WO2018082641A1 - 传输信息的方法和设备 - Google Patents

传输信息的方法和设备 Download PDF

Info

Publication number
WO2018082641A1
WO2018082641A1 PCT/CN2017/109251 CN2017109251W WO2018082641A1 WO 2018082641 A1 WO2018082641 A1 WO 2018082641A1 CN 2017109251 W CN2017109251 W CN 2017109251W WO 2018082641 A1 WO2018082641 A1 WO 2018082641A1
Authority
WO
WIPO (PCT)
Prior art keywords
ports
signals
information
average
measurement
Prior art date
Application number
PCT/CN2017/109251
Other languages
English (en)
French (fr)
Inventor
任毅
李华
栗忠峰
秦熠
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17866440.5A priority Critical patent/EP3528396B1/en
Priority to KR1020197015589A priority patent/KR20190069580A/ko
Publication of WO2018082641A1 publication Critical patent/WO2018082641A1/zh
Priority to US16/400,711 priority patent/US11089599B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • the present application relates to the field of communications and, more particularly, to a method and apparatus for transmitting information.
  • the multi-antenna technology (Massive-MIMO) of the large-scale antenna array is also more suitable for application in the HF scene.
  • the transmitting side for example, the network device side
  • the receiving side for example, the terminal device side
  • HF communication in 5G requires consideration of a beam-centric design.
  • both the transmitting and receiving sides of the HF system tend to use narrow beams for communication, the matching of narrow beams is particularly important.
  • the signal is difficult to be diffracted, and instead a stronger reflection effect is used.
  • Low diffraction and high reflection make the HF channel exhibit significant features of spatial sparseness and local correlation. Therefore, the transmitter needs to accurately determine the relationship between multiple ports (transmission ports) in order to reasonably communicate with multiple ports. Management; otherwise, it is difficult for the transmitting end to perform reasonable communication management on multiple ports, which affects the transmission performance between the transmitting end and the receiving end.
  • the embodiment of the present application provides a method and a device for transmitting information, which can accurately determine the relationship between multiple ports and improve the transmission performance between the transmitting end and the receiving end.
  • a method of transmitting information comprising:
  • the first device sends M signals to the second device through the N ports, where N and M are integers, and M ⁇ N ⁇ 2;
  • the first device receives measurement information sent by the second device, where the measurement information is determined by the second device according to the M signals, and the measurement information is used to indicate a relationship between the N ports.
  • the relationship between the N ports may include, for example, a quasi co-location (QCL) relationship of the N ports, a correlation degree of the N ports, and/or the N ports.
  • QCL quasi co-location
  • the grouping relationship, the embodiment of the present application is not limited thereto.
  • the N ports may also be referred to as N transmit ports. Wherein one transmitting port transmits at least one signal.
  • the types of the M signals may be the same or different, and the embodiment of the present application does not limit this.
  • the embodiment of the present application describes the relationship between the ports by using the characteristics of the port on the second device side (the receiving end side), so that the first device can accurately determine the relationship between the ports, and thus the first device can Reasonable communication management is performed on multiple ports to improve the transmission performance between the first device and the second device.
  • the method may further include:
  • the first device performs communication management on the N ports according to the received measurement information.
  • the first device may perform feedback according to the second device when performing multi-user multiple input multiple output (MU-MIMO) or robust transmission.
  • MU-MIMO multi-user multiple input multiple output
  • the measurement information is used for reasonable communication management of the port, and the appropriate port is selected for communication with the second device.
  • the first device in the embodiment of the present application can accurately determine the relationship between the ports according to the measurement information, so that the first device can perform reasonable communication management on multiple ports, and improve the transmission performance between the first device and the second device. .
  • the M signals include at least one of the following signals:
  • CSI-RS Channel State Information Reference Signal
  • DMRS Demodulation Reference Signal
  • BRS Beam Reference Signal
  • PNRS Phase Noise Reference Signal
  • the M signals are carried in at least one of the following channels:
  • the physical downlink control channel (PDCCH), the physical downlink shared channel (PDSCH), the physical uplink control channel (PUCCH), and the physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) ).
  • the first device may send the M signals through the N ports in a time division, frequency division, or code division manner, and the embodiment of the present application is not limited thereto.
  • the method before the first device sends the M signals to the second device by using the N ports, the method further includes:
  • the first device receives the capability information sent by the second device, where the capability information indicates the number of ports that the second device can receive at the same time, the number of beams that the second device can receive at the same time, and the antenna panel of the second device. a number, a correspondence between the sending parameter of the second device and the receiving parameter, or a degree of reciprocity of the second device, the degree of reciprocity including complete reciprocity, partial reciprocity or complete reciprocity with respect to the specific parameter, This particular parameter includes angle information and/or gain information.
  • the sending parameter of the second device may be at least one of a sending port, a sending beam, and a transmitting resource, and the corresponding receiving parameter may be at least one of a receiving port, a receiving beam, and a receiving resource.
  • the method further includes:
  • the first device determines the value of N according to the capability information sent by the second device.
  • the method before the receiving, by the first device, the measurement information sent by the second device, the method further includes:
  • the first device sends the indication information to the second device, where the indication information is used to instruct the second device to send the measurement information to the first device.
  • the first device may configure the reporting type of the second device by using the indication information, where the measurement information is specified in the reporting type, that is, the reporting type specifies the content of the measurement information.
  • the specific content of the measurement information may be pre-defined in the system.
  • the M signals When the M signals are acquired by the second device, the M signals may be measured according to a predefined definition of the system, and the measurement information is obtained.
  • the second device may also report the measurement information by the indication of the first device.
  • the first device may carry the indication information by using Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the first device may periodically send the indication information to the second device.
  • the duration of the period may be a predefined duration, and may be determined by the first device according to the specific network state.
  • the embodiment of the present application is not limited thereto.
  • the first device can also send the indication information in a semi-static manner. Specifically, the first device may send the indication information after receiving the trigger request sent by the second device. Specifically, the trigger request is used to request acquisition of the indication information.
  • the first device sends the indication information to indicate the content of the measurement information reported by the second device, so that the first device can obtain suitable feedback information, and the first device can determine the characteristics of the port on the second device side. The relationship between the ports.
  • the first device determines the relationship between the ports by using the characteristics of the port on the receiving side, and can accurately determine the relationship between the ports, so that the first device can perform reasonable communication management on the port. Improve the transmission performance between the first device and the second device.
  • the indication information is further used to indicate that the second device determines whether the N ports corresponding to the M signals meet the QCL of the specific parameter set.
  • the specific parameter set includes at least one of the following parameters:
  • the angle AoD, the average AoD, the AoD extension, and the reciprocity of the second device may also be referred to as the reciprocity of the transmitting and receiving beams of the second device, and the embodiment of the present application is not limited thereto. .
  • the measurement information includes a first relationship indication information or a second relationship indication information, where the first relationship indication information is used to indicate that the N ports meet a QCL relationship of a specific parameter set, and the second relationship indication information is used to indicate the N ports.
  • the QCL relationship for a particular set of parameters is not met.
  • the first device in the embodiment of the present application can determine, according to the measurement information, whether the N ports meet the QCL relationship of the specific parameter, and the first device can perform reasonable communication management on multiple ports, for example, the first device is in the After obtaining the measurement information sent by the second device, the MM-MIMO or the robust transmission may perform reasonable communication management on the port according to the measurement information fed back by the second device, and select an appropriate port to perform communication with the second device. Communication improves the transmission performance between the first device and the second device.
  • the second device may determine, according to the AoA of the two reference signals, whether the two ports satisfy the arrival angle quasi-co-location relationship AoA-QCL, for example, the difference between the two AoAs is less than or equal to the pre- When the threshold is set, it can be judged that the two ports satisfy the AoA-QCL. When the difference between the two AoAs is greater than the preset threshold, it can be judged that the two ports do not satisfy the AoA-QCL.
  • the first device (for example, the network device) determines that the two ports satisfy the AoA-QCL when the obtained measurement information is 1, and determines that the two ports satisfy the AoA-QCL when the obtained measurement information is 0.
  • the first relationship indication information is used to indicate that the QCL relationship of the specific parameter set is satisfied between the two ports; the second relationship indication information can be used to indicate the multiple The ports have two ports that do not satisfy the QCL relationship of the specific parameter set, or indicate that any two ports of the multiple ports do not satisfy the QCL relationship of the specific parameter set.
  • the embodiments of the present application are not limited thereto.
  • the content of the measurement information is only 1 bit (0 or 1), the amount of data is small, and network resources can be saved.
  • the indication information is further used to indicate that the second device determines a measurement result of a parameter set of two or two signals of the M signals.
  • the degree of correlation, the degree of correlation of the measurement results of the parameter sets of the pair of signals is determined by the difference of the measurement results of the parameter sets of the pair of signals, the parameter set comprising at least one of the following parameters: the received delay Extension, Doppler spread, Doppler shift, average delay, gain, average gain, gain spread, angle of arrival AoA, average AoA, AoA spread, upstream departure angle AoD, average of the second device corresponding to the signal AoD and AoD extensions;
  • the measurement information includes the correlation degree of the N ports measured by the second device, and the correlation degree of the N ports is determined according to a difference between the measurement results of the parameter sets of the two signals in the M signals, where
  • the degree of correlation of the N ports indicates at least one of the following: a quantized difference of the measurement results of the parameters of the two of the M signals, and a measurement result of the parameters of the two of the M signals a maximum of the quantized differences, a minimum of the quantized differences of the measurements of the parameters of the two of the M signals, and a measurement of the parameters of the two of the M signals The average of the quantized differences.
  • the first device in the embodiment of the present application can determine the correlation degree of the N ports more accurately according to the measurement information, and the first device can perform reasonable communication management on multiple ports, for example, the first device acquires the second.
  • the MU-MIMO or the robust transmission may be used to perform reasonable communication management on the port according to the measurement information fed back by the second device, and select a suitable port to perform communication with the second device, and improve the Transmission performance between a device and a second device.
  • the parameter set includes AoA
  • the first device for example, a network device
  • the first device can configure the reporting type of the terminal device through DCI, while the first device sends two signals (for example, CSI-RS or DMRS, etc.) through two ports.
  • the second device eg, the terminal device
  • the second device determines a difference of AoA of the two signals to determine a correlation degree between the two ports.
  • the degree of correlation can be expressed by a quantitative level, for example, the degree of correlation—strongness, degree of correlation—weakness or degree of correlation—strongness, degree of correlation—medium, degree of correlation—weakness, or more quantitative levels, implementation of the present application The example is not limited to this.
  • the second device may quantize the difference of the AoA of the two signals, for example, when the difference is less than or equal to the first difference threshold, quantize the difference to 0, indicating that the degree of correlation is strong, If the difference is greater than the first difference threshold and less than the second difference threshold, the difference is quantized to 1, and the correlation degree is, when the difference is greater than or equal to the second difference threshold, the difference is 2, the degree of correlation - weak.
  • the first difference threshold and the second difference threshold may be preset, or may be indicated by the first device, and the embodiment of the present application is not limited thereto.
  • the correlation degree included in the measurement information may include the quantized difference of the measurement results of the parameters of the two signals of the M signals, and may also include the quantization result of the measurement results of the parameters of the two of the M signals. Difference The average of the quantized difference between the minimum value and the measurement result of the parameters of the two of the M signals.
  • the content of the measurement information includes the quantized difference, the amount of data is small, and network resources can be saved.
  • the measurement information includes at least one of the following:
  • the group number of the N ports, the maximum group number difference between the two groups of the group numbers of the N ports, and the smallest group number difference among the two groups of the group numbers of the N ports The value and the average of the difference between the two groups of the group numbers of the N ports.
  • the first device in the embodiment of the present application can determine the grouping relationship of the N ports more accurately according to the measurement information, so that the first device can perform reasonable communication management on multiple ports, for example, the first device acquires the second device.
  • the MU-MIMO or the robust transmission may be used to perform reasonable communication management on the port according to the measurement information fed back by the second device, and select a suitable port to perform communication with the second device, and improve the Transmission performance between a device and a second device.
  • the first device may configure a reporting type of the second device (eg, the terminal device) through the DCI, while the first device transmits two signals (eg, CSI-RS or DMRS, etc.) through the two ports.
  • the second device measures the group number of the two signals, and the second device determines the measurement information according to the group number of the N ports.
  • the measurement information includes at least one of the group number of the N ports, the maximum group number difference between the two groups of the group numbers of the N ports, and the group number of the N ports. The difference between the minimum group number difference between the two groups of the two groups and the difference between the two groups of the group numbers of the N ports.
  • the group number of the N ports may be determined by the receiving information of the second device side.
  • the receiving, by the first device, the measurement information sent by the second device includes:
  • the first device receives the measurement information sent by the second device on the reserved resource.
  • the first device receives the second device to send the measurement information on a predefined resource or a reserved resource of the system.
  • the first device may receive the measurement information by using the existing signaling (such as ACK/NACK, etc.), and the measurement information may be carried in the reserved bits in the existing frame structure. Not limited to this.
  • the embodiment of the present application describes the relationship between the ports by using the characteristics of the port on the second device side (the receiving side), so that the first device can accurately determine the relationship between the ports, and thus can perform the multiple ports.
  • Reasonable communication management to improve system performance.
  • a method of transmitting information comprising:
  • the second device receives the M signals sent by the first device through the N ports, where N and M are integers, and M ⁇ N ⁇ 2;
  • the second device measures the M signals to obtain measurement information, where the measurement information is used to indicate a relationship between the N ports;
  • the second device sends the measurement information to the first device.
  • the embodiment of the present application sends the measurement information to the first device by using the second device, so that the first device can describe the relationship between the ports by using the characteristics of the second device side (the receiving side), so that the port can be determined more accurately.
  • the relationship between the two can further manage the communication of multiple ports and improve system performance.
  • the second aspect corresponds to the above first aspect
  • the executive body of the first aspect is a first device
  • the executor in the face may be the second device
  • the corresponding feature of the method on the second device side may be referred to the corresponding description on the first device side of the first aspect, and therefore, the detailed description is omitted as appropriate for brevity.
  • the method before the second device measures the M signals to obtain measurement information, the method further includes:
  • the second device receives the indication information sent by the first device, where the indication information is used to indicate a report type, and the report type specifies the measurement information.
  • the second device sends a trigger request to the first device, and after the first device obtains the trigger request, the first device sends the indication information to the second device, and then the second device measures the M signals according to the indication information. Get measurement information.
  • the embodiment of the present application sends the indication information by the first device, and indicates the content of the measurement information reported by the second device, so that the first device can obtain suitable feedback information, and then describe the relationship between the ports by using the characteristics of the port on the receiving side.
  • the embodiment of the present application sends measurement information to the first device by using the second device, so that the first device can determine the relationship between the ports by using the characteristics of the second device side (receiving side), and thus can be configured for multiple ports. Perform reasonable communication management to improve system performance.
  • the M signals include at least one of the following signals:
  • Channel information reference signal CSI-RS demodulation reference signal DMRS, beam reference signal BRS, and phase noise reference signal PNRS
  • the M signals are carried in at least one of the following channels:
  • the sending, by the second device, the measurement information to the first device includes:
  • the second device sends the measurement information to the first device on the reserved resource.
  • the indication information is further used to indicate that the second device determines whether the N ports corresponding to the M signals meet the QCL of the specific parameter set. relationship,
  • the second device measures the M signals to obtain measurement information, including:
  • the second device determines, according to the reporting type, whether the N ports corresponding to the M signals satisfy a QCL relationship of a specific parameter set, where the specific parameter set includes at least one of the following parameters: received delay spread, Doppler spread , Doppler shift, average delay, gain, average gain, gain spread, angle of arrival AoA, average AoA, AoA spread, uplink departure angle AoD, average AoD, AoD extension of the second device corresponding to the signal Reciprocity of the second device;
  • the second device determines the measurement information according to the determination result of whether the N ports meet the QCL relationship of the specific parameter set, where the measurement information includes the first relationship indication information or the second relationship indication information, where the first relationship indication information is used to indicate The N ports satisfy a QCL relationship of a specific parameter set, and the second relationship indication information is used to indicate that the N ports do not satisfy the QCL relationship of the specific parameter set.
  • the indication information is further used to indicate that the second device determines a measurement result of a parameter set of two or two signals of the M signals. Relevant degree, the The degree of correlation of the measurement results of the parameter sets of the two signals is determined by the difference between the measurement results of the parameter sets of the two two signals;
  • the second device measures the M signals to obtain measurement information, including:
  • the second device determines, according to the reporting type, a difference between the measurement results of the parameters of the two of the M signals, the parameter including the received delay spread, Doppler spread, Doppler shift, and average time. Delay, gain, average gain, gain spread, angle of arrival AoA, average AoA, AoA extension, uplink departure angle AoD, average AoD, and AoD extension of the second device corresponding to the signal;
  • the second device determines the measurement information according to a difference between the parameters of the two of the M signals, where the measurement information includes a correlation degree of the N ports measured by the second device, where the N ports are The degree of correlation indicates at least one of the following: a quantized difference of the measurement results of the parameters of the two of the M signals, and a quantized difference of the measurement results of the parameters of the two of the M signals.
  • the maximum of the values, the minimum of the quantized differences of the measurements of the parameters of the two of the M signals, and the quantized difference of the measurements of the parameters of the two of the M signals The average of the values.
  • the second device measures the M signals to obtain measurement information, including:
  • the second device determines the measurement information according to the group number of the N ports, and the measurement information includes at least one of the following: a group number of the N ports, and two groups of the group numbers of the N ports The maximum group number difference among the values, the minimum group number difference between the two groups of the group numbers of the N ports, and the average of the difference between the two groups of the group numbers of the N ports.
  • the method before the second device receives the M signals sent by the first device by using the N ports, the method further includes:
  • the capability information sent by the second device to the first device the capability information indicating the number of ports that the second device can receive at the same time, the number of beams that the second device can receive at the same time, and the antenna panel of the second device a number, a correspondence between the sending parameter of the second device and the receiving parameter, or a degree of reciprocity of the second device, the degree of reciprocity including complete reciprocity, partial reciprocity or complete reciprocity with respect to the specific parameter,
  • This particular parameter includes angle information and/or gain information.
  • the embodiment of the present application sends measurement information to the first device by using the second device, so that the first device can determine the relationship between the ports by using the characteristics of the second device side (receiving side), and thus can be configured for multiple ports. Perform reasonable communication management to improve system performance.
  • a first apparatus for performing the method of any of the first aspect, the first aspect of the first aspect.
  • the first device comprises means for performing the above method.
  • a second device for performing the method in any of the possible implementations of the second aspect and the second aspect.
  • the second device comprises means for performing the above method.
  • a first device comprising a processor and a memory, the memory for storing a computer program, the processor for executing a computer program stored in the memory, performing the first aspect, the first A method in any of the possible implementations of the aspect.
  • a second device comprising a processor and a memory, the memory for storing a computer program, the processor for executing a computer program stored in the memory, performing the second aspect, A method in any of the possible implementations of the two aspects.
  • a seventh aspect a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect, any of the possible implementations of the first aspect.
  • a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of the second aspect, any of the possible implementations of the second aspect.
  • FIG. 1 is a schematic diagram of a wireless communication system in accordance with an embodiment of the present application.
  • FIG. 2 is a schematic diagram of transmission information.
  • FIG. 3 is a schematic flowchart of a method for transmitting information according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a receiving area of a terminal device according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of transmitting information according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of transmitting information according to another embodiment of the present application.
  • FIG. 7 is a schematic diagram of transmitting information according to another embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a first device in accordance with an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a second device in accordance with an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a first device according to another embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a second device according to another embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile communication
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • the terminal device may also be referred to as a user equipment (User Equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, and a terminal. , a wireless communication device, a user agent, or a user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • the network device may be a network side device or the like for communicating with the mobile device, and the network side device may be Global System of Mobile communication (GSM) or code division multiple access.
  • GSM Global System of Mobile communication
  • a Base Transceiver Station (BTS) in Code Division Multiple Access (CDMA) may also be a base station (NodeB, NB) in Wideband Code Division Multiple Access (WCDMA), or may be a long term evolution.
  • the communication system 100 includes a network side device 102, and the network side device 102 may include a plurality of antenna groups.
  • Each antenna group may include multiple antennas, for example, one antenna group may include antennas 104 and 106, another antenna group may include antennas 108 and 110, and an additional group may include antennas 112 and 114.
  • Two antennas are shown in Figure 1 for each antenna group, although more or fewer antennas may be used for each group.
  • Network side device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include various components associated with signal transmission and reception (eg, processors, modulators, multiplexers, Demodulator, demultiplexer or antenna, etc.).
  • a transmitter chain and a receiver chain may include various components associated with signal transmission and reception (eg, processors, modulators, multiplexers, Demodulator, demultiplexer or antenna, etc.).
  • the network side device 102 can communicate with a plurality of terminal devices (e.g., the terminal device 116 and the terminal device 122). However, it will be appreciated that the network side device 102 can communicate with any number of terminal devices similar to the terminal device 116 or 122.
  • Terminal devices 116 and 122 may be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other suitable for communicating over wireless communication system 100. device.
  • terminal device 116 is in communication with antennas 112 and 114, wherein antennas 112 and 114 transmit information to terminal device 116 over forward link 118 and receive information from terminal device 116 over reverse link 120.
  • terminal device 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to terminal device 122 over forward link 124 and receive information from terminal device 122 over reverse link 126.
  • the forward link 118 can utilize a different frequency band than that used by the reverse link 120, and the forward link 124 can utilize the reverse link. 126 different frequency bands used.
  • FDD Frequency Division Duplex
  • the forward link 118 and the reverse link 120 can use a common frequency band, a forward link 124, and a reverse link.
  • Link 126 can use a common frequency band.
  • Each set of antennas and/or areas designed for communication is referred to as a sector of the network side device 102.
  • the antenna group can be designed to communicate with terminal devices in sectors of the network side device 102 coverage area.
  • the transmit antenna of the network side device 102 can utilize beamforming to improve the signal to noise ratio of the forward links 118 and 124.
  • the neighboring cell is compared with the manner in which the network side device transmits a signal to all of its terminal devices through a single antenna. Mobile devices in the middle are subject to less interference.
