WO2020151554A1 - 一种信息发送、检测方法及装置 - Google Patents

一种信息发送、检测方法及装置 Download PDF

Info

Publication number
WO2020151554A1
WO2020151554A1 PCT/CN2020/072333 CN2020072333W WO2020151554A1 WO 2020151554 A1 WO2020151554 A1 WO 2020151554A1 CN 2020072333 W CN2020072333 W CN 2020072333W WO 2020151554 A1 WO2020151554 A1 WO 2020151554A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
failure recovery
beam failure
recovery response
coreset
Prior art date
Application number
PCT/CN2020/072333
Other languages
English (en)
French (fr)
Inventor
黄秋萍
陈润华
高秋彬
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Publication of WO2020151554A1 publication Critical patent/WO2020151554A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • This application relates to the field of communication technology, and in particular to an information transmission and detection method and device.
  • BFR beam failure recovery
  • Pcell is in FR1 (frequency band without BFR), and uplink (Up Link, UL) and downlink (Down Link, DL) transmission (Scell with UL/DL) can be performed on Scell;
  • Pcell is in FR2 (the frequency band where BFR is required), and uplink UL and downlink DL transmission (Scell with UL/DL) can be performed on Scell;
  • Pcell is in FR1 (frequency band without BFR), and Scell can only perform downlink DL transmission (DL-only Scell);
  • the Pcell is in FR2 (the frequency band where BFR is required), and only the downlink DL transmission (DL-only Scell) can be performed on the Scell.
  • the BFR mechanism of the existing Rel-15 NR system is only applicable to scenario 1 and scenario 2 when applied to the Scell, and not applicable to scenario 2 and scenario 3.
  • the Physical Uplink Control Channel (PUCCH) is used to report the bearer channel in the Scell BFR process, one possible way is for the UE to report beam failure events and candidate beams on the Pcell.
  • the Scell receives the beam failure recovery response of the base station, but the performance of this method in scenario 2 and scenario 4 cannot be guaranteed, because the Pcell itself may also have beam failure.
  • the embodiments of the present application provide an information transmission and detection method and device to ensure the performance of beam failure reply response.
  • the first cell is a cell in which a beam failure has occurred
  • a target cell corresponding to the first cell includes at least one first cell and/or at least one cell other than the first cell.
  • the sending the beam failure recovery response of the first cell on the target cell corresponding to the first cell includes: sending at least two beam failure recovery responses of the first cell on the same target cell.
  • the method further includes: receiving candidate beam information reported by the terminal for the first cell, and determining a time-frequency resource location and/or a transmission beam of the beam failure recovery response according to the candidate beam information.
  • the method further includes: sending the mapping relationship between the candidate beam information corresponding to the first cell and the time-frequency resource position of the beam failure recovery response to the terminal;
  • Determining the time-frequency resource location and/or the transmission beam of the beam failure recovery response according to the candidate beam information includes:
  • the method further includes sending configuration information of a first control resource set CORESET to the terminal, where the first CORESET is a CORESET used to carry a beam failure recovery response, and the first CORESETs of at least two cells are the same ; Wherein, the first CORESET of any cell is the CORESET used to carry the beam failure recovery response of the cell.
  • the configuration information of the first control resource set CORESET is carried by the configuration information of a first search space, and the first search space has a one-to-one correspondence with the first CORESET, wherein the first search space is The search space corresponding to the first physical downlink control channel PDCCH used to carry the beam failure recovery response.
  • the first search spaces of the at least two cells are different search spaces.
  • the first search spaces of the at least two cells do not overlap in time.
  • the first cell includes at least two cells, and the first control resource set CORESET of the at least two cells is the same;
  • Sending the beam failure recovery response of the first cell on the target cell corresponding to the first cell includes: using the same sending beam to send the beam failure recovery response of the at least two cells on the target cell corresponding to the first cell.
  • the receiving terminal uses the candidate beam information to obtain at least two transmission beams corresponding to each of the first cells, and uses the transmission beams to respectively transmit the at least two A first PDCCH corresponding to the first cell.
  • the method further includes:
  • the transmission opportunities of the beam failure recovery responses of the multiple cells conflict, the transmission opportunities of the multiple beam failure recovery responses are conflicted according to the priority of the first cell The beam recovery response of the cell fails.
  • sending the beam failure recovery response according to the priority of the first cell includes:
  • it also includes:
  • the signaling includes at least one of the following:
  • an embodiment of the present application provides an information detection method, including:
  • the beam failure recovery response of the first cell is monitored on the target cell corresponding to the first cell; wherein the first cell is the cell in which the beam failure has occurred, and the target cell corresponding to the first cell includes at least one of the The first cell and/or at least one cell other than the first cell.
  • the method further includes:
  • the method further includes: receiving a mapping relationship between the candidate beam information corresponding to the first cell and the time-frequency resource position of the beam failure recovery response sent by the base station, and determining the beam failure according to the mapping relationship The time-frequency resource location of the recovery response.
  • the method further includes: acquiring configuration information of the first control resource set CORESET sent by the base station, and monitoring the beam failure recovery response on the first CORESET, wherein the first CORESET is used to carry the beam
  • the CORESET of the failure recovery response is the same as the first CORESET of at least two cells; wherein, the first CORESET of any cell is the CORESET used to carry the beam failure recovery response of the cell.
  • the configuration information of the first control resource set CORESET is carried by the configuration information of a first search space, and one first search space corresponds to one first CORESET, where the first search space is used for The search space corresponding to the first physical downlink control channel PDCCH carrying the beam failure recovery response.
  • the method further includes:
  • the first search spaces of the at least two cells are different search spaces.
  • the method further includes:
  • the first search spaces of the at least two cells do not overlap in time.
  • the first cell includes at least two cells, and the first control resource set CORESET of the at least two cells is the same;
  • Monitoring the beam failure recovery response of the first cell on the target cell corresponding to the first cell includes: using the same receiving beam to monitor the beam failure recovery response of the at least two cells.
  • the method further includes: sending candidate beam information reported for the first cell to the base station, and using the received beams corresponding to each of the at least two first cells corresponding to the candidate beam information to separately monitor the Said at least two beam failure recovery responses of the first cells.
  • the transmission opportunities of the beam failure recovery responses of the multiple cells conflict, the transmission opportunities of the multiple beam failure recovery responses are conflicted according to the priority of the first cell The beam recovery response of the cell fails.
  • acquiring the beam failure recovery response according to the priority of the first cell includes:
  • the beam failure recovery response is monitored, it is determined that the beam failure recovery response is the beam failure recovery response corresponding to the first cell with the highest priority.
  • the method further includes:
  • the signaling includes at least one of the following:
  • an information sending device including:
  • the determining unit is used to determine that the beam failure recovery response of the first cell needs to be sent
  • a sending unit configured to send a beam failure recovery response of the first cell on a target cell corresponding to the first cell
  • the first cell is a cell in which a beam failure has occurred
  • a target cell corresponding to the first cell includes at least one first cell and/or at least one cell other than the first cell.
  • the sending the beam failure recovery response of the first cell on the target cell corresponding to the first cell includes: sending at least two beam failure recovery responses of the first cell on the same target cell.
  • the method further includes: receiving candidate beam information reported by the terminal for the first cell, and determining a time-frequency resource location and/or a transmission beam of the beam failure recovery response according to the candidate beam information.
  • the method further includes: sending the mapping relationship between the candidate beam information corresponding to the first cell and the time-frequency resource position of the beam failure recovery response to the terminal;
  • Determining the time-frequency resource location and/or the transmission beam of the beam failure recovery response according to the candidate beam information includes:
  • the method further includes:
  • the method also includes:
  • the configuration information of the first control resource set CORESET is sent to the terminal, where the first CORESET is a CORESET used to carry a beam failure recovery response, and the first CORESETs of at least two cells are the same; wherein, the first CORESET of any cell A CORESET is a CORESET used to carry the beam failure recovery response of the cell.
  • the configuration information of the first control resource set CORESET is carried by the configuration information of a first search space, and the first search space has a one-to-one correspondence with the first CORESET, wherein the first search space is The search space corresponding to the first physical downlink control channel PDCCH used to carry the beam failure recovery response.
  • the method further includes:
  • the first search spaces of the at least two cells are different search search spaces.
  • the method further includes:
  • the first search spaces of the at least two cells do not overlap in time.
  • the first cell includes at least two cells, and the first control resource set CORESET of the at least two cells is the same;
  • Sending the beam failure recovery response of the first cell on the target cell corresponding to the first cell includes: using the same sending beam to send the beam failure recovery response of the at least two cells on the target cell corresponding to the first cell.
  • the receiving terminal uses the candidate beam information to obtain at least two transmission beams corresponding to each of the first cells, and uses the transmission beams to respectively transmit the at least two A first PDCCH corresponding to the first cell.
  • the method further includes:
  • the transmission opportunities of the beam failure recovery responses of the multiple cells conflict, the transmission opportunities of the multiple beam failure recovery responses are conflicted according to the priority of the first cell The beam recovery response of the cell fails.
  • sending the beam failure recovery response according to the priority of the first cell includes:
  • the method further includes:
  • the signaling includes at least one of the following:
  • an information detection device including:
  • a determining unit configured to determine a target cell corresponding to the first cell
  • the detecting unit is configured to monitor the beam failure recovery response of the first cell on the target cell corresponding to the first cell; wherein, the first cell is the cell where the beam failure occurred, and the target cell corresponding to the first cell It includes at least one of the first cell and/or at least one cell other than the first cell.
  • the method further includes:
  • the candidate beam information is reported to the first cell, so that the base station determines the time-frequency resource location and/or the transmission beam of the beam failure recovery response according to the candidate beam information; and the beam failure corresponding to the candidate beam information
  • the beam failure recovery response is received at the time-frequency resource location corresponding to the recovery response, and/or the beam failure recovery response is received by using the receiving beam corresponding to the sending beam corresponding to the candidate beam information.
  • the method further includes: receiving a mapping relationship between the candidate beam information corresponding to the first cell and the time-frequency resource position of the beam failure recovery response sent by the base station, and determining the beam failure according to the mapping relationship The time-frequency resource location of the recovery response.
  • the method further includes:
  • the first CORESET is a CORESET used to carry the beam failure recovery response, and at least two The first CORESET of the cells is the same; the first CORESET of any cell is the CORESET used to carry the beam failure recovery response of the cell.
  • the configuration information of the first control resource set CORESET is carried by the configuration information of a first search space, one of the first search spaces corresponds to one first CORESET, and the first search space is for The search space corresponding to the first physical downlink control channel PDCCH carrying the beam failure recovery response.
  • the method further includes:
  • the first search spaces of the at least two cells are different search spaces.
  • the method further includes:
  • the first search spaces of the at least two cells do not overlap in time.
  • the first cell includes at least two cells, and the first control resource set CORESET of the at least two cells is the same;
  • Monitoring the beam failure recovery response of the first cell on the target cell corresponding to the first cell includes: using the same receiving beam to monitor the beam failure recovery response of the at least two cells.
  • the method further includes: sending candidate beam information reported for the first cell to the base station, and using the received beams corresponding to each of the at least two first cells corresponding to the candidate beam information to separately monitor the Said at least two beam failure recovery responses of the first cells.
  • the method further includes:
  • the transmission opportunities of the beam failure recovery responses of the multiple cells conflict, the transmission opportunities of the multiple beam failure recovery responses are conflicted according to the priority of the first cell The beam recovery response of the cell fails.
  • the method further includes:
  • acquiring the beam failure recovery response according to the priority of the first cell includes:
  • the beam failure recovery response is monitored, it is determined that the beam failure recovery response is the beam failure recovery response corresponding to the first cell with the highest priority.
  • the method further includes:
  • the signaling includes at least one of the following:
  • Another embodiment of the present application provides a computing device, which includes a memory and a processor, wherein the memory is used to store program instructions, and the processor is used to call the program instructions stored in the memory, according to the obtained program Perform any of the above methods.
  • Another embodiment of the present application provides a computer storage medium that stores computer-executable instructions, and the computer-executable instructions are used to make the computer execute any of the above methods.
  • FIG. 1 is a schematic flowchart of an information sending method provided by an embodiment of this application
  • FIG. 2 is a schematic flowchart of an information detection method provided by an embodiment of this application.
  • FIG. 3 is a schematic structural diagram of an information sending device provided by an embodiment of this application.
  • FIG. 4 is a schematic structural diagram of an information detection device provided by an embodiment of the application.
  • FIG. 5 is a schematic structural diagram of another computer device provided on the base station side according to an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of another computer device provided on the terminal side according to an embodiment of the application.
  • the embodiments of the present application provide an information transmission and detection method and device to ensure the performance of beam failure response.
  • the method and the device are based on the same application concept. Since the method and the device have similar principles for solving the problem, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • the applicable system can be the global system of mobile communication (GSM) system, code division multiple access (CDMA) system, and wideband code division multiple access (Wideband Code Division Multiple Access, WCDMA) general packet Wireless service (general packet radio service, GPRS) system, long term evolution (LTE) system, LTE frequency division duplex (FDD) system, LTE time division duplex (TDD), general Mobile system (universal mobile telecommunication system, UMTS), worldwide interoperability for microwave access (WiMAX) system, 5G system, 5G NR system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband Code Division Multiple Access
  • general packet Wireless service general packet radio service
  • GPRS general packet Radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS general Mobile system
  • WiMAX worldwide interoperability for microwave access
  • the terminal device involved in the embodiment of the present application may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • the name of the terminal device may be different.
  • the terminal device may be referred to as user equipment (UE).
  • the wireless terminal device can communicate with one or more core networks via the RAN.
  • the wireless terminal device can be a mobile terminal device, such as a mobile phone (or called a "cellular" phone) and a computer with a mobile terminal device, for example, a portable , Pocket, handheld, computer built-in or vehicle-mounted mobile devices that exchange language and/or data with the wireless access network.
  • Wireless terminal equipment can also be referred to as system, subscriber unit, subscriber station, mobile station, mobile station, remote station, and access point , Remote terminal equipment (remote terminal), access terminal equipment (access terminal), user terminal equipment (user terminal), user agent (user agent), user device (user device), which are not limited in the embodiments of the present application.
  • the network device involved in the embodiment of the present application may be a base station, and the base station may include multiple cells.
  • a base station may also be called an access point, or may refer to a device that communicates with a wireless terminal device through one or more sectors on an air interface in an access network, or other names.
  • the network device can be used to convert the received air frame and the Internet protocol (IP) packet to each other, as a router between the wireless terminal device and the rest of the access network, where the rest of the access network can include the Internet Protocol (IP) communication network.
  • IP Internet Protocol
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment involved in the embodiment of this application may be a network equipment (base transmitter station, BTS) in the global system for mobile communications (GSM) or code division multiple access (CDMA). ), it can also be a network device (NodeB) in wide-band code division multiple access (WCDMA), or an evolved network device in a long-term evolution (LTE) system (evolutional node B, eNB or e-NodeB), 5G base station in the 5G network architecture (next generation system), or home evolved node B (HeNB), relay node (relay node), home base station ( Femto), pico base station (pico), etc. are not limited in the embodiment of the present application.
  • BTS network equipment
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • NodeB wide-band code division multiple access
  • LTE long-term evolution
  • 5G base station in the 5G network architecture next generation system
  • HeNB home evolved node B
  • relay node relay node
  • Femto home base
  • the millimeter wave frequency band As low frequency band resources become scarce, the millimeter wave frequency band has more spectrum resources and can provide greater bandwidth, and has become an important frequency band for future applications of mobile communication systems.
