WO2022083752A1 - 一种阵面选择方法、终端、网络设备及存储介质 - Google Patents

一种阵面选择方法、终端、网络设备及存储介质 Download PDF

Info

Publication number
WO2022083752A1
WO2022083752A1 PCT/CN2021/125791 CN2021125791W WO2022083752A1 WO 2022083752 A1 WO2022083752 A1 WO 2022083752A1 CN 2021125791 W CN2021125791 W CN 2021125791W WO 2022083752 A1 WO2022083752 A1 WO 2022083752A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
auxiliary information
network device
information
reference signal
Prior art date
Application number
PCT/CN2021/125791
Other languages
English (en)
French (fr)
Inventor
骆亚娟
李辉
高秋彬
陈润华
黄秋萍
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011565451.1A external-priority patent/CN114501639A/zh
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to KR1020237016242A priority Critical patent/KR20230087568A/ko
Priority to JP2023524806A priority patent/JP2023547163A/ja
Priority to EP21882164.3A priority patent/EP4236427A4/en
Priority to US18/250,221 priority patent/US20240007973A1/en
Publication of WO2022083752A1 publication Critical patent/WO2022083752A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06956Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using a selection of antenna panels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • H04B17/328Reference signal received power [RSRP]; Reference signal received quality [RSRQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/245TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a method, terminal, network device and storage medium for selecting a front surface.
  • the current processing mechanism is to perform power back-off, that is, reduce the uplink transmission power. .
  • the uplink coverage will be deteriorated. How to avoid or reduce the uplink coverage deterioration of the multi-front terminal after the power backoff is a problem that needs to be considered at present.
  • Embodiments of the present application provide a method, terminal, network device, and storage medium for selecting a front plane, so as to solve the problem of uplink coverage loss caused by the inability of network equipment to accurately select a front plane when an MPE problem occurs in a multi-front terminal.
  • an embodiment of the present application provides a method for selecting a front surface, including:
  • auxiliary information includes at least one of the following: identification information of the optimal reference signal required for uplink transmission, array-based information corresponding to one or more fronts of the terminal when the maximum power radiation MPE event occurs.
  • the indication information sent by the network device based on the auxiliary information, where the indication information is used to indicate a front used by the terminal for subsequent uplink transmission, or to instruct the terminal to perform a new uplink beam scan.
  • an embodiment of the present application provides a method for selecting a front surface, including:
  • the auxiliary information includes at least one of the following: identification information of the optimal reference signal required for uplink transmission, array-based information corresponding to one or more fronts of the terminal when the maximum power radiation MPE event occurs.
  • an embodiment of the present application provides a terminal, including a memory, a transceiver, and a processor:
  • a memory for storing a computer program
  • a transceiver for sending and receiving data under the control of the processor
  • a processor for reading the computer program in the memory and performing the following operations:
  • auxiliary information includes at least one of the following: identification information of the optimal reference signal required for uplink transmission, array-based information corresponding to one or more fronts of the terminal when the maximum power radiation MPE event occurs.
  • the maximum power backoff P-MPR value of the plane is not limited to the following: identification information of the optimal reference signal required for uplink transmission, array-based information corresponding to one or more fronts of the terminal when the maximum power radiation MPE event occurs.
  • the indication information sent by the network device based on the auxiliary information, where the indication information is used to indicate a front used by the terminal for subsequent uplink transmission, or to instruct the terminal to perform a new uplink beam scan.
  • an embodiment of the present application provides a network device, including a memory, a transceiver, and a processor:
  • a memory for storing a computer program
  • a transceiver for sending and receiving data under the control of the processor
  • a processor for reading the computer program in the memory and performing the following operations:
  • the auxiliary information includes at least one of the following: identification information of the optimal reference signal required for uplink transmission, array-based information corresponding to one or more fronts of the terminal when the maximum power radiation MPE event occurs.
  • an embodiment of the present application provides a device for selecting an array, including:
  • a sending module configured to send auxiliary information to the network device, where the auxiliary information includes at least one of the following: identification information of the optimal reference signal required for uplink transmission, one or more fronts of the terminal when the maximum power radiation MPE event occurs The corresponding front-based maximum power backoff P-MPR value.
  • a receiving module configured to receive the indication information sent by the network device based on the auxiliary information, wherein the indication information is used to indicate the frontier used by the terminal for subsequent uplink transmission, or to instruct the terminal to perform a new uplink Beam scanning.
  • an embodiment of the present application provides a device for selecting an array, including:
  • a receiving module configured to receive auxiliary information sent by the terminal, where the auxiliary information includes at least one of the following: identification information of the optimal reference signal required for uplink transmission, one or more fronts of the terminal when the maximum power radiation MPE event occurs The corresponding front-based maximum power backoff P-MPR value;
  • a determining module configured to determine, according to the auxiliary information, a front used by the terminal to perform new uplink beam scanning or subsequent uplink transmission;
  • a sending module configured to send indication information to the terminal, wherein the indication information is used to indicate the front used by the terminal for subsequent uplink transmission, or to instruct the terminal to perform a new uplink beam scan.
  • an embodiment of the present application provides a processor-readable storage medium, where the processor-readable storage medium stores a computer program, and the computer program is used to cause a processor to execute the first aspect or the second aspect.
  • the method, terminal, network device, and storage medium provided by the embodiments of the present application transmit auxiliary information to the network device, and the auxiliary information includes the identification information of the optimal reference signal required for uplink transmission or the terminal's information when an MPE event occurs.
  • the P-MPR value corresponding to one or more fronts can accurately reflect the performance difference of different transmission fronts of the terminal based on the auxiliary information, so that the network device can accurately indicate the array used by the terminal for subsequent uplink transmission based on the auxiliary information. face, or instruct the terminal to perform a new uplink beam scan, which reduces the loss of uplink coverage caused by the MPE problem.
  • FIG. 1 is a flowchart of steps of a method for selecting a front face applied to a terminal in an embodiment of the present application
  • FIG. 2 is a flowchart of steps of a method for selecting a front face applied to a network device in an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a terminal in an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a network device in an embodiment of the application.
  • FIG. 5 is a block diagram of a module of an apparatus for selecting a front face applied to a terminal in an embodiment of the present application
  • FIG. 6 is a block diagram of a module of an apparatus for selecting a front face applied to a network device in an embodiment of the present application
  • Fig. 7 is one of the structural representations of MCE CE in the embodiment of the application.
  • FIG. 8 is the second schematic structural diagram of the MCE CE in the embodiment of the application.
  • the terminal when the terminal detects the occurrence of the Maximum Power Exposure (MPE) event, the terminal will determine the maximum allowable power backoff value and perform the corresponding power backoff. When the power backoff value within a certain period of time If it is greater than a certain threshold value (“phr-Tx-PowerFactorChange” dB), the terminal will initiate a Power Headroom Report (PHR) report, which will be based on the Panel Maximum Power Reduction (Panel Maximum Power Reduction) value and The maximum transmit power value is reported to the base station through a Media Access Control-Control Element (Media Access Control-Control Element, MAC-CE).
  • MPE Maximum Power Exposure
  • PHR Power Headroom Report
  • the base station receives the MPE report from the terminal, and knows that the terminal encounters an MPE problem, and uses P-MPR for power backoff.
  • the maximum output power after backoff is P CMAXfc , and the current power transmission margin is PH.
  • the base station re-adjusts the resource configuration of the terminal's transmission signal according to these parameters. For example, the base station can estimate the duty cycle (duty cycle) of uplink transmission that the terminal does not require power back-off to meet the radiation limit requirements according to these parameters, or the base station can also reduce the uplink transmission. Modulation and Coding Scheme (MCS) for transmission, or reduce the number of physical resource blocks transmitted by the terminal.
  • MCS Modulation and Coding Scheme
  • the situation that the terminal has multiple fronts is not considered.
  • the transmission paths between each terminal transmission front and the base station are different, and the occurrence of MPE occlusion events on each transmission front is also independent.
  • the existing P-MPR reporting scheme cannot accurately reflect the performance difference of different transmission fronts of the terminal, so that when the base station receives the report from the terminal, it cannot use the feedback information of the terminal to instruct the terminal to select multiple transmission fronts. Reduce the loss or reduction of uplink coverage caused by the MPE problem.
  • the embodiments of the present application provide a method, terminal, network device, and storage medium for selecting a front plane, so as to solve the problem that the existing solution cannot use the feedback information of the terminal to instruct the terminal to select multiple transmission fronts.
  • the method and the device are conceived based on the same application. Since the principles of the method and the device for solving the problem are similar, the implementation of the device and the method can be referred to each other, and repeated descriptions will not be repeated here.
  • the applicable system may be a global system of mobile communication (GSM) system, a code division multiple access (CDMA) system, a wideband code division multiple access (Wideband Code Division Multiple Access, WCDMA) general packet Wireless service (general packet radio service, GPRS) system, long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) system, Long term evolution advanced (LTE-A) system, universal mobile telecommunication system (UMTS), worldwide interoperability for microwave access (WiMAX) system, 5G New Radio (New Radio, NR) system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband Code Division Multiple Access
  • general packet Wireless service general packet Radio service
  • GPRS general packet Wireless service
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • time division duplex time division duplex
  • TDD Time division duplex
  • the terminal device involved in the embodiments of the present application may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing device connected to a wireless modem.
  • the name of the terminal device may be different.
  • the terminal device may be called user equipment (User Equipment, UE).
  • Wireless terminal equipment can communicate with one or more core networks (Core Network, CN) via a radio access network (Radio Access Network, RAN).
  • RAN Radio Access Network
  • "telephone) and computers with mobile terminal equipment eg portable, pocket-sized, hand-held, computer-built or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • Wireless terminal equipment may also be referred to as system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point , a remote terminal device (remote terminal), an access terminal device (access terminal), a user terminal device (user terminal), a user agent (user agent), and a user device (user device), which are not limited in the embodiments of the present application.
  • the terminal equipment and other network equipment eg, core network equipment, access network equipment (ie base station)
  • the terminal equipment is also regarded as a kind of network equipment.
  • the network device involved in the embodiments of the present application may be a base station, and the base station may include a plurality of cells providing services for the terminal.
  • the base station may also be called an access point, or may be a device in the access network that communicates with wireless terminal equipment through one or more sectors on the air interface, or other names.
  • the network device can be used to exchange received air frames with Internet Protocol (IP) packets, and act as a router between the wireless terminal device and the rest of the access network, which can include the Internet. Protocol (IP) communication network.
  • IP Internet Protocol
  • the network devices may also coordinate attribute management for the air interface.
  • the network device involved in the embodiments of the present application may be a network device (Base Transceiver Station, BTS) in the Global System for Mobile Communications (GSM) or Code Division Multiple Access (Code Division Multiple Access, CDMA). ), it can also be a network device (NodeB) in Wide-band Code Division Multiple Access (WCDMA), or it can be an evolved network device in a long term evolution (LTE) system (evolutional Node B, eNB or e-NodeB), 5G base station (gNB) in 5G network architecture (next generation system), or Home evolved Node B (HeNB), relay node (relay node) , a home base station (femto), a pico base station (pico), etc., which are not limited in the embodiments of the present application.
  • a network device may include a centralized unit (CU) node and a distributed unit (DU) node, and the centralized unit and the distributed unit may also be geographically separated.
  • FIG. 1 it is a flowchart of steps of a method for selecting a front face applied to a terminal in an embodiment of the present application, and the method includes the following steps:
  • Step 101 Send auxiliary information to the network device.
  • the terminal has at least two fronts.
  • the terminal sends auxiliary information through the network device, which is used to enable the network device to determine the front used by the terminal for subsequent uplink transmission, or to determine that the terminal performs a new uplink beam scan; that is, the terminal sends the auxiliary information to the network device, so that the network device can be based on
  • the auxiliary information determines the front used by the terminal for subsequent uplink transmission, or determines that the terminal performs a new uplink beam scan.
  • the auxiliary information may include at least one of the following: identification information of the optimal reference signal required for uplink transmission, and P-MPR values corresponding to one or more fronts of the terminal when the MPE event occurs. That is, the terminal can send the identification information of the optimal reference signal required for uplink transmission to the network device as auxiliary information, and/or send the P-MPR value corresponding to one or more fronts of the terminal as auxiliary information to the network device. .
  • the identification information of the optimal reference signal required for uplink transmission may be a channel state information reference signal index (CRI for short) or a synchronization signal block index (SSBRI for short).
  • CRI channel state information reference signal index
  • SSBRI synchronization signal block index
  • the optimal reference signal required for uplink transmission may refer to the reference signal with the highest uplink transmission power value. This enables the network device to specify the front with the best performance based on the optimal reference signal, so that the network device can select the front or beam corresponding to the optimal reference signal required for uplink transmission as the front used for uplink transmission Or beams, thereby reducing the uplink coverage loss caused by the MPE problem.
  • the terminal may also send the P-MPR value corresponding to one front, or the P-MPR value corresponding to each of the multiple fronts, to the network device.
  • the multiple fronts may also be all fronts of the terminal.
  • the P-MPR value can be the P-MPR value of the front where the MPE problem occurs, so that the network device can directly base on the P-MPR value of the front.
  • the MPR value selects other fronts or beams for subsequent uplink transmission.
  • the P-MPR report can accurately reflect the performance difference of different fronts of the terminal, so that the network device can know the P-MPR value for a specific front, so that the network device can Based on this, the transmission front is selected, and the front or beam with the highest beam intensity can be used as the front or beam used for subsequent uplink transmission, which reduces the loss or reduction of uplink coverage caused by the MPE problem.
  • the uplink transmission may include a physical uplink control channel (PUCCH for short), a physical uplink shared channel (PUSCH for short) or a channel sounding reference signal (SRS for short).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • SRS channel sounding reference signal
  • Step 102 Receive indication information sent by the network device based on the auxiliary information.
  • the indication information is used to indicate the front used by the terminal for subsequent uplink transmission, or to instruct the terminal to perform a new uplink beam scan.
  • the network device can determine the front or beam used by the terminal to perform new uplink beam scanning or subsequent uplink transmission based on the auxiliary information, and send indication information to the terminal.
  • the terminal may indicate through the UL TCI structure.
  • the performance difference of different transmission fronts of the terminal can be accurately reflected, thereby ensuring the high quality of the determined front or beam used by the terminal for subsequent uplink transmission, and reducing the uplink coverage loss caused by the MPE problem.
  • the auxiliary information includes the identification information of the optimal reference signal required for uplink transmission or the P-MPR value corresponding to one or more fronts of the terminal when the MPE event occurs. Based on the auxiliary information, the performance difference of different transmission fronts of the terminal can be accurately reflected, so that the network device can accurately indicate the front or beam used by the terminal for subsequent uplink transmission based on the auxiliary information, or instruct the terminal to perform a new uplink beam scan.
  • the uplink coverage loss caused by the MPE problem is reduced.
  • the auxiliary information when the auxiliary information includes a P-MPR value corresponding to one or more fronts of the terminal, the auxiliary information may further include MPE events; and/or, one or more fronts The corresponding reference signal received power (RSRP for short).
  • RSRP reference signal received power
  • the terminal when the terminal reports the P-MPR value corresponding to one or more fronts to the network device, it can also report MPE events at the same time, and report the RSRP corresponding to one or more fronts at the same time, or report MPE events and one or more fronts at the same time.
  • RSRP corresponding to multiple fronts so that the network device can further refer to the above information to select the front or beam used for subsequent uplink transmission.
  • the triggering condition of the MPE event may include that the P-MPR value is greater than the preset backoff value within the preset period; or, for any front, the RSRP estimated value of the uplink beam is smaller than the preset value.
  • the network device may control the terminal to report the auxiliary information, and the terminal may also report the auxiliary information autonomously.
  • the two methods will be described below respectively.
  • auxiliary information when sending auxiliary information to a network device, it may include any of the following methods:
  • the notification information sent by the network device is received, and auxiliary information is sent to the network device according to the notification information.
  • the notification information is used to notify the terminal to report the identification information of the optimal reference signal required for uplink transmission, and at this time, the auxiliary information includes the identification information of the optimal reference signal required for uplink transmission.
  • the network device can configure reference signal resources for the terminal through high-layer signaling, and configure notification information through high-layer signaling or L1 dynamic signaling to instruct the terminal to measure and report an optimal uplink transmission.
  • the identification information of the reference signal (CRI/SSBRI), wherein the high-layer signaling includes L2 signaling or L3 signaling.
  • the notification information of the high-level signaling configuration can be as follows:
  • the notification information is used to notify the terminal to report the P-MPR value corresponding to one or more fronts of the terminal, and in this case, the auxiliary information includes the P-MPR value corresponding to one or more fronts of the terminal.
  • the notification information is used to notify the terminal to report the identification information of the optimal reference signal required for uplink transmission and the P-MPR value corresponding to one or more fronts of the terminal.
  • the auxiliary information includes one or more P-MPR values corresponding to each of the fronts, and the auxiliary information at this time includes the identification information of the optimal reference signal required for uplink transmission and the P-MPR values corresponding to one or more fronts of the terminal.
  • the network device triggers the terminal to send the auxiliary information, so that the network device notifies the terminal to send the auxiliary information when it needs to obtain the auxiliary information, thereby avoiding the invalid sending of the auxiliary information by the terminal.
  • the notification information is further used to notify the terminal to report the RSRP after the power backoff, and at this time, the auxiliary information further includes the RSRP after the power backoff.
  • the RSRP may be L1-RSRP, so that the network device can assist in determining the optimal beam according to the RSRP reported by the terminal after the MPE event occurs.
  • the terminal may also report capability information to the network device, where the capability information is used to indicate that the terminal has the capability of adding a power backoff value to the calculation of the optimal reference signal.
  • the terminal with multiple fronts needs to report the capability to notify the network device that the terminal has the ability to consider the power backoff value in the calculation of the optimal reference signal, thus indicating that the terminal reported
  • the optimal reference signal has considered the influence of power backoff, which ensures the reliability of the optimal reference signal under the MPE problem.
  • the terminal before the terminal sends the auxiliary information to the network device according to the notification information, it also needs to use each front to perform RSRP measurement on the reference signal configured by the network device, and obtain the RSRP of the reference signal measured by each front; Then, according to the RSRP of the reference signal measured by each front and the P-MPR value of each front, the reference signal with the highest uplink transmission power value is determined, and the reference signal with the highest transmission power value is determined as the uplink transmission. the optimal reference signal required.
  • the terminal after the terminal receives the notification message, it measures the quality of the downlink received signal according to the configuration of the network equipment, and determines the optimal reference signal for uplink transmission according to the measurement result and the power backoff when encountering the MPE problem, and finally the optimal reference signal.
  • the identification information ie CRI/SSBRI
