WO2018059470A1 - 传输信息的方法和设备 - Google Patents

传输信息的方法和设备 Download PDF

Info

Publication number
WO2018059470A1
WO2018059470A1 PCT/CN2017/103866 CN2017103866W WO2018059470A1 WO 2018059470 A1 WO2018059470 A1 WO 2018059470A1 CN 2017103866 W CN2017103866 W CN 2017103866W WO 2018059470 A1 WO2018059470 A1 WO 2018059470A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
transmitting
reference signal
information
transmit
Prior art date
Application number
PCT/CN2017/103866
Other languages
English (en)
French (fr)
Inventor
任毅
李华
栗忠峰
秦熠
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17854920.0A priority Critical patent/EP3515003B1/en
Publication of WO2018059470A1 publication Critical patent/WO2018059470A1/zh
Priority to US16/371,859 priority patent/US11147075B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI

Definitions

  • the present application relates to the field of communications and, more particularly, to a method and apparatus for transmitting information.
  • the multi-antenna technology (Massive-MIMO) of the large-scale antenna array is also more suitable for application in the HF scene.
  • the first device for example, the network device side
  • the second device for example, the terminal device side
  • Gain Due to the enhanced capability of the antenna array on the first device side and the increased number of parallel data streams that can be supported, how to utilize these data streams is also the key to improving system performance.
  • different second devices use the corresponding measurement signal CSI-RS to measure the current channel condition under the configuration of the first device. Then, all or part of the following information is fed back in the configuration of the first device: Channel State Information (CSI), Channel Quality Indication (CQI), Pre-coding Matrix Indication (Pre-coding Matrix Indication, PMI) and the channel number indication (Rank Indication, RI).
  • CSI Channel State Information
  • CQI Channel Quality Indication
  • Pre-coding Matrix Indication Pre-coding Matrix Indication
  • PMI Pre-coding Matrix Indication
  • RI channel number indication
  • the first device side performs comprehensive evaluation according to the information reported by different second devices, and selects several second devices suitable for performing MU-MIMO, and configures corresponding transmission resources for MU-MIMO communication.
  • the embodiment of the present application proposes a method and device for transmitting information, which can be used to reduce mutual interference between multiple signals.
  • a method of transmitting information comprising:
  • the first device sends indication information to the second device, where the indication information is used to indicate a reporting mode, and the reporting mode The content of the measurement information reported by the second device is specified;
  • the first device receives the measurement information sent by the second device, where the measurement information includes a measurement result obtained by the second device according to the reference signal sent by the first device, where the reference signal is the first And transmitting, by the transmitting port of the device, the measurement information includes information about a transmitting port group corresponding to the transmitting port, where the transmitting port group corresponding to the transmitting port is determined by the receiving information of the second device.
  • the embodiment of the present application can configure the reporting mode of the second device and report the content of the measurement information by using the first device, so that appropriate feedback information can be obtained, and the transmission resources allocated to different second devices can be reasonably planned, and multiple resources are reduced. Interference.
  • the first device for example, the network device
  • the second device for example, the terminal device
  • the first device sends the indication information
  • the second device for example, the terminal device
  • the first device feeds back the measurement information determined by the receiving area of the second device, where the first device is further
  • a set of transmission ports of the downlink transmission may be determined according to the measurement information. That is, in the embodiment of the present application, the first device may determine, according to the measurement information determined by the received information, multiple transmit ports that send data, and considering the influence of the receive port on the MU-MIMO signal, the first device selects an appropriate one.
  • the transmit port simultaneously performs signal transmission, which can avoid or reduce mutual interference between multiple signals.
  • transmitting port in the embodiment of the present application may be a logical antenna port, and the transmitting port may also be referred to as a transmitting antenna port, a transmitting beam, a transmitting resource, a transmitting AOA, and the like.
  • the term “receiving port” may be a logical antenna port, and the receiving port may also be referred to as a receiving antenna port, a receiving beam, a receiving resource, an Angle of Arrival (AoA), and the like.
  • the reporting mode in the embodiment of the present application may have a corresponding relationship with the transmission mode in the existing standard.
  • the embodiment of the present application may have a corresponding reporting mode.
  • the first reporting mode may be corresponding, and in the second transmission mode, the second reporting mode, the third reporting mode, and the like may be corresponding.
  • the definition of the transmission mode can refer to the description in the existing standard, and for brevity, it will not be repeated here.
  • the measurement information further includes all or part of the following information:
  • the received information of the second device includes information about a receiving area of the second device
  • one transmitting port group corresponds to a receiving area of the second device, and each of the one transmitting port group sends the reference signal, where each of the at least one receiving port detected by the receiving port exists
  • the energy value of the reference signal sent by the transmitting port is greater than or equal to a preset threshold, and the receiving area is determined by the second device according to a logical grouping rule.
  • the information of the receiving area in the embodiment of the present application may be the identification information of the receiving area, the identification information of the receiving port in the receiving area, the receiving beam identification information in the receiving area, or the receiving information.
  • the embodiment of the present application is not limited thereto.
  • the method further includes:
  • the first device sends rule indication information to the second device, where the rule indication information is used to indicate the logical grouping rule;
  • the logical grouping rule includes: a receiving port according to the second device, and an angle of arrival corresponding to the transmitting port The degree, the weight of the receiving antenna of the second device, and the receiving port number of the second device divide the receiving port of the second device into a plurality of receiving areas.
  • the indication information is used to indicate a channel state information CSI process, where the reporting mode is specified in the CSI process;
  • the sending port of the first device that sends the reference signal is configured by the CSI process, and the sending port of the reference signal is located in the same transmitting port group or different transmitting port group.
  • the content of the reported measurement information specified in the reporting mode includes: the second device receiving, sending, by each transmitting port of the first device Corresponding to the identifiers of the N transmit ports corresponding to the first N optimal reference signal strength values in the optimal reference signal strength of the reference signal, and the N optimal receive regions corresponding to the first N optimal reference signal strength values The identification of the N transmit port groups, wherein one transmit port corresponds to an optimal receive region and an optimal reference signal strength value.
  • the content of the reported measurement information specified in the reporting mode further includes a transmission port group corresponding to the N transmitting ports.
  • the identifiers of the N transmit ports corresponding to the first N optimal reference signal strength values in the optimal reference signal strength of the reference signal sent by the respective transmit ports of the first device are fed back.
  • the identifiers of the N transmit port groups corresponding to the N optimal receive regions corresponding to the N optimal reference signal strength values, and the first device avoids being used as a second device according to the information when performing port selection.
  • the transmitting port of the second device configuration falls within the receiving area corresponding to the better transmitting port group of the second device, thereby preventing or reducing mutual interference between the multiple signals.
  • the content of the reported measurement information specified in the reporting mode includes that the second device receives each transmitting port of the first device The identifiers of the M and K transmit ports corresponding to the first M optimal and the last K worst reference signal strength values in the optimal reference signal strength of the transmitted reference signal, the first M optimal and the last K The identifier of the M transmit port groups corresponding to the worst reference signal strength value and the identifier of the K transmit port groups, wherein one transmit port corresponds to an optimal receive region packet number and an optimal reference signal strength value.
  • M sums corresponding to the first M optimal and the last K worst reference signal strength values in the optimal reference signal strength of the reference signal transmitted by each transmitting port of the first device are fed back.
  • the optimal transmit port corresponding to the second device corresponds to the poor transmit port group of the other second device, so as to reduce the influence of the signal of the second device on the other second device, thereby avoiding or reducing the relationship between the multiple signals in this manner. Interfere with each other.
  • the content of the reported measurement information specified in the reporting mode includes the second device receiving each transmission of the first device The Z transmit port numbers corresponding to the first Z optimal reference signal strength values in the signal strengths of the reference signals transmitted by the respective transmit ports in the port group.
  • each of the transmitting port groups of the first device is received by the feedback second device.
  • the content of the reported measurement information specified in the reporting mode includes the second device receiving each transmission of the first device The identifier of the transmitting port corresponding to the strongest signal strength value of the reference signal sent by each transmitting port in the port group, and the identifier of the other transmitting port in the transmitting port group where the transmitting port corresponding to the strongest signal strength value is located .
  • the identifier of the transmitting port corresponding to the signal strength value with the strongest signal strength among the reference signals sent by each transmitting port in each transmitting port group of the first device is received by the second device. And the identifier of the other transmitting port in the transmitting port group where the transmitting port corresponding to the strongest signal strength value is located.
  • the first device When the first device performs port selection, it will avoid assigning the transmitting ports in the same group to different second devices according to the information, that is, after all the transmitting ports in the same group are allocated to one second device, avoiding the The other transmitting ports are allocated to the other second devices to reduce the influence of the signals of the other second devices on the one second device, and in this way, mutual interference between the plurality of signals can be avoided or reduced.
  • the method further includes:
  • the number of the transmitting ports included in the port set is equal to the number of the plurality of second devices, and one transmitting port corresponds to one second device.
  • the at least one transmit port set includes at least two transmit port sets, and the method further includes:
  • the first device performs transmission of a second signal with the plurality of second devices according to each of the at least two transmit port sets of the set of transmit ports,
  • the first device determines, according to the strength value of the second signal, a set of one of the at least two transmit ports from which the system performance is the best, and performs downlink transmission with the multiple second devices.
  • the first device determines, according to the value of the signal-to-noise ratio, the downlink transmission of the one of the at least two transmission port sets that is the best performance of the system, and performs downlink transmission with the multiple second devices.
  • the system performance can be the sum of the estimated rates of all served UEs.
  • the first device determines, according to the value of the signal-to-noise ratio, the downlink transmission of the one of the at least two transmission port sets that is the best performance of the system, and performs downlink transmission with the multiple second devices.
  • the system performance can be the sum of the estimated rates of all served UEs.
  • a method of transmitting information comprising:
  • the second device receives the indication information sent by the first device, where the indication information is used to indicate a reporting mode, where the content of the measurement information reported by the second device is specified in the reporting mode;
  • the second device sends the measurement information to the first device, where the first device receives the Measurement information, the measurement information includes a measurement result obtained by the second device according to the reference signal sent by the first device, the reference signal is sent by a transmitting port of the first device, and the measurement information includes the The information about the transmit port group corresponding to the transmit port, where the transmit port group corresponding to the transmit port is determined by the received information of the second device.
  • the embodiment of the present application can configure the reporting mode of the second device and report the content of the measurement information by using the first device, so that appropriate feedback information can be obtained, and the transmission resources allocated to different second devices can be reasonably planned, and multiple Interference between resources.
  • the first device for example, the network device
  • the second device for example, the terminal device
  • the first device sends the indication information
  • the second device for example, the terminal device
  • the first device feeds back the measurement information determined by the receiving area of the second device, where the first device is further
  • a set of transmission ports of the downlink transmission may be determined according to the measurement information. That is, in the embodiment of the present application, the first device may determine, according to the measurement information determined by the received information, multiple transmit ports that send data, and considering the influence of the receive port on the MU-MIMO signal, the first device selects an appropriate one.
  • the transmit port simultaneously performs signal transmission, which can avoid or reduce mutual interference between multiple signals.
  • the execution subject of the first aspect is a first device
  • the execution body in the second aspect may be a second device
  • corresponding features of the method on the second device side may be referred to the above
  • the corresponding description of the first device side of the first aspect therefore, the detailed description is omitted as appropriate for the sake of brevity.
  • the received information of the second device includes information about a receiving area of the second device
  • one transmitting port group corresponds to a receiving area of the second device, and the energy value of the reference signal sent by each of the one transmitting port group detected by the at least one receiving port exists in the one receiving area
  • the receiving area is greater than or equal to the preset threshold, and the receiving area is determined by the second device according to a logical grouping rule.
  • the method further includes:
  • the logical grouping rule includes: receiving the second device according to the receiving port of the second device, the angle of arrival corresponding to the transmitting port, the weight of the receiving antenna of the second device, and the receiving port number of the second device.
  • the port is divided into multiple receiving areas.
  • the indication information is used to indicate a channel state information CSI process, where the reporting mode is specified in the CSI process;
  • the sending port of the first device that sends the reference signal is configured by the CSI process, and the sending port of the reference signal is located in the same transmitting port group or different transmitting port group.
  • the information about the transmitting port group corresponding to the transmitting port includes the second device receiving the sending of the sending port of the first device.
  • the identifiers of the N transmit ports corresponding to the first N optimal reference signal strength values in the optimal reference signal strength of the reference signal, and the N optimal receive regions corresponding to the first N optimal reference signal strength values The identifier of the N transmit port groups, wherein one transmit port corresponds to an optimal receive region and an optimal reference signal strength value.
  • the information about the transmit port group corresponding to the transmit port further includes the transmit port group corresponding to the N transmit ports. Identification of other transmit port groups other than the N transmit port groups.
  • the information about the transmitting port group corresponding to the transmitting port includes that the second device receives the sending port of the first device and sends the information.
  • the identifiers of the M and K transmit ports corresponding to the first M best and the last K worst reference signal strength values in the optimal reference signal strength of the reference signal, the first M best and the last K most The identifier of the M transmit port groups corresponding to the difference reference signal strength value and the identifier of the K transmit port groups, wherein one transmit port corresponds to an optimal receive region packet number and an optimal reference signal strength value.
  • the information about the transmit port group corresponding to the transmit port includes that the second device receives each transmit port of the first device The Z transmit port numbers corresponding to the first Z optimal reference signal strength values in the signal strengths of the reference signals transmitted by the respective transmit ports in the group.
  • the information about the transmit port group corresponding to the transmit port includes that the second device receives each transmit port of the first device The identifier of the transmitting port corresponding to the strongest signal strength value of the reference signal sent by each transmitting port in the group, and the identifier of the other transmitting port in the transmitting port group where the transmitting port corresponding to the strongest signal strength value is located.
  • the measurement information sent by the second device is used by the first device to determine downlink transmission with multiple second devices at the same time.
  • At least one transmit port set wherein the number of transmit ports included in each of the at least one transmit port set is equal to the number of the plurality of second devices, and one transmit port corresponds to a second device.
  • the at least one transmit port set includes at least two transmit port sets, and the method further includes:
  • the set of transmit ports performs downlink transmission with the plurality of second devices.
  • a first apparatus for performing the method of any of the first aspect, the first aspect of the first aspect.
  • the first device comprises means for performing the above method.
  • a second device for performing the method in any of the possible implementations of the second aspect and the second aspect.
  • the second device comprises means for performing the above method.
  • a first device comprising a processor and a memory, the memory for storing a computer program, the processor for executing a computer program stored in the memory, performing the first aspect, the first A method in any of the possible implementations of the aspect.
  • a second device comprising a processor and a memory, the memory for storing a computer program, the processor for executing a computer program stored in the memory, performing the second aspect, A method in any of the possible implementations of the two aspects.
  • a seventh aspect a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect, any of the possible implementations of the first aspect.
  • a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of the second aspect, any of the possible implementations of the second aspect.
  • FIG. 1 is a schematic diagram of a wireless communication system in accordance with an embodiment of the present application.
  • FIG. 2 is a flow chart of a method of transmitting information in accordance with one implementation of the present application.
  • FIG. 3 is a schematic diagram of a receiving area of a terminal device according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a communication system in accordance with one embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a first device in accordance with an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a second device in accordance with an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a first device according to another embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a second device according to another embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile communication
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • the terminal device may also be referred to as a user equipment (UE, User Equipment), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, and a terminal. , a wireless communication device, a user agent, or a user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • the network device may be a device for communicating with the mobile device, such as a network side device, and the network device may be a Global System of Mobile communication (GSM) or a code division multiple access (Code Division Multiple Access).
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • the Base Transceiver Station (BTS) in CDMA) may also be a base station (NodeB, NB) in Wideband Code Division Multiple Access (WCDMA), or may be a Long Term Evolution (Long Term Evolution, An evolved Node B (eNB or eNodeB) in LTE), or a relay station or an access point, or an in-vehicle device, a wearable device, and a network-side device in a future 5G network.
  • NodeB Node B
  • eNodeB Long Term Evolution
  • eNB evolved Node B
  • eNodeB Long Term Evolution
  • LTE Long Term Evolution
  • eNB or eNodeB Long Term Evolution
  • the communication system 100 includes a network side device 102, and the network side device 102 may include a plurality of antenna groups.
  • Each antenna group may include multiple antennas, for example, one antenna group may include antennas 104 and 106, another antenna group may include antennas 108 and 110, and an additional group may include antennas 112 and 114.
  • Two antennas are shown in Figure 1 for each antenna group, although more or fewer antennas may be used for each group.
  • Network side device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, both of which may include signaling and Receive multiple components (such as processors, modulators, multiplexers, demodulators, demultiplexers, or antennas, etc.).
  • a transmitter chain and a receiver chain may include signaling and Receive multiple components (such as processors, modulators, multiplexers, demodulators, demultiplexers, or antennas, etc.).
  • the network side device 102 can communicate with a plurality of terminal devices (e.g., the terminal device 116 and the terminal device 122). However, it will be appreciated that the network side device 102 can communicate with any number of terminal devices similar to the terminal device 116 or 122.
  • Terminal devices 116 and 122 may be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other suitable for communicating over wireless communication system 100. device.
  • terminal device 116 is in communication with antennas 112 and 114, wherein antennas 112 and 114 transmit information to terminal device 116 over forward link 118 and receive information from terminal device 116 over reverse link 120.
  • terminal device 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to terminal device 122 over forward link 124 and receive information from terminal device 122 over reverse link 126.
  • the forward link 118 can utilize a different frequency band than that used by the reverse link 120, and the forward link 124 can utilize the reverse link. 126 different frequency bands used.
  • FDD Frequency Division Duplex
  • the forward link 118 and the reverse link 120 can use a common frequency band, a forward link 124, and a reverse link.
  • Link 126 can use a common frequency band.
  • Each set of antennas and/or areas designed for communication is referred to as a sector of the network side device 102.
  • the antenna group can be designed to communicate with terminal devices in sectors of the network side device 102 coverage area.
  • the transmit antenna of the network side device 102 can utilize beamforming to improve the signal to noise ratio of the forward links 118 and 124.
  • the neighboring cell is compared with the manner in which the network side device transmits a signal to all of its terminal devices through a single antenna. Mobile devices in the middle are subject to less interference.
  • the network side device 102, the terminal device 116, or the terminal device 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
  • the wireless communication transmitting device can encode the data for transmission.
  • the wireless communication transmitting device may acquire (eg, generate, receive from other communication devices, or store in memory, etc.) a certain number of data bits to be transmitted over the channel to the wireless communication receiving device.
  • Such data bits may be included in a transport block (or multiple transport blocks) of data that may be segmented to produce multiple code blocks.
  • the terminal device feeds back one or more strongest transmit ports, and a Reference Signal Received Power (RSRP) corresponding to the transmit port. Then, the network device determines, according to the information of the strongest transmitting port fed back by the terminal device, the transmitting port that performs downlink transmission at the same time.
  • RSRP Reference Signal Received Power
  • the network device cannot correctly estimate how much interference the transmitting port will cause to another terminal device when it uses one of the transmitting ports to serve one of the terminal devices. Since the network device is unknown to the receiving port of another terminal device, different receiving ports receive different interference values from the same transmitting port. That is to say, the existing solution cannot consider the influence of different receiving ports on interference when planning MU-MIMO pairing, so the network device cannot select the optimal transmitting port group for MU-MIMO in decision making.
  • the first device for example, the network device
  • the second device for example, the terminal device
  • the device can determine a set of transmit ports for the downlink transmission based on the measurement information. That is to say, the first setting in the embodiment of the present application
  • the device can determine the transmitting port according to the measurement information determined by the receiving area (ie, the divided area of the receiving port), and considers that the appropriate downlink beam is selected for downlink transmission while considering the influence of the receiving port on the MU-MIMO downlink signal. It is possible to avoid or reduce mutual interference between multiple signals.
  • transmitting port in the embodiment of the present application may be a logical antenna port, and the transmitting port may also be referred to as a transmitting antenna port, a transmitting beam, a transmitting resource, a transmitting AOA, and the like.
  • the term "receiving port” may be a logical antenna port, and the receiving port may also be referred to as a receiving antenna port, a receiving beam, a receiving resource, an Angle of Arrival (AoA), and the like. The explanations are not explained one by one below.
  • FIG. 2 is a schematic flowchart of an information transmission method according to an embodiment of the present application.
  • the method shown in FIG. 2 can be applied to the above various communication systems.
  • the communication system in the embodiment of the present application includes a first device and a plurality of second devices.
  • the first device in the embodiment of the present application may be a network device
  • the second device may be a terminal device.
  • the first device and the second device may also be network devices.
  • the first device and the second device may also be terminal devices.
  • the method 200 shown in FIG. 2 includes:
  • the first device sends the indication information to the second device.
  • the second device is any one of the plurality of second devices in the network system, that is, the first device sends indication information to each of the plurality of second devices, the indication The information is used to indicate the reporting mode, and the content of the measurement information reported by the second device is specified in the reporting mode.
  • the first device may also send a reference signal to the second device, and the indication information may be sent before the reference signal, or may be sent after the reference signal, which is not limited by the embodiment of the present application.
  • the second device sends measurement information to the first device.
  • the first device receives the measurement information sent by the second device, where the measurement information includes a measurement result, where the measurement result is obtained by the second device according to the reference signal sent by the first device, where the reference signal is And transmitting, by the transmitting port of the first device, the measurement information includes information about a transmitting port group corresponding to the transmitting port, where the transmitting port group corresponding to the transmitting port is determined by the receiving information of the second device.
  • the information of the receiving area in the embodiment of the present application may be the identification information of the receiving area, the identification information of the receiving port in the receiving area, the receiving beam identification information in the receiving area, or the receiving information.
  • the embodiment of the present application is not limited thereto.
  • the embodiment of the present application can configure the reporting mode of the second device and report the content of the measurement information by using the first device, so that appropriate feedback information can be obtained, and the transmission resources allocated to different second devices can be reasonably planned, and multiple resources are reduced. Interference.
  • the first device for example, the network device
  • the second device for example, the terminal device
  • the first device sends the indication information
  • the second device for example, the terminal device
  • the first device feeds back the measurement information determined by the receiving area of the second device, where the first device is further
  • a set of transmission ports of the downlink transmission may be determined according to the measurement information. That is, in the embodiment of the present application, the first device may determine, according to the measurement information determined by the received information, multiple transmit ports that send data, and considering the influence of the receive port on the MU-MIMO signal, the first device selects an appropriate one.
  • the transmit port simultaneously performs signal transmission, which can avoid or reduce mutual interference between multiple signals.
  • the reporting mode in the embodiment of the present application may have a corresponding relationship with the transmission mode in the existing standard.
  • the embodiment of the present application may have a corresponding reporting mode.
  • the first reporting mode may be corresponding, and in the second transmission mode, the second reporting mode, the third reporting mode, and the like may be corresponding.
  • the definition of the transmission mode can refer to the description in the existing standard, and for brevity, it will not be repeated here.
  • the measurement information further includes all or part of the following information:
  • the indication information is used to indicate a channel state information CSI process, where the reporting mode is specified in the CSI process;
  • the sending port of the first device that sends the reference signal is configured by the CSI process, and the sending port of the reference signal is located in the same transmitting port group or different transmitting port group.
  • the received information of the second device may include information of a receiving area of the second device.
  • one transmitting port group corresponds to one receiving area of the second device, and each of the one transmitting port group sends the reference signal, where at least one receiving port is detected in the one receiving area.
  • the energy value of the reference signal sent by each of the transmitting ports is greater than or equal to a preset threshold, and the receiving area is determined by the second device according to a logical grouping rule.
  • the second device may first divide the receiving area of the second device according to a logical grouping rule. Thereafter, the second device may divide the multiple transmission ports of the first device into multiple transmission port groups according to the receiving area.
  • the logical grouping rule may include: dividing the receiving port of the second device into multiple receiving areas according to at least one of the following information: a receiving port of the second device, an arrival angle corresponding to the transmitting port, and a second The weight of the receiving antenna of the device and the receiving port number of the second device.
  • the receiving area of the second device may be divided into four receiving areas A, B, C, and D according to the foregoing logical grouping rule, and the second device may use the four receiving areas according to the four receiving areas.
  • Multiple transmit ports are grouped.
  • a specific grouping process of the second device to the transmitting port is described below with reference to FIG. 3.
  • the receiving area A performs measurement, if the receiving area A finds that there is a receiving RSRP value of the reference signal transmitted by the detecting transmitting port 1, 2, 4, For a receiving port that is higher than or equal to a preset threshold (or called a threshold), the transmitting ports 1, 2, and 4 all belong to the transmitting port group A corresponding to the receiving area A. In this manner, the division of the transmission port group is performed.
