WO2021062766A1 - 一种干扰测量上报的方法和通信装置 - Google Patents

一种干扰测量上报的方法和通信装置 Download PDF

Info

Publication number
WO2021062766A1
WO2021062766A1 PCT/CN2019/109689 CN2019109689W WO2021062766A1 WO 2021062766 A1 WO2021062766 A1 WO 2021062766A1 CN 2019109689 W CN2019109689 W CN 2019109689W WO 2021062766 A1 WO2021062766 A1 WO 2021062766A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference
resources
terminal
measurement
configuration information
Prior art date
Application number
PCT/CN2019/109689
Other languages
English (en)
French (fr)
Inventor
樊波
张希
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19948025.2A priority Critical patent/EP4030644A4/en
Priority to PCT/CN2019/109689 priority patent/WO2021062766A1/zh
Priority to CN201980100602.5A priority patent/CN114424469A/zh
Publication of WO2021062766A1 publication Critical patent/WO2021062766A1/zh
Priority to US17/707,148 priority patent/US20220225337A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/24Monitoring; Testing of receivers with feedback of measurements to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • This application relates to the field of high-frequency communication, and more specifically, to a method and communication device for interference measurement and reporting.
  • the fifth generation mobile communication system uses high frequency communication, that is, uses ultra-high frequency band (>6GHz) signals to transmit data.
  • high-frequency communication uses analog beam technology, and performs weighting processing through a large-scale antenna array to concentrate the signal energy in a small range to form a signal similar to a beam (called an analog beam, or beam for short). ), thereby increasing the transmission distance.
  • Network equipment can generate different beams, pointing to different transmission directions. Which beam is used for transmission is determined through the beam measurement process. Specifically, the network device configures multiple channel measurement resources for measuring channel resources for the terminal through the measurement configuration information, and each channel measurement resource corresponds to a beam. The terminal measures the channel measurement resources configured by the network device to determine the channel resources (beams). The reference signal receiving power (RSRP) of) is measured, and then the index of at least one channel resource with a larger RSRP and the corresponding RSRP are reported to the network device.
  • RSRP reference signal receiving power
  • the terminal can measure the influence of other beams on a certain beam, that is, the terminal can measure the influence of interference resources on a certain channel resource. Specifically, the terminal can calculate the signal to interference plus noise ratio (SINR) for a certain channel resource, and report the SINR value to the network device, so that the network device can know the interference resource's effect on the channel resource. influences.
  • SINR signal to interference plus noise ratio
  • the terminal device When multiple transmitting beams are used for simultaneous transmission, the terminal device will use multiple receiving beams to receive. In this scenario, if there are other interference signals, the terminal equipment will receive the above interference signals from the above multiple receiving beams. Therefore, in the beam measurement process, in order to accurately measure the interference caused by the interference signal to the multiple transmission beams, it is necessary to use the multiple reception beams to measure the interference signal at the same time.
  • the network device in the prior art can only indicate one receiving beam for the terminal device, and cannot meet the above measurement requirements.
  • the present application provides a method and communication device for interference measurement and reporting, which can measure the interference of interference resources on each of the K channel resources that can transmit signals at the same time, thereby improving the accuracy of interference measurement.
  • a method for interference measurement and reporting includes: the terminal uses the spatial reception parameters of K channel resources as the spatial reception parameters of each of the M interference resources of the terminal, and the K
  • the channel resource is the channel resource that the terminal can receive the signal simultaneously transmitted by the network device using the K channel resources, and M is a positive integer; the terminal determines the signal according to the spatial reception parameter of the first interference resource among the M interference resources
  • the first measurement result of K channel resources, K is a positive integer greater than or equal to 2; the terminal sends a measurement report to the network device, the measurement report is used to indicate M measurement results, and the measurement report includes the first measurement result.
  • the network device simultaneously sends signals through the K channel resources, and the terminal can receive the signals sent through the K channel resources.
  • the terminal uses the spatial reception parameters of the K channel resources as the spatial reception parameters of each of the M interference resources, and then measures the first interference resource according to the spatial reception parameters of the first interference resource in the M interference resources, And determine the first measurement results of the K channel resources under the interference of the first interference resource, and then report the M measurement results of the M interference resources to the network device through the measurement report report, so that the network device can learn more accurately The accuracy of the interference from the interference resource to the channel resource.
  • the method before the terminal uses the spatial reception parameters of the K channel resources as the spatial reception parameters of the terminal's interference resources, the method further includes: the terminal receives measurement configuration information, and the measurement configuration information is used for N channel resources and the M interference resources are configured, and N is a positive integer; from the N channel resources, the terminal determines the K channel resources for which the terminal can receive signals simultaneously sent by the network device.
  • the network device configures N channel resources and M interference resources through the measurement configuration information.
  • the terminal first selects the above K channel resources that can be received simultaneously from the N channel resources, and then uses the space reception parameters of the K channel resources as the space reception of each of the M interference resources. Parameters to measure these M interference resources. In this way, the network device does not need to configure the N channel resources and the M interference resources multiple times, thereby saving signaling overhead.
  • the time corresponding to the N channel resources is earlier than the time corresponding to the M interference resources.
  • the terminal can determine in advance the K channel resources that can be received by the terminal at the same time, and then use the spatial reception parameters of the K channel resources as the spatial reception parameters of each of the M interference resources, and then according to the M
  • the spatial reception parameters of the first interference resource in the interference resources are measured, the first interference resource is measured, and the first measurement results of the K channel resources under the interference of the first interference resource are determined, and then the M interferences are reported through the measurement report.
  • the M measurement results of the resource are reported to the network device, so that the network device can more accurately learn the accuracy of the interference of the interference resource on the channel resource.
  • the terminal using the spatial reception parameters of K channel resources as the spatial reception parameters of interference resources includes: when at least one of the following conditions is satisfied, the terminal uses the spatial reception parameters of the K channel resources.
  • the receiving parameter is used as the spatial receiving parameter of each of the M interference resources: the beam group report parameter in the measurement configuration information indicates to be turned on, where the beam group report parameter is used to indicate whether to report the M measurement results;
  • the reported amount parameter in the measurement configuration information indicates that the measurement result includes the signal-to-interference plus noise ratio SINR; the measurement configuration information configures the M interference resources; the measurement configuration information does not configure the transmission configuration number status for the M interference resources TCI-State parameter.
  • the terminal may set a condition, and only when the condition is met, can the spatial reception parameters of the K channel resources be used as the spatial reception parameters of each of the M interference resources. In other words, the terminal can flexibly select a suitable method for determining interference measurement.
  • the method before the terminal uses the spatial reception parameters of the K channel resources as the spatial reception parameters of the terminal's interference resources, the method further includes: the terminal receives the first measurement configuration information from the network device, The first measurement configuration information is used to configure the spatial reception parameters of the K channel resources and the M interference resources.
  • the above K channel resources are directly configured, rather than determined from the configured N channel resources.
  • the network device configures K channel resources and M interference resources.
  • the terminal uses the spatial reception parameters of the K channel resources as the spatial reception parameters of each of the M interference resources to measure the M interference resources. This eliminates the need for the terminal to select and saves the terminal’s power. Consumption.
  • that the terminal uses the spatial reception parameters of the K channel resources as the spatial reception parameters of the interference resource of the terminal includes: when at least one of the following conditions is met, the terminal uses the K channels
  • the spatial reception parameter of the resource is used as the spatial reception parameter of each of the M interference resources: the beam grouping report parameter in the first measurement configuration information indicates that it is turned on, and the reported amount parameter in the first measurement configuration information indicates
  • the measurement result includes the SINR, where the beam group report parameter is used to indicate whether to report the M measurement results; the beam group report parameter in the first measurement configuration information indicates that it is turned on, and the first measurement configuration information configures the M measurement results.
  • the beam group report parameter is used to indicate whether to report the M measurement results
  • the beam group report parameter in the first measurement configuration information indicates to be enabled, and the first measurement configuration information configures the M interference Resource, and the first measurement configuration information does not configure a transmission configuration number state TCI-state parameter for the M interference resources, where the beam group report parameter is used to indicate whether to report the M measurement results.
  • the terminal may set a condition, and only when the condition is met, can the spatial reception parameters of the K channel resources be used as the spatial reception parameters of each of the M interference resources. In other words, the terminal can flexibly select a suitable method for determining interference measurement.
  • the method before the terminal receives the first measurement configuration information from the network device, the method further includes: the terminal receives second measurement configuration information from the network device, and the second measurement configuration information is used to configure For the N channel resources, N is a positive integer; the terminal determines, according to the second measurement configuration information, the K channel resources for which the terminal can receive signals simultaneously sent by the network device; the terminal sends instruction information to the network device , The indication information is used to indicate the K channel resources.
  • the terminal can select in advance and inform the network device of the selected channel resource, which improves the accuracy of the first measurement configuration information configured by the network device.
  • the terminal determining, according to the second measurement configuration information, the K channel resources for which the terminal can receive the signal simultaneously sent by the network device includes: when at least one of the following conditions is satisfied Next, the terminal determines, according to the second measurement configuration information, the K channel resources for which the terminal can receive the signal simultaneously sent by the network device: the beam group report parameter in the second measurement configuration information indicates that it is turned on, and the first 2.
  • the reported amount parameter in the measurement configuration information indicates that the measurement result includes the reference signal received power RSRP, where the beam group report parameter is used to indicate whether to report the M measurement results; the beam group report parameter indicator in the second measurement configuration information It is enabled, and the M interference resources are not configured in the second measurement configuration information, where the beam group report parameter is used to indicate whether to report the M measurement results.
  • the terminal can set a condition, and if the condition is met, the K channel resources that the terminal can receive the signal sent by the network device at the same time are selected from the N channel resources. In other words, the terminal can set conditions, whether flexible settings need to be performed to determine the K channel resources that the terminal can receive the signal sent by the network device at the same time.
  • the measurement result includes SINR
  • the measurement report further includes at least one SINR difference value
  • the at least one SINR difference value is each of the K measurement results except the first measurement result.
  • the difference between the SINR in the result and the SINR of the first measurement result, the first SINR included in the first measurement result is the largest SINR among the K measurement results, the first SINR and the step size have a mapping relationship, and the step size It is the product of the bit value and is used to indicate the difference of the SINR.
  • Different reference SINRs can correspond to different step sizes, avoiding the use of fixed step sizes, and improving the flexibility of indicating the SINR difference.
  • a method for reporting interference measurement includes: determining measurement configuration information, where the measurement configuration information is used for N channel resources and M interference resources, where N is a positive integer; and sending the measurement configuration to a terminal information.
  • the network device configures N channel resources and M interference resources through the measurement configuration information.
  • the terminal first selects the above K channel resources that can be received simultaneously from the N channel resources, and then uses the space reception parameters of the K channel resources as the space reception of each of the M interference resources. Parameters to measure these M interference resources. In this way, the network device does not need to configure the N channel resources and the M interference resources multiple times, thereby saving signaling overhead.
  • the measurement configuration information includes beam grouping report parameters and/or reported amount parameters, the beam grouping report parameters are used to indicate whether to report the M measurement results, and the reported amount parameters indicate that the measurement results include signals SINR with interference plus noise ratio.
  • the measurement result includes SINR
  • the measurement report further includes at least one SINR difference value
  • the at least one SINR difference value is each of the K measurement results except the first measurement result.
  • the difference between the SINR in the result and the SINR of the first measurement result, the first SINR included in the first measurement result is the largest SINR among the K measurement results, the first SINR and the step size have a mapping relationship, and the step size It is the product of the bit value and is used to indicate the difference of the SINR.
  • Different reference SINRs can correspond to different step lengths, which avoids the use of fixed step lengths, and improves the flexibility of indicating the SINR difference.
  • a method for interference measurement reporting includes: determining first measurement configuration information, where the first measurement configuration information is used to configure spatial reception parameters of the K channel resources and M interference resources; The terminal sends the first measurement configuration information.
  • the network device can directly configure K channel resources instead of being determined by the terminal from the configured N channel resources.
  • the network device configures K channel resources and M interference resources.
  • the terminal uses the spatial reception parameters of the K channel resources as the spatial reception parameters of each of the M interference resources to measure the M interference resources. This eliminates the need for the terminal to select and saves the terminal’s power. Consumption.
  • the first measurement configuration information includes a beam grouping report parameter and/or a reported amount parameter
  • the beam grouping report parameter is used to indicate whether to report the M measurement results
  • the reported amount parameter indicates the measurement result Includes signal to interference plus noise ratio SINR.
  • the second measurement configuration information before sending the first measurement configuration information, send second measurement configuration information to the terminal, where the second measurement configuration information is used to configure N channel resources, where N is a positive integer; receiving from the terminal Indication information, the indication information is used to indicate the K channel resources.
  • the network device first configures N channel resources for the terminal, the terminal can select in advance, and inform the network device of the selected channel resource, which improves the accuracy of the first measurement configuration information configured by the network device.
  • the measurement result includes SINR
  • the measurement report further includes at least one SINR difference value
  • the at least one SINR difference value is each of the K measurement results except the first measurement result.
  • the difference between the SINR in the result and the SINR of the first measurement result, the first SINR included in the first measurement result is the largest SINR among the K measurement results, the first SINR and the step size have a mapping relationship, and the step size It is the product of the bit value and is used to indicate the difference of the SINR.
  • Different reference SINRs can correspond to different step lengths, which avoids the use of fixed step lengths, and improves the flexibility of indicating the SINR difference.
  • a method for determining a transmission beam of a channel resource includes:
  • the measurement configuration information is used to configure N channel resources and M interference resources, and the measurement configuration information includes the repetition parameters of the N channel resources, and the status of the repetition parameters of the N channel resources It is used to indicate whether the transmission beams of the N channel resources are the same;
  • the repetition parameters of the N channel resources it is determined whether the transmission beams of the N channel resources are the same.
  • the terminal determines whether the transmission beams of the N channel resources are the same by measuring the repetition parameters in the configuration information.
  • the network device can inform the terminal whether the transmission beams of the N channel resources are the same in an implicit manner, which avoids direct indication and saves signaling overhead.
  • the configuration information further includes repetition parameters of the M interference resources, and the status of the repetition parameters of the M interference resources is used to indicate whether the transmission beams of the M interference resources are the same;
  • the repetition parameter of the interference resource determines whether the transmission beams of the M interference resources are the same.
  • the network device can inform the terminal whether the transmission beams of the M interference resources are the same in an implicit manner, which avoids direct indication and saves signaling overhead.
  • the measurement report It includes at least one measurement result and the index of the channel resource corresponding to the at least one measurement result.
  • the terminal can obtain the information of the interference resource, that is, the interference resource corresponding to each reported measurement result, which can improve the performance of data transmission.
  • a method for determining a transmission beam of a channel resource includes:
  • the measurement configuration information is used to configure N channel resources and M interference resources, and the measurement configuration information includes repetition parameters of the N channel resources, and the status of the repetition parameters of the N channel resources is used to indicate Whether the transmission beams of the N channel resources are the same;
  • the terminal determines whether the transmission beams of the N channel resources are the same by measuring the repetition parameters in the configuration information.
  • the network device can inform the terminal whether the transmission beams of the N channel resources are the same in an implicit manner, which avoids direct indication and saves signaling overhead.
  • the configuration information further includes the repetition parameters of the M interference resources, and the status of the repetition parameters of the M interference resources is used to indicate whether the transmission beams of the M interference resources are the same; The repeated parameters of the interference resources determine whether the transmission beams of the M interference resources are the same.
  • the network device can inform the terminal whether the transmission beams of the M interference resources are the same in an implicit manner, which avoids direct indication and saves signaling overhead.
  • the measurement report It includes at least one measurement result and the index of the channel resource corresponding to the at least one measurement result.
  • the terminal can obtain the information of the interference resource, that is, the interference resource corresponding to each reported measurement result, which can improve the performance of data transmission.
  • a signal transmission device may be a terminal or a chip used for the terminal, such as a chip that can be set in the terminal.
  • the device has the function of realizing the above-mentioned first aspect and various possible implementation manners. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device includes: a processing module and a transceiver module.
  • the transceiver module may be, for example, at least one of a transceiver, a receiver, and a transmitter.
  • the transceiver module may include a receiving module and a transmitting module.
  • the ground may include a radio frequency circuit or an antenna.
  • the processing module may be a processor.
  • the device further includes a storage module, and the storage module may be a memory, for example. When a storage module is included, the storage module is used to store instructions.
  • the processing module is connected to the storage module, and the processing module can execute instructions stored by the storage module or instructions derived from other sources, so that the device executes the above-mentioned first aspect and various possible implementation methods.
  • the device can be a terminal.
  • the chip when the device is a chip, the chip includes: a processing module and a transceiver module.
  • the transceiver module may be, for example, an input/output interface, pin, or circuit on the chip.
  • the processing module may be a processor, for example.
  • the processing module can execute instructions so that the chip in the terminal executes the foregoing and any possible implementation methods.
  • the processing module may execute instructions in the storage module, and the storage module may be a storage module in the chip, such as a register, a cache, and the like.
  • the storage module can also be located in the communication device but outside the chip, such as read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory) memory, RAM) etc.
  • ROM read-only memory
  • RAM random access memory
  • the processor mentioned in any of the above can be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above The first aspect, as well as any possible implementation of the method of program execution integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • a signal transmission device may be a network device or a chip used in the network device, such as a chip that can be set in the network device.
  • the device has the function of realizing the above-mentioned second aspect and various possible implementation manners. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device includes: a transceiver module and a processing module.
  • the transceiver module may be, for example, at least one of a transceiver, a receiver, and a transmitter.
  • the transceiver module may include a receiving module and a transmitting module. Specifically, it may include a radio frequency circuit or an antenna.
  • the processing module may be a processor.
  • the device further includes a storage module, and the storage module may be a memory, for example.
  • the storage module is used to store instructions.
  • the processing module is connected to the storage module, and the processing module can execute instructions stored in the storage module or instructions derived from other sources, so that the device executes the above-mentioned second aspect or any one of the methods thereof.
  • the chip when the device is a chip, the chip includes a transceiver module and a processing module.
  • the transceiver module may be, for example, an input/output interface, pin, or circuit on the chip.
  • the processing module may be a processor, for example. The processing module can execute instructions so that the chip in the network device executes the second aspect and any possible implementation methods.
  • the processing module may execute instructions in the storage module, and the storage module may be a storage module in the chip, such as a register, a cache, and the like.
  • the storage module can also be located in the communication device but outside the chip, such as read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory) memory, RAM) etc.
  • ROM read-only memory
  • RAM random access memory
  • the processor mentioned in any of the above can be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above
  • the method of the second aspect is an integrated circuit for program execution.
  • a signal transmission device may be a network device or a chip used in the network device, such as a chip that can be set in the network device.
  • the device has the function of realizing the above-mentioned third aspect and various possible implementation manners. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device includes: a transceiver module and a processing module.
  • the transceiver module may be, for example, at least one of a transceiver, a receiver, and a transmitter.
  • the transceiver module may include a receiving module and a transmitting module. Specifically, it may include a radio frequency circuit or an antenna.
  • the processing module may be a processor.
  • the device further includes a storage module, and the storage module may be a memory, for example.
  • the storage module is used to store instructions.
  • the processing module is connected to the storage module, and the processing module can execute instructions stored in the storage module or instructions derived from other sources, so that the device executes the third aspect or any one of the methods described above.
  • the chip when the device is a chip, the chip includes a transceiver module and a processing module.
  • the transceiver module may be, for example, an input/output interface, pin, or circuit on the chip.
  • the processing module may be a processor, for example. The processing module can execute instructions so that the chip in the network device executes the third aspect and any possible implementation methods.
  • the processing module may execute instructions in the storage module, and the storage module may be a storage module in the chip, such as a register, a cache, and the like.
  • the storage module can also be located in the communication device but outside the chip, such as read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory) memory, RAM) etc.
  • ROM read-only memory
  • RAM random access memory
  • the processor mentioned in any of the above can be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above
  • the method of the third aspect is an integrated circuit for program execution.
  • a signal transmission device may be a terminal or a chip used in the terminal, such as a chip that can be set in the terminal.
  • the device has the function of realizing the above-mentioned fourth aspect and various possible implementation manners. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device includes: a processing module and a transceiver module.
  • the transceiver module may be, for example, at least one of a transceiver, a receiver, and a transmitter.
  • the transceiver module may include a receiving module and a transmitting module.
  • the ground may include a radio frequency circuit or an antenna.
  • the processing module may be a processor.
  • the device further includes a storage module, and the storage module may be a memory, for example. When a storage module is included, the storage module is used to store instructions.
  • the processing module is connected to the storage module, and the processing module can execute instructions stored by the storage module or instructions derived from other sources, so that the device executes the foregoing fourth aspect and various possible implementation methods.
  • the device can be a terminal.
  • the chip when the device is a chip, the chip includes: a processing module and a transceiver module.
  • the transceiver module may be, for example, an input/output interface, pin, or circuit on the chip.
  • the processing module may be a processor, for example.
  • the processing module can execute instructions so that the chip in the terminal executes the foregoing and any possible implementation methods.
  • the processing module may execute instructions in the storage module, and the storage module may be a storage module in the chip, such as a register, a cache, and the like.
  • the storage module can also be located in the communication device but outside the chip, such as read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory) memory, RAM) etc.
  • ROM read-only memory
  • RAM random access memory
  • the processor mentioned in any of the above can be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • a signal transmission device may be a network device or a chip used in the network device, such as a chip that can be set in the network device.
  • the device has the function of realizing the above-mentioned fifth aspect and various possible implementation manners. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device includes: a transceiver module and a processing module.
  • the transceiver module may be, for example, at least one of a transceiver, a receiver, and a transmitter.
  • the transceiver module may include a receiving module and a transmitting module. Specifically, it may include a radio frequency circuit or an antenna.
  • the processing module may be a processor.
  • the device further includes a storage module, and the storage module may be a memory, for example.
  • the storage module is used to store instructions.
  • the processing module is connected to the storage module, and the processing module can execute instructions stored in the storage module or instructions derived from other sources, so that the device executes the above-mentioned fifth aspect or any one of the methods thereof.
  • the chip when the device is a chip, the chip includes a transceiver module and a processing module.
  • the transceiver module may be, for example, an input/output interface, pin, or circuit on the chip.
  • the processing module may be a processor, for example. The processing module can execute instructions so that the chip in the network device executes the fifth aspect and any possible implementation methods.
  • the processing module may execute instructions in the storage module, and the storage module may be a storage module in the chip, such as a register, a cache, and the like.
  • the storage module can also be located in the communication device but outside the chip, such as read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory) memory, RAM) etc.
  • ROM read-only memory
  • RAM random access memory
  • the processor mentioned in any of the above can be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above
  • the method of the fifth aspect is an integrated circuit for program execution.
  • a computer storage medium stores program code, and the program code is used to instruct the execution of the method in the above-mentioned first aspect or the fourth aspect, and any possible implementation manners thereof. instruction.
  • a computer storage medium is provided, and program code is stored in the computer storage medium, and the program code is used to instruct to execute any one of the above-mentioned second, third, or fifth aspects, or Instructions for methods in any possible implementation.
  • a computer program product containing instructions which when running on a computer, causes the computer to execute the method in the first aspect or the fourth aspect, or any possible implementation manner thereof.
  • a computer program product containing instructions which when running on a computer, causes the computer to execute any one of the above-mentioned second, third, or fifth aspects, or any possible implementation thereof The method in the way.
  • a communication system in a fifteenth aspect, includes a device capable of implementing the methods and various possible designs of the above-mentioned first aspect, and the above-mentioned device capable of implementing the various methods and various possible designs of the above-mentioned second aspect. The function of the device.
  • a communication system in a sixteenth aspect, includes a device capable of implementing the methods and various possible designs of the above-mentioned first aspect, and the above-mentioned device capable of implementing the various methods and various possible designs of the above-mentioned third aspect. The function of the device.
  • a communication system in a seventeenth aspect, includes a device capable of implementing the methods and various possible designs of the above-mentioned fourth aspect, and the above-mentioned device capable of implementing the various methods and various possible designs of the above-mentioned fifth aspect. The function of the device.
  • a processor is provided, which is configured to be coupled with a memory and configured to execute the method in the foregoing first aspect, fourth aspect, or any possible implementation manner thereof.
  • a processor configured to be coupled with a memory and configured to execute the method in the foregoing second aspect, third aspect, fifth aspect, or any possible implementation manner thereof.
  • the network device simultaneously transmits signals through the K channel resources, and the terminal can receive the signals transmitted through the K channel resources.
  • the terminal uses the spatial reception parameters of the K channel resources as the spatial reception parameters of each of the M interference resources, and then measures the first interference resource according to the spatial reception parameters of the first interference resource among the M interference resources, And determine the first measurement results of the K channel resources under the interference of the first interference resource, and then report the M measurement results of the M interference resources to the network device through the measurement report report, so that the network device can learn more accurately The accuracy of the interference from the interference resource to the channel resource.
  • Figure 1 is a schematic diagram of a communication system of the present application
  • Fig. 2 is a schematic flowchart of a method for measuring and reporting beam interference in a traditional solution
  • Fig. 3 is a schematic diagram of a method for measuring and reporting beam interference in a traditional scheme
  • FIG. 4 is a schematic flowchart of a method for interference measurement and reporting according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of a method for interference measurement and reporting according to a specific embodiment of the present application.
  • FIG. 6 is a schematic diagram of a method for interference measurement and reporting according to another specific embodiment of the present application.
  • FIG. 7 is a schematic diagram of an interference measurement report method according to another specific embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a communication device according to another embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a communication device according to another embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a communication device according to another embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a communication device according to another embodiment of the present application.
  • the embodiment of the beam in the NR protocol can be a spatial domain filter, or a spatial filter or a spatial parameter.
  • the beam used to transmit a signal can be called a transmission beam (Tx beam), can be called a spatial domain transmission filter or a spatial transmission parameter (spatial transmission parameter);
  • the beam used to receive a signal can be called To receive the beam (reception beam, Rx beam), it can be called a spatial domain receive filter or a spatial receive parameter (spatial RX parameter).
  • the transmitting beam may refer to the distribution of signal strength in different directions in space after a signal is transmitted through the antenna
  • the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space.
  • the beam may be a wide beam, or a narrow beam, or other types of beams.
