceiver, a receiver, and a transmitter.
  • the transceiver module It may include a radio frequency circuit or an antenna.
  • the processing module may be a processor.
  • the device further includes a storage module, which may be, for example, a memory. When a storage module is included, the storage module is used to store instructions.
  • the processing module is connected to the storage module, and the processing module can execute instructions stored in the storage module or derived from other instructions, so that the device can execute the method of any of the above aspects.
  • the chip when the device is a chip, the chip includes: a transceiver module, optionally, the chip further includes a processing module, and the transceiver module may be, for example, an input/output interface or a pin on the chip Or circuit etc.
  • the processing module may be a processor, for example.
  • the processing module can execute instructions so that the chip in the terminal executes the above-mentioned second aspect and any possible implemented communication method.
  • the processing module may execute instructions in the storage module, and the storage module may be a storage module in the chip, such as a register, a cache, and so on.
  • the storage module may also be located in the communication device but outside the chip, such as read-only memory (read-only memory, ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access) memory, RAM), etc.
  • the processor mentioned in any of the above can be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above An integrated circuit that executes programs of various communication methods.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • a communication device may be a network device or a chip in the network device.
  • the device has functions to realize the above-mentioned first aspect and various possible implementation manners. This function can be realized by hardware, and can also be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the device includes a transceiver module.
  • the device further includes a processing module.
  • the transceiver module may be, for example, at least one of a transceiver, a receiver, and a transmitter.
  • the transceiver module It may include a radio frequency circuit or an antenna.
  • the processing module may be a processor.
  • the device further includes a storage module, which may be, for example, a memory. When a storage module is included, the storage module is used to store instructions.
  • the processing module is connected to the storage module, and the processing module can execute instructions stored in the storage module or instructions derived from other instructions, so that the device executes the communication method of the first aspect and various possible implementation manners.
  • the chip when the device is a chip, the chip includes: a transceiver module, optionally, the device further includes a processing module, and the transceiver module may be, for example, an input/output interface or a pin on the chip Or circuit etc.
  • the processing module may be a processor, for example.
  • the processing module may execute instructions so that the chip in the terminal executes the above-mentioned first aspect and any possible implementation method.
  • the processing module may execute instructions in the storage module, and the storage module may be a storage module in the chip, such as a register, a cache, and so on.
  • the storage module may also be located in the communication device but outside the chip, such as read-only memory (read-only memory, ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access) memory, RAM), etc.
  • the processor mentioned in any of the above can be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above An integrated circuit that executes programs of various communication methods.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • a computer storage medium in which a program code is stored, and the program code is used to instruct an instruction to execute the method in the first aspect or the second aspect or any possible implementation manner thereof.
  • a computer program product containing instructions which when executed on a computer, causes the computer to execute the method in the first aspect or the second aspect or any possible implementation manner thereof.
  • a communication system in a seventh aspect, includes an apparatus having functions for implementing the methods of the first aspect and various possible designs, and the foregoing devices having methods for implementing the second aspect and various possible designs. Functional device.
  • a processor is provided for coupling with a memory for performing the method in the first aspect or the second aspect or any possible implementation manner thereof.
  • a chip in a ninth aspect, includes a processor and a communication interface.
  • the communication interface is used to communicate with an external device or an internal device.
  • the processor is used to implement the first aspect or the second aspect or any possible Implementation method.
  • the chip may further include a memory, in which instructions are stored, and the processor is used to execute instructions stored in the memory or derived from other instructions.
  • the processor is used to implement the method in the first aspect or the second aspect or any possible implementation manner thereof.
  • the chip may be integrated on the terminal device or the network device.
  • FIG. 1 shows a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 shows a schematic diagram of a scenario where a method of interference measurement is applied.
  • FIG. 3 is a schematic flowchart of a method for interference measurement shown from the perspective of device interaction.
  • FIG. 4 shows a schematic flowchart of an interference measurement method provided by an embodiment of the present application.
  • FIG. 5 shows a schematic flowchart of another interference measurement method provided by an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of another communication device provided by an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of yet another communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of yet another communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the embodiments of the present application are applicable to a beam-based multi-carrier communication system, for example: a global mobile communication (global system for mobile communications, GSM) system, a code division multiple access (code division multiple access, CDMA) system, and a broadband code division multiple access (CDMA) system wideband code division multiple access (WCDMA) system, general packet radio service (general packet radio service (GPRS), long-term evolution (LTE) system, LTE frequency division duplex (FDD) system, LTE time division Duplex (time division duplex, TDD), universal mobile communication system (universal mobile telecommunication system, UMTS), global interconnected microwave access (worldwide interoperability for microwave access, WiMAX) communication system, future fifth generation (5th generation, 5G) ) System or new radio (NR), etc.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • CDMA broadband code division multiple access
  • WCDMA broadband code division multiple access
  • WCDMA broadband code division multiple access
  • WCDMA broadband code division multiple access
  • FIG. 1 shows a schematic diagram of a communication system 100 suitable for a method and apparatus for interference measurement according to an embodiment of the present application.
  • the communication system 100 may include at least one network device, such as the network device 110 shown in FIG. 1; the communication system 100 may also include at least one terminal device, such as the terminal device 120 shown in FIG.
  • the network device 110 and the terminal device 120 can communicate through a wireless link.
  • Each communication device such as the network device 110 or the terminal device 120 in FIG. 1, may be configured with multiple antennas.
  • the plurality of antennas may include at least one transmitting antenna for transmitting signals and at least one receiving antenna for receiving signals.
  • each communication device additionally includes a transmitter chain and a receiver chain.
  • Those of ordinary skill in the art can understand that they can include multiple components related to signal transmission and reception (such as processors, modulators, and multiplexers) , Demodulator, demultiplexer or antenna, etc.). Therefore, network devices and terminal devices can communicate through multi-antenna technology.
  • the network device in the wireless communication system may be any device having a wireless transceiver function.
  • the equipment includes but is not limited to: evolved Node B (evolved Node B, eNB), radio network controller (Radio Network Controller, RNC), Node B (Node B, NB), base station controller (Base Station Controller, BSC) , Base transceiver station (Base Transceiver Station, BTS), home base station (for example, Home evolved NodeB, or Home Node B, HNB), baseband unit (BaseBand Unit, BBU), wireless fidelity (Wireless Fidelity, WIFI) system Access point (Access Point, AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or sending and receiving point (transmission and reception point, TRP), etc., can also be 5G, such as NR , GNB in the system, or transmission point (TRP or TP), one or a group of antenna panels (including multiple antenna panels) of the base station in the
  • gNB may include a centralized unit (CU) and DU.
  • the gNB may also include a radio unit (RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements radio resource control (RRC), packet data convergence layer protocol (packet data convergence protocol, PDCP) layer functions
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU implements wireless chain
  • the functions of the radio link (control RLC) layer, the media access control (MAC) layer and the physical (PHY) layer The functions of the radio link (control RLC) layer, the media access control (MAC) layer and the physical (PHY) layer.
  • RRC radio resource control
  • MAC media access control
  • PHY physical
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU may be divided into network devices in a radio access network (RAN), and may also be divided into network devices in a core network (CN), which is not limited in this application.
  • RAN radio access network
  • CN core network
  • terminal equipment in the wireless communication system may also be called user equipment (user equipment (UE), access terminal, subscriber unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, User terminal, terminal, wireless communication device, user agent or user device.
  • UE user equipment
  • access terminal subscriber unit
  • subscriber unit user station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device User terminal
  • terminal wireless communication device
  • user agent user device
  • the terminal device in the embodiment of the present application may be a mobile phone, a tablet computer, a computer with wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, and an augmented reality (augmented reality, AR) terminal Wireless terminals in equipment, industrial control (industrial control), wireless terminals in self-driving (self-driving), wireless terminals in remote medical (remote medical), wireless terminals in smart grid (smart grid), transportation safety ( Wireless terminals in transportation, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the embodiments of the present application do not limit the application scenarios.
  • Beam refers to the wireless signal energy concentrated in a small range, thus forming a beam-like effect. High-frequency transmission of signals through beams can increase the transmission distance of signals.
  • the beam is produced by beamforming technology.
  • the beamforming technology includes digital beamforming technology, analog beamforming technology and hybrid digital/analog beamforming technology.
  • the beam generated by the digital beamforming technology is called a digital beam, and the beam generated by the analog beamforming technology is called an analog beam.
  • the beam used to transmit a signal may be referred to as a transmit beam, and the beam used to receive a signal may be referred to as a receive beam.
  • the transmit beam may refer to the signal intensity distribution formed in different directions in space after the signal is transmitted through the antenna
  • the receive beam may refer to the signal intensity distribution of the wireless signal received from the antenna in different directions in space.
  • the beam that the network device schedules to the terminal device for data transmission may be referred to as a serving beam.
  • Other beams scheduled together with the service beam may be called interference beams (interference beams).
  • the interference beams may interfere with the data on the service beam.
  • Channel state information acquisition measuring the channel quality of the service beam, including acquiring channel quality indicator (channel-quality indicator, CQI), rank indicator (RI), precoding matrix indicator (precoding-matrix indicator) , PMI), signal-to-interference and noise ratio (signal to interference plus ratio, SINR), etc.
  • channel quality indicator channel-quality indicator, CQI
  • rank indicator RI
  • precoding matrix indicator precoding-matrix indicator
  • PMI signal-to-interference and noise ratio
  • SINR signal-to-interference and noise ratio
  • Interference measurement measure the information of the interference beam, including the strong interference beam identification (ID), the weak interference beam ID, and the multi-user channel-quality indicator of the service beam under the interference beam interference (multi-user channel-quality indicator, MU-CQI) etc.
  • ID strong interference beam identification
  • weak interference beam ID weak interference beam ID
  • multi-user channel-quality indicator of the service beam under the interference beam interference multi-user channel-quality indicator, MU-CQI
  • Multi-user channel quality indicator (multi-user channel-quality indicator, MU-CQI):
  • MU-CQI multi-user channel quality indicator
  • the signal transmitted on each beam is subject to noise floor and neighboring cells.
  • it is also subject to interference from signals on other beams in the cell. Therefore, when measuring the channel state information CQI corresponding to each beam, the interference of other beams in the same cell needs to be calculated.
  • This CQI is called MU-CQI.
  • interference of signals on other beams of the cell may be referred to as paired beam interference.
  • Single-user channel quality indicator (single-user channel-quality indicator, SU-CQI): The interference of the channel quality measurement only considers the noise floor and the interference of the neighboring cell, and does not consider the paired beam interference of the local cell.
  • the channel state information at this time is called SU-CQI.
  • SU-CSI does not consider the CQI of the paired beam interference in the cell
  • MU-CQI is the CQI that considers the paired beam interference in the cell.
  • Time domain attributes In the interference measurement resource configuration and interference measurement report configuration, different time domain attributes can be used to indicate different time domain behaviors. Among them, the time domain attribute of the interference resource configuration can be used to indicate the time domain behavior of the terminal device receiving the interference signal; the time domain attribute of the measurement report configuration can be used to indicate the time domain behavior of the terminal device to report the interference measurement result.
  • time domain attributes may include periodic, semi-persistent, and aperiodic, for example.
  • BWP Bandwidth part
  • the terminal device transmits on its own BWP.
  • the BWP may be a continuous set of frequency domain resources on the carrier, and the frequency domain resources that different BWPs may occupy may partially overlap or may not overlap each other.
  • the bandwidth of the frequency domain resources occupied by different BWPs may be the same or different, which is not limited in this application.
  • numerology is a concept newly introduced in NR, which can be understood as a set of parameters used by the communication system, for example, it can include subcarrier spacing (SCS), symbol length, cyclic prefix (CP) length , The number of resource blocks (resource, block, RB), time slot length, frame format, etc.
  • SCS subcarrier spacing
  • CP cyclic prefix
  • One cell can support one or more numerology
  • one BWP can support one numerology. It should be understood that the specific content contained in the numerology listed here is only an exemplary description, and should not constitute any limitation to this application.
  • numerology may also include other granularity parameters that can be supported in NR.
  • different BWP may be configured with different transmission bandwidths (for example, BWP contains different numbers of RBs), different subcarrier intervals, and different cyclic prefixes (CP).
  • BWP contains different numbers of RBs
  • CP cyclic prefixes
  • the system can configure multiple different BWPs for a terminal device.
  • the network device needs to perform data transmission with the terminal device, it can activate one or more BWPs, and then perform data transmission on the activated BWP.
  • Quasi-co-location or quasi-co-location.
  • the reference signal corresponding to the antenna port with the QCL relationship has the same parameters, or the parameter of one antenna port can be used to determine the parameter of the other antenna port with the QCL relationship of the antenna port, or the two antenna ports have the same Parameter, or the parameter difference between the two antenna ports is less than a certain threshold.
  • the parameters may include one or more of the following: delay spread (delay spread), Doppler spread (Doppler spread), Doppler frequency shift (Doppler shift), average delay (average delay), average Gain, spatial reception parameters (spatial Rx parameters).
  • the spatial reception parameters can include one or more of the following: angle of arrival (angle of arrival, AOA), average AOA, AOA extension, angle of departure (angle) of departure (AOD), average angle of departure AOD, AOD extension, reception Antenna spatial correlation parameters, transmit antenna spatial correlation parameters, transmit beam, receive beam, and resource identification.
  • the above-mentioned angle may be a decomposition value of different dimensions, or a combination of decomposition values of different dimensions.
  • Antenna ports are antenna ports with different antenna port numbers, and/or, antenna ports with the same antenna port number to transmit or receive information within different time and/or frequency and/or code domain resources, and/or have different
  • the antenna port number is the antenna port that transmits or receives information in different time and/or frequency and/or code domain resources.
  • the resource identifier may include: a CSI-RS resource identifier, or an SRS resource identifier, or an SSB resource identifier, or a resource identifier of a preamble sequence transmitted on a physical random access channel (Physical Random Access Channel, PRACH), or a demodulation reference signal ( The demodulation reference (DMRS) resource identifier is used to indicate the beam on the resource.
  • CSI-RS resource identifier or an SRS resource identifier, or an SSB resource identifier
  • a resource identifier of a preamble sequence transmitted on a physical random access channel (Physical Random Access Channel, PRACH), or a demodulation reference signal (DMRS) resource identifier is used to indicate the beam on the resource.
  • QCL relationships can be divided into the following four types based on different parameters:
  • Type A Doppler frequency shift, Doppler spread, average delay, delay spread;
  • Type B Doppler frequency shift, Doppler expansion
  • Type C Doppler frequency shift, average delay
  • Type D space receiving parameter.
  • QCL The QCL involved in the embodiments of the present application is a type D QCL.
  • QCL can be understood as a QCL of type D, that is, a QCL defined based on spatial reception parameters.
  • the QCL relationship refers to a type D QCL relationship, it can be regarded as an airspace QCL.
  • the QCL relationship between the downlink signal port and the downlink signal port, or between the uplink signal port and the uplink signal port may be that the two signals have the same AOA or AOD, use Yu indicates that they have the same receive beam or transmit beam.
  • the AOA and AOD of the two signals have a corresponding relationship, or the AOD and AOA of the two signals have a corresponding relationship, that is, the beam can be used Reciprocity, determine the uplink transmit beam according to the downlink receive beam, or determine the downlink receive beam according to the uplink transmit beam.
  • the two antenna ports are spatial QCL, it can mean that the corresponding beam directions of the two antenna ports are spatially consistent.
  • the receiving end if the two antenna ports are QCL in the air domain, it can mean that the receiving end can receive the signals sent by the two antenna ports in the same beam direction.
  • the signal transmitted on the port with the spatial QCL relationship may also have a corresponding beam, and the corresponding beam includes at least one of the following: the same receive beam, the same transmit beam, and the transmit beam corresponding to the receive beam (corresponding to reciprocal Scenario), the receive beam corresponding to the transmit beam (corresponding to a reciprocal scenario).
  • a signal transmitted on a port with a spatial QCL relationship can also be understood as using the same spatial filter to receive or send a signal.
  • the spatial filter may be at least one of the following: precoding, the weight of the antenna port, the phase deflection of the antenna port, and the amplitude gain of the antenna port.
  • a signal transmitted on a port with an airspace QCL relationship can also be understood as having a corresponding beam pair connection (BPL).
  • the corresponding BPL includes at least one of the following: the same downlink BPL, the same uplink BPL, and the downlink BPL
  • the corresponding upstream BPL corresponds to the downstream BPL.
  • the spatial reception parameter (ie, QCL of type D) can be understood as a parameter indicating the direction information of the reception beam.
  • Transmission configuration indicator (TCI) state It can be used to indicate the QCL relationship between two reference signals.
  • Each TCI state may include a serving cell index (ServeCellIndex), a bandwidth part (BWP) identifier (ID) and a reference signal resource identifier, where the reference signal resource identifier may be at least one of the following: Non-zero power (NZP) CSI-RS reference signal resource identifier (NZP-CSI-RS-ResourceId), non-zero power CSI-RS reference signal resource identifier (NZP-CSI-RS-ResourceSetId) or SSB Index (SSB-Index).
  • NZP Non-zero power
  • NZP-CSI-RS-ResourceId Non-zero power CSI-RS reference signal resource identifier
  • NZP-CSI-RS-ResourceSetId non-zero power CSI-RS reference signal resource identifier
  • SSB-Index SSB Index
  • the network device may also assign a QCL identifier to a beam having a quasi-co-location (QCL) relationship among beams associated with the frequency resource group.
  • QCL quasi-co-location
  • the QCL relationship is used to indicate that there are one or more communication features that are the same or similar between multiple resources.
  • the same or similar communication configurations can be used. For example, if two antenna ports have a QCL relationship, then the large-scale characteristics of the channel where one port transmits a symbol can be inferred from the large-scale characteristics of the channel that transmits a symbol on the other port. Large-scale characteristics can include: delay spread, average delay, Doppler spread, Doppler shift, average gain, receiving parameters, terminal device receive beam number, transmit/receive channel correlation, receive angle of arrival, receiver antenna Spatial correlation, main arrival angle (angel-of-arrival, AoA), average arrival angle, expansion of main arrival angle, etc.
  • QCL also includes spatial QCL. Spatial QCL can be considered as a type of QCL.
  • the quasi-co-location in the airspace can be understood from the perspective of the sending end and the receiving end respectively. From the perspective of the transmitting end, if the two antenna ports are quasi-co-located in the air domain, it means that the corresponding beam directions of the two antenna ports are spatially consistent. From the perspective of the receiving end, if the two antenna ports are quasi-co-located in the air domain, it means that the receiving end can receive the signals sent by the two antenna ports in the same beam direction.
  • the serving cell index, BWP ID and reference signal resource identifier refer to the reference signal resource used during the beam training process and the corresponding serving cell and BWP.
  • the network device sends reference signals through different transmit beams based on different reference signal resources, so the reference signals sent through different transmit beams can be associated with different reference signal resources; the terminal device is based on different reference signal resources
  • the reference signals are received through different receiving beams, so the reference signals received through different receiving beams can also be associated with different reference signal resources.
  • the terminal device can maintain the corresponding relationship between the serving cell index, BWP ID and reference signal resource identifier and the receiving beam, and the network device can maintain the serving cell index, BWP ID and reference signal resource identifier and the transmitting beam Correspondence.
  • the signal resource identifier By referring to the signal resource identifier, the pairing relationship between the receiving beam and the transmitting beam can be established.
  • the terminal device may determine the receive beam based on the TCI status indicated by the network device including spatial QCL.
  • the TCI state can be globally configured. In the TCI states configured for different cells and different BWPs, if the indexes of the TCI states are the same, the corresponding configurations of the TCI states are also the same.
  • the network device configures measurement configuration information to the terminal device, and the measurement configuration information includes measurement resource configuration information and measurement report configuration information to inform the terminal device of the measured pilot resource and how to report it after the measurement Measurement results.
  • the measurement resource configuration information divides the measurement resources into three levels: resource set list (resource set list) ⁇ resource set (resource set) ⁇ resource (resource).
  • the network device may configure one or more resource sets for the terminal device, and each resource set may include one or more resource sets, and each resource set may include one or more resources.
  • Each resource is It is a group of measured pilot resources.
  • Each resource has an identification (ID).
  • ID When the type of pilot resource included in the resource is CSI-RS, its ID is called CSI-RS index (CSI-RS index, CRI), and the type of pilot resource included in the resource is synchronization message block (synchronisation signal block) , SSB), its ID is called SSB index (SSB index).
  • the measurement report configuration information includes the measured carrier frequency.
  • the measurement report configuration can be associated with the CSI resource configuration (CSI-ResourceConfig), or with the reported quantity (what measurement quantity is reported, such as CQI), reporting period, etc., which will not be listed here.
  • each measurement reporting configuration is associated with one or more CSI-ResourceConfig, which is used to indicate what resources are used to measure the required reporting amount.
  • the aperiodic measurement reporting configuration for paired beam interference measurement will be associated with three CSI-ResourceConfig, the first is a set of non-zero power (NZP)-CSI-RS-ResourceSet for channel measurement ), the second is a set of CSI-IM-ResourceSet for interference measurement, and the third is a set of NZP-CSI-RS-ResourceSet for interference measurement.
  • NZP non-zero power
  • channel CRI is the ID of the resource selected in CSI-ResourceConfig for channel measurement.
  • the interference CSI is the ID of the resource included in the CSI-ResourceConfig used for interference measurement, that is, the channel CRI reported by the terminal device is the ID of the resource selected from a group of NZP-CSI-RS-ResourceSet used for channel measurement.
  • the interference CRI is the ID of the resource contained in a group of CSI-IM-ResourceSet or NZP-CSI-RS-ResourceSet used for interference measurement.
  • a method for interference beam measurement includes, for example, the following steps 1 to 4.
  • Step 1 The network device sends an RRC message to the terminal device, and configures the terminal device with a channel-state information (CSI) aperiodic trigger state list (CSI-AperiodicTriggerStateList) through the RRC message.
  • the CSI–AperiodicTriggerStateList contains a maximum of 128 CSI aperiodic trigger states (CSI–AperiodicTriggerState), each CSI–AperiodicTriggerState contains up to 16 CSI-related reporting configuration information (CSI–AssociatedReportConfigInfo), and each CSI–AsociatedReportConfigInfo contains a CSI reporting configuration identifier ( CSI-reportConfigID), channel measurement resources (resourcesForChannelMeasurement), interference measurement CSI-IM resources (csi-IM-ResourcesForInterference), interference measurement NZP-CSI-RS resources (nzp-CSI-RS-ResourcesForInterference).
  • the interference measurement CSI-IM resource is used to measure inter-cell interference, and the interference
  • Step 2 The network device sends a medium access control-control element (MAC-CE) to the terminal device.
  • the MAC-CE uses a maximum of 128 CSI contained in the CSI-AperiodicTriggerStateList configured from the RRC layer.
  • One or more CSI-AperiodicTriggerState is triggered in AperiodicTriggerState.
  • Step 3 The network device sends downlink control information (DCI) to the terminal device, and the DCI dynamically activates one of the instructions from the 16 CSI-AssociatedReportConfigInfo configured in the CSI-AperiodicTriggerState activated by the MAC-CE to the terminal device.
  • DCI downlink control information
  • Step 4 The terminal device performs pilot measurement on the corresponding time-frequency domain resource based on the measurement resource configuration triggered by DCI, and reports the measurement result to the network device based on the measurement report configuration.
  • FIG. 2 shows a schematic diagram of a scenario where a method of interference measurement is applied.
  • the active users in the current cell are terminal device 1, terminal device 2, and terminal device 4, wherein the service beam of terminal device 1 is beam 1, the service beam of terminal device 2 is beam 2, and the terminal The service beam of device 4 is beam 4.
  • the network device may configure the terminal device to measure paired beam interference.
  • the network device configures terminal device 1 to measure interference information between beam 1 and beam 2, and between beam 1 and beam 4, and configures terminal device 2 to measure interference between beam 2 and beam 1, and between beam 2 and beam 4.
  • Information configure terminal device 3 to measure interference information between beam 4 and beam 1, and between beam 4 and beam 2.
  • the following will take the interference measurement of the terminal device 1 as an example for description.
  • the network device configures two CSI reporting configurations (CSI-AssociatedReportConfigInfo) for terminal device 1 through RRC messages.
  • DCI triggers CSI–AperiodicTriggerState#1 to instruct terminal device 1 to measure the interference information between beam 1 and beam 2 and report the measurement As a result, for example, MU-CQI.
  • DCI triggers CSI–AperiodicTriggerState#2 to instruct terminal device 1 to measure the interference information between beam 1 and beam 4, and report the measurement result, such as MU-CQI.
  • AperiodicTriggerState#1 and AperiodicTriggerState#2 are specifically shown in Table 1 below:
  • CSI-AperiodicTriggerState#1 corresponds to the reported configuration ID#1