  • the same transmission port may belong to multiple transmission port groups.
  • the transmission port 1 belongs to the transmission port group A and also belongs to the transmission port group D.
  • a transmit port group can contain several transmit ports or no transmit ports.
  • the division of the transmission port group may be related to the rotation of the second device, or may be irrelevant thereto, which is not limited by the embodiment of the present application.
  • the logical grouping rule may be pre-defined by the network system, or the first device may indicate the second device, which is not limited by the embodiment of the present application.
  • the method may further include: sending, by the first device, rule indication information to the second device, where the rule indicating information is used to indicate the logical grouping rule.
  • the content of the reported measurement information specified in the reporting mode may have Various forms are described in detail below.
  • the content of the reported measurement information specified in the reporting mode where the second device receives the first N optimal reference signal strength values in the optimal reference signal strength of the reference signal sent by each transmitting port of the first device.
  • the content of the reported measurement information specified in the reporting mode may further include other transmitting ports except the N optimal receiving areas in the transmitting port group corresponding to the N transmitting ports. The identity of the group.
  • the content of the reported measurement information specified in the reporting mode may further include: before the second device receives the optimal reference signal strength of the reference signal sent by each transmitting port of the first device. N optimal reference signal strength values.
  • the identifiers of the N transmit ports corresponding to the first N optimal reference signal strength values in the optimal reference signal strength of the reference signal sent by the respective transmit ports of the first device are fed back.
  • the identifiers of the N transmit port groups corresponding to the N optimal receive regions corresponding to the N optimal reference signal strength values, and the first device avoids being used as a second device according to the information when performing port selection.
  • the transmitting port of the second device configuration falls within the receiving area corresponding to the better transmitting port group of the second device, thereby preventing or reducing mutual interference between the multiple signals.
  • the content of the reported measurement information specified in the reporting mode includes the first M best and the last K most of the optimal reference signal strengths of the reference signals sent by the second device received by the second transmitting device of the first device.
  • the identifiers of the M and K transmitting ports corresponding to the difference reference signal strength value, the identifiers of the M transmitting port groups corresponding to the first M optimal and the last K worst reference signal strength values, and the K transmitting port groups The identifier, wherein one of the transmitting ports corresponds to an optimal receiving area group number and an optimal reference signal strength value.
  • the content of the reported measurement information specified in the reporting mode may further include that the second device receives the optimal reference signal strength of the reference signal sent by each transmitting port of the first device. Top M optimal and last K worst reference signal strength values
  • M sums corresponding to the first M optimal and the last K worst reference signal strength values in the optimal reference signal strength of the reference signal transmitted by each transmitting port of the first device are fed back.
  • the optimal transmit port corresponding to the second device corresponds to the poor transmit port group of the other second device, so as to reduce the influence of the signal of the second device on the other second device, thereby avoiding or reducing the relationship between the multiple signals in this manner. Interfere with each other.
  • the content of the reported measurement information specified in the reporting mode includes the first Z optimal reference signals in the signal strengths of the reference signals sent by the respective transmitting ports in each of the transmitting port groups of the first device. Intensity The Z transmission port numbers corresponding to the values.
  • the content of the reported measurement information specified in the reporting mode may further include that the second device receives the signal in the reference signal sent by each of the transmitting ports of the first device.
  • the second Z device receives the first Z optimal reference signal strength values in the signal strengths of the reference signals sent by the respective transmitting ports in each of the transmitting port groups of the first device by the feedback second device.
  • Z transmit port numbers When the first device performs port selection, it will avoid assigning the transmitting ports in the same group to different second devices according to the information, that is, after all the transmitting ports in the same group are allocated to one second device, avoiding the The other transmitting ports that are reported are allocated to other second devices to reduce the influence of the signals of the other second devices on the second device, and in this way, mutual interference between the multiple signals can be avoided or reduced.
  • the content of the reported measurement information specified in the reporting mode includes the signal strength value corresponding to the strongest signal strength of the reference signal sent by each transmitting port in each transmitting port group of the first device.
  • the content of the reported measurement information specified in the reporting mode may further include that the second device receives the signal in the reference signal sent by each of the transmitting ports of the first device. The strongest signal strength value.
  • the identifier of the transmitting port corresponding to the signal strength value with the strongest signal strength among the reference signals sent by each transmitting port in each transmitting port group of the first device is received by the second device. And the identifier of the other transmitting port in the transmitting port group where the transmitting port corresponding to the strongest signal strength value is located.
  • the first device When the first device performs port selection, it will avoid assigning the transmitting ports in the same group to different second devices according to the information, that is, after all the transmitting ports in the same group are allocated to one second device, avoiding the The other transmitting ports are allocated to the other second devices to reduce the influence of the signals of the other second devices on the one second device, and in this way, mutual interference between the plurality of signals can be avoided or reduced.
  • the first device can select a series of transmission ports that are different from the transmission ports in different transmission port groups for dynamic transmission, and the like, which is beneficial to robust transmission, according to the requirements of the system. It is possible to avoid or reduce mutual interference between multiple signals.
  • the first device determines at least one set of transmit ports.
  • the first device determines, according to the measurement information sent by each of the plurality of second devices, the at least one transmit port set that performs downlink transmission with the multiple second devices at the same time.
  • the number of the transmit ports included in each of the at least one transmit port set is equal to the number of the multiple second devices, and one transmit port corresponds to a second device.
  • the at least one transmit port set is at least one of the plurality of transmit port sets having better system performance.
  • the second device corresponding to the at least one transmitting port set receives the downlink data of the corresponding transmitting port in the transmitting port set by the corresponding receiving port, and the signal quality is better, and the downlink data sent by each transmitting port is between Less interference.
  • the communication system includes two second devices, namely, a second device A and a second device B, each of which has four receiving ports.
  • the first device such as a network device, has a total of eight transmit ports.
  • the first device first transmits a reference signal through eight transmit ports.
  • the second device will scan its own receiving port for each transmitting port, and perform measurement according to the above situation to obtain measurement information and store it.
  • the first device sends an indication message to the second device, where the reporting mode of the second device is specified.
  • the second device reports the measurement information according to the situation 1, for example, the second device A may perform grouping according to the grouping manner in FIG.
  • the measurement information reported by the second device A may be the identifiers of the three transmit ports corresponding to the first three optimal reference signal strength values, and the three optimal receive regions corresponding to the first three optimal reference signal strength values.
  • the identifiers of the corresponding three transmit port groups, specifically, the measurement information reported by the second device A may be as follows:
  • the first preferred transmitting port is the transmitting port 1, and the transmitting port group A;
  • the second best transmitting port is the transmitting port 4, the transmitting port group A;
  • the third preferred transmitting port is the transmitting port 3 and the transmitting port group D.
  • the information reported by the second device B may be:
  • the first preferred transmit port is 4, the transmit port group A;
  • the information about the transmit port group corresponding to the transmit port may further include: before the second device receives the reference signal strength of the reference signal sent by each transmit port of the first device.
  • the measurement information reported by the second device A may be the following:
  • the first preferred transmitting port is the transmitting port 1, the RSRP is -40, and the transmitting port group A;
  • the second best transmitting port is the transmitting port 4, the RSRP is -50, and the transmitting port group A;
  • the third preferred transmit port is transmit port 3, which has an RSRP of -55 and a transmit port group D.
  • the information reported by the second device B may be the following:
  • the first preferred transmit port is 4, its RSRP is -40, and the transmit port group A;
  • the third best transmitting port 7, the RSRP is -60, the transmitting port group B;
  • the first device makes a reasonable plan according to the reported information, and selects an optimal transmit port combination that can simultaneously serve the second device A and the second device B. For example, in this embodiment, after obtaining the information, the first device assumes that the second device A is served by the transmitting port 1, and based on this assumption, selects a transmitting port for the second device B: if the first device selects the second device B to report The optimal transmitting port 4 serves the second device B, and the port may cause great interference to the second device A, because the first device knows that when it uses the port 1 to serve the second device A, A will use the transmitting device.
  • the receiving area A corresponding to the port group A is received, and according to the second information reported by the second device A, A can also receive the interference of the port 4 well in the receiving area A, so the first device cannot be the second device.
  • Device B is configured to receive port 4. If the first device configures the transmitting port 3 for the second device B, it is found that the receiving region A is working, and the receiving region corresponding to the transmitting port 3 is the receiving region D, therefore, the transmitting is performed by referring to the reported measurement information of the second device A. Port 3 can transmit downlink data for the second device B. Configuring Transmit Port 3 for B is a good choice. However, in the conventional scheme, since the transmitting port 3 is still in the set of several strongest transmitting ports reported by A, the conventional scheme is based on The information provided does not yield an optimal solution such as "Configuring Transmit Port 3 for Second Device B.”
  • the second device can be directly served by using different transmit ports in the determined set of transmit ports. For example, the first device can simultaneously transmit the port 1 and the transmit port 3 to the second device A at the same time. And the second device B transmits downlink data. After receiving the transmitting port and determining the transmitting port number, the second device selects the receiving port corresponding to the transmitting port to receive according to the previous measurement result.
  • the information about the transmitting port group corresponding to the transmitting port may further include other transmissions except the N optimal receiving areas in the transmitting port group corresponding to the N transmitting ports.
  • the ID of the port group may further include other transmissions except the N optimal receiving areas in the transmitting port group corresponding to the N transmitting ports.
  • the transmitting port group corresponding to the transmitting port corresponding to the optimal reference signal strength value may be fed back, and the N transmitting port groups are removed.
  • the identity of the other transmit port group may be fed back, and the N transmitting port groups are removed.
  • the measurement information reported by the second device A may be as follows:
  • the first preferred transmitting port is a transmitting port 1, a transmitting port group A, and a transmitting port group D;
  • the second best transmitting port is the transmitting port 4, the transmitting port group A;
  • the third preferred transmitting port is the transmitting port 3 and the transmitting port group D.
  • the measurement information reported by the second device B can be determined according to this rule, and will not be described in detail herein.
  • the first device determines the set of the transmit port, according to the foregoing process, it is also considered to avoid allocating the transmit port in the transmit port group corresponding to the second device A to the other second device, so as to reduce the other second.
  • the device signal corresponds to the interference of the second device A.
  • the specific process of the first device determining the transmit port set is not described here.
  • the identifiers of the N transmit ports corresponding to the first N optimal reference signal strength values in the optimal reference signal strength of the reference signal sent by the respective transmit ports of the first device are fed back.
  • the identifiers of the N transmit port groups corresponding to the N optimal receive regions corresponding to the N optimal reference signal strength values, and the first device avoids being used as a second device according to the information when performing port selection.
  • the transmitting port of the second device configuration falls within the receiving area corresponding to the better transmitting port group of the second device, thereby preventing or reducing mutual interference between the multiple signals.
  • the communication system includes two second devices, namely, a second device A and a second device B, each of which has four receiving ports.
  • the first device such as a network device, has a total of eight transmit ports.
  • the first device first transmits a reference signal through eight transmit ports.
  • the second device will scan its own receiving port for each transmitting port, and perform measurement according to the above situation to obtain measurement information and store it.
  • the first device sends an indication message to the second device, where the reporting mode of the second device is specified.
  • the second device reports the measurement information according to the second case.
  • the second device A may perform grouping according to the grouping manner in FIG.
  • the measurement information reported by the second device A may be the identifiers of the 3 and 2 transmit ports corresponding to the first 3 optimal and the last 2 worst reference signal strength values, and the first 2 best and the last 3
  • the measurement information reported by the second device A may be as follows:
  • the first preferred transmitting port is the transmitting port 1, and the transmitting port group A;
  • the second best transmitting port is the transmitting port 4, the transmitting port group A;
  • the third preferred transmitting port is the transmitting port 3 and the transmitting port group D.
  • the second difference transmitting port is a transmitting port 5, and a transmitting port group B;
  • the first difference transmitting port is a transmitting port 6, and the transmitting port group C;
  • the information reported by the second device B may be:
  • the first preferred transmit port is 4, the transmit port group A;
  • the second difference transmitting port is a transmitting port 5, and a transmitting port group B;
  • the first difference transmitting port is the transmitting port 2, and the transmitting port group A;
  • the information about the transmitting port group corresponding to the transmitting port may further include: before the second device receives the optimal reference signal strength of the reference signal sent by each transmitting port of the first device. M optimal and last K worst reference signal strength values.
  • the corresponding reference signal strength value may be added on the basis of the information reported above, and details are not described herein again to avoid repetition.
  • the method for determining the transmitting port by the first device is similar to that of the first device.
  • the difference is that in the second case, when the first device determines the transmitting port, the optimal transmitting port of the second device A can be compared with the other second device. Poor send port group.
  • the signal of the second device A can reduce the impact on other second devices.
  • the second device can be directly served by using different transmit ports in the determined set of transmit ports. For example, the first device can simultaneously transmit the port 1 and the transmit port 3 to the second device A at the same time. And the second device B transmits downlink data. After receiving the transmitting port and determining the transmitting port number, the second device selects the receiving port corresponding to the transmitting port to receive according to the previous measurement result.
  • M sums corresponding to the first M optimal and the last K worst reference signal strength values in the optimal reference signal strength of the reference signal transmitted by each transmitting port of the first device are fed back.
  • the optimal transmit port corresponding to the second device corresponds to the poor transmit port group of the other second device, so as to reduce the influence of the signal of the second device on the other second device, thereby avoiding or reducing the relationship between the multiple signals in this manner. Interfere with each other.
  • the communication system includes two second devices, namely, a second device A and a second device B, each of which has four receiving ports.
  • the first device such as a network device, has a total of eight transmit ports.
  • the first device first transmits a reference signal through eight transmit ports.
  • the second device will scan its own receiving port for each transmitting port, and perform measurement according to the above situation to obtain measurement information and store it.
  • the first device sends an indication message to the second device, where the reporting mode of the second device is specified.
  • the second device reports the measurement information according to the second case.
  • the second device A may perform grouping according to the grouping manner in FIG.
  • the measurement information reported by the second device A may be the first two optimal reference signal strength values among the signal strengths of the reference signals sent by the respective transmit ports in each transmit port group of the first device. Transmit port identification.
  • the measurement information reported by the second device A may be the following content:
  • Sending port group A the corresponding first best transmitting port is transmitting port 1 and transmitting port 2;
  • Sending port group B the corresponding first preferred transmitting port is transmitting port 3 and transmitting port 1;
  • Sending port group C the corresponding first preferred transmitting port is transmitting port 5 and transmitting port 7;
  • Sending port group D the corresponding first preferred transmitting port is the transmitting port 6;
  • the information reported by the second device B may be:
  • Sending port group A corresponding first preferred transmitting port is transmitting port 2 and transmitting port 4;
  • Sending port group B the corresponding first preferred transmitting port is transmitting port 3 and transmitting port 1;
  • Transmitting port group C corresponding first preferred transmitting port is transmitting port 7 and transmitting port 5;
  • Sending port group D the corresponding first preferred transmitting port is the transmitting port 6;
  • the information about the transmit port group corresponding to the transmit port in the third case may further include that the second device receives the signal strength in the reference signal sent by each transmit port in each transmit port group of the first device.
  • the information of the transmitting port group may be added with the corresponding reference signal strength value based on the information reported above, and details are not described herein again to avoid repetition.
  • the first device makes a reasonable plan according to the reported information, and selects an optimal transmit port combination that can simultaneously serve the second device A and the second device B. For example, in this embodiment, after obtaining the information, the first device assumes that the second device A is served by the transmitting port 1, and based on this assumption, selects a transmitting port for the second device B: if the first device selects the second device B to report The optimal transmitting port 2 serves the second device B, and the port 2 may cause great interference to the second device A, because the first device knows that when it uses the port 1 to serve the second device A, the A device is connected.
  • the receiving area A corresponding to the transmitting port group A is received, and according to the first information reported by the second device A, A can also receive the interference of the port 2 well in the receiving area A, so the first device cannot be the first
  • the second device B is configured to receive port 2. If the first device configures the transmitting port 3 for the second device B, it is found by referring to the reported measurement information of the second device A that if A uses the receiving area A to work, the transmitting port 3 does not affect the receiving area A, however, For the second device B, the transmitting port 1 of the serving second device A also falls in the transmitting port group B of the second device B. Therefore, configuring the transmitting port 3 for the first device B may also have a large interference. So we found that configuring the transmit port 7 for the second device B is a good choice. Therefore, the transmitting port 7 can transmit downlink data for the second device B. Configuring transmit port 7 for B is a good choice.
  • the second device can be directly served by using different transmit ports in the determined set of transmit ports. For example, the first device can simultaneously transmit the port 1 and the transmit port 7 to the second device A at the same time. And the second device B transmits downlink data. After receiving the transmitting port and determining the transmitting port number, the second device selects the receiving port corresponding to the transmitting port to receive according to the previous measurement result.
  • the second Z device receives the first Z optimal reference signal strength values in the signal strengths of the reference signals sent by the respective transmitting ports in each of the transmitting port groups of the first device by the feedback second device.
  • Z transmit port numbers When the first device performs port selection, it will avoid assigning the transmitting ports in the same group to different second devices according to the information, that is, after all the transmitting ports in the same group are allocated to one second device, avoiding the The other transmitting ports that are reported are allocated to other second devices to reduce the influence of the signals of the other second devices on the second device, for example, the sending port 1 in the same group (sending port group A) is assigned to the second device A. Afterwards, avoid The transmitting port 2 is allocated to the second device B to reduce the influence of the signal of the second device B on the second device A, and in this way, mutual interference between the plurality of signals can be avoided or reduced.
  • the communication system includes two second devices, namely, a second device A and a second device B, each of which has four receiving ports.
  • the first device such as a network device, has a total of eight transmit ports.
  • the first device first transmits a reference signal through eight transmit ports.
  • the second device will scan its own receiving port for each transmitting port, and perform measurement according to the above situation to obtain measurement information and store it.
  • the first device sends an indication message to the second device, where the reporting mode of the second device is specified.
  • the second device reports the measurement information according to the second case.
  • the second device A may perform grouping according to the grouping manner in FIG.
  • the measurement information reported by the second device A may be a transmit port identifier corresponding to an optimal reference signal strength value in a signal strength of a reference signal sent by each transmit port in each transmit port group of the first device. And the identity of the other transmit ports in each of the transmit port groups.
  • the measurement information reported by the second device A may be the following content:
  • Sending port group A the corresponding first best transmitting port is transmitting port 1, and the other transmitting ports are identified as transmitting port 2 and transmitting port 4;
  • Sending port group B the corresponding first best transmitting port is transmitting port 3, and the identifiers of other transmitting ports are transmitting port 1;
  • Sending port group C the corresponding first best transmitting port is transmitting port 5, and the identifiers of other transmitting ports are transmitting port 7 and transmitting port 8;
  • Sending port group D the corresponding first preferred transmitting port is the transmitting port 6;
  • the information reported by the second device B may be:
  • Sending port group A the corresponding first best transmitting port is transmitting port 2, and the identifiers of other transmitting ports are transmitting port 4 and transmitting port 1;
  • Sending port group B the corresponding first best transmitting port is transmitting port 3, and the identifiers of other transmitting ports are transmitting port 1;
  • Sending port group C the corresponding first best transmitting port is transmitting port 7, and the identifiers of other transmitting ports are transmitting port 5 and transmitting port 8;
  • Sending port group D the corresponding first preferred transmitting port is the transmitting port 6;
  • the information of the transmitting port group corresponding to the transmitting port in the fourth case may further include that the second device receives the signal strength of the reference signal sent by each transmitting port in each transmitting port group of the first device. Strong signal strength value.
  • the information of the transmitting port group may be added with the corresponding reference signal strength value based on the information reported above, and details are not described herein again to avoid repetition.
  • the first device makes a reasonable plan according to the reported information, and selects an optimal transmit port combination that can simultaneously serve the second device A and the second device B. For example, in this embodiment, after obtaining the information, the first device assumes that the second device A is served by the transmitting port 1, and based on this assumption, selects a transmitting port for the second device B: if the first device selects the second device B to report The optimal transmitting port 2 serves the second device B, and the port 2 may cause great interference to the second device A, because the first device knows that when it uses the port 1 to serve the second device A, the A device is connected. The receiving area A corresponding to the transmitting port group A is received, and according to the first information reported by the second device A, A is receiving.
  • the interference of port 2 is also well received in area A, so the first device cannot configure the receiving port 2 for the second device B. If the first device configures the transmission port 3 for the second device B, it is found that the measurement information reported by the second device A is that if the A uses the receiving area A, the transmitting port 3 does not affect the receiving area A, and therefore, the transmitting Port 3 can transmit downlink data for the second device B.
  • the second device can be directly served by using different transmit ports in the determined set of transmit ports. For example, the first device can simultaneously transmit the port 1 and the transmit port 3 to the second device A at the same time. And the second device B transmits downlink data. After receiving the transmitting port and determining the transmitting port number, the second device selects the receiving port corresponding to the transmitting port to receive according to the previous measurement result.
  • the identifier of the transmitting port corresponding to the signal strength value with the strongest signal strength among the reference signals sent by each transmitting port in each transmitting port group of the first device is received by the second device. And the identifier of the other transmitting port in the transmitting port group where the transmitting port corresponding to the strongest signal strength value is located.
  • the first device When the first device performs port selection, it will avoid assigning the transmitting ports in the same group to different second devices according to the information, that is, after all the transmitting ports in the same group are allocated to one second device, avoiding the The other transmitting ports are allocated to the other second devices to reduce the influence of the signals of the other second devices on the one second device, and in this way, mutual interference between the plurality of signals can be avoided or reduced.
  • the first device can select a series of transmission ports that are different from the transmission ports in different transmission port groups for dynamic transmission, and the like, which is beneficial to robust transmission, according to the requirements of the system. It is possible to avoid or reduce mutual interference between multiple signals.
  • the data may be transmitted by using any one of the at least one transmit port set.
  • the at least one transmit port set includes at least two transmit port sets, and the method may further include:
  • the first device performs transmission of a second signal with the plurality of second devices according to each of the at least two transmit port sets of the set of transmit ports,
  • the first device determines, according to the strength value of the second signal, a set of one of the at least two transmit ports from which the system performance is the best, and performs downlink transmission with the multiple second devices.
  • the first device may perform downlink transmission with the plurality of second devices by using a signal to noise ratio from the set of at least two transmit ports to determine a set of the best performance of the system.
  • the first device sends the second reference signal to the multiple second devices by using each of the at least two transmit port sets of the set of transmit ports;
  • the reference signal strength ratio sent by the second device includes the second device a ratio of a reference signal strength value received by a receiving port to an intensity value of the second reference signal sent by the first receiving port to the other transmitting port of the respective transmitting port set except the transmitting port corresponding to the second device ;
  • the aggregation performs downlink transmission with the plurality of second devices.
  • the first device determines, according to the value of the signal-to-noise ratio, the downlink transmission of the one of the at least two transmission port sets that is the best performance of the system, and performs downlink transmission with the multiple second devices.
  • the system performance can be the sum of the estimated rates of all served UEs.
  • the first device may perform downlink transmission with the multiple second devices by determining, by means of reciprocity of the uplink and downlink signals, a set of one of the at least two transmit ports that determines the best performance of the system.
  • the first device sends control signaling to the multiple second devices, where the control signaling is used to indicate that each of the plurality of second devices determines the respective first according to the at least two transmit port sets.
  • a transmitting port of the second device wherein a direction of the transmitting port of the second device is consistent with a direction of the receiving port of the second device corresponding to each set of the transmitting port;
  • the first device receives, by using the receiving ports of the first device, an uplink reference signal sent by each of the plurality of second devices by using a transmitting port of the respective device, where a direction of the receiving port of the first device is Consistent with the direction of the transmitting port in each set of transmitting ports of the first device;
  • the port set performs downlink transmission with the plurality of second devices.
  • the first device determines, according to the value of the signal-to-noise ratio, the downlink transmission of the one of the at least two transmission port sets that is the best performance of the system, and performs downlink transmission with the multiple second devices.
  • the system performance can be the sum of the estimated rates of all served UEs.
  • the first device of the embodiment of the present application will be described below with reference to FIG. 5 and FIG. 7, and the second device of the embodiment of the present application will be described with reference to FIG. 6 and FIG.
  • the first device in the embodiment of the present application may be a network device, and the second device may be a terminal device.
  • the first device and the second device may also be network devices.
  • the first device and the second device may also be terminal devices.
  • the embodiment of the present application is not limited thereto.
  • FIG. 5 shows a schematic block diagram of a first device 500 according to an embodiment of the present application. Specifically, as shown in FIG. 5, the first device 500 includes:
