WO2022141303A1 - 通信方法和通信装置 - Google Patents

通信方法和通信装置 Download PDF

Info

Publication number
WO2022141303A1
WO2022141303A1 PCT/CN2020/141825 CN2020141825W WO2022141303A1 WO 2022141303 A1 WO2022141303 A1 WO 2022141303A1 CN 2020141825 W CN2020141825 W CN 2020141825W WO 2022141303 A1 WO2022141303 A1 WO 2022141303A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
cell
information
channel quality
beam failure
Prior art date
Application number
PCT/CN2020/141825
Other languages
English (en)
French (fr)
Inventor
张荻
刘鹍鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/141825 priority Critical patent/WO2022141303A1/zh
Publication of WO2022141303A1 publication Critical patent/WO2022141303A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure

Definitions

  • the present application relates to the field of communication, and more particularly, to a communication method and a communication device.
  • the signal transmission mechanism based on beamforming technology is also adopted accordingly.
  • the signal transmission mechanism based on beamforming technology can compensate the path loss in the process of high frequency signal propagation through larger antenna gain.
  • the terminal device When the communication between the network device and the terminal device is based on beamforming technology, due to the strong directivity of the beam, once the terminal device reverses or moves, it will cause the change of the direction of the terminal device to receive no incoming from the network device. The signal transmitted by the service beam, causing the signal interruption.
  • the terminal device can judge whether a beam failure has occurred in the current serving cell by detecting the reference signal used for beam failure detection of the serving cell.
  • the current beam failure detection mechanism has low efficiency and large delay, which may lead to long communication interruption time.
  • Embodiments of the present application provide a communication method and a communication device, which can improve the efficiency of beam communication failure detection.
  • a communication method is provided, and the method can be performed by a terminal device or a module (eg, a chip) configured in (or used for) the terminal device.
  • a module eg, a chip
  • the method includes: receiving first information, the first information being used to indicate at least one second cell, the second cell being a cell associated with the first cell;
  • the second resource is to detect beam failure of the first cell, wherein the first resource is a resource used for beam failure detection, and the second resource is determined according to the first information.
  • the propagation paths experienced by beams in the same or similar directions in different cells are also similar, and the quality of the beams can refer to each other.
  • the efficiency of beam failure detection can be improved.
  • the first information includes one or more of the following: identification information of the second resource, cell identification information or vector information of the second cell.
  • the detecting a beam failure of the first cell according to the first resource of the first cell and the second resource of the second cell includes: detecting the first resource The channel quality of a resource and the channel quality of the second resource; if the channel quality of the first resource is less than or equal to the first threshold, and the channel quality of the second resource is less than or equal to the second threshold, the first Beam failure events for a cell indicate that the count value of the counter is incremented by one.
  • a beam failure case occurs, that is, the channel quality of the beam failure detection resource of the first cell and the associated When the channel quality of the resources of the second cell are all lower than the threshold value, it is determined that a beam failure case occurs, which can improve the reliability of beam failure detection.
  • the communication method is performed by a terminal device, and the detecting the channel quality of the first resource and the channel quality of the second resource includes: a physical layer of the terminal device Detect the channel quality of the first resource and the channel quality of the second resource; if the channel quality of the first resource is less than or equal to the first threshold, and the channel quality of the second resource is less than or equal to the second threshold , the physical layer of the terminal device sends first indication information to the media access control layer of the terminal device; and the count value of the beam failure case indication counter of the first cell is incremented by 1, including: the media access of the terminal device If the control layer receives the first indication information, the count value of the beam failure case indication counter of the first cell is incremented by 1.
  • the physical layer of the terminal equipment can perform channel quality detection, determine whether a beam failure case occurs and report it to the media access layer, and the media access layer controls the beam failure case indication counter to count beam failure cases.
  • Layer division of labor implements different functions for performing beam failure detection, which can improve the efficiency of beam failure detection.
  • the detecting a beam failure of the first cell according to the first resource of the first cell and the second resource of the second cell includes: detecting the first resource The channel quality of a resource and the channel quality of the second resource; if the channel quality of the first resource is less than or equal to the first threshold value, the count value of the beam failure case indication counter of the first cell is incremented by 1; The channel quality of the second resource is less than or equal to the second threshold value, and the count value of the beam failure case indication counter of the first cell is incremented by 1.
  • the count value of the beam failure case indication counter is incremented by 1
  • the channel quality of the second resource is less than or equal to the first threshold value
  • the beam failure case indication counter The count value is increased by 1 to reduce the delay of beam failure detection, which can improve the efficiency of beam failure detection.
  • the communication method is performed by a terminal device, and the detecting the channel quality of the first resource and the channel quality of the second resource includes: a physical layer of the terminal device Detect the channel quality of the first resource and the channel quality of the second resource; if the channel quality of the first resource is less than or equal to the first threshold value, the physical layer of the terminal device sends a message to the media access control layer of the terminal device sending second indication information; if the channel quality of the second resource is less than or equal to the second threshold, the physical layer of the terminal device sends third indication information to the medium access control layer of the terminal device; and, the first The count value of the beam failure case indication counter of the cell is incremented by 1, including: if the medium access control layer of the terminal device receives the second indication information, the count value of the beam failure case indication counter of the first cell is incremented by 1; the If the medium access control layer of the terminal device receives the third indication information, the count value of the beam failure case indication counter
  • the physical layer of the terminal equipment can perform channel quality detection, determine whether a beam failure case occurs and report it to the media access layer, and the media access layer controls the beam failure case indication counter to count beam failure cases.
  • Layer division of labor implements different functions for performing beam failure detection, which can improve the efficiency of beam failure detection.
  • the failure to detect the beam of the first cell according to the first resource of the first cell and the second resource of the second cell includes: if the beam fails The failure case indicates that the count value of the counter is greater than or equal to the preset maximum count value, triggering the beam failure recovery process of the first cell.
  • counting is performed by a counter, and when the counter reaches the maximum count value, the terminal device can determine that a beam failure has occurred, and initiate a beam failure recovery process. It is possible to shorten the time during which normal communication cannot be performed due to beam failure.
  • the detecting a beam failure of the first cell according to the first resource of the first cell and the second resource of the second cell includes: detecting the first resource The channel quality of a resource and the channel quality of the second resource; if the channel quality of the first resource is less than or equal to the first threshold, and the channel quality corresponding to the second resource is less than or equal to the second threshold, trigger The beam failure recovery process of the first cell.
  • the beam failure recovery process is triggered, which can reduce the time delay of the beam failure detection process.
  • the detecting a beam failure of the first cell according to the first resource of the first cell and the second resource of the second cell includes: detecting the first resource The channel quality of a resource, if the channel quality of the first resource is less than or equal to the first threshold value, the count value of the beam failure case indication counter of the first cell is incremented by 1; the channel quality of the second resource is detected, if the The channel quality of the second resource is less than or equal to the second threshold value, and the count value of the beam failure case indication counter is greater than or equal to the first preset value, triggering the beam failure recovery process of the first cell.
  • the terminal device detects that the channel quality of the second resource of the second cell is also lower than the threshold value when the beam failure case determined according to the beam failure detection resource of the first cell reaches the first preset value, Then, it is determined that a beam failure occurs, which can improve the efficiency of beam failure detection and reduce the time delay of beam failure detection.
  • the communication method is performed by a terminal device, and the detecting the channel quality of the first resource includes: a physical layer of the terminal device detects the channel quality of the first resource , if the channel quality corresponding to the first resource is less than or equal to the first threshold value, send second indication information to the media access control layer of the terminal device; the count value of the beam failure case indication counter of the first cell is incremented by 1 , including: if the medium access control layer of the terminal equipment receives the second indication information, the count value of the beam failure case indication counter of the first cell is incremented by 1; the detection of the channel quality of the second resource includes: the The physical layer of the terminal device detects the channel quality of the second resource, and if the channel quality of the second resource is less than or equal to the second threshold value, sends third indication information to the medium access control layer of the terminal device; this triggers the The beam failure recovery process of the first cell includes: if the medium access control layer of the terminal device receives the
  • the physical layer of the terminal equipment can perform channel quality detection, determine whether a beam failure case occurs and report it to the media access layer, and the media access layer controls the beam failure case indication counter to count beam failure cases.
  • Layer division of labor implements different functions for performing beam failure detection, which can improve the efficiency of beam failure detection.
  • a communication method is provided, and the method can be performed by a network device or a module (eg, a chip) configured in (or used for) the network device.
  • a module eg, a chip
  • the method includes: determining at least one second cell associated with the first cell; sending first information, where the first information is used to indicate the at least one second cell, and the first information is used by the terminal device to determine the location in the second cell
  • the second resource is used to detect the beam failure of the first cell.
  • the first information includes one or more of the following: identification information of the second resource, cell identification information or vector information of the second cell.
  • the determining at least one second cell associated with the first cell includes: according to a positional relationship between the first cell and the at least one second cell, a beam pointing relationship, or a quasi-co-location relationship, to determine at least one of the second cells associated with the first cell.
  • a communication method is provided, and the method can be performed by a terminal device or a module (eg, a chip) configured in (or used for) the terminal device.
  • a module eg, a chip
  • the method includes: detecting channel quality of at least one reference signal resource, and determining a third resource in the at least one reference signal resource according to the channel quality of the at least one reference signal resource, wherein the at least one reference signal resource is the same as the At least one candidate resource set for beam failure recovery of the first cell is associated, and the channel quality of the third resource is greater than or equal to a third threshold value; the channel quality of the candidate resources in the first candidate resource set is detected, and the determination is made a fourth resource used for beam failure recovery in the first candidate resource set, the first candidate set is a candidate set associated with the third resource in the at least one candidate resource set, the fourth resource The channel quality of the first cell is greater than or equal to the fourth threshold value; according to the fourth resource, the beam failure recovery request information of the first cell is sent.
  • the terminal equipment reduces the detection range of the candidate resources to be detected by measuring the channel quality of the reference signal resources associated with the candidate resource set, and can reduce the time delay of the beam failure recovery process.
  • the at least one reference signal resource includes resources of the second cell.
  • the method further comprises: receiving second information, the second information indicating the at least one reference associated with the at least one candidate resource set signal resource.
  • the second information includes identification information of reference signal resources associated with each candidate resource set in the at least one candidate resource set.
  • the second information includes at least one vector information associated with the at least one candidate resource set, the at least one vector is the measurement of the at least one reference signal resources obtained.
  • the method further includes: determining the at least one reference signal resource associated with the at least one candidate resource set; sending third information, the third The information is used to indicate the at least one reference signal resource associated with the at least one candidate resource set.
  • the third information includes identification information of reference signal resources associated with each candidate resource set in the at least one candidate resource set.
  • the third information includes at least one vector information associated with the at least one candidate resource set, the at least one vector information is the measurement of the at least one reference The channel information of the signal resource is obtained.
  • a communication method is provided, and the method can be performed by a network device or a module (eg, a chip) configured in (or used for) the network device.
  • a module eg, a chip
  • the method includes sending second information for indicating at least one reference signal resource associated with at least one candidate resource set of a first cell, wherein the at least one candidate resource set is the first cell.
  • the set of candidate resources for beam failure recovery ; receive beam failure request information, the beam failure request information is used to indicate a fourth resource, and the fourth resource is a resource in the at least one candidate set.
  • the at least one reference signal resource includes resources of the second cell.
  • the second information includes identification information of reference signal resources associated with each candidate resource set in the at least one candidate resource set.
  • the second information includes at least one vector information associated with the at least one candidate resource set, the at least one vector is used by the terminal device to determine the at least one A reference signal resource.
  • a communication method is provided, which method can be performed by a network device or a module (such as a chip) configured in (or used for) the network device.
  • the method includes: receiving third information for indicating at least one reference signal resource associated with at least one candidate resource set of a first cell, wherein the at least one candidate resource set is the first cell
  • the set of candidate resources for beam failure recovery ; receive beam failure request information, the beam failure request information is used to indicate a fourth resource, and the fourth resource is a resource in the at least one candidate set.
  • the at least one reference signal resource includes resources of the second cell.
  • the second information includes identification information of reference signal resources associated with each candidate resource set in the at least one candidate resource set.
  • the second information includes at least one vector information associated with the at least one candidate resource set, the at least one vector is the measurement of the at least one reference signal resources obtained.
  • a communication device may include modules that perform one-to-one correspondence with the methods/operations/steps/actions described in the first aspect.
  • the modules may be hardware circuits, or However, software can also be implemented in combination with hardware circuits and software.
  • the apparatus includes: a transceiver unit for receiving first information, where the first information is used to indicate at least one second cell, the second cell being a cell associated with the first cell; a processing unit for The beam failure of the first cell is detected according to the first resource of the first cell and the second resource of the second cell, wherein the first resource is a resource used for beam failure detection, and the second resource is detected according to the The first information is determined.
  • the first information includes one or more of the following: identification information of the second resource, cell identification information or vector information of the second cell.
  • the processing unit is specifically configured to detect the channel quality of the first resource and the channel quality of the second resource; if the channel quality of the first resource is less than or equal to The first threshold value, and the channel quality of the second resource is less than or equal to the second threshold value, the processing unit is specifically configured to control the count value of the beam failure case indication counter of the first cell to increment by 1.
  • the processing unit is configured to control the physical layer to detect the channel quality of the first resource and the channel quality of the second resource; if the channel quality of the first resource is less than or equal to the first threshold value, and the channel quality of the second resource is less than or equal to the second threshold value, the processing unit is configured to control the management layer to send the first indication information to the medium access control layer of the terminal device; the The processing unit is specifically configured to, after the medium access control layer receives the first indication information, control the count value of the beam failure case indication counter of the first cell to increase by 1.
  • the processing unit is specifically configured to detect the channel quality of the first resource and the channel quality of the second resource; if the channel quality of the first resource is less than or equal to The first threshold value, the processing unit is specifically used to control the count value of the beam failure case indication counter of the first cell plus 1; if the channel quality of the second resource is less than or equal to the second threshold value, the processing unit is specifically The beam failure case indication counter for the first cell is incremented by one.
  • the processing unit controls the physical layer to detect the channel quality of the first resource and the channel quality of the second resource; if the channel quality of the first resource is less than or equal to The first threshold value, the processing unit is used to control the physical layer of the terminal device to send second indication information to the medium access control layer of the terminal device; if the channel quality of the second resource is less than or equal to the second threshold value , the processing unit is used to control the physical layer of the terminal device to send the third indication information to the media access control layer of the terminal device; if the media access control layer of the terminal device receives the second indication information, the processing unit Specifically control the beam failure case indication counter of the first cell plus 1; if the medium access control layer of the terminal device receives the third indication information, the processing unit controls the beam failure case indication counter of the first cell The count value is incremented by 1.
  • the processing unit is configured to trigger beam failure recovery of the first cell process.
  • the processing unit is specifically configured to detect the channel quality of the first resource and the channel quality of the second resource; if the channel quality of the first resource is less than or equal to The first threshold value, and the channel quality corresponding to the second resource is less than or equal to the second threshold value, the processing unit is specifically configured to trigger the beam failure recovery process of the first cell.
  • the processing unit is specifically configured to detect the channel quality of the first resource, if the channel quality of the first resource is less than or equal to the first threshold, the first The count value of the beam failure case indication counter in a cell is incremented by 1; the processing unit is specifically used to detect the channel quality of the second resource, if the channel quality of the second resource is less than or equal to the second threshold, and the beam fails The case indicates that the count value of the counter is greater than or equal to the first preset value, and the processing unit is further configured to trigger the beam failure recovery process of the first cell.
  • the processing unit is specifically configured to control the physical layer of the terminal device to detect the channel quality of the first resource, if the channel quality corresponding to the first resource is less than or equal to the first threshold value, the processing unit is further configured to control the physical layer of the terminal device to send second indication information to the media access control layer of the terminal device; the processing unit is further configured to control the media access control of the terminal device If the layer receives the second indication information, the count value of the beam failure case indication counter of the first cell is incremented by 1; the processing unit is specifically used to control the physical layer of the terminal device to detect the channel quality of the second resource, if the The channel quality of the second resource is less than or equal to the second threshold value, and the processing unit is further configured to control the physical layer of the terminal device to send third indication information to the media access control layer of the terminal device; the media access control layer of the terminal device If the ingress control layer receives the third indication information and the count value of the beam failure case indication counter is greater than or
  • a communication device may include modules that perform one-to-one correspondence with the methods/operations/steps/actions described in the second aspect.
  • the modules may be hardware circuits, or However, software can also be implemented in combination with hardware circuits and software.
  • the apparatus includes: a processing unit for determining at least one second cell associated with the first cell; a transceiver unit for sending first information, where the first information is used to indicate the at least one second cell , the first information is used by the terminal device to determine the second resource in the second cell, and the second resource is used to detect the beam failure of the first cell.
  • the first information includes one or more of the following: identification information of the second resource, cell identification information or vector information of the second cell.
  • the processing unit is specifically configured to determine the corresponding At least one of the second cells associated with the first cell.
  • a communication device may include modules that perform one-to-one correspondence with the methods/operations/steps/actions described in the third aspect.
  • the modules may be hardware circuits, or However, software can also be implemented in combination with hardware circuits and software.