  • the network side device 102, the terminal device 116, or the terminal device 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
  • the wireless communication transmitting device can encode the data for transmission.
  • the wireless communication transmitting device may acquire (eg, generate, receive from other communication devices, or store in memory, etc.) a certain number of data bits to be transmitted over the channel to the wireless communication receiving device.
  • Such data bits may be included in a transport block (or multiple transport blocks) of data that may be segmented to produce multiple code blocks.
  • the transmitting side mostly describes the relationship between the multiple ports on the transmitting side through the transmitting side information.
  • QCL Quasi Co-location
  • LTE-A Quasi Co-location
  • a large-scale parameter intended to describe a port can be described by another port. That is, the QCL scheme described in LTE-A determines whether two ports (ports) satisfy QCL parameters including average gain, average delay, delay spread, and Dopp. Doppler spread, however these parameters are estimates from the transmitter and lack of spatial description of the beam angle.
  • the channel is more complicated, and because of the multi-user multiple input multiple output (MU-MIMO), the scenes such as the robust transmission design pay more attention to some characteristics of a certain transmit beam on the receiving side.
  • the Angle of Arrival (AoA) the QCL relationship in the 5G scenario needs to consider the beamforming information on the user side. Due to the existence of the reflection path, the beams emitted by the two ports adjacent to the transmitting end may be far apart on the receiving side AoA, as shown in FIG. Beam 1 and beam 2 from port 1 and port 2 are two adjacent beams. Due to the existence of the reflection path, the receiving AoA of the transmitting port 1 and the port 2 is greatly different. Therefore, it is inaccurate to describe the relationship between the multiple ports on the transmitting side only by the transmitting side information, which results in unreasonable communication management of the multiple ports at the transmitting end, thereby reducing the transmission performance between the transmitting end and the receiving end.
  • the embodiment of the present application intelligently proposes to use the characteristics of the port at the receiving end to determine the relationship between the ports, that is, to the first device (also referred to as the transmitting end) through the second device (also referred to as the receiving end).
  • the feedback is used to indicate the measurement information between the ports, and the first device can determine the relationship between the ports more accurately according to the measurement information.
  • the first device can perform reasonable communication management on the port, select a suitable port for communication with the second device, and improve transmission performance between the first device and the second device.
  • the relationship between the ports may include, for example, whether the N ports satisfy a QCL relationship of a specific parameter, a degree of correlation of the N ports, and/or grouping information of the N ports.
  • the first device After the first device obtains the measurement information sent by the second device, the first device performs communication management on the N ports according to the received measurement information.
  • the first device may perform reasonable communication management on the port according to the measurement information fed back by the second device when performing MU-MIMO or robust transmission, and select a suitable port to perform communication with the second device, which can improve the first Transmission performance between the device and the second device.
  • the term “port” in the embodiment of the present application may be a logical antenna port.
  • the port When the first device sends a signal to the second device through the port, the port may be referred to as a transmitting port, and the transmitting port may also be referred to as a transmitting antenna.
  • the transmitting port has a certain correspondence with the transmitting beam. For example, the number of the transmit beam can be determined jointly by the port and the transmit resource.
  • the BS transmits a signal with the transmitting port 0, 1, and the transmitting port corresponds to the transmitting beam 0, 1, and the next time resource block, that is, the time resource block 2, the BS uses the transmitting port 0. , 1 transmits a signal, and the transmitting port at this time corresponds to the transmitting beam 2, 3.
  • the receiving port may be a logical antenna port, and the receiving port may also be referred to as a receiving antenna port and a receiving resource, where one receiving beam has an identifier or an index, and different receiving beam identifiers or indexes. different.
  • FIG. 3 is a schematic flowchart of a method for transmitting information according to an embodiment of the present application.
  • the method shown in Figure 3 The communication system in the embodiment of the present application includes the first device and the plurality of second devices. It should be understood that the first device in the embodiment of the present application may be a network device, and the second device may be Terminal Equipment. The first device and the second device may also be network devices. Alternatively, the first device and the second device may also be terminal devices. The following is a detailed description of the case where the first device is a network device and the second device is a terminal device. Specifically, the method 300 shown in FIG. 3 includes:
  • the first device sends M signals to the second device by using N ports, where N and M are integers, and M ⁇ N ⁇ 2.
  • the N ports may also be referred to as N transmit ports. Wherein one transmitting port transmits at least one signal.
  • the types of the M signals may be the same or different, and the embodiment of the present application does not limit this.
  • the M signals include at least one of the following signals:
  • CSI-RS Channel State Information Reference Signal
  • DMRS Demodulation Reference Signal
  • BRS Beam Reference Signal
  • PNRS Phase Noise Reference Signal
  • the M signals may be carried in at least one of the following channels:
  • the physical downlink control channel (PDCCH), the physical downlink shared channel (PDSCH), the physical uplink control channel (PUCCH), and the physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) ).
  • the first device may send the M signals through the N ports in a time division, frequency division, or code division manner, and the embodiment of the present application is not limited thereto.
  • the embodiment of the present application sends a signal to the second device by using the first device, so that the second device detects the signal to obtain measurement information.
  • N may be determined according to the scenario of the actual application, which is not limited by the embodiment of the present application.
  • the value of N may be determined by the capability information of the second device.
  • the method 300 may further include:
  • the first device receives the capability information sent by the second device, where the capability information indicates the number of ports that the second device can receive at the same time, the number of beams that the second device can receive at the same time, and the antenna panel of the second device. a number, a correspondence between the sending parameter of the second device and the receiving parameter, or a degree of reciprocity of the second device, the degree of reciprocity including complete reciprocity, partial reciprocity or complete reciprocity with respect to the specific parameter, This particular parameter includes angle information and/or gain information.
  • the sending parameter of the second device may be at least one of a sending port, a sending beam, and a transmitting resource, and the corresponding receiving parameter may be at least one of a receiving port, a receiving beam, and a receiving resource.
  • the value of the port number N may be determined by the first device according to the capability information, but the embodiment of the present application is not limited thereto.
  • the degree of reciprocity of the second device in the embodiment of the present application refers to the ability of the second device to reverse the parameter of the received signal as a parameter of the transmitted signal.
  • the full reciprocity indicates that the second device can reverse the parameters of all received signals as parameters of the transmission signal, for example, the arrival angle AoA of the downlink signal is directly used as the uplink departure angle AoD of the uplink signal;
  • the second device can reverse the parameters of the partially received signal as a transmission The parameter of the signal; completely non-reciprocal means that the second device cannot reverse the parameter of the received signal as a parameter of the transmitted signal.
  • the definition of the degree of reciprocity in the embodiment of the present application can be referred to the limitation in the existing standard, and the embodiment of the present application is not limited thereto.
  • the second device measures the M signals, and obtains measurement information, where the measurement information is used to indicate a relationship between the N ports.
  • the specific content of the measurement information may be predefined in the system.
  • the M signals When the M signals are acquired by the second device, the M signals may be measured according to a predefined definition of the system, and the measurement information is obtained.
  • the method may further include:
  • the first device sends the indication information to the second device, where the indication information is used to instruct the second device to send the measurement information to the first device.
  • the first device may configure the reporting type of the second device by using the indication information, where the measurement information is specified in the reporting type, that is, the measurement information specifies the content of the measurement information.
  • the first device may carry the indication information by using Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the first device may periodically send the indication information to the second device.
  • the duration of the period may be a predefined duration, and may be determined by the first device according to the specific network state.
  • the embodiment of the present application is not limited thereto.
  • the first device can also send the indication information in a semi-static manner. Specifically, the first device may send the indication information after receiving the trigger request sent by the second device. Specifically, the trigger request is used to request acquisition of the indication information.
  • the second device before 320, the second device first sends a trigger request to the first device, and after the first device obtains the trigger request, the first device sends the indication information to the second device, and then the second device measures according to the indication information.
  • the M signals obtain measurement information.
  • the first device sends the indication information to indicate the content of the measurement information reported by the second device, so that the first device can obtain suitable feedback information, and the first device can determine the characteristics of the port on the second device side. The relationship between the ports.
  • the first device determines the relationship between the ports by using the characteristics of the port on the receiving side, and can accurately determine the relationship between the ports, so that the first device can perform reasonable communication management on the port. Improve the transmission performance between the first device and the second device.
  • the reporting type indicated by the indication information in the embodiment of the present application may also be referred to as a reporting mode, and the specific content of the reporting mode may be defined in advance.
  • the reporting mode may have multiple reporting modes, and the specific reporting mode is specific.
  • the content is defined in advance, and the first device can indicate one of the reporting modes by the indication information.
  • the measurement information reported by the second device indicated by the indication information sent by the first device in the embodiment of the present application may have various forms, which will be described in detail below.
  • the indication information further indicates that the second device performs a determination process on the M signals, for example, the indication information specifies that the second device determines the M signals by using the indicated report type, or indicates the information.
  • the second device directly determines the processing of the M signals, and the embodiment of the present application is not limited thereto.
  • the measurement information is determined by the second device according to the determination result of the determination process of the M signals. Specifically, refer to Case 1 and Case 2 in the following.
  • the indication information may not need to specify the determination process, but directly specifies the measurement information, specifically, See situation three below.
  • the measurement information is used to indicate a relationship between the N ports, and the relationship between the ports may include, for example, whether the N ports satisfy a QCL relationship of a specific parameter.
  • the indication information is further used to indicate that the second device determines whether the N ports corresponding to the M signals meet a QCL relationship of a specific parameter set, where the specific parameter set includes at least one of the following parameters:
  • the angle AoD, the average AoD, the AoD extension, and the reciprocity of the second device may also be referred to as the reciprocity of the transmitting and receiving beams of the second device, and the embodiment of the present application is not limited thereto. .
  • the measurement information includes a first relationship indication information or a second relationship indication information, where the first relationship indication information is used to indicate that the N ports meet a QCL relationship of a specific parameter set, and the second relationship indication information is used to indicate the N ports.
  • the QCL relationship for a particular set of parameters is not met.
  • the first device in the embodiment of the present application can determine, according to the measurement information, whether the N ports meet the QCL relationship of the specific parameter, and the first device can perform reasonable communication management on multiple ports, for example, the first device.
  • the MM-MIMO or the robust transmission may perform reasonable communication management on the port according to the measurement information fed back by the second device, and select an appropriate port to perform communication with the second device. Communication improves the transmission performance between the first device and the second device.
  • the reciprocity of the second device may be defined as the direction in which the second device receives the receiving port of the downlink signal as the direction of the uplink port.
  • the second device determines, according to the reporting type, whether the N ports corresponding to the M signals meet the QCL relationship of the specific parameter set;
  • the second device determines the measurement information according to whether the N ports satisfy the QCL relationship of the specific parameter set.
  • the specific parameter set includes AoA
  • the network device can configure the reporting type of the terminal device through the DCI, and the network device sends two signals (for example, CSI-RS or DMRS, etc.) through two ports.
  • the terminal device measures a specific parameter set of the port where the two signals are located, for example, the specific parameter set includes AoA, and the terminal device determines whether the two ports meet the AoA-QCL condition, and if yes, feeds back the first relationship indication information, for example, 1, Otherwise, the second relationship indication information is fed back, for example, 0.
  • the second device may determine, according to the AoA of the two reference signals, whether the two ports satisfy the arrival angle quasi-co-location relationship AoA-QCL, for example, the difference between the two AoAs is less than or equal to the pre- When the threshold is set, it can be judged that the two ports satisfy the AoA-QCL. When the difference between the two AoAs is greater than the preset threshold, it can be judged that the two ports do not satisfy the AoA-QCL.
  • the first device (for example, the network device) determines that the two ports satisfy the AoA-QCL when the obtained measurement information is 1, and determines that the two ports satisfy the AoA-QCL when the obtained measurement information is 0.
  • the first relationship indication information is used to indicate that the QCL relationship of the specific parameter set is satisfied between the two ports; the second relationship indication information can be used to indicate the multiple The ports have two ports that do not satisfy the QCL relationship of the specific parameter set, or indicate that any two ports of the multiple ports do not satisfy the QCL relationship of the specific parameter set.
  • the embodiments of the present application are not limited thereto.
  • the content of the measurement information is only 1 bit (0 or 1), the amount of data is small, and network resources can be saved.
  • Case 2 The measurement information is used to indicate the relationship between the N ports, and the relationship between the ports may include, for example, the degree of correlation of the N ports.
  • the indication information is further used to indicate that the second device determines a correlation degree of the measurement result of the parameter set of the two or two signals of the M signals, and the correlation degree of the measurement result of the parameter set of the two two signals is determined by the The difference between the measurement results of the parameter sets of the two signals is determined;
  • the parameter set includes at least one of the following parameters:
  • the measurement information includes the correlation degree of the N ports measured by the second device, and the correlation degree of the N ports is determined according to a difference between the measurement results of the parameter sets of the two signals in the M signals, where
  • the degree of correlation of the N ports indicates at least one of the following: a quantized difference of the measurement results of the parameters of the two of the M signals, and a measurement result of the parameters of the two of the M signals a maximum of the quantized differences, a minimum of the quantized differences of the measurements of the parameters of the two of the M signals, and a measurement of the parameters of the two of the M signals The average of the quantized differences.
  • the first device in the embodiment of the present application can determine the correlation degree of the N ports more accurately according to the measurement information, and the first device can perform reasonable communication management on multiple ports, for example, the first device acquires the second.
  • the MU-MIMO or the robust transmission may be used to perform reasonable communication management on the port according to the measurement information fed back by the second device, and select a suitable port to perform communication with the second device, and improve the Transmission performance between a device and a second device.
  • the second device determines, according to the reporting type, a difference between the measurement results of the parameters of the two signals in the M signals;
  • the second device determines the measurement information according to a difference between the parameters of the two of the M signals, where the measurement information includes a correlation degree of the N ports measured by the second device, where the N ports are The degree of correlation indicates at least one of the following: a quantized difference of the measurement results of the parameters of the two of the M signals, and a quantized difference of the measurement results of the parameters of the two of the M signals.
  • the maximum of the values, the minimum of the quantized differences of the measurements of the parameters of the two of the M signals, and the quantized difference of the measurements of the parameters of the two of the M signals The average of the values.
  • the parameter set includes AoA
  • the first device for example, a network device
  • the first device can configure the reporting type of the terminal device through DCI, while the first device sends two signals (for example, CSI-RS or DMRS, etc.) through two ports.
  • the second device eg, the terminal device
  • the second device determines a difference of AoA of the two signals to determine a correlation degree between the two ports.
  • the degree of correlation can be expressed by a quantitative level, for example, the degree of correlation—strongness, degree of correlation—weakness or degree of correlation—strongness, degree of correlation—medium, degree of correlation—weakness, or more quantitative levels, implementation of the present application The example is not limited to this.
  • the second device may quantize the difference of the AoA of the two signals, for example, when the difference is less than or equal to the first difference threshold, quantize the difference to 0, indicating that the degree of correlation is strong, The difference is greater than the first difference threshold And less than the second difference threshold is quantized to 1, the degree of correlation - in the difference is greater than or equal to the second difference threshold, the difference is 2, the degree of correlation - weak.
  • the first difference threshold and the second difference threshold may be preset, or may be indicated by the first device, and the embodiment of the present application is not limited thereto.
  • the correlation degree included in the measurement information may include the quantized difference of the measurement results of the parameters of the two signals of the M signals, and may also include the quantization result of the measurement results of the parameters of the two of the M signals.
  • the minimum of the difference and the average of the quantized differences of the measurements of the parameters of the two of the M signals may include the quantized difference of the measurement results of the parameters of the two signals of the M signals.
  • the content of the measurement information includes the quantized difference, the amount of data is small, and network resources can be saved.
  • the measurement information is used to indicate a relationship between the N ports, and the relationship between the ports may include, for example, a grouping relationship of the N ports.
  • the measurement information includes at least one of the group number of the N ports, a maximum group number difference between the two groups of the group numbers of the N ports, and a group of the N ports.
  • the first device in the embodiment of the present application can determine the grouping relationship of the N ports more accurately according to the measurement information, so that the first device can perform reasonable communication management on multiple ports, for example, the first device acquires the second device.
  • the MU-MIMO or the robust transmission may be used to perform reasonable communication management on the port according to the measurement information fed back by the second device, and select a suitable port to perform communication with the second device, and improve the Transmission performance between a device and a second device.
  • the second device determines the group number of the N ports according to the receiving information of the second device side.
  • the second device determines the measurement information according to the group number of the N ports, and the measurement information includes at least one of the following: a group number of the N ports, and two groups of the group numbers of the N ports The maximum group number difference among the values, the minimum group number difference between the two groups of the group numbers of the N ports, and the average of the difference between the two groups of the group numbers of the N ports.
  • the first device may configure a reporting type of the second device (eg, the terminal device) through the DCI, while the first device transmits two signals (eg, CSI-RS or DMRS, etc.) through the two ports.
  • the second device measures the group number of the two signals, and the second device determines the measurement information according to the group number of the N ports.
  • the measurement information includes at least one of the group number of the N ports, the maximum group number difference between the two groups of the group numbers of the N ports, and the group number of the N ports. The difference between the minimum group number difference between the two groups of the two groups and the difference between the two groups of the group numbers of the N ports.
  • the group number of the N ports may be determined by the receiving information of the second device side. It should be understood that the received information of the second device may include information of a receiving area of the second device.
  • a port group corresponds to a receiving area of the second device, and each port of the one port group sends the signal, where each of the at least one receiving port is detected in the one receiving area.
  • the energy value of the signal sent by the port is greater than or equal to a preset threshold, and the receiving area is determined by the second device according to a logical grouping rule.
  • the second device may first divide the receiving area of the second device according to a logical grouping rule. Thereafter, the second device may divide the plurality of ports of the first device into a plurality of port groups according to the receiving area.
  • the logical grouping rule may include: dividing the receiving port of the second device into multiple receiving areas according to at least one of the following information: a receiving port of the second device, an angle of arrival corresponding to the port, and a second device of The weight of the receiving antenna and the receiving port number of the second device.
  • the receiving area of the second device may be divided into four receiving areas A, B, C, and D according to the foregoing logical grouping rule, and the second device may use the four receiving areas according to the four receiving areas. Multiple ports are grouped.
  • a specific device-to-port grouping process of the second device is described below with reference to FIG. 4: when the measurement is performed in the receiving area A, if the received signal energy value of the signal transmitted by the detecting port 1, 2, 4 is found in the receiving area A (Reference Signal Received Power (RSRP) is a receiving port that is higher than or equal to a preset threshold (or threshold). Ports 1, 2, and 4 all belong to port group A corresponding to receiving area A. Port grouping is performed in this way. Obviously, the same port can belong to multiple port groups. For example, port 1 belongs to port group A and also belongs to port group D. A port group can contain several ports or no ports.
  • RSRP Reference Signal Received Power
  • the division of the port group may be related to the rotation of the second device, or may be irrelevant thereto, which is not limited by the embodiment of the present application.
  • the logical grouping rule may be pre-defined by the network system, or the first device may indicate the second device, which is not limited by the embodiment of the present application.
  • the method may further include: sending, by the first device, rule indication information to the second device, where the rule indicating information is used to indicate the logical grouping rule.
  • the grouping of the ports of the first device may also be determined by the first device, or preset by the system, and the embodiment of the present application is not limited thereto.
  • the second device sends the measurement information to the first device.
  • the second device sends the measurement information on a system predefined resource or a newly defined resource.
  • the second device may also send the measurement information to the first device on the reserved resource.
  • the second device may send the measurement information by using existing signaling (such as ACK/NACK, etc.).
  • the measurement information may be carried in reserved bits in an existing frame structure. Limited to this.
  • the embodiment of the present application determines the relationship between the multiple ports by using the characteristics of the port on the second device side (the receiving side), so that the first device can accurately determine the relationship between the ports, and thus can be multiple The port performs reasonable communication management to improve system performance.
  • the first device may perform communication management on the N ports according to the measurement information.
  • the first device may perform reasonable communication management on the port according to the measurement information fed back by the second device when performing MU-MIMO or robust transmission, and select a suitable port to perform communication with the second device, which can improve the first Transmission performance between the device and the second device.
  • the following describes the communication management of the N ports by the first device according to the measurement information in the first embodiment, the second case, and the third case, respectively, where the first device is the network device and the second device is the terminal device.
  • the specific process describes the communication management of the N ports by the first device according to the measurement information in the first embodiment, the second case, and the third case, respectively, where the first device is the network device and the second device is the terminal device.
  • the network device configures a port (transmitting beam) 1 for communication for the terminal device in a certain transmission. If the network device wants to add a port to the terminal device for spatial multiplexing or mobility diversity operation, the network device needs to select a port that has an AoA-QCL relationship with port 1. Thus, the network device selects port 2 according to its own judgment, and the network device uses case one to perform a verification on the AoA-QCL relationship hypothesis. If the measurement information fed back by the terminal device is 1, that is, the port 1, 2 satisfies the AoA-QCL relationship, the network device can use the beam for spatial multiplexing or for the diversity operation of the mobility, and vice versa. If the measurement information fed back by the terminal device is 0, that is, the ports 1 and 2 do not satisfy the AoA-QCL relationship, the network device needs to find another port to repeat the above process.
  • the first device in the embodiment of the present application can determine, according to the measurement information, whether the N ports meet the QCL relationship of the specific parameter, and the first device can perform reasonable communication management on multiple ports, for example, the MU can be performed.
  • the first device can perform reasonable communication management on multiple ports, for example, the MU can be performed.
  • - MIMO or robust transmission based on the measurement information fed back by the second device, performs reasonable communication management on the port, selects an appropriate port for communication with the second device, and improves transmission performance between the first device and the second device.
  • the network device configures port 1 for communication for the terminal device in a certain transmission. If at this time the network device wants to add a port to the terminal device to combat blockage. The added port not only ensures a certain signal strength at the terminal device, but also because the occlusion often occurs on the terminal device side, the AoA difference between the original port and the added port is larger, thereby preventing the two ports from being blocked at the same time. . At this time, the network device can use the process in Case 2 to select the port 5 having a large difference from the AoA of the port 1 based on the measurement information fed back by the terminal device.
