WO2021147111A1 - 通信方法和通信装置 - Google Patents

通信方法和通信装置 Download PDF

Info

Publication number
WO2021147111A1
WO2021147111A1 PCT/CN2020/074038 CN2020074038W WO2021147111A1 WO 2021147111 A1 WO2021147111 A1 WO 2021147111A1 CN 2020074038 W CN2020074038 W CN 2020074038W WO 2021147111 A1 WO2021147111 A1 WO 2021147111A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna ports
reference signal
indication information
signal resource
resource
Prior art date
Application number
PCT/CN2020/074038
Other languages
English (en)
French (fr)
Other versions
WO2021147111A8 (zh
Inventor
张荻
薛丽霞
张旭
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080093319.7A priority Critical patent/CN115104263A/zh
Priority to EP20915382.4A priority patent/EP4089930A4/en
Priority to PCT/CN2020/074038 priority patent/WO2021147111A1/zh
Publication of WO2021147111A1 publication Critical patent/WO2021147111A1/zh
Priority to US17/869,208 priority patent/US20220393737A1/en
Publication of WO2021147111A8 publication Critical patent/WO2021147111A8/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/0874Hybrid systems, i.e. switching and combining using subgroups of receive antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication, and more specifically, to a communication method and communication device.
  • a network device can send a channel state information reference signal (channel state information reference Signal, CSI-RS) to a terminal device, and the terminal device can obtain channel state information (CSI-RS) according to the measurement of the CSI-RS. Then, the terminal device can feed back channel state information (CSI) to the network device, and the network device implements scheduling of the terminal device based on the CSI.
  • CSI-RS channel state information reference Signal
  • network devices can achieve energy saving purposes by turning off part of the transmit (Tx) channel (or transmit antenna). After the network device turns off some transmit channels, the transmit antenna port of the network device may be changed, which may cause the problem of inaccurate CSI measurement.
  • Tx transmit
  • transmit antenna port of the network device may be changed, which may cause the problem of inaccurate CSI measurement.
  • the present application provides a communication method and a communication device, which can improve the accuracy of CSI measurement by making the antenna port corresponding to the reference signal resource or the reference signal resource consistent in the transceiver dual transmission.
  • a communication method is provided, and the method can be executed by a terminal device or a chip configured in the terminal device.
  • the method includes: receiving first signaling, the first signaling indicating a first reference signal resource, and the first reference signal resource corresponds to P antenna ports; receiving first indication information, and determining the P antenna ports according to the first indication information Among the antenna ports, Q antenna ports used to determine CSI, P and Q are both positive integers, and P>Q.
  • the Q antenna ports belong to the transmitting antenna ports currently used by the network device.
  • the network device when the number of transmission channels changes, that is, when the transmitting antenna port used by the network device changes, the network device can indicate to the terminal device that it has been activated or has been configured before according to the currently used transmitting antenna port.
  • the Q antenna ports may continue to be used to determine the antenna ports of the CSI.
  • the antenna port through which the network device sends the reference signal as understood by the terminal device is the same as the antenna port through which the network device actually sends the reference signal, so that the terminal device can determine a newer version based on the measurement of the reference signal sent by the antenna port that actually sends the reference signal.
  • Accurate CSI that is, the CSI determined by the terminal device can reflect the real situation of the channel, and thus can optimize the scheduling of the terminal device by the network device.
  • the first indication information indicates the Q antenna ports, or the first indication information indicates antenna ports other than the Q antenna ports among the P antenna ports.
  • the first indication information indicates the first energy-saving mode.
  • determining the Q antenna ports used for determining the CSI among the P antenna ports according to the first indication information includes: determining the Q antenna ports associated with the first energy-saving mode according to the first energy-saving mode.
  • the terminal device may determine the Q antenna ports according to the preset rule and the first energy-saving mode.
  • P 2*P1*P2
  • P1 is the number of antenna ports in the first dimension
  • P2 is the number of antenna ports in the second dimension
  • Q 2*Q1* Q2
  • Q1 is the number of antenna ports in the first dimension
  • Q2 is the number of antenna ports in the second dimension
  • P1, P2, Q1, and Q2 are all positive integers.
  • Q1 P1, and Q2 ⁇ P2; or, Q1 ⁇ P1, and Q2 ⁇ P2.
  • the first dimension may be a horizontal dimension
  • the second dimension may be a vertical dimension, but this application does not limit this.
  • the P antenna ports are divided into 2*A1 groups according to the antenna port index from small to large, and each group includes A2 antenna ports, and A1 is positive Integer, A2 is an integer greater than or equal to 2. Among them, Q/(2*A1) antenna ports in each group of A2 antenna ports belong to the Q antenna ports.
  • Q/(2*A1) antenna ports in each group of A2 antenna ports belong to the Q antenna ports, including one of the following: Q in each group of A2 antenna ports with a larger index /(2*A1) antenna ports belong to the Q antenna ports; the Q with the smaller index in each group of A2 antenna ports/(2*A1) antenna ports belong to the Q antenna ports; in 2*A1 groups The Q/(2*A1) antenna ports with the larger index in each group of A2 antenna ports in the first A1 groups belong to the Q antenna ports, and the second A1 groups in the 2*A1 groups have A2 in each group The Q/(2*A1) antenna ports with the smaller index among the antenna ports belong to the Q antenna ports; the Q/( of the A2 antenna ports in each group in the first A1 groups in the 2*A1 groups 2*A1) antenna ports belong to the Q antenna ports, the last A1 in the 2*A1 groups, the Q with the larger index of the 2 antenna ports in each group A/(2*A1) antenna ports belong to this Q
  • the P antenna ports are divided into a first polarization direction port group and a second polarization direction port group according to the polarization direction, and the first polarization direction port
  • the Q/2 antenna ports in the group belong to the Q ports
  • the Q/2 antenna ports in the second polarization direction port group belong to the Q ports.
  • Q/2 ports with a larger index in each group of P/2 ports belong to the Q ports.
  • Q/2 ports with a smaller index in each group of P/2 ports belong to the Q ports.
  • the Q/2 ports with the larger index among the P/2 ports in the first group of the two groups belong to this Q port, and the Q/2 ports with the smaller index among the P/2 ports in the latter group Q/2 ports belong to the Q ports.
  • the Q/2 ports with the smaller index among the P/2 ports in the first group of the two groups belong to this Q port, and the Q/2 ports with the larger index among the P/2 ports in the latter group Q/2 ports belong to the Q ports.
  • the method may further include: determining CSI according to the Q antenna ports and the first information.
  • the first information indicates that the number of antenna ports in the first dimension is B1, the number of antenna ports in the second dimension is B2, B1 and B2 are both positive integers, and C1 is the first codebook configuration information associated with the first reference signal resource.
  • the number of first-dimensional antenna ports indicated, and C2 is the number of second-dimensional antenna ports indicated by the first codebook configuration information.
  • the network device may determine B1 and B2 based on the antenna port that actually transmits the reference signal, or the terminal device may determine B1 and B2 that match the antenna port that actually transmits the reference signal based on a preset rule. Since B1 and B2 match the actual antenna port of the network device for sending the reference signal, the CSI determined by the terminal device is more accurate.
  • a communication method is provided, and the method can be executed by a network device or a chip configured in the network device.
  • the method includes: sending first signaling, the first signaling indicating a first reference signal resource, the first reference signal resource corresponds to P antenna ports; determining Q antenna ports among the P antenna ports; sending first indication information ,
  • the first indication information indicates one of the following items: the Q antenna ports, antenna ports other than the Q antenna ports among the P antenna ports, and the first energy-saving mode.
  • the first energy-saving mode is associated with the Q antenna ports.
  • the Q antenna ports belong to the transmitting antenna ports currently used by the network device.
  • the network device when the number of transmission channels changes, that is, when the transmitting antenna port used by the network device changes, the network device can indicate to the terminal device that it has been activated or has been configured before according to the currently used transmitting antenna port.
  • the Q antenna ports may continue to be used to determine the antenna ports of the CSI.
  • the antenna port through which the network device sends the reference signal as understood by the terminal device is the same as the antenna port through which the network device actually sends the reference signal, so that the terminal device can determine a newer version based on the measurement of the reference signal sent by the antenna port that actually sends the reference signal.
  • Accurate CSI that is, the CSI determined by the terminal device can reflect the real situation of the channel, and thus can optimize the scheduling of the terminal device by the network device.
  • P 2*P1*P2
  • P1 is the number of antenna ports in the first dimension
  • P2 is the number of antenna ports in the second dimension
  • Q 2*Q1* Q2
  • Q1 is the number of antenna ports in the first dimension
  • Q2 is the number of antenna ports in the second dimension
  • the P antenna ports are divided into 2*A1 groups according to the antenna port index in ascending order, each group includes A2 antenna ports, and A1 is positive Integer, A2 is an integer greater than or equal to 2. Among them, Q/(2*A1) antenna ports in each group of A2 antenna ports belong to the Q antenna ports.
  • Q/(2*A1) antenna ports in each group of A2 antenna ports belong to the Q antenna ports, including one of the following: Q in each group of A2 antenna ports with a larger index /(2*A1) antenna ports belong to the Q antenna ports; the Q with the smaller index in each group of A2 antenna ports/(2*A1) antenna ports belong to the Q antenna ports; in 2*A1 groups The Q/(2*A1) antenna ports with the larger index in each group of A2 antenna ports in the first A1 groups belong to the Q antenna ports, and the second A1 groups in the 2*A1 groups have A2 in each group The Q/(2*A1) antenna ports with the smaller index among the antenna ports belong to the Q antenna ports; the Q/( of the A2 antenna ports in each group in the first A1 groups in the 2*A1 groups 2*A1) antenna ports belong to the Q antenna ports, the last A1 in the 2*A1 groups, the Q with the larger index of the 2 antenna ports in each group A/(2*A1) antenna ports belong to this Q
  • the method may further include: sending first information, the first information indicating that the number of antenna ports in the first dimension is B1, and the number of antenna ports in the second dimension is B2 , B1 and B2 are both positive integers, C1 is the number of first-dimensional antenna ports indicated by the first codebook configuration information associated with the first reference signal resource, and C2 is the second-dimensional antenna indicated by the first codebook configuration information Number of ports.
  • the network device may determine B1 and B2 based on the antenna port that actually transmits the reference signal, or the terminal device may determine B1 and B2 that match the antenna port that actually transmits the reference signal based on a preset rule. Since B1 and B2 match the actual antenna port of the network device for sending the reference signal, the CSI determined by the terminal device is more accurate.
  • a communication method including: receiving second signaling, which indicates a second reference signal resource; receiving second indication information, and determining CSI according to the second indication information.
  • a communication method including: sending second signaling, which indicates a second reference signal resource; sending second indication information, which is used by a terminal device to determine CSI.
  • the second indication information is used to deactivate the second reference signal resource and activate the third reference signal resource.
  • the second reference signal resource may include one or more reference signal resources, or the second reference signal resource may include one or more sets of reference signal resources.
  • the antenna ports corresponding to each reference signal resource in the second reference signal resource #1 may be the same or different.
  • the third reference signal resource may include one or more reference signal resources, or the third reference signal resource may include one or more sets of reference signal resources.
  • the antenna port corresponding to each reference signal resource in the third reference signal resource may be the same or different.
  • the antenna port corresponding to each reference signal resource in the third reference signal resource belongs to the transmitting antenna port currently used by the network device.
  • the network device can reactivate a reference signal resource (that is, the third reference signal resource) for the terminal device according to the currently used transmit antenna port and deactivate the reference that does not match the currently used transmit antenna port.
  • Signal resources ie, second reference signal resources.
  • the reference signal resource on which the terminal device determines the CSI is consistent with the reference signal resource on which the network device actually sends the reference signal, so that the terminal device can determine a more accurate CSI based on the reference signal resource on which the reference signal is actually sent, that is, the terminal device
  • the determined CSI can reflect the real situation of the channel, and thus can optimize the scheduling of the network device to the terminal device.
  • the second reference signal resource is associated with the third reference signal resource, and the second indication information includes the information of the second reference signal resource and does not include the information of the third reference signal resource.
  • the second indication information includes information about the second reference signal resource and information about the third reference signal resource.
  • determining the CSI according to the second indication information includes: determining the CSI according to the second indication information and the first information.
  • the method may further include: sending the first information.
  • the first information indicates that the number of antenna ports in the first dimension is Q1, and the number of antenna ports in the second dimension is Q2.
  • the first dimension may be a horizontal dimension
  • the second dimension may be a vertical dimension, but this application does not limit this.
  • Q1 and Q2 are determined based on the antenna port through which the network device actually sends the reference signal, so the CSI determined by the terminal device is more accurate.
  • the second indication information is used to deactivate a part of the reference signal resources in the second reference signal resources that are the periodic reference signal resources.
  • each of the reference signal resources that are not deactivated belongs to the transmit antenna port currently used by the network device.
  • the corresponding antenna port in the deactivated reference signal resource includes a transmitting antenna port that is not currently used by the network device.
  • the network device can deactivate the inappropriate reference signal resources among the currently activated reference signal resources according to the currently used transmitting antenna port, thereby helping to improve the accuracy of CSI measurement, and then optimizing the network device to the terminal device Scheduling.
  • the second indication information is used to indicate that the reference signal resource whose corresponding number of antenna ports in the second reference signal resource is greater than U is not used to determine the CSI, or the first The second indication information is used to indicate that the reference signal resource whose corresponding number of antenna ports in the second reference signal resource is less than or equal to U is used to determine the channel state information CSI, and U is a positive integer. Determine CSI according to the second indication information.
  • the antenna port corresponding to the reference signal resource whose number of corresponding antenna ports is less than or equal to U belongs to the transmitting antenna port currently used by the network device.
  • U is less than or equal to the number of transmit antenna ports currently used by the network device.
  • the network device can instruct the terminal device to continue to use the reference signal resources for determining CSI according to the currently used transmitting antenna port, which can continue to be used to determine the reference signal resources of the CSI, thereby helping to improve the accuracy of CSI measurement, and thus can optimize Network equipment to terminal equipment scheduling.
  • a communication method including: receiving third indication information, where the third indication information is used to indicate an association relationship between multiple energy-saving modes and reference signal resources; receiving fourth indication information, where the fourth indication information indicates more The first energy-saving mode in the four energy-saving modes; determining the CSI according to the reference signal resource associated with the first energy-saving mode.
  • a communication method including: sending third indication information, the third indication information being used to indicate the association relationship between multiple energy saving modes and reference signal resources; sending fourth indication information, the fourth indication information indicating more In the first energy-saving mode in the four energy-saving modes, the fourth indication information is used for the terminal device to determine the reference signal resource associated with the first energy-saving mode.
  • the antenna ports corresponding to each reference signal resource corresponding to any energy-saving mode may be the same
  • the first energy-saving mode is determined by the network device according to the currently used transmitting antenna port.
  • the network device can indicate to the terminal device the energy-saving mode that matches the currently used transmitting antenna port, and the terminal device can determine the power-saving mode according to the association relationship between the energy-saving mode pre-configured by the network device and the reference signal resource. Determine the reference signal resource used by the CSI.
  • the antenna port through which the network device sends the reference signal as understood by the terminal device is the same as the antenna port through which the network device actually sends the reference signal, so that the terminal device can determine a newer version based on the measurement of the reference signal sent by the antenna port that actually sends the reference signal.
  • Accurate CSI Accurate CSI.
  • the association relationship between the multiple energy-saving modes and the reference signal resource is: the association relationship between the multiple energy-saving modes and the resource configuration, or the association relationship between the multiple energy-saving modes and the reporting configuration, the resource configuration and the reporting configuration are both related to the reference signal Signal resource association.
  • the third indication information is carried by radio resource control (radio resource control, RRC) signaling; and/or, the fourth indication information is carried by RRC signaling, media access control control element (MAC) CE) signaling or downlink control information (DCI) is carried.
  • RRC radio resource control
  • MAC media access control control element
  • DCI downlink control information
  • a communication method including: receiving third signaling, the third signaling indicating L1 resource configurations, and/or L2 reporting configurations, L1 and L2 are integers greater than or equal to 1.
  • the resource configuration and the report configuration are both associated with a reference signal signal resource; receiving fifth indication information, where the fifth indication information is used to deactivate at least one of the L1 resource configurations, and/or , Deactivate at least one reporting configuration of the L2 reporting configurations; determine CSI according to the resource configuration that is not deactivated in the L1 resource configurations, or determine the CSI according to the reporting configuration that is not deactivated in the L2 reporting configurations , Determine the CSI.
  • a communication method including: sending third signaling, the third signaling indicating L1 resource configurations, and/or L2 report configurations, L1 and L2 are integers greater than or equal to 1. , The resource configuration and the report configuration are both associated with a reference signal signal resource; sending fifth indication information, where the fifth indication information is used to deactivate at least one of the L1 resource configurations, and/or , Deactivate at least one reporting configuration of the L2 reporting configurations.
  • the antenna ports corresponding to each reference signal resource associated with one resource configuration or reporting configuration are the same.
  • the antenna port corresponding to the reference signal resource associated with the inactive resource configuration or the reported configuration belongs to the number of transmit antenna ports currently used by the network device.
  • the fifth indication information includes an index of the at least one resource configuration and/or an index of the at least one report configuration.
  • the network device can deactivate some inappropriate resource configuration or report configuration according to the currently used transmitting antenna port, so that the terminal device can according to the associated reference signal resource, the corresponding antenna port belongs to the network device.
  • the resource configuration or reporting configuration of the transmitting antenna port is determined to determine the CSI, thereby helping to improve the accuracy of the CSI measurement, and thereby optimizing the scheduling of the terminal device by the network device.
  • the fifth indication information is used to deactivate at least one resource configuration in the L1 resource configurations, including: the fifth indication information is used to deactivate all reference signals associated with the at least one resource configuration resource.
  • the fifth indication information is used to deactivate at least one reporting configuration of the L2 reporting configurations, including: the fifth indication information is used to deactivate the resource configuration associated with the at least one reporting configuration All associated reference signal resources, and or, the fifth indication information is used to deactivate the at least one uplink resource associated with the reporting configuration.
  • the reporting configuration is a periodic reporting configuration.
  • a communication device which includes various modules or units for executing the method in any one of the foregoing aspects or any one of the possible implementation manners of the aspect.
  • a communication device including a processor.
  • the processor is coupled with the memory, and can be used to execute instructions in the memory, so that the device executes any of the foregoing aspects or a method in any of the possible implementation manners of the aspect.
  • the device further includes a memory.
  • the device further includes an interface circuit, and the processor is coupled with the interface circuit.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is used to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes any one of the foregoing aspects or a method in any one of the possible implementation manners of the aspect.
  • the above-mentioned processor may be a chip, the input circuit may be an input pin, the output circuit may be an output pin, and the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver, and the signal output by the output circuit may be, for example, but not limited to, output to the transmitter and transmitted by the transmitter, and the input circuit and output
  • the circuit can be the same circuit, which is used as an input circuit and an output circuit at different times.
  • the embodiments of the present application do not limit the specific implementation manners of the processor and various circuits.
  • a communication device including a processor and a memory.
  • the processor is used to read instructions stored in the memory, and can receive signals through a receiver, and transmit signals through a transmitter, so as to execute the method in any one of the foregoing aspects or any one of the possible implementation manners of the aspect.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory and the processor may be provided separately.
  • the memory can be a non-transitory (non-transitory) memory, such as a read only memory (ROM), which can be integrated with the processor on the same chip, or can be set in different On the chip, the embodiment of the present application does not limit the type of the memory and the setting mode of the memory and the processor.
  • ROM read only memory
  • the processing device in the above-mentioned twelfth aspect may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; When implemented, the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated in the processor, may be located outside the processor, and exist independently.
  • a computer program product includes: a computer program (also called code, or instruction), which when the computer program is run, causes the computer to execute any of the above aspects or this aspect Any one of the possible implementation methods.
  • a computer program also called code, or instruction
  • a computer-readable medium stores a computer program (also called code, or instruction) when it runs on a computer, so that the computer executes any of the above aspects or the Any one of the possible implementation methods in the aspect.
  • a computer program also called code, or instruction
  • Fig. 1 is a schematic diagram of a communication system suitable for this application.
  • Fig. 2 is a schematic diagram of a communication method provided by the present application.
  • Fig. 3 is a schematic diagram of a method of selecting an antenna port.
  • Fig. 4 is a schematic diagram of an arrangement of antenna ports.
  • Fig. 5 is a schematic diagram of a method of selecting an antenna port.
  • Fig. 6 is a schematic diagram of a method of selecting an antenna port.
  • Fig. 7 is a schematic diagram of a method for determining the number of antenna ports in the first dimension and the number of antenna ports in the second dimension.
  • Fig. 8 is a schematic diagram of another method for determining the number of antenna ports in the first dimension and the number of antenna ports in the second dimension.
  • Fig. 9 to Fig. 13 are schematic diagrams of a communication method provided by the present application.
  • Fig. 14 is a schematic structural diagram of a communication device provided by the present application.
  • Fig. 15 is a schematic structural diagram of a network device provided by the present application.
  • Fig. 16 is a schematic structural diagram of a terminal device provided by the present application.
  • LTE long term evolution
  • 5G fifth generation
  • NR new radio
  • Figure 1 shows a schematic diagram of a communication system suitable for the present application.
  • the communication system 100 may include at least one network device, such as the network device 110 shown in FIG. 1; the communication system 100 may also include at least one terminal device, such as the terminal device 120 shown in FIG. 1.
  • the network device 110 may send a reference signal to the terminal device 120 based on the reference signal resource, and the terminal device 120 can obtain CSI by measuring the reference signal. Then, the terminal device 120 may report the CSI to the network device 110, and the network device 110 may perform scheduling processing based on the CSI, such as selecting an appropriate modulation and coding scheme (MCS) for downlink data transmission.
  • MCS modulation and coding scheme
  • the terminal equipment in the embodiments of this application may refer to user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal, wireless Communication equipment, user agent or user device.
  • the terminal device can also be a cellular phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (personal digital assistant, PDA), with wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or terminals in the public land mobile network (PLMN) that will evolve in the future Devices, etc., are not limited in the embodiment of the present application.
  • PLMN public land mobile network
  • the network device in the embodiment of the present application may be a device used to communicate with a terminal device.
  • the network equipment may be a base station (base station), evolved base station (evolved NodeB, eNodeB), transmission reception point (TRP), next generation NodeB (gNB) in a 5G mobile communication system , The base station in the future mobile communication system or the access node in the WiFi system, etc.
  • the network device may also be a module or unit that completes part of the functions of the base station, for example, it may be a centralized unit (CU) or a distributed unit (DU).
  • CU centralized unit
  • DU distributed unit
  • the network device can also be a wireless controller, relay station, access point, in-vehicle device, wearable device, and other communication systems that will evolve in the future under the cloud radio access network (CRAN) scenario.
  • CRAN cloud radio access network
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system can be any one or more computer operating systems that implement business processing through processes, for example, Linux operating systems, Unix operating systems, Android operating systems, iOS operating systems, or windows operating systems.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution body of the method provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided in accordance with the embodiments of the application.
  • the execution subject of the method provided in the embodiments of the present application may be a terminal device or a network device, or a functional module in the terminal device or the network device that can call and execute the program.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (digital versatile disc, DVD)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • magnetic storage devices for example, hard disks, floppy disks, or tapes, etc.
  • optical disks for example, compact discs (CD), digital versatile discs (digital versatile disc, DVD)
  • smart cards and flash memory devices for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • reference signals can be used for channel measurement, interference measurement, etc., such as measuring reference signal receiving quality (RSRQ), signal-noise ratio (SNR), signal-to-interference and noise ratio ( signal to interference plus noise ratio, SINR, signal-to-interference and noise ratio for short), channel quality indicator (Chanel quality indicator, CQI), precoding matrix indicator (precoding matrix indicator, PMI) and other parameters.
  • RSSQ reference signal receiving quality
  • SNR signal-noise ratio
  • SINR signal-to-interference and noise ratio
  • SINR signal-to-interference and noise ratio for short
  • channel quality indicator Channel quality indicator
  • CQI channel quality indicator
  • precoding matrix indicator precoding matrix indicator
  • PMI precoding matrix indicator
  • the reference signal resource can be used to configure the transmission attributes of the reference signal, for example, the position of the time-frequency resource, the port mapping relationship, the power factor, and the scrambling code. For details, refer to the prior art.
  • the network device may send the reference signal based on the reference signal resource, and the terminal device may receive the reference signal based on the reference signal resource.
  • the reference signals involved in the embodiments of the present application may include, for example, one or more of the following reference signals: channel state information reference signal (channel state information reference signal, CSI-RS), synchronization signal block (synchronization signal) block, SSB) or sounding reference signal (SRS).
  • the reference signal resource may include CSI-RS resource (CSI-RS resource), SSB resource or SRS resource (SRS resource).
  • SSB can also be called synchronization signal/physical broadcast channel block (synchronization signal/physical broadcast channel block, SS/PBCH block), and the corresponding SSB resource can also be called synchronization signal/physical broadcast channel block resource (SS/PBCH block resource), can be abbreviated as SSB resource.