  • CRI/SSBRI CRI/SSBRI
  • the network device can use the front or beam corresponding to the optimal reference signal as the follow-up A front or beam for uplink transmission to reduce uplink coverage loss caused by MPE problems.
  • the terminal performs capability reporting and informs the network device that the terminal considers power backoff in the calculation of the optimal reference signal; in addition, the network The device configures two channel state information reference signal (CSI-RS) resources for the terminal, denoted as the first CSI-RS resource and the second CSI-RS resource, and configures the terminal to downlink the first CSI-RS through the first array
  • the resource is measured and the second CSI-RS resource is measured by the second front.
  • the configuration information is:
  • the terminal performs measurement according to the configuration of the network device, and obtains the first RSRP of the measurement value on the first front and the second RSRP of the measurement value on the second front.
  • the terminal estimates the uplink transmit power values of the first front and the second front according to the first RSRP and the second RSRP value.
  • the terminal detects that there is human occlusion in the direction of the first front, and determines that the power backoff value is the first P-MPR.
  • the terminal determines that the power backoff value in the direction of the second front is the second P-MPR. (If there is no occlusion, this value is 0).
  • the terminal compares the magnitude between the value of the first RSRP - the first P-MPR and the value of the second RSRP - the second P-MPR. If the first RSRP - the first P-MPR ⁇ the second RSRP - the second P-MPR, the terminal determines that the beam intensity of the uplink signal sent by the second front is greater than that of the first front, and the terminal reports to the network device corresponding to the second front.
  • CSI-RS resource instructing the terminal to use the corresponding beam or front for the best uplink transmission performance.
  • the network device instructs the terminal through the UL TCI-state to send the PUSCH with the receiving beam or front containing the second CSI-RS. After receiving the instruction from the network device, the terminal sends the PUSCH with the corresponding beam on the front.
  • the terminal when the terminal detects the occurrence of the MPE event, it sends auxiliary information to the network device.
  • the auxiliary information includes the identification information of the optimal reference signal required for uplink transmission, and/or the P-MPR value corresponding to one or more fronts of the terminal.
  • the terminal when the terminal detects the occurrence of an MPE event, the terminal can determine the P-MPR value corresponding to one or more fronts and/or the identification information of the optimal reference signal required for uplink transmission, and send it to the network
  • the resource configured by the device notifies the network device of the P-MPR value corresponding to the one or more arrays and/or the identification information of the optimal reference signal required for uplink transmission, so that the network device can be based on the one or more arrays.
  • the P-MPR value corresponding to the plane and/or the identification information of the optimal reference signal required for uplink transmission determines and selects the plane used by the terminal for subsequent uplink transmission and indicates it to the terminal.
  • the network device configures the terminal through RRC signaling with PUCCH resources for transmitting MPE events.
  • the network device configures a time slot m and a timing offset for transmitting the PUCCH to the terminal.
  • the terminal detects that the P-MPR value on panel-ID0 exceeds the threshold value predefined by the system, that is, an MPE event occurs, and the terminal sends the MPE event and panel-ID0 on the PUCCH resource configured by the system. on the P-MPR0.
  • the indication of sending a Panel may be an explicit panel-ID indication, or an implicit indication through an uplink/downlink reference signal.
  • the network device After the network device receives and demodulates the PUCCH, it learns that an MPE problem occurs on the terminal panel-ID0. At this time, the network device instructs the terminal to use panel-ID1 to send uplink data in subsequent uplink data transmission. In the subsequent uplink data transmission process, the terminal uses the panel-ID1 indicated by the network device to send the uplink signal. Of course, if the terminal does not receive an instruction from the network device, the terminal continues to use panel-ID0 for uplink data transmission by default.
  • the terminal has two panels, which are represented as panel-ID0 and panel-ID1.
  • the network device instructs the terminal to report the P-MPR value through MAC CE signaling.
  • the network device instructs the terminal to use the PUSCH resource for sending the P-MPR value through L1 dynamic signaling.
  • the terminal detects that any P-MPR value on panel-ID0 or panel-ID1 exceeds the threshold value predefined by the system, then the terminal sends the message on panel-ID0 on the PUSCH resource configured by the system.
  • the P-MPR1 on the P-MPR0 and the panel-ID1, the indication of sending the panel may be an explicit panel-ID indication, or an implicit indication through an uplink/downlink reference signal.
  • the network device After the network device receives and demodulates the PUSCH, if the value of P-MPR0>P-MPR1, it means that the power backoff of the signal sent by panel-ID1 is small. Assuming that the maximum transmit power of the two panels is the same, the network device determines to use panel-ID1. The beam strength of the uplink signal is greater than panel-ID0. After receiving the terminal's instruction, the network device instructs the terminal to use panel-ID1 to send uplink signals in the subsequent uplink PUSCH/PUCCH transmission through the UL TCI-state.
  • request information may also be sent to the network device, where the request information is used to trigger the network device to send at least one channel state information reference signal (CSI for short for short).
  • CSI channel state information reference signal
  • RS channel state information reference signal
  • the terminal measures the power corresponding to each CSI-RS
  • the reference signal received power RSRP after the fallback is determined, and based on the measurement result, the reference signal with the highest transmit power value after the power fallback is determined as the optimal reference signal required for uplink transmission.
  • the terminal measures each CSI-RS, obtains the reference signal received power RSRP corresponding to the front associated with the corresponding CSI-RS, and estimates the uplink transmission power corresponding to the front associated with the corresponding CSI-RS according to the RSRP, And determine the uplink transmit power after the power backoff of the fronts associated with the corresponding CSI-RS according to the power backoff value corresponding to the fronts associated with the corresponding CSI-RS, and set the uplink transmit power value after the power backoff to the highest
  • the reference signal associated with the front is determined as the optimal reference signal required for uplink transmission.
  • the terminal performs capability reporting and informs the network device that the terminal considers power backoff in the calculation of the optimal reference signal; in addition , the network device configures two channel state information reference signal (CSI-RS) resources for the terminal, denoted as the first CSI-RS resource and the second CSI-RS resource, and configures the terminal through the first front to downlink the first CSI - Measurement of the RS resource and measurement of the second CSI-RS resource by the second front.
  • CSI-RS channel state information reference signal
  • the terminal performs measurement according to the configuration of the network device, and obtains the measurement value L1-RSRP0 on the first front panel0 and the measurement value L1-RSRP1 on the panel1.
  • the terminal estimates the uplink transmit power values P0 and P1 of panel0 and panel1 according to the L1-RSRP value. Assuming that the terminal detects that there is human occlusion in the direction of panel0, and determines that the power backoff value is p_mpr0, similarly, the terminal determines that the power backoff value in the direction of panel1 is p_mpr1 (if there is no occlusion, this value is 0).
  • the terminal compares P0–p_mpr0 Size between P1–p_mpr1 values.
  • the terminal determines that the beam strength of the uplink signal sent by panel 1 is greater than panel 0, and the terminal reports the CSI-RS resource 1 corresponding to the network device to instruct the base station to use the corresponding beam/panel for uplink transmission performance optimal.
  • the network device instructs the terminal to send the PUSCH with the receiving beam/panel of the reference signal CSI-RS 1 contained in the UL TCI-state in the subsequent uplink PUSCH transmission.
  • the terminal After receiving the instruction from the base station, the terminal sends the PUSCH using the corresponding beam on the panel.
  • a first preset domain is newly added to the MAC CE, and the first preset domain contains the request information; the sending the request information to the network device includes:
  • the terminal sends the request information to the network device through the MAC CE.
  • the terminal determines the P-MPR value based on the front or beam and notifies the base station on the uplink transmission resources configured by the base station based on the array-based P-MPR value.
  • PH for short power headroom
  • the terminal triggers the base station to send at least one CSI-RS by using the first preset field (Pnew field) whose bit width is 1 bit; the base station receives the report from the terminal and sends at least one CSI-RS for Beam scanning, the terminal measures the L1-RSRP value of the CSI-RS and considers the P-MPR value on the beam corresponding to the power, selects the optimal reference signal and reports the corresponding beam index CRI to the base station, and assists the base station to select the subsequent uplink (PUCCH/PUSCH/SRS) ) to transmit the front or beam used and indicate to the terminal.
  • Pnew field the first preset field
  • the terminal measures the L1-RSRP value of the CSI-RS and considers the P-MPR value on the beam corresponding to the power, selects the optimal reference signal and reports the corresponding beam index CRI to the base station, and assists the base station to select the subsequent uplink (PUCCH/PUSCH/SRS) ) to transmit the front or beam used and indicate to the terminal
  • the terminal has 2 panels, denoted as panel-ID1 and panel-ID2, respectively.
  • Panel-ID1 is associated with CSI-RS1 and CSI-RS2
  • Panel-ID2 is associated with CSI-RS3 and CSI-RS4.
  • the association relationship can be pre-established by beam scanning.
  • the terminal In the nth time slot, it is assumed that the terminal is scheduled to perform uplink PUSCH transmission, and the PUSCH is transmitted using the beam that receives the CSI-RS1.
  • the terminal detects that panel-ID1 encounters an MPE problem and performs a power backoff.
  • the power backoff value is P_MPR1 and exceeds the threshold configured by the system.
  • the terminal sends an MPE report to the base station, using the power headroom report shown in Figure 7.
  • the P new field with a bit width of 1 bit is used to trigger the network device to send CSI-RS.
  • the network device After receiving the report from the terminal, the network device sends CSI-RS1, CSI-RS2, CSI-RS3 and CSI-RS4 for beam scanning, and the terminal measures and compares the L1-RSRP value of each CSI-RS and considers the power backoff. Influence.
  • the terminal compares L1-RSRP 1,1 –P_MPR1, L1-RSRP 1,2 –P_MPR2, L1-RSRP 2,3 – P_MPR2, L1-RSRP 2,4 –P_MPR4, where L1-RSRP i, j represents panel-ID
  • L1-RSRP value of the jth CSI-RS on i the terminal finds that L1-RSRP 2,4 –P_MPR4 is the largest, then the terminal considers that the beam used to receive the 4th CSI-RS on panel-ID2 is used for uplink optimal beam for transmission.
  • the terminal reports the CRI-RS4 to the network device, and the network device receives the report from the terminal and instructs the terminal to send the PUSCH using the beam that receives the fourth CSI-RS on panel-ID2.
  • a second preset field is newly added to the medium access control layer control element (MAC CE), and the second preset field is used to indicate the identifier of the optimal reference signal required for the uplink transmission information; the terminal sends the auxiliary information to the network equipment through the MAC CE; wherein, the auxiliary information includes the identification information of the optimal reference signal required for the uplink transmission and the P corresponding to one or more fronts of the terminal -MPR value.
  • MAC CE medium access control layer control element
  • the MAC CE after the second preset field is added is shown in Figure 8.
  • the CRI/SSBRI field in the MAC CE is the newly added second preset field.
  • the value of CRI/SSBRI and the beam can be set by setting Or the corresponding relationship between the fronts, to realize the determination of the optimal reference signal required for uplink transmission by setting the value of CRI/SSBRI.
  • the terminal determines the P-MPR value based on the front/beam and notifies the network device based on the uplink transmission resources configured by the network device.
  • the power backoff value of the front/beam, the maximum output power on this power backoff (P CMAX ), the power headroom (PH), and the optimal reference signal (CRI/SSBRI) required for uplink transmission see Fig. 8, to assist the network device to select the front/beam used by the terminal for subsequent uplink (PUCCH/PUSCH/SRS) transmission and indicate to the terminal.
  • the optimal reference signal required for uplink transmission may refer to a candidate beam without MPE problem.
  • the terminal has 2 panels, denoted as panel-ID0 and panel-ID1.
  • the terminal detects that the MPE value of the beam transmitted on panel-ID0 exceeds the threshold specified by the environmental supervision department, and the terminal performs power backoff for the beam on panel-ID0.
  • the power backoff value P-MPR is 6dB, which exceeds the threshold value (for example, 3dB) pre-specified by the network
  • the terminal triggers the MPE report, and transmits the MAC CE shown in Figure 8 on the uplink transmission resources that have been allocated by the network device. to network equipment.
  • the MPE field is set to 01 (2 bits), indicating that the absolute value of the P-MPR actually used is 6dB; at the same time, the value of the CRI/SSBRI field is 1, indicating that the P-MPR on panel-ID1 is 1.
  • Beam 1 is used as a candidate beam without power backoff for subsequent uplink transmission.
  • the network device instructs the terminal to send the PUSCH using the receiving beam/panel of CSI-RS1 through the UL TCI-state in the subsequent uplink PUSCH transmission.
  • the terminal After receiving the instruction from the base station, the terminal sends the PUSCH using the corresponding beam on panel-ID1.
  • the terminal has 2 panels, which are denoted as panel-ID1 and panel-ID2 respectively.
  • Panel-ID1 is associated with CSI-RS1 and CSI-RS2
  • Panel-ID2 is associated with CSI-RS3 and CSI-RS4, and this association can be pre-established by beam scanning.
  • the terminal is scheduled to perform uplink PUSCH transmission, and the PUSCH is transmitted using the beam that receives the CSI-RS1.
  • the terminal detects that panel-ID1 encounters an MPE problem and performs a power backoff.
  • the power backoff value is P_MPR1 and exceeds the threshold configured by the system.
  • the terminal sends an MPE report to the network device, using the power headroom shown in Figure 8.
  • Reported Media Access Control Control Element PHR MAC-CE
  • the network device After the network device receives the report from the terminal, the network device sends CSI-RS1, CSI-RS2, CSI-RS3, and CSI-RS4 for beam scanning.
  • the terminal measures and compares the L1-RSRP value of each CSI-RS and considers the power backoff.
  • Influence such as terminal comparison L1-RSRP 1,1 –P_MPR1,L1-RSRP 1,2 –P_MPR2,L1-RSRP 2,3 – P_MPR2,L1-RSRP 2,4 –P_MPR4, where L1-RSRP i,j represent panel - The L1-RSRP value of the jth CSI-RS on ID i, the terminal finds that L1-RSRP 1 , 1 – P_MPR1, L1-RSRP 1, 2 – P_MPR2 is the largest and the next largest, which are expressed as L1-RSRP new, 1 and L1-RSRP new,2 .
  • the terminal reports L1-RSRP new,1 +CRI1, L1-RSRP new,2 +CRI2 to the network device.
  • the network device receives the report from the terminal, selects a beam, such as the beam receiving CSI-RS1 as the optimal beam for uplink transmission, and instructs the terminal to use the beam receiving the first CSI-RS on panel-ID1 to send the PUSCH.
  • the terminal sends the auxiliary information autonomously, so that the terminal reports the auxiliary information immediately after the MPE event occurs, so that the network device can timely select the front or beam used by the terminal for subsequent uplink transmission, thereby reducing the MPE.
  • the auxiliary information can be sent in any of the above-mentioned manners.
  • the terminal when the terminal sends the auxiliary information to the network device, it may include any of the following items:
  • the terminal may send the auxiliary information periodically, semi-persistently or aperiodically, which is not specifically limited here, so as to ensure the flexibility of the way of sending the auxiliary information.
  • the auxiliary information may be sent to the network device through a physical random access channel (PRACH for short), PUCCH or PUSCH, which is not specifically limited here.
  • PRACH physical random access channel
  • the method for selecting a front surface sends auxiliary information to the network device, and the auxiliary information includes the identification information of the optimal reference signal required for uplink transmission or the information of one or more fronts of the terminal when the MPE event occurs.
  • the corresponding P-MPR value enables the auxiliary information to accurately reflect the performance differences of different transmission fronts of the terminal, so that the network device can accurately select the front or beam used for subsequent uplink transmission based on the auxiliary information, reducing the MPE.
  • FIG. 2 it is a flowchart of steps of a method for selecting a front face applied to a network device in an embodiment of the present application, and the method includes:
  • Step 201 Receive auxiliary information sent by the terminal.
  • the auxiliary information includes at least one of the following: the identification information of the optimal reference signal required for uplink transmission, and the P-MPR value corresponding to one or more fronts of the terminal when the MPE event occurs.
  • the network device receives the auxiliary information sent by the terminal, and the auxiliary information may include the identification information of the optimal reference signal required for uplink transmission, and/or include the information corresponding to one or more fronts of the terminal when the MPE event occurs. P-MPR value.
  • Step 202 Determine the front used by the terminal to perform new uplink beam scanning or subsequent uplink transmission according to the auxiliary information.
  • the network device may determine the terminal to perform a new uplink beam scan according to the auxiliary information, that is, control the terminal to perform a new uplink beam scan to reselect a front or beam, or according to the auxiliary information Determine the front used by the terminal for subsequent uplink transmission to achieve the selection of the optimal front or beam, thereby reducing the loss of uplink coverage caused by the MPE problem.
  • Step 203 Send indication information to the terminal.
  • the indication information is used to indicate the front used by the terminal for subsequent uplink transmission, or to instruct the terminal to perform a new uplink beam scan.
  • the network device After determining the front or beam used by the terminal for new uplink beam scanning or subsequent uplink transmission, the network device sends indication information to the terminal to indicate the front or beam used by the terminal for subsequent uplink transmission, or Instruct the terminal to perform a new uplink beam scan.
  • the auxiliary information sent by the terminal is received, and the auxiliary information includes the identification information of the optimal reference signal required for uplink transmission and/or the P-value corresponding to one or more fronts of the terminal when the MPE event occurs.
  • the MPR value based on the auxiliary information, can accurately reflect the performance difference of different transmission fronts of the terminal, so that the network device can accurately select the front or beam used for subsequent uplink transmission based on the auxiliary information, reducing the problem of MPE. loss of uplink coverage.
  • the network device when the network device determines the front or beam used by the terminal for subsequent uplink transmission according to the auxiliary information, it may use any of the following methods:
  • the front or beam corresponding to the optimal reference signal required for uplink transmission is determined as the front or beam used by the terminal for subsequent uplink transmission. beam.
  • the network device can directly determine the front or beam corresponding to the optimal reference signal as the front or beam used by the terminal for subsequent uplink transmission, thus, it is ensured that the determined beam intensity of the front or beam used by the terminal for subsequent uplink transmission is the highest beam intensity, and the loss of uplink coverage caused by the MPE problem is avoided.
  • the front or the highest uplink transmit power value is determined based on the P-MPR value corresponding to one or more fronts of the terminal. beam, and determine the front or beam with the highest uplink transmit power value as the front or beam used by the terminal for subsequent uplink transmission.
  • the terminal can select all fronts or Determine the front or beam with the highest uplink transmit power value among the beams, that is, select the front or beam with the highest beam intensity, and determine the front or beam as the front or beam used by the terminal for subsequent uplink transmission.
  • the network device may further refer to the RSRP corresponding to the one or more fronts to determine the front with the highest uplink transmit power value or beam.
  • the difference between the RSRP and P-MPR values of each front can be calculated, and the front or beam with the largest difference is determined as the front or beam with the highest uplink transmit power value.
  • the network device does not receive the RSRP corresponding to one or more fronts, and can also determine the front or beam with the highest uplink transmit power value.
  • the P-MPR value can be The smallest front or beam is determined as the front or beam with the highest uplink transmit power value.
  • the front or beam used by the terminal for subsequent uplink transmission can be accurately determined by any of the above methods, thereby avoiding the loss of uplink coverage caused by the MPE problem.
  • the auxiliary information when the auxiliary information includes P-MPR values corresponding to one or more fronts of the terminal, the auxiliary information further includes: MPE events; and/or, reference signals corresponding to one or more fronts Received power RSRP.
  • the triggering conditions of the MPE event include: the P-MPR value is greater than the preset backoff value within the preset time period; or, for any front, the RSRP estimated value of the uplink beam is smaller than the preset value.
  • Uplink transmission includes PUCCH, PUSCH or SRS.
  • the network device when the network device receives the auxiliary information sent by the terminal, it may include any of the following methods:
  • the notification information is sent to the terminal, and the auxiliary information sent by the terminal according to the notification information is received.
  • the notification information is used to notify the terminal to report the identification information of the optimal reference signal required for uplink transmission and/or the P-MPR value corresponding to one or more fronts of the terminal.
  • the notification information is further used to notify the terminal to report the RSRP after the power backoff, and at this time, the first auxiliary information further includes the RSRP after the power backoff.
  • the network device may receive capability information sent by the terminal, where the capability information is used to indicate that the terminal has the capability of adding a power backoff value to the calculation of the optimal reference signal.
  • the auxiliary information includes at least one of the following: identification information of the optimal reference signal required for uplink transmission, and P-MPR values corresponding to one or more fronts of the terminal.
  • the network device may also receive request information sent by the terminal, where the request information is used to trigger the network device to send at least One CSI-RS performs beam scanning, wherein at least one CSI-RS is pre-associated with the front of the terminal, and one front of the terminal is associated with at least one of the CSI-RS; then the network device sends the request based on the request information.