  • the millimeter wave frequency band has different propagation characteristics from the traditional low frequency spectrum due to its shorter wavelength, such as higher propagation loss, poor reflection and diffraction performance, etc. Therefore, a larger-scale antenna array is usually used to form a shaped beam with greater gain to overcome propagation loss and ensure system coverage.
  • Beamforming mixing transceiver architecture shown in Figure 1 is provided with a transmitting end N T antennas, the receiver has N R antennas, each with a separate RF channel, only the digital channels K, and K is much less than N T and N R.
  • each antenna has an independent radio frequency link channel, but they share the same digital link channel.
  • Each radio frequency link allows independent amplitude and phase adjustment of the transmitted signal, resulting in a beam It is mainly achieved by adjusting the phase and amplitude of the RF channel, which is called an analog beamforming signal.
  • Each antenna of the all-digital beamforming antenna array has an independent digital link channel, which can control the amplitude and phase of each signal in the baseband.
  • the signal sent by each antenna generally changes its phase through a phase shifter
  • analog beamforming is performed on the entire bandwidth, and cannot be shaped separately for some subbands like digital beamforming. Therefore, the analog beamforming is subjected to time division multiplexing (Testing Data Management, TDM) method for multiplexing.
  • TDM Transmission Data Management
  • the hybrid beamforming structure balances the flexibility of digital beamforming and the low complexity of analog beamforming, and has the ability to support multiple data streams and multiple users simultaneously. At the same time, the complexity is also controlled within a reasonable range, so it has become a widely adopted method for millimeter wave transmission and the most important transmission method for 5G NR systems.
  • the physical downlink control channel can adopt analog beamforming transmission to achieve higher shaping gain and greater coverage.
  • Radio resources used for downlink control of the PDCCH channel are semi-statically divided into multiple control resource sets (Control Resource SET, CORESET), and each CORESET includes radio resources of multiple PDCCH channels.
  • the base station can semi-statically match one transmit beam direction for each CORESET, and different CORESETs match beams in different directions.
  • the base station can perform dynamic switching in different CORESETs, thereby realizing dynamic switching of beams.
  • the base station can select the CORESET of the appropriate beam direction according to the information of the terminal.
  • the terminal performs blind detection in multiple CORESETs configured. For each candidate CORESET, the terminal will use the receive beam corresponding to the CORESET transmit beam for reception.
  • An important challenge for high-frequency analog beamforming is that the transmission signal has a large propagation loss and a high probability of being blocked.
  • the terminal will not be able to accurately obtain the control information of the downlink transmission, resulting in a decrease in reception performance, such as a decrease in rate, an increase in scheduling delay, and a decrease in user experience.
  • One method to reduce the probability of occlusion is to configure beams in multiple directions for CORESET, so that the PDCCH channel can be transmitted in multiple directions, so as to avoid the problem of unreliable links caused by occlusion in a certain direction.
  • the use of this method brings a new problem: due to the limited blind detection capability of the terminal for the PDCCH channel, the number of CORESETs configured for each direction of the terminal will be reduced.
  • the NR standard (Rel-15) restricts each terminal from configuring at most 3 CORESETs in the same activated Bandwidth Part (BWP).
  • BWP Bandwidth Part
  • the angular coverage of the control channel is limited, which is likely to cause coverage holes in the control channel, and reliable reception of the control channel cannot be guaranteed.
  • BFR beam failure recovery
  • the first embodiment is the beam failure monitoring process of the beam failure recovery (BFR) mechanism.
  • downlink beam failure is defined as: the quality of each downlink control channel beam received by the terminal is lower than the specified threshold, so that the terminal cannot effectively receive the PDCCH channel transmission Control information.
  • the base station has M beams for downlink control channel transmission, and a dedicated reference signal is configured for each beam.
  • the terminal determines whether the downlink control channel meets the reception quality requirements by measuring the reference signals of the M beams. If the channel quality of all M beams is lower than the established threshold, the terminal will consider that a beam failure event has occurred.
  • the monitoring index parameter for beam failure in the NR system is the Block Error Rate (BLER).
  • BLER Block Error Rate
  • RSRP Reference Signal Receiving Power
  • the terminal When the terminal measures that the BLER values of all M beams are higher than the threshold, it is considered that a beam failure event has occurred.
  • the process of measuring the BLER there is no need to demodulate and decode the PDCCH channel, just measure the performance of the corresponding reference signal, and estimate the BLER of the PDCCH channel based on the result of the reference signal. Since the goal of beam failure measurement is to know whether the downlink control channel can be correctly received by the terminal, the BLER value can achieve this goal well.
  • the configuration of the reference signal used for beam failure measurement can adopt an explicit configuration method in which the network informs the terminal through signaling, or the terminal implicitly configures it through a beam configuration method through control signaling, as follows:
  • the base station configures the terminal with a reference signal set for measuring beam quality through signaling, including reference signal types: synchronization signal block (Synchronization Signal Block, SSB), channel state information reference signal (Chanel State Information Reference signal) , CSI-RS), transmission power, reference signal resource indication, reference signal resources, etc., need to be clearly configured to the terminal through the network;
  • reference signal types synchronization signal block (Synchronization Signal Block, SSB), channel state information reference signal (Chanel State Information Reference signal) , CSI-RS), transmission power, reference signal resource indication, reference signal resources, etc.
  • the reference signal set used to measure the beam quality can be derived from the transmission configuration indication (Transmission Confiuration Indication, TCI) state of the corresponding CORESET resource.
  • TCI Transmission Confiuration Indication
  • its TCI state will include configuration information of a reference signal, and the quasi co-location QCL (Quasi co-location) type corresponding to the reference signal is QCL-TypeD.
  • the terminal can measure the reference signal in the TCI state configured by CORESET to determine whether beam failure occurs.
  • An essential feature of wireless mobile communication is that the wireless channels at the transmitter and receiver have rapid fluctuations. Therefore, the beam quality may also continuously jump around the threshold. In order to avoid the ping-pong effect and frequent beam failure events, only when the beam measurement result is lower than the set threshold for a long enough time can the beam failure event be considered as occurring. It is possible to determine whether a beam failure event occurs by counting the number of times that the beam measurement is lower than the threshold. Specifically, in each transmission, the reference signal of the downlink control channel is measured.
  • the measurement result When the measurement result is lower than the threshold, it will be counted as a failure, and if it is higher than the threshold, it will be counted as a success; only when the number of consecutive failures is greater than the preset value , It is determined that the beam failure event has occurred.
  • the second embodiment is the reporting process of beam failure and new candidate beam of the beam failure recovery (BFR) mechanism.
  • the terminal After the terminal measures the transmission of the beam failure event, the terminal needs to report the event to the base station and report new candidate beam information. After receiving the reported information, the base station recovers from the beam failure as soon as possible through the beam recovery process, and reselects a new beam for transmission to replace the original beam. The new beam will be used for the base station's response information transmission to the reported failure event, and the subsequent transmission of data and control information between the base station and the terminal.
  • the network needs to configure a corresponding reference signal resource set for the terminal, and these reference signals correspond to the candidate beam set.
  • the terminal determines the transceiver beam pair for the transmission link by measuring the reference signal set. After the terminal completes the measurement, it reports the new candidate beam to the network, and the selected new candidate beam needs to meet the performance threshold requirement: RSRP exceeds the threshold.
  • RSRP exceeds the threshold.
  • the terminal only reports a new candidate beam to the base station. If during the measurement process, it is found that the quality of multiple beams meets the threshold requirement, the terminal can select one of them to report to the base station according to its own judgment, for example, report the strongest beam.
  • the channel used for beam failure recovery is the PRACH channel.
  • the PRACH channel is the uplink synchronization and information exchange channel used by the terminal when it initially accesses the network.
  • the network can realize functions such as terminal confirmation, uplink synchronization measurement, and contention resolution.
  • the system supports multiple PRACH channels, and each PRACH channel corresponds to an SSB (Synchronization Signal Block) (different SSBs use beams in different transmission directions to send broadcast information), and the PRACH channel selected by the terminal corresponds to the downlink maximum. Appropriate SSB beam sending direction.
  • the reference signal corresponding to the candidate downlink beam establishes a one-to-one correspondence with the uplink PRACH channel, it means that the base station obtains the candidate beam information reported by the terminal through the detected PRACH channel.
  • the PRACH channel can use a competitive physical layer channel or a non-competitive dedicated physical layer channel.
  • the terminal will be allocated dedicated random access channel resources and random access preamble sequences, and each random access channel and preamble sequence corresponds to the beam direction of an SSB transmission block. Once a downlink beam failure event occurs and a new candidate beam is selected, it will be sent through the random access channel and preamble sequence corresponding to the candidate beam.
  • PUCCH Physical Uplink Control signaling
  • the PUCCH channel reports various types of uplink control signaling to the network, including response information (Acknowledgement/Negative ACKnowledgement, ACK/NACK), scheduling request, and channel Status information (CSI) and beam measurement results, etc.
  • a terminal can be configured with multiple PUCCH channel resources, and each PUCCH channel resource corresponds to different physical resources, transmission power, load capacity, and load type.
  • the PUCCH channel transmission beam is configured by the network. Compared with the PRACH channel, the PUCCH channel exhibits better reporting capabilities and flexibility.
  • PUCCH channel performance is more likely to be affected in terms of uplink time synchronization, beam direction accuracy, etc.
  • the downlink beam fails, the reliability and robustness of PUCCH will not be guaranteed. Therefore, PUCCH is not used in the standardization process. Report channel.
  • the third embodiment is the beam failure recovery response of the beam failure recovery (BFR) mechanism.
  • each terminal is allocated multiple CORESETs for PDCCH transmission, and each CORESET is configured with a beam transmission direction.
  • the beams corresponding to these original CORESETs will not change during the beam recovery process.
  • the network will configure a dedicated CORESET for the terminal, called CORESET_BFR, for the transmission of control signaling for beam recovery.
  • CORESET_BFR a dedicated CORESET for the terminal
  • the terminal After the terminal measures and reports the beam failure message, the terminal starts to monitor the PDCCH channel of CORESET_BFR, and assumes that the beam used is the new candidate beam reported.
  • the base station Corresponding to the terminal reporting process, the base station will use the new beam to send the PDCCH channel in CORESET_BFR.
  • the terminal detects the PDCCH channel, it will consider that the reported beam failure event and the new candidate beam are correctly received by the base station.
  • CORESET_BFR After the base station receives the beam failure event report and sends a response message in CORESET_BFR, if the terminal does not receive the RRC reconfiguration message (beam configuration used for the original CORESET set), CORESET_BFR will be used as another one for scheduling CORESET communicates normally; if the terminal receives an RRC reconfiguration message, the terminal will obtain the new beam configuration of the CORESET set according to the information, and stop monitoring CORESET_BFR.
  • RRC reconfiguration message beam configuration used for the original CORESET set
  • the original CORESET still uses the originally configured beam, and the terminal also monitors the PDCCH channel in the original beam direction. Although the terminal has reported to the base station that all control channels are in the beam failure state, this judgment is obtained based on the 10% BLER measurement result. The terminal may still receive control signaling messages on the original PDCCH channel. Therefore, when the base station receives the beam failure report and sends a response message in CORESET_BFR, the base station and the terminal can continue to communicate using the originally configured CORESET set and beam parameters, and can reconfigure the beam of the downlink control channel.
  • the fourth embodiment is a method for sending and detecting beam failure response.
  • the content performed by the base station side includes:
  • the base station only sends the beam failure recovery response of some of the cells
  • Sending the beam failure recovery response of the first cell on the target cell corresponding to the first cell (including: sending at least two beam failure recovery responses of the first cell on the same target cell);
  • the first cell A cell is a cell in which beam failure occurs (the number of cells is not limited)
  • the target cell corresponding to the first cell includes at least one of the first cell and/or at least one cell other than the first cell.
  • the beam failure recovery response of all cells is not necessarily sent.
  • the target cell may be a cell within one or more first cells or other cells;
  • the receiving terminal determines the time-frequency resource location of the beam failure recovery response and/or the transmission beam according to the candidate beam information, that is, if the UE reports multiple new candidate beams, There may be a predefined association relationship between the new candidate beam and the CORESET-BFR, so that the UE knows which CORESET-BFR uses which new candidate beam to transmit;
  • Determining the time-frequency resource location and/or the transmission beam of the beam failure recovery response according to the candidate beam information includes:
  • the configuration information of the first control resource set CORESET is sent to the terminal, where the first CORESET is a CORESET used to carry a beam failure recovery response, and the first CORESETs of at least two cells are the same; wherein, the first CORESET of any cell A CORESET is a CORESET used to carry the beam failure recovery response of the cell.
  • the configuration information of the first control resource set CORESET is carried by the configuration information of the first search space, and the first search space corresponds to the first CORESET one-to-one, and the first search space is used for The search space corresponding to the first physical downlink control channel PDCCH carrying the beam failure recovery response;
  • the first search spaces of the at least two cells are different search spaces
  • the first search spaces of the at least two cells do not overlap in time
  • the first cell includes at least two cells, and the first control resource set CORESET of the at least two cells is the same;
  • Sending the beam failure recovery response of the first cell on the target cell corresponding to the first cell includes: sending the beam failure recovery response of the at least two cells on the target cell corresponding to the first cell by using the same sending beam;
  • the receiving terminal uses the candidate beam information to obtain at least two transmission beams corresponding to each of the first cells, and uses the transmission beams to respectively transmit the at least two first cells.
  • the transmission opportunities of the multiple speed failure recovery responses are conflicted according to the priority of the first cell
  • the beam failure recovery response (specifically, only the beam failure recovery response corresponding to the first cell with the highest priority is sent), where the transmission opportunity conflict may be that the CORESET corresponding to these cells is the same, or that these cells correspond to
  • the search space of the PDCCH used to carry the beam failure recovery response partially or completely overlaps, or the PDCCH used to transmit the beam failure recovery response of these cells partially or completely overlap in time.
  • the base station may also indicate to the terminal through signaling a target cell corresponding to each cell for sending a beam failure recovery response, and multiple cells may also correspond to the same target cell;
  • the aforementioned signaling may include at least one of the following:
  • the content executed on the terminal side includes:
  • the beam failure recovery response of the first cell is detected on the target cell corresponding to the first cell; wherein, the first cell (which may be one or more) is the cell where the beam failure occurs, and the first cell corresponds to
  • the target cell of includes at least one of the first cell and/or at least one cell other than the first cell;
  • the terminal can also obtain the configuration information of the first control resource set CORESET sent by the base station, and monitor the beam failure recovery response on the first CORESET, where the first CORESET is used to carry the beam failure
  • the first CORESET of at least two cells is the same; the first CORESET of any cell is the CORESET used to carry the beam failure recovery response of the cell; the configuration information of the first control resource set CORESET is passed
  • the configuration information of the first search space is carried.
  • One of the first search spaces corresponds to a first CORESET, where the first search space is the one corresponding to the first physical downlink control channel PDCCH used to carry the beam failure recovery response. Search space
  • the first search spaces of the at least two cells are different search spaces; the first search spaces of the at least two cells do not overlap in time;
  • the first cell includes at least two cells, and the first control resource set CORESET of the at least two cells is the same;
  • Monitoring the beam failure recovery response of the first cell on the target cell corresponding to the first cell includes: using the same receiving beam to monitor the beam failure recovery response of the at least two cells;
  • the terminal may also send the candidate beam information reported for the first cell to the base station, and monitor the at least two receiving beams respectively corresponding to the at least two first cells corresponding to the candidate beam information.
  • the transmission opportunities of the multiple beam failure recovery responses of the multiple cells conflict, the transmission opportunities of the multiple beam failure recovery responses are conflicted according to the priority of the first cell The beam failure recovery response of the cell;
  • Obtaining the beam failure recovery response according to the priority of the first cell includes: using the receiving beam corresponding to the transmitting beam corresponding to the first cell with the highest priority to monitor the beam failure recovery response (including: if a beam failure is detected Recovery response, determining that the beam failure recovery response is the beam failure recovery response corresponding to the first cell with the highest priority);