  • the first device in the embodiment of the present application can determine whether the QCL relationship of the specific parameter is met according to the measurement information, and the first device can perform reasonable communication management on multiple ports, for example, may perform MU-MIMO or Lu During the transmission, the port performs reasonable communication management according to the measurement information fed back by the second device, selects an appropriate port for communication with the second device, and improves the transmission performance between the first device and the second device.
  • the first device can determine at least one port set for downlink transmission with multiple second devices according to the measurement information sent by the second device, that is, the grouping relationship of the N ports.
  • the number of ports included in each port set of the at least one port set is equal to the number of the multiple second devices, and one port corresponds to one second device.
  • the at least one port set is at least one of the plurality of port sets having better system performance.
  • the second device corresponding to the at least one port set has better signal quality of the downlink data sent by the corresponding port in the port set, and the interference between the downlink data sent by each port is small.
  • the first device in the embodiment of the present application can determine the grouping relationship of the N ports more accurately according to the measurement information, so that the first device can perform reasonable communication management on multiple ports, for example, can perform MU-MIMO or Lu During the transmission, the port performs reasonable communication management according to the measurement information fed back by the second device, selects an appropriate port for communication with the second device, and improves the transmission performance between the first device and the second device.
  • the network device when the network device performs the MU-MIMO transmission, the network device may determine that the port 1 and the port 2 are respectively associated with the first terminal device according to the measurement information fed back by the first terminal device and the second terminal device. Downlink data transmission between the second terminals. Among them, the interference between the downlink signals sent by port 1 and port 2 is small.
  • the first terminal device may A port 2 having a different group number from the port 1 is configured for the second terminal device in the port.
  • the measurement information fed back by the first terminal device is the maximum group number difference between the two groups of the two port group numbers, and the network device is the first one when the maximum group number difference is small.
  • the terminal device is configured with port 1 of the N ports, avoid configuring other ports of the N ports to other terminal devices.
  • Port 2 other than the N ports is configured to be changed to the second terminal device.
  • the network device configures N ports for the first terminal device. After port 1 in, you can get from the N One of the ports is determined to be a suitable port 2 for the second terminal device.
  • the measurement information fed back by the first terminal device is an average of two sets of difference values of the group numbers of the N ports
  • the group numbers of the N ports are relatively concentrated, so After the network device configures the port 1 of the N ports for the first terminal device, avoiding avoiding configuring the other ports of the N ports to other terminal devices, but not other than the N ports.
  • Port 2 is configured to change the second terminal device. Or, if the average value is large, the group number of the N ports is relatively discrete.
  • the network device configures the port 1 of the N ports for the first terminal device, the N devices may be used according to actual conditions.
  • the port 2 configuration is selected in the port or the ports other than the N ports to change the second terminal device.
  • the first device can determine, according to the measurement information sent by the second device, a plurality of port sets that are simultaneously transmitted with multiple second devices and have less signal interference with each other, and the first device is upgraded. Transmission performance between the second device and the second device.
  • FIG. 1 to FIG. 7 are only for helping those skilled in the art to understand the embodiment of the present application, and not to The application examples are limited to the specific numerical values or specific scenarios illustrated. A person skilled in the art will be able to make various modifications and changes in the embodiments according to the examples of FIG. 1 to FIG. 7 , and such modifications or variations are also within the scope of the embodiments of the present application.
  • the first device of the embodiment of the present application will be described below with reference to FIG. 8 and FIG. 10, and the second device of the embodiment of the present application will be described with reference to FIG. 9 and FIG.
  • the first device in the embodiment of the present application may be a network device, and the second device may be a terminal device.
  • the first device and the second device may also be network devices.
  • the first device and the second device may also be terminal devices.
  • the embodiment of the present application is not limited thereto.
  • FIG. 8 shows a schematic block diagram of a first device 800 according to an embodiment of the present application. Specifically, as shown in FIG. 8, the first device 800 includes:
  • the first sending unit 810 is configured to send M signals to the second device by using N ports, where N and M are integers, and M ⁇ N ⁇ 2;
  • the first receiving unit 820 is configured to receive measurement information sent by the second device, where the measurement information is determined by the second device according to the M signals, where the measurement information is used to indicate a relationship between the N ports.
  • the embodiment of the present application describes the relationship between the ports by using the characteristics of the port on the second device side (the receiving end side), so that the first device can accurately determine the relationship between the ports, and thus the first device can Reasonable communication management is performed on multiple ports to improve the transmission performance between the first device and the second device.
  • the first device further includes:
  • a second sending unit configured to send, to the second device, indication information, where the indication information is used to indicate a report type, where the report type specifies the Measurement information.
  • the indication information is further used to indicate, by the second device, whether the N ports corresponding to the M signals meet a QCL relationship of a specific parameter set, where the specific parameter set includes at least one of the following parameters.
  • the measurement information includes a first relationship indication information or a second relationship indication information, where the first relationship indication information is used to indicate that the N ports meet a QCL relationship of a specific parameter set, and the second relationship indication information is used to indicate the N ports.
  • the QCL relationship for a particular set of parameters is not met.
  • the indication information is further used to indicate that the second device determines a correlation degree of the measurement result of the parameter set of the two or two signals of the M signals, and the measurement of the parameter set of the two two signals
  • the degree of correlation of the results is determined by the difference of the measurements of the parameter sets of the pair of signals, the set of parameters comprising at least one of the following parameters: received delay spread, Doppler spread, Doppler shift Average delay, gain, average gain, gain spread, angle of arrival AoA, average AoA, AoA spread, uplink departure angle AoD, average AoD, and AoD extension of the second device corresponding to the signal;
  • the measurement information includes the correlation degree of the N ports measured by the second device, and the correlation degree of the N ports is determined according to a difference between the measurement results of the parameter sets of the two signals in the M signals, where
  • the degree of correlation of the N ports indicates at least one of the following: a quantized difference of the measurement results of the parameters of the two of the M signals, and a measurement result of the parameters of the two of the M signals a maximum of the quantized differences, a minimum of the quantized differences of the measurements of the parameters of the two of the M signals, and a measurement of the parameters of the two of the M signals The average of the quantized differences.
  • the measurement information includes at least one of the following:
  • the group number of the N ports, the maximum group number difference between the two groups of the group numbers of the N ports, and the smallest group number difference among the two groups of the group numbers of the N ports The value and the average of the difference between the two groups of the group numbers of the N ports.
  • the first device further includes:
  • a second receiving unit configured to: before the first sending unit 810 sends M signals to the second device by using the N ports, receive capability information sent by the second device, where the capability information indicates that the second device can receive signals simultaneously
  • the M signals comprise at least one of the following signals:
  • Channel information reference signal CSI-RS demodulation reference signal DMRS, beam reference signal BRS, and phase noise reference signal PNRS
  • the M signals are carried in at least one of the following channels:
  • the first receiving unit 820 is specifically configured to receive the measurement information sent by the second device on the reserved resource.
  • first device 800 shown in FIG. 8 can implement the various processes involved in the first device in the method embodiment of FIG. 3.
  • the operations and/or functions of the various modules in the first device 800 are respectively implemented in order to implement the corresponding processes in the method embodiment in FIG.
  • the detailed description is omitted here.
  • FIG. 9 shows a schematic block diagram of a second device 900 in accordance with an embodiment of the present application. Specifically, as shown in FIG. 9, The second device 900 includes:
  • the first receiving unit 910 is configured to receive M signals sent by the first device by using N ports, where N and M are integers, and M ⁇ N ⁇ 2;
  • the measuring unit 920 is configured to measure the M signals, and obtain measurement information, where the measurement information is used to indicate a relationship between the N ports;
  • the first sending unit 930 is configured to send the measurement information to the first device.
  • the embodiment of the present application sends measurement information to the first device by using the second device, so that the first device can determine the relationship between the ports by using the characteristics of the second device side (receiving side), and the first device can Reasonable communication management is performed on multiple ports to improve the transmission performance between the first device and the second device.
  • the second device further includes:
  • the second receiving unit is configured to receive the indication information sent by the first device, and the indication information is used to indicate a report type, where the measurement type specifies the measurement information, before the measurement unit obtains the measurement information.
  • the indication information is further used to indicate that the second device determines whether the N ports corresponding to the M signals meet the QCL relationship of the specific parameter set.
  • the measuring unit is specifically configured to determine, according to the reporting type, whether the N ports corresponding to the M signals meet a QCL relationship of a specific parameter set, where the specific parameter set includes at least one of the following parameters: a received delay extension, Doppler spread, Doppler shift, average delay, gain, average gain, gain spread, angle of arrival AoA, average AoA, AoA spread, the upstream departure angle AoD of the second device, the average AoD, Reciprocity of the AoD extension and the second device;
  • the measurement information includes the first relationship indication information or the second relationship indication information, where the first relationship indication information is used to indicate the N ports The QCL relationship of the specific parameter set is satisfied, and the second relationship indication information is used to indicate that the N ports do not satisfy the QCL relationship of the specific parameter set.
  • the indication information is further used to indicate that the second device determines a correlation degree of the measurement result of the parameter set of the two or two signals of the M signals, and the measurement of the parameter set of the two two signals The degree of correlation of the results is determined by the difference between the measurements of the parameter sets of the two pairs of signals;
  • the measuring unit is specifically configured to determine, according to the reporting type, a difference of a measurement result of a parameter of two or two signals of the M signals, where the parameter includes a delay spread of the received, a Doppler spread, a Doppler shift, and Average delay, gain, average gain, gain spread, angle of arrival AoA, average AoA, AoA spread, uplink departure angle AoD, average AoD, and AoD extension of the second device corresponding to the signal;
  • Determining the measurement information according to a difference between the parameters of the two of the M signals wherein the measurement information includes a correlation degree of the N ports measured by the second device, and a correlation degree of the N ports indicates the following At least one of: a quantized difference between the measurement results of the parameters of the two of the M signals, and a maximum of the quantized difference of the measurement results of the parameters of the two of the M signals The value, the minimum of the quantized difference of the measurement results of the parameters of the two of the M signals, and the average of the quantized difference of the measurement results of the parameters of the two of the M signals .
  • the measuring unit is specifically configured to determine a group number of the N ports according to the receiving information of the second device side;
  • the measurement information includes at least one of the following: the N The group number of the port, the maximum group number difference between the two groups of the group number of the N ports, and the minimum group number difference between the two groups of the group numbers of the N ports The average of the difference between the two groups of the group numbers of the N ports.
  • the second device further includes:
  • a second sending unit configured to send capability information to the first device before the first receiving unit receives the M signals sent by the first device by using the N ports, where the capability information indicates that the second device can receive the second device at the same time
  • the degree of reciprocity includes full reciprocity, partial reciprocity, or no reciprocity with respect to a particular parameter, including angular information and/or gain information.
  • the M signals comprise at least one of the following signals:
  • Channel information reference signal CSI-RS demodulation reference signal DMRS, beam reference signal BRS, and phase noise reference signal PNRS
  • the M signals are carried in at least one of the following channels:
  • the first sending unit is specifically configured to send the measurement information to the first device on the reserved resource.
  • the second device 900 shown in FIG. 9 can implement the various processes involved in the second device in the method embodiment of FIG. 3.
  • the operations and/or functions of the various modules in the second device 900 are respectively implemented in order to implement the corresponding processes in the method embodiment in FIG.
  • the detailed description is omitted here.
  • FIG. 10 shows a schematic block diagram of a first device 1000 in accordance with an embodiment of the present application.
  • the first device 1000 includes a processor 1010 and a transceiver 1020.
  • the processor 1010 is connected to the transceiver 1020.
  • the first device 1000 further includes a memory 1030, and the memory 1030 is The processor 1010 is connected.
  • the first device 1000 may further include a bus system 1040.
  • the processor 1010, the memory 1030, and the transceiver 1020 may be connected by a bus system 1040, where the memory 1030 may be used to store instructions, and the processor 1010 is configured to execute instructions stored in the memory 1030 to control the transceiver 1020 to send and receive information or signal.
  • the processor 1010 controls the transceiver 1020 to send M signals to the second device through the N ports, where N and M are integers, and M ⁇ N ⁇ 2; receiving measurement information sent by the second device, where the measurement information is The second device determines, according to the M signals, the measurement information is used to indicate a relationship between the N ports.
  • the embodiment of the present application describes the relationship between the ports by using the characteristics of the port on the second device side (the receiving end side), so that the first device can accurately determine the relationship between the ports, and thus the first device can Reasonable communication management is performed on multiple ports to improve the transmission performance between the first device and the second device.
  • the processor 1010 may be a central processing unit (hereinafter referred to as “abbreviation”), and the processor 1010 may also be another general-purpose processor and a digital signal processor (DSP). ), application specific integrated circuits (ASICs), off-the-shelf programmable gate arrays (FPGAs) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 1030 can include read only memory and random access memory and provides instructions and data to the processor 1010.
  • a portion of the memory 1030 can also include a non-volatile random access memory.
  • the memory 1030 can also store information of the device type.
  • the bus system 1040 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 1040 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 1010 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1030, and the processor 1010 reads the information in the memory 1030 and performs the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the transceiver 1020 is further configured to: before receiving the measurement information sent by the second device, send, to the second device, indication information, where the indication information is used to indicate a report type, the report The type specifies the measurement information.
  • the indication information is further used to indicate, by the second device, whether the N ports corresponding to the M signals meet a QCL relationship of a specific parameter set, where the specific parameter set includes at least one of the following parameters.
  • the measurement information includes a first relationship indication information or a second relationship indication information, where the first relationship indication information is used to indicate that the N ports meet a QCL relationship of a specific parameter set, and the second relationship indication information is used to indicate the N ports.
  • the QCL relationship for a particular set of parameters is not met.
  • the indication information is further used to indicate that the second device determines a correlation degree of the measurement result of the parameter set of the two or two signals of the M signals, and the measurement of the parameter set of the two two signals
  • the degree of correlation of the results is determined by the difference of the measurements of the parameter sets of the pair of signals, the set of parameters comprising at least one of the following parameters: received delay spread, Doppler spread, Doppler shift Average delay, gain, average gain, gain spread, angle of arrival AoA, average AoA, AoA spread, uplink departure angle AoD, average AoD, and AoD extension of the second device corresponding to the signal;
  • the measurement information includes the correlation degree of the N ports measured by the second device, and the correlation degree of the N ports is determined according to a difference between the measurement results of the parameter sets of the two signals in the M signals, where
  • the degree of correlation of the N ports indicates at least one of the following: a quantized difference of the measurement results of the parameters of the two of the M signals, and a measurement result of the parameters of the two of the M signals a maximum of the quantized differences, a minimum of the quantized differences of the measurements of the parameters of the two of the M signals, and a measurement of the parameters of the two of the M signals The average of the quantized differences.
  • the measurement information includes at least one of the following:
  • the group number of the N ports, the maximum group number difference between the two groups of the group numbers of the N ports, and the smallest group number difference among the two groups of the group numbers of the N ports The value and the average of the difference between the two groups of the group numbers of the N ports.
  • the transceiver 1020 is further configured to receive capability information sent by the second device before the first sending unit 810 sends M signals to the second device by using the N ports.
  • the information indicates the number of ports that the second device can receive at the same time, the number of beams that the second device can receive at the same time, and the number of the second device.
  • the number of antenna panels, the correspondence between the transmission parameters of the second device and the receiving parameters, or the degree of reciprocity of the second device, the degree of reciprocity including complete reciprocity, partial reciprocity or no at all Reciprocity, the specific parameters include angle information and/or gain information.
  • the M signals comprise at least one of the following signals:
  • Channel information reference signal CSI-RS demodulation reference signal DMRS, beam reference signal BRS, and phase noise reference signal PNRS
  • the M signals are carried in at least one of the following channels:
  • the first receiving unit 820 is specifically configured to receive the measurement information sent by the second device on the reserved resource.
  • the first device 1000 shown in FIG. 10 can implement various processes related to the first device in the method embodiment of FIG. 3.
  • the operations and/or functions of the various modules in the first device 1000 are respectively implemented in order to implement the corresponding processes in the method embodiment in FIG.
  • the detailed description is omitted here.
  • FIG. 11 shows a schematic block diagram of a second device 1100 in accordance with an embodiment of the present application.
  • the second device 1100 includes a processor 1110 and a transceiver 1120.
  • the processor 1110 is connected to the transceiver 1120.
  • the second device 1100 further includes a memory 1130.
  • the processor 1110 is connected.
  • the second device 1100 may further include a bus system 1140.
  • the processor 1110, the memory 1130, and the transceiver 1120 may be connected by a bus system 1140, where the memory 1130 may be used to store instructions, and the processor 1110 is configured to execute instructions stored by the memory 1130 to control the transceiver 1120 to send and receive information or signal.
  • the controller 1110 controls the transceiver 1120 to receive M signals sent by the first device through the N ports, where N and M are integers, and M ⁇ N ⁇ 2; the controller 1110 is configured to measure the M signals, and obtain The measurement information is used to indicate the relationship between the N ports; the transceiver 1120 is further configured to send the measurement information to the first device.
  • the embodiment of the present application sends measurement information to the first device by using the second device, so that the first device can determine the relationship between the ports by using the characteristics of the second device side (receiving side), and the first device can Reasonable communication management is performed on multiple ports to improve the transmission performance between the first device and the second device.
  • the processor 1110 may be a central processing unit (hereinafter referred to as “abbreviation”), and the processor 1110 may also be another general-purpose processor and a digital signal processor (DSP). ), application specific integrated circuits (ASICs), off-the-shelf programmable gate arrays (FPGAs) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 1130 can include read only memory and random access memory and provides instructions and data to the processor 1110. A portion of the memory 1130 may also include a non-volatile random access memory. For example, the memory 1130 can also store information of the device type.
  • the bus system 1140 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 1140 in the figure.
  • each step of the above method may be through an integrated logic circuit of hardware in the processor 1110 or The instructions in the form of software are completed.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1130, and the processor 1110 reads the information in the memory 1130 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the transceiver 1120 is configured to: before the measuring unit measures the M signals, obtain the measurement information, and receive the indication information sent by the first device, where the indication information is used to indicate the type of the report,
  • the reporting type specifies the measurement information.
  • the indication information is further used to indicate that the second device determines whether the N ports corresponding to the M signals meet the QCL relationship of the specific parameter set.
  • the processor 1110 is specifically configured to determine, according to the reporting type, whether the N ports corresponding to the M signals meet the QCL relationship of the specific parameter set, where the specific parameter set includes at least one of the following parameters: the received delay extension , Doppler spread, Doppler shift, average delay, gain, average gain, gain spread, angle of arrival AoA, average AoA, AoA spread, the upstream departure angle AoD of the second device corresponding to the signal, average AoD , AoD extension and reciprocity of the second device;
  • the measurement information includes the first relationship indication information or the second relationship indication information, where the first relationship indication information is used to indicate the N ports The QCL relationship of the specific parameter set is satisfied, and the second relationship indication information is used to indicate that the N ports do not satisfy the QCL relationship of the specific parameter set.
  • the indication information is further used to indicate that the second device determines a correlation degree of the measurement result of the parameter set of the two or two signals of the M signals, and the measurement of the parameter set of the two two signals The degree of correlation of the results is determined by the difference between the measurements of the parameter sets of the two pairs of signals;
  • the processor 1110 is specifically configured to determine, according to the reporting type, a difference between the measurement results of the parameters of the two signals in the M signals, where the parameter includes the received delay spread, Doppler spread, and Doppler shift. Average delay, gain, average gain, gain spread, angle of arrival AoA, average AoA, AoA spread, uplink departure angle AoD, average AoD, and AoD extension of the second device corresponding to the signal;
  • Determining the measurement information according to a difference between the parameters of the two of the M signals wherein the measurement information includes a correlation degree of the N ports measured by the second device, and a correlation degree of the N ports indicates the following At least one of: a quantized difference between the measurement results of the parameters of the two of the M signals, and a maximum of the quantized difference of the measurement results of the parameters of the two of the M signals The value, the minimum of the quantized difference of the measurement results of the parameters of the two of the M signals, and the average of the quantized difference of the measurement results of the parameters of the two of the M signals .
  • the processor 1110 is specifically configured to determine a group number of the N ports according to the received information of the second device side, and determine the measurement information according to the group number of the N ports, where The measurement information includes at least one of the following: a group number of the N ports, a maximum group number difference between the two groups of the group numbers of the N ports, and two or two of the group numbers of the N ports. The average of the difference between the minimum group number in the group number difference and the difference between the two groups in the group number of the N ports.
  • the transceiver 1120 is further configured to send, by the first receiving unit, capability information that is sent to the first device before the first device sends the M signals sent by the N ports, where Capability information indicates this The number of ports that the second device can receive at the same time, the number of beams that the second device can receive at the same time, the number of antenna panels of the second device, the correspondence between the sending parameters of the second device and the receiving parameters, or the first The degree of reciprocity of the two devices, the degree of reciprocity including complete reciprocity, partial reciprocity or no reciprocity with respect to a particular parameter, the specific parameters including angle information and/or gain information.
  • the M signals comprise at least one of the following signals:
  • Channel information reference signal CSI-RS demodulation reference signal DMRS, beam reference signal BRS, and phase noise reference signal PNRS
  • the M signals are carried in at least one of the following channels:
  • the transceiver 1120 is specifically configured to send the measurement information to the first device on a reserved resource.
  • the second device 1100 shown in FIG. 11 can implement various processes related to the second device in the method embodiment of FIG. 3.
  • the operations and/or functions of the respective modules in the second device 1100 are respectively implemented in order to implement the corresponding processes in the method embodiment in FIG.
  • the detailed description is omitted here.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the second device reports the number of ports that the second device can receive at the same time, the number of beams that the second device can receive at the same time, or the number of antenna panels of the second device.
  • the solution in this application can be applied to a second device having one or more receive ports, having one or more simultaneous receive beams, or having one or more antenna panels.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of cells is only a logical function division.
  • multiple units or components may be combined or integrated. Go to another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • computer readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage media or other magnetic storage device, or can be used for carrying or storing in the form of an instruction or data structure.
  • Any connection may suitably be a computer readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable , fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwave are included in the fixing of the associated media.
  • a disk and a disc include a compact disc (CD), a laser disc, a compact disc, a digital versatile disc (DVD), a floppy disc, and a Blu-ray disc, wherein the disc is usually magnetically copied, and the disc is The laser is used to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种传输信息的方法和设备,该方法包括:第一设备通过N个端口向第二设备发送M个信号,N、M为整数,且M≥N≥2;该第一设备接收该第二设备发送的测量信息,该测量信息是该第二设备根据该M个信号确定的,该测量信息用于指示该N个端口间的关系。因此,本申请实施例通过使用端口在第二设备侧的特性来确定端口之间的关系,能够使得第一设备较准确的确定端口之间的关系,进而第一设备能够对多个端口进行合理的通信管理,提升第一设备和第二设备间的传输性能。

