WO2022253150A1 - 数据传输方法及装置 - Google Patents

数据传输方法及装置 Download PDF

Info

Publication number
WO2022253150A1
WO2022253150A1 PCT/CN2022/095813 CN2022095813W WO2022253150A1 WO 2022253150 A1 WO2022253150 A1 WO 2022253150A1 CN 2022095813 W CN2022095813 W CN 2022095813W WO 2022253150 A1 WO2022253150 A1 WO 2022253150A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
pusch
configuration
bwp
dci
Prior art date
Application number
PCT/CN2022/095813
Other languages
English (en)
French (fr)
Inventor
黄甦
夏金环
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22815196.5A priority Critical patent/EP4336936A1/en
Priority to BR112023025108A priority patent/BR112023025108A2/pt
Publication of WO2022253150A1 publication Critical patent/WO2022253150A1/zh
Priority to US18/522,412 priority patent/US20240107529A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/10Open loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the technical field of communications, and in particular to a data transmission method and device.
  • the sounding reference signal (SRS) configuration configured by the base station needs to be included in the currently active (bandwidth part, BWP) of the terminal device, so that the terminal device can perform data transmission in the uplink (uplink, UL) BWP. transmission and sending of SRS.
  • BWP bandwidth part
  • the base station may send downlink control information to the terminal device on the original BWP, so as to schedule uplink and downlink data on the target BWP. Further, the terminal device switches to the target BWP, completes uplink data transmission and/or downlink data reception, and resides on the target BWP until receiving downlink control information for next switching BWP.
  • the terminal device resides on the target BWP, the SRS on the original BWP is no longer sent, but the SRS on the target BWP is sent.
  • the base station cannot obtain the channel information on the target BWP.
  • the present application provides a data transmission method and device, which enable a base station to obtain channel information on a BWP to be switched by a UE in advance.
  • the embodiment of the present application provides a data transmission method, the method comprising:
  • the configuration information including an association relationship between a first sounding reference signal (sounding reference signal, SRS) configuration and one or more physical uplink shared channel (physical uplink shared channel, PUSCH) configurations, the first SRS configuration
  • the first bandwidth part (bandwidth part, BWP) where it is located is different from the BWP where each PUSCH configuration is located; the first SRS is sent on the first BWP according to the first SRS configuration; the first SRS is sent according to the first PUSCH configuration A PUSCH, where the first PUSCH configuration is one of the one or more PUSCH configurations.
  • the method provided in the embodiment of the present application may be applied to a communication device, where the communication device may be a terminal device.
  • the base station when the UE switches BWPs, if the UE still sends the SRS on the original BWP, the base station cannot obtain the channel information on the target BWP.
  • the UE when the UE sends the first SRS, it can skip the UE's currently activated BWP and send the first SRS on the first BWP (the first BWP is not the UE's currently activated BWP). Moreover, the sending of the first SRS may not be affected by BWP switching, that is, no matter which BWP the UE is on, the sending of the first SRS can be guaranteed.
  • the embodiment of the present application can use the first SRS independent of data scheduling, so that the first SRS is independent of the transmission of the SRS for data BWP switching, so that the base station can obtain the channel information on the BWP to be switched before the UE performs BWP switching (also may be referred to as channel conditions).
  • the first SRS is used for positioning.
  • the first SRS may be used for multiple input multiple output (multiple input multiple output, MIMO), or the first SRS may be used for positioning. That is to say, the first SRS shown in the embodiment of the present application can be either the SRS in MIMO (such as the SRS introduced in FIG. 2a below), or the SRS in positioning (such as the SRS introduced in FIG. 2b below).
  • sending the first PUSCH includes: using the same antenna port as the first SRS to send the first PUSCH; and/or, using the same open loop as the first SRS The power control parameters are sent on the first PUSCH.
  • the first PUSCH configuration is further associated with a second SRS configuration
  • the method further includes: receiving a first DCI, where the first DCI carries first indication information, and the first indication information It is used to indicate that the first PUSCH is associated with the first SRS configuration or associated with the second SRS configuration.
  • the BWP where the second SRS configuration is located is the same as the BWP where the first PUSCH configuration is located.
  • the first indication information is used to indicate that the first PUSCH is associated with the first SRS configuration, including: the first PUSCH is associated with all resource sets in the first SRS configuration; or, the first indication information is used to indicate the first The PUSCH is associated with one or more SRS resource sets in the first SRS configuration; or, the first indication information is used to indicate that the first PUSCH is associated with one or more SRS resource sets in one SRS resource set in the first SRS configuration.
  • the first DCI may further include an SRI
  • the SRI is used to indicate that the first SRS resource set is associated with the first SRS resource set.
  • An SRS resource associated with the PUSCH It can be understood that, for the description of the first indication information being used to indicate the association between the first PUSCH and the second SRS configuration, reference may be made to the above description about the association between the first PUSCH and the first SRS configuration, which will not be described in detail in this embodiment of the present application.
  • the first SRS configuration includes configuration information of multiple SRS resources
  • the first DCI also carries a sounding reference signal resource indicator (SRS resource indicator, SRI), and the SRI is used to indicate An SRS resource associated with the first PUSCH among the multiple SRS resources.
  • SRS resource indicator SRI
  • the configuration information that the first SRS configuration includes multiple SRS resources includes: the first SRS configuration includes an SRS resource set (such as the first SRS resource set), and the SRS resource set includes multiple SRS resources.
  • the first SRS configuration includes multiple SRS resource sets, and each SRS resource set includes one or more SRS resources.
  • the SRI is further used to indicate an open-loop power control parameter and/or a closed-loop power control state of the first PUSCH.
  • the sending the first SRS on the first BWP according to the first SRS configuration includes: switching from the second BWP to the first BWP, and according to the first SRS configuration Send the first SRS on the first BWP, the second BWP is one of the BWPs where the one or more PUSCH configurations are associated, and the transmission power adjustment amount of the first SRS is the same as the first SRS It is related to the transmission power adjustment amount indicated by the transmission control power TPC (transmission power control) command value (TPC command value) carried by the DCI corresponding to one or more PUSCHs on the BWP.
  • TPC transmission power control
  • the DCI corresponding to the PUSCH on the second BWP is not the DCI used to schedule the PUSCH.
  • each of the one or more PUSCHs on the second BWP corresponds to one or more DCIs.
  • the method further includes: sending the transmission power adjustment amount of the first SRS and the TPC command value indication of the TPC information carried by the DCI received on each BWP among the one or more BWPs
  • the power adjustment amount is related; or, the transmission power adjustment amount of the first SRS is related to the transmission power adjustment amount indicated by the TPC information TPC command value carried in the DCI received by the terminal device on one or more configured carrier CCs.
  • an embodiment of the present application provides a data transmission method, the method comprising:
  • the configuration information includes the association relationship between the first SRS configuration and one or more PUSCH configurations, the first BWP where the first SRS configuration is located is different from the BWP where each PUSCH configuration is located; according to the first The SRS configuration receives the first SRS, and receives the first PUSCH according to the first PUSCH configuration, where the first PUSCH configuration is one of the one or more PUSCH configurations.
  • the first SRS is used for positioning.
  • the first PUSCH configuration is further associated with a second SRS configuration
  • the method further includes: sending a first DCI, where the first DCI carries first indication information, and the first indication information It is used to indicate that the first PUSCH is associated with the first SRS configuration or associated with the second SRS configuration.
  • the first SRS configuration includes configuration information of multiple SRS resources, and the first DCI also carries a Sounding Reference Signal Resource Indication SRI, where the SRI is used to indicate the multiple SRS resources The SRS resource associated with the first PUSCH in .
  • the SRI is further used to indicate an open-loop power control parameter and/or a closed-loop power control state of the first PUSCH.
  • the embodiment of the present application provides a communication device, configured to execute the method in the first aspect or any possible implementation manner of the first aspect.
  • the communication device includes a corresponding unit for performing the method in the first aspect or any possible implementation manner of the first aspect.
  • the communication device may be a terminal device or a chip in the terminal device.
  • the embodiment of the present application provides a communication device, configured to execute the method in the second aspect or any possible implementation manner of the second aspect.
  • the communication device includes a corresponding method for performing the method in the second aspect or any possible implementation manner of the second aspect.
  • the communication device may be an access network device or a chip in the access network device.
  • the above communication device may include a sending unit, a receiving unit, and a processing unit.
  • a sending unit may include a sending unit, a receiving unit, and a processing unit.
  • the sending unit may also be made to the device embodiments shown below.
  • an embodiment of the present application provides a communication device, where the communication device includes a processor, configured to execute the method described in the first aspect or any possible implementation manner of the first aspect.
  • the processor is used to execute a program stored in the memory, and when the program is executed, the method shown in the first aspect or any possible implementation manner of the first aspect is executed.
  • the process of sending signaling or data in the above-mentioned method can be understood as the process of outputting the above-mentioned signaling or data by the processor.
  • the processor When the processor outputs the above-mentioned signaling or data, the processor outputs the above-mentioned signaling or data to the transceiver, so as to be transmitted by the transceiver. After the above-mentioned signaling or data is output by the processor, other processing may be required before reaching the transceiver.
  • the processor receives input signaling or data
  • the transceiver receives the aforementioned signaling or data and inputs it to the processor.
  • the transceiver receives the above-mentioned signaling or data
  • the above-mentioned signaling or data may need to be processed before being input to the processor. It can be understood that with respect to this description, the sixth aspect shown below is also applicable.
  • the above-mentioned processor may be a processor dedicated to performing these methods, or may be a processor that executes computer instructions in a memory to perform these methods, such as a general-purpose processor.
  • the above-mentioned memory can be a non-transitory (non-transitory) memory, such as a read-only memory (read only memory, ROM), which can be integrated with the processor on the same chip, or can be respectively arranged on different chips.
  • ROM read-only memory
  • the embodiment does not limit the type of the memory and the arrangement of the memory and the processor. It can be understood that the description of the processor and the memory is also applicable to the sixth aspect shown below, and the sixth aspect will not be described in detail for the convenience of repeating the description.
  • the memory is located outside the communication device.
  • the memory is located in the above communication device.
  • the communication device further includes a transceiver, where the transceiver is configured to receive a signal or send a signal.
  • the transceiver may also be used to receive configuration information, send the first SRS, and so on.
  • the communication device may be a terminal device or a chip in the terminal device.
  • an embodiment of the present application provides a communication device, where the communication device includes a processor configured to execute the method described in the second aspect or any possible implementation manner of the second aspect.
  • the processor is used to execute the program stored in the memory, and when the program is executed, the method shown in the above second aspect or any possible implementation manner of the second aspect is executed.
  • the memory is located outside the communication device.
  • the memory is located in the above communication device.
  • the communication device further includes a transceiver, where the transceiver is configured to receive a signal or send a signal.
  • the transceiver may be used to send configuration information, receive the first SRS, and so on.
  • the communication device may be an access network device or a chip in the access network device.
  • the embodiment of the present application provides a communication device, the communication device includes a logic circuit and an interface, the logic circuit is coupled to the interface; the interface is used to input configuration information; the interface is also used to According to outputting the first SRS, and outputting the first PUSCH.
  • the logic circuit is configured to parse the input configuration information to obtain content in the configuration information.
  • the logic circuit is further configured to generate a first SRS according to the first SRS configuration, and output the first SRS through an interface.
  • the logic circuit is further configured to generate the first PUSCH according to the first PUSCH configuration, and output the first PUSCH through an interface.
  • the data to be processed shown in this application may include configuration information.
  • the logic circuit processes the configuration information, and obtains the first SRS according to the first SRS configuration, and obtains the first PUSCH according to the first PUSCH configuration (that is, the processed data may include the first SRS and the first PUSCH), output the The first SRS and the first PUSCH.
  • the logic circuit is further configured to control the interface to use the same antenna port and/or open-loop power control parameters as the first SRS to output the first PSUCH.
  • the interface is also used to input the first DCI.
  • the logic circuit is further configured to switch from the second BWP to the first BWP, generate the first SRS according to the first SRS configuration, and output the first SRS through the interface.
  • the embodiment of the present application provides a communication device, the communication device includes a logic circuit and an interface, the logic circuit is coupled to the interface; the interface is used to output configuration information; the interface is also used to Input the first SRS, and input the first PUSCH.
  • the logic circuit is used to obtain configuration information, and output the configuration information through an interface.
  • the embodiment of the present application provides a computer-readable storage medium, which is used to store a computer program, and when it is run on a computer, any of the above-mentioned first aspect or the first aspect is possible The method shown in the implementation is executed.
  • the embodiment of the present application provides a computer-readable storage medium, which is used to store a computer program, and when it is run on a computer, it makes possible any of the above-mentioned second aspect or the second aspect.
  • the method shown in the implementation is executed.
  • the embodiment of the present application provides a computer program product, the computer program product includes a computer program or computer code, and when it is run on a computer, the above-mentioned first aspect or any possible implementation of the first aspect The method shown is executed.
  • the embodiment of the present application provides a computer program product, the computer program product includes a computer program or computer code, when it is run on a computer, it makes the second aspect or any possible implementation of the second aspect The method shown is executed.
  • an embodiment of the present application provides a computer program.
  • the computer program When the computer program is run on a computer, the method shown in the above-mentioned first aspect or any possible implementation manner of the first aspect is executed.
  • an embodiment of the present application provides a computer program.
  • the computer program When the computer program is run on a computer, the method shown in the second aspect or any possible implementation manner of the second aspect is executed.
  • an embodiment of the present application provides a wireless communication system, the wireless communication system includes a terminal device and an access network device, and the terminal device is used to implement the above first aspect or any possible implementation of the first aspect
  • the access network device is configured to execute the method shown in the second aspect or any possible implementation manner of the second aspect.
  • Fig. 1a is a schematic diagram of a communication system provided by an embodiment of the present application.
  • Fig. 1b is a schematic diagram of a positioning architecture based on a wireless communication system provided by an embodiment of the present application
  • Fig. 2a is a schematic flow chart of a data transmission method provided by an embodiment of the present application.
  • Fig. 2b is a schematic flow diagram of a location-based data transmission method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a BWP handover provided in an embodiment of the present application.
  • 4 to 6 are schematic flowcharts of a data transmission method provided by an embodiment of the present application.
  • FIG. 7 to 9 are schematic structural diagrams of a communication device provided by an embodiment of the present application.
  • an embodiment means that a particular feature, structure, or characteristic described in connection with the embodiment may be included in at least one embodiment of the present application.
  • the occurrences of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. It is understood explicitly and implicitly by those skilled in the art that the embodiments described herein can be combined with other embodiments.
  • At least one (item) means one or more
  • “multiple” means two or more
  • “at least two (items)” means two or three and three
  • “and/or” is used to describe the association relationship of associated objects, which means that there can be three kinds of relationships, for example, "A and/or B” can mean: only A exists, only B exists, and A and B exist at the same time A case where A and B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an "or” relationship.
  • “At least one of the following” or similar expressions refer to any combination of these items. For example, at least one item (piece) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c ".
  • the method provided by this application can be applied to various communication systems, for example, it can be an Internet of Things (Internet of Things, IoT) system, a narrowband Internet of Things (NB-IoT) system, a long term evolution (long term evolution) , LTE) system, or a fifth-generation (5th-generation, 5G) communication system, and a new communication system (such as 6G) that will appear in future communication development.
  • IoT Internet of Things
  • NB-IoT narrowband Internet of Things
  • LTE long term evolution
  • 5th-generation, 5G fifth-generation
  • 6G new communication system
  • the technical solution provided by this application can also be applied to machine type communication (machine type communication, MTC), inter-machine communication long term evolution technology (long term evolution-machine, LTE-M), device-to-device (device-to-device, D2D) network , machine to machine (machine to machine, M2M) network, Internet of things (internet of things, IoT) network or other networks.
  • MTC machine type communication
  • LTE-M long term evolution-machine
  • D2D device-to-device
  • M2M machine to machine
  • IoT Internet of things
  • the IoT network may include, for example, the Internet of Vehicles.
  • V2X vehicle-to-everything
  • X can represent anything
  • the V2X can include: vehicle-to-vehicle (V2V) communication, Vehicle to infrastructure (V2I) communication, vehicle to pedestrian (V2P) or vehicle to network (V2N) communication, etc.
  • V2V vehicle-to-vehicle
  • V2I Vehicle to infrastructure
  • V2P vehicle to pedestrian
  • V2N vehicle to network
  • terminal devices may communicate with each other through D2D technology, M2M technology, or V2X technology.
  • Fig. 1a is a schematic diagram of a communication system provided by an embodiment of the present application. As shown in Fig. 1a, the communication system may include at least one access network device and at least one terminal device.
  • the access network device may be a next generation node B (next generation node B, gNB), a next generation evolved base station (next generation evolved nodeB, ng-eNB), or an access network device in future 6G communications, etc. .
  • the access network device may be any device with a wireless transceiver function, including but not limited to the above-mentioned base station.
  • the base station may also be a base station in a future communication system such as a sixth generation communication system.
  • the access network device may be an access node, a wireless relay node, a wireless backhaul node, etc. in a wireless local area network (wireless fidelity, WiFi) system.
  • the access network device may be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the access network device may be a wearable device or a vehicle-mounted device.
  • the access network device may also be a small cell, a transmission reception point (transmission reception point, TRP) (or may also be called a transmission point), and the like. It can be understood that the access network device may also be a base station in a future evolving public land mobile network (public land mobile network, PLMN), etc.
  • PLMN public land mobile network
  • a base station may consist of a centralized unit (CU) and a distributed unit (DU). That is, the functions of the base station in the access network are split, and part of the functions of the base station are deployed in a CU, and the remaining functions are deployed in the DU. And multiple DUs share one CU, which can save costs and facilitate network expansion.
  • the CU can also be divided into CU-control plane (control plane, CP) and CU-user plane (user plan, UP).
  • the base station may also be an open radio access network (open radio access network, ORAN) architecture, etc. This application does not limit the specific type of the base station.
  • the method involved in this application will be introduced below by taking the access network device as a base station as an example.
  • the terminal equipment may also be called user equipment (user equipment, UE), terminal, and so on.
  • a terminal device is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water, such as on a ship; it can also be deployed in the air, such as on a Airplanes, balloons, or satellites, etc.
  • Terminal equipment can be mobile phone, tablet computer (Pad), computer with wireless transceiver function, virtual reality (virtual reality, VR) terminal equipment, augmented reality (augmented reality, AR) terminal equipment, industrial control (industrial control) ), wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety , wireless terminals in a smart city, wireless terminals in a smart home, etc.
  • the terminal device may also be a terminal device in a future 6G network or a terminal device in a future evolved PLMN.
  • terminal equipment shown in this application may not only include vehicles (such as complete vehicles) in the Internet of Vehicles, but also include vehicle-mounted devices or vehicle-mounted terminals in the Internet of Vehicles.
  • vehicle-mounted devices or vehicle-mounted terminals in the Internet of Vehicles The specific form is not limited.
  • the communication system shown in FIG. 1a includes one base station and six UEs, such as UE1 to UE6 in FIG. 1a.
  • the base station can send downlink signals such as configuration information or DCI to UE1 to UE6, and UE1 to UE6 can send uplink signals such as SRS or PUSCH to the base station.
  • downlink signals such as configuration information or DCI
  • UE1 to UE6 can send uplink signals such as SRS or PUSCH to the base station.
  • Fig. 1a exemplarily shows a base station, six UEs, and communication links between communication devices.
  • the communication system may include multiple base stations, and the coverage of each base station may include other numbers of UEs, such as more or fewer UEs, which is not limited in this application.
  • Each of the aforementioned communication devices may be configured with multiple antennas.
  • the multiple antennas may include at least one transmitting antenna for sending signals, at least one receiving antenna for receiving signals, etc., and the embodiment of the present application does not limit the specific structure of each communication device.
  • the communication system may further include other network entities such as a network controller and a mobility management entity, to which this embodiment of the present application is not limited.
  • Fig. 1b is a schematic diagram of a positioning architecture based on wireless communication provided by an embodiment of the present application.
  • the positioning architecture mainly includes: radio access network (radio access network, RAN) (as shown in Fig. RAN (next generation RAN, NG-RAN) as an example), UE and core network three parts.
  • the core network includes a location management function (location management function, LMF), an access and mobility management function (access and mobility management function, AMF), a service location protocol (service location protocol, SLP), and an evolution service mobile location Center (evolved serving mobile location center, E-SMLC).
  • LMF location management function
  • AMF access and mobility management function
  • SLP service location protocol
  • E-SMLC evolution service mobile location Center
  • the LMF is responsible for supporting different types of location services related to the UE, including positioning the UE and delivering assistance data to the UE.
  • the LMF interacts with the base station through new radio (NR) positioning protocol annex (NRPPa) messages to obtain positioning reference signals (positioning reference signals, PRS), sounding reference signals (sounding reference signal (SRS) configuration information, cell timing, cell location information, etc.
  • NR new radio
  • NRPPa new radio positioning protocol annex
  • PRS positioning reference signals
  • SRS sounding reference signals
  • the UE capability information, auxiliary information, measurement information, etc. are transmitted between the LMF and the UE through a long term evolution (long term evolution, LTE) positioning protocol (LTE positioning protocol, LPP) message.
  • LTE long term evolution
  • the AMF may receive a UE-related location service request from a 5th generation core network location services (5th generation core network location services, 5GC LCS) entity; or, the AMF itself may initiate some location services on behalf of the UE, and The location service request is sent to the LMF. After the AMF obtains the location information of the UE, it returns the location information of the UE to the 5GC LCS entity.
  • 5GC LCS 5th generation core network location services
  • the RAN includes a base station, as shown in Figure 1b, the gNB and ng-eNB can be connected through an Xn interface (or Xn-C interface), and the LMF and ng-eNB/gNB can be connected through an NG-C interface , and the UE and the gNB can be connected through the NR-Uu interface, and the UE and the ng-eNB can be connected through the LTE-Uu interface.
  • Xn interface or Xn-C interface
  • the LMF and ng-eNB/gNB can be connected through an NG-C interface
  • the UE and the gNB can be connected through the NR-Uu interface
  • the UE and the ng-eNB can be connected through the LTE-Uu interface.
  • FIG. 1b is only an example, and for other schematic diagrams of the positioning architecture, reference may be made to relevant standards or protocols, etc., which will not be described in detail here.
  • Fig. 2a is a schematic flowchart of a data transmission method provided by an embodiment of the present application. As shown in Figure 2a, the method includes:
  • the serving base station determines to configure uplink SRS resources (determines UL SRS resources).
  • the serving base station may be a gNB, or a TRP, etc., which is not limited in this embodiment of the present application.
  • the serving base station sends a message carrying SRS configuration (SRS configuration) to the UE.
  • SRS configuration includes configuration information of uplink SRS resources determined by the serving base station for the UE.
  • the serving base station can send the SRS configuration to the UE, so that the UE can obtain the SRS configuration and send the SRS according to the SRS configuration.
  • Fig. 2b is a schematic flow diagram of a positioning-based data transmission method provided in an embodiment of the present application. As shown in Fig. 2b, the method includes:
  • the LMF requests the SRS configuration from the serving base station of the UE, for example, requests the SRS configuration through an NRPPa positioning information request message (NRRPPa positioning information request).
  • NRRPPa positioning information request an NRPPa positioning information request message
  • the serving base station determines to configure uplink SRS resources (determines UL SRS resources).
  • the serving base station sends a message carrying SRS configuration (SRS configuration) to the UE.
  • SRS configuration a message carrying SRS configuration
  • the UE receives the SRS configuration.
  • the above SRS configuration includes configuration of uplink SRS resources.
  • the serving base station sends a response carrying the SRS configuration to the LMF, such as replying the SRS configuration to the LMF through an NRPPa positioning information response (NRRPPa positioning information response) message.
  • the LMF receives the response.
  • the serving base station may first send a message carrying the SRS configuration to the UE, and then after the LMF requests the UE's serving base station for the SRS configuration, the serving base station sends a response carrying the SRS configuration to the LMF.
  • the SRS configuration sent by the serving base station to the UE may be the same as or different from the SRS configuration sent by the serving base station to the LMF, which is not limited in this embodiment of the present application.
  • the serving base station may first send a message carrying SRS configuration 1 to the UE, after the LMF requests the serving base station of the UE for SRS configuration, determine to configure uplink SRS resources, and then send a message carrying SRS configuration 2 to the UE, and Send a response carrying SRS configuration 2 to the LMF.
  • the SRS configuration 2 may be different from the SRS configuration 1, or may also be the same, which is not limited in this embodiment of the present application.
  • the embodiment of the present application does not limit the order of steps 201 and 202.
  • the embodiment of the present application does not limit the order of steps 203 and 204.
  • the LMF requests the serving base station of the UE to activate the SRS configuration, such as requesting to activate the SRS configuration through an NRPPa positioning activation request (NRPPA positioning activation request) message.
  • the serving base station receives the NRPPa positioning activation request.
  • the serving base station sends an instruction to activate SRS transmission (activate UE SRS transmission) to the UE.
  • the UE receives the instruction.
  • the step of the UE sending the SRS is not shown in FIG. 2b, the method shown in FIG. 2b may also include the step of the UE sending the SRS. As for when the UE sends the SRS, this embodiment of the present application does not limit it.
  • the serving base station sends a response for activating the SRS configuration to the LMF, for example, sends the response for activating the SRS configuration to the LMF through an NRPPa positioning activation response (NRRPPa positioning activation response) message.
  • the LMF receives the response.
  • the above-mentioned response for activating the SRS configuration may be a high-level response message.
  • the LMF sends a measurement request to one or more base stations (which may or may not include the serving base station), requesting the one or more base stations to measure the SRS.
  • the LMF sends an NRPPa measurement request (NRPPa measurement request) message to one or more base stations to request to measure the SRS.
  • NRPPa measurement request NRPPa measurement request
  • the one or more base stations shown above may include a serving base station and/or a neighboring base station.
  • the serving base station and/or neighboring base stations perform UL SRS measurement.
  • the base station that receives the measurement request performs UL SRS measurement.
  • the serving base station and/or the neighbor base station sends an NRPPa measurement response (NRRPPa measurement response) to the LMF.
  • NRRPPa measurement response NRPPa measurement response
  • the LMF sends a request to the serving base station to deactivate the SRS configuration, such as requesting to deactivate the SRS configuration through an NRPPa positioning deactivation (NRRPPa positioning deactivation) message.
  • NRPPa positioning deactivation NRRPPa positioning deactivation
  • the data transmission method shown in Fig. 2b includes the step of activating aperiodic or semi-persistent SRS transmission.
  • aperiodic or semi-persistent SRS transmission does not need to be activated (for example, periodic SRS positioning is used)
  • the method provided by this embodiment of the present application may not include steps 205 to 207.
  • FIG. 2b is a positioning method based on an uplink time difference of arrival (uplink time difference of arrival, UL-TDOA).
  • the positioning method based on the uplink angle of arrival (uplink arrival of arrival, UL-AoA) can also refer to Figure 2b, and will not be described in detail here.
  • each cell measures the uplink relative time of arrival (uplink relative time of arrival, UL-RTOA) of the SRS signal of the UE, and reports the measurement result to the LMF.
  • each cell can measure the AoA of the SRS signal of the UE, and report the measurement result to the LMF.
  • Multi-RTT multi-cell round trip time
  • the SRS configuration configured by the serving base station needs to be included in the currently activated BWP of the UE, so that the UE performs data transmission and SRS transmission in the same uplink (uplink, UL) BWP .
  • a BWP switching method is that the base station sends DCI to the UE on the original BWP (also called old BWP), and schedules uplink and downlink data on the target BWP (also called new BWP or new BWP, etc.). Therefore, the UE switches to the target BWP, completes uplink data transmission and/or downlink data reception, and camps on the target BWP until the next DCI for switching BWP is received.
  • the original BWP The SRS is no longer sent, but the SRS on the target BWP is sent.
  • the UE works on the old BWP pair (old BWP pair), including the original downlink BWP (old DL BWP) and the original uplink BWP (old UL BWP).
  • the UE monitors the DCI on the old DL BWP.
  • the DCI can schedule the UE to receive the physical downlink shared channel (physical downlink shared channel, PDSCH) on the old DL BWP, and can also schedule the UE to send PUSCH on the old UL BWP, and schedule the UE to SRS is sent on the UL BWP.
  • the original BWP pair is in an active state (as shown by the black arrow on the left in FIG. 3 , the target BWP is in an inactive state), and the UE sends SRS on the original BWP pair.