  • the base station Obtain the signaling sent by the base station indicating the target cell corresponding to each cell for sending the beam failure recovery response (wherein multiple cells may also correspond to the same target cell), and determine the signal corresponding to the first cell according to the signaling Target cell
  • the above-mentioned signaling includes at least one of the following:
  • the fifth embodiment is the determination of the target cell Tcell.
  • Tcell For each Scell, a predefined method is used to determine the Tcell. This Tcell can be PCell or Scell. Some possible ways to book Tcell are:
  • the TCell corresponding to all Cells is a cell whose frequency is lower than the preset value (for example, the preset value is 6GHz, which corresponds to FR1 in the NR system Rel-15 standard);
  • the base station indicates the TCell corresponding to the Scell to the UE through signaling.
  • This signaling may be RRC signaling, and/or MAC-CE signaling, and/or DCI signaling.
  • the BFR signaling sent by the base station to the UE contains the indication information of the TCell; a field is added to the PRACH-ResourceDedicatedBFR, which is used to indicate the TCell used to send the beam failure report of the SCell; the base station is each UE The Cell configures a PRACH-ResourceDedicatedBFR. Two fields are added to PRACH-ResourceDedicatedBFR.
  • One field is used to indicate the identity of the SCell, and one field is used to indicate the identity of the Tcell that sends the Scell beam failure report; the base station sends the RRC signaling BeamFailureRecoveryConfig to the UE.
  • Two fields have been added to the SCell. One field is used to indicate the SCell's identity (field 1), and the other is used to indicate the SCell's beam failure response Tcell's identity (field 2). These two fields have a one-to-one correspondence.
  • the nth Tcell indicated by field 2 is the TCell corresponding to the nth Scell indicated by field 1 for sending the beam failure response of the Scell, where n is greater than or equal to 1, and less than or equal to the number of Scells indicated by field 1.
  • the BFR-RS (reference signal corresponding to the candidate beam used for beam failure recovery) has an associated relationship with the TCell. If one Scell corresponds to one BFR-RS, the UE determines the TCell to report the Scell beam failure according to the association relationship between the BFR-RS and TCell; if one Scell corresponds to multiple BFR-RS, the UE according to the BFR corresponding to the candidate beam to be reported The RS and the association relationship between the BFR-RS and the TCell determine the TCell for which the Scell beam failure report is performed.
  • An associated Cell can be defined for a BFR-RS in the protocol.
  • the UE sends a beam failure report on the cell associated with it.
  • the association relationship between the BFR-RS and the TCell may be indicated by the base station to the UE through signaling, and the signaling is preferably RRC signaling.
  • the association relationship between BFR-RS and TCell is indicated to UE through MAC-CE or DCI.
  • the TCell depends on the candidate beam selected by the UE for beam failure recovery.
  • the TCell may be a different cell from the cell where the BFR-RS is located. For example, for SCell 1, the BFR-RS selected by the UE is the reference signal on Scell 2, but the TCell corresponding to the BFR-RS is SCell 3, and the UE sends a beam failure report on SCell 1 on SCell 3.
  • the base station can select a better TCell for each BFR-RS according to the load, frequency, and channel quality of each carrier.
  • TCell is the Cell where the candidate BFR-RS selected by the UE is located. If one Scell corresponds to only one BFR-RS, the TCell is the cell where the BFR-RS is located; if one Scell corresponds to multiple BFR-RSs, the TCell is the cell where the BFR-RS corresponding to the candidate beam to be reported determined by the UE is located.
  • the TCell depends on the candidate beam selected by the UE for beam failure recovery. This method requires the TCell to be a Cell that contains both UL and DL configurations, that is, the TCell can perform uplink transmissions as well as downlink transmissions.
  • the fusion scheme of the above-mentioned modes 1 to 5 can be adopted.
  • method 1 is adopted for some SCells, and method 2 or method 3 is adopted for other Scells.
  • the TCell is determined in a predefined manner, and for SCells without predefined TCells, the method of determining the TCell is adopted; for SCells with predefined TCells, the TCell is determined in a predefined manner.
  • the SCell defining the TCell adopts the determination method of the third method.
  • an embodiment of the present application provides an information sending method, referring to FIG. 1, including:
  • the first cell is a cell in which a beam failure has occurred
  • a target cell corresponding to the first cell includes at least one first cell and/or at least one cell other than the first cell.
  • an embodiment of the present application provides an information detection method, referring to FIG. 2, including:
  • an embodiment of the present application provides an information transmission device, referring to FIG. 3, including:
  • the determining unit 11 is configured to determine that a beam failure recovery response of the first cell needs to be sent;
  • the sending unit 12 is configured to send a beam failure recovery response of the first cell on a target cell corresponding to the first cell; wherein, the first cell is a cell in which a beam failure has occurred, and the target corresponding to the first cell
  • the cell includes at least one of the first cell and/or at least one cell other than the first cell.
  • an embodiment of the present application provides an information detection device, referring to FIG. 4, including:
  • the determining unit 21 is configured to determine a target cell corresponding to the first cell
  • the detecting unit 22 is configured to monitor the beam failure recovery response of the first cell on the target cell corresponding to the first cell; wherein, the first cell is the cell where the beam failure has occurred, and the target cell corresponding to the first cell
  • the cell includes at least one of the first cell and/or at least one cell other than the first cell.
  • the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including a number of instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .
  • the embodiment of the present application provides a computing device, and the computing device may specifically be a desktop computer, a portable computer, a smart phone, a tablet computer, a personal digital assistant (Personal Digital Assistant, PDA), etc.
  • the computing device may include a central processing unit (CPU), memory, input/output devices, etc.
  • the input device may include a keyboard, a mouse, a touch screen, etc.
  • the output device may include a display device, such as a liquid crystal display (Liquid Crystal Display, LCD), Cathode Ray Tube (CRT), etc.
  • the memory may include read only memory (ROM) and random access memory (RAM), and provides the processor with program instructions and data stored in the memory.
  • ROM read only memory
  • RAM random access memory
  • the memory may be used to store the program of any of the methods provided in the embodiment of the present application.
  • the processor calls the program instructions stored in the memory, and the processor is configured to execute any of the methods provided in the embodiments of the present application according to the obtained program instructions.
  • an information sending device referring to FIG. 5, including:
  • the processor 500 is configured to read a program in the memory 520 and execute the following process:
  • the first cell is a cell in which a beam failure has occurred
  • a target cell corresponding to the first cell includes at least one of the first cell and/or at least one cell other than the first cell.
  • the sending the beam failure recovery response of the first cell on the target cell corresponding to the first cell includes: sending at least two beam failure recovery responses of the first cell on the same target cell.
  • the processor 500 receives the candidate beam information reported by the terminal for the first cell through the transceiver 510, and determines the time-frequency resource location and/or the transmission beam of the beam failure recovery response according to the candidate beam information.
  • the processor 500 sends the mapping relationship between the candidate beam information corresponding to the first cell and the time-frequency resource position of the beam failure recovery response to the terminal;
  • Determining the time-frequency resource location and/or the transmission beam of the beam failure recovery response according to the candidate beam information includes:
  • the processor 500 sends configuration information of a first control resource set CORESET to the terminal, where the first CORESET is a CORESET used to carry a beam failure recovery response, and the first CORESETs of at least two cells are the same; Wherein, the first CORESET of any cell is the CORESET used to carry the beam failure recovery response of the cell.
  • the configuration information of the first control resource set CORESET is carried by the configuration information of a first search space, and the first search space has a one-to-one correspondence with the first CORESET, wherein the first search space is The search space corresponding to the first physical downlink control channel PDCCH used to carry the beam failure recovery response.
  • the first search spaces of the at least two cells are different search spaces.
  • the first search spaces of the at least two cells do not overlap in time.
  • the first cell includes at least two cells, and the first control resource set CORESET of the at least two cells is the same;
  • Sending the beam failure recovery response of the first cell on the target cell corresponding to the first cell includes: using the same sending beam to send the beam failure recovery response of the at least two cells on the target cell corresponding to the first cell.
  • the processor 500 receives the candidate beam information reported by the terminal for the first cell through the transceiver 510, uses the candidate beam information to obtain at least two transmission beams corresponding to each of the first cells, and uses the transmission The first PDCCHs corresponding to the at least two first cells are respectively transmitted by beams.
  • the processor 500 sends the priority information of the cell to the terminal through the transceiver 510;
  • the transmission opportunities of the beam failure recovery responses of the multiple cells conflict, the transmission opportunities of the multiple beam failure recovery responses are conflicted according to the priority of the first cell The beam recovery response of the cell fails.
  • sending the beam failure recovery response according to the priority of the first cell includes:
  • the processor 500 may also indicate to the terminal through signaling a target cell corresponding to each cell for sending a beam failure recovery response.
  • the signaling includes at least one of the following:
  • the transceiver 510 is configured to receive and send data under the control of the processor 500.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 500 and various circuits of the memory represented by the memory 520 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further description will be given herein.
  • the bus interface provides the interface.
  • the transceiver 510 may be a plurality of elements, that is, including a transmitter and a transceiver, providing a unit for communicating with various other devices on a transmission medium.
  • the processor 500 is responsible for managing the bus architecture and general processing, and the memory 520 can store data used by the processor 500 when performing operations.
  • the processor 500 may be a central embedded device (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device). , CPLD).
  • CPU central embedded device
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • FPGA field programmable gate array
  • CPLD complex programmable logic device
  • FIG. 6, which includes:
  • the processor 600 is configured to read a program in the memory 620 and execute the following process:
  • the beam failure recovery response of the first cell is monitored on the target cell corresponding to the first cell; wherein the first cell is the cell in which the beam failure has occurred, and the target cell corresponding to the first cell includes at least one of the The first cell and/or at least one cell other than the first cell.
  • report candidate beam information for the first cell so that the base station determines the time-frequency resource location and/or transmission beam of the beam failure recovery response according to the candidate beam information
  • the processor 600 may also receive a mapping relationship between the candidate beam information corresponding to the first cell and the time-frequency resource position of the beam failure recovery response sent by the base station, and determine the beam failure according to the mapping relationship The time-frequency resource location of the recovery response.
  • the processor 600 acquires the configuration information of the first control resource set CORESET sent by the base station, and monitors the beam failure recovery response on the first CORESET, where the first CORESET is used to carry the beam failure recovery For the response CORESET, the first CORESET of at least two cells is the same; wherein, the first CORESET of any cell is the CORESET used to carry the beam failure recovery response of the cell.
  • the configuration information of the first control resource set CORESET is carried by the configuration information of a first search space, one of the first search spaces corresponds to one first CORESET, and the first search space is for The search space corresponding to the first physical downlink control channel PDCCH carrying the beam failure recovery response.
  • the first search spaces of the at least two cells are different search spaces.
  • the first search spaces of the at least two cells do not overlap in time.
  • the first cell includes at least two cells, and the first control resource set CORESET of the at least two cells is the same;
  • Monitoring the beam failure recovery response of the first cell on the target cell corresponding to the first cell includes: using the same receiving beam to monitor the beam failure recovery response of the at least two cells.
  • the candidate beam information reported for the first cell is sent to the base station, and the at least two received beams corresponding to the at least two first cells corresponding to the candidate beam information are used to monitor the at least two The beam failure recovery response of the first cell.
  • the processor 600 may also obtain the priority information of the cell sent by the base station;
  • the transmission opportunities of the beam failure recovery responses of the multiple cells conflict, the transmission opportunities of the multiple beam failure recovery responses are conflicted according to the priority of the first cell The beam recovery response of the cell fails.
  • the processor 600 sends the candidate new beam corresponding to the first cell to the base station through the transceiver 610;
  • acquiring the beam failure recovery response according to the priority of the first cell includes:
  • the beam failure recovery response is monitored, it is determined that the beam failure recovery response is the beam failure recovery response corresponding to the first cell with the highest priority.
  • the processor 600 may also obtain signaling indicating a target cell corresponding to each cell for sending a beam failure recovery response sent by the base station, and determine the target cell corresponding to the first cell according to the signaling.
  • the signaling includes at least one of the following:
  • the transceiver 610 is configured to receive and send data under the control of the processor 600.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 600 and various circuits of the memory represented by the memory 620 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further description will be given herein.
  • the bus interface provides the interface.
  • the transceiver 610 may be a plurality of elements, that is, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the user interface 630 may also be an interface capable of connecting externally and internally with the required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, etc.
  • the processor 600 is responsible for managing the bus architecture and general processing, and the memory 620 can store data used by the processor 600 when performing operations.
  • the processor 600 may be a central processor (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device ( Complex Programmable Logic Device, CPLD).
  • CPU central processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD Complex Programmable Logic Device
  • the embodiment of the present application provides a computer storage medium for storing computer program instructions used by the device provided in the foregoing embodiment of the present application, which includes a program for executing any method provided in the foregoing embodiment of the present application.
  • the computer storage medium may be any available medium or data storage device that the computer can access, including but not limited to magnetic storage (such as floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (such as CD, DVD, BD, HVD, etc.), and semiconductor memory (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state drive (SSD)), etc.
  • magnetic storage such as floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage such as CD, DVD, BD, HVD, etc.
  • semiconductor memory such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state drive (SSD)
  • the method provided in the embodiments of the present application can be applied to terminal equipment, and can also be applied to network equipment.
  • the terminal equipment can also be called User Equipment (User Equipment, referred to as "UE"), Mobile Station (Mobile Station, referred to as “MS”), Mobile Terminal (Mobile Terminal), etc.
  • UE User Equipment
  • MS Mobile Station
  • Mobile Terminal Mobile Terminal
  • the terminal can It has the ability to communicate with one or more core networks via a Radio Access Network (RAN).
  • RAN Radio Access Network
  • the terminal can be a mobile phone (or called a "cellular" phone) or a mobile computer, etc.
  • the terminal may also be a portable, pocket-sized, handheld, built-in computer or vehicle-mounted mobile device.
  • the network device may be a base station (for example, an access point), which refers to a device that communicates with a wireless terminal through one or more sectors on an air interface in an access network.
  • the base station can be used to convert received air frames and IP packets into each other, and act as a router between the wireless terminal and the rest of the access network, where the rest of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate the attribute management of the air interface.
  • the base station can be a base station (Base Transceiver Station, BTS) in GSM or CDMA, a base station (NodeB) in WCDMA, or an evolved base station (NodeB or eNB or e-NodeB, evolutional Node) in LTE. B), or gNB in the 5G system, etc.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved base station
  • gNB evolutional Node
  • the processing flow of the above method can be implemented by a software program, which can be stored in a storage medium, and when the stored software program is called, the above method steps are executed.
  • the BFR mechanism of the existing NR system can only be performed on the primary cell PCell, and there is no mechanism for sending and receiving beam failure responses on the secondary cell Scell. If the base station and the UE have inconsistent understanding of the transmission beam for transmitting the beam failure response of each Cell, it may cause the UE to fail to receive the beam failure response correctly, thereby affecting the beam failure recovery process.
  • This application proposes a beam failure response transmission and reception method, so that the base station and the UE can use the same assumption to send and receive the beam failure response, thereby ensuring the performance of the beam failure response.
  • the embodiment of the present application provides a BFR mechanism on the cell to ensure that the beam failure recovery of the cell can be performed in various scenarios
  • this application Based on the BFR mechanism, this application provides a beam failure response transmission and reception method, so that the base station and the UE can use the same assumption to send and receive the beam failure response, thereby ensuring the performance of the beam failure response.
  • the embodiments of the present invention may be provided as methods, systems, or computer program products. Therefore, the present invention may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present invention may be in the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can direct a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信息发送、检测方法及装置,用以保证波束失败响应的性能。本申请提供的一种信息发送方法,包括:确定需要发送第一小区的波束失败恢复响应;在第一小区对应的目标小区上发送所述第一小区的波束失败恢复响应;其中,所述第一小区为发生了波束失败的小区,所述第一小区对应的目标小区包括至少一个所述第一小区和/或所述第一小区以外的至少一个小区。