  • At least one CSI-RS performs beam scanning, so that the terminal can measure and compare the RSRP value after the power backoff of each CSI-RS, and then, based on the measurement result, determine the reference signal with the highest transmit power value as the highest value required for uplink transmission.
  • the optimal reference signal, and the optimal reference signal required for uplink transmission is sent to the network device.
  • the network device can determine the front and beam for uplink transmission based on the relationship between at least one CSI-RS and the front of the terminal. .
  • a first preset field is newly added in the MAC CE, and the first preset field contains the request information; the terminal sends the request information to the network device through the MAC CE.
  • a second preset field is newly added to the MAC CE, and the second preset field is used to indicate the identification information of the optimal reference signal required for the uplink transmission; Auxiliary information sent by the MAC CE.
  • the network device can control the terminal to send auxiliary information or the terminal autonomously sends auxiliary information when triggering an MPE event.
  • the network device can control the terminal to send auxiliary information or the terminal autonomously sends auxiliary information when triggering an MPE event.
  • the network device receives auxiliary information sent by the terminal, including any of the following:
  • the network device may also receive the auxiliary information sent by the terminal through PRACH, PUCCH or PUSCH.
  • the network device receives auxiliary information and selects a front or beam for subsequent uplink transmission by the terminal based on the auxiliary information, or determines that the terminal performs a new uplink beam scan, and the front of the terminal can be reflected based on the auxiliary information. Therefore, the terminal can avoid the loss of uplink coverage caused by the MPE problem after using the front or beam selected by the network device or scanning a new uplink beam.
  • FIG. 3 is a schematic structural diagram of a terminal provided by an embodiment of the present application, including a memory 320 , a transceiver 300 , and a processor 310 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 310 and various circuits of memory represented by memory 320 are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 300 may be multiple elements, ie, including transmitters and receivers, providing means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, and the like.
  • the processor 310 is responsible for managing the bus architecture and general processing, and the memory 320 may store data used by the processor 310 in performing operations.
  • the processor 310 can be a central processor (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device). , CPLD), the processor can also use a multi-core architecture.
  • CPU central processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • FPGA field programmable gate array
  • CPLD Complex Programmable Logic Device
  • the processor can also use a multi-core architecture.
  • the memory 320 is used to store computer programs; the transceiver 300 is used to send and receive data under the control of the processor; the processor 310 is used to read the computer program in the memory and perform the following operations:
  • auxiliary information includes at least one of the following: identification information of the optimal reference signal required for uplink transmission, array-based information corresponding to one or more fronts of the terminal when the maximum power radiation MPE event occurs.
  • the maximum power backoff P-MPR value of the plane is not limited to the following: identification information of the optimal reference signal required for uplink transmission, array-based information corresponding to one or more fronts of the terminal when the maximum power radiation MPE event occurs.
  • the indication information sent by the network device based on the auxiliary information, where the indication information is used to indicate a front used by the terminal for subsequent uplink transmission, or to instruct the terminal to perform a new uplink beam scan.
  • the auxiliary information when the auxiliary information includes a P-MPR value corresponding to one or more fronts of the terminal, the auxiliary information further includes:
  • the sending auxiliary information to the network device includes:
  • Receive notification information sent by the network device and send the auxiliary information to the network device according to the notification information, where the notification information is used to notify the terminal to report the identifier of the optimal reference signal required for uplink transmission information and/or a P-MPR value corresponding to one or more fronts of the terminal; or,
  • the terminal When the terminal detects the occurrence of an MPE event, the terminal sends the auxiliary information to the network device.
  • sending the auxiliary information to the network device further includes:
  • the planes are pre-associated, and one plane of the terminal is associated with at least one of the CSI-RSs;
  • the power backoff value determines the uplink transmit power after the power backoff of the front, and the reference signal associated with the front with the highest uplink transmit power value after the power backoff is determined as the optimal reference required for uplink transmission Signal.
  • a first preset field is newly added in the medium access control layer control unit MAC CE, and the first preset field includes the request information;
  • the sending request information to the network device includes:
  • the terminal sends the request information to the network device through the MAC CE.
  • a second preset field is newly added in the medium access control layer control unit MAC CE, and the second preset field is used to indicate the identification information of the optimal reference signal required for the uplink transmission;
  • sending the auxiliary information to the network device includes:
  • the terminal When the terminal detects that the MPE event occurs, the terminal sends the auxiliary information to the network device through the MAC CE;
  • the auxiliary information includes the identification information of the optimal reference signal required for the uplink transmission and the P-MPR value corresponding to one or more fronts of the terminal.
  • the notification information is further used to notify the terminal to report the RSRP after the power backoff
  • the first auxiliary information further includes the RSRP after the power backoff
  • the method before receiving the notification information sent by the network device, the method further includes:
  • the capability information is used to indicate that the terminal has the capability of adding a power backoff value in the calculation of the optimal reference signal.
  • the method before the sending the first auxiliary information to the network device according to the notification information, the method further includes:
  • each front uses each front to perform RSRP measurement on the reference signal configured by the network device, and determine the RSRP of the reference signal measured by each front; according to the RSRP of the reference signal measured by each front and each array
  • the P-MPR value on the surface is determined, the reference signal with the highest uplink transmission power value is determined, and the reference signal with the highest transmission power value is determined as the optimal reference signal required for the uplink transmission.
  • the sending auxiliary information to the network device includes any one of the following:
  • the auxiliary information is sent aperiodically to the network device.
  • the sending auxiliary information to the network device includes:
  • the trigger condition of the MPE event includes:
  • the P-MPR value is greater than the preset backoff value within the preset time period; or, for any front, the RSRP estimated value of the uplink beam is smaller than the preset value.
  • the uplink transmission includes PUCCH, PUSCH or channel sounding reference signal SRS.
  • FIG. 4 is a schematic structural diagram of a network device provided by an embodiment of the present application, including a memory 420 , a transceiver 400 , and a processor 410 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 410 and various circuits of memory represented by memory 420 are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 400 may be multiple elements, ie, including transmitters and receivers, providing means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, and the like.
  • the processor 410 is responsible for managing the bus architecture and general processing, and the memory 420 may store data used by the processor 410 in performing operations.
  • the processor 410 may be a central processor (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device). , CPLD), the processor can also use a multi-core architecture.
  • CPU central processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • FPGA field programmable gate array
  • CPLD Complex Programmable Logic Device
  • the memory 420 is used to store computer programs; the transceiver 400 is used to send and receive data under the control of the processor; the processor 410 is used to read the computer program in the memory and perform the following operations:
  • the auxiliary information includes at least one of the following: identification information of the optimal reference signal required for uplink transmission, array-based information corresponding to one or more fronts of the terminal when the maximum power radiation MPE event occurs.
  • the auxiliary information when the auxiliary information includes a P-MPR value corresponding to one or more fronts of the terminal, the auxiliary information further includes:
  • the auxiliary information sent by the receiving terminal includes:
  • the notification information is used to notify the terminal to report the identification information of the optimal reference signal required for uplink transmission and/or Or the P-MPR value corresponding to one or more fronts of the terminal; or,
  • the auxiliary information sent by the terminal when the MPE event is detected is received.
  • the method when the receiving the second auxiliary information sent by the terminal when the MPE event is detected, the method further includes:
  • Receive request information sent by the terminal where the request information is used to trigger the network device to send at least one channel state information reference signal CSI-RS to perform beam scanning, wherein the at least one CSI-RS is associated with the array of the terminal.
  • planes are pre-associated, and one plane of the terminal is associated with at least one of the CSI-RSs;
  • the at least one CSI-RS is transmitted for beam scanning based on the request information.
  • a first preset domain is newly added in the MAC CE, and the first preset domain includes the request information
  • the receiving the request information sent by the terminal includes:
  • the request information sent by the terminal through the MAC CE is received.
  • a second preset field is newly added in the medium access control layer control unit MAC CE, and the second preset field is used to indicate the identification information of the optimal reference signal required for the uplink transmission;
  • the receiving the auxiliary information sent by the terminal when detecting the occurrence of the MPE event includes:
  • the auxiliary information includes the identification information of the optimal reference signal required for the uplink transmission and the P-MPR value corresponding to one or more fronts of the terminal.
  • the notification information is further used to notify the terminal to report the RSRP after the power backoff
  • the first auxiliary information further includes the RSRP after the power backoff
  • the method before the sending notification information to the terminal, the method further includes:
  • the capability information sent by the terminal is received, wherein the capability information is used to indicate that the terminal has the capability of adding a power backoff value in the calculation of the optimal reference signal.
  • the auxiliary information sent by the receiving terminal includes any of the following:
  • the auxiliary information sent by the receiving terminal includes:
  • the auxiliary information sent by the terminal through the physical random access channel PRACH, the physical uplink control channel PUCCH or the physical uplink shared channel PUSCH is received.
  • determining the front used by the terminal for subsequent uplink transmission according to the auxiliary information including:
  • the front surface corresponding to the optimal reference signal required for uplink transmission is determined as the front surface used by the terminal for subsequent uplink transmission; or ,
  • the auxiliary information includes P-MPR values corresponding to one or more fronts of the terminal, determine the front with the highest uplink transmit power value based on the P-MPR values corresponding to one or more fronts of the terminal , and the front with the highest uplink transmit power value is determined as the front used by the terminal for subsequent uplink transmission.
  • the trigger condition of the MPE event includes:
  • the P-MPR value is greater than the preset backoff value within the preset time period; or, for any front, the RSRP estimated value of the uplink beam is smaller than the preset value.
  • the uplink transmission includes PUCCH, PUSCH or channel sounding reference signal SRS.
  • FIG. 5 is a block diagram of a device for selecting an array provided by an embodiment of the present application, and the device includes:
  • the sending module 501 is configured to send auxiliary information to the network device, where the auxiliary information includes at least one of the following: identification information of the optimal reference signal required for uplink transmission, one or more arrays of the terminal when the maximum power radiation MPE event occurs.
  • a receiving module 502 configured to receive the indication information sent by the network device based on the auxiliary information, wherein the indication information is used to indicate the frontier used by the terminal for subsequent uplink transmission, or to instruct the terminal to perform a new Upstream beam scanning.
  • the auxiliary information when the auxiliary information includes P-MPR values corresponding to one or more fronts of the terminal, the auxiliary information further includes: MPE events; and/or, one or more fronts corresponding to Reference Signal Received Power RSRP.
  • the sending module includes:
  • a first sending unit configured to receive notification information sent by the network device, and send the auxiliary information to the network device according to the notification information, where the notification information is used to notify the terminal to report the uplink transmission needs
  • the second sending unit is configured to send the auxiliary information to the network device when the terminal detects that an MPE event occurs.
  • sending the auxiliary information to the network device further includes:
  • the planes are pre-associated, and one plane of the terminal is associated with at least one of the CSI-RSs;
  • the power backoff value determines the uplink transmit power after the power backoff of the front, and the reference signal associated with the front with the highest uplink transmit power value after the power backoff is determined as the optimal reference required for uplink transmission Signal.
  • a first preset field is newly added in the medium access control layer control unit MAC CE, and the first preset field includes the request information;
  • the sending request information to the network device includes:
  • the request information is sent to the network device through the MAC CE.
  • a second preset field is newly added in the medium access control layer control unit MAC CE, and the second preset field is used to indicate the identification information of the optimal reference signal required for the uplink transmission;
  • sending the auxiliary information to the network device includes:
  • the auxiliary information includes the identification information of the optimal reference signal required for the uplink transmission and the P-MPR value corresponding to one or more fronts of the terminal.
  • the notification information is further used to notify the terminal to report the RSRP after the power backoff
  • the first auxiliary information further includes the RSRP after the power backoff
  • the method before receiving the notification information sent by the network device, the method further includes:
  • a reporting unit configured to report capability information to the network device, where the capability information is used to indicate that the terminal has the capability of adding a power backoff value in the calculation of the optimal reference signal.
  • the method before the sending the auxiliary information to the network device according to the notification information, the method further includes:
  • the determining unit is used to perform RSRP measurement on the reference signal configured by the network device using each front, and determine the RSRP of the reference signal measured by each front; according to the measured reference signal of each front.
  • the RSRP and the P-MPR value of each front face determine the reference signal with the highest uplink transmission power value, and determine the reference signal with the highest transmission power value as the optimal reference signal required for the uplink transmission.
  • the sending module is configured to execute any of the following:
  • the auxiliary information is sent aperiodically to the network device.
  • the sending module is configured to send the auxiliary information to the network device through a physical random access channel PRACH, a physical uplink control channel PUCCH or a physical uplink shared channel PUSCH.
  • the triggering condition of the MPE event includes: a P-MPR value greater than a preset backoff value exists within a preset time period; or, for any front, the RSRP estimated value of the uplink beam is less than a preset value.
  • the uplink transmission includes PUCCH, PUSCH or channel sounding reference signal SRS.
  • FIG. 6 is a block diagram of a module of an apparatus for selecting an array provided by an embodiment of the present application, and the apparatus includes:
  • the receiving module 601 is configured to receive auxiliary information sent by the terminal, where the auxiliary information includes at least one of the following: identification information of the optimal reference signal required for uplink transmission, one or more arrays of the terminal when the maximum power radiation MPE event occurs.
  • the maximum power backoff P-MPR value based on the front surface corresponding to the surface;
  • a determining module 602 configured to determine, according to the auxiliary information, a front used by the terminal to perform new uplink beam scanning or subsequent uplink transmission;
  • the sending module 603 is configured to send indication information to the terminal, wherein the indication information is used to indicate a front used by the terminal for subsequent uplink transmission, or to instruct the terminal to perform a new uplink beam scan.
  • the auxiliary information when the auxiliary information includes P-MPR values corresponding to one or more fronts of the terminal, the auxiliary information further includes: MPE events; and/or, one or more fronts corresponding to Reference Signal Received Power RSRP.
  • the receiving module includes:
  • a first receiving unit configured to send notification information to the terminal, and receive the auxiliary information sent by the terminal according to the notification information, wherein the notification information is used to notify the terminal to report the optimal data required for uplink transmission
  • the second receiving unit is configured to receive the auxiliary information sent by the terminal when the MPE event is detected.
  • the method when the receiving the second auxiliary information sent by the terminal when the MPE event is detected, the method further includes:
  • Receive request information sent by the terminal where the request information is used to trigger the network device to send at least one channel state information reference signal CSI-RS to perform beam scanning, wherein the at least one CSI-RS is associated with the array of the terminal.
  • planes are pre-associated, and one plane of the terminal is associated with at least one of the CSI-RSs;
  • the at least one CSI-RS is transmitted for beam scanning based on the request information.
  • a first preset domain is newly added in the MAC CE, and the first preset domain includes the request information
  • the receiving the request information sent by the terminal includes:
  • the request information sent by the terminal through the MAC CE is received.
  • a second preset field is newly added in the medium access control layer control unit MAC CE, and the second preset field is used to indicate the identification information of the optimal reference signal required for the uplink transmission;
  • the receiving the auxiliary information sent by the terminal when detecting the occurrence of the MPE event includes:
  • the auxiliary information includes the identification information of the optimal reference signal required for the uplink transmission and the P-MPR value corresponding to one or more fronts of the terminal.
  • the notification information is further used to notify the terminal to report the RSRP after the power backoff
  • the first auxiliary information further includes the RSRP after the power backoff
  • the method before the sending notification information to the terminal, the method further includes:
  • the third receiving unit is configured to receive capability information sent by the terminal, where the capability information is used to indicate that the terminal has the capability of adding a power backoff value in the calculation of the optimal reference signal.
  • the receiving module is configured to execute any of the following:
  • the receiving module is configured to receive the auxiliary information sent by the terminal through a physical random access channel PRACH, a physical uplink control channel PUCCH or a physical uplink shared channel PUSCH.
  • the determining module is used to:
  • the auxiliary information includes the identification information of the optimal reference signal required for uplink transmission, determine the front surface corresponding to the optimal reference signal required for uplink transmission as the front surface used by the terminal for subsequent uplink transmission; or ,
  • the auxiliary information includes P-MPR values corresponding to one or more fronts of the terminal, determine the front with the highest uplink transmit power value based on the P-MPR values corresponding to one or more fronts of the terminal , and the front with the highest uplink transmit power value is determined as the front used by the terminal for subsequent uplink transmission.
  • the triggering condition of the MPE event includes: a P-MPR value greater than a preset backoff value exists within a preset time period; or, for any front, the RSRP estimated value of the uplink beam is less than a preset value.
  • the uplink transmission includes PUCCH, PUSCH or channel sounding reference signal SRS.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a processor-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .
  • an embodiment of the present application further provides a processor-readable storage medium, where a computer program is stored in the processor-readable storage medium, and the computer program is used to cause the processor to execute the processes described in the foregoing embodiments. Methods.
  • the processor-readable storage medium can be any available medium or data storage device that can be accessed by a processor, including, but not limited to, magnetic storage (eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (eg, CD, DVD, BD, HVD, etc.), and semiconductor memory (eg, ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state disk (SSD)), etc.
  • magnetic storage eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage eg, CD, DVD, BD, HVD, etc.
  • semiconductor memory eg, ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state disk (SSD)
  • the processor-readable storage medium stores a computer program, and the computer program is used to cause the processor to execute the above-mentioned front surface selection method.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein, including but not limited to disk storage, optical storage, and the like.
  • processor-executable instructions may also be stored in a processor-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the processor-readable memory result in the manufacture of means including the instructions product, the instruction means implements the functions specified in the flow or flow of the flowchart and/or the block or blocks of the block diagram.
  • processor-executable instructions can also be loaded onto a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process that Execution of the instructions provides steps for implementing the functions specified in the flowchart or blocks and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种阵面选择方法、终端、网络设备及存储介质,其中方法包括:向网络设备发送辅助信息,所述辅助信息包括以下至少一项:上行传输所需的最优参考信号的标识信息,最大功率辐射MPE事件发生时终端的一个或多个阵面所对应的基于阵面的最大功率回退P-MPR值;接收所述网络设备基于所述辅助信息所发送的指示信息,其中所述指示信息用于指示所述终端后续上行传输所使用的阵面,或者指示所述终端进行新的上行波束扫描。本申请实施例避免了MPE问题带来的上行覆盖损失。