  • the UE receives DCI, and the DCI instructs the UE to send the PUSCH on the target uplink BWP (also called new UL BWP).
  • the UE needs a certain processing time to detect the corresponding DCI, that is, the actual time for the UE to detect the DCI is, for example, T1+T DCI-process .
  • the UE determines that the BWP needs to be switched according to the DCI, the UE enters a switching time (switching time as shown in FIG. 3 ) and performs DL/UL synchronous switching (for TDD spectrum).
  • switching the BWP includes radio frequency (radio Frequency, RF) retuning (RF retuning) and loading the configuration of the BWP on the new BWP pair.
  • the loaded configuration may include: control resource set (control resource set, CORESET) configuration, search space (search space, SS) configuration, PDSCH configuration, PUSCH configuration, SRS configuration, etc. on the new BWP. It can be understood that the UE can complete the handover at T1+T BWPSwitchingDelay at the latest.
  • T BWPSwitchingDelay For specific descriptions of T BWPSwitchingDelay , reference can be made to relevant standards or protocols, and details will not be described here.
  • the UE can have time to send the PUSCH on the new UL BWP.
  • the gray arrow on the right of FIG. 3 after switching to the target BWP, the target BWP pair is in an active state (the black arrow on the right indicates that the original BWP pair is in an inactive state).
  • the BWP switching method shown above is illustrated by taking time-division duplex (time-division duplex, TDD) spectrum as an example, such as for frequency-division duplex (frequency-division duplex, FDD) spectrum, uplink and downlink BWP switching needs to be performed independently. For example, switching the downlink BWP will not cause the switching of the uplink BWP. It can be understood that, for the specific description of the TDD spectrum and the FDD spectrum, the various embodiments shown below are also applicable.
  • the UE since the UE can only send the SRS on the currently active BWP, it can be seen from the method shown in Figure 3 that the UE sends the SRS on the original BWP before receiving the DCI. Since different BWPs correspond to different frequencies and bandwidths, channel information on different BWPs is usually independent. Therefore, the base station cannot infer the channel information on another new BWP based on the channel information on one old BWP. Therefore, the base station cannot obtain channel information (also called channel status) on the new BWP on the old BWP, and the corresponding PUSCH modulation and coding scheme (modulation and coding scheme, MCS) cannot be accurately obtained.
  • channel information also called channel status
  • the present application provides a data transmission method and device, which can enable the base station to obtain channel information of BWPs other than the currently activated BWP of the UE, so that the base station can determine that the UE switches to an appropriate BWP (also called a target BWP) and the base station can Flexible choice of data scheduling.
  • BWP also called a target BWP
  • both RF retuning (RF retuning) and BWP configuration may need to be switched, such as the need to switch BWP control resource set configuration (control resource set, CORESET), BWP SS configuration, PDSCH configuration, PUSCH configuration or one or more of the SRS configurations.
  • BWP control resource set configuration control resource set, CORESET
  • BWP SS configuration BWP SS configuration
  • PDSCH configuration PDSCH configuration
  • PUSCH configuration PUSCH configuration or one or more of the SRS configurations.
  • the PUSCH configuration indicates configuration information related to the PUSCH.
  • the PUSCH configuration may include one or more of the time-frequency resource allocation of the PUSCH, the MCS of the PUSCH, the DMRS configuration, and the mapping relationship between the open-loop power control parameters of the PUSCH and the SRI.
  • the PUSCH configuration includes the PUSCH time-frequency resource allocation table, and then indicates an item in the table through a field (for example, 4 bits or 5 bits) in the DCI, thereby determining the time slot occupied by the PUSCH and the symbol index in the time slot Wait.
  • the description of the PUSCH configuration shown in this application is only an example, and for the specific content of the PUSCH configuration, reference may be made to relevant standards or protocols, and will not be described in detail here. It can be understood that the PUSCH closed-loop power control state 1 and PUSCH closed-loop power control state 2 shown below are only examples. In some implementations, the PUSCH closed-loop power control state 1 shown in this application can also be called the PUSCH closed-loop power control state 0 (or n0, i0, etc.), and the PUSCH closed-loop power control state 2 may also be called PUSCH closed-loop power control state 1 (or n1, i1, etc.).
  • the method for determining the PUSCH closed-loop power control state can be as follows:
  • the parameter SRI-PUSCH-PowerControl also known as a high-level configuration parameter
  • the parameter includes sri-PUSCH-PowerControlId and sri-PUSCH-ClosedLoopIndex.
  • the format of the parameter SRI-PUSCH-PowerControl is as follows:
  • sri-PUSCH-PowerControlId represents the value corresponding to the SRI field in the DCI, or it can also be understood as: this parameter is used to match the value of the SRI field in the DCI, or it can also be understood as power control
  • the index of the parameter which is used to match the value of the SRI field in the DCI.
  • sri-PUSCH-PathlossReferenceRS-Id indicates the path loss reference signal index indicating the power control parameter
  • sri-P0-PUSCH-AlphaSetId indicates the index of the P0 or alpha value set
  • sri-PUSCH-ClosedLoopIndex indicates the index of the PUSCH closed-loop power control state.
  • the DCI contains the SRI domain
  • the current PUSCH closed-loop power control state is 1; if the value is i1, then the current PUSCH closed-loop power control state is 2, and the corresponding PUSCH closed-loop power control state is subject to the increase or decrease of the TPC command value in DCI.
  • the PUSCH closed-loop power control status is 1.
  • the base station does not configure the parameter SRI-PUSCH-PowerControl, the PUSCH closed-loop power control status is 1.
  • the PUSCH closed-loop power control status can be determined by the parameter pre-configured scheduling configuration information (configuredGrantConfig).
  • the SRS configuration indicates configuration information related to the SRS.
  • the SRS configuration includes configuration information of one or more SRS resources, or includes configuration information of one or more SRS resource sets, and one SRS resource set includes one or more SRS resources.
  • the SRS resource is used to configure the SRS, for example, the SRS resource can be understood as a configuration unit with a smaller granularity than the SRS configuration.
  • the use of the SRS resource can be codebook-based transmission (codebook) or non-codebook-based transmission (non-codebook).
  • the SRS configuration may include the relationship between the closed-loop power control states of the SRS and the closed-loop power control states of the PUSCH.
  • the SRS closed-loop power control state can be consistent with the PUSCH closed-loop power control state 1, or the SRS closed-loop power control state can be consistent with the PUSCH closed-loop power control state 2, or the SRS closed-loop power control state can be an independent power control state.
  • the closed-loop power control state of the SRS can be used to determine the TPC command value of the multiplexed PUSCH or adopt an independent TPC command value.
  • the SRS can be based on the TPC command value carried by the DCI used to schedule PUSCH or not carried by the DCI used to schedule PUSCH
  • the TPC command value determines the amount of transmission power adjustment for the SRS.
  • the format (format) of the DCI used to schedule PUSCH can be DCI format 0-0 (also can be referred to as DCI 0-0 or format 0-0 or 0-0, etc.), DCI format 0-1 (also can be referred to as DCI 0-1 or format 0-1 or 0-1, etc.) or DCI format 0-2 (also abbreviated as DCI 0-2 or format 0-2 or 0-2, etc.).
  • DCI format 0-0 also can be referred to as DCI 0-0 or format 0-0 or 0-0, etc.
  • DCI format 0-1 also can be referred to as DCI 0-1 or format 0-1 or 0-1, etc.
  • DCI format 0-2 also abbreviated as DCI 0-2 or format 0-2 or 0-2, etc.
  • the format of the DCI that is not used to schedule the PUSCH may be DCI2-2.
  • the SRS transmit power closed-loop adjustment amount is consistent with the power adjustment of the PUSCH closed-loop power control state 1 determined by the TPC command value of the PUSCH closed-loop power control state 1. If the SRS closed-loop power control state is consistent with the PUSCH closed-loop power control state 2, then the SRS transmit power closed-loop adjustment amount is consistent with the power adjustment of the PUSCH closed-loop power control state 2 determined by the TPC command value of the PUSCH closed-loop power control state 2.
  • the SRS transmission power adjustment amount has nothing to do with the TPC command value of the PUSCH closed-loop power control, but is related to DCI format 2-3 (also referred to as DCI 2-3 or The power adjustment determined by the TPC command value in format2-3, etc.) is consistent.
  • the UE can control (or determine) the transmission power adjustment of the SRS whose closed-loop power control state is consistent with the PUSCH closed-loop power control state according to the TPC command value of the PUSCH quantity.
  • Fig. 4 is a schematic flow chart of a data transmission method provided by an embodiment of the present application. As shown in Fig. 4, the method includes:
  • the base station sends configuration information to the UE, and correspondingly, the UE receives the configuration information.
  • the configuration information includes an association relationship between the first SRS configuration and one or more PUSCH configurations, and the first BWP where the first SRS configuration is located is different from the BWP where each PUSCH configuration is located.
  • the configuration information includes an association relationship, which refers to an association relationship between the first SRS configuration and one or more PUSCH configurations.
  • the configuration information includes the index of the first SRS configuration and the index of each PUSCH configuration in the one or more PUSCH configurations, that is, the index reflects the association relationship between the first SRS configuration and the one or more PUSCH configurations.
  • the configuration information includes the index of the first SRS configuration and the indexes of one or more PUSCH configurations. The difference between the above two examples is that each PUSCH configuration corresponds to an index, or one or more PUCSH configurations correspond to an index. It can be understood that the method of reflecting the association relationship through the index shown here is only an example.
  • index shown in this application may also be replaced by an identifier, etc., which is not limited in this embodiment of this application. It can be understood that, for the description of the association relationship, reference may also be made to methods 1 to 7 shown below, which will not be described in detail here.
  • the configuration information includes the first SRS configuration, and/or, one or more PUSCH configurations.
  • the association relationship between the first SRS configuration and the above one or more PUSCH configurations may be indicated by information in the first SRS configuration, or by information in one or more PUSCH configurations.
  • the first SRS configuration may include an index of each PUSCH configuration in one or more PUSCH configurations, or include an index of one or more PUSCH configurations.
  • part or all of the one or more PUSCH configurations may include the index of the first SRS configuration.
  • the configuration information includes not only the association relationship, but also the first SRS configuration, and/or, one or more PUSCH configurations.
  • the specific content of the configuration information in this embodiment of the present application may also include the method for configuring the association relationship shown below, which will not be described in detail here.
  • the first SRS configuration and the first PUSCH configuration reference may also be made to the above description.
  • the BWP where the PUSCH is configured will be the same as the BWP where the associated SRS configuration (such as the second SRS configuration) is located.
  • the BWP where the first SRS configuration configured in the configuration information is located is different from the BWP where each PUSCH configuration (eg including the first PUSCH configuration) is located. If the BWP where the first SRS is configured is the first BWP, the first BWP may be in the following manner: the first BWP is a special BWP.
  • the reason why it is called a special BWP is that the PUSCH and/or PUCCH are not configured on the first BWP, but at least one BWP on the carrier (carrier, CC) where the first BWP is located is configured with the PUSCH and/or PUCCH.
  • the bandwidth of the first BWP is the bandwidth of one carrier (for example, the carrier where the first PUSCH is located).
  • the bandwidth resource of the first BWP includes at least a part of the bandwidth resource of the BWP where the first PUSCH is configured.
  • the first SRS configuration is independent of any BWP.
  • the first SRS configuration does not contain any BWP index, nor is it included in any BWP configuration.
  • the first BWP shown here is only an example, and the embodiment of the present application does not limit the specific implementation manner of the first BWP.
  • the BWP where the first SRS is located may be one first BWP, or may be multiple first BWPs, etc., which is not limited in this embodiment of the present application.
  • the UE sends the first SRS on the first BWP according to the first SRS configuration.
  • the base station receives the first SRS according to the first SRS configuration.
  • the UE may send the first SRS etc. according to the time domain and time frequency of the first SRS configuration, and this embodiment of the present application does not limit the first SRS configuration.
  • the first SRS is used for multiple input multiple output (MIMO), or the first SRS is used for positioning. That is to say, the first SRS shown in the embodiment of the present application may be either the SRS in MIMO or the SRS in positioning. Exemplarily, when the first SRS is used for positioning, the function of the first SRS may be as shown in FIG. 2b. The specific description of positioning is not limited in this embodiment of the present application.
  • step 402 may also be replaced by:
  • the second BWP is one of the one or more BWPs associated with the first SRS configuration and associated with the PUSCH configuration.
  • the UE may autonomously jump out of the currently active BWP (that is, the second BWP) to send the first SRS (for example, periodically send the first SRS). Or, when receiving an aperiodic SRS (such as the first SRS) to trigger the DCI, the UE may jump out of the currently active BWP to send the first SRS.
  • the DCI triggered by the aperiodic SRS shown here may also be understood as: DCI used to trigger the transmission of the aperiodic SRS (such as the first SRS), or the DCI is used to trigger the transmission of the aperiodic SRS (such as the first SRS).
  • the format of the DCI triggered by the aperiodic SRS may be 2-3, or other formats, etc., which are not limited in this embodiment of the present application.
  • both the first BWP and the second BWP are uplink BWPs.
  • the first BWP and the second BWP are on the same carrier.
  • the UE sends the first PUSCH according to the first PUSCH configuration, where the first PUSCH configuration is one of the above one or more PUSCH configurations.
  • the base station receives the first PUSCH according to the first PUSCH configuration.
  • the UE when the UE sends the first PUSCH, it can use the same antenna port as the first SRS to send the first PUSCH, and/or use the same
  • the first PUSCH is sent with the same open-loop power control parameters as the first SRS.
  • the antenna ports shown here may be logical antenna ports or physical antenna ports.
  • the configuration information shown above includes the association relationship between the first SRS configuration and one or more PUSCH configurations, and may be replaced by: the configuration information includes the association relationship between the first SRS configuration and one or more BWPs. That is, the BWP where the above-mentioned one or more PUSCH configurations are located is the above-mentioned one or more BWPs, wherein one BWP can be configured with one or two or more than two PUSCH configurations. Therefore, the first SRS configuration may include one or more BWP indexes associated with the first SRS configuration. By including indexes of one or more BWPs in the first SRS configuration, the UE may know that the first SRS configuration is associated with PUSCH configurations on the one or more BWPs. It can be understood that in this method, when the first SRS configuration includes indexes of one or more BWPs associated with the first SRS configuration, the first SRS configuration may be associated with each PUSCH configuration on the one or more BWPs associated.
  • the above configuration information can be understood as: including the first SRS configuration, and the first SRS configuration includes one or more BWP indexes associated with it.
  • the configuration information also includes PUSCH configuration on one or more BWPs.
  • the PUSCH configurations (for example, one or more PUCSH configurations) on the one or more BWPs may also be included in other information.
  • the base station after sending the configuration information to the UE, the base station sends again information including one or more PUSCH configurations, where the one or more PUSCH configurations are located on the one or more BWPs.
  • the base station may first send information including one or more PUSCH configurations to the UE, and then send the configuration information.
  • the first SRS configuration includes configuration information of one or more SRS resources, or configuration information of one or more SRS resource sets.
  • the one or more sets of SRS resources include the first set of SRS resources, and the one or more sets of SRS resources include the first SRS resource.
  • the first SRS resource may be included in the first SRS resource set.
  • the first SRS resource is an SRS resource associated with the first PUSCH configuration (just an example).
  • the first SRS resource set is an SRS resource set associated with the first PUSCH configuration (just an example).
  • each PUSCH configuration includes the index of the first SRS resource or the index of the first SRS resource set.
  • the association relationship may be expressed as: the first PUSCH configuration includes the index of the first SRS resource or the index of the first SRS resource set.
  • the first PUSCH configuration includes the index of the first SRS resource or the index of the first SRS resource set.
  • the indexes of the SRS resources in each SRS resource set in the multiple SRS resource sets may be different.
  • SRS resource 1, SRS resource 2, SRS resource 3, and SRS resource 4 are configured on the first BWP where the first SRS configuration is located.
  • the SRS resource 1 and SRS resource 2 may be included in SRS resource set a
  • the SRS resource 3 and SRS resource 4 may be included in SRS resource set b.
  • the configuration information can be understood as: including one or more PUSCH configurations, and each PUSCH configuration includes the index of the first SRS resource or the index of the first SRS resource set.
  • the configuration information may be understood as: including the first PUSCH configuration, and the first PUSCH configuration includes the index of the first SRS resource or the index of the first SRS resource set.
  • the UE can be made to know that the PUSCH configuration is associated with the first SRS resource in the first SRS configuration (or associated with the first SRS resource set), Alternatively, the UE may be made to know that the BWP where the PUSCH is configured is associated with the first SRS resource (or associated with the first SRS resource set).
  • the association relationship may be expressed as: each PUSCH The configuration includes the index of the first BWP and the index of the first SRS resource set.
  • each PUSCH configuration includes the index of the first BWP, the index of the first SRS resource set, and the index of the first SRS resource.
  • each PUSCH configuration includes the index of the first SRS resource set.
  • each PUSCH configuration includes the index of the first SRS resource. It can be understood that the above description of the PUSCH configuration is also applicable to the first PUSCH configuration, and will not be described in detail here. It can be understood that the description about the configuration information may be described above, and will not be described in detail here.
  • the configuration information may also include the first SRS configuration, which The first SRS configuration includes configuration information of the first SRS resource or configuration information of the first SRS resource set.
  • the first SRS configuration may also be included in other information.
  • the other information and the first SRS configuration refer to the description of other information and one or more PUSCH configurations in Method 1 above. Here No more details.
  • the first SRS configuration is associated with one or more BWPs
  • more than one PUSCH configuration may be configured on a BWP
  • whether the one or more PUSCH configurations configured on each BWP are related to the first SRS configuration Association can be indicated by DCI.
  • the first DCI needs to be used to indicate whether the first PUSCH obtained according to the first PUSCH configuration is associated with the first SRS configuration or with the second SRS configuration.
  • the first SRS configuration may include the second indication information.
  • the second indication information may be used to indicate that whether the first SRS configuration is associated with the PUSCH configuration needs to be determined according to the DCI, and the PUSCH configuration (including the first PUSCH configuration) is located in one or more BWPs associated with the first SRS configuration.
  • the second indication information is used to indicate whether the first PUSCH obtained according to the PUSCH configuration is associated with the first SRS configuration and determined according to the first DCI.
  • the second indication information is included in the configuration information of the first SRS resource set.
  • the second indication information is used to indicate whether the association between the first SRS resource set and the PUSCH configuration needs to be determined according to the DCI.
  • the second indication information is used to indicate whether the association between the first SRS resource set and the first PUSCH obtained according to the first PUSCH configuration needs to be determined according to the DCI for scheduling the first PUSCH.
  • the first SRS configuration is associated with one or more BWPs, and whether one or more PUSCH configurations associated with each BWP is associated with the first SRS resource set also needs to be determined according to the DCI.
  • the first SRS configuration includes the second SRS resource set, and if the second SRS resource set does not include the second indication information, it may indicate that whether the second SRS resource set is associated with the PUSCH configuration does not need to be determined according to the DCI. In this case, whether one or more PUSCH configurations associated with each BWP are associated with the second SRS resource set may not be determined according to the DCI. For example, one or more PUSCH configurations associated with each BWP may be associated with the second SRS resource set.
  • the second indication information may be included in the first SRS resource.
  • the second indication information is used to indicate whether the association between the first SRS resource and the PUSCH configuration needs to be determined according to the DCI.
  • the second indication information is used to indicate whether the association between the first SRS resource and the first PUSCH obtained according to the first PUSCH configuration needs to be determined according to the first DCI.
  • the above configuration information can be understood as: including the first SRS configuration, the first SRS configuration includes indexes of one or more BWPs associated with it, and optionally, the first SRS configuration Include the second indication information.
  • the first SRS resource set included in the first SRS configuration includes the second indication information.
  • the first SRS resource included in the first SRS configuration includes the second indication information.
  • the configuration information may also include one or more PUSCH configurations on one or more BWPs.
  • the above configuration information can be understood as: including one or more PUSCH configurations, each PUSCH configuration includes an index of the first SRS resource, and the first SRS resource includes the second indication information. Or, each PUSCH configuration includes an index of the first SRS resource set, and the first SRS resource set includes the second indication information.
  • the above configuration information may include one or more PUSCH configurations, each PUSCH configuration includes the index of the first SRS resource and the second indication information, or each PUSCH configuration includes the index of the first SRS resource set and Second instruction message.
  • the first SRS configuration includes the bit length of the DCI indication field.
  • the bit length of the DCI indication field can be understood as the bit length of the indication field in the DCI.
  • the DCI indication field (for example, the indication field specifically carries the first indication information) is used to indicate the first PUSCH configuration (or, according to the first Whether the first PUSCH obtained by the PUSCH configuration is associated with the first SRS configuration.
  • the indication field is used to indicate that the first PUSCH configuration (or the first PUSCH obtained according to the first PUSCH configuration) is associated with the first SRS configuration, or the indication field is used to indicate that the first PUSCH configuration is not associated with the first SRS configuration.
  • Configure associations for example, the indication field specifically carries the first indication information
  • the indication field is used to indicate that the first PUSCH configuration is associated with the first SRS configuration, or the indication field is used to indicate that the first PUSCH configuration is associated with the second SRS configuration.
  • the first indication information is used to indicate whether the first PUSCH configuration is associated with the first SRS configuration, or the first indication information is used to indicate that the first PUSCH configuration is associated with the first SRS configuration, or is associated with the second SRS configuration.
  • the DCI indication field is used to indicate whether the first PUSCH configuration (or the first PUSCH obtained according to the first PUSCH configuration) is related to the first SRS Resource set association.
  • the indication field is used to indicate that the first PUSCH configuration (or the first PUSCH obtained according to the first PUSCH configuration) is associated with the first SRS resource set, or is associated with the second SRS resource set, or is associated with other SRS resources Set association, the second SRS resource set is included in the first SRS configuration, and the other SRS resource set is included in the second SRS configuration.
  • the first indication information is used to indicate the SRS resource set associated with the first PUSCH configuration, for example, the SRS resource set associated with the first PUSCH configuration is the first SRS resource set, or the second SRS resource set, or other SRS resources set.
  • the DCI indication field is used to indicate whether the first PUSCH configuration (or the first PUSCH obtained according to the first PUSCH configuration) is related to the first SRS resource Association, or, the indication field is used to indicate that the first PUSCH configuration (or the first PUSCH obtained according to the first PUSCH configuration) is associated with the first SRS resource, or associated with resources in the second SRS resource set, or associated with other Resource association, the second SRS resource set is included in the first SRS configuration, and the other resources are included in the second SRS configuration.
  • the first indication information is used to indicate the SRS resource associated with the first PUSCH configuration.
  • the SRI in the DCI indicates the SRS resource associated with the first PUSCH configuration.
  • the first SRS configuration includes the bit length, such as 1 bit or 2 bits.
  • the corresponding relationship between the value of the indication field and whether it is associated may be preset or predefined by a standard, which is not limited in this embodiment of the present application.
  • the correspondence between the value of the indication field and the association between the first PUSCH and the SRS configuration may be preset or predefined by a standard.
  • the configurations of the first PUSCH and the SRS shown here are only examples, and may also include an association relationship between the first PUSCH and a resource set, or an association relationship between the first PUSCH and resources.
  • the first SRS configuration may also include a correspondence between the value of the indication field and whether it is associated.
  • the first SRS configuration may further include a correspondence between the value of the indication field and the association relationship between the first PUSCH and the SRS configuration (including the first SRS configuration or the second SRS configuration, etc.). For example, when the value of the indication field is 00, it means that the first PUSCH scheduled by DCI is associated with the first SRS configuration, and when the value of the indication field is 11, it means that the first PUSCH scheduled by DCI is associated with the second SRS configuration.
  • 1 bit indicates that the first PUSCH scheduled by DCI is not associated with the first SRS configuration when it is 0, and indicates that the first PUSCH scheduled by DCI is associated with the first SRS configuration when it is 1. That is to say, the DCI includes an indication field, and the value of the indication field is 1, and the UE may determine that the first PUSCH is associated with the first SRS configuration according to the value of the indication field. It can be understood that the 1 shown here may also be referred to as first indication information. For another example, when it is 1, it indicates that the first PUSCH scheduled by the DCI is associated with the first SRS configuration.
  • method 4 may be combined with method 3 above.
  • the first SRS configuration includes the second indication information
  • the DCI corresponding to the first PUSCH needs to include an indication field
  • the bit length of the indication field is included in the first SRS configuration.
  • the embodiment of the present application does not limit where the bit length of the indication field is included.
  • the bit length of the indication field may also be included in the first SRS resource set in the first SRS configuration, and the like.
  • the first SRS configuration may include multiple SRS resources, or include multiple SRS resource sets
  • whether the SRS resources or SRS resource sets included in the first SRS configuration is associated with the PUSCH configuration can also be determined by DCI indication.
  • the second indication information may be included in the PUSCH configuration.
  • the second indication information is included in the first PUSCH configuration. In this case, the second indication information is used to indicate that the association between the first PUSCH configuration and the SRS resource or SRS resource set in the first SRS configuration needs to be determined according to the DCI.
  • one or more PUSCH configurations associated with the first SRS configuration also include a second PUSCH configuration, and if the second PUSCH configuration does not include the second indication information, it may indicate that the second PUSCH configuration can be related to the first SRS configuration. All SRS resources or all SRS resource sets in the configuration are associated.
  • the PUSCH configuration includes the bit length of the DCI indication field.
  • the bit length of the DCI indication field can be understood as the bit length of the indication field in the DCI.
  • the indication field is used to indicate whether the first PUSCH configuration (or the first PUSCH obtained according to the first PUSCH configuration) is associated with the first SRS resource set.
  • the indication field is used to indicate the SRS resource set associated with the first PUSCH configuration (or the first PUSCH obtained according to the first PUSCH configuration).
  • the first indication information may be used to indicate the SRS resource set associated with the first PUSCH configuration, for example, the SRS resource set associated with the first PUSCH configuration is the first SRS resource set, or the second SRS resource set , or other SRS resource sets.
  • the indication field is used to indicate whether the first PUSCH configuration is associated with the first SRS resource.
  • the indication field is used to indicate the SRS resource associated with the first PUSCH configuration.
  • the SRI in the DCI indicates the SRS resource associated with the first PUSCH configuration.
  • the difference between the above method 4 and method 6 may be: for example, when the first SRS configuration includes the bit length of the DCI indication field, any DCI on the BWP may include the indication field.
  • the PUSCH configuration includes the bit length of the DCI indication field
  • the DCI for scheduling the PUSCH on the active BWP may include the indication field, while the DCI for scheduling the PUSCH on other BWPs may not have the indication field.
  • the configuration information implicitly indicates the association relationship between the first SRS configuration and one or more PUSCH configurations.
  • the configuration information includes the first SRS configuration and one or more PUSCH configurations, it can be understood that each PUSCH configuration is associated with the first SRS configuration.
  • the configuration information includes the first SRS configuration, and when the first SRS configuration includes one or more BWP indexes, it means that the first SRS and each PUSCH configuration on the one or more BWPs associated.
  • the above methods 1 to 7 may be independent methods, or the above 7 methods may be combined with each other.
  • method 1 and method 4 combined.
  • Another example is the combination of method 1, method 3 and method 4.
  • method 1, method 3 and method 6 are combined.
  • method 1, method 4 and method 5 are combined.
  • Another example is the combination of method 2, method 5 and method 6, etc., which will not be listed here.
  • the first SRS configuration when the first SRS configuration is associated with one or more BWPs, and there are multiple PUSCH configurations on the one or more BWPs, the first SRS configuration can be determined according to the first indication information in the DCI Associated with the first PUSCH configuration. Or, when the first SRS configuration is associated with multiple PUSCH configurations, and when a certain PUSCH configuration in the multiple PUSCH configurations is also associated with the second SRS configuration, the certain PUSCH configuration can be determined according to the first indication information (such as The first PUSCH configuration) is associated with the first SRS configuration. That is to say, it can be clearly determined to use the same antenna port and/or open-loop power control parameter as the first SRS to send the first PUSCH through the first indication information in the DCI.
  • the method shown in Figure 4 may also include:
  • the base station sends the first DCI to the UE, where the first DCI carries first indication information, and the first indication information is used to indicate that the first PUSCH is associated with the first SRS.
  • the UE receives the first DCI.
  • the first DCI is used to schedule the first PUSCH.
  • the first DCI may also carry an SRI, and the SRS is used to indicate the SRS resource associated with the first PUSCH among the multiple SRS resources.
  • the SRI can take different values, that is, different values can correspond to different SRS resources. Therefore, according to the value of the SRI, the UE can learn that the first PUSCH is associated with one of the multiple SRS resources. It can be understood that when the first DCI does not include the SRI, the first PUSCH may be associated with the first of multiple SRS resources. Or, when the first SRS configuration only includes configuration information of one SRS resource, the first DCI may not include the SRI.
