WO2022078115A1 - 功率确定方法、装置、终端及网络侧设备 - Google Patents

功率确定方法、装置、终端及网络侧设备 Download PDF

Info

Publication number
WO2022078115A1
WO2022078115A1 PCT/CN2021/117155 CN2021117155W WO2022078115A1 WO 2022078115 A1 WO2022078115 A1 WO 2022078115A1 CN 2021117155 W CN2021117155 W CN 2021117155W WO 2022078115 A1 WO2022078115 A1 WO 2022078115A1
Authority
WO
WIPO (PCT)
Prior art keywords
pos
prach
power
preamble
target
Prior art date
Application number
PCT/CN2021/117155
Other languages
English (en)
French (fr)
Inventor
任晓涛
任斌
达人
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2022078115A1 publication Critical patent/WO2022078115A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a power determination method, apparatus, terminal, and network-side equipment.
  • the technical solutions for downlink positioning in NR mainly include a delay-based DL-TDOA (downlink time difference of arrival) positioning method and an angle-based DL-AoD (downlink angle of departure) positioning method.
  • DL-TDOA time delay positioning method the position of the terminal is estimated by the relative time delay between the base stations according to the difference of the propagation distance of the terminal relative to each base station.
  • DL-AoD angle positioning method the position of the terminal is determined through multiple angle parameters according to the position direction of the terminal relative to the base station.
  • the UE terminal
  • RRC Radio Resource Control
  • RRC_CONNECTED connected
  • RRC_CONNECTED connected
  • it must first enter the RRC_CONNECTED connected state, which will increase the power consumption of the additional UE and increase the positioning delay; Therefore, in order to reduce the power consumption of the UE and reduce the positioning delay of the UE, it is necessary to carry the relevant positioning information in the physical random access channel used for positioning for the UE in the RRC_IDLE state or in the RRC_INACTIVE state. positioning process.
  • the current UE transmit power of the Physical Random Access Channel is based on the serving cell S where the UE is located (specifically, for example: gNB (base station) 1 If the target cell sent by the PRACH is a neighboring cell (specifically, a certain cell N under the neighboring base station gNB3), it cannot The path loss between cells N) sets a reasonable transmit power.
  • PRACH Physical Random Access Channel
  • the purpose of the present disclosure is to provide a power determination method, apparatus, terminal, and network side equipment, so as to solve the problem that a reasonable transmission power cannot be determined in the transmission power determination scheme for PRACH in the related art.
  • an embodiment of the present disclosure provides a power determination method, which is applied to a terminal, including:
  • the target cell is a serving cell or a neighboring cell of the terminal.
  • determining the transmit power of the PRACH-Pos for the physical random access channel used for positioning according to the downlink path loss including:
  • the transmit power of the PRACH-Pos is determined according to the first maximum output power, the first target received power, and the downlink path loss.
  • the first target received power is configured by a preset target received power of a preamble used for positioning, PREAMBLE_RECEIVED_TARGET_POWER_POS.
  • the PREAMBLE_RECEIVED_TARGET_POWER_POS is determined by formula one, and the formula one is:
  • PREAMBLE_RECEIVED_TARGET_POWER_POS preambleReceivedTargetPower_Pos+DELTA_PREAMBLE_POS+(PREAMBLE_POWER_RAMPING_COUNTER_POS–1) ⁇ PREAMBLE_POWER_RAMPING_STEP_POS;
  • preambleReceivedTargetPower_Pos represents the initial value of the preamble target received power used for positioning
  • DELTA_PREAMBLE_POS represents the incremental preamble used for positioning
  • PREAMBLE_POWER_RAMPING_COUNTER_POS represents the preamble power ramp counter used for positioning
  • PREAMBLE_POWER_RAMPING_STEP_POS represents the preamble power ramp used for positioning. Slope step length.
  • preambleReceivedTargetPower_Pos is a dedicated parameter for setting PREAMBLE_RECEIVED_TARGET_POWER_POS, and/or,
  • DELTA_PREAMBLE_POS is a parameter related to the subcarrier interval of the PRACH-Pos or the actual occupied bandwidth.
  • the PREAMBLE_RECEIVED_TARGET_POWER_POS and the preamble target received power PREAMBLE_RECEIVED_TARGET_POWER used for random access are different parameters and have different values.
  • the terminal is configured to send the PRACH-Pos on the activated uplink bandwidth part b of the carrier f of the serving cell c
  • the The above downlink path loss is used to determine the transmit power of PRACH-Pos, including:
  • P PRACH-Pos,b,f,c (i) min ⁇ P CMAX,f,c (i),P PRACH-Pos,target,b,f,c +PL b,f,c ⁇ ;
  • P PRACH-Pos,b,f,c (i) represents the transmission power at the transmission opportunity i of the PRACH-Pos
  • P CMAX,f,c (i) represents the first maximum output power configured by the terminal on the carrier f of the serving cell c at the transmission opportunity i of the PRACH-Pos;
  • P PRACH-Pos,target,b,f,c represents the first target received power of the PRACH-Pos on the activated uplink bandwidth part b of the carrier f of the serving cell c;
  • PL b,f,c represent the estimated value of the downlink path loss.
  • the downlink path loss is estimated by using the reference signal resource with the index number q d of the serving cell or the non-serving cell of the terminal;
  • the reference signal resource is associated with the PRACH-Pos.
  • the configuration information of the q d is obtained according to the pathloss reference signal pathlossReferenceRS-Pos used for positioning.
  • determining the transmit power of the physical random access channel PRACH-Pos used for positioning according to the downlink path loss including:
  • the transmit power of the PRACH-Pos is determined according to the second maximum output power, the second target received power, the bandwidth occupied by the PRACH-Pos, the partial path loss compensation factor, and the downlink path loss.
  • the second target received power is obtained according to the preamble power control parameter PREAMBLE_P0_POS used for positioning; and/or,
  • the partial path loss compensation factor is obtained according to the high layer parameter alpha.
  • the terminal when the terminal is configured to send the PRACH-Pos on the activated uplink bandwidth part b of the carrier f of the serving cell c, the second maximum output power, the second target received power, the The bandwidth occupied by the PRACH-Pos, the partial path loss compensation factor and the downlink path loss, determine the transmit power of the PRACH-Pos, including:
  • P PRACH-Pos,b,f,c (i,q s ) represents the transmission power of the PRACH-Pos resource set q s at the transmission occasion i of the PRACH-Pos;
  • P , CMAX,f,c (i) represents the second maximum output power configured by the terminal on the carrier f of the serving cell c at the transmission opportunity i of the PRACH-Pos;
  • P O,PRACH-Pos,b,f,c (q s ) represents the power control parameter P0 of the PRACH-Pos resource set q s on the activated uplink bandwidth part b of the carrier f of the serving cell c; P0 represents the second target received power;
  • M PRACH-Pos,b,f,c (i) represents the number of resource blocks, at the sounding reference signal SRS-Pos transmission opportunity i for positioning, on the active uplink bandwidth part b of the carrier f of the serving cell c Bandwidth of SRS-Pos;
  • represents the subcarrier spacing indication
  • ⁇ PRACH-Pos,b,f,c (q s ) represents the partial path loss compensation factor of the PRACH-Pos resource set q s on the activated uplink bandwidth part b of the carrier f of the serving cell c;
  • the PRACH-Pos resource set qs is obtained according to the high-level parameter PRACH-Pos resource identifier PRACH- PosResourceId ;
  • PL b,f,c (q d ) represents the estimated value of the downlink path loss.
  • the ⁇ corresponds to 0, 1, 2 or 3.
  • the downlink reference signal includes at least one of a synchronization signal block SSB, a downlink positioning reference signal DL-PRS, and a channel state information reference signal CSI-RS.
  • the assistance information includes: at least one item of time-frequency resource occupation information of the downlink reference signal and energy EPRE power configuration information of each resource element.
  • the downlink path loss is obtained according to the secondary synchronization signal SSS in the synchronization signal block of the serving cell of the terminal.
  • the embodiment of the present disclosure also provides a power determination method, which is applied to a network side device, including:
  • the preset parameters include at least one of the following parameters:
  • Preamble power ramp counter for positioning PREAMBLE_POWER_RAMPING_COUNTER_PO;
  • the high-level parameter PRACH-Pos resource identifier PRACH- PosResourceId used to obtain the PRACH-Pos resource set qs.
  • the PREAMBLE_RECEIVED_TARGET_POWER_POS and the preamble target received power PREAMBLE_RECEIVED_TARGET_POWER used for random access are different parameters and have different values.
  • preambleReceivedTargetPower_Pos is a dedicated parameter for setting PREAMBLE_RECEIVED_TARGET_POWER_POS, and/or,
  • DELTA_PREAMBLE_POS is a parameter related to the subcarrier interval of the PRACH-Pos or the actual occupied bandwidth.
  • the ⁇ corresponds to 0, 1, 2 or 3.
  • An embodiment of the present disclosure also provides a terminal, including a memory, a transceiver, and a processor:
  • a memory for storing a computer program
  • a transceiver for sending and receiving data under the control of the processor
  • a processor for reading the computer program in the memory and performing the following operations:
  • the target cell is a serving cell or a neighboring cell of the terminal.
  • determining the transmit power of the PRACH-Pos for the physical random access channel used for positioning according to the downlink path loss including:
  • the transmit power of the PRACH-Pos is determined according to the first maximum output power, the first target received power, and the downlink path loss.
  • the first target received power is configured by a preset target received power of a preamble used for positioning, PREAMBLE_RECEIVED_TARGET_POWER_POS.
  • the PREAMBLE_RECEIVED_TARGET_POWER_POS is determined by formula one, and the formula one is:
  • PREAMBLE_RECEIVED_TARGET_POWER_POS preambleReceivedTargetPower_Pos+DELTA_PREAMBLE_POS+(PREAMBLE_POWER_RAMPING_COUNTER_POS–1) ⁇ PREAMBLE_POWER_RAMPING_STEP_POS;
  • preambleReceivedTargetPower_Pos represents the initial value of the preamble target received power used for positioning
  • DELTA_PREAMBLE_POS represents the incremental preamble used for positioning
  • PREAMBLE_POWER_RAMPING_COUNTER_POS represents the preamble power ramp counter used for positioning
  • PREAMBLE_POWER_RAMPING_STEP_POS represents the preamble power ramp used for positioning. Slope step length.
  • preambleReceivedTargetPower_Pos is a dedicated parameter for setting PREAMBLE_RECEIVED_TARGET_POWER_POS, and/or,
  • DELTA_PREAMBLE_POS is a parameter related to the subcarrier interval of the PRACH-Pos or the actual occupied bandwidth.
  • the PREAMBLE_RECEIVED_TARGET_POWER_POS and the preamble target received power PREAMBLE_RECEIVED_TARGET_POWER used for random access are different parameters and have different values.
  • the terminal is configured to send the PRACH-Pos on the activated uplink bandwidth part b of the carrier f of the serving cell c
  • the The above downlink path loss is used to determine the transmit power of PRACH-Pos, including:
  • P PRACH-Pos,b,f,c (i) min ⁇ P CMAX,f,c (i),P PRACH-Pos,target,b,f,c +PL b,f,c ⁇ ;
  • P PRACH-Pos,b,f,c (i) represents the transmission power at the transmission opportunity i of the PRACH-Pos
  • P CMAX,f,c (i) represents the first maximum output power configured by the terminal on the carrier f of the serving cell c at the transmission opportunity i of the PRACH-Pos;
  • P PRACH-Pos,target,b,f,c represents the first target received power of the PRACH-Pos on the activated uplink bandwidth part b of the carrier f of the serving cell c;
  • PL b,f,c represent the estimated value of the downlink path loss.
  • the downlink path loss is estimated by using the reference signal resource with the index number q d of the serving cell or the non-serving cell of the terminal;
  • the reference signal resource is associated with the PRACH-Pos.
  • the configuration information of the q d is obtained according to the pathloss reference signal pathlossReferenceRS-Pos used for positioning.
  • determining the transmit power of the physical random access channel PRACH-Pos used for positioning according to the downlink path loss including:
  • the transmit power of the PRACH-Pos is determined according to the second maximum output power, the second target received power, the bandwidth occupied by the PRACH-Pos, the partial path loss compensation factor, and the downlink path loss.
  • the second target received power is obtained according to the preamble power control parameter PREAMBLE_P0_POS used for positioning; and/or,
  • the partial path loss compensation factor is obtained according to the high layer parameter alpha.
  • the terminal when the terminal is configured to send the PRACH-Pos on the activated uplink bandwidth part b of the carrier f of the serving cell c, the second maximum output power, the second target received power, the The bandwidth occupied by the PRACH-Pos, the partial path loss compensation factor and the downlink path loss, determine the transmit power of the PRACH-Pos, including:
  • P PRACH-Pos,b,f,c (i,q s ) represents the transmission power of the PRACH-Pos resource set q s at the transmission occasion i of the PRACH-Pos;
  • P , CMAX,f,c (i) represents the second maximum output power configured by the terminal on the carrier f of the serving cell c at the transmission opportunity i of the PRACH-Pos;
  • P O,PRACH-Pos,b,f,c (q s ) represents the power control parameter P0 of the PRACH-Pos resource set q s on the activated uplink bandwidth part b of the carrier f of the serving cell c; P0 represents the second target received power;
  • M PRACH-Pos,b,f,c (i) represents the number of resource blocks, at the sounding reference signal SRS-Pos transmission opportunity i for positioning, on the active uplink bandwidth part b of the carrier f of the serving cell c Bandwidth of SRS-Pos;
  • represents the subcarrier spacing indication
  • ⁇ PRACH-Pos,b,f,c (q s ) represents the partial path loss compensation factor of the PRACH-Pos resource set q s on the activated uplink bandwidth part b of the carrier f of the serving cell c;
  • the PRACH-Pos resource set qs is obtained according to the high-level parameter PRACH-Pos resource identifier PRACH- PosResourceId ;
  • PL b,f,c (q d ) represents the estimated value of the downlink path loss.
  • the ⁇ corresponds to 0, 1, 2 or 3.
  • the downlink reference signal includes at least one of a synchronization signal block SSB, a downlink positioning reference signal DL-PRS, and a channel state information reference signal CSI-RS.
  • the operation further includes:
  • the assistance information includes: at least one item of time-frequency resource occupation information of the downlink reference signal and energy EPRE power configuration information of each resource element.
  • the operation further includes:
  • the downlink path loss is obtained according to the secondary synchronization signal SSS in the synchronization signal block of the serving cell of the terminal.
  • An embodiment of the present disclosure also provides a network side device, including a memory, a transceiver, and a processor:
  • a memory for storing a computer program
  • a transceiver for sending and receiving data under the control of the processor
  • a processor for reading the computer program in the memory and performing the following operations:
  • the preset parameters include at least one of the following parameters:
  • Preamble power ramp counter for positioning PREAMBLE_POWER_RAMPING_COUNTER_PO;
  • the high-level parameter PRACH-Pos resource identifier PRACH- PosResourceId used to obtain the PRACH-Pos resource set qs.
  • the PREAMBLE_RECEIVED_TARGET_POWER_POS and the preamble target received power PREAMBLE_RECEIVED_TARGET_POWER used for random access are different parameters and have different values.
  • preambleReceivedTargetPower_Pos is a dedicated parameter for setting PREAMBLE_RECEIVED_TARGET_POWER_POS, and/or,
  • DELTA_PREAMBLE_POS is a parameter related to the subcarrier interval of the PRACH-Pos or the actual occupied bandwidth.
  • the ⁇ corresponds to 0, 1, 2 or 3.
  • Embodiments of the present disclosure also provide a power determination apparatus, which is applied to a terminal, including:
  • a first determining unit configured to determine the downlink path loss between the terminal and the target cell according to the received downlink reference signal sent by the target cell;
  • a second determining unit configured to determine, according to the downlink path loss, the transmit power of the physical random access channel PRACH-Pos used for positioning;
  • the target cell is a serving cell or a neighboring cell of the terminal.
  • the transmission power of the PRACH-Pos for the physical random access channel for positioning is determined according to the downlink path loss, including:
  • the transmit power of the PRACH-Pos is determined according to the first maximum output power, the first target received power, and the downlink path loss.
  • the first target received power is configured by a preset target received power of a preamble used for positioning, PREAMBLE_RECEIVED_TARGET_POWER_POS.
  • the PREAMBLE_RECEIVED_TARGET_POWER_POS is determined by formula one, and the formula one is:
  • PREAMBLE_RECEIVED_TARGET_POWER_POS preambleReceivedTargetPower_Pos+DELTA_PREAMBLE_POS+(PREAMBLE_POWER_RAMPING_COUNTER_POS–1) ⁇ PREAMBLE_POWER_RAMPING_STEP_POS;
  • preambleReceivedTargetPower_Pos represents the initial value of the preamble target received power used for positioning
  • DELTA_PREAMBLE_POS represents the incremental preamble used for positioning
  • PREAMBLE_POWER_RAMPING_COUNTER_POS represents the preamble power ramp counter used for positioning
  • PREAMBLE_POWER_RAMPING_STEP_POS represents the preamble power ramp used for positioning. Slope step length.
  • preambleReceivedTargetPower_Pos is a dedicated parameter for setting PREAMBLE_RECEIVED_TARGET_POWER_POS, and/or,
  • DELTA_PREAMBLE_POS is a parameter related to the subcarrier interval of the PRACH-Pos or the actual occupied bandwidth.
  • the PREAMBLE_RECEIVED_TARGET_POWER_POS and the preamble target received power PREAMBLE_RECEIVED_TARGET_POWER used for random access are different parameters and have different values.
  • the terminal is configured to send the PRACH-Pos on the activated uplink bandwidth part b of the carrier f of the serving cell c
  • the The above downlink path loss is used to determine the transmit power of PRACH-Pos, including:
  • P PRACH-Pos,b,f,c (i) min ⁇ P CMAX,f,c (i),P PRACH-Pos,target,b,f,c +PL b,f,c ⁇ ;
  • P PRACH-Pos,b,f,c (i) represents the transmission power at the transmission opportunity i of the PRACH-Pos
  • P CMAX,f,c (i) represents the first maximum output power configured by the terminal on the carrier f of the serving cell c at the transmission opportunity i of the PRACH-Pos;
  • P PRACH-Pos,target,b,f,c represents the first target received power of the PRACH-Pos on the activated uplink bandwidth part b of the carrier f of the serving cell c;
  • PL b,f,c represent the estimated value of the downlink path loss.
  • the downlink path loss is estimated by using the reference signal resource with the index number q d of the serving cell or the non-serving cell of the terminal;
  • the reference signal resource is associated with the PRACH-Pos.
  • the configuration information of the q d is obtained according to the pathloss reference signal pathlossReferenceRS-Pos used for positioning.
  • determining the transmit power of the physical random access channel PRACH-Pos used for positioning according to the downlink path loss including:
  • the transmit power of the PRACH-Pos is determined according to the second maximum output power, the second target received power, the bandwidth occupied by the PRACH-Pos, the partial path loss compensation factor, and the downlink path loss.
  • the second target received power is obtained according to the preamble power control parameter PREAMBLE_P0_POS used for positioning; and/or,
  • the partial path loss compensation factor is obtained according to the high layer parameter alpha.
  • the terminal when the terminal is configured to send the PRACH-Pos on the activated uplink bandwidth part b of the carrier f of the serving cell c, the second maximum output power, the second target received power, the The bandwidth occupied by the PRACH-Pos, the partial path loss compensation factor and the downlink path loss, determine the transmit power of the PRACH-Pos, including:
  • P PRACH-Pos,b,f,c (i,q s ) represents the transmission power of the PRACH-Pos resource set q s at the transmission occasion i of the PRACH-Pos;
  • P , CMAX,f,c (i) represents the second maximum output power configured by the terminal on the carrier f of the serving cell c at the transmission opportunity i of the PRACH-Pos;
  • P O,PRACH-Pos,b,f,c (q s ) represents the power control parameter P0 of the PRACH-Pos resource set q s on the activated uplink bandwidth part b of the carrier f of the serving cell c; P0 represents the second target received power;
  • M PRACH-Pos,b,f,c (i) represents the number of resource blocks, at the sounding reference signal SRS-Pos transmission opportunity i for positioning, on the active uplink bandwidth part b of the carrier f of the serving cell c Bandwidth of SRS-Pos;
  • represents the subcarrier spacing indication
  • ⁇ PRACH-Pos,b,f,c (q s ) represents the partial path loss compensation factor of the PRACH-Pos resource set q s on the activated uplink bandwidth part b of the carrier f of the serving cell c;
  • the PRACH-Pos resource set qs is obtained according to the high-level parameter PRACH-Pos resource identifier PRACH- PosResourceId ;
  • PL b,f,c (q d ) represents the estimated value of the downlink path loss.
  • the ⁇ corresponds to 0, 1, 2 or 3.
  • the downlink reference signal includes at least one of a synchronization signal block SSB, a downlink positioning reference signal DL-PRS, and a channel state information reference signal CSI-RS.
  • a first receiving unit configured to receive assistance information sent by a higher layer
  • the assistance information includes: at least one item of time-frequency resource occupation information of the downlink reference signal and energy EPRE power configuration information of each resource element.
  • the first processing unit is configured to obtain the downlink path loss according to the secondary synchronization signal SSS in the synchronization signal block of the serving cell of the terminal when the downlink reference signal cannot be obtained.
  • the embodiment of the present disclosure also provides a power determination apparatus, which is applied to a network side device, including:
  • a first configuration unit configured to configure preset parameters to the terminal
  • the preset parameters include at least one of the following parameters:
  • Preamble power ramp counter for positioning PREAMBLE_POWER_RAMPING_COUNTER_PO;
  • the high-level parameter PRACH-Pos resource identifier PRACH- PosResourceId used to obtain the PRACH-Pos resource set qs.
  • the PREAMBLE_RECEIVED_TARGET_POWER_POS and the preamble target received power PREAMBLE_RECEIVED_TARGET_POWER used for random access are different parameters and have different values.
  • preambleReceivedTargetPower_Pos is a dedicated parameter for setting PREAMBLE_RECEIVED_TARGET_POWER_POS, and/or,
  • DELTA_PREAMBLE_POS is a parameter related to the subcarrier interval of the PRACH-Pos or the actual occupied bandwidth.
  • the ⁇ corresponds to 0, 1, 2 or 3.
  • An embodiment of the present disclosure further provides a processor-readable storage medium, where a computer program is stored in the processor-readable storage medium, and the computer program is configured to cause the processor to execute the foregoing method for determining power on the terminal side; or , the computer program is configured to cause the processor to execute the foregoing method for determining power on the device side on the network side.
  • the power determination method determines the downlink path loss between the terminal and the target cell according to the received downlink reference signal sent by the target cell; and determines the downlink path loss for positioning according to the downlink path loss.
  • FIG. 1 is a schematic diagram of a PRACH power control scheme in the related art
  • FIG. 2 is a schematic flowchart 1 of a power determination method according to an embodiment of the present disclosure
  • FIG. 3 is a second schematic flowchart of a power determination method according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a PRACH-Pos transmit power control scheme in which a downlink reference signal is a DL-PRS according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a PRACH-Pos transmit power control scheme in which a downlink reference signal is an SSB according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a serving cell SSB serving as a path loss reference signal according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a network side device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram 1 of a power determination apparatus according to an embodiment of the present disclosure.
  • FIG. 10 is a second schematic structural diagram of a power determination apparatus according to an embodiment of the present disclosure.
  • the term "and/or" describes the association relationship of associated objects, and indicates that there can be three kinds of relationships. For example, A and/or B can indicate that A exists alone, A and B exist at the same time, and B exists alone these three situations.
  • the character “/” generally indicates that the associated objects are an "or" relationship.
  • the term “plurality” refers to two or more than two, and other quantifiers are similar.
  • the applicable system may be a global system of mobile communication (GSM) system, a code division multiple access (CDMA) system, a wideband code division multiple access (Wideband Code Division Multiple Access, WCDMA) general packet Wireless service (general packet radio service, GPRS) system, long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) system, Long term evolution advanced (LTE-A) system, universal mobile telecommunication system (UMTS), worldwide interoperability for microwave access (WiMAX) system, 5G New Radio (New Radio, NR) system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband Code Division Multiple Access
  • general packet Wireless service general packet Radio service
  • GPRS general packet Wireless service
  • LTE long term evolution
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • LTE-A Long term evolution advanced
  • the terminal involved in the embodiments of the present disclosure may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing device connected to a wireless modem.
  • the name of the terminal may be different.
  • the terminal may be called user equipment (User Equipment, UE).
  • a wireless terminal may communicate with one or more core networks (Core Network, CN) via a Radio Access Network (RAN), and the wireless terminal may be a mobile terminal, such as a mobile phone (or referred to as a "cellular" phone) and computers with mobile terminals, which may be portable, pocket-sized, hand-held, computer built-in or vehicle mounted mobile devices, for example, which exchange language and/or data with the wireless access network.
  • a mobile terminal such as a mobile phone (or referred to as a "cellular" phone) and computers with mobile terminals, which may be portable, pocket-sized, hand-held, computer built-in or vehicle mounted mobile devices, for example, which exchange language and/or data with the wireless access network.
  • PCS Personal Communication Service
  • SIP Session Initiated Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistants
  • a wireless terminal may also be referred to as a system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point, A remote terminal (remote terminal), an access terminal (access terminal), a user terminal (user terminal), a user agent (user agent), and a user device (user device) are not limited in the embodiments of the present disclosure.
  • the network side device involved in the embodiments of the present disclosure may be a base station, and the base station may include a plurality of cells providing services for the terminal.
  • the base station may also be called an access point, or may be a device in an access network that communicates with a wireless terminal through one or more sectors on an air interface, or other names.
  • the network-side device can be used to exchange received air frames with Internet Protocol (IP) packets, and act as a router between the wireless terminal and the rest of the access network, where the rest of the access network may include the Internet. Protocol (IP) communication network.
  • IP Internet Protocol
  • the network side equipment can also coordinate the attribute management of the air interface.
  • the network side device involved in the embodiment of the present disclosure may be a network device (Base Transceiver Station, a Global System for Mobile Communications, GSM) or a Code Division Multiple Access (Code Division Multiple Access, CDMA).
  • BTS can also be a network device (NodeB) in Wide-band Code Division Multiple Access (WCDMA), or it can be an evolved network in a long term evolution (LTE) system Equipment (evolutional Node B, eNB or e-NodeB), 5G base station (gNB) in 5G network architecture (next generation system), or Home evolved Node B (HeNB), relay node (relay node) ), a home base station (femto), a pico base station (pico), etc., which are not limited in the embodiments of the present disclosure.
  • the network-side device may include a centralized unit (centralized unit, CU) node and a distributed unit (distributed unit, DU) node, and the centralized unit and the distributed unit may
  • One or more antennas can be used between the network side device and the terminal to perform multiple input multiple output (Multi Input Multi Output, MIMO) transmission, and the MIMO transmission can be single user MIMO (Single User MIMO, SU-MIMO) or multi-user MIMO (Multiple User MIMO, MU-MIMO).
  • MIMO transmission can be 2D-MIMO, 3D-MIMO, FD-MIMO, or massive-MIMO, or diversity transmission, precoding transmission, or beamforming transmission.