  • the beam forming technology may be beamforming technology or other technologies.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, or a hybrid digital/analog beamforming technology, etc.
  • the beam generally corresponds to the resource.
  • the network device measures different beams through different resources, and the terminal feeds back the measured resource quality, and the network device knows the quality of the corresponding beam.
  • the beam information is also indicated by its corresponding resource.
  • the network device indicates the PDSCH beam information of the terminal through the resources in the TCI of the DCI.
  • multiple beams with the same or similar communication characteristics are regarded as one beam.
  • One or more antenna ports can be included in one beam, which are used to transmit data channels, control channels, and sounding signals.
  • One or more antenna ports forming a beam can also be regarded as an antenna port set.
  • each beam of the network device corresponds to a resource, so the resource index can be used to uniquely identify the beam corresponding to the resource.
  • the resource index can be used to uniquely identify the beam corresponding to the resource.
  • the resource can be an uplink signal resource or a downlink signal resource.
  • the uplink signal includes but is not limited to sounding reference signal (SRS) and demodulation reference signal (DMRS).
  • Downlink signals include but are not limited to: channel state information reference signal (CSI-RS), cell specific reference signal (CS-RS), UE specific reference signal (user equipment specific reference signal, US-RS), demodulation reference signal (demodulation reference signal, DMRS), and synchronization signal/physical broadcast channel block (synchronization system/physical broadcast channel block, SS/PBCH block).
  • the SS/PBCH block may be referred to as a synchronization signal block (synchronization signal block, SSB) for short.
  • a resource is a data structure, including its corresponding uplink/downlink signal related parameters, such as the type of uplink/downlink signal, the resource element that carries the uplink/downlink signal, the transmission time and period of the uplink/downlink signal , The number of ports used to send uplink/downlink signals, etc.
  • Each uplink/downlink signal resource has a unique index to identify the downlink signal resource. It is understandable that the index of the resource may also be referred to as the identifier of the resource, which is not limited in the embodiment of the present application.
  • the channel resource refers to the resource used for data transmission reported by the terminal in the beam measurement.
  • the terminal regards other resources as the interference of the channel resource to calculate its interference to the channel resource. These resources considered as interference are collectively referred to as interference resources.
  • Grouping reporting is a special reporting method.
  • Grouping reporting can be activated by configuring the beam grouping reporting parameter (group based beam reporting) in the measurement configuration to be enabled (for example, configured to enabled). Specifically, when group based beam reporting is configured as enabled, the terminal will select two resources that can be received by it at the same time, and report the indexes of these two resources to the network device.
  • group based beam reporting when group based beam reporting is configured as enabled, the terminal will select two resources that can be received by it at the same time, and report the indexes of these two resources to the network device.
  • TCI-state is configured by network equipment to each terminal.
  • the structure of TCI-state is shown in Figure 1.
  • Each TCI-state includes an own index TCI-state identification (identity, Id), and two quasi-co-location (QCL)-information (Info).
  • Each QCL-Info includes a cell field and bandwidth part (bandwidth part, bwp)-Id, which respectively indicate which bwp of which cell the TCI-state is applied to, that is, different cells or different bwp of the same cell can be configured differently QCL-Info.
  • QCL-Info also includes a reference signal (reference signal), which is used to indicate which reference signal resource constitutes the QCL system.
  • beam generally does not appear directly, and beams are generally replaced by other terms.
  • beams correspond to reference signal resources, and one beam corresponds to one reference signal resource. Therefore, what reference signal resource constitutes a QCL relationship with here essentially refers to which beam constitutes a QCL relationship with.
  • the QCL relationship means that two reference signal resources (or two antenna ports, the antenna port and the reference signal resource are also in a one-to-one correspondence) have some same spatial parameters. Which spatial parameters are the same depends on the type of the QCL-Info, that is, another field qcl-Type of the QCL-Info.
  • qcl-Type can have four values ⁇ typeA, typeB, typeC, typeD ⁇ . Taking typeD as an example, typeD indicates that two reference signal resources have the same spatial receiving parameter information, that is, the two beams have the same receiving beam. At most one of the two QCL-Info included in the TCI-state can be TypeD.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • the terminal in the embodiments of the present application may refer to user equipment, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user Device.
  • the terminal can also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), and a wireless communication function Handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in the future 5G network or terminals in the future evolved public land mobile network (PLMN), etc. This is not limited in the embodiments of the present application.
  • the network equipment in the embodiments of the present application may be equipment used to communicate with terminals.
  • the network equipment may be a global system for mobile communications (GSM) system or code division multiple access (CDMA).
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • the base transceiver station (BTS) can also be a base station (NodeB, NB) in a wideband code division multiple access (WCDMA) system, or an evolved base station (evoled NodeB) in an LTE system.
  • NodeB base station
  • WCDMA wideband code division multiple access
  • evoled NodeB evolved base station
  • ENB or eNodeB it can also be a wireless controller in a cloud radio access network (CRAN) scenario, or the network device can be a relay station, an access point, a vehicle-mounted device, a wearable device, and the future 5G
  • BBU baseband unit
  • DU distributed unit
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • the CU implements some of the functions of the gNB, and the DU implements some of the functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implements radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing the physical layer protocol and real-time services, and realizes the functions of the radio link control (RLC) layer, the media access control (MAC) layer, and the physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • AAU realizes some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this architecture, high-level signaling, such as RRC layer signaling, can also be considered to be sent by the DU , Or, sent by DU+AAU.
  • the network device may be a device that includes one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network equipment in an access network (radio access network, RAN), and the CU can also be divided into network equipment in a core network (core network, CN), which is not limited in this application.
  • the terminal or network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating systems, Unix operating systems, Android operating systems, iOS operating systems or windows operating systems.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution body of the method provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided in accordance with the embodiments of the application.
  • the execution subject of the method provided in the embodiment of the present application may be a terminal or a network device, or a functional module in the terminal or network device that can call and execute the program.
  • various aspects or features of the present application can be implemented as methods, devices, or products using standard programming and/or engineering techniques.
  • article of manufacture used in this application encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (DVD)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • Fig. 1 is a schematic diagram of a communication system of the present application.
  • the communication system in FIG. 1 may include at least one terminal (for example, the terminal 10, the terminal 20, the terminal 30, the terminal 40, the terminal 50, and the terminal 60) and a network device 70.
  • the network device 70 is used to provide communication services for the terminal and access the core network.
  • the terminal can access the network by searching for synchronization signals, broadcast signals, etc. sent by the network device 70, so as to communicate with the network.
  • the terminal 10, the terminal 20, the terminal 30, the terminal 40, and the terminal 60 in FIG. 1 can perform uplink and downlink transmissions with the network device 70.
  • the network device 70 may send downlink signals to the terminal 10, the terminal 20, the terminal 30, the terminal 40, and the terminal 60, and may also receive the uplink signal sent by the terminal 10, the terminal 20, the terminal 30, the terminal 40, and the terminal 60.
  • the terminal 40, the terminal 50, and the terminal 60 can also be regarded as a communication system, and the terminal 60 can send downlink signals to the terminal 40 and the terminal 50, and can also receive uplink signals sent by the terminal 40 and the terminal 50.
  • embodiments of the present application may be applied to a communication system including one or more network devices, and may also be applied to a communication system including one or more terminals, which is not limited in the present application.
  • a network device can send data or control signaling to one or more terminals. Multiple network devices can also send data or control signaling to one or more terminals at the same time.
  • Fig. 2 shows a schematic flowchart of a method for interference measurement and reporting in a traditional solution.
  • the network device sends configuration information to the terminal.
  • the configuration information includes two parts: resource configuration information and report configuration information.
  • the resource configuration information includes information related to channel resources and interference resources. Wherein, the information related to the channel resource may include the location of the time-frequency resource corresponding to the channel resource, and the spatial reception parameter of the channel resource, etc.
  • the information related to the interference resource may include the location of the time-frequency resource corresponding to the interference resource, and the spatial reception parameter of the interference resource. Information related to interference resources may not include spatial reception parameters.
  • the network device may configure one or more resource configurations for the terminal, each resource configuration includes one or more resource sets, and each resource set may include one or more resources. Each resource configuration/resource set/resource includes its own index.
  • Reporting configuration information refers to information related to the reporting of measurement results.
  • Each reporting configuration includes reporting time and period, reporting volume and other information related to reporting.
  • the report configuration also includes the index of the resource configuration, which is used to indicate what resource the report result is obtained by measuring.
  • channel resources can also be referred to as channel measurement resources
  • interference resources can also be referred to as interference measurement resources.
  • the network device respectively sends downlink signals on the channel resource and the interference resource configured by the resource configuration information.
  • the terminal determines the measurement result of the channel resource under the interference of the interference resource according to the downlink signal on the measured channel resource and the downlink signal on the interference resource. Among them, the measurement result can be expressed by SINR.
  • measuring the interference of the interference resource on the channel resource is essentially measuring the interference of the signal corresponding to the interference resource on the signal corresponding to the channel resource, or the interference of the transmission beam corresponding to the interference resource on the transmission beam corresponding to the channel resource.
  • the terminal sends a measurement report to the network device, where the measurement report is used to indicate the measurement result and so on.
  • the network equipment can measure the interference caused by the interference resource to a single channel resource.
  • the terminal can measure the interference caused by interference resource #3 (corresponding to transmission beam #3) to channel resource #1 (corresponding to transmission beam #1).
  • the specific method is to configure interference resource #3 with the same TCI-state as channel resource #1 (that is, the same receive space parameter, or receive beam), so that the terminal will use the receive beam of channel resource #1 (receive beam 4) to receive the channel.
  • the downlink signals on resource #1 and interference resource #3 are thereby calculated to calculate the SINR of channel resource #1 under the interference of interference resource #3.
  • the terminal cannot measure the interference caused by the interference resource to multiple channel resources at the same time. For example, in FIG.
  • the receiving beams corresponding to channel resource #1 and channel resource #2 are beam #4 and beam #5.
  • the terminal will use #4 and #5 to receive at the same time.
  • the terminal should use beams #4 and #5 to receive interference resource #3 at the same time to measure the interference caused by interference resource #3 to channel resources #1 and #2 at the same time.
  • the prior art does not support the configuration of multiple TCI-states (or multiple receive beams) for the interference resource, so it is impossible to measure the interference caused by the interference resource #3 to the channel resources #1 and #2 at the same time.
  • FIG. 4 shows a schematic flowchart of a method for interference measurement and reporting according to an embodiment of the present application.
  • the terminal uses the spatial reception parameters of K channel resources as the spatial reception parameters of each of the M interference resources of the terminal, and the K channel resources are that the terminal can receive the network equipment using the K channel resources.
  • M is a positive integer
  • K is a positive integer greater than or equal to 2.
  • the network device simultaneously sends signals through the K channel resources, and the terminal can receive the signals sent through the K channel resources.
  • the K channel resources are resources that the corresponding downlink signals can be received by the terminal at the same time (for example, CSI-RS and/or SSB resources can be received simultaneously by the UE), or the terminal can receive the same at the same time.
  • Signals sent by K channel resources may mean that the terminal is capable of receiving the downlink signals corresponding to the K channel resources at the same time, or it means that the terminal is capable of receiving the transmission beams corresponding to the K channel resources at the same time. . That is to say, when the network device uses the transmission beams corresponding to these several channel resources to simultaneously transmit downlink signals, the terminal can receive them all.
  • the receiving beams of the transmitting beams corresponding to the K channel resources are all the same, and the terminal can use the receiving beam to simultaneously receive the downlink signals on the transmitting beams corresponding to the K channel resources.
  • the receive beams of the transmit beams corresponding to the K channel resources are different (assuming that there are X different receive beams in total), the terminal has multiple antenna panels, and can use the above X different receive beams for reception at the same time.
  • the terminal can also receive the downlink signals on the transmission beams corresponding to the K channel resources at the same time.
  • the K channel resources may be K transmission beams of the network device.
  • taking the spatial reception parameters of K channel resources as the spatial reception parameters of an interference resource can be understood as using all the receiving beams corresponding to the K channel resources to receive the interference resource at the same time, or it can be understood as using All the receiving beams corresponding to the K channel resources are used as the receiving beams of the interference resource, or it can be understood that the interference resource and the K channel resources are QCL at the same time.
  • all the receiving beams corresponding to the K channel resources that is, the K transmitting beams of the network device and the K receiving beams of the terminal are in one-to-one correspondence.
  • the K signals sent by the network device at the same time may be received by the terminal at the same time or at different times, which is not limited in this application.
  • the terminal may receive signals of the K channel resources through one or more channel resources, which is not limited herein.
  • the type of channel resource can be a non-zero-power channel status information reference signal resource (None zero-power channel status information reference signal-resource, NZP-CSI-RS-resource), or a synchronization signal-broadcast channel measurement resource Block (synchronization signal and PBCH block, SSB).
  • the type of interference resource can be NZP-CSI-RS-resource, channel status information interference measurement (CSI-IM)-resource type, or a mixture of the two, that is, part of it is NZP -CSI-RS-resource, part of which is CSI-IM-resource.
  • the above K channel resources may be selected from the N channel resources configured in the measurement configuration information corresponding to the current measurement, or may be directly configured in the measurement configuration information corresponding to the current measurement. These two cases correspond to two embodiments respectively.
  • the above K channel resources are K channel resources determined from the N channel resources that can be simultaneously received by the terminal.
  • the determination of K channel resources and the measurement of M interference resources using the spatial reception parameters of the K channel resources are completed in the same measurement report process.
  • the network device configures N channel resources and M interference resources through the measurement configuration information.
  • the terminal first selects the above K channel resources that can be received simultaneously from the N channel resources, and then uses the space reception parameters of the K channel resources as the space reception of each of the M interference resources. Parameters to measure these M interference resources.
  • the N channel resources may be configured in the same resource setting (resource setting), or may be configured in different resource settings.
  • the N channel resources may be configured in the same resource set (resourceset), or may be configured in different resource sets.
  • the M interference resources can be configured in the same resource setting, or can be configured in different resource settings.
  • the N dry resources can be configured in the same resource set, or in different resource sets.
  • the N channel resources and the M interference resources may be configured in the same resource setting or the same resource set, or configured in different resource settings or different resource sets, which is not limited in this application.
  • resourcesetting can also be called resourceconfig.
  • the configuration information is also used to configure the spatial reception parameters of each channel resource in the N channel resources.
  • the spatial reception parameters of the N channel resources may be different from one another, or all of them may be the same, or some of them may be the same, which is not limited in this application.
  • the configuration information may also configure group based beam reporting and/or report quantity parameters (report quantity).
  • the beam group report parameter is used for whether to report the measurement results of K channel resources that can be received by the terminal at the same time. If the beam group report parameter indicates to be enabled (for example, configured to be enabled), the terminal reports in a grouping manner, reporting K channel resources that can be received by the terminal at the same time; if the beam group report parameter indicates to be disabled (for example, configured to be disabled), then The terminal does not need to report in groups.
  • the reported amount parameter is used to indicate the content included in the reported result, such as reference signal receiving power (RSRP), SINR, etc.
  • the embodiments of the present application limit the names of the beam group report parameters and the reported amount parameters, and the beam group report parameters and the reported amount parameters may also adopt other names.
  • the time corresponding to the N channel resources is earlier than the time corresponding to the M interference resources.
  • the time corresponding to the resource refers to the time when the downlink signal corresponding to the resource is sent, and the time can be indicated by the time-frequency resource mapping (resource-mapping) parameter in the resource.
  • the time can be expressed as orthogonal frequency division multiplexing (OFDM) symbols, time slots, milliseconds, and so on.
  • the time corresponding to the N channel resources is earlier than the time corresponding to the M interference resources, and may be the latest time among the times corresponding to the N channel resources, and earlier than the earliest time corresponding to the M interference resources time.
  • the time corresponding to the N channel resources is earlier than the time corresponding to the M interference resources. It may also specifically mean that the time corresponding to the N channel resources may be X time units earlier than the time corresponding to the M interference resources. .
  • the latest time among the times corresponding to the N channel resources is X time units earlier than the earliest time among the times corresponding to the M interference resources.
  • the unit of time can be OFDM symbols, time slots, and so on.
  • the latest time among the times corresponding to the N channel resources is X symbols earlier than the earliest time among the times corresponding to the M interference resources.
  • the OFDM symbol corresponding to the channel resource with the latest time among the N channel resources is X symbols earlier than the OFDM symbol corresponding to the resource with the earliest time among the M interference resources. It can also be expressed as the interval between the OFDM symbol (symbol j) corresponding to the resource with the earliest time among the M interference resources and the OFDM symbol (symbol i) corresponding to the channel resource with the latest time among the N channel resources at least Is X symbols, for example, ji is greater than or equal to X.
  • the time corresponding to the N channel resources is earlier than the time corresponding to the M interference resources. It may also specifically refer to the earliest time among the times corresponding to the N channel resources, which is longer than the time corresponding to the M interference resources.
  • the earliest time in is X time units earlier. Or, it may also be the earliest time among the times corresponding to the N channel resources, which is X time units earlier than the latest time among the times corresponding to the M interference resources. Or, it may also be the latest time among the times corresponding to the N channel resources, which is X time units earlier than the latest time among the times corresponding to the M interference resources.
  • the value of X can be the default value specified by the protocol, or it can be reported by the terminal to the network device (for example, reported to the network device through the terminal capability reporting process), or the network device can be controlled by the wireless resource.
  • RRC radio resource control
  • CE media access control
  • DCI downlink control information
  • the time unit can be a symbol, a time slot, a subframe, a frame, a millisecond, a microsecond, a Ts, or a Tc.
  • the first condition may be used, and when the condition is met, the method of the first embodiment of step 401 is used to determine the receiving space parameter of the interference resource. That is, only when the condition is met, the spatial reception parameters of the K channel resources that can be simultaneously received by the terminal determined from the N channel resources are used as the spatial reception parameters of each of the M interference resources.
  • the condition can be one of the following. The following items are for this measurement configuration information.
  • the beam group report parameter indication in the measurement configuration information is on.
  • group based beam reporting is configured as enabled
  • the reported amount parameter in the measurement configuration information indicates that the reported content includes SINR.
  • the report quantity is configured as cri-SINR, ssb-Index-SINR or any other form that includes SINR;
  • Interference resources are configured in the measurement configuration information. In other words, not only channel resources are configured;
  • the interference resource is configured in the measurement configuration information and the TCI-state parameter is not configured for the interference resource;
  • the time of the N channel resources configured in the measurement configuration information is X OFDM symbols earlier than the time of the M interference resources.
  • the time of the latest channel resource among the N channel resources is X OFDM symbols earlier than the time of the latest interference resource among the M interference resources.
  • the foregoing condition may also be a combination of the foregoing multiple items, that is, when multiple items are satisfied at the same time, the spatial reception parameters of K channel resources are used as the spatial reception parameters of each of the M interference resources. It can be a combination of the following.
  • the beam group report parameter indication in the measurement configuration information is on, and the report content indicated by the report amount parameter includes the SINR.
  • the beam group report parameter indication in the measurement configuration information is on, and the interference resource is configured in the configuration information.
  • the beam group report parameter indication in the measurement configuration information is on, and the interference resource is configured and the interference resource is not configured with the TCI-state parameter.
  • the beam group report parameter indication in the measurement configuration information is on, and the time of the configured N channel resources is X OFDM symbols earlier than the time of the M interference resources.
  • the beam group report parameter indication in the measurement configuration information is on, the report content indicated by the report amount parameter includes SINR, and the time of the configured N channel resources is X OFDM symbols earlier than the time of the M interference resources.
  • the beam group report parameter indication in the measurement configuration information is on, and interference resources are configured, and the time of the configured N channel resources is X OFDM symbols earlier than the time of the M interference resources.
  • the beam group report parameter indication in the measurement configuration information is on, the interference resource is configured and the interference resource is not configured with the TCI-state parameter, and the time of the configured N channel resources is X OFDM symbols earlier than the time of the M interference resources.
  • the above K channel resources are directly configured instead of being determined from the configured N channel resources.
  • the network device configures K channel resources and M interference resources.
  • the terminal uses the spatial reception parameters of the K channel resources as the spatial reception parameters of each of the M interference resources to measure the M interference resources.
  • the terminal receives first measurement configuration information from the network device, where the first measurement configuration information includes K channel resources and M interference resources.
  • the terminal uses the spatial reception parameters of the K channel resources as the spatial reception parameters of each of the M interference resources.
  • the K channel resources may be simultaneously received by the terminal. That is to say, when the network device has learned K channel resources that can be received by the network device at the same time, for example, if the K channel resources that can be received by the terminal are determined through other measurement processes, the above configuration can be directly used for measurement, and There is no need to configure N channel resources, let the terminal first select K channel resources that can be received by it at the same time, and then use the receiving space parameters of these K channel resources as the space parameters of each interference resource in the M interference resources. To measure these M interference resources.
  • these K channel resources cannot be received by the terminal at the same time, and the terminal can also use the spatial reception parameters of the K channel resources as the spatial reception parameters of each of the M interference resources.
  • These M interference resources are measured, which is not limited in this application.
  • a second condition may be used, and when the second condition is met, the method of the second embodiment of step 401 is used to determine the receiving space parameter of the interference resource. That is, only when the second condition is met, the configured spatial reception parameters of the K channel resources will be used as the spatial reception parameters of each of the M interference resources.
  • the second condition can be any one of the following. The following items are for the first measurement configuration information.
  • the beam group report parameter indication in the first measurement configuration information is turned on, and the report content indicated by the report amount parameter includes the SINR.
  • the report quantity is configured as cri-SINR, ssb-Index-SINR or any other form containing SINR;
  • the beam group report parameter in the first measurement configuration information indicates that it is turned on, and the interference resource is configured
  • the beam group report parameter indication in the first measurement configuration information indicates that it is turned on, and the interference resource is configured, and the TCI-state parameter is not configured for the interference resource;
  • the terminal may directly execute the above method by default, and the above second condition is not required.
  • the above K channel resources that can be simultaneously received by the terminal are determined through another measurement process. That is to say, before this measurement, that is, before the measurement performed according to the foregoing first measurement configuration information, the terminal has performed a measurement. For example, the terminal receives second measurement configuration information from the network device, and N channel resources are configured in the second measurement configuration information. According to the second measurement configuration information, the terminal determines the K channel resources that can be received by it at the same time from the N channel resources, and reports the index of the K channel resources to the network device, so that the network device can know the K channel resources. Channel resources.
  • a third condition may be used, and when the third condition is met, the terminal determines K channel resources that can be simultaneously received by the terminal from the N channel resources configured in the second measurement configuration information.
  • the third condition can be any one of the following. The following items are for the second measurement configuration information.
  • the beam group report parameter indication in the second measurement configuration information is turned on, and the report content indicated by the report amount parameter includes RSRP.
  • the reported volume parameter is configured as cri-RSRP, ssb-Index-RSRP or other forms including RSRP.
  • the beam group report parameter in the second measurement configuration information indicates that it is turned on, and the interference resource is not configured.
  • the network device when the network device configures interference resources for the terminal through the measurement configuration information, it needs to refer to the capability limit of the terminal, that is, the maximum number of interference resources that the terminal can support.
  • the terminal can report its capability on interference resources, such as the maximum number of interference resources that can be measured in a time slot, through the terminal capability reporting process. Specifically, the terminal can report any one or more of the following terminal capabilities.
  • the upper limit of the number of interference resources may be:
  • the upper limit of the number of interference resources that can be configured in a cell; the upper limit of the number of interference resources that can be configured in a bwp; the upper limit of the total number of interference resources that can be configured in all cells; the upper limit of the number of interference resources that can be configured on an OFDM symbol; the interference that can be configured in a time slot The upper limit of the number of resources; the upper limit of the number of interference resources that can be configured in a resourcesetting; the upper limit of the number of interference resources that can be configured in a resourceset; the upper limit of the number of interference resources associated with a reportconfig; the upper limit of the number of interference resources associated with a channel resource; and a channel resource
  • the above various upper limits can refer to the upper limit of the number of interference resources of the type NZP CSI-RS, or the upper limit of the number of interference resources of the type CSI-IM, or the upper limit of the number of interference resources of the type NZP CSI. -The upper limit of the total number of interference resources of RS and interference resources of type CSI-IM.
  • the terminal determines the first measurement result of the K channel resources according to the spatial reception parameter of the first interference resource among the M interference resources.
  • the terminal measures the first interference resource according to the spatial reception parameters of the first interference resource among the M interference resources, and determines the first measurement result of the K channel resources under the interference of the first interference resource.
  • the first interference resource is any one of the M interference resources. That is, the terminal can measure each of the M interference resources, and determine the measurement results of the K channel resources under the interference of each interference resource. That is, the terminal can determine the M measurement results corresponding to the M interference resources.
  • the spatial reception parameters of the K channel resources are TCI-state1 and TCI-state2, then any one of the M interference resources must use the TCI-state1 and TCI-state2 are measured.
  • the measurement result in this application may be SINR, or RSRP, CQI, or reference signal receiving quality (RSRQ), which is not limited in this application.
  • the SINR may also be L1-SINR.
  • the following method can be used to calculate the measurement result.
  • SINR as an example below.
  • the terminal uses the spatial reception parameters of resource 1 and resource 2 to receive the downlink signal corresponding to the interference resource i, and the measured interference energy I i .
  • receive the downlink signal corresponding to resource 1 receives the downlink signal corresponding to resource 1, and measure the signal energy P1.
  • P1 may also be the measured signal energy when receiving the downlink signal corresponding to resource 1 simultaneously using the spatial reception parameters of resource 1 and resource 2.
  • the signal energy P2 is measured.
  • P2 may also be the measured signal energy when the downlink signal corresponding to resource 1 is simultaneously received using the spatial reception parameters of resource 1 and resource 2.
  • the following uses resource 1 to illustrate the calculation method of SINR.
  • the SINR of resource 1 under the interference of interference resource 1 can be calculated by the following formula:
  • N 0 is the energy of other interference, such as noise and interference of adjacent cells.
  • the SINR of resource 1 under the interference of interference resource 1 can also be calculated by the following formula:
  • P 21 is the space receiving parameter using resource 1, receiving resource 2, and the measured energy of resource 2.
  • P 21 is the energy leaked from resource 2 to the receiving beam of resource 1. This part of energy will cause interference to the signal on resource 1, so the entire interference needs to be considered.
  • K resources are measured (K resources can be configured K channel resources, or K channel resources to be reported that can be received at the same time)
  • K resources can be configured K channel resources, or K channel resources to be reported that can be received at the same time
  • the SINR of resource j use the spatial reception parameters of resource j to measure the signal energy of each of the K resources, and use the signal energy of the other resources as interference to calculate the SINR of resource j; or use the other resources to calculate the SINR of resource j.
  • the signal energy of is all used as the SINR of interference calculation resource j; resource j is any one of the K resources.
  • the interference of all M interference resources to K channel resources can also be calculated, that is, the interference energy in the M interference resources is added together to calculate the interference energy of the K resources.
  • the following calculation method can be used.
  • I is the sum of the interference energy of all M interference resources.
  • the foregoing SINR measurement result can be used to determine the K channel resources to be reported that can be received at the same time. For example, among multiple groups (K per group) of channel resources that can be received at the same time, the group of channel resources with the largest equivalent SINR is selected.