  • SSB can also refer to SSB resources.
  • Antenna port referred to as port.
  • the transmitting antenna recognized by the receiving device, or the transmitting antenna that can be distinguished in space.
  • One antenna port can be configured for each virtual antenna, each virtual antenna can be a weighted combination of multiple physical antennas, and each antenna port can correspond to a reference signal port.
  • Scenario 1 In order to save energy, the network device dynamically shuts off some transmission channels.
  • Scenario 2 In order to save energy, the network device adopts different sending strategies for the near-end terminal device and the far-end terminal device. For example, the near-end terminal equipment adopts 16Tx, and the far-end terminal equipment adopts 32Tx. Then as the terminal device moves, the network device may shut down some transmission channels.
  • the transmit antenna port used by the network device will change.
  • the antenna port through which the network device sends the reference signal will be inconsistent with the antenna port corresponding to the previously configured reference signal resource. If the terminal device still receives the reference signal based on the antenna port corresponding to the previous reference signal resource, it may cause the terminal device Mistaking the interference signal as a reference signal causes the CSI determined by the terminal device to be inaccurate, that is, the CSI determined by the terminal device cannot accurately reflect the real channel conditions.
  • the network device notifies the terminal device of the antenna port that actually sends the reference signal, so that the terminal device can obtain more accurate CSI by measuring the reference signal sent by the antenna port that actually sends the reference signal.
  • the network device can directly or indirectly activate the reference signal resource matching the antenna port currently used by the network device, or the network device can directly or indirectly indicate the currently activated reference signal resource or the previously configured reference signal to the terminal device.
  • the reference signal resource that matches the antenna port currently used by the network device, so that the terminal device can obtain more accurate CSI by measuring the reference signal sent by the antenna port that actually sends the reference signal based on the instruction of the network device .
  • the network device can also be replaced with a chip configured in the network device, and the terminal device can also be replaced with a chip configured in the terminal device. chip.
  • Fig. 2 is a schematic flowchart of a communication method provided by the present application. The steps shown in FIG. 2 will be described below.
  • the network device sends the first signaling to the terminal device.
  • the terminal device receives the first signaling.
  • the first signaling indicates the first reference signal resource.
  • the first reference signal resource corresponds to P antenna ports, or in other words, the first reference signal resource includes P antenna ports, and P is a positive integer.
  • the first reference signal resource may be a currently activated reference signal resource.
  • the first signaling is RRC signaling
  • the first reference signal resource is a periodic reference signal resource.
  • the first signaling is MAC CE
  • the first reference signal resource is a semi-persistent reference signal resource.
  • the first reference signal resource may also be a reference signal resource that has been configured and is not activated (or not triggered).
  • the first reference signal resource is an aperiodic reference signal resource
  • the first signaling is RRC signaling or MAC CE.
  • S220 The network device determines Q antenna ports among the P antenna ports.
  • the network device may determine the Q antenna ports according to the currently used transmitting antenna ports. Among them, the Q antenna ports belong to the transmitting antenna ports currently used by the network device.
  • S230 The network device sends the first indication information to the terminal device.
  • the terminal device receives the first indication information.
  • the first indication information may be sent at the same time as the first signaling, or the first signaling may be sent first, and then the first indication information may be sent.
  • the terminal device determines Q antenna ports used to determine CSI among the P antenna ports according to the first indication information.
  • Q is a positive integer, and P>Q.
  • the network device may autonomously determine the Q antenna ports, and then indicate the Q antenna ports to the terminal device through the first indication information. After receiving the first indication information, the terminal device can determine the Q antenna ports. Alternatively, the network device may indicate to the terminal device the antenna ports other than the Q antenna ports among the P antenna ports through the first indication information, so that the terminal device learns the Q antenna ports.
  • the first indication information may be the information of the Q antenna ports.
  • the first indication information may be the index of the Q antenna ports, or may be the index of the set or group corresponding to the Q antenna ports.
  • the index of the set or group corresponding to the antenna port may be agreed in advance by the terminal device and the network device, or may be indicated by other indication information.
  • the first indication information may also be information of antenna ports other than the Q antenna ports among the P antenna ports.
  • the network device may determine that it needs to enter the first energy-saving mode.
  • the first energy-saving mode is associated with the Q antenna ports, and the network device determines the first energy-saving mode, which is equivalent to determining the Q antenna ports.
  • the network device may indicate the first energy-saving mode to the terminal device through the first indication information, and the terminal device may determine the Q antenna ports associated with the first energy-saving mode according to a preset rule.
  • the predetermined rule is a preset rule that both the network device and the terminal device follow.
  • the preset rule may be pre-configured by the network device, for example, configured through RRC signaling or indicated by MAC CE signaling, or indicated by DCI signaling, or may be specified by a protocol.
  • the preset rule may specify which antenna ports of the antenna ports corresponding to the currently activated reference signal resources can be used to determine CSI in the first energy-saving mode, that is, among the antenna ports corresponding to the currently activated reference signal resources, the network On which antenna ports the device will send the reference signal or on which antenna port the terminal device can receive the reference signal.
  • the foregoing preset rule may also be one of multiple prediction rules, and the network device may indicate the prediction rule to the terminal device.
  • the network device may indicate the preset rule through RRC signaling, MAC CE signaling, or DCI signaling.
  • the preset rule may specify that in the first energy-saving mode, y(P) antenna ports with a smaller index among the antenna ports corresponding to the currently activated reference signal resources are used to determine the CSI.
  • y(P) can be replaced with a certain value.
  • the P antenna ports are divided into 2*A1 groups according to the antenna port index from small to large, and each group includes A2 antenna ports. Among them, Q/(2*A1) antenna ports in each group of A2 antenna ports belong to the Q antenna ports.
  • A1 is a positive integer
  • A2 is an integer greater than or equal to 2.
  • Example 1 In each group of A2 antenna ports, Q/(2*A1) antenna ports with a larger index belong to the Q antenna ports.
  • Example 2 In each group of A2 antenna ports, Q/(2*A1) antenna ports with a smaller index belong to the Q antenna ports.
  • Example 3 The Q/(2*A1) antenna ports with the larger index of the A2 antenna ports in the first A1 groups in the 2*A1 groups belong to the Q antenna ports, and the 2*A1 groups The Q/(2*A1) antenna ports with the smaller index among the A2 antenna ports in each group in the last A1 groups in the A1 group belong to the Q antenna ports.
  • Example 4 The Q/(2*A1) antenna ports with the smaller index of the A2 antenna ports in the first A1 groups in the 2*A1 groups belong to the Q antenna ports, and the 2*A1 groups The Q/(2*A1) antenna ports with the larger index among the A2 antenna ports in each group in the last A1 groups in the A1 group belong to the Q antenna ports.
  • A1 may be the number of antenna ports in the first dimension
  • A2 is the number of antenna ports in the second dimension.
  • the first dimension may be a horizontal dimension
  • the second dimension may be a vertical dimension. It should be understood that the first dimension may also be a vertical dimension, and the second dimension may also be a horizontal dimension.
  • the Q antenna ports include: antenna ports with an odd index among 32 antenna ports.
  • the Q antenna ports include: antenna ports with an even number among the 32 antenna ports.
  • the Q antenna ports include: antenna ports with odd indexes in the first to eighth groups, and antenna ports with even indexes in the ninth to sixteenth groups.
  • the Q antenna ports include: antenna ports with even numbers in the first to eighth groups, and antenna ports with odd indexes in the ninth to sixteenth groups.
  • the relationship between P and Q specified by the preset rule can satisfy the relationship one.
  • the preset rule may also specify all or part of the values of A1, A2, and Q/(2*A1). Or, the relationship between P and Q that the network device can determine autonomously can satisfy the relationship one.
  • A1 can be equal to P1, and A2 can be equal to P2.
  • A1 may be the number of antenna ports in the first dimension, and A2 may be the number of antenna ports in the second dimension.
  • A1 can be the number of horizontal antenna ports, and A2 can be the number of vertical antenna ports.
  • the P antenna ports are divided into a first polarization direction port group and a second polarization direction port group according to the polarization direction.
  • the Q/2 antenna ports in the first polarization direction port group belong to the Q ports.
  • the Q/2 antenna ports in the two-polarization direction port group belong to the Q ports.
  • Q/2 ports with a larger index in each group of P/2 ports belong to the Q ports.
  • Q/2 ports with a smaller index in each group of P/2 ports belong to the Q ports.
  • the Q/2 ports with the larger index among the P/2 ports in the first group of the two groups belong to this Q port, and the Q/2 ports with the smaller index among the P/2 ports in the latter group Q/2 ports belong to the Q ports.
  • the Q/2 ports with the smaller index among the P/2 ports in the first group of the two groups belong to this Q port, and the Q/2 ports with the larger index among the P/2 ports in the latter group Q/2 ports belong to the Q ports.
  • the first polarization direction port group is composed of antenna ports indexed from 0 to 15, and the second polarization direction port group is composed of antenna ports indexed from 16 to 31. That is, the first polarization direction port group is composed of antenna ports shown by thick solid lines in the figure, and the second polarization direction port group is composed of antenna ports shown by thin solid lines in the figure.
  • the Q antenna ports include 8 antenna ports indexed from 0 to 15 antenna ports and 8 antenna ports indexed from 16 to 31 antenna ports.
  • the Q antenna ports may include antenna ports with indexes 8-15 and 16-23.
  • the Q antenna ports may include antenna ports indexed from 0 to 7 and 16 to 23.
  • the Q antenna ports may include antenna ports with indexes 8 to 15 and 24 to 31.
  • the Q antenna ports may include antenna ports indexed from 0 to 7 and 24 to 31.
  • the relationship between P and Q specified by the preset rule can satisfy the relationship two.
  • the preset rule can also specify the value of Q/2.
  • the relationship between P and Q that the network device can determine autonomously can satisfy the relationship two.
  • network equipment and terminal equipment follow the following definitions:
  • P 2*P1*P2
  • P1 is the number of antenna ports in the first dimension
  • P2 is the number of antenna ports in the second dimension
  • Q 2*Q1*Q2
  • Q1 is the number of antenna ports in the first dimension
  • Q2 is the number of antenna ports in the second dimension
  • P1, P2, Q1, and Q2 are all positive integers.
  • the first dimension may be a horizontal dimension
  • the second dimension may be a vertical dimension, but this application does not limit this.
  • the preset rule may specify or the network device may indicate the offset value between Q1 and P1 and/or the offset value between Q2 and P2, so that the terminal device may determine Q1 according to the offset value. And the size of Q2.
  • the preset rule can also be specified more specifically, so that which ports the Q antenna ports are specifically can be determined. For example, it may be specified that Q1 first-dimensional antenna ports are Q1 antenna ports with a small index in the first dimension, and Q2 second-dimensional antenna ports are Q2 antenna ports with a small index in the second dimension.
  • the network device may also indicate the value of Q1 and/or Q2.
  • the 16 antenna ports in the first row are the Q ports. If the Q1 first-dimension antenna ports are Q1 antenna ports with a larger index in the first dimension, the 16 antenna ports in the second row may be the Q antenna ports.
  • the 8 antenna ports in the dashed box may be the Q antenna ports.
  • the network device may configure the terminal device to use the reference signal resource with the identifier or index of 1 on multiple carriers or multiple bandwidth parts (BWP). Then, the first indication information may indicate that Q antenna ports of the P antenna ports corresponding to the reference signal resource with index 1 on the specific carrier or BWP are used for determining CSI.
  • BWP bandwidth parts
  • the first indication information may also indicate the target transmission power, the target transmission power is the transmission power of the network device, and the target transmission power is determined according to the Q antenna ports.
  • the terminal device can perform channel estimation according to the target transmit power to determine the CSI.
  • the first indication information may indicate the target transmission power by indicating the deviation between the target transmission power and the first transmission power.
  • the first transmission power is the transmission power determined by the network device according to the P antenna ports and indicated to the terminal device.
  • the network device may also determine the target transmission power according to the Q antenna ports and the first transmission power.
  • the relationship between the number of changes in the number of antenna ports and the transmission power adjustment can be pre-configured or predefined, so that the terminal device can determine the corresponding transmission power adjustment according to the difference obtained by subtracting Q from P.
  • the sum of the first transmission power and the transmission power adjustment (the transmission power adjustment is a negative value) or the difference (the transmission power adjustment is a positive value) is the target transmission power.
  • the network device when the number of transmission channels changes, that is, when the transmitting antenna port used by the network device changes, the network device can indicate to the terminal device that it has been activated or previously used according to the currently used transmitting antenna port.
  • the Q antenna ports may continue to be used to determine the antenna ports of the CSI.
  • the antenna port through which the network device sends the reference signal as understood by the terminal device is the same as the antenna port through which the network device actually sends the reference signal, so that the terminal device can determine a newer version based on the measurement of the reference signal sent by the antenna port that actually sends the reference signal.
  • Accurate CSI that is, the CSI determined by the terminal device can reflect the real situation of the channel, and thus can optimize the scheduling of the terminal device by the network device.
  • the method may further include:
  • the terminal device determines CSI according to the Q antenna ports and the first information.
  • the terminal device sends the CSI to the network device.
  • the network device receives the CSI.
  • C1 is the number of first-dimensional antenna ports indicated by the first codebook configuration information associated with the first reference signal resource
  • C2 is the number of second-dimensional antenna ports indicated by the first codebook configuration information
  • the first dimension may be a horizontal dimension
  • the second dimension may be a vertical dimension, but this application does not limit this.
  • the first codebook configuration information is the codebook configuration information associated when the number of ports corresponding to the first reference signal resource has not changed, that is, the first codebook configuration information is configured according to P antenna ports.
  • C1 and C2 are when P antenna ports are used for channel measurement, the number of first-dimensional antenna ports and the number of second-dimensional antenna ports used in CSI need to be determined.
  • the number of antenna ports used for channel measurement becomes Q, the number of first-dimension antenna ports and/or the number of second-dimension antenna ports used when determining the CSI will also be changed accordingly.
  • (B1, B2) can be determined according to the connection line (C1, C2) to (B1, B2).
  • the connecting lines from (C1, C2) to (B1, B2) may include one or more.
  • the correspondence between ⁇ P, (C1, C2) ⁇ and ⁇ Q, (B1, B2) ⁇ is predefined. Then, as long as the values of P, C1, C2, and Q are determined, the values of B1 and B2 can be determined according to the predefined correspondence.
  • the first information may also be sent by a network device.
  • the network device may carry the first information through RRC signaling, MACCE, or DCI.
  • the first information can indicate the values of B1 and B2 by indicating the values of B1 or B2.
  • the offset value between B1 and C1 and the offset value between B2 and C2 have a preset relationship
  • the first information indicates the offset value between B1 and C1 or the offset value between B2 and C2.
  • the offset value can indicate the offset value between B1 and C1 and the offset value between B2 and C2.
  • the first information and the foregoing first indication information may be carried through the same piece of signaling, or may be carried through different signaling, which is not limited in this application.
  • the CSI determined by the terminal device is more accurate.
  • the terminal device needs to determine the PMI based on the number B1 of antenna ports in the first dimension and the number B2 of antenna ports in the second dimension. For example, the terminal device selects a DFT vector that approximates the current channel eigenvector according to the current CSI measurement, the DFT vector is the Kronecker product of the first DFT vector and the second DFT vector; where the dimension of the first DFT vector is the first dimension The number of antenna ports is B1, and the dimension of the second DFT vector is the number of antenna ports in the second dimension B2.
  • u l is the first DFT vector
  • u m is the second DFT vector
  • v l, m is the Kronecker product of the first DFT vector and the second DFT vector.
  • v l,m may be called a precoding matrix, or a candidate precoding matrix.
  • the terminal device may receive the reference signal based on the Q antenna ports in step S250. If the first reference signal resource is not activated through the first signaling, the network device first needs to activate the first reference signal resource, and then receives the reference signal based on the Q antenna ports in step S250. For example, when the first reference signal resource is an aperiodic reference signal resource, and the first signaling is MAC CE, the network device may activate the first reference signal resource by sending DCI.
  • Fig. 9 is a schematic flowchart of a communication method provided by the present application. The steps in the method 300 shown in FIG. 9 are described below.
  • the network device sends the second signaling #1 (that is, an example of the second signaling) to the terminal device.
  • the terminal device receives the second signaling #1.
  • the second signaling #1 indicates the second reference signal resource #1 (ie, an example of the second reference signal resource).
  • the second reference signal resource #1 may include one or more reference signal resources, or the second reference signal resource #1 may include one or more sets of reference signal resources.
  • the antenna port corresponding to each reference signal resource in the second reference signal resource #1 may be the same or different.
  • the second reference signal resource #1 may be a periodic reference signal resource.
  • the second signaling #1 may be RRC signaling, but this application does not limit this.
  • the second reference signal resource #1 may be a semi-persistent reference signal resource.
  • the second signaling #1 may be MAC CE, but this application does not limit this.
  • S320 The network device sends second indication information #1 (that is, an example of the second indication information) to the terminal device.
  • the terminal device receives the second indication information #1.
  • the second indication information #1 is used to deactivate the second reference signal resource #1 and activate the third reference signal resource.
  • the third reference signal resource may include one or more reference signal resources, or the third reference signal resource may include one or more sets of reference signal resources.
  • the antenna port corresponding to each reference signal resource in the third reference signal resource may be the same or different.
  • the antenna port corresponding to each reference signal resource in the third reference signal resource belongs to the transmitting antenna port currently used by the network device.
  • the third reference signal resource may be a periodic reference signal resource, a semi-persistent reference signal resource, or an aperiodic reference signal resource.
  • the second indication information #1 may be RRC signaling, MAC CE, or DCI, which is not limited in this application.
  • the second reference signal resource #1 and the third reference signal resource association may be pre-configured.
  • the second indication information #1 may implicitly indicate to deactivate the second reference signal resource #1 and activate the third reference signal resource by carrying the information of the second reference signal resource #1.
  • the second indication information #1 may carry the information of the second reference signal resource #1 and the information of the third reference signal resource at the same time to display an indication to deactivate the second reference signal resource #1 and activate the third reference signal resource .
  • the information of the reference signal resource may be the index of the reference signal resource.
  • the information of the corresponding reference signal resource may be the index of the group or the index of each reference signal resource in the group.
  • one or more sets of reference signal resources may refer to one or more sets of reference signal resources.
  • the terminal device determines the CSI according to the second indication information #1.
  • the network device sends the reference signal based on the third reference signal resource, and the terminal device receives the reference signal based on the third reference signal resource. By measuring the reference signal sent on the third reference signal resource, the terminal device can determine the CSI.
  • the terminal device determines the CSI according to the second indication information #1, including: the terminal device determines the CSI according to the second indication information #1 and the second information.
  • the second information indicates that the number of antenna ports in the first dimension is B1, the number of antenna ports in the second dimension is B2, and both B1 and B2 are positive integers.
  • the first dimension may be a horizontal dimension
  • the second dimension may be a vertical dimension, but this application does not limit this.
  • B1 and B2 are the number of first-dimension and second-dimension antenna ports used when the terminal device determines the CSI.
  • B1, B2, C1, and C2 meet:
  • C1 is the number of first-dimensional antenna ports indicated by the first codebook configuration information associated with the second reference signal resource #1
  • C2 is the number of second-dimensional antenna ports indicated by the first codebook configuration information
  • P may be the number of antenna ports corresponding to the reference signal resource with the largest number of antenna ports in the second reference signal resource #1, and P1 is the number of antenna ports in the first dimension, P2 is the number of antenna ports in the second dimension.
  • the second information is codebook configuration information in a report configuration associated with the third reference signal resource.
  • the codebook configuration information can carry the values of B1 and B2.
  • the second information may implicitly indicate the values of B1 and B2 by carrying the offset value between B1 and C1 and/or the offset value between B1 and C2.
  • the second information and the second indication information #1 may be carried through the same piece of signaling, or may be carried through different signaling, which is not limited in this application.
  • the correspondence between ⁇ P, (C1, C2) ⁇ and ⁇ Q, (B1, B2) ⁇ can also be predefined. Then, as long as the values of P, C1, C2, and Q are determined, the values of B1 and B2 can be determined according to the predefined correspondence.
  • the method may further include:
  • S340 The terminal device reports the CSI to the network device. Correspondingly, the network device receives CSI.
  • the network device can reactivate a reference signal resource (ie, the third reference signal resource) for the terminal device according to the currently used transmitting antenna port and deactivate the same reference signal resource that is currently used.
  • the reference signal resource that is, the second reference signal resource
  • the reference signal resource on which the terminal device determines the CSI is consistent with the reference signal resource on which the network device actually sends the reference signal, so that the terminal device can determine a more accurate CSI based on the reference signal resource on which the reference signal is actually sent, that is, the terminal device
  • the determined CSI can reflect the real situation of the channel, and thus can optimize the scheduling of the network device to the terminal device.
  • the CSI determined by the terminal device is more accurate.
  • Fig. 10 is a schematic flowchart of a communication method provided by the present application. The steps in the method 400 shown in FIG. 10 are described below.
  • the network device sends the second signaling #2 (that is, another example of the second signaling) to the terminal device.
  • the terminal device receives the second signaling #2.
  • the second signaling #2 indicates the second reference signal resource #2 (ie, another example of the second reference signal resource).
  • the second reference signal resource #2 may be multiple sets of reference signal resources, or the second reference signal resource may include multiple reference signal resources.
  • the second reference signal resource #2 is a periodic reference signal resource.
  • antenna ports corresponding to at least two reference signal resources in the second reference signal resource #2 are different.
  • the antenna ports corresponding to the reference signal resources in each group can be the same, but the antenna ports corresponding to the two sets of reference signal resources are different, such as one set of corresponding antenna ports.
  • the number of antenna ports is 12, and the number of antenna ports corresponding to the other group is 24.
  • the report configuration associated with the second reference signal resource #2 may be a periodic report configuration.
  • the periodic reporting configuration please refer to the prior art.
  • the second signaling #2 may be RRC signaling.
  • S420 The network device sends the second indication information #2 (that is, another example of the second indication information) to the terminal device.
  • the terminal device receives the second indication information #2.
  • the second indication information #1 is used to deactivate part of the reference signal resources in the second reference signal resource #2.
  • the second reference signal resource #2 is two sets of reference signal resources, and the second indication information #1 can deactivate one set of reference signal resources.
  • the second reference signal resource #2 is composed of two parts: deactivated reference signal resources and non-deactivated reference signal resources.
  • each of the reference signal resources that are not deactivated belongs to the transmit antenna port currently used by the network device.
  • the corresponding antenna port in the deactivated reference signal resource includes a transmitting antenna port that is not currently used by the network device.
  • the second indication information #2 may be RRC signaling, MAC CE, or DCI.
  • the terminal device determines the CSI according to the second indication information #2.
  • the network device sends the reference signal based on the reference signal resource that is not deactivated in the second reference signal resource #2, and the terminal device receives the reference signal based on the reference signal resource that is not deactivated, and sends the reference signal to the reference signal resource that is not deactivated. Perform measurements to determine CSI.
  • the method may further include:
  • S440 The terminal device reports the CSI to the network device. Correspondingly, the network device receives CSI.
  • the network device can deactivate inappropriate reference signal resources among the currently activated reference signal resources according to the currently used transmitting antenna port, thereby helping to improve the accuracy of CSI measurement, and thereby It can optimize the scheduling of network equipment to terminal equipment.
  • the method may further include: the network device activates the aforementioned deactivated reference signal resource.
  • the network device may activate the aforementioned deactivated reference signal resource. Therefore, the terminal device can determine accurate CSI by measuring the reference signals of multiple antenna ports.
  • Fig. 11 is a schematic flowchart of a communication method provided by the present application. The steps of the method 500 shown in FIG. 11 will be described below.
  • the network device sends the second signaling #3 (that is, another example of the second signaling) to the terminal device.
  • the terminal device receives the second signaling #3.
  • the second signaling #3 indicates the second reference signal resource #3 (ie, another example of the second reference signal resource).
  • the second reference signal resource #3 may include multiple or multiple sets of reference signal resources.
  • antenna ports corresponding to at least two reference signal resources or at least two sets of reference signal resources in the second reference signal resource #3 are different.
  • the second reference signal resource #3 may be a periodic reference signal resource.
  • the second signaling #3 may be RRC signaling, but this application does not limit this.
  • the second reference signal resource #3 may be a semi-persistent reference signal resource.
  • the second signaling #3 may be MAC CE, but this application does not limit this.
  • S520 The network device sends second indication information #3 (that is, another example of the second indication information) to the terminal device. Correspondingly, the terminal device receives the second indication information #3.
  • the second indication information #3 is used to indicate that the reference signal resource with a corresponding number of antenna ports greater than U in the second reference signal resource #3 is not used for determining CSI.
  • the second indication information is used to indicate that a reference signal resource whose corresponding number of antenna ports in the second reference signal resource #3 is less than or equal to U is used for determining CSI.
  • U is a positive integer.
  • the second indication information #3 is used to indicate that the corresponding antenna port in the second reference signal resource #3 includes a reference signal resource that does not belong to the antenna port currently used by the network device and is not used for determining CSI.
  • the second indication information is used to indicate that the corresponding antenna ports in the second reference signal resource #3 all belong to the reference signal resource of the antenna port currently used by the network device for determining CSI.
  • the second indication information #3 may carry the value of U.
  • the second indication information may occupy 1 bit. For example, when the value of this bit is 1, it means that the reference signal resource with a corresponding number of antenna ports greater than U in the second reference signal resource #3 is not used for determining CSI.
  • U is less than or equal to the number of transmit antenna ports currently used by the network device.
  • the second indication information #3 may be RRC signaling, MAC CE, or DCI.