  • the SRI in the first DCI also indicates the open-loop power control parameters of the first PUSCH, the open-loop power control parameters may include P0 or alpha, etc.
  • the open-loop power control parameters may include P0 or alpha, etc.
  • relevant standards Or protocol such as 3GPP TS38.213 or 3GPP TS 38.331, etc.
  • default open-loop power control parameters may be used, which is not limited in this embodiment of the present application.
  • the SRI in the first DCI also indicates the closed-loop power control state of the first PUSCH.
  • the closed-loop power control state 1 or 2 of the first PUSCH Such as the closed-loop power control state 1 or 2 of the first PUSCH. It can be understood that the method for indicating the closed-loop power control state of the first PUSCH shown here is only an example, and the method for determining the closed-loop power control state of the first PUSCH can also refer to the above, which will not be repeated here.
  • step 403 is illustrated by taking the first DCI including the first indication information as an example.
  • the first DCI may not include the first indication information. That is, the first DCI may not carry explicit bits (as in method 7 above), and the first PUSCH is associated with the first SRS configuration by default. However, when the first PUSCH is associated with the second SRS configuration, the first DCI may carry other indication information, so as to indicate that the first PUSCH is associated with the second SRS configuration.
  • the first PUSCH when the transmission mode of the first PUSCH configuration is consistent with the usage of the first SRS configuration, the first PUSCH is associated with the first SRS configuration by default, and when the transmission mode of the first PUSCH configuration is consistent with the usage of the first SRS configuration If they are inconsistent, the first PUSCH is associated with the SRS configuration consistent with the usage configured on the BWP where it is located by default.
  • the UE when the UE switches BWPs, the UE still sends the first SRS on the original BWP, so that the base station cannot obtain channel information on the target BWP.
  • the UE sends the first SRS when the UE sends the first SRS, it can not only jump out of the currently activated BWP of the UE, but also send the first SRS on the first BWP.
  • the sending of the first SRS may not be affected by BWP switching, that is, no matter which BWP the UE is on, the sending of the first SRS can be guaranteed.
  • the embodiment of the present application can use the first SRS independent of data scheduling, so that the first SRS is independent of the transmission of the SRS for data BWP switching, so that the base station can obtain the channel information on the BWP to be switched before the UE performs BWP switching (also may be referred to as channel conditions).
  • the first SRS can also be used for positioning. Since the positioning signal requires as large a bandwidth as possible, the bandwidth of the data service of the UE may be smaller than the bandwidth of the positioning signal. In the embodiment of the present application, the positioning of the first SRS with large bandwidth is used for communication at the same time, which can reduce network side overhead.
  • the base station can indicate to the UE the adjustment amount of the transmission power of the PUSCH through the TPC command value. Therefore, the method for determining the transmission power adjustment amount of the first SRS will be described in detail below in conjunction with the method shown in FIG. 4 .
  • the TPC command value shown below may be used to indicate the cumulative value of the power adjustment, or may indicate the absolute value of the power adjustment.
  • TPC-accumulation TPC-accumulation
  • RRC RRC-accumulation
  • the cumulative value of the transmission power adjustment means that the transmission power adjustment is not only related to the current TPC command value, but also needs to be related to the previously received TPC command value. It can be understood that for specific descriptions of the cumulative value and the absolute value, reference may be made to relevant standards or protocols (for example, 3GPP TS38.213), etc., which are not limited in this application.
  • the transmission power adjustment amount of the first SRS can be as follows:
  • the DCI may indicate the TPC command value of the PUSCH, which is used to control the transmission power of the PUSCH. If the closed-loop power control state of the PUSCH is consistent with the closed-loop power control state of the first SRS, the TPC command value for the PUSCH is also applicable to the first SRS, such as the power adjustment amount (single or cumulative) of the PUSCH and the first SRS The power adjustment amount (single or cumulative) is the same. It can be understood that the DCI shown here is used to schedule the PUSCH on the second BWP.
  • the DCI may be the first DCI shown above, or a DCI received before or after the first DCI.
  • the second BWP shown in the embodiment of the present application may be understood as the BWP activated by the UE, and both the original BWP or the target BWP shown in FIG. 3 may be called the second BWP.
  • the UE may send uplink data and/or receive downlink data through the second BWP.
  • the transmit power adjustment amount of the first SRS is related to the transmit power adjustment amount indicated by the TPC command value carried by the DCI corresponding to one or more PUSCHs on the second BWP (for example, one PUSCH corresponds to one DCI).
  • the DCI corresponding to the PUSCH on the second BWP is the DCI used to schedule the PUSCH, for example, the DCI format is DCI0-0, DCI0-1 or DCI0-2.
  • the transmission power adjustment amount of the first SRS is only the TPC carried by DCI0-0 or DCI0-1 or DCI0-2 corresponding to one or more PUSCHs on the second BWP (PUSCHs consistent with the power control state of the first SRS) It is related to the transmit power adjustment amount indicated by the command value.
  • the DCI corresponding to the PUSCH on the second BWP is not the DCI used to schedule the PUSCH, for example, the DCI format is DCI2-2.
  • the DCI corresponding to the PUSCH (the PUSCH consistent with the first SRS power control state) on the second BWP shown in the embodiment of the present application may refer to the DCI used to control the power of the PUSCH.
  • the transmission power adjustment amount of the first SRS is only the transmission power adjustment amount indicated by the TPC command value carried by DCI2-2 corresponding to one or more PUSCHs on the second BWP (PUSCHs consistent with the power control state of the first SRS) related.
  • each of one or more PUSCHs (PUSCHs consistent with the first SRS power control state) on the second BWP corresponds to one or more DCIs.
  • the one or more DCIs may include DCI used for scheduling PUSCH, or may include DCI not used for scheduling PUSCH.
  • each It is related to the transmit power adjustment amount indicated by the TPC command value carried by the DCI.
  • the transmission power adjustment amount of the first SRS may be the sum of the transmission power adjustment amount indicated by the TPC command value carried by each of the multiple DCIs shown here.
  • the PUSCH on the second BWP shown in the embodiment of the present application may have an association relationship with the first SRS, or may not have an association relationship, which is not limited in the embodiment of the present application. That is to say, in the method shown in FIG. 4 above, since the first PUSCH has an association relationship with the first SRS, the first PUSCH may use the same antenna port as that of the first SRS to transmit the first PUSCH.
  • the transmit power adjustment amount of the first SRS is related to the TPC command value indicated by the DCI corresponding to the PUSCH whose closed-loop power control state is consistent with the first SRS.
  • the power control adjustment amount of the first SRS can be maintained by a single BWP, for example, by the second BWP, so that when the UE switches BWP, it can overload the accumulated power control of the first SRS corresponding to the second BWP. quantity. Furthermore, it can be ensured that the power adjustment amounts of the first SRS and the PUSCH on the second BWP are consistent.
  • the transmit power adjustment amount of the first SRS is related to the transmit power adjustment amount indicated by the TPC command value carried by the DCI corresponding to one or more PUSCHs (PUSCHs consistent with the power control state of the first SRS).
  • PUSCHs are located on one or more BWPs associated with the first SRS.
  • the first SRS configuration may include one or more BWP indexes, therefore, the transmit power adjustment amount of the first SRS may correspond to one or more PUSCHs (PUSCHs consistent with the first SRS power control state)
  • the one or more PUSCHs are located on one or more BWPs included in the first SRS configuration, which is related to the transmission power adjustment amount indicated by the TPC command value carried by the DCI.
  • the transmit power adjustment amount of the first SRS may be the sum of the transmit power adjustment amounts indicated by the TPC command values carried in the DCI corresponding to one or more PUSCHs shown here.
  • the configuration information may include the association relationship between the first SRS configuration and one or more PUSCH configurations. Therefore, the method 2 shown in the embodiment of the present application can also be understood as: the first SRS transmission power adjustment can be related to Among the DCIs corresponding to one or more PUSCHs (PUSCHs consistent with the first SRS power control state) corresponding to the one or more PUSCH configurations, the TPC command value carried by each DCI is related to the transmission power adjustment amount indicated.
  • the transmission power adjustment amount of the first SRS may be the sum of the transmission power adjustment amounts indicated by the TPC command values carried in the DCI corresponding to the one or more PUSCHs.
  • the first SRS is subject to TPC control superposition of PUSCH on different BWPs. Therefore, it can be ensured that when the UE switches the BWP, the transmission power of the first SRS will not jump.
  • Method 3 The transmit power adjustment amount of the first SRS is all reset to zero when the BWP is switched.
  • the difference between method 3 and method 1 is: in method 1, if multiple switchings of BWP#1-BWP#2-BWP#1 have been experienced, the power adjustment amount on BWP#1 for the first time is switched to BWP#1 continues to take effect, and in method 3, when switching to BWP#1 for the second time, the power adjustment amount is set to zero.
  • the power control adjustment amount of the first SRS can be reset during BWP switching, so as to ensure that the transmission power of the PUSCH is not affected when the power adjustment of the first SRS is reset.
  • Fig. 5 is a schematic flow chart of a data transmission method provided by an embodiment of the present application. As shown in Fig. 5, the method includes:
  • the base station sends configuration information to the UE, and correspondingly, the UE receives the configuration information.
  • the configuration information includes an association relationship between the first SRS configuration and one or more PUSCH configurations, and the first BWP where the first SRS configuration is located is different from the BWP where each PUSCH configuration is located.
  • the UE sends the first SRS on the first BWP according to the first SRS configuration.
  • the base station receives the first SRS according to the first SRS configuration.
  • the base station sends the first DCI to the UE, where the first DCI carries first indication information, and the first indication information is used to indicate that the first PUSCH is associated with the first SRS.
  • the UE receives the first DCI.
  • the first DCI may indicate the TPC command value of the first PUSCH.
  • the TPC command value for the first PUSCH is also applicable to the first SRS, such as the power adjustment amount of the first PUSCH (single or cumulative) is consistent with the power adjustment amount (single or cumulative) of the first SRS.
  • the UE sends the first PUSCH according to the first PUSCH configuration, where the first PUSCH configuration is one of the above one or more PUSCH configurations.
  • the base station receives the first PUSCH according to the first PUSCH configuration.
  • the UE may transmit the first PUSCH on the second BWP, that is, in step 504, the BWP currently activated by the UE is the second BWP.
  • the UE sends the first SRS to the base station on the first BWP according to the first SRS configuration, and correspondingly, the base station receives the first SRS according to the first SRS configuration.
  • the base station sends the second DCI to the UE, and the UE receives the second DCI.
  • the second DCI is used to schedule the first PUSCH on the third BWP, and the third BWP is different from the BWP where the first PUSCH is located.
  • the second DCI may also indicate to switch the UL BWP, or before step 506, the UE has switched the UL BWP based on other methods, such as receiving the downlink DCI. That is, the first PUSCH scheduled in step 506 and the first PUSCH scheduled in step 503 are not on the same BWP.
  • the second DCI in step 506 may be the DCI used for BWP switching, or the uplink and downlink BWP pairs have been switched through other methods (such as other DCI, etc.) before step 506 .
  • the second DCI may also indicate a TPC command of the first PUSCH, which is used to control the power of the PUSCH.
  • the TPC command value for the first PUSCH is also applicable to the first SRS, based on the power adjustment amount of the first PUSCH (single or cumulative) is consistent with the power adjustment amount (single or cumulative) of the first SRS.
  • the UE sends the first PUSCH according to the first PUSCH configuration, and correspondingly, the base station receives the first PUSCH according to the first PUSCH configuration.
  • the UE may send the first PUSCH on the third BWP, that is, in step 507, the BWP currently activated by the UE is the third BWP.
  • the second BWP and the third BWP can be understood as BWPs associated with the first SRS.
  • the UE sends the first SRS on the first BWP according to the first SRS configuration.
  • the base station receives the first SRS according to the first SRS configuration.
  • the power adjustment of the first SRS is not performed across BWPs.
  • the transmission power of the first SRS is 15dBm
  • the TPC command value in the first DCI in step 503 indicates an upward adjustment of 1dB (such as only controlling the first PUSCH on the second BWP)
  • the first The transmission power of the SRS is 16dBm (that is, 15dBm+1dB)
  • the TPC command value in the second DCI indicates an increase of 3dB (only for controlling the first PUSCH on the third BWP)
  • the transmission power of the first SRS is 18dBm (that is, 15dBm+3dB) .
  • the transmission power of the first SRS is 15dBm
  • the TPC command value in the first DCI in step 503 indicates an upward adjustment of 1dB (only for controlling the first PUSCH on the second BWP)
  • the transmit power of the first SRS is 16dBm.
  • the TPC command value in the second DCI indicates an upward adjustment of 3dB (only for controlling the first PUSCH on the third BWP)
  • both the second BWP and the third BWP are BWPs associated with the first SRS
  • the transmission power of the first SRS is 19dBm (15dBm+1dB+3dB).
  • the closed-loop power control state of the first SRS is an independent power control state.
  • the transmission power adjustment amount of the first SRS has the following methods:
  • Method 1 The power adjustment amount of the first SRS is related to the transmit power adjustment amount indicated by the TPC command value in the received DCI of format 2-3 on one or more BWPs.
  • the one or more BWPs belong to the same carrier as the first SRS configuration.
  • the one or more BWPs include one or more fourth BWPs, and the fourth BWP and the first SRS configuration belong to different carriers, but the format received on the carrier of the fourth BWP is 2
  • the TPC command carried by the DCI of -3 may act on the carrier in the first SRS configuration.
  • one or more BWPs can be understood as one or more BWPs where one or more PUSCH configurations associated with the first SRS configuration are located, and the corresponding BWPs can be understood as one or more BWPs bound to one or more BWPs.
  • a BWP can be understood as a downlink BWP paired with one or more BWPs.
  • the transmit power adjustment amount of the first SRS is the sum of the transmit power adjustment amounts indicated by the TPC command value carried in the DCI (DCI format is 2-3) received on each of the one or more BWPs.
  • the above-mentioned method 1 may also be replaced by: sending the first SRS transmission power adjustment amount and the TPC command indication carried by the DCI (DCI format is 2-3) received by the UE on one or more configured carrier CCs related to power adjustment.
  • the one or more CCs shown here may be all CCs or some CCs configured by the UE.
  • the one or more CCs may include: the CC where the first SRS configuration is located, and/or a CC that is bound to the CC where the first SRS configuration is located (for example, a carrier communication with the CC where the first SRS configuration is located) aggregated CC).
  • the transmission power adjustment amount of the first SRS may be the sum of the transmission power adjustment amounts indicated by the TPC commands carried in the DCI (DCI format is 2-3) received on the one or more CCs.
  • the transmission power adjustment amount of the first SRS in step 606 may be the sum of the transmission power adjustment amounts indicated in the third DCI in step 603 and step 605 .
  • the third DCI is received on the second BWP
  • the third DCI is received on the third BWP.
  • Method 2 The power adjustment amount of the first SRS is related to the transmit power adjustment amount indicated by the TPC command in the DCI format 2-3 received on the BWP corresponding to the second BWP.
  • the BWP corresponding to the second BWP shown here may be understood as: the BWP bound to the second BWP, or the downlink BWP paired with the second BWP, or the BWP currently activated by the UE.
  • the transmission power adjustment amount of the first SRS in step 604 may only be related to the third DCI in step 603 (the current active BWP of the UE is the second BWP).
  • the transmission power adjustment amount of the first SRS in step 606 may only be related to the third DCI in step 605 (the current active BWP of the UE is the third BWP).
  • Method 3 The power adjustment amount of the first SRS is all reset to zero when the BWP is switched.
  • the format of the DCI in method 1 of the above implementation mode 1 is DCI0-0, DCI0-1, DCI0-2 or DCO2-2.
  • the format of the DCI in method 2 of the second implementation mode is DCI2-3. It can be understood that the format of each DCI shown in the embodiment of the present application is only an example. If the method provided in the embodiment of the present application can also be implemented by DCI in other formats, the DCI in other formats also belongs to the protection scope of the present application.
  • FIG. 6 is a schematic flowchart of a data transmission method provided in an embodiment of the present application. As shown in FIG. 6, the method includes:
  • the base station sends configuration information to the UE, and correspondingly, the UE receives the configuration information.
  • the configuration information includes an association relationship between the first SRS configuration and one or more PUSCH configurations, and the first BWP where the first SRS configuration is located is different from the BWP where each PUSCH configuration is located.
  • the UE sends the first SRS on the first BWP according to the first SRS configuration.
  • the base station receives the first SRS.
  • the method shown in FIG. 6 includes that the UE sends the first PUSCH according to the first PUSCH configuration. A step of. That is to say, in the method shown in FIG. 6 , when the UE sends the first PUSCH, it may use the same antenna port and/or open-loop power control parameters as the first SRS to send the first PUSCH.
  • the base station sends the third DCI to the UE.
  • the UE receives the third DCI.
  • the UE sends the first SRS on the first BWP according to the first SRS configuration.
  • the base station receives the first SRS.
  • the base station sends the third DCI to the UE.
  • the UE receives the third DCI.
  • the UE sends the first SRS on the first BWP according to the first SRS configuration.
  • the base station receives the first SRS.
  • the third DCI carries a TPC command value for adjusting the first SRS.
  • the third DCI may be used for adjusting the TPC of the first SRS.
  • the third DCI may also be used to trigger the sending of an aperiodic SRS (such as the first SRS).
  • an explicit bit is added to the DCI of format 2-3 (that is, the third DCI) to indicate that the DCI Format 2-3 (used to control the transmission power adjustment amount of the first SRS and trigger the first SRS (aperiodic)
  • the DCI Format 2-3 used to control the transmission power adjustment amount of the first SRS and trigger the first SRS (aperiodic)
  • 1 bit when it is 0, it indicates that DCI format 2-3 is used to control other SRSs on the currently activated BWP of the carrier (such as the second SRS obtained according to the second SRS configuration), and when it is 1, it indicates DCI format 2-3 It is used to control the first SRS on the first BWP of the carrier.
  • the TPC command value carried in the DCI format 2-3 can be used to control The transmission power adjustment amount of the first SRS on the carrier.
  • the DCI format 2-3 can be used to trigger the sending of the first SRS.
  • the transmission power adjustment amount of the first SRS and the transmission of the first SRS are indicated in an implicit manner.
  • the DCI format 2-3 is used to control the transmission power adjustment amount of the first SRS on the carrier and trigger the first SRS ( non-periodic) transmission.
  • the DCI format2-3 is used to control the transmission power adjustment of other SRSs on the currently activated BWP on the carrier and the carrier that triggers other SRSs Alternate hair.
  • the present application divides the communication device into functional modules according to the above method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in this application is schematic, and is only a logical function division, and there may be other division methods in actual implementation.
  • the communication device according to the embodiment of the present application will be described in detail below with reference to FIG. 7 to FIG. 9 .
  • FIG. 7 is a schematic structural diagram of a communication device provided by an embodiment of the present application. As shown in FIG. 7 , the communication device includes a processing unit 701 , a receiving unit 702 and a sending unit 703 .
  • the communication device may be the terminal device shown above or a chip in the terminal device or the like. That is, the communication apparatus may be used to perform the steps or functions performed by the terminal device (or UE) in the above method embodiments.
  • a receiving unit 702 configured to receive configuration information
  • the sending unit 703 is further configured to send the first SRS and send the first PUSCH.
  • the processing unit 701 is configured to send the first SRS on the first BWP according to the first SRS configuration through the sending unit 703 .
  • the processing unit 701 is configured to send the first PUSCH according to the first PUSCH configuration through the sending unit 703 .
  • the foregoing processing unit and sending unit may also be understood as: the processing unit 701 is configured to obtain the first SRS according to the first SRS configuration, and the sending unit 703 is configured to output the first SRS.
  • the processing unit 701 is further configured to obtain the first PUSCH according to the first PUSCH configuration, and the sending unit 703 is further configured to output the first PUSCH.
  • the processing unit 701 is specifically configured to use the sending unit 703 to send the first PUSCH by using the same antenna port and/or open-loop power control parameter as the first SRS.
  • the receiving unit 702 is further configured to receive the first DCI.
  • the sending unit 703 is specifically configured to switch from the second BWP to the first BWP through the processing unit 701, and send the first SRS on the first BWP according to the first SRS configuration.
  • the above-mentioned communication device may be the access network device or a chip in the access network device shown above. That is, the communication apparatus may be used to execute the steps or functions executed by the access network device in the above method embodiments.
  • a sending unit 703, configured to send configuration information
  • the receiving unit 702 is further configured to receive the first SRS, and receive the first PUSCH.
  • the processing unit 701 may be configured to obtain configuration information, and send the configuration information through the sending unit 703 .
  • the receiving unit 702 may use the processing unit 701 to receive the first SRS according to the first SRS configuration, and use the processing unit 701 to receive the first PUSCH according to the first PUSCH configuration.
  • terminal device and the access network device are described above, and possible product forms of the terminal device and the access network device are introduced below. It should be understood that any product in any form that has the functions of the terminal equipment described in Figure 7 above, or any product in any form that has the functions of the access network device described in Figure 7 above, falls within the scope of the embodiments of this application. scope of protection. It should also be understood that the following introduction is only an example, and product forms of the terminal device and the access network device in the embodiment of the present application are not limited thereto.
  • the processing unit 701 may be one or more processors, the sending unit 703 may be a transmitter, and the receiving unit 702 may be a receiver, or the sending unit 703 and the receiving unit 702 may be integrated into one device, such as a transceiver.
  • the processing unit 701 may be one or more processors (or the processing unit 701 may be one or more logic circuits), the sending unit 703 may be an output interface, the receiving unit 702 may be an input interface, or the sending unit 703 and the receiving Unit 702 is integrated into one unit, such as an input and output interface. Details will be given below.
  • the processing unit 701 may be one or more processors, and the sending unit 703 and the receiving unit 702 may be integrated into a transceiver.
  • the processor and the transceiver may be coupled, and the connection manner of the processor and the transceiver is not limited in the embodiment of the present application.
  • the communication device 80 includes one or more processors 820 and a transceiver 810 .
  • the transceiver 810 when the communication device is used to perform the steps or methods or functions performed by the above terminal device, the transceiver 810 is used to receive configuration information from the access network device; the transceiver 810 is also used to send the first SRS , and sending the first PUSCH.
  • the transceiver 810 may use the processor 820 to send the first SRS on the first BWP according to the first SRS configuration, and send the first PUSCH according to the first PUSCH configuration.
  • the transceiver 810 when the communication device is used to perform the steps or methods or functions performed by the above-mentioned access network equipment, the transceiver 810 is used to send configuration information; the transceiver 810 is also used to receive the first SRS, and receive FIRST PUSCH.
  • the processor 820 may be configured to obtain configuration information; the transceiver 810 may be configured to send the configuration information to the terminal device, and receive the first SRS and the first PUSCH from the terminal device.
  • the transceiver may include a receiver and a transmitter, the receiver is used to perform the function (or operation) of receiving, and the transmitter is used to perform the function (or operation) of transmitting ). And the transceiver is used to communicate with other devices/devices via the transmission medium.
  • the communication device 80 may further include one or more memories 830 for storing program instructions and/or data.
  • the memory 830 is coupled to the processor 820 .
  • the coupling in the embodiments of the present application is an indirect coupling or a communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 820 may cooperate with memory 830 .
  • Processor 820 may execute program instructions stored in memory 830 .
  • a specific connection medium among the transceiver 810, the processor 820, and the memory 830 is not limited.
  • the memory 830, the processor 820, and the transceiver 810 are connected through a bus 840.
  • the bus is represented by a thick line in FIG. 8, and the connection mode between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 8 , but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, etc., and may realize Or execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The steps of the methods disclosed in connection with the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the memory may include but not limited to hard disk drive (hard disk drive, HDD) or solid-state drive (solid-state drive, SSD) and other non-volatile memory, random access memory (Random Access Memory, RAM), Erasable Programmable ROM (EPROM), Read-Only Memory (ROM) or Portable Read-Only Memory (Compact Disc Read-Only Memory, CD-ROM), etc.
  • the memory is any storage medium that can be used to carry or store program codes in the form of instructions or data structures, and can be read and/or written by a computer (such as the communication device shown in this application, etc.), but is not limited thereto.
  • the memory in the embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, and is used for storing program instructions and/or data.
  • the processor 820 is mainly used to process the communication protocol and communication data, control the entire communication device, execute software programs, and process data of the software programs .
  • the memory 830 is mainly used to store software programs and data.
  • the transceiver 810 may include a control circuit and an antenna, and the control circuit is mainly used for converting a baseband signal to a radio frequency signal and processing the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor 820 can read the software program in the memory 830, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor 820 performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 820, and the processor 820 converts the baseband signal into data and processes the data deal with.
  • the radio frequency circuit and the antenna can be set independently from the processor for baseband processing.
  • the radio frequency circuit and antenna can be arranged remotely from the communication device. .
  • the communication device shown in the embodiment of the present application may have more components than those shown in FIG. 8 , which is not limited in the embodiment of the present application.
  • the method performed by the processor and the transceiver shown above is only an example, and for the specific steps performed by the processor and the transceiver, reference may be made to the method introduced above.
  • the processing unit 701 may be one or more logic circuits, the sending unit 703 may be an output interface, and the receiving unit 702 may be an input interface.
  • the sending unit 703 and the receiving unit 702 may be integrated into one unit, such as an input and output interface.
  • the input-output interface is also called a communication interface, or an interface circuit, or an interface, or the like.
  • the communication device shown in FIG. 9 includes a logic circuit 901 and an interface 902 . That is, the above-mentioned processing unit 701 can be realized by a logic circuit 901 , and the receiving unit 702 and the sending unit 703 can be realized by an interface 902 .
  • the logic circuit 901 may be a chip, a processing circuit, an integrated circuit or a system on chip (SoC) chip, etc.
  • the interface 902 may be a communication interface, an input/output interface, or a pin.
  • FIG. 9 takes the aforementioned communication device as a chip as an example, and the chip includes a logic circuit 901 and an interface 902 .
  • the logic circuit and the interface may also be coupled to each other.
  • the embodiment of the present application does not limit the specific connection manner of the logic circuit and the interface.
  • the interface 902 is used to input configuration information; and is also used to output the first SRS and the first PUSCH.
  • the logic circuit 901 may be configured to obtain the first SRS according to the first SRS configuration, and then output the first SRS through the interface 902 .
  • the logic circuit 901 is further configured to obtain the first PUSCH according to the first PUSCH, and then output the first PUSCH through the interface 902 .
  • the logic circuit 901 is configured to parse the input configuration information to obtain content in the configuration information.
  • the logic circuit 901 is further configured to generate a first SRS according to the first SRS configuration, and output the first SRS through the interface 902 .
  • the logic circuit 901 is further configured to generate the first PUSCH according to the first PUSCH configuration, and output the first PUSCH through the interface 902 .
  • the logic circuit is also used to control the interface 902 to output the first PSUCH by using the same antenna port and/or open-loop power control parameters as the first SRS.
  • the interface 902 is also used to input the first DCI.
  • the logic circuit 901 is also used to switch from the second BWP to the first BWP.
  • the logic circuit 901 is used to obtain configuration information
  • the interface 902 is used to output the configuration information
  • logic circuit 901 may also be used to process the input first SRS and first PUSCH, which is not limited in this embodiment of the present application.
  • the communication device shown in the embodiment of the present application may implement the method provided in the embodiment of the present application in the form of hardware, or may implement the method provided in the embodiment of the present application in the form of software, which is not limited in the embodiment of the present application.
  • the embodiment of the present application also provides a wireless communication system, the wireless communication system includes a terminal device and an access network device, the terminal device and the access network device can be used to implement any of the foregoing embodiments (as shown in Figure 4 to Figure 6) in the method.
  • the present application also provides a computer program, which is used to implement the operations and/or processing performed by the terminal device in the method provided in the present application.
  • the present application also provides a computer program, which is used to implement the operations and/or processing performed by the access network device in the method provided in the present application.
  • the present application also provides a computer-readable storage medium, where computer code is stored in the computer-readable storage medium, and when the computer code is run on the computer, the computer is made to perform the operations performed by the terminal device in the method provided by the present application and/or or process.
  • the present application also provides a computer-readable storage medium, where computer code is stored in the computer-readable storage medium, and when the computer code is run on the computer, the computer is made to perform the operations performed by the access network device in the method provided by the present application and/or processing.
  • the present application also provides a computer program product, the computer program product includes computer code or computer program, when the computer code or computer program is run on the computer, the operation performed by the terminal device in the method provided by the present application and/or Processing is performed.
  • the present application also provides a computer program product.
  • the computer program product includes computer code or computer program.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to realize the technical effects of the solutions provided by the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the storage medium includes several instructions to enable a computer device (which may be a personal computer, server, or network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned readable storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (random access memory, RAM), magnetic disk or optical disk, etc., which can store program codes. medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开一种数据传输方法及装置。包括:基站向UE发送配置信息,该UE接收该配置信息,该配置信息包括第一SRS配置与一个或多个PUSCH配置的关联关系,该第一SRS配置所在的第一BWP与每个PUSCH配置所在的BWP不同。以及UE根据第一SRS配置在第一BWP上发送第一SRS,根据第一PUSCH配置发送第一PUSCH,该第一PUSCH配置为上述一个或多个PUSCH配置中的一个。相应的,基站根据第一SRS配置接收第一SRS,根据第一PUSCH配置接收第一PUSCH。本申请能够使得基站提前获得UE待切换BWP上的信道信息。

