WO2023165460A1 - 一种通信方法、装置及系统 - Google Patents

一种通信方法、装置及系统 Download PDF

Info

Publication number
WO2023165460A1
WO2023165460A1 PCT/CN2023/078662 CN2023078662W WO2023165460A1 WO 2023165460 A1 WO2023165460 A1 WO 2023165460A1 CN 2023078662 W CN2023078662 W CN 2023078662W WO 2023165460 A1 WO2023165460 A1 WO 2023165460A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
csi
information
antenna ports
offset
Prior art date
Application number
PCT/CN2023/078662
Other languages
English (en)
French (fr)
Inventor
丁洋
李胜钰
李锐杰
官磊
苏桐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023165460A1 publication Critical patent/WO2023165460A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • This application relates to the field of communications. In particular, it relates to a communication method, device and system.
  • the frequency spectrum used by the communication system is getting wider and wider, and the number of transmitting antennas configured is increasing, and the overall power consumption of network equipment increases accordingly.
  • the power consumption on the network device side is not directly proportional to the service load. For this reason, network equipment may save energy by turning off the score transmission channel.
  • the terminal device cannot know the change of the power of the network device, which will affect the channel measurement of the terminal device and affect the communication quality.
  • Embodiments of the present application propose a communication method, device, and system, which can improve the accuracy of channel measurement of terminal equipment and improve communication quality.
  • the embodiment of the present application provides a communication method, and the method may be executed by a terminal device, or may also be executed by a chip or a circuit used for the terminal device, which is not limited in the present application.
  • the method may include: receiving first information, the first information is used to configure a first transmit power of a first channel state information-reference signal (CSI-RS), and receiving second information, the The second information is used to indicate the power offset of the first CSI-RS, and the second transmit power of the first CSI-RS is determined according to the first transmit power and the power offset.
  • CSI-RS channel state information-reference signal
  • the network device indicates the change of the transmission power of the network device to the terminal device, so that the terminal device can determine the changed CSI-RS transmission power in time, which can improve the accuracy of channel measurement of the terminal device and further improve the communication quality.
  • the second information is used to indicate the power offset, including: the second information is the first transmit power and the second The difference in transmit power.
  • the power offset is a difference between a reference value and the second transmit power
  • the reference value is a physical broadcast channel (physical broadcast channel, PBCH ) synchronization signal and the transmission power of the PBCH block (Synchronization Signal and PBCH block, SSB), or the reference value is a predefined value.
  • the network device directly transmits the power variation amount to the terminal device, which can improve the efficiency of the terminal device in determining the second transmission power.
  • the second information is used to indicate the power offset, including: the second indication information is the second number of antenna ports, and the second number of antenna ports for the first CSI-RS The number of ports under the second transmit power, according to the second number of antenna ports and the first number of antenna ports, determine the power offset of the first CSI-RS, the first number of antenna ports is the first The number of antenna ports of the CSI-RS at the first transmit power.
  • the second information is used to indicate the power offset, including: the second information is an offset of the number of antenna ports, and the number of antenna ports The offset is the difference between the first antenna port number and the second antenna port number, the first antenna port number is the antenna port number of the first CSI-RS at the first transmit power, and the second antenna port number is The number is the port number of the first CSI-RS at the second transmit power, and according to the first transmit power, and, the ratio of the first antenna port number to the second antenna port number, determine the Second transmit power.
  • the network device can send the number of antenna ports after the power change to the terminal device, or the network device can send the change amount of the number of antenna ports to the terminal device, which improves the flexibility of the network device to indicate power offset.
  • a first reference signal received power (RSRP) corresponding to the first transmit power is determined according to the first CSI-RS, and according to the power offset and determining the second reference signal received power of the first CSI-RS corresponding to the second transmit power with the first RSRP.
  • RSRP reference signal received power
  • the terminal device determines the second reference signal received power according to the power offset and the first RSRP, which may be obtained by adding the power offset to the first RSRP to obtain the second reference signal received power.
  • the terminal device updates the received power of the reference signal, which can be aligned with the power change of the network device in time to improve the communication quality.
  • the second reference signal received power corresponding to the second transmit power is determined according to the second CSI-RS, and the second CSI-RS is the The next CSI-RS adjacent to the first CSI-RS, or the second CSI-RS is the CSI-RS indicated by the second information.
  • the terminal device obtains the received power of the second reference signal by re-measurement, which can improve the accuracy of determining the received power of the second reference signal.
  • the network device indicates the second CSI-RS through the second information, which can further save signaling overhead.
  • the second reference signal received power corresponding to the second transmit power according to the second CSI-RS before determining the second reference signal received power corresponding to the second transmit power according to the second CSI-RS, according to the second information Sending a physical random access channel, where the physical random access channel is used to trigger a beam failure recovery procedure.
  • the terminal device can trigger the beam failure recovery process, re-measure the channel state, and can flexibly obtain the received power of the reference signal after the power change.
  • the second path loss is determined according to the second reference signal received power and the second transmitted power.
  • the third transmit power for transmitting the uplink channel is determined according to the second path loss.
  • the terminal device updates the path loss according to the received power of the reference signal after the power change, and updates the transmit power of the uplink channel, which can improve the communication quality of the uplink transmission of the terminal device.
  • a power headroom is determined according to the second path loss, and the power headroom is reported.
  • the terminal device indicates the updated path loss to the network device through the power headroom, so that the network device can learn the change of the path loss and adjust the power of downlink transmission in time to improve the communication quality.
  • the power bias is greater than or equal to the first gate limit.
  • the terminal device performs the foregoing manner. That is to say, when the power change is greater than a certain degree, or the path loss change is greater than a certain degree, updating the channel measurement result can save the power consumption of the terminal equipment.
  • the first threshold may be indicated by the network device to the terminal device, or may be predefined, which is not limited in this embodiment of the present application.
  • the second information is downlink control information.
  • the network device can dynamically indicate the power offset through the downlink control information, which can improve the timeliness of the terminal device's learning, and further improve the efficiency of the network device and the terminal device in updating the channel measurement results.
  • the second information is scrambled by using a group radio network temporary identifier G-RNTI.
  • the network device may notify multiple terminal devices of the power change situation, and may indicate to the terminal devices in the form of broadcast or multicast, which is not limited in this embodiment of the present application.
  • the first information is further used to indicate the first number of antenna ports.
  • the embodiment of the present application provides a communication method, and the method may be executed by a network device, or may also be executed by a chip or a circuit used for the network device, which is not limited in the present application.
  • the method may include: sending first information, the first information is used to configure the first transmission power of the first channel state information reference signal CSI-RS, and sending second information, the second information is used to indicate the first A power bias of the CSI-RS.
  • the second information is used to indicate the power offset, including: the second information is the first transmit power and the second The difference in transmit power.
  • the second information is used to indicate the power offset, including: the second indication information is the second number of antenna ports, and the second The number of antenna ports is the number of ports of the first CSI-RS under the second transmit power.
  • the second information is used to indicate the power offset, including: the second information is an offset of the number of antenna ports, and the number of antenna ports The offset is the difference between the first antenna port number and the second antenna port number, the first antenna port number is the antenna port number of the first CSI-RS at the first transmit power, and the second antenna port number is The number is the number of ports of the first CSI-RS under the second transmit power.
  • a physical random access channel is received, and the physical random access channel is used to trigger a beam failure recovery procedure.
  • the received power headroom is determined according to the second path loss
  • the path loss is determined according to the received power of the second reference signal determined by the second transmit power
  • the power offset is greater than or equal to the first threshold.
  • the second information is downlink control information.
  • the second information is scrambled by using a group radio network temporary identifier G-RNTI.
  • the second aspect is a method on the network device side corresponding to the first aspect, and relevant explanations and supplements of the first aspect The description of the filling and beneficial effects is also applicable to the second aspect, and will not be repeated here.
  • the embodiment of the present application provides a communication device, which includes a processing unit and a transceiver unit, and the transceiver unit can be used to receive first information, and the first information is used to configure the first channel state information reference signal CSI-
  • the first transmit power of the RS the transceiver unit is further configured to receive second information, the second information is used to indicate the power offset of the first CSI-RS, and the processing unit is configured to The offset is used to determine the second transmit power of the first CSI-RS.
  • the transceiver unit is further configured to send a physical random access channel according to the second information, and the physical random access channel is used to trigger a beam failure recovery procedure .
  • the transceiver unit is further configured to report the power headroom.
  • an embodiment of the present application provides a communication device, which includes a processing unit and a transceiver unit, and the transceiver unit can be used to send first information, and the first information is used to configure the first channel state information reference signal CSI- The first transmit power of the RS, where the transceiver unit is further configured to transmit second information, where the second information is used to indicate the power offset of the first CSI-RS.
  • the transceiver unit is further configured to receive a physical random access channel, where the physical random access channel is used to trigger a beam failure recovery procedure.
  • the transceiver unit is further configured to receive the power headroom.
  • third aspect and the fourth aspect are implementations on the device side respectively corresponding to the first aspect and the second aspect, and relevant explanations, supplements, possible implementations and descriptions of beneficial effects of the first aspect and the second aspect The same applies to the third aspect and the fourth aspect respectively, and will not be repeated here.
  • the embodiment of the present application provides a communication device, including an interface circuit and a processor, the interface circuit is used to realize the function of the transceiver module in the third aspect, and the processor is used to realize the function of the processing module in the third aspect .
  • the embodiment of the present application provides a communication device, including an interface circuit and a processor, the interface circuit is used to realize the function of the fourth transceiver module, and the processor is used to realize the function of the processing module in the fourth aspect.
  • the embodiment of the present application provides a computer-readable medium, where the computer-readable medium stores program code for execution by a terminal device, where the program code includes a program code for executing the first aspect, or any of the first aspects A possible way, or, instructions for the method of all possible ways in the first aspect.
  • the embodiment of the present application provides a computer-readable medium, where the computer-readable medium stores program code for execution by a network device, and the program code includes a program code for executing the second aspect, or any of the second aspects.
  • the computer-readable medium stores program code for execution by a network device
  • the program code includes a program code for executing the second aspect, or any of the second aspects.
  • a ninth aspect provides a computer program product storing computer-readable instructions.
  • the computer-readable instructions When the computer-readable instructions are run on a computer, the computer executes the above-mentioned first aspect, or any possible manner in the first aspect , or, the method in all possible ways of the first aspect.
  • a computer program product storing computer-readable instructions.
  • the computer-readable instructions When the computer-readable instructions are run on a computer, the computer is made to execute the above-mentioned second aspect, or any possible manner in the second aspect. , or, the method in all possible ways in the second aspect.
  • a communication system in an eleventh aspect, includes a method and various possible design features The device and the second aspect, or, any possible mode in the second aspect, or, the method in all possible modes in the second aspect and the functional device with various possible designs.
  • a processor configured to be coupled with a memory, for performing the method of the above-mentioned first aspect, or, any possible manner in the first aspect, or, all possible manners in the first aspect .
  • a processor configured to be coupled with a memory, for performing the method of the above-mentioned second aspect, or, any possible manner in the second aspect, or, all possible manners in the second aspect .
  • a chip system in a fourteenth aspect, includes a processor, and may also include a memory for executing computer programs or instructions stored in the memory, so that the chip system implements any of the aforementioned first aspect or second aspect A method in an aspect, and any possible implementation of either aspect.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • a fifteenth aspect provides a computer program product storing computer-readable instructions.
  • the computer-readable instructions When the computer-readable instructions are run on a computer, the computer executes the above-mentioned first aspect, or any possibility in the first aspect manner, or, the method of all possible implementation manners in the first aspect.
  • a sixteenth aspect provides a computer program product storing computer-readable instructions.
  • the computer-readable instructions When the computer-readable instructions are run on a computer, the computer executes the above-mentioned second aspect, or any possibility in the second aspect manner, or, the method of all possible implementation manners in the second aspect.
  • a communication system including at least one communication device as described in the third aspect and/or at least one communication device as described in the fourth aspect, the communication system is used to implement the first aspect or the first aspect The second aspect, or, any possible manner in the first aspect or the second aspect, or, the method of all possible implementation manners in the first aspect or the second aspect.
  • Fig. 1 shows a system architecture applicable to this embodiment of the present application.
  • Fig. 2 shows a schematic diagram of a communication method provided by an embodiment of the present application.
  • FIG. 3 shows a schematic diagram of another communication method provided by an embodiment of the present application.
  • FIG. 4 shows a schematic flowchart of a communication method provided by an embodiment of the present application.
  • Fig. 5 shows a schematic flowchart of another communication method provided by the embodiment of the present application.
  • Fig. 6 shows a schematic block diagram of a communication device provided by an embodiment of the present application.
  • Fig. 7 shows a schematic block diagram of another communication device provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a communication system 1000 applied in an embodiment of the present application.
  • the communication system includes a radio access network 100 and a core network 200 , and optionally, the communication system 1000 may also include the Internet 300 .
  • the radio access network 100 may include at least one radio access network device (such as 110a and 110b in FIG. 1 ), and may also include at least one terminal (such as 120a-120j in FIG. 1 ).
  • the terminal is connected to the wireless access network device in a wireless manner, and the wireless access network device is connected to the core network in a wireless or wired manner.
  • the core network equipment and the radio access network equipment can be independent and different physical equipment, or the functions of the core network equipment and the logical functions of the radio access network equipment can be integrated on the same physical equipment, or it can be a physical equipment It integrates the functions of some core network equipment and Part of the radio access network equipment functionality.
  • Terminals and wireless access network devices may be connected to each other in a wired or wireless manner.