  • its channel measurement resource corresponds to the beam 1 pilot resource, that is, RS ID#1
  • the other cell pilot resources correspond to the beam 5 pilot resource, that is, RS ID#5, which The interference measurement resource corresponds to the beam 2 pilot resource, which is RS ID#2.
  • CSI-AperiodicTriggerState#2 corresponds to the reporting configuration ID#2
  • its channel measurement resource corresponds to the beam 1 pilot resource, that is, RS#ID#1
  • the other cell pilot resources correspond to the beam 5 pilot resource, that is, RS#ID#5, its interference measurement
  • the resource corresponds to the beam 4 pilot resource, which is RS ID#4.
  • the network device configures (service beam) channel measurement resources and (interference beam) interference measurement resources for the terminal device through RRC messages.
  • the channel measurement may be NZP CSI-RS resources
  • the interference measurement resource may be NZP CSI-RS resources.
  • the terminal device calculates the MU-CQI of the service beam under the influence of the interference beam.
  • the calculation formula of MU-CQI is as follows:
  • P channel is the signal energy on the resource used for channel measurement (for example, resource #1, that is, the resource corresponding to RS ID #1), and represents the signal strength of the service beam.
  • P NZP-IMR is the signal energy on the resource used for interference measurement and characterizes the signal strength of the interference beam. If the network device is configured with multiple interference measurement resources, the terminal device needs to accumulate the signal capabilities on all interference measurement resources.
  • the interference measurement resource includes, for example, from resource #3 (ie, the resource corresponding to RS ID#3) to resource #6 (ie, the resource corresponding to RS ID#6).
  • P CSI-IM is other interference energy based on CSI-IM (for example, resource #2, that is, the resource corresponding to RS ID #1), for example, including white noise and interference of other cells.
  • the network device treats all other beams except the service beam as interference, and configures the terminal device to measure the MU-CQI under the interference of each beam to obtain information on all the interference beams. In this way, no matter which beam is scheduled at the same time as the service beam in the future, the network device has a corresponding CQI to select the accurate modulation and coding technology to ensure the performance of data transmission.
  • the network device configures the terminal device to separately measure the CQI under the interference of each beam, the measurement overhead is too large. For example, assuming that the network device has 256 beams, then for each service beam, the terminal device must perform 255 measurements and report, the overhead is intolerable.
  • the embodiments of the present application provide a method for interference measurement.
  • the terminal device performs interference measurement on the full bandwidth of the currently activated bandwidth part of the BWP, so that the terminal device can perform interference measurement without using pilot resources, thereby reducing the system. Pilot overhead.
  • the network device does not need to configure pilot resources for interference measurement, which can reduce system pilot overhead.
  • pre-acquisition may include signaling indication or pre-defined by the network device, for example, protocol definition.
  • pre-defined can be achieved by pre-storing corresponding codes, tables or other methods that can be used to indicate relevant information in the device (for example, including terminal devices and network devices), and this application does not do for its specific implementation limited.
  • “save” referred to in the embodiments of the present application may refer to being saved in one or more memories.
  • the one or more memories may be set separately, or may be integrated in an encoder or decoder, a processor, or a communication device.
  • the one or more memories may also be partly set separately and partly integrated in a decoder, processor, or communication device.
  • the type of memory may be any form of storage medium, which is not limited in this application.
  • protocol in the embodiments of the present application may refer to a standard protocol in the communication field, and may include, for example, the LTE protocol, the NR protocol, and related protocols applied in a future communication system, which is not limited in this application.
  • the technical solution of the present application may be applied to a wireless communication system, for example, the communication system 100 shown in FIG. 1.
  • a wireless communication connection relationship between two communication devices in a wireless communication system may correspond to, for example, the network device 110 shown in FIG. 1, for example, it may be the network device 110 or a chip configured in the network device 110, and the other of the two communication devices may correspond to, for example.
  • the terminal device 120 in FIG. 1 may be, for example, the terminal device 120 or a chip configured in the terminal device 120.
  • a downlink transmission process between a terminal device (first terminal device) and a network device is used as an example to describe in detail embodiments of the present application. It can be understood that any terminal device in the wireless communication system or a chip configured in the terminal device can perform interference measurement based on the same method. This application does not limit this.
  • FIG. 3 is a schematic flowchart of a method for interference measurement shown from the perspective of device interaction. As shown in FIG. 3, the method 300 may include steps 310 to 330. The steps of the method 300 are described in detail below with reference to FIG. 3.
  • the network device determines first configuration information, where the first configuration information is used to indicate an interference measurement resource of the first terminal device, where the frequency domain of the interference measurement resource is the full bandwidth of the currently activated bandwidth part BWP of the first terminal device .
  • first configuration information is not specifically limited, for example, “first configuration information” may also be referred to as “interference measurement resource configuration”.
  • first configuration information and “interference measurement resource configuration” are used interchangeably, and the meaning of the expression is consistent when the difference is not emphasized.
  • the interference measurement resource may be the interference measurement resource of the paired beam in the cell, and the interference measurement resource is mainly used to measure the interference of the paired beam.
  • the frequency domain of the interference measurement resource of the terminal device 1 may be the full bandwidth of the BWP currently activated by the terminal device 1.
  • the possible paired beams in the cell of the terminal device 1 are other service beams that activate the terminal device.
  • the currently activated terminal devices include terminal device 1, terminal device 2, and terminal device 4, where activated terminal device refers to a terminal device that currently needs to transmit data to be scheduled, and the paired beam in the cell of terminal device 1 is the terminal device The service beam 2 of 2, or the service beam 4 of the terminal device 4. Therefore, the data or pilot resources sent through beam 2 or beam 4 are the interference measurement resources of the paired beams in the cell of terminal device 1.
  • the interference measurement resource is used for data transmission by other terminal devices (second terminal devices) than the first terminal device.
  • the interference measurement resources may be data transmission resources of other terminal devices in the cell, or data transmission resources in other cells.
  • the interference measurement resource may also include pilot resources of service beams of other users in the cell, or pilot resources in other cells, which are not specifically limited in the embodiment of the present application.
  • the number of the second terminal devices may be one or more, which is not limited in the embodiment of the present application.
  • the first configuration information includes first indication information, and the first indication information is used to indicate a frequency domain position of the interference measurement resource.
  • the interference measurement resource may include a continuous frequency domain resource, that is, the frequency domain of the interference measurement resource is continuously distributed.
  • the interference measurement resource may also be composed of multiple discontinuous frequency domain resources, or may be equally spaced frequency domain resources subject to a specific density distribution, which is not limited in this embodiment of the present application.
  • the first configuration information includes second indication information
  • the second indication information is used to indicate the symbol position of the interference measurement resource.
  • the symbols in the embodiments of the present application refer to time domain symbols, which may be orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols, or discrete Fourier transform extended orthogonal frequency division multiplexing (discrete fourier transform) spread OFDM (DFTS-OFDM) symbol, which is not limited in the embodiments of the present application.
  • OFDM orthogonal frequency division multiplexing
  • DFTS-OFDM discrete Fourier transform extended orthogonal frequency division multiplexing
  • the time domain of the interference measurement resource includes a single symbol, or multiple symbols that are continuous or non-contiguous.
  • the symbol position of the interference measurement resource may be a single symbol position (for example, one of symbols 0 to 13) or multiple symbol positions that are continuous or non-contiguous.
  • interference measurement resources may include interference measurement CSI-IM resources (CSI-IM-ResourcesForInterference), interference measurement NZP-CSI-RS resources (NZP-CSI-RS-ResourceForInterference) or interference measurement ZP-CSI-RS resources (ZP -CSI-RS-ResourceForInterference), this embodiment of the present application does not limit this.
  • the interference measurement resources may further include resources used for inter-cell interference measurement, which is not limited in this embodiment of the present application.
  • the interference measurement resource as the CSI-IM resource
  • the format of the interference measurement resource configuration will be specifically described. It should be noted that the following examples are only for helping those skilled in the art to understand and implement the embodiments of the present invention, rather than limiting the scope of the embodiments of the present invention. Those skilled in the art can perform equivalent transformations or modifications according to the examples given here, and such transformations or modifications should still fall within the scope of the embodiments of the present invention.
  • the interference measurement resource configuration may be a newly defined CSI-IM resource format (CSI-IM-Resource pattern), or a parameter value in an existing CSI-IM-Resource pattern may be added.
  • CSI-IM-Resource pattern CSI-IM-Resource pattern
  • the following shows a specific CSI-IM-Resource example provided by an embodiment of the present application.
  • the current CSI-IM-Resource frequency domain is considered to be the first terminal device
  • the current serving cell activates the entire bandwidth of the BWP.
  • subcarrier location-p0 in pattern0 or subcarrierLocation-p1 in pattern1 is an invalid value
  • the current CSI-IM-Resource frequency domain activates BWP for the current serving cell of the first terminal device The entire bandwidth.
  • the newly defined pattern2 represents a symbol that occupies the entire bandwidth of the current serving cell of the first terminal device in which the interference measurement resource occupies the BWP.
  • the value of symbol location (symbolLocation)-p2 indicates the specific location of the symbol in a time slot.
  • the newly defined pattern3 indicates that one or more symbols occupying the entire bandwidth of the current serving cell of the first terminal device activated BWP in the frequency domain of the interference measurement resource, and each value of symbol location list (symbolLocationList)-p3 represents a measurement The specific position of the symbol in a time slot.
  • the newly defined pattern4 indicates that the interference measurement resource frequency domain occupies one or more symbols in the time domain where the entire bandwidth of the current serving cell of the first terminal device activates BWP is continuous.
  • the first symbol location (firstSymbolLocation)-p4 indicates the The time domain location of a measurement symbol
  • the newly defined pattern5 represents a continuous symbol in the frequency domain occupied by interference measurement resources
  • the first subcarrier location (firstSubcarrierLocation)-p5 represents the starting frequency domain location of the measurement symbol
  • the last (lastSubcarrierLocation)-p5 represents measurement The end position of the symbol in the frequency domain
  • the value of symbol location (symbolLocation)-p5 indicates the specific location of the symbol in a time slot.
  • the newly defined pattern6 represents a symbol in which the interference measurement resource occupies a continuous or non-continuous frequency domain
  • the subcarrier location (subcarrierLocation)-p6 represents the specific frequency domain location of the measurement resource.
  • Symbol location (symbolLocation)-The value of p5 indicates the specific location of the symbol in a time slot.
  • the user's current service part bandwidth (BWP) frequency domain 10 resource block groups (resource, block, group, RBG), based on 10bit to quantify the value of subcarrierLocation-p6, the quantization bits from low to high indicate the frequency domain From low to high RBG, a value of 0 indicates that the measurement resource includes the current RBG, and a value of 1 indicates that the measurement resource does not include the current RBG.
  • BWP current service part bandwidth
  • the CSI-IM-Resource shown in the embodiments of the present application is only an example and not a limitation.
  • the CSI-IM-Resource may include at least one (ie, one or more) of pattern0 to pattern6, or may not include the measurement resource type (resourceType), which is not limited in the embodiment of the present application.
  • the first configuration information further includes third indication information
  • the third indication information is used to indicate a time domain attribute of the interference measurement resource
  • the time domain attribute includes periodicity, aperiodicity, or semi-periodity.
  • the time domain attribute can refer to the description above, and for the sake of brevity, it will not be repeated here.
  • the above CSI-IM-Resource may further include a measurement resource type (resourceType), which is used to indicate that the interference measurement resource is periodic, aperiodic, or semi-static.
  • At least two types of indication information in the first indication information, the second indication information, and the third indication information may be indicated in a joint indication manner.
  • non-periodic time domain attribute may be carried by the information element "CSI-AperiodicTriggerStateList”
  • semi-persistent time domain attribute may be carried by the information element "CSI-SemiPersistentOnPUSCH-TriggerStateList”, which is not limited in the embodiments of the present application.
  • the period and time offset (periodicityAndOffset) of the interference measurement resource need to be configured accordingly.
  • the following shows an example of a specific CSI-IM-Resource provided by the embodiment of the present application, where the CSI-IM-Resource includes the period and time offset (periodicityAndOffset) of the interference measurement resource.
  • the first configuration information further includes received beam information of the interference measurement resource.
  • the received beam information is, for example, a quasi-co-located QCL indication.
  • the quasi-co-located QCL indication is used to instruct the first terminal device to receive receive beam information used to receive interference measurement resources.
  • the quasi-co-located QCL indication can be referred to the description above. For brevity, it will not be repeated here.
  • the first terminal device receives the interference measurement resource using the same receive beam as the current data channel or control channel of the first terminal device signal.
  • the data channel is a physical downlink shared channel (physical downlink shared channel, PDSCH)
  • the control channel is a physical downlink control channel (physical downlink link control channel, PDSCH).
  • the time domain attribute of the interference measurement resource is not limited at this time, that is, the time domain attribute of the interference measurement resource may be periodic, semi-persistent, or aperiodic at this time.
  • a QCL indicator may be added to the CSI-IM-Resource to indicate the received beam information of the interference measurement resource.
  • the interference measurement resource receiving beam is determined based on the pilot or channel resource associated with the transmission configuration number (TCI) state identifier (TCI-StateId). Specifically, the same receive beam as the pilot resource associated with TCI-SateId can be used, or the pilot resource can be used to estimate the angle of arrival (AOA), and the main lobe can be used to point to the receive beam receiving the same or similar to the estimated value. Interference measurement resources.
  • a QCL indicator may be added to the CSI-IM-ResourceSet to indicate the received beam information of the interference measurement resource.
  • qcl-Info a QCL indicator
  • the embodiment of the present application only takes the interference measurement resource as CSI-IM-Resource for example, that is, the interference measurement resource is configured as CSI-IM-Resource pattern as an example for description, and the interference measurement resource may also be other resources.
  • CSI-RS-Resource and the interference measurement resource configuration is, for example, CSI-RS-Resource pattern, which is not specifically limited in this embodiment of the present application.
  • the network device may also determine second configuration information, where the second configuration information is used to instruct the first terminal device to report the measurement result corresponding to the interference measurement resource.
  • second configuration information is not specifically limited, for example, “second configuration information” may also be referred to as “interference measurement report configuration”.
  • first configuration information and “interference measurement report configuration” are used interchangeably, and the meaning of the expression is consistent when the difference is not emphasized.
  • the second configuration information is used to instruct the first terminal device to report the interference measurement value corresponding to the interference measurement resource.
  • the second configuration information is used to instruct the first terminal device to report one or more of the following information: interference measurement resource identifier, interference measurement value, channel measurement resource identifier, channel quality indicator, signal and interference plus Noise ratio SINR, channel quality indicator CQI, precoding matrix indicator PMI, rank indicator RI, received signal strength indicator RSSI, reference signal received power RSRP.
  • the interference measurement value is the received energy of the interference measurement resource.
  • the interference measurement value is the received energy of the interference measurement resource.
  • the interference measurement resource identifier is the resource identifier of the interference measurement resource.
  • the interference measurement resource identifier may be at least one of the following: CSI-IM resource identifier (CSI-IM-ResourceId), NZP-CSI-RS resource identifier (NZP-CSI-RS-ResourceId), ZP-CSI-RS resource identifier ( ZP-CSI-RS-ResourceId), etc., this embodiment of the present application does not limit this.
  • the channel measurement resource identifier can refer to the existing The description in the technology will not be described in detail here.
  • the network device sends the first configuration information to the first terminal device.
  • the network device may send first configuration information (that is, interference resource configuration) to the first terminal device through high-layer signaling (such as RRC signaling). For example, the network device may configure interference measurement resources for the first terminal device through the CSI-AperiodicTriggerStateList in the RRC message.
  • the CSI-AperiodicTriggerStateList may include several CSI-AperiodicTriggerStates, each CSI-AperiodicTriggerState contains CSI-AssociatedReportConfigInfo, and each AssociatedReportConfigInfo contains interference measurement resources.
  • the network device also sends second configuration information to the first terminal device.
  • the network device may send the second configuration information to the first terminal device through high-layer signaling (such as RRC signaling).
  • the first configuration information may be carried in the same configuration information and sent to the terminal device as the second configuration information.
  • the first terminal device performs interference measurement on the interference measurement resource.
  • the first terminal device determines the interference measurement resource according to the interference resource configuration, and then measures the signal on the interference measurement resource. After performing the interference measurement to obtain the measurement result, the first terminal device may report the measurement result according to the interference measurement reporting configuration.
  • the first terminal device may use the designated receive beam to obtain the received energy of the interference measurement resource, that is, the interference measurement value.
  • the specified way of receiving the beam is as described in 310 above, and for the sake of brevity, it will not be repeated here.
  • the first terminal device may perform interference measurement on the multiple symbols to obtain the symbol-level average received power of the multiple symbols, or The resource element level average received power of the multiple symbols, or the total received power of the multiple symbols.
  • the interference measurement value includes symbol-level average received power, or resource element-level average received power, or total received power.
  • the interference measurement method of the first terminal device may include one or more of the following possible measurement methods.
  • the first terminal device may calculate the symbol-level average received power of the interference measurement resource. Specifically, when the time domain is multiple symbols, the total received power measured on the multiple symbols can be averaged by the number of symbols, as shown below:
  • N is the total number of interference measurement symbols
  • P i is the total received power of the i-th symbol.
  • the first terminal device may calculate the average received power of the resource measurement element (RE) level of the interference measurement resource, where RE is a minimum time-frequency domain measurement unit. Specifically, when the time domain is one or more symbols, the measured total received power can be averaged according to the RE number, as shown below:
  • RE resource measurement element
  • N is the total number of interference measurement symbols
  • P i is the total received power of the i-th symbol
  • M i is the RE number of the i-th interference measurement symbol.
  • the first terminal device may calculate the symbol RE level average received power. Specifically, the first terminal device calculates the average RE power of each symbol. When the interference measurement resource is multiple symbols, each symbol corresponds to a separate measurement value.
  • the first terminal device may calculate the symbol-level total received power. Specifically, when the interference measurement resource is multiple symbols, the total received power of each symbol can be calculated.
  • the first terminal device may calculate the total received power of the interference measurement resource, that is, the total received power of all interference measurement symbols currently.
  • the calculation method of the interference measurement may be explicitly configured by the network device or implicitly indicated to the first terminal device.
  • a new information bit may be defined in the interference measurement reporting configuration, and the information bit may be called an interference measurement criterion (interference measurement criterion), for example, to indicate a user-specific interference measurement method .
  • an interference measurement method may be clearly specified in the protocol, and the first terminal device performs interference measurement based on the interference measurement method specified in the protocol.
  • the first terminal device may determine the interference measurement method by measuring the number of reported resources included in the report configuration. As an example, when the number of interference measurement reporting resources in the measurement reporting configuration is less than the number of interference measurement symbols, the first terminal device calculates the symbol level average received power of the interference measurement resources.
  • the first terminal device may report the interference measurement value according to the interference measurement report configuration, or report the interference measurement resource identifier and the interference measurement value of the interference measurement resource indicated by the interference measurement resource identifier.
  • the first terminal device may select one or more of the interference measurement values for quantitative reporting based on the determined current interference measurement value.
  • the criterion for the first terminal device to select the reported interference measurement value may be an internal algorithm of the first terminal device, for example, the first terminal device may select the first L reports with the largest or smallest interference measurement value to report, or may be explicitly displayed by the network device Configuration or implicit indication to the first terminal device.
  • a new information bit may be defined in the CSI measurement report configuration, and the information bit may be referred to as an interference report criterion (interfReportCriterion), for indicating that the first terminal device reports the maximum interference measurement value or The interference CRI corresponding to the minimum interference measurement value and the corresponding interference measurement value.
  • the first terminal device may determine the interference measurement reported by the user through the number of reported resources included in the CSI measurement report configuration.
  • the first terminal device may report the resource ID of IM-resource#0 and the corresponding interference measurement value to the network device, or The first terminal device may only report the interference measurement value corresponding to IM-resource#0 to the network device.
  • the first terminal device may be based on the specific To select one or more interference measurement resource IDs and corresponding interference measurement values to report to the network device.
  • the IM-resource may be CSI-IM-resource, NZP-CSI-RS-resource or ZP-CSI-RS-resource, which is not limited in the embodiment of the present application.
  • the first terminal device quantizes and reports each interference measurement value among the multiple interference measurement values by bits, or by The difference method is quantified and reported.
  • the quantization method adopted when the first terminal device performs the quantization report may include one or more of the following methods.
  • a possible quantization method when the reported interference measurement value is a value, the first terminal device quantizes and reports the interference measurement value using X1 bits, where X1 is a positive integer.
  • the first terminal device uses X2 bits to quantify and report the multiple interference measurement values, where X2 is a positive integer .
  • X2 is a positive integer
  • each symbol may be sorted according to time domain position, and the symbol with the first time domain position may occupy the first y bits of X2 bits, and so on, where y is a positive integer less than or equal to X2.
  • the first terminal device may report by difference quantization. Specifically, the first terminal device uses X3 bits to report the first measurement value, X4 bits to report the difference between the second measurement value and the first measurement value, and X5 bits to report the third measurement value and the first measurement value The difference between the values, and so on, where X3, X4 and X5 are positive integers.
  • the reported interference measurement value may be a linear measurement value or a measurement value in units of dB, which is not limited in the embodiment of the present application.
  • the first terminal device reports the interference measurement value in a quantized manner, which can reduce the occupation of the transmission bandwidth and can also improve the data transmission efficiency.
  • the protocol needs to support the reporting formats corresponding to the various reporting amounts described above, for example, Table 3 below:
  • M represents the number of quantization bits of the interference measurement resource identifier
  • N represents the number of quantization bits of the interference measurement report amount
  • the embodiments of the present application do not exclude that the first terminal device uses other uplink transmission methods to report interference measurement values.
  • the first terminal device may also use MAC-CE and other encapsulated data units to report interference measurement values.
  • the application examples do not limit this.
  • the first terminal device reports one or more of the following information to the network device: interference measurement resource identifier, interference measurement value, channel measurement resource identifier, channel quality indicator, Signal to interference plus noise ratio SINR, channel quality indicator CQI, precoding matrix indicator PMI, rank indicator RI, received signal strength indicator RSSI, reference signal received power RSRP.
  • the network device indicates the interference measurement resource of the first terminal device by sending the first configuration information to the first terminal device, where the frequency domain of the interference measurement resource is the current current of the first terminal device Activate the full bandwidth of the bandwidth part BWP, and then, the first terminal device performs interference measurement on the interference measurement resource, so that the first terminal device may not perform interference measurement on the pilot resource of the interference beam, thereby reducing system signaling overhead.
  • the network device does not need to configure pilot resources for interference measurement, which can reduce system pilot overhead.
  • FIG. 4 shows a schematic flowchart of an interference measurement method provided by an embodiment of the present application. It should be understood that FIG. 4 shows steps or operations of the interference measurement method, but these steps or operations are merely examples, and other operations or variations of the operations in FIG. 4 may be performed in the embodiments of the present application. In addition, each step in FIG. 4 may be performed in a different order than that presented in FIG. 4, and it may not be necessary to perform all operations in FIG. 4.
  • the network device in FIG. 4 and the first terminal device may be the corresponding network device and terminal device in FIG. 3, respectively, and the second terminal device in FIG. 4 may be other terminal devices in FIG. 3. This is not done in the embodiments of the present application. limited.