  • the first sending unit 510 is configured to send the indication information to the second device, where the indication information is used to indicate a reporting mode, where the content of the measurement information reported by the second device is specified in the reporting mode;
  • the receiving unit 520 is configured to receive the measurement information that is sent by the second device, where the measurement information includes a measurement result, where the measurement result is obtained by the second device according to the reference signal sent by the first device, where the reference signal is And transmitting, by the transmitting port of the first device, the measurement information includes information about a transmitting port group corresponding to the transmitting port, where the transmitting port group corresponding to the transmitting port is determined by the receiving information of the second device.
  • the embodiment of the present application can configure the reporting mode of the second device and report the content of the measurement information by using the first device, so that appropriate feedback information can be obtained, and the transmission resources allocated to different second devices can be reasonably planned, and multiple resources are reduced. Interference.
  • the indication information is sent by the first device (for example, the network device), indicating the second
  • the measurement information determined by the receiving area of the second device fed back by the device (for example, the terminal device) may further determine, according to the measurement information, a set of transmission ports of the downlink transmission. That is, in the embodiment of the present application, the first device may determine, according to the measurement information determined by the received information, multiple transmit ports that send data, and considering the influence of the receive port on the MU-MIMO signal, the first device selects an appropriate one.
  • the transmit port simultaneously performs signal transmission, which can avoid or reduce mutual interference between multiple signals.
  • the received information of the second device includes information about a receiving area of the second device
  • one transmitting port group corresponds to a receiving area of the second device, and each of the one transmitting port group sends the reference signal, where each of the at least one receiving port detected by the receiving port exists
  • the energy value of the reference signal sent by the transmitting port is greater than or equal to a preset threshold, and the receiving area is determined by the second device according to a logical grouping rule.
  • the first device further includes:
  • a first sending unit configured to send, to the second device, rule indication information, where the rule indication information is used to indicate the logical grouping rule
  • the logical grouping rule includes: receiving the second device according to the receiving port of the second device, the angle of arrival corresponding to the transmitting port, the weight of the receiving antenna of the second device, and the receiving port number of the second device.
  • the port is divided into multiple receiving areas.
  • the indication information is used to indicate a channel state information CSI process, where the reporting mode is specified in the CSI process;
  • the sending port of the first device that sends the reference signal is configured by the CSI process, and the sending port of the reference signal is located in the same transmitting port group or different transmitting port group.
  • the content of the reported measurement information specified in the reporting mode includes: before the second device receives the optimal reference signal strength of the reference signal sent by each transmitting port of the first device.
  • the information about the transmit port group corresponding to the transmit port further includes the other transmit port groups except the N transmit port groups in the transmit port group corresponding to the N transmit ports. logo.
  • the content of the reported measurement information specified in the reporting mode includes that the second device receives the optimal reference signal strength of the reference signal sent by each transmitting port of the first device.
  • M transmit ports corresponding to the M and K transmit ports corresponding to the first M optimal and the last K worst reference signal strength values, and M transmit ports corresponding to the first M optimal and the last K worst reference signal strength values The identifier of the group and the identifier of the K transmit port groups, wherein one transmit port corresponds to an optimal receive region packet number and an optimal reference signal strength value.
  • the content of the reported measurement information specified in the reporting mode includes that the second device receives a signal in a reference signal sent by each transmitting port in each transmitting port group of the first device.
  • the content of the reported measurement information specified in the reporting mode includes that the second device receives a signal in a reference signal sent by each transmitting port in each transmitting port group of the first device.
  • the first device further includes:
  • a first determining unit configured to determine, according to measurement information sent by each of the plurality of second devices, at least one transmit port set that performs downlink transmission with the multiple second devices, where the at least one transmit port set is The number of transmit ports included in each transmit port set is equal to the number of the plurality of second devices, and one transmit port corresponds to a second device.
  • the at least one transmit port set includes at least two transmit port sets
  • the first device further includes:
  • a communication unit configured to perform transmission of a second signal with the plurality of second devices according to each of the at least two transmit port sets
  • a second determining unit configured to determine, according to the strength value of the second signal, a set of one of the at least two transmit ports from which the system performance is the best, and perform downlink transmission with the multiple second devices.
  • the first device 500 shown in FIG. 5 can implement various processes related to the first device in the method embodiment of FIG. 2.
  • the operations and/or functions of the various modules in the first device 500 are respectively implemented in order to implement the corresponding processes in the method embodiment in FIG. 2.
  • the detailed description is omitted here.
  • the embodiment of the present application can configure the reporting mode of the second device and report the content of the measurement information by using the first device, so that appropriate feedback information can be obtained, and the transmission resources allocated to different second devices can be reasonably planned, and multiple resources are reduced. Interference.
  • the first device for example, the network device
  • the second device for example, the terminal device
  • the first device sends the indication information
  • the second device for example, the terminal device
  • the first device feeds back the measurement information determined by the receiving area of the second device, where the first device is further
  • a set of transmission ports of the downlink transmission may be determined according to the measurement information. That is, in the embodiment of the present application, the first device may determine, according to the measurement information determined by the received information, multiple transmit ports that send data, and considering the influence of the receive port on the MU-MIMO signal, the first device selects an appropriate one.
  • the transmit port simultaneously performs signal transmission, which can avoid or reduce mutual interference between multiple signals.
  • FIG. 6 shows a schematic block diagram of a second device 600 in accordance with an embodiment of the present application. Specifically, as shown in FIG. 6, the second device 600 includes:
  • the first receiving unit 610 is configured to receive the indication information that is sent by the first device, where the indication information is used to indicate a reporting mode, where the content of the measurement information reported by the second device is specified in the reporting mode;
  • the sending unit 620 is configured to send the measurement information to the first device, where the first device receives the measurement information sent by the second device, where the measurement information includes a measurement result, where the measurement result is that the second device is configured according to the Obtained by a reference signal sent by a device, the reference signal is sent by a transmitting port of the first device, and the measurement information includes information about a transmitting port group corresponding to the transmitting port, where the transmitting port corresponds to the transmitting The port group is determined by the received information of the second device.
  • the embodiment of the present application can configure the reporting mode of the second device and report the content of the measurement information by using the first device, so that appropriate feedback information can be obtained, and the transmission resources allocated to different second devices can be reasonably planned, and multiple resources are reduced. Interference.
  • the first device (for example, the network device) sends the indication information
  • the second device (for example, the terminal device) feeds back the measurement information determined by the receiving area of the second device, where the first device is further
  • a set of transmission ports of the downlink transmission may be determined according to the measurement information. That is, in the embodiment of the present application, the first device may determine, according to the measurement information determined by the received information, multiple transmit ports that send data, in consideration of the receive port pair. Under the influence of the MU-MIMO signal, the first device selects a suitable transmitting port for signal transmission at the same time, which can avoid or reduce mutual interference between multiple signals.
  • the received information of the second device includes information about a receiving area of the second device
  • one transmitting port group corresponds to a receiving area of the second device, and the energy value of the reference signal sent by each of the one transmitting port group detected by the at least one receiving port exists in the one receiving area
  • the receiving area is greater than or equal to the preset threshold, and the receiving area is determined by the second device according to a logical grouping rule.
  • the second device further includes:
  • a second receiving unit configured to receive rule indication information sent by the first device, where the rule indication information is used to indicate the logical grouping rule
  • the logical grouping rule includes: receiving the second device according to the receiving port of the second device, the angle of arrival corresponding to the transmitting port, the weight of the receiving antenna of the second device, and the receiving port number of the second device.
  • the port is divided into multiple receiving areas.
  • the indication information is used to indicate a channel state information CSI process, where the reporting mode is specified in the CSI process;
  • the sending port of the first device that sends the reference signal is configured by the CSI process, and the sending port of the reference signal is located in the same transmitting port group or different transmitting port group.
  • the information about the transmit port group corresponding to the transmit port includes the first N of the optimal reference signal strengths of the reference signals sent by the second device receiving the transmit ports of the first device.
  • the information about the transmit port group corresponding to the transmit port further includes the other transmit port groups except the N transmit port groups in the transmit port group corresponding to the N transmit ports. logo.
  • the information about the transmit port group corresponding to the transmit port includes the former of the optimal reference signal strength of the reference signal sent by the second device received by the respective transmit port of the first device.
  • M transmit port groups corresponding to the M and K transmit ports corresponding to the M best and the last K worst reference signal strength values, the first M best and the last K worst reference signal strength values The identifier and the identification of the K transmit port groups, wherein one transmit port corresponds to an optimal receive region packet number and an optimal reference signal strength value.
  • the information about the transmit port group corresponding to the transmit port includes the signal strength of the reference signal sent by each of the transmit ports of the second device received by the second device.
  • the information about the transmit port group corresponding to the transmit port includes the signal strength of the reference signal sent by each of the transmit ports of the second device received by the second device.
  • the measurement information sent by the second device is used by the first device to determine at least one transmit port set that performs downlink transmission simultaneously with multiple second devices, where the at least one transmit port The number of transmit ports included in each transmit port set in the set is equal to the number of the plurality of second devices, and one transmit port corresponds to a second device.
  • the at least one transmit port set includes at least two transmit port sets
  • the second device further includes:
  • a determining unit configured to perform a second signal transmission with the first device, to trigger the first device to determine a system performance from the at least two transmit port sets according to the strength value of the second signal
  • a set of transmit ports performs downlink transmission with the plurality of second devices.
  • the second device 600 shown in FIG. 6 can implement various processes related to the second device in the method embodiment of FIG. 2.
  • the operations and/or functions of the various modules in the second device 600 are respectively implemented in order to implement the corresponding processes in the method embodiment in FIG. 2.
  • the detailed description is omitted here.
  • the embodiment of the present application can configure the reporting mode of the second device and report the content of the measurement information by using the first device, so that appropriate feedback information can be obtained, and the transmission resources allocated to different second devices can be reasonably planned, and multiple resources are reduced. Interference.
  • the first device for example, the network device
  • the second device for example, the terminal device
  • the first device sends the indication information
  • the second device for example, the terminal device
  • the first device feeds back the measurement information determined by the receiving area of the second device, where the first device is further
  • a set of transmission ports of the downlink transmission may be determined according to the measurement information. That is, in the embodiment of the present application, the first device may determine, according to the measurement information determined by the received information, multiple transmit ports that send data, and considering the influence of the receive port on the MU-MIMO signal, the first device selects an appropriate one.
  • the transmit port simultaneously performs signal transmission, which can avoid or reduce mutual interference between multiple signals.
  • FIG. 7 shows a schematic block diagram of a first device 700 in accordance with an embodiment of the present application.
  • the first device 700 includes a processor 710 and a transceiver 720.
  • the processor 710 is connected to the transceiver 720.
  • the first device 700 further includes a memory 730, and the memory 730 is The processor 710 is connected.
  • the first device 700 may further include a bus system 740.
  • the processor 710, the memory 730, and the transceiver 720 can be connected by a bus system 740.
  • the memory 730 can be used to store instructions for executing the instructions stored in the memory 730 to control the transceiver 720 to send or receive information. signal.
  • the processor 710 controls the transceiver 720 to be used to send the indication information to the second device, where the indication information is used to indicate a reporting mode, where the content of the measurement information reported by the second device is specified;
  • the measurement information sent by the second device includes a measurement result obtained by the second device according to the reference signal sent by the first device, where the reference signal is sent by the transmitting port of the first device.
  • the measurement information includes information about a transmit port group corresponding to the transmit port, where the transmit port group corresponding to the transmit port is determined by the received information of the second device.
  • the embodiment of the present application can configure the reporting mode of the second device and report the content of the measurement information by using the first device, so that appropriate feedback information can be obtained, and the transmission resources allocated to different second devices can be reasonably planned, and multiple resources are reduced. Interference.
  • the first device for example, the network device
  • the second device for example, the terminal device
  • the first device sends the indication information
  • the second device for example, the terminal device
  • the first device feeds back the measurement information determined by the receiving area of the second device, where the first device is further
  • a set of transmission ports of the downlink transmission may be determined according to the measurement information. That is, in the embodiment of the present application, the first device may determine, according to the measurement information determined by the received information, multiple transmit ports that send data, and considering the influence of the receive port on the MU-MIMO signal, the first device selects an appropriate one.
  • the transmit port simultaneously performs signal transmission, which can avoid or reduce mutual interference between multiple signals.
  • the processor 710 may be a central processing unit (Central Processing Unit, abbreviated as "CPU"), the processor 710 can also be other general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), off-the-shelf programmable gate arrays (FPGAs), or other programmable logic devices. , discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 730 can include read only memory and random access memory and provides instructions and data to the processor 710. A portion of the memory 730 may also include a non-volatile random access memory. For example, the memory 730 can also store information of the device type.
  • the bus system 740 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 740 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 710 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in memory 730, and processor 710 reads the information in memory 730 and, in conjunction with its hardware, performs the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the received information of the second device includes information about a receiving area of the second device
  • one transmitting port group corresponds to a receiving area of the second device, and each of the one transmitting port group sends the reference signal, where each of the at least one receiving port detected by the receiving port exists
  • the energy value of the reference signal sent by the transmitting port is greater than or equal to a preset threshold, and the receiving area is determined by the second device according to a logical grouping rule.
  • the transceiver 720 is further configured to send, to the second device, rule indication information, where the rule indication information is used to indicate the logical grouping rule;
  • the logical grouping rule includes: receiving the second device according to the receiving port of the second device, the angle of arrival corresponding to the transmitting port, the weight of the receiving antenna of the second device, and the receiving port number of the second device.
  • the port is divided into multiple receiving areas.
  • the indication information is used to indicate a channel state information CSI process, where the reporting mode is specified in the CSI process;
  • the sending port of the first device that sends the reference signal is configured by the CSI process, and the sending port of the reference signal is located in the same transmitting port group or different transmitting port group.
  • the content of the reported measurement information specified in the reporting mode includes: before the second device receives the optimal reference signal strength of the reference signal sent by each transmitting port of the first device.
  • the content of the reported measurement information specified in the reporting mode further includes: a transmit port group corresponding to the N transmit ports, except for the N transmit port groups. The identity of the group.
  • the content of the reported measurement information specified in the reporting mode includes that the second device receives the optimal reference signal strength of the reference signal sent by each transmitting port of the first device.
  • the identifiers of the M and K transmit ports corresponding to the first M optimal and the last K worst reference signal strength values, and the first M most The identifiers of the M transmit port groups corresponding to the K worst reference signal strength values and the identifiers of the K transmit port groups, wherein one transmit port corresponds to an optimal receive region packet number and an optimal reference signal strength value .
  • the content of the reported measurement information specified in the reporting mode includes that the second device receives a signal in a reference signal sent by each transmitting port in each transmitting port group of the first device.
  • the content of the reported measurement information specified in the reporting mode includes that the second device receives a signal in a reference signal sent by each transmitting port in each transmitting port group of the first device.
  • the processor 710 is further configured to determine, according to the measurement information sent by each of the plurality of second devices, the at least one transmit port set that performs downlink transmission with the multiple second devices at the same time.
  • the number of the transmit ports included in each of the at least one transmit port set is equal to the number of the plurality of second devices, and one transmit port corresponds to a second device.
  • the at least one transmit port set includes at least two transmit port sets
  • the processor 710 is further configured to perform, according to each transmit port in each of the at least two transmit port sets. Transmitting a second signal with the plurality of second devices; and determining, according to the intensity value of the second signal, a set of one of the best performing system performances from the at least two sets of transmit ports The second device performs downlink transmission.
  • the first device 700 shown in FIG. 7 can implement various processes related to the first device in the method embodiment of FIG. 2.
  • the operations and/or functions of the various modules in the first device 700 are respectively implemented in order to implement the corresponding processes in the method embodiment in FIG. 2.
  • the detailed description is omitted here.
  • the embodiment of the present application can configure the reporting mode of the second device and report the content of the measurement information by using the first device, so that appropriate feedback information can be obtained, and the transmission resources allocated to different second devices can be reasonably planned, and multiple resources are reduced. Interference.
  • the first device for example, the network device
  • the second device for example, the terminal device
  • the first device sends the indication information
  • the second device for example, the terminal device
  • the first device feeds back the measurement information determined by the receiving area of the second device, where the first device is further
  • a set of transmission ports of the downlink transmission may be determined according to the measurement information. That is, in the embodiment of the present application, the first device may determine, according to the measurement information determined by the received information, multiple transmit ports that send data, and considering the influence of the receive port on the MU-MIMO signal, the first device selects an appropriate one.
  • the transmit port simultaneously performs signal transmission, which can avoid or reduce mutual interference between multiple signals.
  • FIG. 8 shows a schematic block diagram of a second device 800 in accordance with an embodiment of the present application.
  • the second device 800 includes a processor 810 and a transceiver 820.
  • the processor 810 is connected to the transceiver 820.
  • the second device 800 further includes a memory 830, and the memory 830 is The processor 810 is coupled.
  • the second device 800 can also include a bus system 840.
  • the processor 810, the memory 830, and the transceiver 820 can be connected by a bus system 840.
  • the memory 830 can be used to store instructions for executing the instructions stored in the memory 830 to control the transceiver 820 to send and receive information or signal.
  • the controller 810 controls the transceiver 820 to receive the indication information sent by the first device, where the indication information is used to indicate a reporting mode, where the content of the measurement information reported by the second device is specified in the reporting mode; and the first The device sends the measurement information, and the first device receives the measurement information sent by the second device, where the measurement information includes The measurement result is obtained by the second device according to the reference signal sent by the first device, where the reference signal is sent by the transmitting port of the first device, and the measurement information includes a transmitting port corresponding to the transmitting port.
  • the information of the group, wherein the transmitting port group corresponding to the transmitting port is determined by the receiving information of the second device.
  • the embodiment of the present application can configure the reporting mode of the second device and report the content of the measurement information by using the first device, so that appropriate feedback information can be obtained, and the transmission resources allocated to different second devices can be reasonably planned, and multiple resources are reduced. Interference.
  • the first device for example, the network device
  • the second device for example, the terminal device
  • the first device sends the indication information
  • the second device for example, the terminal device
  • the first device feeds back the measurement information determined by the receiving area of the second device, where the first device is further
  • a set of transmission ports of the downlink transmission may be determined according to the measurement information. That is, in the embodiment of the present application, the first device may determine, according to the measurement information determined by the received information, multiple transmit ports that send data, and considering the influence of the receive port on the MU-MIMO signal, the first device selects an appropriate one.
  • the transmit port simultaneously performs signal transmission, which can avoid or reduce mutual interference between multiple signals.
  • the processor 810 may be a central processing unit (“CPU"), and the processor 810 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 830 can include read only memory and random access memory and provides instructions and data to the processor 810. A portion of the memory 830 may also include a non-volatile random access memory. For example, the memory 830 can also store information of the device type.
  • the bus system 840 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 840 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 810 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in memory 830, and processor 810 reads the information in memory 830 and, in conjunction with its hardware, performs the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the received information of the second device includes information about a receiving area of the second device
  • one transmitting port group corresponds to a receiving area of the second device, and the energy value of the reference signal sent by each of the one transmitting port group detected by the at least one receiving port exists in the one receiving area
  • the receiving area is greater than or equal to the preset threshold, and the receiving area is determined by the second device according to a logical grouping rule.
  • the transceiver 820 is further configured to receive rule indication information sent by the first device, where the rule indication information is used to indicate the logical grouping rule;
  • the logical grouping rule includes: receiving the second device according to the receiving port of the second device, the angle of arrival corresponding to the transmitting port, the weight of the receiving antenna of the second device, and the receiving port number of the second device.
  • the port is divided into multiple receiving areas.
  • the indication information is used to indicate a channel state information CSI process, where the reporting mode is specified in the CSI process;
  • the sending port of the first device that sends the reference signal is configured by the CSI process, and the sending port of the reference signal is located in the same transmitting port group or different transmitting port group.
  • the information about the transmit port group corresponding to the transmit port includes the first N of the optimal reference signal strengths of the reference signals sent by the second device receiving the transmit ports of the first device.
  • the information about the transmit port group corresponding to the transmit port further includes the other transmit port groups except the N transmit port groups in the transmit port group corresponding to the N transmit ports. logo.
  • the information about the transmit port group corresponding to the transmit port includes the former of the optimal reference signal strength of the reference signal sent by the second device received by the respective transmit port of the first device.
  • M transmit port groups corresponding to the M and K transmit ports corresponding to the M best and the last K worst reference signal strength values, the first M best and the last K worst reference signal strength values The identifier and the identification of the K transmit port groups, wherein one transmit port corresponds to an optimal receive region packet number and an optimal reference signal strength value.
  • the information about the transmit port group corresponding to the transmit port includes the signal strength of the reference signal sent by each of the transmit ports of the second device received by the second device.
  • the information about the transmit port group corresponding to the transmit port includes the signal strength of the reference signal sent by each of the transmit ports of the second device received by the second device.
  • the measurement information sent by the second device is used by the first device to determine at least one transmit port set that performs downlink transmission simultaneously with multiple second devices, where the at least one transmit port The number of transmit ports included in each transmit port set in the set is equal to the number of the plurality of second devices, and one transmit port corresponds to a second device.
  • the at least one transmit port set includes at least two transmit port sets
  • the processor 810 is further configured to perform a second signal transmission with the first device to trigger the first And determining, by the device according to the strength value of the second signal, a set of one of the at least two transmit ports from which the system performance is the best, and performing downlink transmission with the multiple second devices.
  • the second device 800 shown in FIG. 8 can implement the various processes involved in the second device in the method embodiment of FIG. 2.
  • the operations and/or functions of the various modules in the second device 800 are respectively implemented in order to implement the corresponding processes in the method embodiment in FIG. 2.
  • the detailed description is omitted here.
  • the embodiment of the present application can configure the reporting mode of the second device and report the content of the measurement information by using the first device, so that appropriate feedback information can be obtained, and the transmission resources allocated to different second devices can be reasonably planned, and multiple resources are reduced. Interference.
  • the first device (for example, the network device) sends the indication information
  • the second device (for example, the terminal device) feeds back the measurement information determined by the receiving area of the second device, where the first device is further
  • a set of transmission ports of the downlink transmission may be determined according to the measurement information. That is, in the embodiment of the present application, the first device may determine, according to the measurement information determined by the received information, multiple transmit ports that send data, in consideration of the receive port pair. Under the influence of the MU-MIMO signal, the first device selects a suitable transmitting port for signal transmission at the same time, which can avoid or reduce mutual interference between multiple signals.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of cells is only a logical function division.
  • multiple units or components may be combined or integrated. Go to another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the present application can be implemented by hardware implementation, firmware implementation, or a combination thereof.
  • the functions described above may be stored in or transmitted as one or more instructions or code on a computer readable medium.
  • the computer readable medium includes a computer storage medium and a communication medium, wherein the communication medium includes a direction from one location to another Any medium that transfers computer programs.
  • a storage medium may be any available media that can be accessed by a computer.
  • computer readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage media or other magnetic storage device, or can be used for carrying or storing in the form of an instruction or data structure.
  • the desired program code and any other medium that can be accessed by the computer may suitably be a computer readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable , fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwave are included in the fixing of the associated media.
  • coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwave are included in the fixing of the associated media.
  • a disk and a disc include a compact disc (CD), a laser disc, a compact disc, a digital versatile disc (DVD), a floppy disc, and a Blu-ray disc, wherein the disc is usually magnetically copied, and the disc is The laser is used to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种传输信息的方法和设备,该方法包括:第一设备向第二设备发送指示信息,该指示信息用于指示上报模式,该上报模式中规定了该第二设备上报测量信息的内容;该第一设备接收该第二设备发送的该测量信息,该测量信息包括该第二设备根据该第一设备发送的参考信号所获得的测量结果,该参考信号是该第一设备的发射端口发送的,该测量信息包括该发射端口所对应的发射端口组的信息,其中,发射端口所对应的发射端口组是由该第二设备的接收信息确定的。本申请实施例通过第一设备配置第二设备的上报模式和上报测量信息的内容,从而能够得到合适的反馈信息,进而合理规划分配给不同第二设备的发射资源,降低多个资源之间的干扰。