  • the network device may configure the terminal device to use the reference signal resource with the identifier or index of 3 on multiple carriers or multiple BWPs.
  • the first indication information may indicate that Q antenna ports of the P antenna ports corresponding to the reference signal resource with index 3 on the specific carrier or BWP are used to determine CSI.
  • the terminal device determines the CSI according to the second indication information #3.
  • the terminal device may only receive the reference signal based on the reference signal resource used to determine the CSI, and determine the CSI by measuring the reference signal.
  • the method may further include:
  • S540 The terminal device reports the CSI to the network device. Correspondingly, the network device receives CSI.
  • the network device can indicate the reference signal resources currently activated by the terminal device that can continue to be used to determine CSI according to the currently used transmitting antenna port, thereby helping to improve CSI measurement.
  • the accuracy of the network equipment can then optimize the scheduling of the terminal equipment.
  • Fig. 12 is a schematic flowchart of another communication method provided by the present application. The steps in the method 600 shown in FIG. 12 will be described below.
  • S610 The network device sends third indication information to the terminal device.
  • the terminal device receives the third indication information.
  • the third indication information indicates the association relationship between the multiple energy saving modes and the reference signal resource.
  • association relationship between multiple energy saving modes and reference signal resources can be as shown in Table 1.
  • the antenna ports corresponding to each reference signal resource corresponding to any energy-saving mode may be the same, but this application does not limit this.
  • the reference signal resource may also be associated with the energy-saving mode in the form of a set or a group.
  • the first energy-saving mode may be associated with the reference signal group #a1, or the reference signal groups #a1 and a2 of Table 1 may be associated.
  • the corresponding energy-saving modes may be different.
  • the association relationship between the multiple energy-saving modes and the reference signal resource may be: the association relationship between the multiple energy-saving modes and the resource configuration (CSI-ResourceConfig); or the association between the multiple energy-saving modes and the reporting configuration (CSI-ReportConfig) relation. Both the resource configuration and the report configuration are associated with reference signal signal resources.
  • the reference signal resource associated with the energy-saving mode can be the reference signal resource associated with the resource configuration, or the reference signal resource associated with the report configuration.
  • each CSI-ResourceConfig may include one or more reference signal resources.
  • the reference signal resources included in the CSI-ResourceConfig are the reference signal resources associated with the CSI-ResourceConfig.
  • the CSI-ReportConfig may include one or more reference signal resources, that is, the CSI-ReportConfig is associated with one or more reference signal resources.
  • the CSI-ReportConfig may also include some report parameters, and the terminal device may report the CSI determined according to the reference signal resource associated with the CSI-ReportConfig according to these report parameters.
  • the report parameter may include, for example, the report type of the CSI (periodic, aperiodic or semi-continuous).
  • reference signal resource associated with a report configuration is configured through resource configuration.
  • one reported configuration can be associated with one or more resource configurations.
  • the third indication information may be carried through RRC signaling, but this application is not limited thereto.
  • the third indication information signaling may also be carried through MAC CE.
  • S620 The network device sends fourth indication information to the terminal device.
  • the terminal device receives the fourth indication information.
  • the fourth indication information indicates the first energy-saving mode among the multiple energy-saving modes.
  • the network device may determine that the corresponding energy-saving mode is the first energy-saving mode according to the currently used transmitting antenna port, and then indicate the first energy-saving mode to the terminal device.
  • the fourth indication information can activate (or indicate) the reference signal resource associated (or corresponding) to the first energy-saving mode by indicating the first energy-saving mode.
  • the network device may configure the configuration of the reference signal resource associated with the first energy-saving mode while sending the fourth instruction information, or the network device may configure the reference signal resource associated with the first energy-saving mode before sending the fourth instruction information . Alternatively, the network device may configure the reference signal resource associated with the first energy saving mode after sending the fourth indication information.
  • the reference signal resource associated with the first energy saving mode may be a periodic reference signal resource. Different from the periodic reference signal resource in the prior art, in this method, the reference signal resource can be used only when the terminal device receives the indication information indicating the energy saving mode associated with the reference signal resource.
  • the reference signal resource associated with the first energy saving mode may also be a semi-persistent or aperiodic reference signal resource, which is not limited in this application.
  • the fourth indication information may also indicate the transmission power adjustment amount corresponding to the energy-saving mode.
  • the terminal device can determine the transmit power corresponding to the changed energy-saving mode according to the transmit power corresponding to the energy-saving mode before the change and the transmit power adjustment amount corresponding to the energy-saving mode after the change.
  • the transmission power corresponding to the first energy-saving mode is power1
  • the transmission power adjustment amount corresponding to the second energy-saving mode is a
  • the transmission power is the transmission power of the network device
  • the terminal device may perform channel estimation based on the transmission power of the network device to determine the CSI.
  • the fourth indication information may be RRC signaling, MAC CE, or DCI.
  • the terminal device determines the CSI according to the reference signal resource associated with the first energy saving mode.
  • the terminal device can determine the reference signal resource associated with the first energy-saving mode according to the association relationship between the multiple energy-saving modes configured in S610 and the reference signal resource, so that the reference signal can be measured based on the reference signal resource associated with the first energy-saving mode , Determine the CSI.
  • the method may further include:
  • S640 The terminal device reports the CSI to the network device. Correspondingly, the network device receives CSI.
  • the network device can indicate to the terminal device the energy saving mode that matches the currently used transmitting antenna port, and the terminal device can according to the association relationship between the energy saving mode pre-configured by the network device and the reference signal resource, Determine the reference signal resource used to determine the CSI.
  • the antenna port through which the network device sends the reference signal as understood by the terminal device is the same as the antenna port through which the network device actually sends the reference signal, so that the terminal device can determine a newer version based on the measurement of the reference signal sent by the antenna port that actually sends the reference signal.
  • Accurate CSI Accurate CSI.
  • FIG. 13 is a schematic flowchart of another communication method provided by the present application. The steps shown in FIG. 13 will be described below.
  • S710 The network device sends third signaling to the terminal device.
  • the terminal device receives the third signaling.
  • the third signaling indicates L1 resource configurations, and/or L2 reporting configurations, L1 and L2 are integers greater than or equal to 1, and both the resource configuration and the reporting configuration are associated with reference signal signal resources.
  • the antenna ports corresponding to each reference signal resource associated with one resource configuration or reporting configuration are the same.
  • the resource configuration may be periodic configuration, aperiodic configuration, or semi-persistent configuration. That is, the reference signal resource associated with the resource configuration may be a periodic reference signal resource, an aperiodic reference signal resource, or a semi-persistent reference signal resource.
  • the third signaling may be RRC signaling.
  • the L1 resource configuration is an aperiodic configuration, and the third signaling may be DCI.
  • the L1 resource configuration is a semi-persistent configuration, and the third signaling may be MAC CE.
  • the report configuration may be a periodic report configuration, a non-periodic report configuration, or a semi-continuous report configuration.
  • the third signaling may be RRC signaling.
  • the third signaling may be DCI.
  • the third signaling may be MAC CE.
  • S720 The network device sends fifth indication information to the terminal device. Correspondingly, the terminal device receives the fifth indication information.
  • the fifth indication information is used to deactivate at least one resource configuration in the L1 resource configuration.
  • the fifth indication information may include the index of the resource configuration that needs to be deactivated.
  • the fifth indication information is used to deactivate at least one of the L2 reporting configurations.
  • the fifth indication information may include the index of the report configuration that needs to be deactivated.
  • deactivating a resource configuration refers to deactivating all reference signal resources associated with the resource configuration.
  • deactivating a reporting configuration refers to deactivating all reference signal resources associated with the reporting configuration, or deactivating uplink resources associated with the reporting configuration.
  • the uplink resource may be PUCCH or PUSCH, for example.
  • the uplink resource associated with a report configuration is used to send the CSI determined according to the reference signal resource associated with the report configuration.
  • the antenna port corresponding to the reference signal resource associated with the inactive resource configuration or the reported configuration belongs to the number of transmit antenna ports currently used by the network device.
  • the network device may deactivate resource configurations with the same identifier on multiple carriers or BWPs through the fifth indication information.
  • the corresponding reporting configuration is similar and will not be repeated here.
  • the fifth signaling may be RRC signaling, MAC CE, or DCI.
  • the fifth indication information may be carried through RRC signaling.
  • the L1 resource configuration is an aperiodic configuration, and the fifth indication information may be carried by DCI.
  • the L1 resource configuration is a semi-persistent configuration, and the fifth indication information may be carried by MAC CE or DCI.
  • the fifth indication information may be carried by RRC signaling.
  • the fifth indication information may be carried by DCI.
  • the fifth indication information may be carried by MAC CE or DCI.
  • the terminal device determines the CSI according to the resource configuration that is not deactivated in the L1 resource configurations, or determines the CSI according to the report configuration that is not deactivated in the L2 report configurations.
  • the third signaling indicates the L1 resource configuration. Then, the terminal device determines the inactive resource configuration according to the fifth indication information, receives the reference signal based on the reference signal resource associated with the inactive resource configuration, and determines the CSI by measuring the reference signal.
  • the third signaling indicates L2 report configurations. Then, the terminal device determines the report configuration that is not deactivated according to the fifth indication information, and determines the CSI by measuring the reference signal received based on the reference signal resource associated with the report configuration that is not deactivated. Alternatively, the terminal device determines the report configuration that is not deactivated according to the fifth indication information, and determines the CSI by measuring the reference signal resource associated with the uplink resource that is not deactivated.
  • the method may further include:
  • the terminal device reports the CSI to the network device.
  • the network device receives CSI.
  • the network device can deactivate some inappropriate resource configuration or report configuration according to the currently used transmitting antenna port, so that the terminal device can according to the associated reference signal resource, the corresponding antenna port belongs to the network device.
  • the resource configuration or reporting configuration of the transmitting antenna port is determined to determine the CSI, thereby helping to improve the accuracy of the CSI measurement, and thereby optimizing the scheduling of the terminal device by the network device.
  • the method may further include: the network device activates the deactivated resource configuration or reports the configuration.
  • the network device can activate the deactivated resource configuration or reporting configuration. Therefore, the terminal device can continue to use these resource configurations or report configurations to determine CSI.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic.
  • the various numerical numbers or serial numbers involved in the above-mentioned various processes are only for easy distinction for description, and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • FIG. 14 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1000 may include a transceiving unit 1100 and a processing unit 1200.
  • the transceiver unit 1100 may be used to send information to or receive information from other devices. For example, sending or receiving the first signaling.
  • the processing unit 1200 may be used to perform internal processing of the device and determine the CSI.
  • the communication device 1000 may correspond to the terminal device in any one of the foregoing methods 200 to 700.
  • the communication device 1000 may be a terminal device or a chip configured in the terminal device, which may include a unit for performing operations performed by the terminal device, and each unit in the communication device 1000 is used to implement the corresponding method in the terminal device. The operation performed by the device.
  • the transceiver unit 1100 is configured to receive first signaling and first indication information, the first signaling indicates a first reference signal resource, and the first reference signal resource corresponds to P antenna ports.
  • the processing unit 1200 is configured to determine, according to the first indication information, Q antenna ports used for determining channel state information CSI among the P antenna ports, where P and Q are both positive integers, and P>Q.
  • the first indication information indicates the Q antenna ports, or the first indication information indicates antenna ports other than the Q antenna ports among the P antenna ports.
  • the first indication information indicates a first energy-saving mode.
  • the processing unit 1200 is specifically configured to determine the Q antenna ports associated with the first energy-saving mode according to the first energy-saving mode.
  • P 2*P1*P2
  • P1 is the number of antenna ports in the first dimension
  • P2 is the number of antenna ports in the second dimension
  • Q 2*Q1*Q2
  • Q1 is the number of antenna ports in the first dimension
  • Q2 is the number of antenna ports in the second dimension
  • the P antenna ports are divided into 2*A1 groups according to the antenna port index from small to large, each group includes A2 antenna ports, A1 is a positive integer, and A2 is an integer greater than or equal to 2; Wherein, Q/(2*A1) antenna ports in each group of A2 antenna ports belong to the Q antenna ports.
  • the processing unit 1200 is further configured to determine the CSI according to the Q antenna ports and first information.
  • the first information indicates that the number of antenna ports in the first dimension is B1, the number of antenna ports in the second dimension is B2, B1 and B2 are both positive integers, and C1 is the first code associated with the first reference signal resource The number of antenna ports in the first dimension indicated by this configuration information, and C2 is the number of antenna ports in the second dimension indicated by the first codebook configuration information.
  • the transceiver unit 1100 is configured to receive second signaling and second indication information, where the second signaling indicates a second reference signal resource, and the second indication information deactivates the second reference signal. Signal resource and activate the third reference signal resource.
  • the processing unit 1200 is configured to determine CSI according to the second indication information.
  • the second indication information is used to deactivate the second reference signal resource and activate the third reference signal resource.
  • the second indication information is used to deactivate a part of the reference signal resources in the second reference signal resource, and the second reference signal resource is a periodic reference signal resource.
  • the second indication information is used to indicate that a reference signal resource with a corresponding number of antenna ports greater than U in the second reference signal resource is not used to determine CSI, or the second indication information is used to indicate the first reference signal resource. 2.
  • the reference signal resource whose corresponding number of antenna ports is less than or equal to U among the reference signal resources is used to determine the channel state information CSI, and U is a positive integer.
  • the transceiver unit 1100 is configured to receive third indication information and fourth indication information, the third indication information is used to indicate the association relationship between multiple energy saving modes and reference signal resources, and the fourth indication information indicates The first energy-saving mode among multiple energy-saving modes.
  • the processing unit 1200 is configured to determine CSI according to the reference signal resource associated with the first energy saving mode.
  • the transceiver unit 1100 is configured to receive third signaling, the third signaling indicating L1 resource configurations, and/or L2 reporting configurations, L1 and L2 are integers greater than or equal to 1.
  • the resource configuration and the report configuration are both associated with reference signal signal resources;
  • the transceiving unit 1100 is further configured to receive fifth indication information, and the fifth indication information is used to deactivate the L1 resource configurations And/or deactivate at least one report configuration of the L2 report configurations;
  • the processing unit 1200 is configured to determine the CSI according to the resource configuration that is not deactivated in the L1 resource configurations, or CSI is determined according to the reporting configuration that is not deactivated in the L2 reporting configurations.
  • the communication device 1000 may correspond to the network device in any one of the aforementioned methods 200 to 700.
  • the communication device 1000 may be a network device or a chip configured in the network device, which may include a unit for performing operations performed by the network device, and each unit in the communication device 1000 is used to implement the corresponding method in the network. The operation performed by the device.
  • the transceiver unit 1100 is configured to send first signaling, the first signaling indicates a first reference signal resource, and the first reference signal resource corresponds to P antenna ports; the processing unit 1200 is configured to determine Q antenna ports out of the P antenna ports; the transceiving unit 1100 is further configured to send first indication information, where the first indication information indicates one of the following items: the Q antenna ports, the Antenna ports other than the Q antenna ports among the P antenna ports, and the first energy-saving mode; wherein the first energy-saving mode is associated with the Q antenna ports.
  • P 2*P1*P2
  • P1 is the number of antenna ports in the first dimension
  • P2 is the number of antenna ports in the second dimension
  • Q 2*Q1*Q2
  • Q1 is the number of antenna ports in the first dimension
  • Q2 is the number of antenna ports in the second dimension
  • the P antenna ports are divided into 2*A1 groups according to the antenna port index from small to large, each group includes A2 antenna ports, A1 is a positive integer, and A2 is an integer greater than or equal to 2; Wherein, Q/(2*A1) antenna ports in each group of A2 antenna ports belong to the Q antenna ports.
  • the transceiving unit 1100 is further configured to send first information, the first information indicating that the number of antenna ports in the first dimension is B1, the number of antenna ports in the second dimension is B2, and both B1 and B2 are positive.
  • C1 is the number of antenna ports in the first dimension indicated by the first codebook configuration information associated with the first reference signal resource
  • the transceiver unit 1100 is configured to send second signaling and second indication information, where the second signaling indicates a second reference signal resource, and the second indication information deactivates the second reference signal. Signal resource and activate the third reference signal resource.
  • the second indication information is used to deactivate the second reference signal resource and activate the third reference signal resource.
  • the second indication information is used to deactivate a part of the reference signal resources in the second reference signal resource, and the second reference signal resource is a periodic reference signal resource.
  • the second indication information is used to indicate that a reference signal resource with a corresponding number of antenna ports greater than U in the second reference signal resource is not used to determine CSI, or the second indication information is used to indicate the first reference signal resource. 2.
  • the reference signal resource whose corresponding number of antenna ports is less than or equal to U among the reference signal resources is used to determine the channel state information CSI, and U is a positive integer.
  • the transceiver unit 1100 is configured to send third indication information and fourth indication information, the third indication information is used to indicate the association relationship between multiple energy saving modes and reference signal resources, and the fourth indication information indicates The first energy-saving mode among multiple energy-saving modes.
  • the transceiver unit 1100 is configured to send third signaling, the third signaling indicating L1 resource configurations, and/or L2 reporting configurations, and L1 and L2 are greater than or equal to 1.
  • the resource configuration and the reporting configuration are both associated with reference signal signal resources; the transceiver unit 1100 is further configured to send fifth indication information, and the fifth indication information is used to deactivate the L1 resources At least one resource configuration in the configuration, and/or deactivate at least one reporting configuration in the L2 reporting configurations.
  • the transceiver unit 1100 in the communication device 1000 may correspond to the RRU 3100 in the network device 2000 shown in FIG. 15, and the processing unit 1200 in the communication device 1000 may correspond to The BBU 3200 in the network device 2000 is shown in FIG. 15.
  • the transceiver unit 1100 in the communication device 1000 may be an input/output interface.
  • the transceiving unit 1100 in the communication device 1000 may correspond to the transceiver 3002 in the terminal device 3000 shown in FIG. 16, and the processing unit 1200 in the communication device 1000 may It corresponds to the processor 3001 in the terminal device 3000 shown in FIG. 16.
  • FIG. 15 is a schematic structural diagram of a network device provided by an embodiment of the present application, for example, it may be a schematic structural diagram of a base station.
  • the base station 2000 can be applied to the system shown in FIG. 1 to perform the functions of the network device in the foregoing method embodiment.
  • the base station 2000 may include one or more radio frequency units, such as a remote radio unit (RRU) 2100 and one or more baseband units (BBU) (also known as distributed unit (DU) )) 2200.
  • RRU 2100 may be referred to as a transceiving unit or a communication unit, and corresponds to the transceiving unit 1100 in FIG. 14.
  • the transceiver unit 2100 may also be called a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 2101 and a radio frequency unit 2102.
  • the transceiver unit 2100 may include a receiving unit and a transmitting unit.
  • the receiving unit may correspond to a receiver (or called a receiver or a receiving circuit), and the transmitting unit may correspond to a transmitter (or called a transmitter or a transmitting circuit).
  • the RRU2100 part is mainly used for receiving and sending radio frequency signals and converting radio frequency signals and baseband signals.
  • the BBU2200 part is mainly used for baseband processing, control of the base station, and so on.
  • the RRU 2100 and the BBU 2200 may be physically arranged together, or may be physically separated, that is, a distributed base station.
  • the BBU 2200 is the control center of the base station, and may also be called a processing unit, which may correspond to the processing unit 1200 in FIG. 14, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU processing unit
  • the BBU may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the BBU2200 may be composed of one or more single boards, and multiple single boards may jointly support a wireless access network (such as an LTE network) of a single access standard, or can respectively support wireless access networks of different access standards. Access network (such as LTE network, 5G network or other network).
  • the BBU 2200 further includes a memory 2201 and a processor 2202.
  • the memory 2201 is used to store necessary instructions and data.
  • the processor 2202 is configured to control the base station to perform necessary actions, for example, to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 2201 and the processor 2202 may serve one or more boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the base station 2000 shown in FIG. 15 can implement various processes involving network devices in the foregoing method embodiments.
  • the operation or function of each module in the base station 2000 is to implement the corresponding process in the foregoing method embodiment.
  • the above-mentioned BBU 2200 can be used to perform the actions described in the previous method embodiments implemented by the network device, and the RRU 2100 can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • the RRU 2100 can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • FIG. 16 is a schematic structural diagram of a terminal device 3000 provided by an embodiment of the present application.
  • the terminal device 3000 includes a processor 3001 and a transceiver 3002.
  • the terminal device 3000 may further include a memory 3003.
  • the processor 3001, the transceiver 3002, and the memory 3003 can communicate with each other through an internal connection path to transfer control and/or data signals.
  • the memory 3003 is used to store computer programs, and the processor 3001 is used to download from the memory 3003. Call and run the computer program to control the transceiver 3002 to send and receive signals.
  • the foregoing processor 3001 and memory 3003 may be combined into a processing device 3004, and the processor 3001 is configured to execute program codes stored in the memory 3003 to implement the foregoing functions. It should be understood that the processing device 3004 shown in the figure is only an example. In specific implementation, the memory 3003 may also be integrated in the processor 3001 or independent of the processor 3001. This application does not limit this.
  • the above-mentioned terminal device 3000 may also include an antenna 3010 for transmitting uplink data or uplink control signaling output by the transceiver 3002 through a wireless signal.
  • terminal device 3000 shown in FIG. 16 can implement various processes involving the terminal device in the foregoing method embodiments.
  • the operation or function of each module in the terminal device 3000 is to implement the corresponding process in the foregoing method embodiment.
  • details please refer to the description in the foregoing method embodiment, and to avoid repetition, detailed description is omitted here as appropriate.
  • the aforementioned terminal device 3000 may further include a power supply 3005 for providing power to various devices or circuits in the terminal device.
  • the terminal device 3000 may also include one or more of an input unit 3006, a display unit 3007, an audio circuit 3008, a camera 3009, and a sensor 3008.
  • the audio circuit may also include a speaker 30081, a microphone 30082, and so on.
  • the processing device may be a chip.
  • the processing device may be a field programmable gate array (FPGA), a general-purpose processor, a digital signal processor (digital signal processor, DSP), or an application specific integrated circuit (ASIC).
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • FPGA Ready-made programmable gate array
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processing circuit
  • MCU microcontroller
  • PLD programmable logic device
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory 3003 may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • memories of the systems and methods described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code is run on a computer, causes the computer to execute any of the foregoing method embodiments executed by a terminal device or a network device Methods.
  • the present application also provides a computer-readable medium that stores program code, and when the program code runs on a computer, the computer executes the method executed by the network device or the terminal device in the foregoing method embodiment .
  • This application also provides a system, which includes a terminal device and a network device.
  • An embodiment of the present application also provides a processing device, including a processor and an interface; the processor is configured to execute a method executed by a terminal device or a network device involved in any of the foregoing method embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disc), SSD)) etc.
  • a component may be, but is not limited to, a process, a processor, an object, an executable file, an execution thread, a program, or a computer running on the processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components can reside in a process or thread of execution, and the components can be located on one computer or distributed between two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • a component can pass a local signal based on a signal having one or more data packets (for example, data from two components that interact with another component in a local system, a distributed system, or a network, such as the Internet that interacts with other systems through a signal). Or remote process to communicate.
  • a signal having one or more data packets for example, data from two components that interact with another component in a local system, a distributed system, or a network, such as the Internet that interacts with other systems through a signal.
  • remote process to communicate for example, data from two components that interact with another component in a local system, a distributed system, or a network, such as the Internet that interacts with other systems through a signal.
  • a corresponding to B means that B is associated with A, and B can be determined according to A.
  • determining B based on A does not mean that B is determined only based on A, and B can also be determined based on A and/or other information.
  • the terminal device and/or the network device can perform some or all of the steps in the embodiments of the present application. These steps or operations are only examples, and the embodiments of the present application may also perform other operations or various operations. Deformation of the operation. In addition, each step may be executed in a different order presented in the embodiments of the present application, and it may not be necessary to perform all the operations in the embodiments of the present application.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read only memory ROM, random access memory RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法和通信装置,网络设备通过通知终端设备实际发送参考信号的天线端口,使得终端设备可以通过对实际发送参考信号的天线端口所发送的参考信号的测量,获得更准确的CSI。一些方法中,网络设备可以直接或间接激活与网络设备当前所使用的天线端口匹配的参考信号资源,或者,网络设备可以直接或间接向终端设备指示当前激活的参考信号资源或者之前配置的参考信号资源中,与网络设备当前所使用的天线端口匹配的参考信号资源,从而终端设备可以基于网络设备的指示,通过对真实发送参考信号的天线端口所发送的参考信号的测量,获得更准确的CSI。