Description

传输信息的方法和设备
本申请要求于2016年11月04日提交中国专利局、申请号为201610976925.9、申请名称为“传输信息的方法和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种传输信息的方法和设备。
背景技术
在第五代移动通信(5th-Generation,5G)系统中,仅仅利用低于6GHz频段的低频通信已经不能满足日益增长的通信需求,因此频率大于6GHz的高频通信(High Frequency,HF)越来越受到学界和业界的重视。然而由于HF信号在空间中能量衰减快,穿透能力弱,信号路损远大于低频信号,因此,需要利用天线侧的增益来补偿这一部分损失,从而保证HF系统的覆盖。此外,由于在HF场景下,信号的波长更短,天线的体积更小,大规模天线阵的多天线技术(Massive-MIMO)也更适合于应用在HF场景。利用Massive-MIMO技术,发射侧例如网络设备侧可以用数字和模拟的方式形成能量更集中的发射波束来保证系统覆盖,接收侧例如终端设备侧同样可以形成能量更集中的接收波束增加接收增益。
5G中的HF通信需要考虑以波束为中心的设计。另一方面,由于HF系统中收发双方都倾向于利用窄波束进行通信,窄波束的相互匹配显得尤为重要。同时,由于HF信道的特性,信号难以进行绕射,取而代之的是比较强的反射效应。低绕射和高反射使得HF信道呈现出空间稀疏与局部相关的显著特征,因此,需要发射端准确的确定出多个端口(发射端口)之间的关系,以便对多个端口进行合理的通信管理;否则,发射端难以对多个端口进行合理的通信管理,影响发射端和接收端间的传输性能。
因此如何准确的确定出发射端的多个端口之间的关系成为亟待解决的问题。
发明内容
本申请实施例提出了一种传输信息的方法和设备,该方法能够较准确的确定出多个端口之间的关系,提升发射端和接收端间的传输性能。
第一方面,提供了一种传输信息的方法,该方法包括:
第一设备通过N个端口向第二设备发送M个信号,N、M为整数,且M≥N≥2;
该第一设备接收该第二设备发送的测量信息,该测量信息是该第二设备根据该M个信号确定的,该测量信息用于指示该N个端口间的关系。
具体地,该N个端口间的关系例如可以包括该N个端口是否满足特定参数的准共址(Quasi Co-location,QCL)关系、该N个端口的相关程度和/或该N个端口的分组关系,本申请实施例并不限于此。
应理解,本申请实施例中,该N个端口也可以称为N个发射端口。其中,一个发射端口发射至少一个信号。在M=N时,N个发射端口与M个信号具有一一对应关系,即每一个端口各发送一个信号。其中,M个信号的类型可以相同,也可以不同,本申请实施例并不对此做限定。
因此,本申请实施例通过使用端口在第二设备侧(接收端侧)的特性来描述端口之间的关系,能够使得第一设备较准确的确定端口之间的关系,进而第一设备能够对多个端口进行合理的通信管理,提升第一设备和第二设备间的传输性能。
可选地,作为一种实现方式,该方法还可以包括:
该第一设备根据接收的该测量信息对该N个端口进行通信管理。
例如,第一设备在获取到第二设备发送的测量信息后,可以在进行多用户多输入多输出(Multi-user Multiple Input Multiple Output,MU-MIMO)或鲁棒传输时根据该第二设备反馈的测量信息对端口进行合理的通信管理,选择合适的端口进行与第二设备间的通信。
因此,本申请实施例第一设备根据测量信息能够较准确的确定端口之间的关系,进而第一设备能够对多个端口进行合理的通信管理,提升第一设备和第二设备间的传输性能。
具体地,作为一种实现方式,该M个信号包括以下信号中的至少一种:
信道信息参考信号(Channel State Information Reference Signal,CSI-RS)、解调参考信号(Demodulation Reference Signal,DMRS)、波束参考信号(Beam Reference Signal,BRS)和相位噪声参考信号(Phase Noise Reference Signal,PNRS),
该M个信号承载在以下信道中的至少一种信道中:
物理下行控制信道(Physical Downlink Control Channel,PDCCH)、物理下行共享信道(Physical Downlink Shared Channel,PDSCH)、物理上行控制信道(Physical Uplink Control Channel,PUCCH)和物理下行共享信道(Physical Uplink Shared Channel,PUSCH)。
在实际应用中,第一设备可以通过时分、频分或者码分的方式通过该N个端口发送该M个信号,本申请实施例并不限于此。
结合第一方面,在第一方面的一种实现方式中,在该第一设备通过N个端口向第二设备发送M个信号之前,该方法还包括:
该第一设备接收该第二设备发送的能力信息,该能力信息指示该第二设备能够同时接收端口的个数、该第二设备能够同时接收波束的个数、该第二设备的天线面板个数、该第二设备的发送参数与接收参数的对应性,或者该第二设备的互易性程度,该互易性程度包括关于特定参数的完全互易、部分互易或完全不互易,该特定参数包括角度信息和/或增益信息。
其中,第二设备的发送参数可以为发送端口、发送波束和发射资源中的至少一种,对应的接收参数可以为接收端口、接收波束和接收资源中的至少一种。
可选地,作为一种实现方式,该方法还包括:
该第一设备根据接收该第二设备发送的能力信息确定N的取值。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,在该第一设备接收该第二设备发送的该测量信息之前,该方法还包括:
所述第一设备向所述第二设备发送指示信息,所述指示信息用于指示所述第二设备向所述第一设备发送所述测量信息。
例如,第一设备可以通过指示信息配置第二设备的上报类型,该上报类型中规定了该测量信息,也即该上报类型规定了该测量信息的内容。
应理解,系统中可以预先定义好测量信息的具体内容,在第二设备获取到M个信号时,即可以按照系统的预先定义对该M个信号进行测量,进而获取到该测量信息。可替代地,第二设备也可以通过第一设备的指示上报测量信息。
例如,第一设备可以通过下行控制信息(Downlink Control Information,DCI)携带该指示信息。
具体地,第一设备可以周期性的向第二设备发送该指示信息。其中,该周期的时长可以为预定义的时长,也可以根据具体地网络状态由第一设备确定,本申请实施例并不限于此。
可替代地,第一设备也可以通过半静态的方式发送该指示信息。具体而言,第一设备可以在接收到第二设备发送的触发请求后才发送该指示信息,具体地,该触发请求用于请求获取指示信息。
本申请实施例通过第一设备发送指示信息,指示第二设备的上报测量信息的内容,从而第一设备能够得到合适的反馈信息,进而第一设备可以使用端口在第二设备侧的特性来确定端口之间的关系。
因此,本申请实施例中第一设备通过使用端口在接收侧的特性来确定端口之间的关系,能够较准确的确定端口之间的关系,进而第一设备可以对端口进行合理的通信管理,提升第一设备和第二设备间的传输性能。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该指示信息还用于指示该第二设备判定该M个信号对应的N个端口是否满足特定参数集合的QCL关系,该特定参数集合包括以下参数中的至少一种:
接收的时延扩展、多普勒扩展、多普勒频移、平均时延、增益、平均增益、增益扩展、到达角AoA、平均AoA、AoA扩展、该信号对应的该第二设备的上行离开角AoD、平均AoD、AoD扩展和该第二设备的互易性;其中,第二设备的互易性也可以称为第二设备的收发波束的互易性,本申请实施例并不限于此。
该测量信息包括第一关系指示信息或第二关系指示信息,该第一关系指示信息用于指示该N个端口满足特定参数集合的QCL关系,该第二关系指示信息用于指示该N个端口不满足特定参数集合的QCL关系。
因此,本申请实施例第一设备根据测量信息能够较准确的确定该N个端口是否满足特定参数的QCL关系,进而第一设备能够对多个端口进行合理的通信管理,例如,第一设备在获取到第二设备发送的测量信息后,可以在进行MU-MIMO或鲁棒传输时根据该第二设备反馈的测量信息对端口进行合理的通信管理,选择合适的端口进行与第二设备间的通信,提升第一设备和第二设备间的传输性能。
具体地,第二设备(例如,终端设备)可以根据两个参考信的AoA确定该两个端口是否满足到达角准共址关系AoA-QCL,例如,在两个AoA的差值小于或等于预设阈值时,可以判断两个端口满足AoA-QCL,在两个AoA的差值大于预设阈值时,可以判断两个端口不满足AoA-QCL。第一设备(例如,网络设备)在获取到的测量信息为1即可确定该两个端口满足AoA-QCL,在获取到的测量信息为0即可确定该两个端口满足AoA-QCL。
应理解,在该端口包括多个时,在该第一关系指示信息用于指示该多个端口两两之间均满足特定参数集合的QCL关系;该第二关系指示信息能够用于指示该多个端口存在不满足特定参数集合的QCL关系的两个端口,或者,指示该多个端口任意两个端口均不满足特定参数集合的QCL关系。本申请实施例并不限于此。
本申请实施例中,由于该测量信息的内容仅为1比特(0或1),数据量较小,能够节省网络资源。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该指示信息还用于指示该第二设备判定该M个信号中的两两信号的参数集合的测量结果的相关程度,该两两信号的参数集合的测量结果的相关程度是由该两两信号的参数集合的测量结果的差值确定的,该参数集合包括以下参数中的至少一种:接收的时延扩展、多普勒扩展、多普勒频移、平均时延、增益、平均增益、增益扩展、到达角AoA、平均AoA、AoA扩展、该信号对应的该第二设备的上行离开角AoD、平均AoD和AoD扩展;
该测量信息包括该第二设备所测量的该N个端口的相关程度,该N个端口的相关程度是根据该M个信号中的两两信号的参数集合的测量结果的差值确定的,该N个端口的相关程度指示以下中的至少一种:该M个信号中的两两信号的参数的测量结果的量化后的差值、该M个信号中的两两信号的参数的测量结果的量化后的差值中的最大值、该M个信号中的两两信号的参数的测量结果的量化后的差值中的最小值和该M个信号中的两两信号的参数的测量结果的量化后的差值的平均值。
因此,本申请实施例第一设备根据测量信息能够较准确的确定该N个端口的相关程度,进而第一设备能够对多个端口进行合理的通信管理,例如,第一设备在获取到第二设备发送的测量信息后,可以在进行MU-MIMO或鲁棒传输时根据该第二设备反馈的测量信息对端口进行合理的通信管理,选择合适的端口进行与第二设备间的通信,提升第一设备和第二设备间的传输性能。
应理解,由于本申请实施例中的“相关程度”是根据该M个信号中的两两信号的参数集合的测量结果的差值确定的,能够反映出两两信号的参数集合的测量结果的差异程度,因此,名词“相关程度”也可以称为“差异程度”本申请实施例并不限于此。
例如,该参数集合包括AoA,第一设备(例如,网络设备)可以通过DCI配置终端设备的上报类型,同时第一设备通过两个端口发送两个信号(例如CSI-RS或DMRS等)。第二设备(例如,终端设备)测量两个信号所在端口的参数集合,例如该参数集合包括AoA,第二设备确定该两个信号的AoA的差值,确定该两个端口的相关程度。其中,该相关程度可以通过量化等级来表示,例如,相关程度—强、相关程度—弱或者是相关程度—强、相关程度—中、相关程度—弱,或者更多的量化等级,本申请实施例并不限于此。
具体地,第二设备可以对两两信号的AoA的差值进行量化,例如,在差值小于或等于第一差值阈值时,将该差值量化为0,表示相关程度—强,在该差值大于第一差值阈值且小于第二差值阈值是,将该差值量化为1,相关程度—中,在该差值大于或等于该第二差值阈值时,将该差值为2,相关程度—弱。其中,该第一差值阈值和第二差值阈值可以是预先设定的,也可以是第一设备指示的,本申请实施例并不限于此。
该测量信息包括的该相关程度可以包括该M个信号的两两信号的参数的测量结果的量化后的差值,也可以包括该M个信号中的两两信号的参数的测量结果的量化后的差值 中的最小值和该M个信号中的两两信号的参数的测量结果的量化后的差值的平均值。
本申请实施例中,由于该测量信息的内容包括量化后的差值,数据量较小,能够节省网络资源。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该测量信息包括以下中的至少一种:
该N个端口的组号、该N个端口的组号中两两组号差值中的最大组号差值、该N个端口的组号中两两组号差值中的最小组号差值和该N个端口的组号中两两组号差值的平均值。
因此,本申请实施例第一设备根据测量信息能够较准确的确定该N个端口的分组关系,进而第一设备能够对多个端口进行合理的通信管理,例如,第一设备在获取到第二设备发送的测量信息后,可以在进行MU-MIMO或鲁棒传输时根据该第二设备反馈的测量信息对端口进行合理的通信管理,选择合适的端口进行与第二设备间的通信,提升第一设备和第二设备间的传输性能。
例如,第一设备(例如,网络设备)可以通过DCI配置第二设备(例如,终端设备)的上报类型,同时第一设备通过两个端口发送两个信号(例如CSI-RS或DMRS等)。第二设备测量两个信号的组号,该第二设备根据该N个端口的组号,确定该测量信息。例如,该测量信息包括以下中的至少一种:该N个端口的组号、该N个端口的组号中两两组号差值中的最大组号差值、该N个端口的组号中两两组号差值中的最小组号差值和该N个端口的组号中两两组号差值的平均值。
其中,该N个端口的组号可以是由该第二设备侧的接收信息确定的。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该第一设备接收该第二设备发送的测量信息,包括:
该第一设备在预留资源上接收该第二设备发送的该测量信息。
例如,第一设备在系统预定义的资源或者预留的资源上接收第二设备发送该测量信息。例如,第一设备可以接收第二设备通过现有的信令(如ACK/NACK等)发送该测量信息,该测量信息可以承载在已有帧结构中的预留比特中,本申请实施例并不限于此。
因此,本申请实施例通过使用端口在第二设备侧(接收侧)的特性来描述端口之间的关系,能够使得第一设备较准确的确定端口之间的关系,进而能够对多个端口进行合理的通信管理,提升系统性能。
第二方面,提供了一种传输信息的方法,该方法包括:
第二设备接收该第一设备通过N个端口发送的M个信号,N、M为整数,且M≥N≥2;
该第二设备测量该M个信号,获得测量信息,该测量信息用于指示该N个端口间的关系;
该第二设备向该第一设备发送该测量信息。
因此,本申请实施例通过第二设备向第一设备发送测量信息,使得第一设备能够使用第二设备侧(接收侧)的特性来描述端口之间的关系,能够使得较准确的确定端口之间的关系,进而能够对多个端口进行合理的通信管理,提升系统性能。
应理解,该第二方面与上述第一方面对应,第一方面的执行主体为第一设备,第二方 面中的执行主体可以为第二设备,第二设备侧的方法的相应特征可以参见上述第一方面第一设备侧的相应描述,因此,为了简洁,适当省略详细描述。
结合第二方面,在第二方面的一种实现方式中,在该第二设备测量该M个信号,获得测量信息之前,该方法还包括:
该第二设备接收该第一设备发送的指示信息,该指示信息用于指示上报类型,该上报类型规定了该测量信息。
具体地,第二设备首先向第一设备发送触发请求,第一设备在获取到该触发请求后,向第二设备发送该指示信息,之后,第二设备根据该指示信息测量该M个信号,获得测量信息。
本申请实施例通过第一设备发送指示信息,指示第二设备的上报测量信息的内容,从而第一设备能够得到合适的反馈信息,进而使用端口在接收侧的特性来描述端口之间的关系。
因此,本申请实施例通过第二设备向第一设备发送测量信息,使得第一设备能够使用第二设备侧(接收侧)的特性较准确的确定端口之间的关系,进而能够对多个端口进行合理的通信管理,提升系统性能。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该M个信号包括以下信号中的至少一种:
信道信息参考信号CSI-RS、解调参考信号DMRS、波束参考信号BRS和相位噪声参考信号PNRS,
该M个信号承载在以下信道中的至少一种信道中:
物理下行控制信道PDCCH、物理下行共享信道PDSCH、物理上行控制信道PUCCH和物理下行共享信道PUSCH。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该第二设备向该第一设备发送该测量信息,包括:
该第二设备在预留资源上向该第一设备发送该测量信息。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该指示信息还用于指示该第二设备判定该M个信号对应的N个端口是否满足特定参数集合的QCL关系,
其中,该第二设备测量该M个信号,获得测量信息,包括:
该第二设备根据该上报类型判定该M个信号对应的N个端口是否满足特定参数集合的QCL关系,该特定参数集合包括以下参数中的至少一种:接收的时延扩展、多普勒扩展、多普勒频移、平均时延、增益、平均增益、增益扩展、到达角AoA、平均AoA、AoA扩展、该信号对应的该第二设备的上行离开角AoD、平均AoD、AoD扩展和该第二设备的互易性;
该第二设备根据该N个端口是否满足特定参数集合的QCL关系的判断结果,确定测量信息,该测量信息包括第一关系指示信息或第二关系指示信息,该第一关系指示信息用于指示该N个端口满足特定参数集合的QCL关系,该第二关系指示信息用于指示该N个端口不满足特定参数集合的QCL关系。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该指示信息还用于指示该第二设备判定该M个信号中的两两信号的参数集合的测量结果的相关程度,该 两两信号的参数集合的测量结果的相关程度是由该两两信号的参数集合的测量结果的差值确定的;
该第二设备测量该M个信号,获得测量信息,包括:
该第二设备根据该上报类型,判定该M个信号中的两两信号的参数的测量结果的差值,该参数包括接收的时延扩展、多普勒扩展、多普勒频移、平均时延、增益、平均增益、增益扩展、到达角AoA、平均AoA、AoA扩展、该信号对应的该第二设备的上行离开角AoD、平均AoD和AoD扩展;
该第二设备根据该M个信号中的两两信号的参数的差值确定该测量信息,其中,该测量信息包括该第二设备所测量的该N个端口的相关程度,该N个端口的相关程度指示以下中的至少一种:该M个信号中的两两信号的参数的测量结果的量化后的差值、该M个信号中的两两信号的参数的测量结果的量化后的差值中的最大值、该M个信号中的两两信号的参数的测量结果的量化后的差值中的最小值和该M个信号中的两两信号的参数的测量结果的量化后的差值的平均值。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该第二设备测量该M个信号,获得测量信息,包括:
该第二设备根据该第二设备侧的接收信息确定该N个端口的组号;
该第二设备根据该N个端口的组号,确定该测量信息,该测量信息包括以下中的至少一种:该N个端口的组号、该N个端口的组号中两两组号差值中的最大组号差值、该N个端口的组号中两两组号差值中的最小组号差值和该N个端口的组号中两两组号差值的平均值。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,在该第二设备接收该第一设备通过N个端口发送的M个信号之前,该方法还包括:
该第二设备向该第一设备发送的能力信息,该能力信息指示该第二设备能够同时接收端口的个数、该第二设备能够同时接收波束的个数、该第二设备的天线面板个数、该第二设备的发送参数与接收参数的对应性,或者该第二设备的互易性程度,该互易性程度包括关于特定参数的完全互易、部分互易或完全不互易,该特定参数包括角度信息和/或增益信息。
因此,本申请实施例通过第二设备向第一设备发送测量信息,使得第一设备能够使用第二设备侧(接收侧)的特性较准确的确定端口之间的关系,进而能够对多个端口进行合理的通信管理,提升系统性能。
第三方面,提供了一种第一设备,用于执行上述第一方面、第一方面的任一可能的实现方式中的方法。具体地,该第一设备包括用于执行上述方法的单元。
第四方面,提供了一种第二设备,用于执行上述第二方面、第二方面的任一可能的实现方式中的方法。具体地,该第二设备包括用于执行上述方法的单元。
第五方面,提供了一种第一设备,该第一设备包括处理器和存储器,该存储器用于存储计算机程序,该处理器用于执行该存储器中存储的计算机程序,执行上述第一方面、第一方面的任一可能的实现方式中的方法。
第六方面,提供了一种第二设备,该第二设备包括处理器和存储器,该存储器用于存储计算机程序,该处理器用于执行该存储器中存储的计算机程序,执行上述第二方面、第 二方面的任一可能的实现方式中的方法。
第七方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面、第一方面的任一可能的实现方式中的方法的指令。
第八方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第二方面、第二方面的任一可能的实现方式中的方法的指令。
附图说明
图1是本申请一个实施例的无线通信系统示意图。
图2是一种传输信息的示意图。
图3是根据本申请一个实施例的传输信息的方法的示意性流程图。
图4是根据本申请一个实施例的终端设备的接收区域示意图。
图5是根据本申请一个实施例的传输信息的示意图。
图6是根据本申请另一实施例的传输信息的示意图。
图7是根据本申请另一实施例的传输信息的示意图。
图8是根据本申请一个实施例的第一设备的示意性框图。
图9是根据本申请一个实施例的第二设备的示意性框图。
图10是根据本申请另一实施例的第一设备的示意性框图。
图11是根据本申请另一实施例的第二设备的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
应理解,本申请实施例可应用于各种通信系统,因此,下面的描述不限制于特定通信系统。例如,本申请实施例可以应用于全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)等。
本申请实施例中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及未来5G网络中的终端设备。
本申请实施例中,网络设备可以是网络侧设备等用于与移动设备通信的设备,网络侧设备可以是全球移动通讯(Global System of Mobile communication,GSM)或码分多址 (Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB,NB),还可以是长期演进(Long Term Evolution,LTE)中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络侧设备。
图1是使用本申请的传输数据的方法的通信系统的示意图。该通信系统可以上述任意一种通信系统。如图1所示,该通信系统100包括网络侧设备102,网络侧设备102可包括多个天线组。每个天线组可以包括多个天线,例如,一个天线组可包括天线104和106,另一个天线组可包括天线108和110,附加组可包括天线112和114。图1中对于每个天线组示出了2个天线,然而可对于每个组使用更多或更少的天线。网络侧设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
网络侧设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。然而,可以理解,网络侧设备102可以与类似于终端设备116或122的任意数目的终端设备通信。终端设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路118向终端设备116发送信息,并通过反向链路120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在频分双工(Frequency Division Duplex,FDD)系统中,例如,前向链路118可利用与反向链路120所使用的不同频带,前向链路124可利用与反向链路126所使用的不同频带。