  • the embodiments of the present disclosure provide a power determination method, apparatus, terminal, and network side equipment, so as to solve the problem that a reasonable transmission power cannot be determined in the transmission power determination scheme for PRACH in the related art.
  • the method, device, terminal and network side equipment are conceived based on the same application. Since the principles of the method, device, terminal and network side equipment for solving problems are similar, the implementation of the method, device, terminal and network side equipment can refer to each other. The repetition will not be repeated.
  • the power determination method provided by the embodiment of the present disclosure, applied to a terminal, as shown in FIG. 2 includes:
  • Step 21 Determine the downlink path loss between the terminal and the target cell according to the received downlink reference signal sent by the target cell.
  • the downlink reference signal may be CSI-RS, DL-PRS or SSB.
  • the downlink path loss may be calculated by measuring the RSRP of the downlink reference signal, but it is not limited thereto.
  • Step 22 According to the downlink path loss, determine the transmit power of the physical random access channel PRACH-Pos used for positioning; wherein, the target cell is a serving cell or a neighboring cell of the terminal.
  • the target cell is the serving cell of the terminal or neighboring communities.
  • Case 1 the bandwidth used by PRACH-Pos is a fixed bandwidth, and parameters need to be used: maximum output power, target received power, and downlink path loss; case 2, PRACH-Pos uses The bandwidth is a non-fixed bandwidth. In this case, in addition to parameters: maximum output power, target received power, and downlink path loss, parameters—the bandwidth occupied by the PRACH-Pos and a partial path loss compensation factor also need to be used.
  • the power determination method determines the downlink path loss between the terminal and the target cell according to the received downlink reference signal sent by the target cell;
  • the transmit power of the physical random access channel PRACH-Pos of the positioning wherein, the target cell is the serving cell or neighboring cell of the terminal; it can realize the PRACH-Pos based on the path loss of the target cell (including the neighboring cell or serving cell) It allows the terminal to determine the transmit power of the physical random access channel used for positioning according to the downlink path loss obtained by measuring the reference signal of the target cell, so that the terminal can determine a reasonable transmit power according to the actual situation, thereby reducing the terminal capacity It reduces the power consumption and improves the positioning accuracy; it solves the problem that the transmission power determination scheme for PRACH in the related art cannot determine a reasonable transmission power.
  • the determination of the transmit power of the PRACH-Pos for the physical random access channel used for positioning according to the downlink path loss includes: : determine the transmit power of the PRACH-Pos according to the first maximum output power, the first target received power, and the downlink path loss. In this way, the transmit power can be precisely controlled.
  • the first target received power is configured by a preset target received power of a preamble used for positioning, PREAMBLE_RECEIVED_TARGET_POWER_POS. This simplifies the control flow.
  • the PREAMBLE_RECEIVED_TARGET_POWER_POS is determined by formula one, and the formula one is:
  • PREAMBLE_RECEIVED_TARGET_POWER_POS preambleReceivedTargetPower_Pos+DELTA_PREAMBLE_POS+(PREAMBLE_POWER_RAMPING_COUNTER_POS–1) ⁇ PREAMBLE_POWER_RAMPING_STEP_POS;
  • preambleReceivedTargetPower_Pos represents the initial value of the preamble target received power used for positioning
  • DELTA_PREAMBLE_POS represents the incremental preamble used for positioning
  • PREAMBLE_POWER_RAMPING_COUNTER_POS represents the preamble power ramp counter used for positioning
  • PREAMBLE_POWER_RAMPING_STEP_POS represents the preamble power ramp used for positioning. Slope step length. This can accurately determine PREAMBLE_RECEIVED_TARGET_POWER_POS.
  • preambleReceivedTargetPower_Pos is a dedicated parameter for setting PREAMBLE_RECEIVED_TARGET_POWER_POS (compared to a parameter corresponding to a normal preamble for random access, it is a different parameter), and/or, DELTA_PREAMBLE_POS is a parameter related to the PRACH- A parameter related to the subcarrier spacing of Pos or the actual occupied bandwidth. This improves the accuracy of the determined PREAMBLE_RECEIVED_TARGET_POWER_POS.
  • the PREAMBLE_RECEIVED_TARGET_POWER_POS and the preamble target received power PREAMBLE_RECEIVED_TARGET_POWER used for random access are different parameters and have different values. This avoids confusion of information.
  • determining the transmit power of PRACH-Pos including: using formula 2, according to the first maximum output power, the first target received power and the downlink path loss, determine the transmit power of PRACH-Pos;
  • P PRACH-Pos,b,f,c (i) min ⁇ P CMAX,f,c (i),P PRACH-Pos,target,b,f,c +PL b,f,c ⁇ ;
  • P PRACH-Pos,b,f,c (i) represents the transmission power (in dBm) at the transmission opportunity i of the PRACH-Pos;
  • P CMAX,f,c (i) represents the terminal At the transmission opportunity i of the PRACH-Pos, the first maximum output power configured on the carrier f of the serving cell c;
  • P PRACH-Pos,target,b,f,c represents the activated uplink bandwidth of the carrier f of the serving cell c
  • the first target received power of the PRACH-Pos on part b; PL b, f, c represent the estimated value of the downlink path loss (the unit may be dB).
  • the downlink path loss is estimated by using the reference signal resource with the index number q d of the serving cell or the non-serving cell of the terminal; wherein the reference signal resource is associated with the PRACH-Pos. In this way, the transmission power can be accurately obtained.
  • the configuration information of the q d is obtained according to the pathloss reference signal pathlossReferenceRS-Pos used for positioning. This simplifies the control flow.
  • the relationship between PRACH-Pos transmit power and bandwidth can be determined by preset parameters, so that the terminal can use the downlink path loss obtained by downlink reference signal measurement and combined with high-level preset parameters to determine its use.
  • the terminal Based on the transmit power of the random access channel for positioning, the terminal can determine a reasonable transmit power according to the actual situation, thereby reducing the energy consumption of the terminal and improving the positioning accuracy; and the power control process is relatively simple, according to the high-level preset parameters. Complete the power control process.
  • the transmission power of the PRACH-Pos for the physical random access channel used for positioning is determined according to the downlink path loss
  • the method includes: determining the transmit power of the PRACH-Pos according to the second maximum output power, the second target received power, the bandwidth occupied by the PRACH-Pos, the partial path loss compensation factor, and the downlink path loss.
  • the second target received power is obtained according to the preamble power control parameter PREAMBLE_P0_POS used for positioning; and/or the partial path loss compensation factor is obtained according to the high layer parameter alpha. In this way, the obtained downlink path loss can be more realistic.
  • the terminal when the terminal is configured to transmit the PRACH-Pos on the activated uplink bandwidth part b of the carrier f of the serving cell c, the second maximum output power, the second target received power , the bandwidth occupied by the PRACH-Pos, the partial path loss compensation factor and the downlink path loss, determine the transmit power of the PRACH-Pos, including: using formula three, according to the second maximum output power, the second target received power, The bandwidth occupied by the PRACH-Pos, the partial path loss compensation factor, and the downlink path loss determine the transmit power of the PRACH-Pos;
  • P PRACH-Pos,b,f,c (i,q s ) represents the transmission power (in dBm) of the PRACH-Pos resource set q s at the PRACH-Pos transmission occasion i;
  • P , CMAX,f ,c (i) represents the second maximum output power configured by the terminal on the carrier f of the serving cell c at the transmission opportunity i of the PRACH-Pos;
  • P O,PRACH-Pos,b,f,c (q s ) represents the power control parameter P0 of the PRACH-Pos resource set qs on the activated uplink bandwidth part b of the carrier f of the serving cell c ;
  • P0 represents the second target received power;
  • M PRACH-Pos,b,f,c (i) represents the bandwidth of the SRS-Pos expressed by the number of resource blocks, at the sounding reference signal SRS-Pos transmission opportunity i for positioning, and on the activated uplink bandwidth part
  • the ⁇ corresponds to 0, 1, 2 or 3. This can improve the accuracy of the obtained transmit power.
  • the PRACH-Pos transmit power can be calculated and determined according to the bandwidth occupied by the terminal, so that the terminal can determine the downlink path loss obtained by measuring the downlink reference signal, combined with the bandwidth actually occupied by the terminal and high-level parameters.
  • the transmit power of the random access channel used for positioning enables the terminal to determine a reasonable transmit power according to the actual situation, thereby reducing the energy consumption of the terminal and improving the positioning accuracy; and the transmit power of PRACH-Pos can be based on its actual occupancy.
  • the bandwidth can be precisely adjusted and controlled.
  • the downlink reference signal includes at least one of a synchronization signal block SSB, a downlink positioning reference signal DL-PRS, and a channel state information reference signal CSI-RS. This can facilitate the implementation of the program.
  • the power determination method further includes: receiving assistance information sent by a higher layer; wherein the assistance information includes: time-frequency resource occupation information of the downlink reference signal and energy EPRE power configuration information of each resource element at least one of. In this way, the control of transmit power can be facilitated.
  • the power determination method further includes: in the case where the downlink reference signal cannot be obtained, obtaining the downlink path according to the secondary synchronization signal SSS in the synchronization signal block of the serving cell of the terminal loss.
  • the integrity of the scheme can be ensured, and even if the downlink path loss cannot be obtained according to the downlink reference signal, the downlink path loss with a certain accuracy can still be obtained, so as to perform transmission power control.
  • An embodiment of the present disclosure also provides a power determination method, which is applied to a network side device, as shown in FIG. 3 , including:
  • Step 31 Configure preset parameters to the terminal; wherein the preset parameters include at least one of the following parameters: preamble target received power for positioning PREAMBLE_RECEIVED_TARGET_POWER_POS; incremental preamble DELTA_PREAMBLE_POS for positioning; The preamble power ramping counter PREAMBLE_POWER_RAMPING_COUNTER_PO; the preamble power ramping step size used for positioning PREAMBLE_POWER_RAMPING_STEP_POS; the preamble target receiving power initial value preambleReceivedTargetPower_Pos used for positioning; the terminal is in the physical random access channel PRACH-Pos used for positioning Sending occasion i, the first maximum output power P CMAX,f,c (i) on the carrier f of the serving cell c; the PRACH-Pos on the activated uplink bandwidth part b of the carrier f of the serving cell c of the terminal The first target received power P PRACH-Pos, target, b, f,
  • the power determination method provided by the embodiments of the present disclosure configures a preset parameter to the terminal; wherein, the preset parameter includes at least one of the following parameters: preamble target received power for positioning PREAMBLE_RECEIVED_TARGET_POWER_POS; Incremental preamble DELTA_PREAMBLE_POS; preamble power ramp counter for positioning PREAMBLE_POWER_RAMPING_COUNTER_PO; preamble power ramp step size for positioning PREAMBLE_POWER_RAMPING_STEP_POS; preamble target received power initial value for positioning preambleReceivedTargetPower_Pos; The transmission opportunity i of the PRACH-Pos of the physical random access channel, the first maximum output power P CMAX,f,c (i) on the carrier f of the serving cell c; the activated uplink bandwidth of the carrier f of the serving cell c of the terminal The first target received power P PRACH-Pos,target,b,f,c of the PRACH-Pos
  • the PREAMBLE_RECEIVED_TARGET_POWER_POS is determined by formula one, and the formula one is:
  • PREAMBLE_RECEIVED_TARGET_POWER_POS preambleReceivedTargetPower_Pos+DELTA_PREAMBLE_POS+(PREAMBLE_POWER_RAMPING_COUNTER_POS–1) ⁇ PREAMBLE_POWER_RAMPING_STEP_POS. This can accurately determine PREAMBLE_RECEIVED_TARGET_POWER_POS.
  • the PREAMBLE_RECEIVED_TARGET_POWER_POS and the preamble target received power PREAMBLE_RECEIVED_TARGET_POWER used for random access are different parameters and have different values. This avoids confusion of information.
  • preambleReceivedTargetPower_Pos is a dedicated parameter for setting PREAMBLE_RECEIVED_TARGET_POWER_POS (compared to a parameter corresponding to a normal preamble for random access, it is a different parameter), and/or, DELTA_PREAMBLE_POS is a parameter related to the PRACH- A parameter related to the subcarrier spacing of Pos or the actual occupied bandwidth. This improves the accuracy of the determined PREAMBLE_RECEIVED_TARGET_POWER_POS.
  • the ⁇ corresponds to 0, 1, 2 or 3. In this way, the accuracy of the transmit power obtained by the terminal side can be improved.
  • the power determination method provided by the embodiments of the present disclosure will be further described below with reference to multiple sides such as a terminal and a network side device.
  • the embodiments of the present disclosure provide a power determination method, which can be specifically implemented as a transmission power control method for a physical random access channel used for positioning, which mainly involves: or serving cell), calculate the downlink path loss between itself and the target cell, and then determine the transmit power of the PRACH-Pos physical random access channel used for positioning according to the downlink path loss.
  • PRACH-Pos transmission power control scheme 1 The relationship between PRACH-Pos power and bandwidth is determined by preset parameters;
  • PRACH-Pos uses a fixed bandwidth, and its transmit power is determined by the calculation of the first maximum output power, the first target received power, and the first downlink path loss between the terminal and the target cell (that is, the above-mentioned downlink path loss). ;
  • the first target received power is configured by the preset high layer parameter PREAMBLE_RECEIVED_TARGET_POWER_POS.
  • This parameter is a different parameter from the higher layer parameter PREAMBLE_RECEIVED_TARGET_POWER used for random access and has a different value.
  • preambleReceivedTargetPower_Pos is a dedicated (high-level) parameter used to set PREAMBLE_RECEIVED_TARGET_POWER_POS
  • DELTA_PREAMBLE_POS is a parameter related to the subcarrier interval of PRACH-Pos or the actual occupied bandwidth.
  • PREAMBLE_POWER_RAMPING_COUNTER_POS and PREAMBLE_POWER_RAMPING_STEP_POS are parameters used to control power ramping.
  • the first downlink path loss is estimated by the UE (terminal) using the reference signal resource whose index number is q d of its serving cell or non-serving cell.
  • the reference signal resource is associated with PRACH-Pos, and the configuration of index q d is provided by pathlossReferenceRS-Pos.
  • the UE calculates the PRACH-Pos transmit power P PRACH at the PRACH-Pos transmission opportunity i according to the following formula -Pos,b,f,c (i):
  • P PRACH-Pos,b,f,c (i) min ⁇ P CMAX,f,c (i),P PRACH-Pos,target,b,f,c +PL b,f,c ⁇ [dBm];
  • P PRACH-Pos,b,f,c (i) represents the transmission power at the transmission opportunity i of the PRACH-Pos
  • P CMAX,f,c (i) refers to the first maximum output power configured by the UE on the carrier f of the serving cell c at the PRACH-Pos sending occasion i;
  • P PRACH-Pos,target,b,f,c refers to the first target received power of PRACH-Pos on the activated uplink bandwidth part b of the carrier f of the serving cell c;
  • PL b,f,c is the first estimated value of the downlink path loss between the UE and the target cell calculated by the UE, and the unit is dB.
  • the target cell may be the current cell or a neighboring cell.
  • PRACH-Pos transmission power control scheme 2 PRACH-Pos power is calculated and obtained according to the bandwidth
  • PRACH-Pos uses a configurable flexible bandwidth (ie, non-fixed bandwidth), and its transmit power is determined by the second maximum output power, the second target receive power, the bandwidth occupied by PRACH-Pos, and the second part of the path loss compensation factor (that is, the above-mentioned partial path loss compensation factor) and the second downlink path loss (that is, the above-mentioned downlink path loss) between the terminal and the target cell is calculated and determined;
  • the second target received power is configured by the higher layer parameter PREAMBLE_P0_POS.
  • the second path loss partial compensation factor is configured by the higher layer parameter alpha (Alpha).
  • the second downlink path loss is estimated by the UE using the reference signal resource whose index number is q d of its serving cell or non-serving cell.
  • the reference signal resource is associated with PRACH-Pos, and the configuration of index q d is provided by pathlossReferenceRS-Pos.
  • the UE When the UE is configured to transmit the PRACH-Pos on the activated uplink bandwidth part (BWP) b of the carrier f of the serving cell c, the UE calculates the PRACH-Pos transmit power P PRACH at the PRACH-Pos transmission opportunity i according to the following formula -Pos,b,f,c ( i ,qs):
  • P PRACH-Pos, b, f, c (i, q s ) represents the transmission power (unit is dBm) of the PRACH-Pos resource set q s at the transmission occasion i of the PRACH-Pos;
  • P , CMAX,f,c (i) refers to the second maximum output power configured by the UE on the carrier f of the serving cell c at the PRACH-Pos sending occasion i;
  • P O,PRACH-Pos,b,f,c (q s ) refers to the power control parameter P0 (higher layer parameter) of the PRACH-Pos resource set q s on the activated uplink bandwidth part b of the carrier f of the serving cell c.
  • P0 represents the second target received power
  • M PRACH-Pos,b,f,c (i) refers to the bandwidth of the SRS-Pos on the activated uplink bandwidth part b of the carrier f of the serving cell c at the SRS-Pos transmission opportunity i, represented by the number of resource blocks;
  • is the subcarrier spacing indication; ⁇ is 0, 1, 2, and 3 when the subcarrier spacing is configured as 15, 30, 60, and 120 kHz, respectively (i.e., when the subcarrier spacing is configured as 15 kHz, ⁇ is 0; When the carrier spacing is configured as 30 kHz, ⁇ is 1; when the sub-carrier spacing is configured as 60 kHz, ⁇ is 2; when the sub-carrier spacing is configured as 120 kHz, ⁇ is 3).
  • ⁇ PRACH-Pos,b,f,c (q s ) refers to the second path loss partial compensation factor of the PRACH-Pos resource set q s on the activated uplink bandwidth part b of the carrier f of the serving cell c.
  • the PRACH-Pos resource set qs is indicated by the higher layer parameter PRACH- PosResourceId .
  • PL b,f,c (q d ) is the estimated value of the downlink path loss calculated by the UE, and the unit is dB.
  • the associated reference signal resource for estimating downlink path loss may be at least one reference signal among SSB, DL-PRS resource and CSI-RS resource (that is, the above-mentioned downlink reference signal It includes at least one of synchronization signal block SSB, downlink positioning reference signal DL-PRS and channel state information reference signal CSI-RS).
  • the upper layer For each involved transmission point TRP (including the serving cell and neighboring cells), the upper layer provides the UE with the time-frequency resource occupancy information of the associated reference signal resources and the energy (EPRE) power configuration information of each resource element as the Assistance information (that is, the terminal receives assistance information sent by a higher layer; wherein the assistance information includes: at least one of the time-frequency resource occupation information of the downlink reference signal and the energy EPRE power configuration information of each resource element).
  • fallback scheme when the downlink (path loss) reference signal of the target cell cannot be obtained (for example, the signal is particularly weak), the serving cell SSB (synchronization signal block) can be used as the path loss reference signal (that is, the downlink path is obtained according to the SSB). loss);
  • the UE can use the reference signal resources in the SSB of the serving cell as the path loss reference signal, that is, use the reference signal resources contained in the SSB.
  • the secondary synchronization signal SSS is used as the path loss reference signal.
  • Example 1 the determination of PRACH-Pos transmission power, the target cell takes the neighboring cell as an example:
  • the solutions provided by the embodiments of the present disclosure specifically relate to a PRACH-Pos transmit power control method, which mainly involves: the terminal calculates the downlink path loss between itself and the adjacent cell according to the downlink reference signal from the adjacent cell, and then calculates the downlink path loss between itself and the adjacent cell according to the downlink reference signal from the adjacent cell.
  • Downlink path loss which determines the transmit power of the physical random access channel used for positioning.
  • the associated reference signal resource for estimating downlink path loss may be at least one reference signal among SSB, DL-PRS resource and CSI-RS resource.
  • the upper layer can provide the UE with the time-frequency resource occupation information of the associated reference signal resources and the energy (EPRE) power configuration information of each resource element as assistance. information.
  • SSB refers to a synchronization signal block, which includes a synchronization signal and a PBCH (Physical Broadcast Channel).
  • PBCH Physical Broadcast Channel
  • the UE determines the position of the SSB of the neighboring cell through the time-frequency resource information occupied by the SSB provided by the upper layer, so that it can receive the SSB of the neighboring cell, and measure the signal strength by decoding the secondary synchronization signal SSS and the PBCH DMRS (demodulation reference signal) in the SSB, Then, the downlink path loss can be calculated by combining the SSB power configuration information provided by the upper layer to the UE.
  • the DL-PRS resource refers to the downlink positioning reference signal, which is also sent by multiple cells.
  • the UE receives the DL-PRS sent by the multiple cells, and then completes the downlink positioning according to the DL-PRS.
  • the UE determines the location of the DL-PRS of the neighboring cell through the time-frequency resource information occupied by the DL-PRS provided by the high layer, so that it can receive the DL-PRS of the neighboring cell and measure the signal strength, and then combine the DL-PRS power configuration information provided by the high layer to the UE. Then the downlink path loss can be calculated.
  • the CSI-RS resource refers to the channel state information reference signal. Similar to the above SSB or DL-PRS, it will also be sent by multiple cells.
  • the UE receives the CSI-RS sent by multiple cells, and then completes downlink RRM (wireless RRM) according to the CSI-RS. resource management) measurements.
  • the UE determines the position of the CSI-RS of the neighboring cell through the time-frequency resource information occupied by the CSI-RS provided by the high layer, so that it can receive the CSI-RS of the neighboring cell and measure the signal strength, and then combine the CSI-RS power configuration information provided by the high layer to the UE. Then the downlink path loss can be calculated.
  • This example uses the power control method of PRACH-Pos based on the path loss of the neighboring cell, which allows the terminal to determine the transmit power of the physical random access channel used for positioning according to the downlink path loss obtained by measuring the reference signal of the neighboring cell, so that the terminal can The actual situation determines a reasonable transmit power, thereby reducing the terminal energy consumption and improving the positioning accuracy.
  • Example 2 PRACH-Pos transmit power control scheme 1: The relationship between PRACH-Pos transmit power and bandwidth is determined by preset parameters):
  • the solution provided by the embodiments of the present disclosure specifically relates to a PRACH-Pos transmit power control method, which mainly involves: the terminal calculates the downlink path loss between itself and the target cell according to the downlink reference signal from the target cell, and then calculates the downlink path loss between itself and the target cell according to the downlink reference signal from the target cell.
  • Downlink path loss which determines the transmit power of the physical random access channel used for positioning.
  • PRACH-Pos transmit power and bandwidth is determined by preset parameters, and its transmit power is determined by the calculation of the first maximum output power, the first target receive power, and the first downlink path loss between the terminal and the target cell ;
  • the first target received power is configured by the high-level parameter PREAMBLE_RECEIVED_TARGET_POWER_POS, and the calculation formula of the high-level parameter (that is, the above formula 1) is:
  • preambleReceivedTargetPower_Pos is a dedicated (high-level) parameter for setting PREAMBLE_RECEIVED_TARGET_POWER_POS
  • DELTA_PREAMBLE_POS is a parameter related to the subcarrier spacing of PRACH-Pos or the actual occupied bandwidth.
  • PREAMBLE_POWER_RAMPING_COUNTER_POS and PREAMBLE_POWER_RAMPING_STEP_POS are parameters used to control power ramping. These two parameters represent the power increase count value and step value respectively during power ramping.
  • the first downlink path loss is estimated by the UE using the reference signal resource whose index number is q d of its serving cell or non-serving cell.
  • the reference signal resource is associated with PRACH-Pos, and the configuration of index q d is provided by pathlossReferenceRS-Pos.
  • the UE calculates the PRACH-Pos transmit power P PRACH-Pos according to the following formula at the PRACH-Pos transmission opportunity i, b,f,c (i):
  • P PRACH-Pos,b,f,c (i) min ⁇ P CMAX,f,c (i),P PRACH-Pos,target,b,f,c +PL b,f,c ⁇ [dBm];
  • P PRACH-Pos,b,f,c (i) represents the transmission power at the transmission opportunity i of the PRACH-Pos
  • P CMAX,f,c (i) refers to the first maximum output power configured by the UE on the carrier f of the serving cell c at the PRACH-Pos sending occasion i;
  • P PRACH-Pos,target,b,f,c refers to the first target received power of PRACH-Pos on the activated uplink bandwidth part b of the carrier f of the serving cell c;
  • PL b,f,c is the first estimated value of the downlink path loss between the UE and the target cell calculated by the UE, and the unit is dB.
  • the target cell may be the current cell or a neighboring cell.
  • the serving base station of the UE is gNB1
  • the neighboring base stations ie, neighboring cells
  • the downlink path loss reference signal of the UE is configured as DL-PRS (that is, the above downlink signal is DL-PRS), so that the UE calculates the distance between itself and the neighboring base stations gNB2 to gNB4 according to the DL-PRS from the neighboring base stations gNB2 to gNB4 the downlink path loss, and then determine the transmit power of the physical random access channel used for positioning according to the downlink path loss.
  • DL-PRS that is, the above downlink signal is DL-PRS
  • the PRACH-Pos power control method is performed based on the path loss of the neighboring cell, and the relationship between the PRACH-Pos transmit power and the bandwidth is determined by preset parameters, so that the terminal can measure the downlink path loss obtained by the reference signal of the neighboring cell. , combined with the high-level preset parameters to determine the transmit power of the physical random access channel used for positioning, so that the terminal can determine a reasonable transmit power according to the actual situation, thereby reducing the terminal energy consumption and improving the positioning accuracy; and the power
  • the control process is relatively simple, and the power control process can be completed according to the high-level preset parameters.
  • Example 3 PRACH-Pos transmission power control scheme 2: PRACH-Pos power is calculated and obtained according to the actual allocated bandwidth, that is, PRACH-Pos uses non-fixed bandwidth):
  • the solutions provided by the embodiments of the present disclosure specifically relate to a method for controlling the transmit power of PRACH-Pos, which mainly involves: the terminal calculates the downlink path loss between itself and the target cell according to the downlink reference signal from the target cell, and then calculates the downlink path loss between itself and the target cell according to the downlink reference signal from the target cell.
  • the downlink path loss determines the transmit power of the physical random access channel used for positioning.
  • PRACH-Pos uses a configurable and flexible bandwidth, and its transmit power is determined by the second maximum output power, the second target received power, the bandwidth occupied by PRACH-Pos, the second part of the path loss compensation factor, and the second maximum output power between the terminal and the target cell. 2.
  • the downlink path loss is calculated and determined;
  • the second target received power is configured by the higher layer parameter PREAMBLE_P0_POS.
  • the second path loss partial compensation factor is configured by the higher layer parameter alpha.
  • the second downlink path loss is estimated by the UE using the reference signal resource whose index number is q d of its serving cell or non-serving cell.