Description

一种阵面选择方法、终端、网络设备及存储介质
相关申请的交叉引用
本申请要求于2020年10月23日提交的申请号为2020111486428,发明名称为“一种阵面选择方法、终端、网络设备及存储介质”的中国专利申请的优先权,其通过引用方式全部并入本文;并要求于2020年12月10日提交的申请号为2020114580953,发明名称为“一种阵面选择方法、终端、网络设备及存储介质”的中国专利申请的优先权,其通过引用方式全部并入本文;以及要求于2020年12月25日提交的申请号为2020115654511,发明名称为“一种阵面选择方法、终端、网络设备及存储介质”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本公开涉及通信技术领域,尤其涉及一种阵面选择方法、终端、网络设备及存储介质。
背景技术
多天线阵面的终端在进行上行传输时,当检测到天线阵面对准人体并且持续了一段时间,为了避免对人体造成危害,目前的处理机制是做功率回退,也就是减少上行发送功率。但是功率回退之后会带来上行覆盖变差,如何避免或减少多阵面终端在功率回退之后的上行覆盖变差是目前需要考虑的问题。
发明内容
本申请实施例提供一种阵面选择方法、终端、网络设备及存储介质,以解决多阵面终端出现MPE问题时网络设备不能准确进行阵面选择导致的上行覆盖损失的问题。
第一方面,本申请实施例提供一种阵面选择方法,包括:
向网络设备发送辅助信息,所述辅助信息包括以下至少一项:上行传输所需的最优参考信号的标识信息,最大功率辐射MPE事件发生时终端的一个 或多个阵面所对应的基于阵面的最大功率回退P-MPR值;
接收所述网络设备基于所述辅助信息所发送的指示信息,其中所述指示信息用于指示所述终端后续上行传输所使用的阵面,或者指示所述终端进行新的上行波束扫描。
第二方面,本申请实施例提供一种阵面选择方法,包括:
接收终端发送的辅助信息,所述辅助信息包括以下至少一项:上行传输所需的最优参考信号的标识信息,最大功率辐射MPE事件发生时终端的一个或多个阵面所对应的基于阵面的最大功率回退P-MPR值;
根据所述辅助信息确定所述终端进行新的上行波束扫描或者后续上行传输所使用的阵面;
向所述终端发送指示信息,其中所述指示信息用于指示所述终端后续上行传输所使用的阵面,或者指示所述终端进行新的上行波束扫描。
第三方面,本申请实施例提供一种终端,包括存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
向网络设备发送辅助信息,所述辅助信息包括以下至少一项:上行传输所需的最优参考信号的标识信息,最大功率辐射MPE事件发生时终端的一个或多个阵面所对应的基于阵面的最大功率回退P-MPR值。
接收所述网络设备基于所述辅助信息所发送的指示信息,其中所述指示信息用于指示所述终端后续上行传输所使用的阵面,或者指示所述终端进行新的上行波束扫描。
第四方面,本申请实施例提供一种网络设备,包括存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
接收终端发送的辅助信息,所述辅助信息包括以下至少一项:上行传输所需的最优参考信号的标识信息,最大功率辐射MPE事件发生时终端的一个或多个阵面所对应的基于阵面的最大功率回退P-MPR值;
根据所述辅助信息确定所述终端进行新的上行波束扫描或者后续上行传输所使用的阵面;
向所述终端发送指示信息,其中所述指示信息用于指示所述终端后续上行传输所使用的阵面,或者指示所述终端进行新的上行波束扫描。
第五方面,本申请实施例提供一种阵面选择装置,包括:
发送模块,用于向网络设备发送辅助信息,所述辅助信息包括以下至少一项:上行传输所需的最优参考信号的标识信息,最大功率辐射MPE事件发生时终端的一个或多个阵面所对应的基于阵面的最大功率回退P-MPR值。
接收模块,用于接收所述网络设备基于所述辅助信息所发送的指示信息,其中所述指示信息用于指示所述终端后续上行传输所使用的阵面,或者指示所述终端进行新的上行波束扫描。
第六方面,本申请实施例提供一种阵面选择装置,包括:
接收模块,用于接收终端发送的辅助信息,所述辅助信息包括以下至少一项:上行传输所需的最优参考信号的标识信息,最大功率辐射MPE事件发生时终端的一个或多个阵面所对应的基于阵面的最大功率回退P-MPR值;
确定模块,用于根据所述辅助信息确定所述终端进行新的上行波束扫描或者后续上行传输所使用的阵面;
发送模块,用于向所述终端发送指示信息,其中所述指示信息用于指示所述终端后续上行传输所使用的阵面,或者指示所述终端进行新的上行波束扫描。
第七方面,本申请实施例提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使处理器执行第一方面或第二方面所述的方法。
本申请实施例提供的阵面选择方法、终端、网络设备及存储介质,通过向网络设备发送辅助信息,且辅助信息包括上行传输所需的最优参考信号的标识信息或者MPE事件发生时终端的一个或多个阵面所对应的P-MPR值,基于该辅助信息能够准确反映终端不同传输阵面的性能差别,从而使得网络设备能够基于该辅助信息准确的指示终端后续上行传输所使用的阵面,或者 指示终端进行新的上行波束扫描,降低了MPE问题所带来的上行覆盖损失。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例中应用于终端的阵面选择方法的步骤流程图;
图2为本申请实施例中应用于网络设备的阵面选择方法的步骤流程图;
图3为本申请实施例中终端的结构示意图;
图4为本申请实施例中网络设备的结构示意图;
图5为本申请实施例中应用于终端的阵面选择装置的模块框图;
图6为本申请实施例中应用于网络设备的阵面选择装置的模块框图;
图7为本申请实施例中MCE CE的结构示意图之一;
图8为本申请实施例中MCE CE的结构示意图之二。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,并不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在NR中,当终端检测到最大功率辐射(Maximum Power Exposure,MPE)事件发生,终端会确定最大允许功率回退值并做相应的功率回退,当在某个时间段内的功率回退值大于某个门限值(“phr-Tx-PowerFactorChange”dB),终端会发起功率余量报告(Power Headroom Report,PHR)上报,将基于阵面的最大功率回退(Panel Maximum Power Reduction)值以及最大发送功率值通过媒体访问控制控制单元(Media Access Control-Control Element,MAC-CE)汇报给基站。基站收到终端的MPE上报,知道终端遇到MPE问题,并且使用了P-MPR做功率回退,回退后的最大输出功率为P CMAXfc,当 前功率发射余量为PH。基站根据这些参数重新调整终端发射信号资源配置,比如基站可以根据这些参数估算得到终端为满足辐射限值要求不需要功率回退进行上行发射的占空比(duty cycle),或者基站也可以降低上行传输的调制与编码策略(Modulation and Coding Scheme,MCS),或者或者减少终端发射的物理资源块数目。终端根据基站的调度发送上行信号,达到即满足MPE要求,又能实现良好通信质量的目的。
但是在现有的MPE解决方案中,并未考虑到终端具有多阵面的情况。当终端具有多个传输阵面时,每个终端传输阵面与基站之间的传输路径不同,每个传输阵面发生MPE遮挡事件也是独立的。此时现有的P-MPR汇报方案不能准确反映终端不同传输阵面的性能差别,使得基站在接收到终端的汇报时,无法利用终端的反馈信息指示终端进行多个传输阵面的选择,从而降低MPE问题带来的上行覆盖损失或者降低。
因此,本申请实施例提供一种阵面选择方法、终端、网络设备及存储介质,以解决现有方案不能利用终端的反馈信息指示终端进行多个传输阵面的选择的问题。
其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
本申请实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、高级长期演进(long term evolution advanced,LTE-A)系统、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G新空口(New Radio,NR)系统等。这多种系统中均包括终端设备和网络设备。系统中还可以包括 核心网部分,例如演进的分组系统(Evloved Packet System,EPS)、5G系统(5GS)等。
本申请实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本申请实施例中并不限定。由于终端设备与其它网络设备(例如核心网设备、接入网设备(即基站))一起构成一个可支持通信的网络,在本发明中,终端设备也视为一种网络设备。
本申请实施例涉及的网络设备,可以是基站,该基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本申请实施例涉及的网络设备 可以是全球移动通信系统(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本申请实施例中并不限定。在一些网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
此外,应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
下面对本申请进行具体说明。
如图1所示,为本申请实施例中应用于终端的阵面选择方法的步骤流程图,该方法包括如下步骤:
步骤101:向网络设备发送辅助信息。
具体的,在本实施例中,终端具有至少两个阵面。此时终端通过网络设备发送辅助信息,用于使网络设备确定终端后续上行传输所使用的阵面,或者确定终端进行新的上行波束扫描;即终端向网络设备发送辅助信息,使得网络设备能够基于该辅助信息确定终端后续上行传输所使用的阵面,或者确定终端进行新的上行波束扫描。
此外,具体的,辅助信息可以包括以下至少一项:上行传输所需的最优参考信号的标识信息,MPE事件发生时终端的一个或多个阵面所对应的P-MPR值。即终端可以将上行传输所需的最优参考信号的标识信息作为辅助 信息发送给网络设备,和/或将终端的一个或多个阵面所对应的P-MPR值作为辅助信息发送给网络设备。
具体的,上行传输所需的最优参考信号的标识信息可以为信道状态信息参考信号索引(简称CRI)或同步信号块索引(简称SSBRI)。
上行传输所需的最优参考信号可以指上行发送功率值最高的参考信号。这使得网络设备能够基于该最优参考信号明确性能最优的阵面,从而使得网络设备能够选择该上行传输所需的最优参考信号所对应的阵面或波束作为上行传输所使用的阵面或波束,进而降低了MPE问题所带来的上行覆盖损失。
另外,当发生MPE事件时,终端还可以将一个阵面所对应的P-MPR值,或者多个阵面中每个阵面所对应的P-MPR值发送给网络设备。
还需要说明的是,多个阵面也可以为终端的全部阵面。此外,当辅助信息包括一个阵面所对应的P-MPR值时,该P-MPR值可以为发生MPE问题的阵面的P-MPR值,从而使得网络设备能够直接基于该阵面的P-MPR值选择其他阵面或波束进行后续上行传输。
基于每个阵面对应一个P-MPR值,从而使得P-MPR汇报能够准确反映终端不同阵面的性能差别,使得网络设备能够知道针对具体阵面的P-MPR值,进而使得网络设备能够基于此进行传输阵面的选择,且能够将波束强度最大的阵面或波束作为后续上行传输所使用的阵面或波束,降低了MPE问题带来的上行覆盖损失或者降低。
此外,需要说明的是,上行传输可以包括物理上行控制信道(简称PUCCH)、物理上行共享信道(简称PUSCH)或信道探测参考信号(简称SRS)。
步骤102:接收网络设备基于辅助信息所发送的指示信息。
具体的,指示信息用于指示终端后续上行传输所使用的阵面,或者指示终端进行新的上行波束扫描。
具体的,网络设备接收终端的辅助信息之后,能够基于该辅助信息确定终端进行新的上行波束扫描或者后续上行传输所使用的阵面或波束,并向终端发送指示信息。
需要说明的是,终端可以通过UL TCI架构进行指示。
基于辅助信息能够准确反映终端不同传输阵面的性能差别,从而保证了所确定的终端后续上行传输所使用的阵面或波束的高质量性,降低了MPE问题所带来的上行覆盖损失。
这样,本实施例通过向网络设备发送辅助信息,且辅助信息包括上行传输所需的最优参考信号的标识信息或者MPE事件发生时终端的一个或多个阵面所对应的P-MPR值,基于该辅助信息能够准确反映终端不同传输阵面的性能差别,从而使得网络设备能够基于该辅助信息准确的指示终端后续上行传输所使用的阵面或波束,或者指示终端进行新的上行波束扫描,降低了MPE问题所带来的上行覆盖损失。
可选地,在本实施例中,在当辅助信息包括终端的一个或多个阵面所对应的P-MPR值时,辅助信息还可以包括MPE事件;和/或,一个或多个阵面所对应的参考信号接收功率(简称RSRP)。
即终端在向网络设备上报一个或多个阵面所对应的P-MPR值时,还可以同时上报MPE事件,同时上报一个或多个阵面所对应的RSRP,或者同时上报MPE事件和一个或多个阵面所对应的RSRP,从而使得网络设备能够进一步参考上述信息选择后续上行传输所使用的阵面或波束。
可选地,MPE事件的触发条件可以包括预设时段内存在P-MPR值大于预设回退值;或者,针对任意阵面,上行波束的RSRP估计值小于预设值。
即当预设时段内存在P-MPR值大于预设回退值,或者针对任意阵面上行波束的RSRP估计值小于预设值时,则可以认为发生了MPE事件。
此外,可选地,在本实施例中,网络设备可以控制终端上报辅助信息,且终端也可以自主上报辅助信息,下面分别对该两种方式进行说明。
具体的,向网络设备发送辅助信息时,可以包括下述任一种方式:
其一,接收网络设备发送的通知信息,并根据通知信息向网络设备发送辅助信息。
具体的,通知信息用于通知终端上报上行传输所需的最优参考信号的标识信息,此时辅助信息包括上行传输所需的最优参考信号的标识信息。
具体的,在该种方式中,网络设备可以通过高层信令为终端配置参考信 号资源,并通过高层信令或者L1动态信令配置通知信息,以指示终端测量并上报一个对于上行传输的最优参考信号(CRI/SSBRI)的标识信息,其中高层信令包括L2信令或L3信令。
例如,高层信令配置的通知信息可以如下所示:
Figure PCTCN2021125791-appb-000001
或者,通知信息用于通知终端上报所述终端的一个或多个阵面所对应的P-MPR值,此时辅助信息包括终端的一个或多个阵面所对应的P-MPR值。
或者,通知信息用于通知终端上报上行传输所需的最优参考信号的标识信息以及所述终端的一个或多个阵面所对应的P-MPR值,此时辅助信息包括终端的一个或多个阵面所对应的P-MPR值,此时辅助信息包括上行传输所需的最优参考信号的标识信息和终端的一个或多个阵面所对应的P-MPR值。
通过上述方式实现了由网络设备触发终端发送辅助信息的发送方式,使得网络设备在需要获取辅助信息时再通知终端进行辅助信息的发送,避免了终端进行辅助信息的无效发送。
具体的,所述通知信息还用于通知所述终端上报功率回退后的RSRP,此时所述辅助信息还包括功率回退后的RSRP。该RSRP可以为L1-RSRP,从而使得网络设备能够根据终端汇报的MPE事件发生后的RSRP,辅助确定最优波束。
此外,具体的,终端在接收网络设备发送的通知信息之前,还可以向网络设备上报能力信息,其中能力信息用于指示终端具有在最优参考信号的计算中加入功率回退值的能力。
即对于由网络设备控制的辅助信息上报,具有多阵面的终端需要进行能力上报,以通知网络设备该终端具备在最优参考信号的计算中考虑功率回退值的能力,从而说明终端上报的最优参考信号已考虑功率回退带来的影响, 保证了MPE问题下最优参考信号的可靠性。
另外,具体的,终端根据通知信息向网络设备发送辅助信息之前,还需要使用每个阵面对网络设备所配置的参考信号进行RSRP测量,得到每个阵面所测量得到的参考信号的RSRP;然后根据每个阵面所测量得到的参考信号的RSRP以及根据每个阵面的P-MPR值,确定上行发送功率值最高的参考信号,并将发送功率值最高的参考信号确定为上行传输所需的最优参考信号。
即终端接收到通知消息之后,按照网络设备的配置进行下行接收信号质量测量,并按照测量结果以及遇到MPE问题时的功率回退确定对于上行传输的最优参考信号,最后将该最优参考信号的标识信息(即CRI/SSBRI)上报给网络设备,以协助网络设备进行后续上行传输的阵面或波束选择,此时网络设备可以将该最优参考信号所对应的阵面或波束作为后续上行传输的阵面或波束,以降低MPE问题带来的上行覆盖损失。
例如,假设终端具有两个阵面(panel),分别为第一阵面和第二阵面,终端进行能力上报,通知网络设备该终端在最优参考信号计算中考虑功率回退;此外,网络设备为终端配置两个信道状态信息参考信号(简称CSI-RS)资源,表示为第一CSI-RS资源和第二CSI-RS资源,且配置终端通过第一阵面对下行第一CSI-RS资源进行测量以及通过第二阵面对第二CSI-RS资源进行测量。配置信息为:
Figure PCTCN2021125791-appb-000002
然后,终端按照网络设备的配置进行测量,得到第一阵面上的测量值第一RSRP以及第二阵面上的测量值第二RSRP。终端根据第一RSRP和第二RSRP值估计第一阵面和第二阵面的上行发送功率值。此时假设终端检测到第一阵面方向上有人体遮挡,并确定功率回退值为第一P-MPR,同样,终端确定第二阵面方向上的功率回退值为第二P-MPR(如果没有遮挡,此值取0)。 然后终端比较第一RSRP–第一P-MPR的值与第二RSRP–第二P-MPR的值之间的大小。如果第一RSRP–第一P-MPR<第二RSRP–第二P-MPR,则终端确定用第二阵面发送上行信号的波束强度大于第一阵面,终端汇报给网络设备对应的第二CSI-RS资源,指示终端用对应的波束或阵面做上行传输性能最优。
然后,网络设备在接收到终端的指示后,在之后的上行PUSCH传输中,通过UL TCI-state指示终端用其中包含第二CSI-RS的接收波束或阵面发送PUSCH。终端收到网络设备的指示后,用阵面上的对应波束发送PUSCH。
其二,当终端检测到MPE事件发生时,向网络设备发送辅助信息。
具体的,辅助信息包括上行传输所需的最优参考信号的标识信息,和/或,终端的一个或多个阵面所对应的P-MPR值。