再例如,在时分双工(Time Division Duplex,TDD)系统和全双工(Full Duplex)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每组天线和/或区域称为网络侧设备102的扇区。例如,可将天线组设计为与网络侧设备102覆盖区域的扇区中的终端设备通信。在网络侧设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,网络侧设备102的发射天线可利用波束成形来改善前向链路118和124的信噪比。此外,与网络侧设备通过单个天线向它所有的终端设备发送信号的方式相比,在网络侧设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,网络侧设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
需要说的是,现有技术中,发射侧大都通过发射侧信息来描述发射侧的多个端口之间的关系。例如,在LTE-A中定义了端口间的准共址关系(Quasi Co-location,QCL),意在描述某个端口的大尺度参数可以由另一个端口来描述。即LTE-A中所描述的QCL方案,决定某两个端口(port)是否满足QCL的参数包括平均增益(average gain),平均时延(average delay),时延扩展(delay spread),多普勒扩展(Doppler spread),然而这些参数都是来自于发射端的估计,并且缺乏在空间上对于波束角度的描述。
由于在HF中,信道更复杂,更因为诸如多用户多入多出技术(Multi user Multiple Input Multiple Output,MU-MIMO),鲁棒传输设计等场景更关注某发射波束在接收侧的一些特性,如波束到达角(Angle of Arrival,AoA),5G场景中QCL关系需要考虑用户侧的波束(beamforming)信息。由于反射径的存在,在发射端相邻的两个端口发出的波束可能在接收侧AoA相差很远,如图2所示。端口1和端口2发出的波束1和波束2为相邻的两个波束,由于反射路径的存在,导致发送端口1和端口2的接收AoA相差较大。因此,仅仅通过发射侧信息来描述发射侧的多个端口之间的关系是不准确的,导致发射端对多个端口的通信管理不合理,进而降低了发射端和接收端间的传输性能。
基于此问题,本申请实施例巧妙的提出了使用端口在接收端的特性来确定端口之间的关系,即通过第二设备(也可以称为接收端)向第一设备(也可以称为发送端)反馈用于指示端口间的测量信息,进而第一设备可以根据该测量信息能够较准确的确定端口之间的关系。使得第一设备可以对端口进行合理的通信管理,选择合适的端口进行与第二设备间的通信,能够提升第一设备和第二设备间的传输性能。
例如,端口间的关系例如可以包括所述N个端口是否满足特定参数的QCL关系、所述N个端口的相关程度和/或所述N个端口的分组信息。
在第一设备在获取到第二设备发送的测量信息后,该第一设备根据接收的该测量信息对该N个端口进行通信管理。
例如,第一设备可以在进行MU-MIMO或鲁棒传输时根据该第二设备反馈的测量信息对端口进行合理的通信管理,选择合适的端口进行与第二设备间的通信,能够提升第一设备和第二设备间的传输性能。
以下,为了便于理解和说明,作为示例而非限定,以将本申请的传输信息的方法在通信系统中的执行过程和动作进行说明。
应理解,本申请实施例中名词“端口”可以为逻辑上的天线端口,在第一设备通过端口向第二设备发送信号时,该端口可以称为发射端口,发射端口也可以称为发射天线端口、发射资源,其中,一个发射波束具有一个标识或索引,不同的发射波束的标识或索引不同。发射端口与发射波束有一定的对应关系。例如,发射波束的编号可以由端口和发射资源共同确定。如:在时间资源块1上,BS用发射端口0,1发射信号,此时发射端口对应着发射波束0,1,在下一个时间资源块,也即时间资源块2上,BS用发射端口0,1发射信号,此时的发射端口对应发射波束2,3。
类似的,本申请实施例中接收端口可以为逻辑上的天线端口,接收端口也可以称为接收天线端口、接收资源,其中,一个接收波束具有一个标识或索引,不同的接收波束的标识或索引不同。
图3是根据本申请一个实施例的传输信息的方法的示意性流程图。如图3所示的方法 可以应用上述各种通信系统中,本申请实施例中的通信系统中包括第一设备和多个第二设备,应理解,本申请实施例中第一设备可以为网络设备,第二设备可以为终端设备。第一设备和第二设备也可以均为网络设备,可替代地,第一设备和第二设备还可以均为终端设备。下文中以第一设备为网络设备,第二设备为终端设备为例进行详细说明。具体地,图3所示的方法300包括:
310,第一设备通过N个端口向第二设备发送M个信号,N、M为整数,且M≥N≥2。
应理解,本申请实施例中,该N个端口也可以称为N个发射端口。其中,一个发射端口发射至少一个信号。在M=N时,N个发射端口与M个信号具有一一对应关系,即每一个端口各发送一个信号。其中,M个信号的类型可以相同,也可以不同,本申请实施例并不对此做限定。
具体地,作为另一实施例,该M个信号包括以下信号中的至少一种:
信道信息参考信号(Channel State Information Reference Signal,CSI-RS)、解调参考信号(Demodulation Reference Signal,DMRS)、波束参考信号(Beam Reference Signal,BRS)和相位噪声参考信号(Phase Noise Reference Signal,PNRS)。
该M个信号可以承载在以下信道中的至少一种信道中:
物理下行控制信道(Physical Downlink Control Channel,PDCCH)、物理下行共享信道(Physical Downlink Shared Channel,PDSCH)、物理上行控制信道(Physical Uplink Control Channel,PUCCH)和物理下行共享信道(Physical Uplink Shared Channel,PUSCH)。
在实际应用中,第一设备可以通过时分、频分或者码分的方式通过该N个端口发送该M个信号,本申请实施例并不限于此。
因此,本申请实施例通过第一设备向第二设备发送信号,以便于第二设备检测该信号获得测量信息。
应理解,N的取值可以根据实际应用的场景确定,本申请实施例并不对此做限定。
可选地,N的取值可以由第二设备的能力信息确定,相应的,作为另一实施例,在310之前,方法300还可以包括:
该第一设备接收该第二设备发送的能力信息,该能力信息指示该第二设备能够同时接收端口的个数、该第二设备能够同时接收波束的个数、该第二设备的天线面板个数、该第二设备的发送参数与接收参数的对应性,或者该第二设备的互易性程度,该互易性程度包括关于特定参数的完全互易、部分互易或完全不互易,该特定参数包括角度信息和/或增益信息。
其中,第二设备的发送参数可以为发送端口、发送波束和发射资源中的至少一种,对应的接收参数可以为接收端口、接收波束和接收资源中的至少一种。
其中,该端口个数N的取值可以是由该第一设备根据该能力信息确定的,但本申请实施例不限于此。
应理解,本申请实施例中第二设备的互易性程度是指该第二设备将接收的信号的参数反向的作为发送信号的参数的能力。其中,完全互易表示第二设备可以将所有接收的信号的参数反向的作为发送信号的参数,例如,将下行信号的到达角AoA直接作为上行信号的上行离开角AoD;部分互易表示第二设备可以将部分接收的信号的参数反向的作为发送 信号的参数;完全不互易表示第二设备不可以将接收的信号的参数反向的作为发送信号的参数。应注意,本申请实施例中的互易性程度的定义可以参见现有标准中的限定,本申请实施例并不限于此。
320,该第二设备测量该M个信号,获得测量信息,该测量信息用于指示该N个端口间的关系。
具体地,系统中可以预先定义好测量信息的具体内容,在第二设备获取到M个信号时,即可以按照系统的预先定义对该M个信号进行测量,进而获取到该测量信息。
可替代的,作为另一实施例,在320之前,该方法还可以包括:
所述第一设备向所述第二设备发送指示信息,所述指示信息用于指示所述第二设备向所述第一设备发送所述测量信息。
例如,第一设备可以通过指示信息配置第二设备的上报类型,该上报类型中规定了该测量信息,也即该测量信息规定了该测量信息的内容。
例如,第一设备可以通过下行控制信息(Downlink Control Information,DCI)携带该指示信息。
具体地,第一设备可以周期性的向第二设备发送该指示信息。其中,该周期的时长可以为预定义的时长,也可以根据具体地网络状态由第一设备确定,本申请实施例并不限于此。
可替代地,第一设备也可以通过半静态的方式发送该指示信息。具体而言,第一设备可以在接收到第二设备发送的触发请求后才发送该指示信息,具体地,该触发请求用于请求获取指示信息。
换句话说,在320之前,第二设备首先向第一设备发送触发请求,第一设备在获取到该触发请求后,向第二设备发送该指示信息,之后,第二设备根据该指示信息测量该M个信号,获得测量信息。
本申请实施例通过第一设备发送指示信息,指示第二设备的上报测量信息的内容,从而第一设备能够得到合适的反馈信息,进而第一设备可以使用端口在第二设备侧的特性来确定端口之间的关系。
因此,本申请实施例中第一设备通过使用端口在接收侧的特性来确定端口之间的关系,能够较准确的确定端口之间的关系,进而第一设备可以对端口进行合理的通信管理,提升第一设备和第二设备间的传输性能。
应理解,本申请实施例中的指示信息指示的上报类型也可以称为上报模式,上报模式的具体内容可以预先定义,本申请实施例中可以具有多种上报模式,每一种上报模式的具体内容预先已定义,第一设备可以通过指示信息指示其中一种上报模式。
需要说明的是,本申请实施例中第一设备发送的指示信息所指示的第二设备上报的该测量信息可以有多种形式,下面将分情况进行详细描述。其中,该指示信息中还指示了该第二设备对该M个信号进行判定处理,例如,指示信息通过所指示的上报类型规定该第二设备对该M个信号进行判定处理,或者,指示信息本身直接指示了该第二设备对该M个信号进行判定处理,本申请实施例并不限于此。其中,该测量信息是该第二设备根据对该M个信号进行判定处理的判定结果确定的,具体地,参见下文中的情况一和情况二。可选地,该指示信息还可以不需要规定判定处理,而是直接规定了该测量信息,具体地, 参见下文中的情况三。
情况一:所述测量信息用于指示所述N个端口间的关系,端口间的关系例如可以包括所述N个端口是否满足特定参数的QCL关系。
具体地,该指示信息还用于指示该第二设备判定该M个信号对应的N个端口是否满足特定参数集合的QCL关系,该特定参数集合包括以下参数中的至少一种:
接收的时延扩展、多普勒扩展、多普勒频移、平均时延、增益、平均增益、增益扩展、到达角AoA、平均AoA、AoA扩展、该信号对应的该第二设备的上行离开角AoD、平均AoD、AoD扩展和该第二设备的互易性;其中,第二设备的互易性也可以称为第二设备的收发波束的互易性,本申请实施例并不限于此。
该测量信息包括第一关系指示信息或第二关系指示信息,该第一关系指示信息用于指示该N个端口满足特定参数集合的QCL关系,该第二关系指示信息用于指示该N个端口不满足特定参数集合的QCL关系。
因此,本申请实施例第一设备根据测量信息能够较准确的确定确定该N个端口是否满足特定参数的QCL关系,进而第一设备能够对多个端口进行合理的通信管理,例如,第一设备在获取到第二设备发送的测量信息后,可以在进行MU-MIMO或鲁棒传输时根据该第二设备反馈的测量信息对端口进行合理的通信管理,选择合适的端口进行与第二设备间的通信,提升第一设备和第二设备间的传输性能。
应理解,第二设备的互易性可以定义为第二设备将接收下行信号的接收端口的方向作为上行端口的方向。
针对情况一,在320中,该第二设备根据该上报类型判定该M个信号对应的N个端口是否满足特定参数集合的QCL关系;
该第二设备根据该N个端口是否满足特定参数集合的QCL关系的判断结果,确定测量信息。
例如,该特定参数集合包括AoA,网络设备可以通过DCI配置终端设备的上报类型,同时网络设备通过两个端口发送两个信号(例如,CSI-RS或DMRS等)。终端设备测量两个信号所在端口的特定参数集合,例如该特定参数集合包括AoA,终端设备判断该两个端口是否满足AoA-QCL的条件,如满足则反馈第一关系指示信息,例如为1,否则反馈第二关系指示信息,例如为0。
具体地,第二设备(例如,终端设备)可以根据两个参考信的AoA确定该两个端口是否满足到达角准共址关系AoA-QCL,例如,在两个AoA的差值小于或等于预设阈值时,可以判断两个端口满足AoA-QCL,在两个AoA的差值大于预设阈值时,可以判断两个端口不满足AoA-QCL。第一设备(例如,网络设备)在获取到的测量信息为1即可确定该两个端口满足AoA-QCL,在获取到的测量信息为0即可确定该两个端口满足AoA-QCL。
应理解,在该端口包括多个时,在该第一关系指示信息用于指示该多个端口两两之间均满足特定参数集合的QCL关系;该第二关系指示信息能够用于指示该多个端口存在不满足特定参数集合的QCL关系的两个端口,或者,指示该多个端口任意两个端口均不满足特定参数集合的QCL关系。本申请实施例并不限于此。
本申请实施例中,由于该测量信息的内容仅为1比特(0或1),数据量较小,能够节省网络资源。
情况二:所述测量信息用于指示所述N个端口间的关系,端口间的关系例如可以包括所述N个端口的相关程度。
具体地,该指示信息还用于指示该第二设备判定该M个信号中的两两信号的参数集合的测量结果的相关程度,该两两信号的参数集合的测量结果的相关程度是由该两两信号的参数集合的测量结果的差值确定的;
该参数集合包括以下参数中的至少一种:
接收的时延扩展、多普勒扩展、多普勒频移、平均时延、增益、平均增益、增益扩展、到达角AoA、平均AoA、AoA扩展、该信号对应的该第二设备的上行离开角AoD、平均AoD和AoD扩展;
该测量信息包括该第二设备所测量的该N个端口的相关程度,该N个端口的相关程度是根据该M个信号中的两两信号的参数集合的测量结果的差值确定的,该N个端口的相关程度指示以下中的至少一种:该M个信号中的两两信号的参数的测量结果的量化后的差值、该M个信号中的两两信号的参数的测量结果的量化后的差值中的最大值、该M个信号中的两两信号的参数的测量结果的量化后的差值中的最小值和该M个信号中的两两信号的参数的测量结果的量化后的差值的平均值。
因此,本申请实施例第一设备根据测量信息能够较准确的确定该N个端口的相关程度,进而第一设备能够对多个端口进行合理的通信管理,例如,第一设备在获取到第二设备发送的测量信息后,可以在进行MU-MIMO或鲁棒传输时根据该第二设备反馈的测量信息对端口进行合理的通信管理,选择合适的端口进行与第二设备间的通信,提升第一设备和第二设备间的传输性能。
应理解,由于本申请实施例中的“相关程度”是根据该M个信号中的两两信号的参数集合的测量结果的差值确定的,能够反映出两两信号的参数集合的测量结果的差异程度,因此,名词“相关程度”也可以称为“差异程度”本申请实施例并不限于此。
针对情况二,在320中,该第二设备根据该上报类型,判定该M个信号中的两两信号的参数的测量结果的差值;
该第二设备根据该M个信号中的两两信号的参数的差值确定该测量信息,其中,该测量信息包括该第二设备所测量的该N个端口的相关程度,该N个端口的相关程度指示以下中的至少一种:该M个信号中的两两信号的参数的测量结果的量化后的差值、该M个信号中的两两信号的参数的测量结果的量化后的差值中的最大值、该M个信号中的两两信号的参数的测量结果的量化后的差值中的最小值和该M个信号中的两两信号的参数的测量结果的量化后的差值的平均值。
例如,该参数集合包括AoA,第一设备(例如,网络设备)可以通过DCI配置终端设备的上报类型,同时第一设备通过两个端口发送两个信号(例如CSI-RS或DMRS等)。第二设备(例如,终端设备)测量两个信号所在端口的参数集合,例如该参数集合包括AoA,第二设备确定该两个信号的AoA的差值,确定该两个端口的相关程度。其中,该相关程度可以通过量化等级来表示,例如,相关程度—强、相关程度—弱或者是相关程度—强、相关程度—中、相关程度—弱,或者更多的量化等级,本申请实施例并不限于此。
具体地,第二设备可以对两两信号的AoA的差值进行量化,例如,在差值小于或等于第一差值阈值时,将该差值量化为0,表示相关程度—强,在该差值大于第一差值阈值 且小于第二差值阈值是,将该差值量化为1,相关程度—中,在该差值大于或等于该第二差值阈值时,将该差值为2,相关程度—弱。其中,该第一差值阈值和第二差值阈值可以是预先设定的,也可以是第一设备指示的,本申请实施例并不限于此。
该测量信息包括的该相关程度可以包括该M个信号的两两信号的参数的测量结果的量化后的差值,也可以包括该M个信号中的两两信号的参数的测量结果的量化后的差值中的最小值和该M个信号中的两两信号的参数的测量结果的量化后的差值的平均值。
本申请实施例中,由于该测量信息的内容包括量化后的差值,数据量较小,能够节省网络资源。
情况三:所述测量信息用于指示所述N个端口间的关系,端口间的关系例如可以包括所述N个端口的分组关系。
具体地,该测量信息包括以下中的至少一种:该N个端口的组号、该N个端口的组号中两两组号差值中的最大组号差值、该N个端口的组号中两两组号差值中的最小组号差值和该N个端口的组号中两两组号差值的平均值。
因此,本申请实施例第一设备根据测量信息能够较准确的确定该N个端口的分组关系,进而第一设备能够对多个端口进行合理的通信管理,例如,第一设备在获取到第二设备发送的测量信息后,可以在进行MU-MIMO或鲁棒传输时根据该第二设备反馈的测量信息对端口进行合理的通信管理,选择合适的端口进行与第二设备间的通信,提升第一设备和第二设备间的传输性能。
针对情况三,在320中,该第二设备根据该第二设备侧的接收信息确定该N个端口的组号,
该第二设备根据该N个端口的组号,确定该测量信息,该测量信息包括以下中的至少一种:该N个端口的组号、该N个端口的组号中两两组号差值中的最大组号差值、该N个端口的组号中两两组号差值中的最小组号差值和该N个端口的组号中两两组号差值的平均值。
例如,第一设备(例如,网络设备)可以通过DCI配置第二设备(例如,终端设备)的上报类型,同时第一设备通过两个端口发送两个信号(例如CSI-RS或DMRS等)。第二设备测量两个信号的组号,该第二设备根据该N个端口的组号,确定该测量信息。例如,该测量信息包括以下中的至少一种:该N个端口的组号、该N个端口的组号中两两组号差值中的最大组号差值、该N个端口的组号中两两组号差值中的最小组号差值和该N个端口的组号中两两组号差值的平均值。
其中,该N个端口的组号可以是由该第二设备侧的接收信息确定的。应理解,该第二设备的接收信息可以包括该第二设备的接收区域的信息。在本申请实施例中一个端口组对应该第二设备的一个接收区域,该一个端口组中的每一个端口发送该信号,在该一个接收区域中存在至少一个接收端口所检测到的该每一个端口发送的该信号的能量值大于或等于预设阈值,该接收区域是该第二设备按照逻辑分组规则确定的。
也就是说,该第二设备可以首先按照逻辑分组规则对该第二设备的接收区域进行划分。之后,该第二设备可以根据该接收区域将第一设备的多个端口分成多个端口组。
应理解,该逻辑分组规则可以包括:按照以下信息中的至少一个将该第二设备的接收端口划分为多个接收区域:该第二设备的接收端口、该端口对应的到达角度、第二设备的 接收天线的权值、第二设备的接收端口号。
举例而言,如图4所示,第二设备的接收区域可以按照上述逻辑分组规则分成A、B、C、D四个接收区域,第二设备可以根据该四个接收区域对第一设备的多个端口进行分组。
下面结合图4描述一种第二设备对端口具体地分组过程:在接收区域A进行测量时,如果接收区域A中发现存在检测端口1,2,4发射的信号的接收信号能量值(Reference Signal Received Power,RSRP)均高于或等于预设阈值(或者称为门限值)的接收端口,则端口1,2,4均属于接收区域A对应的端口组A。按此方式进行端口组的划分,显然,同一个端口可以属于多个端口组,例如,端口1即属于端口组A,也属于端口组D。某个端口组中可以包含若干个端口,也可以没有任何端口。
应理解,本申请实施例中,当第二设备发生旋转时,端口组的划分可以与第二设备的旋转相关,也可以与之不相关,本申请实施例并不对此做限定。
应注意,在本申请实施例中,该逻辑分组规则可以是该网络系统预先定义的,也可以是第一设备指示该第二设备的,本申请实施例并不对此做限定。
其中,在该逻辑分组规则由第一设备指示时,该方法还可以包括:该第一设备向该第二设备发送规则指示信息,该规则指示信息用于指示该逻辑分组规则。
还应理解,第一设备的端口的分组也可以是由第一设备确定的,或者系统预设的,本申请实施例并不限于此。
330,该第二设备向该第一设备发送该测量信息。
例如,第二设备在系统预定义的资源或者新定义的资源上发送该测量信息。可选地,该第二设备也可以在预留资源上向该第一设备发送该测量信息。例如,第二设备可以通过现有的信令(如ACK/NACK等)发送该测量信息,具体地,该测量信息可以承载在已有帧结构中的预留比特中,本申请实施例并不限于此。
因此,本申请实施例通过使用端口在第二设备侧(接收侧)的特性来确定多个端口之间的关系,能够使得第一设备较准确的确定端口之间的关系,进而能够对多个端口进行合理的通信管理,提升系统性能。
可选地,作为另一实施例,在330之后,即第一设备获取到该测量信息后,第一设备可以根据该测量信息对该N个端口进行通信管理。
例如,第一设备可以在进行MU-MIMO或鲁棒传输时根据该第二设备反馈的测量信息对端口进行合理的通信管理,选择合适的端口进行与第二设备间的通信,能够提升第一设备和第二设备间的传输性能。
下面将结合上述情况一、情况二和情况三分别以第一设备为网络设备,第二设备为终端设备为例说明本申请实施例中第一设备根据该测量信息对该N个端口的通信管理的具体过程。
针对情况一,例如,如图5所示,某次传输中网络设备为终端设备配置了端口(发射波束)1进行通信。若此时网络设备想要为终端设备增加一个端口来进行空间复用或对抗移动性(mobility)的分集操作,网络设备需要选择一个与端口1有着AoA-QCL关系的端口。于是,网络设备根据自己的判断选择端口2,并且网络设备利用情况一的办法对AoA-QCL关系假设进行一个验证。若终端设备反馈的测量信息为1,也即端口1,2满足AoA-QCL关系,则网络设备可以用该波束进行空间复用或对抗移动性的分集操作,反之, 若终端设备反馈的测量信息为0,也即端口1,2不满足AoA-QCL关系,网络设备需要另找其他端口重复上述过程。
因此,本申请实施例第一设备根据测量信息能够较准确的确定该N个端口是否满足特定参数的QCL关系,进而第一设备能够对多个端口进行合理的通信管理,例如,可以在进行MU-MIMO或鲁棒传输时根据该第二设备反馈的测量信息对端口进行合理的通信管理,选择合适的端口进行与第二设备间的通信,提升第一设备和第二设备间的传输性能。
针对情况二,例如,如图6所示,某次传输中网络设备为终端设备配置了端口1进行通信。若此时网络设备想要为终端设备增加一个端口来对抗遮挡(blockage)。所增加的端口不但要保证在终端设备处有一定的信号强度,并且由于遮挡常常发生在终端设备侧,原端口和增加端口之间的AoA差值要较大,从而防止两个端口同时被遮挡。此时网络设备可以利用情况二中的过程,基于终端设备反馈的测量信息,选择与端口1的AoA差值较大的端口5。
因此,本申请实施例第一设备根据测量信息能够较准确的确定是否满足特定参数的QCL关系,进而第一设备能够对多个端口进行合理的通信管理,例如,可以在进行MU-MIMO或鲁棒传输时根据该第二设备反馈的测量信息对端口进行合理的通信管理,选择合适的端口进行与第二设备间的通信,提升第一设备和第二设备间的传输性能。