  • the equivalent SINR refers to the maximum value, minimum value, average value, sum, etc. of the SINR of K channel resources. It can also be an SINR calculated by other calculation methods.
  • An equivalent SINR threshold may also be used. When there is no set of SINR exceeding the threshold, the measurement result is not reported, or a special value is reported.
  • the terminal sends a measurement report to the network device, where the measurement report is used to indicate measurement results of K channel resources, and the measurement report includes the first measurement result.
  • the measurement report may be used to indicate the M measurement results.
  • the measurement report includes M measurement results, and each measurement result corresponds to an interference resource.
  • Each of the M measurement results includes the index of the corresponding channel resource.
  • the terminal can directly report the M measurement results to the network device, and carry the index of the corresponding interference resource in each measurement result, so that the network device can recognize that each measurement result is relative to the K channel resources Which interference resource is the measurement result.
  • the measurement report includes M measurement results, the M measurement results are sorted in a first order, and the first order is a preset interference channel resource index order or a configuration of the K interference resources order.
  • the terminal may directly report the M measurement results to the network device.
  • the M measurement results are sorted in a first order, and the first order is a preset interference resource index order or a configuration order of the at least K interference resources.
  • the network device can also recognize that each measurement result is a measurement result of which interference resource is relative to the K channel resources.
  • the reference SINR when L SINRs are to be reported, the largest or smallest SINR may be reported, and the difference between the other L-1 SINRs and the largest or smallest SINR may be reported.
  • the above-mentioned maximum or minimum SINR may be referred to as the reference SINR.
  • the reference SINR uses Q bits, and each SINR difference uses R bits.
  • the difference between two adjacent values is called the quantization step size. For example, 0000 means 1dB, 0001 means 2dB, and the difference is 1dB, then the quantization step size of the SINR difference is 1dB.
  • the value of the step size of the SINR difference in the embodiment of the present application may have a mapping relationship with the first SINR. That is, multiple SINR intervals can be specified, and each SINR interval adopts a step size. For example, as shown in Table 1 below, when the value of the reference SINR is greater than 20 dB, a step size of 2 dB is used. When the value of the reference SINR is between 10dB and 20dB, a step size of 1.5dB is used. When the value of the reference SINR is between 5dB and 10dB, a step size of 1dB is used. When the value of the reference SINR is less than 5dB, a step size of 0.5dB is used.
  • FIG. 5 shows a schematic flowchart of a method for interference measurement and reporting according to a specific embodiment of the present application.
  • a network device sends measurement configuration information to a terminal, where the measurement configuration information is used to configure N channel resources and M interference resources.
  • the terminal determines K channel resources from the N channel resources, where the K channel resources are channel resources through which the terminal can receive signals simultaneously sent by the network device.
  • the terminal uses the spatial reception parameters of the K channel resources as the spatial reception parameters of each of the M interference resources of the terminal.
  • the terminal determines the first measurement result of the K channel resources according to the spatial reception parameter of the first interference resource among the M interference resources.
  • the terminal sends a measurement report to the network device, where the measurement report is used to indicate M measurement results, and the measurement report includes the first measurement result.
  • FIG. 6 shows a schematic flowchart of a method for interference measurement and reporting according to a specific embodiment of the present application.
  • the terminal receives second configuration information from a network device, where the second configuration information is used to configure N channel resources.
  • the terminal determines K channel resources from the N channel resources, where the K channel resources are channel resources through which the terminal can receive signals simultaneously sent by the network device.
  • the terminal sends instruction information to the network device, where the instruction information is used to indicate the K channel resources.
  • the terminal receives first configuration information from the network device, where the first configuration information is used to configure spatial reception parameters of the K channel resources and the M interference resources.
  • the terminal uses the spatial reception parameters of the K channel resources as the spatial reception parameters of each of the M interference resources of the terminal.
  • the terminal determines the first measurement result of the K channel resources according to the spatial reception parameter of the first interference resource among the M interference resources.
  • the terminal sends a measurement report to the network device, where the measurement report is used to indicate M measurement results, and the measurement report includes the first measurement result.
  • FIG. 7 shows a schematic flowchart of a method for determining a transmission beam of a channel resource according to an embodiment of the present application.
  • the network device sends measurement configuration information to the terminal, where the measurement configuration information is used to configure N channel resources and M interference resources, and the configuration information includes the repetition parameters of the N channel resources and the repetition parameters of the N channel resources.
  • the status of is used to indicate whether the transmission beams of the N channel resources are the same;
  • the terminal determines whether the transmission beams of the N channel resources are the same according to the repetition parameters of the N channel resources.
  • the network device may use the parameter repetition to indicate whether the channel resource and the interference resource are transmitted by using one transmission beam.
  • the transmission beams of the N channel resources are the same, and it can be understood that the N channel resources use the same beam, but signals are transmitted on different time domain resources.
  • the first state of the repeated parameters of the N channel resources is used to indicate that the transmission beams of the N channel resources are the same, and the second state of the repeated parameters of the N channel resources is used to indicate the state of the N channel resources.
  • the transmit beam is different.
  • a channel resource set resourceset for example, NZP-CSI-RS-resourceset
  • an interference resource set resourceset are configured in the measurement configuration information.
  • the channel resource set includes N channel resources
  • the interference resource set includes M interference resources.
  • the configuration information may further include repetition parameters of the M interference resources, and the status of the repetition parameters of the M interference resources is used to indicate whether the transmission beams of the M interference resources are the same.
  • the terminal when the repetition parameter of the interference resource set is configured to be in an on state (for example, configured to be “on”), the terminal considers that the M interference resources are transmitted on M different OFDM symbols using the same transmission beam. Conversely, when the repetition parameter of the interference resource set is configured to be in the off state (for example, configured to be "off”), the terminal cannot consider that the M interference resources are transmitted using the same transmission beam.
  • N can be greater than M, or equal to M, or less than M.
  • the measurement report includes at least one measurement The result and the index of the channel resource corresponding to the at least one measurement result.
  • the terminal when the repetition parameter of the aforementioned channel resource set is configured to be on (for example, configured to be “on”), and the repetition parameter of the interference resource set is configured to be off (for example, configured to be "off"), the terminal considers that N channel resources use the same One transmit beam, and M interference resources do not necessarily use the same transmit beam. In this case, the terminal needs to report the channel resource index when reporting the measurement result through the measurement report.
  • the network device configures a channel resource set resourceSet and a corresponding interference measurement resource set resourceSet for the terminal, if the repetition parameter of the channel resource set resourceSet is configured to be in the on state (for example, configured to "on"), the If the repetition parameter of the interference measurement resource set resourceSet is configured to be in the off state (for example, configured to be "off"), the terminal needs to report the index of the channel resource.
  • the channel resource index is associated with an interference resource index, and the interference resource index can be determined through the channel resource index. That is to say, when the terminal device wants to report an interference resource index, it may not directly report the index of the interference resource, but report the index of the channel resource associated with the interference resource.
  • the terminal device when the terminal device reports the measurement result through the measurement report, it may directly report the index of the interference resource. That is, if the network device configures a channel resource set resourceSet and a corresponding interference measurement resource set resourceSet for the terminal, if the repetition parameter of the channel resource set resourceSet is configured to be in the on state (for example, configured to "on"), the If the repetition parameter of the interference measurement resource set resourceSet is configured to be in an off state (for example, configured to be "off”), the terminal needs to report the index of the interference resource.
  • the network device configures a channel resource set resourceSet and a corresponding interference measurement resource set resourceSet for the terminal, if the repetition parameter of the channel resource set resourceSet is configured to be in the on state (for example, configured to "on"), the If the repetition parameter of the interference measurement resource set resourceSet is configured to be in an off state (for example, configured to be "off”), the terminal needs to report the index of the interference resource.
  • One beneficial effect of the foregoing method is that when N is equal to M, the foregoing N channel resources and N interference resources correspond one-to-one.
  • the terminal can obtain the information of the interference resource, that is, the interference resource corresponding to each reported SINR, which can improve the performance of data transmission.
  • the terminal when the repetition parameters of the above-mentioned channel resource set and the interference resource set are both configured to be on (for example, configured to be "on"), the terminal considers that the above-mentioned N channel resources use the same transmission beam, and the above-mentioned M The interference resources use the same transmission beam. In this case, the terminal does not need to report the channel resource index when reporting the interference measurement result. This is because both the channel resource and the interference resource only correspond to one beam, and there is no need to report the index of the resource to indicate which beam the measurement result is.
  • the network device configures a channel resource set resourceSet and a corresponding interference measurement resource set resourceSet for the terminal, if the repetition parameters of the channel resource set resourceSet and the interference measurement resource set resourceSet are both configured to the on state (for example, Configured to "on"), the terminal does not report the channel resource index.
  • the network device configures a channel resource set resourceSet and a corresponding interference measurement resource set resourceSet for the terminal, if the repetition parameters of the channel resource set resourceSet and the interference measurement resource set resourceSet are both configured to the on state (for example, configured to "On"), the terminal does not report the index of the channel resource, nor does it report the index of the interference resource.
  • the above method can save the reporting cost.
  • the interference resource set adopts the same repetition parameter value as its associated channel resource set.
  • the interference resource set is the value configured with the repetition parameter
  • the interference resource set adopts the same repetition parameter value as its associated channel resource set.
  • the terminal can consider that the above interference resource set is also sent using a single transmit beam of. At this time, the terminal does not need to report the index of the channel resource.
  • the network device configures a channel resource set resourceSet and a corresponding interference measurement resource set resourceSet for the terminal device, if the repetition parameter of the channel resource set resourceSet is configured to be on (for example, configured to "on"), If the interference measurement resource set resourceSet is not configured with a repetition parameter, the terminal device does not report the index of the channel resource.
  • the methods and operations implemented by the terminal can also be implemented by components (such as chips or circuits) that can be used in the terminal, and the methods and operations implemented by the network device can also be implemented by the terminal.
  • the components (such as chips or circuits) of network devices are implemented.
  • each network element such as a terminal or a network device, includes a hardware structure and/or software module corresponding to each function.
  • this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiment of the present application may divide the terminal or the network device into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation. The following is an example of dividing each function module corresponding to each function.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • FIG. 8 shows a schematic block diagram of a communication device 800 according to an embodiment of the present application.
  • the device 800 may correspond to each terminal or chip in the terminal shown in FIG. 1, and the terminal or chip in the terminal in the embodiment shown in FIG. 4, and may have the method shown in FIG. 4 Any function of the terminal.
  • the device 800 includes a transceiver module 810 and a processing module 820.
  • the processing module 820 is configured to use the spatial reception parameters of K channel resources as the spatial reception parameters of each of the M interference resources of the terminal, and the K channel resources are the terminal that can receive the network equipment using the The channel resources of the signals sent simultaneously by K channel resources, and M is a positive integer;
  • the processing module 820 is further configured to determine the first measurement result of the K channel resources according to the spatial reception parameters of the first interference resource among the M interference resources, where K is a positive integer greater than or equal to 2;
  • the transceiver module 810 is configured to send a measurement report to the network device, the measurement report is used to indicate M measurement results, and the measurement report includes the first measurement result.
  • the transceiver module 810 is further configured to receive measurement configuration information, where the measurement configuration information is used to configure N channel resources and the M interference resources, and N is a positive integer;
  • the processing module 820 is further configured to determine, from the N channel resources, the K channel resources for which the terminal can receive the signal simultaneously sent by the network device.
  • the time corresponding to the N channel resources is earlier than the time corresponding to the M interference resources.
  • processing module 820 is specifically configured to:
  • the spatial reception parameters of K channel resources are used as the spatial reception parameters of each of the M interference resources:
  • the beam group report parameter indication in the measurement configuration information is turned on, where the beam group report parameter is used to indicate whether to report the M measurement results;
  • the reported amount parameter in the measurement configuration information indicates that the measurement result includes the signal to interference plus noise ratio SINR;
  • the M interference resources are configured in the measurement configuration information
  • the measurement configuration information does not configure the transmission configuration number state TCI-State for the M interference resources.
  • the transceiver module 810 is further configured to receive first measurement configuration information from the network device, where the first measurement configuration information is used to configure the spatial reception parameters of the K channel resources and the M interference resources.
  • the transceiver module 810 is specifically configured to:
  • the terminal uses the spatial reception parameters of K channel resources as the spatial reception parameters of each of the M interference resources:
  • the beam grouping report parameter indication in the first measurement configuration information is on, and the report amount parameter in the first measurement configuration information indicates that the measurement result includes SINR, where the beam grouping report parameter is used to indicate whether to report the M measurements result;
  • the beam group report parameter indication in the first measurement configuration information indicates that it is turned on, and the first measurement configuration information configures the M interference resources, where the beam group report parameter is used to indicate whether to report the M measurement results;
  • the beam group report parameter indication in the first measurement configuration information indicates that it is turned on, and the first measurement configuration information configures the M interference resources, and the first measurement configuration information is not the M TCI-state parameters, where the beam The group report parameter is used to indicate whether to report the M measurement results.
  • the transceiver module 810 is further configured to receive second measurement configuration information from the network device, where the second measurement configuration information is used to configure the N channel resources, and N is a positive integer;
  • the processing module 820 is further configured to determine, according to the second measurement configuration information, the K channel resources for which the terminal can receive signals simultaneously sent by the network device;
  • the transceiver module 810 is also configured to send instruction information to the network device, where the instruction information is used to indicate the K channel resources.
  • processing module 820 is specifically configured to:
  • the terminal can receive the K channel resources of the signal simultaneously sent by the network device:
  • the beam grouping report parameter indication in the second measurement configuration information is turned on, and the report amount parameter in the second measurement configuration information indicates that the measurement result includes the reference signal received power RSRP, where the beam grouping report parameter is used to indicate whether to report the M measurement results;
  • the beam group report parameter in the second measurement configuration information indicates to be turned on, and the M interference resources are not configured in the second measurement configuration information, where the beam group report parameter is used to indicate whether to report the M measurement results.
  • the measurement result includes SINR
  • the measurement report further includes at least one SINR difference
  • the at least one SINR difference is the SINR in each of the K measurement results except the first measurement result.
  • the difference between the SINR and the SINR of the first measurement result, the first SINR included in the first measurement result is the largest SINR among the K measurement results, and the first SINR has a mapping relationship with a step size, and the step size is a bit
  • the product of the values is used to indicate the difference in SINR.
  • transceiver module 810 and processing module 820 For a more detailed description of the foregoing transceiver module 810 and processing module 820, reference may be made to the related description in the foregoing method embodiment, which is not described herein again.
  • FIG. 9 shows a communication device 900 provided by an embodiment of the present application.
  • the device 900 may be the terminal described in FIG. 4.
  • the device can adopt the hardware architecture shown in FIG. 9.
  • the device may include a processor 910 and a transceiver 930.
  • the device may further include a memory 940.
  • the processor 910, the transceiver 930, and the memory 940 communicate with each other through an internal connection path.
  • the relevant functions implemented by the processing module 820 in FIG. 8 may be implemented by the processor 910, and the relevant functions implemented by the transceiver module 810 may be implemented by the processor 910 controlling the transceiver 930.
  • the processor 910 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), a dedicated processor, or one or more It is an integrated circuit implementing the technical solutions of the embodiments of the present application.
  • a processor may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as base stations, terminals, or chips), execute software programs, and process data in the software programs.
  • the processor 910 may include one or more processors, for example, include one or more central processing units (central processing unit, CPU).
  • CPU central processing unit
  • the CPU may be a single processor.
  • the core CPU can also be a multi-core CPU.
  • the transceiver 930 is used to send and receive data and/or signals, and to receive data and/or signals.
  • the transceiver may include a transmitter and a receiver, the transmitter is used to send data and/or signals, and the receiver is used to receive data and/or signals.
  • the memory 940 includes, but is not limited to, random access memory (RAM), read-only memory (ROM), erasable programmable memory (erasable read only memory, EPROM), and read-only memory.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable read only memory
  • read-only memory erasable read only memory
  • CD-ROM compact disc
  • the memory 940 is used to store program codes and data of the terminal, and may be a separate device or integrated in the processor 910.
  • the processor 910 is configured to control the transceiver to perform information transmission with the terminal.
  • the processor 910 is configured to control the transceiver to perform information transmission with the terminal.
  • the apparatus 900 may further include an output device and an input device.
  • the output device communicates with the processor 910, and can display information in a variety of ways.
  • the output device can be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector, etc.
  • the input device communicates with the processor 910 and can receive user input in a variety of ways.
  • the input device can be a mouse, a keyboard, a touch screen device, or a sensor device.
  • FIG. 9 only shows a simplified design of the communication device.
  • the device may also contain other necessary components, including but not limited to any number of transceivers, processors, controllers, memories, etc., and all terminals that can implement this application are within the protection scope of this application. within.
  • the device 900 may be a chip, for example, a communication chip that can be used in a terminal to implement related functions of the processor 910 in the terminal.
  • the chip can be a field programmable gate array, a dedicated integrated chip, a system chip, a central processing unit, a network processor, a digital signal processing circuit, a microcontroller, and a programmable controller or other integrated chips for realizing related functions.
  • the chip may optionally include one or more memories for storing program codes. When the codes are executed, the processor realizes corresponding functions.
  • the embodiment of the present application also provides a device, which may be a terminal or a circuit.
  • the device can be used to perform the actions performed by the terminal in the foregoing method embodiments.
  • FIG. 10 shows a schematic block diagram of a communication device 1000 according to an embodiment of the present application.
  • the apparatus 1000 may correspond to the network device or the chip in the network device shown in FIG. 1, or the network device or the chip in the network device in the embodiment shown in FIG. Any function.
  • the device 1000 includes a processing module 1010 and a transceiver module 1020.
  • the processing module 1010 is configured to determine measurement configuration information, where the measurement configuration information is used for N channel resources and M interference resources, and N is a positive integer;
  • the transceiver module 1020 is used to send the measurement configuration information to the terminal.
  • the measurement configuration information includes a beam grouping report parameter and/or a reported amount parameter
  • the beam grouping report parameter is used to indicate whether to report the M measurement results
  • the reported amount parameter indicates that the measurement result includes signal and interference plus noise Than SINR.
  • the measurement result includes SINR
  • the measurement report further includes at least one SINR difference
  • the at least one SINR difference is the SINR in each of the K measurement results except the first measurement result.
  • the difference between the SINR and the SINR of the first measurement result, the first SINR included in the first measurement result is the largest SINR among the K measurement results, and the first SINR has a mapping relationship with a step size, and the step size is a bit
  • the product of the values is used to indicate the difference in SINR.
  • transceiver module 1020 and processing module 1010 For a more detailed description of the foregoing transceiver module 1020 and processing module 1010, reference may be made to the relevant description in the foregoing method embodiment, which will not be described here.
  • FIG. 11 shows a communication device 1100 provided in an embodiment of the present application.
  • the device 1100 may be the network device described in FIG. 4.
  • the device can adopt the hardware architecture shown in FIG. 11.
  • the device may include a processor 1110 and a transceiver 1120.
  • the device may also include a memory 1130.
  • the processor 1110, the transceiver 1120, and the memory 1130 communicate with each other through an internal connection path.
  • the related functions implemented by the processing module 1010 in FIG. 10 may be implemented by the processor 1110, and the related functions implemented by the transceiver module 1020 may be implemented by the processor 1110 controlling the transceiver 1120.
  • the processor 1110 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), a dedicated processor, or one or more It is an integrated circuit implementing the technical solutions of the embodiments of the present application.
  • a processor may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as base stations, terminals, or chips), execute software programs, and process data in the software programs.
  • the processor 1110 may include one or more processors, for example, include one or more central processing units (CPU).
  • processors for example, include one or more central processing units (CPU).
  • CPU central processing units
  • the processor may be a single processor.
  • the core CPU can also be a multi-core CPU.
  • the transceiver 1120 is used to send and receive data and/or signals, and to receive data and/or signals.
  • the transceiver may include a transmitter and a receiver, the transmitter is used to send data and/or signals, and the receiver is used to receive data and/or signals.
  • the memory 1130 includes, but is not limited to, random access memory (RAM), read-only memory (ROM), erasable programmable memory (erasable read only memory, EPROM), and read-only memory.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable read only memory
  • CD-ROM compact disc
  • the memory 1130 is used to store related instructions and data.
  • the memory 1130 is used to store program codes and data of the network device, and may be a separate device or integrated in the processor 1110.
  • the processor 1110 is configured to control the transceiver to perform information transmission with the terminal.
  • the processor 1110 is configured to control the transceiver to perform information transmission with the terminal.
  • the apparatus 1100 may further include an output device and an input device.
  • the output device communicates with the processor 1110 and can display information in a variety of ways.
  • the output device can be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector, etc.
  • the input device communicates with the processor 1110 and can receive user input in a variety of ways.
  • the input device can be a mouse, a keyboard, a touch screen device, or a sensor device.
  • FIG. 11 only shows a simplified design of the communication device.
  • the device can also contain other necessary components, including but not limited to any number of transceivers, processors, controllers, memories, etc., and all network devices that can implement this application are protected by this application. Within range.
  • the device 1100 may be a chip, for example, a communication chip that can be used in a network device to implement related functions of the processor 1110 in the network device.
  • the chip can be a field programmable gate array, a dedicated integrated chip, a system chip, a central processing unit, a network processor, a digital signal processing circuit, a microcontroller, and a programmable controller or other integrated chips for realizing related functions.
  • the chip may optionally include one or more memories for storing program codes. When the codes are executed, the processor realizes corresponding functions.
  • the embodiments of the present application also provide a device, which may be a network device or a circuit.
  • the device can be used to perform the actions performed by the network device in the foregoing method embodiments.
  • FIG. 12 shows a simplified schematic diagram of the structure of the terminal. It is easy to understand and easy to illustrate.
  • the terminal uses a mobile phone as an example.
  • the terminal includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminals may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • only one memory and processor are shown in FIG. 12. In actual end products, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal, and the processor with the processing function can be regarded as the processing unit of the terminal.
  • the terminal includes a transceiver unit 1210 and a processing unit 1220.
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 1210 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1210 as the sending unit, that is, the transceiver unit 1210 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 1210 is used to perform the sending and receiving operations on the terminal side in the foregoing method embodiment, and the processing unit 1220 is used to perform other operations on the terminal in addition to the transceiving operation in the foregoing method embodiment.
  • the processing unit 1220 is configured to execute the processing steps 401 and 402 on the terminal side in FIG. 4.
  • the transceiving unit 1210 is configured to perform the transceiving operation in step 403 in FIG. 4, and/or the transceiving unit 1210 is also configured to perform other transceiving steps on the terminal side in the embodiment of the present application.
  • the chip When the device is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor, microprocessor, or integrated circuit integrated on the chip.
  • the device shown in FIG. 13 can also be referred to.
  • the device can perform functions similar to the processor 910 in Fig. 9.
  • the device includes a processor 1301, a data sending processor 1303, and a data receiving processor 1305.
  • the processing module 820 in the embodiment shown in FIG. 8 may be the processor 1301 in FIG. 13 and complete corresponding functions.
  • the transceiver module 810 in the embodiment shown in FIG. 8 may be the sending data processor 1303 and the receiving data processor 1305 in FIG. 13.
  • the channel encoder and the channel decoder are shown in FIG. 13, it can be understood that these modules do not constitute a restrictive description of this embodiment, and are only illustrative.
  • the processing device 1400 includes modules such as a modulation subsystem, a central processing subsystem, and a peripheral subsystem.
  • the communication device in this embodiment can be used as the modulation subsystem therein.
  • the modulation subsystem may include a processor 1403 and an interface 1404.
  • the processor 1403 completes the function of the aforementioned processing module 820
  • the interface 1404 completes the function of the aforementioned transceiver module 810.
  • the modulation subsystem includes a memory 1406, a processor 1403, and a program stored in the memory and capable of running on the processor, and the processor implements the method described in the embodiment when the program is executed.
  • the memory 1406 can be non-volatile or volatile, and its location can be located inside the modulation subsystem or in the processing device 1400, as long as the memory 1406 can be connected to the The processor 1403 is fine.
  • the network device may be as shown in FIG. 15.
  • the device 150 is a base station.
  • the base station can be applied to the system shown in FIG. 1 to perform the functions of the network device in the foregoing method embodiment.
  • the base station 150 may include one or more DU 1501 and one or more CU 1502.
  • CU1502 can communicate with the next-generation core network (NG core, NC).
  • the DU 1501 may include at least one antenna 15011, at least one radio frequency unit 15012, at least one processor 15013, and at least one memory 15014.
  • the DU 1501 part is mainly used for the transmission and reception of radio frequency signals, the conversion of radio frequency signals and baseband signals, and part of baseband processing.
  • the CU 1502 may include at least one processor 15022 and at least one memory 15021.
  • CU1502 and DU1501 can communicate through interfaces, where the control plane interface can be Fs-C, such as F1-C, and the user plane interface can be Fs-U, such as F1-U.
  • the CU 1502 part is mainly used for baseband processing, control of base stations, and so on.
  • the DU 1501 and the CU 1502 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the CU 1502 is the control center of the base station, which may also be referred to as a processing unit, and is mainly used to complete baseband processing functions.
  • the CU 1502 may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the baseband processing on the CU and DU can be divided according to the protocol layer of the wireless network, for example, the packet data convergence protocol (PDCP) layer and the functions of the above protocol layers are set in the CU, the protocol layer below PDCP, For example, functions such as the radio link control (RLC) layer and the medium access control (MAC) layer are set in the DU.
  • CU implements radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layer functions
  • DU implements radio link control (radio link control, RLC), MAC, and physical functions.
  • the function of the (physical, PHY) layer is the packet data convergence protocol (PDCP) layer and the functions of the above protocol layers are set in the CU, the protocol layer below PDCP.
  • functions such as the radio link control (RLC) layer and the medium access control (MAC) layer are set in the DU.
  • RRC radio resource control
  • packet data convergence protocol packet data convergence protocol
  • MAC medium access control
  • the base station 150 may include one or more radio frequency units (RU), one or more DUs, and one or more CUs.
  • the DU may include at least one processor 15013 and at least one memory 15014
  • the RU may include at least one antenna 15011 and at least one radio frequency unit 15012
  • the CU may include at least one processor 15022 and at least one memory 15021.
  • the processor 15013 is configured to execute the processing steps on the network device side in FIG. 4.
  • the radio frequency unit 15012 is used to perform the receiving and sending operations in step 403 in FIG. 4.
  • the CU1502 can be composed of one or more single boards, and multiple single boards can jointly support a wireless access network (such as a 5G network) with a single access indication, or can respectively support wireless access networks of different access standards.
  • Access network (such as LTE network, 5G network or other networks).
  • the memory 15021 and the processor 15022 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the DU1501 can be composed of one or more single boards, and multiple single boards can jointly support a wireless access network with a single access indication (such as a 5G network), or can separately support wireless access networks with different access standards (such as LTE network, 5G network or other network).
  • the memory 15014 and the processor 15013 may serve one or more boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk, SSD)) etc.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (field programmable gate array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • Programming logic devices discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous link dynamic random access memory synchronous link DRAM, SLDRAM
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • At least one refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • the following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • component used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, a processor, an object, an executable file, an execution thread, a program, and/or a computer running on a processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or threads of execution, and components may be located on one computer and/or distributed among two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • the component can be based on, for example, a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Abstract