Description

一种信息发送、检测方法及装置
本申请要求在2019年1月24日提交中国专利局、申请号为201910068809.0、发明名称为“一种信息发送、检测方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种信息发送、检测方法及装置。
背景技术
现有的新系统(New Radio,NR)系统的波束失败恢复(Beam Failure Recovery,BFR)机制只能在主小区(Pcell)上进行。当UE进行载波聚合(Carrier Aggregation,CA)时,辅小区(Scell)经常被配置在高频段,因此,在Scell上也需要进行BFR。
对于Scell的波束失败恢复机制,需要考虑以下场景:
场景1,Pcell在FR1(不需要BFR的频段),Scell上可以进行上行链路(Up Link,UL)和下行链路(Down Link,DL)的传输(Scell with UL/DL);
场景2,Pcell在FR2(需要进行BFR的频段),Scell上可以进行上行链路UL和下行链路DL的传输(Scell with UL/DL);
场景3,Pcell在FR1(不需要BFR的频段),Scell上只能进行下行链路DL的传输(DL-only Scell);
场景4,Pcell在FR2(需要进行BFR的频段),Scell上只能进行下行链路DL的传输(DL-only Scell)。
现有的Rel-15 NR系统的BFR机制在应用到Scell的时候只适用于场景1和场景2,不适用于场景2和场景3。
如果使用物理上行链路控制信道(Physical Uplink Control Channel,PUCCH)进行Scell BFR过程中的上报承载信道,则一种可能的方式是UE在Pcell上进行波束失败事件和候选波束的上报,在Pcell或Scell接收基站的波束失败恢复响应,但这种方式在场景2和场景4下的性能无法得到保障,因为Pcell自身可能也发生了波束失败。
发明内容
本申请实施例提供了一种信息发送、检测方法及装置,用以保证波束失败回复响应的 性能。
本申请实施例提供的一种信息发送方法包括:
确定需要发送第一小区的波束失败恢复响应;
在第一小区对应的目标小区上发送所述第一小区的波束失败恢复响应;
其中,所述第一小区为发生了波束失败的小区,所述第一小区对应的目标小区包括至少一个所述第一小区和/或所述第一小区以外的至少一个小区。
可选地,所述在第一小区对应的目标小区上发送所述第一小区的波束失败恢复响应包括:在同一个目标小区上发送至少两个所述第一小区的波束失败恢复响应。
可选地,该方法还包括:接收终端对于所述第一小区上报的候选波束信息,根据所述候选波束信息确定所述波束失败恢复响应的时频资源位置和/或发送波束。
可选地,该方法还包括:将所述第一小区对应的候选波束信息与所述波束失败恢复响应的时频资源位置的映射关系发送给所述终端;
根据所述候选波束信息确定所述波束失败恢复响应的时频资源位置和/或发送波束,包括:
根据所述候选波束信息指示的波束与所述波束失败恢复响应的时频资源位置的映射关系,确定所述波束失败恢复响应的时频资源位置。
可选地,该方法还包括向所述终端发送第一控制资源集合CORESET的配置信息,其中,所述第一CORESET为用于携带波束失败恢复响应的CORESET,至少两个小区的第一CORESET相同;其中,任一小区的第一CORESET为用于携带该小区的波束失败恢复响应的CORESET。
可选地,所述第一控制资源集合CORESET的配置信息通过第一搜索空间的配置信息携带,所述第一搜索空间与所述第一CORESET一一对应,其中,所述第一搜索空间为用于携带波束失败恢复响应的第一物理下行控制信道PDCCH所对应的搜索空间。
可选地,所述至少两个小区的第一搜索空间为不同的搜索空间。
可选地,所述至少两个小区的第一搜索空间在时间上不重叠。
可选地,所述第一小区中包括至少两个小区,且这至少两个小区的第一控制资源集合CORESET相同;
在第一小区对应的目标小区上发送所述第一小区的波束失败恢复响应,包括:使用相同的发送波束在第一小区对应的目标小区上发送所述至少两个小区的波束失败恢复响应。
可选地,接收终端对于所述第一小区上报的候选波束信息,利用所述候选波束信息获得至少两个所述第一小区各自对应的发送波束,利用所述发送波束分别发送所述至少两个所述第一小区对应的第一PDCCH。
可选地,该方法还包括:
向所述终端发送小区的优先级信息;
当所述第一个小区包含多个小区,且这多个小区的波束失败恢复响应的发送机会冲突时,根据所述第一小区的优先级发送所述多个波束失败恢复响应的发送机会冲突的小区的波束失败恢复响应。
可选地,根据所述第一小区的优先级发送所述波束失败恢复响应,包括:
只发送优先级最高的所述第一小区对应的波束失败恢复响应。
可选地,还包括:
通过信令向所述终端指示各个小区对应的用于发送波束失败恢复响应的目标小区。
可选地,所述信令包括以下至少一项:
用于携带波束失败恢复响应的第一物理下行控制信道PDCCH所对应的搜索空间对应的CORESET与目标小区的关联关系;
第一小区与目标小区的关联关系;
第一小区的候选波束与目标小区的关联关系。
在终端侧,本申请实施例提供了一种信息检测方法,包括:
确定第一小区对应的目标小区;
在第一小区对应的目标小区上监测所述第一小区的波束失败恢复响应;其中,所述第一小区为发生了波束失败的小区,所述第一小区对应的目标小区包括至少一个所述第一小区和/或所述第一小区以外的至少一个小区。
可选地,在同一个目标小区上监测至少两个所述第一小区的波束失败恢复响应。
可选地,该方法还包括:
对于所述第一小区上报候选波束信息,使得基站根据所述候选波束信息确定所述波束失败恢复响应的时频资源位置和/或发送波束;以及,
在所述候选波束信息对应的所述波束失败恢复响应对应的时频资源位置上接收所述波束失败恢复响应,和/或,使用候选波束信息对应的发送波束所对应的接收波束接收所述波束失败恢复响应。
可选地,该方法还包括:接收基站发送的所述第一小区对应的候选波束信息与所述波束失败恢复响应的时频资源位置的映射关系,根据所述映射关系,确定所述波束失败恢复响应的时频资源位置。
可选地,该方法还包括:获取所述基站发送的第一控制资源集合CORESET的配置信息,在所述第一CORESET上监测波束失败恢复响应,其中,所述第一CORESET为用于携带波束失败恢复响应的CORESET,至少两个小区的第一CORESET相同;其中,任一小区的第一CORESET为用于携带该小区的波束失败恢复响应的CORESET。
可选地,所述第一控制资源集合CORESET的配置信息通过第一搜索空间的配置信息 携带,一个所述第一搜索空间对应于一个第一CORESET,其中,所述第一搜索空间为用于携带波束失败恢复响应的第一物理下行控制信道PDCCH所对应的搜索空间。
可选地,该方法还包括:
所述至少两个小区的第一搜索空间为不同的搜索空间。
可选地,该方法还包括:
所述至少两个小区的第一搜索空间在时间上不重叠。
可选地,所述第一小区中包括至少两个小区,且所述至少两个小区的第一控制资源集合CORESET相同;
在第一小区对应的目标小区上监测所述第一小区的波束失败恢复响应,包括:使用相同的接收波束监测所述至少两个小区的波束失败恢复响应。
可选地,该方法还包括:向基站发送对于所述第一小区上报的候选波束信息,利用所述候选波束信息对应的所述至少两个所述第一小区各自对应的接收波束分别监测所述至少两个所述第一小区的波束失败恢复响应。
可选地,获取基站发送的小区的优先级信息;
当所述第一个小区包含多个小区,且这多个小区的波束失败恢复响应的发送机会冲突时,根据所述第一小区的优先级获取所述多个波束失败恢复响应的发送机会冲突的小区的波束失败恢复响应。
可选地,向所述基站发送所述第一小区对应的候选新波束;
根据所述第一小区的优先级获取所述波束失败恢复响应,包括:
利用优先级最高的所述第一小区对应的发送波束对应的接收波束监测波束失败恢复响应。
可选地,根据所述第一小区的优先级获取所述波束失败恢复响应,包括:
若监测到波束失败恢复响应,确定所述波束失败恢复响应为优先级最高的所述第一小区对应的波束失败恢复响应。
可选地,该方法还包括:
获取基站发送的指示各个小区对应的用于发送波束失败恢复响应的目标小区的信令,根据所述信令确定所述第一小区对应的目标小区。
可选地,所述信令包括以下至少一项:
用于携带波束失败恢复响应的第一物理下行控制信道PDCCH所对应的搜索空间对应的CORESET与目标小区的关联关系;
第一小区与目标小区的关联关系;
第一小区的候选波束与目标小区的关联关系。
在基站侧,本申请实施例提供了一种信息发送装置,包括:
确定单元,用于确定需要发送第一小区的波束失败恢复响应;
发送单元,用于在第一小区对应的目标小区上发送所述第一小区的波束失败恢复响应;
其中,所述第一小区为发生了波束失败的小区,所述第一小区对应的目标小区包括至少一个所述第一小区和/或所述第一小区以外的至少一个小区。
可选地,所述在第一小区对应的目标小区上发送所述第一小区的波束失败恢复响应包括:在同一个目标小区上发送至少两个所述第一小区的波束失败恢复响应。
可选地,该方法还包括:接收终端对于所述第一小区上报的候选波束信息,根据所述候选波束信息确定所述波束失败恢复响应的时频资源位置和/或发送波束。
可选地,该方法还包括:将所述第一小区对应的候选波束信息与所述波束失败恢复响应的时频资源位置的映射关系发送给所述终端;
根据所述候选波束信息确定所述波束失败恢复响应的时频资源位置和/或发送波束,包括:
根据所述候选波束信息指示的波束与所述波束失败恢复响应的时频资源位置的映射关系,确定所述波束失败恢复响应的时频资源位置。
可选地,该方法还包括:
该方法还包括:
向所述终端发送第一控制资源集合CORESET的配置信息,其中,所述第一CORESET为用于携带波束失败恢复响应的CORESET,至少两个小区的第一CORESET相同;其中,任一小区的第一CORESET为用于携带该小区的波束失败恢复响应的CORESET。
可选地,所述第一控制资源集合CORESET的配置信息通过第一搜索空间的配置信息携带,所述第一搜索空间与所述第一CORESET一一对应,其中,所述第一搜索空间为用于携带波束失败恢复响应的第一物理下行控制信道PDCCH所对应的搜索空间。
可选地,该方法还包括:
所述至少两个小区的第一搜索空间为不同的搜素搜索空间。
可选地,该方法还包括:
所述至少两个小区的第一搜索空间在时间上不重叠。
可选地,所述第一小区中包括至少两个小区,且这至少两个小区的第一控制资源集合CORESET相同;
在第一小区对应的目标小区上发送所述第一小区的波束失败恢复响应,包括:使用相同的发送波束在第一小区对应的目标小区上发送所述至少两个小区的波束失败恢复响应。
可选地,接收终端对于所述第一小区上报的候选波束信息,利用所述候选波束信息获得至少两个所述第一小区各自对应的发送波束,利用所述发送波束分别发送所述至少两个所述第一小区对应的第一PDCCH。
可选地,该方法还包括:
向所述终端发送小区的优先级信息;
当所述第一个小区包含多个小区,且这多个小区的波束失败恢复响应的发送机会冲突时,根据所述第一小区的优先级发送所述多个波束失败恢复响应的发送机会冲突的小区的波束失败恢复响应。
可选地,根据所述第一小区的优先级发送所述波束失败恢复响应,包括:
只发送优先级最高的所述第一小区对应的波束失败恢复响应。
可选地,该方法还包括:
通过信令向所述终端指示各个小区对应的用于发送波束失败恢复响应的目标小区。
可选地,所述信令包括以下至少一项:
用于携带波束失败恢复响应的第一物理下行控制信道PDCCH所对应的搜索空间对应的CORESET与目标小区的关联关系;
第一小区与目标小区的关联关系;
第一小区的候选波束与目标小区的关联关系。
在终端侧,本申请实施例提供了一种信息检测装置,包括:
确定单元,用于确定第一小区对应的目标小区;
检测单元,用于在第一小区对应的目标小区上监测所述第一小区的波束失败恢复响应;其中,所述第一小区为发生了波束失败的小区,所述第一小区对应的目标小区包括至少一个所述第一小区和/或所述第一小区以外的至少一个小区。
可选地,在同一个目标小区上监测至少两个所述第一小区的波束失败恢复响应。
可选地,该方法还包括:
对于所述第一小区上报候选波束信息,使得基站根据所述候选波束信息确定所述波束失败恢复响应的时频资源位置和/或发送波束;以及在所述候选波束信息对应的所述波束失败恢复响应对应的时频资源位置上接收所述波束失败恢复响应,和/或,使用候选波束信息对应的发送波束所对应的接收波束接收所述波束失败恢复响应。
可选地,该方法还包括:接收基站发送的所述第一小区对应的候选波束信息与所述波束失败恢复响应的时频资源位置的映射关系,根据所述映射关系,确定所述波束失败恢复响应的时频资源位置。
可选地,该方法还包括:
获取所述基站发送的第一控制资源集合CORESET的配置信息,在所述第一CORESET上监测波束失败恢复响应,其中,所述第一CORESET为用于携带波束失败恢复响应的CORESET,至少两个小区的第一CORESET相同;其中,任一小区的第一CORESET为用于携带该小区的波束失败恢复响应的CORESET。
可选地,所述第一控制资源集合CORESET的配置信息通过第一搜索空间的配置信息携带,一个所述第一搜索空间对应于一个第一CORESET,其中,所述第一搜索空间为用于携带波束失败恢复响应的第一物理下行控制信道PDCCH所对应的搜索空间。
可选地,该方法还包括:
所述至少两个小区的第一搜索空间为不同的搜索空间。
可选地,该方法还包括:
所述至少两个小区的第一搜索空间在时间上不重叠。
可选地,所述第一小区中包括至少两个小区,且所述至少两个小区的第一控制资源集合CORESET相同;
在第一小区对应的目标小区上监测所述第一小区的波束失败恢复响应,包括:使用相同的接收波束监测所述至少两个小区的波束失败恢复响应。
可选地,该方法还包括:向基站发送对于所述第一小区上报的候选波束信息,利用所述候选波束信息对应的所述至少两个所述第一小区各自对应的接收波束分别监测所述至少两个所述第一小区的波束失败恢复响应。
可选地,该方法还包括:
获取基站发送的小区的优先级信息;
当所述第一个小区包含多个小区,且这多个小区的波束失败恢复响应的发送机会冲突时,根据所述第一小区的优先级获取所述多个波束失败恢复响应的发送机会冲突的小区的波束失败恢复响应。
可选地,该方法还包括:
向所述基站发送所述第一小区对应的候选新波束;
根据所述第一小区的优先级获取所述波束失败恢复响应,包括:
利用优先级最高的所述第一小区对应的发送波束对应的接收波束监测波束失败恢复响应。
可选地,根据所述第一小区的优先级获取所述波束失败恢复响应,包括:
若监测到波束失败恢复响应,确定所述波束失败恢复响应为优先级最高的所述第一小区对应的波束失败恢复响应。
可选地,该方法还包括:
获取基站发送的指示各个小区对应的用于发送波束失败恢复响应的目标小区的信令,根据所述信令确定所述第一小区对应的目标小区。可选地,所述信令包括以下至少一项:
用于携带波束失败恢复响应的第一物理下行控制信道PDCCH所对应的搜索空间对应的CORESET与目标小区的关联关系;
第一小区与目标小区的关联关系;
第一小区的候选波束与目标小区的关联关系。
本申请另一实施例提供了一种计算设备,其包括存储器和处理器,其中,所述存储器用于存储程序指令,所述处理器用于调用所述存储器中存储的程序指令,按照获得的程序执行上述任一种方法。
本申请另一实施例提供了一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行上述任一种方法。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅是本申请的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种信息发送方法的流程示意图;
图2为本申请实施例提供的一种信息检测方法的流程示意图;
图3为本申请实施例提供的一种信息发送装置的结构示意图;
图4为本申请实施例提供的一种信息检测装置的结构示意图;
图5为本申请实施例在基站侧提供的另一种计算机设备的结构示意图;
图6为本申请实施例在终端侧提供的另一种计算机设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,并不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供了一种信息发送、检测方法及装置,用以保证波束失败响应的性能。
其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
本申请实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系 统、LTE时分双工(time division duplex,TDD)、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G系统以及5G NR系统等。这多种系统中均包括终端设备和网络设备。
本申请实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(user equipment,UE)。无线终端设备可以经RAN与一个或多个核心网进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiated protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本申请实施例中并不限定。
本申请实施例涉及的网络设备,可以是基站,该基站可以包括多个小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是指接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(internet protocol,IP)分组进行相互转换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本申请实施例涉及的网络设备可以是全球移动通信系统(global system for mobile communications,GSM)或码分多址接入(code division multiple access,CDMA)中的网络设备(base transceiver station,BTS),也可以是带宽码分多址接入(wide-band code division multiple access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站,也可是家庭演进基站(home evolved node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本申请实施例中并不限定。