Description

传输信息的方法和设备
本申请要求于2016年09月30日提交中国专利局、申请号为201610877461.6、申请名称为“传输信息的方法和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种传输信息的方法和设备。
背景技术
在第五代移动通信(5th-Generation,5G)系统中,仅仅利用低于6GHz频段的低频通信已经不能满足日益增长的通信需求,因此频率大于6GHz的高频通信(High Frequency,HF)越来越受到学界和业界的重视。然而由于HF信号在空间中能量衰减快,穿透能力弱,信号路损远大于低频信号,因此,需要利用天线侧的增益来补偿这一部分损失,从而保证HF系统的覆盖。此外,由于在HF场景下,信号的波长更短,天线的体积更小,大规模天线阵的多天线技术(Massive-MIMO)也更适合于应用在HF场景。利用Massive-MIMO技术,第一设备例如网络设备侧可以用数字和模拟的方式形成能量更集中的发射波束来保证系统覆盖,第二设备例如终端设备侧同样可以形成能量更集中的接收波束增加接收增益。由于第一设备侧的天线阵列能力增强,可支持的并行数据流数增多,如何利用好这些数据流也成为了提高系统性能的关键。
现有技术中,不同的第二设备会在第一设备的配置下利用相应的测量信号CSI-RS对当前信道状况进行测量。随后在第一设备的配置下反馈以下信息中的全部或部分信息:信道信息(Channel State Information,CSI)、信道质量指示(Channel Quality Indication,CQI)、预编码矩阵指示(Pre-coding Matrix Indication,PMI)和信道的层数指示(Rank Indication,RI)。第一设备侧根据不同第二设备上报的信息进行综合评估,并从中挑选出合适进行MU-MIMO的几个第二设备,并为它们配置相应的发射资源进行MU-MIMO通信。
然而,基于上述现有的方案,在进行MU-MIMO传输时,使得第一设备通过多天线能力在同时服务的多个不同第二设备的信号彼此之间干扰非常严重。
因此,如何利用第一设备的多天线能力使得同时服务的多个不同第二设备的信号之间不产生干扰、或产生很小的干扰便成为了亟待解决的问题。
发明内容
本申请实施例提出了一种传输信息的方法和设备,该方法能够用于降低多个信号之间的彼此干扰。
第一方面,提供了一种传输信息的方法,该方法包括:
该第一设备向该第二设备发送指示信息,该指示信息用于指示上报模式,该上报模式 中规定了该第二设备上报测量信息的内容;
该第一设备接收该第二设备发送的该测量信息,该测量信息包括测量结果,该测量结果是该第二设备根据该第一设备发送的参考信号所获得的,该参考信号是该第一设备的发射端口发送的,该测量信息包括该发射端口所对应的发射端口组的信息,其中,该发射端口所对应的该发射端口组是由该第二设备的接收信息确定的。
本申请实施例可以通过第一设备配置第二设备的上报模式和上报测量信息的内容,从而能够得到合适的反馈信息,进而合理的规划分配给不同第二设备的发射资源,降低多个资源之间的干扰。
具体而言,本申请实施中通过第一设备(例如,网络设备)发送指示信息,指示第二设备(例如,终端设备)反馈的由第二设备的接收区域确定的测量信息,第一设备进而可以根据该测量信息确定下行传输的发射端口集合。也就是说本申请实施例中第一设备可以根据由接收信息确定的测量信息来确定发送数据的多个发射端口,在考虑了接收端口对MU-MIMO信号的影响下,第一设备选择合适的发射端口同时进行信号传输,能够避免或者降低多个信号之间的彼此干扰。
应理解,本申请实施例中名词“发射端口”可以为逻辑上的天线端口,发射端口也可以称为发射天线端口、发射波束、发射资源、发射AOA等。
类似的,名词“接收端口”可以为逻辑上的天线端口,接收端口也可以称为接收天线端口、接收波束、接收资源、接收到达角度(Angle of Arrival,AoA)等。
应理解,本申请实施例中的上报模式可以与现有标准中的传输模式具有对应关系,换句话针对现有的每一种传输模式,本申请实施例可以具有对应的上报模式。
例如,在第一传输模式时,可以对应第一上报模式,在第二传输模式时,可以对应第二上报模式和第三上报模式等。具体地,传输模式的定义可以参考现有标准中的描述,为了简洁,此处不再赘述。
可选地,该测量信息还包括以下信息中的全部或部分:
发射端口号、接收区域分组的标识、信道质量标号CQI、信号噪声干扰比值SINR、信道层数RI和预编码矩阵编号PMI。
结合第一方面,在第一方面的一种实现方式中,该第二设备的接收信息包括该第二设备的接收区域的信息;
其中,一个发射端口组对应该第二设备的一个接收区域,该一个发射端口组中的每一个发射端口发送该参考信号,在该一个接收区域中存在至少一个接收端口所检测到的该每一个发射端口发送的该参考信号的能量值大于或等于预设阈值,该接收区域是该第二设备按照逻辑分组规则确定的。
应理解,本申请实施例中接收区域的信息可以是接收区域的标识信息,也可以指接收区域中的接收端口的标识信息,还可以是接收区域中的接收波束标识信息,还可以是是接收区域的组号或标号等,本申请实施例并不限于此。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该方法还包括:
该第一设备向该第二设备发送规则指示信息,该规则指示信息用于指示该逻辑分组规则;
其中,该逻辑分组规则包括:按照该第二设备的接收端口、该发射端口对应的到达角 度、第二设备的接收天线的权值、第二设备的的接收端口号将该第二设备的接收端口划分为多个接收区域。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该指示信息用于指示信道状态信息CSI进程,该CSI进程中规定了该上报模式;
并且,该第一设备发送该参考信号的发送端口是由该CSI进程配置的,该参考信号的发送端口位于同一发射端口组或者不同发射端口组中。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该上报模式中规定的该上报测量信息的内容,包括该第二设备接收该第一设备的各个发射端口发送的参考信号的最优参考信号强度中的前N个最优参考信号强度值所对应的N个发射端口的标识、该前N个最优参考信号强度值对应的N个最优接收区域所对应的N个发射端口组的标识,其中,一个发射端口对应一个最优接收区域和一个最优参考信号强度值。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该上报模式中规定的该上报测量信息的内容,还包括该N个发射端口所对应的发射端口组中除去该N个发射端口组之外的其他发射端口组的标识。
因此,本申请实施例中,通过反馈第一设备的各个发射端口发送的参考信号的最优参考信号强度中的前N个最优参考信号强度值所对应的N个发射端口的标识、该前N个最优参考信号强度值对应的N个最优接收区域所对应的N个发射端口组的标识,第一设备在进行端口选择时会根据这些信息避免将为一个第二设备之外的其他第二设备配置的发射端口落入到该一个第二设备的较好的发射端口组所对应的接收区域内,进而能够避免或者降低多个信号之间的彼此干扰。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该上报模式中规定的该上报测量信息的内容,包括该第二设备接收到该第一设备的各个发射端口发送的参考信号的最优参考信号强度中的前M个最优和后K个最差参考信号强度值所对应的M个和K个发射端口的标识、该前M个最优和后K个最差参考信号强度值对应的M个发射端口组的标识和K个发射端口组的标识,其中,一个发射端口对应一个最优接收区域分组号和一个最优参考信号强度值。
因此,本申请实施例中,通过反馈第一设备的各个发射端口发送的参考信号的最优参考信号强度中的前M个最优和后K个最差参考信号强度值所对应的M个和K个发射端口的标识、该前M个最优和后K个最差参考信号强度值对应的M个发射端口组的标识和K个发射端口组的标识,第一设备在进行端口选择时会根据这些信息避免将为一个第二设备之外的其他第二设备配置的发射端口落入到该一个第二设备的较好的发射端口组所对应的接收区域内,并且可以设置将第二设备自身对应的最优发射端口对应其他第二设备的较差的发送端口组,以降低该第二设备的信号对其他第二设备的影响,进而通过这种方式能够避免或者降低多个信号之间的彼此干扰。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该上报模式中规定的该上报测量信息的内容,包括该第二设备接收到该第一设备的每一发射端口组中各个发射端口发送的参考信号中信号强度中的前Z个最优参考信号强度值所对应的Z个发射端口号。
因此,本申请实施例中,通过反馈第二设备接收到该第一设备的每一发射端口组中各 个发射端口发送的参考信号中信号强度中的前Z个最优参考信号强度值所对应的Z个发射端口号。第一设备在进行端口选择时会根据这些信息避免将同一组内的发射端口分配给不同的第二设备,即将同一组内的一个发射端口分配给一个第二设备之后,避免将该组内的上报的其他发射端口分配给其他第二设备,以降低其他第二设备的信号对该一个第二设备的影响,例如即将同一组(发送端口组A)内的发送端口1分配给第二设备A之后,避免将发射端口2分配给第二设备B,以降低第二设备B的信号对第二设备A的影响,进而通过这种方式能够避免或者降低多个信号之间的彼此干扰。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该上报模式中规定的该上报测量信息的内容,包括该第二设备接收到该第一设备的每一发射端口组中各个发射端口发送的参考信号中信号强度最强的信号强度值所对应的发射端口的标识,以及该最强信号强度值所对应的发射端口所在的发射端口组中其他发射端口的标识。
因此,本申请实施例中,通过反馈该第二设备接收到该第一设备的每一发射端口组中各个发射端口发送的参考信号中信号强度最强的信号强度值所对应的发射端口的标识,以及该最强信号强度值所对应的发射端口所在的发射端口组中其他发射端口的标识。第一设备在进行端口选择时会根据这些信息避免将同一组内的发射端口分配给不同的第二设备,即将同一组内的一个发射端口分配给一个第二设备之后,避免将该组内的其他发射端口分配给其他第二设备,以降低其他第二设备的信号对该一个第二设备的影响,进而通过这种方式能够避免或者降低多个信号之间的彼此干扰。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该方法还包括:
该第一设备根据多个第二设备中各个第二设备发送的测量信息,确定同时与该多个第二设备进行下行传输的至少一个发射端口集合,其中该至少一个发射端口集合中每个发射端口集合中包括的发射端口的个数与该多个第二设备的个数相等,且一个发射端口对应一个第二设备。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该至少一个发射端口集合包括至少两个发射端口集合,该方法还包括:
该第一设备根据该至少两个发射端口集合中的各个发射端口集合中的各个发射端口进行与该多个第二设备之间的第二信号的传输,
该第一设备根据该第二信号的强度值,从该至少两个发射端口集合中确定系统性能最好的一个发射端口集合进行与该多个第二设备进行下行传输。
因此,本申请实施例中,第一设备根据信噪比的取值从该至少两个发射端口集合中确定系统性能最好的一个发射端口集合进行与该多个第二设备进行下行传输,能够提升系统性能。该系统性能可以是所有被服务UE的估计速率之和。
因此,本申请实施例中,第一设备根据信噪比的取值从该至少两个发射端口集合中确定系统性能最好的一个发射端口集合进行与该多个第二设备进行下行传输,能够提升系统性能。该系统性能可以是所有被服务UE的估计速率之和。
第二方面,提供了一种传输信息的方法,该方法包括:
第二设备接收该第一设备发送的指示信息,该指示信息用于指示上报模式,该上报模式中规定了该第二设备上报测量信息的内容;
该第二设备向该第一设备发送该测量信息,该第一设备接收该各个第二设备发送的该 测量信息,该测量信息包括测量结果,该测量结果是该第二设备根据该第一设备发送的参考信号所获得的,该参考信号是该第一设备的发射端口发送的,该测量信息包括该发射端口所对应的发射端口组的信息,其中,该发射端口所对应的该发射端口组是由该第二设备的接收信息确定的。
因此,本申请实施例可以通过第一设备配置第二设备的上报模式和上报测量信息的内容,从而能够得到合适的反馈信息,进而合理的规划分配给不同第二设备的发射资源,降低多个资源之间的干扰。
具体而言,本申请实施中通过第一设备(例如,网络设备)发送指示信息,指示第二设备(例如,终端设备)反馈的由第二设备的接收区域确定的测量信息,第一设备进而可以根据该测量信息确定下行传输的发射端口集合。也就是说本申请实施例中第一设备可以根据由接收信息确定的测量信息来确定发送数据的多个发射端口,在考虑了接收端口对MU-MIMO信号的影响下,第一设备选择合适的发射端口同时进行信号传输,能够避免或者降低多个信号之间的彼此干扰。
应理解,该第二方面与上述第一方面对应,第一方面的执行主体为第一设备,第二方面中的执行主体可以为第二设备,第二设备侧的方法的相应特征可以参见上述第一方面第一设备侧的相应描述,因此,为了简洁,适当省略详细描述。
结合第二方面,在第二方面的一种实现方式中,该第二设备的接收信息包括该第二设备的接收区域的信息;
其中,一个发射端口组对应该第二设备的一个接收区域,在该一个接收区域中存在至少一个接收端口所检测到的该一个发射端口组中的每一个发射端口发送的该参考信号的能量值大于或等于预设阈值,该接收区域是该第二设备按照逻辑分组规则确定的。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该方法还包括:
该第二设备接收该第一设备发送的规则指示信息,该规则指示信息用于指示该逻辑分组规则;
其中,该逻辑分组规则包括:按照该第二设备的接收端口、该发射端口对应的到达角度、第二设备的接收天线的权值、第二设备的的接收端口号将该第二设备的接收端口划分为多个接收区域。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该指示信息用于指示信道状态信息CSI进程,该CSI进程中规定了该上报模式;
并且,该第一设备发送该参考信号的发送端口是由该CSI进程配置的,该参考信号的发送端口位于同一发射端口组或者不同发射端口组中。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该发射端口所对应的发射端口组的信息,包括该第二设备接收该第一设备的各个发射端口发送的参考信号的最优参考信号强度中的前N个最优参考信号强度值所对应的N个发射端口的标识、该前N个最优参考信号强度值对应的N个最优接收区域所对应的N个发射端口组的标识,其中,一个发射端口对应一个最优接收区域和一个最优参考信号强度值。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该发射端口所对应的发射端口组的信息,还包括该N个发射端口所对应的发射端口组中除去该N个发射端口组之外的其他发射端口组的标识。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该发射端口所对应的发射端口组的信息,包括该第二设备接收到该第一设备的各个发射端口发送的参考信号的最优参考信号强度中的前M个最优和后K个最差参考信号强度值所对应的M个和K个发射端口的标识、该前M个最优和后K个最差参考信号强度值对应的M个发射端口组的标识和K个发射端口组的标识,其中,一个发射端口对应一个最优接收区域分组号和一个最优参考信号强度值。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该发射端口所对应的发射端口组的信息,包括该第二设备接收到该第一设备的每一发射端口组中各个发射端口发送的参考信号中信号强度中的前Z个最优参考信号强度值所对应的Z个发射端口号。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该发射端口所对应的发射端口组的信息,包括该第二设备接收到该第一设备的每一发射端口组中各个发射端口发送的参考信号中信号强度最强的信号强度值所对应的发射端口的标识,以及该最强信号强度值所对应的发射端口所在的发射端口组中其他发射端口的标识。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该第二设备发送的该测量信息,用于该第一设备确定同时与多个第二设备进行下行传输的至少一个发射端口集合,其中该至少一个发射端口集合中每个发射端口集合中包括的发射端口的个数与该多个第二设备的个数相等,且一个发射端口对应一个第二设备。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该至少一个发射端口集合包括至少两个发射端口集合,该方法还包括:
该第二设备与该第一设备之间的进行第二信号的传输,以触发该第一设备根据该第二信号的强度值,从该至少两个发射端口集合中确定系统性能最好的一个发射端口集合进行与该多个第二设备进行下行传输。
第三方面,提供了一种第一设备,用于执行上述第一方面、第一方面的任一可能的实现方式中的方法。具体地,该第一设备包括用于执行上述方法的单元。
第四方面,提供了一种第二设备,用于执行上述第二方面、第二方面的任一可能的实现方式中的方法。具体地,该第二设备包括用于执行上述方法的单元。
第五方面,提供了一种第一设备,该第一设备包括处理器和存储器,该存储器用于存储计算机程序,该处理器用于执行该存储器中存储的计算机程序,执行上述第一方面、第一方面的任一可能的实现方式中的方法。
第六方面,提供了一种第二设备,该第二设备包括处理器和存储器,该存储器用于存储计算机程序,该处理器用于执行该存储器中存储的计算机程序,执行上述第二方面、第二方面的任一可能的实现方式中的方法。
第七方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面、第一方面的任一可能的实现方式中的方法的指令。
第八方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第二方面、第二方面的任一可能的实现方式中的方法的指令。
附图说明
图1是本申请一个实施例的无线通信系统示意图。
图2是根据本申请一个实施的传输信息的方法流程图。
图3是根据本申请一个实施例的终端设备的接收区域示意图。
图4是根据本申请一个实施例的通信系统示意图。
图5是根据本申请一个实施例的第一设备的示意性框图。
图6是根据本申请一个实施例的第二设备的示意性框图。
图7是根据本申请另一实施例的第一设备的示意性框图。
图8是根据本申请另一实施例的第二设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例可应用于各种通信系统,因此,下面的描述不限制于特定通信系统。例如,本申请实施例可以应用于全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,简称“TDD”)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)等。
本申请实施例中,终端设备也可以称为用户设备(UE,User Equipment)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及未来5G网络中的终端设备。
本申请实施例中,网络设备可以是网络侧设备等用于与移动设备通信的设备,网络侧设备可以是全球移动通讯(Global System of Mobile communication,GSM)或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB,NB),还可以是长期演进(Long Term Evolution,LTE)中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络侧设备。
图1是使用本申请的传输数据的方法的通信系统的示意图。该通信系统可以上述任意一种通信系统。如图1所示,该通信系统100包括网络侧设备102,网络侧设备102可包括多个天线组。每个天线组可以包括多个天线,例如,一个天线组可包括天线104和106,另一个天线组可包括天线108和110,附加组可包括天线112和114。图1中对于每个天线组示出了2个天线,然而可对于每个组使用更多或更少的天线。网络侧设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和 接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
网络侧设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。然而,可以理解,网络侧设备102可以与类似于终端设备116或122的任意数目的终端设备通信。终端设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路118向终端设备116发送信息,并通过反向链路120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在频分双工(Frequency Division Duplex,FDD)系统中,例如,前向链路118可利用与反向链路120所使用的不同频带,前向链路124可利用与反向链路126所使用的不同频带。
再例如,在时分双工(Time Division Duplex,TDD)系统和全双工(Full Duplex)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每组天线和/或区域称为网络侧设备102的扇区。例如,可将天线组设计为与网络侧设备102覆盖区域的扇区中的终端设备通信。在网络侧设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,网络侧设备102的发射天线可利用波束成形来改善前向链路118和124的信噪比。此外,与网络侧设备通过单个天线向它所有的终端设备发送信号的方式相比,在网络侧设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,网络侧设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
需要说明的是,一种下行端口选择的方案中,终端设备反馈一个或多个最强的发射端口,以及该发射端口所对应的参考信号能量值(Reference Signal Received Power,RSRP)。然后网络设备根据终端设备反馈的最强发射端口的信息确定同时进行下行传输的发射端口。然而这种方案中,网络设备无法正确的估计当它利用某发射端口服务其中一个终端设备时,该发射端口会对另一个终端设备具体造成多大的干扰。由于网络设备未知另一个终端设备的接收端口,而不同的接收端口收到来自同一发射端口的干扰值会有所不同。也就是说,现有方案无法在规划MU-MIMO配对时考虑不同接收端口对于干扰的影响,因此网络设备无法在决策时选择最优的发射端口组去进行MU-MIMO。
基于此问题,本申请实施例中,通过第一设备(例如,网络设备)发送指示信息,指示第二设备(例如,终端设备)反馈的由第二设备的接收区域确定的测量信息,第一设备进而可以根据该测量信息确定下行传输的发射端口集合。也就是说本申请实施例中第一设 备可以根据由接收区域(即接收端口的划分区域)确定的测量信息进行发射端口的确定,考虑了在考虑了接收端口对MU-MIMO下行信号的影响下,选择合适的下行波束同时进行下行传输,能够避免或者降低多个信号之间的彼此干扰。
以下,为了便于理解和说明,作为示例而非限定,以将本申请的信息传输的方法在通信系统中的执行过程和动作进行说明。
应理解,本申请实施例中名词“发射端口”可以为逻辑上的天线端口,发射端口也可以称为发射天线端口、发射波束、发射资源、发射AOA等。
类似的,名词“接收端口”可以为逻辑上的天线端口,接收端口也可以称为接收天线端口、接收波束、接收资源、接收到达角度(Angle of Arrival,AoA)等。下文不再一一解释说明。
图2是根据本申请一个实施例的信息传输方法的示意性流程图。如图2所示的方法可以应用上述各种通信系统中,本申请实施例中的通信系统中包括第一设备和多个第二设备。应理解,本申请实施例中第一设备可以为网络设备,第二设备可以为终端设备。第一设备和第二设备也可以均为网络设备,可替代地,第一设备和第二设备还可以均为终端设备。下文中以第一设备为网络设备,第二设备为终端设备为例进行详细说明。具体地,图2所示的方法200包括:
210,第一设备向第二设备发送指示信息。
具体地,该第二设备为该网络系统中的多个第二设备中的任意一个,也就是说,该第一设备向该多个第二设备中各个第二设备均发送指示信息,该指示信息用于指示上报模式,该上报模式中规定了该第二设备上报测量信息的内容。
需要说明的是在210中,第一设备也可以向第二设备发送参考信号,该指示信息可以在参考信号之前发送,也可以在参考信号之后发送,本申请实施例并不对此做限定。
220,第二设备向第一设备发送测量信息。
具体地,该第一设备接收该第二设备发送的该测量信息,该测量信息包括测量结果,该测量结果是该第二设备根据该第一设备发送的参考信号所获得的,该参考信号是该第一设备的发射端口发送的,该测量信息包括该发射端口所对应的发射端口组的信息,其中,该发射端口所对应的该发射端口组是由该第二设备的接收信息确定的。
应理解,本申请实施例中接收区域的信息可以是接收区域的标识信息,也可以指接收区域中的接收端口的标识信息,还可以是接收区域中的接收波束标识信息,还可以是是接收区域的组号或标号等,本申请实施例并不限于此。
本申请实施例可以通过第一设备配置第二设备的上报模式和上报测量信息的内容,从而能够得到合适的反馈信息,进而合理的规划分配给不同第二设备的发射资源,降低多个资源之间的干扰。
具体而言,本申请实施中通过第一设备(例如,网络设备)发送指示信息,指示第二设备(例如,终端设备)反馈的由第二设备的接收区域确定的测量信息,第一设备进而可以根据该测量信息确定下行传输的发射端口集合。也就是说本申请实施例中第一设备可以根据由接收信息确定的测量信息来确定发送数据的多个发射端口,在考虑了接收端口对MU-MIMO信号的影响下,第一设备选择合适的发射端口同时进行信号传输,能够避免或者降低多个信号之间的彼此干扰。