Description

数据传输方法及装置
本申请要求于2021年05月31日提交中国专利局、申请号为202110605597.2、申请名称为“数据传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种数据传输方法及装置。
背景技术
一般的,基站所配置的探测参考信号(sounding reference signal,SRS)配置需要包含于终端设备当前激活的(bandwidth part,BWP)内,从而使得该终端设备在上行(uplink,UL)BWP内进行数据传输和SRS的发送。
同时,终端设备切换BWP时,发送的SRS也会做切换。示例性的,基站可以在原BWP上向终端设备发送下行控制信息,从而调度目标BWP上的上下行数据。进一步的,终端设备切换至目标BWP上,完成上行数据发送和/或下行数据接收,并驻留在目标BWP上,直到收到下一个切换BWP的下行控制信息。终端设备驻留在目标BWP上时,原BWP上的SRS不再发送,而是发送目标BWP上的SRS。
然而,终端设备未切换BWP之前,基站无法获得该目标BWP上的信道信息。
发明内容
本申请提供一种数据传输方法及装置,能够使得基站提前获得UE待切换BWP上的信道信息。
第一方面,本申请实施例提供一种数据传输方法,所述方法包括:
接收配置信息,所述配置信息包括第一探测参考信号(sounding reference signal,SRS)配置与一个或多个物理上行共享信道(physical uplink shared channel,PUSCH)配置的关联关系,所述第一SRS配置所在的第一带宽部分(bandwidth part,BWP)与每个所述PUSCH配置所在的BWP不同;根据所述第一SRS配置在所述第一BWP上发送第一SRS;根据第一PUSCH配置发送第一PUSCH,所述第一PUSCH配置为所述一个或多个PUSCH配置中的一个。
本申请实施例提供的方法可以应用于通信装置,该通信装置可以为终端设备。
一般的,在UE切换BWP时,UE如果仍在原BWP上发送SRS,则基站无法获得目标BWP上的信道信息。
因此,本申请实施例中,UE发送第一SRS时,能够跳出UE当前激活BWP,在第一BWP(第一BWP不是UE当前激活BWP)上发送第一SRS。而且,该第一SRS的发送可以不受BWP切换的影响,也就是说,无论UE处于哪个BWP上,均能保证该第一SRS的发送。即本申请实施例能够利用独立于数据调度的第一SRS,使得该第一SRS独立于数据BWP切换的SRS的发送,从而基站能够在UE进行BWP切换之前获得待切换BWP上的信道信息(也可以称为信道状况)。
在一种可能的实现方式中,所述第一SRS用于定位。
本申请实施例中,该第一SRS可以用于多输入多输出(multiple input multiple output, MIMO),或者,该第一SRS用于定位。也就是说,本申请实施例示出的第一SRS既可以是MIMO中的SRS(如下文关于图2a介绍的SRS),也可以是定位中的SRS(如下文关于图2b介绍的SRS)。
在一种可能的实现方式中,发送所述第一PUSCH包括:采用与所述第一SRS相同的天线端口发送所述第一PUSCH;和/或,采用与所述第一SRS相同的开环功控参数发送所述第一PUSCH。
在一种可能的实现方式中,所述第一PUSCH配置还关联第二SRS配置,所述方法还包括:接收第一DCI,所述第一DCI携带第一指示信息,所述第一指示信息用于指示所述第一PUSCH与所述第一SRS配置关联或与所述第二SRS配置关联。
本申请实施例中,第二SRS配置所在的BWP与第一PUSCH配置所在的BWP相同。示例性的,第一指示信息用于指示第一PUSCH与第一SRS配置关联,包括:该第一PUSCH与第一SRS配置中的所有资源集关联;或者,第一指示信息用于指示第一PUSCH与第一SRS配置中的一个或多个SRS资源集关联;或者,第一指示信息用于指示第一PUSCH与第一SRS配置中的一个SRS资源集中的一个或者多个SRS资源关联。例如,在第一指示信息用于指示第一PUSCH与第一SRS配置中的第一SRS资源集关联时,第一DCI中还可以包括SRI,该SRI用于指示该第一SRS资源集中与第一PUSCH关联的SRS资源。可理解,关于第一指示信息用于指示第一PUSCH与第二SRS配置关联的说明,可以参考上述关于第一PUSCH与第一SRS配置关联的描述,本申请实施例不再详述。
在一种可能的实现方式中,所述第一SRS配置包括多个SRS资源的配置信息,所述第一DCI还携带探测参考信号资源指示(SRS resource indicator,SRI),所述SRI用于指示所述多个SRS资源中与所述第一PUSCH关联的SRS资源。
示例性的,第一SRS配置包括多个SRS资源的配置信息包括:该第一SRS配置中包含一个SRS资源集(如第一SRS资源集),该SRS资源集包括多个SRS资源。在另一种示例中,该第一SRS配置中包含多个SRS资源集,每个SRS资源集包含一个多个SRS资源。
在一种可能的实现方式中,所述SRI还用于指示所述第一PUSCH的开环功控参数和/或闭环功控状态。
在一种可能的实现方式中,所述根据所述第一SRS配置在所述第一BWP上发送第一SRS包括:从第二BWP切换到所述第一BWP,根据所述第一SRS配置在所述第一BWP上发送所述第一SRS,所述第二BWP为所述一个或多个PUSCH配置关联所在的BWP中的一个,所述第一SRS的发送功率调整量与所述第二BWP上的一个或多个PUSCH所对应的DCI所携带的传输控制功率TPC(transmission power control)命令值(TPC command value)指示的发送功率调整量有关。
可理解,关于第一SRS的发送功率调整的说明,还可以参考下文关于图5或图6的描述,这里不作详述。
在一种可能的实现方式中,所述第二BWP上的PUSCH所对应的DCI不是用于调度PUSCH的DCI。
在一种可能的实现方式中,所述第二BWP上的一个或多个PUSCH中的每个PUSCH对应一个或多个DCI。
在一种可能的实现方式中,所述方法还包括:所述第一SRS的发送功率调整量与一个或多个BWP中每个BWP上接收到的DCI携带的TPC信息TPC命令值指示的发送功率调整量有关;或者,所述第一SRS的发送功率调整量与终端设备在配置的一个或多个载波CC上接 收到的DCI携带的TPC信息TPC命令值指示的发送功率调整量有关。
第二方面,本申请实施例提供一种数据传输方法,所述方法包括:
发送配置信息,所述配置信息包括第一SRS配置与一个或多个PUSCH配置的关联关系,所述第一SRS配置所在的第一BWP与每个所述PUSCH配置所在的BWP不同;根据第一SRS配置接收第一SRS,根据第一PUSCH配置接收第一PUSCH,所述第一PUSCH配置为所述一个或多个PUSCH配置中的一个。
在一种可能的实现方式中,所述第一SRS用于定位。
在一种可能的实现方式中,所述第一PUSCH配置还关联第二SRS配置,所述方法还包括:发送第一DCI,所述第一DCI携带第一指示信息,所述第一指示信息用于指示所述第一PUSCH与所述第一SRS配置关联或与所述第二SRS配置关联。
在一种可能的实现方式中,所述第一SRS配置包括多个SRS资源的配置信息,所述第一DCI还携带探测参考信号资源指示SRI,所述SRI用于指示所述多个SRS资源中与所述第一PUSCH关联的SRS资源。
在一种可能的实现方式中,所述SRI还用于指示所述第一PUSCH的开环功控参数和/或闭环功控状态。
第三方面,本申请实施例提供一种通信装置,用于执行第一方面或第一方面的任意可能的实现方式中的方法。该通信装置包括具有执行第一方面或第一方面的任意可能的实现方式中的方法的相应单元。
示例性的,该通信装置可以为终端设备或终端设备中的芯片等。
第四方面,本申请实施例提供一种通信装置,用于执行第二方面或第二方面的任意可能的实现方式中的方法。该通信装置包括具有执行第二方面或第二方面的任意可能的实现方式中的方法的相应方法。
示例性的,该通信装置可以为接入网设备或接入网设备中的芯片等。
在第三方面或第四方面中,上述通信装置可以包括发送单元、接收单元和处理单元。对于发送单元、接收单元和处理单元的具体描述还可以参考下文示出的装置实施例。
第五方面,本申请实施例提供一种通信装置,该通信装置包括处理器,用于执行上述第一方面或第一方面的任意可能的实现方式所示的方法。或者,该处理器用于执行存储器中存储的程序,当该程序被执行时,上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
对于上述各个通信装置来说,在执行上述方法的过程中,上述方法中有关发送信令或数据的过程,可以理解为由处理器输出上述信令或数据的过程。处理器输出上述信令或数据时,处理器将该上述信令或数据输出给收发器,以便由收发器进行发射。该上述信令或数据在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,处理器接收输入的信令或数据时,收发器接收该上述信令或数据,并将其输入处理器。更进一步的,在收发器收到该上述信令或数据之后,该上述信令或数据可能需要进行其他的处理,然后才输入处理器。可理解,关于该说明,下文示出的第六方面,同样适用。
对于处理器所涉及的发射、发送和接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和接收、输入等操作,而不是直接由射频电路和天线所进行的发射、发送和接收操作。
在实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器。上述存储器可以为非瞬时性 (non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。可理解,对于处理器和存储器的说明同样适用于下文示出的第六方面,为便于赘述第六方面不再详述。
在一种可能的实现方式中,存储器位于上述通信装置之外。
在一种可能的实现方式中,存储器位于上述通信装置之内。
在一种可能的实现方式中,通信装置还包括收发器,该收发器,用于接收信号或发送信号。示例性的,该收发器还可以用于接收配置信息,发送第一SRS等。
本申请实施例中,该通信装置可以为终端设备或终端设备中的芯片等。
第六方面,本申请实施例提供一种通信装置,该通信装置包括处理器,用于执行上述第二方面或第二方面的任意可能的实现方式所示的方法。或者,处理器用于执行存储器中存储的程序,当该程序被执行时,上述第二方面或第二方面的任意可能的实现方式所示的方法被执行。
在一种可能的实现方式中,存储器位于上述通信装置之外。
在一种可能的实现方式中,存储器位于上述通信装置之内。
在一种可能的实现方式中,通信装置还包括收发器,该收发器,用于接收信号或发送信号。示例性的,该收发器可以用于发送配置信息,接收第一SRS等。
本申请实施例中,该通信装置可以为接入网设备或接入网设备中的芯片等。
第七方面,本申请实施例提供一种通信装置,该通信装置包括逻辑电路和接口,所述逻辑电路和所述接口耦合;所述接口,用于输入配置信息;所述接口,还用于根据输出第一SRS,以及输出第一PUSCH。
示例性的,所述逻辑电路,用于对输入的配置信息进行解析,获得配置信息中的内容。示例性的,所述逻辑电路,还用于根据第一SRS配置生成第一SRS,以及通过接口输出该第一SRS。示例性的,所述逻辑电路,还用于根据第一PUSCH配置生成第一PUSCH,以及通过接口输出该第一PUSCH。
可理解,本申请示出的待处理的数据可以包括配置信息。逻辑电路对配置信息进行处理,以及根据第一SRS配置获得第一SRS、根据第一PUSCH配置获得第一PUSCH(即处理后的数据可以包括第一SRS和第一PUSCH)后,通过接口输出该第一SRS和第一PUSCH。
示例性的,所述逻辑电路,还用于控制所述接口采用与第一SRS相同的天线端口和/或开环功控参数输出第一PSUCH。
示例性的,所述接口,还用于输入第一DCI。
示例性的,所述逻辑电路,还用于从第二BWP切换到第一BWP,以及根据第一SRS配置生成第一SRS,通过接口输出第一SRS。第八方面,本申请实施例提供一种通信装置,该通信装置包括逻辑电路和接口,所述逻辑电路和所述接口耦合;所述接口,用于输出配置信息;所述接口,还用于输入第一SRS,以及输入第一PUSCH。
示例性的,所述逻辑电路,用于获取配置信息,通过接口输出该配置信息。
第九方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,当其在计算机上运行时,使得上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
第十方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,当其在计算机上运行时,使得上述第二方面或第二方面的任意可能的实现方 式所示的方法被执行。
第十一方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包括计算机程序或计算机代码,当其在计算机上运行时,使得上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
第十二方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包括计算机程序或计算机代码,当其在计算机上运行时,使得上述第二方面或第二方面的任意可能的实现方式所示的方法被执行。
第十三方面,本申请实施例提供一种计算机程序,该计算机程序在计算机上运行时,上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
第十四方面,本申请实施例提供一种计算机程序,该计算机程序在计算机上运行时,上述第二方面或第二方面的任意可能的实现方式所示的方法被执行。
第十五方面,本申请实施例提供一种无线通信系统,该无线通信系统包括终端设备和接入网设备,所述终端设备用于执行上述第一方面或第一方面的任意可能的实现方式所示的方法,所述接入网设备用于执行上述第二方面或第二方面的任意可能的实现方式所示的方法。
附图说明
图1a是本申请实施例提供的一种通信系统的示意图;
图1b是本申请实施例提供的一种基于无线通信系统的定位架构示意图;
图2a是本申请实施例提供的一种数据传输方法的流程示意图;
图2b是本申请实施例提供的一种基于定位的数据传输方法的流程示意图;
图3是本申请实施例提供的一种BWP切换的示意图;
图4至图6是本申请实施例提供的一种数据传输方法的流程示意图;
图7至图9是本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地描述。
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等仅用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备等,没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元等,或可选地还包括对于这些过程、方法、产品或设备等固有的其它步骤或单元。
在本文中提及的“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员可以显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合。例如,a,b或c中的至少一项(个), 可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”。
本申请提供的方法可以应用于各类通信系统,例如,可以是物联网(internet of things,IoT)系统、窄带物联网(narrow band internet of things,NB-IoT)系统、长期演进(long term evolution,LTE)系统,也可以是第五代(5th-generation,5G)通信系统,以及未来通信发展中出现的新的通信系统(如6G)等。
本申请提供的技术方案还可以应用于机器类通信(machine type communication,MTC)、机器间通信长期演进技术(long term evolution-machine,LTE-M)、设备到设备(device-todevice,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)网络或者其他网络。其中,IoT网络例如可以包括车联网。其中,车联网系统中的通信方式统称为车与任何事物(vehicle-to-everything,V2X,X可以代表任何事物),例如,该V2X可以包括:车辆到车辆(vehicle to vehicle,V2V)通信,车辆与基础设施(vehicle to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。示例性的,下文示出的图1a或图1b中,终端设备与终端设备之间便可以通过D2D技术、M2M技术或V2X技术通信等。
图1a是本申请实施例提供的一种通信系统的示意图。如图1a所示,该通信系统可以包括至少一个接入网设备以及至少一个终端设备。
对于接入网设备和终端设备的介绍分别如下所示:
示例性的,接入网设备可以是下一代节点B(next generation node B,gNB)、下一代演进型基站(next generation evolved nodeB,ng-eNB)、或者未来6G通信中的接入网设备等。接入网设备可以是任意一种具有无线收发功能的设备,包括但不限于以上所示的基站。该基站还可以是未来通信系统如第六代通信系统中的基站。可选的,该接入网设备可以为无线局域网(wireless fidelity,WiFi)系统中的接入节点、无线中继节点、无线回传节点等。可选的,该接入网设备可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。可选的,该接入网设备可以是可穿戴设备或车载设备等。可选的,该接入网设备还可以是小站,传输接收节点(transmission reception point,TRP)(或也可以称为传输点)等。可理解,该接入网设备还可以是未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站等等。
在一些部署中,基站(如gNB)可以由集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)构成。即对接入网中的基站的功能进行拆分,将基站的部分功能部署在一个CU,将剩余功能部署在DU。且多个DU共用一个CU,可以节省成本,以及易于网络扩展。在基站的另一些部署中,CU还可以划分为CU-控制面(control plane,CP)和CU-用户面(user plan,UP)等。在基站的又一些部署中,基站还可以是开放的无线接入网(open radio access network,ORAN)架构等等,本申请对于基站的具体类型不作限定。
为便于描述,下文中将以接入网设备为基站为例,介绍本申请所涉及的方法。
示例性的,该终端设备也可称为用户设备(user equipment,UE)、终端等。终端设备是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上,如轮船上等;还可以部署在空中,例如部署在飞机、气球或卫星上等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制 (industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。可理解,该终端设备还可以是未来6G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可理解,本申请示出的终端设备不仅可以包括车联网中的车(如整车)、而且还可以包括车联网中的车载设备或车载终端等,本申请对于该终端设备应用于车联网时的具体形态不作限定。
为便于描述,下文中将以终端设备为UE为例,介绍本申请所涉及的方法
图1a所示的通信系统中,包括一个基站和六个UE,如图1a中的UE1至UE6。该通信系统中,基站可以向UE1至UE6发送配置信息或DCI等下行信号,UE1至UE6可以向基站发送SRS或PUSCH等上行信号。可理解,对于UE之间的通信方式,可以参考上文的描述,这里不再详述。
应理解,图1a示例性地示出了一个基站和六个UE,以及各通信设备之间的通信链路。可选地,该通信系统可以包括多个基站,并且每个基站的覆盖范围内可以包括其它数量的UE,例如更多或更少的UE等,本申请对此不做限定。
上述各个通信设备,如图1a中的基站、UE1至UE6,可以配置多个天线。该多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线等,本申请实施例对于各个通信设备的具体结构不作限定。可选地,该通信系统还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例不限于此。
可理解,本申请提供的方法不仅可以应用于如图1a所示的通信系统,还可以应用于如图1b所示的通信系统。
图1b是本申请实施例提供的一种基于无线通信的定位架构示意图,如图1b所示,该定位架构中主要包括:无线接入网络(radio access network,RAN)(如图1b是以下一代RAN(next generation RAN,NG-RAN)为例示出的)、UE和核心网三部分。示例性的,核心网包括定位管理功能(location management function,LMF)、接入和移动性管理功能(access and mobility management function,AMF)、服务定位协议(service location protocol,SLP)以及演进服务移动定位中心(evolved serving mobile location centre,E-SMLC)。
示例性的,LMF负责支持有关UE的不同类型的位置服务,包括对UE的定位和向UE传递辅助数据等。例如,LMF与基站之间通过新无线(new radio,NR)定位协议附加协议(NR positioning protocol annex,NRPPa)消息进行交互,从而获取定位参考信号(positioning reference signals,PRS)、探测参考信号(sounding reference signal,SRS)配置信息、小区定时、小区位置信息等。又例如,LMF与UE之间通过长期演进(long term evolution,LTE)定位协议(LTE positioning protocol,LPP)消息进行UE能力信息传递、辅助信息传递、测量信息传递等。
示例性的,AMF可以从第五代核心网络定位服务(5th generation core network location services,5GC LCS)实体接收与UE相关的位置服务请求;或者,AMF本身也可代表UE启动一些位置服务,并将位置服务请求发送给LMF。该AMF得到UE的位置信息后,将UE的位置信息返回给5GC LCS实体。
示例性的,RAN包括基站,如图1b所示,gNB和ng-eNB之间可以通过Xn接口(或 Xn-C接口)连接,LMF与ng-eNB/gNB之间可以通过NG-C接口连接,以及UE与gNB之间可以通过NR-Uu接口连接,UE与ng-eNB之间可以通过LTE-Uu接口连接。可理解,本申请对于图1b示出的各个接口不作限定,对于各个接口的说明等还可以参考相关标准或协议等。
可理解,图1b所示的定位架构示意图仅为示例,对于其他形式的定位架构示意图可以参考相关标准或协议等,这里不再一一详述。
下文示出的各个实施例可以适用于图1a所示的通信系统,也可以适用于图1b所示的通信系统,对此,下文不再赘述。
图2a是本申请实施例提供的一种数据传输方法的流程示意图。如图2a所示,该方法包括:
201.服务基站确定配置上行SRS资源(determines UL SRS resources)。
可理解,图2a和图2b所示的方法中,服务基站可以是gNB,也可以是TRP等,本申请实施例对此不作限定。
202.服务基站向UE发送携带SRS配置(SRS configuration)的消息。相应的,UE接收该SRS配置。SRS配置中包括服务基站为UE确定的上行SRS资源的配置信息。
通过图2a所示的方法,服务基站可以向UE发送SRS配置,从而可使得UE获得该SRS配置,以及根据该SRS配置发送SRS。
图2b是本申请实施例提供的一种基于定位的数据传输方法的流程示意图,如图2b所示,该方法包括:
201.LMF向UE的服务基站请求SRS配置,如通过NRPPa定位信息请求消息(NRPPa positioning information request)请求SRS配置。
202.服务基站确定配置上行SRS资源(determines UL SRS resources)。