  • the apparatus includes: a processing unit configured to detect channel quality of at least one reference signal resource, and determine a third resource in the at least one reference signal resource according to the channel quality of the at least one reference signal resource,
  • the at least one reference signal resource is associated with at least one candidate resource set for beam failure recovery in the first cell, and the channel quality of the third resource is greater than or equal to a third threshold;
  • the processing unit is further configured to Detect the channel quality of the candidate resources in the first candidate resource set, and determine the fourth resource used for beam failure recovery in the first candidate resource set, where the first candidate set is the same as the at least one candidate resource set.
  • the transceiver unit is configured to send beam failure recovery request information of the first cell according to the fourth resource.
  • the transceiver unit is further configured to receive second information, where the second information is used to indicate the at least one reference associated with the at least one candidate resource set signal resource.
  • the processing unit is further configured to determine the at least one reference signal resource associated with the at least one candidate resource set; the transceiver unit is further configured to send third information, The third information is used to indicate the at least one reference signal resource associated with the at least one candidate resource set.
  • a ninth aspect provides a communication device.
  • the device may include a one-to-one module for performing the method/operation/step/action described in the fourth aspect.
  • the module may be a hardware circuit, or However, software can also be implemented in combination with hardware circuits and software.
  • the apparatus includes: a processing unit configured to determine at least one reference signal resource associated with at least one candidate resource set of the first cell; a transceiver unit configured to send second information, where the second information is used for Indicate the at least one reference signal resource, where the at least one candidate resource set is a candidate resource set of the first cell for beam failure recovery; the transceiver unit is further configured to receive beam failure request information, the beam failure The request information is used to indicate a fourth resource, where the fourth resource is a resource in the at least one candidate set.
  • a tenth aspect provides a communication device.
  • the device may include modules that perform one-to-one correspondence with the methods/operations/steps/actions described in the fifth aspect.
  • the modules may be hardware circuits, or However, software can also be implemented in combination with hardware circuits and software.
  • the apparatus includes: a transceiver unit configured to receive third information, where the third information is used to indicate at least one reference signal resource associated with at least one candidate resource set of the first cell, wherein the at least one A candidate resource set is a candidate resource set of the first cell for beam failure recovery; a processing unit is configured to determine the at least one reference signal resource according to the third information; a transceiver unit is further configured to receive beam failure request information , the beam failure request information is used to indicate a fourth resource, where the fourth resource is a resource in the at least one candidate set.
  • a communication apparatus including a processor.
  • the processor may implement the methods in any of the first to fifth aspects and any possible implementation manners of the first to fifth aspects.
  • the communication device further includes a memory, and the processor is coupled to the memory and can be configured to execute instructions in the memory, so as to implement the method in any of the above possible implementation manners.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication interface may be a transceiver, a pin, a circuit, a bus, a module, or other types of communication interfaces, which are not limited.
  • the communication apparatus is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip configured in the terminal device.
  • the communication interface may be an input/output interface.
  • the communication apparatus is a network device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip configured in a network device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a twelfth aspect provides a processor including: an input circuit, an output circuit and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes the method of the first aspect to the fifth aspect and any one of the possible implementations of the first aspect to the fifth aspect .
  • the above-mentioned processor may be one or more chips
  • the input circuit may be input pins
  • the output circuit may be output pins
  • the processing circuit may be transistors, gate circuits, flip-flops and various logic circuits, etc. .
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver
  • the signal output by the output circuit may be, for example, but not limited to, output to and transmitted by a transmitter
  • the circuit can be the same circuit that acts as an input circuit and an output circuit at different times.
  • the embodiments of the present application do not limit the specific implementation manners of the processor and various circuits.
  • a thirteenth aspect provides a computer program product, the computer program product comprising: a computer program (also referred to as code, or instructions), when the computer program is executed, causes the computer to execute the above-mentioned first to fifth aspects Aspects and methods of any possible implementations of the first to fifth aspects.
  • a computer program also referred to as code, or instructions
  • a computer-readable storage medium stores a computer program (also referred to as code, or instruction), when it runs on a computer, causing the computer to perform the above-mentioned first aspect A method in any one possible implementation manner of the fifth aspect and the first aspect to the fifth aspect.
  • a computer program also referred to as code, or instruction
  • a fifteenth aspect provides a communication system, comprising a device for performing the method in any possible implementation manner of the first aspect and a device for performing the method in any possible implementation manner in the second aspect .
  • the communication system includes a terminal device that executes the method in any possible implementation manner of the first aspect and a network device that executes the method in any possible implementation manner of the second aspect.
  • a sixteenth aspect provides a communication system, the communication system comprising means for performing the method in any of the possible implementations of the third aspect, and the communication system further comprising means for performing the fourth aspect or the fifth aspect Apparatus for any of the possible implementations of the method in the aspect.
  • the communication system includes a terminal device that executes the method in any of the possible implementations of the third aspect, and the communication system further includes a network that executes the method in any of the possible implementations of the fourth aspect or the fifth aspect equipment.
  • FIG. 1 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a communication method provided by an embodiment of the present application.
  • FIG. 4 is another schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of an example of a communication device of the present application.
  • FIG. 6 is a schematic structural diagram of an example of a terminal device of the present application.
  • FIG. 7 is a schematic structural diagram of an example of a network device of the present application.
  • LTE long term evolution
  • 5G fifth generation
  • WiFi wireless-fidelity
  • FDD frequency division duplex
  • NR new radio
  • the technical solutions provided in the embodiments of the present application can be applied to various communication scenarios, for example, can be applied to one or more of the following communication scenarios: enhanced mobile broadband (eMBB) communication, high reliability and low latency communication ( ultra-reliable and low latency communication, URLLC), machine type communication (MTC), massive MTC (massive MTC, mMTC) massive machine type communication, device-to-device (D2D) communication , vehicle-to-everything (V2X) communication, vehicle-to-vehicle (V2V) communication, and internet of things (IoT), etc.
  • the mMTC may include one or more of the following communications: communications in an industrial wireless sensor network (IWSN), communications in a video surveillance (video surveillance) scenario, communications with wearable devices, etc. .
  • FIG. 1 is a schematic diagram of a wireless communication system 100 suitable for an embodiment of the present application.
  • the wireless communication system 100 may include at least one network device, for example, the network device 110 shown in FIG. 1 .
  • the wireless communication system 100 may further include at least one terminal device, for example, the terminal device 120 shown in FIG. 1 .
  • the terminal device 120 may communicate with two cells, and the two cells may be cells of the same network device or cells of different network devices.
  • the terminal device 120 may communicate in a carrier aggregation (carrier aggregation, CA) communication manner, or communicate in a dual connection (dual connection, DC) communication manner.
  • carrier aggregation carrier aggregation
  • DC dual connection
  • the terminal equipment in the embodiments of the present application may also be referred to as user equipment (user equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal , wireless communication device, user agent or user device.
  • user equipment user equipment
  • UE user equipment
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal , wireless communication device, user agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone, a tablet computer, a computer with a wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless device in industrial control Terminal, wireless terminal in unmanned driving, wireless terminal in telemedicine, wireless terminal in smart grid, wireless terminal in transportation safety, wireless terminal in smart city, wireless terminal in smart home, cellular phone, cordless phone , Session initiation protocol (session initiation protocol, SIP) telephone, wireless local loop (wireless local loop, WLL) station, personal digital assistant (personal digital assistant, PDA), handheld devices with wireless communication capabilities, computing devices, in-vehicle devices , wearable devices, terminal devices in 5G networks or terminal devices in the future evolved public land mobile network (PLMN), etc.
  • VR virtual reality
  • AR augmented reality
  • the apparatus for implementing the function of the terminal device may be a terminal device; it may also be an apparatus capable of supporting the terminal device to implement the function, such as a chip system.
  • the device can be installed in the terminal equipment or used in combination with the terminal equipment.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the provided technical solutions are described by taking the device for realizing the function of the terminal device as the terminal device as an example.
  • the network device in this embodiment of the present application may be a device with a wireless transceiver function in an access network.
  • the equipment includes but is not limited to: base station, evolved node B (evolved node B, eNB), radio network controller (radio network controller, RNC), node B (node B, NB), base station controller (base station controller, BSC), base transceiver station (BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (BBU), wireless fidelity (wireless fidelity, WIFI) system access point (AP), wireless relay node, wireless backhaul node, transmission point (TP), or transmission and reception point (TRP), etc.
  • the device may also be a network node that constitutes a gNB or a transmission point, such as a baseband unit (BBU), or a distributed unit (distributed unit, DU) and the like.
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (active antenna unit, AAU for short).
  • CU implements some functions of gNB
  • DU implements some functions of gNB.
  • CU is responsible for processing non-real-time protocols and services, implementing radio resource control (RRC), and packet data convergence protocol (PDCP) layer function.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, the media access control (MAC) layer and the physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • the higher-layer signaling such as the RRC layer signaling
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in an access network (radio access network, RAN), and the CU can also be divided into network devices in a core network (core network, CN), which is not limited in this application.
  • the network equipment manages one or more cells and provides services for the managed cells.
  • the terminal device communicates with the network device in the cell through transmission resources (for example, frequency domain resources, or spectrum resources) allocated by the network device, and the cell may belong to a macro base station (for example, a macro eNB or a macro gNB, etc.), or It belongs to the base station corresponding to the small cell.
  • Small cells can include: urban cells (metro cells), micro cells (micro cells), pico cells (pico cells), femto cells (femto cells), etc. These small cells have the characteristics of small coverage and low transmit power, and are suitable for to provide high-speed data transmission services.
  • the apparatus for implementing the function of the network device may be a network device; it may also be an apparatus capable of supporting the network device to implement the function, such as a chip system.
  • the apparatus can be installed in network equipment or used in combination with network equipment.
  • the provided technical solution is described by taking the device for implementing the function of the network device being a network device as an example.
  • a beam is a communication resource.
  • the beams can be wide beams, or narrow beams, or other types of beams.
  • the beam-forming technology may be beamforming technology or other technical means.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, and a hybrid digital/analog beamforming technology. Different beams can be considered as different resources.
  • the same information or different information can be sent through different beams.
  • multiple beams with the same or similar communication characteristics may be regarded as one beam.
  • a beam may include one or more antenna ports for transmitting data channels, control channels and sounding signals.
  • the distribution of signal strength, the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space. It can be understood that one or more antenna ports forming a beam can also be regarded as an antenna port set.
  • Beams can be divided into transmit beams and receive beams of network equipment, and transmit beams and receive beams of terminal equipment.
  • the sending beam of the network device is used to describe the beamforming information on the sending side of the network device
  • the receiving beam of the network device is used to describe the beamforming information on the receiving side of the network device
  • the sending beam of the terminal device is used to describe the beamforming information on the sending side of the terminal device
  • the terminal receiving beam is used to describe the beamforming information on the receiving side of the terminal equipment. That is, beams are used to describe beamforming information.
  • the beams may correspond to time resources and/or space resources and/or frequency domain resources.
  • the beams may also correspond to reference signal resources (eg, beamformed reference signal resources), or beamforming information.
  • reference signal resources eg, beamformed reference signal resources
  • beamforming information e.g., beamforming information
  • the beam may also correspond to information associated with reference signal resources of the network device, where the reference signal may be a channel state information reference signal (CSI-RS), SSB, demodulation reference signal (demodulation reference signal) signal, DMRS), phase tracking reference signal (PTRS), tracking signal (tracking reference signal, TRS), etc.
  • TRS is also a type of CSI-RS.
  • the information associated with the reference signal resource may be an identifier of the reference signal resource, or QCL information (especially QCL of type D type), and the like.
  • the reference signal resource identifier corresponds to a transceiving beam pair established based on the reference signal resource measurement before, and the terminal device can infer beam information through the reference signal resource index.
  • the beam may also correspond to a spatial filter (spatial filter or spatial domain filter) and a spatial domain transmission filter (spatial domain transmission filter).
  • a spatial filter spatial filter or spatial domain filter
  • a spatial domain transmission filter spatial domain transmission filter
  • the receiving beam can be equivalent to the spatial transmission filter, the spatial transmission filter, the spatial receiving filter, the spatial receiving filter; the transmitting beam can be equivalent to the spatial filter, the spatial transmission filter, the spatial transmission filter, the spatial transmission filter.
  • the information of the spatial correlation parameters can be equivalent to the spatial filter (spatial domain transmission/receive filter).
  • the spatial filter generally includes a spatial transmit filter, and/or a spatial receive filter.
  • the spatial filter may also be referred to as a spatial transmission filter, a spatial reception filter, a spatial transmission filter, a spatial transmission filter, and the like.
  • the receive beam on the terminal device side and the transmit beam on the network device side may be downlink spatial filters, and the transmit beam on the terminal device side and the receive beam on the network device side may be uplink spatial filters.
  • the spatial correlation parameter information may be quasi-collocation (QCL) information, and may also be spatial correlation information (spatial relation). Generally speaking, it is mainly used to indicate the spatial correlation parameters (also called spatial correlation characteristics) of downlink signals (such as PDCCH/PDSCH/CSI-RS/DMRS/TRS) and uplink signals (such as PUCCH/PUSCH/SRS/DMRS). .
  • the QCL information may also be referred to as QCL hypothesis information.
  • the QCL information is used to assist in describing the terminal equipment's receiving beamforming information and receiving procedures, or is used to assist in describing the terminal equipment's transmitting side beamforming information and transmitting procedures.
  • the QCL information can be used to indicate the QCL relationship between two reference signals, wherein the target reference signal can generally be DMRS, CSI-RS, etc., and the referenced reference signal or source reference signal can generally be CSI-RS, SSB, sounding Reference signal (sounding reference signal, SRS) and so on. It should be understood that the spatial characteristic parameters of two reference signals or channels satisfying the QCL relationship are the same (or similar, or similar), so that the spatial characteristic parameters of the target reference signal can be inferred based on the source reference signal resource index.
  • Incidence angle angle of arrival, AoA
  • dominant (dominant) incident angle AoA average incident angle
  • power angular spectrum (PAS) of incident angle angle of departure (angle of departure, AoD)
  • main exit angle Average exit angle, power angle spectrum of exit angle
  • terminal equipment transmit beamforming terminal equipment receive beamforming, spatial channel correlation, network equipment transmit beamforming, network equipment receive beamforming, average channel gain, average channel delay (average channel delay) delay), delay spread, Doppler spread, Doppler shift, spatial Rx parameters, etc.
  • the network device In order to detect beam failure, the network device needs to indicate to the terminal device a reference signal resource (beam failure detection RS) for beam failure detection (also referred to as a reference signal resource for link failure detection).
  • the reference signal resources for beam failure detection can be indicated in the following possible manners.
  • the network device may display to the terminal device a set of reference signal resources configured for beam failure detection (eg beam failure detection RS resourceconfig or beam failure detection RS or failure detection resources) (also referred to as beam failure detection reference signal resource set) ).
  • the network device configuration beam failure detection reference signal resource set may be indicated by one or more of RRC, MAC-CE, and DCI signaling.
  • the reference signal resource for beam failure detection can also be indicated in an implicit manner, such as indicating the reference signal resource associated in the transmission configuration indication (TCI) of the physical downlink control channel (PDCCH)
  • TCI transmission configuration indication
  • PDCCH physical downlink control channel
  • the reference signal resource is a reference signal resource that satisfies a QCL relationship with the DMRS of the PDCCH, and is a periodic reference signal resource.
  • the terminal device can detect beam failure according to the beam failure detection reference signal resource set; when the network device does not display a set of reference signal resources configured for beam failure detection When the reference signal resource is set, the terminal device may fail to detect the beam according to the reference signal indicated in the implicit manner above.
  • the RS in the beam failure detection RS set and the DMRS of the PDCCH satisfy the QCL relationship or use the same TCI state as the PDCCH.
  • the channel quality information of some or all reference signal resources in the set such as the reference signal received power receiving power, RSRP), channel quality indicator (CQI), block error rate (block error ratio, BLER), signal to Interference plus noise ratio (signal to Interference plus noise ratio, SINR), signal-to-noise ratio (signal to noise ratio) noise ratio, SNR), etc.
  • the channel quality information of some or all reference signal resources in the set such as the reference signal received power receiving power, RSRP), channel quality indicator (CQI), block error rate (block error ratio, BLER), signal to Interference plus noise ratio (signal to Interference plus noise ratio, SINR), signal-to-noise ratio (signal to noise ratio) noise ratio, SNR), etc.
  • the lower than the predetermined threshold may be lower than the predetermined threshold for W consecutive times or lower than the predetermined threshold for W times
  • the predetermined threshold may be referred to as a beam failure detection threshold, and may also be referred to as a beam failure threshold. It should be understood that as long as the threshold used for beam failure detection can be the predetermined threshold, this application does not limit the name of the predetermined threshold.
  • the beam failure detection threshold may be configured by the network device, and may also be the same threshold as the radio link failure OOS (out of sync) threshold.
  • the beam failure detection threshold is used to detect beam failure; when the network device is not configured with a beam failure detection threshold, the radio link out-of-sync threshold can be used as the beam failure detection threshold for detection. Beam failed.
  • the beam failure detection RS here may be the channel quality of a certain transmit beam used by the terminal to detect the network device, and the transmit beam is the beam used when the network device communicates with the terminal.
  • the network device can also indicate to the terminal device a reference signal resource set (candidate beam RS list or candidate beam RS identification resource or beam failure candidate beam resource or candidate beam identification RS or candidate beam identification RS or candidate beam list) (also called candidate reference signal resource set or beam failure recovery reference signal resource set).
  • a reference signal resource set can also indicate to the terminal device a reference signal resource set (candidate beam RS list or candidate beam RS identification resource or beam failure candidate beam resource or candidate beam identification RS or candidate beam identification RS or candidate beam list) (also called candidate reference signal resource set or beam failure recovery reference signal resource set).