应理解,本申请实施例中的上报模式可以与现有标准中的传输模式具有对应关系,换句话针对现有的每一种传输模式,本申请实施例可以具有对应的上报模式。
例如,在第一传输模式时,可以对应第一上报模式,在第二传输模式时,可以对应第二上报模式和第三上报模式等。具体地,传输模式的定义可以参考现有标准中的描述,为了简洁,此处不再赘述。
可选地,作为另一实施例,该测量信息还包括以下信息中的全部或部分:
发射端口号、接收区域分组的标识、信道质量标号CQI、信号噪声干扰比值SINR、信道层数RI和预编码矩阵编号PMI。
可选地,该指示信息用于指示信道状态信息CSI进程,该CSI进程中规定了该上报模式;
并且,该第一设备发送该参考信号的发送端口是由该CSI进程配置的,该参考信号的发送端口位于同一发射端口组或者不同发射端口组中。
应理解,该第二设备的接收信息可以包括该第二设备的接收区域的信息。在本申请实施例中一个发射端口组对应该第二设备的一个接收区域,该一个发射端口组中的每一个发射端口发送该参考信号,在该一个接收区域中存在至少一个接收端口所检测到的该每一个发射端口发送的该参考信号的能量值大于或等于预设阈值,该接收区域是该第二设备按照逻辑分组规则确定的。
也就是说,该第二设备可以首先按照逻辑分组规则对该第二设备的接收区域进行划分。之后,该第二设备可以根据该接收区域将第一设备的多个发射端口分成多个发射端口组。
应理解,该逻辑分组规则可以包括:按照以下信息中的至少一个将该第二设备的接收端口划分为多个接收区域:该第二设备的接收端口、该发射端口对应的到达角度、第二设备的接收天线的权值、第二设备的接收端口号。
举例而言,如图3所示,第二设备的接收区域可以按照上述逻辑分组规则分成A、B、C、D四个接收区域,第二设备可以根据该四个接收区域对第一设备的多个发射端口进行分组。
下面结合图3描述一种第二设备对发射端口具体地分组过程:在接收区域A进行测量时,如果接收区域A中发现存在检测发射端口1,2,4发射的参考信号的接收RSRP值均高于或等于预设阈值(或者称为门限值)的接收端口,则发射端口1,2,4均属于接收区域A对应的发射端口组A。按此方式进行发送端口组的划分,显然,同一个发射端口可以属于多个发射端口组,例如,发射端口1即属于发射端口组A,也属于发射端口组D。某个发射端口组中可以包含若干个发射端口,也可以没有任何发射端口。
应理解,本申请实施例中,当第二设备发生旋转时,发射端口组的划分可以与第二设备的旋转相关,也可以与之不相关,本申请实施例并不对此做限定。
应注意,在本申请实施例中,该逻辑分组规则可以是该网络系统预先定义的,也可以是第一设备指示该第二设备的,本申请实施例并不对此做限定。
其中,在该逻辑分组规则由第一设备指示时,该方法还可以包括:该第一设备向该第二设备发送规则指示信息,该规则指示信息用于指示该逻辑分组规则。
需要说明的是,本申请实施例中该上报模式中规定的该上报测量信息的内容,可以有 多种形式,下面将分情况进行详细描述。
情况一:
该上报模式中规定的该上报测量信息的内容,包括该第二设备接收该第一设备的各个发射端口发送的参考信号的最优参考信号强度中的前N个最优参考信号强度值所对应的N个发射端口的标识、该前N个最优参考信号强度值对应的N个最优接收区域所对应的N个发射端口组的标识,其中,一个发射端口对应一个最优接收区域和一个最优参考信号强度值。
进一步地,在情况一中,该上报模式中规定的该上报测量信息的内容,还可以包括该N个发射端口所对应的发射端口组中除去该N个最优接收区域之外的其他发射端口组的标识。
进一步地,在情况一中,该上报模式中规定的该上报测量信息的内容,还可以包括该第二设备接收该第一设备的各个发射端口发送的参考信号的最优参考信号强度中的前N个最优参考信号强度值。
因此,本申请实施例中,通过反馈第一设备的各个发射端口发送的参考信号的最优参考信号强度中的前N个最优参考信号强度值所对应的N个发射端口的标识、该前N个最优参考信号强度值对应的N个最优接收区域所对应的N个发射端口组的标识,第一设备在进行端口选择时会根据这些信息避免将为一个第二设备之外的其他第二设备配置的发射端口落入到该一个第二设备的较好的发射端口组所对应的接收区域内,进而能够避免或者降低多个信号之间的彼此干扰。
情况二:
该上报模式中规定的该上报测量信息的内容,包括该第二设备接收到该第一设备的各个发射端口发送的参考信号的最优参考信号强度中的前M个最优和后K个最差参考信号强度值所对应的M个和K个发射端口的标识、该前M个最优和后K个最差参考信号强度值对应的M个发射端口组的标识和K个发射端口组的标识,其中,一个发射端口对应一个最优接收区域分组号和一个最优参考信号强度值。
进一步地,在情况二中,该上报模式中规定的该上报测量信息的内容,还可以包括该第二设备接收到该第一设备的各个发射端口发送的参考信号的最优参考信号强度中的前M个最优和后K个最差参考信号强度值
因此,本申请实施例中,通过反馈第一设备的各个发射端口发送的参考信号的最优参考信号强度中的前M个最优和后K个最差参考信号强度值所对应的M个和K个发射端口的标识、该前M个最优和后K个最差参考信号强度值对应的M个发射端口组的标识和K个发射端口组的标识,第一设备在进行端口选择时会根据这些信息避免将为一个第二设备之外的其他第二设备配置的发射端口落入到该一个第二设备的较好的发射端口组所对应的接收区域内,并且可以设置将第二设备自身对应的最优发射端口对应其他第二设备的较差的发送端口组,以降低该第二设备的信号对其他第二设备的影响,进而通过这种方式能够避免或者降低多个信号之间的彼此干扰。
情况三:
该上报模式中规定的该上报测量信息的内容,包括该第二设备接收到该第一设备的每一发射端口组中各个发射端口发送的参考信号中信号强度中的前Z个最优参考信号强度 值所对应的Z个发射端口号。
进一步地,在情况三中,该上报模式中规定的该上报测量信息的内容,还可以包括该第二设备接收到该第一设备的每一发射端口组中各个发射端口发送的参考信号中信号强度中的前Z个最优参考信号强度值
因此,本申请实施例中,通过反馈第二设备接收到该第一设备的每一发射端口组中各个发射端口发送的参考信号中信号强度中的前Z个最优参考信号强度值所对应的Z个发射端口号。第一设备在进行端口选择时会根据这些信息避免将同一组内的发射端口分配给不同的第二设备,即将同一组内的一个发射端口分配给一个第二设备之后,避免将该组内的上报的其他发射端口分配给其他第二设备,以降低其他第二设备的信号对该一个第二设备的影响,进而通过这种方式能够避免或者降低多个信号之间的彼此干扰。
情况四:
该上报模式中规定的该上报测量信息的内容,包括该第二设备接收到该第一设备的每一发射端口组中各个发射端口发送的参考信号中信号强度最强的信号强度值所对应的发射端口的标识,以及该最强信号强度值所对应的发射端口所在的发射端口组中其他发射端口的标识。
进一步地,在情况四中,该上报模式中规定的该上报测量信息的内容,还可以包括该第二设备接收到该第一设备的每一发射端口组中各个发射端口发送的参考信号中信号强度最强的信号强度值。
因此,本申请实施例中,通过反馈该第二设备接收到该第一设备的每一发射端口组中各个发射端口发送的参考信号中信号强度最强的信号强度值所对应的发射端口的标识,以及该最强信号强度值所对应的发射端口所在的发射端口组中其他发射端口的标识。第一设备在进行端口选择时会根据这些信息避免将同一组内的发射端口分配给不同的第二设备,即将同一组内的一个发射端口分配给一个第二设备之后,避免将该组内的其他发射端口分配给其他第二设备,以降低其他第二设备的信号对该一个第二设备的影响,进而通过这种方式能够避免或者降低多个信号之间的彼此干扰。
因此,基于上述技术方案,第一设备在进行端口选择时可以根据系统的需求合理的选择来自不同发射端口组中的发射端口进行发送分集、发射端口动态切换等一系列有利于鲁棒传输的方案,能够避免或者降低多个信号之间的彼此干扰。
230,第一设备确定至少一个发射端口集合。
具体地,该第一设备根据该多个第二设备中各个第二设备发送的测量信息,确定同时与该多个第二设备进行下行传输的至少一个发射端口集合。
其中该至少一个发射端口集合中每个发射端口集合中包括的发射端口的个数与该多个第二设备的个数相等,且一个发射端口对应一个第二设备。
应理解,该至少一个发送端口集合为多种发射端口集合中系统性能较好的至少一个。换句话说,该至少一个发射端口集合对应的第二设备通过相应地接收端口接收该发射端口集合中对应的发射端口发送的下行数据的信号质量较好,且各个发射端口发送的下行数据之间干扰较小。
下面将结合上述四种情况,分别举例详细描述第一设备根据测量信息确定发射端口集合的具体过程。
针对情况一,例如,如图4所示,该通信系统中包括两个第二设备,即第二设备A和第二设备B,每个第二设备有4个接收端口。第一设备例如网络设备,共有8个发射端口。第一设备首先通过8个发射端口发送参考信号。在端口扫描测量过程中,第二设备将针对每一个发射端口扫描自身的接收端口,按照上述情况一进行测量获得测量信息,并储存。测量完成后,第一设备会为第二设备下发指示信息,该指示中规定了第二设备的上报模式。在本实施例中,第二设备按照情况一上报测量信息,例如第二设备A可以按照图3中的分组方式进行分组。例如,第二设备A上报的测量信息可以为前3个最优参考信号强度值所对应的3个发射端口的标识、该前3个最优参考信号强度值对应的3个最优接收区域所对应的3个发射端口组的标识,具体地,第二设备A上报的测量信息可以为以下内容:
第一优发射端口为发射端口1,发射端口组A;
第二优发射端口为发射端口4,发射端口组A;
第三优发射端口为发射端口3,发射端口组D。
类似的,假设第二设备B可以按照图3中的分组方式进行分组。第二设备B上报的信息可以为:
第一优发射端口为4,发射端口组A;
第二优发射端口3,发射端口组D;
第三优发射端口7,发射端口组B。
可选地,在情况一中,该发射端口所对应的发射端口组的信息,还可以包括该第二设备接收该第一设备的各个发射端口发送的参考信号的最优参考信号强度中的前N(例如N=3)个最优参考信号强度值。
例如,第二设备A上报的测量信息可以为以下内容:
第一优发射端口为发射端口1,其RSRP为-40,发射端口组A;
第二优发射端口为发射端口4,其RSRP为-50,发射端口组A;
第三优发射端口为发射端口3,其RSRP为-55,发射端口组D。
第二设备B上报的信息可以为以下内容:
第一优发射端口为4,其RSRP为-40,发射端口组A;
第二优发射端口3,其RSRP为-45,发射端口组D;
第三优发射端口7,其RSRP为-60,发射端口组B;
第一设备根据这些上报的信息做合理的规划,选择出可以同时服务第二设备A和第二设备B的最优发射端口组合。例如在此实施例中,第一设备得到这些信息后会假设用发射端口1服务第二设备A,基于这个假设后去为第二设备B选择发射端口:若第一设备选择第二设备B上报的最优发射端口4服务第二设备B,则该端口可能会对第二设备A造成很大的干扰,因为第一设备知道当它用端口1服务第二设备A时,A会采用接发射端口组A对应的接收区域A进行接收,而根据第二设备A上报的第二条信息可见,A在接收区域A上也会很好的接收端口4的干扰,因此第一设备无法为第二设备B配置接收端口4。若第一设备给第二设备B配置发射端口3,通过查阅第二设备A的上报的测量信息发现,如果A采用接收区域A工作,发射端口3对应的接收区域为接收区域D,因此,发射端口3可以为第二设备B传输下行数据。为B配置发射端口3是一个很好的选择。然而,传统方案中,由于发射端口3仍然处于A上报的几个最强发射端口集合中,传统方案根据 提供的信息无法得出“为第二设备B配置发射端口3”这样的最优解决方案。
第一设备确定出下行端口集合后,可以直接利用确定的发射端口集合中的不同发射端口服务不同第二设备,例如,第一设备可以同时通过发射端口1和发射端口3同时向第二设备A和第二设备B发射下行数据。第二设备在接收到发射端口并判断出发射端口号后会根据之前的测量结果,选择该发射端口所对应的接收端口进行接收。
需要说明的是,在情况一中,该发射端口所对应的发射端口组的信息,还可以包括该N个发射端口所对应的发射端口组中除去该N个最优接收区域之外的其他发射端口组的标识。
也就是说除了反馈最优参考信号强度值所对应的发射端口组的标识外,还可以反馈该最优参考信号强度值所对应的发射端口所对应的发射端口组中除去该N个发射端口组之外的其他发射端口组的标识。
例如,针对第二设备A而言,由于,发射端口1对应的发射端口组为发射端口组A和发射端口组D,因此,第二设备A上报的测量信息可以为以下内容:
第一优发射端口为发射端口1,发射端口组A,发射端口组D;
第二优发射端口为发射端口4,发射端口组A;
第三优发射端口为发射端口3,发射端口组D。
第二设备B上报的测量信息可以按此规则确定,此处不再详述。
具体地,第一设备在确定发射端口集合时,按照上述过程的同时,还会考虑避免将第二设备A对应的发射端口组内的发射端口分配给其他的第二设备,以降低其他第二设备信号对应第二设备A的干扰。为了避免重复,第一设备确定发射端口集合的具体过程此处不再赘述。
因此,本申请实施例中,通过反馈第一设备的各个发射端口发送的参考信号的最优参考信号强度中的前N个最优参考信号强度值所对应的N个发射端口的标识、该前N个最优参考信号强度值对应的N个最优接收区域所对应的N个发射端口组的标识,第一设备在进行端口选择时会根据这些信息避免将为一个第二设备之外的其他第二设备配置的发射端口落入到该一个第二设备的较好的发射端口组所对应的接收区域内,进而能够避免或者降低多个信号之间的彼此干扰。
针对情况二,例如,如图4所示,该通信系统中包括两个第二设备,即第二设备A和第二设备B,每个第二设备有4个接收端口。第一设备例如网络设备,共有8个发射端口。第一设备首先通过8个发射端口发送参考信号。在端口扫描测量过程中,第二设备将针对每一个发射端口扫描自身的接收端口,按照上述情况一进行测量获得测量信息,并储存。测量完成后,第一设备会为第二设备下发指示信息,该指示中规定了第二设备的上报模式。在本实施例中,第二设备按照情况二上报测量信息,例如第二设备A可以按照图3中的分组方式进行分组。例如,第二设备A上报的测量信息可以为前3个最优和后2个最差参考信号强度值所对应的3个和2个发射端口的标识、该前2个最优和后3个最差参考信号强度值对应的3个发射端口组的标识和2个发射端口组的标识,具体地,第二设备A上报的测量信息可以为以下内容:
第一优发射端口为发射端口1,发射端口组A;
第二优发射端口为发射端口4,发射端口组A;
第三优发射端口为发射端口3,发射端口组D。
第二差发射端口为发射端口5,发射端口组B;
第一差发射端口为发射端口6,发射端口组C;
类似的,假设第二设备B可以按照图3中的分组方式进行分组。第二设备B上报的信息可以为:
第一优发射端口为4,发射端口组A;
第二优发射端口3,发射端口组D;
第三优发射端口7,发射端口组B。
第二差发射端口为发射端口5,发射端口组B;
第一差发射端口为发射端口2,发射端口组A;
进一步地,在情况二中,该发射端口所对应的发射端口组的信息,还可以包括该第二设备接收到该第一设备的各个发射端口发送的参考信号的最优参考信号强度中的前M个最优和后K个最差参考信号强度值。
具体地,可以在上述上报的信息的基础上增加对应的参考信号强度值即可,为避免重复此处不再赘述。
情况二中,第一设备确定发射端口的方法与情况一类似,区别在于,情况二中第一设备在确定发射端口时,可以将第二设备A的最优发射端口对应其他第二设备的较差的发送端口组。这样第二设备A的信号能够降低对其他第二设备的影响。
第一设备确定出下行端口集合后,可以直接利用确定的发射端口集合中的不同发射端口服务不同第二设备,例如,第一设备可以同时通过发射端口1和发射端口3同时向第二设备A和第二设备B发射下行数据。第二设备在接收到发射端口并判断出发射端口号后会根据之前的测量结果,选择该发射端口所对应的接收端口进行接收。
因此,本申请实施例中,通过反馈第一设备的各个发射端口发送的参考信号的最优参考信号强度中的前M个最优和后K个最差参考信号强度值所对应的M个和K个发射端口的标识、该前M个最优和后K个最差参考信号强度值对应的M个发射端口组的标识和K个发射端口组的标识,第一设备在进行端口选择时会根据这些信息避免将为一个第二设备之外的其他第二设备配置的发射端口落入到该一个第二设备的较好的发射端口组所对应的接收区域内,并且可以设置将第二设备自身对应的最优发射端口对应其他第二设备的较差的发送端口组,以降低该第二设备的信号对其他第二设备的影响,进而通过这种方式能够避免或者降低多个信号之间的彼此干扰。
针对情况三,例如,如图4所示,该通信系统中包括两个第二设备,即第二设备A和第二设备B,每个第二设备有4个接收端口。第一设备例如网络设备,共有8个发射端口。第一设备首先通过8个发射端口发送参考信号。在端口扫描测量过程中,第二设备将针对每一个发射端口扫描自身的接收端口,按照上述情况一进行测量获得测量信息,并储存。测量完成后,第一设备会为第二设备下发指示信息,该指示中规定了第二设备的上报模式。在本实施例中,第二设备按照情况二上报测量信息,例如第二设备A可以按照图3中的分组方式进行分组。例如,第二设备A上报的测量信息可以为接收到该第一设备的每一发射端口组中各个发射端口发送的参考信号中信号强度中的前2个最优参考信号强度值所对应的2个发射端口标识。
具体地,第二设备A上报的测量信息可以为以下内容:
发送端口组A,对应的第一优发射端口为发射端口1和发射端口2;
发送端口组B,对应的第一优发射端口为发射端口3和发射端口1;
发送端口组C,对应的第一优发射端口为发射端口5和发射端口7;
发送端口组D,对应的第一优发射端口为发射端口6;
类似的,假设第二设备B可以按照图3中的分组方式进行分组。第二设备B上报的信息可以为:
发送端口组A,对应的第一优发射端口为发射端口2和发射端口4;
发送端口组B,对应的第一优发射端口为发射端口3和发射端口1;
发送端口组C,对应的第一优发射端口为发射端口7和发射端口5;
发送端口组D,对应的第一优发射端口为发射端口6;
进一步地,在情况三下该发射端口所对应的发射端口组的信息,还可以包括该第二设备接收到该第一设备的每一发射端口组中各个发射端口发送的参考信号中信号强度中的前Z个最优参考信号强度值
具体地,发射端口组的信息可以在上述上报的信息的基础上增加对应的参考信号强度值即可,为避免重复此处不再赘述。
第一设备根据这些上报的信息做合理的规划,选择出可以同时服务第二设备A和第二设备B的最优发射端口组合。例如在此实施例中,第一设备得到这些信息后会假设用发射端口1服务第二设备A,基于这个假设后去为第二设备B选择发射端口:若第一设备选择第二设备B上报的最优发射端口2服务第二设备B,则该端口2可能会对第二设备A造成很大的干扰,因为第一设备知道当它用端口1服务第二设备A时,A会采用接发射端口组A对应的接收区域A进行接收,而根据第二设备A上报的第一条信息可见,A在接收区域A上也会很好的接收端口2的干扰,因此第一设备无法为第二设备B配置接收端口2。若第一设备给第二设备B配置发射端口3,通过查阅第二设备A的上报的测量信息发现,如果A采用接收区域A工作,发射端口3不会对接收区域A产生影响,然而,对于第二设备B而言,服务第二设备A的发射端口1同样落在第二设备B的发射端口组B中,因此为第设备B配置发射端口3也可能存在较大的干扰。于是我们寻找到,为第二设备B配置发射端口7是一个很好的选择。因此,发射端口7可以为第二设备B传输下行数据。为B配置发射端口7是一个很好的选择。
第一设备确定出下行端口集合后,可以直接利用确定的发射端口集合中的不同发射端口服务不同第二设备,例如,第一设备可以同时通过发射端口1和发射端口7同时向第二设备A和第二设备B发射下行数据。第二设备在接收到发射端口并判断出发射端口号后会根据之前的测量结果,选择该发射端口所对应的接收端口进行接收。
因此,本申请实施例中,通过反馈第二设备接收到该第一设备的每一发射端口组中各个发射端口发送的参考信号中信号强度中的前Z个最优参考信号强度值所对应的Z个发射端口号。第一设备在进行端口选择时会根据这些信息避免将同一组内的发射端口分配给不同的第二设备,即将同一组内的一个发射端口分配给一个第二设备之后,避免将该组内的上报的其他发射端口分配给其他第二设备,以降低其他第二设备的信号对该一个第二设备的影响,例如即将同一组(发送端口组A)内的发送端口1分配给第二设备A之后,避免 将发射端口2分配给第二设备B,以降低第二设备B的信号对第二设备A的影响,进而通过这种方式能够避免或者降低多个信号之间的彼此干扰。
针对情况四,例如,如图4所示,该通信系统中包括两个第二设备,即第二设备A和第二设备B,每个第二设备有4个接收端口。第一设备例如网络设备,共有8个发射端口。第一设备首先通过8个发射端口发送参考信号。在端口扫描测量过程中,第二设备将针对每一个发射端口扫描自身的接收端口,按照上述情况一进行测量获得测量信息,并储存。测量完成后,第一设备会为第二设备下发指示信息,该指示中规定了第二设备的上报模式。在本实施例中,第二设备按照情况二上报测量信息,例如第二设备A可以按照图3中的分组方式进行分组。例如,第二设备A上报的测量信息可以为接收到该第一设备的每一发射端口组中各个发射端口发送的参考信号中信号强度中的最优参考信号强度值所对应的发射端口标识,以及该每一个发射端口组中其他发射端口的标识。
具体地,第二设备A上报的测量信息可以为以下内容:
发送端口组A,对应的第一优发射端口为发射端口1,其他发射端口的标识为发射端口2和发射端口4;
发送端口组B,对应的第一优发射端口为发射端口3,其他发射端口的标识为发射端口1;
发送端口组C,对应的第一优发射端口为发射端口5,其他发射端口的标识为发射端口7和发射端口8;
发送端口组D,对应的第一优发射端口为发射端口6;
类似的,假设第二设备B可以按照图3中的分组方式进行分组。第二设备B上报的信息可以为:
发送端口组A,对应的第一优发射端口为发射端口2,其他发射端口的标识为发射端口4和发射端口1;
发送端口组B,对应的第一优发射端口为发射端口3,其他发射端口的标识为发射端口1;
发送端口组C,对应的第一优发射端口为发射端口7,其他发射端口的标识为发射端口5和发射端口8;
发送端口组D,对应的第一优发射端口为发射端口6;
进一步地,在情况四下该发射端口所对应的发射端口组的信息,还可以包括该第二设备接收到该第一设备的每一发射端口组中各个发射端口发送的参考信号中信号强度最强的信号强度值。
具体地,发射端口组的信息可以在上述上报的信息的基础上增加对应的参考信号强度值即可,为避免重复此处不再赘述。
第一设备根据这些上报的信息做合理的规划,选择出可以同时服务第二设备A和第二设备B的最优发射端口组合。例如在此实施例中,第一设备得到这些信息后会假设用发射端口1服务第二设备A,基于这个假设后去为第二设备B选择发射端口:若第一设备选择第二设备B上报的最优发射端口2服务第二设备B,则该端口2可能会对第二设备A造成很大的干扰,因为第一设备知道当它用端口1服务第二设备A时,A会采用接发射端口组A对应的接收区域A进行接收,而根据第二设备A上报的第一条信息可见,A在接收 区域A上也会很好的接收端口2的干扰,因此第一设备无法为第二设备B配置接收端口2。若第一设备给第二设备B配置发射端口3,通过查阅第二设备A的上报的测量信息发现,如果A采用接收区域A工作,发射端口3不会对接收区域A产生影响,因此,发射端口3可以为第二设备B传输下行数据。
为B配置发射端口3是一个很好的选择。
第一设备确定出下行端口集合后,可以直接利用确定的发射端口集合中的不同发射端口服务不同第二设备,例如,第一设备可以同时通过发射端口1和发射端口3同时向第二设备A和第二设备B发射下行数据。第二设备在接收到发射端口并判断出发射端口号后会根据之前的测量结果,选择该发射端口所对应的接收端口进行接收。
因此,本申请实施例中,通过反馈该第二设备接收到该第一设备的每一发射端口组中各个发射端口发送的参考信号中信号强度最强的信号强度值所对应的发射端口的标识,以及该最强信号强度值所对应的发射端口所在的发射端口组中其他发射端口的标识。第一设备在进行端口选择时会根据这些信息避免将同一组内的发射端口分配给不同的第二设备,即将同一组内的一个发射端口分配给一个第二设备之后,避免将该组内的其他发射端口分配给其他第二设备,以降低其他第二设备的信号对该一个第二设备的影响,进而通过这种方式能够避免或者降低多个信号之间的彼此干扰。
因此,基于上述技术方案,第一设备在进行端口选择时可以根据系统的需求合理的选择来自不同发射端口组中的发射端口进行发送分集、发射端口动态切换等一系列有利于鲁棒传输的方案,能够避免或者降低多个信号之间的彼此干扰。
应理解,本申请实施例中,在230中,在该第一设备确定出至少一个发射端口集合后,可以使用该至少一个发射端口集合中的任意一个发射端口集合进行数据传输。
可选地,在该至少一个发射端口集合包括至少两个发射端口集合,该方法还可以包括:
该第一设备根据该至少两个发射端口集合中的各个发射端口集合中的各个发射端口进行与该多个第二设备之间的第二信号的传输,
该第一设备根据该第二信号的强度值,从该至少两个发射端口集合中确定系统性能最好的一个发射端口集合进行与该多个第二设备进行下行传输。
例如,第一设备可以通过信噪比从该至少两个发射端口集合中确定系统性能最好的一个发射端口集合进行与该多个第二设备进行下行传输。
具体地,该第一设备通过至少两个发射端口集合中的各个发射端口集合中的各个发射端口向多个第二设备发送第二参考信号;
该第一设备接收该多个第二设备中的各个设备发送的与该各个发射端口集合对应的参考信号强度的比值,其中,该第二设备发送的参考信号强度比值包括该第二设备的第一接收端口接收的参考信号强度值与该第一接收端口接收到该各个发射端口集合中除与该第二设备对应的发射端口外的其他发射端口发送的该第二参考信号的强度值的比值;
该第一设备根据该多个第二设备中的各个第二设备发送的与该各个发射端口集合对应的参考信号强度比值,从该至少两个发射端口集合中确定系统性能最好的一个发射端口集合进行与该多个第二设备进行下行传输。
因此,本申请实施例中,第一设备根据信噪比的取值从该至少两个发射端口集合中确定系统性能最好的一个发射端口集合进行与该多个第二设备进行下行传输,能够提升系统 性能。该系统性能可以是所有被服务UE的估计速率之和。
再例如,该第一设备可以通过上下行信号的互易性从该至少两个发射端口集合中确定系统性能最好的一个发射端口集合进行与该多个第二设备进行下行传输。
具体地,该第一设备向该多个第二设备发送控制信令,该控制信令用于指示该多个第二设备中的各个第二设备根据该至少两个发射端口集合确定该各个第二设备的发射端口,其中,第二设备的发射端口的方向与各个发射端口集合对应的该第二设备的接收端口的方向一致;
该第一设备通过该第一设备的各个接收端口接收该多个第二设备中的各个第二设备通过该各个设备的发射端口发送的上行参考信号,其中,该第一设备的接收端口的方向与该第一设备的各个发射端口集合中发射端口的方向一致;