Description

通信方法和通信装置 技术领域
本申请涉及通信领域,并且更具体地,涉及一种通信方法和通信装置。
背景技术
通信系统中,网络设备可以向终端设备发送信道状态信息参考信号(channel state information reference Signal,CSI-RS),终端设备根据对CSI-RS的测量可以得到信道状态信息(channel state information,CSI)。然后,终端设备可以将信道状态信息(channel state information,CSI)反馈给网络设备,网络设备基于该CSI实现对终端设备的调度。
在一些场景下,网络设备可以通过关断部分发射(Tx)通道(或者发射天线)达到节能目的。网络设备关断部分发射通道后,可能导致网络设备的发送天线端口发生改变,从而可能导致CSI测量不准确的问题。
发明内容
本申请提供一种通信方法和通信装置,通过使收发双发对参考信号资源对应的天线端口或者对参考信号资源理解一致,能够提高CSI测量的准确性。
第一方面,提供了一种通信方法,该方法可以由终端设备或配置于终端设备中的芯片执行。该方法包括:接收第一信令,第一信令指示第一参考信号资源,第一参考信号资源对应P个天线端口;接收第一指示信息,根据所述第一指示信息,确定该P个天线端口中用于确定CSI的Q个天线端口,P和Q均为正整数,且P>Q。
示例性的,该Q个天线端口属于网络设备当前使用的发送天线端口。
根据本申请提供的通信方法,当发射通道数量改变,即网络设备所使用的发送天线端口发生改变时,网络设备可以根据当前所使用的发送天线端口,向终端设备指示已经激活或之前已经配置但并未激活的参考信号资源(即,第一参考信号资源)对应的天线端口中Q个天线端口可以继续用于确定CSI的天线端口。这样,终端设备所理解的网络设备发送参考信号的天线端口和网络设备实际发送参考信号的天线端口一致,从而终端设备可以基于对实际发送参考信号的天线端口所发送的参考信号的测量,确定更准确的CSI,即终端设备所确定的CSI能够反映信道的真实情况,进而能够优化网络设备对终端设备的调度。
可选地,第一指示信息指示该Q个天线端口,或者,第一指示信息指示该P个天线端口中除该Q个天线端口以外的天线端口。
可选地,第一指示信息指示第一节能模式。其中,根据第一指示信息,确定该P个天线端口中用于确定CSI的Q个天线端口,包括:根据第一节能模式,确定第一节能模式所关联的该Q个天线端口。
具体地,终端设备可以根据预设规则和第一节能模式,确定该Q个天线端口。
该方案中,仅需要较少的比特开销就可以指示节能模式,因此能够降低信令开销。
结合第一方面,在第一方面的某些实现方式中,P=2*P1*P2,P1为第一维度天线端口个数,P2为第二维度天线端口个数,Q=2*Q1*Q2,Q1为第一维度天线端口个数,Q2为第二维度天线端口个数,P1、P2、Q1、Q2均为正整数。其中,Q1=P1,且Q2<P2;或者,Q1<P1,且Q2<P2。
第一维度可以是水平维度,第二维度可以是垂直维度,但本申请对此不作限定。
结合第一方面,在第一方面的某些实现方式中,该P个天线端口按照天线端口索引从小到大的顺序,分为2*A1个组,每组包括A2个天线端口,A1为正整数,A2为大于或者等于2的整数。其中,每组A2个天线端口中的Q/(2*A1)个天线端口属于该Q个天线端口。
可选地,每组A2个天线端口中的Q/(2*A1)个天线端口属于该Q个天线端口,包括下述中的其中一项:每组A2个天线端口中索引较大的Q/(2*A1)个天线端口属于该Q个天线端口;每组A2个天线端口中索引较小的Q/(2*A1)个天线端口属于该Q个天线端口;2*A1个组中的前A1个组中每组A2个天线端口中索引较大的Q/(2*A1)个天线端口属于该Q个天线端口,2*A1个组中的后A1个组中每组A2个天线端口中索引较小的Q/(2*A1)个天线端口属于该Q个天线端口;2*A1个组中的前A1个组中每组A2个天线端口中索引较小的Q/(2*A1)个天线端口属于该Q个天线端口,2*A1个组中的后A1个组中每组A2个天线端口中索引较大的Q/(2*A1)个天线端口属于该Q个天线端口。
结合第一方面,在第一方面的某些实现方式中,该P个天线端口按照极化方向,分为第一极化方向端口组和第二极化方向端口组,第一极化方向端口组中的Q/2个天线端口属于该Q个端口,第二极化方向端口组中的Q/2个天线端口属于该Q个端口。
可选地,每组P/2个端口中索引较大的Q/2个端口属于该Q个端口。
或者,每组P/2个端口中索引较小的Q/2个端口属于该Q个端口。
或者,2个组中的前1个组中P/2个端口中的索引较大的Q/2个端口属于该Q个端口,后1个组中P/2个端口中的索引较小的Q/2个端口属于该Q个端口。
或者,2个组中的前1个组中P/2个端口中的索引较小的Q/2个端口属于该Q个端口,后1个组中P/2个端口中的索引较大的Q/2个端口属于该Q个端口。
结合第一方面,在第一方面的某些实现方式中,该方法还可以包括:根据该Q个天线端口和第一信息,确定CSI。
其中,第一信息指示第一维度天线端口个数为B1,第二维度天线端口个数为B2,B1和B2均为正整数,C1为第一参考信号资源关联的第一码本配置信息所指示的第一维度天线端口个数,C2为第一码本配置信息所指示的第二维度天线端口个数。其中,B1=C1,且B2<C2;或者,B1<C1,且B2=C2;或者,B1<C1,且B2<C2。
网络设备可以基于真实发送参考信号的天线端口确定B1和B2,或者终端设备可以基于预设规则,确定与实发送参考信号的天线端口匹配的B1和B2。由于B1和B2和网络设备真实发送参考信号的天线端口匹配,因此终端设备确定的CSI较准确。
第二方面,提供了一种通信方法,该方法可以由网络设备或者配置于网络设备中的芯片执行。该方法包括:发送第一信令,第一信令指示第一参考信号资源,第一参考信号资源对应P个天线端口;确定该P个天线端口中的Q个天线端口;发送第一指示信息,第一指示信息指示下述项之一:该Q个天线端口、该P个天线端口中除该Q个天线端口外 的天线端口、第一节能模式。其中,第一节能模式关联该Q个天线端口。
示例性的,该Q个天线端口属于网络设备当前使用的发送天线端口。
根据本申请提供的通信方法,当发射通道数量改变,即网络设备所使用的发送天线端口发生改变时,网络设备可以根据当前所使用的发送天线端口,向终端设备指示已经激活或之前已经配置但并未激活的参考信号资源(即,第一参考信号资源)对应的天线端口中Q个天线端口可以继续用于确定CSI的天线端口。这样,终端设备所理解的网络设备发送参考信号的天线端口和网络设备实际发送参考信号的天线端口一致,从而终端设备可以基于对实际发送参考信号的天线端口所发送的参考信号的测量,确定更准确的CSI,即终端设备所确定的CSI能够反映信道的真实情况,进而能够优化网络设备对终端设备的调度。
结合第二方面,在第二方面的某些实现方式中,P=2*P1*P2,P1为第一维度天线端口个数,P2为第二维度天线端口个数,Q=2*Q1*Q2,Q1为第一维度天线端口个数,Q2为第二维度天线端口个数,P1、P2、Q1、Q2均为正整数;其中,Q1=P1,且Q2<P2;或者,Q1<P1,且Q2<P2。
结合第二方面,在第二方面的某些实现方式中,该P个天线端口按照天线端口索引从小到大的顺序,分为2*A1个组,每组包括A2个天线端口,A1为正整数,A2为大于或者等于2的整数。其中,每组A2个天线端口中的Q/(2*A1)个天线端口属于该Q个天线端口。
可选地,每组A2个天线端口中的Q/(2*A1)个天线端口属于该Q个天线端口,包括下述中的其中一项:每组A2个天线端口中索引较大的Q/(2*A1)个天线端口属于该Q个天线端口;每组A2个天线端口中索引较小的Q/(2*A1)个天线端口属于该Q个天线端口;2*A1个组中的前A1个组中每组A2个天线端口中索引较大的Q/(2*A1)个天线端口属于该Q个天线端口,2*A1个组中的后A1个组中每组A2个天线端口中索引较小的Q/(2*A1)个天线端口属于该Q个天线端口;2*A1个组中的前A1个组中每组A2个天线端口中索引较小的Q/(2*A1)个天线端口属于该Q个天线端口,2*A1个组中的后A1个组中每组A2个天线端口中索引较大的Q/(2*A1)个天线端口属于该Q个天线端口。
结合第二方面,在第二方面的某些实现方式中,该方法还可以包括:发送第一信息,第一信息指示第一维度天线端口个数为B1,第二维度天线端口个数为B2,B1和B2均为正整数,C1为第一参考信号资源关联的第一码本配置信息所指示的第一维度天线端口个数,C2为第一码本配置信息所指示的第二维度天线端口个数。其中,B1=C1,且B2<C2;或者,B1<C1,且B2=C2;或者,B1<C1,且B2<C2。
网络设备可以基于真实发送参考信号的天线端口确定B1和B2,或者终端设备可以基于预设规则,确定与实发送参考信号的天线端口匹配的B1和B2。由于B1和B2和网络设备真实发送参考信号的天线端口匹配,因此终端设备确定的CSI较准确。
第三方面,提供了一种通信方法,包括:接收第二信令,第二信令指示第二参考信号资源;接收第二指示信息,并根据所述第二指示信息,确定CSI。
第四方面,提供了一种通信方法,包括:发送第二信令,第二信令指示第二参考信号资源;发送第二指示信息,第二指示信息用于终端设备确定CSI。
在第三方面和第四方面中,第一种可能的方式,第二指示信息用于去激活第二参考信号资源并激活第三参考信号资源。
第二参考信号资源可以包括一个或多个参考信号资源,或者,第二参考信号资源可以包括一组或多组参考信号资源。第二参考信号资源#1中各参考信号资源对应的天线端口可以相同,也可以不同。
第三参考信号资源可以包括一个或多个参考信号资源,或者,第三参考信号资源可以包括一组或多组参考信号资源。第三参考信号资源中各参考信号资源对应的天线端口可以相同,也可以不同。
示例性的,第三参考信号资源中各参考信号资源对应的天线端口属于网络设备当前所使用的发送天线端口。
基于该方案,网络设备可以根据当前所使用的发送天线端口,为终端设备重新激活一个参考信号资源(即,第三参考信号资源)并去激活与当前所使用的与其发送天线端口不匹配的参考信号资源(即,第二参考信号资源)。这样,终端设备确定CSI所基于的参考信号资源和网络设备实际发送参考信号基于的参考信号资源一致,从而终端设备可以基于实际发送参考信号基于的参考信号资源,确定更准确的CSI,即终端设备所确定的CSI能够反映信道的真实情况,进而能够优化网络设备对终端设备的调度。
可选地,第二参考信号资源与第三参考信号资源关联,第二指示信息包括第二参考信号资源的信息,且不包括第三参考信号资源的信息。
可选地,第二指示信息包括第二参考信号资源的信息和第三参考信号资源的信息。
结合第三方面,在第三方面的某些实现方式中,根据第二指示信息,确定CSI,包括:根据第二指示信息和第一信息,确定CSI。
结合第四方面,在第四方面的某些实现方式中,该方法还可以包括:发送第一信息。
其中,第一信息指示第一维度天线端口个数为Q1,第二维度天线端口个数为Q2,Q1和Q2均为大于或等于1的整数,Q1=P1,Q2<P2,或者,Q1<P1,且Q2=P2,或者,Q1<P1,且Q2<P2,P1为第二参考信号资源关联的第一码本配置信息所指示的第一维度天线端口个数,P2为第一码本配置信息所指示的第二维度天线端口个数。第一维度可以是水平维度,第二维度可以是垂直维度,但本申请对此不作限定。
Q1和Q2是基于网络设备真实发送参考信号的天线端口确定的,因此终端设备确定的CSI较准确。
在第三方面和第四方面中,第二种可能的方式,第二指示信息用于去激活为周期参考信号资源的第二参考信号资源中的部分参考信号资源。
示例性的,未去激活的参考信号资源中各参考信号资源属于网络设备当前使用的发送天线端口。去激活的参考信号资源中对应的天线端口包括网络设备当前未使用的发送天线端口。
基于该方案,网络设备可以根据当前所使用的发送天线端口,去激活当前激活的参考信号资源中不合适的参考信号资源,从而有利于提高CSI测量的准确性,进而能够优化网络设备对终端设备的调度。
在第三方面和第四方面中,第三种可能的方式,第二指示信息用于指示第二参考信号资源中对应的天线端口个数大于U的参考信号资源不用于确定CSI,或者,第二指示信息用于指示第二参考信号资源中对应的天线端口个数小于或等于U的参考信号资源用于确定信道状态信息CSI,U为正整数。根据所述第二指示信息,确定CSI。
示例性的,二参考信号资源中对应的天线端口个数小于或等于U的参考信号资源对应的天线端口属于网络设备当前所使用的发送天线端口。
示例性的,U小于或者等于网络设备当前使用的发送天线端口个数。
基于该方案,网络设备可以根据当前所使用的发送天线端口,指示终端设备当前激活的参考信号资源中可以继续用于确定CSI的参考信号资源,从而有利于提高CSI测量的准确性,进而能够优化网络设备对终端设备的调度。
第五方面,提供了一种通信方法,包括:接收第三指示信息,第三指示信息用于指示多种节能模式与参考信号资源的关联关系;接收第四指示信息,第四指示信息指示多种节能模式中的第一节能模式;根据第一节能模式关联的参考信号资源,确定CSI。
第六方面,提供了一种通信方法,包括:发送第三指示信息,第三指示信息用于指示多种节能模式与参考信号资源的关联关系;发送第四指示信息,第四指示信息指示多种节能模式中的第一节能模式,第四指示信息用于终端设备确定第一节能模式关联的参考信号资源。
示例性的,任一节能模式对应的各参考信号资源对应的天线端口可以相同
示例性的,第一节能模式是网络设备根据当前使用的发送天线端口确定的。
根据本申请提供的通信方法,网络设备可以向终端设备指示与当前所使用的发送天线端口匹配的节能模式,终端设备可以根据网络设备预先配置的节能模式与参考信号资源的关联关系,确定用于确定CSI所使用的参考信号资源。这样,终端设备所理解的网络设备发送参考信号的天线端口和网络设备实际发送参考信号的天线端口一致,从而终端设备可以基于对实际发送参考信号的天线端口所发送的参考信号的测量,确定更准确的CSI。
可选地,多种节能模式与参考信号资源的关联关系为:多种节能模式与资源配置的关联关系,或者,多种节能模式与上报配置的关联关系,资源配置和上报配置均与参考信号信号资源关联。
可选地,第三指示信息由无线资源控制(radio resource control,RRC)信令携带;和/或,第四指示信息由RRC信令、媒体接入控制控制单元(media access control control element,MAC CE)信令或下行控制信息(downlink control information,DCI)携带。
第七方面,提供了一种通信方法,包括:接收第三信令,所述第三信令指示L1个资源配置,和/或,L2个上报配置,L1、L2为大于或等于1的整数,所述资源配置和所述上报配置均与参考信号信号资源关联;接收第五指示信息,所述第五指示信息用于去激活所述L1个资源配置中的至少一个资源配置,和/或,去激活所述L2个上报配置中的至少一个上报配置;根据所述L1个资源配置中未去激活的资源配置,确定CSI,或者,根据所述L2个上报配置中未去激活的上报配置,确定CSI。
第八方面,提供了一种通信方法,包括:发送第三信令,所述第三信令指示L1个资源配置,和/或,L2个上报配置,L1、L2为大于或等于1的整数,所述资源配置和所述上报配置均与参考信号信号资源关联;发送第五指示信息,所述第五指示信息用于去激活所述L1个资源配置中的至少一个资源配置,和/或,去激活所述L2个上报配置中的至少一个上报配置。
示例性的,一个资源配置或上报配置所关联的各参考信号资源对应的天线端口相同。
示例性的,未去激活的资源配置或上报配置所关联的参考信号资源对应的天线端口属 于网络设备当前所使用的发送天线端口个数。
可选地,所述第五指示信息包括所述至少一个资源配置的索引和/或所述至少一个上报配置的索引。
根据本申请提供的方法,网络设备可以根据当前所使用的发送天线端口,去激活一些不合适的资源配置或上报配置,从而终端设备可以根据关联的参考信号资源对应的天线端口属于网络设备所使用的发送天线端口的资源配置或上报配置,确定CSI,从而有利于提高CSI测量的准确性,进而能够优化网络设备对终端设备的调度。
可选地,所述第五指示信息用于去激活所述L1个资源配置中的至少一个资源配置,包括:所述第五指示信息用于去激活所述至少一个资源配置关联的所有参考信号资源。
可选地,所述第五指示信息用于去激活所述L2个上报配置中的至少一个上报配置,包括:所述第五指示信息用于去激活所述至少一个上报配置关联的资源配置所关联的所有参考信号资源,和或,所述第五指示信息用于去激活所述至少一个上报配置关联的上行资源。
可选地,所述上报配置为周期上报配置。
第九方面,提供了一种通信装置,包括用于执行上述任一方面或该方面中任一种可能实现方式中的方法的各个模块或单元。
第十方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以使得该装置执行上述任一方面或该方面中任一种可能实现方式中的方法。可选地,该装置还包括存储器。可选地,该装置还包括接口电路,处理器与接口电路耦合。
第十一方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。该处理电路用于通过该输入电路接收信号,并通过该输出电路发射信号,使得该处理器执行上述任一方面或该方面中任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第十二方面,提供了一种通信装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行上述任一方面或该方面中任一种可能实现方式中的方法。
可选地,该处理器为一个或多个,该存储器为一个或多个。
可选地,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
上述第十二方面中的处理装置可以是一个芯片,该处理器可以通过硬件来实现也可以 通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第十三方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序(也可以称为代码,或指令),当该计算机程序被运行时,使得计算机执行上述任一方面或该方面中任一种可能实现方式中的方法。
第十四方面,提供了一种计算机可读介质,该计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述任一方面或该方面中任一种可能实现方式中的方法。
附图说明
图1是适用于本申请的一个通信系统的示意图。
图2是本申请提供的一种通信方法的示意图。
图3是选择天线端口的一种方法的示意图。
图4是天线端口的一种排列方式的示意图。
图5是是选择天线端口的一种方法的示意图。
图6是选择天线端口的一种方法的示意图。
图7是确定第一维度的天线端口个数和第二维度的天线端口个数的一种方法的示意图。
图8是确定第一维度的天线端口个数和第二维度的天线端口个数的另一种方法的示意图。
图9至图13分别是本申请提供的一种通信方法的示意图。
图14是本申请提供的通信装置的示意性结构图。
图15是本申请提供的网络设备的示意性结构图。
图16是本申请提供的终端设备的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)系统、新无线(new radio,NR)或未来可能出现的其他通信系统等。
图1示出了适用于本申请的一个通信系统的示意图。如图1所示,该通信系统100可以包括至少一个网络设备,例如图1所示的网络设备110;该通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备120。网络设备110可以基于参考信号资源向终端设备120发送参考信号,终端设备120通过对参考信号进行测量,可以获得CSI。然后,终端设备120可以将CSI上报给网络设备110,网络设备110可以基于CSI进行调度处理,如为下行数据的传输选择合适的调制与编码策略(modulation and coding scheme,MCS)。
本申请实施例中的终端设备可以指用户设备(user equipment,UE)、接入终端、用 户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备。例如,该网络设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或WiFi系统中的接入节点等。再如,该网络设备也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU)或者分布式单元(distributed unit,DU)。又如,该网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、中继站、接入点、车载设备、可穿戴设备、未来演进的其他通信系统中的接入网设备等。本申请对网络设备所采用的具体技术和具体设备形态不做限定。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
在介绍本申请的方法之前,首先,作几点说明。
1、本申请中,参考信号可用于信道测量、干扰测量等,如测量参考信号接收质量(reference signal receiving quality,RSRQ),信噪比(signal-noise ratio,SNR),信号与干扰噪声比(signal to interference plus noise ratio,SINR,简称信干噪比),信道质量指示(Chanel quality indicator,CQI),预编码矩阵指示(precoding matrix indicator,PMI)等参 数。
参考信号资源可用于配置参考信号的传输属性,例如,时频资源位置、端口映射关系、功率因子以及扰码等,具体可参考现有技术。网络设备可基于参考信号资源发送参考信号,终端设备可基于参考信号资源接收参考信号。
具体地,本申请实施例中涉及的参考信号例如可以包括下述中的一种或多种参考信号:信道状态信息参考信号(channel state information reference signal,CSI-RS)、同步信号块(synchronization signal block,SSB)或者探测参考信号(sounding reference signal,SRS)。与此对应地,参考信号资源可以包括CSI-RS资源(CSI-RS resource)、SSB资源或者SRS资源(SRS resource)。
需要说明的是,上述SSB也可以称为同步信号/物理广播信道块(synchronization signal/physical broadcast channel block,SS/PBCH block),所对应的SSB资源也可以称为同步信号/物理广播信道块资源(SS/PBCH block resource),可简称为SSB resource。在某些情况下,SSB也可以是指SSB资源。
2、天线端口(antenna port):简称端口。被接收端设备所识别的发射天线,或者在空间上可以区分的发射天线。针对每个虚拟天线可以配置一个天线端口,每个虚拟天线可以为多个物理天线的加权组合,每个天线端口可以与一个参考信号端口对应。
场景1:为了节能,网络设备动态关断部分发射通道。
场景2:为了节能,网络设备对近端终端设备和远端终端设备采用不同的发送策略。如近端终端设备采用16Tx,远端终端设备采用32Tx。那么随着终端设备移动,网络设备可能会关断部分发射通道。
在上述场景下,网络设备使用的发送天线端口将发生改变。也就是说,网络设备发送参考信号的天线端口将与之前配置的参考信号资源对应的天线端口不一致,如果终端设备仍然基于之前的参考信号资源对应的天线端口来接收参考信号,将可能导致终端设备将干扰信号误认为参考信号,从而导致终端设备确定的CSI不准确,即终端设备所确定的CSI不能准确反映真实的信道情况。
为此,本申请提供了多种方法来解决此问题。一些方法中,网络设备通过通知终端设备实际发送参考信号的天线端口,使得终端设备可以通过对实际发送参考信号的天线端口所发送的参考信号的测量,获得更准确的CSI。一些方法中,网络设备可以直接或间接激活与网络设备当前所使用的天线端口匹配的参考信号资源,或者,网络设备可以直接或间接向终端设备指示当前激活的参考信号资源或者之前配置的参考信号资源中,与网络设备当前所使用的天线端口匹配的参考信号资源,从而终端设备可以基于网络设备的指示,通过对真实发送参考信号的天线端口所发送的参考信号的测量,获得更准确的CSI。
下面,对本申请提供的方法进行说明。应理解,下文所描述的方法实施例中仅以执行主体为网络设备和终端设备为例,网络设备还可以替换为配置于网络设备中的芯片,终端设备也可以替换为配置于终端设备中的芯片。
图2是本申请提供的一种通信方法的示意性流程图。下面对图2所示的各步骤进行说明。
S210,网络设备向终端设备发送第一信令。相应地,终端设备接收第一信令。
第一信令指示第一参考信号资源。第一参考信号资源对应P个天线端口,或者说,第 一参考信号资源包括P个天线端口,P为正整数。
示例性的,第一参考信号资源可以是当前激活的参考信号资源。比如,第一信令为RRC信令,第一参考信号资源为周期(periodic)参考信号资源。再如,第一信令为MAC CE,第一参考信号资源为半持续(Semi-persistent)参考信号资源。
示例性的,第一参考信号资源也可以是已经配置的且未激活(或未触发)的参考信号资源。比如,第一参考信号资源为非周期(aperiodic)参考信号资源,第一信令为RRC信令或者MAC CE。
S220,网络设备确定该P个天线端口中的Q个天线端口。
示例性的,网络设备可以根据当前使用的发送天线端口,确定该Q个天线端口。其中,该Q个天线端口属于网络设备当前使用的发送天线端口。
S230,网络设备向终端设备发送第一指示信息。相应地,终端设备接收第一指示信息。
示例性的,第一指示信息可以和第一信令同时发送,或者可以先发送第一信令,再发送第一指示信息。
S240,终端设备根据第一指示信息,确定该P个天线端口中用于确定CSI的Q个天线端口。Q为正整数,且P>Q。