  • the network device sends interference measurement configuration information to the first terminal device.
  • the interference measurement configuration information includes the interference measurement resource configuration of the first terminal device, where the interference measurement resource configuration is used to indicate the interference measurement resource of the first terminal device, and the frequency domain of the interference measurement resource is the first terminal
  • the device currently activates the full bandwidth of the BWP part of the bandwidth.
  • the interference measurement configuration information is only associated with interference measurement resources, that is, the interference measurement configuration information may not include the channel measurement resource configuration of the first terminal device.
  • the interference measurement configuration information may not include the channel measurement resource configuration of the first terminal device.
  • the interference measurement configuration information further includes an interference measurement report configuration, and the interference measurement report configuration is used to instruct the first terminal device to report the interference measurement value corresponding to the interference measurement resource.
  • the interference measurement report configuration and the interference measurement value can be referred to the description above, and for the sake of brevity, they will not be repeated here.
  • the network device dynamically activates interference measurement.
  • the network device may send time-frequency domain resource scheduling information of one or more time slots to the first terminal device through the downlink control information DCI, and dynamically trigger interference measurement and reporting of the first terminal device.
  • the network device sends the downlink control information to the first terminal device, and the downlink control information is used to trigger the first terminal device to Measure the interference measurement resources.
  • the time domain attribute of the interference measurement resource is periodic, the first terminal device may periodically perform interference measurement according to the configuration of the interference measurement resource, without the network device dynamically activating the first terminal device to perform interference measurement, that is, step 402 may Omitted.
  • the DCI can use an existing DCI format, or define a new DCI format, or add a field to the existing format, or use a special value combination of an existing field, for example, an automatic hybrid retransmission request (hybrid automatic repeat request, HARQ), MCS and other fields are all set to 0 or 1, which is not limited in the embodiments of the present application.
  • an automatic hybrid retransmission request hybrid automatic repeat request, HARQ
  • MCS hybrid automatic repeat request
  • the DCI includes one or more of the following information: CSI request (CSI request), TCI information, BWP information, or other information.
  • CSI request is used to trigger the information bit of aperiodic or semi-static CSI measurement.
  • the CSI request can indicate the trigger state ID (such as trigger state#x).
  • Table 4 describes DCI signaling triggering interference measurement in detail.
  • a A CSI request Indicates the trigger state ID (trigger state#x)
  • a TCI information Indicate interference measurement receive beam information
  • a BWP information Indication of interference measurement band information
  • the network device performs data scheduling and transmission to the second terminal device.
  • the resource for data transmission by the second terminal device may be the interference measurement resource of the terminal device.
  • the second terminal device may be other terminal devices in the cell or terminal devices in other cells.
  • 402 can be performed simultaneously with 403, which is not limited in the embodiments of the present application.
  • the first terminal device performs interference measurement.
  • the first terminal device determines the interference measurement resource according to the interference resource configuration, and then measures the signal on the interference measurement resource to obtain the interference measurement value corresponding to the interference measurement resource.
  • the interference measurement method of the first terminal device may refer to the description of 330 in FIG. 3, and for the sake of brevity, the description will not be repeated here.
  • the first terminal device reports the measurement result.
  • the first terminal device may report the interference measurement value according to the interference measurement report configuration, or report the interference measurement resource identifier and the interference measurement value of the interference measurement resource indicated by the interference measurement resource identifier.
  • the method of reporting the interference measurement value reference may be made to the description above, and for the sake of brevity, no further description will be given here.
  • the first terminal device quantizes and reports each interference measurement value among the multiple interference measurement values through bits, or quantizes through a difference method Report.
  • the first terminal device performs the quantization report, refer to the description above, and for the sake of brevity, details are not described here.
  • the network device receives the interference measurement result reported by the first terminal device.
  • the network device infers the strong interference beam of the current serving beam of the first terminal device based on the interference measurement value reported by the first terminal device, and avoids the paired transmission of the stronger interference beam during multi-user transmission scheduling, that is, excluding strong interference beams during scheduling Interfering beam pairing, or preferentially performing weak interfering beam pairing, ensures that the interference between multiple beams scheduled simultaneously is weak, thereby reducing the adverse effect of intra-cell interference on data transmission and increasing system capacity.
  • the first terminal device measures and reports the interference measurement resource, where the frequency domain of the interference measurement resource is the full bandwidth of the currently activated bandwidth part BWP of the first terminal device, so that the first terminal device can Interference measurement is not performed on the pilot resources of the interference beam, thereby reducing system signaling overhead.
  • the network device does not need to configure pilot resources for interference measurement, which can reduce system pilot overhead.
  • FIG. 5 shows a schematic flowchart of another interference measurement method provided by an embodiment of the present application. It should be understood that FIG. 5 shows steps or operations of the interference measurement method, but these steps or operations are merely examples, and other operations or variations of the operations in FIG. 5 may be performed in the embodiments of the present application. In addition, each step in FIG. 5 may be performed in a different order from that presented in FIG. 5, and it may not be necessary to perform all operations in FIG. 5.
  • the network device and the first terminal device in FIG. 5 may be the corresponding network device and the first terminal device in FIG. 3, respectively.
  • the second terminal device in FIG. 5 may be the second terminal device in FIG. 3. This embodiment of the present application There is no restriction on this.
  • the network device sends measurement configuration information to the first terminal device.
  • the measurement configuration information includes the channel measurement resource configuration and the interference measurement resource configuration of the first terminal device.
  • the measurement configuration information may also be referred to as CSI measurement configuration.
  • the interference measurement resource configuration is used to indicate the interference measurement resource of the first terminal device, and the frequency domain of the interference measurement resource is the full bandwidth of the currently activated bandwidth part BWP of the first terminal device.
  • the channel measurement resource configuration is used to indicate the channel measurement resource of the first terminal device.
  • the channel measurement resource can refer to the description in the prior art. Specifically, for the configuration of the interference measurement resource and the interference measurement resource, reference may be made to the description in FIG. 3, and for the sake of brevity, details are not described here.
  • the measurement configuration information further includes an interference measurement report configuration
  • the interference measurement report configuration is used to instruct the first terminal device to report the interference measurement value corresponding to the interference measurement resource.
  • the interference measurement reporting configuration is used to instruct the first terminal device to report one or more of the following information: interference measurement resource identifier, interference measurement value, channel measurement resource identifier, channel quality indicator, signal to interference plus noise ratio SINR, channel quality indicator CQI, precoding matrix indicator PMI, rank indicator RI, received signal strength indicator RSSI, reference signal received power RSRP.
  • the configuration of the interference measurement report can be referred to the description above, and for the sake of brevity, no more details are provided here.
  • the network device sends a pilot to the first terminal device and the second terminal device to perform data scheduling and transmission.
  • the network device can send pilot and downlink data.
  • pilot sending data scheduling and transmission
  • data scheduling and transmission reference may be made to the description of the prior art, which will not be described in detail here.
  • the network device dynamically activates interference measurement, that is, CSI measurement.
  • the CSI measurement and reporting of the first terminal device are dynamically triggered through DCI.
  • the network device sends the downlink control information to the first terminal device, and the downlink control information is used to trigger the first terminal device to perform CSI measurement.
  • the first terminal device may periodically perform interference measurement according to the configuration of the measurement resource without requiring the network device to dynamically activate the first terminal device to perform CSI measurement, that is, step 502 may be omitted .
  • the DCI can use an existing DCI format, or define a new DCI format, or add a field to the existing format, or use a special value combination of an existing field, for example, an automatic hybrid retransmission request (hybrid automatic repeat request, HARQ), modulation and coding strategy (MCS) and other fields are all set to 0 or 1, which is not limited in the embodiments of the present application.
  • an automatic hybrid retransmission request hybrid automatic repeat request, HARQ
  • MCS modulation and coding strategy
  • the DCI may include one or more of the following information: CSI request, interference measurement resource, TCI information, BWP information, or other information.
  • Table 5 describes DCI signaling triggering interference measurement in detail.
  • a A CSI request Indicates the trigger state ID (trigger state#x)
  • a Interference measurement resources Indicates the interference resource information triggered by the current measurement
  • a TCI information Indicate interference measurement receive beam information
  • a BWP information Indication of interference measurement band information
  • the first terminal device performs channel and interference measurement, that is, CSI measurement.
  • the first terminal device determines the channel measurement resource and the interference measurement resource according to the measurement configuration information, and then measures the signals on the channel measurement resource and the interference measurement resource respectively to obtain the measurement result.
  • the measurement result may include the CSI measurement result, and/or may include the interference measurement value corresponding to the interference measurement resource.
  • the CSI measurement result may include, for example: channel quality indicator, signal to interference plus noise ratio SINR, channel quality indicator CQI, precoding matrix indicator PMI, rank indicator RI, received signal strength indicator RSSI, reference signal received power RSRP At least one, etc., this application is not limited.
  • the first terminal device reports the measurement result.
  • the first terminal device reports the measurement result to the network device based on the interference measurement report configuration.
  • the reported information may include one or more of the following information: interference measurement resource identifier, interference measurement value, channel measurement resource identifier, signal to interference plus noise ratio (signal to interference plus noise ratio, SINR), CQI , PMI, RI, received signal strength indication (received signal strength, RSSI), reference signal received power (reference signal reception power, RSRP), CRI, etc., which are not specifically limited in the embodiments of the present application.
  • the first terminal device determines the interference measurement value and reports the interference measurement value. For the description of the foregoing, to avoid repetition, details are not described herein again.
  • the network device receives the interference measurement result reported by the first terminal device.
  • the network device estimates the mutual interference between the beams based on the measurement results reported by the first terminal device, and avoids the paired transmission of stronger interfering beams during multi-user transmission scheduling, that is, the pairing of strong interfering beams is excluded during scheduling, or priority is given to Weak interference beam pairing ensures that the interference between multiple beams scheduled simultaneously is weak, thereby reducing the adverse effect of intra-cell interference on data transmission and increasing system capacity.
  • the first terminal device measures and reports the interference measurement resource, where the frequency domain of the interference measurement resource is the full bandwidth of the currently activated bandwidth part BWP of the first terminal device, so that the first terminal device can Interference measurement is not performed on the pilot resources of the interference beam, thereby reducing system signaling overhead.
  • the network device does not need to configure pilot resources for interference measurement, which can reduce system pilot overhead.
  • FIG. 6 shows a schematic structural diagram of a communication device provided by the present application.
  • the communication device 600 includes a communication unit 610 and a processing unit 620.
  • the communication unit 610 is configured to receive first configuration information from a network device, where the first configuration information is used to indicate an interference measurement resource of the terminal device, and the frequency domain of the interference measurement resource is a portion of the currently activated bandwidth of the terminal device The full bandwidth of BWP.
  • the processing unit 620 is configured to perform interference measurement on the interference measurement resource.
  • the communication unit 610 is also called a transceiver unit (module), and may include a receiving unit (module) and/or a sending unit (module), respectively used to execute the method embodiments and the terminals in FIG. 3, FIG. 4, and FIG. 5. The steps of device receiving and sending.
  • the communication device 600 may further include a storage unit for storing instructions executed by the communication unit 610 and the processing unit 620.
  • the communication device 600 is a terminal device, or may be a chip in the terminal device.
  • the processing unit may be a processor, and the communication unit may be a transceiver.
  • the communication device may also include a storage unit, which may be a memory. The storage unit is used to store instructions, and the processing unit executes the instructions stored by the storage unit, so that the communication device executes the above method.
  • the processing unit may be a processor, and the communication unit may be an input/output interface, a pin, or a circuit, etc.; the processing unit executes instructions stored in the storage unit to enable the communication
  • the device performs the operations performed by the terminal device in the above method embodiments, and the storage unit may be a storage unit (for example, a register, a cache, etc.) in the chip, or may be a storage unit in the terminal device located outside the chip (For example, read only memory, random access memory, etc.)
  • the communication unit 610 may be implemented by a transceiver, and the processing unit 620 may be implemented by a processor.
  • the storage unit may be realized by a memory.
  • the communication device 700 may include a processor 710, a memory 720 and a transceiver 730.
  • the communication device 600 shown in FIG. 6 or the communication device 700 shown in FIG. 7 can implement the foregoing embodiments and the steps performed by the terminal devices in FIGS. 3, 4, and 5, for a similar description, reference may be made to the description in the corresponding method . To avoid repetition, I will not repeat them here.
  • FIG. 8 shows a schematic structural diagram of a communication device 800 provided by the present application.
  • the communication device 800 includes a processing unit 810 and a communication unit 820.
  • the processing unit 810 is configured to determine first configuration information that is used to indicate an interference measurement resource of the first terminal device, and the frequency domain of the interference measurement resource is the current active bandwidth part BWP of the first terminal device Full bandwidth.
  • the communication unit 820 is configured to send the first configuration information to the first terminal device.
  • the communication unit 820 may include a receiving unit (module) and/or a sending unit (module), respectively used to perform the method embodiments and the steps of receiving and sending by the network device in FIGS. 3, 4, and 5.
  • the communication device 800 may further include a storage unit for storing instructions executed by the communication unit 820 and the processing unit 810.
  • the apparatus 800 is a network device in the method embodiment, and may also be a chip in the network device.
  • the processing unit may be a processor
  • the communication unit may be a transceiver.
  • the device may also include a storage unit, which may be a memory. The storage unit is used to store instructions, and the processing unit executes the instructions stored by the storage unit, so that the communication device executes the above method.
  • the processing unit may be a processor, and the communication unit may be an input/output interface, a pin, or a circuit, etc.; the processing unit executes instructions stored in the storage unit to enable the communication
  • the device performs the operation performed by the network device in the above method embodiment, and the storage unit may be a storage unit (for example, a register, a cache, etc.) within the chip, or a storage unit located outside the chip within the communication device (For example, read only memory, random access memory, etc.).
  • the communication unit 820 may be implemented by a transceiver, and the processing unit 810 may be implemented by a processor.
  • the storage unit may be realized by a memory.
  • the communication device 900 may include a processor 910, a memory 920 and a transceiver 930.
  • the communication apparatus 800 shown in FIG. 8 or the communication apparatus 900 shown in FIG. 9 can implement the foregoing method embodiments and the steps performed by the network devices in FIGS. 3, 4, and 5.
  • the network devices in the above apparatus embodiments correspond to the network devices or terminal devices in the terminal device and method embodiments, and the corresponding steps are performed by corresponding modules or units.
  • the communication unit (or transceiver unit, transceiver) method executes the steps of sending and/or receiving in the method embodiment (or performed separately by the sending unit and the receiving unit), and other steps than sending and receiving may be performed by the processing unit (processor )carried out.
  • the function of the specific unit can refer to the corresponding method embodiment.
  • the sending unit and the receiving unit may form a transceiving unit, and the transmitter and the receiver may form a transceiver, and jointly implement the transceiving function in the method embodiment; there may be one or more processors.
  • the above terminal device or network device may be a chip, and the processing unit may be implemented by hardware or software.
  • the processing unit may be a logic circuit, an integrated circuit, or the like.
  • the processing unit may be a general-purpose processor, realized by reading the software code stored in the storage unit, the storage unit may be integrated in the processor, or may exist independently outside the processor .
  • FIG. 10 is a schematic structural diagram of a terminal device 1000 provided by the present application.
  • the terminal device 1000 includes a processor, a memory, a control circuit, an antenna, and input/output devices.
  • the terminal device 1000 may be applied to the system shown in FIG. 1 to perform the functions of the terminal device in the above method embodiments.
  • the processor is mainly used to process the communication protocol and communication data, and control the entire terminal device, execute a software program, and process data of the software program, for example, to control the terminal device to perform the actions described in the foregoing method embodiments.
  • the memory is mainly used to store software programs and data.
  • the control circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • the control circuit and the antenna can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit processes the baseband signal after radio frequency processing, and then sends the radio frequency signal in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data.
  • FIG. 10 only shows one memory and processor. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc. This embodiment of the present application does not limit this.
  • the processor may include a baseband processor and a central processor.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processor is mainly used to control and execute the entire terminal device.
  • the processor in FIG. 10 integrates the functions of the baseband processor and the central processor.
  • the baseband processor and the central processor can also be separate processors, which are interconnected by technologies such as a bus.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple central processors to enhance its processing capability, and various components of the terminal device may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processor can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and the communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and the control circuit with the transceiving function may be regarded as the transceiving unit 1001 of the terminal device 1000, and the processor with the processing function may be regarded as the processing unit 1002 of the terminal device 1000.
  • the terminal device 1000 includes a transceiver unit 1001 and a processing unit 1002.
  • the transceiver unit may also be called a transceiver, a transceiver, a transceiver device, or the like.
  • the device used to implement the receiving function in the transceiver unit 1001 may be regarded as a receiving unit, and the device used to implement the sending function in the transceiver unit 1001 may be regarded as a sending unit, that is, the transceiver unit 1001 includes a receiving unit and a sending unit.
  • the receiving unit may also be referred to as a receiver, receiver, receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, transmitter, or transmitting circuit, etc.
  • the terminal device 1000 shown in FIG. 10 can implement various processes related to the terminal device in the method embodiments of FIGS. 3, 4, and 5.
  • the operations and/or functions of each module in the terminal device 1000 are respectively for implementing the corresponding processes in the above method embodiments.
  • FIG. 11 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • it may be a schematic structural diagram of a network device.
  • the network device 1100 may be applied to the system shown in FIG. 1 to perform the functions of the network device in the above method embodiments.
  • the network can be applied to the communication system shown in FIG. 1 to perform the functions of the network device in the above method embodiment.
  • the network device 1100 may include one or more radio frequency units, such as a remote radio unit (RRU) 1110 and one or more baseband units (BBU) (also called digital unit (DU) )) 1120.
  • RRU remote radio unit
  • BBU baseband units
  • DU digital unit
  • the RRU 1110 may be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc. It may include at least one antenna 1111 and a radio frequency unit 1112.
  • the RRU 1110 part is mainly used for the transmission and reception of radio frequency signals and the conversion of radio frequency signals and baseband signals, for example, for sending the indication information in the above method embodiment.
  • the RRU 1110 and the BBU 1120 may be physically arranged together, or may be physically separated, that is, distributed base stations.
  • the BBU 1120 is the control center of the base station and can also be called a processing unit, which is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, spread spectrum, and so on.
  • the BBU (processing unit) 1120 may be used to control the network device to perform the operation flow on the network device in the above method embodiment.
  • the BBU 1120 may be composed of one or more boards, and multiple boards may jointly support a wireless access network (such as an NR network) with a single access indication, or may support different access standards respectively. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 1120 also includes a memory 1121 and a processor 1122.
  • the memory 1121 is used to store necessary instructions and data.
  • the processor 1122 is used to control the base station to perform necessary actions, for example, to control the network device to perform the operation flow on the network device in the foregoing method embodiment.
  • the memory 1121 and the processor 1122 may serve one or more single boards. In other words, the memory and processor can be set separately on each board. It is also possible that multiple boards share the same memory and processor. In addition, each board can also be equipped with necessary circuits.
  • the network device 1100 shown in FIG. 11 can implement various processes involving the network device in the method embodiments of FIGS. 3, 4, and 5.
  • the operations and/or functions of each module in the network device 1100 are respectively configured to implement the corresponding processes in the above method embodiments.
  • the communication unit in the embodiment of the present application may also be referred to as a transceiver unit or a transceiver module.
  • the above processing device may be a chip.
  • the processing device may be a field-programmable gate array (Field-Programmable Array, FPGA), a dedicated integrated chip (Application Specific Integrated Circuit, ASIC), a system chip (System on Chip, SoC), a central processor (Central Processor) Unit, CPU), network processor (Network Processor, NP), digital signal processing circuit (Digital Signal Processor, DSP), microcontroller (Micro Controller, Unit, MCU), programmable controller (Programmable Logic Device, PLD) or Other integrated chips, etc.
  • Field-Programmable Array FPGA
  • ASIC Application Specific Integrated Circuit
  • SoC System on Chip
  • CPU Central Processor
  • Network Processor Network Processor
  • NP Network Processor
  • DSP digital signal processing circuit
  • microcontroller Micro Controller, Unit, MCU
  • PLD Programmable Logic Device
  • each step in the method provided in this embodiment may be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied and executed by a hardware processor, or may be executed and completed by a combination of hardware and software modules in the processor.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an existing programmable gate array (FPGA) or other available Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the processor in the embodiments of the present application may implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory or storage unit in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electronically Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory may be a random access memory (random access memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous RAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • double SDRAM double SDRAM
  • DDR SDRAM enhanced synchronous dynamic random access memory
  • ESDRAM synchronous connection dynamic random access memory
  • direct RAMbus RAM direct RAMbus RAM
  • An embodiment of the present application further provides a communication system, which includes a sending end device and a receiving end device.
  • the sending device is the network device in the above embodiment, and the receiving device is the terminal device in the above embodiment; or, the sending device is the terminal device in the above embodiment, and the receiving device is the network device in the above embodiment.
  • An embodiment of the present application further provides a computer-readable medium on which a computer program is stored, and when the computer program is executed by a computer, the method in any of the foregoing embodiments is implemented.
  • An embodiment of the present application also provides a computer program product that implements the method in any of the foregoing embodiments when the computer program product is executed by a computer.
  • An embodiment of the present application further provides a system chip.
  • the system chip includes: a processing unit and a communication unit.
  • the processing unit may be, for example, a processor.
  • the communication unit may be, for example, an input/output interface, a pin, a circuit, or the like.
  • the processing unit can execute computer instructions to cause the chip in the communication device to execute any of the methods provided in the embodiments of the present application.
  • the computer instructions are stored in the storage unit.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions can be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions can be transmitted from a website site, computer, server or data center via wire (Such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to another website, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the available media may be magnetic media (for example, floppy disks, hard disks, magnetic tapes), optical media (for example, high-density digital video discs (digital video discs, DVDs)), or semiconductor media (for example, solid state disks (SSDs) ))Wait.
  • magnetic media for example, floppy disks, hard disks, magnetic tapes
  • optical media for example, high-density digital video discs (digital video discs, DVDs)
  • semiconductor media for example, solid state disks (SSDs)
  • At least one refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the relationship of the related objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related object is a “or” relationship.
  • “At least one of the following” or a similar expression refers to any combination of these items, including any combination of a single item or a plurality of items.
  • At least one item (a) in a, b, or c can represent: a, b, c, ab, ac, bc, or abc, where a, b, c can be a single or multiple .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了干扰测量的方法和通信装置。本申请实施例中,网络设备通过向第一终端设备发送第一配置信息来指示该第一终端设备的干扰测量资源,其中,该干扰测量资源的频域为所述第一终端设备当前激活带宽部分BWP的全带宽,然后,第一终端设备在该干扰测量资源上进行干扰测量,使得第一终端设备可以不在干扰波束的导频资源进行干扰测量,进而降低系统信令开销。并且,网络设备无需配置用于干扰测量的导频资源,可以降低系统导频开销。