下面结合说明书附图对本申请各个实施例进行详细描述。需要说明的是,本申请实施例的展示顺序仅代表实施例的先后顺序,并不代表实施例所提供的技术方案的优劣。
随着低频段资源的变得稀缺,而毫米波频段具有更多的频谱资源,能够提供更大带宽, 成为了移动通信系统未来应用的重要频段。毫米波频段由于波长较短,具有与传统低频段频谱不同的传播特性,例如更高传播损耗,反射和衍射性能差等。因此通常会采用更大规模的天线阵列,以形成增益更大的赋形波束,克服传播损耗、确保系统覆盖。对于毫米波天线阵列,由于波长更短,天线阵子间距以及孔径更小,可以让更多的物理天线阵子集成在一个有限大小的二维天线阵列中;同时,由于毫米波天线阵列的尺寸有限,从硬件复杂度、成本开销以及功耗等因素考虑,无法采用低频段所采用的数字波束赋形方式,而是通常采用模拟波束与有限数字端口相结合的混合波束赋形方式。如图1所示的混合波束赋形收发架构图,设发送端有N T根天线,接收端有N R根天线,每根有单独的射频通道,而只有K条数字通道,且K远远小于N T和N R
对于一个多天线阵列,其每根天线都有独立的射频链路通道,但共享同一个数字链路通道,每条射频链路允许对所传输信号进行独立的幅度和相位调整,所形成的波束主要通过在射频通道的相位和幅度调整来实现,称为模拟波束赋形信号。而全数字波束赋形的天线阵列的每根天线都有独立的数字链路通道,可以在基带控制每路信号的幅度和相位。
模拟波束赋形具有以下特点:
每根天线发送的信号一般通过移相器改变其相位;
由于器件能力的限制,模拟波束赋形都是整个带宽上进行赋形,无法像数字波束赋形针对部分子带单独进行赋形,因此,模拟波束赋形间通过时分复用(Testing Data Management,TDM)方式进行复用。
由于上述特点,模拟波束赋形的赋形灵活性方面要低于数字波束赋形,但模拟波束赋形的天线阵列所需要的数字链路要远低于数字波束赋形的天线阵列,因此在天线数量变得很大的情况下,模拟波束的天线阵列成本下降明显。
混合波束赋形结构在数字波束赋形灵活性和模拟波束赋形的低复杂度间做了平衡,具有支撑多个数据流和多个用户同时赋形的能力。同时,复杂度也控制在合理范围,因此成为毫米波传输的一种广泛采用方式,并成为5G NR系统最重要的传输方式。
对于采用高频段传输的系统,其物理下行控制信道(Physical Downlink Control Channel,PDCCH)可以采用模拟波束赋形传输来实现更高赋形增益和更大覆盖。用于下行控制PDCCH信道的无线资源被半静态分成多个控制资源集合(Control Resource SET,CORESET),每个CORESET包含多个PDCCH信道的无线资源。基站可为每个CORESET半静态匹配一个发送波束方向,不同CORESET匹配不同方向波束。基站可以在不同CORESET中进行动态切换,从而实现波束的动态切换。当发送PDCCH的时候,基站可根据终端的信息,选择合适波束方向的CORESET。在接收端,终端在所配置的多个CORESET内进行盲检。对于每个候选的CORESET,终端将使用与CORESET发送波束对应的接收波束进行接收。
对于高频段的模拟波束赋形面临的一个重要挑战是传输信号的传播损耗大、被遮挡概率高。对于被遮挡的下行控制信道PDCCH,终端将无法准确获得下行传输的控制信息,从而接收性能下降,如速率下降、调度时延增加、用户体验下降等。一种可降低遮挡概率的方法是为CORESET配置多个方向的波束,可以使得PDCCH信道通过多个方向发送,避免在某个方向受到遮挡而导致链路不可靠的问题。然而采用这种方法带来新的问题是:由于终端对于PDCCH信道的盲检能力受限,使得配置给终端每个方向的CORESET数量会减少。例如在NR标准(Rel-15)中限制了每个终端在同一个激活的带宽部分(Bandwidth Part,BWP)中最多配置3个CORESET。理论上讲,如果发送波束角度扩展足够宽,能够覆盖整个小区覆盖角度区域,这样就不会出现波束遮挡的问题了。但为了获得更高的波束赋形增益,通常波束的覆盖角度较小,波束较窄。考虑到有限的CORESET数量以及窄波束特点,在高频段毫米波通信中,控制信道的角度覆盖范围有限,容易造成控制信道的覆盖空洞,无法保证控制信道可靠接收。
如果像LTE等通信系统似的,若为控制信道配置的下行波束都失败时,就认为无线链路失败,开启无线链路重建的过程,则除了增加时延外,还有可能会造成资源的浪费,因为换个发送波束和/或接收波束就有可能使得下行控制信号的接收质量可以满足要求。为了避免这种资源浪费和时延,在NR标准中,一种快速、可靠的波束失败检测和恢复过程被标准化,使得网络侧能够快速从波束失败中恢复传输过程,即波束失败恢复(Beam Failure Recovery,BFR)机制,具体的BFR机制参见以下实施例。
实施例一,波束失败恢复(BFR)机制的波束失败监测过程。
由于基站可通过多个下行控制信道波束发送PDCCH,因此下行波束失败被定义为:终端接收到的每一个下行控制信道波束的质量都低于规定阈值,使得终端无法有效地接收到PDCCH信道所发送的控制信息。
不失一般性,假设基站有M个波束用于下行控制信道发送,为每个波束配置专属的参考信号,终端通过测量M个波束的参考信号来判断下行控制信道是否满足接收质量要求。如果所有的M个波束的信道质量都低于所设立的阈值,终端将认为波束失败事件发生。
NR系统中波束失败的监测指标参数为误块率(Block Error Rate,BLER),具体过程如下:终端测量与下行控制信道相同波束的参考信号性能,并根据所测量到参考信号的信道质量,推断出PDCCH信道的译码错误概率BLER,具体地,UE测量参考信号的参考信号接收功率(Reference Signal Receiving Power,RSRP),根据RSRP与PDCCH BLER的映射关系曲线,推断出PDCCH的BLER。如果BLER值高于所设定阈值(例如,BLER=10%),则认为该波束失败。当终端测量到所有M个波束的BLER值都高于阈值,则认为波束失败事件发生。在测量BLER的过程中,不需要对PDCCH信道进行解调译码,只是测量所对应参考信号的性能,并根据参考信号的结果推测PDCCH信道的BLER。由 于波束失败测量的目标在于获知下行控制信道能否被终端正确接收,因此BLER值可以很好地达到这个目的。
用于波束失败测量(检测)的参考信号的配置,可以采用网络通过信令通知终端的显式配置方式,或者终端通过控制信令的波束配置方法来隐含配置,具体如下:
显式配置方式,基站通过信令给终端配置一个用于测量波束质量的参考信号集合,包括参考信号类型:同步信号块(Synchronization Signal Block,SSB)、信道状态信息参考信号(Chanel State Information Reference signal,CSI-RS),发送功率、参考信号的资源指示、参考信号资源等都需要清晰地通过网络配置给终端;
隐含指示方式,用于测量波束质量的参考信号集合可以从所对应的CORESET资源的传输配置指示(Transmission Confiuration Indication,TCI)状态中推导出来。具体而言,对于涉及模拟波束赋形传输的CORESET,其TCI状态中会包括一个参考信号的配置信息,并且该参考信号对应的准共址QCL(Quasi co-location)类型为QCL-TypeD。如果网络没有为终端显式配置用于波束失败检测的参考信号,则终端可以对CORESET所配置的TCI状态中的参考信号进行测量,以判断是否发生波束失败。
无线移动通信的一个本质特性在于发送端和接收端的无线信道具有快速起伏变化的特性。因此,波束质量也有可能在阈值附近不断跳变。为了避免乒乓效应和经常出现波束失败事件,只有当波束测量结果低于所设定阈值的时间足够长才能认为发生波束失败事件。可以通过统计波束测量低于阈值的次数来判断是否发生波束失败事件。具体而言,每次传输中对下行控制信道的参考信号进行测量,当测量结果低于阈值,将被计数一次失败,而高于阈值计数一次成功;只有当连续失败的次数大于预先设置的值,才判定波束失败事件发生。
实施例二,波束失败恢复(BFR)机制的波束失败与新候选波束上报过程。
当终端测量得到波束失败事件发送以后,终端需要将该事件上报给基站,并上报新的候选波束信息。基站收到上报信息后,通过波束恢复过程尽快从波束失败中恢复,重新选择用于传输的新波束替代原有波束。新波束将被用于基站对上报失败事件的应答信息传输,以及后续基站与终端间数据和控制信息的传输。
为了能够让终端上报新的候选波束,网络需要给终端配置相应的参考信号资源集合,这些参考信号对应了候选波束集。终端通过测量参考信号集合,确定用于传输链路的收发波束对。当终端完成测量后,把新候选波束上报给网络,所选择的新候选波束需要满足性能门限要求:RSRP超过阈值。在标准中,终端只将一个新候选波束上报给基站。如果测量过程中发现有多个波束质量达到阈值要求,终端可以根据自身判断,选择其中一个上报给基站,比如,将最强波束上报。
在波束失败测量和恢复过程中,为了不影响常规的随机接入过程,用于波束失败恢复 的信道为PRACH信道。PRACH信道是终端用于初始接入网络时的上行同步和信息交换信道。通过PRACH信道发送上行前导序列,网络可以实现对终端的确认,上行同步的测量,竞争解决等功能。在5G NR中,系统支持多个PRACH信道,每个PRACH信道与一个SSB(Synchronization Signal Block)对应(不同SSB用不同发送方向的波束进行广播信息发送),终端所选择的PRACH信道对应着下行最合适的SSB波束发送方向。因此,当候选下行波束对应的参考信号与上行PRACH信道建立起一一对应关系,则意味着基站通过检测到的PRACH信道获得终端上报的候选波束信息。PRACH信道可以采用竞争的物理层信道或者非竞争的专用物理层信道。终端将会被分配专用随机接入信道资源与随机接入前导序列,每个随机接入信道和前导序列都与一个SSB传输块的波束方向对应。一旦发生下行波束失败事件和新的候选波束被选定,将通过该候选波束所对应的随机接入信道和前导序列进行发送。
另一种可以用于波束失败恢复的机制为使用PUCCH进行候选波束的上报。在5G NR标准中PUCCH信道用于上行控制信令的传输,PUCCH信道将各种类型的上行控制信令上报给网络,包括了应答信息(Acknowledgement/Negative ACKnowledgement,ACK/NACK),调度请求,信道状态信息(CSI)和波束测量结果等。一个终端可以配置多个PUCCH信道资源,每个PUCCH信道资源对应不同的物理资源、发送功率、负载能力以及负载类型。PUCCH信道发送波束由网络进行配置。相比于PRACH信道,PUCCH信道体现出更好的上报能力和灵活性,多个候选的波束及波束质量等更多信息可以通过PUCCH信道上报给网络。但是由于PUCCH信道性能更容易在上行时间同步、波束方向精确性等方面受到影响,当下行波束失败,PUCCH在可靠性和鲁棒性方面性能将无法得到保证,因此在标准化过程中PUCCH不用于作为上报信道。
实施例三,波束失败恢复(BFR)机制的波束失败恢复响应。
如上述实施例所述,每个终端被分配多个CORESET用于PDCCH的传输,每个CORESET被配置一个波束发送方向。这些原有的CORESET所对应的波束在波束恢复过程中不会变更。网络将为终端配置一个专用的CORESET,称为CORESET_BFR,用于波束恢复的控制信令传输。当终端测量并上报波束失败消息后,终端开始监听CORESET_BFR的PDCCH信道,并假设所用波束为上报的新候选波束。对应于终端上报过程,基站将在CORESET_BFR中用新波束发送PDCCH信道。当终端检测到PDCCH信道,将认为上报的波束失败事件以及新候选波束被基站正确接收。
当基站接收到波束失败事件上报,并在CORESET_BFR中发送了响应消息后,如果终端未收到RRC重配置消息(用于原来的CORESET集合的波束配置),则CORESET_BFR将作为另一个用于调度的CORESET进行正常通信;如果终端收到RRC重配置消息,终端将根据信息获得CORESET集合的新波束配置,并且停止对CORESET_BFR监听。
在波束恢复过程中,原有的CORESET仍然使用原来配置的波束,终端也对原有波束方向的PDCCH信道进行监听。虽然终端已经向基站上报了所有控制信道都处于波束失败状态,但这个判断是基于10%的BLER测量结果得到的,终端在原来的PDCCH信道仍然有可能接收到控制信令消息。因此,当基站接收到波束失败上报,并在CORESET_BFR中发送了响应消息,基站和终端还可以继续使用原来配置的CORESET集合和波束参数进行通信,并可对下行控制信道的波束进行重配置。
实施例四,一种波束失败响应发送、检测方法。
1、根据上述实施例所述的波束失败恢复(BFR)机制,基站侧所执行的内容包括:
确定需要发送第一小区的波束失败恢复响应,如果终端上报多个小区发生了波束失败,但要发送波束失败响应的发送机会冲突,则基站只发送其中部分小区的波束失败恢复响应;
在第一小区对应的目标小区上发送所述第一小区的波束失败恢复响应(包括:在同一个目标小区上发送至少两个所述第一小区的波束失败恢复响应);其中,所述第一小区为发生了波束失败的小区(不限定小区数量),所述第一小区对应的目标小区包括至少一个所述第一小区和/或所述第一小区以外的至少一个小区。当存在多个第一小区时,不一定发送所有小区的波束失败恢复响应。其中,目标小区可以为一个或者多个第一小区内的小区或者其他小区;
接收终端对于所述第一小区上报的候选波束信息,根据所述候选波束信息确定所述波束失败恢复响应的时频资源位置和/或发送波束,即若UE上报了多个新的候选波束,新的候选波束与CORESET-BFR之间可能存在预定义的关联关系,以使得UE知道哪个CORESET-BFR使用哪个新的候选波束发送;
将所述第一小区对应的候选波束信息与所述波束失败恢复响应的时频资源位置的映射关系发送给所述终端;
根据所述候选波束信息确定所述波束失败恢复响应的时频资源位置和/或发送波束,包括:
根据所述候选波束信息指示的波束与所述波束失败恢复响应的时频资源位置的映射关系,确定所述波束失败恢复响应的时频资源位置。
向所述终端发送第一控制资源集合CORESET的配置信息,其中,所述第一CORESET为用于携带波束失败恢复响应的CORESET,至少两个小区的第一CORESET相同;其中,任一小区的第一CORESET为用于携带该小区的波束失败恢复响应的CORESET。
其中,所述第一控制资源集合CORESET的配置信息通过第一搜索空间的配置信息携带,所述第一搜索空间与所述第一CORESET一一对应,其中,所述第一搜索空间为用于携带波束失败恢复响应的第一物理下行控制信道PDCCH所对应的搜索空间;
一种优选的实施方式,所述至少两个小区的第一搜索空间为不同的搜索空间;
一种优选的实施方式,所述至少两个小区的第一搜索空间在时间上不重叠;
所述第一小区中包括至少两个小区,且这至少两个小区的第一控制资源集合CORESET相同;
在第一小区对应的目标小区上发送所述第一小区的波束失败恢复响应,包括:使用相同的发送波束在第一小区对应的目标小区上发送所述至少两个小区的波束失败恢复响应;
接收终端对于所述第一小区上报的候选波束信息,利用所述候选波束信息获得至少两个所述第一小区各自对应的发送波束,利用所述发送波束分别发送所述至少两个所述第一小区对应的第一PDCCH;
向所述终端发送小区的优先级信息;
当所述第一个小区包含多个小区,且这多个小区的波束失败恢复响应的发送机会冲突时,根据所述第一小区的优先级发送所述多个波速失败恢复响应的发送机会冲突的小区的波束失败恢复响应(具体地,包括只发送优先级最高的所述第一小区对应的波束失败恢复响应),其中,发送机会冲突可以是这些小区对应的CORESET相同,或者是这些小区对应的用于携带波束失败恢复响应的PDCCH的搜索空间部分或全部重叠,或者是用来发送这些小区的波束失败恢复响应的PDCCH在时间上部分或全部重叠,本申请只列举以上几种发送机会冲突,实际不对其限定;
此外,基站还可以通过信令向所述终端指示各个小区对应的用于发送波束失败恢复响应的目标小区,多个小区也可以对应于同一个目标小区;
上述信令可以包括以下至少一项:
用于携带波束失败恢复响应的第一物理下行控制信道PDCCH所对应的搜索空间对应的CORESET与目标小区的关联关系;
第一小区与目标小区的关联关系;
第一小区的候选波束与目标小区的关联关系。
2、根据上述实施例所述的波束失败恢复(BFR)机制,终端侧所执行的内容包括:
确定第一小区对应的目标小区;
在第一小区对应的目标小区上检测所述第一小区的波束失败恢复响应;其中,所述第一小区(可以为一个或多个)为发生了波束失败的小区,所述第一小区对应的目标小区包括至少一个所述第一小区和/或所述第一小区以外的至少一个小区;
在同一个目标小区上监测至少两个所述第一小区的波束失败恢复响应;
对于所述第一小区上报候选波束信息,使得基站根据所述候选波束信息确定所述波束失败恢复响应的时频资源位置和/或发送波束;以及,
在所述候选波束信息对应的所述波束失败恢复响应对应的时频资源位置上接收所述波束失败恢复响应,和/或,使用候选波束信息对应的发送波束所对应的接收波束接收所述 波束失败恢复响应;
接收基站发送的所述第一小区对应的候选波束信息与所述波束失败恢复响应的时频资源位置的映射关系,根据所述映射关系,确定所述波束失败恢复响应的时频资源位置;
基于上述实施内容,终端还能获取所述基站发送的第一控制资源集合CORESET的配置信息,在所述第一CORESET上监测波束失败恢复响应,其中,所述第一CORESET为用于携带波束失败恢复响应的CORESET,至少两个小区的第一CORESET相同;其中,任一小区的第一CORESET为用于携带该小区的波束失败恢复响应的CORESET;所述第一控制资源集合CORESET的配置信息通过第一搜索空间的配置信息携带,一个所述第一搜索空间对应于一个第一CORESET,其中,所述第一搜索空间为用于携带波束失败恢复响应的第一物理下行控制信道PDCCH所对应的搜索空间;
一种可选的实施方式,所述至少两个小区的第一搜索空间为不同的搜索空间;所述至少两个小区的第一搜索空间在时间上不重叠;
所述第一小区中包括至少两个小区,且所述至少两个小区的第一控制资源集合CORESET相同;
在第一小区对应的目标小区上监测所述第一小区的波束失败恢复响应,包括:使用相同的接收波束监测所述至少两个小区的波束失败恢复响应;
终端还可以向基站发送对于所述第一小区上报的候选波束信息,利用所述候选波束信息对应的所述至少两个所述第一小区各自对应的接收波束分别监测所述至少两个所述第一小区的波束失败恢复响应;