在一个示例中,网络设备可以自主确定该Q个天线端口,然后通过第一指示信息向终端设备指示该Q个天线端口。终端设备接收到第一指示信息后,就可以确定该Q个天线端口。或者,网络设备可以通过第一指示信息向终端设备指示该P个天线端口中除该Q个天线端口以外的天线端口,从而使终端设备获知该Q个天线端口。
比如,第一指示信息可以是该Q个天线端口的信息。例如,第一指示信息可以是该Q个天线端口的索引,或者可以是该Q个天线端口对应的集合或组的索引。天线端口对应的集合或组的索引可以由终端设备和网络设备提前约定,或者可以是由其他指示信息指示的。或者,第一指示信息也可以是该P个天线端口中除该Q个天线端口以外的天线端口的信息。
在另一个示例中,网络设备可以确定需要进入第一节能模式。第一节能模式与该Q个天线端口关联,网络设备确定了第一节能模式,相当于确定了该Q个天线端口。并且,网络设备可以通过第一指示信息向终端设备指示第一节能模式,终端设备可以根据预设规则,可以确定第一节能模式关联的该Q个天线端口。
应理解,该预定规则为网络设备和终端设备都遵循的预设规则。该预设规则可以由网络设备预先配置,比如通过RRC信令配置或者MAC CE信令指示,或者DCI信令指示,也可以由协议规定。
示例性的,该预设规则可以规定第一节能模式下,当前激活的参考信号资源对应的天线端口中哪些天线端口可以用于确定CSI,即当前激活的参考信号资源对应的天线端口中,网络设备会在哪些天线端口上发送参考信号或者终端设备可以在哪么天线端口上接收参考信号。示例性的,上述预设规则也可以是多种预测规则中的一种,网络设备可以向终端设备指示该预测规则。例如:网络设备可以通过RRC信令或者MAC CE信令或者DCI信令指示该预设规则。
比如,该预设规则可以规定第一节能模式下,当前激活的参考信号资源对应的天线端口中索引较小的y(P)个天线端口用于确定CSI。y(P)为P的函数,例如y(P)=P/2。 或者,y(P)可以替换为一个确定的数值。
下面P和Q之间的关系进行举例说明。
关系一
该P个天线端口按照天线端口索引从小到大的顺序,分为2*A1个组,每组包括A2个天线端口。其中,每组A2个天线端口中的Q/(2*A1)个天线端口属于该Q个天线端口。A1为正整数,A2为大于或者等于2的整数。可选地,A1>2,和/或,A2>2。
示例一,每组A2个天线端口中索引较大的Q/(2*A1)个天线端口属于该Q个天线端口。
示例二,每组A2个天线端口中索引较小的Q/(2*A1)个天线端口属于该Q个天线端口。
示例三,该2*A1个组中的前A1个组中每组A2个天线端口中索引较大的Q/(2*A1)个天线端口属于该Q个天线端口,该2*A1个组中的后A1个组中每组A2个天线端口中索引较小的Q/(2*A1)个天线端口属于该Q个天线端口。
示例四,该2*A1个组中的前A1个组中每组A2个天线端口中索引较小的Q/(2*A1)个天线端口属于该Q个天线端口,该2*A1个组中的后A1个组中每组A2个天线端口中索引较大的Q/(2*A1)个天线端口属于该Q个天线端口。
可选地,A1可以是第一维度天线端口个数,A2为第二维度天线端口个数。第一维度可以是水平维度,第二维度可以是垂直维度。应理解,第一维度也可以是垂直维度,第二维度也可以是水平维度。
以图3所示的天线端口排列方式为例进行说明。参见图3,P=32,A1=8,Q=16。32个天线端口可以分为图中所示16个组,每组2个天线端口,且每组中的1个天线端口属于该Q(Q=16)个天线端口。
对应示例一,该Q个天线端口包括:32个天线端口中索引为奇数的天线端口。
对应示例二,该Q个天线端口包括:32个天线端口中索引为偶数的天线端口。
对应示例三,该Q个天线端口包括:第一组至第八组中索引为奇数的天线端口,以及,第九组至第十六组中索引为偶数的天线端口。
对应示例四,该Q个天线端口包括:第一组至第八组中索引为偶数的天线端口,以及,第九组至第十六组中索引为奇数的天线端口。
应理解,预设规则规定的P和Q的关系可以满足关系一。可选地,预设规则还可以规定A1、A2,、Q/(2*A1)中全部或部分的取值。或者,网络设备可以自主确定的P和Q的关系可以满足关系一。
可选地,A1可以等于P1,A2可以等于P2。或者说,A1可以为第一维度天线端口个数,A2可以为第二维度天线端口个数。或者说,A1可以为水平天线端口个数,A2可以为垂直天线端口个数。
关系二
该P个天线端口按照极化方向,分为第一极化方向端口组和第二极化方向端口组,第一极化方向端口组中的Q/2个天线端口属于该Q个端口,第二极化方向端口组中的Q/2个天线端口属于该Q个端口。
可选地,每组P/2个端口中索引较大的Q/2个端口属于该Q个端口。
或者,每组P/2个端口中索引较小的Q/2个端口属于该Q个端口。
或者,2个组中的前1个组中P/2个端口中的索引较大的Q/2个端口属于该Q个端口,后1个组中P/2个端口中的索引较小的Q/2个端口属于该Q个端口。
或者,2个组中的前1个组中P/2个端口中的索引较小的Q/2个端口属于该Q个端口,后1个组中P/2个端口中的索引较大的Q/2个端口属于该Q个端口。
以P=32,Q/2=8为例进行说明。参见图4,第一极化方向端口组由索引为0至15的天线端口组成,第二极化方向端口组由索引为16至31的天线端口组成。即,第一极化方向端口组由图中粗实线所示的天线端口组成,第二极化方向端口组由图中细实线所示的天线端口组成。该Q个天线端口包括索引为0至15的天线端口的8个天线端口以及索引为16至31的天线端口中的8个天线端口。比如,Q个天线端口可以包括索引为8至15以及16至23的天线端口。或者,Q个天线端口可以包括索引为0至7以及16至23的天线端口。或者,Q个天线端口可以包括索引为8至15以及24至31的天线端口。或者,Q个天线端口可以包括索引为0至7以及24至31的天线端口。
应理解,预设规则规定的P和Q的关系可以满足关系二。可选地预设规则还可以规定Q/2的取值。或者,网络设备可以自主确定的P和Q的关系可以满足关系二。
关系三
在该关系中,网络设备和终端设备遵循如下定义:
P=2*P1*P2,P1为第一维度天线端口个数,P2为第二维度天线端口个数。Q=2*Q1*Q2,Q1为第一维度天线端口个数,Q2为第二维度天线端口个数。P1、P2、Q1、Q2均为正整数。P1、P2、Q1、Q2可以满足:Q1=P1,且Q2<P2。或者,Q1<P1,且Q2<P2。
第一维度可以是水平维度,第二维度可以是垂直维度,但本申请对此不作限定。
可选地,预设规则可以规定或者网络设备可以指示Q1与P1之间的偏移值和/或Q2与P2之间的的偏移值,从而,终端设备可以根据该偏移值,确定Q1和Q2的大小。
比如,若没有规定Q1与P1之间的偏移值,则Q1与P1之间的偏移值为0。并且,同时规定了Q2与P2之间的的偏移值为4,则Q1=P1,Q2=P1-4。或者,可以规定偏移值(0,4),则Q1=P1,Q2=P1-4。
进一步地,该预设规则还可以作更具体地规定,从而可以确定Q个天线端口具体是哪些端口。比如,可以规定Q1个第一维度天线端口为第一维度的索引较小的Q1个天线端口,Q2个第二维度天线端口为第二维度的索引较小的Q2个天线端口。
或者,网络设备还可以指示Q1和/或Q2的取值。
结合图5和图6进行举例说明。在图5和图6所示的天线端口中,P=32,P1=8,P2=2。图5所示示例中,Q1=P1=8,Q2=1。图6所示示例中,Q1=4,Q2=1。
如图5所示,若Q1个第一维度天线端口为第一维度的索引较小的Q1个天线端口,则第一行的16个天线端口为所述Q个端口。若Q1个第一维度天线端口为第一维度的索引较大的Q1个天线端口,则第二行的16个天线端口可以是所述Q个天线端口。
如图6所示,若Q1个第一维度天线端口为第一维度的索引较小的Q1个天线端口,Q2个第二维度天线端口为第二维度的索引较小的Q2个天线端口,则虚线框中的8个天线端口可以是所述Q个天线端口。
应理解,上文描述的P和Q之间的关系仅是示例,本申请并不限定Q和P一定遵循 上述关系。另外,上文描述的P和Q之间的关系也可以结合使用,本申请对此不作限定。
还应理解,本申请各申请实施例中,分组只为更好的描述端口选择的方法,网络设备/终端设备可以执行该动作也可以不执行该动作,对本申请对此不做限定。
可选地,假设第一参考信号资源的标识或索引为1,网络设备可以配置终端设备在多个载波或多个带宽部分(bandwide part,BWP)上使用标识或索引为1的参考信号资源。那么,第一指示信息可以指示特定的载波或BWP上的索引为1的参考信号资源对应的P个天线端口中的Q个天线端口用于确定CSI。
可选地,第一指示信息还可以指示目标发射功率,目标发射功率为网络设备的发射功率,且目标发射功率是根据该Q个天线端口确定的。终端设备可以根据目标发射功率进行信道估计,从而确定CSI。
例如,第一指示信息可以通过指示该目标发射功率与第一发射功率之间的偏差,指示目标发射功率。第一发射功率为网络设备根据该P个天线端口确定且向终端设备指示的发射功率。
可选地,网络设备还可以根据Q个天线端口及第一发射功率确定目标发射功率。
比如,可以预先配置或预定义天线端口个数变化的数量和发送功率调整量的关联关系,这样终端设备可以根据P减去Q所得的差值,确定相应的发送功率调整量。例如:该第一发射功率与发送功率调整量之和(发送功率调整量为负值)或之差(发送功率调整量为正值)为目标发射功率。
综上,根据本申请提供的通信方法,当发射通道数量改变,即网络设备所使用的发送天线端口发生改变时,网络设备可以根据当前所使用的发送天线端口,向终端设备指示已经激活或之前已经配置但并未激活的参考信号资源(即,第一参考信号资源)对应的天线端口中Q个天线端口可以继续用于确定CSI的天线端口。这样,终端设备所理解的网络设备发送参考信号的天线端口和网络设备实际发送参考信号的天线端口一致,从而终端设备可以基于对实际发送参考信号的天线端口所发送的参考信号的测量,确定更准确的CSI,即终端设备所确定的CSI能够反映信道的真实情况,进而能够优化网络设备对终端设备的调度。
可选地,该方法还可以包括:
S250,终端设备根据该Q个天线端口和第一信息,确定CSI。
S260,终端设备向网络设备发送该CSI。相应地,网络设备接收到CSI。
其中,第一信息指示第一维度天线端口个数为B1,第二维度天线端口个数为B2,B1和B2均为正整数。其中,B1=C1,且B2<C2。或者,B1<C1,且B2=C2。或者,B1<C1,且B2<C2。
其中,C1为第一参考信号资源关联的第一码本配置信息所指示的第一维度天线端口个数,C2为第一码本配置信息所指示的第二维度天线端口个数。
所述第一维度可以是水平维度,第二维度可以是垂直维度,但本申请对此不作限定。
可以理解,第一码本配置信息是第一参考信号资源对应的端口数未改变时关联的码本配置信息,即第一码本配置信息是根据P个天线端口配置的。C1和C2为采用P个天线端口进行信道测量时,需要确定CSI时使用的第一维度天线端口个数和第二维度天线端口个数。当用于进行信道测量的天线端口变为Q个时,需要确定CSI时使用的第一维度天线 端口个数和/或第二维度天线端口个数也会相应发生改变。
可选地,B1=Q1,B2=Q2。C1=P1,C2=P2。
或者,2*C1*C2=P,2*B1*B2=Q。
或者,C1≤P1,C2≤P2。
或者,2*C1*C2≤P,2*B1*B2≤Q。
或者,2*C1*C2≤P。
关于Q1、Q2和Q的含义或关系可以参见前文描述。
下面结合图7和图8,对C1、C2、B1和B2的可能的取值进行举例说明。图7和图8中,可以根据(C1,C2)至(B1,B2)的连接线,确定(B1,B2)。从(C1,C2)到(B1,B2)的连接线可以包括一条或多条。
例如,图7中,若P=64,且(C1,C2)=(8,4),则当Q=32时,(B1,B2)可以是(8,2)或者(4,4)。若P=64,且(C1,C2)=(16,2),则当Q=16时,(B1,B2)可以是(4,2)或者(8,1)。
例如,图8中,若P=64,且(C1,C2)=(8,4),则当Q=32时,(B1,B2)可以是(8,2)或者(4,4)。若P=24,且(C1,C2)=(4,3),则当Q=16时,(B1,B2)可以是(4,2)。
可选地,预定义{P,(C1,C2)}和{Q,(B1,B2)}的对应关系。那么,只要确定了P、C1、C2以及Q的取值,就可以根据该预定义的对应关系,确定B1和B2的取值。
可选地,第一信息也可以由网络设备发送。比如,网络设备可以通过RRC信令、MACCE或者DCI等携带第一信息。
例如,第一信息可以指示B1和B2的取值,也可以指示B1与C1之间的偏移值和/或B2与C2之间的的偏移值。比如,第一信息为指示(0,4)的信息,则可以确定B1=C1,且B2=C2-4。
再如,B1和B2之间具有预设的关系,第一信息通过指示B1或B2的取值,可以指示B1和B2的取值。比如,第一信息可以是1比特信息,比如第一信息为0时指示,B1=C1,B2=C2-1。
或者,B1与C1之间的偏移值和B2与C2之间的的偏移值具有预设的关系,第一信息通过指示B1与C1之间的偏移值或B2与C2之间的的偏移值,可以指示B1与C1之间的偏移值和B2与C2之间的的偏移值。
第一信息和前述的第一指示信息可以通过同一条信令携带,也可以通过不同的信令携带,本申请对此不作限定。
可以理解,由于终端设备需要确定CSI时使用的第一维度天线端口个数和第二维度天线端口个数是基于网络设备真实发送参考信号的天线端口确定的,因此终端设备确定的CSI较准确。
应理解,本申请各实施例中,终端设备需要基于第一维度天线端口个数B1和第二维度天线端口个数B2确定PMI。例如:终端设备根据当前CSI测量选择逼近当前信道特征向量的DFT向量,该DFT向量为第一DFT向量和第二DFT向量的克罗内克积;其中,第一DFT向量的维度为第一维度天线端口个数B1,第二DFT向量的维度为第二维度天线端口个数B2。
示例地:
Figure PCTCN2020074038-appb-000001
其中,u l为第一DFT向量,u m为第二DFT向量,v l,m为第一DFT向量和第二DFT向量的克罗内克积。v l,m可以称为预编码矩阵,或候选预编码矩阵。
另外,需要说明的是,若第一参考信号资源已经通过第一信令激活,则终端设备可以在步骤S250中基于该Q个天线端口接收参考信号。若第一参考信号资源没有通过第一信令激活,则网络设备首先需要激活第一参考信号资源,然后再在步骤S250中基于该Q个天线端口接收参考信号。比如,第一参考信号资源为非周期参考信号资源,且第一信令为MAC CE时,网络设备可以通过发送DCI激活第一参考信号资源。图9是本申请提供的一种通信方法的示意性流程图。下面对图9所示的方法300中的各步骤进行说明。
S310,网络设备向终端设备发送第二信令#1(即,第二信令的一例)。相应地,终端设备接收第二信令#1。第二信令#1指示第二参考信号资源#1(即,第二参考信号资源的一例)。
其中,第二参考信号资源#1可以包括一个或多个参考信号资源,或者,第二参考信号资源#1可以包括一组或多组参考信号资源。
示例性的,第二参考信号资源#1中各参考信号资源对应的天线端口可以相同,也可以不同。
示例性的,第二参考信号资源#1可以是周期(periodic)参考信号资源。在此情况下,第二信令#1可以是RRC信令,但本申请对此不作限定。或者,第二参考信号资源#1可以是半持续参考信号资源。在此情况下,第二信令#1可以是MAC CE,但本申请对此不作限定。
S320,网络设备向终端设备发送第二指示信息#1(即,第二指示信息的一例)。相应地,终端设备接收第二指示信息#1。
其中,第二指示信息#1用于去激活第二参考信号资源#1并激活第三参考信号资源。
第三参考信号资源可以包括一个或多个参考信号资源,或者,第三参考信号资源可以包括一组或多组参考信号资源。
示例性的,第三参考信号资源中各参考信号资源对应的天线端口可以相同,也可以不同。
示例性的,第三参考信号资源中各参考信号资源对应的天线端口属于网络设备当前所使用的发送天线端口。
示例性的,第三参考信号资源可以是周期参考信号资源、半持续参考信号资源或者非 周期参考信号资源。
示例性的,第二指示信息#1可以是RRC信令、MAC CE或者DCI,本申请对此不作限定。
可选地,可以预先配置第二参考信号资源#1第三参考信号资源关联。在此情况下,第二指示信息#1可以通过携带第二参考信号资源#1的信息,隐式指示去激活第二参考信号资源#1并激活第三参考信号资源。
可选地,第二指示信息#1可以通过同时携带第二参考信号资源#1的信息和第三参考信号资源的信息,显示指示去激活第二参考信号资源#1并激活第三参考信号资源。
比如,参考信号资源的信息可以是参考信号资源的索引。在第二参考信号资源#1或第三参考信号资源为一组或多组参考信号资源的情况下,相应的参考信号资源的信息可以是组的索引或者组内每个参考信号资源的索引。
应理解,本申请各实施例中,一组或多组参考信号资源可以指一个或多个参考信号资源集合。
S330,终端设备根据第二指示信息#1,确定CSI。
网络设备基于第三参考信号资源发送参考信号,终端设备基于第三参考信号资源接收参考信号,通过对基于第三参考信号资源上发送的参考信号进行测量,终端设备可以确定CSI。
可选地,终端设备根据第二指示信息#1,确定CSI,包括:终端设备根据第二指示信息#1和第二信息,确定CSI。
第二信息指示第一维度天线端口个数为B1,第二维度天线端口个数为B2,B1和B2均为正整数。第一维度可以是水平维度,第二维度可以是垂直维度,但本申请对此不作限定。
应理解,B1和B2是终端设备确定CSI时使用的第一维度和第二维度天线端口个数。
本申请中,B1、B2、C1、C2满足:
B1=C1,且B2<C2。或者,B1<C1,且B2=C2。或者,B1<C1,且B2<C2。
其中,C1为第二参考信号资源#1关联的第一码本配置信息所指示的第一维度天线端口个数,C2为第一码本配置信息所指示的第二维度天线端口个数。
可选地,B1=Q1,B2=Q2。C1=P1,C2=P2。
或者,2*C1*C2=P,2*B1*B2=Q。
或者,C1≤P1,C2≤P2。
或者,2*C1*C2≤P,2*B1*B2≤Q。
或者,2*C1*C2≤P。
其中,P=2*P1*P2,P可以为第二参考信号资源#1中对应的天线端口个数最多的参考信号资源所对应的天线端口个数,P1为第一维度天线端口个数,P2为第二维度天线端口个数。Q=2*Q1*Q2,Q可以为第三参考信号资源中对应的天线端口个数最多的参考信号资源所对应的天线端口个数,Q1为第一维度天线端口个数,Q2为第二维度天线端口个数。
可选地,P、Q、C1、C2、B1和B2的取值的一种示例可以参见图7或图8。
在一个示例中,第二信息为与第三参考信号资源关联的上报配置中的码本配置信息。该码本配置信息可以携带B1和B2的取值。
在另一个示例中,第二信息可以通过携带B1与C1之间的偏移值和/或B1与C2之间的的偏移值,隐式指示B1和B2的取值。比如,第二指示信息#1通过携带偏移值(0,4),可以隐式指示B1=C1,且B2=C2-4。
可选地,第二信息和第二指示信息#1可以通过同一条信令携带,也可以通过不同的信令携带,本申请对此不作限定。
在又一个示例中,也可以预定义{P,(C1,C2)}和{Q,(B1,B2)}的对应关系。那么,只要确定了P、C1、C2以及Q的取值,就可以根据该预定义的对应关系,确定B1和B2的取值。
可选地,该方法还可以包括:
S340,终端设备向网络设备上报CSI。相应地,网络设备接收CSI。
综上,根据本申请提供的通信方法,网络设备可以根据当前所使用的发送天线端口,为终端设备重新激活一个参考信号资源(即,第三参考信号资源)并去激活与当前所使用的与其发送天线端口不匹配的参考信号资源(即,第二参考信号资源)。这样,终端设备确定CSI所基于的参考信号资源和网络设备实际发送参考信号基于的参考信号资源一致,从而终端设备可以基于实际发送参考信号基于的参考信号资源,确定更准确的CSI,即终端设备所确定的CSI能够反映信道的真实情况,进而能够优化网络设备对终端设备的调度。
进一步地,由于终端设备确定CSI时使用的第一维度天线端口个数和第二维度天线端口个数是基于网络设备真实发送参考信号的天线端口确定的,因此终端设备确定的CSI较准确。
图10是本申请提供的一种通信方法的示意性流程图。下面对图10所示的方法400中的各步骤进行说明。
S410,网络设备向终端设备发送第二信令#2(即,第二信令的另一例)。相应地,终端设备接收第二信令#2。第二信令#2指示第二参考信号资源#2(即,第二参考信号资源的另一例)。
第二参考信号资源#2可以是多组参考信号资源,或者第二参考信号资源可以包括多个参考信号资源。并且,第二参考信号资源#2为周期性参考信号资源。
示例性的,第二参考信号资源#2中至少两个参考信号资源对应的天线端口不同。比如,第二参考信号资源#2为两组参考信号资源的情况下,每组内各参考信号资源对应的天线端口可以相同,但2组参考信号资源对应的天线端口不同,比如一组对应的天线端口个数为12,另一组对应的天线端口个数为24。
示例性的,第二参考信号资源#2关联的上报配置可以是周期上报配置。关于周期上报配置的具体形式可以参见现有技术。
示例性的,第二信令#2可以是RRC信令。
S420,网络设备向终端设备发送第二指示信息#2(即,第二指示信息的另一例)。相应地,终端设备接收第二指示信息#2。
其中,第二指示信息#1用于去激活第二参考信号资源#2中的部分参考信号资源。比如,第二参考信号资源#2为两组参考信号资源,第二指示信息#1可以去激活其中一组参考信号资源。
可以理解,第二参考信号资源#2由两部分组成:去激活的参考信号资源和未去激活 的参考信号资源。
示例性的,未去激活的参考信号资源中各参考信号资源属于网络设备当前使用的发送天线端口。去激活的参考信号资源中对应的天线端口包括网络设备当前未使用的发送天线端口。
可选地,第二指示信息#2可以是RRC信令、MAC CE或者DCI。
S430,终端设备根据第二指示信息#2,确定CSI。
网络设备基于第二参考信号资源#2中未去激活的参考信号资源发送参考信号,终端设备基于未去激活的参考信号资源接收参考信号,通过对未去激活的参考信号资源上发送的参考信号进行测量,可以确定CSI。
关于终端设备如何根据对参考信号的测量确定CSI,可以参见现有技术。
可选地,该方法还可以包括:
S440,终端设备向网络设备上报CSI。相应地,网络设备接收CSI。
综上,根据本申请提供的通信方法,网络设备可以根据当前所使用的发送天线端口,去激活当前激活的参考信号资源中不合适的参考信号资源,从而有利于提高CSI测量的准确性,进而能够优化网络设备对终端设备的调度。
可选地,该方法还可以包括:网络设备激活上述被去激活的参考信号资源。
比如,当网络设备所使用的发送天线端口与上述被去激活的参考信号资源对应的天线端口相同时,网络设备可以激活上述被去激活的参考信号资源。从而,终端设备可以通过对多个天线端口的参考信号的测量,确定准确的CSI。
图11是本申请提供的一种通信方法的示意性流程图。下面对图11所示的方法500各步骤进行说明。
S510,网络设备向终端设备发送第二信令#3(即,第二信令的另一例)。相应地,终端设备接收第二信令#3。第二信令#3指示第二参考信号资源#3(即,第二参考信号资源的另一例)。
第二参考信号资源#3可以包括多个或多组参考信号资源。
示例性的,第二参考信号资源#3中至少两个参考信号资源或至少两组参考信号资源对应的天线端口不同。
示例性的,第二参考信号资源#3可以是周期参考信号资源。在此情况下,第二信令#3可以是RRC信令,但本申请对此不作限定。或者,第二参考信号资源#3可以是半持续参考信号资源。在此情况下,第二信令#3可以是MAC CE,但本申请对此不作限定。
S520,网络设备向终端设备发送第二指示信息#3(即,第二指示信息的另一例)。相应地,终端设备接收第二指示信息#3。
第二指示信息#3用于指示第二参考信号资源#3中对应的天线端口个数大于U的参考信号资源不用于确定CSI。或者,第二指示信息用于指示第二参考信号资源#3中对应的天线端口个数小于或等于U的参考信号资源用于确定CSI。其中,U为正整数。
或者,第二指示信息#3用于指示第二参考信号资源#3中对应的天线端口包含不属于网络设备当前所使用的天线端口的参考信号资源不用于确定CSI。或者,第二指示信息用于指示第二参考信号资源#3中对应的天线端口均属于网络设备当前所使用的天线端口的参考信号资源用于确定CSI。
示例性的,第二指示信息#3可以携带U的取值。或者,第二指示信息可以占用1比特,例如,该比特的值为1时,表示第二参考信号资源#3中对应的天线端口个数大于U的参考信号资源不用于确定CSI。
示例性的,U小于或者等于网络设备当前使用的发送天线端口个数。
可选地,第二指示信息#3可以是RRC信令、MAC CE或者DCI。
可选地,假设第二参考信号资源#3的标识或索引为3,网络设备可以配置终端设备在多个载波或多个BWP上使用标识或索引为3的参考信号资源。那么,第一指示信息可以指示特定的载波或BWP上的索引为3的参考信号资源对应的P个天线端口中的Q个天线端口用于确定CSI。
S530,终端设备根据第二指示信息#3,确定CSI。
基于第二指示信息#3,终端设备可以仅基于用于确定CSI的参考信号资源接收参考信号,并通过对参考信号的测量,确定CSI。
关于终端设备如何根据对参考信号的测量确定CSI,可以参见现有技术。
可选地,该方法还可以包括:
S540,终端设备向网络设备上报CSI。相应地,网络设备接收CSI。
综上,根据本申请提供的通信方法,网络设备可以根据当前所使用的发送天线端口,指示终端设备当前激活的参考信号资源中可以继续用于确定CSI的参考信号资源,从而有利于提高CSI测量的准确性,进而能够优化网络设备对终端设备的调度。
图12是本申请提供的另一种通信方法的示意性流程图。下面对图12所示的方法600中的各步骤进行说明。
S610,网络设备向终端设备发送第三指示信息。相应地,终端设备接收第三指示信息。
其中,第三指示信息指示多种节能模式与参考信号资源的关联关系。
例如,多种节能模式与参考信号资源的关联关系可以如表1所示。
表1
节能模式 参考信号资源
第一节能模式 参考信号资源#0至参考信号资源#7
第二节能模式 参考信号资源#8至参考信号资源#15
第三节能模式 参考信号资源#16至参考信号资源#23
…… ……
表1中,任一节能模式对应的各参考信号资源对应的天线端口可以相同,但本申请对此不作限定。
应理解,参考信号资源也可以以集合或者组的形式与节能模式关联,比如,第一节能模式可以关联参考信号组#a1,或关联表1参考信号组#a1和a2。