  • FIG. 1 is only a schematic diagram.
  • the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 1 .
  • the radio access network equipment can be a base station (base station), an evolved base station (evolved NodeB, eNodeB), a transmission reception point (transmission reception point, TRP), and the next generation in the fifth generation (5th generation, 5G) mobile communication system
  • Base station (next generation NodeB, gNB), the next generation base station in the sixth generation (6th generation, 6G) mobile communication system, the base station in the future mobile communication system or the access node in the WiFi system, etc.; it can also complete the base station part
  • a functional module or unit for example, can be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the CU here completes the functions of the radio resource control protocol and the packet data convergence protocol (PDCP) of the base station, and also completes the function of the service data adaptation protocol (SDAP); the DU completes the functions of the base station
  • the functions of the radio link control layer and the medium access control (medium access control, MAC) layer can also complete the functions of part of the physical layer or all of the physical layer.
  • 3rd generation partnership project, 3GPP third generation partnership project
  • the radio access network device may be a macro base station (such as 110a in Figure 1), a micro base station or an indoor station (such as 110b in Figure 1), or a relay node or a donor node.
  • the embodiment of the present application does not limit the specific technology and specific equipment form adopted by the radio access network equipment.
  • a base station is used as an example of a radio access network device for description below.
  • a terminal may also be called terminal equipment, user equipment (user equipment, UE), mobile station, mobile terminal, and so on.
  • Terminals can be widely used in various scenarios, such as device-to-device (D2D), vehicle-to-everything (V2X) communication, machine-type communication (MTC), Internet of Things ( internet of things, IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wearables, smart transportation, smart city, etc.
  • Terminals can be mobile phones, tablet computers, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal.
  • Base stations and terminals can be fixed or mobile. Base stations and terminals can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and artificial satellites.
  • the embodiments of the present application do not limit the application scenarios of the base station and the terminal.
  • the helicopter or UAV 120i in FIG. base station for base station 110a, 120i is a terminal, that is, communication between 110a and 120i is performed through a wireless air interface protocol.
  • communication between 110a and 120i may also be performed through an interface protocol between base stations.
  • 120i compared to 110a, 120i is also a base station. Therefore, both the base station and the terminal can be collectively referred to as a communication device, 110a and 110b in FIG. 1 can be referred to as a communication device with a base station function, and 120a-120j in FIG. 1 can be referred to as a communication device with a terminal function.
  • the communication between the base station and the terminal, between the base station and the base station, and between the terminal and the terminal can be carried out through the licensed spectrum, the communication can also be carried out through the unlicensed spectrum, and the communication can also be carried out through the licensed spectrum and the unlicensed spectrum at the same time; Communications may be performed on frequency spectrums below megahertz (gigahertz, GHz), or communications may be performed on frequency spectrums above 6 GHz, or communications may be performed using both frequency spectrums below 6 GHz and frequency spectrums above 6 GHz.
  • the embodiments of the present application do not limit the frequency spectrum resources used for wireless communication.
  • the functions of the base station may also be performed by modules (such as chips) in the base station, or may be performed by a control subsystem including the functions of the base station.
  • the control subsystem including base station functions here may be the control center in the above application scenarios such as smart grid, industrial control, intelligent transportation, and smart city.
  • the functions of the terminal may also be performed by a module (such as a chip or a modem) in the terminal, or may be performed by a device including the terminal function.
  • Wireless communication between communication devices may include: wireless communication between a network device and a terminal, wireless communication between a network device and a network device, and wireless communication between a terminal device and a terminal device.
  • wireless communication may also be referred to as “communication” for short, and the term “communication” may also be described as "data transmission”, “information transmission” or “transmission”.
  • the physical uplink shared channel (physical downlink share channel, PDSCH), the physical downlink control channel (physical downlink control channel, PDCCH) and the physical uplink shared channel (physical uplink share channel, PUSCH) It is only used as an example of downlink data channel, downlink control channel and uplink data channel respectively. In different systems and different scenarios, the data channel and control channel may have different names, which are not limited in the embodiments of the present application. .
  • Channel state information During the process of the signal passing through the wireless channel from the transmitter to the receiver, it may experience scattering, reflection, and energy attenuation with distance, resulting in fading.
  • CSI is used to characterize the characteristics of the wireless channel, which can include pre-coding matrix indicator (Pre-coding Matrix Indicator, PMI), channel quality indicator (Channel Quantity Indicator, CQI), CSI-RS resource indicator (CSI-RS resource indicator, CRI) , synchronization signal and physical broadcast channel block (synchronization signal and physical broadcast channel block, SSB) resource indicator (SSB resource indicator, SSBRI), layer indicator (layer indicator, LI), rank indicator (rank indicator, RI), - reference signal At least one of received power (reference signal received power, RSRP) and signal to interference plus noise ratio (signal to interference plus noise ratio, SINR).
  • the CSI can be sent by the terminal device to the network device through a physical uplink control channel (physical uplink control channel, PUCCH) or a physical uplink shared channel
  • Channel state information report configuration (CSI-ReportConfig): It is mainly used to configure parameters related to channel state reporting, such as the type of report, the measurement index to be reported, etc.
  • the report configuration identification (reportConfigId) is the identification (identity, ID) number of the CSI-ReportConfig, which is used to mark the CSI-ReportConfig;
  • the channel measurement resource (resourcesForChannelMeasurement), which is used to configure channel state information for channel measurement-reference signal (CSI-Reference Signal, CSI-RS) resources are associated to resource configuration through CSI reporting resource identifiers (CSI-ResourceConfigId); interference measurement resources (CSI-IM-RessourcesForInterference), configure CSI-RS resources for interference measurement, Link to resource configuration through CSI-ResourceConfigId.
  • the parameters for CSI reporting may include CSI reporting type (reportConfigType), CSI reporting quantity (reportQuantity), etc., and network devices may be configured with different reporting quantities to allow terminal devices to report different CSIs.
  • Channel state information resource configuration used to configure resource-related information for CSI measurement. It may include a CSI report resource identifier (CSI-ResourceConfigId) and/or a CSI resource combination queue (CSI-RS-ResourceSetList) and the like. Wherein, the CSI-ResourceConfigId is used to mark the csi-ResourceConfig; the CSI-RS-ResourceSetList may include a resource set for channel measurement and a resource set for interference measurement.
  • CSI report (CSI report): The CSI report is sent by the terminal to the base station, and is used by the network device to know the channel state when it sends downlink information to the terminal device. 1 CSI report is used to instruct the terminal device to feed back 1 CSI, different CSI It may correspond to different frequency bands, different transmission assumptions, different reporting modes or reporting amounts.
  • a CSI report can be associated with one reference signal resource for channel measurement, and can also be associated with one or more reference signal resources for interference measurement.
  • a CSI report corresponds to a transmission resource, and the transmission resource corresponding to the CSI can also be understood as the time-frequency resource for sending the CSI.
  • Reference signal a known signal provided by the transmitter to the receiver for channel estimation or channel detection.
  • the reference signal can be used for channel measurement, interference measurement, etc., such as measuring parameters such as reference signal receiving quality (reference signal receiving quality, RSRQ), SINR, CQI, and/or PMI.
  • RSRQ reference signal receiving quality
  • SINR reference signal receiving quality
  • CQI CQI
  • PMI PMI
  • Reference signal resources including at least one of resources such as time-frequency resources, antenna ports, power resources, and scrambling codes of reference signals.
  • the network device can send the reference signal to the terminal device based on the reference signal resource, and correspondingly, the terminal device can receive the reference signal based on the reference signal resource.
  • the reference signals involved in the embodiments of the present application may include one or more of the following reference signals: channel state information reference signal (channel state information-reference signal, CSI-RS), SSB or sounding reference signal (sounding reference signal, SRS) .
  • the reference signal resources may include CSI-RS resources, SSB resources or SRS resources.
  • SSB may also refer to SSB resources.
  • Path loss refers to the difference between the transmission power and the reception power caused by channel fading during the process of sending an electromagnetic signal from the transmitter to the receiver. In general, the farther the distance, the greater the path loss.
  • the terminal device can measure and obtain the PL according to different CSI-RS resources.
  • Power headroom report refers to the difference between the actual transmit power and the maximum transmit power achievable by the terminal device when the terminal device sends uplink information.
  • the actual transmit power is calculated taking PL into consideration.
  • One function of the power headroom report is to notify the network device of the current terminal device PL, which can be used by the network device to adjust the uplink transmission power of the terminal device.
  • Beam failure recovery process When the UE detects that the RSRP used for beam failure detection is lower than the threshold, it will cause signal decoding failure. When the UE fails to decode for N consecutive times, the terminal device considers that the beam is invalid, and at this time, the terminal device sends a physical random access channel (physical random access channel, PRACH) to the network device through a new beam.
  • a physical random access channel physical random access channel, PRACH
  • the power consumption of network devices on each TTI includes many parts, such as dynamic parts related to load, such as through downlink control information (DCI), etc.
  • Dynamic signaling implements power consumption related to communication; the power consumption of network devices on each TTI also includes static parts that are not related to load, such as the power consumption of the hardware structure of the device itself. For this reason, the researchers proposed a method of turning off part of the transmitting antennas to save power of network equipment.
  • the terminal device cannot know the change of the transmitting antenna of the network device in time, so it is difficult to determine the power change of the network device, resulting in inaccurate channel measurement results of the terminal device, which further affects the communication quality of the terminal device.
  • an embodiment of the present application proposes a communication method, as shown in FIG. 2 , the method may include the following steps:
  • Step 201 The network device sends first information to the terminal device, and the terminal device receives the first information correspondingly.
  • the first information is used to configure the first transmit power of the first CSI-RS.
  • the first sending power may be the power at which the network device sends the first CSI-RS before the number of antenna ports changes.
  • the first information may be carried in radio resource control (radio resource control, RRC) signaling.
  • RRC radio resource control
  • the first information may be a channel state information report configuration field, or the first information may be a channel state information resource configuration field field.
  • the network device may send downlink control information DCI to the terminal device, where the DCI includes the first transmit power, or, the first information may be carried in a media access control control element (media access control control element, MAC CE).
  • RRC radio resource control
  • the first information may explicitly indicate the first transmit power of the first CSI-RS.
  • the first information may implicitly indicate the first transmit power of the first CSI-RS, for example, the first information indicates the offset of the first transmit power relative to the transmit power of other known signals.
  • Example 1 when the first information is carried in the field of channel state information resource configuration, the channel state information resource configuration may be as follows:
  • powerControlOffsetSS is an offset between the transmission power of the SSB and the first transmission power of the first CSI-RS.
  • the terminal device may determine the first transmit power of the first CSI-RS by using the known SSB transmit power and the power offset.
  • the network device carries the first information in other information and sends it together, which can save signaling overhead.
  • the network device may indicate the first transmission power to the terminal device before sending the first CSI-RS to the terminal device, and the network device may also indicate the first transmission power to the terminal device after sending the first CSI-RS to the terminal device.
  • the network device may send the first transmission power and the first CSI-RS to the terminal device at the same time, which is not limited in this embodiment of the present application.
  • Example 2 when the first information implicitly indicates the first transmit power of the first CSI-RS, optionally, the first information indicates the first number of antenna ports, and the first number of antenna ports may be the first CSI-RS The number of antenna ports at the first transmit power.
  • the terminal device may determine the first transmit power according to the first port number.
  • Step 202 The network device sends the second information to the terminal device, and the terminal device receives the second information correspondingly.
  • the second information is used to indicate the power offset of the first CSI-RS.
  • the power offset may be a difference between the first transmit power and the second transmit power of the first CSI-RS.
  • the first transmission power may be understood as the previous transmission power
  • the second transmission power may be understood as the transmission power after the antenna port is changed on the basis of the first transmission power.
  • the first number of antenna ports may be understood as the number of antenna ports before the number of antenna ports of the network device changes.
  • the first number of antenna ports is indicated to the terminal device by the network device through the first information, and the first number of antenna ports may also be indicated by the network device to the terminal device through information other than the first information, or , the first number of antenna ports may also be preconfigured, which is not limited in this embodiment of the present application.
  • the above manner of indicating the power offset through the second information can be divided into implicit indication and display indication.
  • Implicit indication mode 1 The network device indicates the second number of antenna ports through the second information, and the second number of antenna ports is the number of ports of the first CSI-RS at the second transmission power.
  • the second number of antenna ports refers to is the antenna port after the number of antenna ports of the network device changes. That is to say, the network device directly indicates the changed number of antenna ports to the terminal device.
  • Implicit indication mode 2 The network device indicates the offset of the number of antenna ports through the second information, the content of the second information includes the offset of the number of antenna ports, and the offset of the number of antenna ports is the difference between the number of first antenna ports and the number of second antenna ports difference.
  • the offset of the number of antenna ports may be an absolute value or a real value (real value). For example, the network device indicates to the terminal device that the offset of the number of antenna ports is 3, or the network device indicates to the terminal device that the offset of the number of antenna ports is -3.
  • the offset of the number of antenna ports may be used by the terminal device to determine the second number of antenna ports, and the second number of antenna ports may be used by the terminal device to determine the power offset.
  • the network device when the offset of the number of antenna ports is an absolute value, the network device should also indicate to the terminal device the magnitude relationship between the first number of antenna ports and the second number of antenna ports.
  • the network device and the terminal device may predefine a calculation rule: when the antenna port offset indicated by the network device to the terminal device is greater than 0, the terminal device defaults that the first number of antenna ports is greater than the second number of antenna ports.