在该种方式中,当终端检测到MPE事件发生时,终端可以确定一个或多个阵面所对应的P-MPR值和/或上行传输所需的最优参考信号的标识信息,并在网络设备配置的资源上通知网络设备该一个或多个阵面所对应的P-MPR值和/或上行传输所需的最优参考信号的标识信息,从而使得网络设备能够基于该一个或多个阵面所对应的P-MPR值和/或上行传输所需的最优参考信号的标识信息确定并选择终端后续上行传输所使用的阵面并指示给终端。
例如,假设终端具有2个panel,表示为panel-ID0和panel-ID1。网络设备通过RRC信令给终端配置用于传输MPE事件的PUCCH资源。同时网络设备给终端配置用于传输此PUCCH的时隙m以及定时偏移。在第n时隙,终端检测到panel-ID0上的P-MPR值超过了系统预定义的门限值,即发生了MPE事件,则终端在系统配置的PUCCH资源上发送MPE事件以及panel-ID0上的P-MPR0。发送Panel的指示可以是显式的panel-ID指示,也可以通过上行/下行参考信号隐式指示。
网络设备接收并解调PUCCH后,获知终端panel-ID0上发生了MPE问题。此时网络设备指示终端在之后的上行数据传输中用panel-ID1发送上行数据。在之后的上行数据传输过程中,终端用网络设备指示的panel-IDl进行上行信号发送。当然如果终端没有收到网络设备的指示,则终端默认继续用 panel-ID0进行上行数据传输。
又例如,假设终端具有2个panel,表示为panel-ID0和panel-ID1。网络设备通过MAC CE信令指示终端进行P-MPR值汇报。同时,网络设备通过L1动态信令指示终端用于发送P-MPR值的PUSCH资源。在第n时隙,终端检测到panel-ID0或者panel-ID1上中的任意一个P-MPR值超过了系统预定义的门限值,则终端在系统配置的PUSCH资源上发送panel-ID0上的P-MPR0和panel-ID1上的P-MPR1,发送panel的指示可以是显式的panel-ID指示,也可以通过上行/下行参考信号隐式指示。
网络设备接收并解调PUSCH后,如果P-MPR0>P-MPR1的值,说明用panel-ID1发送信号的功率回退小,假定两个panel的最大发射功率相同,网络设备确定用panel-ID1发送上行信号的波束强度大于panel-ID0。网络设备在接收到终端的指示后,在之后的上行PUSCH/PUCCH传输中,通过UL TCI-state指示终端用panel-ID1进行上行信号的发送。
此外,可选地,在本实施例中,在向网络设备发送辅助信息时,还可以向网络设备发送请求信息,该请求信息用于触发网络设备发送至少一个信道状态信息参考信号(简称CSI-RS)以进行波束扫描,其中至少一个CSI-RS与终端的阵面预先关联,并且所述终端的一个阵面关联至少一个所述CSI-RS;然后终端测量每个CSI-RS所对应的功率回退后的参考信号接收功率RSRP,并基于测量结果将功率回退后发送功率值最高的参考信号确定为上行传输所需的最优参考信号。
或者,终端测量每个CSI-RS,得到与相应CSI-RS关联的阵面所对应的参考信号接收功率RSRP,根据所述RSRP估计与相应CSI-RS关联的阵面对应的上行发送功率,并根据与相应CSI-RS关联的阵面对应的功率回退值确定与相应CSI-RS关联的阵面的功率回退后的上行发送功率,并将功率回退后的上行发送功率值最高的阵面所关联的参考信号确定为上行传输所需的最优参考信号。
例如,假设终端具有两个阵面(panel),分别为第一阵面panel0和第二阵面panel1,终端进行能力上报,通知网络设备该终端在最优参考信号计算 中考虑功率回退;此外,网络设备为终端配置两个信道状态信息参考信号(简称CSI-RS)资源,表示为第一CSI-RS资源和第二CSI-RS资源,且配置终端通过第一阵面对下行第一CSI-RS资源进行测量以及通过第二阵面对第二CSI-RS资源进行测量。
终端按照网络设备的配置进行测量,得到第一阵面panel0上的测量值L1-RSRP0以及panel1上的测量值L1-RSRP1。终端根据L1-RSRP值估计panel0和panel1的上行发送功率值P0,P1。假设终端检测到panel0方向上有人体遮挡,并确定功率回退值为p_mpr0,同样,终端确定panel1方向上的功率回退值为p_mpr1(如果没有遮挡,此值取0).终端比较P0–p_mpr0与P1–p_mpr1值之间的大小。如果P0–p_mpr0<P1–p_mpr1,则终端确定用panel 1发送上行信号的波束强度大于panel 0,终端汇报给网络设备对应的CSI-RS资源1,指示基站用对应的波束/panel做上行传输性能最优。网络设备在接收到终端的指示后,在之后的上行PUSCH传输中,通过UL TCI-state指示终端用其中包含的参考信号CSI-RS 1的接收波束/panel发送PUSCH。终端收到基站的指示后,用panel上的对应波束发送PUSCH。
其中,如图7所示,MAC CE中新增有第一预设域,第一预设域中包含所述请求信息;所述向所述网络设备发送请求信息,包括:
终端通过所述MAC CE将所述请求信息发送给所述网络设备。
具体的,当具有多传输阵面的终端按照某个预定义的门限检测到MPE事件发生时,终端确定基于阵面或波束的P-MPR值并且在基站配置的上行传输资源上通知基站基于阵面或波束的功率回退值,以及在此功率回退上的P CMAX以及功率余量(简称PH)。此外,如图7所示,同时终端用其中位宽为1比特的第一预设域(Pnew域)触发基站发送至少一个CSI-RS;基站收到终端的汇报,发送至少一个CSI-RS进行波束扫描,终端测量CSI-RS的L1-RSRP值并考虑功率对应波束上的P-MPR值,选择最优参考信号并向基站汇报对应波束索引CRI,协助基站选择后续上行(PUCCH/PUSCH/SRS)传输所用阵面或波束并指示给终端。
例如,假设终端具有2个panel,分别表示为panel-ID1和panel-ID2。 Panel-ID1与CSI-RS1和CSI-RS2相关联,Panel-ID2与CSI-RS3和CSI-RS4相关联。该关联关系可以通过波束扫描预先建立。在第n时隙,假设终端被调度进行上行PUSCH传输,用接收CSI-RS1的波束发送PUSCH。同时,终端检测到panel-ID1遇到MPE问题并且做了功率回退,功率回退值为P_MPR1并且超过了系统配置的门限,终端向基站发送MPE汇报,采用图7所示的功率余量上报的PHR MAC-CE,其中位宽为1比特的P new域用来触发网络设备发送CSI-RS。
然后,网络设备收到终端的汇报之后,发送CSI-RS1、CSI-RS2、CSI-RS3和CSI-RS4进行波束扫描,终端测量并比较各个CSI-RS的L1-RSRP值并考虑功率回退的影响。比如终端比较L1-RSRP 1,1–P_MPR1,L1-RSRP 1,2–P_MPR2,L1-RSRP 2,3–P_MPR2,L1-RSRP 2,4–P_MPR4,其中L1-RSRP i,j表示panel-ID i上的第j个CSI-RS的L1-RSRP值;终端发现L1-RSRP 2,4–P_MPR4最大,则终端认为用于接收panel-ID2上的第4个CSI-RS的波束是用于上行传输的最优波束。终端汇报CRI-RS4给网络设备,网络设备收到终端的汇报,指示终端用接收panel-ID2上的第4个CSI-RS的波束发送PUSCH。
在一些实施例中,媒体接入控制层控制单元(MAC CE)中新增有第二预设域,所述第二预设域用于指示所述上行传输所需的最优参考信号的标识信息;终端通过MAC CE将辅助信息发送给网络设备;其中,所述辅助信息包括所述上行传输所需的最优参考信号的标识信息和所述终端的一个或多个阵面所对应的P-MPR值。
具体的,新增第二预设域后的MAC CE如图8所示,MAC CE中CRI/SSBRI域为新增的第二预设域,此时可以通过设置CRI/SSBRI的取值与波束或阵面之间的对应关系,实现通过设置CRI/SSBRI的取值确定上行传输所需的最优参考信号。
即,若具有多传输阵面的终端按照某个预定义的门限检测到MPE事件发生时,终端确定基于阵面/波束的P-MPR值并且在网络设备配置的上行传输资源上通知网络设备基于阵面/波束的功率回退值、在此功率回退上的最大输出功率(P CMAX)、功率余量(PH)以及上行传输所需的最优参考 信号(CRI/SSBRI),具体参见图8所示,以协助网络设备选择终端后续上行(PUCCH/PUSCH/SRS)传输所用的阵面/波束并指示给终端。具体的,上行传输所需的最优参考信号可以指没有MPE问题的候选波束。
例如,针对终端在发生MPE事件后自主上报辅助信息的方式:
假设终端具有2个panel,表示为panel-ID0和panel-ID1。在第n时隙,终端检测到panel-ID0上发送波束的MPE值超过了环境监管部门规定的门限值,终端对panel-ID0上的波束做功率回退。假设功率回退值P-MPR为6dB,超过了网络预先规定的门限值(例如3dB),则终端触发MPE汇报,将图8所示的MAC CE在网络设备已经分配的上行传输资源上传输给网络设备。在图8所示的MAC CE中,MPE域被设置为01(2比特),表示实际所使用的P-MPR绝对值为6dB;同时CRI/SSBRI域的值为1,表示panel-ID1上的波束1作为未做功率回退的候选波束,用于后续的上行传输。网络设备在接收到终端的指示后,在之后的上行PUSCH传输中,通过UL TCI-state指示终端用CSI-RS1的接收波束/panel发送PUSCH。终端收到基站的指示后,用panel-ID1上的对应波束发送PUSCH。
又例如,假设终端具有2个panel,分别表示为panel-ID1和panel-ID2。Panel-ID1与CSI-RS1和CSI-RS2相关联,Panel-ID2与CSI-RS3和CSI-RS4相关联,这种关联关系可以通过波束扫描预先建立。在第n时隙,假设终端被调度进行上行PUSCH传输,用接收CSI-RS1的波束发送PUSCH。同时,终端检测到panel-ID1遇到MPE问题并且做了功率回退,功率回退值为P_MPR1并且超过了系统配置的门限,终端向网络设备发送MPE汇报,采用图8所示的功率余量上报的媒体接入控制控制单元(PHR MAC-CE)。网络设备收到终端的汇报之后,网络设备发送CSI-RS1,CSI-RS2,CSI-RS3,CSI-RS4进行波束扫描,终端测量并比较各个CSI-RS的L1-RSRP值并考虑功率回退的影响,比如终端比较L1-RSRP 1,1–P_MPR1,L1-RSRP 1,2–P_MPR2,L1-RSRP 2,3–P_MPR2,L1-RSRP 2,4–P_MPR4,其中L1-RSRP i,j代表panel-ID i上的第j个CSI-RS的L1-RSRP值,终端发现L1-RSRP 1,1–P_MPR1,L1-RSRP 1,2–P_MPR2为最大和次大,分别表示为 L1-RSRP new,1和L1-RSRP new,2。终端汇报L1-RSRP new,1+CRI1,L1-RSRP new,2+CRI2给网络设备。网络设备收到终端的汇报,选择一个波束,比如接收CSI-RS1的波束作为上行传输的最佳波束,并指示终端用接收panel-ID1上的第1个CSI-RS的波束发送PUSCH。
通过上述方式实现了终端自主发送辅助信息的发送方式,使得终端在发生MPE事件后即上报辅助信息,从而使得网络设备能够及时的选择终端后续上行传输所使用的阵面或波束,从而降低了MPE问题带来的上行覆盖损失。
这样通过上述任一种方式均实现了辅助信息的发送。
此外,可选地,在本实施例中,终端向网络设备发送辅助信息时,可以包括下述任意一项:
向网络设备周期性的发送辅助信息;
向网络设备半持续性的发送辅助信息;
向网络设备非周期性的发送辅助信息。
即终端可以周期性的、半持续性的或非周期性的发送辅助信息,在此不对此进行具体限定,从而保证了辅助信息发送方式的灵活性。
此外,还需要说明的是,终端向网络设备发送辅助信息时,可以通过物理随机接入信道(简称PRACH)、PUCCH或PUSCH向网络设备发送辅助信息,在此不进行具体限定。
这样,本实施例提供的阵面选择方法,通过向网络设备发送辅助信息,且辅助信息包括上行传输所需的最优参考信号的标识信息或者MPE事件发生时终端的一个或多个阵面所对应的P-MPR值,使得该辅助信息能够准确反映终端不同传输阵面的性能差别,从而使得网络设备能够基于该辅助信息进行准确的后续上行传输所使用的阵面或波束选择,降低了MPE问题所带来的上行覆盖损失。
如图2所示,为本申请实施例中应用于网络设备的阵面选择方法的步骤流程图,该方法包括:
步骤201:接收终端发送的辅助信息。
具体的,辅助信息包括以下至少一项:上行传输所需的最优参考信号的 标识信息,MPE事件发生时终端的一个或多个阵面所对应的P-MPR值。
具体的,网络设备接收终端所发送的辅助信息,该辅助信息可以包括上行传输所需的最优参考信号的标识信息,和/或包括MPE事件发生时终端的一个或多个阵面所对应的P-MPR值。
在此需要说明的是,针对辅助信息的具体介绍可以参见终端侧方法实施例的相关内容,在此不再进行赘述。
步骤202:根据辅助信息确定终端进行新的上行波束扫描或者后续上行传输所使用的阵面。
在本步骤中,具体的,网络设备在获取到辅助信息之后,可以根据辅助信息确定终端进行新的上行波束扫描,即控制终端进行新的上行波束扫描重新选择阵面或波束,或者根据辅助信息确定终端后续上行传输所使用的阵面,以实现最优阵面或波束的选择,从而降低MPE问题带来的上行覆盖损失。
步骤203:向终端发送指示信息。
具体的,指示信息用于指示终端后续上行传输所使用的阵面,或者指示终端进行新的上行波束扫描。
在本步骤中,网络设备在确定终端进行新的上行波束扫描或者后续上行传输所使用的阵面或波束之后,向终端发送指示信息,以指示终端后续上行传输所使用的阵面或波束,或者指示终端进行新的上行波束扫描。
这样,本实施例通过接收终端所发送的辅助信息,且辅助信息包括上行传输所需的最优参考信号的标识信息和/或MPE事件发生时终端的一个或多个阵面所对应的P-MPR值,基于该辅助信息能够准确反映终端不同传输阵面的性能差别,从而使得网络设备能够基于该辅助信息进行准确的后续上行传输所使用的阵面或波束选择,降低了MPE问题所带来的上行覆盖损失。
可选地,在本实施例中,网络设备根据辅助信息确定终端后续上行传输所使用的阵面或波束时,可以通过下述任意方式:
其一,当辅助信息包括上行传输所需的最优参考信号的标识信息时,将上行传输所需的最优参考信号所对应的阵面或波束确定为终端后续上行传输所使用的阵面或波束。
即当辅助信息包括上行传输所需的最优参考信号的标识信息时,网络设备可以直接将该最优参考信号所对应的阵面或波束确定为终端后续上行传输所使用的阵面或波束,从而保证了所确定的终端后续上行传输所使用的阵面或波束的波束强度为最高波束强度,避免了MPE问题带来的上行覆盖损失。
其二,当辅助信息包括终端的一个或多个阵面所对应的P-MPR值时,基于终端的一个或多个阵面所对应的P-MPR值确定上行发送功率值最高的阵面或波束,并将上行发送功率值最高的阵面或波束确定为终端后续上行传输所使用的阵面或波束。
具体的,当辅助信息包括终端的一个或多个阵面所对应的P-MPR值,终端可以基于该终端的一个或多个阵面所对应的P-MPR值,从终端的所有阵面或波束中确定上行发送功率值最高的阵面或波束,即选择波束强度最高的阵面或波束,并将该阵面或波束确定为终端后续上行传输所使用的阵面或波束。
在此需要说明的是,若辅助信息还包括该一个或多个阵面所对应的RSRP,则网络设备可以进一步参考该一个或多个阵面所对应的RSRP确定上行发送功率值最高的阵面或波束。此时,可以计算每个阵面的RSRP与P-MPR值之间的差值,并将差值最大的阵面或波束确定为上行发送功率值最高的阵面或波束。
当然若配置全部阵面所对应的RSRP相同,则网络设备不接收一个或多个阵面所对应的RSRP,同样能够确定上行发送功率值最高的阵面或波束,此时可以将P-MPR值最小的阵面或波束确定为上行发送功率值最高的阵面或波束。
这样,通过上述任一方式均能够准确的确定终端后续上行传输所使用的阵面或波束,从而避免了MPE问题带来的上行覆盖损失。
可选地,当辅助信息包括终端的一个或多个阵面所对应的P-MPR值时,所述辅助信息还包括:MPE事件;和/或,一个或多个阵面所对应的参考信号接收功率RSRP。
此外,MPE事件的触发条件包括:预设时段内存在P-MPR值大于预设回退值;或者,针对任意阵面,上行波束的RSRP估计值小于预设值。
上行传输包括PUCCH、PUSCH或SRS。
在此需要说明的是,针对上述内容的具体介绍可以参见终端侧方法实施例的相关内容,在此不再进行赘述。
此外,可选地,网络设备接收终端发送的辅助信息时,可以包括下述任一方式:
其一,向终端发送通知信息,并接收终端根据通知信息所发送的辅助信息。
具体的,通知信息用于通知终端上报上行传输所需的最优参考信号的标识信息和/或所述终端的一个或多个阵面所对应的P-MPR值。
具体的,所述通知信息还用于通知所述终端上报功率回退后的RSRP,此时所述第一辅助信息还包括功率回退后的RSRP。
此外,具体的,网络设备向终端发送通知信息之前,可以接收终端发送的能力信息,其中能力信息用于指示终端具有在最优参考信号的计算中加入功率回退值的能力。
其二,接收终端在检测到MPE事件发生时所发送的所述辅助信息。
具体的,辅助信息包括以下至少一项:上行传输所需的最优参考信号的标识信息,终端的一个或多个阵面所对应的P-MPR值。
此外,可选地,网络设备在接收所述终端在检测到MPE事件发生时所发送的辅助信息时,还可以接收终端所发送的请求信息,所述请求信息用于触发所述网络设备发送至少一个CSI-RS进行波束扫描,其中至少一个CSI-RS与终端的阵面预先关联,并且所述终端的一个阵面关联至少一个所述CSI-RS;然后网络设备基于所述请求信息发送所述至少一个CSI-RS进行波束扫描,从而使得终端能够测量并比较每个CSI-RS的功率回退后的RSRP值,进而基于测量结果将发送功率值最高的参考信号确定为上行传输所需的最优参考信号,并将上行传输所需的最优参考信号发送给网络设备,此时网络设备可以基于至少一个CSI-RS与终端的阵面的关联关系,确定用于上行传输的阵面以及波束。
具体的,MAC CE中新增有第一预设域,所述第一预设域中包含所述请 求信息;终端通过所述MAC CE将所述请求信息发送给所述网络设备。
另外,MAC CE中新增有第二预设域,所述第二预设域用于指示所述上行传输所需的最优参考信号的标识信息;其中,网络设备接收所述终端通过所述MAC CE所发送的辅助信息。
这样,网络设备可以控制终端进行辅助信息的发送或者终端在触发MPE事件时自主发送辅助信息,针对上述两种方式的具体内容可以参见终端侧方法实施例的相关内容,在此不再进行赘述。
此外,可选地,网络设备接收终端发送的辅助信息,包括下述任意一项:
接收终端周期性发送的辅助信息;
接收终端半持续性发送的辅助信息;
接收终端非周期性发送的辅助信息。
此外,网络设备接收终端发送的辅助信息时,还可以接收终端通过PRACH、PUCCH或PUSCH发送的辅助信息。