  • candidate reference signal resource set also called candidate reference signal resource set or beam failure recovery reference signal resource set.
  • the network device may display to the terminal device a set of reference signal resources configured for beam failure recovery.
  • the set of reference signal resources for the network device to configure beam failure recovery may be indicated by one or more of RRC, MAC-CE, and DCI signaling.
  • the reference signal resource set used for beam failure recovery may also be a certain default reference signal resource set, (for example, a reference signal resource set for beam management (beam management, BM), or a reference signal resource set for radio resource management (radio resource management). management, RRM) reference signal resource set for measurement, reference signal resource set composed of all or part of SSBs, or a certain reference signal resource set that multiplexes other functions).
  • the reference signal resource set used for beam management may be a reference signal resource set whose repetition is marked as "off” (it can also be a reference signal resource set whose repetition is marked as "on” reference signal resource set).
  • the reference signal resource is identified in the reference signal resource set; when the network device does not configure the candidate reference signal resource set, the reference signal resource set is identified in the default reference signal resource set. reference signal resources.
  • the identified reference signal resources can be used to recover beam failures.
  • the channel quality of the identified reference signal resource is greater than a preset threshold.
  • the above-mentioned predetermined threshold for identifying the reference signal resource of the restored beam may be configured by the network device, or may also be a predefined threshold.
  • the threshold for mobility measurement is used by default.
  • the predetermined threshold may be referred to as a beam failure recovery threshold, or may also be referred to as a beam recovery threshold. It should be understood that as long as the threshold used for beam failure recovery can be the predetermined threshold, this application does not limit the name of the predetermined threshold.
  • the names of the reference signal resource set used for beam failure detection and the reference signal resource set used to restore the beam of the terminal device and the network device can also be called by other names.
  • beam failure may also be referred to as communication failure, beam failure, link failure, link failure, communication failure, communication failure, communication link failure, communication link failure, and the like. In the embodiments of the present application, these concepts have the same meaning.
  • the communication failure may mean that the channel quality of the reference signal resource used for beam failure detection of the PDCCH is less than or equal to a preset threshold.
  • beam failure recovery may also be referred to as restoring communication between network devices and terminal devices, communication failure recovery, beam failure recovery, beam recovery, link failure recovery, link failure recovery, link recovery, and communication failure Recovery, communication failure recovery, communication link failure recovery, communication link failure recovery, communication recovery, link reconfiguration, etc.
  • the beam failure recovery request information may also be referred to as communication failure recovery request information (may be referred to as beam failure recovery request, BFRQ), beam failure recovery request information, beam recovery request information, link failure recovery request information, Link Failure Recovery Request Information, Link Recovery Request Information, Communication Failure Recovery Request Information, Communication Recovery Request Information, Communication Link Failure Recovery Request Information, Communication Link Failure Recovery Request Information, Link Recovery Request Information configuration request information, reconfiguration request information, etc.
  • the beam failure recovery request may refer to sending a signal on a resource used to carry the beam failure recovery request.
  • the communication failure recovery response information may also be referred to as beam failure recovery response information (referred to as Beam failure recovery response, BFRR), beam failure recovery response information, beam failure response information, beam failure response information, and beam recovery response, link failure recovery response information, link failure recovery response information, link failure response information, link failure response information, link failure response information, link failure response information, link recovery response information, communication failure recovery response information, communication failure response information, communication failure response information, Communication recovery response information, communication link failure recovery response information, communication link failure recovery response information, communication link failure response information, communication link failure response information, communication link failure response information, communication link response information, link reconfiguration response information, reconfiguration response information, etc. It should be understood that, in this application, the communication failure recovery response information may be simply referred to as response information.
  • the beam failure recovery response information may refer to receiving a cyclic redundancy check (cyclic redundancy check, CRC) on the control resource set and/or the search space set used for sending the beam failure recovery response, and the Downlink control information (DCI) scrambled by cell radio network temporary identifier (C-RNTI), the beam failure recovery response information can also be scrambled by other information DCI (such as BFR-RNTI scrambled)
  • CRC cyclic redundancy check
  • DCI Downlink control information
  • C-RNTI cell radio network temporary identifier
  • the beam failure recovery response information may also be the data scheduled by the above DCI, and the beam failure recovery response information may also be the ACK of the data scheduled by the above DCI.
  • the beam failure recovery response information may also be one of the following information: DCI scrambled by the cell wireless network temporary identifier C-RNTI, DCI scrambled by the modulation and coding scheme cell-specific wireless network temporary identifier MCS-C-RNTI, dedicated search Downlink control information DCI in space, DCI scrambled by dedicated wireless network temporary identifier RNTI, DCI scrambled by random access wireless network temporary identifier RA-RNTI, DCI containing preset state values, DCI containing transmission configuration indication TCI information .
  • the quasi-co-located QCL indication information of the cell in which the beam failure occurs or the DCI indicating newly transmitted data does not limit this.
  • the DCI indicating the newly transmitted data and the DCI scheduling beam failure request information have the same hybrid automatic repeat request (HARQ) process identifier (process identifier).
  • the new data indicator (new date indicator, NDI) is different).
  • the terminal device may no longer send beam failure recovery request information, may also stop or reset the beam failure detection counter, may also stop or reset the beam failure detection timer, or stop or reset the beam failure detection timer. Reset the beam failure recovery counter, you can also stop or reset the beam failure recovery timer, etc.
  • the network device transmits the reference signal resources for beam failure detection multiple times in different time periods in a time-division manner, which makes it take a long time for the terminal device to measure the reference signal resources for a specified number of times, and the resource overhead for the network device is also relatively high. big.
  • the terminal device when a terminal device communicates through multiple serving cells, currently, the terminal device independently performs beam failure detection for each cell.
  • the present application proposes that the network device may determine at least one second cell associated with the first cell.
  • the second cell may be a cell with the same or similar beam directions, and the coverage of the beam of the second cell includes the first cell's coverage.
  • the coverage of the beam, etc. the network device notifies the terminal device through the first information.
  • the terminal device may detect the beam failure of the first cell according to the first resource of the first cell and the second resource of the second cell. The efficiency of beam failure detection can be improved.
  • FIG. 2 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the terminal device in the embodiment of FIG. 2 may communicate with the first cell and the second cell, or the first cell and the second cell are both serving cells of the terminal device.
  • the terminal device may communicate with the first cell and the second cell in the CA communication mode, or the terminal device may communicate with the first cell and the second cell in the DC communication mode.
  • the first cell is the cell of the network device in the embodiment shown in FIG. 2
  • the second cell may be the cell of the network device or the cell of other network devices.
  • the present application is not limited to this.
  • the network device determines at least one second cell associated with the first cell.
  • the network device may determine at least one second cell associated with the first cell among the multiple serving cells of the terminal device, and the terminal device detects the beam failure of the first cell according to the first resource in the first cell and the resource in the second cell .
  • the network device may determine at least one second cell associated with the first cell according to the positional relationship, beam pointing relationship or quasi co-located (QCL) relationship between the first cell and the at least one second cell .
  • the association between the first cell and the second cell means that the first cell and the second cell are associated in a positional relationship, a beam pointing relationship or a quasi-co-location relationship.
  • the location relationship between the first cell and the second cell may be that the first cell and the second cell are cells of the same network device, or the antenna of the first cell and the antenna of the second cell are located at the same location, for example, the first cell
  • the antenna panel and the antenna panel of the second cell are erected on the same antenna column, or the first cell and the second cell share the same antenna panel, or the antenna panels of the first cell and the second cell are parallel or approximately parallel, or the first cell and the second cell.
  • the cell and the second cell share a module.
  • the network device may determine that the first cell is associated with the second cell.
  • the beam pointing relationship between the first cell and the second cell may be that the beam direction of the first cell is the same as or similar to the beam direction of the second cell, or the coverage of the beam of the first cell and the coverage of the beam of the second cell.
  • the coverage of the second cell may be omnidirectional (eg, signals are sent through a low-frequency band carrier, etc.), and the first cell uses a directional narrow beam to communicate with the terminal device.
  • the coverage of the beam of the first cell is within the coverage of the second cell.
  • the present application is not limited to this.
  • the QCL relationship between the first cell and the second cell may be that the spatial characteristic parameters of the beams of the first cell and the beams of the second cell are similar, for example, the spatial characteristic parameters may be average channel delay, delay spread, multiple One or more of Pler spread, Doppler shift, and spatial reception parameters.
  • the present application is not limited to this.
  • the terminal device adopts the CA communication mode, and the serving cells of the terminal device include cell A, cell B, cell C, and cell D.
  • the network device may determine a second cell associated with cell A (ie, an example of the first cell) among the four serving cells of the terminal device.
  • the network device determines that cell C and cell D are cells that have a QCL relationship with cell A according to the QCL relationship, that is, the cells associated with cell A in the serving cells of the terminal device are cell C and cell D (cell C and cell D are respectively
  • An example of the second cell that is, the at least one second cell determined by the network device includes cell C and cell D).
  • the present application is not limited to this.
  • S220 The network device sends first information to the terminal device, where the first information is used to indicate the at least one second cell.
  • the terminal device receives the first information from the network device.
  • the first information may be carried in an RRC message or a medium access control (medium access control, MAC) control element (control element, CE) or DCI.
  • MAC medium access control
  • CE control element
  • the first information includes one or more of the following:
  • Identification information of the second cell identification information or vector information of the second resource.
  • the second resource is a resource of the second cell, which is used by the terminal device to detect the failure of the beam of the first cell.
  • the vector information may be one or more vectors, for example, the vector information may be pre-coding matrix information (pre-coding matrix information, PMI), and the PMI may indicate one or more vectors related to the channel. Or the vector information may be channel quality information corresponding to a channel-related vector (such as CQI, reference signal receiving power (RSRP), signal to interference plus noise ratio (SINR), etc.), However, the present application is not limited to this. There may be the following examples for the content included in the first information.
  • the second cell may be a cell with omnidirectional coverage using low-frequency communication, and the first information may include the identification information of the second cell.
  • the terminal device may use the identification information of the second cell A cell associated with the first cell is determined.
  • the first information may include identification information of each of the multiple second cells.
  • the terminal device may, in S230, use the second resource of the second cell and the first resource of the first cell (the first resource is used for beam detection in the first cell) resources), the beam detection of the first cell fails.
  • the second resource may be a predefined type of resource (such as a type of resource specified by the protocol for beam failure detection of the associated cell), for example, the second resource may be the synchronization of the second cell Signal resources, such as primary synchronization signal (primary synchronization signal, PSS) resources, secondary synchronization signal (secondary synchronization signal, SSS) resources or SSB resources, etc., but the present application is not limited to this.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • SSB resources SSB resources
  • the first information may include the identification information of the second cell and the identification information of the second resource
  • the second resource may be CSI-RS resource, PTRS resource or SSB resource, etc. information and the identification information of the second resource, it is determined in S230 that the beam detection of the first cell fails according to the second resource of the second cell and the first resource of the first cell.
  • the present application is not limited to this.
  • the first information may include identification information and vector information of the second cell.
  • the vector information may be PMI.
  • the terminal device may determine association with the first cell according to the identification information of the second cell. the second district. And the PMI indicated by the first information is acquired in the first information. Then, the terminal device can determine that the second resource of the second cell and the first resource of the first cell fail to detect the beam of the first cell.
  • the second resource is that the channel information of the second resource includes the reference signal resource of the PMI indicated by the first information.
  • the terminal device can receive the reference signal resource of the second cell and measure the channel information of the reference signal resource,
  • the channel information of a reference signal resource may include at least one PMI.
  • the channel information of the reference signal resource may also include CQI and rank indicator information (rand indicator, RI), etc. If the channel of the reference signal resource of the second cell If the information includes the PMI indicated by the first information, the terminal device fails to detect the beam of the first cell according to the reference signal resource and the first resource of the first cell in S230. But this application does not do so.
  • the PMI may be identification information of an oversampled discrete fourier transform (discrete fourier transform, DFT) vector or type I in the 3rd generation partnership project (the 3rd generation partnership project, 3GPP) standard 38.214 protocol (type I) codebook or type II (type II) codebook.
  • the network device may configure, for the terminal device, one or more PMIs associated with reference signal resources of one or more beams of the first cell by using the first information.
  • the one or more PMIs are obtained by measuring reference signal resources of the second cell. For example, as shown in FIG.
  • one or more PMIs measured on the reference signal resources of the second cell may include PMI1 and PMI2, and the network device may determine that the coverage of beams 1, 2, and 3 of the first cell is in the beam corresponding to PMI 1 Within the coverage, the coverage of beams 4, 5, and 6 of the first cell is within the coverage of the beam corresponding to PMI 2, then the network device may indicate that the beams 1, 2, and 3 of the first cell are associated with PMI 1, and the first Beams 4, 5, 6 of the cell are associated with PMI 2.
  • the terminal device may detect the beam failure of beam 1 of the first cell according to the channel quality in the second cell including the resource of PMI 1 and the reference signal resource 1 of beam 1.
  • the terminal device can also detect the beam failure of the beam 2 of the first cell according to the channel quality in the second cell including the PMI 1 resource and the reference signal resource 2 of the beam 2, and the beam failure detection of the beam 3 is similar.
  • the terminal device can also detect the beam failure of beam 4 in the first cell according to the channel quality in the second cell including the resource of PMI 2 and the reference signal resource 4 of beam 4, and the beam failure detection of beam 5 and beam 6 is similar.
  • the terminal device may include resources of PMI 1 and/or PMI 2 and reference signals of beams 1, 2, 3, 4, 5, and 6 of the first cell according to the channel quality in the second cell Some or all of the resources fail to detect the beam of the first cell.
  • the terminal device can detect the resource of the second cell corresponding to the PMI associated with the beam according to the beam failure detection reference resource of the first cell, and detect the beam failure of the first cell, or can refer to the beam failure reference of the first cell according to the beam failure of the first cell.
  • the signal resource and some or all of the resources of the second cell corresponding to the associated PMI fail to detect the beam of the first cell.
  • the present application is not limited to this.
  • the second resource may be a CSI-RS resource, a PTRS resource or an SSB resource whose channel information includes the vector information indicated by the first information.
  • the terminal device fails to detect the beam of the first cell according to the first resource of the first cell and the second resource of the second cell.
  • the first resource is a resource used for beam failure detection in the first cell.
  • the network device configures a beam failure detection resource set of the first cell for the terminal device, where the resource set includes at least one first resource for detecting beam failure of the first cell.
  • the second resource may be a predefined type of resource of the second cell in Example 1 of S220, or may be the second resource identified by the identification information included in the first information in Example 2, or may be an example
  • the third channel information includes the second resource of the second cell of the PMI indicated by the first information.
  • the present application is not limited to this.
  • the first resource is the resource corresponding to the high frequency beam of the first cell
  • the second resource is the resource corresponding to the low frequency beam of the second cell.
  • the first resource may be a CSI-RS resource or an SSB.
  • the manner in which the terminal device detects the beam failure of the first cell according to the first resource of the first cell and the second resource of the second cell may include, but is not limited to, the following manners.
  • Mode 1 The terminal device detects the channel quality of the first resource and the channel quality of the second resource; if the channel quality of the first resource is less than or equal to the first threshold, and the channel quality of the second resource is less than or equal to the second threshold value, the beam failure instance (BFI) of the first cell indicates that the count value of the counter is incremented by 1. Where BFI indicates that the counter can be written as BFI-COUNTER.
  • the terminal device if the count value of the BFI indication counter is greater than or equal to the preset maximum count value, the terminal device triggers the beam failure recovery process of the first cell.
  • the network device configures or specifies the maximum count value of the BFI indication counter for the terminal device, and when the BFI indication counter reaches the maximum count value, that is, the number of occurrences of beam failure cases reaches the maximum value
  • the terminal device considers that a beam failure occurs in the first cell, and can restore the communication with the first cell by triggering a beam failure recovery process.
  • the present application is not limited to this.
  • the terminal device starts a BFI indication counter after detecting a beam failure case for the first time, and when the BFI indication counter is started, the terminal device also starts a beam failure detection timer, and during the operation of the beam failure detection timer , if the BFI indication counter reaches the maximum count value, the terminal equipment triggers the beam failure recovery process of the first cell; if the beam failure detection timer times out, the terminal equipment resets the BFI indication counter (or the count value of the BFI indication counter). set to "0").
  • the beam failure detection timer may be written as beamFailureDetectionTimer, but the present application is not limited to this.
  • the beam failure detection timer and the BFI indication counter can be used to jointly judge whether a specified number of beam failures have occurred within a certain period of time. In the event of a beam failure, which may be just an occasional communication degradation, the BFI indication counter can be reset.
  • the network device configures the terminal device with the first resource of the first cell for detecting the beam failure of the first cell, and indicates the second cell associated with the first cell through the first information, and the terminal device determines the second cell according to the first information.
  • Second resource For example, the first information indicates PMI 1, the terminal device receives the reference signal on the reference signal resource of the second cell, and parses the channel information of the reference signal resource of the second cell, if the channel information of a reference signal resource of the second cell is in the channel information If the PMI 1 is included, the terminal device can determine that the reference signal resource is the second resource.
  • the terminal device can measure the channel quality of the reference signal resource, and when the channel quality of the reference signal resource is less than or equal to the second threshold value, it can be considered that the reference signal resource (that is, the channel information includes the reference signal resource of the PMI 1) corresponds to The beam communication quality is poor.