  • the reference signal resource is associated with PRACH-Pos, and the configuration of index q d is provided by pathlossReferenceRS-Pos.
  • the UE When the UE is configured to transmit PRACH-Pos on the activated uplink bandwidth part (BWP) b of the carrier f of the serving cell c, the UE calculates the PRACH-Pos transmit power P PRACH-Pos according to the following formula at the PRACH-Pos transmission opportunity i, b,f,c (i,q s ):
  • P PRACH-Pos, b, f, c (i, q s ) represents the transmission power (unit is dBm) of the PRACH-Pos resource set q s at the transmission occasion i of the PRACH-Pos;
  • P , CMAX,f,c (i) refers to the second maximum output power configured by the UE on the carrier f of the serving cell c at the PRACH-Pos sending occasion i;
  • PO ,PRACH-Pos,b,f,c (q s ) refers to the power control parameter P0 of the PRACH-Pos resource set q s on the activated uplink bandwidth part b of the carrier f of the serving cell c.
  • P0 represents the second target received power;
  • M PRACH-Pos,b,f,c (i) refers to the bandwidth of the SRS-Pos on the activated uplink bandwidth part b of the carrier f of the serving cell c at the SRS-Pos transmission opportunity i, represented by the number of resource blocks;
  • is the subcarrier spacing indication; ⁇ is 0, 1, 2, and 3 when the subcarrier spacing is configured as 15, 30, 60, and 120 kHz, respectively.
  • ⁇ PRACH-Pos,b,f,c (q s ) refers to the second path loss partial compensation factor of the PRACH-Pos resource set q s on the activated uplink bandwidth part b of the carrier f of the serving cell c.
  • the PRACH-Pos resource set qs is indicated by the higher layer parameter PRACH- PosResourceId .
  • PL b,f,c (q d ) is the estimated value of the downlink path loss calculated by the UE, and the unit is dB.
  • the serving base station of the UE is gNB1
  • the neighboring base stations ie, neighboring cells
  • the downlink path loss reference signal of the UE is configured as SSB (that is, the above downlink signal is SSB), so that the UE calculates the downlink path loss between itself and the neighboring base stations gNB2 to gNB4 according to the SSB from the neighboring base stations gNB2 to gNB4, and then According to the downlink path loss, the transmit power of the physical random access channel used for positioning is determined.
  • the PRACH-Pos power control method is performed based on the path loss of the neighboring cell, and the PRACH-Pos transmit power is calculated and determined according to the bandwidth occupied by it, so that the terminal can obtain the downlink path loss obtained by measuring the reference signal of the neighboring cell, combined with The bandwidth actually occupied by the terminal and high-level parameters are used to determine the transmit power of the physical random access channel used for positioning, so that the terminal can determine a reasonable transmit power according to the actual situation, thereby reducing the terminal energy consumption and improving the positioning accuracy; And the transmit power of PRACH-Pos can be precisely adjusted and controlled according to the actual occupied bandwidth.
  • Example 4 (fallback using serving cell SSB as path loss reference signal):
  • the solutions provided by the embodiments of the present disclosure specifically relate to a method for controlling the transmit power of PRACH-Pos, which mainly involves: the terminal calculates the downlink path loss between itself and the target cell according to the downlink reference signal from the target cell, and then calculates the downlink path loss between itself and the target cell according to the downlink reference signal from the target cell.
  • the downlink path loss determines the transmit power of the physical random access channel used for positioning.
  • the UE can use the reference signal resource in the SSB of the serving cell as the path loss reference signal, that is, use the secondary synchronization signal SSS included in the SSB as the path loss reference signal.
  • the UE uses the reference signal resources in the SSB of the serving cell as the path loss reference signal, that is, using The secondary synchronization signal SSS included in the SSB is used as a path loss reference signal.
  • the downlink path loss reference signal (that is, the above-mentioned downlink reference signal) configured by the UE is CSI-RS.
  • the UE cannot measure the CSI-RS from gNB2.
  • the UE can only use the SSB of its serving cell gNB1 as the downlink path loss reference signal to calculate the transmit power of the PRACH-Pos signal sent to gNB2.
  • the SSB of the serving cell can be used to estimate the downlink path loss, and then calculate the transmit power.
  • the power of the PRACH-Pos sent to the adjacent cell can be calculated and obtained, so as to avoid the interference to the serving cell caused by using the maximum power transmission.
  • the solution provided by the embodiment of the present disclosure specifically relates to a power control method for a physical random access channel used for positioning.
  • the use of this solution allows the terminal to measure the downlink path obtained by the reference signal of the target cell.
  • the transmission power of the physical random access channel used for positioning is determined, so that the terminal can determine a reasonable transmission power according to the actual situation, thereby reducing the energy consumption of the terminal and improving the positioning accuracy.
  • An embodiment of the present disclosure further provides a terminal.
  • the terminal includes a memory 71, a transceiver 72, and a processor 73:
  • the memory 71 is used to store computer programs; the transceiver 72 is used to send and receive data under the control of the processor 73; the processor 73 is used to read the computer program in the memory 71 and perform the following operations:
  • the target cell is a serving cell or a neighboring cell of the terminal.
  • the terminal determines the downlink path loss between the terminal and the target cell according to the received downlink reference signal sent by the target cell; and determines the downlink path loss used for positioning according to the downlink path loss.
  • the transceiver 72 is used to receive and transmit data under the control of the processor 73 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 73 and various circuits of memory represented by memory 71 are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 72 may be a number of elements, including transmitters and receivers, providing means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, and the like Transmission medium.
  • the user interface 74 may also be an interface capable of externally connecting the required equipment, and the connected equipment includes but is not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 73 is responsible for managing the bus architecture and general processing, and the memory 71 may store data used by the processor 73 in performing operations.
  • the processor 73 can be a CPU (central processor), an ASIC (Application Specific Integrated Circuit, an application-specific integrated circuit), an FPGA (Field-Programmable Gate Array, a field programmable gate array) or a CPLD (Complex Programmable Logic Device) , complex programmable logic devices), the processor can also use a multi-core architecture.
  • CPU central processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • complex programmable logic devices complex programmable logic devices
  • the processor is configured to execute any one of the methods provided by the embodiments of the present disclosure according to the obtained executable instructions by invoking the computer program stored in the memory.
  • the processor and memory may also be physically separated.
  • the determining, according to the downlink path loss, the transmit power of the PRACH-Pos for the physical random access channel used for positioning includes: according to the first The maximum output power, the first target received power, and the downlink path loss determine the transmit power of the PRACH-Pos.
  • the first target received power is configured by a preset target received power of a preamble used for positioning, PREAMBLE_RECEIVED_TARGET_POWER_POS.
  • the PREAMBLE_RECEIVED_TARGET_POWER_POS is determined by formula one, and the formula one is:
  • PREAMBLE_RECEIVED_TARGET_POWER_POS preambleReceivedTargetPower_Pos+DELTA_PREAMBLE_POS+(PREAMBLE_POWER_RAMPING_COUNTER_POS–1) ⁇ PREAMBLE_POWER_RAMPING_STEP_POS;
  • preambleReceivedTargetPower_Pos represents the initial value of the preamble target received power used for positioning
  • DELTA_PREAMBLE_POS represents the incremental preamble used for positioning
  • PREAMBLE_POWER_RAMPING_COUNTER_POS represents the preamble power ramp counter used for positioning
  • PREAMBLE_POWER_RAMPING_STEP_POS represents the preamble power ramp used for positioning. Slope step length.
  • preambleReceivedTargetPower_Pos is a dedicated parameter for setting PREAMBLE_RECEIVED_TARGET_POWER_POS, and/or DELTA_PREAMBLE_POS is a parameter related to the subcarrier interval of the PRACH-Pos or the actually occupied bandwidth.
  • the PREAMBLE_RECEIVED_TARGET_POWER_POS and the preamble target received power PREAMBLE_RECEIVED_TARGET_POWER used for random access are different parameters and have different values.
  • determining the transmit power of PRACH-Pos including: using formula 2, according to the first maximum output power, the first target received power and the downlink path loss, determine the transmit power of PRACH-Pos;
  • P PRACH-Pos,b,f,c (i) min ⁇ P CMAX,f,c (i),P PRACH-Pos,target,b,f,c +PL b,f,c ⁇ ;
  • P PRACH-Pos,b,f,c (i) represents the transmission power at the transmission opportunity i of the PRACH-Pos
  • P CMAX,f,c (i) represents the terminal at the PRACH-Pos
  • the transmission opportunity i of the first maximum output power configured on the carrier f of the serving cell c
  • P PRACH-Pos,target,b,f,c represents the activated uplink bandwidth part b of the carrier f of the serving cell c
  • the first target received power of PRACH-Pos; PL b, f, c represent the estimated value of the downlink path loss.
  • the downlink path loss is estimated by using the reference signal resource with the index number q d of the serving cell or the non-serving cell of the terminal; wherein the reference signal resource is associated with the PRACH-Pos.
  • the configuration information of the q d is obtained according to the pathloss reference signal pathlossReferenceRS-Pos used for positioning.
  • the transmission power of the PRACH-Pos for the physical random access channel used for positioning is determined according to the downlink path loss
  • the method includes: determining the transmit power of the PRACH-Pos according to the second maximum output power, the second target receive power, the bandwidth occupied by the PRACH, the partial path loss compensation factor and the downlink path loss.
  • the second target received power is obtained according to the preamble power control parameter PREAMBLE_P0_POS used for positioning; and/or the partial path loss compensation factor is obtained according to the high layer parameter alpha.
  • the terminal when the terminal is configured to transmit the PRACH-Pos on the activated uplink bandwidth part b of the carrier f of the serving cell c, the second maximum output power, the second target received power , the bandwidth occupied by the PRACH-Pos, the partial path loss compensation factor and the downlink path loss, determine the transmit power of the PRACH-Pos, including: using formula three, according to the second maximum output power, the second target received power, The bandwidth occupied by the PRACH-Pos, the partial path loss compensation factor, and the downlink path loss determine the transmit power of the PRACH-Pos;
  • P PRACH-Pos,b,f,c (i,q s ) represents the transmission power of the PRACH-Pos resource set q s at the PRACH-Pos transmission opportunity i;
  • P , CMAX,f,c (i) represents The second maximum output power configured by the terminal on the carrier f of the serving cell c at the transmission opportunity i of the PRACH-Pos;
  • P O,PRACH-Pos,b,f,c (q s ) represents the serving cell c
  • the power control parameter P0 of the PRACH -Pos resource set qs on the activated uplink bandwidth part b of the carrier f of the The bandwidth of the SRS-Pos on the active uplink bandwidth part b of the carrier f of the serving cell c at the sounding reference signal SRS- Pos transmission opportunity i for positioning indicated by the number of blocks;
  • Pos,b,f,c (q s ) represents the partial path loss compensation factor of the PRACH-Pos
  • the ⁇ corresponds to 0, 1, 2 or 3.
  • the downlink reference signal includes at least one of a synchronization signal block SSB, a downlink positioning reference signal DL-PRS, and a channel state information reference signal CSI-RS.
  • the operation further includes: receiving assistance information sent by a higher layer through the transceiver; wherein the assistance information includes: time-frequency resource occupancy information of the downlink reference signal and energy EPRE power configuration of each resource element at least one of the information.
  • the operation further includes: obtaining the downlink path loss according to the secondary synchronization signal SSS in the synchronization signal block of the serving cell of the terminal if the downlink reference signal cannot be obtained.
  • An embodiment of the present disclosure also provides a network side device, as shown in FIG. 8 , including a memory 81, a transceiver 82, and a processor 83:
  • the memory 81 is used to store computer programs; the transceiver 82 is used to send and receive data under the control of the processor 83; the processor 83 is used to read the computer program in the memory 81 and perform the following operations:
  • the preset parameters include at least one of the following parameters:
  • Preamble power ramp counter for positioning PREAMBLE_POWER_RAMPING_COUNTER_PO;
  • the high-level parameter PRACH-Pos resource identifier PRACH- PosResourceId used to obtain the PRACH-Pos resource set qs.
  • the network side device configures preset parameters to the terminal; wherein the preset parameters include at least one of the following parameters: preamble target received power for positioning PREAMBLE_RECEIVED_TARGET_POWER_POS; increment for positioning Preamble DELTA_PREAMBLE_POS; preamble power ramp counter for positioning PREAMBLE_POWER_RAMPING_COUNTER_PO; preamble power ramp step size for positioning PREAMBLE_POWER_RAMPING_STEP_POS; preamble target received power initial value for positioning preambleReceivedTargetPower_Pos; The transmission opportunity i of the access channel PRACH-Pos, the first maximum output power P CMAX,f,c (i) on the carrier f of the serving cell c; the activated uplink bandwidth part b on the carrier f of the serving cell c of the terminal The first target received power P PRACH-Pos,target,b,f,c of the PRACH-Pos above; the path loss
  • the transceiver 82 is used to receive and transmit data under the control of the processor 83 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically, one or more processors represented by the processor 83 and various circuits of the memory represented by the memory 81 are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 82 may be multiple elements, including a transmitter and a receiver, providing means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, and the like.
  • the processor 83 is responsible for managing the bus architecture and general processing, and the memory 81 may store data used by the processor 83 in performing operations.
  • the processor 83 may be a central processor (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device). , CPLD), the processor can also use a multi-core architecture.
  • CPU central processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • FPGA field programmable gate array
  • CPLD Complex Programmable Logic Device
  • the PREAMBLE_RECEIVED_TARGET_POWER_POS and the preamble target received power PREAMBLE_RECEIVED_TARGET_POWER used for random access are different parameters and have different values.
  • preambleReceivedTargetPower_Pos is a dedicated parameter for setting PREAMBLE_RECEIVED_TARGET_POWER_POS, and/or DELTA_PREAMBLE_POS is a parameter related to the subcarrier interval of the PRACH-Pos or the actually occupied bandwidth.
  • the ⁇ corresponds to 0, 1, 2 or 3.
  • the above-mentioned network-side device provided by the embodiments of the present disclosure can implement all the method steps implemented by the above-mentioned network-side device-side method embodiments, and can achieve the same technical effect, and this embodiment will not be described here.
  • the same parts and beneficial effects as in the method embodiment will be described in detail.
  • An embodiment of the present disclosure further provides a power determination apparatus, which is applied to a terminal, as shown in FIG. 9 , including:
  • a first determining unit 91 configured to determine the downlink path loss between the terminal and the target cell according to the received downlink reference signal sent by the target cell;
  • a second determining unit 92 configured to determine, according to the downlink path loss, the transmit power of the physical random access channel PRACH-Pos used for positioning;
  • the target cell is a serving cell or a neighboring cell of the terminal.
  • the power determining apparatus determines the downlink path loss between the terminal and the target cell according to the received downlink reference signal sent by the target cell;
  • the transmit power of the physical random access channel PRACH-Pos of the positioning wherein, the target cell is the serving cell or neighboring cell of the terminal; it can realize the PRACH-Pos based on the path loss of the target cell (including the neighboring cell or serving cell) It allows the terminal to determine the transmit power of the physical random access channel used for positioning according to the downlink path loss obtained by measuring the reference signal of the target cell, so that the terminal can determine a reasonable transmit power according to the actual situation, thereby reducing the terminal capacity It reduces the power consumption and improves the positioning accuracy; it solves the problem that the transmission power determination scheme for PRACH in the related art cannot determine a reasonable transmission power.
  • the determining, according to the downlink path loss, the transmit power of the PRACH-Pos for the physical random access channel used for positioning includes: according to the first The maximum output power, the first target received power, and the downlink path loss determine the transmit power of the PRACH-Pos.
  • the first target received power is configured by a preset target received power of a preamble used for positioning, PREAMBLE_RECEIVED_TARGET_POWER_POS.
  • the PREAMBLE_RECEIVED_TARGET_POWER_POS is determined by formula one, and the formula one is:
  • PREAMBLE_RECEIVED_TARGET_POWER_POS preambleReceivedTargetPower_Pos+DELTA_PREAMBLE_POS+(PREAMBLE_POWER_RAMPING_COUNTER_POS–1) ⁇ PREAMBLE_POWER_RAMPING_STEP_POS;
  • preambleReceivedTargetPower_Pos represents the initial value of the preamble target received power used for positioning
  • DELTA_PREAMBLE_POS represents the incremental preamble used for positioning
  • PREAMBLE_POWER_RAMPING_COUNTER_POS represents the preamble power ramp counter used for positioning
  • PREAMBLE_POWER_RAMPING_STEP_POS represents the preamble power ramp used for positioning. Slope step length.
  • preambleReceivedTargetPower_Pos is a dedicated parameter for setting PREAMBLE_RECEIVED_TARGET_POWER_POS, and/or DELTA_PREAMBLE_POS is a parameter related to the subcarrier interval of the PRACH-Pos or the actually occupied bandwidth.
  • the PREAMBLE_RECEIVED_TARGET_POWER_POS and the preamble target received power PREAMBLE_RECEIVED_TARGET_POWER used for random access are different parameters and have different values.
  • determining the transmit power of PRACH-Pos including: using formula 2, according to the first maximum output power, the first target received power and the downlink path loss, determine the transmit power of PRACH-Pos;
  • P PRACH-Pos,b,f,c (i) min ⁇ P CMAX,f,c (i),P PRACH-Pos,target,b,f,c +PL b,f,c ⁇ ;P PRACH- Pos,b,f,c (i) represents the transmission power at the transmission opportunity i of the PRACH-Pos; P CMAX,f,c (i) represents the transmission opportunity of the terminal at the PRACH-Pos i, the first maximum output power configured on the carrier f of the serving cell c; P PRACH-Pos,target,b,f,c represents the PRACH-Pos on the activated uplink bandwidth part b of the carrier f of the serving cell c The first target received power of ; PL b, f, c represent the estimated value of the downlink path loss.
  • the downlink path loss is estimated by using the reference signal resource with the index number q d of the serving cell or the non-serving cell of the terminal; wherein the reference signal resource is associated with the PRACH-Pos.
  • the configuration information of the q d is obtained according to the pathloss reference signal pathlossReferenceRS-Pos used for positioning.
  • the transmission power of the PRACH-Pos for the physical random access channel used for positioning is determined according to the downlink path loss
  • the method includes: determining the transmit power of the PRACH-Pos according to the second maximum output power, the second target received power, the bandwidth occupied by the PRACH-Pos, the partial path loss compensation factor, and the downlink path loss.
  • the second target received power is obtained according to the preamble power control parameter PREAMBLE_P0_POS used for positioning; and/or the partial path loss compensation factor is obtained according to the high layer parameter alpha.
  • the terminal when the terminal is configured to transmit the PRACH-Pos on the activated uplink bandwidth part b of the carrier f of the serving cell c, the second maximum output power, the second target received power , the bandwidth occupied by the PRACH-Pos, the partial path loss compensation factor and the downlink path loss, determine the transmit power of the PRACH-Pos, including: using formula three, according to the second maximum output power, the second target received power, The bandwidth occupied by the PRACH-Pos, the partial path loss compensation factor, and the downlink path loss determine the transmit power of the PRACH-Pos;
  • P PRACH-Pos,b,f,c (i,q s ) represents the transmission power of the PRACH-Pos resource set q s at the PRACH-Pos transmission opportunity i;
  • P , CMAX,f,c (i) represents The second maximum output power configured by the terminal on the carrier f of the serving cell c at the transmission opportunity i of the PRACH-Pos;
  • P O,PRACH-Pos,b,f,c (q s ) represents the serving cell c
  • the power control parameter P0 of the PRACH -Pos resource set qs on the activated uplink bandwidth part b of the carrier f of the The bandwidth of the SRS-Pos on the active uplink bandwidth part b of the carrier f of the serving cell c at the sounding reference signal SRS- Pos transmission opportunity i for positioning indicated by the number of blocks;
  • Pos,b,f,c (q s ) represents the partial path loss compensation factor of the PRACH-Pos
  • the ⁇ corresponds to 0, 1, 2 or 3.
  • the downlink reference signal includes at least one of a synchronization signal block SSB, a downlink positioning reference signal DL-PRS, and a channel state information reference signal CSI-RS.
  • the power determination apparatus further includes: a first receiving unit configured to receive assistance information sent by a higher layer; wherein the assistance information includes: time-frequency resource occupation information of the downlink reference signal and each resource At least one item of the element's energy EPRE power configuration information.
  • the power determination apparatus further includes: a first processing unit, configured to, in the case that the downlink reference signal cannot be obtained, according to the secondary data in the synchronization signal block of the serving cell of the terminal Synchronize the signal SSS to obtain the downlink path loss.
  • An embodiment of the present disclosure further provides a power determination apparatus, which is applied to a network side device, as shown in FIG. 10 , including:
  • a first configuration unit 101 configured to configure preset parameters to the terminal
  • the preset parameters include at least one of the following parameters:
  • Preamble power ramp counter for positioning PREAMBLE_POWER_RAMPING_COUNTER_PO;
  • the high-level parameter PRACH-Pos resource identifier PRACH- PosResourceId used to obtain the PRACH-Pos resource set qs.
  • the power determination apparatus configures a terminal with preset parameters; wherein, the preset parameters include at least one of the following parameters: preamble target received power PREAMBLE_RECEIVED_TARGET_POWER_POS for positioning; Incremental preamble DELTA_PREAMBLE_POS; preamble power ramp counter for positioning PREAMBLE_POWER_RAMPING_COUNTER_PO; preamble power ramp step size for positioning PREAMBLE_POWER_RAMPING_STEP_POS; preamble target received power initial value for positioning preambleReceivedTargetPower_Pos; The transmission opportunity i of the PRACH-Pos of the physical random access channel, the first maximum output power P CMAX,f,c (i) on the carrier f of the serving cell c; the activated uplink bandwidth of the carrier f of the serving cell c of the terminal The first target received power P PRACH-Pos,target,b,f,c of the PRACH-Pos on part
  • the PREAMBLE_RECEIVED_TARGET_POWER_POS and the preamble target received power PREAMBLE_RECEIVED_TARGET_POWER used for random access are different parameters and have different values.
  • preambleReceivedTargetPower_Pos is a dedicated parameter for setting PREAMBLE_RECEIVED_TARGET_POWER_POS, and/or DELTA_PREAMBLE_POS is a parameter related to the subcarrier interval of the PRACH-Pos or the actually occupied bandwidth.
  • the ⁇ corresponds to 0, 1, 2 or 3.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a processor-readable storage medium.
  • the technical solutions of the present disclosure can be embodied in the form of software products in essence, or the parts that contribute to related technologies, or all or part of the technical solutions, and the computer software products are stored in a storage medium.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • a processor processor
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .
  • An embodiment of the present disclosure further provides a processor-readable storage medium, where a computer program is stored in the processor-readable storage medium, and the computer program is configured to cause the processor to execute the foregoing method for determining power on the terminal side; or , the computer program is configured to cause the processor to execute the foregoing method for determining power on the device side on the network side.
  • the processor-readable storage medium may be any available medium or data storage device that can be accessed by the processor, including but not limited to magnetic storage (eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (such as CD, DVD, BD, HVD, etc.), and semiconductor memory (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state disk (SSD)) and the like.
  • magnetic storage eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage such as CD, DVD, BD, HVD, etc.
  • semiconductor memory such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state disk (SSD)
  • processor-readable storage medium provided by the embodiments of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiments on the terminal side or the device side on the network side, and can achieve the same technical effect, The same parts and beneficial effects in this embodiment as in the method embodiment will not be described in detail here.
  • embodiments of the present disclosure may be provided as a method, system, or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein, including but not limited to disk storage, optical storage, and the like.
  • processor-executable instructions may also be stored in a processor-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the processor-readable memory result in the manufacture of means including the instructions product, the instruction means implements the functions specified in the flow or flow of the flowchart and/or the block or blocks of the block diagram.
  • processor-executable instructions can also be loaded onto a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process that Execution of the instructions provides steps for implementing the functions specified in the flowchart or blocks and/or the block or blocks of the block diagrams.
  • modules can all be implemented in the form of software calling through processing elements; they can also all be implemented in hardware; some modules can also be implemented in the form of calling software through processing elements, and some modules can be implemented in hardware.
  • the determination module may be a separately established processing element, or may be integrated into a certain chip of the above-mentioned device to be implemented, in addition, it may also be stored in the memory of the above-mentioned device in the form of program code, and a certain processing element of the above-mentioned device may Call and execute the function of the above determined module.
  • the implementation of other modules is similar. In addition, all or part of these modules can be integrated together, and can also be implemented independently.
  • the processing element described here may be an integrated circuit with signal processing capability. In the implementation process, each step of the above-mentioned method or each of the above-mentioned modules can be completed by an integrated logic circuit of hardware in the processor element or an instruction in the form of software.
  • each module, unit, sub-unit or sub-module may be one or more integrated circuits configured to implement the above methods, such as: one or more Application Specific Integrated Circuit (ASIC), or, one or Multiple microprocessors (digital signal processors, DSP), or, one or more field programmable gate arrays (Field Programmable Gate Array, FPGA), etc.
  • ASIC Application Specific Integrated Circuit
  • DSP digital signal processors
  • FPGA Field Programmable Gate Array
  • the processing element may be a general-purpose processor, such as a central processing unit (Central Processing Unit, CPU) or other processors that can call program codes.
  • CPU central processing unit
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种功率确定方法、装置、终端及网络侧设备,其中,功率确定方法包括:根据接收到的目标小区发送的下行参考信号,确定终端与目标小区之间的下行路径损耗;根据下行路径损耗,确定PRACH-Pos的发送功率;目标小区为终端的服务小区或邻小区。