在此需要说明的是,针对上述辅助信息的具体接收方式的具体介绍可以参见终端侧方法实施例的相关内容,在此不再进行赘述。
本实施例提供的阵面选择方法,网络设备通过接收辅助信息并基于辅助信息选择终端后续进行上行传输的阵面或波束,或确定终端进行新的上行波束扫描,基于辅助信息能够反映终端阵面的性能,因此使得终端在使用网络设备所选择的阵面或波束或进行新的上行波束扫描后,避免了MPE问题带来的上行覆盖损失。
图3是本申请实施例提供的一种终端的结构示意图,包括存储器320,收发机300,处理器310。
其中,在图3中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器310代表的一个或多个处理器和存储器320代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机300可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元, 这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器310负责管理总线架构和通常的处理,存储器320可以存储处理器310在执行操作时所使用的数据。
处理器310可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
存储器320,用于存储计算机程序;收发机300,用于在所述处理器的控制下收发数据;处理器310,用于读取所述存储器中的计算机程序并执行以下操作:
向网络设备发送辅助信息,所述辅助信息包括以下至少一项:上行传输所需的最优参考信号的标识信息,最大功率辐射MPE事件发生时终端的一个或多个阵面所对应的基于阵面的最大功率回退P-MPR值。
接收所述网络设备基于所述辅助信息所发送的指示信息,其中所述指示信息用于指示所述终端后续上行传输所使用的阵面,或者指示所述终端进行新的上行波束扫描。
可选地,当所述辅助信息包括终端的一个或多个阵面所对应的P-MPR值时,所述辅助信息还包括:
MPE事件;和/或,一个或多个阵面所对应的参考信号接收功率RSRP。
可选地,所述向网络设备发送辅助信息,包括:
接收所述网络设备发送的通知信息,并根据所述通知信息向所述网络设备发送所述辅助信息,其中所述通知信息用于通知所述终端上报上行传输所需的最优参考信号的标识信息和/或所述终端的一个或多个阵面所对应的P-MPR值;或者,
当所述终端检测到MPE事件发生时,向所述网络设备发送所述辅助信息。
可选地,所述当所述终端检测到MPE事件发生时,向所述网络设备发送所述辅助信息,还包括:
向所述网络设备发送请求信息,所述请求信息用于触发所述网络设备发送至少一个信道状态信息参考信号CSI-RS以进行波束扫描,其中所述至少一个CSI-RS与所述终端的阵面预先关联,并且所述终端的一个阵面关联至少一个所述CSI-RS;
测量每个CSI-RS,得到与相应CSI-RS关联的阵面所对应的参考信号接收功率RSRP,根据所述RSRP估计所述阵面对应的上行发送功率,并根据所述阵面对应的功率回退值确定所述阵面的功率回退后的上行发送功率,并将功率回退后的上行发送功率值最高的阵面所关联的参考信号确定为上行传输所需的最优参考信号。
可选地,媒体接入控制层控制单元MAC CE中新增有第一预设域,所述第一预设域中包含所述请求信息;
所述向所述网络设备发送请求信息,包括:
所述终端通过所述MAC CE将所述请求信息发送给所述网络设备。
可选地,媒体接入控制层控制单元MAC CE中新增有第二预设域,所述第二预设域用于指示所述上行传输所需的最优参考信号的标识信息;
所述当所述终端检测到MPE事件发生时,向所述网络设备发送所述辅助信息,包括:
当所述终端检测到MPE事件发生时,所述终端通过所述MAC CE将所述辅助信息发送给所述网络设备;
其中,所述辅助信息包括所述上行传输所需的最优参考信号的标识信息和所述终端的一个或多个阵面所对应的P-MPR值。
可选地,所述通知信息还用于通知所述终端上报功率回退后的RSRP,所述第一辅助信息还包括功率回退后的RSRP。
可选地,所述接收所述网络设备发送的通知信息之前,还包括:
向所述网络设备上报能力信息,其中所述能力信息用于指示所述终端具有在最优参考信号的计算中加入功率回退值的能力。
可选地,所述根据所述通知信息向所述网络设备发送所述第一辅助信息之前,还包括:
使用每个阵面对所述网络设备所配置的参考信号进行RSRP测量,确定每个阵面所测量得到的参考信号的RSRP;根据每个阵面所测量得到的参考信号的RSRP以及每个阵面的P-MPR值,确定上行发送功率值最高的参考信号,并将所述发送功率值最高的参考信号确定为所述上行传输所需的最优参考信号。
可选地,所述向网络设备发送辅助信息,包括下述任意一项:
向所述网络设备周期性的发送辅助信息;
向所述网络设备半持续性的发送辅助信息;
向所述网络设备非周期性的发送辅助信息。
可选地,所述向网络设备发送辅助信息,包括:
通过物理随机接入信道PRACH、物理上行控制信道PUCCH或物理上行共享信道PUSCH向所述网络设备发送所述辅助信息。
可选地,所述MPE事件的触发条件包括:
预设时段内存在P-MPR值大于预设回退值;或者,针对任意阵面,上行波束的RSRP估计值小于预设值。
可选地,所述上行传输包括PUCCH、PUSCH或信道探测参考信号SRS。
在此需要说明的是,上述实施例能够实现终端侧方法实施例的所有方法步骤并能够达到相同的技术效果,在此不再进行赘述。
图4是本申请实施例提供的一种网络设备的结构示意图,包括存储器420,收发机400,处理器410。
其中,在图4中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器410代表的一个或多个处理器和存储器420代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机400可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器410负责管理总线架构和通常的处理,存储器420可以存储处理器410在执行操作时 所使用的数据。
处理器410可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
存储器420,用于存储计算机程序;收发机400,用于在所述处理器的控制下收发数据;处理器410,用于读取所述存储器中的计算机程序并执行以下操作:
接收终端发送的辅助信息,所述辅助信息包括以下至少一项:上行传输所需的最优参考信号的标识信息,最大功率辐射MPE事件发生时终端的一个或多个阵面所对应的基于阵面的最大功率回退P-MPR值;
根据所述辅助信息确定所述终端进行新的上行波束扫描或者后续上行传输所使用的阵面;
向所述终端发送指示信息,其中所述指示信息用于指示所述终端后续上行传输所使用的阵面,或者指示所述终端进行新的上行波束扫描。
可选地,当所述辅助信息包括终端的一个或多个阵面所对应的P-MPR值时,所述辅助信息还包括:
MPE事件;和/或,一个或多个阵面所对应的参考信号接收功率RSRP。
可选地,所述接收终端发送的辅助信息,包括:
向所述终端发送通知信息,并接收所述终端根据所述通知信息所发送的所述辅助信息,其中所述通知信息用于通知终端上报上行传输所需的最优参考信号的标识信息和/或所述终端的一个或多个阵面所对应的P-MPR值;或者,
接收所述终端在检测到MPE事件发生时所发送的所述辅助信息。
可选地,所述接收所述终端在检测到MPE事件发生时所发送的所述第二辅助信息时,还包括:
接收所述终端所发送的请求信息,所述请求信息用于触发所述网络设备发送至少一个信道状态信息参考信号CSI-RS进行波束扫描,其中所述至少一 个CSI-RS与所述终端的阵面预先关联,并且所述终端的一个阵面关联至至少一个所述CSI-RS;
基于所述请求信息发送所述至少一个CSI-RS以进行波束扫描。
可选地,MAC CE中新增有第一预设域,所述第一预设域中包含所述请求信息;
所述接收所述终端所发送的请求信息,包括:
接收所述终端通过所述MAC CE所发送的所述请求信息。
可选地,媒体接入控制层控制单元MAC CE中新增有第二预设域,所述第二预设域用于指示所述上行传输所需的最优参考信号的标识信息;
所述接收所述终端在检测到MPE事件发生时所发送的所述辅助信息,包括:
接收所述终端通过所述MAC CE所发送的所述辅助信息;
其中,所述辅助信息包括所述上行传输所需的最优参考信号的标识信息和所述终端的一个或多个阵面所对应的P-MPR值。
可选地,所述通知信息还用于通知所述终端上报功率回退后的RSRP,所述第一辅助信息还包括功率回退后的RSRP。
可选地,所述向所述终端发送通知信息之前,还包括:
接收所述终端发送的能力信息,其中所述能力信息用于指示所述终端具有在最优参考信号的计算中加入功率回退值的能力。
可选地,所述接收终端发送的辅助信息,包括下述任意一项:
接收所述终端周期性发送的辅助信息;
接收所述终端半持续性发送的辅助信息;
接收所述终端非周期性发送的辅助信息。
可选地,所述接收终端发送的辅助信息,包括:
接收所述终端通过物理随机接入信道PRACH、物理上行控制信道PUCCH或物理上行共享信道PUSCH发送的所述辅助信息。
可选地,根据所述辅助信息确定终端后续上行传输所使用的阵面,包括:
当所述辅助信息包括上行传输所需的最优参考信号的标识信息时,将所 述上行传输所需的最优参考信号所对应的阵面确定为终端后续上行传输所使用的阵面;或者,
当所述辅助信息包括终端的一个或多个阵面所对应的P-MPR值时,基于所述终端的一个或多个阵面所对应的P-MPR值确定上行发送功率值最高的阵面,并将所述上行发送功率值最高的阵面确定为终端后续上行传输所使用的阵面。
可选地,所述MPE事件的触发条件包括:
预设时段内存在P-MPR值大于预设回退值;或者,针对任意阵面,上行波束的RSRP估计值小于预设值。
可选地,所述上行传输包括PUCCH、PUSCH或信道探测参考信号SRS。
在此需要说明的是,上述实施例能够实现网络设备侧方法实施例的所有方法步骤并能够达到相同的技术效果,在此不再进行赘述。
图5是本申请实施例提供的一种阵面选择装置的模块框图,该装置包括:
发送模块501,用于向网络设备发送辅助信息,所述辅助信息包括以下至少一项:上行传输所需的最优参考信号的标识信息,最大功率辐射MPE事件发生时终端的一个或多个阵面所对应的基于阵面的最大功率回退P-MPR值。
接收模块502,用于接收所述网络设备基于所述辅助信息所发送的指示信息,其中所述指示信息用于指示所述终端后续上行传输所使用的阵面,或者指示所述终端进行新的上行波束扫描。
可选地,当所述辅助信息包括终端的一个或多个阵面所对应的P-MPR值时,所述辅助信息还包括:MPE事件;和/或,一个或多个阵面所对应的参考信号接收功率RSRP。
可选地,所述发送模块包括:
第一发送单元,用于接收所述网络设备发送的通知信息,并根据所述通知信息向所述网络设备发送所述辅助信息,其中所述通知信息用于通知所述终端上报上行传输所需的最优参考信号的标识信息和/或所述终端的一个或多个阵面所对应的P-MPR值;或者,
第二发送单元,用于当所述终端检测到MPE事件发生时,向所述网络设备发送所述辅助信息。
可选地,所述当所述终端检测到MPE事件发生时,向所述网络设备发送所述辅助信息,还包括:
向所述网络设备发送请求信息,所述请求信息用于触发所述网络设备发送至少一个信道状态信息参考信号CSI-RS以进行波束扫描,其中所述至少一个CSI-RS与所述终端的阵面预先关联,并且所述终端的一个阵面关联至少一个所述CSI-RS;
测量每个CSI-RS,得到与相应CSI-RS关联的阵面所对应的参考信号接收功率RSRP,根据所述RSRP估计所述阵面对应的上行发送功率,并根据所述阵面对应的功率回退值确定所述阵面的功率回退后的上行发送功率,并将功率回退后的上行发送功率值最高的阵面所关联的参考信号确定为上行传输所需的最优参考信号。
可选地,媒体接入控制层控制单元MAC CE中新增有第一预设域,所述第一预设域中包含所述请求信息;
所述向所述网络设备发送请求信息,包括:
通过所述MAC CE将所述请求信息发送给所述网络设备。
可选地,媒体接入控制层控制单元MAC CE中新增有第二预设域,所述第二预设域用于指示所述上行传输所需的最优参考信号的标识信息;
所述当所述终端检测到MPE事件发生时,向所述网络设备发送所述辅助信息,包括:
当所述终端检测到MPE事件发生时,通过所述MAC CE将所述辅助信息发送给所述网络设备;
其中,所述辅助信息包括所述上行传输所需的最优参考信号的标识信息和所述终端的一个或多个阵面所对应的P-MPR值。
可选地,所述通知信息还用于通知所述终端上报功率回退后的RSRP,所述第一辅助信息还包括功率回退后的RSRP。
可选地,所述接收所述网络设备发送的通知信息之前,还包括:
上报单元,用于向所述网络设备上报能力信息,其中所述能力信息用于指示所述终端具有在最优参考信号的计算中加入功率回退值的能力。
可选地,所述根据所述通知信息向所述网络设备发送所述辅助信息之前,还包括:
确定单元,用于使用每个阵面对所述网络设备所配置的参考信号进行RSRP测量,确定每个阵面所测量得到的参考信号的RSRP;根据每个阵面所测量得到的参考信号的RSRP以及每个阵面的P-MPR值,确定上行发送功率值最高的参考信号,并将所述发送功率值最高的参考信号确定为所述上行传输所需的最优参考信号。
可选地,所述发送模块用于执行下述任意一项:
向所述网络设备周期性的发送辅助信息;
向所述网络设备半持续性的发送辅助信息;
向所述网络设备非周期性的发送辅助信息。
可选地,所述发送模块用于通过物理随机接入信道PRACH、物理上行控制信道PUCCH或物理上行共享信道PUSCH向所述网络设备发送所述辅助信息。
可选地,所述MPE事件的触发条件包括:预设时段内存在P-MPR值大于预设回退值;或者,针对任意阵面,上行波束的RSRP估计值小于预设值。
可选地,所述上行传输包括PUCCH、PUSCH或信道探测参考信号SRS。
在此需要说明的是,上述实施例能够实现终端侧方法实施例的所有方法步骤并能够达到相同的技术效果,在此不再进行赘述。
图6是本申请实施例提供的一种阵面选择装置的模块框图,该装置包括:
接收模块601,用于接收终端发送的辅助信息,所述辅助信息包括以下至少一项:上行传输所需的最优参考信号的标识信息,最大功率辐射MPE事件发生时终端的一个或多个阵面所对应的基于阵面的最大功率回退P-MPR值;
确定模块602,用于根据所述辅助信息确定所述终端进行新的上行波束扫描或者后续上行传输所使用的阵面;
发送模块603,用于向所述终端发送指示信息,其中所述指示信息用于指示所述终端后续上行传输所使用的阵面,或者指示所述终端进行新的上行波束扫描。
可选地,当所述辅助信息包括终端的一个或多个阵面所对应的P-MPR值时,所述辅助信息还包括:MPE事件;和/或,一个或多个阵面所对应的参考信号接收功率RSRP。
可选地,所述接收模块包括:
第一接收单元,用于向所述终端发送通知信息,并接收所述终端根据所述通知信息所发送的所述辅助信息,其中所述通知信息用于通知终端上报上行传输所需的最优参考信号的标识信息和/或所述终端的一个或多个阵面所对应的P-MPR值;或者,
第二接收单元,用于接收所述终端在检测到MPE事件发生时所发送的所述辅助信息。
可选地,所述接收所述终端在检测到MPE事件发生时所发送的所述第二辅助信息时,还包括:
接收所述终端所发送的请求信息,所述请求信息用于触发所述网络设备发送至少一个信道状态信息参考信号CSI-RS进行波束扫描,其中所述至少一个CSI-RS与所述终端的阵面预先关联,并且所述终端的一个阵面关联至至少一个所述CSI-RS;
基于所述请求信息发送所述至少一个CSI-RS以进行波束扫描。
可选地,MAC CE中新增有第一预设域,所述第一预设域中包含所述请求信息;
所述接收所述终端所发送的请求信息,包括:
接收所述终端通过所述MAC CE所发送的所述请求信息。
可选地,媒体接入控制层控制单元MAC CE中新增有第二预设域,所述第二预设域用于指示所述上行传输所需的最优参考信号的标识信息;
所述接收所述终端在检测到MPE事件发生时所发送的所述辅助信息,包括:
接收所述终端通过所述MAC CE所发送的所述辅助信息;
其中,所述辅助信息包括所述上行传输所需的最优参考信号的标识信息和所述终端的一个或多个阵面所对应的P-MPR值。
可选地,所述通知信息还用于通知所述终端上报功率回退后的RSRP,所述第一辅助信息还包括功率回退后的RSRP。
可选地,所述向所述终端发送通知信息之前,还包括:
第三接收单元,用于接收所述终端发送的能力信息,其中所述能力信息用于指示所述终端具有在最优参考信号的计算中加入功率回退值的能力。
可选地,所述接收模块用于执行下述任意一项:
接收所述终端周期性发送的辅助信息;
接收所述终端半持续性发送的辅助信息;
接收所述终端非周期性发送的辅助信息。
可选地,所述接收模块用于接收所述终端通过物理随机接入信道PRACH、物理上行控制信道PUCCH或物理上行共享信道PUSCH发送的所述辅助信息。
可选地,所述确定模块用于:
当所述辅助信息包括上行传输所需的最优参考信号的标识信息时,将所述上行传输所需的最优参考信号所对应的阵面确定为终端后续上行传输所使用的阵面;或者,
当所述辅助信息包括终端的一个或多个阵面所对应的P-MPR值时,基于所述终端的一个或多个阵面所对应的P-MPR值确定上行发送功率值最高的阵面,并将所述上行发送功率值最高的阵面确定为终端后续上行传输所使用的阵面。
可选地,所述MPE事件的触发条件包括:预设时段内存在P-MPR值大于预设回退值;或者,针对任意阵面,上行波束的RSRP估计值小于预设值。
可选地,所述上行传输包括PUCCH、PUSCH或信道探测参考信号SRS。
在此需要说明的是,上述实施例能够实现网络设备侧方法实施例的所有方法步骤并能够达到相同的技术效果,在此不再进行赘述。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
在此需要说明的是,本申请实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
另一方面,本申请实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行上述实施例中所述的方法。
所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
由上述实施例可见,处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行上述阵面选择方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或 计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (31)