示例性的,网络设备使用的发送天线端口不同,或者网络设备使用的发送天线端口属于不同集合时,对应的节能模式可以不同。
可选地,多种节能模式与参考信号资源的关联关系可以为:多种节能模式与资源配置(CSI-ResourceConfig)的关联关系;或者,多种节能模式与上报配置(CSI-ReportConfig)的关联关系。所述资源配置和所述上报配置均与参考信号信号资源关联。
也就是说,与节能模式关联参考的参考信号资源可以是资源配置所关联的参考信号资 源,也可以是上报配置所关联的参考信号资源。
应理解,网络设备可通过RRC消息向终端设备发送CSI-ResourceConfig,每个CSI-ResourceConfig可以包括一个或多个参考信号资源。CSI-ResourceConfig所包括的参考信号资源即为CSI-ResourceConfig所关联的参考信号资源。
还应理解,CSI-ReportConfig可以包括一个或多个参考信号资源,即CSI-ReportConfig关联一个或多个参考信号资源。CSI-ReportConfig还可以包括一些上报参数,终端设备可以根据这些上报参数,上报根据该CSI-ReportConfig所关联的参考信号资源所确定的CSI。上报参数例如可以包括CSI的上报类型(周期、非周期或半持续)。
还应理解,一个上报配置所关联的参考信号资源通过资源配置进行配置。
示例性的,一个上报配置可以关联一个或多个资源配置。
可选地,第三指示信息可以通过RRC信令携带,但本申请对此不作限定,比如第三指示信息信令也可以通过MAC CE携带。
S620,网络设备向终端设备发送第四指示信息。相应地,终端设备接收第四指示信息。
其中,第四指示信息指示所述多种节能模式中的第一节能模式。
例如,网络设备可以根据当前使用的发送天线端口确定对应的节能模式为第一节能模式,然后向终端设备指示第一节能模式。
本申请中,第四指示信息通过指示第一节能模式,可以激活(或者说,指示)第一节能模式关联(或者,对应)的参考信号资源。
示例性的,网络设备可以在发送第四指示信息的同时配置第一节能模式关联的参考信号资源的配置,或者,网络设备可以在发送第四指示信息之前配置第一节能模式关联的参考信号资源。或者,网络设备可以在发送第四指示信息之后配置第一节能模式关联的参考信号资源。
第一节能模式关联的参考信号资源可以是周期参考信号资源。与现有技术中的周期参考信号资源不同的是,在该方法中,只有终端设备接收到指示该参考信号资源关联的节能模式的指示信息,才可以使用该参考信号资源。第一节能模式关联的参考信号资源也可以是半持续或者非周期参考信号资源,本申请对此不作限定。
可选地,第四指示信息还可以指示节能模式对应的发射功率调整量。这样,在节能模式改变后,终端设备可以根据改变前的节能模式对应的发射功率和改变后的节能模式对应的发射功率调整量,确定改变后的节能模式对应的发射功率。
比如,节能模式从第一节能模式变为第二节能模式,第一节能模式对应的发射功率为power1,第二节能模式对应的发射功率调整量为a,则第二节能模式对应的发射功率power2=power1-a。应理解,该举例中第二节能模式对应的天线端口个数小于第一节能模式对应的天线端口个数,且a为正数。还应理解,类似的变形也应属于本申请的保护范围。
应理解,发射功率为网络设备的发射功率,终端设备可以基于网络设备的发射功率进行信道估计,从而确定CSI。
可选地,第四指示信息可以是RRC信令、MAC CE或者DCI。
S630,终端设备根据第一节能模式关联的参考信号资源,确定CSI。
终端设备可以根据在S610中配置的多种节能模式与参考信号资源的关联关系,确定第一节能模式关联的参考信号资源,从而可以基于第一节能模式关联的参考信号资源,对 参考信号进行测量,确定CSI。
关于终端设备如何根据对参考信号的测量确定CSI,可以参见现有技术。
可选地,该方法还可以包括:
S640,终端设备向网络设备上报CSI。相应地,网络设备接收CSI。
综上,根据本申请提供的通信方法,网络设备可以向终端设备指示与当前所使用的发送天线端口匹配的节能模式,终端设备可以根据网络设备预先配置的节能模式与参考信号资源的关联关系,确定用于确定CSI所使用的参考信号资源。这样,终端设备所理解的网络设备发送参考信号的天线端口和网络设备实际发送参考信号的天线端口一致,从而终端设备可以基于对实际发送参考信号的天线端口所发送的参考信号的测量,确定更准确的CSI。
图13是本申请提供的另一种通信方法的示意性流程图。下面对图13所示的各步骤进行说明。
S710,网络设备向终端设备发送第三信令。相应地,终端设备接收第三信令。
其中,第三信令指示L1个资源配置,和/或,L2个上报配置,L1、L2为大于或等于1的整数,所述资源配置和所述上报配置均与参考信号信号资源关联。
关于资源配置与参考信号资源关联的含义以及报配置与参考信号信号资源关联可以参见方法600或现有技术中的说明,这里不再赘述。
示例性的,一个资源配置或上报配置所关联的各参考信号资源对应的天线端口相同。
可选地,资源配置可以是周期配置、非周期配置或半持续配置。即,该资源配置所关联的参考信号资源可以是周期参考信号资源、非周期参考信号资源或半持续参考信号资源。
示例性的,该L1个资源配置为周期配置时,第三信令可以是RRC信令。该L1个资源配置为非周期配置,第三信令可以是DCI。该L1个资源配置为半持续配置,第三信令可以是MAC CE。
可选地,上报配置可以是周期上报配置、非周期上报配置或半持续上报配置。
示例性的,该L2个上报配置为周期上报配置时,第三信令可以是RRC信令。该L2个上报配置为非周期上报配置时,第三信令可以是DCI。L2个上报配置为半持续上报配置时,第三信令可以是MAC CE。
S720,网络设备向终端设备发送第五指示信息。相应地,终端设备接收第五指示信息。
其中,在第三信令指示L1个资源配置的情况下,第五指示信息用于去激活L1个资源配置中的至少一个资源配置。比如,第五指示信息可以包括需要去激活的资源配置的索引。
在第三信令指示L2个上报配置的情况下,第五指示信息用于去激活L2个上报配置中的至少一个上报配置。比如,第五指示信息可以包括需要去激活的上报配置的索引。
示例性的,去激活一个资源配置是指,去激活该资源配置所关联的所有参考信号资源。
示例性的,去激活一个上报配置是指,去激活该上报配置所关联的所有参考信号资源,或者去激活该上报配置所关联的上行资源。上行资源例如可以是PUCCH或PUSCH等。
应理解,一个上报配置所关联的上行资源用于发送根据该上报配置所关联的参考信号资源确定的CSI。
示例性的,未去激活的资源配置或上报配置所关联的参考信号资源对应的天线端口属 于网络设备当前所使用的发送天线端口个数。
可选地,网络设备可以通过第五指示信息去激活在多个载波或BWP上具有相同标识的资源配置。对应上报配置类似,不再赘述。
可选地,第五信令可以是RRC信令、MAC CE或者DCI。
比如,该L1个资源配置为周期配置时,第五指示信息可以通过RRC信令携带。该L1个资源配置为非周期配置,第五指示信息可以通过DCI携带。该L1个资源配置为半持续配置,第五指示信息可以通过MAC CE或DCI携带。
又如,该L2个上报配置为周期上报配置时,第五指示信息可以通过RRC信令携带。该L2个上报配置为非周期上报配置时,第五指示信息可以通过DCI携带。L2个上报配置为半持续上报配置时,第五指示信息可以通过MAC CE或DCI携带。
S730,终端设备根据L1个资源配置中未去激活的资源配置,确定CSI,或者,根据L2个上报配置中未去激活的上报配置,确定CSI。
一种情况下,第三信令指示L1个资源配置。则,终端设备根据第五指示信息确定未去激活的资源配置,并基于未去激活的资源配置所关联的参考信号资源接收参考信号,并通过对参考信号的测量,确定CSI。
另一种情况下,第三信令指示L2个上报配置。则,终端设备根据第五指示信息确定未去激活的上报配置,并通过对基于未去激活的上报配置所关联的参考信号资源接收的参考信号的测量,确定CSI。或者,终端设备根据第五指示信息确定未去激活的上报配置,并通过对基于未去激活的上行资源所关联的参考信号资源的测量,确定CSI。
可选地,该方法还可以包括:
S740,终端设备向网络设备上报CSI。相应地,网络设备接收CSI。
根据本申请提供的方法,网络设备可以根据当前所使用的发送天线端口,去激活一些不合适的资源配置或上报配置,从而终端设备可以根据关联的参考信号资源对应的天线端口属于网络设备所使用的发送天线端口的资源配置或上报配置,确定CSI,从而有利于提高CSI测量的准确性,进而能够优化网络设备对终端设备的调度。
可选地,该方法还可以包括:网络设备激活上述被去激活的资源配置或上报配置。
比如,当网络设备所使用的发送天线端口与被去激活的资源配置或上报配置所关联的天线端口相同时,网络设备可以激活上述去激活的资源配置或上报配置。从而,终端设备可以继续使用这些资源配置或上报配置,确定CSI。
应理解,本申请实施例的各个方案可以进行合理的组合使用,并且实施例中出现的各个术语的解释或说明可以在各个实施例中互相参考或解释,对此不作限定。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。上述各个过程涉及的各种数字编号或序号仅为描述方便进行的区分,而不应对本申请实施例的实施过程构成任何限定。
以上,结合图2至图13详细说明了本申请实施例提供的方法。以下,结合图14至图16详细说明本申请实施例提供的装置。
图14是本申请实施例提供的通信装置的示意性框图。如图14所示,该通信装置1000可以包括收发单元1100和处理单元1200。
其中,收发单元1100可以用于向其他装置发送信息或从其他装置接收信息。比如, 发送或接收第一信令。处理单元1200可以用于进行装置的内部处理,确定CSI。
在一种实现方式中,该通信装置1000可对应于上述方法200至方法700中任一方法中的终端设备。该通信装置1000可以为终端设备或配置于终端设备中的芯片,其可以包括用于执行终端设备所执行的操作的单元,并且,该通信装置1000中的各单元分别为了实现相应方法中由终端设备所执行的操作。
在一个实施例中,收发单元1100用于接收第一信令和第一指示信息,所述第一信令指示第一参考信号资源,所述第一参考信号资源对应P个天线端口。处理单元1200,用于根据所述第一指示信息,确定所述P个天线端口中用于确定信道状态信息CSI的Q个天线端口,P和Q均为正整数,且P>Q。
可选地,所述第一指示信息指示所述Q个天线端口,或者所述第一指示信息指示所述P个天线端口中除所述Q个天线端口以外的天线端口。
可选地,所述第一指示信息指示第一节能模式。其中,所述处理单元1200具体用于:根据所述第一节能模式,确定所述第一节能模式所关联的所述Q个天线端口。
可选地,P=2*P1*P2,P1为第一维度天线端口个数,P2为第二维度天线端口个数,Q=2*Q1*Q2,Q1为所述第一维度天线端口个数,Q2为所述第二维度天线端口个数,P1、P2、Q1、Q2均为正整数;其中,Q1=P1,且Q2<P2;或者,Q1<P1,且Q2<P2。
可选地,所述P个天线端口按照天线端口索引从小到大的顺序,分为2*A1个组,每组包括A2个天线端口,A1为正整数,A2为大于或者等于2的整数;其中,每组A2个天线端口中的Q/(2*A1)个天线端口属于所述Q个天线端口。
可选地,所述每组A2个天线端口中的Q/(2*A1)个天线端口属于所述Q个天线端口,包括下述中的其中一项:每组A2个天线端口中索引较大的Q/(2*A1)个天线端口属于所述Q个天线端口;每组A2个天线端口中索引较小的Q/(2*A1)个天线端口属于所述Q个天线端口;所述2*A1个组中的前A1个组中每组A2个天线端口中索引较大的Q/(2*A1)个天线端口属于所述Q个天线端口,所述2*A1个组中的后A1个组中每组A2个天线端口中索引较小的Q/(2*A1)个天线端口属于所述Q个天线端口;所述2*A1个组中的前A1个组中每组A2个天线端口中索引较小的Q/(2*A1)个天线端口属于所述Q个天线端口,所述2*A1个组中的后A1个组中每组A2个天线端口中索引较大的Q/(2*A1)个天线端口属于所述Q个天线端口。
可选地,所述处理单元1200还用于:根据所述Q个天线端口和第一信息,确定所述CSI。其中,所述第一信息指示第一维度天线端口个数为B1,第二维度天线端口个数为B2,B1和B2均为正整数,C1为所述第一参考信号资源关联的第一码本配置信息所指示的所述第一维度天线端口个数,C2为所述第一码本配置信息所指示的所述第二维度天线端口个数。其中,B1=C1,且B2<C2;或者,B1<C1,且B2=C2;或者,B1<C1,且B2<C2。
在另一实施例中,收发单元1100用于,接收第二信令和第二指示信息,所述第二信令指示第二参考信号资源,所述第二指示信息去激活所述第二参考信号资源并激活第三参考信号资源。处理单元1200用于,根据所述第二指示信息,确定CSI。
所述第二指示信息用于去激活所述第二参考信号资源并激活第三参考信号资源。或者,所述第二指示信息用于去激活所述第二参考信号资源中的部分参考信号资源,所述第 二参考信号资源为周期参考信号资源。或者,所述第二指示信息用于指示所述第二参考信号资源中对应的天线端口个数大于U的参考信号资源不用于确定CSI,或者,所述第二指示信息用于指示所述第二参考信号资源中对应的天线端口个数小于或等于U的参考信号资源用于确定信道状态信息CSI,U为正整数。
在另一实施例中,收发单元1100用于,接收第三指示信息和第四指示信息,第三指示信息用于指示多种节能模式与参考信号资源的关联关系,所述第四指示信息指示多种节能模式中的第一节能模式。处理单元1200用于,根据所述第一节能模式关联的参考信号资源,确定CSI。
在又一实施例中,收发单元1100,用于接收第三信令,所述第三信令指示L1个资源配置,和/或,L2个上报配置,L1、L2为大于或等于1的整数,所述资源配置和所述上报配置均与参考信号信号资源关联;所述收发单元1100还用于,接收第五指示信息,所述第五指示信息用于去激活所述L1个资源配置中的至少一个资源配置,和/或,去激活所述L2个上报配置中的至少一个上报配置;处理单元1200,用于根据所述L1个资源配置中未去激活的资源配置,确定CSI,或者,根据所述L2个上报配置中未去激活的上报配置,确定CSI。
在一种实现方式中,该通信装置1000可对应于上述方法200至方法700中任一方法中的网络设备。该通信装置1000可以为网络设备或配置于网络设备中的芯片,其可以包括用于执行网络设备所执行的操作的单元,并且,该通信装置1000中的各单元分别为了实现相应方法中由网络设备所执行的操作。
在一个实施例中,收发单元1100用于发送第一信令,所述第一信令指示第一参考信号资源,所述第一参考信号资源对应P个天线端口;处理单元1200,用于确定所述P个天线端口中的Q个天线端口;所述收发单元1100还用于,发送第一指示信息,所述第一指示信息指示下述项之一:所述Q个天线端口、所述P个天线端口中除所述Q个天线端口外的天线端口、第一节能模式;其中,所述第一节能模式关联所述Q个天线端口。
可选地,P=2*P1*P2,P1为第一维度天线端口个数,P2为第二维度天线端口个数,Q=2*Q1*Q2,Q1为所述第一维度天线端口个数,Q2为所述第二维度天线端口个数,P1、P2、Q1、Q2均为正整数;其中,Q1=P1,且Q2<P2;或者,Q1<P1,且Q2<P2。
可选地,所述P个天线端口按照天线端口索引从小到大的顺序,分为2*A1个组,每组包括A2个天线端口,A1为正整数,A2为大于或者等于2的整数;其中,每组A2个天线端口中的Q/(2*A1)个天线端口属于所述Q个天线端口。
可选地,所述每组A2个天线端口中的Q/(2*A1)个天线端口属于所述Q个天线端口,包括下述中的其中一项:每组A2个天线端口中索引较大的Q/(2*A1)个天线端口属于所述Q个天线端口;每组A2个天线端口中索引较小的Q/(2*A1)个天线端口属于所述Q个天线端口;所述2*A1个组中的前A1个组中每组A2个天线端口中索引较大的Q/(2*A1)个天线端口属于所述Q个天线端口,所述2*A1个组中的后A1个组中每组A2个天线端口中索引较小的Q/(2*A1)个天线端口属于所述Q个天线端口;所述2*A1个组中的前A1个组中每组A2个天线端口中索引较小的Q/(2*A1)个天线端口属于所述Q个天线端口,所述2*A1个组中的后A1个组中每组A2个天线端口中索引较大的Q/(2*A1)个天线端口属于所述Q个天线端口。
可选地,所述收发单元1100还用于:发送第一信息,所述第一信息指示第一维度天线端口个数为B1,第二维度天线端口个数为B2,B1和B2均为正整数,C1为所述第一参考信号资源关联的第一码本配置信息所指示的所述第一维度天线端口个数,C2为所述第一码本配置信息所指示的所述第二维度天线端口个数;其中,B1=C1,且B2<C2;或者,B1<C1,且B2=C2;或者,B1<C1,且B2<C2。
在另一实施例中,收发单元1100用于,发送第二信令和第二指示信息,所述第二信令指示第二参考信号资源,所述第二指示信息去激活所述第二参考信号资源并激活第三参考信号资源。
所述第二指示信息用于去激活所述第二参考信号资源并激活第三参考信号资源。或者,所述第二指示信息用于去激活所述第二参考信号资源中的部分参考信号资源,所述第二参考信号资源为周期参考信号资源。或者,所述第二指示信息用于指示所述第二参考信号资源中对应的天线端口个数大于U的参考信号资源不用于确定CSI,或者,所述第二指示信息用于指示所述第二参考信号资源中对应的天线端口个数小于或等于U的参考信号资源用于确定信道状态信息CSI,U为正整数。
在另一实施例中,收发单元1100用于,发送第三指示信息和第四指示信息,第三指示信息用于指示多种节能模式与参考信号资源的关联关系,所述第四指示信息指示多种节能模式中的第一节能模式。
在又一实施例中,收发单元1100用于,用于发送第三信令,所述第三信令指示L1个资源配置,和/或,L2个上报配置,L1、L2为大于或等于1的整数,所述资源配置和所述上报配置均与参考信号信号资源关联;所述收发单元1100还用于,发送第五指示信息,所述第五指示信息用于去激活所述L1个资源配置中的至少一个资源配置,和/或,去激活所述L2个上报配置中的至少一个上报配置。
应理解,各单元执行相应网元的上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000为网络设备时,该通信装置1000中的收发单元1100可对应于图15中示出的网络设备2000中的RRU3100,该通信装置1000中的处理单元1200可对应于图15中示出的网络设备2000中的BBU3200。通信装置1000为配置于网络设备中的芯片时,该通信装置1000中的收发单元1100可以为输入/输出接口。
还应理解,该通信装置1000为终端设备时,该通信装置1000中的收发单元1100可对应于图16中示出的终端设备3000中的收发器3002,该通信装置1000中的处理单元1200可对应于图16中示出的终端设备3000中的处理器3001。
图15是本申请实施例提供的网络设备的结构示意图,例如可以为基站的结构示意图。该基站2000可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。如图所示,该基站2000可以包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)2100和一个或多个基带单元(BBU)(也可称为分布式单元(DU))2200。所述RRU2100可以称为收发单元或通信单元,与图14中的收发单元1100对应。可选地,该收发单元2100还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线2101和射频单元2102。可选地,收发单元2100可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发 射机、发射电路)。所述RRU2100部分主要用于射频信号的收发以及射频信号与基带信号的转换。所述BBU2200部分主要用于进行基带处理,对基站进行控制等。所述RRU2100与BBU2200可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU2200为基站的控制中心,也可以称为处理单元,可以与图14中的处理单元1200对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
在一个示例中,所述BBU2200可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU2200还包括存储器2201和处理器2202。所述存储器2201用以存储必要的指令和数据。所述处理器2202用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器2201和处理器2202可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图15所示的基站2000能够实现前述方法实施例中涉及网络设备的各个过程。基站2000中的各个模块的操作或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述BBU2200可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而RRU2100可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
图16是本申请实施例提供的终端设备3000的结构示意图。如图所示,该终端设备3000包括处理器3001和收发器3002。可选地,该终端设备3000还可以包括存储器3003。其中,处理器3001、收发器3002和存储器3003之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器3003用于存储计算机程序,该处理器3001用于从该存储器3003中调用并运行该计算机程序,以控制该收发器3002收发信号。
上述处理器3001和存储器3003可以合成一个处理装置3004,处理器3001用于执行存储器3003中存储的程序代码来实现上述功能。应理解,图中所示的处理装置3004仅为示例。在具体实现时,该存储器3003也可以集成在处理器3001中,或者独立于处理器3001。本申请对此不做限定。
上述终端设备3000还可以包括天线3010,用于将收发器3002输出的上行数据或上行控制信令通过无线信号发送出去。
应理解,图16所示的终端设备3000能够实现前述方法实施例中涉及终端设备的各个过程。终端设备3000中的各个模块的操作或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
可选地,上述终端设备3000还可以包括电源3005,用于向终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备3000还可以包括输入单元3006、显示单元3007、音频电路3008、摄像头3009和传感器3008等中的一个或多个, 所述音频电路还可以包括扬声器30081、麦克风30082等。
应理解,所述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
所述存储器3003可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行前述任一方法实施例中由终端设备或网络设备所执行的方法。
本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行前述方法实施例中由网络设备或终端设备所执行的方法。
本申请还提供一种系统,其包括终端设备和网络设备。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器用于执行上述任一方法实施例所涉及的终端设备或网络设备所执行的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产 品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程或执行线程中,部件可位于一个计算机上或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地或远程进程来通信。
应理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
应理解,在本申请实施例中,编号“第一”、“第二”…仅仅为了区分不同的对象,比如为了区分不同的网络设备,并不对本申请实施例的范围构成限制,本申请实施例并不限于此。
还应理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下网元会做出相应的处理,并非是限定时间,且也不要求网元实现时一定要有判断的动作,也不意味着存在其它限定。
还应理解,在本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。
还应理解,在本申请各实施例中,“A对应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
还应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的类似于“项目包括如下中的一项或多项:A,B,以及C”表述的含义,如无特别说明,通常是指该项目可以为如下中任一个:A;B;C;A和B;A和C;B和C;A,B和C;A和A;A,A和A;A,A和B;A,A和C,A,B和B;A,C和C; B和B,B,B和B,B,B和C,C和C;C,C和C,以及其他A,B和C的组合。以上是以A,B和C共3个元素进行举例来说明该项目的可选用条目,当表达为“项目包括如下中至少一种:A,B,……,以及X”时,即表达中具有更多元素时,那么该项目可以适用的条目也可以按照前述规则获得。
可以理解的,本申请实施例中,终端设备和/或网络设备可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (37)