Description

干扰测量的方法和通信装置
本申请要求于2018年12月28日提交中国专利局、申请号为201811628835.6、申请名称为“干扰测量的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体的,涉及通信领域中的干扰测量的方法和通信装置。
背景技术
第五代移动通信系统(5th generation,5G)采用基于模拟波束的高频通信。网络设备可以通过多个射频通道同时发送多个模拟波束来为多个用户传输数据,同时发送的多个模拟波束信号之间会相互干扰,这种干扰被称为“小区内干扰”。网络设备需要测量小区内干扰情况,才能准确得到小区内干扰影响下的信道质量,以及避免同时传输的多个波束相互造成强干扰,从而进行高效的数据传输。
由于终端设备侧基于模拟波束接收,网络设备侧事先并不知道哪些模拟波束之间会产生干扰,因此需要网络设备配置相应的测量配置信息给终端设备,告知终端设备测量相应的导频资源,并上报测量结果,以获得小区内干扰情况。
但是,基于导频资源来测量小区内干扰,需要配置信道状态信息参考信号(Channel status information reference signal,CSI-RS)导频资源,导致系统信令开销以及导频开销较大。
发明内容
本申请提供一种干扰测量的方法和通信装置,能够降低系统信令开销和导频开销。
第一方面,提供了一种干扰测量方法,包括:
第一终端设备从网络设备接收第一配置信息,所述第一配置信息用于指示所述第一终端设备的干扰测量资源,所述干扰测量资源的频域为所述第一终端设备当前激活带宽部分BWP的全带宽;
所述第一终端设备对所述干扰测量资源进行干扰测量。
本申请实施例中,网络设备通过向第一终端设备发送第一配置信息来指示该第一终端设备的干扰测量资源,其中,该干扰测量资源的频域为所述第一终端设备当前激活带宽部分BWP的全带宽,然后,第一终端设备根据在该干扰测量资源上进行干扰测量,使得第一终端设备可以不在干扰波束的导频资源进行干扰测量,进而降低系统信令开销。并且,网络设备无需配置用于干扰测量的导频资源,可以降低系统导频开销。
结合第一方面,在第一方面的某些实现方式中,所述第一配置信息包括第一指示信息,所述第一指示信息用于指示所述干扰测量资源的频域位置。其中,干扰测量资源的频域连 续分布。
结合第一方面,在第一方面的某些实现方式中,所述第一指示信息的取值为-1或无效值。也就是说,当干扰测量资源的频域位置的指示信息的取值为新添加取值-1或无效值时,则默认干扰测量资源的频域为第一终端设备当前服务小区激活BWP的整个带宽。
因此,本申请实施例通过新增现有资源格式(resource pattern)中参数的取值,来实现对干扰测量资源的频域位置的指示,能够继续使用现有资源格式(resource pattern)来指示干扰测量资源。
结合第一方面,在第一方面的某些实现方式中,所述干扰测量资源的时域包括单个符号,或者连续或非连续的多个符号。
结合第一方面,在第一方面的某些实现方式中,所述第一配置信息包括第二指示信息,所述第二指示信息用于指示所述干扰测量资源的符号位置。
可选的,本申请实施例中,也可以通过新定义的资源格式来实现对干扰测量资源的频域位置或时域位置的指示。
作为举例,干扰测量资源可以包括干扰测量CSI-IM资源(CSI-IM-ResourcesForInterference),干扰测量NZP-CSI-RS资源(NZP-CSI-RS-ResourceForInterference)或干扰测量ZP-CSI-RS资源(ZP-CSI-RS-ResourceForInterference),本申请实施例对此不作限定。
结合第一方面,在第一方面的某些实现方式中,所述第一配置信息还包括第三指示信息,所述第三指示信息用于指示所述干扰测量资源的时域属性,所述时域属性包括周期性、非周期性或半静态。
一种实现方式中,当干扰测量资源为周期性资源配置时,需要相应的配置干扰测量资源的周期和时间偏移量(periodicityAndOffset)。
结合第一方面,在第一方面的某些实现方式中,当所述干扰测量资源的时域属性为周期性时,所述第一配置信息还包括所述干扰测量资源的准同位QCL指示。其中,准同位QCL指示用于指示第一终端设备用于接收干扰测量资源的接收波束信息。因此,本申请实施例中网络设备可以配置用于接收干扰测量资源的接收波束信息。
结合第一方面,在第一方面的某些实现方式中,所述第一终端设备对所述干扰测量资源进行干扰测量,包括:
所述第一终端设备使用与所述第一终端设备当前数据信道或控制信道相同的接收波束接收在所述干扰测量资源上传输的信号,并对所述信号进行干扰测量。
因此,本申请实施例中,第一终端设备可以基于当前数据信道或控制信道的接收波束来接收干扰测量资源,基于此可以实现QCL指示缺省,从而节省资源。
结合第一方面,在第一方面的某些实现方式中,所述干扰测量资源用于除所述第一终端设备之外的第二终端设备进行数据传输。这样,第一终端设备在进行小区内配对波束干扰测量时,能够在其他终端设备进行数据传输的资源上进行干扰测量,节省导频开销。
结合第一方面,在第一方面的某些实现方式中,当所述干扰测量资源的时域包括多个符号时,所述第一终端设备对所述干扰测量资源进行干扰测量,包括:
所述第一终端设备对所述多个符号进行干扰测量,获取所述多个符号的总接收功率,或者所述多个符号的符号级平均接收功率,或者所述多个符号的资源元素级平均接收功 率。
结合第一方面,在第一方面的某些实现方式中,还包括:
所述第一终端设备从所述网络设备接收第二配置信息,所述第二配置信息用于指示所述第一终端设备上报对应于所述干扰测量资源的干扰测量值。其中,干扰测量值即干扰测量资源的接收能量。作为具体,干扰测量值例如为上述多个符号的总接收功率,或者所述多个符号的符号级平均接收功率,或者所述多个符号的资源元素级平均接收功率。
可选的,第二配置信息也可以用于指示第一终端设备上报以下信息中的一种或多种:干扰测量资源标识、干扰测量值、信道测量资源标识、信道质量指示、信号与干扰加噪声比SINR、信道质量指示CQI、预编码矩阵指示PMI、秩指示RI、接收信号强度指示RSSI、参考信号接收功率RSRP。
结合第一方面,在第一方面的某些实现方式中,所述干扰测量值为多个时,所述第一终端设备对所述多个干扰测量值中的每个干扰测量值通过比特进行量化上报,或通过差值的方法进行量化上报。本申请实施例中,第一终端设备采用量化方式上报干扰测量值,可以降低对传输带宽的占用,还可以提高数据传输效率。
可选的,当干扰测量值为多个时,第一终端设备可以基于所确定的当前的干扰测量值,选取其中的一个或多个干扰测量值进行量化上报。
结合第一方面,在第一方面的某些实现方式中,还包括:
所述第一终端设备向所述网络设备上报以下信息中的一种或多种:干扰测量资源标识、干扰测量值、信道测量资源标识、信道质量指示、信号与干扰加噪声比SINR、信道质量指示CQI、预编码矩阵指示PMI、秩指示RI、接收信号强度指示RSSI、参考信号接收功率RSRP。
第二方面,提供了一种干扰测量的方法,包括:
网络设备确定第一配置信息,所述第一配置信息用于指示第一终端设备的干扰测量资源,所述干扰测量资源的频域为所述第一终端设备当前激活带宽部分BWP的全带宽;
所述网络设备向所述第一终端设备发送所述第一配置信息。
本申请实施例中,网络设备通过向第一终端设备发送第一配置信息来指示该第一终端设备的干扰测量资源,其中,该干扰测量资源的频域为所述第一终端设备当前激活带宽部分BWP的全带宽,然后,第一终端设备根据在该干扰测量资源上进行干扰测量,使得第一终端设备可以不在干扰波束的导频资源进行干扰测量,进而降低系统信令开销。并且,网络设备无需配置用于干扰测量的导频资源,可以降低系统导频开销。
结合第二方面,在第二方面的某些实现方式中,所述第一配置信息包括第一指示信息,所述第一指示信息用于指示所述干扰测量资源的频域位置。其中,干扰测量资源的频域连续分布。
结合第二方面,在第二方面的某些实现方式中,所述第一指示信息的取值为-1或无效值。也就是说,当干扰测量资源的频域位置的指示信息的取值为新添加取值-1或无效值时,则默认干扰测量资源的频域为第一终端设备当前服务小区激活BWP的整个带宽。
因此,本申请实施例通过新增现有资源格式(resource pattern)中参数的取值,来实现对干扰测量资源的频域位置的指示,能够继续使用现有资源格式(resource pattern)来指示干扰测量资源。
结合第二方面,在第二方面的某些实现方式中,所述干扰测量资源的时域包括单个符号,或者连续或非连续的多个符号。
结合第二方面,在第二方面的某些实现方式中,所述第一配置信息包括第二指示信息,所述第二指示信息用于指示所述干扰测量资源的符号位置。
可选的,本申请实施例中,也可以通过新定义的资源格式来实现对干扰测量资源的频域位置或时域位置的指示。
结合第二方面,在第二方面的某些实现方式中,所述第一配置信息还包括第三指示信息,所述第三指示信息用于指示所述干扰测量资源的时域属性,所述时域属性包括周期性、非周期性或半静态。
结合第二方面,在第二方面的某些实现方式中,当所述干扰测量资源的时域属性为周期性时,所述第一配置信息还包括所述干扰测量资源的准同位QCL指示。其中,准同位QCL指示用于指示第一终端设备用于接收干扰测量资源的接收波束信息。因此,本申请实施例中网络设备可以配置用于接收干扰测量资源的接收波束信息。
结合第二方面,在第二方面的某些实现方式中,所述干扰测量资源用于除所述第一终端设备之外的第二终端设备进行数据传输。这样,第一终端设备在进行小区内配对波束干扰测量时,能够在其他终端设备进行数据传输的资源上进行干扰测量,节省导频开销。
结合第二方面,在第二方面的某些实现方式中,当所述干扰测量资源的时域包括多个符号时,所述方法还包括:
所述网络设备接收所述第一终端设备上报的所述多个符号的总接收功率,或者所述多个符号的符号级平均接收功率,或者所述多个符号的资源元素级平均接收功率。
结合第二方面,在第二方面的某些实现方式中,还包括:
所述网络设备向所述第一终端设备发送第二配置信息,所述第二配置信息用于指示所述第一终端设备上报对应于所述干扰测量资源的干扰测量值。其中,干扰测量值即干扰测量资源的接收能量。作为具体,干扰测量值例如为上述多个符号的总接收功率,或者所述多个符号的符号级平均接收功率,或者所述多个符号的资源元素级平均接收功率。
可选的,第二配置信息也可以用于指示第一终端设备上报以下信息中的一种或多种:干扰测量资源标识、干扰测量值、信道测量资源标识、信道质量指示、信号与干扰加噪声比SINR、信道质量指示CQI、预编码矩阵指示PMI、秩指示RI、接收信号强度指示RSSI、参考信号接收功率RSRP。
结合第二方面,在第二方面的某些实现方式中,还包括:
所述网络设备接收所述第一终端设备上报的以下信息中的一种或多种:干扰测量资源标识、干扰测量值、信道测量资源标识、信道质量指示、信号与干扰加噪声比SINR、信道质量指示CQI、预编码矩阵指示PMI、秩指示RI、接收信号强度指示RSSI、参考信号接收功率RSRP。
第三方面,提供了一种通信装置,该装置可以是终端设备,也可以是终端设备内的芯片。该装置具有实现上述第二方面及各种可能的实现方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置包括:收发模块,可选地,该装置还包括处理模块,所 述收发模块例如可以是收发器、接收器、发射器中的至少一种,该收发模块可以包括射频电路或天线。该处理模块可以是处理器。可选地,所述装置还包括存储模块,该存储模块例如可以是存储器。当包括存储模块时,该存储模块用于存储指令。该处理模块与该存储模块连接,该处理模块可以执行该存储模块存储的指令或源自其他的指令,以使该装置执行上述各方面任意一项的方法。
在另一种可能的设计中,当该装置为芯片时,该芯片包括:收发模块,可选地,该芯片还包括处理模块,收发模块例如可以是该芯片上的输入/输出接口、管脚或电路等。处理模块例如可以是处理器。该处理模块可执行指令,以使该终端内的芯片执行上述第二方面以及任意可能的实现的通信方法。可选地,该处理模块可以执行存储模块中的指令,该存储模块可以为芯片内的存储模块,如寄存器、缓存等。该存储模块还可以是位于通信设备内,但位于芯片外部,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述各方面通信方法的程序执行的集成电路。
第四方面,提供了一种通信装置,该装置可以是网络设备,也可以是网络设备内的芯片。该装置具有实现上述第一方面及各种可能的实现方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置包括:收发模块,可选地,该装置还包括处理模块,所述收发模块例如可以是收发器、接收器、发射器中的至少一种,该收发模块可以包括射频电路或天线。该处理模块可以是处理器。可选地,所述装置还包括存储模块,该存储模块例如可以是存储器。当包括存储模块时,该存储模块用于存储指令。该处理模块与该存储模块连接,该处理模块可以执行该存储模块存储的指令或源自其他的指令,以使该装置执行上述第一方面及各种可能的实现方式的通信方法。
在另一种可能的设计中,当该装置为芯片时,该芯片包括:收发模块,可选地,该装置还包括处理模块,收发模块例如可以是该芯片上的输入/输出接口、管脚或电路等。处理模块例如可以是处理器。该处理模块可执行指令,以使该终端内的芯片执行上述第一方面以及任意可能的实现的方法。可选地,该处理模块可以执行存储模块中的指令,该存储模块可以为芯片内的存储模块,如寄存器、缓存等。该存储模块还可以是位于通信设备内,但位于芯片外部,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述各方面通信方法的程序执行的集成电路。
第五方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第一方面或第二方面或其任意可能的实现方式中的方法的指令。
第六方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第一方面或第二方面或其任意可能的实现方式中的方法。
第七方面,提供了一种通信系统,该通信系统包括具有实现上述第一方面的各方法及各种可能设计的功能的装置和上述具有实现上述第二方面的各方法及各种可能设计的功能的装置。
第八方面,提供了一种处理器,用于与存储器耦合,用于执行上述第一方面或第二方面或其任意可能的实现方式中的方法。
第九方面,提供了一种芯片,芯片包括处理器和通信接口,该通信接口用于与外部器件或内部器件进行通信,该处理器用于实现上述第一方面或第二方面或其任意可能的实现方式中的方法。
可选地,该芯片还可以包括存储器,该存储器中存储有指令,处理器用于执行存储器中存储的指令或源于其他的指令。当该指令被执行时,处理器用于实现上述第一方面或第二方面或其任意可能的实现方式中的方法。
可选地,该芯片可以集成在终端设备或网络设备上。
附图说明
图1示出了本申请实施例的通信系统的示意图。
图2示出了应用干扰测量的方法的场景的示意图。
图3是从设备交互的角度示出的干扰测量的方法的示意性流程图。
图4示出了本申请实施例提供的一种干扰测量的方法的示意性流程图。
图5示出了本申请实施例提供的另一种干扰测量的方法的示意性流程图。
图6是本申请实施例提供的通信装置的示意性框图。
图7是本申请实施例提供的另一通信装置的示意性框图。
图8是本申请实施例提供的又一通信装置的示意性框图。
图9是本申请实施例提供的又一通信装置的示意性框图。
图10是本申请实施例提供的终端设备的结构示意图。
图11是本申请实施例提供的网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例适用于基于波束的多载波通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
图1示出了适用于本申请实施例的干扰测量的方法和装置的通信系统100的示意图。如图所示,该通信系统100可以包括至少一个网络设备,例如图1所示的网络设备110;该通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备120。网络设备 110与终端设备120可通过无线链路通信。
各通信设备,如图1中的网络设备110或终端设备120,可以配置多个天线。该多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。另外,各通信设备还附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。因此,网络设备与终端设备之间可通过多天线技术通信。
应理解,该无线通信系统中的网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(Radio Network Controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU),无线保真(Wireless Fidelity,WIFI)系统中的接入点(Access Point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+CU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
还应理解,该无线通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。
为便于理解本申请实施例,下面首先对本申请中涉及的几个术语做简单介绍。
1、波束(beam):是指无线信号能量集中在一个较小的范围内,从而形成的类似于光束的效果。高频通过波束传输信号,可以增加信号的传输距离。波束是通过波束成型技 术生产的,波束成型技术有数字波束成型技术,模拟波束成型技术和混合数字/模拟波束成形技术。数字波束成型技术生成的波束称为数字波束,而模拟波束成型技术生成的波束称为模拟波束。
用于发送信号的波束可以称为发射波束,用于接收信号的波束可以称为接收波束。发射波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。其中,发射波束和接收波束之间具有波束配对关系。
网络设备调度给终端设备的用于数据传输的波束可以称为服务波束(serving beam)。:与服务波束一起被调度的其他波束可以称为干扰波束(interference beam),干扰波束会对服务波束上的数据产生干扰。
2、信道状态信息获取(CSI acquisition):测量服务波束的信道质量,包括获取信道质量指示(channel-quality indicator,CQI),秩指示(rank indicator,RI),预编码矩阵指示(precoding-matrix indicator,PMI),信号与干扰噪声比(signal to interference plus noise ratio,SINR)等。
3、干扰测量(interference measurement):测量干扰波束的信息,包括强干扰波束标识(ID),弱干扰波束ID,干扰波束干扰下服务波束的多用户信道质量指示(multi-user channel-quality indicator,MU-CQI)等。
多用户信道质量指示(multi-user channel-quality indicator,MU-CQI):当网络设备通过多个模拟波束同时为多个用户传输数据时,每个波束上传输的信号除了受底噪和邻小区干扰外,还要受本小区其他波束上的信号的干扰。因此,在衡量各个波束对应的信道状态信息CQI时,需要将同小区其他波束的干扰计算在内,这种CQI称为MU-CQI。本申请实施例中,本小区其他波束上的信号的干扰可以称为配对波束干扰。
单用户信道质量指示(single-user channel-quality indicator,SU-CQI):信道质量测量的干扰只考虑底噪和邻小区干扰,不考虑本小区配对波束干扰。这时候的信道状态信息被称为SU-CQI。简单来说,SU-CSI就是不考虑小区内配对波束干扰的CQI,而MU-CQI是考虑了小区内配对波束干扰的CQI。
4、时域属性:在干扰测量资源配置以及干扰测量上报配置中,可以通过不同的时域属性来指示不同的时域行为。其中,干扰资源配置的时域属性可用于指示终端设备接收干扰信号的时域行为;测量上报配置的时域属性可用于指示终端设备上报干扰测量结果的时域行为。
作为示例而非限定,时域属性例如可以包括周期性(periodic)、半持续性(semi-persistent)和非周期性(aperiodic)。
5、带宽部分(BWP):由于NR中同一小区中不同终端设备的发射或者接收能力可能是不同的,系统可以为每个终端设备配置相应的带宽,这一部分配置给终端设备的带宽称为BWP,终端设备在自己的BWP上传输。BWP可以是载波上一组连续的频域资源,不同的BWP可以占用的频域资源可以部分重叠,也可以互不重叠。不同的BWP占用的频域资源的带宽可以相同,也可以不同,本申请对此不作限定。