该第一设备根据接收的该多个第二设备中的各个第二设备通过该各个第二设备的发射端口发送的上行参考信号,从该至少两组发射端口中确定系统性能最好的一个发射端口集合进行与该多个第二设备进行下行传输。
因此,本申请实施例中,第一设备根据信噪比的取值从该至少两个发射端口集合中确定系统性能最好的一个发射端口集合进行与该多个第二设备进行下行传输,能够提升系统性能。该系统性能可以是所有被服务UE的估计速率之和。
上文中,结合图1至4详细描述了本申请实施例的传输信息的方法,应注意,图1至图4的例子仅仅是为了帮助本领域技术人员理解本申请实施例,而非要将本申请实施例限于所例示的具体数值或具体场景。本领域技术人员根据所给出的图1至图4的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本申请实施例的范围内。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
下面将结合图5和7描述本申请实施例的第一设备,结合图6和图8描述本申请实施例的第二设备。
应理解,本申请实施例中第一设备可以为网络设备,第二设备可以为终端设备。第一设备和第二设备也可以均为网络设备,可替代地,第一设备和第二设备还可以均为终端设备,本申请实施例并不限于此。
图5示出了根据本申请实施例的第一设备500的示意性框图,具体地,如图5所示,该第一设备500包括:
第一发送单元510,用于向该第二设备发送指示信息,该指示信息用于指示上报模式,该上报模式中规定了该第二设备上报测量信息的内容;
接收单元520,用于接收该第二设备发送的该测量信息,该测量信息包括测量结果,该测量结果是该第二设备根据该第一设备发送的参考信号所获得的,该参考信号是该第一设备的发射端口发送的,该测量信息包括该发射端口所对应的发射端口组的信息,其中,该发射端口所对应的该发射端口组是由该第二设备的接收信息确定的。
本申请实施例可以通过第一设备配置第二设备的上报模式和上报测量信息的内容,从而能够得到合适的反馈信息,进而合理的规划分配给不同第二设备的发射资源,降低多个资源之间的干扰。
具体而言,本申请实施中通过第一设备(例如,网络设备)发送指示信息,指示第二 设备(例如,终端设备)反馈的由第二设备的接收区域确定的测量信息,第一设备进而可以根据该测量信息确定下行传输的发射端口集合。也就是说本申请实施例中第一设备可以根据由接收信息确定的测量信息来确定发送数据的多个发射端口,在考虑了接收端口对MU-MIMO信号的影响下,第一设备选择合适的发射端口同时进行信号传输,能够避免或者降低多个信号之间的彼此干扰。
可选地,作为另一实施例,该第二设备的接收信息包括该第二设备的接收区域的信息;
其中,一个发射端口组对应该第二设备的一个接收区域,该一个发射端口组中的每一个发射端口发送该参考信号,在该一个接收区域中存在至少一个接收端口所检测到的该每一个发射端口发送的该参考信号的能量值大于或等于预设阈值,该接收区域是该第二设备按照逻辑分组规则确定的。
可选地,作为另一实施例,该第一设备还包括:
第一发送单元,用于向该第二设备发送规则指示信息,该规则指示信息用于指示该逻辑分组规则;
其中,该逻辑分组规则包括:按照该第二设备的接收端口、该发射端口对应的到达角度、第二设备的接收天线的权值、第二设备的的接收端口号将该第二设备的接收端口划分为多个接收区域。
可选地,作为另一实施例,该指示信息用于指示信道状态信息CSI进程,该CSI进程中规定了该上报模式;
并且,该第一设备发送该参考信号的发送端口是由该CSI进程配置的,该参考信号的发送端口位于同一发射端口组或者不同发射端口组中。
可选地,作为另一实施例,该上报模式中规定的该上报测量信息的内容,包括该第二设备接收该第一设备的各个发射端口发送的参考信号的最优参考信号强度中的前N个最优参考信号强度值所对应的N个发射端口的标识、该前N个最优参考信号强度值对应的N个最优接收区域所对应的N个发射端口组的标识,其中,一个发射端口对应一个最优接收区域和一个最优参考信号强度值。
可选地,作为另一实施例,该发射端口所对应的发射端口组的信息,还包括该N个发射端口所对应的发射端口组中除去该N个发射端口组之外的其他发射端口组的标识。
可替代地,作为另一实施例,该上报模式中规定的该上报测量信息的内容,包括该第二设备接收到该第一设备的各个发射端口发送的参考信号的最优参考信号强度中的前M个最优和后K个最差参考信号强度值所对应的M个和K个发射端口的标识、该前M个最优和后K个最差参考信号强度值对应的M个发射端口组的标识和K个发射端口组的标识,其中,一个发射端口对应一个最优接收区域分组号和一个最优参考信号强度值。
可替代地,作为另一实施例,该上报模式中规定的该上报测量信息的内容,包括该第二设备接收到该第一设备的每一发射端口组中各个发射端口发送的参考信号中信号强度中的前Z个最优参考信号强度值所对应的Z个发射端口号。
可替代地,作为另一实施例,该上报模式中规定的该上报测量信息的内容,包括该第二设备接收到该第一设备的每一发射端口组中各个发射端口发送的参考信号中信号强度最强的信号强度值所对应的发射端口的标识,以及该最强信号强度值所对应的发射端口所在的发射端口组中其他发射端口的标识。
可选地,作为另一实施例,该第一设备还包括:
第一确定单元,用于根据多个第二设备中各个第二设备发送的测量信息,确定同时与该多个第二设备进行下行传输的至少一个发射端口集合,其中该至少一个发射端口集合中每个发射端口集合中包括的发射端口的个数与该多个第二设备的个数相等,且一个发射端口对应一个第二设备。
可选地,作为另一实施例,该至少一个发射端口集合包括至少两个发射端口集合,该第一设备还包括:
通信单元,用于根据该至少两个发射端口集合中的各个发射端口集合中的各个发射端口进行与该多个第二设备之间的第二信号的传输,
第二确定单元,用于根据该第二信号的强度值,从该至少两个发射端口集合中确定系统性能最好的一个发射端口集合进行与该多个第二设备进行下行传输。
应理解,图5所示的第一设备500能够实现图2方法实施例中涉及第一设备的各个过程。第一设备500中的各个模块的操作和/或功能,分别为了实现图2中的方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
本申请实施例可以通过第一设备配置第二设备的上报模式和上报测量信息的内容,从而能够得到合适的反馈信息,进而合理的规划分配给不同第二设备的发射资源,降低多个资源之间的干扰。
具体而言,本申请实施中通过第一设备(例如,网络设备)发送指示信息,指示第二设备(例如,终端设备)反馈的由第二设备的接收区域确定的测量信息,第一设备进而可以根据该测量信息确定下行传输的发射端口集合。也就是说本申请实施例中第一设备可以根据由接收信息确定的测量信息来确定发送数据的多个发射端口,在考虑了接收端口对MU-MIMO信号的影响下,第一设备选择合适的发射端口同时进行信号传输,能够避免或者降低多个信号之间的彼此干扰。
图6示出了根据本申请实施例的第二设备600的示意性框图。具体地,如图6所示,该第二设备600包括:
第一接收单元610,用于接收该第一设备发送的指示信息,该指示信息用于指示上报模式,该上报模式中规定了该第二设备上报测量信息的内容;
发送单元620,用于向该第一设备发送该测量信息,该第一设备接收该各个第二设备发送的该测量信息,该测量信息包括测量结果,该测量结果是该第二设备根据该第一设备发送的参考信号所获得的,该参考信号是该第一设备的发射端口发送的,该测量信息包括该发射端口所对应的发射端口组的信息,其中,该发射端口所对应的该发射端口组是由该第二设备的接收信息确定的。
本申请实施例可以通过第一设备配置第二设备的上报模式和上报测量信息的内容,从而能够得到合适的反馈信息,进而合理的规划分配给不同第二设备的发射资源,降低多个资源之间的干扰。
具体而言,本申请实施中通过第一设备(例如,网络设备)发送指示信息,指示第二设备(例如,终端设备)反馈的由第二设备的接收区域确定的测量信息,第一设备进而可以根据该测量信息确定下行传输的发射端口集合。也就是说本申请实施例中第一设备可以根据由接收信息确定的测量信息来确定发送数据的多个发射端口,在考虑了接收端口对 MU-MIMO信号的影响下,第一设备选择合适的发射端口同时进行信号传输,能够避免或者降低多个信号之间的彼此干扰。
可选地,作为另一实施例,该第二设备的接收信息包括该第二设备的接收区域的信息;
其中,一个发射端口组对应该第二设备的一个接收区域,在该一个接收区域中存在至少一个接收端口所检测到的该一个发射端口组中的每一个发射端口发送的该参考信号的能量值大于或等于预设阈值,该接收区域是该第二设备按照逻辑分组规则确定的。
可选地,作为另一实施例,该第二设备还包括:
第二接收单元,用于接收该第一设备发送的规则指示信息,该规则指示信息用于指示该逻辑分组规则;
其中,该逻辑分组规则包括:按照该第二设备的接收端口、该发射端口对应的到达角度、第二设备的接收天线的权值、第二设备的的接收端口号将该第二设备的接收端口划分为多个接收区域。
可选地,作为另一实施例,该指示信息用于指示信道状态信息CSI进程,该CSI进程中规定了该上报模式;
并且,该第一设备发送该参考信号的发送端口是由该CSI进程配置的,该参考信号的发送端口位于同一发射端口组或者不同发射端口组中。
可选地,作为另一实施例,该发射端口所对应的发射端口组的信息,包括该第二设备接收该第一设备的各个发射端口发送的参考信号的最优参考信号强度中的前N个最优参考信号强度值所对应的N个发射端口的标识、该前N个最优参考信号强度值对应的N个最优接收区域所对应的N个发射端口组的标识,其中,一个发射端口对应一个最优接收区域和一个最优参考信号强度值。
可选地,作为另一实施例,该发射端口所对应的发射端口组的信息,还包括该N个发射端口所对应的发射端口组中除去该N个发射端口组之外的其他发射端口组的标识。
可替代地,作为另一实施例,该发射端口所对应的发射端口组的信息,包括该第二设备接收到该第一设备的各个发射端口发送的参考信号的最优参考信号强度中的前M个最优和后K个最差参考信号强度值所对应的M个和K个发射端口的标识、该前M个最优和后K个最差参考信号强度值对应的M个发射端口组的标识和K个发射端口组的标识,其中,一个发射端口对应一个最优接收区域分组号和一个最优参考信号强度值。
可替代地,作为另一实施例,该发射端口所对应的发射端口组的信息,包括该第二设备接收到该第一设备的每一发射端口组中各个发射端口发送的参考信号中信号强度中的前Z个最优参考信号强度值所对应的Z个发射端口号。
可替代地,作为另一实施例,该发射端口所对应的发射端口组的信息,包括该第二设备接收到该第一设备的每一发射端口组中各个发射端口发送的参考信号中信号强度最强的信号强度值所对应的发射端口的标识,以及该最强信号强度值所对应的发射端口所在的发射端口组中其他发射端口的标识。
可选地,作为另一实施例,该第二设备发送的该测量信息,用于该第一设备确定同时与多个第二设备进行下行传输的至少一个发射端口集合,其中该至少一个发射端口集合中每个发射端口集合中包括的发射端口的个数与该多个第二设备的个数相等,且一个发射端口对应一个第二设备。
可替代地,作为另一实施例,该至少一个发射端口集合包括至少两个发射端口集合,该第二设备还包括:
确定单元,用于与该第一设备之间的进行第二信号的传输,以触发该第一设备根据该第二信号的强度值,从该至少两个发射端口集合中确定系统性能最好的一个发射端口集合进行与该多个第二设备进行下行传输。
应理解,图6所示的第二设备600能够实现图2方法实施例中涉及第二设备的各个过程。第二设备600中的各个模块的操作和/或功能,分别为了实现图2中的方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
本申请实施例可以通过第一设备配置第二设备的上报模式和上报测量信息的内容,从而能够得到合适的反馈信息,进而合理的规划分配给不同第二设备的发射资源,降低多个资源之间的干扰。
具体而言,本申请实施中通过第一设备(例如,网络设备)发送指示信息,指示第二设备(例如,终端设备)反馈的由第二设备的接收区域确定的测量信息,第一设备进而可以根据该测量信息确定下行传输的发射端口集合。也就是说本申请实施例中第一设备可以根据由接收信息确定的测量信息来确定发送数据的多个发射端口,在考虑了接收端口对MU-MIMO信号的影响下,第一设备选择合适的发射端口同时进行信号传输,能够避免或者降低多个信号之间的彼此干扰。
图7示出了根据本申请实施例的第一设备700的示意性框图。具体地,如图7所示,该第一设备700包括:处理器710和收发器720,处理器710和收发器720相连,可选地,该第一设备700还包括存储器730,存储器730与处理器710相连,进一步可选地,该第一设备700还可以包括总线系统740。其中,处理器710、存储器730和收发器720可以通过总线系统740相连,该存储器730可以用于存储指令,该处理器710用于执行该存储器730存储的指令,以控制收发器720收发信息或信号。
具体地,处理器710控制收发器720用于用于向该第二设备发送指示信息,该指示信息用于指示上报模式,该上报模式中规定了该第二设备上报测量信息的内容;并接收该第二设备发送的该测量信息,该测量信息包括测量结果,该测量结果是该第二设备根据该第一设备发送的参考信号所获得的,该参考信号是该第一设备的发射端口发送的,该测量信息包括该发射端口所对应的发射端口组的信息,其中,该发射端口所对应的该发射端口组是由该第二设备的接收信息确定的。
本申请实施例可以通过第一设备配置第二设备的上报模式和上报测量信息的内容,从而能够得到合适的反馈信息,进而合理的规划分配给不同第二设备的发射资源,降低多个资源之间的干扰。
具体而言,本申请实施中通过第一设备(例如,网络设备)发送指示信息,指示第二设备(例如,终端设备)反馈的由第二设备的接收区域确定的测量信息,第一设备进而可以根据该测量信息确定下行传输的发射端口集合。也就是说本申请实施例中第一设备可以根据由接收信息确定的测量信息来确定发送数据的多个发射端口,在考虑了接收端口对MU-MIMO信号的影响下,第一设备选择合适的发射端口同时进行信号传输,能够避免或者降低多个信号之间的彼此干扰。
应理解,在本申请实施例中,该处理器710可以是中央处理单元(Central Processing  Unit,简称为“CPU”),该处理器710还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器730可以包括只读存储器和随机存取存储器,并向处理器710提供指令和数据。存储器730的一部分还可以包括非易失性随机存取存储器。例如,存储器730还可以存储设备类型的信息。
该总线系统740除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统740。
在实现过程中,上述方法的各步骤可以通过处理器710中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器730,处理器710读取存储器730中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,作为另一实施例,该第二设备的接收信息包括该第二设备的接收区域的信息;
其中,一个发射端口组对应该第二设备的一个接收区域,该一个发射端口组中的每一个发射端口发送该参考信号,在该一个接收区域中存在至少一个接收端口所检测到的该每一个发射端口发送的该参考信号的能量值大于或等于预设阈值,该接收区域是该第二设备按照逻辑分组规则确定的。
可选地,作为另一实施例,收发器720还用于向该第二设备发送规则指示信息,该规则指示信息用于指示该逻辑分组规则;
其中,该逻辑分组规则包括:按照该第二设备的接收端口、该发射端口对应的到达角度、第二设备的接收天线的权值、第二设备的的接收端口号将该第二设备的接收端口划分为多个接收区域。
可选地,作为另一实施例,该指示信息用于指示信道状态信息CSI进程,该CSI进程中规定了该上报模式;
并且,该第一设备发送该参考信号的发送端口是由该CSI进程配置的,该参考信号的发送端口位于同一发射端口组或者不同发射端口组中。
可选地,作为另一实施例,该上报模式中规定的该上报测量信息的内容,包括该第二设备接收该第一设备的各个发射端口发送的参考信号的最优参考信号强度中的前N个最优参考信号强度值所对应的N个发射端口的标识、该前N个最优参考信号强度值对应的N个最优接收区域所对应的N个发射端口组的标识,其中,一个发射端口对应一个最优接收区域和一个最优参考信号强度值。
可选地,作为另一实施例,该上报模式中规定的该上报测量信息的内容,还包括该N个发射端口所对应的发射端口组中除去该N个发射端口组之外的其他发射端口组的标识。
可替代地,作为另一实施例,该上报模式中规定的该上报测量信息的内容,包括该第二设备接收到该第一设备的各个发射端口发送的参考信号的最优参考信号强度中的前M个最优和后K个最差参考信号强度值所对应的M个和K个发射端口的标识、该前M个最 优和后K个最差参考信号强度值对应的M个发射端口组的标识和K个发射端口组的标识,其中,一个发射端口对应一个最优接收区域分组号和一个最优参考信号强度值。
可替代地,作为另一实施例,该上报模式中规定的该上报测量信息的内容,包括该第二设备接收到该第一设备的每一发射端口组中各个发射端口发送的参考信号中信号强度中的前Z个最优参考信号强度值所对应的Z个发射端口号。
可替代地,作为另一实施例,该上报模式中规定的该上报测量信息的内容,包括该第二设备接收到该第一设备的每一发射端口组中各个发射端口发送的参考信号中信号强度最强的信号强度值所对应的发射端口的标识,以及该最强信号强度值所对应的发射端口所在的发射端口组中其他发射端口的标识。
可选地,作为另一实施例,处理器710还用于根据多个第二设备中各个第二设备发送的测量信息,确定同时与该多个第二设备进行下行传输的至少一个发射端口集合,其中该至少一个发射端口集合中每个发射端口集合中包括的发射端口的个数与该多个第二设备的个数相等,且一个发射端口对应一个第二设备。
可选地,作为另一实施例,该至少一个发射端口集合包括至少两个发射端口集合,处理器710还用于根据该至少两个发射端口集合中的各个发射端口集合中的各个发射端口进行与该多个第二设备之间的第二信号的传输;并根据该第二信号的强度值,从该至少两个发射端口集合中确定系统性能最好的一个发射端口集合进行与该多个第二设备进行下行传输。
应理解,图7所示的第一设备700能够实现图2方法实施例中涉及第一设备的各个过程。第一设备700中的各个模块的操作和/或功能,分别为了实现图2中的方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
本申请实施例可以通过第一设备配置第二设备的上报模式和上报测量信息的内容,从而能够得到合适的反馈信息,进而合理的规划分配给不同第二设备的发射资源,降低多个资源之间的干扰。
具体而言,本申请实施中通过第一设备(例如,网络设备)发送指示信息,指示第二设备(例如,终端设备)反馈的由第二设备的接收区域确定的测量信息,第一设备进而可以根据该测量信息确定下行传输的发射端口集合。也就是说本申请实施例中第一设备可以根据由接收信息确定的测量信息来确定发送数据的多个发射端口,在考虑了接收端口对MU-MIMO信号的影响下,第一设备选择合适的发射端口同时进行信号传输,能够避免或者降低多个信号之间的彼此干扰。
图8示出了根据本申请实施例的第二设备800的示意性框图。具体地,如图8所示,该第二设备800包括:处理器810和收发器820,处理器810和收发器820相连,可选地,该第二设备800还包括存储器830,存储器830与处理器810相连,进一步可选地,该第二设备800还可以包括总线系统840。其中,处理器810、存储器830和收发器820可以通过总线系统840相连,该存储器830可以用于存储指令,该处理器810用于执行该存储器830存储的指令,以控制收发器820收发信息或信号。
具体地,控制器810控制收发器820接收该第一设备发送的指示信息,该指示信息用于指示上报模式,该上报模式中规定了该第二设备上报测量信息的内容;并向该第一设备发送该测量信息,该第一设备接收该各个第二设备发送的该测量信息,该测量信息包括测 量结果,该测量结果是该第二设备根据该第一设备发送的参考信号所获得的,该参考信号是该第一设备的发射端口发送的,该测量信息包括该发射端口所对应的发射端口组的信息,其中,该发射端口所对应的该发射端口组是由该第二设备的接收信息确定的。
本申请实施例可以通过第一设备配置第二设备的上报模式和上报测量信息的内容,从而能够得到合适的反馈信息,进而合理的规划分配给不同第二设备的发射资源,降低多个资源之间的干扰。
具体而言,本申请实施中通过第一设备(例如,网络设备)发送指示信息,指示第二设备(例如,终端设备)反馈的由第二设备的接收区域确定的测量信息,第一设备进而可以根据该测量信息确定下行传输的发射端口集合。也就是说本申请实施例中第一设备可以根据由接收信息确定的测量信息来确定发送数据的多个发射端口,在考虑了接收端口对MU-MIMO信号的影响下,第一设备选择合适的发射端口同时进行信号传输,能够避免或者降低多个信号之间的彼此干扰。
应理解,在本申请实施例中,该处理器810可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器810还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器830可以包括只读存储器和随机存取存储器,并向处理器810提供指令和数据。存储器830的一部分还可以包括非易失性随机存取存储器。例如,存储器830还可以存储设备类型的信息。
该总线系统840除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统840。
在实现过程中,上述方法的各步骤可以通过处理器810中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器830,处理器810读取存储器830中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,作为另一实施例,该第二设备的接收信息包括该第二设备的接收区域的信息;
其中,一个发射端口组对应该第二设备的一个接收区域,在该一个接收区域中存在至少一个接收端口所检测到的该一个发射端口组中的每一个发射端口发送的该参考信号的能量值大于或等于预设阈值,该接收区域是该第二设备按照逻辑分组规则确定的。
可选地,作为另一实施例,收发器820还用于接收该第一设备发送的规则指示信息,该规则指示信息用于指示该逻辑分组规则;
其中,该逻辑分组规则包括:按照该第二设备的接收端口、该发射端口对应的到达角度、第二设备的接收天线的权值、第二设备的的接收端口号将该第二设备的接收端口划分为多个接收区域。
可选地,作为另一实施例,该指示信息用于指示信道状态信息CSI进程,该CSI进程中规定了该上报模式;
并且,该第一设备发送该参考信号的发送端口是由该CSI进程配置的,该参考信号的发送端口位于同一发射端口组或者不同发射端口组中。
可选地,作为另一实施例,该发射端口所对应的发射端口组的信息,包括该第二设备接收该第一设备的各个发射端口发送的参考信号的最优参考信号强度中的前N个最优参考信号强度值所对应的N个发射端口的标识、该前N个最优参考信号强度值对应的N个最优接收区域所对应的N个发射端口组的标识,其中,一个发射端口对应一个最优接收区域和一个最优参考信号强度值。
可选地,作为另一实施例,该发射端口所对应的发射端口组的信息,还包括该N个发射端口所对应的发射端口组中除去该N个发射端口组之外的其他发射端口组的标识。
可替代地,作为另一实施例,该发射端口所对应的发射端口组的信息,包括该第二设备接收到该第一设备的各个发射端口发送的参考信号的最优参考信号强度中的前M个最优和后K个最差参考信号强度值所对应的M个和K个发射端口的标识、该前M个最优和后K个最差参考信号强度值对应的M个发射端口组的标识和K个发射端口组的标识,其中,一个发射端口对应一个最优接收区域分组号和一个最优参考信号强度值。
可替代地,作为另一实施例,该发射端口所对应的发射端口组的信息,包括该第二设备接收到该第一设备的每一发射端口组中各个发射端口发送的参考信号中信号强度中的前Z个最优参考信号强度值所对应的Z个发射端口号。
可替代地,作为另一实施例,该发射端口所对应的发射端口组的信息,包括该第二设备接收到该第一设备的每一发射端口组中各个发射端口发送的参考信号中信号强度最强的信号强度值所对应的发射端口的标识,以及该最强信号强度值所对应的发射端口所在的发射端口组中其他发射端口的标识。
可选地,作为另一实施例,该第二设备发送的该测量信息,用于该第一设备确定同时与多个第二设备进行下行传输的至少一个发射端口集合,其中该至少一个发射端口集合中每个发射端口集合中包括的发射端口的个数与该多个第二设备的个数相等,且一个发射端口对应一个第二设备。
可替代地,作为另一实施例,该至少一个发射端口集合包括至少两个发射端口集合,处理器810还用于与该第一设备之间的进行第二信号的传输,以触发该第一设备根据该第二信号的强度值,从该至少两个发射端口集合中确定系统性能最好的一个发射端口集合进行与该多个第二设备进行下行传输。
应理解,图8所示的第二设备800能够实现图2方法实施例中涉及第二设备的各个过程。第二设备800中的各个模块的操作和/或功能,分别为了实现图2中的方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
本申请实施例可以通过第一设备配置第二设备的上报模式和上报测量信息的内容,从而能够得到合适的反馈信息,进而合理的规划分配给不同第二设备的发射资源,降低多个资源之间的干扰。
具体而言,本申请实施中通过第一设备(例如,网络设备)发送指示信息,指示第二设备(例如,终端设备)反馈的由第二设备的接收区域确定的测量信息,第一设备进而可以根据该测量信息确定下行传输的发射端口集合。也就是说本申请实施例中第一设备可以根据由接收信息确定的测量信息来确定发送数据的多个发射端口,在考虑了接收端口对 MU-MIMO信号的影响下,第一设备选择合适的发射端口同时进行信号传输,能够避免或者降低多个信号之间的彼此干扰。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个 地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本申请所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上所述仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (36)