本申请提供了一种干扰测量上报的方法和通信装置。网络设备通过该K个信道资源同时发送信号,终端可以接收到通过该K个信道资源发送的信号。终端将该K个信道资源的空间接收参数作为M个干扰资源中每个干扰资源的空间接收参数,进而根据该M个干扰资源中的第一干扰资源的空间接收参数,测量第一干扰资源,并确定该K个信道资源在该第一干扰资源的干扰下的第一测量结果,再通过测量报告上报将M个干扰资源的M个测量结果上报给网络设备,使得网络设备能够更准确的获知干扰资源对信道资源的干扰的准确度。

Description

一种干扰测量上报的方法和通信装置 技术领域
本申请涉及高频通信领域,更具体的,涉及一种干扰测量上报的方法和通信装置。
背景技术
第五代移动通信系统(5th generation,5G)采用高频通信,即采用超高频段(>6GHz)信号传输数据。高频通信的一个主要问题是信号能量随传输距离急剧下降,导致信号传输距离短。为了克服这个问题,高频通信采用模拟波束技术,通过大规模天线阵列进行加权处理,将信号能量集中在一个较小的范围内,形成一个类似于光束一样的信号(称为模拟波束,简称波束),从而提高传输距离。
网络设备可以生成不同的波束,指向不同的传输方向。具体采用哪个波束来进行传输是通过波束测量过程来确定的。具体的,网络设备通过测量配置信息为终端配置多个用于测量信道资源的信道测量资源,每个信道测量资源对应一个波束,终端通过测量网络设备配置的信道测量资源,对各信道资源(波束)的参考信号接收功率(reference signal receiving power,RSRP)进行测量,然后将RSRP较大的至少一个信道资源的索引和相应的RSRP上报给网络设备。然而,网络设备通过多个波束向终端发送数据时,由于波束之间可能会存在干扰,会导致数据传输错误,从而降低数据传输质量。
传统方案中,终端可以测量其他波束对某一个波束的影响,即终端可以测量干扰资源对某一个信道资源的影响。具体地,终端可以针对某一个信道资源计算信号与干扰加噪声比(signal to interference plus noise ratio,SINR),并将该SINR值上报给网络设备,这样网络设备可以获知干扰资源对该信道资源的影响。
当采用多个发送波束同时传输时,终端设备会采用多个接收波束进行接收。在这种场景中,如果存在其他干扰信号,终端设备会从上述多个接收波束上收到上述干扰信号。因此,在波束测量过程中,要准确测量上述干扰信号对上述多个发送波束造成的干扰,需要采用上述多个接收波束来同时测量上述干扰信号。但是,现有技术中网络设备只能为终端设备指示一个接收波束,无法实现上述测量需求。
发明内容
本申请提供了一种干扰测量上报的方法和通信装置,能够测量干扰资源对能够同时发送信号的K个信道资源中的每个信道的干扰,提高了干扰测量的准确度。
第一方面,提供了一种干扰测量上报的方法,该方法包括:终端将K个信道资源的空间接收参数作为该终端的M个干扰资源中的每个干扰资源的空间接收参数,该K个信道资源为该终端能够接收到网络设备采用该K个信道资源同时发送的信号的信道资源,M为正整数;该终端根据该M个干扰资源中的第一干扰资源的空间接收参数,确定该K个信道资源的第一测量结果,K为大于或等于2的正整数;该终端向该网络设备发送测量报 告,该测量报告用于指示M个测量结果,且该测量报告包括该第一测量结果。
网络设备通过该K个信道资源同时发送信号,终端可以接收到通过该K个信道资源发送的信号。终端将该K个信道资源的空间接收参数作为M个干扰资源中每个干扰资源的空间接收参数,进而根据该M个干扰资源中的第一干扰资源的空间接收参数,测量第一干扰资源,并确定该K个信道资源在该第一干扰资源的干扰下的第一测量结果,再通过测量报告上报将M个干扰资源的M个测量结果上报给网络设备,使得网络设备能够更准确的获知干扰资源对信道资源的干扰的准确度。
在一些可能的实现方式中,在该终端将K个信道资源的空间接收参数作为该终端的干扰资源的空间接收参数之前,该方法还包括:该终端接收测量配置信息,该测量配置信息用于配置N个信道资源和该M个干扰资源,N为正整数;该终端从该N个信道资源中,确定该终端能够接收到该网络设备同时发送的信号的该K个信道资源。
在一次测量上报过程中,网络设备通过测量配置信息配置了N个信道资源和M个干扰资源。终端先从这N个信道资源中选出上述K个能被其同时接收的信道资源,然后再用这K个信道资源的空间接收参数来作为该M个干扰资源中每个干扰资源的空间接收参数,来测量这M个干扰资源。这样网络设备不需要多次配置该N个信道资源和该M个干扰资源,从而节省了信令开销。
在一些可能的实现方式中,该N个信道资源对应的时间早于该M个干扰资源对应的时间。
终端可以提前确定出同时发送信号能被终端收到的K个信道资源,再将该K个信道资源的空间接收参数作为M个干扰资源中每个干扰资源的空间接收参数,进而根据该M个干扰资源中的第一干扰资源的空间接收参数,测量第一干扰资源,并确定该K个信道资源在该第一干扰资源的干扰下的第一测量结果,再通过测量报告上报将M个干扰资源的M个测量结果上报给网络设备,使得网络设备能够更准确的获知干扰资源对信道资源的干扰的准确度。
在一些可能的实现方式中,该终端将K个信道资源的空间接收参数作为干扰资源的空间接收参数包括:在满足如下情况中的至少一项的情况下,该终端将K个信道资源的空间接收参数作为该M个干扰资源中的每个干扰资源的空间接收参数:该测量配置信息中的波束分组上报参数指示开启,其中,该波束分组上报参数用于指示是否上报该M个测量结果;该测量配置信息中的上报量参数指示该测量结果包括信号与干扰加噪声比SINR;该测量配置信息配置了该M个干扰资源;该测量配置信息未为该M个干扰资源配置传输配置编号状态TCI-State参数。
终端可以设置条件,在满足该条件的情况下,才将K个信道资源的空间接收参数作为该M个干扰资源中的每个干扰资源的空间接收参数。也就是说,终端可以灵活选择适合的确定干扰测量的方式。
在一些可能的实现方式中,在该终端将K个信道资源的空间接收参数作为该终端的干扰资源的空间接收参数之前,该方法还包括:该终端从该网络设备接收第一测量配置信息,该第一测量配置信息用于配置该K个信道资源的空间接收参数和该M个干扰资源。
上述K个信道资源是直接配置的,而不是从配置的N个信道资源中确定的。也就是说,网络设备配置K个信道资源和M个干扰资源。终端采用这K个信道资源的空间接收 参数来作为这M个干扰资源中每个干扰资源的空间接收参数,来对这M个干扰资源进行测量,这样不需要终端进行选择,节省了终端的功耗。
在一些可能的实现方式中,该终端将K个信道资源的空间接收参数作为该终端的干扰资源的空间接收参数包括:在满足如下情况中的至少一项的情况下,该终端将K个信道资源的空间接收参数作为该M个干扰资源中的每个干扰资源的空间接收参数:该第一测量配置信息中的波束分组上报参数指示开启,且该第一测量配置信息中的上报量参数指示该测量结果包括SINR,其中,该波束分组上报参数用于指示是否上报该M个测量结果;该第一测量配置信息中的波束分组上报参数指示开启,且该第一测量配置信息配置了该M个干扰资源,其中,该波束分组上报参数用于指示是否上报该M个测量结果;该第一测量配置信息中的波束分组上报参数指示开启,且该第一测量配置信息配置了该M个干扰资源,以及该第一测量配置信息未为该M个干扰资源配置传输配置编号状态TCI-state参数,其中,波束分组上报参数用于指示是否上报该M个测量结果。
终端可以设置条件,在满足该条件的情况下,才将K个信道资源的空间接收参数作为该M个干扰资源中的每个干扰资源的空间接收参数。也就是说,终端可以灵活选择适合的确定干扰测量的方式。
在一些可能的实现方式中,在该终端从该网络设备接收第一测量配置信息之前,该方法还包括:该终端从该网络设备接收第二测量配置信息,该第二测量配置信息用于配置该N个信道资源,N为正整数;该终端根据该第二测量配置信息,确定该终端能够接收到该网络设备同时发送的信号的该K个信道资源;该终端向该网络设备发送指示信息,该指示信息用于指示该K个信道资源。
终端可以提前选择,并将选中的信道资源告知网络设备,提高了网络设备配置的第一测量配置信息的准确性。
在一些可能的实现方式中,该终端根据该第二测量配置信息,确定该终端能够接收到该网络设备同时发送的信号的该K个信道资源包括:在满足如下情况中的至少一项的情况下,该终端根据该第二测量配置信息,确定该终端能够接收到该网络设备同时发送的信号的该K个信道资源:该第二测量配置信息中的波束分组上报参数指示开启,且该第二测量配置信息中的上报量参数指示该测量结果包括参考信号接收功率RSRP,其中,波束分组上报参数用于指示是否上报该M个测量结果;该第二测量配置信息中的波束分组上报参数指示开启,且该第二测量配置信息未配置该M个干扰资源,其中,波束分组上报参数用于指示是否上报该M个测量结果。
终端可以设置条件,在满足该条件的情况下,从N个信道资源中选择该终端能够接收到该网络设备同时发送的信号的该K个信道资源。也就是说,终端可以设置条件,灵活的设置是否需要进行确定该终端能够接收到该网络设备同时发送的信号的该K个信道资源。
在一些可能的实现方式中,该测量结果包括SINR,该测量报告还包括至少一个SINR差值,该至少一个SINR差值为该K个测量结果中除该第一测量结果之外的每个测量结果中的SINR与该第一测量结果的SINR的差值,第一测量结果包括的第一SINR为该K个测量结果中最大的SINR,该第一SINR与步长具有映射关系,该步长为与比特位取值的乘积用于指示SINR的差值。
不同参考SINR可以对应不同的步长,避免了采用固定的步长,提高了指示SINR差 值的灵活性。
第二方面,提供了一种干扰测量上报的方法,该方法包括:确定测量配置信息,该测量配置信息用于N个信道资源和M个干扰资源,N为正整数;向终端发送该测量配置信息。
在一次测量上报过程中,网络设备通过测量配置信息配置了N个信道资源和M个干扰资源。终端先从这N个信道资源中选出上述K个能被其同时接收的信道资源,然后再用这K个信道资源的空间接收参数来作为该M个干扰资源中每个干扰资源的空间接收参数,来测量这M个干扰资源。这样网络设备不需要多次配置该N个信道资源和该M个干扰资源,从而节省了信令开销。
在一些可能的实现方式中,该测量配置信息包括波束分组上报参数和/或上报量参数,该波束分组上报参数用于指示是否上报该M个测量结果,该上报量参数指示该测量结果包括信号与干扰加噪声比SINR。
在一些可能的实现方式中,该测量结果包括SINR,该测量报告还包括至少一个SINR差值,该至少一个SINR差值为该K个测量结果中除该第一测量结果之外的每个测量结果中的SINR与该第一测量结果的SINR的差值,第一测量结果包括的第一SINR为该K个测量结果中最大的SINR,该第一SINR与步长具有映射关系,该步长为与比特位取值的乘积用于指示SINR的差值。
不同参考SINR可以对应不同的步长,避免了采用固定的步长,提高了指示SINR差值的灵活性。
第三方面,提供了一种干扰测量上报的方法,该方法包括:确定第一测量配置信息,该第一测量配置信息用于配置该K个信道资源的空间接收参数和M个干扰资源;向终端发送该第一测量配置信息。
网络设备可以直接配置K个信道资源,而不是由终端从配置的N个信道资源中确定的。也就是说,网络设备配置K个信道资源和M个干扰资源。终端采用这K个信道资源的空间接收参数来作为这M个干扰资源中每个干扰资源的空间接收参数,来对这M个干扰资源进行测量,这样不需要终端进行选择,节省了终端的功耗。
在一些可能的实现方式中,该第一测量配置信息包括波束分组上报参数和/或上报量参数,该波束分组上报参数用于指示是否上报该M个测量结果,该上报量参数指示该测量结果包括信号与干扰加噪声比SINR。
在一些可能的实现方式中,在发送该第一测量配置信息之前,向终端发送第二测量配置信息,该第二测量配置信息用于配置N个信道资源,N为正整数;从该终端接收指示信息,该指示信息用于指示该K个信道资源。
网络设备先向终端配置N个信道资源,终端可以提前选择,并将选中的信道资源告知网络设备,提高了网络设备配置的第一测量配置信息的准确性。
在一些可能的实现方式中,该测量结果包括SINR,该测量报告还包括至少一个SINR差值,该至少一个SINR差值为该K个测量结果中除该第一测量结果之外的每个测量结果中的SINR与该第一测量结果的SINR的差值,第一测量结果包括的第一SINR为该K个测量结果中最大的SINR,该第一SINR与步长具有映射关系,该步长为与比特位取值的乘积用于指示SINR的差值。
不同参考SINR可以对应不同的步长,避免了采用固定的步长,提高了指示SINR差值的灵活性。
第四方面,提供了一种确定信道资源的发送波束的方法,该方法包括:
从网络设备接收测量配置信息,该测量配置信息用于配置N个信道资源和M个干扰资源,且该测量配置信息包括该N个信道资源的重复参数,该N个信道资源的重复参数的状态用于指示该N个信道资源的发送波束是否相同;
根据该N个信道资源的重复参数,确定该N个信道资源的发送波束是否相同。
终端通过测量配置信息中的重复参数,确定N个信道资源的发送波束是否相同。也就是说,网络设备可以采用隐式的方式告知终端N个信道资源的发送波束是否相同,避免了直接指示,节省了信令开销。
在一些可能的实现方式中,该配置信息还包括该M个干扰资源的重复参数,该M个干扰资源的重复参数的状态用于指示该M个干扰资源的发送波束是否相同;根据该M个干扰资源的重复参数,确定该M个干扰资源的发送波束是否相同。
网络设备可以采用隐式的方式告知终端M个干扰资源的发送波束是否相同,避免了直接指示,节省了信令开销。
在一些可能的实现方式中,在该N个信道资源的重复参数的第一状态用于指示该N个信道资源的发送波束相同,以及该M个干扰资源的发送波束不同的情况下,测量报告包括至少一个测量结果和该至少一个测量结果对应的信道资源的索引。
通过上报信道资源的索引,终端可以获取干扰资源的信息,即各个上报的测量结果对应的干扰资源,可以提高数据传输的性能。
第五方面,提供了一种确定信道资源的发送波束的方法,该方法包括:
确定测量配置信息,该测量配置信息用于配置N个信道资源和M个干扰资源,且该测量配置信息包括该N个信道资源的重复参数,该N个信道资源的重复参数的状态用于指示该N个信道资源的发送波束是否相同;
向该终端发送该测量配置信息。
终端通过测量配置信息中的重复参数,确定N个信道资源的发送波束是否相同。也就是说,网络设备可以采用隐式的方式告知终端N个信道资源的发送波束是否相同,避免了直接指示,节省了信令开销。
在一些可能的实现方式中,该配置信息还包括该M个干扰资源的重复参数,该M个干扰资源的重复参数的状态用于指示该M个干扰资源的发送波束是否相同;根据根据该M个干扰资源的重复参数,确定该M个干扰资源的发送波束是否相同。
网络设备可以采用隐式的方式告知终端M个干扰资源的发送波束是否相同,避免了直接指示,节省了信令开销。
在一些可能的实现方式中,在该N个信道资源的重复参数的第一状态用于指示该N个信道资源的发送波束相同,以及该M个干扰资源的发送波束不同的情况下,测量报告包括至少一个测量结果和该至少一个测量结果对应的信道资源的索引。
通过上报信道资源的索引,终端可以获取干扰资源的信息,即各个上报的测量结果对应的干扰资源,可以提高数据传输的性能。
第六方面,提供了一种信号传输的装置,该装置可以是终端,或是用于终端的芯片, 比如可被设置于终端内的芯片。该装置具有实现上述第一方面,及各种可能的实现方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置包括:处理模块和收发模块,该收发模块例如可以是收发器、接收器、发射器中的至少一种,该收发模块可以包括接收模块和发送模块,具体地可以包括射频电路或天线。该处理模块可以是处理器。可选地,所述装置还包括存储模块,该存储模块例如可以是存储器。当包括存储模块时,该存储模块用于存储指令。该处理模块与该存储模块连接,该处理模块可以执行该存储模块存储的指令或源自其他的指令,以使该装置执行上述第一方面,及各种可能的实现方式的方法。在本设计中,该装置可以为终端。
在另一种可能的设计中,当该装置为芯片时,该芯片包括:处理模块和收发模块,该收发模块例如可以是该芯片上的输入/输出接口、管脚或电路等。处理模块例如可以是处理器。该处理模块可执行指令,以使该终端内的芯片执行上述,以及任意可能的实现的方法。可选地,该处理模块可以执行存储模块中的指令,该存储模块可以为芯片内的存储模块,如寄存器、缓存等。该存储模块还可以是位于通信设备内,但位于芯片外部,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述第一方面,以及任意可能的实现的方法的程序执行的集成电路。
第七方面,提供了一种信号传输的装置,该装置可以是网络设备,或是用于网络设备的芯片,比如可被设置于网络设备内的芯片。该装置具有实现上述第二方面,及各种可能的实现方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置包括:收发模块和处理模块,所述收发模块例如可以是收发器、接收器、发射器中的至少一种,该收发模块可以包括接收模块和发送模块,具体地可以包括射频电路或天线。该处理模块可以是处理器。
可选地,所述装置还包括存储模块,该存储模块例如可以是存储器。当包括存储模块时,该存储模块用于存储指令。该处理模块与该存储模块连接,该处理模块可以执行该存储模块存储的指令或源自其他的指令,以使该装置执行上述第二方面,或其任意一项的方法。
在另一种可能的设计中,当该装置为芯片时,该芯片包括:收发模块和处理模块,该收发模块例如可以是该芯片上的输入/输出接口、管脚或电路等。处理模块例如可以是处理器。该处理模块可执行指令,以使该网络设备内的芯片执行上述第二方面,以及任意可能的实现的方法。
可选地,该处理模块可以执行存储模块中的指令,该存储模块可以为芯片内的存储模块,如寄存器、缓存等。该存储模块还可以是位于通信设备内,但位于芯片外部,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述第二方面的方法的程序执行的集成电路。
第八方面,提供了一种信号传输的装置,该装置可以是网络设备,或是用于网络设备的芯片,比如可被设置于网络设备内的芯片。该装置具有实现上述第三方面,及各种可能的实现方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置包括:收发模块和处理模块,所述收发模块例如可以是收发器、接收器、发射器中的至少一种,该收发模块可以包括接收模块和发送模块,具体地可以包括射频电路或天线。该处理模块可以是处理器。
可选地,所述装置还包括存储模块,该存储模块例如可以是存储器。当包括存储模块时,该存储模块用于存储指令。该处理模块与该存储模块连接,该处理模块可以执行该存储模块存储的指令或源自其他的指令,以使该装置执行上述第三方面,或其任意一项的方法。
在另一种可能的设计中,当该装置为芯片时,该芯片包括:收发模块和处理模块,该收发模块例如可以是该芯片上的输入/输出接口、管脚或电路等。处理模块例如可以是处理器。该处理模块可执行指令,以使该网络设备内的芯片执行上述第三方面,以及任意可能的实现的方法。
可选地,该处理模块可以执行存储模块中的指令,该存储模块可以为芯片内的存储模块,如寄存器、缓存等。该存储模块还可以是位于通信设备内,但位于芯片外部,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述第三方面的方法的程序执行的集成电路。
第九方面,提供了一种信号传输的装置,该装置可以是终端,或是用于终端的芯片,比如可被设置于终端内的芯片。该装置具有实现上述第四方面,及各种可能的实现方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置包括:处理模块和收发模块,该收发模块例如可以是收发器、接收器、发射器中的至少一种,该收发模块可以包括接收模块和发送模块,具体地可以包括射频电路或天线。该处理模块可以是处理器。可选地,所述装置还包括存储模块,该存储模块例如可以是存储器。当包括存储模块时,该存储模块用于存储指令。该处理模块与该存储模块连接,该处理模块可以执行该存储模块存储的指令或源自其他的指令,以使该装置执行上述第四方面,及各种可能的实现方式的方法。在本设计中,该装置可以为终端。
在另一种可能的设计中,当该装置为芯片时,该芯片包括:处理模块和收发模块,该收发模块例如可以是该芯片上的输入/输出接口、管脚或电路等。处理模块例如可以是处理器。该处理模块可执行指令,以使该终端内的芯片执行上述,以及任意可能的实现的方法。 可选地,该处理模块可以执行存储模块中的指令,该存储模块可以为芯片内的存储模块,如寄存器、缓存等。该存储模块还可以是位于通信设备内,但位于芯片外部,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述第四方面,以及任意可能的实现的方法的程序执行的集成电路。
第十方面,提供了一种信号传输的装置,该装置可以是网络设备,或是用于网络设备的芯片,比如可被设置于网络设备内的芯片。该装置具有实现上述第五方面,及各种可能的实现方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置包括:收发模块和处理模块,所述收发模块例如可以是收发器、接收器、发射器中的至少一种,该收发模块可以包括接收模块和发送模块,具体地可以包括射频电路或天线。该处理模块可以是处理器。
可选地,所述装置还包括存储模块,该存储模块例如可以是存储器。当包括存储模块时,该存储模块用于存储指令。该处理模块与该存储模块连接,该处理模块可以执行该存储模块存储的指令或源自其他的指令,以使该装置执行上述第五方面,或其任意一项的方法。
在另一种可能的设计中,当该装置为芯片时,该芯片包括:收发模块和处理模块,该收发模块例如可以是该芯片上的输入/输出接口、管脚或电路等。处理模块例如可以是处理器。该处理模块可执行指令,以使该网络设备内的芯片执行上述第五方面,以及任意可能的实现的方法。
可选地,该处理模块可以执行存储模块中的指令,该存储模块可以为芯片内的存储模块,如寄存器、缓存等。该存储模块还可以是位于通信设备内,但位于芯片外部,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述第五方面的方法的程序执行的集成电路。
第十一方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第一方面或第四方面,及其任意可能的实现方式中的方法的指令。
第十二方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第二方面,第三方面或第五方面中的任一项,或其任意可能的实现方式中的方法的指令。
第十三方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第一方面或第四方面,或其任意可能的实现方式中的方法。
第十四方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第二方面,第三方面或第五方面中的任一项,或其任意可能的实现方式中的 方法。
第十五方面,提供了一种通信系统,该通信系统包括具有实现上述第一方面的各方法及各种可能设计的功能的装置和上述具有实现上述第二方面的各方法及各种可能设计的功能的装置。
第十六方面,提供了一种通信系统,该通信系统包括具有实现上述第一方面的各方法及各种可能设计的功能的装置和上述具有实现上述第三方面的各方法及各种可能设计的功能的装置。
第十七方面,提供了一种通信系统,该通信系统包括具有实现上述第四方面的各方法及各种可能设计的功能的装置和上述具有实现上述第五方面的各方法及各种可能设计的功能的装置。
第十八方面,提供了一种处理器,用于与存储器耦合,用于执行上述第一方面、第四方面或其任意可能的实现方式中的方法。
第十九方面,提供了一种处理器,用于与存储器耦合,用于执行上述第二方面、第三方面、第五方面或其任意可能的实现方式中的方法。
基于上述技术方案,网络设备通过该K个信道资源同时发送信号,终端可以接收到通过该K个信道资源发送的信号。终端将该K个信道资源的空间接收参数作为M个干扰资源中每个干扰资源的空间接收参数,进而根据该M个干扰资源中的第一干扰资源的空间接收参数,测量第一干扰资源,并确定该K个信道资源在该第一干扰资源的干扰下的第一测量结果,再通过测量报告上报将M个干扰资源的M个测量结果上报给网络设备,使得网络设备能够更准确的获知干扰资源对信道资源的干扰的准确度。
附图说明
图1是本申请的一个通信系统的示意图;
图2是传统方案的波束干扰测量上报的方法的示意性流程图;
图3是传统方案的波束干扰测量上报的方法的示意图;
图4是本申请实施例的干扰测量上报的方法的示意性流程图;