获取基站发送的小区的优先级信息;
当所述第一个小区包含多个小区,且这多个小区的波束失败恢复响应的发送机会冲突时,根据所述第一小区的优先级获取所述多个波束失败恢复响应的发送机会冲突的小区的波束失败恢复响应;
向所述基站发送所述第一小区对应的候选新波束;
根据所述第一小区的优先级获取所述波束失败恢复响应,包括:利用优先级最高的所述第一小区对应的发送波束对应的接收波束监测波束失败恢复响应(包括:若监测到波束失败恢复响应,确定所述波束失败恢复响应为优先级最高的所述第一小区对应的波束失败恢复响应);
获取基站发送的指示各个小区对应的用于发送波束失败恢复响应的目标小区(其中,多个小区也可以对应同一个目标小区)的信令,根据所述信令确定所述第一小区对应的目标小区;
上述信令包括以下至少一项:
用于携带波束失败恢复响应的第一物理下行控制信道PDCCH所对应的搜索空间对应 的CORESET与目标小区的关联关系;
第一小区与目标小区的关联关系;
第一小区的候选波束与目标小区的关联关系。
实施例五,目标小区Tcell的确定。
方式一,对于每一个Scell,都采用预定义的方式确定Tcell。这个Tcell可以为PCell或Scell。一些可能的预定Tcell的方式有:
协议约定所有Cell对应的TCell都是PCell;
协议约定所有Cell对应的TCell都是频点低于预设数值的(例如,预设数值为6GHz,此时对应于NR系统Rel-15标准里的FR1)的一个Cell;
协议约定一个频段(band)内的所有Cell对应的TCell相同,这个TCell为一个预定义的Cell。例如,如果存在PCell,这个TCell为PCell;如果不存在PCell,这个TCell为频率最低的SCell。
方式二,基站通过信令向UE指示Scell对应的TCell。这个信令可以是RRC信令,和/或MAC-CE信令,和/或DCI信令。例如,基站向UE发送的BFR信令中包含了TCell的指示信息;在PRACH-ResourceDedicatedBFR中增加了一个字段,这个字段用来指示用来发送SCell的波束失败上报的TCell;基站为UE的每个Cell配置一个PRACH-ResourceDedicatedBFR,PRACH-ResourceDedicatedBFR中增加两个字段,一个字段用来指示SCell的标识,一个字段用来指示发送Scell的波束失败上报的Tcell的标识;基站向UE发送的RRC信令BeamFailureRecoveryConfig中增加了两个字段,一个字段用来指示SCell的标识(字段1),一个字段用来指示发送Scell的波束失败响应的Tcell的标识(字段2),这两个字段具有一一对应的关系,即字段2指示的第n个Tcell为字段1指示的第n个Scell对应的发送Scell的波束失败响应的TCell,其中n大于等于1,小于等于字段1指示的Scell数。
方式三,BFR-RS(用于波束失败恢复的候选波束对应的参考信号)与TCell具有相关联关系。如果一个Scell对应一个BFR-RS,UE根据该BFR-RS与TCell的关联关系确定进行该Scell波束失败上报的TCell;如果一个Scell对应多个BFR-RS,UE根据待上报的候选波束对应的BFR-RS以及该BFR-RS与TCell的关联关系确定进行该Scell波束失败上报的TCell。可以在协议里为一个BFR-RS定义一个相关联的Cell,如果该BFR-RS为UE上报的用于波束失败恢复的候选参考信号,则UE在与之相关联的Cell上发送波束失败上报。优选地,BFR-RS与TCell的关联关系可以是基站通过信令指示给UE的,该信令优选地为RRC信令。次优的,BFR-RS与TCell的关联关系通过MAC-CE或DCI指示给UE。
在方式三下,TCell取决于UE选择的用于波束失败恢复的候选波束。TCell可以与BFR-RS所在的Cell是不同的Cell。例如,对于SCell 1,UE选择的BFR-RS为Scell 2上 的参考信号,但该BFR-RS对应的TCell为SCell 3,则UE在SCell 3上发送关于SCell 1的波束失败上报。
该方式比较灵活,基站可以根据各载波的负荷、频点、信道质量等情况,为每个BFR-RS选择较优的TCell。
方式四,TCell是UE选择的候选BFR-RS所在的Cell。如果一个Scell只对应一个BFR-RS,则TCell为BFR-RS所在的Cell;如果一个Scell对应多个BFR-RS,TCell为UE确定出的待上报的候选波束对应的BFR-RS所在的Cell。
方式四下,TCell取决于UE选择的用于波束失败恢复的候选波束。这种方法要求TCell为一个同时包含了UL和DL配置的Cell,即TCell既可以进行上行链路的传输,也可以进行下行链路的传输。
方式五,基站在为UE配置CORESET-BFR时配置了CORESET-BFR对应的发送波束失败响应的TCell。
具体实施时,可以采用上述方式一至五的融合方案。例如,对于一些SCell采用方式一,对于另外一些Scell采用方式二或者方式三。具体地,对于预定义了TCell的SCell采用预定义的方式确定TCell,对于没有预定义TCell的SCell采用方式二的确定方式;对于预定义了TCell的SCell采用预定义的方式确定TCell,对于没有预定义TCell的SCell采用方式三的确定方式。
综上所述,在基站侧,本申请实施例提供了一种信息发送方法,参见图1,包括:
S101、确定需要发送第一小区的波束失败恢复响应;
S102、在第一小区对应的目标小区上发送所述第一小区的波束失败恢复响应;
其中,所述第一小区为发生了波束失败的小区,所述第一小区对应的目标小区包括至少一个所述第一小区和/或所述第一小区以外的至少一个小区。
在终端侧,本申请实施例提供了一种信息检测方法,参见图2,包括:
S201、确定第一小区对应的目标小区;
S202、在第一小区对应的目标小区上监测所述第一小区的波束失败恢复响应;其中,所述第一小区为发生了波束失败的小区,所述第一小区对应的目标小区包括至少一个所述第一小区和/或所述第一小区以外的至少一个小区。
本申请实施例在基站侧与终端侧提供的信息处理方法的具体实施可参见实施例四。
对应的,在基站侧,本申请实施例提供了一种信息传输装置,参见图3,包括:
确定单元11,用于确定需要发送第一小区的波束失败恢复响应;
发送单元12,用于在第一小区对应的目标小区上发送所述第一小区的波束失败恢复响应;其中,所述第一小区为发生了波束失败的小区,所述第一小区对应的目标小区包括至少一个所述第一小区和/或所述第一小区以外的至少一个小区。
在终端侧,本申请实施例提供了一种信息检测装置,参见图4,包括:
确定单元21,用于确定第一小区对应的目标小区;
检测单元22,用于在第一小区对应的目标小区上监测所述第一小区的波束失败恢复响应;其中,所述第一小区为发生了波束失败的小区,所述第一小区对应的目标小区包括至少一个所述第一小区和/或所述第一小区以外的至少一个小区。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例提供了一种计算设备,该计算设备具体可以为桌面计算机、便携式计算机、智能手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)等。该计算设备可以包括中央处理器(Center Processing Unit,CPU)、存储器、输入/输出设备等,输入设备可以包括键盘、鼠标、触摸屏等,输出设备可以包括显示设备,如液晶显示器(Liquid Crystal Display,LCD)、阴极射线管(Cathode Ray Tube,CRT)等。
存储器可以包括只读存储器(ROM)和随机存取存储器(RAM),并向处理器提供存储器中存储的程序指令和数据。在本申请实施例中,存储器可以用于存储本申请实施例提供的任一所述方法的程序。
处理器通过调用存储器存储的程序指令,处理器用于按照获得的程序指令执行本申请实施例提供的任一所述方法。
在基站侧,本申请实施例提供了一种信息发送装置,参见图5,包括:
处理器500,用于读取存储器520中的程序,执行下列过程:
确定需要发送第一小区的波束失败恢复响应;
通过收发机510在第一小区对应的目标小区上发送所述第一小区的波束失败恢复响应;
其中,所述第一小区为发生了波束失败的小区,所述第一小区对应的目标小区包括至 少一个所述第一小区和/或所述第一小区以外的至少一个小区。
可选地,所述在第一小区对应的目标小区上发送所述第一小区的波束失败恢复响应包括:在同一个目标小区上发送至少两个所述第一小区的波束失败恢复响应。
可选地,处理器500通过收发机510接收终端对于所述第一小区上报的候选波束信息,根据所述候选波束信息确定所述波束失败恢复响应的时频资源位置和/或发送波束。
可选地,处理器500将所述第一小区对应的候选波束信息与所述波束失败恢复响应的时频资源位置的映射关系发送给所述终端;
根据所述候选波束信息确定所述波束失败恢复响应的时频资源位置和/或发送波束,包括:
根据所述候选波束信息指示的波束与所述波束失败恢复响应的时频资源位置的映射关系,确定所述波束失败恢复响应的时频资源位置。
可选地,处理器500向所述终端发送第一控制资源集合CORESET的配置信息,其中,所述第一CORESET为用于携带波束失败恢复响应的CORESET,至少两个小区的第一CORESET相同;其中,任一小区的第一CORESET为用于携带该小区的波束失败恢复响应的CORESET。
可选地,所述第一控制资源集合CORESET的配置信息通过第一搜索空间的配置信息携带,所述第一搜索空间与所述第一CORESET一一对应,其中,所述第一搜索空间为用于携带波束失败恢复响应的第一物理下行控制信道PDCCH所对应的搜索空间。
可选地,所述至少两个小区的第一搜索空间为不同的搜索空间。
可选地,所述至少两个小区的第一搜索空间在时间上不重叠。
可选地,所述第一小区中包括至少两个小区,且这至少两个小区的第一控制资源集合CORESET相同;
在第一小区对应的目标小区上发送所述第一小区的波束失败恢复响应,包括:使用相同的发送波束在第一小区对应的目标小区上发送所述至少两个小区的波束失败恢复响应。
可选地,处理器500通过收发机510接收终端对于所述第一小区上报的候选波束信息,利用所述候选波束信息获得至少两个所述第一小区各自对应的发送波束,利用所述发送波束分别发送所述至少两个所述第一小区对应的第一PDCCH。
可选地,处理器500通过收发机510向所述终端发送小区的优先级信息;
当所述第一个小区包含多个小区,且这多个小区的波束失败恢复响应的发送机会冲突时,根据所述第一小区的优先级发送所述多个波束失败恢复响应的发送机会冲突的小区的波束失败恢复响应。
可选地,根据所述第一小区的优先级发送所述波束失败恢复响应,包括:
只发送优先级最高的所述第一小区对应的波束失败恢复响应。
可选地,处理器500还可以通过信令向所述终端指示各个小区对应的用于发送波束失败恢复响应的目标小区。
可选地,所述信令包括以下至少一项:
用于携带波束失败恢复响应的第一物理下行控制信道PDCCH所对应的搜索空间对应的CORESET与目标小区的关联关系;
第一小区与目标小区的关联关系;
第一小区的候选波束与目标小区的关联关系。
收发机510,用于在处理器500的控制下接收和发送数据。
其中,在图5中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器500代表的一个或多个处理器和存储器520代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机510可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器500负责管理总线架构和通常的处理,存储器520可以存储处理器500在执行操作时所使用的数据。
处理器500可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)。
在终端侧,本申请实施例提供了一种信息检测装置,参见图6,包括:
处理器600,用于读取存储器620中的程序,执行下列过程:
确定第一小区对应的目标小区;
在第一小区对应的目标小区上监测所述第一小区的波束失败恢复响应;其中,所述第一小区为发生了波束失败的小区,所述第一小区对应的目标小区包括至少一个所述第一小区和/或所述第一小区以外的至少一个小区。
可选地,在同一个目标小区上监测至少两个所述第一小区的波束失败恢复响应。
可选地,对于所述第一小区上报候选波束信息,使得基站根据所述候选波束信息确定所述波束失败恢复响应的时频资源位置和/或发送波束;以及,
在所述候选波束信息对应的所述波束失败恢复响应对应的时频资源位置上接收所述波束失败恢复响应,和/或,使用候选波束信息对应的发送波束所对应的接收波束接收所述波束失败恢复响应。
可选地,处理器600还可以接收基站发送的所述第一小区对应的候选波束信息与所述波束失败恢复响应的时频资源位置的映射关系,根据所述映射关系,确定所述波束失败恢复响应的时频资源位置。
可选地,处理器600获取所述基站发送的第一控制资源集合CORESET的配置信息,在所述第一CORESET上监测波束失败恢复响应,其中,所述第一CORESET为用于携带波束失败恢复响应的CORESET,至少两个小区的第一CORESET相同;其中,任一小区的第一CORESET为用于携带该小区的波束失败恢复响应的CORESET。
可选地,所述第一控制资源集合CORESET的配置信息通过第一搜索空间的配置信息携带,一个所述第一搜索空间对应于一个第一CORESET,其中,所述第一搜索空间为用于携带波束失败恢复响应的第一物理下行控制信道PDCCH所对应的搜索空间。
可选地,所述至少两个小区的第一搜索空间为不同的搜索空间。
可选地,所述至少两个小区的第一搜索空间在时间上不重叠。
可选地,所述第一小区中包括至少两个小区,且所述至少两个小区的第一控制资源集合CORESET相同;
在第一小区对应的目标小区上监测所述第一小区的波束失败恢复响应,包括:使用相同的接收波束监测所述至少两个小区的波束失败恢复响应。
可选地,向基站发送对于所述第一小区上报的候选波束信息,利用所述候选波束信息对应的所述至少两个所述第一小区各自对应的接收波束分别监测所述至少两个所述第一小区的波束失败恢复响应。
可选地,处理器600还可以获取基站发送的小区的优先级信息;
当所述第一个小区包含多个小区,且这多个小区的波束失败恢复响应的发送机会冲突时,根据所述第一小区的优先级获取所述多个波束失败恢复响应的发送机会冲突的小区的波束失败恢复响应。
可选地,处理器600通过收发机610向所述基站发送所述第一小区对应的候选新波束;
根据所述第一小区的优先级获取所述波束失败恢复响应,包括:
利用优先级最高的所述第一小区对应的发送波束对应的接收波束监测波束失败恢复响应。
可选地,根据所述第一小区的优先级获取所述波束失败恢复响应,包括:
若监测到波束失败恢复响应,确定所述波束失败恢复响应为优先级最高的所述第一小区对应的波束失败恢复响应。
可选地,处理器600还可以获取基站发送的指示各个小区对应的用于发送波束失败恢复响应的目标小区的信令,根据所述信令确定所述第一小区对应的目标小区。
可选地,所述信令包括以下至少一项:
用于携带波束失败恢复响应的第一物理下行控制信道PDCCH所对应的搜索空间对应的CORESET与目标小区的关联关系;
第一小区与目标小区的关联关系;
第一小区的候选波束与目标小区的关联关系。
收发机610,用于在处理器600的控制下接收和发送数据。
其中,在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器600代表的一个或多个处理器和存储器620代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机610可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口630还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器600负责管理总线架构和通常的处理,存储器620可以存储处理器600在执行操作时所使用的数据。
可选的,处理器600可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)。
本申请实施例提供了一种计算机存储介质,用于储存为上述本申请实施例提供的装置所用的计算机程序指令,其包含用于执行上述本申请实施例提供的任一方法的程序。
所述计算机存储介质可以是计算机能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
本申请实施例提供的方法可以应用于终端设备,也可以应用于网络设备。
其中,终端设备也可称之为用户设备(User Equipment,简称为“UE”)、移动台(Mobile Station,简称为“MS”)、移动终端(Mobile Terminal)等,可选的,该终端可以具备经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信的能力,例如,终端可以是移动电话(或称为“蜂窝”电话)、或具有移动性质的计算机等,例如,终端还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
网络设备可以为基站(例如,接入点),指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以是5G系统中的gNB等。本申请实施例中不做限定。
上述方法处理流程可以用软件程序实现,该软件程序可以存储在存储介质中,当存储的软件程序被调用时,执行上述方法步骤。
综上所述,现有的NR系统的BFR机制只能在主小区PCell上进行,暂无辅小区Scell上的波束失败响应的发送接收机制。如果基站和UE对于发送各个Cell的波束失败响应的发送波束的理解不一致,将有可能导致UE无法正确地接收波束失败响应,从而影响波束失败恢复的过程。本申请提出了一种波束失败响应发送接收方法,使得基站与UE可以使用相同的假设进行波束失败响应的发送和接收,从而保证波束失败响应的性能。
因此,本申请实施例提供了一种小区上的BFR机制,以保证在各种场景下都能进行小区的波束失败恢复;
基于所述BFR机制,本申请提供了一种波束失败响应发送接收方法,使得基站与UE可以使用相同的假设进行波束失败响应的发送和接收,从而保证波束失败响应的性能。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选 实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (61)