  1. 一种通信方法,其特征在于,包括:
    接收第一信令,所述第一信令指示第一参考信号资源,所述第一参考信号资源对应P个天线端口;
    接收第一指示信息;
    根据所述第一指示信息,确定所述P个天线端口中用于确定信道状态信息CSI的Q个天线端口,P和Q均为正整数,且P>Q。
  2. 如权利要求1所述的方法,其特征在于,所述第一指示信息指示所述Q个天线端口,或者所述第一指示信息指示所述P个天线端口中除所述Q个天线端口以外的天线端口。
  3. 如权利要求1所述的方法,其特征在于,所述第一指示信息指示第一节能模式;
    其中,所述根据所述第一指示信息,确定所述P个天线端口中用于确定CSI的Q个天线端口,包括:
    根据所述第一节能模式,确定所述第一节能模式所关联的所述Q个天线端口。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述Q个天线端口和第一信息,确定所述CSI,
    其中,所述第一信息指示第一维度天线端口个数为B1,第二维度天线端口个数为B2,B1和B2均为正整数,C1为所述第一参考信号资源关联的第一码本配置信息所指示的所述第一维度天线端口个数,C2为所述第一码本配置信息所指示的所述第二维度天线端口个数;
    其中,B1=C1,且B2<C2;
    或者,B1<C1,且B2=C2;
    或者,B1<C1,且B2<C2。
  5. 一种通信方法,其特征在于,包括:
    发送第一信令,所述第一信令指示第一参考信号资源,所述第一参考信号资源对应P个天线端口;
    确定所述P个天线端口中的Q个天线端口;
    发送第一指示信息,所述第一指示信息指示下述项之一:所述Q个天线端口、所述P个天线端口中除所述Q个天线端口外的天线端口、第一节能模式,所述第一节能模式关联所述Q个天线端口。
  6. 如权利要求5所述的方法,其特征在于,所述方法还包括:
    发送第一信息,所述第一信息指示第一维度天线端口个数为B1,第二维度天线端口个数为B2,B1和B2均为正整数,C1为所述第一参考信号资源关联的第一码本配置信息所指示的所述第一维度天线端口个数,C2为所述第一码本配置信息所指示的所述第二维度天线端口个数;
    其中,B1=C1,且B2<C2;
    或者,B1<C1,且B2=C2;
    或者,B1<C1,且B2<C2。
  7. 一种通信装置,其特征在于,包括:
    收发单元,用于接收第一信令,所述第一信令指示第一参考信号资源,所述第一参考信号资源对应P个天线端口;
    所述收发单元还用于,接收第一指示信息;
    处理单元,用于根据所述第一指示信息,确定所述P个天线端口中用于确定信道状态信息CSI的Q个天线端口,P和Q均为正整数,且P>Q。
  8. 如权利要求7所述的装置,其特征在于,所述第一指示信息指示所述Q个天线端口,或者所述第一指示信息指示所述P个天线端口中除所述Q个天线端口以外的天线端口。
  9. 如权利要求7所述的装置,其特征在于,所述第一指示信息指示第一节能模式;
    其中,所述处理单元具体用于:
    根据所述第一节能模式,确定所述第一节能模式所关联的所述Q个天线端口。
  10. 如权利要求7至9中任一项所述的装置,其特征在于,所述处理单元还用于:
    根据所述Q个天线端口和第一信息,确定所述CSI,
    其中,所述第一信息指示第一维度天线端口个数为B1,第二维度天线端口个数为B2,B1和B2均为正整数,C1为所述第一参考信号资源关联的第一码本配置信息所指示的所述第一维度天线端口个数,C2为所述第一码本配置信息所指示的所述第二维度天线端口个数;
    其中,B1=C1,且B2<C2;
    或者,B1<C1,且B2=C2;
    或者,B1<C1,且B2<C2。
  11. 一种通信装置,其特征在于,包括:
    收发单元,用于发送第一信令,所述第一信令指示第一参考信号资源,所述第一参考信号资源对应P个天线端口;
    处理单元,用于确定所述P个天线端口中的Q个天线端口;
    所述收发单元还用于,发送第一指示信息,所述第一指示信息指示下述项之一:所述Q个天线端口、所述P个天线端口中除所述Q个天线端口外的天线端口、第一节能模式;
    其中,所述第一节能模式关联所述Q个天线端口。
  12. 如权利要求11所述的装置,其特征在于,所述收发单元还用于:
    发送第一信息,所述第一信息指示第一维度天线端口个数为B1,第二维度天线端口个数为B2,B1和B2均为正整数,C1为所述第一参考信号资源关联的第一码本配置信息所指示的所述第一维度天线端口个数,C2为所述第一码本配置信息所指示的所述第二维度天线端口个数;
    其中,B1=C1,且B2<C2;
    或者,B1<C1,且B2=C2;
    或者,B1<C1,且B2<C2。
  13. 如权利要求1至6中任一项所述的方法,或者,如权利要求7至12中任一项所述的装置,其特征在于,P=2*P1*P2,P1为第一维度天线端口个数,P2为第二维度天线 端口个数,Q=2*Q1*Q2,Q1为所述第一维度天线端口个数,Q2为所述第二维度天线端口个数,P1、P2、Q1、Q2均为正整数;
    其中,Q1=P1,且Q2<P2;或者,Q1<P1,且Q2<P2。
  14. 如权利要求1至6和13中任一项所述的方法,或者,如权利要求7至13中任一项所述的装置,其特征在于,所述P个天线端口按照天线端口索引从小到大的顺序,分为2*A1个组,每组包括A2个天线端口,A1为正整数,A2为大于或者等于2的整数;
    其中,每组A2个天线端口中的Q/(2*A1)个天线端口属于所述Q个天线端口。
  15. 如权利要求1至6、13和14中任一项所述的方法,或者,如权利要求7至14中任一项所述的装置,其特征在于,所述每组A2个天线端口中的Q/(2*A1)个天线端口属于所述Q个天线端口,包括下述中的其中一项:
    每组A2个天线端口中索引较大的Q/(2*A1)个天线端口属于所述Q个天线端口;
    每组A2个天线端口中索引较小的Q/(2*A1)个天线端口属于所述Q个天线端口;
    所述2*A1个组中的前A1个组中每组A2个天线端口中索引较大的Q/(2*A1)个天线端口属于所述Q个天线端口,所述2*A1个组中的后A1个组中每组A2个天线端口中索引较小的Q/(2*A1)个天线端口属于所述Q个天线端口;
    所述2*A1个组中的前A1个组中每组A2个天线端口中索引较小的Q/(2*A1)个天线端口属于所述Q个天线端口,所述2*A1个组中的后A1个组中每组A2个天线端口中索引较大的Q/(2*A1)个天线端口属于所述Q个天线端口。
  16. 一种通信方法,包括:
    接收第二信令,所述第二信令指示第二参考信号资源;
    接收第二指示信息,所述第二指示信息去激活所述第二参考信号资源并激活第三参考信号资源;
    根据所述第二指示信息,确定CSI。
  17. 如权利要求16所述的方法,其特征在于,还包括:
    接收第一信息,所述第一信息指示第一维度天线端口个数为Q1,第二维度天线端口个数为Q2,Q1和Q2均为大于或等于1的整数,Q1=P1,Q2<P2,或者,Q1<P1,且Q2=P2,或者,Q1<P1,且Q2<P2,P1为所述第二参考信号资源关联的第一码本配置信息所指示的第一维度天线端口个数,P2为所述第一码本配置信息所指示的第二维度天线端口个数;
    其中,根据所述第二指示信息,确定CSI,包括:
    根据所述第二指示信息和所述第一信息,确定所述CSI。
  18. 一种通信方法,包括:
    发送第二信令,所述第二信令指示第二参考信号资源;
    发送第二指示信息,所述第二指示信息去激活所述第二参考信号资源并激活第三参考信号资源。
  19. 如权利要求18所述的方法,其特征在于,还包括:
    发送第一信息,所述第一信息指示第一维度天线端口个数为Q1,第二维度天线端口个数为Q2,Q1和Q2均为大于或等于1的整数,Q1=P1,Q2<P2,或者,Q1<P1,且Q2=P2,或者,Q1<P1,且Q2<P2,P1为所述第二参考信号资源关联的第一码本配置信 息所指示的第一维度天线端口个数,P2为所述第一码本配置信息所指示的第二维度天线端口个数。
  20. 一种通信装置,包括:
    收发单元,用于接收第二信令,所述第二信令指示第二参考信号资源,所述第二参考信号资源为周期参考信号资源;
    所述收发单元还用于,接收第二指示信息,所述第二指示信息用于去激活所述第二参考信号资源中的部分参考信号资源;
    处理单元,用于根据所述第二指示信息,确定CSI。
  21. 如权利要求20所述的装置,其特征在于,所述收发单元还用于:
    接收第一信息,所述第一信息指示第一维度天线端口个数为Q1,第二维度天线端口个数为Q2,Q1和Q2均为大于或等于1的整数,Q1=P1,Q2<P2,或者,Q1<P1,且Q2=P2,或者,Q1<P1,且Q2<P2,P1为所述第二参考信号资源关联的第一码本配置信息所指示的第一维度天线端口个数,P2为所述第一码本配置信息所指示的第二维度天线端口个数;
    其中,所述处理单元具体用于:
    根据所述第二指示信息和所述第一信息,确定所述CSI。
  22. 一种通信装置,包括:
    收发单元,用于发送第二信令,所述第二信令指示第二参考信号资源;
    所述收发单元还用于,发送第二指示信息。
  23. 如权利要求22所述的装置,其特征在于,所述收发单元还用于:
    发送第一信息,所述第一信息指示第一维度天线端口个数为Q1,第二维度天线端口个数为Q2,Q1和Q2均为大于或等于1的整数,Q1=P1,Q2<P2,或者,Q1<P1,且Q2=P2,或者,Q1<P1,且Q2<P2,P1为所述第二参考信号资源关联的第一码本配置信息所指示的第一维度天线端口个数,P2为所述第一码本配置信息所指示的第二维度天线端口个数。
  24. 如权利要求16至19中任一项所述的方法,或者,如权利要求20至23中任一项所述的装置,其特征在于,所述第二指示信息用于去激活所述第二参考信号资源并激活第三参考信号资源。
  25. 如权利要求16至19中任一项所述的方法,或者,如权利要求20至23中任一项所述的装置,其特征在于,所述第二指示信息用于去激活所述第二参考信号资源中的部分参考信号资源,所述第二参考信号资源为周期参考信号资源。
  26. 如权利要求16至19中任一项所述的方法,或者,如权利要求20至23中任一项所述的装置,其特征在于,所述第二指示信息用于指示所述第二参考信号资源中对应的天线端口个数大于U的参考信号资源不用于确定CSI,或者,所述第二指示信息用于指示所述第二参考信号资源中对应的天线端口个数小于或等于U的参考信号资源用于确定信道状态信息CSI,U为正整数。
  27. 一种通信方法,包括:
    接收第三指示信息,第三指示信息用于指示多种节能模式与参考信号资源的关联关系;
    接收第四指示信息,所述第四指示信息指示多种节能模式中的第一节能模式;
    根据所述第一节能模式关联的参考信号资源,确定CSI。
  28. 一种通信方法,包括:
    发送第三指示信息,所述第三指示信息用于指示多种节能模式与参考信号资源的关联关系;
    发送第四指示信息,所述第四指示信息指示多种节能模式中的第一节能模式。
  29. 一种通信装置,包括:
    收发单元,用于接收第三指示信息,所述第三指示信息用于指示多种节能模式与参考信号资源的关联关系;
    所述收发单元还用于,接收第四指示信息,所述第四指示信息指示多种节能模式中的第一节能模式;
    处理单元,用于根据所述第一节能模式关联的参考信号资源,确定CSI。
  30. 一种通信装置,包括:
    收发单元,用于发送第三指示信息,所述第三指示信息用于指示多种节能模式与参考信号资源的关联关系;
    所述收发单元,用于发送第四指示信息,所述第四指示信息指示多种节能模式中的第一节能模式。
  31. 一种通信方法,包括:
    接收第三信令,所述第三信令指示L1个资源配置,和/或,L2个上报配置,L1、L2为大于或等于1的整数,所述资源配置和所述上报配置均与参考信号信号资源关联;
    接收第五指示信息,所述第五指示信息用于去激活所述L1个资源配置中的至少一个资源配置,和/或,去激活所述L2个上报配置中的至少一个上报配置;
    根据所述L1个资源配置中未去激活的资源配置,确定CSI,或者,根据所述L2个上报配置中未去激活的上报配置,确定CSI。
  32. 一种通信方法,包括:
    发送第三信令,所述第三信令指示L1个资源配置,和/或,L2个上报配置,L1、L2为大于或等于1的整数,所述资源配置和所述上报配置均与参考信号信号资源关联;
    发送第五指示信息,所述第五指示信息用于去激活所述L1个资源配置中的至少一个资源配置,和/或,去激活所述L2个上报配置中的至少一个上报配置。
  33. 一种通信装置,包括:
    收发单元,用于接收第三信令,所述第三信令指示L1个资源配置,和/或,L2个上报配置,L1、L2为大于或等于1的整数,所述资源配置和所述上报配置均与参考信号信号资源关联;
    所述收发单元还用于,接收第五指示信息,所述第五指示信息用于去激活所述L1个资源配置中的至少一个资源配置,和/或,去激活所述L2个上报配置中的至少一个上报配置;
    处理单元,用于根据所述L1个资源配置中未去激活的资源配置,确定CSI,或者,根据所述L2个上报配置中未去激活的上报配置,确定CSI。
  34. 一种通信装置,包括:
    收发单元,用于发送第三信令,所述第三信令指示L1个资源配置,和/或,L2个上报配置,L1、L2为大于或等于1的整数,所述资源配置和所述上报配置均与参考信号信号资源关联;
    所述收发单元还用于,发送第五指示信息,所述第五指示信息用于去激活所述L1个资源配置中的至少一个资源配置,和/或,去激活所述L2个上报配置中的至少一个上报配置。
  35. 一种通信装置,其特征在于,所述装置包括处理器和存储介质,所述存储介质存储有指令,所述指令被所述处理器运行时,使得所述装置执行根据权利要求1至6、13至19、24至28、31和32中任一项所述的方法。
  36. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有指令,所述指令被运行时,使得通信设备执行根据权利要求1至6、13至19、24至28、31和32中任一项所述的方法。
  37. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序代码,所述计算机程序代码被计算机运行时,使得所述计算机执行根据权利要求1至6、13至19、24至28、31和32中任一项所述的方法。
PCT/CN2020/074038 2020-01-23 2020-01-23 通信方法和通信装置 WO2021147111A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080093319.7A CN115104263A (zh) 2020-01-23 2020-01-23 通信方法和通信装置
EP20915382.4A EP4089930A4 (en) 2020-01-23 2020-01-23 COMMUNICATION METHOD AND COMMUNICATION DEVICE
PCT/CN2020/074038 WO2021147111A1 (zh) 2020-01-23 2020-01-23 通信方法和通信装置
US17/869,208 US20220393737A1 (en) 2020-01-23 2022-07-20 Communication method and communication apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/074038 WO2021147111A1 (zh) 2020-01-23 2020-01-23 通信方法和通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/869,208 Continuation US20220393737A1 (en) 2020-01-23 2022-07-20 Communication method and communication apparatus