Description

功率确定方法、装置、终端及网络侧设备
相关申请的交叉引用
本申请主张在2020年10月16日在中国提交的中国专利申请号No.202011111863.8的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种功率确定方法、装置、终端及网络侧设备。
背景技术
目前在NR(新无线接入技术)中下行定位的技术方案主要包括基于时延的DL-TDOA(下行到达时间差)定位方法和基于角度的DL-AoD(下行出发角)定位方法等方案。对于DL-TDOA时延定位方法,就是依据终端相对于各个基站的传播距离的不同,通过基站之间的相对时延估算出终端的位置。对于DL-AoD角度定位方法,就是根据终端相对于基站的位置方向,通过多个角度参数确定终端的位置。
对于上面的两种定位技术方案,无论哪种方案,都需要UE(终端)处于RRC(无线资源控制)_CONNECTED(连接接)连接态,才能执行定位流程。如果处于RRC_IDLE(空闲)态或者处于RRC_INACTIVE(非激活)态的UE需要进行定位,就必须要先进入RRC_CONNECTED连接态,这就会带来额外的UE的耗电量增加以及定位时延的增加;所以,为了降低UE的耗电量以及降低UE的定位时延,需要对处于RRC_IDLE态或者处于RRC_INACTIVE态的UE,在该UE的用于定位的物理随机接入信道中携带相关定位信息,从而完成定位流程。
但是,如图1所示(图中的LMF表示定位管理功能单元),目前物理随机接入信道(PRACH)的UE发送功率是根据UE所在的服务小区S(具体比如:gNB(基站)1下的某个小区)的路径损耗进行设置的,如果该PRACH所发送的目标小区是邻小区(具体比如:邻基站gNB3下的某个小区N),就 无法根据UE与邻小区(即gNB3下的小区N)之间的路径损耗设置合理的发送功率。
由上可知,相关技术中针对PRACH的发送功率确定方案存在无法确定合理的发送功率的问题。
发明内容
本公开的目的在于提供一种功率确定方法、装置、终端及网络侧设备,以解决相关技术中针对PRACH的发送功率确定方案存在无法确定合理的发送功率的问题。
为了解决上述技术问题,本公开实施例提供一种功率确定方法,应用于终端,包括:
根据接收到的目标小区发送的下行参考信号,确定所述终端与所述目标小区之间的下行路径损耗;
根据所述下行路径损耗,确定用于定位的物理随机接入信道PRACH-Pos的发送功率;
其中,所述目标小区为所述终端的服务小区或邻小区。
可选的,在所述PRACH-Pos所使用的带宽为固定带宽的情况下,所述根据所述下行路径损耗,确定用于定位的物理随机接入信道PRACH-Pos的发送功率,包括:
根据第一最大输出功率、第一目标接收功率以及所述下行路径损耗,确定PRACH-Pos的发送功率。
可选的,所述第一目标接收功率是由预设的用于定位的前导码目标接收功率PREAMBLE_RECEIVED_TARGET_POWER_POS配置的。
可选的,所述PREAMBLE_RECEIVED_TARGET_POWER_POS是采用公式一确定的,所述公式一为:
PREAMBLE_RECEIVED_TARGET_POWER_POS=preambleReceivedTargetPower_Pos+DELTA_PREAMBLE_POS+(PREAMBLE_POWER_RAMPING_COUNTER_POS–1)×PREAMBLE_POWER_RAMPING_STEP_POS;
其中,preambleReceivedTargetPower_Pos表示用于定位的前导码目标接收功率初始值,DELTA_PREAMBLE_POS表示用于定位的增量前导码,PREAMBLE_POWER_RAMPING_COUNTER_POS表示用于定位的前导码功率爬坡计数器,PREAMBLE_POWER_RAMPING_STEP_POS表示用于定位的前导码功率爬坡步长。
可选的,preambleReceivedTargetPower_Pos是用于设定PREAMBLE_RECEIVED_TARGET_POWER_POS的专用参数,和/或,
DELTA_PREAMBLE_POS是与所述PRACH-Pos的子载波间隔或实际占用的带宽相关的参数。
可选的,所述PREAMBLE_RECEIVED_TARGET_POWER_POS与用于随机接入的前导码目标接收功率PREAMBLE_RECEIVED_TARGET_POWER为不同的参数,具有不同的数值。
可选的,在所述终端被配置在服务小区c的载波f的激活上行带宽部分b上发送所述PRACH-Pos的情况下,所述根据第一最大输出功率、第一目标接收功率以及所述下行路径损耗,确定PRACH-Pos的发送功率,包括:
利用公式二,根据第一最大输出功率、第一目标接收功率以及所述下行路径损耗,确定PRACH-Pos的发送功率;
其中,所述公式二为:
P PRACH-Pos,b,f,c(i)=min{P CMAX,f,c(i),P PRACH-Pos,target,b,f,c+PL b,f,c};
P PRACH-Pos,b,f,c(i)表示在所述PRACH-Pos的发送时机i时的所述发送功率;
P CMAX,f,c(i)表示所述终端在所述PRACH-Pos的发送时机i,在服务小区c的载波f上配置的第一最大输出功率;
P PRACH-Pos,target,b,f,c表示服务小区c的载波f的激活上行带宽部分b上的所述PRACH-Pos的第一目标接收功率;
PL b,f,c表示所述下行路径损耗的估计值。
可选的,所述下行路径损耗是使用所述终端的服务小区或非服务小区的索引号为q d的参考信号资源进行估计得到的;
其中,所述参考信号资源与所述PRACH-Pos相关联。
可选的,所述q d的配置信息是根据用于定位的路径损耗参考信号 pathlossReferenceRS-Pos得到的。
可选的,在所述PRACH-Pos所使用的带宽为非固定带宽的情况下,所述根据所述下行路径损耗,确定用于定位的物理随机接入信道PRACH-Pos的发送功率,包括:
根据第二最大输出功率、第二目标接收功率、所述PRACH-Pos所占用的带宽、部分路损补偿因子以及所述下行路径损耗,确定PRACH-Pos的发送功率。
可选的,所述第二目标接收功率是根据用于定位的前导码功率控制参数PREAMBLE_P0_POS得到的;和/或,
所述部分路损补偿因子是根据高层参数阿尔法alpha得到的。
可选的,在所述终端被配置在服务小区c的载波f的激活上行带宽部分b上发送所述PRACH-Pos的情况下,所述根据第二最大输出功率、第二目标接收功率、所述PRACH-Pos所占用的带宽、部分路损补偿因子以及所述下行路径损耗,确定PRACH-Pos的发送功率,包括:
利用公式三,根据第二最大输出功率、第二目标接收功率、所述PRACH-Pos所占用的带宽、部分路损补偿因子以及所述下行路径损耗,确定PRACH-Pos的发送功率;
其中,所述公式三为:
Figure PCTCN2021117155-appb-000001
P PRACH-Pos,b,f,c(i,q s)表示在所述PRACH-Pos的发送时机i上PRACH-Pos资源集q s的发送功率;
P CMAX,f,c(i)表示所述终端在所述PRACH-Pos的发送时机i,在服务小区c的载波f上配置的第二最大输出功率;
P O,PRACH-Pos,b,f,c(q s)表示服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的功率控制参数P0;P0表示所述第二目标接收功率;
M PRACH-Pos,b,f,c(i)表示以资源块数量表示的、在用于定位的探测参考信号SRS-Pos发送时机i、服务小区c的载波f的激活上行带宽部分b上的SRS- Pos的带宽;
μ表示子载波间隔指示;
α PRACH-Pos,b,f,c(q s)表示服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的部分路损补偿因子;
PRACH-Pos资源集q s是根据高层参数PRACH-Pos资源标识PRACH-PosResourceId得到的;
PL b,f,c(q d)表示所述下行路径损耗的估计值。
可选的,在子载波间隔被配置为15、30、60或120kHz时,所述μ对应为0、1、2或3。
可选的,所述下行参考信号包括同步信号块SSB、下行定位参考信号DL-PRS以及信道状态信息参考信号CSI-RS中的至少一种。
可选的,还包括:
接收高层发送的协助信息;
其中,所述协助信息包括:所述下行参考信号的时频资源占用信息以及每个资源元素的能量EPRE功率配置信息中的至少一项。
可选的,还包括:
在获取不到所述下行参考信号的情况下,根据所述终端的服务小区的同步信号块中的辅同步信号SSS,得到下行路径损耗。
本公开实施例还提供了一种功率确定方法,应用于网络侧设备,包括:
向终端配置预设参数;
其中,所述预设参数包括以下参数中的至少一项:
用于定位的前导码目标接收功率PREAMBLE_RECEIVED_TARGET_POWER_POS;
用于定位的增量前导码DELTA_PREAMBLE_POS;
用于定位的前导码功率爬坡计数器PREAMBLE_POWER_RAMPING_COUNTER_PO;
用于定位的前导码功率爬坡步长PREAMBLE_POWER_RAMPING_STEP_POS;
用于定位的前导码目标接收功率初始值 preambleReceivedTargetPower_Pos;
终端在用于定位的物理随机接入信道PRACH-Pos的发送时机i,在服务小区c的载波f上的第一最大输出功率P CMAX,f,c(i);
在终端的服务小区c的载波f的激活上行带宽部分b上的所述PRACH-Pos的第一目标接收功率P PRACH-Pos,target,b,f,c
用于定位的路径损耗参考信号pathlossReferenceRS-Pos;
用于定位的前导码功率控制参数PREAMBLE_P0_POS;
高层参数阿尔法alpha;
终端在所述PRACH-Pos的发送时机i,在服务小区c的载波f上的第二最大输出功率P CMAX,f,c(i);
在终端的服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的功率控制参数P0;P0表示第二目标接收功率;
以资源块数量表示的、在用于定位的探测参考信号SRS-Pos发送时机i、服务小区c的载波f的激活上行带宽部分b上的SRS-Pos的带宽M PRACH-Pos,b,f,c(i);
子载波间隔指示μ;
服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的部分路损补偿因子α PRACH-Pos,b,f,c(q s);
用于得到PRACH-Pos资源集q s的高层参数PRACH-Pos资源标识PRACH-PosResourceId。
可选的,所述PREAMBLE_RECEIVED_TARGET_POWER_POS与用于随机接入的前导码目标接收功率PREAMBLE_RECEIVED_TARGET_POWER为不同的参数,具有不同的数值。
可选的,preambleReceivedTargetPower_Pos是用于设定PREAMBLE_RECEIVED_TARGET_POWER_POS的专用参数,和/或,
DELTA_PREAMBLE_POS是与所述PRACH-Pos的子载波间隔或实际占用的带宽相关的参数。
可选的,在子载波间隔被配置为15、30、60或120kHz时,所述μ对应为0、1、2或3。
本公开实施例还提供了一种终端,包括存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
根据接收到的目标小区发送的下行参考信号,确定所述终端与所述目标小区之间的下行路径损耗;
根据所述下行路径损耗,确定用于定位的物理随机接入信道PRACH-Pos的发送功率;
其中,所述目标小区为所述终端的服务小区或邻小区。
可选的,在所述PRACH-Pos所使用的带宽为固定带宽的情况下,所述根据所述下行路径损耗,确定用于定位的物理随机接入信道PRACH-Pos的发送功率,包括:
根据第一最大输出功率、第一目标接收功率以及所述下行路径损耗,确定PRACH-Pos的发送功率。
可选的,所述第一目标接收功率是由预设的用于定位的前导码目标接收功率PREAMBLE_RECEIVED_TARGET_POWER_POS配置的。
可选的,所述PREAMBLE_RECEIVED_TARGET_POWER_POS是采用公式一确定的,所述公式一为:
PREAMBLE_RECEIVED_TARGET_POWER_POS=preambleReceivedTargetPower_Pos+DELTA_PREAMBLE_POS+(PREAMBLE_POWER_RAMPING_COUNTER_POS–1)×PREAMBLE_POWER_RAMPING_STEP_POS;
其中,preambleReceivedTargetPower_Pos表示用于定位的前导码目标接收功率初始值,DELTA_PREAMBLE_POS表示用于定位的增量前导码,PREAMBLE_POWER_RAMPING_COUNTER_POS表示用于定位的前导码功率爬坡计数器,PREAMBLE_POWER_RAMPING_STEP_POS表示用于定位的前导码功率爬坡步长。
可选的,preambleReceivedTargetPower_Pos是用于设定PREAMBLE_RECEIVED_TARGET_POWER_POS的专用参数,和/或,
DELTA_PREAMBLE_POS是与所述PRACH-Pos的子载波间隔或实际占用的带宽相关的参数。
可选的,所述PREAMBLE_RECEIVED_TARGET_POWER_POS与用于随机接入的前导码目标接收功率PREAMBLE_RECEIVED_TARGET_POWER为不同的参数,具有不同的数值。
可选的,在所述终端被配置在服务小区c的载波f的激活上行带宽部分b上发送所述PRACH-Pos的情况下,所述根据第一最大输出功率、第一目标接收功率以及所述下行路径损耗,确定PRACH-Pos的发送功率,包括:
利用公式二,根据第一最大输出功率、第一目标接收功率以及所述下行路径损耗,确定PRACH-Pos的发送功率;
其中,所述公式二为:
P PRACH-Pos,b,f,c(i)=min{P CMAX,f,c(i),P PRACH-Pos,target,b,f,c+PL b,f,c};
P PRACH-Pos,b,f,c(i)表示在所述PRACH-Pos的发送时机i时的所述发送功率;
P CMAX,f,c(i)表示所述终端在所述PRACH-Pos的发送时机i,在服务小区c的载波f上配置的第一最大输出功率;
P PRACH-Pos,target,b,f,c表示服务小区c的载波f的激活上行带宽部分b上的所述PRACH-Pos的第一目标接收功率;
PL b,f,c表示所述下行路径损耗的估计值。
可选的,所述下行路径损耗是使用所述终端的服务小区或非服务小区的索引号为q d的参考信号资源进行估计得到的;
其中,所述参考信号资源与所述PRACH-Pos相关联。
可选的,所述q d的配置信息是根据用于定位的路径损耗参考信号pathlossReferenceRS-Pos得到的。
可选的,在所述PRACH-Pos所使用的带宽为非固定带宽的情况下,所述根据所述下行路径损耗,确定用于定位的物理随机接入信道PRACH-Pos的发送功率,包括:
根据第二最大输出功率、第二目标接收功率、所述PRACH-Pos所占用的带宽、部分路损补偿因子以及所述下行路径损耗,确定PRACH-Pos的发送功率。
可选的,所述第二目标接收功率是根据用于定位的前导码功率控制参数PREAMBLE_P0_POS得到的;和/或,
所述部分路损补偿因子是根据高层参数阿尔法alpha得到的。
可选的,在所述终端被配置在服务小区c的载波f的激活上行带宽部分b上发送所述PRACH-Pos的情况下,所述根据第二最大输出功率、第二目标接收功率、所述PRACH-Pos所占用的带宽、部分路损补偿因子以及所述下行路径损耗,确定PRACH-Pos的发送功率,包括:
利用公式三,根据第二最大输出功率、第二目标接收功率、所述PRACH-Pos所占用的带宽、部分路损补偿因子以及所述下行路径损耗,确定PRACH-Pos的发送功率;
其中,所述公式三为:
Figure PCTCN2021117155-appb-000002
P PRACH-Pos,b,f,c(i,q s)表示在所述PRACH-Pos的发送时机i上PRACH-Pos资源集q s的发送功率;
P CMAX,f,c(i)表示所述终端在所述PRACH-Pos的发送时机i,在服务小区c的载波f上配置的第二最大输出功率;
P O,PRACH-Pos,b,f,c(q s)表示服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的功率控制参数P0;P0表示所述第二目标接收功率;
M PRACH-Pos,b,f,c(i)表示以资源块数量表示的、在用于定位的探测参考信号SRS-Pos发送时机i、服务小区c的载波f的激活上行带宽部分b上的SRS-Pos的带宽;
μ表示子载波间隔指示;
α PRACH-Pos,b,f,c(q s)表示服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的部分路损补偿因子;
PRACH-Pos资源集q s是根据高层参数PRACH-Pos资源标识PRACH-PosResourceId得到的;
PL b,f,c(q d)表示所述下行路径损耗的估计值。
可选的,在子载波间隔被配置为15、30、60或120kHz时,所述μ对应为0、1、2或3。
可选的,所述下行参考信号包括同步信号块SSB、下行定位参考信号DL-PRS以及信道状态信息参考信号CSI-RS中的至少一种。
可选的,所述操作还包括:
通过所述收发机接收高层发送的协助信息;
其中,所述协助信息包括:所述下行参考信号的时频资源占用信息以及每个资源元素的能量EPRE功率配置信息中的至少一项。
可选的,所述操作还包括:
在获取不到所述下行参考信号的情况下,根据所述终端的服务小区的同步信号块中的辅同步信号SSS,得到下行路径损耗。
本公开实施例还提供了一种网络侧设备,包括存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
通过所述收发机向终端配置预设参数;
其中,所述预设参数包括以下参数中的至少一项:
用于定位的前导码目标接收功率PREAMBLE_RECEIVED_TARGET_POWER_POS;
用于定位的增量前导码DELTA_PREAMBLE_POS;
用于定位的前导码功率爬坡计数器PREAMBLE_POWER_RAMPING_COUNTER_PO;
用于定位的前导码功率爬坡步长PREAMBLE_POWER_RAMPING_STEP_POS;
用于定位的前导码目标接收功率初始值preambleReceivedTargetPower_Pos;
终端在用于定位的物理随机接入信道PRACH-Pos的发送时机i,在服务小区c的载波f上的第一最大输出功率P CMAX,f,c(i);
在终端的服务小区c的载波f的激活上行带宽部分b上的所述PRACH-Pos的第一目标接收功率P PRACH-Pos,target,b,f,c
用于定位的路径损耗参考信号pathlossReferenceRS-Pos;
用于定位的前导码功率控制参数PREAMBLE_P0_POS;
高层参数阿尔法alpha;
终端在所述PRACH-Pos的发送时机i,在服务小区c的载波f上的第二最大输出功率P CMAX,f,c(i);
在终端的服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的功率控制参数P0;P0表示第二目标接收功率;
以资源块数量表示的、在用于定位的探测参考信号SRS-Pos发送时机i、服务小区c的载波f的激活上行带宽部分b上的SRS-Pos的带宽M PRACH-Pos,b,f,c(i);
子载波间隔指示μ;
服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的部分路损补偿因子α PRACH-Pos,b,f,c(q s);
用于得到PRACH-Pos资源集q s的高层参数PRACH-Pos资源标识PRACH-PosResourceId。
可选的,所述PREAMBLE_RECEIVED_TARGET_POWER_POS与用于随机接入的前导码目标接收功率PREAMBLE_RECEIVED_TARGET_POWER为不同的参数,具有不同的数值。
可选的,preambleReceivedTargetPower_Pos是用于设定PREAMBLE_RECEIVED_TARGET_POWER_POS的专用参数,和/或,
DELTA_PREAMBLE_POS是与所述PRACH-Pos的子载波间隔或实际占用的带宽相关的参数。
可选的,在子载波间隔被配置为15、30、60或120kHz时,所述μ对应为0、1、2或3。
本公开实施例还提供了一种功率确定装置,应用于终端,包括:
第一确定单元,用于根据接收到的目标小区发送的下行参考信号,确定所述终端与所述目标小区之间的下行路径损耗;
第二确定单元,用于根据所述下行路径损耗,确定用于定位的物理随机接入信道PRACH-Pos的发送功率;
其中,所述目标小区为所述终端的服务小区或邻小区。
可选的,在所述PRACH-Pos所使用的带宽为固定带宽的情况下,所述根据所述下行路径损耗,确定用于定位的物理随机接入信道PRACH-Pos的发送 功率,包括:
根据第一最大输出功率、第一目标接收功率以及所述下行路径损耗,确定PRACH-Pos的发送功率。
可选的,所述第一目标接收功率是由预设的用于定位的前导码目标接收功率PREAMBLE_RECEIVED_TARGET_POWER_POS配置的。
可选的,所述PREAMBLE_RECEIVED_TARGET_POWER_POS是采用公式一确定的,所述公式一为:
PREAMBLE_RECEIVED_TARGET_POWER_POS=preambleReceivedTargetPower_Pos+DELTA_PREAMBLE_POS+(PREAMBLE_POWER_RAMPING_COUNTER_POS–1)×PREAMBLE_POWER_RAMPING_STEP_POS;
其中,preambleReceivedTargetPower_Pos表示用于定位的前导码目标接收功率初始值,DELTA_PREAMBLE_POS表示用于定位的增量前导码,PREAMBLE_POWER_RAMPING_COUNTER_POS表示用于定位的前导码功率爬坡计数器,PREAMBLE_POWER_RAMPING_STEP_POS表示用于定位的前导码功率爬坡步长。
可选的,preambleReceivedTargetPower_Pos是用于设定PREAMBLE_RECEIVED_TARGET_POWER_POS的专用参数,和/或,
DELTA_PREAMBLE_POS是与所述PRACH-Pos的子载波间隔或实际占用的带宽相关的参数。
可选的,所述PREAMBLE_RECEIVED_TARGET_POWER_POS与用于随机接入的前导码目标接收功率PREAMBLE_RECEIVED_TARGET_POWER为不同的参数,具有不同的数值。
可选的,在所述终端被配置在服务小区c的载波f的激活上行带宽部分b上发送所述PRACH-Pos的情况下,所述根据第一最大输出功率、第一目标接收功率以及所述下行路径损耗,确定PRACH-Pos的发送功率,包括:
利用公式二,根据第一最大输出功率、第一目标接收功率以及所述下行路径损耗,确定PRACH-Pos的发送功率;
其中,所述公式二为:
P PRACH-Pos,b,f,c(i)=min{P CMAX,f,c(i),P PRACH-Pos,target,b,f,c+PL b,f,c};
P PRACH-Pos,b,f,c(i)表示在所述PRACH-Pos的发送时机i时的所述发送功率;
P CMAX,f,c(i)表示所述终端在所述PRACH-Pos的发送时机i,在服务小区c的载波f上配置的第一最大输出功率;
P PRACH-Pos,target,b,f,c表示服务小区c的载波f的激活上行带宽部分b上的所述PRACH-Pos的第一目标接收功率;
PL b,f,c表示所述下行路径损耗的估计值。
可选的,所述下行路径损耗是使用所述终端的服务小区或非服务小区的索引号为q d的参考信号资源进行估计得到的;
其中,所述参考信号资源与所述PRACH-Pos相关联。
可选的,所述q d的配置信息是根据用于定位的路径损耗参考信号pathlossReferenceRS-Pos得到的。
可选的,在所述PRACH-Pos所使用的带宽为非固定带宽的情况下,所述根据所述下行路径损耗,确定用于定位的物理随机接入信道PRACH-Pos的发送功率,包括:
根据第二最大输出功率、第二目标接收功率、所述PRACH-Pos所占用的带宽、部分路损补偿因子以及所述下行路径损耗,确定PRACH-Pos的发送功率。
可选的,所述第二目标接收功率是根据用于定位的前导码功率控制参数PREAMBLE_P0_POS得到的;和/或,
所述部分路损补偿因子是根据高层参数阿尔法alpha得到的。
可选的,在所述终端被配置在服务小区c的载波f的激活上行带宽部分b上发送所述PRACH-Pos的情况下,所述根据第二最大输出功率、第二目标接收功率、所述PRACH-Pos所占用的带宽、部分路损补偿因子以及所述下行路径损耗,确定PRACH-Pos的发送功率,包括:
利用公式三,根据第二最大输出功率、第二目标接收功率、所述PRACH-Pos所占用的带宽、部分路损补偿因子以及所述下行路径损耗,确定PRACH-Pos的发送功率;
其中,所述公式三为:
Figure PCTCN2021117155-appb-000003
P PRACH-Pos,b,f,c(i,q s)表示在所述PRACH-Pos的发送时机i上PRACH-Pos资源集q s的发送功率;
P CMAX,f,c(i)表示所述终端在所述PRACH-Pos的发送时机i,在服务小区c的载波f上配置的第二最大输出功率;
P O,PRACH-Pos,b,f,c(q s)表示服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的功率控制参数P0;P0表示所述第二目标接收功率;
M PRACH-Pos,b,f,c(i)表示以资源块数量表示的、在用于定位的探测参考信号SRS-Pos发送时机i、服务小区c的载波f的激活上行带宽部分b上的SRS-Pos的带宽;
μ表示子载波间隔指示;
α PRACH-Pos,b,f,c(q s)表示服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的部分路损补偿因子;
PRACH-Pos资源集q s是根据高层参数PRACH-Pos资源标识PRACH-PosResourceId得到的;
PL b,f,c(q d)表示所述下行路径损耗的估计值。
可选的,在子载波间隔被配置为15、30、60或120kHz时,所述μ对应为0、1、2或3。
可选的,所述下行参考信号包括同步信号块SSB、下行定位参考信号DL-PRS以及信道状态信息参考信号CSI-RS中的至少一种。
可选的,还包括:
第一接收单元,用于接收高层发送的协助信息;
其中,所述协助信息包括:所述下行参考信号的时频资源占用信息以及每个资源元素的能量EPRE功率配置信息中的至少一项。
可选的,还包括:
第一处理单元,用于在获取不到所述下行参考信号的情况下,根据所述终端的服务小区的同步信号块中的辅同步信号SSS,得到下行路径损耗。
本公开实施例还提供了一种功率确定装置,应用于网络侧设备,包括:
第一配置单元,用于向终端配置预设参数;
其中,所述预设参数包括以下参数中的至少一项:
用于定位的前导码目标接收功率PREAMBLE_RECEIVED_TARGET_POWER_POS;
用于定位的增量前导码DELTA_PREAMBLE_POS;
用于定位的前导码功率爬坡计数器PREAMBLE_POWER_RAMPING_COUNTER_PO;
用于定位的前导码功率爬坡步长PREAMBLE_POWER_RAMPING_STEP_POS;
用于定位的前导码目标接收功率初始值preambleReceivedTargetPower_Pos;
终端在用于定位的物理随机接入信道PRACH-Pos的发送时机i,在服务小区c的载波f上的第一最大输出功率P CMAX,f,c(i);
在终端的服务小区c的载波f的激活上行带宽部分b上的所述PRACH-Pos的第一目标接收功率P PRACH-Pos,target,b,f,c
用于定位的路径损耗参考信号pathlossReferenceRS-Pos;
用于定位的前导码功率控制参数PREAMBLE_P0_POS;
高层参数阿尔法alpha;
终端在所述PRACH-Pos的发送时机i,在服务小区c的载波f上的第二最大输出功率P CMAX,f,c(i);
在终端的服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的功率控制参数P0;P0表示第二目标接收功率;
以资源块数量表示的、在用于定位的探测参考信号SRS-Pos发送时机i、服务小区c的载波f的激活上行带宽部分b上的SRS-Pos的带宽M PRACH-Pos,b,f,c(i);
子载波间隔指示μ;
服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的部分路损补偿因子α PRACH-Pos,b,f,c(q s);
用于得到PRACH-Pos资源集q s的高层参数PRACH-Pos资源标识 PRACH-PosResourceId。
可选的,所述PREAMBLE_RECEIVED_TARGET_POWER_POS与用于随机接入的前导码目标接收功率PREAMBLE_RECEIVED_TARGET_POWER为不同的参数,具有不同的数值。
可选的,preambleReceivedTargetPower_Pos是用于设定PREAMBLE_RECEIVED_TARGET_POWER_POS的专用参数,和/或,
DELTA_PREAMBLE_POS是与所述PRACH-Pos的子载波间隔或实际占用的带宽相关的参数。
可选的,在子载波间隔被配置为15、30、60或120kHz时,所述μ对应为0、1、2或3。
本公开实施例还提供了一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行上述终端侧的功率确定方法;或者,所述计算机程序用于使所述处理器执行上述网络侧设备侧的功率确定方法。
本公开的上述技术方案的有益效果如下:
上述方案中,所述功率确定方法通过根据接收到的目标小区发送的下行参考信号,确定所述终端与所述目标小区之间的下行路径损耗;根据所述下行路径损耗,确定用于定位的物理随机接入信道PRACH-Pos的发送功率;其中,所述目标小区为所述终端的服务小区或邻小区;能够实现基于目标小区(包括邻小区或服务小区)路径损耗进行PRACH-Pos的功率控制,可以让终端根据目标小区参考信号测量获得的下行路径损耗,确定其用于定位的物理随机接入信道的发送功率,使得终端可以根据实际情况确定合理的发射功率,从而降低终端能耗,并提升定位精度;很好的解决了相关技术中针对PRACH的发送功率确定方案存在无法确定合理的发送功率的问题。
附图说明
图1为相关技术中的PRACH功率控制方案示意图;
图2为本公开实施例的功率确定方法流程示意图一;
图3为本公开实施例的功率确定方法流程示意图二;
图4为本公开实施例的下行参考信号为DL-PRS的PRACH-Pos发送功率控制方案示意图;
图5为本公开实施例的下行参考信号为SSB的PRACH-Pos发送功率控制方案示意图;
图6为本公开实施例的服务小区SSB作为路径损耗参考信号示意图;
图7为本公开实施例的终端结构示意图;
图8为本公开实施例的网络侧设备结构示意图;
图9为本公开实施例的功率确定装置结构示意图一;
图10为本公开实施例的功率确定装置结构示意图二。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,并不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本公开实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
本公开实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、高级长期演进(long term evolution advanced,LTE-A)系统、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G新空口(New Radio,NR)系统等。这多种系统 中均包括终端和网络侧设备。系统中还可以包括核心网部分,例如演进的分组系统(Evloved Packet System,EPS)、5G系统(5GS)等。
本公开实施例涉及的终端,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端的名称可能也不相同,例如在5G系统中,终端可以称为用户设备(User Equipment,UE)。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、用户装置(user device),本公开实施例中并不限定。