针对情况三,具体地,该第一设备根据该第二设备发送的测量信息,即该N个端口的分组关系,能够确定同时与多个第二设备进行下行传输的至少一个端口集合。
其中该至少一个端口集合中每个端口集合中包括的端口的个数与该多个第二设备的个数相等,且一个端口对应一个第二设备。
应理解,该至少一个端口集合为多种端口集合中系统性能较好的至少一个。换句话说,该至少一个端口集合对应的第二设备通过相应地接收端口接收该端口集合中对应的端口发送的下行数据的信号质量较好,且各个端口发送的下行数据之间干扰较小。
因此,本申请实施例第一设备根据测量信息能够较准确的确定该N个端口的分组关系,进而第一设备能够对多个端口进行合理的通信管理,例如,可以在进行MU-MIMO或鲁棒传输时根据该第二设备反馈的测量信息对端口进行合理的通信管理,选择合适的端口进行与第二设备间的通信,提升第一设备和第二设备间的传输性能。
例如,如图7所示,网络设备在进行MU-MIMO传输时,网络设备可以根据第一终端设备和第二终端设备反馈的测量信息,确定端口1和端口2分别进行与第一终端设备和第二终端间的下行数据传输。其中,端口1和端口2发送的下行信号间的干扰较小。
具体地而言,网络设备在为第一终端设备配置了N个端口中的端口1后,在第一终端设备反馈的测量信息为N个端口的组号时,第一终端设备会从N个端口中为第二终端设备配置与该端口1具有不同组号的端口2。
或者,在第一终端设备反馈的测量信息为该N个端口组号的两两组号差值中的最大组号差值,且该最大组号差值较小时,在网络设备在为第一终端设备配置了N个端口中的端口1后,避免将该N个端口中的其他端口配置给其他的终端设备。将该N个端口之外的端口2配置给改第二终端设备。
或者,在第一终端设备反馈的测量信息为该N个端口组号的两两组号差值中的最小组号差值较大时,在网络设备在为第一终端设备配置了N个端口中的端口1后,可以从该N 个端口中确定一个合适的端口2配置给第二终端设备。
或者,在第一终端设备反馈的测量信息为该N个端口的组号的两两组号差值的平均值时,在该平均值较小时,表示该N个端口的组号比较集中,因此,在网络设备为第一终端设备配置了N个端口中的端口1后,避免将该避免将该N个端口中的其他端口配置给其他的终端设备,而是将该N个端口之外的端口2配置给改第二终端设备。或者,在且该平均值较大时,表示该N个端口的组号比较离散,在网络设备在为第一终端设备配置了N个端口中的端口1后,可以根据实际情况从该N个端口中或该N个端口之外的端口中选择端口2配置给改第二终端设备。
因此,本申请实施例中,该第一设备根据该第二设备发送的测量信息,能够确定同时与多个第二设备进行传输的且彼此信号干扰较小的多个端口集合,提升第一设备和第二设备间的传输性能。
上文中,结合图1至7详细描述了本申请实施例的传输信息的方法,应注意,图1至图7的例子仅仅是为了帮助本领域技术人员理解本申请实施例,而非要将本申请实施例限于所例示的具体数值或具体场景。本领域技术人员根据所给出的图1至图7的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本申请实施例的范围内。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
下面将结合图8和10描述本申请实施例的第一设备,结合图9和图11描述本申请实施例的第二设备。
应理解,本申请实施例中第一设备可以为网络设备,第二设备可以为终端设备。第一设备和第二设备也可以均为网络设备,可替代地,第一设备和第二设备还可以均为终端设备,本申请实施例并不限于此。
图8示出了根据本申请实施例的第一设备800的示意性框图,具体地,如图8所示,该第一设备800包括:
第一发送单元810,用于通过N个端口向第二设备发送M个信号,N、M为整数,且M≥N≥2;
第一接收单元820,用于接收该第二设备发送的测量信息,该测量信息是该第二设备根据该M个信号确定的,该测量信息用于指示该N个端口间的关系。
因此,本申请实施例通过使用端口在第二设备侧(接收端侧)的特性来描述端口之间的关系,能够使得第一设备较准确的确定端口之间的关系,进而第一设备能够对多个端口进行合理的通信管理,提升第一设备和第二设备间的传输性能。
可选地,作为另一实施例,该第一设备还包括:
第二发送单元,用于在该第一接收单元820接收该第二设备发送的该测量信息之前,向该第二设备发送指示信息,该指示信息用于指示上报类型,该上报类型规定了该测量信息。
可选地,作为另一实施例,该指示信息还用于指示该第二设备判定该M个信号对应的N个端口是否满足特定参数集合的QCL关系,该特定参数集合包括以下参数中的至少一种:
接收的时延扩展、多普勒扩展、多普勒频移、平均时延、增益、平均增益、增益扩展、 到达角AoA、平均AoA、AoA扩展、该信号对应的该第二设备的上行离开角AoD、平均AoD、AoD扩展和该第二设备的互易性,
该测量信息包括第一关系指示信息或第二关系指示信息,该第一关系指示信息用于指示该N个端口满足特定参数集合的QCL关系,该第二关系指示信息用于指示该N个端口不满足特定参数集合的QCL关系。
可替代地,作为另一实施例,该指示信息还用于指示该第二设备判定该M个信号中的两两信号的参数集合的测量结果的相关程度,该两两信号的参数集合的测量结果的相关程度是由该两两信号的参数集合的测量结果的差值确定的,该参数集合包括以下参数中的至少一种:接收的时延扩展、多普勒扩展、多普勒频移、平均时延、增益、平均增益、增益扩展、到达角AoA、平均AoA、AoA扩展、该信号对应的该第二设备的上行离开角AoD、平均AoD和AoD扩展;
该测量信息包括该第二设备所测量的该N个端口的相关程度,该N个端口的相关程度是根据该M个信号中的两两信号的参数集合的测量结果的差值确定的,该N个端口的相关程度指示以下中的至少一种:该M个信号中的两两信号的参数的测量结果的量化后的差值、该M个信号中的两两信号的参数的测量结果的量化后的差值中的最大值、该M个信号中的两两信号的参数的测量结果的量化后的差值中的最小值和该M个信号中的两两信号的参数的测量结果的量化后的差值的平均值。
可替代地,作为另一实施例,该测量信息包括以下中的至少一种:
该N个端口的组号、该N个端口的组号中两两组号差值中的最大组号差值、该N个端口的组号中两两组号差值中的最小组号差值和该N个端口的组号中两两组号差值的平均值。
可选地,作为另一实施例,该第一设备还包括:
第二接收单元,用于在该第一发送单元810通过N个端口向第二设备发送M个信号之前,接收该第二设备发送的能力信息,该能力信息指示该第二设备能够同时接收信号的个数、该第二设备的天线面板个数、或者该第二设备的互易性程度,该互易性程度包括关于特定参数的完全互易、部分互易或完全不互易,该特定参数包括角度信息和/或增益信息。
可选地,作为另一实施例,该M个信号包括以下信号中的至少一种:
信道信息参考信号CSI-RS、解调参考信号DMRS、波束参考信号BRS和相位噪声参考信号PNRS,
该M个信号承载在以下信道中的至少一种信道中:
物理下行控制信道PDCCH、物理下行共享信道PDSCH、物理上行控制信道PUCCH和物理下行共享信道PUSCH。。
可选地,作为另一实施例,该第一接收单元820具体用于在预留资源上接收该第二设备发送的该测量信息。
应理解,图8所示的第一设备800能够实现图3方法实施例中涉及第一设备的各个过程。第一设备800中的各个模块的操作和/或功能,分别为了实现图3中的方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
图9示出了根据本申请实施例的第二设备900的示意性框图。具体地,如图9所示, 该第二设备900包括:
第一接收单元910,用于接收该第一设备通过N个端口发送的M个信号,N、M为整数,且M≥N≥2;
测量单元920,用于测量该M个信号,获得测量信息,该测量信息用于指示该N个端口间的关系;
第一发送单元930,用于向该第一设备发送该测量信息。
因此,本申请实施例通过第二设备向第一设备发送测量信息,使得第一设备能够使用第二设备侧(接收侧)的特性较准确的确定端口之间的关系,进而第一设备能够对多个端口进行合理的通信管理,提升第一设备和第二设备间的传输性能。
可选地,作为另一实施例,该第二设备还包括:
第二接收单元,用于在该测量单元测量该M个信号,获得测量信息之前,接收该第一设备发送的指示信息,该指示信息用于指示上报类型,该上报类型规定了该测量信息。
可选地,作为另一实施例,该指示信息还用于指示该第二设备判定该M个信号对应的N个端口是否满足特定参数集合的QCL关系,
其中,该测量单元具体用于根据该上报类型判定该M个信号对应的N个端口是否满足特定参数集合的QCL关系,该特定参数集合包括以下参数中的至少一种:接收的时延扩展、多普勒扩展、多普勒频移、平均时延、增益、平均增益、增益扩展、到达角AoA、平均AoA、AoA扩展、该信号对应的该第二设备的上行离开角AoD、平均AoD、AoD扩展和该第二设备的互易性;
根据该N个端口是否满足特定参数集合的QCL关系的判断结果,确定测量信息,该测量信息包括第一关系指示信息或第二关系指示信息,该第一关系指示信息用于指示该N个端口满足特定参数集合的QCL关系,该第二关系指示信息用于指示该N个端口不满足特定参数集合的QCL关系。
可替代地,作为另一实施例,该指示信息还用于指示该第二设备判定该M个信号中的两两信号的参数集合的测量结果的相关程度,该两两信号的参数集合的测量结果的相关程度是由该两两信号的参数集合的测量结果的差值确定的;
该测量单元具体用于根据该上报类型,判定该M个信号中的两两信号的参数的测量结果的差值,该参数包括接收的时延扩展、多普勒扩展、多普勒频移、平均时延、增益、平均增益、增益扩展、到达角AoA、平均AoA、AoA扩展、该信号对应的该第二设备的上行离开角AoD、平均AoD和AoD扩展;
根据该M个信号中的两两信号的参数的差值确定该测量信息,其中,该测量信息包括该第二设备所测量的该N个端口的相关程度,该N个端口的相关程度指示以下中的至少一种:该M个信号中的两两信号的参数的测量结果的量化后的差值、该M个信号中的两两信号的参数的测量结果的量化后的差值中的最大值、该M个信号中的两两信号的参数的测量结果的量化后的差值中的最小值和该M个信号中的两两信号的参数的测量结果的量化后的差值的平均值。
可替代地,作为另一实施例,该测量单元具体用于根据该第二设备侧的接收信息确定该N个端口的组号;
根据该N个端口的组号,确定该测量信息,该测量信息包括以下中的至少一种:该N 个端口的组号、该N个端口的组号中两两组号差值中的最大组号差值、该N个端口的组号中两两组号差值中的最小组号差值和该N个端口的组号中两两组号差值的平均值。
可选地,作为另一实施例,该第二设备还包括:
第二发送单元,用于在该第一接收单元接收该第一设备通过N个端口发送的M个信号之前,向该第一设备发送的能力信息,该能力信息指示该第二设备能够同时接收端口的个数、该第二设备能够同时接收波束的个数、该第二设备的天线面板个数、该第二设备的发送参数与接收参数的对应性,或者该第二设备的互易性程度,该互易性程度包括关于特定参数的完全互易、部分互易或完全不互易,该特定参数包括角度信息和/或增益信息。
可选地,作为另一实施例,该M个信号包括以下信号中的至少一种:
信道信息参考信号CSI-RS、解调参考信号DMRS、波束参考信号BRS和相位噪声参考信号PNRS,
该M个信号承载在以下信道中的至少一种信道中:
物理下行控制信道PDCCH、物理下行共享信道PDSCH、物理上行控制信道PUCCH和物理下行共享信道PUSCH。
可选地,作为另一实施例,该第一发送单元具体用于在预留资源上向该第一设备发送该测量信息。
应理解,图9所示的第二设备900能够实现图3方法实施例中涉及第二设备的各个过程。第二设备900中的各个模块的操作和/或功能,分别为了实现图3中的方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
图10示出了根据本申请实施例的第一设备1000的示意性框图。具体地,如图10所示,该第一设备1000包括:处理器1010和收发器1020,处理器1010和收发器1020相连,可选地,该第一设备1000还包括存储器1030,存储器1030与处理器1010相连,进一步可选地,该第一设备1000还可以包括总线系统1040。其中,处理器1010、存储器1030和收发器1020可以通过总线系统1040相连,该存储器1030可以用于存储指令,该处理器1010用于执行该存储器1030存储的指令,以控制收发器1020收发信息或信号。
具体地,处理器1010控制收发器1020通过N个端口向第二设备发送M个信号,N、M为整数,且M≥N≥2;接收该第二设备发送的测量信息,该测量信息是该第二设备根据该M个信号确定的,该测量信息用于指示该N个端口间的关系。
因此,本申请实施例通过使用端口在第二设备侧(接收端侧)的特性来描述端口之间的关系,能够使得第一设备较准确的确定端口之间的关系,进而第一设备能够对多个端口进行合理的通信管理,提升第一设备和第二设备间的传输性能。
应理解,在本申请实施例中,该处理器1010可以是中央处理单元(Central Processing Unit,简称为“简称为“),该处理器1010还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器1030可以包括只读存储器和随机存取存储器,并向处理器1010提供指令和数据。存储器1030的一部分还可以包括非易失性随机存取存储器。例如,存储器1030还可以存储设备类型的信息。
该总线系统1040除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统1040。
在实现过程中,上述方法的各步骤可以通过处理器1010中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1030,处理器1010读取存储器1030中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,作为另一实施例,该收发器1020还用于在接收该第二设备发送的该测量信息之前,向该第二设备发送指示信息,该指示信息用于指示上报类型,该上报类型规定了该测量信息。
可选地,作为另一实施例,该指示信息还用于指示该第二设备判定该M个信号对应的N个端口是否满足特定参数集合的QCL关系,该特定参数集合包括以下参数中的至少一种:
接收的时延扩展、多普勒扩展、多普勒频移、平均时延、增益、平均增益、增益扩展、到达角AoA、平均AoA、AoA扩展、该信号对应的该第二设备的上行离开角AoD、平均AoD、AoD扩展和该第二设备的互易性,
该测量信息包括第一关系指示信息或第二关系指示信息,该第一关系指示信息用于指示该N个端口满足特定参数集合的QCL关系,该第二关系指示信息用于指示该N个端口不满足特定参数集合的QCL关系。
可替代地,作为另一实施例,该指示信息还用于指示该第二设备判定该M个信号中的两两信号的参数集合的测量结果的相关程度,该两两信号的参数集合的测量结果的相关程度是由该两两信号的参数集合的测量结果的差值确定的,该参数集合包括以下参数中的至少一种:接收的时延扩展、多普勒扩展、多普勒频移、平均时延、增益、平均增益、增益扩展、到达角AoA、平均AoA、AoA扩展、该信号对应的该第二设备的上行离开角AoD、平均AoD和AoD扩展;
该测量信息包括该第二设备所测量的该N个端口的相关程度,该N个端口的相关程度是根据该M个信号中的两两信号的参数集合的测量结果的差值确定的,该N个端口的相关程度指示以下中的至少一种:该M个信号中的两两信号的参数的测量结果的量化后的差值、该M个信号中的两两信号的参数的测量结果的量化后的差值中的最大值、该M个信号中的两两信号的参数的测量结果的量化后的差值中的最小值和该M个信号中的两两信号的参数的测量结果的量化后的差值的平均值。
可替代地,作为另一实施例,该测量信息包括以下中的至少一种:
该N个端口的组号、该N个端口的组号中两两组号差值中的最大组号差值、该N个端口的组号中两两组号差值中的最小组号差值和该N个端口的组号中两两组号差值的平均值。
可选地,作为另一实施例,该收发器1020还用于在该第一发送单元810通过N个端口向第二设备发送M个信号之前,接收该第二设备发送的能力信息,该能力信息指示该第二设备能够同时接收端口的个数、该第二设备能够同时接收波束的个数、该第二设备的 天线面板个数、该第二设备的发送参数与接收参数的对应性,或者该第二设备的互易性程度,该互易性程度包括关于特定参数的完全互易、部分互易或完全不互易,该特定参数包括角度信息和/或增益信息。
可选地,作为另一实施例,该M个信号包括以下信号中的至少一种:
信道信息参考信号CSI-RS、解调参考信号DMRS、波束参考信号BRS和相位噪声参考信号PNRS,
该M个信号承载在以下信道中的至少一种信道中:
物理下行控制信道PDCCH、物理下行共享信道PDSCH、物理上行控制信道PUCCH和物理下行共享信道PUSCH。。
可选地,作为另一实施例,该第一接收单元820具体用于在预留资源上接收该第二设备发送的该测量信息。
应理解,图10所示的第一设备1000能够实现图3方法实施例中涉及第一设备的各个过程。第一设备1000中的各个模块的操作和/或功能,分别为了实现图3中的方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
图11示出了根据本申请实施例的第二设备1100的示意性框图。具体地,如图11所示,该第二设备1100包括:处理器1110和收发器1120,处理器1110和收发器1120相连,可选地,该第二设备1100还包括存储器1130,存储器1130与处理器1110相连,进一步可选地,该第二设备1100还可以包括总线系统1140。其中,处理器1110、存储器1130和收发器1120可以通过总线系统1140相连,该存储器1130可以用于存储指令,该处理器1110用于执行该存储器1130存储的指令,以控制收发器1120收发信息或信号。
具体地,控制器1110控制收发器1120接收该第一设备通过N个端口发送的M个信号,N、M为整数,且M≥N≥2;控制器1110用于测量该M个信号,获得测量信息,该测量信息用于指示该N个端口间的关系;收发器1120还用于向该第一设备发送该测量信息。
因此,本申请实施例通过第二设备向第一设备发送测量信息,使得第一设备能够使用第二设备侧(接收侧)的特性较准确的确定端口之间的关系,进而第一设备能够对多个端口进行合理的通信管理,提升第一设备和第二设备间的传输性能。
应理解,在本申请实施例中,该处理器1110可以是中央处理单元(Central Processing Unit,简称为“简称为“),该处理器1110还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器1130可以包括只读存储器和随机存取存储器,并向处理器1110提供指令和数据。存储器1130的一部分还可以包括非易失性随机存取存储器。例如,存储器1130还可以存储设备类型的信息。
该总线系统1140除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统1140。
在实现过程中,上述方法的各步骤可以通过处理器1110中的硬件的集成逻辑电路或 者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1130,处理器1110读取存储器1130中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,作为另一实施例,该收发器1120用于在该测量单元测量该M个信号,获得测量信息之前,接收该第一设备发送的指示信息,该指示信息用于指示上报类型,该上报类型规定了该测量信息。
可选地,作为另一实施例,该指示信息还用于指示该第二设备判定该M个信号对应的N个端口是否满足特定参数集合的QCL关系,
其中,该处理器1110具体用于根据该上报类型判定该M个信号对应的N个端口是否满足特定参数集合的QCL关系,该特定参数集合包括以下参数中的至少一种:接收的时延扩展、多普勒扩展、多普勒频移、平均时延、增益、平均增益、增益扩展、到达角AoA、平均AoA、AoA扩展、该信号对应的该第二设备的上行离开角AoD、平均AoD、AoD扩展和该第二设备的互易性;
根据该N个端口是否满足特定参数集合的QCL关系的判断结果,确定测量信息,该测量信息包括第一关系指示信息或第二关系指示信息,该第一关系指示信息用于指示该N个端口满足特定参数集合的QCL关系,该第二关系指示信息用于指示该N个端口不满足特定参数集合的QCL关系。
可替代地,作为另一实施例,该指示信息还用于指示该第二设备判定该M个信号中的两两信号的参数集合的测量结果的相关程度,该两两信号的参数集合的测量结果的相关程度是由该两两信号的参数集合的测量结果的差值确定的;
该处理器1110具体用于根据该上报类型,判定该M个信号中的两两信号的参数的测量结果的差值,该参数包括接收的时延扩展、多普勒扩展、多普勒频移、平均时延、增益、平均增益、增益扩展、到达角AoA、平均AoA、AoA扩展、该信号对应的该第二设备的上行离开角AoD、平均AoD和AoD扩展;
根据该M个信号中的两两信号的参数的差值确定该测量信息,其中,该测量信息包括该第二设备所测量的该N个端口的相关程度,该N个端口的相关程度指示以下中的至少一种:该M个信号中的两两信号的参数的测量结果的量化后的差值、该M个信号中的两两信号的参数的测量结果的量化后的差值中的最大值、该M个信号中的两两信号的参数的测量结果的量化后的差值中的最小值和该M个信号中的两两信号的参数的测量结果的量化后的差值的平均值。
可替代地,作为另一实施例,该处理器1110具体用于根据该第二设备侧的接收信息确定该N个端口的组号;根据该N个端口的组号,确定该测量信息,该测量信息包括以下中的至少一种:该N个端口的组号、该N个端口的组号中两两组号差值中的最大组号差值、该N个端口的组号中两两组号差值中的最小组号差值和该N个端口的组号中两两组号差值的平均值。
可选地,作为另一实施例,该收发器1120还用于在该第一接收单元接收该第一设备通过N个端口发送的M个信号之前,向该第一设备发送的能力信息,该能力信息指示该 第二设备能够同时接收端口的个数、该第二设备能够同时接收波束的个数、该第二设备的天线面板个数、该第二设备的发送参数与接收参数的对应性,或者该第二设备的互易性程度,该互易性程度包括关于特定参数的完全互易、部分互易或完全不互易,该特定参数包括角度信息和/或增益信息。
可选地,作为另一实施例,该M个信号包括以下信号中的至少一种:
信道信息参考信号CSI-RS、解调参考信号DMRS、波束参考信号BRS和相位噪声参考信号PNRS,
该M个信号承载在以下信道中的至少一种信道中:
物理下行控制信道PDCCH、物理下行共享信道PDSCH、物理上行控制信道PUCCH和物理下行共享信道PUSCH。。
可选地,作为另一实施例,该收发器1120具体用于在预留资源上向该第一设备发送该测量信息。
应理解,图11所示的第二设备1100能够实现图3方法实施例中涉及第二设备的各个过程。第二设备1100中的各个模块的操作和/或功能,分别为了实现图3中的方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
应理解,在本申请实施例中,由于第二设备上报了该第二设备能够同时接收端口的个数、该第二设备能够同时接收波束的个数或该第二设备的天线面板个数,因此,本申请中的方案可以应用于具有一个或多个接收端口、具有一个或多个同时接收波束或具有一个或多个天线面板的第二设备。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本申请所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上所述仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (30)