  • the terminal device also measures the channel quality of the first resource of the first cell, and if the channel quality of the first resource is less than or equal to the first threshold value, it may be considered that the beam communication quality corresponding to the first resource is poor.
  • the terminal device can confirm that a beam failure case (or a beam failure event) occurs ), add 1 to the count value of the BFI indication counter. That is to say, whenever the terminal device confirms that the channel quality of the first resource is less than or equal to the first threshold once, and confirms that the channel quality of the second resource is less than or equal to the second threshold once, the terminal The device increments the count value of the BFI indication counter by 1.
  • the BFI indication counter is used to record the number of times the terminal equipment has a beam failure event. However, the present application is not limited to this.
  • the second resource may also be a predefined type of resource of the second cell, or the resource of the second cell identified by the identification information of the second resource in the first information. You can refer to this example, and for the sake of brevity, details are not repeated here.
  • first threshold value and/or the second threshold value may be configured by the network device for the terminal device or predefined by a protocol.
  • the first threshold value and the second threshold value may be the same or different, which is not limited in this application.
  • the network device may configure or predefine a threshold value for beam failure detection for the terminal device, such as threshold value 1.
  • a threshold value for beam failure detection for the terminal device, such as threshold value 1.
  • the terminal device After the terminal device detects the channel quality of the first resource, it compares it with the threshold value 1, and detects the first
  • the channel quality of the second resource is also compared with the threshold value 1, that is, the first threshold value and the second threshold value are both the threshold value 1.
  • the present application is not limited to this.
  • the network device may predefine a first threshold value of the channel quality of the first resource and a second threshold value of the channel quality of the second resource for the terminal device configuration or protocol, that is, the first threshold
  • the limit value and the second threshold value are different threshold values.
  • the first resource is the resource corresponding to the high-frequency beam of the first cell
  • the second resource is the resource corresponding to the low-frequency beam of the second cell. Since the energy of the high-frequency beam is aggregated, the channel quality is good. Therefore, in the specific implementation, The first threshold value may be higher than the second threshold value. However, the present application is not limited to this, and the first threshold value may also be lower than the second threshold value.
  • the channel quality of the first resource and the channel quality of the second resource may be detected by the physical layer (physical layer, PHY layer) of the terminal device. If the channel quality of the first resource is less than or equal to the first threshold value, And the channel quality of the second resource is less than or equal to the second threshold, the physical layer of the terminal device sends first indication information to the MAC layer of the terminal device, where the first indication information is used to indicate the occurrence of a beam failure case.
  • the MAC layer of the terminal device maintains the BFI indication counter. After the MAC layer receives the first indication information, if the BFI indication counter has been started, it controls the count value of the BFI indication counter to increase by 1; if the BFI indication counter is not started, it is started.
  • the BFI indication counter is controlled to increment the count value of the BFI indication counter by 1.
  • the first indication information may be referred to as BFI indication information.
  • the physical layer of the terminal device may periodically report to the MAC layer whether the beam fails.
  • the terminal device if the physical layer detects that the channel quality of the first resource is less than or equal to the first gate once within a reporting period If the channel quality of the second resource is less than or equal to the second threshold value, the terminal device sends first indication information to the MAC layer at the end of the period, indicating that a beam failure case occurs.
  • the MAC layer receives the first indication information, if the BFI indication counter has been started, it controls the count value of the BFI indication counter to increase by 1; if the BFI indication counter is not started, it starts the BFI indication counter and controls the BFI indication counter. The count value is incremented by 1.
  • the MAC layer When the count value of the BFI indicates that the counter is greater than or equal to the maximum count value, the MAC layer triggers the beam failure recovery process.
  • the MAC layer also starts a beam failure detection timer when starting the BFI indication counter. During the running period of the beam failure detection timer, if the BFI indication counter reaches the maximum count value, the terminal device triggers the beam failure recovery process of the first cell. ; If the beam failure detection timer expires, the terminal device resets the BFI indication counter.
  • the present application is not limited to this.
  • Mode 2 The terminal device detects the channel quality of the first resource and the channel quality of the second resource. If the channel quality of the first resource is less than or equal to the first threshold value, the count value of the BFI indication counter of the first cell is incremented by 1. The channel quality of the second resource is less than or equal to the second threshold value, and the count value of the BFI indication counter of the first cell is incremented by 1.
  • the terminal device if the count value of the BFI indication counter is greater than or equal to the preset maximum count value, the terminal device triggers the beam failure recovery process of the first cell.
  • the terminal device when the BFI indicates that the counter is started, the terminal device also starts a beam failure detection timer. During the operation of the beam failure detection timer, if the BFI indicates that the counter reaches the maximum count value, the terminal device triggers the first cell's Beam failure recovery process; if the beam failure detection timer expires, the terminal device resets the BFI indication counter.
  • the count value of the BFI indication counter is incremented by 1
  • the BFI indicates that the count value of the counter is incremented by 1. If the count value of the BFI indication counter reaches the maximum value, the terminal device triggers the beam failure recovery process.
  • the physical layer of the terminal device can detect the channel quality of the first resource and the channel quality of the second resource. If the channel quality of the first resource is less than or equal to the first threshold, the physical layer sends the first resource to the MAC layer.
  • Two indication information the second indication information is used to indicate the occurrence of a beam failure case, or the second indication information is used to indicate the occurrence of a beam failure case because the channel quality of the first resource is less than or equal to the first threshold value.
  • the physical layer sends third indication information to the MAC layer, where the third indication information is used to indicate that a beam failure case occurs, or the third indication information is used for It is used to indicate that a beam failure case occurs because the channel quality of the second resource is less than or equal to the second threshold value.
  • the MAC layer controls the BFI to indicate that the count value of the counter increases by 1 if it receives the second indication information; and if the MAC layer receives the third indication information, controls the BFI to indicate that the count value of the counter increases by 1.
  • the MAC layer also starts a beam failure detection timer when the BFI indicates that the counter is started.
  • the MAC layer During the operation of the beam failure detection timer, if the BFI indicates that the counter reaches the maximum count value, the MAC layer triggers the beam failure recovery of the first cell. Process; if the beam failure detection timer expires, the MAC layer resets the BFI indication counter.
  • the physical layer detects the channel quality of the first resource and the channel quality of the second resource. If the channel quality of the first resource is less than or equal to the first threshold, the physical layer generates second indication information. The channel quality of the second resource is less than or equal to the second threshold value, and the physical layer generates third indication information.
  • the physical layer may send the second indication information or the third indication information to the physical layer of the MAC layer after generating the second indication information or the third indication information, or may periodically report the second indication information and the third indication information generated within a period to the MAC layer.
  • the MAC layer receives the second indication information and the third indication information reported by the physical layer, and controls the count value of the BFI indication counter to increase by a corresponding value according to the number of the second indication information and the third indication information. For example, when the MAC layer receives 2 second indication information and 1 third indication information in one reporting period from the physical layer, the MAC layer controls the BFI indication counter to increase the count value by 3.
  • the present application is not limited to this.
  • Mode 3 The terminal device detects the channel quality of the first resource and the channel quality of the second resource. If the channel quality of the first resource is less than or equal to the first threshold value, the count value of the BFI indication counter of the first cell is incremented by 1. The channel quality of the second resource is less than or equal to the second threshold value, and the count value of the BFI indication counter is greater than or equal to the first preset value, and the terminal device triggers the beam failure recovery process.
  • the number of times that the terminal device detects that the channel quality of the first resource is less than or equal to the first threshold value reaches the first preset value, and the terminal device detects once again that the channel quality of the second resource is less than or equal to the second threshold If the limit value is set, the terminal device determines that a beam failure occurs in the first cell, and triggers a beam failure recovery process.
  • the first preset value may be 1, the terminal device has detected that the channel quality of the first resource is less than or equal to the first threshold value at least once, and the count value of the BFI indication counter of the first cell is greater than or equal to 1.
  • the terminal device detects that the channel quality of the second resource is less than or equal to the second threshold value, and the count value of the BFI indication counter is greater than or equal to 1, the terminal device triggers the beam failure recovery process. If the terminal device detects that the channel quality of the second resource is less than or equal to the second threshold, but the BFI indicates that the counter is not started or the count value is 0, the terminal device does not trigger the beam failure recovery process.
  • the terminal device In the third mode, if the count value of the BFI indication counter is greater than or equal to the preset maximum count value, the terminal device also triggers the beam failure recovery process.
  • the physical layer of the terminal device can detect the channel quality of the first resource and the channel quality of the second resource. If the channel quality of the first resource is less than or equal to the first threshold, the physical layer sends the first resource to the MAC layer. Second indication information, where the second indication information is used to indicate that a beam failure case occurs because the channel quality of the first resource is less than or equal to the first threshold value. If the physical layer detects that the channel quality of the second resource is less than or equal to the second threshold, the physical layer sends third indication information to the MAC layer, where the third indication information is used to indicate that the channel quality of the second resource is less than or equal to the second threshold. Beam failure cases for the second threshold.
  • the MAC layer If the MAC layer receives the second indication information, it controls the BFI to indicate that the count value of the counter is incremented by 1; if the MAC layer receives the third indication information, and the count value of the BFI indicates that the counter is greater than or equal to the first preset value, the MAC layer Trigger beam failure recovery process.
  • the first preset value is 5
  • the physical layer detects the channel quality of the first resource and the channel quality of the second resource, and if the channel quality of the first resource is less than or equal to the first threshold, the physical layer generates a second indication information, you can send the second indication information to the MAC layer, or send the second indication information in the period to the MAC layer at the end of the reporting period, if there is still third indication information in the period, the physical layer also sends the first indication information to the MAC layer Three instructions. After receiving the second indication information, the MAC layer controls the count value of the BFI indication counter to increase by 1.
  • the MAC layer determines whether the count value of the BFI indication counter is greater than or equal to 5, if the BFI indication If the count value of the counter is greater than or equal to 5, the MAC layer triggers the beam failure recovery process; if the BFI indicates that the count value of the counter is less than 5, and the BFI indicates that the count value of the counter reaches the maximum count value, the MAC layer does not trigger the beam failure recovery process; if The BFI indicates that the count value of the counter reaches the maximum count value, and the MAC layer triggers the beam failure recovery process.
  • the present application is not limited to this.
  • the MAC layer also starts a beam failure detection timer when the BFI indicates that the counter is started.
  • the beam failure detection timer if the BFI indicates that the counter reaches the maximum count value or the MAC layer receives the third indication information and the BFI
  • the MAC layer triggers the beam failure recovery process of the first cell; if the beam failure detection timer times out, the MAC layer resets the BFI indication counter.
  • the channel quality of a resource may be replaced by a channel quality loss of the resource.
  • the channel quality of the resource may be less than or equal to the threshold value, it may be replaced with the channel quality loss of the resource being less than or equal to the threshold value. That is, the terminal device can judge whether a beam failure case has occurred by measuring the channel quality of the resource, and can also judge whether a beam failure case has occurred by measuring the channel quality loss of the resource.
  • the channel quality loss of a resource refers to the difference between the channel quality of the resource and the channel quality obtained by measuring the resource in the previous or multiple times before. When the difference is a negative number, it means that the channel quality is lost, and it can be considered that the communication beam may be blocked and the channel quality deteriorates.
  • the terminal device may report the first capability information (or referred to as the second capability parameter) of the terminal device to the network device, where the capability information is used to indicate whether the terminal device supports The capability of determining resources according to the PMI, or the capability information is used to indicate whether the terminal device supports the capability of jointly performing beam failure detection with high-frequency reference signal resources and low-frequency reference signal resources.
  • the capability information is used to indicate whether the terminal device supports The capability of determining resources according to the PMI, or the capability information is used to indicate whether the terminal device supports the capability of jointly performing beam failure detection with high-frequency reference signal resources and low-frequency reference signal resources.
  • some of the beam directions may be the same in different cells.
  • the two cells pass through the antenna panels on the antenna column.
  • the beam directions of the formed partial beams may be the same or similar.
  • the propagation paths experienced by beams in the same or similar directions in different cells are also similar, and the quality of the beams can refer to each other.
  • the embodiment of the present application proposes that the network device notifies the terminal device of the second cell associated with the first cell through the first information, so that the terminal device can detect the beam failure of the first cell according to the first resource of the first cell and the second resource of the second cell .
  • the resources of the associated second cell assist the beam failure detection of the first cell, or in other words, the associated resource channel quality information of the second cell can be used as a confidence weight for the beam failure detection of the first cell.
  • it can reduce the beam failure detection delay of the terminal device caused by the network device time-division sending the reference signal resources for beam failure detection, and can improve the efficiency of beam failure detection.
  • the overhead of the beam failure detection resources of the first cell can be saved, and the utilization rate of the resources can be improved.
  • the second resource of the second cell in this embodiment of the present application may be a resource corresponding to a low-frequency beam of the second cell, and the direction of the low-frequency beam is the same as the direction of the high-frequency beam, or the coverage of the low-frequency beam includes the first Coverage of the high frequency beam of the first cell corresponding to the resource.
  • the high-frequency beam of the first cell and the low-frequency beam of the second cell will have a certain loss of channel quality due to the beam direction.
  • it is necessary to obtain multiple sampling results of the channel quality measurement of the serving beam that is, multiple measurements of the beam failure detection reference signal).
  • the communication method provided by the present application can assist the beam failure detection of the first cell through the measurement result of the low-frequency beam, which can effectively improve the reliability of the high-frequency beam failure detection and reduce the delay of the beam failure detection.
  • the embodiment of the present application also provides a beam failure recovery method.
  • the following describes the beam failure recovery method provided by the present application.
  • the terminal device can measure multiple beams of the network device and select a better beam to report to the network device by initiating a beam failure recovery process.
  • the network device needs to send multiple narrow beam signals with strong directivity so that the terminal device can select a better beam direction for failure recovery.
  • multiple narrow beam signals need to be sent by network equipment in different time periods (instantly divided transmission), and the current beam failure mechanism will cause the terminal equipment to take a long time to detect the new beam direction
  • the embodiment of the present application proposes that when the terminal device performs the beam failure recovery process, the terminal device detects the channel quality of at least one reference signal resource, and the terminal device determines the first reference signal resource in the at least one reference signal resource according to the channel quality of the at least one reference signal resource.
  • Three resources The terminal device detects the channel quality of the candidate resources in the first candidate resource set associated with the third resource, and determines the fourth resource in the first candidate resource set for beam failure recovery.
  • the terminal device sends beam failure recovery request information according to the fourth resource. The time delay for the terminal equipment to determine the resource for beam failure recovery can be reduced, and the efficiency of beam failure recovery can be improved.
  • FIG. 4 is another schematic flowchart of a communication method provided by an embodiment of the present application.
  • the terminal device detects the channel quality of at least one reference signal resource.
  • the at least one reference signal resource is associated with at least one candidate resource set for beam failure recovery of the first cell.
  • Each candidate resource set includes at least one candidate resource for beam failure recovery.
  • the at least one reference signal resource includes CSI-RS resource and/or SSB.
  • the at least one candidate resource set includes CSI-RS resources and/or SSBs.
  • the terminal device may receive second information from the network device, where the second information is used to indicate the at least one reference signal resource associated with the at least one candidate resource for beam failure recovery.
  • the network device may determine the at least one reference signal resource associated with the at least one candidate resource set of the first cell according to the beam pointing relationship or the QCL relationship, and notify the terminal device through the second information.
  • the at least one reference signal resource is a resource of at least one second cell
  • the second cell is a serving cell of the terminal device.
  • the second cell uses low-frequency omnidirectional coverage or wide beams for communication, and the coverage of a beam of the second cell includes the coverage of a beam corresponding to a candidate resource in a candidate resource set of the first cell, then the network device may It is determined that the reference signal resource corresponding to the beam of the second cell is associated with the candidate resource set.
  • the reference signal resources associated with each candidate resource set may be determined, but the present application is not limited thereto.
  • the at least one reference signal resource is a resource of the first cell.
  • the terminal device only establishes a communication connection with one serving cell, and the network device may configure the terminal device to determine the coverage of a wide beam of the first cell. If the coverage of the beam corresponding to the candidate resource of a candidate resource set of the first cell is included, the network device may determine that the reference signal resource corresponding to the wide beam is associated with the candidate resource set.
  • the reference signal resources associated with each candidate resource set may be determined, but the present application is not limited thereto.
  • the at least one reference signal resource includes resources of the first cell and/or resources of the second cell. That is, the network device may determine the reference signal resources associated with at least one candidate resource set of the first cell in the resources of the serving cell of the terminal device, and notify the terminal device through the second information, but the present application is not limited to this.
  • the second information may further include identification information of the second cell.
  • the second information includes identification information of each reference signal resource in the at least one reference signal resource.
  • the configuration information of the candidate resource set of the first cell sent by the network device to the terminal device may include the second information.
  • the configuration information of the candidate resource set is used to configure at least one candidate resource set of the first cell.
  • the configuration information of the candidate resource set configures the candidate resources included in each candidate resource set, and also configures the reference signal resources associated with each candidate resource set.
  • the configuration The information includes identification information of reference signal resources associated with each candidate resource set.
  • the present application is not limited to this.
  • the network device may first configure at least one candidate resource set of the first cell for the terminal device through the configuration information. After the network device determines at least one reference signal resource associated with the at least one candidate resource, the network device sends second information to the terminal device to notify the terminal device of the at least one reference signal resource.
  • the second information includes identification information of each reference signal resource in the at least one reference signal resource.