  1. 一种信息发送方法,其特征在于,该方法包括:
    确定需要发送第一小区的波束失败恢复响应;
    在第一小区对应的目标小区上发送所述第一小区的波束失败恢复响应;
    其中,所述第一小区为发生了波束失败的小区,所述第一小区对应的目标小区包括至少一个所述第一小区和/或所述第一小区以外的至少一个小区。
  2. 根据权利要求1所述的方法,其特征在于,所述在第一小区对应的目标小区上发送所述第一小区的波束失败恢复响应包括:在同一个目标小区上发送至少两个所述第一小区的波束失败恢复响应。
  3. 根据权利要求1所述的方法,其特征在于,该方法还包括:接收终端对于所述第一小区上报的候选波束信息,根据所述候选波束信息确定所述波束失败恢复响应的时频资源位置和/或发送波束。
  4. 根据权利要求3所述的方法,其特征在于,该方法还包括:将所述第一小区对应的候选波束信息与所述波束失败恢复响应的时频资源位置的映射关系发送给所述终端;
    根据所述候选波束信息确定所述波束失败恢复响应的时频资源位置和/或发送波束,包括:
    根据所述候选波束信息指示的波束与所述波束失败恢复响应的时频资源位置的映射关系,确定所述波束失败恢复响应的时频资源位置。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,该方法还包括:
    向所述终端发送第一控制资源集合CORESET的配置信息,其中,所述第一CORESET为用于携带波束失败恢复响应的CORESET,至少两个小区的第一CORESET相同;其中,任一小区的第一CORESET为用于携带该小区的波束失败恢复响应的CORESET。
  6. 根据权利要求5所述的方法,其特征在于,
    所述第一控制资源集合CORESET的配置信息通过第一搜索空间的配置信息携带,所述第一搜索空间与所述第一CORESET一一对应,其中,所述第一搜索空间为用于携带波束失败恢复响应的第一物理下行控制信道PDCCH所对应的搜索空间。
  7. 根据权利要求6所述的方法,其特征在于,该方法还包括:
    所述至少两个小区的第一搜索空间为不同的搜索空间。
  8. 根据权利要求7所述的方法,其特征在于,该方法还包括:
    所述至少两个小区的第一搜索空间在时间上不重叠。
  9. 根据权利要求6至8任一项所述的方法,其特征在于,所述第一小区中包括至少两个小区,且这至少两个小区的第一控制资源集合CORESET相同;
    在第一小区对应的目标小区上发送所述第一小区的波束失败恢复响应,包括:使用相同的发送波束在第一小区对应的目标小区上发送所述至少两个小区的波束失败恢复响应。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,接收终端对于所述第一小区上报的候选波束信息,利用所述候选波束信息获得至少两个所述第一小区各自对应的发送波束,利用所述发送波束分别发送所述至少两个所述第一小区对应的第一PDCCH。
  11. 根据权利要求1至9任一项所述的方法,其特征在于,该方法还包括:
    向所述终端发送小区的优先级信息;
    当所述第一个小区包含多个小区,且这多个小区的波束失败恢复响应的发送机会冲突时,根据所述第一小区的优先级发送所述多个波束失败恢复响应的发送机会冲突的小区的波束失败恢复响应。
  12. 根据权利要求11所述的方法,其特征在于,根据所述第一小区的优先级发送所述波束失败恢复响应,包括:
    只发送优先级最高的所述第一小区对应的波束失败恢复响应。
  13. 根据权利要求1至4任一项所述的方法,其特征在于,该方法还包括:
    通过信令向所述终端指示各个小区对应的用于发送波束失败恢复响应的目标小区。
  14. 根据权利要求13所述的方法,其特征在于,所述信令包括以下至少一项:
    用于携带波束失败恢复响应的第一物理下行控制信道PDCCH所对应的搜索空间对应的CORESET与目标小区的关联关系;
    第一小区与目标小区的关联关系;
    第一小区的候选波束与目标小区的关联关系。
  15. 一种信息检测方法,其特征在于,该方法包括:
    确定第一小区对应的目标小区;
    在第一小区对应的目标小区上监测所述第一小区的波束失败恢复响应;其中,所述第一小区为发生了波束失败的小区,所述第一小区对应的目标小区包括至少一个所述第一小区和/或所述第一小区以外的至少一个小区。
  16. 根据权利要求15所述的方法,其特征在于,在同一个目标小区上监测至少两个所述第一小区的波束失败恢复响应。
  17. 根据权利要求15所述的方法,其特征在于,该方法还包括:
    对于所述第一小区上报候选波束信息,使得基站根据所述候选波束信息确定所述波束失败恢复响应的时频资源位置和/或发送波束;以及
    在所述候选波束信息对应的所述波束失败恢复响应对应的时频资源位置上接收所述波束失败恢复响应,和/或,使用候选波束信息对应的发送波束所对应的接收波束接收所述波束失败恢复响应。
  18. 根据权利要求17所述的方法,其特征在于,该方法还包括:接收基站发送的所述第一小区对应的候选波束信息与所述波束失败恢复响应的时频资源位置的映射关系,根据所述映射关系,确定所述波束失败恢复响应的时频资源位置。
  19. 根据权利要求15至18任一项所述的方法,其特征在于,该方法还包括:
    获取所述基站发送的第一控制资源集合CORESET的配置信息,在所述第一CORESET上监测波束失败恢复响应,其中,所述第一CORESET为用于携带波束失败恢复响应的CORESET,至少两个小区的第一CORESET相同;其中,任一小区的第一CORESET为用于携带该小区的波束失败恢复响应的CORESET。
  20. 根据权利要求19所述的方法,其特征在于:
    所述第一控制资源集合CORESET的配置信息通过第一搜索空间的配置信息携带,一个所述第一搜索空间对应于一个第一CORESET,其中,所述第一搜索空间为用于携带波束失败恢复响应的第一物理下行控制信道PDCCH所对应的搜索空间。
  21. 根据权利要求20所述的方法,其特征在于,该方法还包括:
    所述至少两个小区的第一搜索空间为不同的搜索空间。
  22. 根据权利要求21所述的方法,其特征在于,该方法还包括:
    所述至少两个小区的第一搜索空间在时间上不重叠。
  23. 根据权利要求20至22任一项所述的方法,其特征在于,
    所述第一小区中包括至少两个小区,且所述至少两个小区的第一控制资源集合CORESET相同;
    在第一小区对应的目标小区上监测所述第一小区的波束失败恢复响应,包括:使用相同的接收波束监测所述至少两个小区的波束失败恢复响应。
  24. 根据权利要求19所述的方法,其特征在于,该方法还包括:向基站发送对于所述第一小区上报的候选波束信息,利用所述候选波束信息对应的所述至少两个所述第一小区各自对应的接收波束分别监测所述至少两个所述第一小区的波束失败恢复响应。
  25. 根据权利要求15至23任一项所述的方法,其特征在于,该方法还包括:
    获取基站发送的小区的优先级信息;
    当所述第一个小区包含多个小区,且这多个小区的波束失败恢复响应的发送机会冲突时,根据所述第一小区的优先级获取所述多个波束失败恢复响应的发送机会冲突的小区的波束失败恢复响应。
  26. 根据权利要求25所述的方法,其特征在于,该方法还包括:
    向所述基站发送所述第一小区对应的候选新波束;
    根据所述第一小区的优先级获取所述波束失败恢复响应,包括:
    利用优先级最高的所述第一小区对应的发送波束对应的接收波束监测波束失败恢复 响应。
  27. 根据权利要求25或26所述的方法,其特征在于,根据所述第一小区的优先级获取所述波束失败恢复响应,包括:
    若监测到波束失败恢复响应,确定所述波束失败恢复响应为优先级最高的所述第一小区对应的波束失败恢复响应。
  28. 根据权利要求15至18任一项所述的方法,其特征在于,该方法还包括:
    获取基站发送的指示各个小区对应的用于发送波束失败恢复响应的目标小区的信令,根据所述信令确定所述第一小区对应的目标小区。
  29. 根据权利要求28所述的方法,其特征在于,所述信令包括以下至少一项:
    用于携带波束失败恢复响应的第一物理下行控制信道PDCCH所对应的搜索空间对应的CORESET与目标小区的关联关系;
    第一小区与目标小区的关联关系;
    第一小区的候选波束与目标小区的关联关系。
  30. 一种信息发送装置,其特征在于,该装置包括:
    确定单元,用于确定需要发送第一小区的波束失败恢复响应;
    发送单元,用于在第一小区对应的目标小区上发送所述第一小区的波束失败恢复响应;
    其中,所述第一小区为发生了波束失败的小区,所述第一小区对应的目标小区包括至少一个所述第一小区和/或所述第一小区以外的至少一个小区。
  31. 一种信息检测装置,其特征在于,该装置包括:
    确定单元,用于确定第一小区对应的目标小区;
    检测单元,用于在第一小区对应的目标小区上监测所述第一小区的波束失败恢复响应;其中,所述第一小区为发生了波束失败的小区,所述第一小区对应的目标小区包括至少一个所述第一小区和/或所述第一小区以外的至少一个小区。
  32. 一种计算设备,其特征在于,包括:
    存储器,用于存储程序指令;
    处理器,用于调用所述存储器中存储的程序指令,执行以下操作:
    确定需要发送第一小区的波束失败恢复响应;
    在第一小区对应的目标小区上发送所述第一小区的波束失败恢复响应;
    其中,所述第一小区为发生了波束失败的小区,所述第一小区对应的目标小区包括至少一个所述第一小区和/或所述第一小区以外的至少一个小区。
  33. 根据权利要求32所述的计算设备,其特征在于,所述在第一小区对应的目标小区上发送所述第一小区的波束失败恢复响应时,所述处理器用于:在同一个目标小区上发送至少两个所述第一小区的波束失败恢复响应。
  34. 根据权利要求32所述的计算设备,其特征在于,所述处理器还用于:
    接收终端对于所述第一小区上报的候选波束信息,根据所述候选波束信息确定所述波束失败恢复响应的时频资源位置和/或发送波束。
  35. 根据权利要求34所述的计算设备,其特征在于,所述处理器还用于:
    将所述第一小区对应的候选波束信息与所述波束失败恢复响应的时频资源位置的映射关系发送给所述终端;
    根据所述候选波束信息确定所述波束失败恢复响应的时频资源位置和/或发送波束时,所述处理器用于:
    根据所述候选波束信息指示的波束与所述波束失败恢复响应的时频资源位置的映射关系,确定所述波束失败恢复响应的时频资源位置。
  36. 根据权利要求32至35任一项所述的计算设备,其特征在于,所述处理器还用于:
    向所述终端发送第一控制资源集合CORESET的配置信息,其中,所述第一CORESET为用于携带波束失败恢复响应的CORESET,至少两个小区的第一CORESET相同;其中,任一小区的第一CORESET为用于携带该小区的波束失败恢复响应的CORESET。
  37. 根据权利要求36所述的计算设备,其特征在于,
    所述第一控制资源集合CORESET的配置信息通过第一搜索空间的配置信息携带,所述第一搜索空间与所述第一CORESET一一对应,其中,所述第一搜索空间为用于携带波束失败恢复响应的第一物理下行控制信道PDCCH所对应的搜索空间。
  38. 根据权利要求37所述的计算设备,其特征在于,所述处理器还用于:
    所述至少两个小区的第一搜索空间为不同的搜索空间。
  39. 根据权利要求38所述的计算设备,其特征在于,所述处理器还用于:
    所述至少两个小区的第一搜索空间在时间上不重叠。
  40. 根据权利要求37至39任一项所述的计算设备,其特征在于,所述第一小区中包括至少两个小区,且这至少两个小区的第一控制资源集合CORESET相同;
    在第一小区对应的目标小区上发送所述第一小区的波束失败恢复响应时,所述处理器用于:使用相同的发送波束在第一小区对应的目标小区上发送所述至少两个小区的波束失败恢复响应。
  41. 根据权利要求32至40任一项所述的计算设备,其特征在于,所述处理器还用于:
    接收终端对于所述第一小区上报的候选波束信息,利用所述候选波束信息获得至少两个所述第一小区各自对应的发送波束,利用所述发送波束分别发送所述至少两个所述第一小区对应的第一PDCCH。
  42. 根据权利要求32至40任一项所述的计算设备,其特征在于,所述处理器还用于:
    向所述终端发送小区的优先级信息;
    当所述第一个小区包含多个小区,且这多个小区的波束失败恢复响应的发送机会冲突时,根据所述第一小区的优先级发送所述多个波束失败恢复响应的发送机会冲突的小区的波束失败恢复响应。
  43. 根据权利要求42所述的计算设备,其特征在于,根据所述第一小区的优先级发送所述波束失败恢复响应时,所述处理器用于:
    只发送优先级最高的所述第一小区对应的波束失败恢复响应。
  44. 根据权利要求32至35任一项所述的计算设备,其特征在于,所述处理器还用于:
    通过信令向所述终端指示各个小区对应的用于发送波束失败恢复响应的目标小区。
  45. 根据权利要求44所述的计算设备,其特征在于,所述信令包括以下至少一项:
    用于携带波束失败恢复响应的第一物理下行控制信道PDCCH所对应的搜索空间对应的CORESET与目标小区的关联关系;
    第一小区与目标小区的关联关系;
    第一小区的候选波束与目标小区的关联关系。
  46. 一种计算设备,其特征在于,包括:
    存储器,用于存储程序指令;
    处理器,用于调用所述存储器中存储的程序指令,执行以下操作:
    确定第一小区对应的目标小区;
    在第一小区对应的目标小区上监测所述第一小区的波束失败恢复响应;其中,所述第一小区为发生了波束失败的小区,所述第一小区对应的目标小区包括至少一个所述第一小区和/或所述第一小区以外的至少一个小区。
  47. 根据权利要求46所述的计算设备,其特征在于,所述处理器在同一个目标小区上监测至少两个所述第一小区的波束失败恢复响应。
  48. 根据权利要求46所述的计算设备,其特征在于,所述处理器还用于:
    对于所述第一小区上报候选波束信息,使得基站根据所述候选波束信息确定所述波束失败恢复响应的时频资源位置和/或发送波束;以及
    在所述候选波束信息对应的所述波束失败恢复响应对应的时频资源位置上接收所述波束失败恢复响应,和/或,使用候选波束信息对应的发送波束所对应的接收波束接收所述波束失败恢复响应。
  49. 根据权利要求48所述的计算设备,其特征在于,所述处理器还用于:接收基站发送的所述第一小区对应的候选波束信息与所述波束失败恢复响应的时频资源位置的映射关系,根据所述映射关系,确定所述波束失败恢复响应的时频资源位置。
  50. 根据权利要求46至49任一项所述的计算设备,其特征在于,所述处理器还用于:
    获取所述基站发送的第一控制资源集合CORESET的配置信息,在所述第一CORESET 上监测波束失败恢复响应,其中,所述第一CORESET为用于携带波束失败恢复响应的CORESET,至少两个小区的第一CORESET相同;其中,任一小区的第一CORESET为用于携带该小区的波束失败恢复响应的CORESET。
  51. 根据权利要求50所述的计算设备,其特征在于:
    所述第一控制资源集合CORESET的配置信息通过第一搜索空间的配置信息携带,一个所述第一搜索空间对应于一个第一CORESET,其中,所述第一搜索空间为用于携带波束失败恢复响应的第一物理下行控制信道PDCCH所对应的搜索空间。
  52. 根据权利要求51所述的计算设备,其特征在于,所述处理器还用于:
    所述至少两个小区的第一搜索空间为不同的搜索空间。
  53. 根据权利要求52所述的计算设备,其特征在于,所述处理器还用于:
    所述至少两个小区的第一搜索空间在时间上不重叠。
  54. 根据权利要求51至53任一项所述的计算设备,其特征在于,
    所述第一小区中包括至少两个小区,且所述至少两个小区的第一控制资源集合CORESET相同;
    在第一小区对应的目标小区上监测所述第一小区的波束失败恢复响应时,所述处理器用于:使用相同的接收波束监测所述至少两个小区的波束失败恢复响应。
  55. 根据权利要求50所述的计算设备,其特征在于,所述处理器还用于:向基站发送对于所述第一小区上报的候选波束信息,利用所述候选波束信息对应的所述至少两个所述第一小区各自对应的接收波束分别监测所述至少两个所述第一小区的波束失败恢复响应。
  56. 根据权利要求46至54任一项所述的计算设备,其特征在于,所述处理器还用于:
    获取基站发送的小区的优先级信息;
    当所述第一个小区包含多个小区,且这多个小区的波束失败恢复响应的发送机会冲突时,根据所述第一小区的优先级获取所述多个波束失败恢复响应的发送机会冲突的小区的波束失败恢复响应。
  57. 根据权利要求56所述的计算设备,其特征在于,所述处理器还用于:
    向所述基站发送所述第一小区对应的候选新波束;
    根据所述第一小区的优先级获取所述波束失败恢复响应时,所述处理器用于:
    利用优先级最高的所述第一小区对应的发送波束对应的接收波束监测波束失败恢复响应。
  58. 根据权利要求56或57所述的计算设备,其特征在于,根据所述第一小区的优先级获取所述波束失败恢复响应时,所述处理器用于:
    若监测到波束失败恢复响应,确定所述波束失败恢复响应为优先级最高的所述第一小区对应的波束失败恢复响应。
  59. 根据权利要求46至49任一项所述的计算设备,其特征在于,所述处理器用于:
    获取基站发送的指示各个小区对应的用于发送波束失败恢复响应的目标小区的信令,根据所述信令确定所述第一小区对应的目标小区。
  60. 根据权利要求59所述的计算设备,其特征在于,所述信令包括以下至少一项:
    用于携带波束失败恢复响应的第一物理下行控制信道PDCCH所对应的搜索空间对应的CORESET与目标小区的关联关系;
    第一小区与目标小区的关联关系;
    第一小区的候选波束与目标小区的关联关系。
  61. 一种计算机存储介质,其特征在于,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行权利要求1至29任一项所述的方法。
PCT/CN2020/072333 2019-01-24 2020-01-15 一种信息发送、检测方法及装置 WO2020151554A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910068809.0 2019-01-24
CN201910068809.0A CN111479326B (zh) 2019-01-24 2019-01-24 一种信息发送、检测方法及装置