  1. 一种阵面选择方法,其特征在于,包括:
    向网络设备发送辅助信息,所述辅助信息包括以下至少一项:上行传输所需的最优参考信号的标识信息,最大功率辐射MPE事件发生时终端的一个或多个阵面所对应的基于阵面的最大功率回退P-MPR值;
    接收所述网络设备基于所述辅助信息所发送的指示信息,其中所述指示信息用于指示所述终端后续上行传输所使用的阵面,或者指示所述终端进行新的上行波束扫描。
  2. 根据权利要求1所述的阵面选择方法,其特征在于,当所述辅助信息包括终端的一个或多个阵面所对应的P-MPR值时,所述辅助信息还包括:
    MPE事件;和/或,
    一个或多个阵面所对应的参考信号接收功率RSRP。
  3. 根据权利要求1或2所述的阵面选择方法,其特征在于,所述向网络设备发送辅助信息,包括:
    接收所述网络设备发送的通知信息,并根据所述通知信息向所述网络设备发送所述辅助信息,其中所述通知信息用于通知所述终端上报上行传输所需的最优参考信号的标识信息和/或所述终端的一个或多个阵面所对应的P-MPR值;或者,
    当所述终端检测到MPE事件发生时,向所述网络设备发送所述辅助信息。
  4. 根据权利要求3所述的阵面选择方法,其特征在于,所述当所述终端检测到MPE事件发生时,向所述网络设备发送所述辅助信息,还包括:
    向所述网络设备发送请求信息,所述请求信息用于触发所述网络设备发送至少一个信道状态信息参考信号CSI-RS以进行波束扫描,其中所述至少一个CSI-RS与所述终端的阵面预先关联,并且所述终端的一个阵面关联至少一个所述CSI-RS;
    测量每个CSI-RS,得到与相应CSI-RS关联的阵面所对应的参考信号接收功率RSRP,根据所述RSRP估计所述阵面对应的上行发送功率,并根据所 述阵面对应的功率回退值确定所述阵面的功率回退后的上行发送功率,并将功率回退后的上行发送功率值最高的阵面所关联的参考信号确定为上行传输所需的最优参考信号。
  5. 根据权利要求4所述的阵面选择方法,其特征在于,媒体接入控制层控制单元MAC CE中新增有第一预设域,所述第一预设域中包含所述请求信息;
    所述向所述网络设备发送请求信息,包括:
    所述终端通过所述MAC CE将所述请求信息发送给所述网络设备。
  6. 根据权利要求4所述的阵面选择方法,其特征在于,媒体接入控制层控制单元MAC CE中新增有第二预设域,所述第二预设域用于指示所述上行传输所需的最优参考信号的标识信息;
    所述当所述终端检测到MPE事件发生时,向所述网络设备发送所述辅助信息,包括:
    当所述终端检测到MPE事件发生时,所述终端通过所述MAC CE将所述辅助信息发送给所述网络设备;
    其中,所述辅助信息包括所述上行传输所需的最优参考信号的标识信息和所述终端的一个或多个阵面所对应的P-MPR值。
  7. 根据权利要求3所述的阵面选择方法,其特征在于,所述通知信息还用于通知所述终端上报功率回退后的RSRP,所述辅助信息还包括功率回退后的RSRP。
  8. 根据权利要求3所述的阵面选择方法,其特征在于,所述接收所述网络设备发送的通知信息之前,还包括:
    向所述网络设备上报能力信息,其中所述能力信息用于指示所述终端具有在最优参考信号的计算中加入功率回退值的能力。
  9. 根据权利要求3所述的阵面选择方法,其特征在于,所述根据所述通知信息向所述网络设备发送所述辅助信息之前,还包括:
    使用每个阵面对所述网络设备所配置的参考信号进行RSRP测量,确定每个阵面所测量得到的参考信号的RSRP;
    根据每个阵面所测量得到的参考信号的RSRP以及每个阵面的P-MPR值,确定上行发送功率值最高的参考信号,并将所述发送功率值最高的参考信号确定为所述上行传输所需的最优参考信号。
  10. 根据权利要求3所述的阵面选择方法,其特征在于,所述向网络设备发送辅助信息,包括下述任意一项:
    向所述网络设备周期性的发送辅助信息;
    向所述网络设备半持续性的发送辅助信息;
    向所述网络设备非周期性的发送辅助信息。
  11. 根据权利要求3所述的阵面选择方法,其特征在于,所述向网络设备发送辅助信息,包括:
    通过物理随机接入信道PRACH、物理上行控制信道PUCCH或物理上行共享信道PUSCH向所述网络设备发送所述辅助信息。
  12. 根据权利要求1所述的阵面选择方法,其特征在于,所述MPE事件的触发条件包括:
    预设时段内存在P-MPR值大于预设回退值;或者,
    针对任意阵面,上行波束的RSRP估计值小于预设值。
  13. 根据权利要求1所述的阵面选择方法,其特征在于,所述上行传输包括PUCCH、PUSCH或信道探测参考信号SRS。
  14. 一种阵面选择方法,其特征在于,包括:
    接收终端发送的辅助信息,所述辅助信息包括以下至少一项:上行传输所需的最优参考信号的标识信息,最大功率辐射MPE事件发生时终端的一个或多个阵面所对应的基于阵面的最大功率回退P-MPR值;
    根据所述辅助信息确定所述终端进行新的上行波束扫描或者后续上行传输所使用的阵面;
    向所述终端发送指示信息,其中所述指示信息用于指示所述终端后续上行传输所使用的阵面,或者指示所述终端进行新的上行波束扫描。
  15. 根据权利要求14所述的阵面选择方法,其特征在于,当所述辅助信息包括终端的一个或多个阵面所对应的P-MPR值时,所述辅助信息还包括:
    MPE事件;和/或,
    一个或多个阵面所对应的参考信号接收功率RSRP。
  16. 根据权利要求14或15所述的阵面选择方法,其特征在于,所述接收终端发送的辅助信息,包括:
    向所述终端发送通知信息,并接收所述终端根据所述通知信息所发送的所述辅助信息,其中所述通知信息用于通知终端上报上行传输所需的最优参考信号的标识信息和/或所述终端的一个或多个阵面所对应的P-MPR值;或者,
    接收所述终端在检测到MPE事件发生时所发送的所述辅助信息。
  17. 根据权利要求16所述的阵面选择方法,其特征在于,所述接收所述终端在检测到MPE事件发生时所发送的所述辅助信息时,还包括:
    接收所述终端所发送的请求信息,所述请求信息用于触发所述网络设备发送至少一个信道状态信息参考信号CSI-RS进行波束扫描,其中所述至少一个CSI-RS与所述终端的阵面预先关联,并且所述终端的一个阵面关联至至少一个所述CSI-RS;
    基于所述请求信息发送所述至少一个CSI-RS以进行波束扫描。
  18. 根据权利要求17所述的阵面选择方法,其特征在于,MAC CE中新增有第一预设域,所述第一预设域中包含所述请求信息;
    所述接收所述终端所发送的请求信息,包括:
    网络设备接收所述终端通过所述MAC CE所发送的所述请求信息。
  19. 根据权利要求17所述的阵面选择方法,其特征在于,媒体接入控制层控制单元MAC CE中新增有第二预设域,所述第二预设域用于指示所述上行传输所需的最优参考信号的标识信息;
    所述接收所述终端在检测到MPE事件发生时所发送的所述辅助信息,包括:
    网络设备接收所述终端通过所述MAC CE所发送的所述辅助信息;
    其中,所述辅助信息包括所述上行传输所需的最优参考信号的标识信息和所述终端的一个或多个阵面所对应的P-MPR值。
  20. 根据权利要求16所述的阵面选择方法,其特征在于,所述通知信息还用于通知所述终端上报功率回退后的RSRP,所述辅助信息还包括功率回退后的RSRP。
  21. 根据权利要求16所述的阵面选择方法,其特征在于,所述向所述终端发送通知信息之前,还包括:
    接收所述终端发送的能力信息,其中所述能力信息用于指示所述终端具有在最优参考信号的计算中加入功率回退值的能力。
  22. 根据权利要求16所述的阵面选择方法,其特征在于,所述接收终端发送的辅助信息,包括下述任意一项:
    接收所述终端周期性发送的辅助信息;
    接收所述终端半持续性发送的辅助信息;
    接收所述终端非周期性发送的辅助信息。
  23. 根据权利要求16所述的阵面选择方法,其特征在于,所述接收终端发送的辅助信息,包括:
    接收所述终端通过物理随机接入信道PRACH、物理上行控制信道PUCCH或物理上行共享信道PUSCH发送的所述辅助信息。
  24. 根据权利要求14所述的阵面选择方法,其特征在于,根据所述辅助信息确定终端后续上行传输所使用的阵面,包括:
    当所述辅助信息包括上行传输所需的最优参考信号的标识信息时,将所述上行传输所需的最优参考信号所对应的阵面确定为终端后续上行传输所使用的阵面;或者,
    当所述辅助信息包括终端的一个或多个阵面所对应的P-MPR值时,基于所述终端的一个或多个阵面所对应的P-MPR值确定上行发送功率值最高的阵面,并将所述上行发送功率值最高的阵面确定为终端后续上行传输所使用的阵面。
  25. 根据权利要求14所述的阵面选择方法,其特征在于,所述MPE事件的触发条件包括:
    预设时段内存在P-MPR值大于预设回退值;或者,
    针对任意阵面,上行波束的RSRP估计值小于预设值。
  26. 根据权利要求14所述的阵面选择方法,其特征在于,所述上行传输包括PUCCH、PUSCH或信道探测参考信号SRS。
  27. 一种终端,其特征在于,包括存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    向网络设备发送辅助信息,所述辅助信息包括以下至少一项:上行传输所需的最优参考信号的标识信息,最大功率辐射MPE事件发生时终端的一个或多个阵面所对应的基于阵面的最大功率回退P-MPR值;
    接收所述网络设备基于所述辅助信息所发送的指示信息,其中所述指示信息用于指示所述终端后续上行传输所使用的阵面,或者指示所述终端进行新的上行波束扫描。
  28. 一种网络设备,其特征在于,包括存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    接收终端发送的辅助信息,所述辅助信息包括以下至少一项:上行传输所需的最优参考信号的标识信息,最大功率辐射MPE事件发生时终端的一个或多个阵面所对应的基于阵面的最大功率回退P-MPR值;
    根据所述辅助信息确定终端进行新的上行波束扫描或者后续上行传输所使用的阵面;
    向所述终端发送指示信息,其中所述指示信息用于指示所述终端后续上行传输所使用的阵面,或者指示所述终端进行新的上行波束扫描。
  29. 一种阵面选择装置,其特征在于,包括:
    发送模块,用于向网络设备发送辅助信息,所述辅助信息包括以下至少一项:上行传输所需的最优参考信号的标识信息,最大功率辐射MPE事件发生时终端的一个或多个阵面所对应的基于阵面的最大功率回退P-MPR值;
    接收模块,用于接收所述网络设备基于所述辅助信息所发送的指示信息,其中所述指示信息用于指示所述终端后续上行传输所使用的阵面,或者指示 所述终端进行新的上行波束扫描。
  30. 一种阵面选择装置,其特征在于,包括:
    接收模块,用于接收终端发送的辅助信息,所述辅助信息包括以下至少一项:上行传输所需的最优参考信号的标识信息,最大功率辐射MPE事件发生时终端的一个或多个阵面所对应的基于阵面的最大功率回退P-MPR值;
    确定模块,用于根据所述辅助信息确定终端进行新的上行波束扫描或者后续上行传输所使用的阵面;
    发送模块,用于向所述终端发送指示信息,其中所述指示信息用于指示所述终端后续上行传输所使用的阵面,或者指示所述终端进行新的上行波束扫描。
  31. 一种处理器可读存储介质,其特征在于,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使处理器执行权利要求1至13任一项所述的方法,或执行权利要求14至26任一项所述的方法。
PCT/CN2021/125791 2020-10-23 2021-10-22 一种阵面选择方法、终端、网络设备及存储介质 WO2022083752A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237016242A KR20230087568A (ko) 2020-10-23 2021-10-22 어레이 선택 방법, 단말, 네트워크 기기 및 저장 매체
JP2023524806A JP2023547163A (ja) 2020-10-23 2021-10-22 パネル選択方法、端末、ネットワークデバイス及び記憶媒体
EP21882164.3A EP4236427A4 (en) 2020-10-23 2021-10-22 ARRAY SELECTION METHOD, TERMINAL DEVICE, NETWORK DEVICE AND STORAGE MEDIUM
US18/250,221 US20240007973A1 (en) 2020-10-23 2021-10-22 Array selection method, terminal, network device, and storage medium