  • the at least one reference signal resource corresponds to the sequence of the identification information of each reference signal resource in the second information and the identification information of the at least one candidate resource set in descending order or in descending order.
  • the second information further includes identification information of the at least one candidate resource set, where the identification information of one candidate resource set corresponds to the identification information of the associated reference signal resource in the second information.
  • the present application is not limited to this.
  • the second information includes at least one vector information
  • the terminal device determines the at least one reference signal resource according to the at least one vector information in the second information.
  • the second information implicitly indicates the at least one reference signal resource by indicating at least one vector information.
  • the at least one reference signal resource is a resource of at least one second cell
  • the second information further includes identification information of the second cell.
  • the network device indicates that the PMI 1 of the second cell (that is, an example of vector information) is associated with the candidate resource set 1 through the second information, and after receiving the second information, the terminal device measures the received reference of the second cell Channel information of the signal resource. If the channel information of a reference signal resource includes the PMI 1, the terminal device can determine that the reference signal resource is associated with the candidate resource set 1. And, the channel quality of the reference signal resource can be measured at S420, and then the reference signal resource used for beam recovery is determined in subsequent steps.
  • the at least one reference signal resource is a resource of the first cell
  • the terminal device measures the received channel information of the reference signal resource of the first cell to determine the reference signal whose channel information includes the vector information indicated by the second information. resource.
  • the at least one reference signal resource is the resource of the serving cell
  • the terminal device measures the received channel information of the reference signal resource of the serving cell (the serving cell includes the first cell and the second cell) and determines that the channel information contains The reference signal resource of the vector information indicated by the second information.
  • the second information is an RRC message or a MAC CE.
  • the terminal device determines the at least one reference signal resource associated with the at least one candidate resource for beam failure recovery. and send third information to the network device, where the third information is used to indicate that the at least one reference signal resource is associated with the at least one candidate resource set.
  • the terminal device may determine at least one reference signal resource associated with the at least one candidate resource set according to the beam direction relationship or the QCL relationship, and the terminal device may send third information to the network device to notify the network device of the at least one reference signal resource associated with the at least one candidate resource.
  • a reference signal resource may be determined at least one reference signal resource associated with the at least one candidate resource set according to the beam direction relationship or the QCL relationship, and the terminal device may send third information to the network device to notify the network device of the at least one reference signal resource associated with the at least one candidate resource.
  • a reference signal resource may be determined at least one reference signal resource associated with the at least one candidate resource set according to the beam direction relationship or the QCL relationship
  • the third information includes an identifier of each reference signal resource in the at least one reference signal resource, or the third information includes the at least one vector information, and the at least one vector information is to measure the at least one reference signal The channel information of the resource is obtained.
  • the terminal device determines at least one reference signal resource associated with the at least one candidate resource set of the first cell according to the above embodiment, the terminal device detects the channel quality of the at least one reference signal resource in S410, and in S420 according to the channel quality of the at least one reference signal resource.
  • the channel quality of the at least one reference signal resource determines the third resource.
  • the terminal device determines a third resource in the at least one reference signal resource according to the channel quality of the at least one reference signal resource.
  • the channel quality of the third resource is greater than or equal to the third threshold value.
  • the terminal device After detecting the channel quality of the at least one reference signal resource in S410, the terminal device determines, in the at least one reference signal resource, a third resource whose channel quality is greater than or equal to a third threshold value.
  • the third threshold value may be configured by the network device for the terminal device or predefined by the protocol.
  • At least one reference signal resource is a reference signal resource corresponding to a wide beam
  • the candidate resource set associated with the wide beam Narrow beams have a higher probability of channel quality (narrow beams generally have more concentrated energy than wide beams in the same direction, so the channel quality is higher). Therefore, the terminal device can detect candidate resources in the candidate resource set associated with the wide beam to obtain resources capable of beam failure recovery.
  • the present application is not limited to this.
  • the terminal device detects the channel quality of the candidate resources in the first candidate resource set, and determines the fourth resource in the first candidate resource set for beam failure recovery,
  • the first candidate resource set is a set associated with a third resource in at least one candidate resource set, and the channel quality of the fourth resource is greater than or equal to a fourth threshold value.
  • the fourth threshold value may be configured by the network device for the terminal device or predefined by a protocol.
  • the third threshold value and the fourth threshold value may be the same threshold value or different threshold values, which are not limited in this application.
  • the terminal device detects the channel quality of the candidate resources in the first candidate resource set, and determines a fourth resource whose channel quality is greater than or equal to the fourth threshold value, which is used for beam failure recovery of the first cell.
  • the terminal device sends beam failure recovery request information of the first cell according to the fourth resource.
  • the terminal device determines in S430 that the channel quality of the fourth resource is high and can be used for beam failure recovery. Then, the terminal device sends the beam failure recovery request information of the first cell according to the fourth resource.
  • the beam failure request information of the first cell displays or implicitly indicates the fourth resource.
  • the terminal device transmits the beam failure request information of the first cell by using the detected spatial related parameters of the fourth resource and the like.
  • the present application is not limited to this.
  • the network device receives beam failure recovery request information of the first cell from the terminal device.
  • the network device may send beam failure recovery response information to the terminal device after receiving the beam failure request information, so as to assist the terminal device to complete beam failure recovery of the first cell.
  • the terminal device may report the second capability information (or referred to as the second capability parameter) of the terminal device to the network device, where the capability information is used to indicate whether the terminal device supports The capability of determining the candidate resource set according to the PMI, or the capability information is used to indicate whether the terminal device supports the capability of jointly performing beam failure recovery with high-frequency reference signal resources and low-frequency reference signal resources.
  • the capability information is used to indicate whether the terminal device supports The capability of determining the candidate resource set according to the PMI, or the capability information is used to indicate whether the terminal device supports the capability of jointly performing beam failure recovery with high-frequency reference signal resources and low-frequency reference signal resources.
  • the terminal device may first detect the channel quality of the reference signal resources associated with the at least one candidate resource set, so as to determine the resource selected for beam failure recovery in one candidate resource set.
  • the time delay caused by the terminal device detecting the candidate resources in each candidate resource set can be reduced. Improve the efficiency of beam failure recovery.
  • At least one reference signal resource may be a resource corresponding to a low-frequency beam, and the low-frequency beam and the high-frequency beam have a correlation in the angular domain.
  • the terminal device can detect the channel quality of the reference signal resource corresponding to the low-frequency beam to reduce Detecting the range of the high-frequency beam can reduce the time delay caused by the terminal device detecting the candidate resources in each candidate resource set. Improve the efficiency of beam failure recovery.
  • each network element may include a hardware structure and/or a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether one of the above functions is performed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • FIG. 5 is a schematic block diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication apparatus 500 may include a processing unit 510 and a transceiver unit 520 .
  • the communication apparatus 500 may correspond to the terminal equipment in the above method embodiments, or a chip configured (or used in) the terminal equipment, or other apparatuses capable of implementing the methods of the terminal equipment, Modules, circuits or units, etc.
  • the communication apparatus 500 may correspond to the terminal equipment in the methods 200 and 400 according to the embodiments of the present application, and the communication apparatus 500 may include the method for executing the terminal equipment in the methods 200 and 400 in FIG. 2 and FIG. 4 . method unit.
  • each unit in the communication device 500 and the above-mentioned other operations and/or functions are to implement the corresponding processes of the methods 200 and 400 in FIG. 2 and FIG. 4 , respectively.
  • the transceiver unit 520 in the communication apparatus 500 may be an input/output interface or circuit of the chip, and the processing in the communication apparatus 500 Unit 510 may be a processor in a chip.
  • the communication apparatus 500 may further include a processing unit 510, and the processing unit 510 may be configured to process instructions or data to implement corresponding operations.
  • the communication device 500 may further include a storage unit 530, the storage unit 530 may be used to store instructions or data, and the processing unit 510 may execute the instructions or data stored in the storage unit, so as to enable the communication device to implement corresponding operations .
  • the transceiver unit 520 in the communication device 500 in the communication device 500 may correspond to the transceiver 610 in the terminal device 600 shown in FIG. 6
  • the storage unit 530 may correspond to the terminal device 600 shown in FIG. 6 . of memory.
  • the transceiver unit 520 in the communication device 500 may be implemented through a communication interface (such as a transceiver, a transceiver circuit, pins or an input/output interface), for example, it may correspond to FIG.
  • the transceiver 610 in the terminal device 600 shown in FIG. 6, the processing unit 510 in the communication apparatus 500 may be implemented by at least one processor, for example, may correspond to the processor 620 in the terminal device 600 shown in FIG. 6,
  • the processing unit 510 in the communication device 500 may be implemented by at least one logic circuit.
  • the communication apparatus 500 may correspond to the network device in the above method embodiments, for example, or a chip configured (or used in) the network device, or other methods capable of implementing the network device device, module, circuit or unit, etc.
  • the communication apparatus 500 may correspond to the network device in the methods 200 and 400 according to the embodiments of the present application.
  • the communication apparatus 500 may include means for performing the method performed by the network device in the methods 200 and 400 in FIG. 2 and FIG. 4 .
  • each unit in the communication device 500 and the above-mentioned other operations and/or functions are for realizing the corresponding processes of the methods 200 and 400 in FIG. 2 and FIG. 4 , respectively.
  • the transceiver unit in the communication device 500 is an input/output interface or circuit in the chip
  • the processing unit in the communication device 500 510 may be a processor in a chip.
  • the communication apparatus 500 may further include a processing unit 510, and the processing unit 510 may be configured to process instructions or data to implement corresponding operations.
  • the communication apparatus 500 may further include a storage unit 530, which may be used to store instructions or data, and the processing unit may execute the instructions or data stored in the storage unit 530 to enable the communication apparatus to implement corresponding operations.
  • the storage unit 530 in the communication apparatus 500 may correspond to the memory in the network device 700 shown in FIG. 7 .
  • the transceiver unit 520 in the communication device 500 may be implemented through a communication interface (such as a transceiver, a transceiver circuit, a pin, or an input/output interface).
  • the transceiver 710 in the network device 700 shown in FIG. 7, the processing unit 510 in the communication apparatus 500 may be implemented by at least one processor, for example, may correspond to the processor 720 in the network device 700 shown in FIG. 7, The processing unit 510 in the communication device 500 may be implemented by at least one logic circuit.
  • FIG. 6 is a schematic structural diagram of a terminal device 500 provided by an embodiment of the present application.
  • the terminal device 600 may be applied to the system as shown in FIG. 1 to perform the functions of the terminal device in the foregoing method embodiments.
  • the terminal device 600 includes a processor 620 and a transceiver 610 .
  • the terminal device 600 further includes a memory.
  • the processor 620, the transceiver 610 and the memory can communicate with each other through an internal connection path to transmit control and/or data signals, the memory is used to store computer programs, and the processor 620 is used to execute the computer in the memory. program to control the transceiver 610 to send and receive signals.
  • the above-mentioned processor 620 may be combined with the memory to form a processing device, and the processor 620 is configured to execute the program codes stored in the memory to realize the above-mentioned functions.
  • the memory can also be integrated in the processor 620 or independent of the processor 620 .
  • the processor 620 may correspond to the processing unit in FIG. 5 .
  • the transceiver 610 described above may correspond to the transceiver unit in FIG. 5 .
  • the transceiver 610 may include a receiver (or receiver, receiving circuit) and a transmitter (or transmitter, transmitting circuit). Among them, the receiver is used for receiving signals, and the transmitter is used for transmitting signals.
  • the terminal device 600 shown in FIG. 6 can implement the processes involving the terminal device in the method embodiments shown in FIG. 2 and FIG. 4 .
  • the operations and/or functions of each module in the terminal device 600 are respectively to implement the corresponding processes in the foregoing method embodiments.
  • the above-mentioned processor 620 may be configured to perform the actions described in the foregoing method embodiments and implemented internally by the terminal device, while the transceiver 610 may be configured to execute the operations described in the foregoing method embodiments that the terminal device sends to or receives from the network device. action.
  • the transceiver 610 may be configured to execute the operations described in the foregoing method embodiments that the terminal device sends to or receives from the network device. action.
  • the above-mentioned terminal device 600 may further include a power supply for providing power to various devices or circuits in the terminal device.
  • the terminal device 600 may further include one or more of an input unit, a display unit, an audio circuit, a camera, a sensor, etc.
  • the audio circuit may also include a speaker, microphone, etc.
  • FIG. 7 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the network device 700 may be applied to the system shown in FIG. 1 to perform the functions of the network device in the foregoing method embodiments.
  • the network device 700 may be a schematic diagram of a related structure of a network device.
  • the network device 700 includes a processor 720 and a transceiver 710 .
  • the network device 700 further includes a memory.
  • the processor 720, the transceiver 710 and the memory can communicate with each other through an internal connection path to transmit control and/or data signals, the memory is used to store computer programs, and the processor 720 is used to execute the computer in the memory. program to control the transceiver 710 to send and receive signals.
  • the network device 700 shown in FIG. 7 can implement various processes involving the network device in the method embodiments shown in FIG. 2 and FIG. 4 .
  • the operations and/or functions of each module in the network device 700 are respectively to implement the corresponding processes in the foregoing method embodiments.
  • the network device 700 shown in FIG. 7 may be an eNB or a gNB.
  • the network device includes network devices such as CU, DU, and AAU.
  • CU may be specifically divided into CU-CP and CU-CP. UP. This application does not limit the specific architecture of the network device.
  • the network device 700 shown in FIG. 7 may be a CU node or a CU-CP node.
  • An embodiment of the present application further provides a processing apparatus, including a processor and a (communication) interface; the processor is configured to execute the method in any of the above method embodiments.
  • the above-mentioned processing device may be one or more chips.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or a It is a central processing unit (CPU), a network processor (NP), a digital signal processing circuit (DSP), or a microcontroller (microcontroller unit). , MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • MCU microcontroller unit
  • MCU programmable logic device
  • PLD programmable logic device
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or may also be a volatile memory (volatile memory), for example Random-access memory (RAM).
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and/or data.
  • the present application also provides a computer program product, the computer program product includes: computer program code (or instructions), when the computer program code is executed by one or more processors, the computer program code includes: The device of the processor executes the method in the embodiment shown in FIG. 2 and FIG. 4 .
  • the technical solutions provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, a network device, a terminal device, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available media that can be accessed by a computer, or a data storage device such as a server, data center, etc. that includes one or more available media integrated.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, digital video discs (DVDs)), or semiconductor media, and the like.
  • the present application further provides a computer-readable storage medium, where the computer-readable storage medium stores program codes (or instructions), and when the program codes are executed by one or more processors,
  • the device including the processor is caused to execute the method in the embodiment shown in FIG. 2 and FIG. 4 .
  • the present application further provides a system, which includes the aforementioned one or more network devices.
  • the system may further include one or more of the aforementioned terminal devices.
  • the network equipment in each of the above apparatus embodiments completely corresponds to the terminal equipment and the network equipment or terminal equipment in the method embodiments, and corresponding steps are performed by corresponding modules or units.
  • a processing unit processor
  • processor For functions of specific units, reference may be made to corresponding method embodiments.
  • the number of processors may be one or more.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • the embodiments may refer to each other.
  • the methods and/or terms between the method embodiments may refer to each other, such as the functions and/or the device embodiments.