本公开实施例涉及的网络侧设备,可以是基站,该基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备,或者其它名称。网络侧设备可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络侧设备还可协调对空中接口的属性管理。例如,本公开实施例涉及的网络侧设备可以是全球移动通信系统(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的网络设备(NodeB),还可以是长期 演进(long term evolution,LTE)系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本公开实施例中并不限定。在一些网络结构中,网络侧设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
网络侧设备与终端之间可以各自使用一或多根天线进行多输入多输出(Multi Input Multi Output,MIMO)传输,MIMO传输可以是单用户MIMO(Single User MIMO,SU-MIMO)或多用户MIMO(Multiple User MIMO,MU-MIMO)。根据根天线组合的形态和数量,MIMO传输可以是2D-MIMO、3D-MIMO、FD-MIMO或massive-MIMO,也可以是分集传输或预编码传输或波束赋形传输等。
具体的,本公开实施例提供了一种功率确定方法、装置、终端及网络侧设备,用以解决相关技术中针对PRACH的发送功率确定方案存在无法确定合理的发送功率的问题。
其中,方法、装置、终端及网络侧设备是基于同一申请构思的,由于方法、装置、终端及网络侧设备解决问题的原理相似,因此方法、装置、终端及网络侧设备的实施可以相互参见,重复之处不再赘述。
本公开实施例提供的功率确定方法,应用于终端,如图2所示,包括:
步骤21:根据接收到的目标小区发送的下行参考信号,确定所述终端与所述目标小区之间的下行路径损耗。
下行参考信号可以是CSI-RS、DL-PRS或者SSB,具体的可以是通过测量下行参考信号的RSRP来计算下行路径损耗,但并不以此为限。
步骤22:根据所述下行路径损耗,确定用于定位的物理随机接入信道PRACH-Pos的发送功率;其中,所述目标小区为所述终端的服务小区或邻小区。
具体的,由于用于定位的物理随机接入信道PRACH-Pos可能是发送给服务小区,也可能是发送给邻小区,以便完成终端的定位过程,所以所述目标 小区为所述终端的服务小区或邻小区。
关于确定发送功率可分为两种情况:情况一,PRACH-Pos所使用的带宽为固定带宽,需要使用参数:最大输出功率、目标接收功率以及下行路径损耗;情况二,PRACH-Pos所使用的带宽为非固定带宽,该情况下除了需要使用参数:最大输出功率、目标接收功率以及下行路径损耗;还需要使用参数-所述PRACH-Pos所占用的带宽以及部分路损补偿因子。
本公开实施例提供的所述功率确定方法通过根据接收到的目标小区发送的下行参考信号,确定所述终端与所述目标小区之间的下行路径损耗;根据所述下行路径损耗,确定用于定位的物理随机接入信道PRACH-Pos的发送功率;其中,所述目标小区为所述终端的服务小区或邻小区;能够实现基于目标小区(包括邻小区或服务小区)路径损耗进行PRACH-Pos的功率控制,可以让终端根据目标小区参考信号测量获得的下行路径损耗,确定其用于定位的物理随机接入信道的发送功率,使得终端可以根据实际情况确定合理的发射功率,从而降低终端能耗,并提升定位精度;很好的解决了相关技术中针对PRACH的发送功率确定方案存在无法确定合理的发送功率的问题。
对应于上述情况一,在所述PRACH-Pos所使用的带宽为固定带宽的情况下,所述根据所述下行路径损耗,确定用于定位的物理随机接入信道PRACH-Pos的发送功率,包括:根据第一最大输出功率、第一目标接收功率以及所述下行路径损耗,确定PRACH-Pos的发送功率。这样可以精准的控制发送功率。
本公开实施例中,所述第一目标接收功率是由预设的用于定位的前导码目标接收功率PREAMBLE_RECEIVED_TARGET_POWER_POS配置的。这样可以简化控制流程。
具体的,所述PREAMBLE_RECEIVED_TARGET_POWER_POS是采用公式一确定的,所述公式一为:
PREAMBLE_RECEIVED_TARGET_POWER_POS=preambleReceivedTargetPower_Pos+DELTA_PREAMBLE_POS+(PREAMBLE_POWER_RAMPING_COUNTER_POS–1)×PREAMBLE_POWER_RAMPING_STEP_POS;
其中,preambleReceivedTargetPower_Pos表示用于定位的前导码目标接 收功率初始值,DELTA_PREAMBLE_POS表示用于定位的增量前导码,PREAMBLE_POWER_RAMPING_COUNTER_POS表示用于定位的前导码功率爬坡计数器,PREAMBLE_POWER_RAMPING_STEP_POS表示用于定位的前导码功率爬坡步长。这样可以精准的确定PREAMBLE_RECEIVED_TARGET_POWER_POS。
本公开实施例中,preambleReceivedTargetPower_Pos是用于设定PREAMBLE_RECEIVED_TARGET_POWER_POS的专用参数(与正常的用于随机接入的前导码对应参数相比,是不同的参数),和/或,DELTA_PREAMBLE_POS是与所述PRACH-Pos的子载波间隔或实际占用的带宽相关的参数。这样能够提升确定的PREAMBLE_RECEIVED_TARGET_POWER_POS的准确度。
其中,所述PREAMBLE_RECEIVED_TARGET_POWER_POS与用于随机接入的前导码目标接收功率PREAMBLE_RECEIVED_TARGET_POWER为不同的参数,具有不同的数值。这样可以避免信息的混淆。
本公开实施例中,在所述终端被配置在服务小区c的载波f的激活上行带宽部分b上发送所述PRACH-Pos的情况下,所述根据第一最大输出功率、第一目标接收功率以及所述下行路径损耗,确定PRACH-Pos的发送功率,包括:利用公式二,根据第一最大输出功率、第一目标接收功率以及所述下行路径损耗,确定PRACH-Pos的发送功率;
其中,所述公式二为:
P PRACH-Pos,b,f,c(i)=min{P CMAX,f,c(i),P PRACH-Pos,target,b,f,c+PL b,f,c};
P PRACH-Pos,b,f,c(i)表示在所述PRACH-Pos的发送时机i时的所述发送功率(单位可为dBm);P CMAX,f,c(i)表示所述终端在所述PRACH-Pos的发送时机i,在服务小区c的载波f上配置的第一最大输出功率;P PRACH-Pos,target,b,f,c表示服务小区c的载波f的激活上行带宽部分b上的所述PRACH-Pos的第一目标接收功率;PL b,f,c表示所述下行路径损耗的估计值(单位可为dB)。
其中,所述下行路径损耗是使用所述终端的服务小区或非服务小区的索引号为q d的参考信号资源进行估计得到的;其中,所述参考信号资源与所述PRACH-Pos相关联。这样可以精准的得到发送功率。
具体的,所述q d的配置信息是根据用于定位的路径损耗参考信号pathlossReferenceRS-Pos得到的。这样可以简化控制流程。
该情况下的方案,PRACH-Pos发送功率与带宽之间的关系可通过预设参数来确定,从而可以让终端根据下行参考信号测量获得的下行路径损耗,结合高层预设参数,来确定其用于定位的随机接入信道的发送功率,使得终端可以根据实际情况确定合理的发射功率,从而降低了终端能耗,并提升了定位精度;而且功率控制过程比较简单,依据高层预设参数就可以完成功率控制过程。
对应于上述情况二,在所述PRACH-Pos所使用的带宽为非固定带宽的情况下,所述根据所述下行路径损耗,确定用于定位的物理随机接入信道PRACH-Pos的发送功率,包括:根据第二最大输出功率、第二目标接收功率、所述PRACH-Pos所占用的带宽、部分路损补偿因子以及所述下行路径损耗,确定PRACH-Pos的发送功率。
其中,所述第二目标接收功率是根据用于定位的前导码功率控制参数PREAMBLE_P0_POS得到的;和/或,所述部分路损补偿因子是根据高层参数阿尔法alpha得到的。这样可以使得得到的下行路径损耗更加贴合实际。
本公开实施例中,在所述终端被配置在服务小区c的载波f的激活上行带宽部分b上发送所述PRACH-Pos的情况下,所述根据第二最大输出功率、第二目标接收功率、所述PRACH-Pos所占用的带宽、部分路损补偿因子以及所述下行路径损耗,确定PRACH-Pos的发送功率,包括:利用公式三,根据第二最大输出功率、第二目标接收功率、所述PRACH-Pos所占用的带宽、部分路损补偿因子以及所述下行路径损耗,确定PRACH-Pos的发送功率;
其中,所述公式三为:
Figure PCTCN2021117155-appb-000004
P PRACH-Pos,b,f,c(i,q s)表示在所述PRACH-Pos的发送时机i上PRACH-Pos资源集q s的发送功率(单位可为dBm);P CMAX,f,c(i)表示所述终端在所述PRACH-Pos的发送时机i,在服务小区c的载波f上配置的第二最大输出功率; P O,PRACH-Pos,b,f,c(q s)表示服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的功率控制参数P0;P0表示所述第二目标接收功率;M PRACH-Pos,b,f,c(i)表示以资源块数量表示的、在用于定位的探测参考信号SRS-Pos发送时机i、服务小区c的载波f的激活上行带宽部分b上的SRS-Pos的带宽;μ表示子载波间隔指示;α PRACH-Pos,b,f,c(q s)表示服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的部分路损补偿因子;PRACH-Pos资源集q s是根据高层参数PRACH-Pos资源标识PRACH-PosResourceId得到的;PL b,f,c(q d)表示所述下行路径损耗的估计值(单位可为dB)。这样能够精准的得到这种情况下的发送功率。
本公开实施例中,在子载波间隔被配置为15、30、60或120kHz时,所述μ对应为0、1、2或3。这样可以提高得到的发送功率的准确度。
该情况下的方案,PRACH-Pos发送功率可以根据其所占用的带宽计算获得来确定,从而可以让终端根据下行参考信号测量获得的下行路径损耗,结合终端实际占用的带宽以及高层参数,来确定其用于定位的随机接入信道的发送功率,使得终端可以根据实际情况确定合理的发射功率,从而降低了终端能耗,并提升了定位精度;而且PRACH-Pos的发送功率可以根据其实际占用的带宽进行精确调整和控制。
其中,所述下行参考信号包括同步信号块SSB、下行定位参考信号DL-PRS以及信道状态信息参考信号CSI-RS中的至少一种。这样可以便于方案的实施。
进一步的,所述的功率确定方法,还包括:接收高层发送的协助信息;其中,所述协助信息包括:所述下行参考信号的时频资源占用信息以及每个资源元素的能量EPRE功率配置信息中的至少一项。这样可以便于实现发送功率的控制。
本公开实施例中,所述的功率确定方法,还包括:在获取不到所述下行参考信号的情况下,根据所述终端的服务小区的同步信号块中的辅同步信号SSS,得到下行路径损耗。这样可以保证方案的完整性,即使无法根据下行参考信号得到下行路径损耗,仍旧能够保证得到具备一定准确度的下行路径损耗,以便进行发送功率控制。
本公开实施例还提供了一种功率确定方法,应用于网络侧设备,如图3所示,包括:
步骤31:向终端配置预设参数;其中,所述预设参数包括以下参数中的至少一项:用于定位的前导码目标接收功率PREAMBLE_RECEIVED_TARGET_POWER_POS;用于定位的增量前导码DELTA_PREAMBLE_POS;用于定位的前导码功率爬坡计数器PREAMBLE_POWER_RAMPING_COUNTER_PO;用于定位的前导码功率爬坡步长PREAMBLE_POWER_RAMPING_STEP_POS;用于定位的前导码目标接收功率初始值preambleReceivedTargetPower_Pos;终端在用于定位的物理随机接入信道PRACH-Pos的发送时机i,在服务小区c的载波f上的第一最大输出功率P CMAX,f,c(i);在终端的服务小区c的载波f的激活上行带宽部分b上的所述PRACH-Pos的第一目标接收功率P PRACH-Pos,target,b,f,c;用于定位的路径损耗参考信号pathlossReferenceRS-Pos;用于定位的前导码功率控制参数PREAMBLE_P0_POS;高层参数阿尔法alpha;终端在所述PRACH-Pos的发送时机i,在服务小区c的载波f上的第二最大输出功率P CMAX,f,c(i);在终端的服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的功率控制参数P0;P0表示第二目标接收功率;以资源块数量表示的、在用于定位的探测参考信号SRS-Pos发送时机i、服务小区c的载波f的激活上行带宽部分b上的SRS-Pos的带宽M PRACH-Pos,b,f,c(i);子载波间隔指示μ;服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的部分路损补偿因子α PRACH-Pos,b,f,c(q s);用于得到PRACH-Pos资源集q s的高层参数PRACH-Pos资源标识PRACH-PosResourceId。
本公开实施例提供的所述功率确定方法通过向终端配置预设参数;其中,所述预设参数包括以下参数中的至少一项:用于定位的前导码目标接收功率PREAMBLE_RECEIVED_TARGET_POWER_POS;用于定位的增量前导码DELTA_PREAMBLE_POS;用于定位的前导码功率爬坡计数器PREAMBLE_POWER_RAMPING_COUNTER_PO;用于定位的前导码功率爬坡步长PREAMBLE_POWER_RAMPING_STEP_POS;用于定位的前导码目标接收功率初始值preambleReceivedTargetPower_Pos;终端在用于定位的物理 随机接入信道PRACH-Pos的发送时机i,在服务小区c的载波f上的第一最大输出功率P CMAX,f,c(i);在终端的服务小区c的载波f的激活上行带宽部分b上的所述PRACH-Pos的第一目标接收功率P PRACH-Pos,target,b,f,c;用于定位的路径损耗参考信号pathlossReferenceRS-Pos;用于定位的前导码功率控制参数PREAMBLE_P0_POS;高层参数阿尔法alpha;终端在所述PRACH-Pos的发送时机i,在服务小区c的载波f上的第二最大输出功率P CMAX,f,c(i);在终端的服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的功率控制参数P0;P0表示第二目标接收功率;以资源块数量表示的、在用于定位的探测参考信号SRS-Pos发送时机i、服务小区c的载波f的激活上行带宽部分b上的SRS-Pos的带宽M PRACH-Pos,b,f,c(i);子载波间隔指示μ;服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的部分路损补偿因子α PRACH-Pos,b,f,c(q s);用于得到PRACH-Pos资源集q s的高层参数PRACH-Pos资源标识PRACH-PosResourceId;能够支撑终端实现基于目标小区(包括邻小区或服务小区)路径损耗进行PRACH-Pos的功率控制,可以让终端根据目标小区参考信号测量获得的下行路径损耗,确定其用于定位的物理随机接入信道的发送功率,使得终端可以根据实际情况确定合理的发射功率,从而降低终端能耗,并提升定位精度;很好的解决了相关技术中针对PRACH的发送功率确定方案存在无法确定合理的发送功率的问题。
具体的,所述PREAMBLE_RECEIVED_TARGET_POWER_POS是采用公式一确定的,所述公式一为:
PREAMBLE_RECEIVED_TARGET_POWER_POS=preambleReceivedTargetPower_Pos+DELTA_PREAMBLE_POS+(PREAMBLE_POWER_RAMPING_COUNTER_POS–1)×PREAMBLE_POWER_RAMPING_STEP_POS。这样可以精准的确定PREAMBLE_RECEIVED_TARGET_POWER_POS。
其中,所述PREAMBLE_RECEIVED_TARGET_POWER_POS与用于随机接入的前导码目标接收功率PREAMBLE_RECEIVED_TARGET_POWER为不同的参数,具有不同的数值。这样可以避免信息的混淆。
本公开实施例中,preambleReceivedTargetPower_Pos是用于设定 PREAMBLE_RECEIVED_TARGET_POWER_POS的专用参数(与正常的用于随机接入的前导码对应参数相比,是不同的参数),和/或,DELTA_PREAMBLE_POS是与所述PRACH-Pos的子载波间隔或实际占用的带宽相关的参数。这样能够提升确定的PREAMBLE_RECEIVED_TARGET_POWER_POS的准确度。
其中,在子载波间隔被配置为15、30、60或120kHz时,所述μ对应为0、1、2或3。这样可以提高终端侧得到的发送功率的准确度。
下面结合终端以及网络侧设备等多侧对本公开实施例提供的所述功率确定方法进行进一步说明。
针对上述技术问题,本公开实施例提供了一种功率确定方法,具体可实现为一种用于定位的物理随机接入信道的发送功率控制方法,主要涉及:终端根据来自于目标小区(邻小区或服务小区)的下行参考信号,计算其自身与目标小区之间的下行路径损耗,然后根据该下行路径损耗,确定其用于定位的物理随机接入信道PRACH-Pos的发送功率。
本公开实施例提供的方案具体涉及以下几部分:
部分一,PRACH-Pos发送功率控制方案一:PRACH-Pos功率与带宽之间的关系通过预设参数来确定;
(1)PRACH-Pos使用固定的带宽,其发射功率由第一最大输出功率、第一目标接收功率以及终端与目标小区之间的第一下行路径损耗(即上述下行路径损耗)所计算确定;
(2)第一目标接收功率由预设高层参数PREAMBLE_RECEIVED_TARGET_POWER_POS配置。该参数与用于随机接入的高层参数PREAMBLE_RECEIVED_TARGET_POWER属于不同的参数,具有不同的数值。
(3)高层参数PREAMBLE_RECEIVED_TARGET_POWER_POS=preambleReceivedTargetPower_Pos+DELTA_PREAMBLE_POS+(PREAMBLE_POWER_RAMPING_COUNTER_POS–1)×PREAMBLE_POWER_RAMPING_STEP_POS。
(4)preambleReceivedTargetPower_Pos是用于设定 PREAMBLE_RECEIVED_TARGET_POWER_POS的专用(高层)参数,DELTA_PREAMBLE_POS是与PRACH-Pos的子载波间隔或实际占用的带宽相关的一个参数。PREAMBLE_POWER_RAMPING_COUNTER_POS与PREAMBLE_POWER_RAMPING_STEP_POS是用来控制功率爬坡的参数。
(5)第一下行路径损耗是UE(终端)使用其服务小区或非服务小区的索引号为q d的参考信号资源进行估计得到的。该参考信号资源与PRACH-Pos相关联,索引q d的配置由pathlossReferenceRS-Pos提供。
(6)当UE被配置在服务小区c的载波f的激活上行带宽部分(BWP)b上发送PRACH-Pos时,UE在PRACH-Pos发送时机i,根据下式计算PRACH-Pos发射功率P PRACH-Pos,b,f,c(i):
P PRACH-Pos,b,f,c(i)=min{P CMAX,f,c(i),P PRACH-Pos,target,b,f,c+PL b,f,c}[dBm];
其中,P PRACH-Pos,b,f,c(i)表示在所述PRACH-Pos的发送时机i时的所述发送功率;
P CMAX,f,c(i)是指UE在PRACH-Pos发送时机i,在服务小区c的载波f上配置的第一最大输出功率;
P PRACH-Pos,target,b,f,c是指服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos的第一目标接收功率;
PL b,f,c是UE计算的其与目标小区之间的第一下行路径损耗估计值,单位是dB。该目标小区可能是本小区,也可能是邻小区。
部分二,PRACH-Pos发送功率控制方案二:PRACH-Pos功率根据带宽计算获得;
(7)PRACH-Pos使用可配置的灵活带宽(即非固定带宽),其发射功率由第二最大输出功率、第二目标接收功率以及PRACH-Pos所占用的带宽、第二部分路损补偿因子(即上述部分路损补偿因子)以及终端与目标小区之间的第二下行路径损耗(即上述下行路径损耗)所计算确定;
(8)第二目标接收功率由高层参数PREAMBLE_P0_POS配置。
(9)第二路径损耗部分补偿因子由高层参数alpha(阿尔法)配置。
(10)第二下行路径损耗是UE使用其服务小区或非服务小区的索引号为q d的参考信号资源进行估计得到的。该参考信号资源与PRACH-Pos相关 联,索引q d的配置由pathlossReferenceRS-Pos提供。
(11)当UE被配置在服务小区c的载波f的激活上行带宽部分(BWP)b上发送PRACH-Pos时,UE在PRACH-Pos发送时机i,根据下式计算PRACH-Pos发射功率P PRACH-Pos,b,f,c(i,q s):
Figure PCTCN2021117155-appb-000005
其中,P PRACH-Pos,b,f,c(i,q s)表示在所述PRACH-Pos的发送时机i上PRACH-Pos资源集q s的发送功率(单位为dBm);
P CMAX,f,c(i)是指UE在PRACH-Pos发送时机i,在服务小区c的载波f上配置的第二最大输出功率;
P O,PRACH-Pos,b,f,c(q s)是指服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的功率控制参数P0(高层参数)。P0表示所述第二目标接收功率;
M PRACH-Pos,b,f,c(i)是指以资源块数量表示的,在SRS-Pos发送时机i,服务小区c的载波f的激活上行带宽部分b上的SRS-Pos的带宽;
μ是子载波间隔指示;μ在子载波间隔被配置为15,30,60和120kHz时,分别为0,1,2和3(即,子载波间隔被配置为15kHz时,μ为0;子载波间隔被配置为30kHz时,μ为1;子载波间隔被配置为60kHz时,μ为2;子载波间隔被配置为120kHz时,μ为3)。
α PRACH-Pos,b,f,c(q s)是指服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的第二路径损耗部分补偿因子。
PRACH-Pos资源集q s由高层参数PRACH-PosResourceId指示。
PL b,f,c(q d)是UE计算的下行路径损耗的估计值,单位是dB。
部分三,下行(路径损耗)参考信号及其参数配置
(12)在PRACH-Pos功率控制中,所述用于估算下行路径损耗的关联参考信号资源可以是SSB、DL-PRS资源以及CSI-RS资源中的至少一种参考信号(即上述下行参考信号包括同步信号块SSB、下行定位参考信号DL-PRS以及信道状态信息参考信号CSI-RS中的至少一种)。
(13)对于每个涉及的传输点TRP(包括服务小区和邻小区),由高层向UE提供关联参考信号资源的时频资源占用信息以及每个资源元素的能量(EPRE)功率配置信息等作为协助信息(即终端接收高层发送的协助信息;其中,所述协助信息包括:所述下行参考信号的时频资源占用信息以及每个资源元素的能量EPRE功率配置信息中的至少一项)。
部分四,回退方案:当无法获得目标小区的下行(路径损耗)参考信号(比如信号特别弱)时,可使用服务小区SSB(同步信号块)作为路径损耗参考信号(即依据SSB得到下行路径损耗);
(14)当UE无法获取目标小区的下行路径损耗(比如获取不到所述下行参考信号)时,UE可使用服务小区SSB中的参考信号资源作为路径损耗参考信号,也就是使用该SSB所包含的辅同步信号SSS作为路径损耗参考信号。
下面对本公开实施例提供的方案进行举例说明。
举例1,PRACH-Pos发送功率的确定,目标小区以邻小区为例:
本公开实施例提供的方案具体涉及一种PRACH-Pos的发送功率控制方法,主要涉及:终端根据来自于邻小区的下行参考信号,计算其自身与邻小区之间的下行路径损耗,然后根据该下行路径损耗,确定其用于定位的物理随机接入信道的发送功率。
在PRACH-Pos功率控制中,所述用于估算下行路径损耗的关联参考信号资源(即下行参考信号)可以是SSB、DL-PRS资源以及CSI-RS资源中的至少一种参考信号。为了便于UE计算邻小区的下行路损损耗,可对于每个邻小区,由高层向UE提供关联参考信号资源的时频资源占用信息以及每个资源元素的能量(EPRE)功率配置信息等作为协助信息。
以下具体介绍三种关联参考信号以及下行路径损耗的计算过程。
SSB是指同步信号块,其中包括有同步信号以及PBCH(物理广播信道)。SSB会有多个小区发送,UE接收多个小区发送的SSB,然后依据SSB完成下行同步。UE通过高层提供的SSB占用的时频资源信息,确定邻小区SSB的位置,从而可以接收邻小区SSB,通过解码SSB中的辅同步信号SSS以及PBCH DMRS(解调参考信号)来测量信号强度,然后结合高层向UE提供的 SSB功率配置信息进而可以计算下行路径损耗。
DL-PRS资源是指下行定位参考信号,同样也是会有多个小区发送,UE接收多个小区发送的DL-PRS,然后依据DL-PRS完成下行定位。UE通过高层提供的DL-PRS占用的时频资源信息,确定邻小区DL-PRS的位置,从而可以接收邻小区DL-PRS并测量信号强度,然后结合高层向UE提供的DL-PRS功率配置信息进而可以计算下行路径损耗。
CSI-RS资源是指信道状态信息参考信号,与以上SSB或DL-PRS类似,也是会有多个小区发送,UE接收多个小区发送的CSI-RS,然后依据CSI-RS完成下行RRM(无线资源管理)测量。UE通过高层提供的CSI-RS占用的时频资源信息,确定邻小区CSI-RS的位置,从而可以接收邻小区CSI-RS并测量信号强度,然后结合高层向UE提供的CSI-RS功率配置信息进而可以计算下行路径损耗。
该举例基于邻小区路径损耗进行PRACH-Pos的功率控制方法,可以让终端根据邻小区参考信号测量获得的下行路径损耗,确定其用于定位的物理随机接入信道的发送功率,使得终端可以根据实际情况确定合理的发射功率,从而降低了终端能耗,并提升了定位精度。
举例2(PRACH-Pos发送功率控制方案一:PRACH-Pos发送功率与带宽之间的关系通过预设参数来确定):
本公开实施例提供的方案具体涉及一种PRACH-Pos的发送功率控制方法,主要涉及:终端根据来自于目标小区的下行参考信号,计算其自身与目标小区之间的下行路径损耗,然后根据该下行路径损耗,确定其用于定位的物理随机接入信道的发送功率。
PRACH-Pos发送功率与带宽之间的关系通过预设参数来确定,其发射功率由第一最大输出功率、第一目标接收功率以及终端与目标小区之间的第一下行路径损耗所计算确定;
第一目标接收功率由高层参数PREAMBLE_RECEIVED_TARGET_POWER_POS配置,该高层参数的计算公式(即上述公式一)为:
PREAMBLE_RECEIVED_TARGET_POWER_POS=
preambleReceivedTargetPower_Pos+
DELTA_PREAMBLE_POS+
(PREAMBLE_POWER_RAMPING_COUNTER_POS–1)×
PREAMBLE_POWER_RAMPING_STEP_POS;
preambleReceivedTargetPower_Pos是用于设定PREAMBLE_RECEIVED_TARGET_POWER_POS的专用(高层)参数,DELTA_PREAMBLE_POS是与PRACH-Pos的子载波间隔或实际占用的带宽相关的一个参数。PREAMBLE_POWER_RAMPING_COUNTER_POS与PREAMBLE_POWER_RAMPING_STEP_POS是用来控制功率爬坡的参数,这两个参数分别表示功率爬坡时的功率增加计数值以及步进值。
第一下行路径损耗是UE使用其服务小区或非服务小区的索引号为q d的参考信号资源进行估计得到的。该参考信号资源与PRACH-Pos相关联,索引q d的配置由pathlossReferenceRS-Pos提供。
当UE被配置在服务小区c的载波f的激活上行带宽部分(BWP)b上发送PRACH-Pos时,UE在PRACH-Pos发送时机i,根据下式计算PRACH-Pos发射功率P PRACH-Pos,b,f,c(i):
P PRACH-Pos,b,f,c(i)=min{P CMAX,f,c(i),P PRACH-Pos,target,b,f,c+PL b,f,c}[dBm];
其中,P PRACH-Pos,b,f,c(i)表示在所述PRACH-Pos的发送时机i时的所述发送功率;
P CMAX,f,c(i)是指UE在PRACH-Pos发送时机i,在服务小区c的载波f上配置的第一最大输出功率;
P PRACH-Pos,target,b,f,c是指服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos的第一目标接收功率;
PL b,f,c是UE计算的其与目标小区之间的第一下行路径损耗估计值,单位是dB。该目标小区可能是本小区,也可能是邻小区。
如图4所示(目标小区以邻小区为例),UE的服务基站是gNB1,邻基站(即邻小区)是gNB2~gNB4。UE的下行路损参考信号被配置为DL-PRS(即上述下行信号为DL-PRS),这样UE根据来自于邻基站gNB2~gNB4的DL-PRS,计算其自身与邻基站gNB2~gNB4之间的下行路径损耗,然后根据该下 行路径损耗,确定其用于定位的物理随机接入信道的发送功率。
该举例基于邻小区路径损耗进行PRACH-Pos的功率控制方法,并且PRACH-Pos发送功率与带宽之间的关系通过预设参数来确定,从而可以让终端根据邻小区参考信号测量获得的下行路径损耗,结合高层预设参数,来确定其用于定位的物理随机接入信道的发送功率,使得终端可以根据实际情况确定合理的发射功率,从而降低了终端能耗,并提升了定位精度;并且功率控制过程比较简单,依据高层预设参数就可以完成功率控制过程。
举例3(PRACH-Pos发送功率控制方案二:PRACH-Pos功率根据实际分配的带宽计算获得,即PRACH-Pos使用非固定带宽):
本公开实施例提供的方案具体涉及一种PRACH-Pos)的发送功率控制方法,主要涉及:终端根据来自于目标小区的下行参考信号,计算其自身与目标小区之间的下行路径损耗,然后根据该下行路径损耗,确定其用于定位的物理随机接入信道的发送功率。
PRACH-Pos使用可配置的灵活带宽,其发射功率由第二最大输出功率、第二目标接收功率以及PRACH-Pos所占用的带宽、第二部分路损补偿因子以及终端与目标小区之间的第二下行路径损耗所计算确定;
第二目标接收功率由高层参数PREAMBLE_P0_POS配置。
第二路径损耗部分补偿因子由高层参数alpha配置。
第二下行路径损耗是UE使用其服务小区或非服务小区的索引号为q d的参考信号资源进行估计得到的。该参考信号资源与PRACH-Pos相关联,索引q d的配置由pathlossReferenceRS-Pos提供。
当UE被配置在服务小区c的载波f的激活上行带宽部分(BWP)b上发送PRACH-Pos时,UE在PRACH-Pos发送时机i,根据下式计算PRACH-Pos发射功率P PRACH-Pos,b,f,c(i,q s):
Figure PCTCN2021117155-appb-000006
其中,P PRACH-Pos,b,f,c(i,q s)表示在所述PRACH-Pos的发送时机i上PRACH-Pos资源集q s的发送功率(单位为dBm);
P CMAX,f,c(i)是指UE在PRACH-Pos发送时机i,在服务小区c的载波f上配置的第二最大输出功率;
P O,PRACH-Pos,b,f,c(q s)是指服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的功率控制参数P0。P0表示所述第二目标接收功率;
M PRACH-Pos,b,f,c(i)是指以资源块数量表示的,在SRS-Pos发送时机i,服务小区c的载波f的激活上行带宽部分b上的SRS-Pos的带宽;
μ是子载波间隔指示;μ在子载波间隔被配置为15,30,60和120kHz时,分别为0,1,2和3。