  1. 一种传输信息的方法,其特征在于,包括:
    第一设备通过N个端口向第二设备发送M个信号,N、M为整数,且M≥N≥2;
    所述第一设备接收所述第二设备发送的测量信息,所述测量信息是所述第二设备根据所述M个信号确定的,所述测量信息用于指示所述N个端口间的关系。
  2. 根据权利要求1所述的方法,其特征在于,在所述第一设备接收所述第二设备发送的所述测量信息之前,所述方法还包括:
    所述第一设备向所述第二设备发送指示信息,所述指示信息用于指示所述第二设备向所述第一设备发送所述测量信息。
  3. 根据权利要求2所述的方法,其特征在于,
    所述指示信息还用于指示所述第二设备判定所述M个信号对应的N个端口是否满足特定参数集合的准共址QCL关系,所述特定参数集合包括以下参数中的至少一种:
    接收的时延扩展、多普勒扩展、多普勒频移、平均时延、增益、平均增益、增益扩展、到达角AoA、平均AoA、AoA扩展、所述信号对应的所述第二设备的上行离开角AoD、平均AoD、AoD扩展和所述第二设备的互易性,
    所述测量信息包括第一关系指示信息或第二关系指示信息,所述第一关系指示信息用于指示所述N个端口满足特定参数集合的QCL关系,所述第二关系指示信息用于指示所述N个端口不满足特定参数集合的QCL关系。
  4. 根据权利要求2所述的方法,其特征在于,
    所述指示信息还用于指示所述第二设备判定所述M个信号中的两两信号的参数集合的测量结果的相关程度,所述两两信号的参数集合的测量结果的相关程度是由所述两两信号的参数集合的测量结果的差值确定的,所述参数集合包括以下参数中的至少一种:接收的时延扩展、多普勒扩展、多普勒频移、平均时延、增益、平均增益、增益扩展、到达角AoA、平均AoA、AoA扩展、所述信号对应的所述第二设备的上行离开角AoD、平均AoD和AoD扩展;
    所述测量信息包括所述第二设备所测量的所述N个端口的相关程度,所述N个端口的相关程度是根据所述M个信号中的两两信号的参数集合的测量结果的差值确定的,所述N个端口的相关程度指示以下中的至少一种:所述M个信号中的两两信号的参数的测量结果的量化后的差值、所述M个信号中的两两信号的参数的测量结果的量化后的差值中的最大值、所述M个信号中的两两信号的参数的测量结果的量化后的差值中的最小值和所述M个信号中的两两信号的参数的测量结果的量化后的差值的平均值。
  5. 根据权利要求2所述的方法,其特征在于,所述测量信息包括以下中的至少一种:
    所述N个端口的组号、所述N个端口的组号中两两组号差值中的最大组号差值、所述N个端口的组号中两两组号差值中的最小组号差值和所述N个端口的组号中两两组号差值的平均值。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,在所述第一设备通过N个端口向第二设备发送M个信号之前,所述方法还包括:
    所述第一设备接收所述第二设备发送的能力信息,所述能力信息指示所述第二设备能够同时接收端口的个数、所述第二设备能够同时接收波束的个数、所述第二设备的天线面板个数、所述第二设备的发送参数与接收参数的对应性,或者所述第二设备的互易性程度,所述互易性程度包括关于特定参数的完全互易、部分互易或完全不互易,所述特定参数包括角度信息和/或增益信息。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述M个信号包括以下信号中的至少一种:
    信道信息参考信号CSI-RS、解调参考信号DMRS、波束参考信号BRS和相位噪声参考信号PNRS,
    所述M个信号承载在以下信道中的至少一种信道中:
    物理下行控制信道PDCCH、物理下行共享信道PDSCH、物理上行控制信道PUCCH和物理下行共享信道PUSCH。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,
    所述第一设备接收所述第二设备发送的测量信息,包括:
    所述第一设备在预留资源上接收所述第二设备发送的所述测量信息。
  9. 一种传输信息的方法,其特征在于,包括:
    第二设备接收所述第一设备通过N个端口发送的M个信号,N、M为整数,且M≥N≥2;
    所述第二设备测量所述M个信号,获得测量信息,所述测量信息用于指示所述N个端口间的关系;
    所述第二设备向所述第一设备发送所述测量信息。
  10. 根据权利要求9所述的方法,其特征在于,在所述第二设备测量所述M个信号,获得测量信息之前,所述方法还包括:
    所述第二设备接收所述第一设备发送的指示信息,所述指示信息用于指示所述第二设备向所述第一设备发送所述测量信息。
  11. 根据权利要求10所述的方法,其特征在于,
    所述指示信息还用于指示所述第二设备判定所述M个信号对应的N个端口是否满足特定参数集合的准共址QCL关系,
    其中,所述第二设备测量所述M个信号,获得测量信息,包括:
    所述第二设备根据所述上报类型判定所述M个信号对应的N个端口是否满足特定参数集合的QCL关系,所述特定参数集合包括以下参数中的至少一种:接收的时延扩展、多普勒扩展、多普勒频移、平均时延、增益、平均增益、增益扩展、到达角AoA、平均AoA、AoA扩展、所述信号对应的所述第二设备的上行离开角AoD、平均AoD、AoD扩展和所述第二设备的互易性;
    所述第二设备根据所述N个端口是否满足特定参数集合的QCL关系的判断结果,确定测量信息,所述测量信息包括第一关系指示信息或第二关系指示信息,所述第一关系指示信息用于指示所述N个端口满足特定参数集合的QCL关系,所述第二关系指示信息用于指示所述N个端口不满足特定参数集合的QCL关系。
  12. 根据权利要求10所述的方法,其特征在于,
    所述指示信息还用于指示所述第二设备判定所述M个信号中的两两信号的参数集合的测量结果的相关程度,所述两两信号的参数集合的测量结果的相关程度是由所述两两信号的参数集合的测量结果的差值确定的;
    所述第二设备测量所述M个信号,获得测量信息,包括:
    所述第二设备根据所述上报类型,判定所述M个信号中的两两信号的参数的测量结果的差值,所述参数包括接收的时延扩展、多普勒扩展、多普勒频移、平均时延、增益、平均增益、增益扩展、到达角AoA、平均AoA、AoA扩展、所述信号对应的所述第二设备的上行离开角AoD、平均AoD和AoD扩展;
    所述第二设备根据所述M个信号中的两两信号的参数的差值确定所述测量信息,其中,所述测量信息包括所述第二设备所测量的所述N个端口的相关程度,所述N个端口的相关程度指示以下中的至少一种:所述M个信号中的两两信号的参数的测量结果的量化后的差值、所述M个信号中的两两信号的参数的测量结果的量化后的差值中的最大值、所述M个信号中的两两信号的参数的测量结果的量化后的差值中的最小值和所述M个信号中的两两信号的参数的测量结果的量化后的差值的平均值。
  13. 根据权利要求10所述的方法,其特征在于,所述第二设备测量所述M个信号,获得测量信息,包括:
    所述第二设备根据所述第二设备侧的接收信息确定所述N个端口的组号;
    所述第二设备根据所述N个端口的组号,确定所述测量信息,所述测量信息包括以下中的至少一种:所述N个端口的组号、所述N个端口的组号中两两组号差值中的最大组号差值、所述N个端口的组号中两两组号差值中的最小组号差值和所述N个端口的组号中两两组号差值的平均值。
  14. 根据权利要求9至13中任一项所述的方法,其特征在于,在所述第二设备接收所述第一设备通过N个端口发送的M个信号之前,所述方法还包括:
    所述第二设备向所述第一设备发送的能力信息,所述能力信息指示所述第二设备能够同时接收端口的个数、所述第二设备能够同时接收波束的个数、所述第二设备的天线面板个数、所述第二设备的发送参数与接收参数的对应性或者所述第二设备的互易性程度,所述互易性程度包括关于特定参数的完全互易、部分互易或完全不互易,所述特定参数包括角度信息和/或增益信息。
  15. 根据权利要求9至14中任一项所述的方法,其特征在于,
    所述M个信号包括以下信号中的至少一种:
    信道信息参考信号CSI-RS、解调参考信号DMRS、波束参考信号BRS和相位噪声参考信号PNRS,
    所述M个信号承载在以下信道中的至少一种信道中:
    物理下行控制信道PDCCH、物理下行共享信道PDSCH、物理上行控制信道PUCCH和物理下行共享信道PUSCH。
  16. 根据权利要求9至15中任一项所述的方法,其特征在于,
    所述第二设备向所述第一设备发送所述测量信息,包括:
    所述第二设备在预留资源上向所述第一设备发送所述测量信息。
  17. 一种第一设备,其特征在于,包括:
    第一发送单元,用于通过N个端口向第二设备发送M个信号,N、M为整数,且M≥N≥2;
    第一接收单元,用于接收所述第二设备发送的测量信息,所述测量信息是所述第二设备根据所述M个信号确定的,所述测量信息用于指示所述N个端口间的关系。
  18. 根据权利要求17所述的第一设备,其特征在于,所述第一设备还包括:
    第二发送单元,用于在所述第一接收单元接收所述第二设备发送的所述测量信息之前,向所述第二设备发送指示信息,所述指示信息用于指示上报类型,所述上报类型规定了所述测量信息。
  19. 根据权利要求18所述的第一设备,其特征在于,
    所述指示信息还用于指示所述第二设备判定所述M个信号对应的N个端口是否满足特定参数集合的准共址QCL关系,所述特定参数集合包括以下参数中的至少一种:
    接收的时延扩展、多普勒扩展、多普勒频移、平均时延、增益、平均增益、增益扩展、到达角AoA、平均AoA、AoA扩展、所述信号对应的所述第二设备的上行离开角AoD、平均AoD、AoD扩展和所述第二设备的互易性,
    所述测量信息包括第一关系指示信息或第二关系指示信息,所述第一关系指示信息用于指示所述N个端口满足特定参数集合的QCL关系,所述第二关系指示信息用于指示所述N个端口不满足特定参数集合的QCL关系。
  20. 根据权利要求18所述的第一设备,其特征在于,
    所述指示信息还用于指示所述第二设备判定所述M个信号中的两两信号的参数集合的测量结果的相关程度,所述两两信号的参数集合的测量结果的相关程度是由所述两两信号的参数集合的测量结果的差值确定的,所述参数集合包括以下参数中的至少一种:接收的时延扩展、多普勒扩展、多普勒频移、平均时延、增益、平均增益、增益扩展、到达角AoA、平均AoA、AoA扩展、所述信号对应的所述第二设备的上行离开角AoD、平均AoD和AoD扩展;
    所述测量信息包括所述第二设备所测量的所述N个端口的相关程度,所述N个端口的相关程度是根据所述M个信号中的两两信号的参数集合的测量结果的差值确定的,所述N个端口的相关程度指示以下中的至少一种:所述M个信号中的两两信号的参数的测量结果的量化后的差值、所述M个信号中的两两信号的参数的测量结果的量化后的差值中的最大值、所述M个信号中的两两信号的参数的测量结果的量化后的差值中的最小值和所述M个信号中的两两信号的参数的测量结果的量化后的差值的平均值。
  21. 根据权利要求18所述的第一设备,其特征在于,所述测量信息包括以下中的至少一种:
    所述N个端口的组号、所述N个端口的组号中两两组号差值中的最大组号差值、所述N个端口的组号中两两组号差值中的最小组号差值和所述N个端口的组号中两两组号差值的平均值。
  22. 根据权利要求17至21中任一项所述的第一设备,其特征在于,所述第一设备还包括:
    第二接收单元,用于在所述第一发送单元通过N个端口向第二设备发送M个信号之前,接收所述第二设备发送的能力信息,所述能力信息指示所述第二设备能够同时接收端 口的个数、所述第二设备能够同时接收波束的个数、所述第二设备的天线面板个数、所述第二设备的发送参数与接收参数的对应性,或者所述第二设备的互易性程度,所述互易性程度包括关于特定参数的完全互易、部分互易或完全不互易,所述特定参数包括角度信息和/或增益信息。
  23. 根据权利要求17至22中任一项所述的第一设备,其特征在于,所述M个信号包括以下参考信号中的至少一种:
    信道信息参考信号CSI-RS、解调参考信号DMRS、波束参考信号BRS和相位噪声参考信号PNRS,
    所述M个信号承载在以下信道中的至少一种信道中:
    物理下行控制信道PDCCH、物理下行共享信道PDSCH、物理上行控制信道PUCCH和物理下行共享信道PUSCH。
  24. 根据权利要求17至23中任一项所述的第一设备,其特征在于,
    所述第一接收单元具体用于在预留资源上接收所述第二设备发送的所述测量信息。
  25. 一种第二设备,其特征在于,包括:
    第一接收单元,用于接收所述第一设备通过N个端口发送的M个信号,N、M为整数,且M≥N≥2;
    测量单元,用于测量所述M个信号,获得测量信息,所述测量信息用于指示所述N个端口间的关系;
    第一发送单元,用于向所述第一设备发送所述测量信息。
  26. 根据权利要求25所述的第二设备,其特征在于,所述第二设备还包括:
    第二接收单元,用于在所述测量单元测量所述M个信号,获得测量信息之前,接收所述第一设备发送的指示信息,所述指示信息用于指示上报类型,所述上报类型规定了所述测量信息。
  27. 根据权利要求26所述的第二设备,其特征在于,
    所述指示信息还用于指示所述第二设备判定所述M个信号对应的N个端口是否满足特定参数集合的准共址QCL关系,
    其中,所述测量单元具体用于根据所述上报类型判定所述M个信号对应的N个端口是否满足特定参数集合的QCL关系,所述特定参数集合包括以下参数中的至少一种:接收的时延扩展、多普勒扩展、多普勒频移、平均时延、增益、平均增益、增益扩展、到达角AoA、平均AoA、AoA扩展、所述信号对应的所述第二设备的上行离开角AoD、平均AoD、AoD扩展和所述第二设备的互易性;
    根据所述N个端口是否满足特定参数集合的QCL关系的判断结果,确定测量信息,所述测量信息包括第一关系指示信息或第二关系指示信息,所述第一关系指示信息用于指示所述N个端口满足特定参数集合的QCL关系,所述第二关系指示信息用于指示所述N个端口不满足特定参数集合的QCL关系。
  28. 根据权利要求26所述的第二设备,其特征在于,
    所述指示信息还用于指示所述第二设备判定所述M个信号中的两两信号的参数集合的测量结果的相关程度,所述两两信号的参数集合的测量结果的相关程度是由所述两两信号的参数集合的测量结果的差值确定的;
    所述测量单元具体用于根据所述上报类型,判定所述M个信号中的两两信号的参数的测量结果的差值,所述参数包括接收的时延扩展、多普勒扩展、多普勒频移、平均时延、增益、平均增益、增益扩展、到达角AoA、平均AoA、AoA扩展、所述信号对应的所述第二设备的上行离开角AoD、平均AoD和AoD扩展;
    根据所述M个信号中的两两信号的参数的差值确定所述测量信息,其中,所述测量信息包括所述第二设备所测量的所述N个端口的相关程度,所述N个端口的相关程度指示以下中的至少一种:所述M个信号中的两两信号的参数的测量结果的量化后的差值、所述M个信号中的两两信号的参数的测量结果的量化后的差值中的最大值、所述M个信号中的两两信号的参数的测量结果的量化后的差值中的最小值和所述M个信号中的两两信号的参数的测量结果的量化后的差值的平均值。
  29. 根据权利要求26所述的第二设备,其特征在于,
    所述测量单元具体用于根据所述第二设备侧的接收信息确定所述N个端口的组号;
    根据所述N个端口的组号,确定所述测量信息,所述测量信息包括以下中的至少一种:所述N个端口的组号、所述N个端口的组号中两两组号差值中的最大组号差值、所述N个端口的组号中两两组号差值中的最小组号差值和所述N个端口的组号中两两组号差值的平均值。
  30. 根据权利要求25至29中任一项所述的第二设备,其特征在于,所述第二设备还包括:
    第二发送单元,用于在所述第一接收单元接收所述第一设备通过N个端口发送的M个信号之前,向所述第一设备发送的能力信息,所述能力信息指示所述第二设备能够同时接收端口的个数、所述第二设备能够同时接收波束的个数、所述第二设备的天线面板个数、所述第二设备的发送参数与接收参数的对应性,或者所述第二设备的互易性程度,所述互易性程度包括关于特定参数的完全互易、部分互易或完全不互易,所述特定参数包括角度信息和/或增益信息。
PCT/CN2017/109251 2016-11-04 2017-11-03 传输信息的方法和设备 WO2018082641A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17866440.5A EP3528396B1 (en) 2016-11-04 2017-11-03 Information transmission method and device
KR1020197015589A KR20190069580A (ko) 2016-11-04 2017-11-03 정보 전송 방법 및 디바이스
US16/400,711 US11089599B2 (en) 2016-11-04 2019-05-01 Information transmission method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610976925.9A CN108023631B (zh) 2016-11-04 2016-11-04 传输信息的方法和设备
CN201610976925.9 2016-11-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/400,711 Continuation US11089599B2 (en) 2016-11-04 2019-05-01 Information transmission method and device