  • terms may refer to each other, eg, functions and/or terms between an apparatus embodiment and a method embodiment may refer to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种通信方法和通信装置,该方法包括:终端设备接收第一信息,该第一信息用于指示至少一个第二小区,该第二小区是与第一小区关联的小区;终端设备根据该第一小区的第一资源和该第二小区的第二资源,检测该第一小区的波束失败,其中,该第一资源是用于波束失败检测的资源,该第二资源是根据该第一信息确定的。能够提高波束通信失败检测的效率。

Description

通信方法和通信装置 技术领域
本申请涉及通信领域,并且更具体地,涉及一种通信方法和通信装置。
背景技术
随着毫米波频段在移动通信系统中的应用,为了克服高频段信号传输存在较大路径损耗的缺点,基于波束赋形技术的信号传输机制也相应地被采用。基于波束赋形技术的信号传输机制可以通过较大的天线增益来补偿高频信号传播过程中的路径损耗。
当网络设备与终端设备之间基于波束赋形技术进行通信时,由于波束的方向性较强,一旦终端设备发生反转或移动,将导致因终端设备方向的转变而接收不到来自网络设备通过服务波束传输的信号,造成的信号中断。目前终端设备可以通过检测服务小区的用于波束失败检测的参考信号,判断当前服务小区是否发生波束失败。然而,目前波束失败检测机制的效率较低、时延较大,可能导致通信中断时间过长。
发明内容
本申请实施例提供了一种通信方法和通信装置,能够提高波束通信失败检测的效率。
第一方面,提供了一种通信方法,该方法可以由终端设备或配置于(或用于)终端设备的模块(如芯片)执行。
该方法包括:接收第一信息,该第一信息用于指示至少一个第二小区,该第二小区是与第一小区关联的小区;根据该第一小区的第一资源和该第二小区的第二资源,检测该第一小区的波束失败,其中,该第一资源是用于波束失败检测的资源,该第二资源是根据该第一信息确定的。
根据上述方案,不同小区的相同或相近方向的波束经历的传播路径也相似,波束的质量可以相互参考。能够提高波束失败检测的效率。
结合第一方面,在第一方面的某些实现方式中,该第一信息包括以下一项或多项:该第二资源的标识信息、该第二小区的小区标识信息或向量信息。
结合第一方面,在第一方面的某些实现方式中,该根据该第一小区的第一资源和该第二小区的第二资源,检测该第一小区的波束失败,包括:检测该第一资源的信道质量和该第二资源的信道质量;如果该第一资源的信道质量小于或等于第一门限值,且该第二资源的信道质量小于或等于第二门限值,该第一小区的波束失败事例指示计数器的计数值加1。
根据上述方案,如果第一资源的信道质量和第二资源的信道质量均低于门限值,确定发生波束失败事例,也就是说,第一小区的波束失败检测资源的信道质量和相关联的第二小区的资源的信道质量均低于门限值时,确定发生波束失败事例,能够提高波束失败检测的可靠性。
结合第一方面,在第一方面的某些实现方式中,该通信方法由终端设备执行,该检测该第一资源的信道质量和该第二资源的信道质量,包括:该终端设备的物理层检测该第一 资源的信道质量和该第二资源的信道质量;如果该第一资源的信道质量小于或等于第一门限值,且该第二资源的信道质量小于或等于第二门限值,该终端设备的物理层向该终端设备的媒体接入控制层发送第一指示信息;以及,该第一小区的波束失败事例指示计数器的计数值加1,包括:该终端设备的媒体接入控制层如果接收到该第一指示信息,该第一小区的波束失败事例指示计数器的计数值加1。
根据上述方案,可以由终端设备的物理层进行信道质量检测,以及确定是否发生波束失败事例并上报媒体接入层,由媒体接入层控制波束失败事例指示计数器进行波束失败事例计数,由不同协议层分工实现执行波束失败检测的不同功能,能够提高波束失败检测的效率。
结合第一方面,在第一方面的某些实现方式中,该根据该第一小区的第一资源和该第二小区的第二资源,检测该第一小区的波束失败,包括:检测该第一资源的信道质量和该第二资源的信道质量;如果该第一资源的信道质量小于或等于第一门限值,该第一小区的波束失败事例指示计数器的计数值加1;如果该第二资源的信道质量小于或等于第二门限值,该第一小区的波束失败事例指示计数器的计数值加1。
根据上述方案,如果第一资源的信道质量小于或等于第一门限值,波束失败事例指示计数器计数值加1,第二资源的信道质量小于或等于第一门限值,波束失败事例指示计数器计数值加1,减小波束失败检测的时延,能够提高波束失败检测的效率。
结合第一方面,在第一方面的某些实现方式中,该通信方法由终端设备执行,该检测该第一资源的信道质量和该第二资源的信道质量,包括:该终端设备的物理层检测该第一资源的信道质量和该第二资源的信道质量;如果该第一资源的信道质量小于或等于第一门限值,该终端设备的物理层向该终端设备的媒体接入控制层发送第二指示信息;如果该第二资源的信道质量小于或等于第二门限值,该终端设备的物理层向该终端设备的媒体接入控制层发送第三指示信息;以及,该第一小区的波束失败事例指示计数器的计数值加1,包括:该终端设备的媒体接入控制层如果接收到该第二指示信息,该第一小区的波束失败事例指示计数器的计数值加1;该终端设备的媒体接入控制层如果接收到该第三指示信息,该第一小区的波束失败事例指示计数器的计数值加1。
根据上述方案,可以由终端设备的物理层进行信道质量检测,以及确定是否发生波束失败事例并上报媒体接入层,由媒体接入层控制波束失败事例指示计数器进行波束失败事例计数,由不同协议层分工实现执行波束失败检测的不同功能,能够提高波束失败检测的效率。
结合第一方面,在第一方面的某些实现方式中,该根据该第一小区的第一资源和该第二小区的第二资源,检测该第一小区的波束失败,包括:如果该波束失败事例指示计数器的计数值大于或等于预设的最大计数值,触发该第一小区的波束失败恢复过程。
根据上述方案,通过计数器进行计数,当计数器达到最大计数值时,终端设备可以确定发生了波束失败,并发起波束失败恢复流程。能够缩短因波束失败而导致无法正常通信的时间。
结合第一方面,在第一方面的某些实现方式中,该根据该第一小区的第一资源和该第二小区的第二资源,检测该第一小区的波束失败,包括:检测该第一资源的信道质量和该第二资源的信道质量;如果该第一资源的信道质量小于或等于第一门限值,且该第二资源 对应的信道质量小于或等于第二门限值,触发该第一小区的波束失败恢复过程。
根据上述方案,在第一资源和第二资源的信道质量均小于门限值时,触发波束失败恢复过程,能够减小波束失败检测过程的时延。
结合第一方面,在第一方面的某些实现方式中,该根据该第一小区的第一资源和该第二小区的第二资源,检测该第一小区的波束失败,包括:检测该第一资源的信道质量,如果该第一资源的信道质量小于或等于第一门限值,该第一小区的波束失败事例指示计数器的计数值加1;检测该第二资源的信道质量,如果该第二资源的信道质量小于或等于第二门限值,且该波束失败事例指示计数器的计数值大于或等于第一预设值,触发该第一小区的波束失败恢复过程。
根据上述方案,终端设备根据第一小区的波束失败检测资源确定的波束失败事例达到第一预设值时若检测到相关联的第二小区的第二资源的信道质量也低于门限值,则确定发生波束失败,能够提高波束失败检测的效率,减小波束失败检测的时延。
结合第一方面,在第一方面的某些实现方式中,该通信方法由终端设备执行,该检测该第一资源的信道质量,包括:该终端设备的物理层检测该第一资源的信道质量,如果该第一资源对应的信道质量小于或等于第一门限值,向该终端设备的媒体接入控制层发送第二指示信息;该第一小区的波束失败事例指示计数器的计数值加1,包括:该终端设备的媒体接入控制层如果接收到该第二指示信息,该第一小区的波束失败事例指示计数器的计数值加1;该检测该第二资源的信道质量,包括:该终端设备的物理层检测该第二资源的信道质量,如果该第二资源的信道质量小于或等于第二门限值,向该终端设备的媒体接入控制层发送第三指示信息;该触发该第一小区的波束失败恢复过程,包括:该终端设备的媒体接入控制层如果接收到该第三指示信息,且该波束失败事例指示计数器的计数值大于或等于第一预设值,触发该第一小区的波束失败恢复过程。
根据上述方案,可以由终端设备的物理层进行信道质量检测,以及确定是否发生波束失败事例并上报媒体接入层,由媒体接入层控制波束失败事例指示计数器进行波束失败事例计数,由不同协议层分工实现执行波束失败检测的不同功能,能够提高波束失败检测的效率。
第二方面,提供了一种通信方法,该方法可以由网络设备或配置于(或用于)网络设备的模块(如芯片)执行。
该方法包括:确定与第一小区关联的至少一个第二小区;发送第一信息,该第一信息用于指示该至少一个第二小区,该第一信息用于终端设备确定该第二小区中的第二资源,该第二资源用于检测该第一小区的波束失败。
结合第二方面,在第二方面的某些实现方式中,该第一信息包括以下一项或多项:该第二资源的标识信息、该第二小区的小区标识信息或向量信息。
结合第二方面,在第二方面的某些实现方式中,该确定与第一小区关联的至少一个第二小区,包括:根据该第一小区与该至少一个第二小区的位置关系、波束指向关系、或准共址关系,确定与该第一小区关联的至少一个该第二小区。
第三方面,提供了一种通信方法,该方法可以由终端设备或配置于(或用于)终端设备的模块(如芯片)执行。
该方法包括:检测至少一个参考信号资源的信道质量,根据所述至少一个参考信号资 源的信道质量,确定所述至少一个参考信号资源中的第三资源,其中,所述至少一个参考信号资源与第一小区的用于波束失败恢复的至少一个候选资源集合相关联,所述第三资源的信道质量大于或等于第三门限值;检测第一候选资源集合中的候选资源的信道质量,确定所述第一候选资源集合中用于波束失败恢复的第四资源,所述第一候选集合是所述至少一个候选资源集合中与所述第三资源相关联的候选集合,所述第四资源的信道质量大于或等于第四门限值;根据所述第四资源,发送第一小区的波束失败恢复请求信息。
根据上述方案,终端设备通过测量与候选资源集合相关联的参考信号资源的信道质量,减小待检测的候选资源的检测范围,可以减少波束失败恢复过程的时延。
结合第三方面,在第三方面的某些实现方式中,所述至少一个参考信号资源中包括第二小区的资源。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:接收第二信息,所述第二信息用于指示与所述至少一个候选资源集合关联的所述至少一个参考信号资源。
结合第三方面,在第三方面的某些实现方式中,所述第二信息包括与所述至少一个候选资源集合中每个候选资源集合关联的参考信号资源的标识信息。
结合第三方面,在第三方面的某些实现方式中,所述第二信息包括与所述至少一个候选资源集合关联的至少一个向量信息,所述至少一个向量是测量所述至少一个参考信号资源获得的。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:确定与所述至少一个候选资源集合关联的所述至少一个参考信号资源;发送第三信息,所述第三信息用于指示与所述至少一个候选资源集合关联的所述至少一个参考信号资源。
结合第三方面,在第三方面的某些实现方式中,所述第三信息包括与所述至少一个候选资源集合中每个候选资源集合关联的参考信号资源的标识信息。
结合第三方面,在第三方面的某些实现方式中,所述第三信息包括与所述至少一个候选资源集合关联的至少一个向量信息,所述至少一个向量信息是测量所述至少一个参考信号资源的信道信息获得的。
第四方面,提供了一种通信方法,该方法可以由网络设备或配置于(或用于)网络设备的模块(如芯片)执行。
该方法包括:发送第二信息,所述第二信息用于指示与第一小区的至少一个候选资源集合关联的至少一个参考信号资源,其中,所述至少一个候选资源集合为所述第一小区的用于波束失败恢复的候选资源集合;接收波束失败请求信息,所述波束失败请求信息用于指示第四资源,所述第四资源为所述至少一个候选集合中的资源。
结合第四方面,在第四方面的某些实现方式中,所述至少一个参考信号资源中包括第二小区的资源。
结合第四方面,在第四方面的某些实现方式中,所述第二信息包括与所述至少一个候选资源集合中每个候选资源集合关联的参考信号资源的标识信息。
结合第四方面,在第四方面的某些实现方式中,所述第二信息包括与所述至少一个候选资源集合关联的至少一个向量信息,所述至少一个向量用于终端设备确定所述至少一个参考信号资源。
第五方面,提供了一种通信方法,该方法可以由网络设备或配置于(或用于)网络设备 的模块(如芯片)执行。
该方法包括:接收第三信息,所述第三信息用于指示与第一小区的至少一个候选资源集合关联的至少一个参考信号资源,其中,所述至少一个候选资源集合为所述第一小区的用于波束失败恢复的候选资源集合;接收波束失败请求信息,所述波束失败请求信息用于指示第四资源,所述第四资源为所述至少一个候选集合中的资源。
结合第五方面,在第五方面的某些实现方式中,所述至少一个参考信号资源中包括第二小区的资源。
结合第五方面,在第五方面的某些实现方式中,所述第二信息包括与所述至少一个候选资源集合中每个候选资源集合关联的参考信号资源的标识信息。
结合第五方面,在第五方面的某些实现方式中,所述第二信息包括与所述至少一个候选资源集合关联的至少一个向量信息,所述至少一个向量是测量所述至少一个参考信号资源获得的。
第六方面,提供了一种通信装置,一种设计中,该装置可以包括执行第一方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置包括:收发单元,用于接收第一信息,该第一信息用于指示至少一个第二小区,该第二小区是与第一小区关联的小区;处理单元,用于根据该第一小区的第一资源和该第二小区的第二资源,检测该第一小区的波束失败,其中,该第一资源是用于波束失败检测的资源,该第二资源是根据该第一信息确定的。
结合第六方面,在第六方面的某些实现方式中,该第一信息包括以下一项或多项:该第二资源的标识信息、该第二小区的小区标识信息或向量信息。
结合第六方面,在第六方面的某些实现方式中,该处理单元具体用于检测该第一资源的信道质量和该第二资源的信道质量;如果该第一资源的信道质量小于或等于第一门限值,且该第二资源的信道质量小于或等于第二门限值,该处理单元具体用于控制第一小区的波束失败事例指示计数器的计数值加1。
结合第六方面,在第六方面的某些实现方式中,该处理单元用于控制物理层检测该第一资源的信道质量和该第二资源的信道质量;如果该第一资源的信道质量小于或等于第一门限值,且该第二资源的信道质量小于或等于第二门限值,该处理单元用于控制理层向该终端设备的媒体接入控制层发送第一指示信息;该处理单元具体用于在媒体接入控制层如果接收到该第一指示信息后,控制该第一小区的波束失败事例指示计数器的计数值加1。
结合第六方面,在第六方面的某些实现方式中,该处理单元具体用于检测该第一资源的信道质量和该第二资源的信道质量;如果该第一资源的信道质量小于或等于第一门限值,该处理单元具体用于控制该第一小区的波束失败事例指示计数器的计数值加1;如果该第二资源的信道质量小于或等于第二门限值,该处理单元具体用于该第一小区的波束失败事例指示计数器的计数值加1。
结合第六方面,在第六方面的某些实现方式中,该处理单元控制物理层检测该第一资源的信道质量和该第二资源的信道质量;如果该第一资源的信道质量小于或等于第一门限值,该处理单元用于控制该终端设备的物理层向该终端设备的媒体接入控制层发送第二指示信息;如果该第二资源的信道质量小于或等于第二门限值,该处理单元用于控制该终端设备的物理层向该终端设备的媒体接入控制层发送第三指示信息;该终端设备的媒体接入 控制层如果接收到该第二指示信息,该处理单元具体控制该第一小区的波束失败事例指示计数器的计数值加1;该终端设备的媒体接入控制层如果接收到该第三指示信息,该处理单元控制该第一小区的波束失败事例指示计数器的计数值加1。
结合第六方面,在第六方面的某些实现方式中,如果该波束失败事例指示计数器的计数值大于或等于预设的最大计数值,该处理单元用于触发该第一小区的波束失败恢复过程。
结合第六方面,在第六方面的某些实现方式中,该处理单元具体用于检测该第一资源的信道质量和该第二资源的信道质量;如果该第一资源的信道质量小于或等于第一门限值,且该第二资源对应的信道质量小于或等于第二门限值,该处理单元具体用于触发该第一小区的波束失败恢复过程。
结合第六方面,在第六方面的某些实现方式中,该处理单元具体用于检测该第一资源的信道质量,如果该第一资源的信道质量小于或等于第一门限值,该第一小区的波束失败事例指示计数器的计数值加1;该处理单元具体用于检测该第二资源的信道质量,如果该第二资源的信道质量小于或等于第二门限值,且该波束失败事例指示计数器的计数值大于或等于第一预设值,该处理单元还用于触发该第一小区的波束失败恢复过程。
结合第六方面,在第六方面的某些实现方式中,该处理单元具体用于控制该终端设备的物理层检测该第一资源的信道质量,如果该第一资源对应的信道质量小于或等于第一门限值,该处理单元还用于控制该终端设备的物理层向该终端设备的媒体接入控制层发送第二指示信息;该处理单元还用于控制该终端设备的媒体接入控制层如果接收到该第二指示信息,该第一小区的波束失败事例指示计数器的计数值加1;该处理单元具体用于控制该终端设备的物理层检测该第二资源的信道质量,如果该第二资源的信道质量小于或等于第二门限值,该处理单元还用于控制该终端设备的物理层向该终端设备的媒体接入控制层发送第三指示信息;该终端设备的媒体接入控制层如果接收到该第三指示信息,且该波束失败事例指示计数器的计数值大于或等于第一预设值,该处理单元触发该第一小区的波束失败恢复过程。
第七方面,提供了一种通信装置,一种设计中,该装置可以包括执行第二方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置包括:处理单元,用于确定与第一小区关联的至少一个第二小区;收发单元,用于发送第一信息,该第一信息用于指示该至少一个第二小区,该第一信息用于终端设备确定该第二小区中的第二资源,该第二资源用于检测该第一小区的波束失败。
结合第七方面,在第七方面的某些实现方式中,该第一信息包括以下一项或多项:该第二资源的标识信息、该第二小区的小区标识信息或向量信息。
结合第七方面,在第七方面的某些实现方式中,该处理单元具体用于根据该第一小区与该至少一个第二小区的位置关系、波束指向关系、或准共址关系,确定与该第一小区关联的至少一个该第二小区。
第八方面,提供了一种通信装置,一种设计中,该装置可以包括执行第三方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置包括:处理单元,用于检测至少一个参考信号资源的信道质量,根据所述至少一个参考信号资源的信道质量,确定所述至少一个 参考信号资源中的第三资源,其中,所述至少一个参考信号资源与第一小区的用于波束失败恢复的至少一个候选资源集合相关联,所述第三资源的信道质量大于或等于第三门限值;处理单元还用于检测第一候选资源集合中的候选资源的信道质量,确定所述第一候选资源集合中用于波束失败恢复的第四资源,所述第一候选集合是所述至少一个候选资源集合中与所述第三资源相关联的候选集合,所述第四资源的信道质量大于或等于第四门限值;收发单元,用于根据所述第四资源,发送第一小区的波束失败恢复请求信息。
结合第八方面,在第八方面的某些实现方式中,该收发单元还用于接收第二信息,所述第二信息用于指示与所述至少一个候选资源集合关联的所述至少一个参考信号资源。
结合第八方面,在第八方面的某些实现方式中,处理单元还用于确定与所述至少一个候选资源集合关联的所述至少一个参考信号资源;收发单元还用于发送第三信息,所述第三信息用于指示与所述至少一个候选资源集合关联的所述至少一个参考信号资源。