  • the network device can indicate the power offset to the terminal device through the number of antenna ports or the offset of the antenna port, which improves the flexibility of the network device to indicate power changes.
  • Display indication mode the content of the second information includes the value of the power offset.
  • the power offset can be an absolute value or an actual value.
  • the network device should also indicate to the terminal device the magnitude relationship between the first transmission power and the second transmission power.
  • the network device and the terminal device may predefine a calculation rule: when the power offset indicated by the network device to the terminal device is greater than 0, the terminal device defaults that the first transmission power is greater than the second transmission power.
  • the network equipment directly indicates the power offset value to the terminal equipment, which further improves the efficiency of the terminal equipment in determining the power offset.
  • the second information may be carried in a broadcast message, may also be a multicast message, or may be cell-level information.
  • the network device may indicate the power offset of the CSI-RS to multiple UEs through the second information.
  • the second information is group radio network temporary identifier (goup radio network temporary identifier, G-RNTI) scrambled information, and the power offset of the CSI-RS indicated by the network device to each UE in a group of UEs
  • the network device notifies multiple terminal devices of the power change information through a piece of second information, thereby saving signaling overhead of the network device.
  • Step 203 The terminal device determines the second transmission power of the first CSI-RS according to the first transmission power and the power offset. Rate.
  • the terminal device also needs to determine the second number of antenna ports before determining the second transmit power.
  • the following describes the method for the terminal device to determine the second number of antenna ports according to different situations of the second information.
  • the terminal device when the content of the second information includes the second number of antenna ports, the terminal device directly determines the second number of antenna ports according to the second information without calculation. For example, the second information indicates that the first number of antenna ports is five, and the terminal device determines that the first number of antenna ports is five.
  • the network device sends the second information to the terminal device, and the second information indicates the offset of the number of antenna ports, which is divided into the following situations:
  • the terminal device can directly determine the second number of antenna ports according to the second information, the first number of antenna ports.
  • the network device and the terminal device are predefined, and the terminal device can directly perform calculation according to the offset of the number of antenna ports to obtain the first number of antenna ports.
  • the rule for calculating the second number of antenna ports by the terminal device may be preconfigured with the network device, and the terminal device performs calculation according to the preconfigured rule when receiving the second information.
  • the terminal device determines the second number of antenna ports according to the above method, it can further determine the second transmit power according to the following method:
  • the terminal device when the second information is used to indicate the power offset, the terminal device according to The power offset determines the second transmit power, for example,
  • Case A When the power offset is the difference between the second transmit power and the first transmit power, the terminal device determines the second transmit power according to the first transmit power and the power offset. The method for determining the number of first antenna ports by biasing will not be repeated here. For example, if the value of the first transmit power is 200, the power offset is 50, and the first transmit power is greater than the second transmit power, then the value of the second transmit power is 150.
  • the terminal device may reconfigure the sending power of the first CSI-RS according to the power offset.
  • the terminal device can modify powerControlOffsetSS after receiving the power offset, for example, modify The final powerControlOffsetSS is: the original powerControlOffsetSS+offset0.
  • the method may further include step 204: the terminal device determines the received power of the second reference signal.
  • the second reference signal received power is the reference signal received power of the first CSI-RS corresponding to the second transmit power, in other words, the second reference signal received power is the terminal after the port number of the transmit antenna of the network device changes.
  • the device receives received power of the first CSI-RS.
  • the terminal device may determine the received power of the second reference signal in the following two ways:
  • Manner 1 The terminal device determines the second reference signal received power RSRP according to the difference between the second transmit power and the first transmit power, and the first reference signal received power RSRP.
  • the first RSRP is the reference signal received power of the first CSI-RS corresponding to the first transmit power.
  • the first RSRP is the number of ports that the terminal device receives the first CSI-RS before the number of transmit antenna ports of the network device changes. receive power.
  • the difference between the second transmission power and the first transmission power can be determined according to the second information in step 202, for example, the second information indicates a power offset, when the power offset is the first transmission power and the second transmission power
  • the terminal device can determine the difference according to The difference between the reference value and the second transmission power, and the first transmission power determine the difference between the second transmission power and the first transmission power.
  • the terminal device may acquire the second reference signal received power according to the second CSI-RS.
  • the second CSI-RS may be a CSI-RS that can be indicated by the network device.
  • the network device sends DCI to the terminal device, and the DCI is used to indicate a CSI-RS, that is, indicates a CSI-RS measurement resource.
  • the DCI may be the second information. That is to say, the second information is also used to indicate the second CSI-RS. It should be understood that the second information also indicates the measurement resource of the second CSI-RS.
  • resource identifiers (identifier, ID) of the second CSI-RS and the first CSI-RS may be different.
  • the second CSI-RS can also be the next CSI-RS adjacent to the first CSI-RS.
  • the adjacent here refers to the semi-static CSI configured to periodically send CSI-RS or activated on the network device for the terminal device.
  • -RS case, with the first The next CSI-RS adjacent to the CSI-RS.
  • the network device sends the CSI-RS in a cycle next to the cycle of sending the first CSI-RS.
  • other CSI-RS configurations may be the same, such as measurement resource ID, time domain of measurement resources position and frequency domain position etc.
  • the terminal device obtains the second reference signal received power according to the second CSI-RS. It may be that the terminal device measures the reference signal on the resource of the second CSI-RS, so as to obtain the second reference signal received power.
  • the terminal device may determine the path loss according to the second reference signal.
  • the terminal device determines the transmission power of the uplink information according to the path loss, and the terminal device can transmit the PUCCH and/or PUSCH by using the transmission power.
  • the terminal device may report the power headroom determined according to the path loss to the network device.
  • the power headroom may be carried in uplink information.
  • the method may further include step 205: the terminal device updates a beam measurement result and reselects a beam.
  • the foregoing first CSI-RS may be a CSI-RS sent by the network device through the first beam.
  • the first beam is one of at least one beam used by the network device for communication.
  • the N beams may correspond to the N CSI-RSs one-to-one. That is to say, the network device can send multiple CSI-RSs to the terminal device, and different CSI-RSs are located on different beams. These CSI-RSs can be distinguished by different resource IDs. At this time, network devices and terminal devices can use these CSI-RSs to perform beam measurement and selection.
  • the terminal device can update the beam measurement results in the following ways:
  • Way A The terminal device performs beam measurement and selection again.
  • the terminal device may acquire a third RSRP, where the third RSRP is the corresponding reference signal received power after the number of antenna ports changes.
  • Beam #A is one of multiple beams, for example, beam #A is used to send the third CSI-RS, beam #B is used to send the fourth CSI-RS, beam #C is used to send the fifth CSI-RS, etc. .
  • the terminal device selects a beam used for information transmission among the at least one beam, and the reference received power corresponding to the reselected beam is the largest reference signal received power among the reference signal received powers corresponding to the at least one beam.
  • the terminal device obtains that the reference signal received power of the third CSI-RS transmitted by beam #A is 10, the received reference signal received power of the fourth CSI-RS transmitted by beam #B is 9, and the received power of the reference signal transmitted by beam #C of the fourth CSI-RS is 9. If the reference signal receiving power of the five CSI-RS is 13, the terminal device can select beam #C to send or receive information to be transmitted, that is, beam #C is the beam reselected by the terminal device for information transmission.
  • the moment when the terminal device performs channel measurement on the at least one beam may be indicated by the network device, or may be determined according to a measurement cycle preconfigured by the network device for the terminal device.
  • Manner B The terminal device re-selects the beam according to the determined received power of the second reference signal.
  • the terminal device determines the reference signal received power of multiple beams. After receiving the second information, determine the second reference signal received power according to the method 1 in step 203, according to the second reference signal received power and the previously determined reference signal of beams other than the beam corresponding to the second reference signal received power Signal received power, beam selection. Specifically, the terminal device determines that the reference signal received power of beam #1 is 6, the first RSRP of beam #2 is 8, and the reference signal received power of beam #3 is 5. After receiving the second information, the power offset calculation If the received power of the second reference signal of beam #2 is 4, then beam #1 may be selected to send or receive information to be transmitted.
  • the method may further include step 206: before reselecting a beam, the terminal device may also trigger a beam failure recovery process.
  • the terminal device may trigger a beam failure recovery procedure according to the second information.
  • the network device and the terminal device predefine that when the terminal device receives the second information, or when the network device sends the second information, the beam failure recovery process can be triggered. This application does not limit this.
  • the terminal device may execute the method from step 201 to step 203 when the power offset is greater than or equal to the first threshold, or the difference between the first path loss and the second path loss is greater than or equal to the first threshold.
  • the first path loss is the path loss determined by the terminal device before the number of antenna ports changes
  • the second path loss is the path loss determined by the terminal device after the number of antenna ports changes.
  • the first threshold may be indicated by the network device to the terminal device, for example, the network device indicates to the terminal device that the threshold is 2db through RRC signaling, and so on.
  • the threshold may also be predefined by the network device and the terminal device, which is not limited in this application. For example, the network device and the terminal device predefine the threshold as 5, and when the power offset is 7, which is greater than the threshold, the terminal device can execute the method from step 201 to step 203.
  • the network device indicates the change of the transmission power of the network device to the terminal device, so that the terminal device can determine the changed CSI-RS transmission power in time, which can improve the accuracy of channel measurement of the terminal device and further improve the communication quality.
  • the embodiment of the present application proposes another communication method.
  • the power offset indicated by the network device to the terminal device is the difference between the reference value and the second transmission power.
  • the method may include the following steps:
  • Step 301 The network device sends first information to the terminal device, and the terminal device receives the first information correspondingly.
  • step 301 reference may be made to the description of step 201, which will not be repeated here.
  • Step 302 The network device sends the second information to the terminal device, and the terminal device receives the second information correspondingly.
  • the second information is used to indicate the power offset of the first CSI-RS.
  • the power offset may be a difference between the reference value and the second transmit power of the first CSI-RS.
  • the reference value may be predefined.
  • the reference value may also be indicated by the network device to the terminal device, for example, the reference value may be the transmit power of the SSB.
  • Step 303 The terminal device determines the second transmit power of the first CSI-RS according to the reference value and the power offset.
  • the reference value is a predefined value
  • the power offset is 60
  • the first transmit power is 200
  • the reference value is 140
  • the second transmit power is less than the reference value
  • reference may be made to the method for the terminal device to determine the first number of antenna ports according to the offset of the number of antenna ports in step 203, which will not be repeated here.
  • the power offset may be an absolute value or an actual value.
  • the network device indicates the power offset through the second information, the terminal device may reconfigure the sending power of the first CSI-RS according to the power offset.
  • the power offset is the difference offset1 between the reference value and the second transmit power
  • the reference value is the transmit power of the SSB signal
  • the terminal device may execute the method from step 301 to step 303 when the power offset is greater than or equal to the first threshold, or the difference between the first path loss and the second path loss is greater than or equal to the first threshold.
  • the terminal device may execute the method from step 301 to step 303 when the power offset is greater than or equal to the first threshold, or the difference between the first path loss and the second path loss is greater than or equal to the first threshold.
  • the terminal device may execute the method from step 301 to step 303 when the power offset is greater than or equal to the first threshold, or the difference between the first path loss and the second path loss is greater than or equal to the first threshold.
  • the terminal device may execute the method from step 301 to step 303 when the power offset is greater than or equal to the first threshold, or the difference between the first path loss and the second path loss is greater than or equal to the first threshold.
  • the terminal device can determine the second transmission power according to the reference value and the power offset, which improves the flexibility of the terminal device in determining the second transmission power.
  • the method may also be combined with at least one of step 204, step 205, or step 206.
  • the embodiment of this application proposes a communication method, using RRC signaling as an example of first information, using DCI as an example of second information, using gNB as an example of network equipment, and using UE as an example of terminal equipment Example, as shown in Figure 4, the method may include the following steps:
  • Step 501 gNB sends RRC signaling to UE, and correspondingly, UE receives the RRC signaling.
  • the RRC signaling is used to indicate the first transmission power of the first CSI-RS.
  • the RRC signaling is also used to configure the period for sending the CSI-RS and the number of first antenna ports. Specifically, reference may be made to related descriptions of step 201, which will not be repeated here.
  • the RRC signaling is also used to indicate that the first threshold is 3db.
  • Step 502 the gNB sends the CSI-RS#A to the UE, and the UE receives the CSI-RS#A accordingly.
  • the CSI-RS#A is an example of the first CSI-RS.
  • Step 503 UE determines RSRP#A according to CSI-RS#A.
  • This RSRP#A is an example of the first RSRP.
  • Step 504 the gNB sends DCI1 to the UE, and the UE receives the DCI1 accordingly.
  • This DCI1 contains the actual value of the power offset. It should be understood that DCI1 includes the actual value of the power offset only as an example of the second information indicating the power offset. Specifically, reference may be made to related descriptions in step 202, which will not be repeated here.
  • Step 505 The UE determines the second transmit power according to the first transmit power and the power offset.
  • Step 506 the gNB sends the CSI-RS#B to the UE, and the UE receives the CSI-RS#B accordingly.
  • the CSI-RS#B is an example of the second CSI-RS.
  • the CSI-RS #B is the next CSI-RS adjacent to the CSI-RS #A.
  • Step 507 UE determines RSRP#B according to CSI-RS#B.
  • the UE may perform channel measurement according to the CSI-RS#B to obtain the RSRP#B.
  • Step 508 The UE sends a physical random access channel (physical random access channel, PRACH) to the gNB, and the gNB receives the PRACH accordingly.