图5是本申请一个具体实施例的干扰测量上报的方法的示意图;
图6是本申请另一个具体实施例的干扰测量上报的方法的示意图;
图7是本申请另一个具体实施例的干扰测量上报的方法的示意图;
图8是本申请一个实施例的通信装置的示意性框图;
图9是本申请一个实施例的通信装置的示意性结构图;
图10是本申请另一个实施例的通信装置的示意性框图;
图11是本申请一个实施例的通信装置的示意性结构图;
图12是本申请一个实施例的通信装置的示意性结构图;
图13是本申请另一个实施例的通信装置的示意性结构图;
图14是本申请另一个实施例的通信装置的示意性结构图;
图15是本申请另一个实施例的通信装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
下面将本申请涉及到的术语进行详细的介绍:
1、波束(beam):
波束在NR协议中的体现可以是空域滤波器(spatial domain filter),或者称空间滤波器(spatial filter)或空间参数(spatial parameter)。用于发送信号的波束可以称为发送波束(transmission beam,Tx beam),可以称为空域发送滤波器(spatial domain transmission filter)或空间发射参数(spatial transmission parameter);用于接收信号的波束可以称为接收波束(reception beam,Rx beam),可以称为空域接收滤波器(spatial domain receive filter)或空间接收参数(spatial RX parameter)。
发送波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。
此外,波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束赋形技术或者其他技术。波束赋形技术具体可以为数字波束赋形技术、模拟波束赋形技术或者混合数字/模拟波束赋形技术等。
波束一般和资源对应,例如进行波束测量时,网络设备通过不同的资源来测量不同的波束,终端反馈测得的资源质量,网络设备就知道对应的波束的质量。在数据传输是,波束信息也是通过其对应的资源来进行指示的。例如网络设备通过DCI的TCI中资源,来指示终端PDSCH波束的信息。
可选地,将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束内可以包括一个或多个天线端口,用于传输数据信道、控制信道和探测信号等。形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。
在波束测量中,网络设备的每一个波束对应一个资源,因此可以以资源的索引来唯一标识该资源对应的波束。
2、资源:
在波束测量中,可以通过资源的索引来唯一标识该资源对应的波束。资源可以是上行信号资源,也可以是下行信号资源。上行信号包括但不限于探测参考信号(sounding reference signal,SRS),解调参考信号(demodulation reference signal,DMRS)。下行信号包括但不限于:信道状态信息参考信号(channel state information reference signal,CSI-RS)、小区专用参考信号(cell specific reference signal,CS-RS)、UE专用参考信号(user equipment specific reference signal,US-RS)、解调参考信号(demodulation reference signal,DMRS)、以及同步信号/物理广播信道块(synchronization system/physical broadcast channel block,SS/PBCH block)。其中,SS/PBCH block可以简称为同步信号块(synchronization signal block,SSB)。
资源通过无线资源控制信令(radio resource control,RRC)信令配置。在配置结构上,一个资源是一个数据结构,包括其对应的上行/下行信号的相关参数,例如上行/下行信号的类型,承载上行/下行信号的资源粒,上行/下行信号的发送时间和周期,发送上行/下行信号所采用的端口数等。每一个上行/下行信号的资源具有唯一的索引,以标识该下行信号的资源。可以理解的是,资源的索引也可以称为资源的标识,本申请实施例对此不作任何限制。
3、信道资源:
信道资源是指在波束测量中,终端上报的用于数据传输的资源。
4、干扰资源:
在干扰测量时,对于特定的信道资源,终端会将其他资源视作信道资源的干扰,来计算其对信道资源的干扰情况。这些被视为干扰的资源统称干扰资源。
5、分组上报
分组上报是一种特殊的上报方式,通过将测量配置中的波束分组上报参数(group based beam reporting)配置成开启(例如,配置成enabled)即可激活分组上报。具体的,当group based beam reporting被配置成enabled时,终端会选择两个能被其同时接收的资源,将这两个资源的索引上报给网络设备。
6、传输配置编号(transmission configuration index,TCI)-状态(state):
TCI-state是由网络设备配置给各个终端的,TCI-state的结构如图1所示。每个TCI-state包括一个自身的索引TCI-state标识(identity,Id),和两个准同位(quasi-co-location,QCL)-信息(Info)。每个QCL-Info包括一个cell字段和带宽部分(bandwidth part,bwp)-Id,分别表示该TCI-state应用于哪个小区(cell)的哪个bwp,即不同cell或相同cell的不同bwp可以配置不同QCL-Info。QCL-Info还包括一个参考信号(reference signal),用于表示与哪个参考信号资源构成QCL)系。可以理解的是,在R15协议中,一般不会直接出现“波束”这个词汇,波束一般是通过其他术语进行代替的。例如,在数据传输和信道测量中,波束都是与参考信号资源进行对应的,一个波束对应一个参考信号资源。因此,此处说与哪个参考信号资源构成QCL关系,实质是指与哪个波束构成QCL关系。QCL关系是指两个参考信号资源(或两个天线端口,天线端口和参考信号资源也是一一对应的)在具有某些相同的空间参数。具体哪些空间参数是相同的取决于该QCL-Info的类型,即QCL-Info的另一个字段qcl-Type。qcl-Type可以有四种取值{typeA,typeB,typeC,typeD}。以typeD为例,typeD表示两个参考信号资源具有相同的空间接收参数信息,即两个波束具有相同的接收波束。TCI-state包括的两个QCL-Info中最多只能有一个是TypeD的。
需要说明的是,随着技术的不断发展,本申请实施例的术语有可能发生变化,但都在本申请的保护范围之内。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
本申请实施例中的终端可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant, PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端通信的设备,该网络设备可以是全球移动通信(global system for mobile communications,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evoled NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备,5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(baseband unit,BBU),或,分布式单元(distributed unit,DU)等,本申请实施例并不限定。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
在本申请实施例中,终端或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端或网络设备,或者,是终端或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc, DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图1是本申请一个通信系统的示意图。图1中的通信系统可以包括至少一个终端(例如终端10、终端20、终端30、终端40、终端50和终端60)和网络设备70。网络设备70用于为终端提供通信服务并接入核心网,终端可以通过搜索网络设备70发送的同步信号、广播信号等接入网络,从而进行与网络的通信。图1中的终端10、终端20、终端30、终端40和终端60可以与网络设备70进行上下行传输。例如,网络设备70可以向终端10、终端20、终端30、终端40和终端60发送下行信号,也可以接收终端10、终端20、终端30、终端40和终端60发送的上行信号。
此外,终端40、终端50和终端60也可以看作一个通信系统,终端60可以向终端40和终端50发送下行信号,也可以接收终端40和终端50发送的上行信号。
需要说明的是,本申请实施例可以应用于包括一个或多个网络设备的通信系统中,也可以应用于包括一个或多个终端的通信系统中,本申请对此不进行限定。
应理解,该通信系统中包括的网络设备可以是一个或多个。一个网络设备可以向一个或多个终端发送数据或控制信令。多个网络设备也可以同时向一个或多个终端发送数据或控制信令。
图2示出了传统方案中干扰测量上报的方法的示意性流程图。
201,网络设备向终端发送配置信息。
该配置信息包括两部分:资源配置信息和上报配置信息。资源配置信息包括是信道资源和干扰资源相关的信息。其中,信道资源相关的信息可以包括信道资源对应的时频资源位置,以及信道资源的空间接收参数等。干扰资源相关的信息可以包括干扰资源对应的时频资源位置,和干扰资源的空间接收参数。干扰资源相关的信息也可以不包括空间接收参数。网络设备可以为终端配置一个或多个资源配置,每个资源配置包括一个或多个资源集,每个资源集可以包括一个或多个资源。每个资源配置/资源集/资源中都包括一个自己的索引。此外,还包括一些其他参数,如资源的周期,资源对应的信号类型等。上报配置信息是指测量结果上报相关的信息。每个上报配置都包括上报时间和周期,上报量等与上报相关的信息。此外,上报配置里还包括资源配置的索引,用于指示上报的结果是通过测量什么资源得到的。
可以理解的是,信道资源又可以称为信道测量资源,干扰资源又可以称为干扰测量资源。
202,网络设备在该资源配置信息所配置的信道资源和干扰资源上分别发送下行信号。
203,终端根据测量信道资源上的下行信号和干扰资源上的下行信号,确定所述信道资源在所述干扰资源的干扰下的测量结果。其中,测量结果可以通过SINR表示。
应理解,测量干扰资源对信道资源的干扰,实质上是测量干扰资源对应的信号对信道资源对应的信号的干扰,或者,干扰资源对应的发送波束对信道资源对应的发送波束的干扰。
204,终端向网络设备发送测量报告,测量报告用于指示该测量结果等。
传统方案中,网络设备可以测量干扰资源对单个信道资源造成的干扰。如图3中,终端可以测量干扰资源#3(对应发送波束#3)对信道资源#1(对应发送波束#1)造成的干扰。具体方法是为干扰资源#3配置与信道资源#1相同的TCI-state(即相同接收空间参数,或接收波束),这样终端就会采用信道资源#1的接收波束(接收波束4)接收信道资源#1和干扰资源#3上的下行信号,从而计算出信道资源#1在干扰资源#3的干扰下的SINR。但是,终端无法测量干扰资源同时对多个信道资源造成的干扰。例如,图3中,信道资源#1和信道资源#2对应的接收波束是波束#4和波束#5。当信道资源#1和#2同时发送时,终端会采用#4和#5同时接收。这时,终端应该采用波束#4和#5同时接收干扰资源#3才能测得干扰资源#3对信道资源#1和#2同时造成的干扰。但是,现有技术不支持为干扰资源配置多个TCI-state(或多个接收波束),因此无法测量干扰资源#3对信道资源#1和#2同时造成的干扰。
图4示出了本申请实施例的干扰测量上报的方法的示意性流程图。
401,终端将K个信道资源的空间接收参数作为该终端的M个干扰资源中的每个干扰资源的空间接收参数,该K个信道资源为该终端能够接收到网络设备采用该K个信道资源同时发送的信号的信道资源,M为正整数,K为大于或等于2的正整数。
具体地,网络设备通过该K个信道资源同时发送信号,终端可以接收到通过该K个信道资源发送的信号。终端将该K个信道资源的空间接收参数作为M个干扰资源中每个干扰资源的空间接收参数。若M=1时,则该K个信道资源的空间接收参数都作为这1个干扰资源的空间接收参数。
可以理解的是,该K个信道资源为对应的下行信号能被终端同时接收到的资源(例如,CSI-RS and/or SSB resources can be received simultaneously by the UE),或者说终端能够同时接收该K个信道资源发送的信号。具体地,终端能够同时接收该K个信道资源发送的信号可以是指终端有能力同时接收这K个信道资源对应的下行信号,或者是指终端有能力同时接收这K个信道资源对应的发送波束。也就是说,网络设备采用这几个信道资源对应的发送波束同时发送下行信号时,该终端是能够都收到的。例如,这K个信道资源对应的发送波束的接收波束都是同一个,终端可以采用该接收波束同时收到这K个信道资源对应的发送波束上的下行信号。又例如,这K个信道资源对应的发送波束的接收波束不同(假设共对应X个不同的接收波束),终端有多个天线面板,能够同时采用上述X个不同的接收波束来进行接收,这样终端也可以同时收到这K个信道资源对应的发送波束上的下行信号。
可以理解的是,该K个信道资源可以为网络设备的K个发送波束。
可以理解的是,将K个信道资源的空间接收参数作为一个干扰资源的空间接收参数,可以理解为采用这K个信道资源对应的所有接收波束来同时接收该干扰资源,或者,可以理解为采用这K个信道资源对应的所有接收波束来作为该干扰资源的接收波束,或者,可以理解为该干扰资源与该K个信道资源是同时QCL的。其中,K个信道资源对应的所有接收波束,即网络设备的K个发送波束与终端的K个接收波束一一对应。
可以理解的是,网络设备同时发送的该K个信号,终端可以是相同时刻接收到的,也可以是不同时刻接收到的,本申请对此不进行限定。
还可以理解的是,终端可以通过一个或多个信道资源接收该K个信道资源的信号,本 对此不进行限定。
还可以理解的是,信道资源的类型可以是非零功率信道状态信息参考信号资源(None zero-power channel status information reference signal-resource,NZP-CSI-RS-resource),或同步信号-广播信道测量资源块(synchronization signal and PBCH block,SSB)。干扰资源的类型可以是NZP-CSI-RS-resource,也可以是信道状态信息干扰测量(channel status information-interference measurement,CSI-IM)-resource类型,还可以是两者的混合,即部分是NZP-CSI-RS-resource,部分是CSI-IM-resource。
上述K个信道资源,可以是本次测量对应的测量配置信息里配置的N个信道资源中选出来的,也可以是本次测量对应的测量配置信息里直接配置的。这两种情况分别对应两种实施例。
在第一种实施例中,上述K个信道资源是从N个信道资源中确定的K个能被终端同时接收的信道资源。K个信道资源的确定和采用这K个信道资源的空间接收参数测量M个干扰资源是在同一次测量上报过程中完成的。具体的,在一次测量上报过程中,网络设备通过测量配置信息配置了N个信道资源和M个干扰资源。终端先从这N个信道资源中选出上述K个能被其同时接收的信道资源,然后再用这K个信道资源的空间接收参数来作为该M个干扰资源中每个干扰资源的空间接收参数,来测量这M个干扰资源。
可以理解的是,该N个信道资源可以配置在同一个资源配置(resourcesetting)中,也可以配置在不同的resourcesetting中。或者该N个信道资源可以配置在同一个资源集合(resourceset)中,也可以配置在不同的resourceset中。
同样地,该M个干扰资源可以配置在同一个resourcesetting中,也可以配置在不同的resourcesetting中。或者该N个干资源可以配置在同一个resourceset中,也可以配置在不同的resourceset中。
还可以理解的是,该N个信道资源和M个干扰资源可以配置在相同的一个resourcesetting或相同的resourceset中,或配置在不同的resourcesetting或不同的resourceset中,本申请对此不进行限定。
还可以理解的是,resourcesetting也可以称为resourceconfig。
可选地,该配置信息还用于配置该N个信道资源中每个信道资源的空间接收参数。
可以理解的是,该N个信道资源的空间接收参数可以各不相同,也可以全部相同,还可以部分相同,本申请对此不进行限定。
还可以理解的是,该配置信息还可以配置group based beam reporting和/或上报量参数(report quantity)。其中,所述波束分组上报参数用于是否上报K个能被终端同时接收的信道资源的测量结果。若波束分组上报参数指示开启(例如,配置成enabled),则终端采用分组方式上报,上报K个能被终端同时接收的信道资源;若波束分组上报参数指示关闭(例如,配置成disabled),则终端不需要采用分组方式上报。上报量参数用于指示上报结果中包含的内容,例如参考信号接收功率(reference signal receiving power,RSRP),SINR等。
可以理解的是,本申请实施例对波束分组上报参数和上报量参数的名称进行限定,波束分组上报参数和上报量参数也可以采用其他名称。
可选地,该N个信道资源对应的时间早于该M个干扰资源对应的时间。
具体地,资源(信道资源或干扰资源)对应的时间是指该资源对应的下行信号发送的时间,该时间可以通过该资源中的时频资源映射(resource mapping)参数来进行指示。该时间可以表示成正交频分复用技术(orthogonal frequency division multiplexing,OFDM)符号,时隙,毫秒等。该N个信道资源对应的时间早于该M个干扰资源对应的时间,可以是该N个信道资源对应的时间中的最晚的时间,早于该M个干扰资源对应的时间中的最早的时间。
进一步的,该N个信道资源对应的时间早于该M个干扰资源对应的时间,还可以具体是指该N个信道资源对应的时间可以比该M个干扰资源对应的时间早X个时间单元。例如,该N个信道资源对应的时间中的最晚的时间,比该M个干扰资源对应的时间中的最早的时间要早X个时间单元。时间的单位可以是OFDM符号,时隙等。例如,该N个信道资源对应的时间中的最晚的时间,比该M个干扰资源对应的时间中的最早的时间要早X个符号。即该N个信道资源中时间最晚的那个信道资源对应的OFDM符号,比该M个干扰资源中时间最早的那个资源对应的OFDM符号要早X个符号。还可以表示成该M个干扰资源中时间最早的那个资源对应的OFDM符号(符号j)与该N个信道资源中时间最晚的那个信道资源对应的OFDM符号(符号i)之间的间隔至少是X个符号,例如j-i大于或等于X。
可选的,该N个信道资源对应的时间早于该M个干扰资源对应的时间,还可以具体是指该N个信道资源对应的时间中最早的时间,比该M个干扰资源对应的时间中最早的时间早X个时间单元。或者,还可以是该N个信道资源对应的时间中最早的时间,比该M个干扰资源对应的时间中最晚的时间早X个时间单元。或者,还可以是该N个信道资源对应的时间中最晚的时间,比该M个干扰资源对应的时间中最晚的时间早X个时间单元。
可以理解的是,该X的取值可以是协议规定的默认值,也可以是终端上报给网络设备的(例如通过终端能力上报过程上报给网络设备的),也可以是网络设备通过无线资源控制(radio resource control,RRC)信令,媒体访问控制(media access control,MAC)-控制元素(control element,CE)信息或下行控制信息(downlink control information,DCI)指示的值,本申请对此不进行限定。
还可以理解的是,时间单元可以是符号,时隙,子帧,帧,毫秒,微妙,Ts,Tc。
可选地,可以采用第一条件,当该条件满足时,才采用步骤401的第一种实施例的方法来确定干扰资源的接收空间参数。即只有该条件满足时,才采用从N个信道资源中确定的K个能被终端同时接收的信道资源的空间接收参数,来作为M个干扰资源中每个干扰资源的空间接收参数。该条件可以是以下一项。以下各项均针对该测量配置信息。
测量配置信息中的波束分组上报参数指示为开启。例如group based beam reporting配置成enabled;
测量配置信息中的上报量参数指示上报内容包括SINR。例如report quantity配置成cri-SINR,ssb-Index-SINR或任意其他包含SINR的形式;
测量配置信息中配置了干扰资源。也就是说,不是只配置了信道资源;
测量配置信息中的中配置了干扰资源且没有为干扰资源配置TCI-state参数;
测量配置信息中配置的N个信道资源的时间比M个干扰资源的时间早X个OFDM 符号。例如,N个信道资源中时间最晚的信道资源的时间,比M个干扰资源中时间最晚的干扰资源的时间早X个OFDM符号。
上述条件还可以是上述多项的组合,即多项同时满足时,才采用K个信道资源的空间接收参数来作为M个干扰资源中每个干扰资源的空间接收参数。可以是以下组合。
测量配置信息中的波束分组上报参数指示为开启,且上报量参数指示的上报内容包括SINR。
测量配置信息中的波束分组上报参数指示为开启,且配置信息中配置了干扰资源。
测量配置信息中的波束分组上报参数指示为开启,且配置了干扰资源且干扰资源没有配置TCI-state参数。
测量配置信息中的波束分组上报参数指示为开启,且配置的N个信道资源的时间比M个干扰资源的时间早X个OFDM符号。
测量配置信息中的波束分组上报参数指示为开启,上报量参数指示的上报内容包括SINR,且配置的N个信道资源的时间比M个干扰资源的时间早X个OFDM符号。
测量配置信息中的波束分组上报参数指示为开启,且配置了干扰资源,且配置的N个信道资源的时间比M个干扰资源的时间早X个OFDM符号。
测量配置信息中的波束分组上报参数指示为开启,配置了干扰资源且干扰资源没有配置TCI-state参数,配置的N个信道资源的时间比M个干扰资源的时间早X个OFDM符号。
在第二种实施例中,上述K个信道资源是直接配置的,而不是从配置的N个信道资源中确定的。也就是说,网络设备配置K个信道资源和M个干扰资源。终端采用这K个信道资源的空间接收参数来作为这M个干扰资源中每个干扰资源的空间接收参数,来对这M个干扰资源进行测量。
具体地,终端从网络设备接收第一测量配置信息,该第一测量配置信息包括K个信道资源和M个干扰资源。终端将该K个信道资源的空间接收参数作为该M个干扰资源中每个干扰资源的空间接收参数。这K个信道资源可以是能够被终端同时接收的。也就是说网络设备已经获知K个能被网络设备同时接收的信道资源的情况下,例如通过其他测量过程确定了K个能被终端同时接收的信道资源,可以直接采用上述配置来进行测量,而不需要配置N个信道资源,让终端先选出K个能被其同时接收的信道资源,再用这K个信道资源的接收空间参数来作为M个干扰资源中每个干扰资源的空间参数,来测量这M个干扰资源。
可以理解的是,这K个信道资源不是能够被终端同时接收的,终端也可以将这K个信道资源的空间接收参数来作为这M个干扰资源中每个干扰资源的空间接收参数,来对这M个干扰资源进行测量,本申请不做限定。
可选地,可以采用一个第二条件,当该第二条件满足时,才采用步骤401的第二种实施例的方法来确定干扰资源的接收空间参数。即只有该第二条件满足时,才会采用配置的K个信道资源的空间接收参数来作为M个干扰资源中每个干扰资源的空间接收参数。该第二条件可以是以下任意一项。以下各项均针对第一测量配置信息。
第一测量配置信息中的波束分组上报参数指示开启,且上报量参数指示的上报内容包括SINR。例如report quantity配置成cri-SINR,ssb-Index-SINR或任意其他包含SINR的 形式;