α PRACH-Pos,b,f,c(q s)是指服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的第二路径损耗部分补偿因子。
PRACH-Pos资源集q s由高层参数PRACH-PosResourceId指示。
PL b,f,c(q d)是UE计算的下行路径损耗的估计值,单位是dB。
如图5所示(目标小区以邻小区为例),UE的服务基站是gNB1,邻基站(即邻小区)是gNB2~gNB4。UE的下行路损参考信号被配置为SSB(即上述下行信号为SSB),这样UE根据来自于邻基站gNB2~gNB4的SSB,计算其自身与邻基站gNB2~gNB4之间的下行路径损耗,然后根据该下行路径损耗,确定其用于定位的物理随机接入信道的发送功率。
该举例基于邻小区路径损耗进行PRACH-Pos的功率控制方法,并且PRACH-Pos发送功率根据其所占用的带宽计算获得来确定,从而可以让终端根据邻小区参考信号测量获得的下行路径损耗,结合终端实际占用的带宽以及高层参数,来确定其用于定位的物理随机接入信道的发送功率,使得终端可以根据实际情况确定合理的发射功率,从而降低了终端能耗,并提升了定位精度;并且PRACH-Pos的发送功率可以根据其实际占用的带宽进行精确调整和控制。
举例4(回退使用服务小区SSB作为路径损耗参考信号):
本公开实施例提供的方案具体涉及一种PRACH-Pos)的发送功率控制方法,主要涉及:终端根据来自于目标小区的下行参考信号,计算其自身与目标小区之间的下行路径损耗,然后根据该下行路径损耗,确定其用于定位的物理随机接入信道的发送功率。
采用上述SRS-Pos功率控制方案的一个问题是,如果UE距离目标小区较远或干扰较强,UE可能无法根据所配置的SSB、DL-PRS或CSI-RS,成功测量目标小区的路径损耗。在这种情况下,本方案中UE可使用服务小区SSB中的参考信号资源作为路径损耗参考信号,也就是使用该SSB所包含的辅同步信号SSS作为路径损耗参考信号。
故,在这种情况下,当UE无法获取目标小区的下行路径损耗(比如获取不到所述下行参考信号)时,UE使用服务小区SSB中的参考信号资源作为路径损耗参考信号,也就是使用该SSB所包含的辅同步信号SSS作为路径损耗参考信号。
如图6所示,当UE需要给gNB2发送PRACH-Pos信号时,而UE所配置的下行路损参考信号(即上述下行参考信号)是CSI-RS,但由于UE距离gNB2比较远,导致了UE无法测量到来自于gNB2的CSI-RS,这时UE就只能使用其服务小区gNB1的SSB,作为下行路损参考信号,来计算发给gNB2的PRACH-Pos信号的发送功率。
该举例的方案,可以实现在UE无法获取到邻小区的下行路损参考信号时,使用服务小区的SSB进行下行路损估计,进而计算发送功率。这样可以保证在无法获得邻小区下行路损参考信号时,也能计算获得发给邻小区的PRACH-Pos的功率,避免使用最大功率发送而导致的对服务小区产生的干扰。
由上可知,本公开实施例提供的方案具体涉及一种用于定位的物理随机接入信道的功率控制方法,相对于相关技术,采用本方案可以让终端根据目标小区参考信号测量获得的下行路径损耗,确定其用于定位的物理随机接入信道的发送功率,使得终端可以根据实际情况确定合理的发射功率,从而降低了终端能耗,并提升了定位精度。
本公开实施例还提供了一种终端,如图7所示,所述终端包括存储器71,收发机72,处理器73:
存储器71,用于存储计算机程序;收发机72,用于在所述处理器73的控制下收发数据;处理器73,用于读取所述存储器71中的计算机程序并执行以下操作:
根据接收到的目标小区发送的下行参考信号,确定所述终端与所述目标 小区之间的下行路径损耗;
根据所述下行路径损耗,确定用于定位的物理随机接入信道PRACH-Pos的发送功率;
其中,所述目标小区为所述终端的服务小区或邻小区。
本公开实施例提供的所述终端通过根据接收到的目标小区发送的下行参考信号,确定所述终端与所述目标小区之间的下行路径损耗;根据所述下行路径损耗,确定用于定位的物理随机接入信道PRACH-Pos的发送功率;其中,所述目标小区为所述终端的服务小区或邻小区;能够实现基于目标小区(包括邻小区或服务小区)路径损耗进行PRACH-Pos的功率控制,可以让终端根据目标小区参考信号测量获得的下行路径损耗,确定其用于定位的物理随机接入信道的发送功率,使得终端可以根据实际情况确定合理的发射功率,从而降低终端能耗,并提升定位精度;很好的解决了相关技术中针对PRACH的发送功率确定方案存在无法确定合理的发送功率的问题。
具体的,收发机72,用于在处理器73的控制下接收和发送数据。
其中,在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器73代表的一个或多个处理器和存储器71代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机72可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,用户接口74还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器73负责管理总线架构和通常的处理,存储器71可以存储处理器73在执行操作时所使用的数据。
可选的,处理器73可以是CPU(中央处埋器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一所述方法。处理器与存储器也可以物理上分开布置。
其中,在所述PRACH-Pos所使用的带宽为固定带宽的情况下,所述根据所述下行路径损耗,确定用于定位的物理随机接入信道PRACH-Pos的发送功率,包括:根据第一最大输出功率、第一目标接收功率以及所述下行路径损耗,确定PRACH-Pos的发送功率。
本公开实施例中,所述第一目标接收功率是由预设的用于定位的前导码目标接收功率PREAMBLE_RECEIVED_TARGET_POWER_POS配置的。
具体的,所述PREAMBLE_RECEIVED_TARGET_POWER_POS是采用公式一确定的,所述公式一为:
PREAMBLE_RECEIVED_TARGET_POWER_POS=preambleReceivedTargetPower_Pos+DELTA_PREAMBLE_POS+(PREAMBLE_POWER_RAMPING_COUNTER_POS–1)×PREAMBLE_POWER_RAMPING_STEP_POS;
其中,preambleReceivedTargetPower_Pos表示用于定位的前导码目标接收功率初始值,DELTA_PREAMBLE_POS表示用于定位的增量前导码,PREAMBLE_POWER_RAMPING_COUNTER_POS表示用于定位的前导码功率爬坡计数器,PREAMBLE_POWER_RAMPING_STEP_POS表示用于定位的前导码功率爬坡步长。
本公开实施例中,preambleReceivedTargetPower_Pos是用于设定PREAMBLE_RECEIVED_TARGET_POWER_POS的专用参数,和/或,DELTA_PREAMBLE_POS是与所述PRACH-Pos的子载波间隔或实际占用的带宽相关的参数。
其中,所述PREAMBLE_RECEIVED_TARGET_POWER_POS与用于随机接入的前导码目标接收功率PREAMBLE_RECEIVED_TARGET_POWER为不同的参数,具有不同的数值。
本公开实施例中,在所述终端被配置在服务小区c的载波f的激活上行带宽部分b上发送所述PRACH-Pos的情况下,所述根据第一最大输出功率、 第一目标接收功率以及所述下行路径损耗,确定PRACH-Pos的发送功率,包括:利用公式二,根据第一最大输出功率、第一目标接收功率以及所述下行路径损耗,确定PRACH-Pos的发送功率;
其中,所述公式二为:
P PRACH-Pos,b,f,c(i)=min{P CMAX,f,c(i),P PRACH-Pos,target,b,f,c+PL b,f,c};
P PRACH-Pos,b,f,c(i)表示在所述PRACH-Pos的发送时机i时的所述发送功率;P CMAX,f,c(i)表示所述终端在所述PRACH-Pos的发送时机i,在服务小区c的载波f上配置的第一最大输出功率;P PRACH-Pos,target,b,f,c表示服务小区c的载波f的激活上行带宽部分b上的所述PRACH-Pos的第一目标接收功率;PL b,f,c表示所述下行路径损耗的估计值。
其中,所述下行路径损耗是使用所述终端的服务小区或非服务小区的索引号为q d的参考信号资源进行估计得到的;其中,所述参考信号资源与所述PRACH-Pos相关联。
具体的,所述q d的配置信息是根据用于定位的路径损耗参考信号pathlossReferenceRS-Pos得到的。
本公开实施例中,在所述PRACH-Pos所使用的带宽为非固定带宽的情况下,所述根据所述下行路径损耗,确定用于定位的物理随机接入信道PRACH-Pos的发送功率,包括:根据第二最大输出功率、第二目标接收功率、所述PRACH所占用的带宽、部分路损补偿因子以及所述下行路径损耗,确定PRACH-Pos的发送功率。
其中,所述第二目标接收功率是根据用于定位的前导码功率控制参数PREAMBLE_P0_POS得到的;和/或,所述部分路损补偿因子是根据高层参数阿尔法alpha得到的。
本公开实施例中,在所述终端被配置在服务小区c的载波f的激活上行带宽部分b上发送所述PRACH-Pos的情况下,所述根据第二最大输出功率、第二目标接收功率、所述PRACH-Pos所占用的带宽、部分路损补偿因子以及所述下行路径损耗,确定PRACH-Pos的发送功率,包括:利用公式三,根据第二最大输出功率、第二目标接收功率、所述PRACH-Pos所占用的带宽、部分路损补偿因子以及所述下行路径损耗,确定PRACH-Pos的发送功率;
其中,所述公式三为:
Figure PCTCN2021117155-appb-000007
P PRACH-Pos,b,f,c(i,q s)表示在所述PRACH-Pos的发送时机i上PRACH-Pos资源集q s的发送功率;P CMAX,f,c(i)表示所述终端在所述PRACH-Pos的发送时机i,在服务小区c的载波f上配置的第二最大输出功率;P O,PRACH-Pos,b,f,c(q s)表示服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的功率控制参数P0;P0表示所述第二目标接收功率;M PRACH-Pos,b,f,c(i)表示以资源块数量表示的、在用于定位的探测参考信号SRS-Pos发送时机i、服务小区c的载波f的激活上行带宽部分b上的SRS-Pos的带宽;μ表示子载波间隔指示;α PRACH-Pos,b,f,c(q s)表示服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的部分路损补偿因子;PRACH-Pos资源集q s是根据高层参数PRACH-Pos资源标识PRACH-PosResourceId得到的;PL b,f,c(q d)表示所述下行路径损耗的估计值。
本公开实施例中,在子载波间隔被配置为15、30、60或120kHz时,所述μ对应为0、1、2或3。
其中,所述下行参考信号包括同步信号块SSB、下行定位参考信号DL-PRS以及信道状态信息参考信号CSI-RS中的至少一种。
进一步的,所述操作还包括:通过所述收发机接收高层发送的协助信息;其中,所述协助信息包括:所述下行参考信号的时频资源占用信息以及每个资源元素的能量EPRE功率配置信息中的至少一项。
本公开实施例中,所述操作还包括:在获取不到所述下行参考信号的情况下,根据所述终端的服务小区的同步信号块中的辅同步信号SSS,得到下行路径损耗。
在此需要说明的是,本公开实施例提供的上述终端,能够实现上述终端侧方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
本公开实施例还提供了一种网络侧设备,如图8所示,包括存储器81, 收发机82,处理器83:
存储器81,用于存储计算机程序;收发机82,用于在所述处理器83的控制下收发数据;处理器83,用于读取所述存储器81中的计算机程序并执行以下操作:
通过所述收发机82向终端配置预设参数;
其中,所述预设参数包括以下参数中的至少一项:
用于定位的前导码目标接收功率PREAMBLE_RECEIVED_TARGET_POWER_POS;
用于定位的增量前导码DELTA_PREAMBLE_POS;
用于定位的前导码功率爬坡计数器PREAMBLE_POWER_RAMPING_COUNTER_PO;
用于定位的前导码功率爬坡步长PREAMBLE_POWER_RAMPING_STEP_POS;
用于定位的前导码目标接收功率初始值preambleReceivedTargetPower_Pos;
终端在用于定位的物理随机接入信道PRACH-Pos的发送时机i,在服务小区c的载波f上的第一最大输出功率P CMAX,f,c(i);
在终端的服务小区c的载波f的激活上行带宽部分b上的所述PRACH-Pos的第一目标接收功率P PRACH-Pos,target,b,f,c
用于定位的路径损耗参考信号pathlossReferenceRS-Pos;
用于定位的前导码功率控制参数PREAMBLE_P0_POS;
高层参数阿尔法alpha;
终端在所述PRACH-Pos的发送时机i,在服务小区c的载波f上的第二最大输出功率P CMAX,f,c(i);
在终端的服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的功率控制参数P0;P0表示第二目标接收功率;
以资源块数量表示的、在用于定位的探测参考信号SRS-Pos发送时机i、服务小区c的载波f的激活上行带宽部分b上的SRS-Pos的带宽M PRACH-Pos,b,f,c(i);
子载波间隔指示μ;
服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的部分路损补偿因子α PRACH-Pos,b,f,c(q s);
用于得到PRACH-Pos资源集q s的高层参数PRACH-Pos资源标识PRACH-PosResourceId。
本公开实施例提供的网络侧设备通过向终端配置预设参数;其中,所述预设参数包括以下参数中的至少一项:用于定位的前导码目标接收功率PREAMBLE_RECEIVED_TARGET_POWER_POS;用于定位的增量前导码DELTA_PREAMBLE_POS;用于定位的前导码功率爬坡计数器PREAMBLE_POWER_RAMPING_COUNTER_PO;用于定位的前导码功率爬坡步长PREAMBLE_POWER_RAMPING_STEP_POS;用于定位的前导码目标接收功率初始值preambleReceivedTargetPower_Pos;终端在用于定位的物理随机接入信道PRACH-Pos的发送时机i,在服务小区c的载波f上的第一最大输出功率P CMAX,f,c(i);在终端的服务小区c的载波f的激活上行带宽部分b上的所述PRACH-Pos的第一目标接收功率P PRACH-Pos,target,b,f,c;用于定位的路径损耗参考信号pathlossReferenceRS-Pos;用于定位的前导码功率控制参数PREAMBLE_P0_POS;高层参数阿尔法alpha;终端在所述PRACH-Pos的发送时机i,在服务小区c的载波f上的第二最大输出功率P CMAX,f,c(i);在终端的服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的功率控制参数P0;P0表示第二目标接收功率;以资源块数量表示的、在用于定位的探测参考信号SRS-Pos发送时机i、服务小区c的载波f的激活上行带宽部分b上的SRS-Pos的带宽M PRACH-Pos,b,f,c(i);子载波间隔指示μ;服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的部分路损补偿因子α PRACH-Pos,b,f,c(q s);用于得到PRACH-Pos资源集q s的高层参数PRACH-Pos资源标识PRACH-PosResourceId;能够支撑终端实现基于目标小区(包括邻小区或服务小区)路径损耗进行PRACH-Pos的功率控制,可以让终端根据目标小区参考信号测量获得的下行路径损耗,确定其用于定位的物理随机接入信道的发送功率,使得终端可以根据实际情况确定合理的发射功率,从而降低终端能耗,并提升定位精度;很好的解决了相关技术中针对PRACH的发送功率确定方案存在无法确定合理的发送功率的问题。
具体的,收发机82,用于在处理器83的控制下接收和发送数据。
其中,在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器83代表的一个或多个处理器和存储器81代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机82可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器83负责管理总线架构和通常的处理,存储器81可以存储处理器83在执行操作时所使用的数据。
处理器83可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
其中,所述PREAMBLE_RECEIVED_TARGET_POWER_POS与用于随机接入的前导码目标接收功率PREAMBLE_RECEIVED_TARGET_POWER为不同的参数,具有不同的数值。
本公开实施例中,preambleReceivedTargetPower_Pos是用于设定PREAMBLE_RECEIVED_TARGET_POWER_POS的专用参数,和/或,DELTA_PREAMBLE_POS是与所述PRACH-Pos的子载波间隔或实际占用的带宽相关的参数。
其中,在子载波间隔被配置为15、30、60或120kHz时,所述μ对应为0、1、2或3。
在此需要说明的是,本公开实施例提供的上述网络侧设备,能够实现上述网络侧设备侧方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
本公开实施例还提供了一种功率确定装置,应用于终端,如图9所示,包括:
第一确定单元91,用于根据接收到的目标小区发送的下行参考信号,确定所述终端与所述目标小区之间的下行路径损耗;
第二确定单元92,用于根据所述下行路径损耗,确定用于定位的物理随机接入信道PRACH-Pos的发送功率;
其中,所述目标小区为所述终端的服务小区或邻小区。
本公开实施例提供的所述功率确定装置通过根据接收到的目标小区发送的下行参考信号,确定所述终端与所述目标小区之间的下行路径损耗;根据所述下行路径损耗,确定用于定位的物理随机接入信道PRACH-Pos的发送功率;其中,所述目标小区为所述终端的服务小区或邻小区;能够实现基于目标小区(包括邻小区或服务小区)路径损耗进行PRACH-Pos的功率控制,可以让终端根据目标小区参考信号测量获得的下行路径损耗,确定其用于定位的物理随机接入信道的发送功率,使得终端可以根据实际情况确定合理的发射功率,从而降低终端能耗,并提升定位精度;很好的解决了相关技术中针对PRACH的发送功率确定方案存在无法确定合理的发送功率的问题。
其中,在所述PRACH-Pos所使用的带宽为固定带宽的情况下,所述根据所述下行路径损耗,确定用于定位的物理随机接入信道PRACH-Pos的发送功率,包括:根据第一最大输出功率、第一目标接收功率以及所述下行路径损耗,确定PRACH-Pos的发送功率。
本公开实施例中,所述第一目标接收功率是由预设的用于定位的前导码目标接收功率PREAMBLE_RECEIVED_TARGET_POWER_POS配置的。
具体的,所述PREAMBLE_RECEIVED_TARGET_POWER_POS是采用公式一确定的,所述公式一为:
PREAMBLE_RECEIVED_TARGET_POWER_POS=preambleReceivedTargetPower_Pos+DELTA_PREAMBLE_POS+(PREAMBLE_POWER_RAMPING_COUNTER_POS–1)×PREAMBLE_POWER_RAMPING_STEP_POS;
其中,preambleReceivedTargetPower_Pos表示用于定位的前导码目标接收功率初始值,DELTA_PREAMBLE_POS表示用于定位的增量前导码,PREAMBLE_POWER_RAMPING_COUNTER_POS表示用于定位的前导码功 率爬坡计数器,PREAMBLE_POWER_RAMPING_STEP_POS表示用于定位的前导码功率爬坡步长。
本公开实施例中,preambleReceivedTargetPower_Pos是用于设定PREAMBLE_RECEIVED_TARGET_POWER_POS的专用参数,和/或,DELTA_PREAMBLE_POS是与所述PRACH-Pos的子载波间隔或实际占用的带宽相关的参数。
其中,所述PREAMBLE_RECEIVED_TARGET_POWER_POS与用于随机接入的前导码目标接收功率PREAMBLE_RECEIVED_TARGET_POWER为不同的参数,具有不同的数值。
本公开实施例中,在所述终端被配置在服务小区c的载波f的激活上行带宽部分b上发送所述PRACH-Pos的情况下,所述根据第一最大输出功率、第一目标接收功率以及所述下行路径损耗,确定PRACH-Pos的发送功率,包括:利用公式二,根据第一最大输出功率、第一目标接收功率以及所述下行路径损耗,确定PRACH-Pos的发送功率;
其中,所述公式二为:
P PRACH-Pos,b,f,c(i)=min{P CMAX,f,c(i),P PRACH-Pos,target,b,f,c+PL b,f,c};P PRACH-Pos,b,f,c(i)表示在所述PRACH-Pos的发送时机i时的所述发送功率;P CMAX,f,c(i)表示所述终端在所述PRACH-Pos的发送时机i,在服务小区c的载波f上配置的第一最大输出功率;P PRACH-Pos,target,b,f,c表示服务小区c的载波f的激活上行带宽部分b上的所述PRACH-Pos的第一目标接收功率;PL b,f,c表示所述下行路径损耗的估计值。
其中,所述下行路径损耗是使用所述终端的服务小区或非服务小区的索引号为q d的参考信号资源进行估计得到的;其中,所述参考信号资源与所述PRACH-Pos相关联。
具体的,所述q d的配置信息是根据用于定位的路径损耗参考信号pathlossReferenceRS-Pos得到的。
本公开实施例中,在所述PRACH-Pos所使用的带宽为非固定带宽的情况下,所述根据所述下行路径损耗,确定用于定位的物理随机接入信道PRACH-Pos的发送功率,包括:根据第二最大输出功率、第二目标接收功率、所述PRACH-Pos所占用的带宽、部分路损补偿因子以及所述下行路径损耗,确定 PRACH-Pos的发送功率。
其中,所述第二目标接收功率是根据用于定位的前导码功率控制参数PREAMBLE_P0_POS得到的;和/或,所述部分路损补偿因子是根据高层参数阿尔法alpha得到的。
本公开实施例中,在所述终端被配置在服务小区c的载波f的激活上行带宽部分b上发送所述PRACH-Pos的情况下,所述根据第二最大输出功率、第二目标接收功率、所述PRACH-Pos所占用的带宽、部分路损补偿因子以及所述下行路径损耗,确定PRACH-Pos的发送功率,包括:利用公式三,根据第二最大输出功率、第二目标接收功率、所述PRACH-Pos所占用的带宽、部分路损补偿因子以及所述下行路径损耗,确定PRACH-Pos的发送功率;
其中,所述公式三为:
Figure PCTCN2021117155-appb-000008
P PRACH-Pos,b,f,c(i,q s)表示在所述PRACH-Pos的发送时机i上PRACH-Pos资源集q s的发送功率;P CMAX,f,c(i)表示所述终端在所述PRACH-Pos的发送时机i,在服务小区c的载波f上配置的第二最大输出功率;P O,PRACH-Pos,b,f,c(q s)表示服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的功率控制参数P0;P0表示所述第二目标接收功率;M PRACH-Pos,b,f,c(i)表示以资源块数量表示的、在用于定位的探测参考信号SRS-Pos发送时机i、服务小区c的载波f的激活上行带宽部分b上的SRS-Pos的带宽;μ表示子载波间隔指示;α PRACH-Pos,b,f,c(q s)表示服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的部分路损补偿因子;PRACH-Pos资源集q s是根据高层参数PRACH-Pos资源标识PRACH-PosResourceId得到的;PL b,f,c(q d)表示所述下行路径损耗的估计值。
本公开实施例中,在子载波间隔被配置为15、30、60或120kHz时,所述μ对应为0、1、2或3。
其中,所述下行参考信号包括同步信号块SSB、下行定位参考信号DL-PRS以及信道状态信息参考信号CSI-RS中的至少一种。
进一步的,所述的功率确定装置,还包括:第一接收单元,用于接收高层发送的协助信息;其中,所述协助信息包括:所述下行参考信号的时频资源占用信息以及每个资源元素的能量EPRE功率配置信息中的至少一项。
本公开实施例中,所述的功率确定装置,还包括:第一处理单元,用于在获取不到所述下行参考信号的情况下,根据所述终端的服务小区的同步信号块中的辅同步信号SSS,得到下行路径损耗。
在此需要说明的是,本公开实施例提供的上述装置,能够实现上述终端侧方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
本公开实施例还提供了一种功率确定装置,应用于网络侧设备,如图10所示,包括:
第一配置单元101,用于向终端配置预设参数;
其中,所述预设参数包括以下参数中的至少一项:
用于定位的前导码目标接收功率PREAMBLE_RECEIVED_TARGET_POWER_POS;
用于定位的增量前导码DELTA_PREAMBLE_POS;
用于定位的前导码功率爬坡计数器PREAMBLE_POWER_RAMPING_COUNTER_PO;
用于定位的前导码功率爬坡步长PREAMBLE_POWER_RAMPING_STEP_POS;
用于定位的前导码目标接收功率初始值preambleReceivedTargetPower_Pos;
终端在用于定位的物理随机接入信道PRACH-Pos的发送时机i,在服务小区c的载波f上的第一最大输出功率P CMAX,f,c(i);
在终端的服务小区c的载波f的激活上行带宽部分b上的所述PRACH-Pos的第一目标接收功率P PRACH-Pos,target,b,f,c
用于定位的路径损耗参考信号pathlossReferenceRS-Pos;
用于定位的前导码功率控制参数PREAMBLE_P0_POS;
高层参数阿尔法alpha;
终端在所述PRACH-Pos的发送时机i,在服务小区c的载波f上的第二最大输出功率P CMAX,f,c(i);
在终端的服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的功率控制参数P0;P0表示第二目标接收功率;
以资源块数量表示的、在用于定位的探测参考信号SRS-Pos发送时机i、服务小区c的载波f的激活上行带宽部分b上的SRS-Pos的带宽M PRACH-Pos,b,f,c(i);
子载波间隔指示μ;
服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的部分路损补偿因子α PRACH-Pos,b,f,c(q s);
用于得到PRACH-Pos资源集q s的高层参数PRACH-Pos资源标识PRACH-PosResourceId。
本公开实施例提供的所述功率确定装置通过向终端配置预设参数;其中,所述预设参数包括以下参数中的至少一项:用于定位的前导码目标接收功率PREAMBLE_RECEIVED_TARGET_POWER_POS;用于定位的增量前导码DELTA_PREAMBLE_POS;用于定位的前导码功率爬坡计数器PREAMBLE_POWER_RAMPING_COUNTER_PO;用于定位的前导码功率爬坡步长PREAMBLE_POWER_RAMPING_STEP_POS;用于定位的前导码目标接收功率初始值preambleReceivedTargetPower_Pos;终端在用于定位的物理随机接入信道PRACH-Pos的发送时机i,在服务小区c的载波f上的第一最大输出功率P CMAX,f,c(i);在终端的服务小区c的载波f的激活上行带宽部分b上的所述PRACH-Pos的第一目标接收功率P PRACH-Pos,target,b,f,c;用于定位的路径损耗参考信号pathlossReferenceRS-Pos;用于定位的前导码功率控制参数PREAMBLE_P0_POS;高层参数阿尔法alpha;终端在所述PRACH-Pos的发送时机i,在服务小区c的载波f上的第二最大输出功率P CMAX,f,c(i);在终端的服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的功率控制参数P0;P0表示第二目标接收功率;以资源块数量表示的、在用于定位的探测参考信号SRS-Pos发送时机i、服务小区c的载波f的激活上行带宽部分b上的SRS-Pos的带宽M PRACH-Pos,b,f,c(i);子载波间隔指示μ;服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的部分路损补偿因子 α PRACH-Pos,b,f,c(q s);用于得到PRACH-Pos资源集q s的高层参数PRACH-Pos资源标识PRACH-PosResourceId;能够支撑终端实现基于目标小区(包括邻小区或服务小区)路径损耗进行PRACH-Pos的功率控制,可以让终端根据目标小区参考信号测量获得的下行路径损耗,确定其用于定位的物理随机接入信道的发送功率,使得终端可以根据实际情况确定合理的发射功率,从而降低终端能耗,并提升定位精度;很好的解决了相关技术中针对PRACH的发送功率确定方案存在无法确定合理的发送功率的问题。
其中,所述PREAMBLE_RECEIVED_TARGET_POWER_POS与用于随机接入的前导码目标接收功率PREAMBLE_RECEIVED_TARGET_POWER为不同的参数,具有不同的数值。
本公开实施例中,preambleReceivedTargetPower_Pos是用于设定PREAMBLE_RECEIVED_TARGET_POWER_POS的专用参数,和/或,DELTA_PREAMBLE_POS是与所述PRACH-Pos的子载波间隔或实际占用的带宽相关的参数。
其中,在子载波间隔被配置为15、30、60或120kHz时,所述μ对应为0、1、2或3。
在此需要说明的是,本公开实施例提供的上述装置,能够实现上述网络侧设备侧方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
此外,需要说明的是,本公开实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器,或者网络设备等)或处理器(processor)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本公开实施例还提供了一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行上述终端侧的功率确定方法;或者,所述计算机程序用于使所述处理器执行上述网络侧设备侧的功率确定方法。
其中,所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
在此需要说明的是,本公开实施例提供的上述处理器可读存储介质,能够实现上述终端侧或网络侧设备侧的方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的 功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
需要说明的是,应理解以上各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,各个模块、单元、子单元或子模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
本公开的说明书和权利要求书中的术语“第一”、“第二”等是用于区别 类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例,例如除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B和/或C,表示包含单独A,单独B,单独C,以及A和B都存在,B和C都存在,A和C都存在,以及A、B和C都存在的7种情况。类似地,本说明书以及权利要求中使用“A和B中的至少一个”应理解为“单独A,单独B,或A和B都存在”。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (31)