203.服务基站向UE发送携带SRS配置(SRS configuration)的消息。相应的,UE接收SRS配置。
本申请实施例中,上述SRS配置包括上行SRS资源的配置。
204.服务基站向LMF发送携带SRS配置的响应,如通过NRPPa定位信息响应(NRPPa positioning information response)消息将SRS配置回复给LMF。相应的,LMF接收该响应。
可选的,服务基站也可以是先向UE发送携带SRS配置的消息,然后在LMF向UE的服务基站请求SRS配置后,该服务基站向LMF发送携带SRS配置的响应。可理解,上述服务基站向UE发送的SRS配置,和该服务基站向LMF发送的SRS配置可以相同,或者,不同等,本申请实施例对此不作限定。可选的,服务基站还可以是先向UE发送携带SRS配置1的消息,在LMF向UE的服务基站请求SRS配置后,确定配置上行SRS资源,然后向UE发送携带SRS配置2的消息,以及向LMF发送携带SRS配置2的响应。可理解,SRS配置2与SRS配置1可以不同,或者,也可以相同,本申请实施例不作限定。本申请实施例对于步骤201和步骤202的先后顺序不作限定。本申请实施例对于步骤203和步骤204的先后顺序不作限定。
205.若SRS配置为非周期或者半持续的SRS,LMF向UE的服务基站请求激活SRS配置,如通过NRPPa定位激活请求(NRPPa positioning activation request)消息请求激活SRS配置。相应的,服务基站接收该NRPPa定位激活请求。
206.服务基站向UE发送激活SRS传输的指令(activate UE SRS transmission)。相应的, UE接收该指令。
可理解,尽管图2b中未示出UE发送SRS的步骤,但是图2b所示的方法中,还可以包括UE发送SRS的步骤,至于该UE何时发送SRS,本申请实施例不作限定。
207.服务基站向LMF发送激活SRS配置的响应,如通过NRPPa定位激活响应(NRPPa positioning activation response)消息将激活SRS配置的响应发送给LMF。相应的,LMF接收该响应。
可理解,以上所示的激活SRS配置的响应可以是高层响应消息。
208.LMF向一个或多个基站(可以包含服务基站,也可以不包含服务基站)发送测量请求,请求一个或多个基站对SRS进行测量。例如,LMF向一个或多个基站发送NRPPa测量请求(NRPPa measurement request)消息请求对SRS进行测量。可理解,以上所示的一个或多个基站可以包括服务基站和/或邻基站。
209.服务基站和/或邻基站进行UL SRS测量。相应的,收到测量请求的基站进行UL SRS测量。
210.服务基站和/或邻基站向LMF发送NRPPa测量响应(NRPPa measurement response)。
211.LMF向服务基站发送请求去激活SRS配置,如通过NRPPa定位去激活(NRPPa positioning deactication)消息请求去激活SRS配置。
可理解,图2b所示的数据传输方法包括了激活非周期或半持续SRS发送的步骤。当不需要激活非周期或半持续SRS发送时(例如使用周期SRS定位),如本申请实施例提供的方法可以不包括步骤205至步骤207。
可理解,图2b示出的是基于上行到达时间差(uplink time difference of arrival,UL-TDOA)的定位方法。基于上行到达角(uplink arrival of arrival,UL-AoA)的定位方法也可以参考图2b,这里不再详述。例如,基于UL-TDOA的定位方法中,各小区是对UE的SRS信号进行测量上行相对到达时间(uplink relative time of arrival,UL-RTOA),并将测量结果上报给LMF的。而基于UL-AoA的定位方法中,各小区可以对UE的SRS信号进行测量AoA,并将测量结果上报给LMF。本申请下文示出的方法也可以适用于基于多小区往返时间(multi-cell round trip time,Multi-RTT)的方法,如各小区对UE的SRS信号进行测量,并将测量结果上报给LMF。关于上述各个定位方法的具体说明,还可以参考相关标准或协议等,本申请实施例对此不作限定。
针对图2a或图2b所示的方法中,服务基站所配置的SRS配置需要包含于UE当前激活的BWP内,从而使得UE在相同的上行(uplink,UL)BWP内进行数据传输和SRS的发送。
同时,UE切换BWP时,发送的SRS也会做切换。示例性的,一种BWP的切换方法为基站在原BWP(也可以称为old BWP)上向UE发送DCI,调度目标BWP(也可以称为new BWP或新BWP等)上的上下行数据。从而,UE切换至目标BWP上,完成上行数据发送和/或下行数据接收,并驻留在目标BWP上,直到收到下一个切换BWP的DCI,UE驻留在目标BWP上时,原BWP上的SRS不再发送,而是发送目标BWP上的SRS。
结合图3,示例性的,UE工作于原BWP对(old BWP pair),包含原下行BWP(old DL BWP)和原上行BWP(old UL BWP)。UE在old DL BWP上监听DCI,该DCI可以调度UE在old DL BWP上接收物理下行共享信道(physical downlink shared channel,PDSCH),也可以调度UE在old UL BWP上发送PUSCH,以及调度UE在old UL BWP上发送SRS。如图3左边的灰色箭头所示,该原BWP对处于激活(active)状态(如图3中左边的黑色箭头所示, 目标BWP处于未激活状态),UE在该原BWP对上发送SRS。
如图3如在T1时刻,UE接收到DCI,该DCI指示UE在目标上行BWP(也可以称为new UL BWP)上发送PUSCH。然而,UE需要一定的处理时间才能检测出相应DCI,即UE检测到DCI的实际时间如为T1+T DCI-process。当UE根据该DCI确定需要切换BWP时,UE进入切换时间(如图3所示的switching time),进行DL/UL的同步切换(对于TDD频谱)。也就是说,UE需要利用切换时间,将old BWP pair切换成目标BWP对(new BWP pair)。例如,切换BWP时包括射频(radio Frequency,RF)的重调谐(RF retuning)以及载入new BWP pair上的BWP的配置。例如载入的配置可以包括:new BWP上的控制资源集(control resource set,CORESET)配置、搜索空间(search space,SS)配置、PDSCH配置、PUSCH配置、SRS配置等。可理解,UE最晚可以在T1+T BWPSwitchingDelay时刻完成切换,关于T BWPSwitchingDelay的具体说明可以参考相关标准或协议等,这里不作详述。通过保证T1时刻DCI调度的new UL BWP上的PUSCH在T1+T BWPSwitchingDelay之后,使得UE能够有时间在new UL BWP上发送PUSCH。如图3右边的灰色箭头所示,切换到目标BWP后,该目标BWP对处于激活状态(右边的黑色箭头表示原BWP对处于未激活状态)。
可理解,以上所示的BWP切换方法是以时分双工(time-division duplex,TDD)频谱为例示出的,如对于频分双工(frequency-division duplex,FDD)频谱来说,上行和下行需要独立进行BWP切换。如切换下行BWP不会引起上行BWP的切换。可理解,对于TDD频谱和FDD频谱的具体说明,下文所示的各个实施例同样适用。
上述方法中,由于UE只能在当前激活BWP上发送SRS,因此,从图3所示的方法可以看出,UE接收到DCI之前,是在原BWP上发送SRS。由于不同BWP对应的频率和带宽不一样,不同BWP上的信道信息通常也是独立的。因此基站基于一个old BWP上的信道信息无法推测另一个new BWP上的信道信息。从而,基站在old BWP上无法获得new BWP上的信道信息(也可以称为信道状况),相应的PUSCH的调制与编码策略(modulation and coding scheme,MCS)无法准确获取。
鉴于此,本申请提供一种数据传输方法及装置,可以使得基站获取UE当前激活BWP之外的BWP的信道信息,从而基站能够确定UE切换至合适BWP(也可以称为目标BWP)以及基站能够灵活选择数据调度。
一般的,切换BWP时,射频的重调谐(RF retuning)和BWP配置可能均需要切换,如需要切换BWP的控制资源集配置(control resource set,CORESET)、BWP的SS配置、PDSCH配置、PUSCH配置或SRS配置中的一项或多项。
以下将详细介绍PUSCH配置和SRS配置,对于其他配置的相关说明,本申请不作详述。
一、PUSCH配置表示与PUSCH相关的配置信息。示例性的,PUSCH配置可以包括PUSCH的时频资源分配情况、PUSCH的MCS、DMRS配置、PUSCH的开环功控参数与SRI的映射关系中的一项或多项。例如,PUSCH配置中包括PUSCH的时频资源分配表格,然后通过DCI中的字段(例如,4比特或5比特)指示表格中的一项,从而确定PUSCH占用的时隙和时隙内的符号索引等。可理解,本申请所示的PUSCH配置的说明仅为示例,对于该PUSCH配置的具体内容可以参考相关标准或协议等,这里不再详述。可理解,下文所示的PUSCH闭环功控状态1和PUSCH闭环功控状态2仅为示例,在一些实现方式中,本申请示出的PUSCH闭环功控状态1也可以称为PUSCH闭环功控状态0(或n0、i0等),而PUSCH闭环功控状态2也可以称为PUSCH闭环功控状态1(或n1、i1等)。
本申请中,PUSCH闭环功控状态的确定方法可以如下所示:
1.对于动态调度(dynamically scheduled)的PUSCH,若基站配置了参数SRI-PUSCH-PowerControl(也可以称为高层配置参数),该参数包含sri-PUSCH-PowerControlId和sri-PUSCH-ClosedLoopIndex。
示例性的,对于该参数SRI-PUSCH-PowerControl的格式如下所示:
Figure PCTCN2022095813-appb-000001
示例性的,sri-PUSCH-PowerControlId表示DCI中SRI域对应的取值,或者,也可以理解为:该参数用于与DCI中SRI域的取值进行匹配,或者,也可以理解为是功率控制参数的索引,该索引用于与DCI中SRI域的取值进行匹配。sri-PUSCH-PathlossReferenceRS-Id表示表示功率控制参数的路损参考信号索引,sri-P0-PUSCH-AlphaSetId表示P0或alpha取值集合的索引,sri-PUSCH-ClosedLoopIndex表示PUSCH闭环功控状态的索引。
若DCI中包含SRI域,则查找满足sri-PUSCH-PowerControlId=SRI域取值的SRI-PUSCH-PowerControl,找到sri_PUSCH-CloseLoopIndex取值。例如,SRI域为第一值,则从SRI-PUSCH-PowerControl中获得sri-PUSCH-PowerControlId等于第一值时,对应的sri_PUSCH-CloseLoopIndex的取值。若取值为i0,那么当前PUSCH闭环功控状态为1,若取值为i1,那么当前PUSCH闭环功控状态为2,相应PUSCH的闭环功控状态受制于DCI中的TPC命令值增减。
若DCI中不包含SRI域,则PUSCH闭环功控状态为1。
2.若基站没有配置参数SRI-PUSCH-PowerControl,则PUSCH闭环功控状态为1。
3.对于免授权/配置授权(configured grant)的PUSCH,则PUSCH闭环功控状态可以由参数预配置调度配置信息(configuredGrantConfig)确定。
二、SRS配置表示与SRS相关的配置信息。
示例性的,SRS配置包括一个或多个SRS资源的配置信息,或者,包括一个或多个SRS资源集的配置信息,一个SRS资源集包括一个或多个SRS资源。SRS资源用于配置SRS,如该SRS资源可以理解为是比SRS配置粒度小的配置单元。当SRS用于多输入多输出(multiple input multiple output,MIMO)时,SRS资源的用途可以为基于码本传输(codebook)或基于非码本传输(non-codebook)。
示例性的,PUSCH的闭环功控状态可以有两个,因此,SRS配置可以包括SRS的闭环功控状态与PUSCH闭环功控状态的关系。如SRS的闭环功控状态可以与PUSCH闭环功控状态1一致,或者SRS的闭环功控状态可以与PUSCH闭环功控状态2一致,或者SRS的闭环功控状态可以为独立功控状态。该SRS的闭环功控状态可以用于确定复用PUSCH的TPC命令值或者采用独立TPC命令值。例如,SRS的闭环功控状态与PUSCH闭环功控状态1或PUSCH闭环功控状态2一致,则该SRS可以根据用于调度PUSCH的DCI携带的TPC命令值或者不是用于调度PUSCH的DCI携带的TPC命令值确定该SRS的发送功率调整量。该用于调度PUSCH的DCI的格式(format)可以为DCI format 0-0(也可以简称为DCI 0-0或format 0-0或0-0等)、DCI format 0-1(也可以简称为DCI 0-1或format 0-1或0-1等)或DCI format 0-2(也可以简称为DCI 0-2或format 0-2或0-2等)。该不是用于调度PUSCH的DCI的格式 可以为DCI2-2。若SRS闭环功控状态为与PUSCH闭环功控状态1一致,那么SRS发送功率闭环调整量与PUSCH闭环功控状态1的TPC命令值确定的PUSCH闭环功控状态1的功率调整一致。若SRS闭环功控状态为与PUSCH闭环功控状态2一致,那么SRS发送功率闭环调整量与PUSCH闭环功控状态2的TPC命令值确定的PUSCH闭环功控状态2的功率调整一致。又例如,SRS的闭环功控状态为独立功控状态,则SRS的发送功率调整量与PUSCH闭环功控的TPC命令值无关,而与DCI format 2-3(也可以简称为DCI 2-3或format2-3等)中的TPC命令值确定的功率调整一致。
通过确认当前DCI调度的PUSCH的闭环功控状态是1或2,从而,UE可以根据PUSCH的TPC命令值控制(或确定)闭环功控状态与该PUSCH闭环功控状态一致的SRS的发送功率调整量。
可理解,下文所示的第一SRS配置和第二SRS配置的说明,可以参考这里关于SRS配置的描述。以及下文所示的第一PUSCH配置可以参考这里关于PUSCH配置的描述。
图4是本申请实施例提供的一种数据传输方法的流程示意图,如图4所示,该方法包括:
401.基站向UE发送配置信息,相应的,该UE接收该配置信息。其中,该配置信息包括第一SRS配置与一个或多个PUSCH配置的关联关系,该第一SRS配置所在的第一BWP与每个PUSCH配置所在的BWP不同。
示例性的,配置信息包括关联关系,该关联关系指的是第一SRS配置与一个或多个PUSCH配置的关联关系。例如,配置信息包括第一SRS配置的索引和一个或多个PUSCH配置中每个PUSCH配置的索引,即通过索引体现第一SRS配置与一个或多个PUSCH配置的关联关系。又例如,配置信息包括第一SRS配置的索引和一个或多个PUSCH配置的索引。上述两个例子的区别在于每个PUSCH配置分别对应一个索引,或者,一个或多个PUCSH配置对应一个索引。可理解,这里所示的通过索引体现关联关系的方法仅为示例。可理解,本申请所示的索引还可以替换为标识等,本申请实施例对此不作限定。可理解,关于关联关系的说明还可以参考下文示出的方法1至方法7,这里先不一一详述。
示例性的,配置信息包括第一SRS配置,和/或,一个或多个PUSCH配置。该情况下,第一SRS配置与上述一个或多个PUSCH配置的关联关系可以通过第一SRS配置中的信息指示,或者通过一个或多个PUSCH配置中的信息指示等。例如,通过第一SRS配置中的信息指示时,该第一SRS配置中可以包括一个或多个PUSCH配置中每个PUSCH配置的索引,或者包括一个或多个PUSCH配置的索引。又例如,通过一个或多个PUSCH配置中的信息指示时,该一个或多个PUSCH配置中的部分或全部PUSCH配置中可以包括第一SRS配置的索引。可理解,关于关联关系的说明还可以参考下文示出的方法1至方法7,这里先不一一详述。
示例性的,配置信息不仅包括关联关系,还包括第一SRS配置,和/或,一个或多个PUSCH配置。
可理解,本申请实施例对于配置信息的具体内容还可以包括下文所示的配置关联关系的方法,这里先不一一详述。关于第一SRS配置和第一PUSCH配置的具体说明还可以参考上文描述。
一般的,PUSCH配置所在的BWP会与其关联的SRS配置(如第二SRS配置)所在的BWP相同。然而,本申请实施例中,配置信息中配置的第一SRS配置所在的BWP与每个PUSCH配置(如包括第一PUSCH配置)所在的BWP不同。如第一SRS配置所在的BWP 为第一BWP,则对于该第一BWP可以有如下方式:第一BWP为特殊BWP。之所以称为特殊BWP,是因为该第一BWP上不配置PUSCH和/或PUCCH,但是该第一BWP所在的载波(carrier,CC)上至少有一个BWP配置了PUSCH和/或PUCCH。在一示例中,第一BWP的带宽大小为一个载波(例如,第一PUSCH所在载波)的带宽。在另一示例中,第一BWP的带宽资源包含第一PUSCH配置所在BWP的带宽资源的至少一部分。
在另一示例中,第一SRS配置独立于任何BWP。在该示例中,第一SRS配置不包含任何BWP的索引,也不包含在任一个BWP的配置中。
可理解,这里所示的第一BWP仅为示例,对于该第一BWP的具体实现方式,本申请实施例不作限定。本申请实施例对于第一SRS所在的BWP可以是一个第一BWP,也可以是多个第一BWP等,本申请实施例对此不作限定。
402.UE根据第一SRS配置在第一BWP上发送第一SRS。相应的,基站根据第一SRS配置接收该第一SRS。
示例性的,UE可以根据第一SRS配置的时域时频发送第一SRS等,本申请实施例对于该第一SRS配置不作限定。
该第一SRS用于多输入多输出(multiple input multiple output,MIMO),或者,该第一SRS用于定位。也就是说,本申请实施例示出的第一SRS既可以是MIMO中的SRS,也可以是定位中的SRS。示例性的,当第一SRS用于定位时,该第一SRS的作用可以如图2b所示,关于定位的具体说明,本申请实施例不作限定。
示例性的,当前UE激活BWP为第二BWP,则上述步骤402还可以替换为:
从第二BWP切换到第一BWP,根据第一SRS配置在第一BWP上发送第一SRS。该第二BWP为第一SRS配置关联的一个或多个PUSCH配置关联的BWP中的一个。
也就是说,UE可以自主跳出当前激活BWP(即第二BWP)发送第一SRS(如周期性地发送第一SRS)。或者,UE可以在接收到一个非周期SRS(如第一SRS)触发DCI时,跳出当前激活BWP发送该第一SRS。这里所示的非周期SRS触发DCI,还可以理解为:用于触发非周期SRS(如第一SRS)发送的DCI,或者,该DCI用于触发非周期SRS(如第一SRS)的发送。例如,非周期SRS触发DCI的格式可以为2-3,或者还可以为其他格式等,本申请实施例对此不作限定。
可理解,第一BWP和第二BWP都是上行BWP。可选的,该第一BWP和该第二BWP在同一个载波上。
404.UE根据第一PUSCH配置发送第一PUSCH,该第一PUSCH配置为上述一个或多个PUSCH配置中的一个。相应的,基站根据第一PUSCH配置接收该第一PUSCH。
可理解,关于第一PUSCH配置的说明可以参考上述对PUSCH配置的描述,这里不再详述。
配置信息中由于配置了第一SRS配置与第一PUSCH配置的关联关系,因此UE在发送第一PUSCH时,可以采用与第一SRS相同的天线端口发送该第一PUSCH,和/或,采用与第一SRS相同的开环功控参数发送该第一PUSCH。可理解,这里所示的天线端口可以是逻辑天线端口,也可以是物理天线端口。
以下详细说明配置上述关联关系的方法。
方法1.
上文所示的配置信息包括第一SRS配置与一个或多个PUSCH配置的关联关系,可以替换为:配置信息包括第一SRS配置与一个或多个BWP的关联关系。即上述一个或多个PUSCH 配置所在的BWP为上述一个或多个BWP,其中,一个BWP上可以配置一个或两个或两个以上的PUSCH配置。因此第一SRS配置中可以包括与第一SRS配置关联的一个或多个BWP的索引。该第一SRS配置中通过包括一个或多个BWP的索引,可使得UE获知该第一SRS配置与该一个或多个BWP上的PUSCH配置关联。可理解,该方法中,当第一SRS配置中包括与该第一SRS配置关联的一个或多个BWP的索引时,该第一SRS配置可以与该一个或多个BWP上的每个PUSCH配置关联。
对于方法1,上述配置信息可以理解为:包括第一SRS配置,该第一SRS配置包括与其关联的一个或多个BWP的索引。可选的,该配置信息还包括一个或多个BWP上的PUSCH配置。可选的,该一个或多个BWP上的PUSCH配置(如可以称为一个或多个PUCSH配置)也可以包含于其他信息中。例如,基站向UE发送配置信息之后,再次发送包括一个或多个PUSCH配置的信息,该一个或多个PUSCH配置位于上述一个或多个BWP上。又例如,基站也可以先向UE发送包括一个或多个PUSCH配置的信息,然后再发送配置信息。
方法2.
示例性的,第一SRS配置包括一个或多个SRS资源的配置信息,或者,一个或多个SRS资源集的配置信息。例如,一个或多个SRS资源集包括第一SRS资源集,一个或多个SRS资源包括第一SRS资源。可选的,该第一SRS资源可以包含于第一SRS资源集中。可选的,该第一SRS资源为与第一PUSCH配置(仅为示例)关联的SRS资源。可选的,该第一SRS资源集为与第一PUSCH配置(仅为示例)关联的SRS资源集。
示例性的,当第一SRS配置所在的BWP为一个第一BWP时,关联关系可以表示为:每个PUSCH配置中包括第一SRS资源的索引或第一SRS资源集的索引。或者,关联关系可以表示为:第一PUSCH配置中包括第一SRS资源的索引或第一SRS资源集的索引。该情况下,如第一SRS配置包括多个SRS资源集,该多个SRS资源集中每个SRS资源集内的SRS资源的索引可以不同。例如,第一SRS配置所在的第一BWP上配置了SRS资源1、SRS资源2、SRS资源3和SRS资源4,该SRS资源1和SRS资源2可以包含于SRS资源集a中,SRS资源3和SRS资源4可以包含于SRS资源集b中。
示例性的,配置信息可以理解为:包括一个或多个PUSCH配置,每个PUSCH配置包括第一SRS资源的索引或第一SRS资源集的索引。或者,配置信息可以理解为:包括第一PUSCH配置,第一PUSCH配置中包括第一SRS资源的索引或第一SRS资源集的索引。通过在PUSCH配置中包括第一SRS资源的索引或第一SRS资源集的索引,可使得UE获知PUSCH配置与第一SRS配置中的第一SRS资源关联(或者与第一SRS资源集关联),或者,可使得UE获知PUSCH配置所在的BWP与第一SRS资源关联(或者与第一SRS资源集关联)。
示例性的,当第一SRS配置所在的BWP为多个第一BWP中的一个第一BWP时,例如,不同BWP上的资源集的索引相同的情况下,关联关系可以表示为:每个PUSCH配置中包括第一BWP的索引和第一SRS资源集的索引。又例如,不同SRS资源集内的SRS资源的索引相同的情况下,关联关系可以表示为:每个PUSCH配置包括第一BWP的索引、第一SRS资源集的索引以及第一SRS资源的索引。又例如,当不同BWP上的资源集的索引都不同的情况下,关联关系可以表示为:每个PUSCH配置包括第一SRS资源集的索引。又例如,当不同SRS资源集内的SRS资源的索引都不同的情况下,关联关系可以表示为:每个PUSCH配置包括第一SRS资源的索引。可理解,以上所示的PUSCH配置的说明同样适用于第一PUSCH配置,这里不再详述。可理解,关于配置信息的说明可以上述描述,这里不再详述。
可选的,配置信息中除了可以包括一个或多个PUSCH配置,以及与每个PUSCH配置关 联的第一SRS资源或第一SRS资源集之外,该配置信息还可以包括第一SRS配置,该第一SRS配置包括第一SRS资源的配置信息或第一SRS资源集的配置信息。可选的,该第一SRS配置也可以包含于其他信息中,关于该其他信息与第一SRS配置的具体说明,可以参考上述方法1中关于其他信息与一个或多个PUSCH配置的描述,这里不再详述。
方法3.
上述方法1中,尽管第一SRS配置与一个或多个BWP关联,但是由于一个BWP上可能配置有不止一个PUSCH配置,因此每个BWP上配置的一个或多个PUSCH配置是否与第一SRS配置关联,可以通过DCI指示。示例性的,需要通过第一DCI来指示根据第一PUSCH配置得到的第一PUSCH与第一SRS配置关联,还是与第二SRS配置关联。