第一测量配置信息中的波束分组上报参数指示开启,且配置了干扰资源;
第一测量配置信息中的波束分组上报参数指示开启,且配置了干扰资源,以及没有为干扰资源配置TCI-state参数;
可选的,终端也可以默认直接执行上述方法,不需要上述第二条件。
可选地,上述K个能被终端同时接收的信道资源,是通过另一次测量过程确定的。也就是说,在本次测量之前,即根据上述第一测量配置信息进行的测量之前,终端已经进行了一次测量。例如,终端从网络设备接收第二测量配置信息,该第二测量配置信息中配置了N个信道资源。根据该第二测量配置信息,终端从该N个信道资源中确定能被其同时接收的K个信道资源,并将这K个信道资源的索引上报给网络设备,这样网络设备就能获知这K个信道资源。
可选地,可以采用一个第三条件,当该第三条件满足时,终端从第二测量配置信息中配置的N个信道资源中确定K个能被其同时接收的信道资源。该第三条件可以是以下任意一项。以下各项均针对第二测量配置信息。
第二测量配置信息中的波束分组上报参数指示开启,且上报量参数指示的上报内容包括RSRP。例如,上报量参数配置成cri-RSRP,ssb-Index-RSRP或其他包含RSRP的形式。
第二测量配置信息中的波束分组上报参数指示开启,且未配置干扰资源。
可选地,网络设备在通过测量配置信息为终端配置干扰资源时,需要参考终端的能力限制,即终端最多能支持的干扰资源数量。终端可以通过终端能力上报过程,上报其关于干扰资源的能力,例如一个时隙最多能测量的干扰资源的数量。具体的,终端可以上报以下终端能力中的任意一种或多种。
具体地,干扰资源数量上限可以是:
一个小区内能配置的干扰资源数量上限;一个bwp内能配置的数量上限;所有小区能配置的干扰资源总数上限;一个OFDM符号上能配置的干扰资源数量上限;一个时隙内能配置的干扰资源数量上限;一个resourcesetting中能配置的干扰资源的数量上限;一个resourceset中能配置的数量上限;一个reportconfig关联的干扰资源的数量上限;与一个信道资源关联的干扰资源数量上限;与一个信道资源集合resourceset关联的干扰资源数量上限;与一个信道资源配置resourceconfig关联的干扰资源数量上限。
可以理解的是,上述各种数量上限可以是指类型为NZP CSI-RS的干扰资源的数量上限,也可以是指类型为CSI-IM的干扰资源的数量上限,也可以是指类型为NZP CSI-RS的干扰资源和类型为CSI-IM的干扰资源的总数的上限。
402,该终端根据该M个干扰资源中的第一干扰资源的空间接收参数,确定该K个信道资源的第一测量结果。
具体地,该终端根据该M个干扰资源中的第一干扰资源的空间接收参数,测量第一干扰资源,并确定该K个信道资源在该第一干扰资源的干扰下的第一测量结果。该第一干扰资源为该M个干扰资源中的任意一个干扰资源。也就是说,终端可以测量该M个干扰资源中的每个干扰资源,确定上述K个信道资源在各个干扰资源干扰下的测量结果。即终端可以确定该M个干扰资源对应的M个测量结果。
例如,以空间接收参数包括TCI-state为例进行说明,该K个信道资源的空间接收参 数分别为TCI-state1和TCI-state2,则该M个干扰资源中的任意一个干扰资源都要采用该TCI-state1和TCI-state2进行测量。
可以理解的是,终端根据一个干扰资源可以确定该K个信道资源中的一个或多个测量结果。例如,终端可以确定2个信道资源在1个干扰资源的干扰下的2测量结果,或者该2个测量结果的平均值。M=1时,终端可以上报一组测量结果。M>1时,终端可以上报M组测量结果。
还可以理解的是,本申请中的测量结果可以是SINR,也可以是RSRP、CQI或参考信号接收质量(reference signal receiving quality,RSRQ),本申请对此不进行限定。在测量结果为SINR时,该SINR还可以是L1-SINR。
可选地,可以采用以下方法来计算测量结果。下面以SINR为例。
具体地,以K=2个信道资源(资源1和资源2)和一个干扰资源i为例进行说明。终端采用资源1和资源2的空间接收参数,接收干扰资源i对应的下行信号,测得的干扰能量I i。采用资源1的空间接收参数,接收资源1对应的下行信号,测得信号能量P1。P1也可以是采用资源1和资源2的空间接收参数同时接收资源1对应的下行信号,测得的信号能量。采用资源1的空间接收参数接收资源2,测得信号能量P2。P2也可以是采用资源1和资源2的空间接收参数同时接收资源1对应的下行信号,测得的信号能量。下面以资源1为了来阐述SINR的计算方法。
资源1在干扰资源1的干扰下的SINR可以通过以下公式来计算:
Figure PCTCN2019109689-appb-000001
其中,N 0为其他干扰能量,例如噪声和邻小区干扰。
资源1在干扰资源1的干扰下的SINR还可以通过以下公式来计算:
Figure PCTCN2019109689-appb-000002
其中P 21是采用资源1的空间接收参数,接收资源2,测得的资源2的能量。也就是说,P 21是资源2泄露到资源1的接收波束上的能量,这部分能量会对资源1上的信号造成干扰,因此需要考虑到整个干扰中。
也就是说,分组上报模式下(例如,上述第一条件满足时),测量K个资源(K个资源可以是配置的K个信道资源,或要上报的K个能被同时接收的信道资源)中资源j的SINR时,采用资源j的空间接收参数分别测量K个资源中的其他各个资源的信号能量,将其他各个资源的信号能量分别作为干扰分别计算资源j的SINR;或者将其他各个资源的信号能量全部作为干扰计算资源j的SINR;资源j是K个资源中的任意一个资源。
可选的,在上述计算方法中,也可以计算所有M个干扰资源对K个信道资源的干扰,即将M个干扰资源内的干扰能量加在一起,计算K个资源的干扰能量。还是以资源1为例,可以采用以下计算方法。
Figure PCTCN2019109689-appb-000003
或者采用,
Figure PCTCN2019109689-appb-000004
其中I是所有M个干扰资源的干扰能量的总和。
上述SINR测量结果可以用于确定要上报的K个能被同时接收的信道资源。例如,在多组(每组K个)能被同时接收的信道资源中,选择等效SINR最大的那组信道资源。等效SINR是指K个信道资源的SINR中的最大值,最小值,平均值,总和等。也可以是其他计算方法计算的一个SINR。也可以采用一个等效SINR门限,当不存在超过该门限的一组SINR时,不上报测量结果,或者上报一个特殊值。
403,该终端向该网络设备发送测量报告,该测量报告用于指示K个信道资源的测量结果,且所述测量报告包括所述第一测量结果。
具体地,该测量报告可以用于指示该M个测量结果。
在一种可能的实现方式中,该测量报告包括M个测量结果,每个测量结果对应一个干扰资源。所述M个测量结果中的每个测量结果包括对应的信道资源的索引。
具体地,终端可以直接将该M个测量结果上报该网络设备,并在每个测量结果中携带对应的干扰资源的索引,这样网络设备可以识别出每个测量结果为该K个信道资源相对于哪个干扰资源的测量结果。
在另一种可能的实现方式中,该测量报告包括M个测量结果,该M个测量结果按第一顺序排序,该第一顺序为预设干扰信道资源索引顺序或该K个干扰资源的配置顺序。
具体地,终端可以直接将该M个测量结果上报该网络设备。该M个测量结果按第一顺序排序,该第一顺序为预设干扰资源索引顺序或该至少K扰资源的配置顺序。这样网络设备也可以识别出每个测量结果为该K个信道资源相对于哪个干扰资源的测量结果。
在又一种可能的实现方式中,当要上报L个SINR时,可以上报其中最大或最小的SINR,以及另外L-1个SINR与该最大或最小的SINR的差值。上述最大或最小SINR可以称为参考SINR。上报格式中,参考SINR采用Q个比特,每个SINR差值采用R个比特。R个比特可以表示2 R个不同的值,例如R=4时,可以表示16个值。其中,相邻的两个值之间的差,称为量化的步长。例如,0000表示1dB,0001表示2dB,相差1dB,则SINR差值的量化步长为1dB。
本申请实施例中SINR差值的步长的取值可以与第一SINR具有映射关系。即可以规定多个SINR区间,每个SINR区间采用一个步长。例如,如下述表1所示,当参考SINR的值大于20dB时,采用2dB的步长。当参考SINR的值位于10dB和20dB之间时,采用1.5dB的步长。当参考SINR的值位于5dB和10dB之间时,采用1dB的步长。当参考SINR的值小于5dB时,采用0.5dB的步长。
表1
参考SINR 步长
>20dB 2dB
10dB~20dB 1.5dB
5dB~10dB 1dB
<5dB 0.5dB
图5示出了本申请一个具体地实施例的干扰测量上报的方法的示意性流程图。
需要说明的是,本申请实施例中与图4所示的实施例的中的相同术语表示的含义相同,为了避免重复,在此不进行赘述。
501,网络设备向终端发送测量配置信息,该测量配置信息用于配置N个信道资源和M个干扰资源。
502,该终端从该N个信道资源中确定K个信道资源,该K个信道资源为该终端能够接收到网络设备同时发送的信号的信道资源。
503,该终端将该K个信道资源的空间接收参数作为该终端的M个干扰资源中的每个干扰资源的空间接收参数。
504,该终端根据该M个干扰资源中的第一干扰资源的空间接收参数,确定该K个信道资源的第一测量结果。
505,终端向网络设备发送测量报告,该测量报告用于指示M个测量结果,且该测量报告包括该第一测量结果。
图6示出了本申请一个具体地实施例的干扰测量上报的方法的示意性流程图。
需要说明的是,本申请实施例中与图4所示的实施例的中的相同术语表示的含义相同,为了避免重复,在此不进行赘述。
601,终端从网络设备接收第二配置信息,该第二配置信息用于配置N个信道资源。
602,该终端从该N个信道资源中确定K个信道资源,该K个信道资源为该终端能够接收到网络设备同时发送的信号的信道资源。
603,该终端向该网络设备发送指示信息,该指示信息用于指示该K个信道资源。
604,该终端从该网络设备接收第一配置信息,该第一配置信息用于配置该K个信道资源的空间接收参数和该M个干扰资源。
605,该终端将该K个信道资源的空间接收参数作为该终端的M个干扰资源中的每个干扰资源的空间接收参数。
606,该终端根据该M个干扰资源中的第一干扰资源的空间接收参数,确定该K个信道资源的第一测量结果。
607,该终端向该网络设备发送测量报告,该测量报告用于指示M个测量结果,且该测量报告包括该第一测量结果。
图7示出了本申请实施例的确定信道资源的发送波束的方法的示意性流程图。
701,网络设备向终端发送测量配置信息,该测量配置信息用于配置N个信道资源和M个干扰资源,且该配置信息包括该N个信道资源的重复参数,该N个信道资源的重复参数的状态用于指示该N个信道资源的发送波束是否相同;
702,该终端根据该N个信道资源的重复参数,确定该N个信道资源的发送波束是否相同。
具体地,网络设备可以通过参数repetition来指示信道资源与干扰资源是否是采用一个发送波束发送的。
可以理解的是,该N个信道资源的发送波束相同,可以理解为该N个信道资源采用同一个波束,但不同时域资源上发送信号。
可选地,该N个信道资源的重复参数的第一状态用于指示该N个信道资源的发送波 束相同,该N个信道资源的重复参数的第二状态用于指示该N个信道资源的发送波束不同。
例如,测量配置信息中配置了一个信道资源集合resourceset(例如,NZP-CSI-RS-resourceset)和干扰资源集合resourceset。该信道资源集合包括N个信道资源,该干扰资源集合包括M个干扰资源。当该信道资源集合的repetition参数配置成开启状态时(例如,配置成“on”),终端认为这N个信道资源是采用同一发送波束在N个不同的OFDM符号上发送的。反之,当该信道资源集合的repetition参数配置成关闭状态时(例如,配置成“off”),终端不能认为这N个信道资源是采用同一发送波束发送的。
可选地,该配置信息还可以包括该M个干扰资源的重复参数,该M个干扰资源的重复参数的状态用于指示该M个干扰资源的发送波束是否相同。
具体地,当该干扰资源集合的repetition参数配置成开启状态时(例如,配置成“on”),终端认为这M个干扰资源是采用同一发送波束在M个不同的OFDM符号上发送的。反之,当该干扰资源集合的repetition参数配置成关闭状态时(例如,配置成“off”),终端不能认为这M个干扰资源是采用同一发送波束发送的。
可以理解的是,本申请对N和M的大小关系不进行限定。例如,N可以大于M,或等于M,或小于M。
可选地,在该N个信道资源的重复参数的第一状态用于指示该N个信道资源的发送波束相同,以及该M个干扰资源的发送波束不同的情况下,测量报告包括至少一个测量结果和该至少一个测量结果对应的信道资源的索引。
具体地,当上述信道资源集合的repetition参数配置成开启(例如配置成“on”),干扰资源集合的repetition参数配置成关闭时(例如配置成“off”),终端认为N个信道资源采用同一个发送波束,而M个干扰资源不一定采用同一个发送波束。这种情况下,终端在通过测量报告上报测量结果时,需要上报信道资源的索引。也就是说,如果网络设备为终端配置了一个信道资源集合resourceSet和一个对应的干扰测量资源集合resourceSet,如果该信道资源集合resourceSet的repetition参数配置成开启状态(例如,配置成“on”),该干扰测量资源集合resourceSet的repetition参数配置成关闭状态(例如,配置成“off”),则终端需要上报信道资源的索引。该信道资源索引关联一个干扰资源索引,通过该信道资源索引可以确定干扰资源索引。也就是说终端设备想要上报一个干扰资源索引时,可以不直接上报该干扰资源的索引,而是上报与该干扰资源关联的信道资源的索引。或者,这种情况下,终端设备在通过测量报告上报测量结果时,可以直接上报干扰资源的索引。也就是说,如果网络设备为终端配置了一个信道资源集合resourceSet和一个对应的干扰测量资源集合resourceSet,如果该信道资源集合resourceSet的repetition参数配置成开启状态(例如,配置成“on”),该干扰测量资源集合resourceSet的repetition参数配置成关闭状态(例如,配置成“off”),则终端需要上报干扰资源的索引。
上述方法的一个有益效果是,N等于M时,上述N个信道资源和N个干扰资源一一对应。通过上报信道资源的索引,终端可以获取干扰资源的信息,即各个上报的SINR对应的干扰资源,可以提高数据传输的性能。
需要说明的是,当上述信道资源集合和干扰资源集合的repetition参数都配置成开启时(例如,配置成“on”),终端认为上述N个信道资源采用同一个的发送波束,以及上 述M个干扰资源采用同一个的发送波束。这种情况下,终端在上报干扰测量结果时,不用上报信道资源的索引。这是因为信道资源和干扰资源都只对应一个波束,不需要上报资源的索引来指示测量结果是哪个波束的测量结果。也就是说,如果网络设备为终端配置了一个信道资源集合resourceSet和一个对应的干扰测量资源集合resourceSet,如果该信道资源集合resourceSet和该干扰测量资源集合resourceSet的repetition参数都配置成开启状态(例如,配置成“on”),则终端不上报信道资源的索引。或者,如果网络设备为终端配置了一个信道资源集合resourceSet和一个对应的干扰测量资源集合resourceSet,如果上述信道资源集合resourceSet和上述干扰测量资源集合resourceSet的repetition参数都配置成开启状态(例如,配置成“on”),则终端不上报信道资源的索引,也不上报干扰资源的索引。上述方法可以节约上报开销。
另一种实现方式中,可以直接规定干扰资源集合采用与其关联的信道资源集合相同的repetition参数值。或者,当干扰资源集合为配置repetition参数的值时,该干扰资源集合采用与其关联的信道资源集合相同的repetition参数值。例如,当信道资源集合的repetition参数配置成开启时(例如,配置成“on”),而其关联的干扰资源集合的repetition参数未配置时,终端可以认为上述干扰资源集合也是采用单个发送波束发送的。这时,终端也不需要上报信道资源的索引。具体的,当如果网络设备为终端设备配置了一个信道资源集合resourceSet和一个对应的干扰测量资源集合resourceSet,如果该信道资源集合resourceSet的repetition参数配置成开启时(例如,配置成“on”),而该干扰测量资源集合resourceSet未配置repetition参数,则终端设备不上报信道资源的索引。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由终端实现的方法和操作,也可以由可用于终端的部件(例如芯片或者电路)实现,由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
上述主要从各个交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如终端或者网络设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端或者网络设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以使用硬件的形式实现,也可以使用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以使用对应各个功能划分各个功能模块为例进行说明。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上,结合图4至图7详细说明了本申请实施例提供的方法。以下,结合图8至图15详细说明本申请实施例提供的装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
图8示出了本申请实施例的通信装置800的示意性框图。
应理解,该装置800可以对应于图1所示的各个终端或终端内的芯片,以及图4所示的实施例中的终端或终端内的芯片,可以具有图4所示的方法实施例中的终端的任意功能。该装置800,包括收发模块810和处理模块820。
该处理模块820,用于将K个信道资源的空间接收参数作为该终端的M个干扰资源中的每个干扰资源的空间接收参数,该K个信道资源为该终端能够接收到网络设备采用该K个信道资源同时发送的信号的信道资源,M为正整数;
该处理模块820,还用于根据该M个干扰资源中的第一干扰资源的空间接收参数,确定该K个信道资源的第一测量结果,K为大于或等于2的正整数;
该收发模块810,用于向该网络设备发送测量报告,该测量报告用于指示M个测量结果,且该测量报告包括该第一测量结果。
可选地,该收发模块810,还用于接收测量配置信息,该测量配置信息用于配置N个信道资源和该M个干扰资源,N为正整数;
该处理模块820,还用于从该N个信道资源中,确定该终端能够接收到该网络设备同时发送的信号的该K个信道资源。
可选地,该N个信道资源对应的时间早于该M个干扰资源对应的时间。
可选地,该处理模块820具体用于:
在满足如下情况中的至少一项的情况下,将K个信道资源的空间接收参数作为该M个干扰资源中的每个干扰资源的空间接收参数:
该测量配置信息中的波束分组上报参数指示开启,其中,该波束分组上报参数用于指示是否上报该M个测量结果;
该测量配置信息中的上报量参数指示该测量结果包括信号与干扰加噪声比SINR;
该测量配置信息中的配置了该M个干扰资源;
该测量配置信息未为该M个干扰资源配置传输配置编号状态TCI-State。
可选地,该收发模块810,还用于从该网络设备接收第一测量配置信息,该第一测量配置信息用于配置该K个信道资源的空间接收参数和该M个干扰资源。
可选地,该收发模块810具体用于:
在满足如下情况中的至少一项的情况下,该终端将K个信道资源的空间接收参数作为该M个干扰资源中的每个干扰资源的空间接收参数:
该第一测量配置信息中的波束分组上报参数指示开启,且该第一测量配置信息中的上报量参数指示该测量结果包括SINR,其中,该波束分组上报参数用于指示是否上报该M个测量结果;
该第一测量配置信息中的波束分组上报参数指示开启,且该第一测量配置信息配置了 该M个干扰资源,其中,该波束分组上报参数用于指示是否上报该M个测量结果;
该第一测量配置信息中的波束分组上报参数指示开启,且该第一测量配置信息配置了该M个干扰资源,以及该第一测量配置信息未为该M个TCI-state参数,其中,波束分组上报参数用于指示是否上报该M个测量结果。
可选地,该收发模块810,还用于从该网络设备接收第二测量配置信息,该第二测量配置信息用于配置该N个信道资源,N为正整数;
该处理模块820,还用于根据该第二测量配置信息,确定该终端能够接收到该网络设备同时发送的信号的该K个信道资源;
该收发模块810,还用于向该网络设备发送指示信息,该指示信息用于指示该K个信道资源。
可选地,该处理模块820具体用于:
在满足如下情况中的至少一项的情况下,根据该第二测量配置信息,确定该终端能够接收到该网络设备同时发送的信号的该K个信道资源:
该第二测量配置信息中的波束分组上报参数指示开启,且该第二测量配置信息中的上报量参数指示该测量结果包括参考信号接收功率RSRP,其中,波束分组上报参数用于指示是否上报该M个测量结果;
该第二测量配置信息中的波束分组上报参数指示开启,且该第二测量配置信息未配置该M个干扰资源,其中,波束分组上报参数用于指示是否上报该M个测量结果。
可选地,该测量结果包括SINR,该测量报告还包括至少一个SINR差值,该至少一个SINR差值为该K个测量结果中除该第一测量结果之外的每个测量结果中的SINR与该第一测量结果的SINR的差值,第一测量结果包括的第一SINR为该K个测量结果中最大的SINR,该第一SINR与步长具有映射关系,该步长为与比特位取值的乘积用于指示SINR的差值。
关于上述收发模块810和处理模块820更详细的描述,可参考上述方法实施例中的相关描述,在此不再说明。
图9示出了本申请实施例提供的通信装置900,该装置900可以为图4中所述的终端。该装置可以采用如图9所示的硬件架构。该装置可以包括处理器910和收发器930,可选地,该装置还可以包括存储器940,该处理器910、收发器930和存储器940通过内部连接通路互相通信。图8中的处理模块820所实现的相关功能可以由处理器910来实现,收发模块810所实现的相关功能可以由处理器910控制收发器930来实现。
可选地,处理器910可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),专用处理器,或一个或多个用于执行本申请实施例技术方案的集成电路。或者,处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。
可选地,该处理器910可以包括是一个或多个处理器,例如包括一个或多个中央处理单元(central processing unit,CPU),在处理器是一个CPU的情况下,该CPU可以是单 核CPU,也可以是多核CPU。
该收发器930用于发送和接收数据和/或信号,以及接收数据和/或信号。该收发器可以包括发射器和接收器,发射器用于发送数据和/或信号,接收器用于接收数据和/或信号。
该存储器940包括但不限于是随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程存储器(erasable programmable read only memory,EPROM)、只读光盘(compact disc read-only memory,CD-ROM),该存储器940用于存储相关指令及数据。
存储器940用于存储终端的程序代码和数据,可以为单独的器件或集成在处理器910中。
具体地,所述处理器910用于控制收发器与终端进行信息传输。具体可参见方法实施例中的描述,在此不再赘述。
在具体实现中,作为一种实施例,装置900还可以包括输出设备和输入设备。输出设备和处理器910通信,可以以多种方式来显示信息。例如,输出设备可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备和处理器910通信,可以以多种方式接收用户的输入。例如,输入设备可以是鼠标、键盘、触摸屏设备或传感设备等。
可以理解的是,图9仅仅示出了通信装置的简化设计。在实际应用中,该装置还可以分别包含必要的其他元件,包含但不限于任意数量的收发器、处理器、控制器、存储器等,而所有可以实现本申请的终端都在本申请的保护范围之内。