针对不同的终端设备,系统可以配置不同的BWP。为了支持不同的业务,不同的BWP可能会支持不同的配置参数(numerology)。其中,numerology是在NR中新引入的一个 概念,具体可理解为通信系统所用的一套参数,例如可包括子载波间隔(subcarrier spacing,SCS)、符号长度、循环前缀(cyclic prefix,CP)长度、资源块(resource block,RB)数、时隙长度、帧格式等。一个小区可以支持一种或者多种numerology,一个BWP可以支持一种numerology。应理解,这里所列举的numerology所包含的具体内容仅为示例性说明,不应对本申请构成任何限定。例如,numerology还可包括NR中所能支持的其他粒度的参数。
综上,不同的BWP可能会配置不同的传输带宽(如,BWP包含的RB数不同)、不同的子载波间隔、不同的循环前缀(cyclic prefix,CP)等。
系统可以为一个终端设备配置多个不同的BWP。当网络设备需要与终端设备进行数据传输时,可以激活其中一个或多个BWP,然后在该激活的BWP上进行数据传输。
应理解,上文列举的NR协议中对于波束的体现仅为示例,不应对本申请构成任何限定。本申请并不排除在未来的协议中定义其他的术语来表示相同或相似的含义的可能。
6、准共址(quasi-co-location,QCL):或者称准同位。具有QCL关系的天线端口对应的参考信号中具有相同的参数,或者,一个天线端口的参数可用于确定与该天线端口具有QCL关系的另一个天线端口的参数,或者,两个天线端口具有相同的参数,或者,两个天线端口间的参数差小于某阈值。其中,所述参数可以包括以下一项或多项:时延扩展(delay spread),多普勒扩展(Doppler spread),多普勒频移(Doppler shift),平均时延(average delay),平均增益,空间接收参数(spatial Rx parameters)。其中,空间接收参数可以包括以下的一项或多项:到达角(angle of arrival,AOA)、平均AOA、AOA扩展、离开角(angle of departure,AOD)、平均离开角AOD、AOD扩展、接收天线空间相关性参数、发送天线空间相关性参数、发射波束、接收波束以及资源标识。
其中,上述角度可以为不同维度的分解值,或不同维度分解值的组合。天线端口为具有不同天线端口编号的天线端口,和/或,具有相同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口,和/或,具有不同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口。资源标识可以包括:CSI-RS资源标识,或SRS资源标识,或SSB资源标识,或物理随机接入信道(Physical Random Access Channel,PRACH)上传输的前导序列的资源标识,或解调参考信号(demodulation reference signal,DMRS)的资源标识,用于指示资源上的波束。
在NR协议中,QCL关系可以基于不同的参数分为以下四种类型:
类型A(type A):多普勒频移、多普勒扩展、平均时延、时延扩展;
类型B(type B):多普勒频移、多普勒扩展;
类型C(type C):多普勒频移、平均时延;以及
类型D(type D):空间接收参数。
本申请实施例所涉及的QCL为类型D的QCL。下文中在没有特别说明的情况下,QCL可以理解为类型D的QCL,即,基于空间接收参数定义的QCL。
当QCL关系指类型D的QCL关系时,可以认为是空域QCL。当天线端口满足空域QCL关系时,下行信号的端口和下行信号的端口之间,或上行信号的端口和上行信号的端口之间的QCL关系,可以是两个信号具有相同的AOA或AOD,用于表示具有相同的接收波束或发射波束。又例如对于下行信号和上行信号间或上行信号与下行信号的端口间 的QCL关系,可以是两个信号的AOA和AOD具有对应关系,或两个信号的AOD和AOA具有对应关系,即可以利用波束互易性,根据下行接收波束确定上行发射波束,或根据上行发射波束确定下行接收波束。
从发送端来看,如果说两个天线端口是空域QCL的,则可以是指这两个天线端口的对应的波束方向在空间上是一致的。从接收端来看,如果说两个天线端口是空域QCL的,则可以是指接收端能够在同一波束方向上接收到这两个天线端口发送的信号。
具有空域QCL关系的端口上传输的信号还可以具有对应的波束,对应的波束包括以下至少之一:相同的接收波束、相同的发射波束、与接收波束对应的发射波束(对应于有互易的场景)、与发射波束对应的接收波束(对应于有互易的场景)。
具有空域QCL关系的端口上传输的信号还可以理解为使用相同的空间滤波器(spatial filter)接收或发送信号。空间滤波器可以为以下至少之一:预编码,天线端口的权值,天线端口的相位偏转,天线端口的幅度增益。
具有空域QCL关系的端口上传输的信号还可以理解为具有对应的波束对连接(beam pair link,BPL),对应的BPL包括以下至少之一:相同的下行BPL,相同的上行BPL,与下行BPL对应的上行BPL,与上行BPL对应的下行BPL。
因此,空间接收参数(即,类型D的QCL)可以理解为用于指示接收波束的方向信息的参数。
7、传输配置指示(transmission configuration indicator,TCI)状态(state):可用于指示两种参考信号之间的QCL关系。每个TCI状态中可以包括服务小区的索引(ServeCellIndex)、带宽部分(band width part,BWP)标识(identifier,ID)和参考信号资源标识,其中,参考信号资源标识例如可以为以下至少一项:非零功率(non-zero power,NZP)CSI-RS参考信号资源标识(NZP-CSI-RS-ResourceId)、非零功率CSI-RS参考信号资源集标识(NZP-CSI-RS-ResourceSetId)或SSB索引(SSB-Index)。
可选地,网络设备还可以为频率资源组关联的波束中具有准同位(quasi-co-location,QCL)关系的波束分配QCL标示符。
QCL关系用于表示多个资源之间具有一个或多个相同或者相类似的通信特征。对于具有QCL关系的多个资源,可以采用相同或者类似的通信配置。例如,如果两个天线端口具有QCL关系,那么一个端口传送一个符号的信道大尺度特性可以从另一个端口传送一个符号的信道大尺度特性推断出来。大尺度特性可以包括:延迟扩展,平均延迟,多普勒扩展,多普勒频移,平均增益,接收参数,终端设备接收波束编号,发射/接收信道相关性,接收到达角,接收机天线的空间相关性,主到达角(angel-of-arrival,AoA),平均到达角,主到达角的扩展等。
QCL还包括空域准同位(spatial QCL)。spatial QCL可以认为是QCL的一种类型。对于空域准同位,可以分别从发送端和接收端两个角度理解。从发送端来看,如果两个天线端口是空域准同位的,表示这两个天线端口的对应的波束方向在空间上是一致的。从接收端来看,如果两个天线端口是空域准同位的,表示这个接收端能够在相同的波束方向上接收到这两个天线端口发送的信号。
其中,服务小区的索引、BWP ID以及参考信号资源标识指的是在波束训练过程中所使用的参考信号资源以及所对应的服务小区和BWP。由于在波束训练过程中,网络设备 基于不同的参考信号资源通过不同的发射波束发送参考信号,因此通过不同的发射波束发送的参考信号可以关联不同的参考信号资源;终端设备基于不同的参考信号资源通过不同的接收波束接收参考信号,因此通过不同的接收波束接收的参考信号也可以关联不同的参考信号资源。因此,在波束训练过程中,终端设备可以维护服务小区的索引、BWP ID以及参考信号资源标识与接收波束的对应关系,网络设备可以维护服务小区的索引、BWP ID以及参考信号资源标识与发射波束的对应关系。通过参考信号资源标识,便可以建立接收波束和发射波束之间的配对关系。
在此后的通信过程中,终端设备可以基于网络设备所指示的包括空域准同位(spatial QCL)的TCI状态确定接收波束。
此外,TCI状态可以是全局配置的。在为不同的小区、不同的BWP配置的TCI状态中,若TCI状态的索引相同,则所对应的TCI状态的配置也相同。
一种小区内干扰波束测量的方法中,网络设备配置测量配置信息给终端设备,测量配置信息包括测量资源配置信息和测量上报配置信息,以告知终端设备测量的导频资源,以及测量过后如何上报测量结果。
具体的,测量资源配置信息将测量资源分为三级:资源集列表(resource set list)→资源集(resource set)→资源(resource)。具体而言,网络设备可以给终端设备配置一个或多个resource set list,每个resource set list可以包括一个或多个resource set,每个resource set又可以包括一个或多个resource,每个resource即为一组测量导频资源。每个resource都有一个标识(ID)。当resource所包含的导频资源类型为CSI-RS时,其ID被称为CSI-RS索引(CSI-RS index,CRI),当resource所包含的导频资源类型为同步消息块(synchronisation signal block,SSB)时,其ID被称为SSB索引(SSB index)。
测量上报配置信息包括测量的载波频率,测量上报配置可以关联CSI资源配置(CSI-ResourceConfig),也可以关联上报量(上报什么测量量,比如CQI),上报周期等,这里不再一一列举。具体的,每个测量上报配置都会关联一个或多个CSI-ResourceConfig,用于指示通过什么资源来测量所需要的上报量。例如,针对配对波束干扰测量的非周期性测量上报配置会关联三个CSI-ResourceConfig,第一个是用于信道测量的一组非零功率(non-zero power,NZP)-CSI-RS-ResourceSet),第二个是用于干扰测量一组CSI-IM-ResourceSet,第三个是用于干扰测量的一组NZP-CSI-RS-ResourceSet。
本申请实施例中,涉及两个CRI术语:信道CRI和干扰CRI。信道CRI是用于信道测量的CSI-ResourceConfig中选择的resource的ID。干扰CSI是用于干扰测量的CSI-ResourceConfig所包含的resource的ID,即终端设备上报的信道CRI是从用于信道测量的一组NZP-CSI-RS-ResourceSet中选择的resource的ID。干扰CRI是用于干扰测量的一组CSI-IM-ResourceSet或NZP-CSI-RS-ResourceSet所包含的resource的ID。
一种干扰波束测量的方法例如包括以下步骤1至步骤4。
步骤1,网络设备向终端设备发送RRC消息,通过该RRC消息为终端设备配置一个信道状态信息(channel-state information,CSI)非周期触发状态列表(CSI-AperiodicTriggerStateList)。CSI–AperiodicTriggerStateList中最大包含128个CSI非周期触发状态(CSI–AperiodicTriggerState),每个CSI–AperiodicTriggerState包含最多16个CSI相关上报配置信息(CSI–AssociatedReportConfigInfo),每个CSI– AssociatedReportConfigInfo包含CSI上报配置标识(CSI-reportConfigID)、信道测量资源(resourcesForChannelMeasurement)、干扰测量CSI-IM资源(csi-IM-ResourcesForInterference)、干扰测量NZP-CSI-RS资源(nzp-CSI-RS-ResourcesForInterference)。其中,干扰测量CSI-IM资源用于测量小区间干扰,干扰测量NZP-CSI-RS资源用于测小区内配对波束干扰。
步骤2,网络设备向终端设备发送媒体接入控制-控制元素(medium access control-control element,MAC-CE),通过该MAC-CE从RRC层配置的CSI-AperiodicTriggerStateList所包含的最多128个CSI–AperiodicTriggerState中触发其中一个或多个CSI-AperiodicTriggerState。
步骤3,网络设备向终端设备发送下行控制信息(downlink control information,DCI),通过该DCI从MAC-CE激活的CSI-AperiodicTriggerState配置的最多16个CSI–AssociatedReportConfigInfo中动态激活其中一个指示给终端设备。
步骤4,终端设备基于DCI触发的测量资源配置,在相应的时频域资源进行导频测量,基于测量上报配置将测量结果上报给网络设备。
图2示出了应用干扰测量的方法的场景的示意图。如图2所示,当前小区内激活用户为终端设备1,终端设备2,终端设备4,其中,终端设备1的服务波束为波束(beam)1,终端设备2的服务波束为波束2,终端设备4的服务波束为波束4。本申请实施例中,网络设备可以配置终端设备测量配对波束干扰。例如,网络设备配置终端设备1测量波束1和波束2之间、波束1和波束4之间的干扰信息,配置终端设备2测量波束2和波束1之间、波束2和波束4之间的干扰信息,配置终端设备3测量波束4和波束1之间、波束4和波束2之间的干扰信息。下面将以终端设备1的干扰测量为例进行说明。
网络设备通过RRC消息为终端设备1配置两个CSI上报配置(CSI-AssociatedReportConfigInfo),时刻1由DCI触发CSI–AperiodicTriggerState#1指示终端设备1测量波束1和波束2之间的干扰信息,并上报测量结果,例如MU-CQI。时刻2由DCI触发CSI–AperiodicTriggerState#2指示终端设备1测量波束1和波束4之间的干扰信息,并上报测量结果,例如MU-CQI。
具体的,AperiodicTriggerState#1和AperiodicTriggerState#2具体如下表1所示:
表1
Figure PCTCN2019123334-appb-000001
其中,CSI-AperiodicTriggerState#1对应上报配置ID#1,其信道测量资源对应波束1导 频资源,即RS ID#1,其他小区导频资源对应波束5导频资源,即RS ID#5,其干扰测量资源对应波束2导频资源,即RS ID#2。CSI-AperiodicTriggerState#2对应上报配置ID#2,其信道测量资源对应波束1导频资源,即RS ID#1,其他小区导频资源对应波束5导频资源,即RS ID#5,其干扰测量资源对应波束4导频资源,即RS ID#4。
其中,CSI-IM-Resource具体配置信息如下表2所示:
表2
Figure PCTCN2019123334-appb-000002
具体的,网络设备通过RRC消息为终端设备配置(服务波束)信道测量的资源和(干扰波束)干扰测量的资源,具体的,信道测量可以为NZP CSI-RS资源,干扰测量的资源可以为NZP CSI-RS资源。然后,终端设备计算在干扰波束影响下的服务波束的MU-CQI。具体的,MU-CQI的计算公式如下:
Figure PCTCN2019123334-appb-000003
其中,P channel是用于信道测量的资源(例如资源#1,即对应于RS ID#1的资源)上的信号能量,表征服务波束的信号强度。P NZP-IMR是用于干扰测量的资源上的信号能量,表征干扰波束的信号强度。如果网络设备配置了多个干扰测量资源,则终端设备需要将所有干扰测量资源上的信号能力累加起来。这里,干扰测量资源例如包括从资源#3(即对应于RS ID#3的资源)至资源#6(即对应于RS ID#6的资源)。P CSI-IM是基于CSI-IM的其他干扰能量(例如资源#2,即对应于RS ID#1的资源),例如包括白噪声和其他小区的干扰。
为了准确的获取干扰信息,网络设备将除了服务波束之外的所有其他波束均当做干扰,配置终端设备分别测量各个波束干扰下的MU-CQI,以获得所有干扰波束的信息。这样,无论未来与服务波束同时调度的波束是哪一个,网络设备都有对应的CQI来进行准确的调制编码技术的选择,保证数据传输的性能。但是,由于网络设备会配置终端设备分别测量各个波束干扰下的CQI,导致测量开销太大。例如,假设网络设备有256个波束,那么对于每一个服务波束,终端设备都要进行255次测量上报,开销是无法容忍的。
另外,随着终端设备的移动,或者用户业务的动态触发/结束,所引入小区内用户服务波束或配对波束的变化,需要RRC信令重新配置测量资源,RRC的频繁配置会导致系统信令开销及复杂度较高。例如,当图2中的小区内激活的用户从为终端设备1,终端设备2,终端设备4更新为终端设备1,终端设备2,终端设备3之后,网络设备需要配置 终端设备3测量波束3和波束1之间、波束3和波束2之间的干扰信息,并且还需要更新终端设备1测量波束1和波束2之间、波束1和波束3之间的干扰信息,配置终端设备2测量波束2和波束1之间、波束2和波束3之间的干扰信息。
有鉴于此,本申请实施例提供了一种干扰测量的方法,通过终端设备在当前激活带宽部分BWP的全带宽上进行干扰测量,使得终端设备可以不使用导频资源进行干扰测量,进而降低系统导频开销。并且,网络设备无需配置用于干扰测量的导频资源,可以降低系统导频开销。
下面将结合附图详细说明本申请实施例。
应理解,在下文示出的实施例中,第一、第二、第三以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的终端设备、不同的配置信息、不同的指示信息等。
还应理解,在下文示出的实施例中,“预先获取”可包括由网络设备信令指示或者预先定义,例如,协议定义。其中,“预先定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
还应理解,本申请实施例中涉及的“保存”,可以是指的保存在一个或者多个存储器中。所述一个或者多个存储器,可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或通信装置中。所述一个或者多个存储器,也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
还应理解,本申请实施例中的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
本申请的技术方案可以应用于无线通信系统中,例如,图1中所示的通信系统100。处于无线通信系统中的两个通信装置之间可具有无线通信连接关系。该两个通信装置中的一个例如可以对应于图1中所示的网络设备110,如可以为网络设备110或者配置于网络设备110中的芯片,该两个通信装置中的另一个例如可以对应于图1中的终端设备120,如可以为终端设备120或者配置于终端设备120中的芯片。
以下,不失一般性,首先以一个终端设备(第一终端设备)与网络设备之间的下行传输过程为例详细说明本申请实施例。可以理解,处于无线通信系统中的任意一个终端设备或者配置于终端设备中的芯片均可以基于相同的方法进行干扰测量。本申请对此不做限定。
图3是从设备交互的角度示出的干扰测量的方法的示意性流程图。如图3所示,该方法300可以包括步骤310至步骤330。下面结合图3详细说明方法300中的各个步骤。
310,网络设备确定第一配置信息,该第一配置信息用于指示第一终端设备的干扰测量资源,其中,该干扰测量资源的频域为该第一终端设备当前激活带宽部分BWP的全带宽。
本申请实施例中,对“第一配置信息”的名称不作具体限定,例如“第一配置信息”还可以称为“干扰测量资源配置”。在本申请实施例中,“第一配置信息”和“干扰测量资源配置”交替使用,在不强调其区别时,其表达的含义是一致的。
具体的,该干扰测量资源可以为小区内配对波束的干扰测量资源,该干扰测量资源主要用于测量配对波束的干扰。例如,对于图2中的终端设备1而言,该终端设备1的干扰测量资源的频域可以为终端设备1当前激活的BWP的全带宽。该终端设备1可能的小区内配对波束为其他激活终端设备的服务波束。例如,对于图2,当前激活终端设备包含终端设备1、终端设备2和终端设备4,这里激活终端设备指当前有待调度数据需要传输的终端设备,则终端设备1的小区内配对波束为终端设备2的服务波束2,或终端设备4的服务波束4。从而通过波束2,或波束4发送的数据或导频资源即为终端设备1的小区内配对波束的干扰测量资源。
可选的,该干扰测量资源用于除该第一终端设备之外的其他终端设备(第二终端设备)进行数据传输。具体的,具体而言,干扰测量资源可以是小区内其他终端设备的数据传输资源,或者其他小区中的数据传输资源。或者,本申请实施例中,干扰测量资源还可以包括小区内其他用户服务波束的导频资源,或者其他小区中的导频资源,本申请实施例对此不作具体限定。本申请实施例中,第二终端设备的数量可以为一个,或者多个,本申请实施例对此不作限定。