  • PRACH physical random access channel
  • UE can send PRACH to gNB according to DCI1.
  • DCI1 itself can be used as a condition to trigger PRACH, which is predefined by gNB and UE. Once UE receives DCI1, it will send PRACH to gNB to trigger beam loss. Failed recovery process.
  • Step 509 The UE selects beam #A among the multiple beams according to the magnitude relationship of the RSRP.
  • the RSRP of the beams other than the beam corresponding to RSRP#B may be obtained by the UE through re-measurement, or may be determined synchronously with RSRP#A in step 503, which is not discussed in this embodiment of the present application. Do limited. Beam #A may be the beam corresponding to the largest RSRP among the multiple beams. Specifically, reference may be made to related descriptions of manner A and manner B in step 203 .
  • Step 310 UE sends data to gNB on beam #A, and gNB receives the data correspondingly.
  • the resource for the UE to send data is scheduled by the gNB, for example, the gNB indicates the time-frequency resource for sending data through DCI1 in step 504 . It should be understood that the data is only used as an example of uplink information rather than limitation.
  • the gNB indicates the power change to the UE in time, and the UE determines the changed CSI-RS transmission power, and further determines the changed RSRP, which improves the accuracy of channel measurement, and the UE reselects the beam for data reception, Improved communication quality.
  • the embodiment of this application proposes a communication method, using RRC signaling as an example of first information, using DCI as an example of second information, using gNB as an example of network equipment, and using UE as an example of terminal equipment
  • the method may include the following steps:
  • Step 501 gNB sends RRC signaling to UE, and correspondingly, UE receives the RRC signaling.
  • the RRC signaling is used to indicate the first transmission power of the first CSI-RS.
  • the RRC signaling is also used to configure the period for sending the CSI-RS and the number of first antenna ports. Specifically, reference may be made to related descriptions of step 201, which will not be repeated here.
  • Step 502 the gNB sends the CSI-RS#C to the UE, and correspondingly, the UE receives the CSI-RS#C.
  • the CSI-RS#C is an example of the first CSI-RS.
  • Step 503 UE determines RSRP #C according to CSI-RS #C.
  • This RSRP #C is an example of the first RSRP.
  • Step 504 the gNB sends DCI2 to the UE, and the UE receives the DCI2 accordingly.
  • the DCI2 includes a second number of antenna ports. It should be understood that DCI2 includes the second number of antenna ports only as an example of the power bias indicated by the second information.
  • the RNTI of the DCI2 is the group RNTI. Specifically, reference may be made to related descriptions in step 202, which will not be repeated here.
  • Step 505 The UE determines the second transmit power according to the first transmit power and the ratio of the first antenna port to the second antenna port.
  • the manner in which the UE determines the second transmission power according to the first transmission power and the ratio of the first antenna port to the second antenna port may refer to the related description of implicit indication mode 1 in step 203 .
  • Step 506 the gNB sends the CSI-RS #D to the UE, and the UE receives the CSI-RS #D accordingly.
  • the CSI-RS#D is an example of the second CSI-RS.
  • the CSI-RS #D is the CSI-RS indicated by the gNB for the UE.
  • the sending timing of the CSI-RS #D may be after the CSI-RS #C and before the next periodic CSI-RS sending.
  • the CSI-RS#D may be indicated by DCI2 in step 504 .
  • DCI2 for specific explanations, reference may be made to related descriptions of the second CSI-RS in step 203 .
  • Step 507 The UE determines the path loss according to the second transmission power and the CSI-RS #D.
  • step 203 For the manner in which the UE determines the path loss, reference may be made to related descriptions in step 203 .
  • Step 508 UE determines the power headroom.
  • Step 509 The UE sends the power headroom to the gNB, and the gNB receives the power headroom accordingly.
  • the power headroom can be carried in the uplink channel.
  • the resources for the UE to transmit the power headroom are scheduled by the gNB.
  • the gNB indicates the time-frequency resources for transmitting uplink information through the DCI2 in step 504 .
  • the gNB indicates the power change to the UE in time, and the UE determines the changed CSI-RS transmission power, further determines the changed path loss, and reports it to the gNB, which improves the accuracy of channel measurement, and the communication parties align the measurement in time As a result, communication quality is improved.
  • the network device and the terminal device include hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software with reference to the units and method steps of the examples described in the embodiments disclosed in the present application. Whether a certain function is executed by hardware or computer software drives the hardware depends on the specific application scenario and design constraints of the technical solution.
  • FIG. 6 and FIG. 7 are schematic structural diagrams of possible communication devices provided by the embodiments of the present application. These communication apparatuses may be used to realize the functions of the terminal device or the network device in the foregoing method embodiments, and thus also realize the beneficial effects of the foregoing method embodiments.
  • the communication device may be one of the terminals 120a-120j shown in FIG. 1, or the base station 110a or 110b shown in FIG. 1, or it may be a terminal device or a network A module (such as a chip) of a device.
  • a communication device 600 includes a processing unit 610 and a transceiver unit 620 .
  • the communication device 600 is configured to realize the functions of the terminal device or the network device in the method embodiments shown in FIGS. 2 to 4 above.
  • the transceiver unit 620 is used to receive the first information and the second information; the processing unit 610 is used to determine the second transmission power; It can also be used to send uplink information, such as power headroom.
  • the transceiver unit 620 is used to send the first information and the second information; the transceiver unit 620 is also used to receive the power headroom.
  • processing unit 610 and the transceiver unit 620 can be directly obtained by referring to related descriptions in the method embodiments shown in FIG. 2 to FIG. 4 , and details are not repeated here.
  • a communication device 700 includes a processor 710 and an interface circuit 720 .
  • the processor 710 and the interface circuit 720 are coupled to each other.
  • the interface circuit 720 may be a transceiver or an input-output interface.
  • the communication device 700 may further include a memory 740 for storing instructions executed by the processor 710 or storing input data required by the processor 710 to execute the instructions or storing data generated after the processor 710 executes the instructions.
  • the processor 710 is used to implement the functions of the processing unit 610
  • the interface circuit 720 is used to implement the functions of the transceiver unit 620 .
  • the terminal chip implements the functions of the terminal in the above method embodiment.
  • the terminal chip receives information from other modules in the terminal (such as radio frequency modules or antennas), and the information is sent to the terminal by the base station; or, the terminal chip sends information to other modules in the terminal (such as radio frequency modules or antennas), and the The information is sent by the terminal to the base station.