示例性的,第一SRS配置中可以包括第二指示信息。该情况下,第二指示信息可以用于指示第一SRS配置是否与PUSCH配置关联还需要根据DCI确定,该PUSCH配置(包括第一PUSCH配置)位于与第一SRS配置关联的一个或多个BWP上。例如,该第二指示信息用于指示根据PUSCH配置得到的第一PUSCH是否与第一SRS配置关联根据与第一DCI确定。
示例性的,第二指示信息包含于第一SRS资源集的配置信息中。该情况下,第二指示信息用于指示第一SRS资源集是否与PUSCH配置关联需要根据DCI确定。或者,第二指示信息用于指示根据第一SRS资源集是否与根据第一PUSCH配置得到的第一PUSCH关联需要根据调度该第一PUCSH的DCI确定。例如,第一SRS配置与一个或多个BWP关联,则每个BWP上关联的一个或多个PUSCH配置是否与第一SRS资源集关联还需要根据DCI确定。又例如,第一SRS配置包括第二SRS资源集,在第二SRS资源集不包括第二指示信息的情况下,可以表示该第二SRS资源集是否与PUSCH配置关联不需要根据DCI确定。该情况下,每个BWP上关联的一个或多个PUSCH配置是否与第二SRS资源集关联可以不根据DCI确定。例如,每个BWP上关联的一个或多个PUSCH配置可以都与第二SRS资源集关联。
示例性的,第二指示信息可以包含于第一SRS资源中。该情况下,第二指示信息用于指示第一SRS资源是否与PUSCH配置关联需要根据DCI确定。例如,第二指示信息用于指示第一SRS资源是否与根据第一PUSCH配置得到的第一PUSCH关联需要根据第一DCI确定。可选的,结合方法3和方法1,上述配置信息可以理解为:包括第一SRS配置,该第一SRS配置包括与其关联的一个或多个BWP的索引,可选的,该第一SRS配置包括第二指示信息。可选的,该第一SRS配置所包括的第一SRS资源集中包括第二指示信息。可选的,该第一SRS配置所包括的第一SRS资源中包括第二指示信息。可选的,配置信息还可以包括一个或多个BWP上的一个或多个PUSCH配置。
可选的,结合方法3和方法2,上述配置信息可以理解为:包括一个或多个PUSCH配置,每个PUSCH配置包括第一SRS资源的索引,该第一SRS资源中包括第二指示信息。或者,每个PUSCH配置包括第一SRS资源集的索引,该第一SRS资源集中包括第二指示信息。
在另一示例中,上述配置信息可以包括一个或多个PUSCH配置,每个PUSCH配置包括第一SRS资源的索引和第二指示信息,或者,每个PUSCH配置包括第一SRS资源集的索引和第二指示信息。
方法4.
第一SRS配置包括DCI指示字段比特长度。该DCI指示字段比特长度可以理解为是DCI中指示字段的比特长度。
示例性的,在第二指示信息包含于第一SRS配置中的情况下,该DCI指示字段(例如, 该指示字段具体携带第一指示信息)用于指示第一PUSCH配置(或者,根据第一PUSCH配置得到的第一PUSCH)是否与第一SRS配置关联。例如,该指示字段用于指示第一PUSCH配置(或者,根据第一PUSCH配置得到的第一PUSCH)与第一SRS配置关联,或者,该指示字段用于指示第一PUSCH配置不与第一SRS配置关联。可选的,该指示字段用于指示第一PUSCH配置与第一SRS配置关联,或者,指示字段用于指示第一PUSCH配置与第二SRS配置关联。第一指示信息用于指示第一PUSCH配置是否与第一SRS配置关联,或者第一指示信息用于指示第一PUSCH配置与第一SRS配置关联,或者,与第二SRS配置关联。
示例性的,在第二指示信息包含于第一SRS资源集中的情况下,该DCI指示字段用于指示第一PUSCH配置(或者,根据第一PUSCH配置得到的第一PUSCH)是否与第一SRS资源集关联。或者,该指示字段用于指示第一PUSCH配置(或者,根据第一PUSCH配置得到的第一PUSCH)与第一SRS资源集关联,或者,与第二SRS资源集关联,或者,与其他SRS资源集关联,该第二SRS资源集包含于第一SRS配置中,该其他SRS资源集包含于第二SRS配置中。相应地,第一指示信息用于指示与第一PUSCH配置关联的SRS资源集,如与第一PUSCH配置关联的SRS资源集为第一SRS资源集,或者第二SRS资源集,或者其他SRS资源集。
示例性的,在第二指示信息包含于第一SRS资源的情况下,该DCI指示字段用于指示第一PUSCH配置(或者,根据第一PUSCH配置得到的第一PUSCH)是否与第一SRS资源关联,或者,该指示字段用于指示第一PUSCH配置(或者,根据第一PUSCH配置得到的第一PUSCH)与第一SRS资源关联,或者,与第二SRS资源集中的资源关联,或者与其他资源关联,该第二SRS资源集包含于第一SRS配置中,该其他资源包含于第二SRS配置中。相应地,第一指示信息用于指示与第一PUSCH配置关联的SRS资源。如通过DCI中的SRI指示与第一PUSCH配置关联的SRS资源。示例性的,该第一SRS配置中包括该比特长度,如为1比特或2比特等。该情况下,如指示字段的取值与是否关联的对应关系可以预先设置或由标准预定义等,本申请实施例对此不作限定。或者,指示字段的取值与第一PUSCH与SRS配置(包括第一SRS配置或第二SRS配置等)的关联关系之间的对应关系可以预先设置或由标准预定义等。可理解,这里所示的第一PUSCH与SRS配置仅为示例,如还可以包括第一PUSCH与资源集的关联关系,或者,第一PUSCH与资源的关联关系。
可选的,该第一SRS配置还可以包括指示字段的取值与是否关联的对应关系。或者,第一SRS配置还可以包括指示字段的取值与第一PUSCH与SRS配置(包括第一SRS配置或第二SRS配置等)的关联关系之间的对应关系。例如,该指示字段的取值为00时,表示DCI调度的第一PUSCH与第一SRS配置关联,该指示字段的取值为11时,表示DCI调度的第一PUSCH与第二SRS配置关联。例如1比特,为0时指示DCI调度的第一PUSCH不与第一SRS配置关联,如为1时指示DCI调度的第一PUSCH与第一SRS配置关联。也就是说,DCI包括指示字段,该指示字段的取值为1,UE可以根据该指示字段的取值确定第一PUSCH与第一SRS配置关联。可理解,这里所示的1还可以称为第一指示信息。又如为1时指示DCI调度的第一PUSCH与第一SRS配置关联。
可理解,方法4可以与上述方法3结合。例如,第一SRS配置包括第二指示信息,则表示与第一PUSCH对应的DCI中需要包括指示字段,该指示字段的比特长度包含于第一SRS配置中。可理解,本申请实施例对于该指示字段的比特长度包含于哪里不作限定。如该指示字段的比特长度还可以包含于第一SRS配置中的第一SRS资源集中等。方法5.
示例性的,由于第一SRS配置中可以包括多个SRS资源,或者,包括多个SRS资源集, 因此,第一SRS配置中所包括的SRS资源或SRS资源集是否与PUSCH配置关联还可以通过DCI指示。如第二指示信息可以包含于PUSCH配置中。例如,第二指示信息包含于第一PUSCH配置中,该情况下,第二指示信息用于指示第一PUSCH配置与第一SRS配置中的SRS资源或SRS资源集关联还需要根据DCI确定。示例性的,与第一SRS配置关联的一个或多个PUSCH配置中还包括第二PUSCH配置,如果该第二PUSCH配置未包括第二指示信息,则可以表示第二PUSCH配置可以与第一SRS配置中的全部SRS资源或全部SRS资源集关联。
方法6.
PUSCH配置包括DCI指示字段比特长度。该DCI指示字段比特长度可以理解为是DCI中指示字段的比特长度。
示例性的,该指示字段用于指示第一PUSCH配置(或者,根据第一PUSCH配置得到的第一PUSCH)是否与第一SRS资源集关联。或者,该指示字段用于指示与第一PUSCH配置(或者,根据第一PUSCH配置得到的第一PUSCH)关联的SRS资源集。结合第一指示信息,如第一指示信息可以用于指示与第一PUSCH配置关联的SRS资源集,如与第一PUSCH配置关联的SRS资源集为第一SRS资源集,或者第二SRS资源集,或者其他SRS资源集。
示例性的,该指示字段用于指示第一PUSCH配置是否与第一SRS资源关联。或者,该指示字段用于指示与第一PUSCH配置关联的SRS资源。如通过DCI中的SRI指示与第一PUSCH配置关联的SRS资源。
可理解,关于该DCI指示字段比特长度的说明可以参考上述方法4描述,这里不再赘述。
示例性的,上述方法4和方法6的不同可以在于:如当第一SRS配置中包括DCI指示字段比特长度时,则任何BWP上的DCI均可以包含指示字段。而当PUSCH配置中包括DCI指示字段比特长度时,则调度激活BWP上的PUSCH的DCI可以包括指示字段,而调度其他BWP上的PUSCH的DCI上可以没有该指示字段。
方法7.
第一SRS配置或PUSCH配置中均不包括显式指示信息,即不通过显式指示信息指示第一SRS配置与一个或多个PUSCH配置的关联关系。而是通过配置信息隐式指示第一SRS配置与一个或多个PUSCH配置的关联关系。例如,配置信息包括第一SRS配置以及一个或多个PUSCH配置时,即可以理解为每个PUSCH配置与第一SRS配置关联。又例如结合方法1和方法7,配置信息包括第一SRS配置,该第一SRS配置包括一个或多个BWP索引时,则表示该第一SRS与该一个或多个BWP上的每个PUSCH配置关联。
可理解,上述方法1至方法7可以为独立的方法,或者上述7个方法还可以相互结合。例如,方法1和方法4结合。又例如,方法1、方法3和方法4结合。又例如,方法1、方法3和方法6结合。又例如,方法1、方法4和方法5结合。又例如,方法2、方法5和方法6结合等,这里不再一一列举。
依据上述方法4或方法6,当第一SRS配置与一个或多个BWP关联,而该一个或多个BWP上有多个PUSCH配置时,可以根据DCI中的第一指示信息确定第一SRS配置与第一PUSCH配置关联。或者,在第一SRS配置与多个PUSCH配置关联时,而该多个PUSCH配置中的某个PUSCH配置还关联了第二SRS配置时,可以根据第一指示信息确定该某个PUSCH配置(如第一PUSCH配置)与第一SRS配置关联。也就是说,通过DCI中的第一指示信息可以明确确定使用与第一SRS相同的天线端口和/或开环功控参数发送第一PUSCH。该情况下,图4所示的方法还可以包括:
403.基站向UE发送第一DCI,该第一DCI携带第一指示信息,该第一指示信息用于指示第一PUSCH与第一SRS关联。相应的,UE接收该第一DCI。
第一DCI用于调度第一PUSCH。当第一SRS配置包括多个SRS资源的配置信息,该第一DCI还可以携带SRI,该SRS用于指示该多个SRS资源中与第一PUSCH关联的SRS资源。如SRI可以取不同值,即不同的值可以对应不同的SRS资源。由此UE根据SRI的取值可以获知第一PUSCH关联多个SRS资源中的某个。可理解,当第一DCI不包括SRI时,第一PUSCH可以关联到多个SRS资源的第一个。或者,当第一SRS配置仅包括一个SRS资源的配置信息时,该第一DCI中可以不包括SRI。
可选的,该第一DCI中的SRI还指示第一PUSCH的开环功控参数,该开环功控参数可以包括P0或alpha等,对于该开环功控参数的具体说明可以参考相关标准或协议(如3GPP TS38.213或3GPP TS 38.331等),这里不再限定。可选的,当第一DCI中无SRI时,可以使用默认开环功控参数,本申请实施例对于该默认开环功控参数不作限定。
可选的,该第一DCI中的SRI还指示第一PUSCH的闭环功控状态。如该第一PUSCH的闭环功控状态1或2。可理解,这里所示的指示第一PUSCH的闭环功控状态的方法仅为示例,对于第一PUSCH的闭环功控状态的确定方法还可以参考上文,这里不再赘述。
可理解,上述步骤403是以第一DCI中包括第一指示信息为例示出的。
但是,上述步骤403中,该第一DCI中也可以不包括第一指示信息。即该第一DCI可以不携带显式比特(如上述方法7),默认第一PUSCH关联第一SRS配置。而当该第一PUSCH关联第二SRS配置时,该第一DCI中可以携带其他指示信息,从而指示第一PUSCH关联第二SRS配置。或者,当第一PUSCH配置的传输模式与第一SRS配置的用途(usage)一致时,默认第一PUSCH与第一SRS配置关联,而当第一PUSCH配置的传输模式与第一SRS配置的usage不一致时,默认第一PUSCH关联到与其所在BWP上配置的与usage一致的SRS配置。
在上述图2a或图2b所示的方法中,UE切换BWP时,UE仍在原BWP上发送第一SRS,使得基站无法获得目标BWP上的信道信息。然而,本申请实施例中,UE发送第一SRS时,不仅能够跳出UE当前激活BWP,在第一BWP上发送第一SRS。而且,该第一SRS的发送可以不受BWP切换的影响,也就是说,无论UE处于哪个BWP上,均能保证该第一SRS的发送。即本申请实施例能够利用独立于数据调度的第一SRS,使得该第一SRS独立于数据BWP切换的SRS的发送,从而基站能够在UE进行BWP切换之前获得待切换BWP上的信道信息(也可以称为信道状况)。
进一步地,第一SRS还可以用于定位。由于定位信号要求带宽尽量大,而UE的数据业务的带宽可以相对定位信号的带宽小。本申请实施例中,定位大带宽的第一SRS同时用于通信,可以降低网络侧开销。
一般的,当PUSCH的发送功率需要调整时,基站可以通过TPC命令值,向UE指示该PUSCH的发送功率调整量。因此,以下将结合图4所示的方法,详细介绍第一SRS的发送功率调整量的确定方法。
可理解,下文所示的TPC命令值可以用于指示功率调整的累计值,也可以指示功率调整的绝对值。例如,当RRC信令中未配置TPC-累计(TPC-accumulation)时,则用于指示发送功率调整量的累计值。又如,当RRC中配置了TPC-累计时,则用于指示发送功率调整量的绝对值。这里所示的发送功率调整量的绝对值指的是该TPC命令值指示了当前功率调整量的 偏移值,即发送功率调整量与之前接收到的TPC命令值可以没关系。而发送功率调整量的累计值指的是发送功率调整量不仅与当前TPC命令值有关,还需要与之前接收到的TPC命令值有关。可理解,关于累计值和绝对值的具体说明,可以参考相关标准或协议(例如,3GPP TS38.213)等,本申请对此不作限定。
实现方式一
在第一SRS的闭环功控状态与PUSCH闭环功控状态1或PUSCH闭环功控状态2一致的情况下,第一SRS的发送功率调整量可以有如下方法:
DCI中可以指示PUSCH的TPC命令值,用于控制PUSCH的发送功率。如PUSCH的闭环功控状态与第一SRS的闭环功控状态一致时,对于该PUSCH的TPC命令值也适用于第一SRS,如PUSCH的功率调整量(单次或累计)与第一SRS的功率调整量(单次或累计)一致。可理解,这里所示的DCI用于调度第二BWP上的PUSCH,如该DCI可以是上述示出的第一DCI,也可以是在该第一DCI之前或之后接收到的DCI。本申请实施例示出的第二BWP可以理解为UE激活的BWP,如图3所示的原BWP或目标BWP均可以称为第二BWP。如UE可以通过该第二BWP进行上行数据的发送和/或下行数据的接收。
方法1:第一SRS的发送功率调整量与第二BWP上的一个或多个PUSCH对应的DCI(如一个PUSCH对应一个DCI)所携带的TPC命令值指示的发送功率调整量有关。
对于第二BWP的说明,可以参考图4所示的方法,这里不再详述。
示例性的,第二BWP上的PUSCH(与第一SRS功控状态一致的PUSCH)对应的DCI为用于调度PUSCH的DCI,如DCI格式为DCI0-0、DCI0-1或DCI0-2。如第一SRS的发送功率调整量仅与第二BWP上的一个或多个PUSCH(与第一SRS功控状态一致的PUSCH)对应的DCI0-0或DCI0-1或DCI0-2所携带的TPC命令值指示的发送功率调整量有关。
示例性的,第二BWP上的PUSCH(与第一SRS功控状态一致的PUSCH)对应的DCI不是用于调度PUSCH的DCI,如DCI格式为DCI2-2。本申请实施例所示的第二BWP上的PUSCH(与第一SRS功控状态一致的PUSCH)对应的DCI可以指的是用于控制PUSCH功率的DCI。如第一SRS的发送功率调整量仅与第二BWP上的一个或多个PUSCH(与第一SRS功控状态一致的PUSCH)对应的DCI2-2所携带的TPC命令值指示的发送功率调整量有关。
示例性的,第二BWP上的一个或多个PUSCH(与第一SRS功控状态一致的PUSCH)中每个PUSCH对应一个或多个DCI。该一个或多个DCI既可以包括用于调度PUSCH的DCI,也可以包括不是用于调度PUSCH的DCI。换句话说,第一SRS的发送功率调整量与第二BWP上的一个或多个PUSCH中每个PUSCH(与第一SRS功控状态一致的PUSCH)对应的一个或多个DCI中,每个DCI携带的TPC命令值指示的发送功率调整量有关。例如,该第一SRS的发送功率调整量可以与这里所示的多个DCI中每个DCI携带的TPC命令值指示的发送功率调整量的和。
本申请实施例示出的第二BWP上的PUSCH可以与第一SRS具有关联关系,或者,也可以没有关联关系,本申请实施例对此不作限定。也就是说,上述图4所示的方法中,由于第一PUSCH与第一SRS具有关联关系,因此,该第一PUSCH可以采用与第一SRS相同的天线端口发送该第一PUSCH。而在调整该第一SRS的发送功率时,该第一SRS的发送功率调整量是与其闭环功控状态一致的PUSCH对应的DCI指示的TPC命令值有关。
可理解,关于第一SRS的发送功率调整量的具体说明还可以参考图5所示的方法。
本申请实施例中,第一SRS的功控调整量可以由单个BWP维护,如由第二BWP维护, 从而UE在切换BWP时,可以重载该第二BWP对应的第一SRS的累计功控量。进而,能够保证第一SRS与第二BWP上的PUSCH的功率调整量一致。
方法2:第一SRS的发送功率调整量与一个或多个PUSCH(与第一SRS功控状态一致的PUSCH)对应的DCI所携带的TPC命令值指示的发送功率调整量有关,该一个或多个PUSCH位于与第一SRS关联的一个或多个BWP上。
如上文所示,第一SRS配置可以包括一个或多个BWP索引,因此,该第一SRS的发送功率调整量可以与一个或多个PUSCH(与第一SRS功控状态一致的PUSCH)对应的DCI所携带的TPC命令值指示的发送功率调整量有关,该一个或多个PUSCH位于与第一SRS配置中所包括的一个或多个BWP上。例如,该第一SRS的发送功率调整量可以为这里所示的一个或多个PUSCH对应的DCI携带的TPC命令值指示的发送功率调整量的和。
如上文所示,配置信息中可以包括第一SRS配置与一个或多个PUSCH配置的关联关系,因此,本申请实施例所示的方法2也可以理解为:第一SRS的发送功率调整可以与该一个或多个PUSCH配置对应的一个或多个PUSCH(与第一SRS功控状态一致的PUSCH)对应的DCI中,每个DCI携带的TPC命令值指示的发送功率调整量有关。
示例性的,第一SRS的发送功率调整量可以为上述一个或多个PUSCH对应的DCI所携带的TPC命令值指示的发送功率调整量的和。
本申请实施例中,第一SRS受制于不同BWP上PUSCH的TPC控制叠加。从而,可以保证UE切换BWP时,第一SRS的发送功率不会发生跳变。
方法3:第一SRS的发送功率调整量在切换BWP均归零。该方法3与方法1的区别在于:方法1中如果经历了BWP#1-BWP#2-BWP#1的多次切换,则第一次BWP#1上的功率调整量在第二次切换到BWP#1时继续生效,而方法3对于第二次切换到BWP#1时,功率调整量为置零。关于方法3的具体说明,还可以参考上述方法1,这里不再详述。本申请实施例中,第一SRS的功控调整量在BWP切换时可以被重置,从而可保证将第一SRS的功率调整重置时,不影响PUSCH的发送功率。
可理解,关于上述方法1至方法3的具体说明或举例,还可以参考下文示出的图5。
图5是本申请实施例提供的一种数据传输方法的流程示意图,如图5所示,该方法包括:
501.基站向UE发送配置信息,相应的,该UE接收该配置信息。其中,该配置信息包括第一SRS配置与一个或多个PUSCH配置的关联关系,该第一SRS配置所在的第一BWP与每个PUSCH配置所在的BWP不同。
502.UE根据第一SRS配置在第一BWP上发送第一SRS。相应的,基站根据该第一SRS配置接收该第一SRS。
503.基站向UE发送第一DCI,该第一DCI携带第一指示信息,该第一指示信息用于指示第一PUSCH与第一SRS关联。相应的,UE接收该第一DCI。
该第一DCI中可以指示第一PUSCH的TPC命令值。当该第一PUSCH的闭环功控状态与第一SRS的闭环功控状态一致时,对于该第一PUSCH的TPC命令值也适用于第一SRS,如第一PUSCH的功率调整量(单次或累计)与第一SRS的功率调整量(单次或累计)一致。
504.UE根据第一PUSCH配置发送第一PUSCH,该第一PUSCH配置为上述一个或多个PUSCH配置中的一个。相应的,基站根据第一PUSCH配置接收该第一PUSCH。
示例性的,UE可以在第二BWP上发送第一PUSCH,即在步骤504中UE当前激活的BWP为第二BWP。
可理解,关于步骤501至步骤504的具体说明,可以参考上文所示的图4,这里不再赘述。
505.UE根据第一SRS配置在第一BWP上向基站发送第一SRS,相应的,基站根据第一SRS配置接收该第一SRS。
506.基站向UE发送第二DCI,UE接收该第二DCI,该第二DCI用于调度第三BWP上的第一PUSCH,该第三BWP与上述第一PUSCH所在的BWP不同。
可理解,该第二DCI也可以指示切换UL BWP,或者在步骤506之前,UE基于其他方法,例如接收下行DCI已经切换了UL BWP。即步骤506调度的第一PUSCH与步骤503调度的第一PUSCH不在一个BWP上。如步骤506中的第二DCI可以是用于进行BWP切换的DCI,或者步骤506之前已经经由其他方法(例如其他DCI等)切换了上下行BWP对。
可选的,该第二DCI中还可以指示第一PUSCH的TPC命令,用于控制PUSCH的功率。当该第一PUSCH的闭环功控状态与第一SRS的闭环功控状态一致时,对于该第一PUSCH的TPC命令值也适用于第一SRS,基于第一PUSCH的功率调整量(单次或累计)与第一SRS的功率调整量(单次或累计)一致。
507.UE根据第一PUSCH配置发送第一PUSCH,相应的,基站根据第一PUSCH配置接收该第一PUSCH。
示例性的,UE可以在第三BWP上发送该第一PUSCH,即在步骤507中UE当前激活的BWP为第三BWP。可理解,第二BWP和第三BWP可以理解为是与第一SRS关联的BWP。
508.UE根据第一SRS配置在第一BWP上发送第一SRS。相应的,基站根据第一SRS配置接收该第一SRS。
结合图5所示的方法,对上述方法1至方法3进行举例:
如对于方法1来说,即第一SRS的功率调整不跨BWP进行。例如在步骤502中,第一SRS的发送功率为15dBm,步骤503中第一DCI中的TPC命令值指示上调1dB(如只限控制第二BWP上的第一PUSCH),那么在步骤505第一SRS的发送功率为16dBm(即15dBm+1dB)。又如,步骤506中第二DCI中的TPC命令值指示上调3dB(只限控制第三BWP上的第一PUSCH),那么在步骤508第一SRS的发送功率则为18dBm(即15dBm+3dB)。
如对于方法2来说,例如在步骤502中,第一SRS的发送功率为15dBm,步骤503中第一DCI中的TPC命令值指示上调1dB(只限控制第二BWP上的第一PUSCH),那么在步骤505第一SRS的发送功率为16dBm。又如,步骤506中第二DCI中的TPC命令值指示上调3dB(只限控制第三BWP上的第一PUSCH),由于第二BWP与第三BWP均是与第一SRS关联的BWP,则在步骤508第一SRS的发送功率为19dBm(15dBm+1dB+3dB)。
实现方式二
第一SRS的闭环功控状态为独立功控状态。该情况下,第一SRS的发送功率调整量有如下方法:
方法1:第一SRS的功率调整量与在一个或多个BWP上的收到的格式为2-3的DCI中TPC命令值指示的发送功率调整量有关。
在一实施例中,该一个或多个BWP与第一SRS配置属于同一载波。在另一实施例中,该一个或多个BWP中包含一个或多个第四BWP,该第四BWP与第一SRS配置属于不同的载波,但是该第四BWP载波上接收到的格式为2-3的DCI携带的TPC命令可以作用于所述第一SRS配置中所在的载波。在又一示例中,一个或多个BWP可以理解为与第一SRS配置 关联的一个或多个PUSCH配置所在的一个或多个BWP,对应的BWP可以理解为与一个或多个BWP绑定的BWP,或者,可以理解为与一个或多个BWP配对的下行BWP。第一SRS的发送功率调整量为上述一个或多个BWP中每个BWP上接收到的DCI(DCI格式为2-3)携带的TPC命令值指示的发送功率调整量的和。
或者,上述方法1,也可以替换为:第一SRS的发送功率调整量与UE在配置的一个或多个载波CC上接收到的DCI(DCI格式为2-3)携带的TPC命令指示的发送功率调整量有关。这里所示的一个或多个CC可以为UE配置的全部CC或部分CC。在一示例中,该一个或多个CC可以包括:第一SRS配置所在的CC,和/或与第一SRS配置所在的CC绑定的CC(例如,与第一SRS配置所在的CC进行载波聚合的CC)。例如,第一SRS的发送功率调整量可以为该一个或多个CC上接收的DCI(DCI格式为2-3)携带的TPC命令指示的发送功率调整量的和。