该第八方面中的至少一个参考信号资源、第二信息、第三信息的具体描述可以参考第三方面中的描述,为了简要,在此不再赘述。
第九方面,提供了一种通信装置,一种设计中,该装置可以包括执行第四方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置包括:处理单元,用于确定与第一小区的至少一个候选资源集合关联的至少一个参考信号资源;收发单元,用于发送第二信息,所述第二信息用于指示该至少一个参考信号资源,其中,所述至少一个候选资源集合为所述第一小区的用于波束失败恢复的候选资源集合;收发单元,还用于接收波束失败请求信息,所述波束失败请求信息用于指示第四资源,所述第四资源为所述至少一个候选集合中的资源。
该第九方面中的至少一个参考信号资源、第二信息的具体描述可以参考第三方面中的描述,为了简要,在此不再赘述。
第十方面,提供了一种通信装置,一种设计中,该装置可以包括执行第五面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置包括:收发单元,用于接收第三信息,所述第三信息用于指示与第一小区的至少一个候选资源集合关联的至少一个参考信号资源,其中,所述至少一个候选资源集合为所述第一小区的用于波束失败恢复的候选资源集合;处理单元,用于根据该第三信息确定该至少一个参考信号资源;收发单元,还用于接收波束失败请求信息,所述波束失败请求信息用于指示第四资源,所述第四资源为所述至少一个候选集合中的资源。
该第十方面中的至少一个参考信号资源、第三信息的具体描述可以参考第三方面中的描述,为了简要,在此不再赘述。
第十一方面,提供了一种通信装置,包括处理器。该处理器可以实现上述第一方面至第五方面以及第一方面至第五方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器,该处理器与该存储器耦合,可用于执行存储器中的指令,以实现上述任一种可能实现方式中的方法。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。本申请实施例中,通信接口可以是收发器、管脚、电路、总线、模块或其它类型的通信接口,不予限制。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,该通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片。当该通信装置为配置于终端设备中的芯片时,该通信接口可以是输入/输出接口。
在另一种实现方式中,该通信装置为网络设备。当该通信装置为网络设备时,该通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片。当该通信装置为配置于网络设备中的芯片时,该通信接口可以是输入/输出接口。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第十二方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。该处理电路用于通过该输入电路接收信号,并通过该输出电路发射信号,使得该处理器执行第一方面至第五方面以及第一方面至第五方面中任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为一个或多个芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第十三方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序(也可以称为代码,或指令),当该计算机程序被运行时,使得计算机执行上述第一方面至第五方面以及第一方面至第五方面中任一种可能实现方式中的方法。
第十四方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面至第五方面以及第一方面至第五方面中任一种可能实现方式中的方法。
第十五方面,提供了一种通信系统,包括用于执行第一方面中任一种可能实现方式中的方法的装置和用于执行第二方面中任一种可能实现方式中的方法的装置。
例如,该通信系统包括执行第一方面中任一种可能实现方式中的方法的终端设备和执行第二方面中任一种可能实现方式中的方法的网络设备。
第十六方面,提供了一种通信系统,该通信系统包括用于执行第三方面中任一种可能实现方式中的方法的装置,以及该通信系统还包括用于执行第四方面或第五方面中任一种可能实现方式中的方法的装置。
例如,该通信系统包括执行第三方面中任一种可能实现方式中的方法的终端设备,以及该通信系统还包括执行第四方面或第五方面中任一种可能实现方式中的方法的网络设备。
附图说明
图1是本申请实施例提供的通信系统的示意性框图;
图2是本申请实施例提供通信方法的一个示意性流程图;
图3是本申请实施例提供的通信方法的一个示意图;
图4是本申请实施例提供通信方法的另一个示意性流程图;
图5是本申请的通信装置的一例的示意性框图;
图6是本申请的终端设备的一例的示意性结构图;
图7是本申请的网络设备的一例的示意性结构图。
具体实施方式
下面将结合附图,对本申请实施例的技术方案进行描述。
本申请实施例提供的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、无线保真(wireless-fidelity,WiFi)系统、频分双工(frequency division duplex,FDD)系统、未来的通信系统、或者多种通信系统融合的系统等,本申请实施例不做限定。其中,5G还可以称为新无线(new radio,NR)。
本申请实施例提供的技术方案可以应用于各种通信场景,例如可以应用于以下通信场景中的一种或多种:增强移动宽带(enhanced mobile broadband,eMBB)通信、高可靠低时延通信(ultra-reliable and low latency communication,URLLC)、机器类型通信(machine type communication,MTC)、大规模MTC(massive MTC,mMTC)大规模机器类型通信、设备到设备(device-to-device,D2D)通信、车辆外联(vehicle to everything,V2X)通信、车辆到车辆(vehicle to vehicle,V2V)通信、和物联网(internet of things,IoT)等。可选地,mMTC可以包括以下通信中的一种或多种:工业无线传感器网络(industrial wireless sensor network,IWSN)的通信、视频监控(video surveillance)场景中的通信、和可穿戴设备的通信等。
图1是适用于本申请实施例的无线通信系统100的示意图。
如图1所示,该无线通信系统100可以包括至少一个网络设备,例如图1所示的网络设备110。该无线通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备120。终端设备120可以与两个小区进行通信,该两个小区可以是同一个网络设备的小区,也可以是不同网络设备的小区。例如,终端设备120可以是采用载波聚合(carrier aggregation,CA)通信方式进行通信,或者采用双连接(dual connection,DC)通信方式进行通信。
本申请实施例中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。
应理解,本申请对于终端设备的具体形式不作限定。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片系统。该装置可以被安装在终端设备中或者和终端设备匹配使用。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例中,以用于实现终端设备的功能的装置是终端设备为例,描述所提供的技术方案。
本申请实施例中的网络设备可以是接入网中具有无线收发功能的设备。该设备包括但不限于:基站、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等。该设备还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,简称AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
网络设备管理一个或多个小区,并为管理的小区提供服务。终端设备通过网络设备分配的传输资源(例如,频域资源,或者说,频谱资源)在小区中与网络设备进行通信,该小区可以属于宏基站(例如,宏eNB或宏gNB等),也可以属于小小区(small cell)对应的基站。小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统。该装置可以被安装在网络设备中或者和网络设备匹配使用。在本申请实施例中,以用于实现网络设备的功能的装置是网络设备为例,描述所提供的技术方案。
下面对本申请实施例涉及到的一些概念进行说明。
1.波束(beam)
波束是一种通信资源。波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束赋形技术或者其他技术手段。波束赋形技术可以具体为数字波束赋形技术,模拟波束赋形技术,混合数字/模拟波束赋形技术。不同的波束可以认为是不同的资源。通过不同的波束可以发送相同的信息或者不同的信息。可选的,可以将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束内可以包括一个或多个天线端口,用于传输数据信道,控制信道和探测信号等,例如,发射波束(或发送波束)可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。可以理解的是,形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。
波束可以分为网络设备的发送波束和接收波束,与终端设备的发送波束和接收波束。网络设备的发送波束用于描述网络设备发送侧波束赋形信息,网络设备接收波束用于描述网络设备接收侧波束赋形信息,终端设备的发送波束用于描述终端设备发送侧波束赋形信息,终端接收波束用于描述终端设备接收侧波束赋形信息。也即波束用于描述波束赋形信息。
波束可以对应时间资源和/或空间资源和/或频域资源。
可选地,波束还可以与参考信号资源(例如,波束赋形的参考信号资源),或者波束赋形信息对应。
可选地,波束还可以与网络设备的参考信号资源关联的信息对应,其中参考信号可以为信道状态信息参考信号(channel state information reference signal,CSI-RS),SSB,解调参考信号(demodulation reference signal,DMRS)、相位跟踪信号(phase tracking reference signal,PTRS)跟踪信号(tracking reference signal,TRS)等,应理解,TRS也是CSI-RS的一种。参考信号资源关联的信息可以是参考信号资源的标识,或者QCL信息(特别是type D类型的QCL)等。其中,参考信号资源标识对应了之前基于该参考信号资源测量时建立的一个收发波束对,通过该参考信号资源索引,终端设备可推断波束信息。
可选地,波束还可以与空域滤波器(spatial filter或spatial domain filter)、空域传输滤波器(spatial domain transmission filter)对应。
其中,接收波束可以等价于空间传输滤波器,空域传输滤波器,空域接收滤波器,空间接收滤波器;发送波束可以等价于空域滤波器,空域传输滤波器,空域发送滤波器,空间发送滤波器。空间相关参数的信息可以等价于空间滤波器(spatial domain transmission/receive filter)。可选地,空间滤波器一般包括空间发送滤波器,和/或空间接收滤波器。该空间滤波器还可以称之为空域发送滤波器,空域接收滤波器,空间传输滤波器,空域传输滤波器等。其中,终端设备侧的接收波束和网络设备侧的发送波束可以为下行空间滤波器,终端设备侧的发送波束和网络设备侧的接收波束可以为上行空间滤波器。
2、空间相关参数信息
空间相关参数信息可以是准共址(quasi-collocation,QCL)信息,还可以是空间相关信息(spatial relation)。一般来说,主要用于指示下行信号(如PDCCH/PDSCH/CSI-RS/DMRS/TRS)、上行信号(如PUCCH/PUSCH/SRS/DMRS)的空间相关参数(还可以称为空间相关特性)。QCL信息也可以称为QCL假设信息。QCL信息用于辅助描述终端设备接收波束赋形信息以及接收流程,或者用于辅助描述终端设备发射 侧波束赋形信息以及发射流程。QCL信息可以用于指示两个参考信号之间的QCL关系,其中目标参考信号一般可以是DMRS,CSI-RS等,而被引用的参考信号或者源参考信号一般可以是CSI-RS、SSB、探测参考信号(sounding reference signal,SRS)等。应理解,满足QCL关系的两个参考信号或信道的空间特性参数是相同的(或相近的,或相似的),从而基于该源参考信号资源索引可推断出目标参考信号的空间特性参数。
其中,空间特性参数包括以下参数中的一种或多种:
入射角(angle of arrival,AoA)、主(dominant)入射角AoA、平均入射角、入射角的功率角度谱(power angular spectrum,PAS)、出射角(angle of departure,AoD)、主出射角、平均出射角、出射角的功率角度谱、终端设备发送波束成型、终端设备接收波束成型、空间信道相关性、网络设备发送波束成型、网络设备接收波束成型、平均信道增益、平均信道时延(average delay)、时延扩展(delay spread)、多普勒扩展(Doppler spread)、多普勒频移(doppler shift)、空间接收参数(spatial Rx parameters)等。
3、波束失败检测过程
为了检测波束失败,网络设备需要给终端设备指示用于波束失败检测的参考信号资源(beam failure detection RS)(也可以称为链路失败检测的参考信号资源)。波束失败检测的参考信号资源可以有以下几种可能的指示方式。例如,网络设备可以给终端设备显示配置用于波束失败检测的参考信号资源集合(例如,beam failure detection RS resourceconfig或beam failure detection RS或failure detection resources)(也可以称为波束失败检测参考信号资源集合)。网络设备配置波束失败检测参考信号资源集合可以通过RRC、MAC-CE、DCI信令中的一种或多种信令指示。再例如,波束失败检测的参考信号资源还可以通过隐式方式指示,如将指示物理下行控制信道(physical downlink control channel,PDCCH)的传输配置指示(transmission configuration indication,TCI)中关联的参考信号资源作为波束失败检测的参考信号资源,该参考信号资源是与PDCCH的DMRS满足QCL关系的参考信号资源,且为周期性的参考信号资源。可选地,当网络设备显示配置了用于波束失败检测的参考信号资源集合时,终端设备可以根据该波束失败检测参考信号资源集合检测波束失败;当网络设备没有显示配置用于波束失败检测的参考信号资源集合时,终端设备可以按照上述隐式方式指示的参考信号检测波束失败。
其中,beam failure detection RS set中的RS与PDCCH的DMRS满足QCL关系或者与PDCCH使用相同的TCI状态,当该集合中的部分或者所有参考信号资源的信道质量信息(如参考信号接收功率(reference signal receiving power,RSRP),信道质量指示(channel quality indicator,CQI),块差错率(block error ratio,BLER),信号与干扰加噪声比(signal to Interference plus noise ratio,SINR),信噪比(signal noise ratio,SNR)等)低于预定门限,则判定为波束失败。其中低于预定门限可以是连续W次低于预定门限或者一定时间段内W次低于预定门限。该预定门限可以称为波束失败检测门限,还可以称为波束失败门限。应理解,只要是用于波束失败的检测的门限均可以为该预定门限,本申请不对该预定门限的名称做限定。可选的,该波束失败检测门限可以是网络设备配置的,还可以是与无线链路失败失步门限(radio link failure OOS(out of sync))相同的门限。可选地,当网络设备配置了波束失败检测门限时,使用该波束失败检测门限检测波束失败;当网络设备没有配置波束失败检测门限时,可以将无线链路失步门限作为波束失败检测门限检测 波束失败。应理解,这里beam failure detection RS可以是用于终端检测网络设备的某一发射波束的信道质量,该发射波束是网络设备与该终端进行通信时所使用的波束。
4、波束失败恢复过程
为了恢复波束失败,网络设备还可以给终端设备指示用于恢复终端设备与网络设备波束的参考信号资源集合(candidate beam RS list或candidate beam RS identification resource或beam failure candidate beam resource或candidate beam identification RS或candidate beam list)(也可以称为候选参考信号资源集合或波束失败恢复参考信号资源集合)。波束失败后,终端设备需要从候选参考信号资源集合中选出信道质量信息(如RSRP、RSRQ、CQI、SINR等)高于预定门限的参考信号资源,用于恢复通信波束。也可以理解为candidate beam identification RS用于终端设备在判断出网络设备的发射波束发生波束失败后,用于发起链路重配的参考信号集合。例如,网络设备可以给终端设备显示配置用于波束失败恢复的参考信号资源集合。网络设备配置波束失败恢复的参考信号资源集合可以通过RRC、MAC-CE、DCI信令中的一种或多种信令指示。用于波束失败恢复的参考信号资源集合还可以是某个默认的参考信号资源集合,(例如用于波束管理(beam management,BM)的参考信号资源集合,或者是用于无线资源管理(radio resource management,RRM)测量的参考信号资源集合,所有或部分SSB组成的参考信号资源集合,或者是复用其他功能的某个参考信号资源集合)。其中,用于波束管理(beam management,BM)的参考信号资源集合可以是重复(repetition)标识为“关闭(off)”的参考信号资源集合(还可以是repetition标识为“开启(on)”的参考信号资源集合)。可选地,当网络设备配置了候选参考信号资源集合时,在该参考信号资源集合中识别参考信号资源;当网络设备没有配置候选参考信号资源集合时,在该默认的参考信号资源集合中识别参考信号资源。该识别的参考信号资源可以用于恢复波束失败。可选地,该识别的参考信号资源的信道质量大于预设门限。