  • the base station module implements the functions of the base station in the above method embodiment.
  • the base station module receives information from other modules in the base station (such as radio frequency modules or antennas), and the information is sent by the terminal to the base station; or, the base station module sends information to other modules in the base station (such as radio frequency modules or antennas), and the information is sent by the base station to the terminal.
  • the base station module here may be a baseband chip of the base station, or may be a DU or other modules, where the DU may be a DU under an open radio access network (open radio access network, O-RAN) architecture.
  • open radio access network open radio access network
  • the processor in the embodiments of the present application can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented in hardware, and may also be implemented in software instructions executable by a processor.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only Memory, registers, hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • a storage medium may also be an integral part of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC can be located in the base station or the terminal.
  • the processor and the storage medium may also exist in the base station or the terminal as discrete components.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs or instructions. When the computer program or instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer program or instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instructions may be downloaded from a website, computer, A server or data center transmits to another website site, computer, server or data center by wired or wireless means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrating one or more available media.
  • the available medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; it may also be an optical medium, such as a digital video disk; or it may be a semiconductor medium, such as a solid state disk.
  • the computer readable storage medium may be a volatile or a nonvolatile storage medium, or may include both volatile and nonvolatile types of storage media.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or”relationship; in the formulas of this application, the character “/” indicates that the contextual objects are a “division” Relationship.
  • “Including at least one of A, B and C” can mean: including A; including B; including C; including A and B; includes A and C; includes B and C; includes A, B, and C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法、装置及系统。该方法中,网络设备向终端设备指示功率变化,终端设备及时获知网络设备的发送功率的变化,从而获得更准确的信道状态信息。

Description

一种通信方法、装置及系统
本申请要求于2022年3月4日提交中国国家知识产权局、申请号为202210209279.9、申请名称为“一种通信方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域。尤其涉及一种通信方法、装置及系统。
背景技术
随着通信技术的发展,通信系统使用的频谱越来越宽,配置的发送天线的数目越来越多,网络设备整体消耗功率随之上升。但网络设备侧的功耗与业务负载并不成正比。为此,网络设备可能通过关断比分发射通道的方式节能。但是,终端设备无法获知网络设备的功率的变化,会影响终端设备的信道测量,影响通信质量。
发明内容
本申请实施例提出一种通信方法、装置及系统,能够提高终端设备信道测量的准确度,提高通信质量。
第一方面,本申请实施例提供一种通信方法,该方法可以由终端设备执行,或者,也可以由用于终端设备的芯片或电路执行,本申请对此不作限定。为了便于描述,下面以由终端设备执行为例进行说明。该方法可以包括:接收第一信息,所述第一信息用于配置第一信道状态信息参考信号(channel state information-reference signal,CSI-RS)的第一发送功率,接收第二信息,所述第二信息用于指示所述第一CSI-RS的功率偏置,根据第一发送功率和所述功率偏置,确定所述第一CSI-RS的第二发送功率。
该方法中通过网络设备向终端设备指示网络设备发送功率的变化,使得终端设备及时确定变化后的CSI-RS的发送功率,能够提高终端设备信道测量的准确度,进一步提升通信质量。
结合第一方面,在第一方面某些可能的实现方式中,所述第二信息用于指示所述功率偏置,包括:所述第二信息为所述第一发送功率与所述第二发送功率的差值。
结合第一方面,在第一方面某些可能的实现方式中,所述功率偏置为基准值与所述第二发送功率的差值,所述基准值为物理广播信道(physical broadcast channel,PBCH)同步信号和PBCH块(Synchronization Signal and PBCH block,SSB)的发送功率,或者,基准值为预定义的值。
上述方式中,网络设备直接向终端设备发送功率变化量,能够提高终端设备确定第二发送功率的效率。
结合第一方面,在第一方面某些可能的实现方式中,所述第二信息用于指示所述功率偏置,包括:所述第二指示信息为第二天线端口数,所述第二天线端口数为所述第一CSI-RS 在第二发送功率下的端口数,根据所述第二天线端口数和第一天线端口数,确定所述第一CSI-RS的功率偏置,所述第一天线端口数为所述第一CSI-RS在第一发送功率下的天线端口数。
结合第一方面,在第一方面某些可能的实现方式中,所述第二信息用于指示所述功率偏置,包括:所述第二信息为天线端口数偏置,所述天线端口数偏置为第一天线端口数与第二天线端口数的差值,所述第一天线端口数为所述第一CSI-RS在第一发送功率下的天线端口数,所述第二天线端口数为所述第一CSI-RS在第二发送功率下的端口数,根据所述第一发送功率,和,所述第一天线端口数与所述第二天线端口数的比值,确定所述第二发送功率。
在上述方式中,网络设备可以向终端设备发送功率变化后的天线端口数,或者,网络设备可以向终端设备发送天线端口数的变化量,提升了网络设备指示功率偏置的灵活性。
结合第一方面,在第一方面某些可能的实现方式中,根据所述第一CSI-RS确定与所述第一发送功率对应的第一参考信号接收功率(RSRP,根据所述功率偏置和所述第一RSRP确定与所述第二发送功率对应的所述第一CSI-RS的第二参考信号接收功率。
该方式中,终端设备根据功率偏置和第一RSRP确定第二参考信号接收功率,可以是在第一RSRP的基础上加上功率偏置得到第二参考信号接收功率。终端设备更新参考信号接收功率,能够与网络设备的功率变化及时对齐,提高通信质量。
结合第一方面,在第一方面某些可能的实现方式中,根据第二CSI-RS确定与所述第二发送功率对应的第二参考信号接收功率,所述第二CSI-RS为与所述第一CSI-RS相邻的下一个CSI-RS,或者,所述第二CSI-RS为所述第二信息指示的CSI-RS。
该方式中,终端设备通过重新测量获取第二参考信号接收功率,能够提高确定第二参考信号接收功率的准确度。网络设备通过第二信息指示第二CSI-RS,能够进一步节省信令开销。
结合第一方面,在第一方面某些可能的实现方式中,在所述根据第二CSI-RS确定与所述第二发送功率对应的第二参考信号接收功率之前,根据所述第二信息发送物理随机接入信道,所述物理随机接入信道用于触发波束失败恢复流程。
该方式中,终端设备可以触发波束失败恢复流程,重新测量信道状态,能够灵活获取功率变化后的参考信号接收功率。
结合第一方面,在第一方面某些可能的实现方式中,根据所述第二参考信号接收功率和所述第二发送功率确定所述第二路损。
结合第一方面,在第一方面某些可能的实现方式中,根据所述第二路损确定发送上行信道的第三发送功率。
在上述方式中,终端设备根据功率变化后的参考信号接收功率更新路损,更新上行信道的发送功率,能够提高终端设备上行传输的通信质量。
结合第一方面,在第一方面某些可能的实现方式中,根据所述第二路损确定功率余量,上报所述功率余量。
该方式中,终端设备通过功率余量向网络设备指示更新后的路损,以使网络设备获知路损变化,及时调整下行传输的功率,能够提高通信质量。
结合第一方面,在第一方面某些可能的实现方式中,所述功率偏置大于或等于第一门 限。
换句话说,当功率偏置大于或者等于第一门限时,终端设备才执行上述方式。也就是说,当功率变化大于一定程度,或者,路损变化大于一定程度时,再更新信道测量结果,能够节省终端设备的功耗。该第一门限可以是网络设备指示给终端设备的,也可以是预定义的,本申请实施例对此不做限定。
结合第一方面,在第一方面某些可能的实现方式中,所述第二信息为下行控制信息。
网络设备通过下行控制信息动态指示功率偏置等,能够提高终端设备获知的及时性,进一步提升网络设备与终端设备更新信道测量结果的效率。
结合第一方面,在第一方面某些可能的实现方式中,所述第二信息通过组无线网络临时标识G-RNTI加扰。
也就是说,网络设备可以向多个终端设备通知功率变化情况,可以通过广播或者组播等形式向终端设备指示,本申请实施例对此不做限定。
结合第一方面,在第一方面某些可能的实现方式中,第一信息还用于指示第一天线端口数。
第二方面,本申请实施例提供一种通信方法,该方法可以由网络设备执行,或者,也可以由用于网络设备的芯片或电路执行,本申请对此不作限定。为了便于描述,下面以由网络设备执行为例进行说明。该方法可以包括:发送第一信息,所述第一信息用于配置第一信道状态信息参考信号CSI-RS的第一发送功率,发送第二信息,所述第二信息用于指示所述第一CSI-RS的功率偏置。
结合第二方面,在第二方面某些可能的实现方式中,所述第二信息用于指示所述功率偏置,包括:所述第二信息为所述第一发送功率与所述第二发送功率的差值。
结合第二方面,在第二方面某些可能的实现方式中,所述第二信息用于指示所述功率偏置,包括:所述第二指示信息为第二天线端口数,所述第二天线端口数为所述第一CSI-RS在第二发送功率下的端口数。
结合第二方面,在第二方面某些可能的实现方式中,所述第二信息用于指示所述功率偏置,包括:所述第二信息为天线端口数偏置,所述天线端口数偏置为第一天线端口数与第二天线端口数的差值,所述第一天线端口数为所述第一CSI-RS在第一发送功率下的天线端口数,所述第二天线端口数为所述第一CSI-RS在第二发送功率下的端口数。
结合第二方面,在第二方面某些可能的实现方式中,接收物理随机接入信道,所述物理随机接入信道用于触发波束失败恢复流程。
结合第二方面,在第二方面某些可能的实现方式中,接收功率余量,所述功率余量是根据第二路损确定的,所述路损是根据所述第二参考信号接收功率和所述第二发送功率确定的。
结合第二方面,在第二方面某些可能的实现方式中,所述功率偏置大于或等于第一门限。
结合第二方面,在第二方面某些可能的实现方式中,所述第二信息为下行控制信息。
结合第二方面,在第二方面某些可能的实现方式中,通过组无线网络临时标识G-RNTI加扰所述第二信息。
应理解,第二方面是与第一方面对应的网络设备侧的方法,第一方面的相关解释、补 充和有益效果的描述对第二方面同样适用,此处不再赘述。
第三方面,本申请实施例提供一种通信装置,该装置包括处理单元和收发单元,该收发单元可以用于接收第一信息,该第一信息用于配置第一信道状态信息参考信号CSI-RS的第一发送功率,该收发单元还用于接收第二信息,该第二信息用于指示所述第一CSI-RS的功率偏置,处理单元用于根据第一发送功率和所述功率偏置,确定所述第一CSI-RS的第二发送功率。
结合第三方面,在第三方面某些可能的实现方式中,该收发单元还用于根据所述第二信息发送物理随机接入信道,所述物理随机接入信道用于触发波束失败恢复流程。
结合第三方面,在第三方面某些可能的实现方式中,该收发单元还用于上报所述功率余量。
第四方面,本申请实施例提供一种通信装置,该装置包括处理单元和收发单元,该收发单元可以用于发送第一信息,该第一信息用于配置第一信道状态信息参考信号CSI-RS的第一发送功率,该收发单元还用于发送第二信息,该第二信息用于指示所述第一CSI-RS的功率偏置。
结合第四方面,在第四方面某些可能的实现方式中,该收发单元还用于接收物理随机接入信道,所述物理随机接入信道用于触发波束失败恢复流程。
结合第四方面,在第四方面某些可能的实现方式中,该收发单元还用于接收所述功率余量。
应理解,第三方面、第四方面是与第一方面、第二方面分别对应的装置侧的实现方式,第一方面、第二方面的相关解释、补充、可能的实现方式和有益效果的描述分别对第三方面、第四方面同样适用,此处不再赘述。
第五方面,本申请实施例提供了一种通信装置,包括接口电路和处理器,该接口电路用于实现第三方面中收发模块的功能,该处理器用于实现第三方面中处理模块的功能。
第六方面,本申请实施例提供了一种通信装置,包括接口电路和处理器,该接口电路用于实现第四中收发模块的功能,该处理器用于实现第四方面中处理模块的功能。
第七方面,本申请实施例提供了一种计算机可读介质,该计算机可读介质存储用于终端设备执行的程序代码,该程序代码包括用于执行第一方面,或,第一方面中任一可能的方式,或,第一方面中所有可能的方式的方法的指令。
第八方面,本申请实施例提供了一种计算机可读介质,该计算机可读介质存储用于网络设备执行的程序代码,该程序代码包括用于执行第二方面,或,第二方面中任一可能的方式,或,第二方面中所有可能的方式的方法的指令。
第九方面,提供了一种存储有计算机可读指令的计算机程序产品,当该计算机可读指令在计算机上运行时,使得计算机执行上述第一方面,或,第一方面中任一可能的方式,或,第一方面中所有可能的方式的方法。
第十方面,提供了一种存储有计算机可读令的计算机程序产品,当该计算机可读指令在计算机上运行时,使得计算机执行上述第二方面,或,第二方面中任一可能的方式,或,第二方面中所有可能的方式的方法。
第十一方面,提供了一种通信系统,该通信系统包括具有实现上述第一方面,或,第一方面中任一可能的方式,或,第一方面中所有可能的方式的方法及各种可能设计的功能 的装置和第二方面,或,第二方面中任一可能的方式,或,第二方面中所有可能的方式的方法及各种可能设计的功能的装置。
第十二方面,提供了一种处理器,用于与存储器耦合,用于执行上述第一方面,或,第一方面中任一可能的方式,或,第一方面中所有可能的方式的方法。
第十三方面,提供了一种处理器,用于与存储器耦合,用于执行上述第二方面,或,第二方面中任一可能的方式,或,第二方面中所有可能的方式的方法。