在一种可能的设计中,该装置900可以是芯片,例如可以为可用于终端中的通信芯片,用于实现终端中处理器910的相关功能。该芯片可以为实现相关功能的现场可编程门阵列,专用集成芯片,系统芯片,中央处理器,网络处理器,数字信号处理电路,微控制器,还可以采用可编程控制器或其他集成芯片。该芯片中,可选的可以包括一个或多个存储器,用于存储程序代码,当所述代码被执行时,使得处理器实现相应的功能。
本申请实施例还提供一种装置,该装置可以是终端也可以是电路。该装置可以用于执行上述方法实施例中由终端所执行的动作。
图10示出了本申请实施例的通信装置1000的示意性框图。
应理解,该装置1000可以对应于图1所示的网络设备或网络设备内的芯片,或者图4所示的实施例中的网络设备或网络设备内的芯片,可以具有方法中的网络设备的任意功能。该装置1000,包括处理模块1010和收发模块1020。
该处理模块1010,用于确定测量配置信息,该测量配置信息用于N个信道资源和M个干扰资源,N为正整数;
该收发模块1020,用于向该终端发送该测量配置信息。
可选地,该测量配置信息包括波束分组上报参数和/或上报量参数,该波束分组上报参数用于指示是否上报该M个测量结果,该上报量参数指示该测量结果包括信号与干扰加噪声比SINR。
可选地,该测量结果包括SINR,该测量报告还包括至少一个SINR差值,该至少一个SINR差值为该K个测量结果中除该第一测量结果之外的每个测量结果中的SINR与该第 一测量结果的SINR的差值,第一测量结果包括的第一SINR为该K个测量结果中最大的SINR,该第一SINR与步长具有映射关系,该步长为与比特位取值的乘积用于指示SINR的差值。
关于上述收发模块1020和处理模块1010更详细的描述,可参考上述方法实施例中的相关描述,在此不再说明。
图11示出了本申请实施例提供的通信装置1100,该装置1100可以为图4中所述的网络设备。该装置可以采用如图11所示的硬件架构。该装置可以包括处理器1110和收发器1120,可选地,该装置还可以包括存储器1130,该处理器1110、收发器1120和存储器1130通过内部连接通路互相通信。图10中的处理模块1010所实现的相关功能可以由处理器1110来实现,收发模块1020所实现的相关功能可以由处理器1110控制收发器1120来实现。
可选地,处理器1110可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),专用处理器,或一个或多个用于执行本申请实施例技术方案的集成电路。或者,处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。
可选地,该处理器1110可以包括是一个或多个处理器,例如包括一个或多个中央处理单元(central processing unit,CPU),在处理器是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该收发器1120用于发送和接收数据和/或信号,以及接收数据和/或信号。该收发器可以包括发射器和接收器,发射器用于发送数据和/或信号,接收器用于接收数据和/或信号。
该存储器1130包括但不限于是随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程存储器(erasable programmable read only memory,EPROM)、只读光盘(compact disc read-only memory,CD-ROM),该存储器1130用于存储相关指令及数据。
存储器1130用于存储网络设备的程序代码和数据,可以为单独的器件或集成在处理器1110中。
具体地,所述处理器1110用于控制收发器与终端进行信息传输。具体可参见方法实施例中的描述,在此不再赘述。
在具体实现中,作为一种实施例,装置1100还可以包括输出设备和输入设备。输出设备和处理器1110通信,可以以多种方式来显示信息。例如,输出设备可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备和处理器1110通信,可以以多种方式接收用户的输入。例如,输入设备可以是鼠标、键盘、触摸屏设备或传感设备等。
可以理解的是,图11仅仅示出了通信装置的简化设计。在实际应用中,该装置还可以分别包含必要的其他元件,包含但不限于任意数量的收发器、处理器、控制器、存储器 等,而所有可以实现本申请的网络设备都在本申请的保护范围之内。
在一种可能的设计中,该装置1100可以是芯片,例如可以为可用于网络设备中的通信芯片,用于实现网络设备中处理器1110的相关功能。该芯片可以为实现相关功能的现场可编程门阵列,专用集成芯片,系统芯片,中央处理器,网络处理器,数字信号处理电路,微控制器,还可以采用可编程控制器或其他集成芯片。该芯片中,可选的可以包括一个或多个存储器,用于存储程序代码,当所述代码被执行时,使得处理器实现相应的功能。
本申请实施例还提供一种装置,该装置可以是网络设备也可以是电路。该装置可以用于执行上述方法实施例中由网络设备所执行的动作。
可选地,本实施例中的装置为终端时,图12示出了一种简化的终端的结构示意图。便于理解和图示方便,图12中,终端以手机作为例子。如图12所示,终端包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图12中仅示出了一个存储器和处理器。在实际的终端产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端的收发单元,将具有处理功能的处理器视为终端的处理单元。如图12所示,终端包括收发单元1210和处理单元1220。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1210中用于实现接收功能的器件视为接收单元,将收发单元1210中用于实现发送功能的器件视为发送单元,即收发单元1210包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1210用于执行上述方法实施例中终端侧的发送操作和接收操作,处理单元1220用于执行上述方法实施例中终端上除了收发操作之外的其他操作。
例如,在一种实现方式中,处理单元1220用于执行图4中终端侧的处理步骤401和402。收发单元1210,用于执行图4中的步骤403中的收发操作,和/或收发单元1210还用于执行本申请实施例中终端侧的其他收发步骤。
当该装置为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
可选地,该装置为终端时,还可以参照图13所示的设备。作为一个例子,该设备可 以完成类似于图9中处理器910的功能。在图13中,该设备包括处理器1301,发送数据处理器1303,接收数据处理器1305。上述图8所示的实施例中的处理模块820可以是图13中的该处理器1301,并完成相应的功能。上述图8所示的实施例中的收发模块810可以是图13中的发送数据处理器1303和接收数据处理器1305。虽然图13中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图14示出本实施例的另一种形式。处理装置1400中包括调制子系统、中央处理子系统、周边子系统等模块。本实施例中的通信设备可以作为其中的调制子系统。具体的,该调制子系统可以包括处理器1403,接口1404。其中处理器1403完成上述处理模块820的功能,接口1404完成上述收发模块810的功能。作为另一种变形,该调制子系统包括存储器1406、处理器1403及存储在存储器上并可在处理器上运行的程序,所述处理器执行所述程序时实现实施例所述方法。需要注意的是,所述存储器1406可以是非易失性的,也可以是易失性的,其位置可以位于调制子系统内部,也可以位于处理装置1400中,只要该存储器1406可以连接到所述处理器1403即可。
本实施例中的装置为网络设备时,该网络设备可以如图15所示,例如,该装置150为基站。该基站可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。基站150可包括一个或多个DU 1501和一个或多个CU 1502。CU1502可以与下一代核心网(NG core,NC)通信。所述DU 1501可以包括至少一个天线15011,至少一个射频单元15012,至少一个处理器15013和至少一个存储器15014。所述DU 1501部分主要用于射频信号的收发以及射频信号与基带信号的转换,以及部分基带处理。CU1502可以包括至少一个处理器15022和至少一个存储器15021。CU1502和DU1501之间可以通过接口进行通信,其中,控制面(control plane)接口可以为Fs-C,比如F1-C,用户面(user plane)接口可以为Fs-U,比如F1-U。
所述CU 1502部分主要用于进行基带处理,对基站进行控制等。所述DU 1501与CU 1502可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。所述CU 1502为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能。例如所述CU 1502可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
具体的,CU和DU上的基带处理可以根据无线网络的协议层划分,例如分组数据汇聚层协议(packet data convergence protocol,PDCP)层及以上协议层的功能设置在CU,PDCP以下的协议层,例如无线链路控制(radio link control,RLC)层和介质接入控制(medium access control,MAC)层等的功能设置在DU。又例如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、MAC和物理(physical,PHY)层的功能。
此外,可选的,基站150可以包括一个或多个射频单元(RU),一个或多个DU和一个或多个CU。其中,DU可以包括至少一个处理器15013和至少一个存储器15014,RU可以包括至少一个天线15011和至少一个射频单元15012,CU可以包括至少一个处理器15022和至少一个存储器15021。
例如,在一种实现方式中,处理器15013用于执行图4中网络设备侧的处理步骤。射 频单元15012,用于执行图4中的步骤403中的收发操作。
在一个实例中,所述CU1502可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述存储器15021和处理器15022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。所述DU1501可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述存储器15014和处理器15013可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
应理解,处理器可以是集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM, EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchronous link DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
还应理解,本文中涉及的第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。其中,单独存在A或B,并不限定A或B的数量。以单独存在A为例,可以理解为具有一个或多个A。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本 申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种干扰测量上报的方法,其特征在于,包括:
    终端将K个信道资源的空间接收参数作为所述终端的M个干扰资源中的每个干扰资源的空间接收参数,所述K个信道资源为所述终端能够接收到网络设备采用所述K个信道资源同时发送的信号的信道资源,M为正整数;
    所述终端根据所述M个干扰资源中的第一干扰资源的空间接收参数,确定所述K个信道资源的第一测量结果,K为大于或等于2的正整数;
    所述终端向所述网络设备发送测量报告,所述测量报告用于指示M个测量结果,且所述测量报告包括所述第一测量结果。
  2. 根据权利要求1所述的方法,其特征在于,在所述终端将所述K个信道资源的空间接收参数作为所述终端的M个干扰资源中的每个干扰资源的空间接收参数之前,所述方法还包括:
    所述终端接收测量配置信息,所述测量配置信息用于配置N个信道资源和所述M个干扰资源,N为正整数;
    所述终端从所述N个信道资源中,确定所述终端能够接收到所述网络设备同时发送的信号的所述K个信道资源。
  3. 根据权利要求2所述的方法,其特征在于,所述N个信道资源对应的时间早于所述M个干扰资源对应的时间。
  4. 根据权利要求2或3所述的方法,其特征在于,所述终端将K个信道资源的空间接收参数作为所述终端的M个干扰资源中的每个干扰资源的空间接收参数包括:
    在满足如下情况中的至少一项的情况下,所述终端将K个信道资源的空间接收参数作为所述M个干扰资源中的每个干扰资源的空间接收参数:
    所述测量配置信息中的波束分组上报参数指示开启,其中,所述波束分组上报参数用于指示是否上报所述M个测量结果;
    所述测量配置信息中的上报量参数指示所述测量结果包括信号与干扰加噪声比SINR;
    所述测量配置信息中的配置了所述M个干扰资源;
    所述测量配置信息未为所述M个干扰资源配置传输配置编号状态TCI-State。
  5. 根据权利要求1所述的方法,其特征在于,在所述终端将所述K个信道资源的空间接收参数作为所述终端的M个干扰资源中的每个干扰资源的空间接收参数之前,所述方法还包括:
    所述终端从所述网络设备接收第一测量配置信息,所述第一测量配置信息用于配置所述K个信道资源的空间接收参数和所述M个干扰资源。
  6. 根据权利要求5所述的方法,其特征在于,所述终端将K个信道资源的空间接收参数作为所述终端的干扰资源的空间接收参数包括:
    在满足如下情况中的至少一项的情况下,所述终端将K个信道资源的空间接收参数作为所述M个干扰资源中的每个干扰资源的空间接收参数:
    所述第一测量配置信息中的波束分组上报参数指示开启,且所述第一测量配置信息中的上报量参数指示所述测量结果包括SINR,其中,所述波束分组上报参数用于指示是否上报所述M个测量结果;
    所述第一测量配置信息中的波束分组上报参数指示开启,且所述第一测量配置信息配置了所述M个干扰资源,其中,所述波束分组上报参数用于指示是否上报所述M个测量结果;
    所述第一测量配置信息中的波束分组上报参数指示开启,且所述第一测量配置信息配置了所述M个干扰资源,以及所述第一测量配置信息未为所述M个TCI-state参数,其中,波束分组上报参数用于指示是否上报所述M个测量结果。
  7. 根据权利要求5所述的方法,其特征在于,在所述终端从所述网络设备接收第一测量配置信息之前,所述方法还包括:
    所述终端从所述网络设备接收第二测量配置信息,所述第二测量配置信息用于配置所述N个信道资源,N为正整数;
    所述终端根据该第二测量配置信息,确定所述终端能够接收到所述网络设备同时发送的信号的所述K个信道资源;
    所述终端向所述网络设备发送指示信息,所述指示信息用于指示所述K个信道资源。
  8. 根据权利要求7所述的方法,其特征在于,所述终端根据该第二测量配置信息,确定所述终端能够接收到所述网络设备同时发送的信号的所述K个信道资源包括:
    在满足如下情况中的至少一项的情况下,所述终端根据该第二测量配置信息,确定所述终端能够接收到所述网络设备同时发送的信号的所述K个信道资源:
    所述第二测量配置信息中的波束分组上报参数指示开启,且所述第二测量配置信息中的上报量参数指示所述测量结果包括参考信号接收功率RSRP,其中,波束分组上报参数用于指示是否上报所述M个测量结果;
    所述第二测量配置信息中的波束分组上报参数指示开启,且所述第二测量配置信息未配置所述M个干扰资源,其中,波束分组上报参数用于指示是否上报所述M个测量结果。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述测量结果包括SINR,所述测量报告还包括至少一个SINR差值,所述至少一个SINR差值为所述K个测量结果中除所述第一测量结果之外的每个测量结果中的SINR与所述第一测量结果的第一SINR的差值,所述第一SINR为所述K个测量结果中最大的SINR,所述第一SINR与步长具有映射关系,该步长为与比特位取值的乘积用于指示SINR的差值。
  10. 一种通信装置,其特征在于,包括:
    处理模块,用于将K个信道资源的空间接收参数作为所述终端的M个干扰资源中的每个干扰资源的空间接收参数,所述K个信道资源为所述终端能够接收到网络设备采用所述K个信道资源同时发送的信号的信道资源,M为正整数;
    所述处理模块,还用于根据所述M个干扰资源中的第一干扰资源的空间接收参数,确定所述K个信道资源的第一测量结果,K为大于或等于2的正整数;
    收发模块,用于向所述网络设备发送测量报告,所述测量报告用于指示M个测量结 果,且所述测量报告包括所述第一测量结果。
  11. 根据权利要求10所述的装置,其特征在于,所述收发模块,还用于接收测量配置信息,所述测量配置信息用于配置N个信道资源和所述M个干扰资源,N为正整数;
    所述处理模块,还用于从所述N个信道资源中,确定所述终端能够接收到所述网络设备同时发送的信号的所述K个信道资源。
  12. 根据权利要求11所述的装置,其特征在于,所述N个信道资源对应的时间早于所述M个干扰资源对应的时间。
  13. 根据权利要求11或12所述的装置,其特征在于,所述处理模块具体用于:
    在满足如下情况中的至少一项的情况下,将K个信道资源的空间接收参数作为所述M个干扰资源中的每个干扰资源的空间接收参数:
    所述测量配置信息中的波束分组上报参数指示开启,其中,所述波束分组上报参数用于指示是否上报所述M个测量结果;
    所述测量配置信息中的上报量参数指示所述测量结果包括信号与干扰加噪声比SINR;
    所述测量配置信息中的配置了所述M个干扰资源;
    所述测量配置信息未为所述M个干扰资源配置传输配置编号状态TCI-State。
  14. 根据权利要求10所述的装置,其特征在于,在所述终端将K个信道资源的空间接收参数作为所述终端的干扰资源的空间接收参数之前,所述方法还包括:
    所述终端从所述网络设备接收第一测量配置信息,所述第一测量配置信息用于配置所述K个信道资源的空间接收参数和所述M个干扰资源。
  15. 根据权利要求14所述的装置,其特征在于,所述收发模块具体用于:
    在满足如下情况中的至少一项的情况下,所述终端将K个信道资源的空间接收参数作为所述M个干扰资源中的每个干扰资源的空间接收参数:
    所述第一测量配置信息中的波束分组上报参数指示开启,且所述第一测量配置信息中的上报量参数指示所述测量结果包括SINR,其中,所述波束分组上报参数用于指示是否上报所述M个测量结果;
    所述第一测量配置信息中的波束分组上报参数指示开启,且所述第一测量配置信息配置了所述M个干扰资源,其中,所述波束分组上报参数用于指示是否上报所述M个测量结果;
    所述第一测量配置信息中的波束分组上报参数指示开启,且所述第一测量配置信息配置了所述M个干扰资源,以及所述第一测量配置信息未为所述M个TCI-state参数,其中,波束分组上报参数用于指示是否上报所述M个测量结果。
  16. 根据权利要求15所述的装置,其特征在于,所述收发模块,还用于从所述网络设备接收第二测量配置信息,所述第二测量配置信息用于配置所述N个信道资源,N为正整数;
    所述处理模块,还用于根据该第二测量配置信息,确定所述终端能够接收到所述网络设备同时发送的信号的所述K个信道资源;
    所述收发模块,还用于向所述网络设备发送指示信息,所述指示信息用于指示所述 K个信道资源。
  17. 根据权利要求16所述的装置,其特征在于,所述处理模块具体用于:
    在满足如下情况中的至少一项的情况下,根据该第二测量配置信息,确定所述终端能够接收到所述网络设备同时发送的信号的所述K个信道资源:
    所述第二测量配置信息中的波束分组上报参数指示开启,且所述第二测量配置信息中的上报量参数指示所述测量结果包括参考信号接收功率RSRP,其中,波束分组上报参数用于指示是否上报所述M个测量结果;
    所述第二测量配置信息中的波束分组上报参数指示开启,且所述第二测量配置信息未配置所述M个干扰资源,其中,波束分组上报参数用于指示是否上报所述M个测量结果。
  18. 根据权利要求10至17中任一项所述的装置,其特征在于,所述测量结果包括SINR,所述测量报告还包括至少一个SINR差值,所述至少一个SINR差值为所述K个测量结果中除所述第一测量结果之外的每个测量结果中的SINR与所述第一测量结果的第一SINR的差值,所述第一SINR为所述K个测量结果中最大的SINR,所述第一SINR与步长具有映射关系,该步长为与比特位取值的乘积用于指示SINR的差值。
  19. 一种通信装置,其特征在于,包括处理器、存储器和收发器;
    所述收发器,用于接收信号或者发送信号;
    所述存储器,用于存储程序代码;
    所述处理器,用于从所述存储器调用所述程序代码执行如权利要求1-9中任一项所述的方法。
  20. 一种通信装置,其特征在于,包括:处理器,当所述处理器调用存储器中的计算机程序时,如权利要求1-9中任一项所述的方法被执行。
  21. 一种通信装置,其特征在于,包括:存储器和处理器;所述存储器用于存储计算机程序,当所述处理器调用所述存储器中的计算机程序时,所述通信装置执行如权利要求1-9中任一项所述的方法。
  22. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得计算机执行如权利要求1-9中任一项所述的方法。
  23. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得计算机执行如权利要求1-9中任一项所述的方法。
PCT/CN2019/109689 2019-09-30 2019-09-30 一种干扰测量上报的方法和通信装置 WO2021062766A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19948025.2A EP4030644A4 (en) 2019-09-30 2019-09-30 INTERFERENCE MEASUREMENT REPORTING METHOD AND COMMUNICATION APPARATUS
PCT/CN2019/109689 WO2021062766A1 (zh) 2019-09-30 2019-09-30 一种干扰测量上报的方法和通信装置
CN201980100602.5A CN114424469A (zh) 2019-09-30 2019-09-30 一种干扰测量上报的方法和通信装置
US17/707,148 US20220225337A1 (en) 2019-09-30 2022-03-29 Interference measurement reporting method and communications apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109689 WO2021062766A1 (zh) 2019-09-30 2019-09-30 一种干扰测量上报的方法和通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/707,148 Continuation US20220225337A1 (en) 2019-09-30 2022-03-29 Interference measurement reporting method and communications apparatus