一种可能的实现方式中,第一配置信息包括第一指示信息,第一指示信息用于指示该干扰测量资源的频域位置。
具体的,干扰测量资源可以包括一段连续的频域资源,即干扰测量资源的频域连续分布。或者,干扰测量资源也可以由非连续的多个频域资源组成,也可以是服从特定密度分布的等间隔频域资源,本申请实施例对此不作限定。
一种可能的实现方式中,第一配置信息包括第二指示信息,第二指示信息用于指示该干扰测量资源的符号位置。本申请实施例中的符号是指时域符号,可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,也可以是离散傅里叶变换扩展正交频分复用(discrete fourier transform spread OFDM,DFTS-OFDM)符号,本申请实施例对此不作限定。
具体的,干扰测量资源的时域包括单个符号,或者连续或非连续的多个符号。换句话说,干扰测量资源的符号位置可以是单个符号位置(例如符号0至13中的其中一个),也可以是连续或非连续的多个符号位置。
作为举例,干扰测量资源可以包括干扰测量CSI-IM资源(CSI-IM-ResourcesForInterference),干扰测量NZP-CSI-RS资源(NZP-CSI-RS-ResourceForInterference)或干扰测量ZP-CSI-RS资源(ZP-CSI-RS-ResourceForInterference),本申请实施例对此不作限定。一个可选的实施例,干扰测量资源还可以包括用于小区间干扰测量的资源,本申请实施例对此并不限定。
以下,以干扰测量资源为CSI-IM资源为例,对干扰测量资源配置的格式进行具体描述。应注意,下面的例子仅仅是为了帮助本领域技术人员理解和实现本发明的实施例,而非限制本发明实施例的范围。本领域技术人员可以根据这里给出的例子进行等价变换或修改,这样的变换或修改仍然应落入本发明实施例的范围内。
具体而言,干扰测量资源配置可以为新定义的CSI-IM资源格式(CSI-IM-Resource pattern),或者可以新增现有CSI-IM-Resource pattern中参数的取值。作为举例,下面示出了本申请实施例提供的一个具体的CSI-IM-Resource的例子。
Figure PCTCN2019123334-appb-000004
具体的,当pattern0中的子载波位置(subcarrierLocation)-p0或pattern1中的subcarrierLocation-p1的取值为新添加取值-1时,则认为当前CSI-IM-Resource的频域为第一终端设备当前服务小区激活BWP的整个带宽。
或者,当pattern0中的子载波位置(subcarrierLocation)-p0或pattern1中的subcarrierLocation-p1的取值为无效值时,则认为当前CSI-IM-Resource的频域为第一终端设备当前服务小区激活BWP的整个带宽。
新定义的pattern2表示为干扰测量资源频域占用第一终端设备当前服务小区激活BWP的整个带宽的一个符号,符号位置(symbolLocation)-p2的取值表示符号在一个时隙的具体位置。
具体的,新定义的pattern3表示为干扰测量资源频域占用第一终端设备当前服务小区激活BWP的整个带宽的一个或多个符号,符号位置列表(symbolLocationList)-p3的每个取值表示一个测量符号在一个时隙的具体位置。
具体的,新定义的pattern4表示为干扰测量资源频域占用第一终端设备当前服务小区激活BWP的整个带宽的时域连续的一个或多个符号,第一个符号位置(firstSymbolLocation)-p4表示第一个测量符号的时域位置,最后一个(lastSymbolLocation)-p4表示最后一个测量符号的时域位置;举例说明,firstSymbolLocation-p4=1,lastSymbolLocation-p4=4则表示干扰测量需要测量符号1至符号4,共4个符号。
具体的,新定义的pattern5表示为干扰测量资源占用频域连续的一个符号,第一个子载波位置(firstSubcarrierLocation)-p5表示测量符号的起始频域位置,最后一个(lastSubcarrierLocation)-p5表示测量符号的频域结束位置;符号位置(symbolLocation)-p5的取值表示符号在一个时隙的具体位置。
具体的,新定义的pattern6表示为干扰测量资源占用频域连续或非连续的一个符号,子载波位置(subcarrierLocation)-p6表示测量资源具体的频域位置。符号位置(symbolLocation)-p5的取值表示符号在一个时隙的具体位置。举例说明,用户当前服务部分带宽(bandwidth part,BWP)频域10个资源块组(resource block group,RBG),基于10bit来量化subcarrierLocation-p6的取值,量化比特从低位到高位依次表示频域从低到高的RBG,取值为0表示测量资源包含当前RBG,取值为1表示测量资源不包含当前RBG。
需要说明的是,本申请实施例所示的CSI-IM-Resource仅作为示例而非限定。例如,本申请实施例中CSI-IM-Resource可以包括pattern0至pattern6中的至少一个(即一个或多个),或者可以不包括测量资源类型(resourceType),本申请实施例对此不作限定。
可选的,所述第一配置信息还包括第三指示信息,所述第三指示信息用于指示所述干扰测量资源的时域属性,所述时域属性包括周期性、非周期性或半持续性。具体的,时域属性可以参见上文中的描述,为了简洁,这里不再赘述。作为示例,上述CSI-IM-Resource还可以包括测量资源类型(resourceType),用于指示干扰测量资源为周期性、非周期性或半静态。
可选的,本申请实施例中,第一指示信息、第二指示信息和第三指示信息中的至少两种指示信息可以采用联合指示的方式进行指示。
具体的,非周期性的时域属性可以由信息元素“CSI-AperiodicTriggerStateList”携带, 半持续性的时域属性可以由信息元素“CSI-SemiPersistentOnPUSCH-TriggerStateList”携带,本申请实施例对此不作限定。
一种实现方式中,当干扰测量资源为周期性资源配置时,需要相应的配置干扰测量资源的周期和时间偏移量(periodicityAndOffset)。作为举例,下面示出了本申请实施例提供的一个具体的CSI-IM-Resource的例子,该CSI-IM-Resource包括干扰测量资源的周期和时间偏移量(periodicityAndOffset)。
Figure PCTCN2019123334-appb-000005
可选的,当所述干扰测量资源的时域属性为周期性时,所述第一配置信息还包括所述干扰测量资源的接收波束信息。作为示例,该接收波束信息例如为准同位QCL指示。
具体的,准同位QCL指示用于指示第一终端设备用于接收干扰测量资源的接收波束信息。准同位QCL指示可以参见上文中的描述,为了简洁,这里不再赘述。
当该QCL指示缺省时,即第一配置信息不包括该干扰测量资源的QCL指示时,则第一终端设备使用与该第一终端设备当前数据信道或控制信道相同的接收波束接收干扰测量资源信号。这里,作为示例,数据信道为物理下行共享信道(physical downlink shared channel,PDSCH),控制信道为物理下行控制信道(physical downlink control channel,PDSCH)。需要说明的是,此时对干扰测量资源的时域属性不进行限定,也就是说,此时干扰测量资源的时域属性可以为周期性,半持续性,或者非周期性。
一种具体的实现方式,可以在CSI-IM-Resource中添加QCL指示(qcl-Info),用来指示干扰测量资源的接收波束信息。下面给出了本申请实施例提供的一个CSI-IM-Resource的具体例子。其中,基于传输配置编号(transmission configuration index,TCI)状态标识(TCI-StateId)所关联的导频或信道资源决策干扰测量资源接收波束。具 体的,可以使用与TCI-SateId所关联的导频资源相同的接收波束,或导频资源进行到达角(angle of arriving,AOA)估计,使用主瓣指向与估计值相同或近似的接收波束接收干扰测量资源。
Figure PCTCN2019123334-appb-000006
另一种具体的实现方式,可以在CSI-IM-ResourceSet中添加QCL指示(qcl-Info),用来指示干扰测量资源的接收波束信息。下面示出了本申请实施例提供的一个CSI-IM-ResourceSet的具体例子。
Figure PCTCN2019123334-appb-000007
需要说明的是,本申请实施例仅以干扰测量资源为CSI-IM-Resource为例,即以干扰测量资源配置为CSI-IM-Resource pattern为例进行描述,干扰测量资源还可以为其他资源,例如CSI-RS-Resource,干扰测量资源配置例如为CSI-RS-Resource pattern,本申请实施例对此不作具体限定。
可选的,本申请实施例中,网络设备还可以确定第二配置信息,该第二配置信息用于指示所述第一终端设备上报对应于所述干扰测量资源的测量结果。
本申请实施例中,对“第二配置信息”的名称不作具体限定,例如“第二配置信息”还可 以称为“干扰测量上报配置”。在本申请实施例中,“第一配置信息”和“干扰测量上报配置”交替使用,在不强调其区别时,其表达的含义是一致的。
一种实现方式,第二配置信息用于指示第一终端设备上报对应于干扰测量资源的干扰测量值。
另一种实现方式,第二配置信息用于指示第一终端设备上报以下信息中的一种或多种:干扰测量资源标识、干扰测量值、信道测量资源标识、信道质量指示、信号与干扰加噪声比SINR、信道质量指示CQI、预编码矩阵指示PMI、秩指示RI、接收信号强度指示RSSI、参考信号接收功率RSRP。
具体的,干扰测量值即干扰测量资源的接收能量,具体参见下文330中的描述。
具体的,干扰测量资源标识即干扰测量资源的资源标识。干扰测量资源标识例如可以为以下至少一项:CSI-IM资源标识(CSI-IM-ResourceId)、NZP-CSI-RS资源标识(NZP-CSI-RS-ResourceId)、ZP-CSI-RS资源标识(ZP-CSI-RS-ResourceId)等,本申请实施例对此不作限定。
这里,信道测量资源标识、信道质量指示、信号与干扰加噪声比SINR、信道质量指示CQI、预编码矩阵指示PMI、秩指示RI、接收信号强度指示RSSI、参考信号接收功率RSRP等可以参见现有技术中的描述,这里不再详细描述。
320,网络设备向第一终端设备发送第一配置信息。
一种实现方式,网络设备可以通过高层信令(比如RRC信令)向第一终端设备发送第一配置信息(即干扰资源配置)。例如,网络设备可以通过RRC消息中的CSI–AperiodicTriggerStateList来为第一终端设备配置干扰测量资源。CSI–AperiodicTriggerStateList中可以包括若干个CSI–AperiodicTriggerState,每个CSI–AperiodicTriggerState包含CSI–AssociatedReportConfigInfo,每个AssociatedReportConfigInfo包含干扰测量资源。
可选的,网络设备还向第一终端设备发送第二配置信息。
一种实现方式,网络设备可以通过高层信令(比如RRC信令)向第一终端设备发送第二配置信息。一种可能的情况,第一配置信息可以与第二配置信息承载于同一配置信息中发送给终端设备。
330,第一终端设备对干扰测量资源上进行干扰测量。
具体的,第一终端设备根据干扰资源配置确定干扰测量资源,然后对干扰测量资源上的信号进行测量。第一终端设备在进行干扰测量获得测量结果之后,可以根据干扰测量上报配置上报测量结果。
具体的,第一终端设备可以使用指定的接收波束获取干扰测量资源的接收能量,即干扰测量值。具体的,指定的接收波束的方式如上文310中所述,为了简洁,这里不再赘述。
可选的,当所述干扰测量资源的时域包括多个符号时,所述第一终端设备可以对所述多个符号进行干扰测量,获取所述多个符号的符号级平均接收功率,或者所述多个符号的资源元素级平均接收功率,或者所述多个符号的总接收功率。可选的,本申请实施例中,干扰测量值包括符号级平均接收功率,或者资源元素级平均接收功率,或者总接收功率。
具体的,第一终端设备的干扰测量方式可以包括以下可能的测量方式中的一种或多种。
一种可能的测量方式,第一终端设备可以计算干扰测量资源符号级平均接收功率。具体的,当时域为多个符号时,可以将多个符号上测量到的总接收功率按符号数进行平均,如下所示:
Figure PCTCN2019123334-appb-000008
其中,i为第i个干扰测量符号,N为总的干扰测量符号数,P i为第i个符号的总接收功率。
另一种可能的测量方式,第一终端设备可以计算干扰测量资源的资源元素(resource element,RE)级平均接收功率,其中,RE为最小时频域测量单元。具体的,当时域为一个或多个符号时,可以将测量到的总接收功率按RE数进行平均,如下所示:
Figure PCTCN2019123334-appb-000009
其中,i为第i个干扰测量符号,N为总的干扰测量符号数,P i为第i个符号的总接收功率,M i为第i个干扰测量符号的RE数。
另一种可能的测量方式,第一终端设备可以计算符号RE级平均接收功率。具体的,第一终端设备计算每个符号的RE级平均接收功率。当干扰测量资源为多个符号时,每个符号都对应一个单独的测量值。
另一种可能的测量方式,第一终端设备可以计算符号级总接收功率。具体的,当干扰测量资源为多个符号时,可以计算每个符号的总接收功率。
另一种可能的测量方式,第一终端设备可以计算干扰测量资源总接收功率,即当前所有干扰测量符号的总接收功率。
本申请实施例中,干扰测量的计算方法可以由网络设备显式配置或隐式指示给第一终端设备。
具体的,一种可能的显示配置方法中,可以在干扰测量上报配置中定义新的信息位,该信息位例如可以称为干扰测量准则(interference measurement criterion),用于指示用户具体的干扰测量方法。另一种可能的显示配置的方法中,可以协议明确规定一种干扰测量方法,第一终端设备基于该协议规定的干扰测量方法进行干扰测量。
一种可能的隐式配置方式中,第一终端设备可以通过测量上报配置包含的上报资源数来决策干扰测量方法。作为举例,当测量上报配置中的干扰测量上报资源数小于干扰测量符号数时,则第一终端设备计算干扰测量资源符号级平均接收功率。
可选的,本申请实施例中,第一终端设备可以根据干扰测量上报配置上报干扰测量值,或者上报干扰测量资源标识和该干扰测量资源标识指示的干扰测量资源的干扰测量值。
具体的,第一终端设备可以基于所确定的当前的干扰测量值,选取其中的一个或多个干扰测量值进行量化上报。其中,第一终端设备选取上报的干扰测量值的准则可以是第一终端设备内部的算法,例如第一终端设备可以选择干扰测量值最大或最小的前L个上报,或者可以由网络设备显式配置或隐式指示给第一终端设备。
一种可能的显式配置方式中,可以在CSI测量上报配置中定义新的信息位,该信息位例如可以称为干扰上报准则(interfReportCriterion),用于指示第一终端设备上报最大干扰测量值或最小干扰测量值所对应的干扰CRI和相应的干扰测量值。一种可能的隐式配置方式中,第一终端设备可以通过CSI测量上报配置包含的上报资源数来决策用户上报的干扰测量。
作为举例,当配置的干扰测量资源只包含一个测量资源,例如IM-resource#0时,第一终端设备可以上报IM-resource#0的资源ID和其所对应的干扰测量值给网络设备,或者第一终端设备可以只上报IM-resource#0所对应的干扰测量值给网络设备。
作为举例,当配置的干扰测量资源包含两个或多个测量资源,例如IM-resource#0、IM-resource#1….IM-resource#K,K≥1,第一终端设备可以基于上述特定的准则从中选择一个或多个干扰测量资源ID和相应的干扰测量值上报给网络设备。这里,IM-resource可以是CSI-IM-resource、NZP-CSI-RS-resource或ZP-CSI-RS-resource,本申请实施例对此不作限定。
可选的,本申请实施例中,当所述干扰测量值为多个时,所述第一终端设备对所述多个干扰测量值中的每个干扰测量值通过比特进行量化上报,或通过差值的方法进行量化上报。
具体的,第一终端设备进行量化上报时所采用的量化方式可以包括以下方式中的一种或多种。
一种可能的量化方式,当上报的干扰测量值为一个值时,第一终端设备使用X1比特对该干扰测量值进行量化上报,其中,X1为正整数。
另一种可能的量化方式,当上报干扰测量值为多个(两个或大于两个)值时,第一终端设备使用X2比特对该多个干扰测量值进行量化上报,其中X2为正整数。作为举例,每个符号可以按时域位置进行排序,时域位置在前的符号可以占用X2比特的前y比特,以此类推,其中,y为小于或等于X2的正整数。
另一种可能的量化方式,当上报的干扰测量值为多个值时,第一终端设备可以通过差值量化的方式进行上报。具体的,第一终端设备使用X3比特上报第一个测量值,使用X4比特上报第二个测量值与第一个测量值的差值,使用X5比特上报第三个测量值与第一个测量值的差值,以此类推,其中,X3,X4和X5分别为正整数。
需要说明的是,本申请实施例中,上报的干扰测量值可以是线性测量值,或以dB为单位的测量值,本申请实施例对此不作限定。
本申请实施例中,第一终端设备采用量化方式上报干扰测量值,可以降低对传输带宽的占用,还可以提高数据传输效率。
需要说明的是,在第一终端设备使用PUCCH或PUSCH进行CSI上报和/或波束上报时,协议需要支持对应上述各种上报量的上报格式,例如下表3:
表3
比特长度
IM-CRI M
干扰量 N
其中,M表示干扰测量资源标识的量化比特数,N表示干扰测量上报量的量化比特数。
应注意,本申请实施例不排除第一终端设备使用其他上行传输方式进行干扰测量值的上报,例如,第一终端设备还可以使用MAC-CE等封装的数据单元进行干扰测量值的上报,本申请实施例对此不作限定。
可选的,本申请实施例中,所述第一终端设备向所述网络设备上报以下信息中的一种或多种:干扰测量资源标识、干扰测量值、信道测量资源标识、信道质量指示、信号与干扰加噪声比SINR、信道质量指示CQI、预编码矩阵指示PMI、秩指示RI、接收信号强度指示RSSI、参考信号接收功率RSRP。
因此,本申请实施例中,网络设备通过向第一终端设备发送第一配置信息来指示该第一终端设备的干扰测量资源,其中,该干扰测量资源的频域为所述第一终端设备当前激活带宽部分BWP的全带宽,然后,第一终端设备根据在该干扰测量资源上进行干扰测量,使得第一终端设备可以不在干扰波束的导频资源进行干扰测量,进而降低系统信令开销。并且,网络设备无需配置用于干扰测量的导频资源,可以降低系统导频开销。
图4示出了本申请实施例提供的一种干扰测量的方法的示意性流程图。应理解,图4示出了干扰测量的方法的步骤或操作,但这些步骤或操作仅是示例,本申请实施例还可以执行其他操作或者图4中的各个操作的变形。此外,图4中的各个步骤可以按照与图4呈现的不同的顺序来执行,并且有可能并非要执行图4中的全部操作。图4中的网络设备、第一终端设备可以分别为图3中对应的网络设备和终端设备,图4中的第二终端设备可以为图3中的其他终端设备,本申请实施例对此不作限定。
401,网络设备向第一终端设备发送干扰测量配置信息。
具体的,该干扰测量配置信息包括第一终端设备的干扰测量资源配置,其中,该干扰测量资源配置用于指示第一终端设备的干扰测量资源,该干扰测量资源频域为所述第一终端设备当前激活带宽部分BWP的全带宽。
这里,该干扰测量配置信息只关联干扰测量资源,即该干扰测量配置信息可以不包括第一终端设备的信道测量资源配置。具体的,干扰测量资源配置以及干扰测量资源可以参见图3中的描述,为了简洁,这里不再赘述。
可选的,本申请实施例中,干扰测量配置信息还包括干扰测量上报配置,所述干扰测量上报配置用于指示所述第一终端设备上报对应于所述干扰测量资源的干扰测量值。具体的,干扰测量上报配置以及干扰测量值可以参见上文中的描述,为了简洁,这里不再赘述。
402,网络设备动态激活干扰测量。
具体的,网络设备可以通过下行控制信息DCI向第一终端设备发送一个或多个时隙的时频域资源调度信息,并动态触发第一终端设备的干扰测量以及上报。
需要说明的是,当干扰测量资源的时域属性为非周期性或半静态时,网络设备向所述第一终端设备发送该下行控制信息,该下行控制信息用于触发第一终端设备对所述干扰测量资源进行测量。当干扰测量资源的时域属性为周期性时,第一终端设备可以根据干扰测量资源配置,周期性的进行干扰测量,而不需要网络设备动态激活第一终端设备进行干扰测量,即步骤402可以省略。