第十四方面,提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于执行该存储器中存储的计算机程序或指令,使得芯片系统实现前述第一方面或第二方面中任一方面、以及任一方面的任意可能的实现方式中的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十五方面,提供了一种存储有计算机可读令的计算机程序产品,当所述计算机可读指令在计算机上运行时,使得计算机执行上述第一方面,或,第一方面中任一可能的方式,或,第一方面中所有可能的实现方式的方法。
第十六方面,提供了一种存储有计算机可读令的计算机程序产品,当所述计算机可读指令在计算机上运行时,使得计算机执行上述第二方面,或,第二方面中任一可能的方式,或,第二方面中所有可能的实现方式的方法。
第十七方面,提供一种通信系统,包括至少一个如第三方面所述的通信装置和/或至少一个如第四方面所述的通信装置,该通信系统用于实现上述第一方面或第二方面,或,第一方面或第二方面中任一可能的方式,或,第一方面或第二方面中所有可能的实现方式的方法。
附图说明
图1示出了一种本申请实施例适用的系统架构。
图2示出了本申请实施例提供的一种通信方法的示意图。
图3示出了本申请实施例提供的另一种通信方法的示意图。
图4示出了本申请实施例提供的一种通信方法的流程示意图。
图5示出了本申请实施例提供的另一种通信方法的流程示意图。
图6示出了本申请实施例提供的一种通信装置的示意性框图。
图7示出了本申请实施例提供的又一种通信装置的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
图1是本申请的实施例应用的通信系统1000的架构示意图。如图1所示,该通信系统包括无线接入网100和核心网200,可选的,通信系统1000还可以包括互联网300。其中,无线接入网100可以包括至少一个无线接入网设备(如图1中的110a和110b),还可以包括至少一个终端(如图1中的120a-120j)。终端通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和 部分的无线接入网设备的功能。终端和终端之间以及无线接入网设备和无线接入网设备之间可以通过有线或无线的方式相互连接。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。
无线接入网设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、第五代(5th generation,5G)移动通信系统中的下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信系统中的下一代基站、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。这里的CU完成基站的无线资源控制协议和分组数据汇聚层协议(packet data convergence protocol,PDCP)的功能,还可以完成业务数据适配协议(service data adaptation protocol,SDAP)的功能;DU完成基站的无线链路控制层和介质访问控制(medium access control,MAC)层的功能,还可以完成部分物理层或全部物理层的功能,有关上述各个协议层的具体描述,可以参考第三代合作伙伴计划(3rd generation partnership project,3GPP)的相关技术规范。无线接入网设备可以是宏基站(如图1中的110a),也可以是微基站或室内站(如图1中的110b),还可以是中继节点或施主节点等。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。为了便于描述,下文以基站作为无线接入网设备的例子进行描述。
终端也可以称为终端设备、用户设备(user equipment,UE)、移动台、移动终端等。终端可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请的实施例对终端所采用的具体技术和具体设备形态不做限定。
基站和终端可以是固定位置的,也可以是可移动的。基站和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在飞机、气球和人造卫星上。本申请的实施例对基站和终端的应用场景不做限定。
基站和终端的角色可以是相对的,例如,图1中的直升机或无人机120i可以被配置成移动基站,对于那些通过120i接入到无线接入网100的终端120j来说,终端120i是基站;但对于基站110a来说,120i是终端,即110a与120i之间是通过无线空口协议进行通信的。当然,110a与120i之间也可以是通过基站与基站之间的接口协议进行通信的,此时,相对于110a来说,120i也是基站。因此,基站和终端都可以统一称为通信装置,图1中的110a和110b可以称为具有基站功能的通信装置,图1中的120a-120j可以称为具有终端功能的通信装置。
基站和终端之间、基站和基站之间、终端和终端之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信;可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线通信所使用的频谱资源不做限定。
在本申请的实施例中,基站的功能也可以由基站中的模块(如芯片)来执行,也可以由包含有基站功能的控制子系统来执行。这里的包含有基站功能的控制子系统可以是智能电网、工业控制、智能交通、智慧城市等上述应用场景中的控制中心。终端的功能也可以由终端中的模块(如芯片或调制解调器)来执行,也可以由包含有终端功能的装置来执行。
本申请实施例提供的技术方案可以应用于通信设备间的无线通信。通信设备间的无线通信可以包括:网络设备和终端间的无线通信、网络设备和网络设备间的无线通信以及终端设备和终端设备间的无线通信。其中,在本申请实施例中,术语“无线通信”还可以简称为“通信”,术语“通信”还可以描述为“数据传输”、“信息传输”或“传输”。
可以理解的是,本申请的实施例中,物理上行共享信道(physical downlink share channel,PDSCH)、物理下行控制信道(physical downlink control channel,PDCCH)和物理上行共享信道(physical uplink share channel,PUSCH)只是分别作为下行数据信道、下行控制信道和上行数据信道一种举例,在不同的系统和不同的场景中,数据信道和控制信道可能有不同的名称,本申请的实施例对此并不做限定。
为了便于理解本申请实施例的方案,对相关概念做一解释。
1.信道状态信息(channel state information,CSI):信号通过无线信道由发射端到接收端的过程中,由于可能经历散射、反射以及能量随距离的衰减,从而产生衰落。CSI用于表征无线信道的特征,可以包括预编码矩阵指示(Pre-coding Matrix Indicator,PMI)、信道质量指示(Channel Quantity Indicator,CQI)、CSI-RS资源指示(CSI-RS resource indicator,CRI)、同步信号和物理广播信道块(synchronization signal and physical broadcast channel block,SSB)资源指示(SSB resource indicator,SSBRI)、层指示(layer indicator,LI)、秩指示(rank indicator,RI)、-参考信号接收功率(reference signal received power,RSRP)和信号与干扰噪声比(signal to interference plus noise ratio,SINR)中的至少一种。CSI可由终端设备通过物理上行控制信道(physical uplink control channel,PUCCH)或物理上行共享信道(physical uplink share channel,PUSCH)发送给网络设备。
2.信道状态信息报告配置(CSI-ReportConfig):主要用于配置信道状态上报有关的参数,例如上报的类型,上报的测量的指标等。其中,上报配置标识(reportConfigId),为该CSI-ReportConfig的标识(identity,ID)号,用于标记该CSI-ReportConfig;信道测量资源(resourcesForChannelMeasurement),用于配置信道测量的信道状态信息-参考信号(CSI-Reference Signal,CSI-RS)资源,通过CSI上报资源标识(CSI-ResourceConfigId)关联到资源配置;干扰测量资源(CSI-IM-RessourcesForInterference),配置用于干扰测量的CSI-RS的资源,通过CSI-ResourceConfigId关联到资源配置。
可选的,CSI上报的参数可以包括CSI上报类型(reportConfigType)、CSI上报量(reportQuantity)等,网络设备可以通过不同的上报量配置,让终端设备上报不同的CSI,
3.信道状态信息资源配置(CSI-ResourceConfig):用于配置CSI测量的资源相关的信息。可以包括CSI上报资源标识(CSI-ResourceConfigId)和/或CSI资源结合队列(CSI-RS-ResourceSetList)等。其中,CSI-ResourceConfigId用于标记该csi-ResourceConfig;CSI-RS-ResourceSetList可以包括用于信道测量的资源集合和用于干扰测量的资源集合。
4.CSI报告(CSI report):CSI报告由终端发送给基站,用于网络设备获知其向终端设备发送下行信息时的信道状态。1个CSI report用于指示终端设备反馈1份CSI,不同CSI 可以对应不同的频带、不同的传输假设、不同的上报模式或者上报量。
一般来说,一个CSI report可以关联1个用于信道测量的参考信号资源,还可以关联1个或多个用于干扰测量的参考信号资源。一个CSI report对应一个传输资源,CSI对应的传输资源也可以理解为发送该CSI的时频资源。
5.参考信号:是由发射端提供给接收端用于信道估计或信道探测的一种已知信号。本申请的实施例中,参考信号可用于信道测量、干扰测量等,如测量参考信号接收质量(reference signal receiving quality,RSRQ)、SINR、CQI和/或PMI等参数。
6.参考信号资源:包括参考信号的时频资源、天线端口、功率资源以及扰码等资源中的至少一种。网络设备可以基于参考信号资源向终端设备发送参考信号,相应的,终端设备可以基于参考信号资源接收参考信号。
本申请实施例中涉及的参考信号可以包括以下一种或多种参考信号:信道状态信息参考信号(channel state information-reference signal,CSI-RS)、SSB或者探测参考信号(sounding reference signal,SRS)。与此对应地,参考信号资源可以包括CSI-RS资源、SSB资源或者SRS资源。在某些情况下,SSB也可以是指SSB资源。
7.路径损耗(pathloss,PL):简称路损,指的是电磁信号由发送端发送给接收端的过程中由于信道衰落导致的发送功率和接收功率的差。一般来说,距离越远路径损耗越大。对于网络设备向终端设备发送的信号,终端设备可以根据不同的CSI-RS资源测量得到PL。
8.功率余量上报(power headroom report,PHR)指的是终端设备发送上行信息时,实际的发送功率与终端设备可达到的最大发送功率的差。实际的发送功率在计算时考虑PL。功率余量上报的一个作用是通知网络设备当前终端设备PL,可以用于网络设备调整终端设备上行发送的功率。
9.波束失败恢复流程:当UE检测到用于波束故障检测的RSRP低于门限时,会导致信号译码失败。当UE连续N次译码失败时,终端设备认为该波束失效,此时终端设备会通过新的波束向网络设备发送物理随机接入信道(physicalrandomaccesschannel,PRACH)。
随着蜂窝通信技术的发展,通信系统使用的频谱越来越宽,配置的发送天线数目越来越多,网络设备的整体消耗功率越来越高。但是,网络设备侧的功耗与业务负载并不成正比,每个TTI上网络设备的功耗都包括很多部分,例如与负载相关的动态部分,比如通过下行控制信息(downlink control information,DCI)等动态信令实现相关通信带来的功耗;每个TTI上网络设备的功耗还包括与负载无关的静态部分,比如设备的硬件结构自有的功耗。为此,研究人员提出通过关断部分发送天线的方法,来达到节省网络设备功率的目的。但是,终端设备无法及时获知网络设备的发送天线的变化,因此难以确定网络设备的功率变化,导致终端设备的信道测量结果可能不准确,进一步影响终端设备的通信质量。
为了提高终端设备信道测量的准确性,提高通信质量,本申请实施例提出一种通信方法,如图2所示,该方法可以包括以下步骤:
步骤201:网络设备向终端设备发送第一信息,对应地,终端设备接收该第一信息。
第一信息用于配置第一CSI-RS的第一发送功率。第一发送功率可以是网络设备在天线端口数发生变化前发送第一CSI-RS的功率。
第一信息可以承载于无线资源控制(radio resource control,RRC)信令。示例地,第一信息可以为信道状态信息报告配置字段,或者,第一信息可以为信道状态信息资源配置 字段。或者,网络设备可以向终端设备发送下行控制信息DCI,该DCI中包括第一发送功率,又或者,第一信息可以承载于媒体接入控制控制元素(media access control control element,MAC CE)。
关于第一信息如何配置第一CSI-RS的第一发送功率,一种可选的方式中,第一信息可以显示地指示第一CSI-RS的第一发送功率。或者,第一信息可以隐式地指示第一CSI-RS的第一发送功率,例如,第一信息指示第一发送功率相对于其他已知信号发送功率的偏置。
示例一,当第一信息承载于信道状态信息资源配置的字段时,该信道状态信息资源配置可以如下所示:
其中,powerControlOffsetSS为SSB的发送功率与该第一CSI-RS的第一发送功率的偏移。终端设备可以通过已知的SSB发送功率和该功率偏移,确定该第一CSI-RS的第一发送功率。
上述示例中,网络设备将第一信息承载在其他信息中一并发送,能够节省信令开销。
可以理解的是,网络设备可以在向终端设备发送第一CSI-RS之前向终端设备指示第一发送功率,网络设备也可以在向终端设备发送第一CSI-RS之后向终端设备指示第一发送功率,又或者,网络设备可以将第一发送功率与第一CSI-RS同时发送给终端设备,本申请实施例对此不做限定。
示例二,当第一信息隐式地指示第一CSI-RS的第一发送功率时,可选的,第一信息指示第一天线端口数,该第一天线端口数可以是第一CSI-RS在第一发送功率下的天线端口数。终端设备可以根据第一端口数确定第一发送功率。
步骤202:网络设备向终端设备发送第二信息,对应地,终端设备接收该第二信息。
其中,第二信息用于指示第一CSI-RS的功率偏置。
该功率偏置可以是第一发送功率与第一CSI-RS的第二发送功率的差值。其中,第一发送功率可以理解为在先发送功率,第二发送功率可以理解为在第一发送功率的基础上,天线端口发生变化后的发送功率。对应地,第一信息指示第一天线端口数时,该第一天线端口数可以理解为网络设备的天线端口数发生变化前的天线端口数。
应理解,上述示例中,第一天线端口数是由网络设备通过第一信息指示给终端设备的,第一天线端口数还可以由网络设备通过第一信息之外的信息指示给终端设备,或者,第一天线端口数还可以是预配置的,本申请实施例对此不做限定。
上述通过第二信息指示功率偏置的方式可以分为隐式指示和显示指示。
其中,隐式指示方式有以下两种:
隐式指示方式1:网络设备通过第二信息指示第二天线端口数,第二天线端口数为第一CSI-RS在第二发送功率下的端口数,换句话说,第二天线端口数指的是网络设备天线端口数发生变化之后的天线端口。也就是说网络设备向终端设备直接指示变化后的天线端口数。
隐式指示方式2:网络设备通过第二信息指示天线端口数偏置,第二信息的内容包括天线端口数偏置,该天线端口数偏置为第一天线端口数与第二天线端口数的差值。天线端口数偏置可以是绝对值,也可以是实际值(realvalue)。举个例子,网络设备向终端设备指示天线端口数偏置为3,或者,网络设备向终端设备指示天线端口数偏置为-3。该天线端口数偏置可以用于终端设备确定第二天线端口数,第二天线端口数可以用于终端设备确定功率偏置。一种可能的方式,当该天线端口数偏置为绝对值时,网络设备还应向终端设备指示第一天线端口数与第二天线端口数的大小关系。另一种可能的方式,网络设备与终端设备可以预定义计算规则:当网络设备向终端设备指示的天线端口偏置大于0时,终端设备默认第一天线端口数大于第二天线端口数。
网络设备可以通过天线端口数或者天线端口偏置向终端设备指示功率偏置,提升了网络设备指示功率变化的灵活性。
显示指示方式:第二信息的内容包括功率偏置的值。
该功率偏置可以是绝对值,也可以是实际值。一种可能的方式,当该功率偏置为绝对值时,网络设备还应向终端设备指示第一发送功率与第二发送功率的大小关系。另一种可能的方式,网络设备与终端设备可以预定义计算规则:当网络设备向终端设备指示的功率偏置大于0时,终端设备默认第一发送功率大于第二发送功率。
网络设备向终端设备直接指示功率偏置值,进一步提高了终端设备确定功率偏置的效率。
可选地,第二信息可以承载于广播消息,也可以是组播消息,又或者可以是小区级信息。或者说,网络设备可以通过第二信息向多个UE指示CSI-RS的功率偏置。一种示例中,第二信息为组无线网络临时标识(goup radio network temporary identidier,G-RNTI)加扰的信息,该网络设备向一组UE中的每个UE指示的CSI-RS的功率偏置,该方式下,网络设备将功率变化信息通过一条第二信息通知给多个终端设备,从而节省网络设备的信令开销。
步骤203:终端设备根据第一发送功率和功率偏置,确定第一CSI-RS的第二发送功 率。
可以理解的是,终端设备在确定第二发送功率前还需要确定第二天线端口数。下面根据第二信息的不同情况对终端设备确定第二天线端口数的方法进行陈述。