  1. 一种功率确定方法,应用于终端,包括:
    根据接收到的目标小区发送的下行参考信号,确定所述终端与所述目标小区之间的下行路径损耗;
    根据所述下行路径损耗,确定用于定位的物理随机接入信道PRACH-Pos的发送功率;
    其中,所述目标小区为所述终端的服务小区或邻小区。
  2. 根据权利要求1所述的功率确定方法,其中,在所述PRACH-Pos所使用的带宽为固定带宽的情况下,所述根据所述下行路径损耗,确定用于定位的物理随机接入信道PRACH-Pos的发送功率,包括:
    根据第一最大输出功率、第一目标接收功率以及所述下行路径损耗,确定PRACH-Pos的发送功率;
    其中,所述第一目标接收功率是由预设的用于定位的前导码目标接收功率PREAMBLE_RECEIVED_TARGET_POWER_POS配置的。
  3. 根据权利要求2所述的功率确定方法,其中,所述PREAMBLE_RECEIVED_TARGET_POWER_POS是采用公式一确定的,所述公式一为:
    PREAMBLE_RECEIVED_TARGET_POWER_POS=preambleReceivedTargetPower_Pos+DELTA_PREAMBLE_POS+(PREAMBLE_POWER_RAMPING_COUNTER_POS–1)×PREAMBLE_POWER_RAMPING_STEP_POS;
    其中,preambleReceivedTargetPower_Pos表示用于定位的前导码目标接收功率初始值,DELTA_PREAMBLE_POS表示用于定位的增量前导码,PREAMBLE_POWER_RAMPING_COUNTER_POS表示用于定位的前导码功率爬坡计数器,PREAMBLE_POWER_RAMPING_STEP_POS表示用于定位的前导码功率爬坡步长。
  4. 根据权利要求3所述的功率确定方法,其中,preambleReceivedTargetPower_Pos是用于设定 PREAMBLE_RECEIVED_TARGET_POWER_POS的专用参数,和/或,
    DELTA_PREAMBLE_POS是与所述PRACH-Pos的子载波间隔或实际占用的带宽相关的参数。
  5. 根据权利要求2所述的功率确定方法,其中,所述PREAMBLE_RECEIVED_TARGET_POWER_POS与用于随机接入的前导码目标接收功率PREAMBLE_RECEIVED_TARGET_POWER为不同的参数,具有不同的数值。
  6. 根据权利要求2-5任一项所述的功率确定方法,其中,在所述终端被配置在服务小区c的载波f的激活上行带宽部分b上发送所述PRACH-Pos的情况下,所述根据第一最大输出功率、第一目标接收功率以及所述下行路径损耗,确定PRACH-Pos的发送功率,包括:
    利用公式二,根据第一最大输出功率、第一目标接收功率以及所述下行路径损耗,确定PRACH-Pos的发送功率;
    其中,所述公式二为:
    P PRACH-Pos,b,f,c(i)=min{P CMAX,f,c(i),P PRACH-Pos,target,b,f,c+PL b,f,c};
    P PRACH-Pos,b,f,c(i)表示在所述PRACH-Pos的发送时机i时的所述发送功率;
    P CMAX,f,c(i)表示所述终端在所述PRACH-Pos的发送时机i,在服务小区c的载波f上配置的第一最大输出功率;
    P PRACH-Pos,target,b,f,c表示服务小区c的载波f的激活上行带宽部分b上的所述PRACH-Pos的第一目标接收功率;
    PL b,f,c表示所述下行路径损耗的估计值。
  7. 根据权利要求1所述的功率确定方法,其中,所述下行路径损耗是使用所述终端的服务小区或非服务小区的索引号为q d的参考信号资源进行估计得到的;
    其中,所述参考信号资源与所述PRACH-Pos相关联。
  8. 根据权利要求7所述的功率确定方法,其中,所述q d的配置信息是根据用于定位的路径损耗参考信号pathlossReferenceRS-Pos得到的。
  9. 根据权利要求1所述的功率确定方法,其中,在所述PRACH-Pos所使用的带宽为非固定带宽的情况下,所述根据所述下行路径损耗,确定用于 定位的物理随机接入信道PRACH-Pos的发送功率,包括:
    根据第二最大输出功率、第二目标接收功率、所述PRACH-Pos所占用的带宽、部分路损补偿因子以及所述下行路径损耗,确定PRACH-Pos的发送功率;
    其中,所述第二目标接收功率是根据用于定位的前导码功率控制参数PREAMBLE_P0_POS得到的;和/或,
    所述部分路损补偿因子是根据高层参数阿尔法alpha得到的。
  10. 根据权利要求9所述的功率确定方法,其中,在所述终端被配置在服务小区c的载波f的激活上行带宽部分b上发送所述PRACH-Pos的情况下,所述根据第二最大输出功率、第二目标接收功率、所述PRACH-Pos所占用的带宽、部分路损补偿因子以及所述下行路径损耗,确定PRACH-Pos的发送功率,包括:
    利用公式三,根据第二最大输出功率、第二目标接收功率、所述PRACH-Pos所占用的带宽、部分路损补偿因子以及所述下行路径损耗,确定PRACH-Pos的发送功率;
    其中,所述公式三为:
    Figure PCTCN2021117155-appb-100001
    P PRACH-Pos,b,f,c(i,q s)表示在所述PRACH-Pos的发送时机i上PRACH-Pos资源集q s的发送功率;
    P’ CMAX,f,c(i)表示所述终端在所述PRACH-Pos的发送时机i,在服务小区c的载波f上配置的第二最大输出功率;
    P O,PRACH-Pos,b,f,c(q s)表示服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的功率控制参数P0;P0表示所述第二目标接收功率;
    M PRACH-Pos,b,f,c(i)表示以资源块数量表示的、在用于定位的探测参考信号SRS-Pos发送时机i、服务小区c的载波f的激活上行带宽部分b上的SRS-Pos的带宽;
    μ表示子载波间隔指示;
    α PRACH-Pos,b,f,c(q s)表示服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的部分路损补偿因子;
    PRACH-Pos资源集q s是根据高层参数PRACH-Pos资源标识PRACH-PosResourceId得到的;
    PL b,f,c(q d)表示所述下行路径损耗的估计值。
  11. 根据权利要求10所述的功率确定方法,其中,在子载波间隔被配置为15、30、60或120kHz时,所述μ对应为0、1、2或3。
  12. 根据权利要求1所述的功率确定方法,其中,所述下行参考信号包括同步信号块SSB、下行定位参考信号DL-PRS以及信道状态信息参考信号CSI-RS中的至少一种。
  13. 根据权利要求1所述的功率确定方法,还包括:
    接收高层发送的协助信息;
    其中,所述协助信息包括:所述下行参考信号的时频资源占用信息以及每个资源元素的能量EPRE功率配置信息中的至少一项。
  14. 根据权利要求1所述的功率确定方法,还包括:
    在获取不到所述下行参考信号的情况下,根据所述终端的服务小区的同步信号块中的辅同步信号SSS,得到下行路径损耗。
  15. 一种功率确定方法,应用于网络侧设备,包括:
    向终端配置预设参数;
    其中,所述预设参数包括以下参数中的至少一项:
    用于定位的前导码目标接收功率PREAMBLE_RECEIVED_TARGET_POWER_POS;
    用于定位的增量前导码DELTA_PREAMBLE_POS;
    用于定位的前导码功率爬坡计数器PREAMBLE_POWER_RAMPING_COUNTER_PO;
    用于定位的前导码功率爬坡步长PREAMBLE_POWER_RAMPING_STEP_POS;
    用于定位的前导码目标接收功率初始值preambleReceivedTargetPower_Pos;
    终端在用于定位的物理随机接入信道PRACH-Pos的发送时机i,在服务小区c的载波f上的第一最大输出功率P CMAX,f,c(i);
    在终端的服务小区c的载波f的激活上行带宽部分b上的所述PRACH-Pos的第一目标接收功率P PRACH-Pos,target,b,f,c
    用于定位的路径损耗参考信号pathlossReferenceRS-Pos;
    用于定位的前导码功率控制参数PREAMBLE_P0_POS;
    高层参数阿尔法alpha;
    终端在所述PRACH-Pos的发送时机i,在服务小区c的载波f上的第二最大输出功率P’ CMAX,f,c(i);
    在终端的服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的功率控制参数P0;P0表示第二目标接收功率;
    以资源块数量表示的、在用于定位的探测参考信号SRS-Pos发送时机i、服务小区c的载波f的激活上行带宽部分b上的SRS-Pos的带宽M PRACH-Pos,b,f,c(i);
    子载波间隔指示μ;
    服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的部分路损补偿因子α PRACH-Pos,b,f,c(q s);
    用于得到PRACH-Pos资源集q s的高层参数PRACH-Pos资源标识PRACH-PosResourceId。
  16. 根据权利要求15所述的功率确定方法,其中,所述PREAMBLE_RECEIVED_TARGET_POWER_POS与用于随机接入的前导码目标接收功率PREAMBLE_RECEIVED_TARGET_POWER为不同的参数,具有不同的数值。
  17. 根据权利要求15所述的功率确定方法,其中,preambleReceivedTargetPower_Pos是用于设定PREAMBLE_RECEIVED_TARGET_POWER_POS的专用参数,和/或,
    DELTA_PREAMBLE_POS是与所述PRACH-Pos的子载波间隔或实际占用的带宽相关的参数。
  18. 根据权利要求15所述的功率确定方法,其中,在子载波间隔被配置为15、30、60或120kHz时,所述μ对应为0、1、2或3。
  19. 一种终端,包括存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    根据接收到的目标小区发送的下行参考信号,确定所述终端与所述目标小区之间的下行路径损耗;
    根据所述下行路径损耗,确定用于定位的物理随机接入信道PRACH-Pos的发送功率;
    其中,所述目标小区为所述终端的服务小区或邻小区。
  20. 根据权利要求19所述的终端,其中,在所述PRACH-Pos所使用的带宽为固定带宽的情况下,所述根据所述下行路径损耗,确定用于定位的物理随机接入信道PRACH-Pos的发送功率,包括:
    根据第一最大输出功率、第一目标接收功率以及所述下行路径损耗,确定PRACH-Pos的发送功率;
    其中,所述第一目标接收功率是由预设的用于定位的前导码目标接收功率PREAMBLE_RECEIVED_TARGET_POWER_POS配置的。
  21. 根据权利要求20所述的终端,其中,所述PREAMBLE_RECEIVED_TARGET_POWER_POS是采用公式一确定的,所述公式一为:
    PREAMBLE_RECEIVED_TARGET_POWER_POS=preambleReceivedTargetPower_Pos+DELTA_PREAMBLE_POS+(PREAMBLE_POWER_RAMPING_COUNTER_POS–1)×PREAMBLE_POWER_RAMPING_STEP_POS;
    其中,preambleReceivedTargetPower_Pos表示用于定位的前导码目标接收功率初始值,DELTA_PREAMBLE_POS表示用于定位的增量前导码,PREAMBLE_POWER_RAMPING_COUNTER_POS表示用于定位的前导码功率爬坡计数器,PREAMBLE_POWER_RAMPING_STEP_POS表示用于定位的前导码功率爬坡步长。
  22. 根据权利要求20-21任一项所述的终端,其中,在所述终端被配置在服务小区c的载波f的激活上行带宽部分b上发送所述PRACH-Pos的情况 下,所述根据第一最大输出功率、第一目标接收功率以及所述下行路径损耗,确定PRACH-Pos的发送功率,包括:
    利用公式二,根据第一最大输出功率、第一目标接收功率以及所述下行路径损耗,确定PRACH-Pos的发送功率;
    其中,所述公式二为:
    P PRACH-Pos,b,f,c(i)=min{P CMAX,f,c(i),P PRACH-Pos,target,b,f,c+PL b,f,c};
    P PRACH-Pos,b,f,c(i)表示在所述PRACH-Pos的发送时机i时的所述发送功率;
    P CMAX,f,c(i)表示所述终端在所述PRACH-Pos的发送时机i,在服务小区c的载波f上配置的第一最大输出功率;
    P PRACH-Pos,target,b,f,c表示服务小区c的载波f的激活上行带宽部分b上的所述PRACH-Pos的第一目标接收功率;
    PL b,f,c表示所述下行路径损耗的估计值。
  23. 根据权利要求19所述的终端,其中,所述下行路径损耗是使用所述终端的服务小区或非服务小区的索引号为q d的参考信号资源进行估计得到的;
    其中,所述参考信号资源与所述PRACH-Pos相关联。
  24. 根据权利要求19所述的终端,其中,在所述PRACH-Pos所使用的带宽为非固定带宽的情况下,所述根据所述下行路径损耗,确定用于定位的物理随机接入信道PRACH-Pos的发送功率,包括:
    根据第二最大输出功率、第二目标接收功率、所述PRACH-Pos所占用的带宽、部分路损补偿因子以及所述下行路径损耗,确定PRACH-Pos的发送功率;
    其中,所述第二目标接收功率是根据用于定位的前导码功率控制参数PREAMBLE_P0_POS得到的;和/或,
    所述部分路损补偿因子是根据高层参数阿尔法alpha得到的。
  25. 根据权利要求24所述的终端,其中,在所述终端被配置在服务小区c的载波f的激活上行带宽部分b上发送所述PRACH-Pos的情况下,所述根据第二最大输出功率、第二目标接收功率、所述PRACH-Pos所占用的带宽、部分路损补偿因子以及所述下行路径损耗,确定PRACH-Pos的发送功率,包括:
    利用公式三,根据第二最大输出功率、第二目标接收功率、所述PRACH-Pos所占用的带宽、部分路损补偿因子以及所述下行路径损耗,确定PRACH-Pos的发送功率;
    其中,所述公式三为:
    Figure PCTCN2021117155-appb-100002
    P PRACH-Pos,b,f,c(i,q s)表示在所述PRACH-Pos的发送时机i上PRACH-Pos资源集q s的发送功率;
    P’ CMAX,f,c(i)表示所述终端在所述PRACH-Pos的发送时机i,在服务小区c的载波f上配置的第二最大输出功率;
    P O,PRACH-Pos,b,f,c(q s)表示服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的功率控制参数P0;P0表示所述第二目标接收功率;
    M PRACH-Pos,b,f,c(i)表示以资源块数量表示的、在用于定位的探测参考信号SRS-Pos发送时机i、服务小区c的载波f的激活上行带宽部分b上的SRS-Pos的带宽;
    μ表示子载波间隔指示;
    α PRACH-Pos,b,f,c(q s)表示服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的部分路损补偿因子;
    PRACH-Pos资源集q s是根据高层参数PRACH-Pos资源标识PRACH-PosResourceId得到的;
    PL b,f,c(q d)表示所述下行路径损耗的估计值。
  26. 根据权利要求19所述的终端,其中,所述处理器,用于读取所述存储器中的计算机程序还执行:
    通过所述收发机接收高层发送的协助信息;
    其中,所述协助信息包括:所述下行参考信号的时频资源占用信息以及每个资源元素的能量EPRE功率配置信息中的至少一项。
  27. 根据权利要求19所述的终端,其中,所处理器,用于读取所述存储器中的计算机程序还执行:
    在获取不到所述下行参考信号的情况下,根据所述终端的服务小区的同步信号块中的辅同步信号SSS,得到下行路径损耗。
  28. 一种网络侧设备,包括存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    通过所述收发机向终端配置预设参数;
    其中,所述预设参数包括以下参数中的至少一项:
    用于定位的前导码目标接收功率PREAMBLE_RECEIVED_TARGET_POWER_POS;
    用于定位的增量前导码DELTA_PREAMBLE_POS;
    用于定位的前导码功率爬坡计数器PREAMBLE_POWER_RAMPING_COUNTER_PO;
    用于定位的前导码功率爬坡步长PREAMBLE_POWER_RAMPING_STEP_POS;
    用于定位的前导码目标接收功率初始值preambleReceivedTargetPower_Pos;
    终端在用于定位的物理随机接入信道PRACH-Pos的发送时机i,在服务小区c的载波f上的第一最大输出功率P CMAX,f,c(i);
    在终端的服务小区c的载波f的激活上行带宽部分b上的所述PRACH-Pos的第一目标接收功率P PRACH-Pos,target,b,f,c
    用于定位的路径损耗参考信号pathlossReferenceRS-Pos;
    用于定位的前导码功率控制参数PREAMBLE_P0_POS;
    高层参数阿尔法alpha;
    终端在所述PRACH-Pos的发送时机i,在服务小区c的载波f上的第二最大输出功率P’ CMAX,f,c(i);
    在终端的服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的功率控制参数P0;P0表示第二目标接收功率;
    以资源块数量表示的、在用于定位的探测参考信号SRS-Pos发送时机i、服务小区c的载波f的激活上行带宽部分b上的SRS-Pos的带宽M PRACH-Pos,b,f,c(i);
    子载波间隔指示μ;
    服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的部分路损补偿因子α PRACH-Pos,b,f,c(q s);
    用于得到PRACH-Pos资源集q s的高层参数PRACH-Pos资源标识PRACH-PosResourceId。
  29. 一种功率确定装置,应用于终端,包括:
    第一确定单元,用于根据接收到的目标小区发送的下行参考信号,确定所述终端与所述目标小区之间的下行路径损耗;
    第二确定单元,用于根据所述下行路径损耗,确定用于定位的物理随机接入信道PRACH-Pos的发送功率;
    其中,所述目标小区为所述终端的服务小区或邻小区。
  30. 一种功率确定装置,应用于网络侧设备,包括:
    第一配置单元,用于向终端配置预设参数;
    其中,所述预设参数包括以下参数中的至少一项:
    用于定位的前导码目标接收功率PREAMBLE_RECEIVED_TARGET_POWER_POS;
    用于定位的增量前导码DELTA_PREAMBLE_POS;
    用于定位的前导码功率爬坡计数器PREAMBLE_POWER_RAMPING_COUNTER_PO;
    用于定位的前导码功率爬坡步长PREAMBLE_POWER_RAMPING_STEP_POS;
    用于定位的前导码目标接收功率初始值preambleReceivedTargetPower_Pos;
    终端在用于定位的物理随机接入信道PRACH-Pos的发送时机i,在服务小区c的载波f上的第一最大输出功率P CMAX,f,c(i);
    在终端的服务小区c的载波f的激活上行带宽部分b上的所述PRACH-Pos的第一目标接收功率P PRACH-Pos,target,b,f,c
    用于定位的路径损耗参考信号pathlossReferenceRS-Pos;
    用于定位的前导码功率控制参数PREAMBLE_P0_POS;
    高层参数阿尔法alpha;
    终端在所述PRACH-Pos的发送时机i,在服务小区c的载波f上的第二最大输出功率P’ CMAX,f,c(i);
    在终端的服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的功率控制参数P0;P0表示第二目标接收功率;
    以资源块数量表示的、在用于定位的探测参考信号SRS-Pos发送时机i、服务小区c的载波f的激活上行带宽部分b上的SRS-Pos的带宽M PRACH-Pos,b,f,c(i);
    子载波间隔指示μ;
    服务小区c的载波f的激活上行带宽部分b上的PRACH-Pos资源集q s的部分路损补偿因子α PRACH-Pos,b,f,c(q s);
    用于得到PRACH-Pos资源集q s的高层参数PRACH-Pos资源标识PRACH-PosResourceId。
  31. 一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行如权利要求1至14任一项所述的功率确定方法;或者,
    所述计算机程序用于使所述处理器执行如权利要求15至18任一项所述的功率确定方法。
PCT/CN2021/117155 2020-10-16 2021-09-08 功率确定方法、装置、终端及网络侧设备 WO2022078115A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011111863.8 2020-10-16
CN202011111863.8A CN114390656A (zh) 2020-10-16 2020-10-16 一种功率确定方法、装置、终端及网络侧设备