Publications (2)

Publication Number Publication Date
WO2021147111A1 true WO2021147111A1 (zh) 2021-07-29
WO2021147111A8 WO2021147111A8 (zh) 2022-08-25

Family

ID=76992022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074038 WO2021147111A1 (zh) 2020-01-23 2020-01-23 通信方法和通信装置

Country Status (4)

Country Link
US (1) US20220393737A1 (zh)
EP (1) EP4089930A4 (zh)
CN (1) CN115104263A (zh)
WO (1) WO2021147111A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023165460A1 (zh) * 2022-03-04 2023-09-07 华为技术有限公司 一种通信方法、装置及系统
WO2023185989A1 (en) * 2022-03-31 2023-10-05 Telefonaktiebolaget Lm Ericsson (Publ) Reference signal (rs) measurement and report adaptation
WO2024031443A1 (zh) * 2022-08-10 2024-02-15 富士通株式会社 信息指示、信息接收装置以及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103037397A (zh) * 2011-09-30 2013-04-10 华为技术有限公司 干扰测量指示方法和干扰测量方法及相关设备和通信系统
CN105812034A (zh) * 2014-12-31 2016-07-27 中国电信股份有限公司 一种天线端口配置装置、基站及其方法
CN106470096A (zh) * 2015-08-14 2017-03-01 索尼公司 用于无线通信的基站侧和用户设备侧的装置及方法
CN108809388A (zh) * 2013-04-03 2018-11-13 华为技术有限公司 信道状态信息上报方法、接收方法及设备
WO2019077749A1 (ja) * 2017-10-20 2019-04-25 株式会社Nttドコモ ユーザ端末及び無線通信方法
WO2019157761A1 (en) * 2018-02-15 2019-08-22 Qualcomm Incorporated Techniques for activating semi-persistent configuration for channel state indicator resource sets

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11317306B2 (en) * 2014-05-22 2022-04-26 Qualcomm Incorporated Periodic and aperiodic channel state information (CSI) reporting for MIMO
KR102333401B1 (ko) * 2014-08-01 2021-11-30 엘지전자 주식회사 채널 상태 보고를 위한 방법 및 이를 위한 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103037397A (zh) * 2011-09-30 2013-04-10 华为技术有限公司 干扰测量指示方法和干扰测量方法及相关设备和通信系统
CN108809388A (zh) * 2013-04-03 2018-11-13 华为技术有限公司 信道状态信息上报方法、接收方法及设备
CN105812034A (zh) * 2014-12-31 2016-07-27 中国电信股份有限公司 一种天线端口配置装置、基站及其方法
CN106470096A (zh) * 2015-08-14 2017-03-01 索尼公司 用于无线通信的基站侧和用户设备侧的装置及方法
WO2019077749A1 (ja) * 2017-10-20 2019-04-25 株式会社Nttドコモ ユーザ端末及び無線通信方法
WO2019157761A1 (en) * 2018-02-15 2019-08-22 Qualcomm Incorporated Techniques for activating semi-persistent configuration for channel state indicator resource sets

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "Remaining issues on aperiodic CSI-RS for FD-MIMO", 3GPP DRAFT; R1-1608733_FDMIMO_ACSIRS_V2, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Lisbon, Portugal; 20161010 - 20161014, 9 October 2016 (2016-10-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051148789 *
See also references of EP4089930A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023165460A1 (zh) * 2022-03-04 2023-09-07 华为技术有限公司 一种通信方法、装置及系统
WO2023185989A1 (en) * 2022-03-31 2023-10-05 Telefonaktiebolaget Lm Ericsson (Publ) Reference signal (rs) measurement and report adaptation
WO2024031443A1 (zh) * 2022-08-10 2024-02-15 富士通株式会社 信息指示、信息接收装置以及方法

Also Published As

Publication number Publication date
EP4089930A4 (en) 2023-01-11
EP4089930A1 (en) 2022-11-16
CN115104263A (zh) 2022-09-23
US20220393737A1 (en) 2022-12-08
WO2021147111A8 (zh) 2022-08-25

Similar Documents

Publication Publication Date Title
JP7179156B2 (ja) 信号伝送方法及び通信機器
US11140671B2 (en) Signaling sending method, apparatus, and system
WO2020143647A1 (zh) 传输信道状态信息的方法和装置
WO2021159493A1 (zh) 一种资源配置的方法和装置
WO2021147111A1 (zh) 通信方法和通信装置
CN110035518B (zh) 一种通信方法及装置
WO2020029942A1 (zh) 波束测量的方法和装置
US20220141803A1 (en) Method and device for determining codebook subset, and user equipment
WO2018228535A1 (zh) 传输方法、网络设备和终端
CN112672378B (zh) 资源测量的方法和装置
WO2020199066A1 (zh) 功率控制方法及相关装置
WO2018228228A1 (zh) 信息传输方法及装置
CN110299981B (zh) 一种参考信号传输方法及装置
WO2021244201A1 (zh) 波束测量方法和装置
WO2021168806A1 (zh) 信道状态信息测量的方法和装置
WO2020155604A1 (zh) 测量上报的方法与装置
US20230239014A1 (en) Information indication method and apparatus
US20220416857A1 (en) Data transmission method and apparatus
US20220225337A1 (en) Interference measurement reporting method and communications apparatus
WO2021062836A1 (zh) 功率调整方法及装置
WO2021155659A1 (zh) 一种上行参考信号发射方式确定方法、装置及系统
WO2020221040A1 (zh) 通信方法和通信装置
WO2019218906A1 (zh) 预编码矩阵指示方法及相关设备
WO2021097625A1 (zh) 信道确定的方法和通信装置
US20220124536A1 (en) Reporting Of Best Wideband CQI In Mobile Communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915382

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020915382

Country of ref document: EP

Effective date: 20220808

NENP Non-entry into the national phase

Ref country code: DE