示例性的,下文示出的图6中,如步骤606中的第一SRS的发送功率调整量可以为步骤603和步骤605中的第三DCI中指示的发送功率调整量的和。如步骤603中是在第二BWP上接收的第三DCI,步骤605是在第三BWP上接收的第三DCI。
方法2:第一SRS的功率调整量与第二BWP对应的BWP上收到的格式为2-3的DCI中TPC命令指示的发送功率调整量有关。
示例性的,这里所示的第二BWP对应的BWP可以理解为:与第二BWP绑定的BWP,或者,该第二BWP配对的下行BWP,或者为UE当前激活的BWP。
示例性的,下文示出的图6中,步骤604中的第一SRS的发送功率调整量可以仅与步骤603中的第三DCI有关(UE当前激活BWP为第二BWP)。又如,步骤606中的第一SRS的发送功率调整量可以仅与步骤605中的第三DCI有关(UE当前激活BWP为第三BWP)。
方法3:第一SRS的功率调整量在切换BWP时均归零。
可理解,关于方法2和方法3的具体说明,可以参考上述实现方式一中的描述,这里不再赘述。应理解,上述实现方式一的方法1中的DCI的格式为DCI0-0、DCI0-1、DCI0-2或DCO2-2。而实现方式二的方法2中的DCI的格式为DCI2-3。可理解,本申请实施例示出的各个DCI的格式仅为示例,如其他格式的DCI也可以实现本申请实施例提供的方法,则该其他格式的DCI同样属于本申请的保护范围。
结合上述方法,图6是本申请实施例提供的一种数据传输方法的流程示意图,如图6所示,该方法包括:
601.基站向UE发送配置信息,相应的,该UE接收该配置信息。其中,该配置信息包括第一SRS配置与一个或多个PUSCH配置的关联关系,该第一SRS配置所在的第一BWP与每个PUSCH配置所在的BWP不同。
602.UE根据第一SRS配置在第一BWP上发送第一SRS。相应的,基站接收该第一SRS。
可理解,附图说明图6中虽然未详细示出本申请实施例中关于第一DCI或第一PUSCH的说明,但是,图6所示的方法中包括UE根据第一PUSCH配置发送第一PUSCH的步骤。也就是说,图6所示的方法中,在UE发送第一PUSCH时,可以使用与第一SRS相同的天线端口和/或开环功控参数发送该第一PUSCH。
603.基站向UE发送第三DCI。相应的,UE接收该第三DCI。
604.UE根据第一SRS配置在第一BWP上发送第一SRS。相应的,基站接收该第一SRS。
605.基站向UE发送第三DCI。相应的,UE接收该第三DCI。
606.UE根据第一SRS配置在第一BWP上发送第一SRS。相应的,基站接收该第一SRS。
本申请实施例中,第三DCI携带用于调整第一SRS的TPC命令值,换句话说,该第三DCI可以用于调整该第一SRS的TPC。可选的,该第三DCI也可以用于触发非周期SRS(如第一SRS)的发送。
示例性的,format 2-3的DCI(即第三DCI)中增加显式比特指示该DCI Format 2-3(用于控制第一SRS的发送功率调整量以及触发该第一SRS(非周期)的发送。例如1比特,为0时指示DCI format 2-3用于控制载波当前激活BWP上的其他SRS(如根据第二SRS配置得到的第二SRS),为1时指示DCI format 2-3用于控制该载波第一BWP上的第一SRS。
也就是说,对于一个配置了第一SRS的载波,当DCI format 2-3用于触发该载波上的SRS功率调整和发送时,该DCI format 2-3中携带的TPC命令值可以用于控制该载波上第一SRS的发送功率调整量。该DCI format2-3可以用于触发第一SRS的发送。
示例性的,通过隐式方式指示第一SRS的发送功率调整量和该第一SRS的发送。例如,当配置信息中包括第一SRS配置与一个或多个PUSCH配置的关联关系时,该DCI format 2-3用于控制该载波上第一SRS的发送功率调整量以及触发该第一SRS(非周期)的发送。当配置信息中未包括第一SRS配置与一个或多个PUSCH配置的关联关系时,该DCI format2-3用于控制载波上当前激活BWP上的其他SRS的发送功率调整量以及触发其他SRS的载波轮发。
可理解,上述各个实施例中,其中一个实施例中未详细描述的实现方式,可以参考其他实施例,这里不再详述。
以下将介绍本申请实施例提供的通信装置。
本申请根据上述方法实施例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面将结合图7至图9详细描述本申请实施例的通信装置。
图7是本申请实施例提供的一种通信装置的结构示意图,如图7所示,该通信装置包括处理单元701、接收单元702和发送单元703。
该通信装置可以是上文示出的终端设备或终端设备中的芯片等。即该通信装置可以用于执行上文方法实施例中由终端设备(或UE)执行的步骤或功能等。
接收单元702,用于接收配置信息;
发送单元703,还用于发送第一SRS,以及发送第一PUSCH。
可理解,上述处理单元701,用于通过发送单元703根据第一SRS配置在第一BWP上发送第一SRS。上述处理单元701,用于通过发送单元703根据第一PUSCH配置发送第一PUSCH。或者,上述处理单元和发送单元,也可以理解为:处理单元701,用于根据第一SRS配置获得第一SRS,发送单元703,用于输出该第一SRS。处理单元701,还用于根据第一PUSCH配置获得第一PUSCH,发送单元703,还用于输出该第一PUSCH。
在一种可能的实现方式中,处理单元701,具体用于通过发送单元703,采用与第一SRS相同的天线端口和/或开环功控参数发送第一PUSCH。
在一种可能的实现方式中,接收单元702,还用于接收第一DCI。
在一种可能的实现方式中,发送单元703,具体用于通过处理单元701从第二BWP切换到第一BWP,以及根据第一SRS配置在第一BWP上发送第一SRS。
复用图7,上述通信装置可以是上文示出的接入网设备或接入网设备中的芯片等。即该通信装置可以用于执行上文方法实施例中由接入网设备执行的步骤或功能等。
发送单元703,用于发送配置信息;
接收单元702,还用于接收第一SRS,以及接收第一PUSCH。
示例性的,处理单元701,可以用于获得配置信息,以及通过发送单元703发送该配置信息。
示例性的,接收单元702,可以通过处理单元701根据第一SRS配置接收第一SRS,以及通过处理单元701根据第一PUSCH配置接收第一PUSCH。
本申请各个实施例中,关于配置信息、第一BWP、第二BWP、第一SRS配置、PUSCH配置、第一SRS与第一PUSCH、第一指示信息或第二指示信息等的说明还可以参考上文方法实施例中的介绍,这里不再一一详述。
可理解,本申请各个实施例示出的发送单元、接收单元和处理单元的具体说明仅为示例,对于发送单元、接收单元和处理单元的具体功能或执行的步骤等,可以参考上述方法实施例,这里不再详述。
以上介绍了本申请实施例的终端设备和接入网设备,以下介绍所述终端设备和接入网设备可能的产品形态。应理解,但凡具备上述图7所述的终端设备的功能的任何形态的产品,或者,但凡具备上述图7所述的接入网设备的功能的任何形态的产品,都落入本申请实施例的保护范围。还应理解,以下介绍仅为举例,不限制本申请实施例的终端设备和接入网设备的产品形态仅限于此。
示例性的,处理单元701可以是一个或多个处理器,发送单元703可以是发送器,接收单元702可以是接收器,或者发送单元703和接收单元702集成于一个器件,例如收发器。或者,处理单元701可以是一个或多个处理器(或者处理单元701可以是一个或多个逻辑电路),发送单元703可以是输出接口,接收单元702可以是输入接口,或者发送单元703和接收单元702集成于一个单元,例如输入输出接口。以下将详细说明。
在一种可能的实现方式中,图7所示的通信装置中,处理单元701可以是一个或多个处理器,发送单元703和接收单元702可以集成于收发器。本申请实施例中,处理器和收发器可以被耦合等,对于处理器和收发器的连接方式,本申请实施例不作限定。
如图8所示,该通信装置80包括一个或多个处理器820和收发器810。
示例性的,当该通信装置用于执行上述终端设备执行的步骤或方法或功能时,收发器810,用于接收来自接入网设备的配置信息;收发器810,还用于发送第一SRS,以及发送第一PUSCH。示例性的,收发器810,可以通过处理器820根据第一SRS配置在第一BWP上发送第一SRS,以及根据第一PUSCH配置发送第一PUSCH。
示例性的,当该通信装置用于执行上述接入网设备执行的步骤或方法或功能时,收发器810,用于发送配置信息;该收发器810,还用于接收第一SRS,以及接收第一PUSCH。
示例性的,处理器820,可以用于获得配置信息;收发器810,用于向终端设备发送该配置信息,以及接收来自该终端设备的第一SRS和第一PUSCH。
可理解,对于处理器和收发器的具体说明还可以参考图7所示的处理单元、发送单元和接收单元的介绍,这里不再赘述。
在图8所示的通信装置的各个实现方式中,收发器可以包括接收机和发射机,该接收机用于执行接收的功能(或操作),该发射机用于执行发射的功能(或操作)。以及收发器用于 通过传输介质和其他设备/装置进行通信。
可选的,通信装置80还可以包括一个或多个存储器830,用于存储程序指令和/或数据。存储器830和处理器820耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器820可能和存储器830协同操作。处理器820可以执行存储器830中存储的程序指令。
本申请实施例中不限定上述收发器810、处理器820以及存储器830之间的具体连接介质。本申请实施例在图8中以存储器830、处理器820以及收发器810之间通过总线840连接,总线在图8中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图8中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成等。
本申请实施例中,存储器可包括但不限于硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等非易失性存储器,随机存储记忆体(Random Access Memory,RAM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、只读存储器(Read-Only Memory,ROM)或便携式只读存储器(Compact Disc Read-Only Memory,CD-ROM)等等。存储器是能够用于携带或存储具有指令或数据结构形式的程序代码,并能够由计算机(如本申请示出的通信装置等)读和/或写的任何存储介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
可理解,当通信装置用于执行终端设备执行的功能或步骤时,处理器820主要用于对通信协议以及通信数据进行处理,以及对整个通信装置进行控制,执行软件程序,处理软件程序的数据。存储器830主要用于存储软件程序和数据。收发器810可以包括控制电路和天线,控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当通信装置开机后,处理器820可以读取存储器830中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器820对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到通信装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器820,处理器820将基带信号转换为数据并对该数据进行处理。
在另一种实现中,所述的射频电路和天线可以独立于进行基带处理的处理器而设置,例如在分布式场景中,射频电路和天线可以与独立于通信装置,呈拉远式的布置。
可理解,本申请实施例示出的通信装置还可以具有比图8更多的元器件等,本申请实施例对此不作限定。以上所示的处理器和收发器所执行的方法仅为示例,对于该处理器和收发器具体所执行的步骤可参照上文介绍的方法。
在另一种可能的实现方式中,图7所示的通信装置中,处理单元701可以是一个或多个逻 辑电路,发送单元703可以是输出接口,接收单元702可以是输入接口。或者,该发送单元703和接收单元702可以集成于一个单元,例如输入输出接口。该输入输出接口,又或者称为通信接口,或者接口电路,或接口等等。如图9所示,图9所示的通信装置包括逻辑电路901和接口902。即上述处理单元701可以用逻辑电路901实现,接收单元702和发送单元703可以用接口902实现。其中,该逻辑电路901可以为芯片、处理电路、集成电路或片上系统(system on chip,SoC)芯片等,接口902可以为通信接口、输入输出接口、管脚等。示例性的,图9是以上述通信装置为芯片为例出的,该芯片包括逻辑电路901和接口902。
本申请实施例中,逻辑电路和接口还可以相互耦合。对于逻辑电路和接口的具体连接方式,本申请实施例不作限定。
示例性的,当通信装置用于执行上述终端设备设备执行的方法或功能或步骤时,接口902,用于输入配置信息;以及还用于输出第一SRS和第一PUSCH。
可理解,逻辑电路901,可以用于根据第一SRS配置获得第一SRS,然后通过接口902输出第一SRS。逻辑电路901,还用于根据第一PUSCH获得第一PUSCH,然后通过接口902输出该第一PUSCH。
示例性的,逻辑电路901,用于对输入的配置信息进行解析,获得配置信息中的内容。示例性的,逻辑电路901,还用于根据第一SRS配置生成第一SRS,以及通过接口902输出该第一SRS。示例性的,逻辑电路901,还用于根据第一PUSCH配置生成第一PUSCH,以及通过接口902输出该第一PUSCH。
示例性的,逻辑电路,还用于控制接口902采用与第一SRS相同的天线端口和/或开环功控参数输出第一PSUCH。
示例性的,接口902,还用于输入第一DCI。
示例性的,逻辑电路901,还用于从第二BWP切换到第一BWP。
示例性的,当通信装置用于执行上述接入网设备(如基站)执行的方法或功能或步骤时,逻辑电路901,用于获得配置信息,接口902,用于输出该配置信息,以及输入第一SRS和第一PUSCH。
可理解,逻辑电路901,还可以用于对输入的第一SRS和第一PUSCH进行处理等,本申请实施例对此不作限定。
可理解,本申请实施例示出的通信装置可以采用硬件的形式实现本申请实施例提供的方法,也可以采用软件的形式实现本申请实施例提供的方法等,本申请实施例对此不作限定。
对于图9所示的各个实施例的具体实现方式,还可以参考上述各个实施例,这里不再详述。
本申请实施例还提供了一种无线通信系统,该无线通信系统包括终端设备和接入网设备,该终端设备和该接入网设备可以用于执行前述任一实施例(如图4至图6)中的方法。
此外,本申请还提供一种计算机程序,该计算机程序用于实现本申请提供的方法中由终端设备执行的操作和/或处理。
本申请还提供一种计算机程序,该计算机程序用于实现本申请提供的方法中由接入网设备执行的操作和/或处理。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机代码,当计算机代码在计算机上运行时,使得计算机执行本申请提供的方法中由终端设备执行的操作和/或处理。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机代码,当计算机代码在计算机上运行时,使得计算机执行本申请提供的方法中由接入网设备执行的 操作和/或处理。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机代码或计算机程序,当该计算机代码或计算机程序在计算机上运行时,使得本申请提供的方法中由终端设备执行的操作和/或处理被执行。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机代码或计算机程序,当该计算机代码或计算机程序在计算机上运行时,使得本申请提供的方法中由接入网设备执行的操作和/或处理被执行。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例提供的方案的技术效果。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个可读存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的可读存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    接收配置信息,所述配置信息包括第一探测参考信号SRS配置与一个或多个物理上行共享信道PUSCH配置的关联关系,所述第一SRS配置所在的第一带宽部分BWP与每个所述PUSCH配置所在的BWP不同;
    根据所述第一SRS配置在所述第一BWP上发送第一SRS;
    根据第一PUSCH配置发送第一PUSCH,所述第一PUSCH配置为所述一个或多个PUSCH配置中的一个。
  2. 根据权利要求1所述的方法,其特征在于,所述第一SRS用于定位。
  3. 根据权利要求1或2所述的方法,其特征在于,发送所述第一PUSCH包括:
    采用与所述第一SRS相同的天线端口发送所述第一PUSCH;和/或
    采用与所述第一SRS相同的开环功控参数发送所述第一PUSCH。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一PUSCH配置还关联第二SRS配置,所述方法还包括:
    接收第一DCI,所述第一DCI携带第一指示信息,所述第一指示信息用于指示所述第一PUSCH与所述第一SRS配置关联或与所述第二SRS配置关联。
  5. 根据权利要求4所述的方法,其特征在于,所述第一SRS配置包括多个SRS资源的配置信息,所述第一DCI还携带探测参考信号资源指示SRI,所述SRI用于指示所述多个SRS资源中与所述第一PUSCH关联的SRS资源。
  6. 根据权利要求5所述的方法,其特征在于,所述SRI还用于指示所述第一PUSCH的开环功控参数和/或闭环功控状态。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述根据所述第一SRS配置在所述第一BWP上发送第一SRS包括:
    从第二BWP切换到所述第一BWP,根据所述第一SRS配置在所述第一BWP上发送所述第一SRS,所述第二BWP为所述一个或多个PUSCH配置所在的BWP中的一个,所述第一SRS的发送功率调整量与所述第二BWP上的一个或多个PUSCH所对应的DCI所携带的传输功率控制TPC命令值指示的发送功率调整量有关。
  8. 根据权利要求7所述的方法,其特征在于,所述第二BWP上的PUSCH所对应的DCI不是用于调度PUSCH的DCI。
  9. 根据权利要求7或8所述的方法,其特征在于,所述第二BWP上的一个或多个PUSCH中的每个PUSCH对应一个或多个DCI。
  10. 根据权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    所述第一SRS的发送功率调整量与所述一个或多个PUSCH配置所在的一个或多个BWP所对应的BWP,上接收到的DCI携带的TPC命令值指示的发送功率调整量有关;或者,
    所述第一SRS的发送功率调整量与终端设备在配置的一个或多个载波CC上接收到的DCI携带的TPC命令值指示的发送功率调整量有关。
  11. 一种通信装置,其特征在于,所述装置包括:
    接收单元,用于接收配置信息,所述配置信息包括第一探测参考信号SRS配置与一个或多个物理上行共享信道PUSCH配置的关联关系,所述第一SRS配置所在的第一带宽部分 BWP与每个所述PUSCH配置所在的BWP不同;
    发送单元,还用于根据所述第一SRS配置在所述第一BWP上发送第一SRS;以及根据第一PUSCH配置发送第一PUSCH,所述第一PUSCH配置为所述一个或多个PUSCH配置中的一个。
  12. 根据权利要求11所述的装置,其特征在于,所述第一SRS用于定位。
  13. 根据权利要求11或12所述的装置,其特征在于,
    所述发送单元,具体用于采用与所述第一SRS相同的天线端口发送所述第一PUSCH;和/或,采用与所述第一SRS相同的开环功控参数发送所述第一PUSCH。
  14. 根据权利要求11-13任一项所述的装置,其特征在于,所述第一PUSCH配置还关联第二SRS配置,
    所述接收单元,还用于接收第一DCI,所述第一DCI携带第一指示信息,所述第一指示信息用于指示所述第一PUSCH与所述第一SRS配置关联或与所述第二SRS配置关联。
  15. 根据权利要求14所述的装置,其特征在于,所述第一SRS配置包括多个SRS资源的配置信息,所述第一DCI还携带探测参考信号资源指示SRI,所述SRI用于指示所述多个SRS资源中与所述第一PUSCH关联的SRS资源。
  16. 根据权利要求15所述的装置,其特征在于,所述SRI还用于指示所述第一PUSCH的开环功控参数和/或闭环功控状态。
  17. 根据权利要求11-16任一项所述的装置,其特征在于,所述装置还包括处理单元,
    所述发送单元,具体用于通过所述处理单元从第二BWP切换到所述第一BWP,以及根据所述第一SRS配置在所述第一BWP上发送所述第一SRS,所述第二BWP为所述一个或多个PUSCH配置所在的BWP中的一个,所述第一SRS的发送功率调整量与所述第二BWP上的一个或多个PUSCH所对应的DCI所携带的TPC命令值指示的发送功率调整量有关。
  18. 根据权利要求17所述的装置,其特征在于,所述第二BWP上的PUSCH所对应的DCI不是用于调度PUSCH的DCI。
  19. 根据权利要求17或18所述的装置,其特征在于,所述第二BWP上的一个或多个PUSCH中的每个PUSCH对应一个或多个DCI。
  20. 根据权利要求11-14任一项所述的装置,其特征在于,
    所述第一SRS的发送功率调整量与所述一个或多个PUSCH配置所在的一个或多个BWP所对应的BWP上接收到的DCI携带的TPC命令值指示的发送功率调整量有关;或者,
    所述第一SRS的发送功率调整量与终端设备在配置的一个或多个载波CC上接收到的DCI携带的TPC命令值指示的发送功率调整量有关。
  21. 一种通信装置,其特征在于,包括处理器和存储器;
    所述存储器用于存储计算机指令;
    所述处理器用于执行所述计算机指令,以使权利要求1-10任一项所述的方法被执行。
  22. 一种通信装置,其特征在于,包括逻辑电路和接口,所述逻辑电路和接口耦合;
    所述接口用于输入待处理的数据,所述逻辑电路用于按照权利要求1-10任一项所述的方法,获得处理后的数据,所述接口用于输出所述处理后的数据。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序或指令,当所述计算机程序或指令被执行时,如权利要求1-10任一项所述的方法被执行。
  24. 一种计算机程序,其特征在于,当所述计算机程序被执行时,如权利要求1-10任一项所述的方法被执行。
PCT/CN2022/095813 2021-05-31 2022-05-28 数据传输方法及装置 WO2022253150A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22815196.5A EP4336936A1 (en) 2021-05-31 2022-05-28 Data transmission method and apparatus
BR112023025108A BR112023025108A2 (pt) 2021-05-31 2022-05-28 Método e aparelho de transmissão de dados
US18/522,412 US20240107529A1 (en) 2021-05-31 2023-11-29 Data transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110605597.2A CN115484676A (zh) 2021-05-31 2021-05-31 数据传输方法及装置
CN202110605597.2 2021-05-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/522,412 Continuation US20240107529A1 (en) 2021-05-31 2023-11-29 Data transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2022253150A1 true WO2022253150A1 (zh) 2022-12-08