Publications (1)

Publication Number Publication Date
WO2020151554A1 true WO2020151554A1 (zh) 2020-07-30

Family

ID=71736439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072333 WO2020151554A1 (zh) 2019-01-24 2020-01-15 一种信息发送、检测方法及装置

Country Status (2)

Country Link
CN (1) CN111479326B (zh)
WO (1) WO2020151554A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114830819A (zh) * 2020-11-27 2022-07-29 北京小米移动软件有限公司 测量发送方法和测量接收方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230345260A1 (en) * 2020-09-07 2023-10-26 Beijing Xiaomi Mobile Software Co., Ltd. Control resource set pool index updating method and apparatus, terminal, and network device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108811092A (zh) * 2017-04-28 2018-11-13 维沃移动通信有限公司 波束失败恢复处理方法、终端及网络侧设备
WO2018237400A1 (en) * 2017-06-23 2018-12-27 Huawei Technologies Co., Ltd. UNIFIED RLF DETECTION, MULTI-BEAM RLM AND BFR MECHANISMS WITH FULL DIVERSITY

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108811092A (zh) * 2017-04-28 2018-11-13 维沃移动通信有限公司 波束失败恢复处理方法、终端及网络侧设备
WO2018237400A1 (en) * 2017-06-23 2018-12-27 Huawei Technologies Co., Ltd. UNIFIED RLF DETECTION, MULTI-BEAM RLM AND BFR MECHANISMS WITH FULL DIVERSITY

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CATT: "Enhancements on Multi-Beam Operation, R1-1812636", 3GPP TSG RAN WG1 MEETING #95, 11 November 2018 (2018-11-11), XP051554592, DOI: 20200329212125X *
ERICSSON: "Link Recovery on SCell, Tdoc R1-1813606", 3GPP TSG RAN WG1 MEETING #95, 11 November 2018 (2018-11-11), XP051555662, DOI: 20200329212311X *
FUJITSU: "Enhancements on Multi-Beam Operation, R1-1900257", 3GPP TSG RAN WG1 MEETING #AD-HOC 1901, 20 January 2019 (2019-01-20), XP051593171, DOI: 20200329212311X *
HUAWEI, HISILICON: "Beam Failure Recovery for Scell, R1-1813561", 3GPP TSG RAN WG1 MEETING #95, 11 November 2018 (2018-11-11), XP051555616, DOI: 20200329212505X *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114830819A (zh) * 2020-11-27 2022-07-29 北京小米移动软件有限公司 测量发送方法和测量接收方法
CN114830819B (zh) * 2020-11-27 2024-01-23 北京小米移动软件有限公司 测量发送方法和测量接收方法

Also Published As

Publication number Publication date
CN111479326A (zh) 2020-07-31
CN111479326B (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
US11122523B2 (en) Information transmission method and apparatus
WO2020147615A1 (zh) 波束失败恢复方法、终端及基站
US11438898B2 (en) Beam indication method, apparatus and system
WO2020228589A1 (zh) 通信方法和通信装置
WO2020192566A1 (zh) 波束失败恢复方法和通信装置
US20220070853A1 (en) Method and apparatus for beam management, and computer-readable storage medium
US20210168636A1 (en) Method for assessing radio link quality, parameter configuration method, apparatuses thereof and system
JP7333827B2 (ja) 直流成分の周波数領域の位置を決定するための方法および装置、記憶媒体、端末、ならびに基地局
WO2020207333A1 (zh) 链路失败恢复的方法和装置
KR20230088450A (ko) 메시지 처리 방법, 장치, 단말기기, 네트워크 기기 및 저장매체
WO2020151554A1 (zh) 一种信息发送、检测方法及装置
WO2021056334A1 (zh) 用于激活辅小区的通信方法和装置
WO2020147762A1 (zh) 波束失败恢复方法、装置、ue、基站及可读存储介质
WO2021032007A1 (zh) 链路失败报告传输的方法和装置
WO2022083752A1 (zh) 一种阵面选择方法、终端、网络设备及存储介质
US11985026B2 (en) Processing method and device for link recovery process, and terminal
WO2020192369A1 (zh) 一种波束失败的处理方法及装置
WO2022008170A1 (en) Apparatus, method, and computer program
KR20220047328A (ko) 정보를 전송하기 위한 방법 및 장치
TWI793471B (zh) 信號傳輸方法及裝置
EP4319403A1 (en) Resource determination method and apparatus
WO2022141303A1 (zh) 通信方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20744843

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20744843

Country of ref document: EP

Kind code of ref document: A1