对应于步骤202中的隐式指示方式1,当第二信息的内容包括第二天线端口数时,终端设备无需计算,直接根据第二信息确定第二天线端口数。示例地,第二信息指示第一天线端口数为5,则终端设备确定第一天线端口数为5。
对应于步骤202中的隐式指示方式2,网络设备向终端设备发送第二信息,第二信息指示天线端口数偏置,分为以下几种情况:
情况1:第二信息包括的天线端口数偏置为绝对值时,网络设备与终端设备预配置计算规则,当网络设备向终端设备指示的天线端口数偏置大于0时,终端设备默认第一天线端口数大于第二天线端口数。则,当终端设备接收到的天线端口偏置大于0时,在第一天线端口数的基础上减去该天线端口数偏置即可得到第二天线端口数。示例地,天线端口数偏置为3,网络设备向终端设备指示第一天线端口数为6,则终端设备可以根据该天线端口数偏置与该第二天线端口数确定第二天线端口数为6-3=3。
情况2:第二信息包括的天线端口数偏置为绝对值时,网络设备还指示终端设备第二天线端口数与第一天线端口数的大小关系。示例地,网络设备指示天线端口数偏置为2,并指示第一天线端口数大于第二天线端口数,第一天线端口数为7,则,终端设备计算第二天线端口数为7-2=5。另一个示例,网络设备向终端设备指示的天线端口偏置为2,第一天线端口数为7,并指示第二天线端口数大于第一天线端口数,则,终端设备计算第二天线端口数为7+2=9。
情况3:当网络设备向终端设备指示的天线端口数偏置为实际值时,终端设备根据第二信息,第一天线端口数,就可以直接确定第二天线端口数。示例地,网络设备与终端设备预定义,终端设备可以根据该天线端口数偏置直接进行计算,得到第一天线端口数。比如,当网络设备向终端设备指示天线端口偏置为3,第一天线端口数为5,终端设备计算第二天线端口数为5+3=8;当网络设备向终端设备指示天线端口偏置为-3,第一天线端口数为5,终端设备计算第二天线端口数为5+(-3)=2。
应理解,终端设备计算第二天线端口数的规则可以与网络设备预配置,终端设备在接收到第二信息时根据预配置的规则进行计算。
终端设备根据上述方式确定第二天线端口数后,可以根据下述方法进一步确定第二发送功率:
示例地,终端设备确定第一天线端口数与第二天线端口数的比值,根据第一发送功率,和,第一天线端口数与第二天线端口数的比值,确定第二发送功率。比如,终端设备确定第一天线端口为64,根据第二信息确定第二天线端口数为32,终端设备确定第二线端口数与第一天线端口数的比值为1/2,第一发送功率的数值为200,则终端设备确定第二发送功率的数值的一种方法为:200*1/2=100。应理解,允许第二发送功率的取值存在一定的误差,比如,第二发送功率实际取值可能为100.5,等等。还应理解,第二线端口数与第一天线端口数的比值也可能只作为用于确定第二发送功率的多个参数中的一个参数。本申请实施例对此不做限定。
对应于步骤202中的显示指示方式,当第二信息用于指示功率偏置时,终端设备根据 功率偏置确定第二发送功率,示例地,
情况A:该功率偏置为第二发送功率与第一发送功率的差值时,终端设备根据第一发送功率和功率偏置确定第二发送功率,可以参考步骤203中终端设备根据天线端口数偏置确定第一天线端口数的方法,此处不再赘述。举个例子,第一发送功率的数值为200,功率偏置为50,且第一发送功率大于第二发送功率,则第二发送功率的数值为150。
可选地,网络设备通过第二信息指示功率偏置时,终端设备可以根据该功率偏置,对第一CSI-RS的发送功率进行重配置。
以步骤201中的信道状态信息资源配置为例,当功率偏置为第一发送功率与第二发送功率的差值offset0时,终端设备接收到功率偏置后,可以修改powerControlOffsetSS,示例地,修改后的powerControlOffsetSS为:原来的powerControlOffsetSS+offset0。
基于上述步骤201至203的描述,在一个可选的实施例中,该方法还可以包括步骤204:终端设备确定第二参考信号接收功率。
其中,第二参考信号接收功率为与第二发送功率对应的第一CSI-RS的参考信号接收功率,换句话说,第二参考信号接收功率为网络设备发送天线的端口数发生变化之后,终端设备接收第一CSI-RS的接收功率。
终端设备确定第二参考信号接收功率可以有以下两种方式:
方式1:终端设备根据第二发送功率与所述第一发送功率的差值,和,第一参考信号接收功率RSRP确定第二参考信号接收功率RSRP。
第一RSRP为与第一发送功率对应的第一CSI-RS的参考信号接收功率,换句话说,第一RSRP为网络设备发送天线的端口数发生变化之前,终端设备接收第一CSI-RS的接收功率。
其中,第二发送功率与第一发送功率的差值可以根据步骤202中的第二信息确定,比如,第二信息指示功率偏置,当该功率偏置为第一发送功率与第二发送功率的差值时,终端设备可以直接根据该第二信息确定第二发送功率和第一发送功率的差值;当该功率偏置为基准值与第二发送功率的差值时,终端设备可以根据基准值与第二发送功率的差值,和第一发送功率,确定第二发送功率和第一发送功率的差值。
终端设备确定第二参考信号接收功率的一个示例,终端设备测量第一CSI-RS得到第一RSRP,将第一RSRP与第二发送功率和第一发送功率的差值求和即可得到第二参考信号接收功率。比如,第一RSRP的数值为200,第二发送功率和第一发送功率的差值为-30,则可以得到第二参考信号接收功率的数值为200+(-30)=170。又或者,第二发送功率和第一发送功率的差值为30,则可以得到第二参考信号接收功率的数值为200+30=230。
方式2:终端设备可以根据第二CSI-RS获取第二参考信号接收功率。
第二CSI-RS可以是网络设备可以指示的CSI-RS,比如,网络设备向终端设备发送DCI,该DCI用于指示一个CSI-RS,即指示一个CSI-RS的测量资源。可以理解的是,该DCI可以是第二信息。也就是说,第二信息还用于指示第二CSI-RS。应理解,第二信息还指示第二CSI-RS的测量资源。可选地,第二CSI-RS与第一CSI-RS的资源标识(identifier,ID)可以不同。
第二CSI-RS也可以是与第一CSI-RS相邻的下一个CSI-RS,这里的相邻指的是在网络设备为终端设备配置了周期性发送CSI-RS或者激活的半静态CSI-RS的情况下,与第一 CSI-RS相邻的下一个CSI-RS。比如,网络设备在发送第一CSI-RS的周期的下一个周期发送的CSI-RS。应理解,这种情况下,第一CSI-RS与第二CSI-RS除了位于不同的时间单元、发送功率不同之外,其他CSI-RS配置可以相同,比如测量资源ID、测量资源的时域位置和频域位置等。
终端设备根据第二CSI-RS获取第二参考信号接收功率,可以是,终端设备在第二CSI-RS的资源上对参考信号进行测量,从而获取第二参考信号接收功率。
可选地,终端设备确定第二参考信号接收功率后,可以根据第二参考信号确定路损。示例地,终端设备通过第二参考信号接收功率和第二发送功率确定路损。比如,第二参考信号接收功率的数值为8,第二发送功率的数值为10,则路损=第二发送功率-第二参考信号接收功率=10-8=2。
上述路损可以用于以下几个方面:
方面一:终端设备根据路损确定上行信息的发送功率,终端设备可以通过该发送功率发送PUCCH和/或PUSCH。
方面二:终端设备根据路损确定功率余量。示例地,终端设备根据路损确定该次发送上行信息的功率后,再根据终端设备最大发送功率和该次发送上行信息的功率确定功率余量。示例地,终端设备可以确定发送该次上行信息时采用的功率为8,假设该终端设备最大发送功率为10,则,终端设备可以确定功率余量为10-8=2。
终端设备可以将根据路损确定的功率余量上报给网络设备。一种可能的实现,该功率余量可以承载于上行信息中。
在一个可选的实施例中,该方法还可以包括步骤205:终端设备更新波束测量结果以及重新选择波束。
上述第一CSI-RS可以是网络设备通过第一波束发送的CSI-RS。第一波束为网络设备用于通信的至少一个波束中的一个。N个波束可以与N个CSI-RS一一对应。也就是说,网络设备可以向终端设备发送多个CSI-RS,不同的CSI-RS位于不同的波束上。这些CSI-RS可以通过不同的资源ID来区分。此时网络设备和终端设备可以用这些CSI-RS进行波束的测量和选择。
终端设备更新波束测量结果可以有以下方式:
方式A:终端设备重新进行波束测量和选择。
示例地,终端设备可以获取第三RSRP,第三RSRP为在天线端口数发生变化后对应的参考信号接收功率。波束#A为多个波束中的一个,比如,波束#A用于发送第三CSI-RS,波束#B用于发送第四CSI-RS,波束#C用于发送第五CSI-RS等等。终端设备在上述至少一个波束中选择用于信息传输的波束,该重新选择的波束对应的参考接收功率为至少一个波束对应的参考信号接收功率中最大的参考信号接收功率。举个例子,终端设备通过信道测量,获取波束#A发送第三CSI-RS的参考信号接收功率为10,波束#B发送第四CSI-RS的参考信号接收功率为9,波束#C发送第五CSI-RS的参考信号接收功率为13,则终端设备可以选择波束#C发送或者接收待传输信息,即波束#C为终端设备重新选择的用于信息传输的波束。
其中,终端设备对上述至少一个波束进行信道测量的时刻可以是网络设备指示的,也可以是根据网络设备为终端设备预配置的测量周期确定的。具体的方式可以参考步骤203 中的方式2的相关说明,此处不再赘述。
方式B:终端设备根据确定的第二参考信号接收功率,重新进行波束选择。
示例地,终端设备在接收第二信息之前,确定了多个波束的参考信号接收功率。在接收到第二信息后,根据步骤203中的方式1确定第二参考信号接收功率,根据该第二参考信号接收功率以及之前确定的除第二参考信号接收功率对应的波束以外的波束的参考信号接收功率,选择波束。具体地,终端设备确定波束#1的参考信号接收功率为6,波束#2的第一RSRP为8,波束#3的参考信号接收功率为5,接收到第二信息后,通过功率偏置计算波束#2的第二参考信号接收功率为4,则可以选择波束#1发送或者接收待传输信息。
应理解,上述数值只作为一种示例而非限定。
在一个可选的实施例中,该方法还可以包括步骤206:终端设备在重新选择波束之前,还可以触发波束失败恢复流程。示例地,终端设备可以根据第二信息触发波束失败恢复流程。比如,网络设备与终端设备预定义,当终端设备接收到第二信息时,或者,当网络设备发送第二信息时,即可触发波束失败恢复流程。本申请对此不做限定。
可选地,终端设备可以在当功率偏置大于或等于第一门限,或者第一路损与第二路损的差值大于或等于第一门限时,执行步骤201-步骤203的方法。其中第一路损为天线端口数发生变化前终端设备确定的路损,第二路损为天线端口数发生变化之后终端设备确定的路损。第一门限可以是网络设备指示给终端设备的,比如,网络设备通过RRC信令向终端设备指示该门限为2db,等等。该门限也可以是网络设备与终端设备预定义的,本申请对此不做限定。举个例子,网络设备与终端设备预定义该门限为5,当功率偏置为7,大于该门限,则终端设备可以执行步骤201-步骤203的方法。
该方法中通过网络设备向终端设备指示网络设备发送功率的变化,使得终端设备及时确定变化后的CSI-RS的发送功率,能够提高终端设备信道测量的准确度,进一步提升通信质量。
本申请实施例提出又一种通信方法,该方法中网络设备向终端设备指示的功率偏置为基准值与第二发送功率的差值,如图3所示,该方法可以包括以下步骤:
步骤301:网络设备向终端设备发送第一信息,对应地,终端设备接收该第一信息。
步骤301可以参考步骤201的描述,此处不再赘述。
步骤302:网络设备向终端设备发送第二信息,对应地,终端设备接收该第二信息。
第二信息用于指示第一CSI-RS的功率偏置。该功率偏置可以是基准值与第一CSI-RS的第二发送功率的差值。该基准值可以是预定义的。该基准值也可以是网络设备指示给终端设备的,示例地,该基准值可以是SSB的发送功率。
步骤303:终端设备根据基准值和功率偏置,确定第一CSI-RS的第二发送功率。
一个示例,基准值为预定义的值,功率偏置为60,第一发送功率为200,基准值为140,且第二发送功率小于基准值,则终端设备可以确定第二发送功率为140-60=80。具体的,可以参考步骤203中终端设备根据天线端口数偏置确定第一天线端口数的方法,此处不再赘述。
另一个示例,基准值为SSB的发送功率时,比如为50,功率偏置为-10,则终端设备可以确定第二发送功率为50+(-10)=40。应理解,该功率偏置可以是绝对值,可以是实际值,具体的指示方式和终端设备的确定方法可以参考步骤203中情况A的相关说明,不 再赘述。可选地,网络设备通过第二信息指示功率偏置时,终端设备可以根据该功率偏置,对第一CSI-RS的发送功率进行重配置。以步骤201中的信道状态信息资源配置为例,当功率偏置为基准值与第二发送功率的差值offset1时,如果基准值为SSB信号的发送功率,终端设备接收到功率偏置后,可以将powerControlOffsetSS修改为offset1。
可选地,终端设备可以在当功率偏置大于或等于第一门限,或者第一路损与第二路损的差值大于或等于第一门限时,执行步骤301-步骤303的方法。具体地,可以参考图2所示方法中的相关说明。
该方法中,终端设备可以根据基准值和功率偏置确定第二发送功率,提高了终端设备确定第二发送功率的灵活性。
应理解,在可能的实施例中,该方法也可以结合步骤204、步骤205或者步骤206中的至少一项。
本申请实施例提出一种通信方法,以RRC信令作为第一信息的一种示例,以DCI作为第二信息的一种示例,以gNB作为网络设备的一个示例,以UE作为终端设备的一个示例,如图4所示,该方法可以包括以下步骤:
步骤501:gNB向UE发送RRC信令,对应地,UE接收该RRC信令。
该RRC信令用于指示第一CSI-RS的第一发送功率。该RRC信令还用于配置发送CSI-RS的周期以及第一天线端口数。具体地,可以参考步骤201的相关说明,此处不再赘述。该RRC信令还用于指示第一门限为3db。
步骤502:gNB向UE发送CSI-RS#A,对应地,UE接收该CSI-RS#A。
该CSI-RS#A为第一CSI-RS的一个示例。具体的解释可以参考步骤201中第一CSI-RS的相关说明。
步骤503:UE根据CSI-RS#A确定RSRP#A。
该RSRP#A为第一RSRP的一个示例。具体的解释可以参考步骤203中第一RSRP的相关说明。
步骤504:gNB向UE发送DCI1,对应地,UE接收该DCI1。
该DCI1包括功率偏置的实际值。应理解,DCI1包括功率偏置的实际值只作为第二信息指示功率偏置的一个示例。具体地,可以参考步骤202中的相关说明,此处不再赘述。
步骤505:UE根据第一发送功率和功率偏置确定第二发送功率。
其中,UE根据第一发送功率和功率偏置确定第二发送功率的方式可以参考步骤203中的情况A的相关说明。
步骤506:gNB向UE发送CSI-RS#B,对应地,UE接收该CSI-RS#B。
该CSI-RS#B为第二CSI-RS的一个示例。该CSI-RS#B为与CSI-RS#A相邻的下一个CSI-RS。具体的解释可以参考步骤203中第二CSI-RS的相关说明。
步骤507:UE根据CSI-RS#B确定RSRP#B。
其中,UE可以根据CSI-RS#B进行信道测量,获取RSRP#B。
步骤508:UE向gNB发送物理随机接入信道(physical random access channel,PRACH),对应地,gNB接收该PRACH。
UE可以根据DCI1向gNB发送PRACH。比如,DCI1本身可以作为触发PRACH的条件,gNB与UE预定义,一旦UE接收到DCI1,就向gNB发送PRACH,触发波束失 败恢复流程。
步骤509:UE在多个波束中根据RSRP的大小关系选择波束#A。
其中多个波束中除了RSRP#B对应的波束之外的波束的RSRP,可以是UE通过重新测量获取的,也可以是在步骤503中与RSRP#A同步确定的,本申请实施例对此不做限定。波束#A可以是多个波束中最大RSRP对应的波束。具体地,可以参考步骤203中方式A和方式B的相关说明。
步骤310:UE在波束#A上向gNB发送数据,对应地,gNB接收该数据。
应理解,UE发送数据的资源为gNB调度的,比如,gNB通过步骤504中的DCI1指示发送数据的时频资源。应理解,数据仅作为上行信息的一个示例而非限定。
该方法中,gNB向UE及时指示功率变化,UE确定变化后的CSI-RS的发送功率,进一步确定变化了的RSRP,提高了信道测量的准确度,并且,UE重新选择波束进行数据的接收,提高了通信质量。
本申请实施例提出一种通信方法,以RRC信令作为第一信息的一种示例,以DCI作为第二信息的一种示例,以gNB作为网络设备的一个示例,以UE作为终端设备的一个示例,如图5所示,该方法可以包括以下步骤:
步骤501:gNB向UE发送RRC信令,对应地,UE接收该RRC信令。
该RRC信令用于指示第一CSI-RS的第一发送功率。该RRC信令还用于配置发送CSI-RS的周期以及第一天线端口数。具体地,可以参考步骤201的相关说明,此处不再赘述。
步骤502:gNB向UE发送CSI-RS#C,对应地,UE接收该CSI-RS#C。
该CSI-RS#C为第一CSI-RS的一个示例。具体的解释可以参考步骤201中第一CSI-RS的相关说明。
步骤503:UE根据CSI-RS#C确定RSRP#C。
该RSRP#C为第一RSRP的一个示例。具体的解释可以参考步骤203中第一RSRP的相关说明。
步骤504:gNB向UE发送DCI2,对应地,UE接收该DCI2。
该DCI2包括第二天线端口数。应理解,DCI2包括第二天线端口数只作为第二信息指示功率偏置的一个示例。该DCI2的RNTI为组RNTI。具体地,可以参考步骤202中的相关说明,此处不再赘述。
步骤505:UE根据第一发送功率,和,第一天线端口与第二天线端口的比值,确定第二发送功率。
其中,UE根据第一发送功率,和,第一天线端口与第二天线端口的比值,确定第二发送功率的方式可以参考步骤203中隐式指示方式1的相关说明。
步骤506:gNB向UE发送CSI-RS#D,对应地,UE接收该CSI-RS#D。
该CSI-RS#D为第二CSI-RS的一个示例。该CSI-RS#D为gNB为UE指示的CSI-RS。该CSI-RS#D的发送时机可以是在CSI-RS#C之后,在下一个周期的CSI-RS发送之前。该CSI-RS#D可以是步骤504中的DCI2指示的。具体的解释可以参考步骤203中第二CSI-RS的相关说明。