  1. 一种传输信息的方法,其特征在于,所述方法包括:
    第一设备向第二设备发送指示信息,所述指示信息用于指示上报模式,所述上报模式中规定了所述第二设备上报测量信息的内容;
    所述第一设备接收所述第二设备发送的所述测量信息,所述测量信息包括测量结果,所述测量结果是所述第二设备根据所述第一设备发送的参考信号所获得的,所述参考信号是所述第一设备的发射端口发送的,所述测量信息包括所述发射端口所对应的发射端口组的信息,其中,所述发射端口所对应的所述发射端口组是由所述第二设备的接收信息确定的。
  2. 根据权利要求1所述的方法,其特征在于,所述第二设备的接收信息包括所述第二设备的接收区域的信息;
    其中,一个发射端口组对应所述第二设备的一个接收区域,所述一个发射端口组中的每一个发射端口发送所述参考信号,在所述一个接收区域中存在至少一个接收端口所检测到的所述每一个发射端口发送的所述参考信号的能量值大于或等于预设阈值,所述接收区域是所述第二设备按照逻辑分组规则确定的。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述第一设备向所述第二设备发送规则指示信息,所述规则指示信息用于指示所述逻辑分组规则;
    其中,所述逻辑分组规则包括:按照所述第二设备的接收端口、所述发射端口对应的到达角度、第二设备的接收天线的权值、第二设备的的接收端口号将所述第二设备的接收端口划分为多个接收区域。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,
    所述指示信息用于指示信道状态信息CSI进程,所述CSI进程中规定了所述上报模式;
    并且,所述第一设备发送所述参考信号的发送端口是由所述CSI进程配置的,所述参考信号的发送端口位于同一发射端口组或者不同发射端口组中。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,
    所述上报模式中规定的所述上报测量信息的内容,包括所述第二设备接收所述第一设备的各个发射端口发送的参考信号的最优参考信号强度中的前N个最优参考信号强度值所对应的N个发射端口的标识、所述前N个最优参考信号强度值对应的N个最优接收区域所对应的N个发射端口组的标识,其中,一个发射端口对应一个最优接收区域和一个最优参考信号强度值。
  6. 根据权利要求5所述的方法,其特征在于,
    所述上报模式中规定的所述上报测量信息的内容,还包括所述N个发射端口所对应的发射端口组中除去所述N个发射端口组之外的其他发射端口组的标识。
  7. 根据权利要求1至4中任一项所述的方法,其特征在于,
    所述上报模式中规定的所述上报测量信息的内容,包括所述第二设备接收到所述第一设备的各个发射端口发送的参考信号的最优参考信号强度中的前M个最优和后K个最差 参考信号强度值所对应的M个和K个发射端口的标识、所述前M个最优和后K个最差参考信号强度值对应的M个发射端口组的标识和K个发射端口组的标识,其中,一个发射端口对应一个最优接收区域分组号和一个最优参考信号强度值。
  8. 根据权利要求1至4中任一项所述的方法,其特征在于,
    所述上报模式中规定的所述上报测量信息的内容,包括所述第二设备接收到所述第一设备的每一发射端口组中各个发射端口发送的参考信号中信号强度中的前Z个最优参考信号强度值所对应的Z个发射端口号。
  9. 根据权利要求1至4中任一项所述的方法,其特征在于,
    所述上报模式中规定的所述上报测量信息的内容,包括所述第二设备接收到所述第一设备的每一发射端口组中各个发射端口发送的参考信号中信号强度最强的信号强度值所对应的发射端口的标识,以及所述最强信号强度值所对应的发射端口所在的发射端口组中其他发射端口的标识。
  10. 一种传输信息的方法,其特征在于,所述方法包括:
    第二设备接收第一设备发送的指示信息,所述指示信息用于指示上报模式,所述上报模式中规定了所述第二设备上报测量信息的内容;
    所述第二设备向所述第一设备发送所述测量信息,所述第一设备接收所述各个第二设备发送的所述测量信息,所述测量信息包括测量结果,所述测量结果是所述第二设备根据所述第一设备发送的参考信号所获得的,所述参考信号是所述第一设备的发射端口发送的,所述测量信息包括所述发射端口所对应的发射端口组的信息,其中,所述发射端口所对应的所述发射端口组是由所述第二设备的接收信息确定的。
  11. 根据权利要求10所述的方法,其特征在于,所述第二设备的接收信息包括所述第二设备的接收区域的信息;
    其中,一个发射端口组对应所述第二设备的一个接收区域,在所述一个接收区域中存在至少一个接收端口所检测到的所述一个发射端口组中的每一个发射端口发送的所述参考信号的能量值大于或等于预设阈值,所述接收区域是所述第二设备按照逻辑分组规则确定的。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述第二设备接收所述第一设备发送的规则指示信息,所述规则指示信息用于指示所述逻辑分组规则;
    其中,所述逻辑分组规则包括:按照所述第二设备的接收端口、所述发射端口对应的到达角度、第二设备的接收天线的权值、第二设备的的接收端口号将所述第二设备的接收端口划分为多个接收区域。
  13. 根据权利要求10至12中任一项所述的方法,其特征在于,
    所述指示信息用于指示信道状态信息CSI进程,所述CSI进程中规定了所述上报模式;
    并且,所述第一设备发送所述参考信号的发送端口是由所述CSI进程配置的,所述参考信号的发送端口位于同一发射端口组或者不同发射端口组中。
  14. 根据权利要求10至13中任一项所述的方法,其特征在于,
    所述发射端口所对应的发射端口组的信息,包括所述第二设备接收所述第一设备的各个发射端口发送的参考信号的最优参考信号强度中的前N个最优参考信号强度值所对应 的N个发射端口的标识、所述前N个最优参考信号强度值对应的N个最优接收区域所对应的N个发射端口组的标识,其中,一个发射端口对应一个最优接收区域和一个最优参考信号强度值。
  15. 根据权利要求14所述的方法,其特征在于,
    所述发射端口所对应的发射端口组的信息,还包括所述N个发射端口所对应的发射端口组中除去所述N个发射端口组之外的其他发射端口组的标识。
  16. 根据权利要求10至13中任一项所述的方法,其特征在于,
    所述发射端口所对应的发射端口组的信息,包括所述第二设备接收到所述第一设备的各个发射端口发送的参考信号的最优参考信号强度中的前M个最优和后K个最差参考信号强度值所对应的M个和K个发射端口的标识、所述前M个最优和后K个最差参考信号强度值对应的M个发射端口组的标识和K个发射端口组的标识,其中,一个发射端口对应一个最优接收区域分组号和一个最优参考信号强度值。
  17. 根据权利要求10至13中任一项所述的方法,其特征在于,
    所述发射端口所对应的发射端口组的信息,包括所述第二设备接收到所述第一设备的每一发射端口组中各个发射端口发送的参考信号中信号强度中的前Z个最优参考信号强度值所对应的Z个发射端口号。
  18. 根据权利要求10至13中任一项所述的方法,其特征在于,
    所述发射端口所对应的发射端口组的信息,包括所述第二设备接收到所述第一设备的每一发射端口组中各个发射端口发送的参考信号中信号强度最强的信号强度值所对应的发射端口的标识,以及所述最强信号强度值所对应的发射端口所在的发射端口组中其他发射端口的标识。
  19. 一种第一设备,其特征在于,包括:
    第一发送单元,用于向第二设备发送指示信息,所述指示信息用于指示上报模式,所述上报模式中规定了所述第二设备上报测量信息的内容;
    接收单元,用于接收所述第二设备发送的所述测量信息,所述测量信息包括测量结果,所述测量结果是所述第二设备根据所述第一设备发送的参考信号所获得的,所述参考信号是所述第一设备的发射端口发送的,所述测量信息包括所述发射端口所对应的发射端口组的信息,其中,所述发射端口所对应的所述发射端口组是由所述第二设备的接收信息确定的。
  20. 根据权利要求19所述的第一设备,其特征在于,所述第二设备的接收信息包括所述第二设备的接收区域的信息;
    其中,一个发射端口组对应所述第二设备的一个接收区域,所述一个发射端口组中的每一个发射端口发送所述参考信号,在所述一个接收区域中存在至少一个接收端口所检测到的所述每一个发射端口发送的所述参考信号的能量值大于或等于预设阈值,所述接收区域是所述第二设备按照逻辑分组规则确定的。
  21. 根据权利要求20所述的第一设备,其特征在于,所述第一设备还包括:
    第二发送单元,用于向所述第二设备发送规则指示信息,所述规则指示信息用于指示所述逻辑分组规则;
    其中,所述逻辑分组规则包括:按照所述第二设备的接收端口、所述发射端口对应的 到达角度、第二设备的接收天线的权值、第二设备的的接收端口号将所述第二设备的接收端口划分为多个接收区域。
  22. 根据权利要求19至21中任一项所述的第一设备,其特征在于,
    所述指示信息用于指示信道状态信息CSI进程,所述CSI进程中规定了所述上报模式;
    并且,所述第一设备发送所述参考信号的发送端口是由所述CSI进程配置的,所述参考信号的发送端口位于同一发射端口组或者不同发射端口组中。
  23. 根据权利要求19至22中任一项所述的第一设备,其特征在于,
    所述上报模式中规定的所述上报测量信息的内容,包括所述第二设备接收所述第一设备的各个发射端口发送的参考信号的最优参考信号强度中的前N个最优参考信号强度值所对应的N个发射端口的标识、所述前N个最优参考信号强度值对应的N个最优接收区域所对应的N个发射端口组的标识,其中,一个发射端口对应一个最优接收区域和一个最优参考信号强度值。
  24. 根据权利要求23所述的第一设备,其特征在于,
    所述上报模式中规定的所述上报测量信息的内容,还包括所述N个发射端口所对应的发射端口组中除去所述N个发射端口组之外的其他发射端口组的标识。
  25. 根据权利要求19至22中任一项所述的第一设备,其特征在于,
    所述上报模式中规定的所述上报测量信息的内容,包括所述第二设备接收到所述第一设备的各个发射端口发送的参考信号的最优参考信号强度中的前M个最优和后K个最差参考信号强度值所对应的M个和K个发射端口的标识、所述前M个最优和后K个最差参考信号强度值对应的M个发射端口组的标识和K个发射端口组的标识,其中,一个发射端口对应一个最优接收区域分组号和一个最优参考信号强度值。
  26. 根据权利要求19至22中任一项所述的第一设备,其特征在于,
    所述上报模式中规定的所述上报测量信息的内容,包括所述第二设备接收到所述第一设备的每一发射端口组中各个发射端口发送的参考信号中信号强度中的前Z个最优参考信号强度值所对应的Z个发射端口号。
  27. 根据权利要求19至22中任一项所述的第一设备,其特征在于,
    所述上报模式中规定的所述上报测量信息的内容,包括所述第二设备接收到所述第一设备的每一发射端口组中各个发射端口发送的参考信号中信号强度最强的信号强度值所对应的发射端口的标识,以及所述最强信号强度值所对应的发射端口所在的发射端口组中其他发射端口的标识。
  28. 一种第二设备,其特征在于,包括:
    第一接收单元,用于接收第一设备发送的指示信息,所述指示信息用于指示上报模式,所述上报模式中规定了所述第二设备上报测量信息的内容;
    发送单元,用于向所述第一设备发送所述测量信息,所述第一设备接收所述各个第二设备发送的所述测量信息,所述测量信息包括测量结果,所述测量结果是所述第二设备根据所述第一设备发送的参考信号所获得的,所述参考信号是所述第一设备的发射端口发送的,所述测量信息包括所述发射端口所对应的发射端口组的信息,其中,所述发射端口所对应的所述发射端口组是由所述第二设备的接收信息确定的。
  29. 根据权利要求28所述的第二设备,其特征在于,所述第二设备的接收信息包括 所述第二设备的接收区域的信息;
    其中,一个发射端口组对应所述第二设备的一个接收区域,在所述一个接收区域中存在至少一个接收端口所检测到的所述一个发射端口组中的每一个发射端口发送的所述参考信号的能量值大于或等于预设阈值,所述接收区域是所述第二设备按照逻辑分组规则确定的。
  30. 根据权利要求29所述的第二设备,其特征在于,所述第二设备还包括:
    第二接收单元,用于接收所述第一设备发送的规则指示信息,所述规则指示信息用于指示所述逻辑分组规则;
    其中,所述逻辑分组规则包括:按照所述第二设备的接收端口、所述发射端口对应的到达角度、第二设备的接收天线的权值、第二设备的的接收端口号将所述第二设备的接收端口划分为多个接收区域。
  31. 根据权利要求28至30中任一项所述的第二设备,其特征在于,
    所述指示信息用于指示信道状态信息CSI进程,所述CSI进程中规定了所述上报模式;
    并且,所述第一设备发送所述参考信号的发送端口是由所述CSI进程配置的,所述参考信号的发送端口位于同一发射端口组或者不同发射端口组中。
  32. 根据权利要求28至31中任一项所述的第二设备,其特征在于,
    所述发射端口所对应的发射端口组的信息,包括所述第二设备接收所述第一设备的各个发射端口发送的参考信号的最优参考信号强度中的前N个最优参考信号强度值所对应的N个发射端口的标识、所述前N个最优参考信号强度值对应的N个最优接收区域所对应的N个发射端口组的标识,其中,一个发射端口对应一个最优接收区域和一个最优参考信号强度值。
  33. 根据权利要求32所述的第二设备,其特征在于,
    所述发射端口所对应的发射端口组的信息,还包括所述N个发射端口所对应的发射端口组中除去所述N个发射端口组之外的其他发射端口组的标识。
  34. 根据权利要求28至31中任一项所述的第二设备,其特征在于,
    所述发射端口所对应的发射端口组的信息,包括所述第二设备接收到所述第一设备的各个发射端口发送的参考信号的最优参考信号强度中的前M个最优和后K个最差参考信号强度值所对应的M个和K个发射端口的标识、所述前M个最优和后K个最差参考信号强度值对应的M个发射端口组的标识和K个发射端口组的标识,其中,一个发射端口对应一个最优接收区域分组号和一个最优参考信号强度值。
  35. 根据权利要求28至31中任一项所述的第二设备,其特征在于,
    所述发射端口所对应的发射端口组的信息,包括所述第二设备接收到所述第一设备的每一发射端口组中各个发射端口发送的参考信号中信号强度中的前Z个最优参考信号强度值所对应的Z个发射端口号。
  36. 根据权利要求28至31中任一项所述的第二设备,其特征在于,
    所述发射端口所对应的发射端口组的信息,包括所述第二设备接收到所述第一设备的每一发射端口组中各个发射端口发送的参考信号中信号强度最强的信号强度值所对应的发射端口的标识,以及所述最强信号强度值所对应的发射端口所在的发射端口组中其他发射端口的标识。
PCT/CN2017/103866 2016-09-30 2017-09-28 传输信息的方法和设备 WO2018059470A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17854920.0A EP3515003B1 (en) 2016-09-30 2017-09-28 Information transmission method and device
US16/371,859 US11147075B2 (en) 2016-09-30 2019-04-01 Methods and devices of information transmission using reception information of receiving devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610877461.6 2016-09-30
CN201610877461.6A CN107888357B (zh) 2016-09-30 2016-09-30 传输信息的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/371,859 Continuation US11147075B2 (en) 2016-09-30 2019-04-01 Methods and devices of information transmission using reception information of receiving devices