Publications (1)

Publication Number Publication Date
WO2021062766A1 true WO2021062766A1 (zh) 2021-04-08

Family

ID=75336363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109689 WO2021062766A1 (zh) 2019-09-30 2019-09-30 一种干扰测量上报的方法和通信装置

Country Status (4)

Country Link
US (1) US20220225337A1 (zh)
EP (1) EP4030644A4 (zh)
CN (1) CN114424469A (zh)
WO (1) WO2021062766A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220141695A1 (en) * 2020-11-01 2022-05-05 Qualcomm Incorporated Resource counting rule for determining maximum measured reference signals
CN117499971A (zh) * 2022-07-22 2024-02-02 北京紫光展锐通信技术有限公司 干扰测量的方法、装置、芯片、芯片模组及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107666340A (zh) * 2016-07-29 2018-02-06 华硕电脑股份有限公司 无线通信中用于波束操作的信道状态信息上报方法和设备
CN109391992A (zh) * 2017-08-09 2019-02-26 维沃移动通信有限公司 一种信号测量方法、第一移动终端及网络侧设备
CN109586819A (zh) * 2017-09-29 2019-04-05 电信科学技术研究院 一种干扰测量方法、用户终端和网络侧设备
WO2019099857A1 (en) * 2017-11-17 2019-05-23 Huawei Technologies Co., Ltd. System and method for channel measurement and interference measurement in wireless network

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190297603A1 (en) * 2018-03-23 2019-09-26 Samsung Electronics Co., Ltd. Method and apparatus for beam management for multi-stream transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107666340A (zh) * 2016-07-29 2018-02-06 华硕电脑股份有限公司 无线通信中用于波束操作的信道状态信息上报方法和设备
CN109391992A (zh) * 2017-08-09 2019-02-26 维沃移动通信有限公司 一种信号测量方法、第一移动终端及网络侧设备
CN109586819A (zh) * 2017-09-29 2019-04-05 电信科学技术研究院 一种干扰测量方法、用户终端和网络侧设备
WO2019099857A1 (en) * 2017-11-17 2019-05-23 Huawei Technologies Co., Ltd. System and method for channel measurement and interference measurement in wireless network

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on CSI Framework Design", 3GPP DRAFT; R1-1706926, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Hangzhou, China; 20170515 - 20170519, 6 May 2017 (2017-05-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051261583 *
HUAWEI, HISILICON: "Discussion on CSI Framework Design", 3GPP DRAFT; R1-1709931, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Qingdao, China; 20170627 - 20170630, 17 June 2017 (2017-06-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051304671 *
See also references of EP4030644A4 *

Also Published As

Publication number Publication date
EP4030644A4 (en) 2022-10-12
CN114424469A (zh) 2022-04-29
US20220225337A1 (en) 2022-07-14
EP4030644A1 (en) 2022-07-20

Similar Documents

Publication Publication Date Title
US11283503B2 (en) Communication method and communications apparatus
WO2021159493A1 (zh) 一种资源配置的方法和装置
WO2021062973A1 (zh) 数据传输的方法和装置
WO2020143647A1 (zh) 传输信道状态信息的方法和装置
WO2021027750A1 (zh) 更新波束信息的方法和通信装置
WO2020248825A1 (zh) 确定天线面板状态的方法和装置
WO2020134944A1 (zh) 干扰测量的方法和通信装置
US20220240120A1 (en) Resource Measurement Method and Apparatus
WO2018202098A1 (zh) 无线通信的方法、网络设备和终端设备
WO2020029942A1 (zh) 波束测量的方法和装置
WO2020207269A1 (zh) 干扰测量的方法和装置
WO2022007967A1 (zh) 一种参考信号资源的配置方法和装置
WO2020199066A1 (zh) 功率控制方法及相关装置
WO2020200084A1 (zh) 用于无线资源管理rrm测量的方法和装置
CN111866959B (zh) 波束失败上报的方法和装置
WO2020238617A1 (zh) 确定小区激活时延的方法和装置
WO2021017874A1 (zh) 一种通信方法及通信装置
WO2021134626A1 (zh) 传输同步信号块的方法和装置
US20220225337A1 (en) Interference measurement reporting method and communications apparatus
WO2020052443A1 (zh) 管理资源的方法和通信装置
WO2021147111A1 (zh) 通信方法和通信装置
WO2020155604A1 (zh) 测量上报的方法与装置
US20220416857A1 (en) Data transmission method and apparatus
EP4333492A1 (en) Method and apparatus for measuring channel state information
US20220140887A1 (en) Method for determining receive parameter used for channel measurement and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019948025

Country of ref document: EP

Effective date: 20220413