步骤507:UE根据第二发送功率和CSI-RS#D确定路损。
具体地,UE确定路损的方式可以参考步骤203中的相关说明。
步骤508:UE确定功率余量。
步骤509:UE向gNB发送功率余量,对应地,gNB接收该功率余量。
该功率余量可以承载在上行信道中。UE发送功率余量的资源为gNB调度的,比如,gNB通过步骤504中的DCI2指示发送上行信息的时频资源。
该方法中,gNB向UE及时指示功率变化,UE确定变化后的CSI-RS的发送功率,进一步确定变化了的路损,并上报给gNB,提高了信道测量的准确度,通信双方及时对齐测量结果,提高了通信质量。
可以理解的是,为了实现上述实施例中功能,网络设备和终端设备包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图6和图7为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端设备或网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的终端120a-120j中的一个,也可以是如图1所示的基站110a或110b,还可以是应用于终端设备或网络设备的模块(如芯片)。
如图6所示,通信装置600包括处理单元610和收发单元620。通信装置600用于实现上述图2至图4中所示的方法实施例中终端设备或网络设备的功能。
当通信装置600用于实现图2所示的方法实施例中终端设备的功能时:收发单元620用于接收第一信息和第二信息;处理单元610用于确定第二发送功率;收发单元620还可以用于发送上行信息,比如,功率余量。
当通信装置600用于实现图2所示的方法实施例中网络设备的功能时:收发单元620用于发送第一信息和第二信息;收发单元620还用于接收功率余量。
有关上述处理单元610和收发单元620更详细的描述可以直接参考图2至图4所示的方法实施例中相关描述直接得到,这里不加赘述。
如图7所示,通信装置700包括处理器710和接口电路720。处理器710和接口电路720之间相互耦合。可以理解的是,接口电路720可以为收发器或输入输出接口。可选的,通信装置700还可以包括存储器740,用于存储处理器710执行的指令或存储处理器710运行指令所需要的输入数据或存储处理器710运行指令后产生的数据。
当通信装置700用于实现图2至图5所示的方法时,处理器710用于实现上述处理单元610的功能,接口电路720用于实现上述收发单元620的功能。
当上述通信装置为应用于终端的芯片时,该终端芯片实现上述方法实施例中终端的功能。该终端芯片从终端中的其它模块(如射频模块或天线)接收信息,该信息是基站发送给终端的;或者,该终端芯片向终端中的其它模块(如射频模块或天线)发送信息,该信息是终端发送给基站的。
当上述通信装置为应用于基站的模块时,该基站模块实现上述方法实施例中基站的功能。该基站模块从基站中的其它模块(如射频模块或天线)接收信息,该信息是终端发送 给基站的;或者,该基站模块向基站中的其它模块(如射频模块或天线)发送信息,该信息是基站发送给终端的。这里的基站模块可以是基站的基带芯片,也可以是DU或其他模块,这里的DU可以是开放式无线接入网(open radio access network,O-RAN)架构下的DU。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以在硬件中实现,也可以在可由处理器执行的软件指令中实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于基站或终端中。处理器和存储介质也可以作为分立组件存在于基站或终端中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
根据说明书是否用到可选:本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。“包括A,B和C中的至少一个”可以表示:包括A;包括B;包括C;包括A和 B;包括A和C;包括B和C;包括A、B和C。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (28)

  1. 一种通信方法,其特征在于,包括:
    接收第一信息,所述第一信息用于配置第一信道状态信息参考信号CSI-RS的第一发送功率;
    接收第二信息,所述第二信息用于指示所述第一CSI-RS的功率偏置;
    根据第一发送功率和所述功率偏置,确定所述第一CSI-RS的第二发送功率。
  2. 根据权利要求1所述的方法,其特征在于,所述第二信息用于指示所述功率偏置,包括:
    所述第二信息为所述第一发送功率与所述第二发送功率的差值。
  3. 根据权利要求1所述的方法,其特征在于,所述第二信息用于指示所述功率偏置,包括:所述第二指示信息为第二天线端口数,所述第二天线端口数为所述第一CSI-RS在第二发送功率下的端口数,
    所述方法还包括:
    根据所述第二天线端口数和第一天线端口数,确定所述第一CSI-RS的功率偏置,所述第一天线端口数为所述第一CSI-RS在第一发送功率下的天线端口数。
  4. 根据权利要求1所述的方法,其特征在于,所述第二信息用于指示所述功率偏置,包括:所述第二信息为天线端口数偏置,所述天线端口数偏置为第一天线端口数与第二天线端口数的差值,所述第一天线端口数为所述第一CSI-RS在第一发送功率下的天线端口数,所述第二天线端口数为所述第一CSI-RS在第二发送功率下的端口数,
    所述根据第一发送功率和所述功率偏置,确定第二发送功率,包括:
    根据所述第一发送功率,和,所述第一天线端口数与所述第二天线端口数的比值,确定所述第二发送功率。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    确定所述第一发送功率下的所述第一CSI-RS的第一参考信号接收功率RSRP;
    根据所述功率偏置和所述第一RSRP确定与所述第二发送功率对应的所述第一CSI-RS的第二参考信号接收功率。
  6. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    根据第二CSI-RS确定与所述第二发送功率对应的第二参考信号接收功率,所述第二CSI-RS为与所述第一CSI-RS相邻的下一个CSI-RS,或者,所述第二CSI-RS为所述第二信息指示的CSI-RS。
  7. 根据权利要求6所述的方法,其特征在于,在所述根据第二CSI-RS确定与所述第二发送功率对应的第二参考信号接收功率之前,所述方法还包括:
    根据所述第二信息发送物理随机接入信道,所述物理随机接入信道用于触发波束失败恢复流程。
  8. 根据权利要求5至7中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述第二参考信号接收功率和所述第二发送功率确定所述第二路损。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    根据所述第二路损确定发送上行信道的第三发送功率。
  10. 根据权利要求8或9所述的方法,其特征在于,所述方法还包括:
    根据所述第二路损确定功率余量;
    上报所述功率余量。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述功率偏置大于或等于第一门限。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述第二信息为下行控制信息。
  13. 根据权利要求12所述的方法,其特征在于,所述第二信息通过组无线网络临时标识G-RNTI加扰。
  14. 一种通信方法,其特征在于,
    发送第一信息,所述第一信息用于配置第一信道状态信息参考信号CSI-RS的第一发送功率;
    发送第二信息,所述第二信息用于指示所述第一CSI-RS的功率偏置。
  15. 根据权利要求14所述的方法,其特征在于,所述第二信息用于指示所述功率偏置,包括:
    所述第二信息为所述第一发送功率与所述第二发送功率的差值。
  16. 根据权利要求14所述的方法,其特征在于,所述第二信息用于指示所述功率偏置,包括:
    所述第二指示信息为第二天线端口数,所述第二天线端口数为所述第一CSI-RS在第二发送功率下的端口数。
  17. 根据权利要求14所述的方法,其特征在于,所述第二信息用于指示所述功率偏置,包括:
    所述第二信息为天线端口数偏置,所述天线端口数偏置为第一天线端口数与第二天线端口数的差值,所述第一天线端口数为所述第一CSI-RS在第一发送功率下的天线端口数,所述第二天线端口数为所述第一CSI-RS在第二发送功率下的端口数。
  18. 根据权利要求14至17中任一项所述的方法,其特征在于,所述方法还包括:
    接收物理随机接入信道,所述物理随机接入信道用于触发波束失败恢复流程。
  19. 权利要求14至18中任一项所述的方法,其特征在于,所述方法还包括:
    接收功率余量,所述功率余量是根据第二路损确定的,所述路损是根据所述第二参考信号接收功率和所述第二发送功率确定的。
  20. 根据权利要求14至19中任一项所述的方法,其特征在于,所述功率偏置大于或等于第一门限。
  21. 根据权利要求14至20中任一项所述的方法,其特征在于,所述第二信息为下行控制信息。
  22. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    通过组无线网络临时标识G-RNTI加扰所述第二信息。
  23. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的 信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至13中任一项所述的方法的模块。
  24. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现,或者权利要求14至22中任一项所述的方法的模块。
  25. 一种计算机可读存储介质,其特征在于,所述存储介质中存储指令,当所述指令被通信装置执行时,实现如权利要求1至13中任一项所述的方法,或者权利要求14至22中任一项所述的方法。
  26. 一种芯片系统,该芯片系统包括处理器,还可以包括存储器,所述处理器用于执行所述存储器中存储的计算机程序或指令,使得芯片系统执行上述权利要求1至13中任一项所述的方法。
  27. 一种芯片系统,该芯片系统包括处理器,还可以包括存储器,所述处理器用于执行所述存储器中存储的计算机程序或指令,使得芯片系统执行上述权利要求14至22中任一项所述的方法。
  28. 一种通信系统,包括至少一个如权利要求23所述的通信装置和/或至少一个如权利要求24所述的通信装置。
PCT/CN2023/078662 2022-03-04 2023-02-28 一种通信方法、装置及系统 WO2023165460A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210209279.9 2022-03-04
CN202210209279.9A CN116743283A (zh) 2022-03-04 2022-03-04 一种通信方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2023165460A1 true WO2023165460A1 (zh) 2023-09-07

Family

ID=87882976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078662 WO2023165460A1 (zh) 2022-03-04 2023-02-28 一种通信方法、装置及系统

Country Status (2)

Country Link
CN (1) CN116743283A (zh)
WO (1) WO2023165460A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108271240A (zh) * 2017-01-02 2018-07-10 上海朗帛通信技术有限公司 一种用于功率调整的ue、基站中的方法和装置
CN111586874A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 一种天线参数调整的方法以及相关装置
CN112398606A (zh) * 2019-08-14 2021-02-23 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2021147111A1 (zh) * 2020-01-23 2021-07-29 华为技术有限公司 通信方法和通信装置
WO2021168806A1 (zh) * 2020-02-28 2021-09-02 华为技术有限公司 信道状态信息测量的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108271240A (zh) * 2017-01-02 2018-07-10 上海朗帛通信技术有限公司 一种用于功率调整的ue、基站中的方法和装置
CN111586874A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 一种天线参数调整的方法以及相关装置
CN112398606A (zh) * 2019-08-14 2021-02-23 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2021147111A1 (zh) * 2020-01-23 2021-07-29 华为技术有限公司 通信方法和通信装置
WO2021168806A1 (zh) * 2020-02-28 2021-09-02 华为技术有限公司 信道状态信息测量的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "Common parameters on CSI-RS resource set configuration", 3GPP TSG RAN WG1 MEETING #93 R1-1807195, 20 May 2018 (2018-05-20), XP051442392 *

Also Published As

Publication number Publication date
CN116743283A (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
US11552693B2 (en) Dynamic inter-beam-interference indication, configuration and communication in wireless networks
WO2018082641A1 (zh) 传输信息的方法和设备
WO2020164518A1 (zh) 功率控制方法及功率控制装置
US20220361195A1 (en) Channel State Information Reporting for Multi-Transmission-Reception-Point Operation
WO2022077387A1 (zh) 一种通信方法及通信装置
WO2022252963A1 (zh) 信道状态信息的测量方法和装置
US11963055B2 (en) Neighbor cell measurements
WO2022022517A1 (zh) 确定传输功率的方法及装置
WO2022267876A1 (zh) 一种波束管理的方法和装置
CN117501779A (zh) 支持具有不同面板能力的多面板ue操作
CN112351451A (zh) 波束失败恢复方法及装置
WO2023005989A1 (zh) 一种参考信号资源确定的方法及装置
WO2022253150A1 (zh) 数据传输方法及装置
WO2023165460A1 (zh) 一种通信方法、装置及系统
US20240205841A1 (en) Power headroom report (phr) triggering and reporting for multiple transmission-reception point (multi-trp) physical uplink shared channel (pusch) repetition operation
WO2023021388A1 (en) Apparatus and method for measurement reporting for l1/l2 mobility
WO2023125221A1 (zh) 一种信道质量指示的上报方法和装置
WO2024032327A1 (zh) 信息传输方法、装置和系统
WO2024067441A1 (zh) 通信方法、装置和系统
WO2023138507A1 (zh) 一种通信方法、装置及系统
WO2023193771A1 (zh) 一种通信方法、装置及系统
WO2024060255A1 (en) Methods, devices, and medium for communication
WO2023197326A1 (en) Methods, devices, and computer readable medium for communication
WO2024149042A1 (zh) 通信方法和通信装置
WO2024164121A1 (en) Devices and methods for communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23762859

Country of ref document: EP

Kind code of ref document: A1