本申请实施例中,该DCI可以使用现有的DCI格式,或定义新的DCI格式,或在现有格式中新增字段,或利用已有字段的特殊值组合,例如将自动混合重传请求(hybrid automatic repeat request,HARQ)、MCS等字段全置0或1,本申请实施例对此不作限定。
可选的,本申请实施例中,DCI包括以下信息中的一种或多种:CSI request(CSI请求)、TCI信息、BWP信息,或者其他信息。其中,CSI request,用于触发非周期或半静态CSI测量的信息位。具体的,CSI request可以指示触发状态ID(比如trigger state#x)。
表4中对触发干扰测量的DCI信令进行详细说明。
表4
DCI    
  CSI request 指示触发状态ID(trigger state#x)
  TCI信息 指示干扰测量接收波束信息
  BWP信息 指示干扰测量频带信息
403,网络设备对第二终端设备进行数据调度与传输。
具体的,第二终端设备进行数据传输的资源可以为终端设备的干扰测量资源。这里,第二终端设备可以为小区内的其他终端设备,或者为其他小区的终端设备。具体的,402可以与403同时进行,本申请实施例对此不作限定。
404,第一终端设备进行干扰测量。
具体的,第一终端设备根据干扰资源配置确定干扰测量资源,然后对干扰测量资源上的信号进行测量,获取对应于干扰测量资源的干扰测量值。第一终端设备的干扰测量方式可以参见图3中330的描述,为了简洁,这里不再重复描述。
405,第一终端设备上报测量结果。
具体的,第一终端设备可以根据干扰测量上报配置上报干扰测量值,或者上报干扰测量资源标识和该干扰测量资源标识指示的干扰测量资源的干扰测量值。具体的,上报干扰测量值的方式可以参见上文中的描述,为了简洁,这里不再赘述。
可选的,当所述干扰测量值为多个时,所述第一终端设备对所述多个干扰测量值中的每个干扰测量值通过比特进行量化上报,或通过差值的方法进行量化上报。具体的,第一终端设备进行量化上报的方式可以参见上文中的描述,为了简洁,这里不再赘述。
对应的,网络设备接收第一终端设备上报的干扰测量结果。
具体的,网络设备基于第一终端设备上报的干扰测量值推测第一终端设备当前服务波束的强干扰波束,并在多用户传输调度时,规避较强干扰波束的配对传输,即调度时排除强干扰波束配对,或优先进行弱干扰波束配对,确保同时调度的多个波束之间的干扰较弱,从而降低小区内干扰对数据传输的不利影响,提高系统容量。
因此,本申请实施例中,第一终端设备对干扰测量资源进行测量和上报,其中干扰测量资源的频域为所述第一终端设备当前激活带宽部分BWP的全带宽,使得第一终端设备可以不在干扰波束的导频资源进行干扰测量,进而降低系统信令开销。并且,网络设备无需配置用于干扰测量的导频资源,可以降低系统导频开销。
图5示出了本申请实施例提供的另一种干扰测量的方法的示意性流程图。应理解,图5示出了干扰测量的方法的步骤或操作,但这些步骤或操作仅是示例,本申请实施例还可以执行其他操作或者图5中的各个操作的变形。此外,图5中的各个步骤可以按照与图5呈现的不同的顺序来执行,并且有可能并非要执行图5中的全部操作。图5中的网络设备、第一终端设备可以分别为图3中对应的网络设备、第一终端设备,图5中的第二终端设备可以为图3中的第二终端设备,本申请实施例对此不作限定。
501,网络设备向第一终端设备发送测量配置信息。
具体的,该测量配置信息包括第一终端设备的信道测量资源配置和干扰测量资源配置。此时,该测量配置信息还可以被称为CSI测量配置。其中,该干扰测量资源配置用于指示第一终端设备的干扰测量资源,该干扰测量资源的频域为所述第一终端设备当前激活带宽部分BWP的全带宽。信道测量资源配置用于指示第一终端设备的信道测量资源,这里,信道测量资源可以参见现有技术中的描述。具体的,干扰测量资源配置以及干扰测量资源可以参见图3中的描述,为了简洁,这里不再赘述。
可选的,本申请实施例中,测量配置信息还包括干扰测量上报配置,所述干扰测量上报配置用于指示所述第一终端设备上报对应于所述干扰测量资源的干扰测量值。或者,干扰测量上报配置用于指示所述第一终端设备上报以下信息中的一种或多种:干扰测量资源标识、干扰测量值、信道测量资源标识、信道质量指示、信号与干扰加噪声比SINR、信道质量指示CQI、预编码矩阵指示PMI、秩指示RI、接收信号强度指示RSSI、参考信号接收功率RSRP。具体的,干扰测量上报配置可以参见上文中的描述,为了简洁,这里不再赘述。
502,网络设备向第一终端设备、第二终端设备发送导频,进行数据调度与传输。
具体的,网络设备可以发送导频和下行数据。导频发送、数据调度与传输可以参见现有技术的描述,这里不再详细描述。
503,网络设备动态激活干扰测量,即CSI测量。
具体的,并通过DCI动态触发第一终端设备的CSI测量及上报。
需要说明的是,当CSI测量资源的时域属性为非周期性或半静态时,网络设备向所述第一终端设备发送该下行控制信息,该下行控制信息用于触发第一终端设备对进行CSI测量。当CSI测量资源的时域属性为周期性时,第一终端设备可以根据测量资源配置,周期性的进行干扰测量,而不需要网络设备动态激活第一终端设备进行CSI测量,即步骤502可以省略。
本申请实施例中,该DCI可以使用现有的DCI格式,或定义新的DCI格式,或在现有格式中新增字段,或利用已有字段的特殊值组合,例如将自动混合重传请求(hybrid automatic repeat request,HARQ)、调制与编码策略(modulation and coding scheme,MCS)等字段全置0或1,本申请实施例对此不作限定。
可选的,本申请实施例中,DCI可以包括以下信息中的一种或多种:CSI request、干扰测量资源、TCI信息、BWP信息,或者其他信息。表5中对触发干扰测量的DCI信令进行详细说明。
表5
DCI    
  CSI request 指示触发状态ID(trigger state#x)
  干扰测量资源 指示当前测量所触发的干扰资源信息
  TCI信息 指示干扰测量接收波束信息
  BWP信息 指示干扰测量频带信息
504,第一终端设备进行信道及干扰测量,即CSI测量。
具体的,第一终端设备根据测量配置信息,确定信道测量资源和干扰测量资源,然后分别对信道测量资源和干扰测量资源上的信号进行测量,获取测量结果。这里,测量结果 可以包括CSI测量结果,和/或可以包括对应于干扰测量资源的干扰测量值。
具体的,CSI测量结果例如可以包括:信道质量指示、信号与干扰加噪声比SINR、信道质量指示CQI、预编码矩阵指示PMI、秩指示RI、接收信号强度指示RSSI、参考信号接收功率RSRP中的至少一种等,本申请实施对此不作限定。
505,第一终端设备上报测量结果。
具体的,第一终端设备基于干扰测量上报配置,向网络设备上报测量结果。具体的,上报信息中可以包含以下信息中的一种或多种:干扰测量资源标识、干扰测量值、信道测量资源标识、信号与干扰加噪声比(signal to interference plus noise ratio,SINR)、CQI、PMI、RI、接收信号强度指示(received signal strength indication,RSSI)、参考信号接收功率(reference signal receiving power,RSRP)、CRI等,本申请实施例对此不作具体限定。具体的,第一终端设备确定干扰测量值,以及上报干扰测量值可以参见上文中的描述,为避免重复,这里不再赘述。
对应的,网络设备接收第一终端设备上报的干扰测量结果。
具体的,网络设备基于第一终端设备上报的测量结果推测波束间的相互干扰,并在多用户传输调度时,规避较强干扰波束的配对传输,即调度时排除强干扰波束配对,或优先进行弱干扰波束配对,确保同时调度的多个波束之间的干扰较弱,从而降低小区内干扰对数据传输的不利影响,提高系统容量。
因此,本申请实施例中,第一终端设备对干扰测量资源进行测量和上报,其中干扰测量资源的频域为所述第一终端设备当前激活带宽部分BWP的全带宽,使得第一终端设备可以不在干扰波束的导频资源进行干扰测量,进而降低系统信令开销。并且,网络设备无需配置用于干扰测量的导频资源,可以降低系统导频开销。
基于上述实施例的方法,下面将介绍本申请提供的通信装置。
图6示出了本申请提供的通信装置的结构示意图,该通信装置600包括:通信单元610和处理单元620。
通信单元610,用于从网络设备接收第一配置信息,所述第一配置信息用于指示所述终端设备的干扰测量资源,所述干扰测量资源的频域为所述终端设备当前激活带宽部分BWP的全带宽。
处理单元620,用于对所述干扰测量资源进行干扰测量。
可选的,通信单元610也称为收发单元(模块),可以包括接收单元(模块)和/或发送单元(模块),分别用于执行方法实施例以及图3、图4、图5中终端设备接收和发送的步骤。可选的,通信装置600还可以包括存储单元,用于存储通信单元610和处理单元620执行的指令。
通信装置600是终端设备,也可以是终端设备内的芯片。当该通信装置是终端设备时,该处理单元可以是处理器,通信单元可以是收发器。该通信设备还可以包括存储单元,该存储单元可以是存储器。该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该通信设备执行上述方法。当该通信装置是终端设备内的芯片时,该处理单元可以是处理器,通信单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使该通信装置执行上述方法实施例中由终端设备所执行的操作,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该终端设备内的 位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)
本领域技术人员可以清楚地了解到,当通信装置600所执行的步骤以及相应的有益效果可以参考上述方法实施例中终端设备的相关描述,为了简洁,在此不再赘述。
应理解,通信单元610可以由收发器实现,处理单元620可由处理器实现。存储单元可以由存储器实现。如图7所示,通信装置700可以包括处理器710、存储器720和收发器730。
图6所示的通信装置600或图7所示的通信装置700能够实现前述实施例以及图3、图4、图5中终端设备执行的步骤,类似的描述可以参考前述对应的方法中的描述。为避免重复,这里不再赘述。
图8示出了本申请提供的通信装置800的结构示意图,该通信装置800包括处理单元810和通信单元820。
处理单元810,用于确定第一配置信息,所述第一配置信息用于指示第一终端设备的干扰测量资源,所述干扰测量资源的频域为所述第一终端设备当前激活带宽部分BWP的全带宽。
通信单元820,用于向所述第一终端设备发送所述第一配置信息。
可选的,通信单元820可以包括接收单元(模块)和/或发送单元(模块),分别用于执行方法实施例以及图3、图4、图5中网络设备接收和发送的步骤。可选的,通信装置800还可以包括存储单元,用于存储通信单元820和处理单元810执行的指令。
装置800是方法实施例中的网络设备,也可以是网络设备内的芯片。当该装置是网络设备时,该处理单元可以是处理器,通信单元可以是收发器。该装置还可以包括存储单元,该存储单元可以是存储器。该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该通信设备执行上述方法。当该装置是网络设备内的芯片时,该处理单元可以是处理器,该通信单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使该通信设备执行上述方法实施例中由网络设备所执行的操作,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该通信设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
本领域技术人员可以清楚地了解到,当装置800所执行的步骤以及相应的有益效果可以参考上述方法实施例中网络设备的相关描述,为了简洁,在此不再赘述。
应理解,通信单元820可以由收发器实现,处理单元810可由处理器实现。存储单元可以由存储器实现。如图9所示,通信装置900可以包括处理器910、存储器920和收发器930。
图8所示的通信装置800或图9所示的通信装置900能够实现前述方法实施例以及图3、图4、图5中网络设备执行的步骤,类似的描述可以参考前述对应的方法中的描述。为避免重复,这里不再赘述。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备对应,由相应的模块或单元执行相应的步骤。例如通信单元(或收发单元,收发器)方法执行方法实施例中发送和/或接收的步骤(或由发送单元,接收单元分别执行),除发送接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。发送单元和接收单元可以组成收发单元,发射器和接收器可以组成收发器,共同 实现方法实施例中的收发功能;处理器可以为一个或多个。
应理解,上述各个单元的划分仅仅是功能上的划分,实际实现时可能会有其它的划分方法。
上述终端设备或者网络设备可以是一个芯片,处理单元可以通过硬件来实现也可以通过软件来实现。当通过硬件实现时,该处理单元可以是逻辑电路、集成电路等。当通过软件来实现时,该处理单元可以是一个通用处理器,通过读取存储单元中存储的软件代码来实现,该存储单元可以集成在处理器中,也可以位于该处理器之外独立存在。
图10为本申请提供的一种终端设备1000的结构示意图。为了便于说明,图10仅示出了终端设备的主要部件。如图10所示,终端设备1000包括处理器、存储器、控制电路、天线以及输入输出装置。该终端设备1000可应用于如图1所示的系统中,执行上述方法实施例中终端设备的功能。
处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于控制终端设备执行上述方法实施例中所描述的动作。存储器主要用于存储软件程序和数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图10仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图10中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。该基带处理器也可以表述为基带处理电路或者基带处理芯片。该中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,在图10的实施例中,可以将具有收发功能的天线和控制电路视为终端设备1000的收发单元1001,将具有处理功能的处理器视为终端设备1000的处理单元1002。如图10所示,终端设备1000包括收发单元1001和处理单元1002。收发单元也可以称为 收发器、收发机、收发装置等。可选的,可以将收发单元1001中用于实现接收功能的器件视为接收单元,将收发单元1001中用于实现发送功能的器件视为发送单元,即收发单元1001包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
图10所示的终端设备1000能够实现图3、图4、图5方法实施例中涉及终端设备的各个过程。终端设备1000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
图11为本申请实施例提供的一种网络设备的结构示意图,例如可以为网络设备的结构示意图。如图11所示,该网络设备1100可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。
该网络可应用于如图1所示的通信系统中,执行上述方法实施例中网络设备的功能。网络设备1100可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1110和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元(digital unit,DU))1120。
该RRU 1110可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线1111和射频单元1112。该RRU 1110部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于发送上述方法实施例中指示信息。该RRU 1110与BBU 1120可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
该BBU 1120为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如该BBU(处理单元)1120可以用于控制网络设备执行上述方法实施例中关于网络设备的操作流程。
在一个实施例中,该BBU 1120可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如NR网络),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其它网)。该BBU 1120还包括存储器1121和处理器1122,该存储器1121用于存储必要的指令和数据。该处理器1122用于控制基站进行必要的动作,例如用于控制网络设备执行上述方法实施例中关于网络设备的操作流程。该存储器1121和处理器1122可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图11所示的网络设备1100能够实现图3、图4、图5方法实施例中涉及网络设备的各个过程。网络设备1100中的各个模块的操作和/或功能,分别设置为实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
需要说明的是,本申请实施例中的通信单元也可以称为收发单元或收发模块。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(Field-Programmable Gate Array,FPGA)、专用集成芯片(Application Specific Integrated Circuit,ASIC)、系统芯片(System on Chip,SoC)、中央处理器(Central Processor Unit,CPU)、网络处理器(Network Processor,NP)、数字信号处理电路(Digital Signal Processor, DSP)、微控制器(Micro Controller Unit,MCU),可编程控制器(Programmable Logic Device,PLD)或其他集成芯片等。
在实现过程中,本实施例提供的方法中的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated crcuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。本申请实施例中的处理器可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
可以理解,本申请实施例中的存储器或存储单元可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供一种通信系统,其包括发送端设备和接收端设备。例如,发送端设备为上述实施例中网络设备,接收端设备为上述实施例中终端设备;或者,发送端设备为上述实施例中终端设备,接收端设备为上述实施例中网络设备。
本申请实施例还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一实施例中的方法。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一实施例中的方法。
本申请实施例还提供了一种系统芯片,该系统芯片包括:处理单元和通信单元。该处理单元,例如可以是处理器。该通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行计算机指令,以使该通信装置内的芯片执行上述本申请实施例提供的任一种的方法。
可选地,该计算机指令被存储在存储单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。 当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机指令时,全部或部分地产生按照本申请实施例的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。