Publications (1)

Publication Number Publication Date
WO2018082641A1 true WO2018082641A1 (zh) 2018-05-11

Family

ID=62075708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109251 WO2018082641A1 (zh) 2016-11-04 2017-11-03 传输信息的方法和设备

Country Status (5)

Country Link
US (1) US11089599B2 (zh)
EP (1) EP3528396B1 (zh)
KR (1) KR20190069580A (zh)
CN (1) CN108023631B (zh)
WO (1) WO2018082641A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114365423A (zh) * 2019-09-30 2022-04-15 华为技术有限公司 信道测量的方法和通信装置
EP3811528A4 (en) * 2018-06-25 2022-06-29 Nokia Technologies OY Methods, devices and computer readable medium for communication measurement
US20230087900A1 (en) * 2016-03-31 2023-03-23 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving reference signals in wireless communication

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109392144B (zh) 2017-08-11 2023-10-03 华为技术有限公司 通信方法和通信设备
CN111971992B (zh) * 2018-05-23 2022-06-21 上海朗帛通信技术有限公司 被用于无线通信中的定位的方法和装置
EP3837777A1 (en) * 2018-09-24 2021-06-23 Sony Corporation Method for interference reduction in a communication device
EP3857725A4 (en) 2018-09-28 2022-05-18 Lenovo (Beijing) Limited BEAM MESSAGE
CN117062218A (zh) 2018-10-31 2023-11-14 华为技术有限公司 一种定位方法及设备
US20220116965A1 (en) * 2019-01-10 2022-04-14 Lg Electronics Inc. Method for performing uplink transmission in wireless communication system and apparatus therefor
CN111277380B (zh) * 2019-01-25 2022-02-25 维沃移动通信有限公司 重复传输方法、终端及网络侧设备
CN114501524A (zh) * 2019-02-15 2022-05-13 华为技术有限公司 用于测量信号的方法和通信装置
EP3926850A4 (en) * 2019-02-15 2022-09-21 NTT DoCoMo, Inc. USER TERMINAL AND WIRELESS COMMUNICATION METHOD
CN111726815B (zh) * 2019-03-20 2022-02-11 成都华为技术有限公司 数据传输方法和装置
CN112422245B (zh) * 2019-08-23 2022-04-22 华为技术有限公司 发送和接收指示的方法和装置
CN113965954B (zh) * 2020-07-01 2023-10-10 华为技术有限公司 感知测量信息交互装置
CN113938365B (zh) * 2021-09-03 2022-12-20 北京邮电大学 THz通信探测一体化系统的能限检测方法以及装置
WO2023197267A1 (zh) * 2022-04-14 2023-10-19 北京小米移动软件有限公司 用于感知测量建立终止的通信方法和通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291189A (zh) * 2011-08-12 2011-12-21 电信科学技术研究院 天线校准方法和设备
CN102332945A (zh) * 2011-09-30 2012-01-25 中兴通讯股份有限公司 一种信息反馈方法及用户设备
US20150118969A1 (en) * 2012-08-01 2015-04-30 Huawei Device Co., Ltd. Method and apparatus for measuring antenna space correlation, and terminal device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8873650B2 (en) * 2009-10-12 2014-10-28 Motorola Mobility Llc Configurable spatial channel information feedback in wireless communication system
US8964632B2 (en) * 2012-02-03 2015-02-24 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements for channel estimation
WO2013138984A1 (en) * 2012-03-19 2013-09-26 Nokia Siemens Networks Oy Transmission point selection
JP6199653B2 (ja) * 2013-08-06 2017-09-20 株式会社Nttドコモ 無線通信システムおよびアンテナ構成決定方法
US9532256B2 (en) 2013-08-07 2016-12-27 Broadcom Corporation Receiver-aided multi-user MIMO and coordinated beamforming
KR102258289B1 (ko) * 2014-05-22 2021-05-31 삼성전자 주식회사 이차원 배열 안테나를 사용하는 이동통신 시스템에서의 채널 피드백의 생성 및 전송 방법 및 장치
CN105207705A (zh) * 2014-06-23 2015-12-30 北京三星通信技术研究有限公司 有源天线系统中的参考信号收发方法及设备
CN105991267B (zh) * 2015-02-06 2019-08-06 电信科学技术研究院 一种信道测量方法及装置
US9906344B2 (en) * 2015-02-23 2018-02-27 Intel Corporation Methods, apparatuses, and systems for multi-point, multi-cell single-user based multiple input and multiple output transmissions
CN106559879B (zh) * 2015-09-25 2019-08-02 中兴通讯股份有限公司 信息发送及确定、关系确定的方法及装置
KR102343518B1 (ko) * 2016-03-30 2021-12-28 아이디에이씨 홀딩스, 인크. 무선시스템에서의 기준 신호 측정을 위한 시스템 및 방법
US11038557B2 (en) * 2016-03-31 2021-06-15 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving reference signals in wireless communication
US10039076B2 (en) * 2016-08-22 2018-07-31 Qualcomm Incorporated Declaring quasi co-location among multiple antenna ports
CN110401521B (zh) * 2016-09-30 2020-11-06 中兴通讯股份有限公司 表征准共位置参数配置的方法和装置、发射及接收设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291189A (zh) * 2011-08-12 2011-12-21 电信科学技术研究院 天线校准方法和设备
CN102332945A (zh) * 2011-09-30 2012-01-25 中兴通讯股份有限公司 一种信息反馈方法及用户设备
US20150118969A1 (en) * 2012-08-01 2015-04-30 Huawei Device Co., Ltd. Method and apparatus for measuring antenna space correlation, and terminal device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230087900A1 (en) * 2016-03-31 2023-03-23 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving reference signals in wireless communication
EP3811528A4 (en) * 2018-06-25 2022-06-29 Nokia Technologies OY Methods, devices and computer readable medium for communication measurement
US11711127B2 (en) 2018-06-25 2023-07-25 Nokia Technologies Oy Methods, devices and computer readable medium for communication measurement
CN114365423A (zh) * 2019-09-30 2022-04-15 华为技术有限公司 信道测量的方法和通信装置
CN114365423B (zh) * 2019-09-30 2023-07-28 华为技术有限公司 信道测量的方法、装置及存储介质
US11784853B2 (en) 2019-09-30 2023-10-10 Huawei Technologies Co., Ltd. Channel measurement method and communication apparatus

Also Published As

Publication number Publication date
CN108023631B (zh) 2023-08-22
EP3528396A4 (en) 2019-08-28
US11089599B2 (en) 2021-08-10
EP3528396A1 (en) 2019-08-21
CN108023631A (zh) 2018-05-11
US20190261349A1 (en) 2019-08-22
EP3528396B1 (en) 2020-09-23
KR20190069580A (ko) 2019-06-19

Similar Documents

Publication Publication Date Title
WO2018082641A1 (zh) 传输信息的方法和设备
WO2018228571A1 (zh) 通信方法和通信装置
CN109005548B (zh) 一种信道质量信息的上报方法及装置
WO2018127115A1 (zh) 无线通信的方法、终端设备和网络设备
KR102365905B1 (ko) 업링크 신호의 전송 파라미터를 결정하는 방법, 단말기 및 네트워크 장치
CN110809900A (zh) 一种资源配置方法及其装置
WO2018126794A1 (zh) 一种资源指示方法、装置及系统
WO2019085775A1 (zh) 一种波束检测方法及装置
WO2018059470A1 (zh) 传输信息的方法和设备
JP6783945B2 (ja) 参照信号送信方法および装置
WO2020063308A1 (zh) 一种无线通信网络中的指示波束信息的方法和设备
WO2020114357A1 (zh) 信道测量的配置方法及通信装置
WO2019100905A1 (zh) 数据传输方法、终端设备和网络设备
WO2020199902A1 (zh) 一种选择接收波束的方法及装置
CN106105328B (zh) 一种终端、网络设备和协作多点传输协作集选择方法
US20230254030A1 (en) Beam-based communication method and related apparatus
WO2022078115A1 (zh) 功率确定方法、装置、终端及网络侧设备
TW202014030A (zh) 信號回報的方法、終端設備和網路設備
WO2019137445A1 (zh) 信道状态信息的测量方法和装置
CN111869123B (zh) 用于高效波束管理的通信设备
US20190150138A1 (en) Method and device for transmitting or receiving channel state information
EP3554151B1 (en) Power control method and device
JP2020537837A (ja) 無線通信方法、端末装置及び送信ノード
WO2020034969A1 (zh) 信号传输方法、波束确定方法及其装置
WO2022028501A1 (zh) 一种信号传输方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866440

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017866440

Country of ref document: EP

Effective date: 20190513

ENP Entry into the national phase

Ref document number: 20197015589

Country of ref document: KR

Kind code of ref document: A