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202011148642 2020-10-23
CN202011148642.8 2020-10-23
CN202011458095.3 2020-12-10
CN202011458095 2020-12-10
CN202011565451.1A CN114501639A (zh) 2020-10-23 2020-12-25 一种阵面选择方法、终端、网络设备及存储介质
CN202011565451.1 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022083752A1 true WO2022083752A1 (zh) 2022-04-28

Family

ID=81291661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125791 WO2022083752A1 (zh) 2020-10-23 2021-10-22 一种阵面选择方法、终端、网络设备及存储介质

Country Status (5)

Country Link
US (1) US20240007973A1 (zh)
EP (1) EP4236427A4 (zh)
JP (1) JP2023547163A (zh)
KR (1) KR20230087568A (zh)
WO (1) WO2022083752A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4297497A1 (en) * 2022-06-21 2023-12-27 Nokia Technologies Oy User equipment comprising multiple antennas and corresponding method and computer program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108539418A (zh) * 2018-05-25 2018-09-14 西安欣创电子技术有限公司 一种相控阵雷达天线控制系统及方法
US10153731B2 (en) * 2016-10-24 2018-12-11 RF Pixels, Inc. Apparatus and method for operating a power amplifier array with enhanced efficiency at back-off power levels
CN109417717A (zh) * 2018-09-27 2019-03-01 北京小米移动软件有限公司 测量配置方法、装置、设备、系统及存储介质
WO2020197091A1 (en) * 2019-03-26 2020-10-01 Samsung Electronics Co., Ltd. Electronic device having antenna array and power backoff control method for the electronic device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113632385B (zh) * 2019-03-27 2024-05-28 瑞典爱立信有限公司 下行链路参考信号的波束成形接收

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10153731B2 (en) * 2016-10-24 2018-12-11 RF Pixels, Inc. Apparatus and method for operating a power amplifier array with enhanced efficiency at back-off power levels
CN108539418A (zh) * 2018-05-25 2018-09-14 西安欣创电子技术有限公司 一种相控阵雷达天线控制系统及方法
CN109417717A (zh) * 2018-09-27 2019-03-01 北京小米移动软件有限公司 测量配置方法、装置、设备、系统及存储介质
WO2020197091A1 (en) * 2019-03-26 2020-10-01 Samsung Electronics Co., Ltd. Electronic device having antenna array and power backoff control method for the electronic device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4236427A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4297497A1 (en) * 2022-06-21 2023-12-27 Nokia Technologies Oy User equipment comprising multiple antennas and corresponding method and computer program

Also Published As

Publication number Publication date
EP4236427A1 (en) 2023-08-30
US20240007973A1 (en) 2024-01-04
KR20230087568A (ko) 2023-06-16
EP4236427A4 (en) 2024-04-17
JP2023547163A (ja) 2023-11-09

Similar Documents

Publication Publication Date Title
EP3965438B1 (en) Methods and apparatuses for signal transmission, signal measurement reporting, and positioning
WO2022083583A1 (zh) 小区切换方法、终端、基站、装置和存储介质
US11792669B2 (en) Measurement method, device, and system
US20230413361A1 (en) Message processing method and apparatus, terminal device, network device and storage medium
US20240056825A1 (en) Ue capability information processing method and apparatus, device, and storage medium
WO2018059343A1 (zh) 信号传输方法和装置
WO2021179305A1 (zh) 用于上行传输的方法和装置
WO2022078115A1 (zh) 功率确定方法、装置、终端及网络侧设备
US20210127286A1 (en) Method for wireless communication, terminal, and non-transitory computer-readable storage medium
EP3554179A1 (en) Wireless communication method and device
US20230362867A1 (en) Measurement method and apparatus for positioning, and storage medium
WO2021017893A1 (zh) 波束测量方法及装置
WO2021056334A1 (zh) 用于激活辅小区的通信方法和装置
WO2022083752A1 (zh) 一种阵面选择方法、终端、网络设备及存储介质
WO2022028279A1 (zh) 传输失败恢复方法、装置、设备及存储介质
WO2020151554A1 (zh) 一种信息发送、检测方法及装置
CN114501639A (zh) 一种阵面选择方法、终端、网络设备及存储介质
WO2022028501A1 (zh) 一种信号传输方法、装置及存储介质
WO2022078217A1 (zh) 先听后传方法、终端、网络设备、装置及存储介质
AU2021418673A1 (en) Beam indication method and apparatus, and storage medium
WO2023130903A1 (zh) 发送物理随机接入信道prach的方法、装置及存储介质
WO2022206124A1 (zh) 随机接入方法、设备、装置及存储介质
WO2023045759A1 (zh) 定时提前方法、装置及存储介质
WO2024027642A1 (zh) 一种信息传输方法、装置及设备
WO2023202437A1 (zh) 多播业务的传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882164

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023524806

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18250221

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237016242

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021882164

Country of ref document: EP

Effective date: 20230523