Claims (25)

  1. 一种干扰测量方法,其特征在于,包括:
    第一终端设备从网络设备接收第一配置信息,所述第一配置信息用于指示所述第一终端设备的干扰测量资源,所述干扰测量资源的频域为所述第一终端设备当前激活带宽部分BWP的全带宽;
    所述第一终端设备对所述干扰测量资源进行干扰测量。
  2. 根据权利要求1所述的方法,其特征在于,所述第一配置信息包括第一指示信息,所述第一指示信息用于指示所述干扰测量资源的频域位置。
  3. 根据权利要求1或2所述的方法,其特征在于,所述干扰测量资源的时域包括单个符号,或者连续或非连续的多个符号。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一配置信息包括第二指示信息,所述第二指示信息用于指示所述干扰测量资源的符号位置。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,当所述干扰测量资源的时域属性为周期性时,所述第一配置信息还包括所述干扰测量资源的准同位QCL指示。
  6. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一终端设备对所述干扰测量资源进行干扰测量,包括:
    所述第一终端设备使用与所述第一终端设备当前数据信道或控制信道相同的接收波束接收在所述干扰测量资源上传输的信号,并对所述信号进行干扰测量。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述干扰测量资源用于除所述第一终端设备之外的第二终端设备进行数据传输。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,当所述干扰测量资源的时域包括多个符号时,所述第一终端设备对所述干扰测量资源进行干扰测量,包括:
    所述第一终端设备对所述多个符号进行干扰测量,获取所述多个符号的总接收功率,或者所述多个符号的符号级平均接收功率,或者所述多个符号的资源元素级平均接收功率。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,还包括:
    所述第一终端设备从所述网络设备接收第二配置信息,所述第二配置信息用于指示所述第一终端设备上报对应于所述干扰测量资源的干扰测量值。
  10. 根据权利要求9所述的方法,其特征在于,所述干扰测量值为多个时,所述第一终端设备对所述多个干扰测量值中的每个干扰测量值通过比特进行量化上报,或通过差值的方法进行量化上报。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,还包括:
    所述第一终端设备向所述网络设备上报以下信息中的一种或多种:干扰测量资源标识、干扰测量值、信道测量资源标识、信道质量指示、信号与干扰加噪声比SINR、信道质量指示CQI、预编码矩阵指示PMI、秩指示RI、接收信号强度指示RSSI、参考信号接收功率RSRP。
  12. 一种干扰测量的方法,其特征在于,包括:
    网络设备确定第一配置信息,所述第一配置信息用于指示第一终端设备的干扰测量资源,所述干扰测量资源的频域为所述第一终端设备当前激活带宽部分BWP的全带宽;
    所述网络设备向所述第一终端设备发送所述第一配置信息。
  13. 根据权利要求12所述的方法,其特征在于,所述第一配置信息包括第一指示信息,所述第一指示信息用于指示所述干扰测量资源的频域位置。
  14. 根据权利要求12或13所述的方法,其特征在于,所述干扰测量资源的时域包括单个符号,或者连续或非连续的多个符号。
  15. 根据权利要求12-14任一项所述的方法,其特征在于,所述第一配置信息包括第二指示信息,所述第二指示信息用于指示所述干扰测量资源的符号位置。
  16. 根据权利要求12-15任一项所述的方法,其特征在于,所述干扰测量资源用于除所述第一终端设备之外的第二终端设备进行数据传输。
  17. 根据权利要求12-15任一项所述的方法,其特征在于,还包括:
    所述网络设备向所述第一终端设备发送第二配置信息,所述第二配置信息用于指示所述第一终端设备上报对应于所述干扰测量资源的干扰测量值。
  18. 一种通信装置,该通信装置为终端设备或终端设备内的芯片,其特征在于,包括:
    通信单元,用于从网络设备接收第一配置信息,所述第一配置信息用于指示所述终端设备的干扰测量资源,所述干扰测量资源的频域为所述终端设备当前激活带宽部分BWP的全带宽;
    处理单元,用于对所述干扰测量资源进行干扰测量。
  19. 根据权利要求18所述的通信装置,其特征在于,所述通信单元具体用于使用与所述终端设备当前数据信道或控制信道相同的接收波束接收在所述干扰测量资源上传输的信号;
    所述处理单元具体用于对所述信号进行干扰测量。
  20. 根据权利要求18或19所述的通信装置,其特征在于,当所述干扰测量资源的时域包括多个符号时,所述处理单元具体用于对所述多个符号进行干扰测量,获取所述多个符号的总接收功率,或者所述多个符号的符号级平均接收功率,或者所述多个符号的资源元素级平均接收功率。
  21. 根据权利要求18-20任一项所述的通信装置,其特征在于,所述通信单元还用于从所述网络设备接收第二配置信息,所述第二配置信息用于指示所述终端设备上报对应于所述干扰测量资源的干扰测量值。
  22. 一种通信装置,该通信装置为网络设备或网络设备内的芯片,其特征在于,包括:
    处理单元,用于确定第一配置信息,所述第一配置信息用于指示第一终端设备的干扰测量资源,所述干扰测量资源的频域为所述第一终端设备当前激活带宽部分BWP的全带宽;
    通信单元,用于向所述第一终端设备发送所述第一配置信息。
  23. 根据权利要求22所述的通信装置,其特征在于,所述通信单元还用于向所述第一终端设备发送第二配置信息,所述第二配置信息用于指示所述第一终端设备上报对应于所述干扰测量资源的干扰测量值。
  24. 一种通信装置,其特征在于,所述装置包括处理器,用于连接存储器,并执行所 述存储器中的指令以实现如权利要求1-17任一项所述的方法。
  25. 一种计算机存储介质,其特征在于,所述计算机存储介质中存储有程序代码,所述程序代码用于指示执行如权利要求1-17任一项所述的方法中的指令。
PCT/CN2019/123334 2018-12-28 2019-12-05 干扰测量的方法和通信装置 WO2020134944A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811628835.6A CN111385042B (zh) 2018-12-28 2018-12-28 干扰测量的方法和通信装置
CN201811628835.6 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020134944A1 true WO2020134944A1 (zh) 2020-07-02

Family

ID=71129662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123334 WO2020134944A1 (zh) 2018-12-28 2019-12-05 干扰测量的方法和通信装置

Country Status (2)

Country Link
CN (1) CN111385042B (zh)
WO (1) WO2020134944A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022027693A1 (zh) * 2020-08-07 2022-02-10 华为技术有限公司 一种通信方法及装置
CN114080041A (zh) * 2020-08-19 2022-02-22 华为技术有限公司 一种信息传输方法和通信装置
CN114698011B (zh) * 2020-12-28 2023-08-22 成都鼎桥通信技术有限公司 小站间防干扰方法和装置
CN112601276A (zh) * 2021-03-03 2021-04-02 新华三技术有限公司 一种时隙干扰的解决方法、终端设备和基站设备
CN113115352B (zh) * 2021-04-02 2022-02-22 北京云智软通信息技术有限公司 干扰源的测量方法、装置及基站
CN115484619A (zh) * 2021-05-31 2022-12-16 华为技术有限公司 一种通信方法、装置及系统
CN113747491A (zh) * 2021-08-26 2021-12-03 上海擎昆信息科技有限公司 干扰上报方法和用户设备
CN116264488A (zh) * 2021-12-14 2023-06-16 维沃移动通信有限公司 干扰测量方法、装置、设备及存储介质
CN117425170A (zh) * 2022-07-07 2024-01-19 上海朗帛通信技术有限公司 用于无线通信的方法和装置
CN117499971A (zh) * 2022-07-22 2024-02-02 北京紫光展锐通信技术有限公司 干扰测量的方法、装置、芯片、芯片模组及存储介质
WO2024061241A1 (en) * 2022-09-23 2024-03-28 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Apparatus and methods of inter-ue interference beam measurement and reporting
WO2024065228A1 (zh) * 2022-09-27 2024-04-04 北京小米移动软件有限公司 干扰频率信息上报方法及其装置
CN115334578B (zh) * 2022-10-14 2023-01-24 中兴通讯股份有限公司 终端干扰测量方法、系统、电子设备及可读存储介质
WO2024113475A1 (en) * 2023-01-17 2024-06-06 Zte Corporation Time-domain correlation property reporting method and apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103580835A (zh) * 2012-08-02 2014-02-12 中兴通讯股份有限公司 在干扰测量资源上进行干扰测量的方法及设备
US20160105248A1 (en) * 2013-05-09 2016-04-14 Nokia Solutions And Networks Oy Measurements in a Wireless System
CN108809454A (zh) * 2017-05-05 2018-11-13 华为技术有限公司 干扰测量方法和设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104038320B (zh) * 2013-03-04 2019-03-01 中兴通讯股份有限公司 资源映射、接收方法及装置、信令通知、获取方法及装置
KR102089437B1 (ko) * 2013-03-07 2020-04-16 삼성전자 주식회사 무선 통신 시스템에서 간섭 제어 방법 및 장치
US10462792B2 (en) * 2015-05-29 2019-10-29 Apple Inc. Determining a location of a UE within a coverage area

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103580835A (zh) * 2012-08-02 2014-02-12 中兴通讯股份有限公司 在干扰测量资源上进行干扰测量的方法及设备
US20160105248A1 (en) * 2013-05-09 2016-04-14 Nokia Solutions And Networks Oy Measurements in a Wireless System
CN108809454A (zh) * 2017-05-05 2018-11-13 华为技术有限公司 干扰测量方法和设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Further details on measurement restriction configuration", 3GPP DRAFT; R1-1716355 FURTHER DETAILS ON MEASUREMENT RESTRICTION, vol. RAN WG1, 21 September 2017 (2017-09-21), XP051329944, DOI: 20200219180648X *
ERICSSON: "On measurement restriction", 3GPP DRAFT; R1-1700754 ON MEASUREMENT RESTRICTION, vol. RAN WG1, 20 January 2017 (2017-01-20), XP051208278, DOI: 20200219180549X *

Also Published As

Publication number Publication date
CN111385042A (zh) 2020-07-07
CN111385042B (zh) 2021-07-20

Similar Documents

Publication Publication Date Title
WO2020134944A1 (zh) 干扰测量的方法和通信装置
CN110809321B (zh) 接收和发送信号的方法以及通信装置
CN111510267B (zh) 波束指示的方法和通信装置
CN111295847B (zh) 发送和接收信号的方法、装置和系统
JP7283705B2 (ja) 端末デバイスの能力を報告する方法および通信装置
US11082864B2 (en) Method for transmitting and receiving signal by means of beam in wireless communication system, and apparatus for said method
CN111511010B (zh) 发送和接收指示的方法和装置
WO2021027750A1 (zh) 更新波束信息的方法和通信装置
WO2020207269A1 (zh) 干扰测量的方法和装置
WO2018202098A1 (zh) 无线通信的方法、网络设备和终端设备
US20220173851A1 (en) Frequency domain resource allocation method and apparatus
KR20210095692A (ko) 전송 자원 결정 방법 및 장치
WO2020029942A1 (zh) 波束测量的方法和装置
CN111586858A (zh) 信号传输方法和通信装置
JP2023552433A (ja) RedCap UEの識別のための方法及び装置
JP2023526813A (ja) 複数のtrpにわたる単一のcoresetに基づいたpdcchのダイバーシティ
CN111727642B (zh) 通信方法、通信装置和系统
CN115211048B (zh) 用于在无线通信系统中发送和接收信道状态信息的方法和装置
WO2022082775A1 (zh) 一种信道状态信息上报方法及装置
CN109996339B (zh) 一种通信方法及装置
WO2020192719A1 (zh) 更新波束的方法与通信装置
WO2021062766A1 (zh) 一种干扰测量上报的方法和通信装置
CN111756497A (zh) 通信方法及装置
CN114071720A (zh) 资源确定的方法以及通信装置
WO2023025301A1 (zh) 一种通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902754

Country of ref document: EP

Kind code of ref document: A1