Publications (1)

Publication Number Publication Date
WO2022078115A1 true WO2022078115A1 (zh) 2022-04-21

Family

ID=81193466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117155 WO2022078115A1 (zh) 2020-10-16 2021-09-08 功率确定方法、装置、终端及网络侧设备

Country Status (2)

Country Link
CN (1) CN114390656A (zh)
WO (1) WO2022078115A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024016111A1 (en) * 2022-07-18 2024-01-25 Mediatek Singapore Pte. Ltd. Mechanism for srs-pos transmission power control

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024031629A1 (en) * 2022-08-12 2024-02-15 Qualcomm Incorporated Uplink power control for l1/l2 based cell change

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019032887A1 (en) * 2017-08-10 2019-02-14 Qualcomm Incorporated POSITIONING REFERENCE SIGNALING BASED ON UPLINK IN MULTI-BEAM SYSTEMS

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019032887A1 (en) * 2017-08-10 2019-02-14 Qualcomm Incorporated POSITIONING REFERENCE SIGNALING BASED ON UPLINK IN MULTI-BEAM SYSTEMS

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Medium Access Control (MAC) protocol specification (Release 16)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 38.321, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. V16.2.1, 5 October 2020 (2020-10-05), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 154, XP051961393 *
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Physical layer procedures for control (Release 16)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 38.213, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. V16.3.0, 2 October 2020 (2020-10-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 179, XP051961308 *
OPPO: "Remaining Issues on Physical Layer Procedures for NR Positioning", 3GPP DRAFT; R1-2000465, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200224 - 20200306, 14 February 2020 (2020-02-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051852875 *
SAMSUNG: "UL reference signals for NR Positioning", 3GPP DRAFT; R1-2002145, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200420 - 20200430, 10 April 2020 (2020-04-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051873453 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024016111A1 (en) * 2022-07-18 2024-01-25 Mediatek Singapore Pte. Ltd. Mechanism for srs-pos transmission power control

Also Published As

Publication number Publication date
CN114390656A (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
EP4195852A1 (en) Communication method, user equipment, network device and computer-readable storage medium
WO2022078115A1 (zh) 功率确定方法、装置、终端及网络侧设备
WO2022028153A1 (zh) 用于定位的测量方法、装置和存储介质
EP4195745A1 (en) Downlink positioning reference signal receiving and transmitting method, and terminal, base station, device and apparatus
WO2022042294A1 (zh) 波束指示方法、网络设备、终端、装置及存储介质
EP3554151A1 (en) Power control method and device
US20230328670A1 (en) Information processing method and apparatus, terminal device, and network side device
WO2022083752A1 (zh) 一种阵面选择方法、终端、网络设备及存储介质
WO2022078217A1 (zh) 先听后传方法、终端、网络设备、装置及存储介质
WO2020134897A1 (zh) 随机接入方法、装置、系统及存储介质
CN114501639A (zh) 一种阵面选择方法、终端、网络设备及存储介质
WO2024032648A1 (zh) Sl-prs的功率控制方法、终端、网络侧设备、装置及存储介质
WO2024027642A1 (zh) 一种信息传输方法、装置及设备
WO2024032396A1 (zh) 通信方法与装置
WO2023078429A1 (zh) Srs传输功率确定方法、设备、装置及存储介质
WO2022206124A1 (zh) 随机接入方法、设备、装置及存储介质
WO2024017292A1 (zh) 一种信息处理方法、装置及可读存储介质
WO2023078434A1 (zh) Srs传输功率确定方法、装置及存储介质
WO2022227796A1 (zh) 终端设备的定位方法、装置及存储介质
WO2023207459A1 (zh) 一种信息处理方法、装置及可读存储介质
CN114554539B (zh) 业务处理方法、装置、网络设备及存储介质
WO2023202575A1 (zh) 一种信息处理方法、装置及可读存储介质
WO2023207744A1 (zh) 资源调度方法、设备、装置及存储介质
WO2024032719A1 (zh) Csi报告方法、终端、网络设备、装置及存储介质
WO2023208046A1 (zh) 资源选择方法、设备、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21879161

Country of ref document: EP

Kind code of ref document: A1