Family

ID=84323901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095813 WO2022253150A1 (zh) 2021-05-31 2022-05-28 数据传输方法及装置

Country Status (5)

Country Link
US (1) US20240107529A1 (zh)
EP (1) EP4336936A1 (zh)
CN (1) CN115484676A (zh)
BR (1) BR112023025108A2 (zh)
WO (1) WO2022253150A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116033504A (zh) * 2022-12-21 2023-04-28 三维通信股份有限公司 新无线通信系统中bwp的切换方法、装置和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108886804A (zh) * 2018-06-26 2018-11-23 北京小米移动软件有限公司 Bwp切换方法、装置及存储介质
US20190132862A1 (en) * 2017-10-26 2019-05-02 Comcast Cable Communications, Llc Activation and Deactivation of Configured Grant
CN110022197A (zh) * 2018-01-10 2019-07-16 维沃移动通信有限公司 参考信号的处理方法、网络设备和终端
CN110635874A (zh) * 2018-06-21 2019-12-31 中国移动通信有限公司研究院 一种触发srs传输的方法及装置
CN111147212A (zh) * 2018-11-02 2020-05-12 电信科学技术研究院有限公司 非激活频率资源的信道测量方法、基站及终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190132862A1 (en) * 2017-10-26 2019-05-02 Comcast Cable Communications, Llc Activation and Deactivation of Configured Grant
CN110022197A (zh) * 2018-01-10 2019-07-16 维沃移动通信有限公司 参考信号的处理方法、网络设备和终端
CN110635874A (zh) * 2018-06-21 2019-12-31 中国移动通信有限公司研究院 一种触发srs传输的方法及装置
CN108886804A (zh) * 2018-06-26 2018-11-23 北京小米移动软件有限公司 Bwp切换方法、装置及存储介质
CN111147212A (zh) * 2018-11-02 2020-05-12 电信科学技术研究院有限公司 非激活频率资源的信道测量方法、基站及终端

Also Published As

Publication number Publication date
US20240107529A1 (en) 2024-03-28
CN115484676A (zh) 2022-12-16
EP4336936A1 (en) 2024-03-13
BR112023025108A2 (pt) 2024-02-20

Similar Documents

Publication Publication Date Title
US10778475B2 (en) Method and device for SRS transmission
US20230299467A1 (en) Facilitating user equipment beamforming control
US20230387986A1 (en) Electronic devices and communication methods
US11147098B2 (en) Electronic apparatus, wireless communication device, and wireless communication method
WO2018127066A1 (zh) 一种上行测量信号的指示方法及装置
WO2021027895A1 (en) Method and device for determining codebook subset, and user equipment
WO2022052650A1 (en) Apparatus and method of wireless communication
US20210377916A1 (en) Wireless Communications Method and Apparatus
US20220132556A1 (en) Multiple Grant Handling in Mixed Services Scenarios
JP2022521719A (ja) 電力制御方法および電力制御装置
US20210410165A1 (en) Transmission of physical uplink channels and signals for new radio beamformed system
US20240188128A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
JP2023509673A (ja) フル電力アップリンク伝送の強化
US20230140333A1 (en) Information transmission method and apparatus, terminal, and network-side device
US20240107529A1 (en) Data transmission method and apparatus
WO2021062836A1 (zh) 功率调整方法及装置
US20230345278A1 (en) Measurement method, scheduling method, and related apparatus
US20240015735A1 (en) Application layer preemptive scheduling requests for ultra-low latency
CN115918210A (zh) 上行链路传输的多路复用
US20210329665A1 (en) Method and Apparatus for Adaptive Priority Control between Control Information and User Data
CN114071667A (zh) 通信的方法、通信装置及系统
JP2023516531A (ja) リソース指示方法、端末装置、及びネットワーク装置
US10512086B2 (en) Transmission of discovery signal in small cells while in off state
WO2023179412A1 (zh) 多面板通信方法及装置
WO2024032064A1 (zh) 功率控制方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815196

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022815196

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022815196

Country of ref document: EP

Effective date: 20231206

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023025108

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023025108

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231130