Publications (1)

Publication Number Publication Date
WO2018059470A1 true WO2018059470A1 (zh) 2018-04-05

Family

ID=61763752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103866 WO2018059470A1 (zh) 2016-09-30 2017-09-28 传输信息的方法和设备

Country Status (4)

Country Link
US (1) US11147075B2 (zh)
EP (1) EP3515003B1 (zh)
CN (1) CN107888357B (zh)
WO (1) WO2018059470A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111432428B (zh) * 2019-01-10 2022-09-27 中国移动通信有限公司研究院 一种测量方法和设备
US10886991B2 (en) * 2019-05-22 2021-01-05 At&T Intellectual Property I, L.P. Facilitating sparsity adaptive feedback in the delay doppler domain in advanced networks
US10979151B2 (en) * 2019-05-22 2021-04-13 At&T Intellectual Property I, L.P. Multidimensional grid sampling for radio frequency power feedback
US11824637B2 (en) * 2019-05-22 2023-11-21 At&T Intellectual Property I, L.P. Generating wireless reference signals in a different domain for transmission
US11050530B2 (en) 2019-06-27 2021-06-29 At&T Intellectual Property I, L.P. Generating wireless reference signals in a different domain for transmission with a collapsed time-frequency grid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102480756A (zh) * 2010-11-29 2012-05-30 中兴通讯股份有限公司 多点协作传输的配置方法和系统
US20140200009A1 (en) * 2013-01-15 2014-07-17 Zte Wistron Telecom Ab Operation of a heterogeneous wireless network by determining location of a wireless device
CN105207723A (zh) * 2014-06-30 2015-12-30 华为技术有限公司 通道校正方法、基站、用户设备和通信系统
CN105471552A (zh) * 2014-06-13 2016-04-06 北京三星通信技术研究有限公司 一种数据传输方法和设备

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101729115A (zh) * 2008-10-29 2010-06-09 华为技术有限公司 一种多天线发射方法、装置及系统
ES2742350T3 (es) * 2010-02-12 2020-02-14 Blackberry Ltd Señal de referencia para una implementación de red multipunto coordinada
RU2524851C2 (ru) * 2010-11-29 2014-08-10 ЗедТиИ (ЮЭсЭй) ИНК. Способы и устройство для конфигурирования профилей качества обслуживания абонента
CN102315871B (zh) * 2011-09-30 2017-03-29 中兴通讯股份有限公司 非周期的信道状态信息的处理方法、装置及系统
WO2013093171A1 (en) * 2011-12-20 2013-06-27 Nokia Corporation Joint first reference signal and second reference signal based channel state information feedback
KR101921669B1 (ko) * 2011-12-27 2018-11-27 삼성전자주식회사 FDD 모드로 동작하는 Massive MIMO를 사용하는 무선통신 시스템에서 제한된 정보량을 이용하여 채널 상태 정보를 피드백 하기 위한 장치 및 방법
US10009785B2 (en) * 2012-03-05 2018-06-26 Lg Electronics Inc. Method and apparatus for carrying out measurement report in wireless communication system
CN103391576B (zh) * 2012-05-11 2017-01-25 华为技术有限公司 参考信号接收功率的上报方法和设备
US9059753B2 (en) * 2012-09-27 2015-06-16 Nokia Solutions & Networks Oy Non-codebook based channel state information feedback
JP2016515777A (ja) * 2013-04-03 2016-05-30 華為技術有限公司Huawei Technologies Co.,Ltd. 参照信号を受信するためおよび送るための方法および装置、ユーザ機器、ならびに基地局
WO2014201638A1 (zh) * 2013-06-19 2014-12-24 华为技术有限公司 一种通信质量测量的方法和装置
US9532256B2 (en) 2013-08-07 2016-12-27 Broadcom Corporation Receiver-aided multi-user MIMO and coordinated beamforming
CN105207705A (zh) * 2014-06-23 2015-12-30 北京三星通信技术研究有限公司 有源天线系统中的参考信号收发方法及设备
US9999073B2 (en) * 2014-11-18 2018-06-12 Telefonaktiebolaget Lm Ericsson (Publ) Signaling adapted CSI-RS periodicities in active antenna systems
CN107534540B (zh) * 2015-04-10 2020-10-23 Lg 电子株式会社 在无线通信系统中报告信道状态信息的方法及其设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102480756A (zh) * 2010-11-29 2012-05-30 中兴通讯股份有限公司 多点协作传输的配置方法和系统
US20140200009A1 (en) * 2013-01-15 2014-07-17 Zte Wistron Telecom Ab Operation of a heterogeneous wireless network by determining location of a wireless device
CN105471552A (zh) * 2014-06-13 2016-04-06 北京三星通信技术研究有限公司 一种数据传输方法和设备
CN105207723A (zh) * 2014-06-30 2015-12-30 华为技术有限公司 通道校正方法、基站、用户设备和通信系统

Also Published As

Publication number Publication date
CN107888357B (zh) 2023-10-20
US20190230673A1 (en) 2019-07-25
EP3515003A1 (en) 2019-07-24
EP3515003B1 (en) 2021-11-03
US11147075B2 (en) 2021-10-12
CN107888357A (zh) 2018-04-06
EP3515003A4 (en) 2019-09-11

Similar Documents

Publication Publication Date Title
US20240259161A1 (en) Method and apparatus for configuring reference signal channel characteristics, and communication device
WO2018082641A1 (zh) 传输信息的方法和设备
EP3691212B1 (en) Uplink transmission and configuration method, terminal, and base station
EP3598676B1 (en) Method for transmitting data, terminal device, and network device
WO2018228571A1 (zh) 通信方法和通信装置
US11005550B2 (en) Method and apparatus for transmitting downlink control information (DCI)
CN109005548B (zh) 一种信道质量信息的上报方法及装置
WO2018059470A1 (zh) 传输信息的方法和设备
RU2610457C1 (ru) Способ для определения количества бит указания ранга, ri, базовая станция и терминал
CN111818546B (zh) 干扰测量的方法和装置
WO2020063308A1 (zh) 一种无线通信网络中的指示波束信息的方法和设备
WO2019100905A1 (zh) 数据传输方法、终端设备和网络设备
WO2018127149A1 (zh) 一种信道状态信息处理的方法、装置和系统
WO2020199902A1 (zh) 一种选择接收波束的方法及装置
TW201906445A (zh) 波束管理方法、網路設備和終端
WO2022042294A1 (zh) 波束指示方法、网络设备、终端、装置及存储介质
WO2022237637A1 (zh) 一种信息处理方法、装置、终端及网络设备
WO2022028501A1 (zh) 一种信号传输方法、装置及存储介质
WO2022193260A1 (zh) 无线通信方法、终端设备和网络设备
WO2020156514A1 (zh) 测量上报方法和通信装置
WO2023078429A1 (zh) Srs传输功率确定方法、设备、装置及存储介质
WO2023202693A1 (zh) 一种信息传输方法、装置、网络设备及终端
CN114501569B (zh) 数据传输方法、装置、终端及网络侧设备
WO2023011529A1 (zh) 一种波束生效时间确定方法、装置、终端和网络设备
US20240089057A1 (en) Information processing method, device, terminal and network device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017854920

Country of ref document: EP

Effective date: 20190415