可选的,上述用于识别恢复波束的参考信号资源的预定门限可以由网络设备配置,或者还可以是预定义的门限。例如,当网络设备没有配置该门限时,默认使用用于移动性测量的门限。该预定门限可以称为波束失败恢复门限,还可以称为波束恢复门限。应理解,只要是用于波束失败恢复的门限均可以为该预定门限,本申请不对该预定门限的名称做限定。
应理解,在具体实现中,用于波束失败检测的参考信号资源集合以及用于恢复终端设备与网络设备波束的参考信号资源集合这两个集合的名称还可以有其他叫法,本申请对此不作具体限定。在本申请各实施例中,波束失败还可以称为通信失败、波束故障、链路失败、链路故障、通信失败、通信故障、通信链路失败、通信链路故障等。在本申请实施例中,这些概念是相同的含义。该通信失败可以是指用于PDCCH的波束失败检测的参考信号资源的信道质量小于或者等于预设门限。
在本申请各实施例中,波束失败恢复也可以称为恢复网络设备与终端设备通信,通信失败恢复、波束故障恢复、波束恢复、链路失败恢复、链路故障恢复、链路恢复、通信失败恢复、通信故障恢复、通信链路失败恢复、通信链路故障恢复、通信恢复、链路重配等。
本申请实施例中,波束失败恢复请求信息又可以称为通信失败恢复请求信息(可以简称为beam failure recovery request,BFRQ)、波束故障恢复请求信息、波束恢复请求信息、 链路失败恢复请求信息、链路故障恢复请求信息、链路恢复请求信息、通信故障恢复请求信息、通信恢复请求信息、通信链路失败恢复请求信息、通信链路故障恢复请求信息、通信链路恢复请求信息、链路重配请求信息、重配请求信息等。可选地,波束失败恢复请求可以是指在用于承载波束失败恢复请求的资源上发送信号。
本申请实施例中,通信失败恢复响应信息又可以称为波束失败恢复响应信息(可以简称为Beam failure recovery response,BFRR)、波束故障恢复响应信息、波束失败响应信息、波束故障响应信息、波束恢复响应、链路失败恢复响应信息、链路故障恢复响应信息、链路失败响应信息、链路故障响应信息、链路恢复响应信息、通信故障恢复响应信息、通信失败响应信息、通信故障响应信息、通信恢复响应信息、通信链路失败恢复响应信息、通信链路故障恢复响应信息、通信链路故障响应信息、通信链路失败响应信息、通信链路响应信息、链路重配响应信息、重配响应信息等。应理解,本申请中,通信失败恢复响应信息可以简称为响应信息。
本申请各实施例中,波束失败恢复响应信息可以是指在用于发送波束失败恢复响应的控制资源集合和/或搜索空间集合上接收循环冗余校验(cyclic redundancy check,CRC)由小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)加扰的下行控制信息(downlink control information,DCI),该波束失败恢复响应信息还可以由其他信息加扰的DCI(如BFR-RNTI加扰的DCI),该波束失败恢复响应信息还可以是由上述DCI调度的数据,该波束失败恢复响应信息还可以是由上述DCI调度的数据的ACK。该波束失败恢复响应信息还可以是以下信息中的一种:小区无线网络临时标识C-RNTI加扰的DCI、调制编码方式小区特定无线网络临时标识MCS-C-RNTI加扰的DCI、专用搜索空间内的下行控制信息DCI、专用无线网络临时标识RNTI加扰的DCI、随机接入无线网络临时标识RA-RNTI加扰的DCI、包含预设状态值的DCI、包含传输配置指示TCI信息的DCI、所述发生波束失败的小区的准共址QCL指示信息或指示新传数据的DCI。本申请实施例对此并不作限定。应理解,该指示新传数据的DCI与调度波束失败请求信息的DCI具有相同的混合自动重传请求(hybrid automatic repeat request,HARQ)进程标识(process identifier),可选地,该两个DCI的新数据指示(new date indicator,NDI)不同)。应理解,当终端设备接收到波束失败恢复响应信息后,认为波束失败恢复成功。应理解,波束失败恢复成功后,终端设备可以不再发送波束失败恢复请求信息,还可以停止或重置波束失败检测的计数器,还可以停止或重置波束失败检测的计时器、还可以停止或重置波束失败恢复计数器,还可以停止或重置波束失败恢复计时器等。
下面结合附图详细说明本申请实施例提供的通信方法。
目前网络设备通过时分的方式在不同时段多次发送用于波束失败检测的参考信号资源,这使得终端设备测得规定次数的参考信号资源需要较长时间,并且对于网络设备来说资源开销也比较大。另外,对于一个终端设备通过多个服务小区进行通信的情况下,目前终端设备对每个小区独立地进行波束失败检测。
因此,本申请提出网络设备可以确定与第一小区相关联的至少一个第二小区,例如,第二小区可以是波束方向相同或相近的小区,第二小区的波束的覆盖范围包含第一小区的波束的覆盖范围等,网络设备通过第一信息通知终端设备。终端设备可以根据第一小区的第一资源和第二小区的第二资源检测第一小区的波束失败。能够提高波束失败检测的效率。
图2是本申请实施例提供的通信方法的一个示意性流程图。
在图2实施例中的终端设备可以与第一小区和第二小区进行通信,或者说第一小区和第二小区均为该终端设备的服务小区。例如,终端设备可以是采用CA通信方式与第一小区和第二小区进行通信,或者终端设备可以是采用DC通信方式与第一小区和第二小区进行通信。其中,第一小区为图2所示实施例中的网络设备的小区,第二小区可以是该网络设备的小区也可以是其他网络设备的小区。但本申请不限于此。
S210,网络设备确定与第一小区关联的至少一个第二小区。
网络设备可以在终端设备的多个服务小区中确定与第一小区关联的至少一个第二小区,终端设备根据第一小区中的第一资源和第二小区中的资源检测第一小区的波束失败。
示例性地,网络设备可以根据第一小区与至少一个第二小区的位置关系、波束指向关系或准共址(quasi co-located,QCL)关系,确定与第一小区关联的至少一个第二小区。或者说,第一小区和第二小区相关联是指第一小区与第二小区的位置关系、波束指向关系或准共址关系相关联。
例如,第一小区与第二小区的位置关系可以是该第一小区与第二小区为同一网络设备的小区,或者第一小区的天线和第二小区的天线位于同一位置,例如,第一小区的天线面板与第二小区的天线面板架设在同一根天线立柱上,或者第一小区与第二小区共用同一天线面板,或者第一小区与第二小区的天线面板平行或近似平行,或者第一小区与第二小区共模块。网络设备可以确定第一小区与第二小区相关联。
再例如,第一小区与第二小区的波束指向关系可以是第一小区的波束方向与第二小区的波束方向相同或相近,或者第一小区的波束的覆盖范围与第二小区的波束的覆盖范围有重叠,或者第二小区的波束覆盖范围包含第一小区的波束的覆盖范围。例如,第二小区的覆盖范围可以是全向的(例如,通过低频段载波发送信号等),第一小区采用具有指向性的窄波束与终端设备通信。第一小区的波束的覆盖范围在第二小区的覆盖范围内。但本申请不限于此。
再例如,第一小区与第二小区的QCL关系可以是第一小区的波束与第二小区的波束的空间特性参数相近,例如,该空间特性参数可以是平均信道时延、时延扩展、多普勒扩展、多普勒频移、空间接收参数中的一项或多项。但本申请不限于此。
一个示例中,终端设备采用CA通信方式,终端设备的服务小区包括小区A、小区B、小区C和小区D。网络设备可以在该终端设备的该4个服务小区中确定小区A(即第一小区的一个示例)关联的第二小区。例如,网络设备根据QCL关系确定小区C和小区D为与小区A具有QCL关系的小区,即终端设备的服务小区中与小区A关联的小区为小区C和小区D(小区C、小区D分别为第二小区的一个示例,也就是说,网络设备确定的至少一个第二小区中包括小区C和小区D)。但本申请不限于此。
S220,网络设备向终端设备发送第一信息,该第一信息用于指示该至少一个第二小区。
相应地终端设备接收来自网络设备的该第一信息。
作为示例非限定,该第一信息可以承载于RRC消息或媒体接入控制(medium access control,MAC)控制元素(control element,CE)或DCI。
可选地,第一信息包括以下一项或多项:
第二小区的标识信息、第二资源的标识信息或向量信息。
其中,第二资源是第二小区的资源,用于终端设备检测第一小区的波束失败。向量信息可以是一个或多个向量,例如,向量信息可以是预编码矩阵信息(pre-coding matrix information,PMI),PMI可以指示与信道相关的一个或多个向量。或者向量信息可以是信道相关的向量对应的信道质量信息(如CQI、参考信号接收功率(reference signal receiving power,RSRP)、信号与干扰加噪声比(signal to interference plus noise ratio,SINR)等),但本申请不限于此。对于第一信息所包括的内容可以有以下示例。
示例一,第二小区可以是采用低频段通信全向覆盖的小区,第一信息可以包括该第二小区的标识信息,终端设备接收到该第一信息后,可以根据该第二小区的标识信息确定与该第一小区关联的小区。在多个小区与第一小区关联时,即存在多个第二小区的情况下,该第一信息可以包括多个第二小区中每个第二小区的标识信息。终端设备确定与第一小区关联的第二小区后,可以在S230中根据该第二小区的第二资源和第一小区的第一资源(该第一资源为第一小区中的用于波束检测的资源),检测第一小区的波束失败。该第二资源可以是预定义的一种类型的资源(如协议规定的用于相关联的小区的波束失败检测的一种类型的资源),例如,该第二资源可以是第二小区的同步信号资源,如主同步信号(primary synchronization signal,PSS)资源、辅同步信号(secondary synchronization signal,SSS)资源或SSB资源等,但本申请不限于此。终端设备通过第一信息中的第二小区的标识信息,确定第一小区与第二小区相关联后,终端设备可以根据协议规定的资源类型的第二小区的资源和第一小区的第一资源,检测第一小区的波束失败。
示例二,第一信息可以包括第二小区的标识信息和第二资源的标识信息,该第二资源可以是CSI-RS资源、PTRS资源或SSB资源等,终端设备可以根据该第二小区的标识信息和第二资源的标识信息,确定在S230中根据第二小区的第二资源和第一小区的第一资源,检测第一小区的波束失败。但本申请不限于此。
示例三,第一信息可以包括第二小区的标识信息和向量信息,例如该向量信息可以为PMI,当终端设备接收到该第一信息后可以根据第二小区的标识信息确定与第一小区关联的第二小区。并在第一信息中获取到第一信息指示的PMI。则终端设备可以确定将第二小区的第二资源和第一小区的第一资源,检测第一小区的波束失败。其中,第二资源是该第二资源的信道信息包含第一信息指示的该PMI的参考信号资源,例如,终端设备可以接收第二小区的参考信号资源,并测量该参考信号资源的信道信息,一个参考信号资源的信道信息可以包括至少一个PMI,可选地,参考信号资源的信道信息还可以包括CQI和秩指示信息(rand indicator,RI)等,若第二小区的该参考信号资源的信道信息中包含该第一信息指示的该PMI,则终端设备在S230中根据该参考信号资源和第一小区的第一资源,检测第一小区的波束失败。但本申请不于此。可选地,该PMI可以是过采样离散傅里叶变换(discrete fourier transform,DFT)向量的标识信息或者第三代合作伙伴计划(the 3 rd generation partnership project,3GPP)标准38.214协议中的类型I(type I)码本或类型II(type II)码本。
例如,网络设备可以通过第一信息为终端设备配置第一小区的一个或多个波束的参考信号资源关联的一个或多个PMI。该一个或多个PMI是通过对第二小区的参考信号资源测量获得的。例如图3所示,对第二小区的参考信号资源测量的一个或多个PMI可以包括PMI1和PMI2,网络设备可以确定第一小区的波束1、2、3的覆盖范围在PMI 1对应 的波束覆盖范围内,第一小区的波束4、5、6的覆盖范围在PMI 2对应的波束覆盖范围内,则网络设备可以指示第一小区的波束1、2、3与PMI 1相关联,第一小区的波束4、5、6与PMI 2相关联。在一种可能的实施方式中,终端设备可以根据第二小区中信道质量包含PMI 1的资源和波束1的参考信号资源1,检测第一小区的波束1的波束失败。以及终端设备还可以根据第二小区中信道质量包含PMI 1的资源和波束2的参考信号资源2,检测第一小区的波束2的波束失败,波束3的波束失败检测类似。终端设备还可以根据第二小区中信道质量包含PMI 2的资源和波束4的参考信号资源4,检测第一小区的波束4的波束失败,波束5、波束6的波束失败检测类似。另一种可能的实施方式中,终端设备可以根据第二小区中信道质量包含PMI 1和/或PMI 2的资源、以及第一小区的波束1、2、3、4、5、6的参考信号资源中的部分或全部资源检测第一小区的波束失败。也就是说,终端设备可以根据第一小区的波束失败检测参考资源与该波束关联的PMI对应的第二小区的资源,检测该第一小区的波束失败,也可以根据第一小区的波束失败参考信号资源和相关联的PMI对应的第二小区的资源中的部分或全部资源,检测第一小区的波束失败。但本申请不限于此。
作为示例非限定,在示例三中该第二资源可以是信道信息中包含第一信息指示的向量信息的CSI-RS资源、PTRS资源或SSB资源。
S230,终端设备根据该第一小区的第一资源和该第二小区的第二资源,检测第一小区的波束失败。
其中,第一资源是用于第一小区波束失败检测的资源。例如,网络设备为终端设备配置了一个第一小区的波束失败检测资源集合,该资源集合包括至少一个第一资源,用于检测第一小区的波束失败。第二资源可以是S220的示例一中的第二小区的预定义的一种类型的资源,或者,可以是示例二中第一信息包含的标识信息所标识的第二资源,再或者可以是示例三中信道信息中包含第一信息指示的PMI的第二小区的第二资源。但本申请不限于此。
可选地,第一资源为第一小区的高频波束对应的资源,第二资源为第二小区的低频波束对应的资源。
作为示例非限定,第一资源可以是CSI-RS资源或SSB。
终端设备根据第一小区的第一资源和该第二小区的第二资源,检测第一小区的波束失败的方式可以包括但不限于以下方式。
方式一,终端设备检测第一资源的信道质量和第二资源的信道质量;如果第一资源的信道质量小于或等于第一门限值,且第二资源的信道质量小于或等于第二门限值,该第一小区的波束失败事例(beam failure instance,BFI)指示计数器的计数值加1。其中BFI指示计数器可以写作为BFI-COUNTER。
一种实施方式中,如果BFI指示计数器的计数值大于或等于预设的最大计数值,终端设备触发第一小区的波束失败恢复过程。
在该实施方式的一个示例中,网络设备为终端设备配置或者协议规定BFI指示计数器的最大计数值,当该BFI指示计数器达到最大计数值时,也就是说,发生波束失败事例的次数达到最大值时,终端设备认为第一小区发生波束失败,可以通过触发波束失败恢复过程以恢复与第一小区的通信。但本申请不限于此。
另一种实施方式中,终端设备在第一次检测到波束失败事例后启动BFI指示计数器,在BFI指示计数器启动时,终端设备还启动波束失败检测计时器,在该波束失败检测计时器运行期间,若BFI指示计数器达到最大计数值,终端设备触发第一小区的波束失败恢复过程;若该波束失败检测计时器超时,终端设备重置该BFI指示计数器(或者说将该BFI指示计数器的计数值置“0”)。
其中,波束失败检测计时器可以写作beamFailureDetectionTimer,但本申请不限于此。
由于波束可能出现终端设备短暂状态改变而发生通信质量下降,之后又恢复正常通信的情况。因此可以通过波束失败检测计时器和BFI指示计数器联合判断是否在一段时间内发生指定次数的波束失败事例,若达到指定次数,则认为发生了波束失败;若在指定时间段内未达到指定次数的波束失败事例,可能仅是发生偶然的通信质量下降,可以重置BFI指示计数器。
网络设备为终端设备配置用于检测第一小区波束失败的第一小区的第一资源,以及通过第一信息指示与第一小区关联的第二小区,终端设备根据第一信息确定第二小区的第二资源。例如,该第一信息指示PMI 1,终端设备在第二小区的参考信号资源上接收参考信号,解析第二小区的参考信号资源的信道信息,若第二小区的一个参考信号资源的信道信息中包含该PMI 1,则终端设备可以确定该参考信号资源为第二资源。终端设备可以测量该参考信号资源的信道质量,当该参考信号资源的信道质量小于或等于第二门限值时,可以认为该参考信号资源(即信道信息包含该PMI 1的参考信号资源)对应的波束通信质量较差。终端设备还测量第一小区的第一资源的信道质量,若该第一资源的信道质量小于或等于第一门限值时,可以认为该第一资源对应的波束通信质量较差。由于第一小区的第一资源对应的波束的通信质量以及相关联的第二小区的PMI 1对应的波束的通信质量均较差,因此终端设备可以确认发生一次波束失败事例(或者成为波束失败事件),将BFI指示计数器的计数值加1。也就是说,每当终端设备在确认出现一次第一资源的信道质量小于或等于第一门限值,以及确认出现一次第二资源的信道质量小于或等于第二门限值的情况下,终端设备将BFI指示计数器的计数值加1。该BFI指示计数器用于记录终端设备发生波束失败事例事件的次数。但本申请不限于此。需要说明的是,该示例中第二资源还可以是第二小区的预定义的一种类型的资源,或者是第一信息中的第二资源的标识信息标识的第二小区的资源,实施方式可以参考该示例,为了简要,在此不再赘述。
需要说明的,第一门限值和/或第二门限值可以是网络设备为终端设备配置的或协议预定义的。在具体实施中,第一门限值和第二门限值可以相同也可以不同,本申请对此不做限定。
例如,网络设备可以为终端设备配置或者协议预定义一个用于波束失败检测的门限值,例如门限值1,终端设备检测第一资源的信道质量后与该门限值1比较,检测第二资源的信道质量后也与该门限值1比较,即第一门限值与第二门限值均为该门限值1。但本申请不限于此。
再例如,网络设备可以为终端设备配置或者协议预定义一个第一资源的信道质量的第一门限值,和一个第二资源的信道质量的第二门限值,也就是说,第一门限值和第二门限值为不同的门限值。例如,第一资源为第一小区的高频波束对应的资源,第二资源为第二小区的低频波束对应的资源,由于高频波束能量聚集,信道质量较好,因此,在具体实施 中,第一门限值可以高于第二门限值。但本申请不限于此,第一门限值也可以低于第二门限值。
可选地,具体可以由终端设备的物理层(physical layer,PHY layer)检测第一资源的信道质量和第二资源的信道质量,如果第一资源的信道质量小于或等于第一门限值,且第二资源的信道质量小于或等于第二门限值,终端设备的物理层向终端设备的MAC层发送第一指示信息,该第一指示信息用于指示发生波束失败事例。终端设备的MAC层维护BFI指示计数器,在MAC层接收到该第一指示信息后,若BFI指示计数器已启动,则控制该BFI指示计数器的计数值加1;若BFI指示计数器未启动,则启动该BFI指示计数器且控制该BFI指示计数器的计数值加1。
其中,该第一指示信息可以称为BFI指示信息。
例如,终端设备的物理层可以周期性地向MAC层上报是否波束失败事例,在该实施方式一中,若在一个上报周期内物理层检测到一次第一资源的信道质量小于或等于第一门限值,且还检测到一次第二资源的信道质量小于或等于第二门限值,则终端设备在该周期结束时向MAC层发送第一指示信息,指示发生一次波束失败事例。MAC层接收到该第一指示信息后,若BFI指示计数器已启动,则控制该BFI指示计数器的计数值加1;若BFI指示计数器未启动,则启动该BFI指示计数器且控制该BFI指示计数器的计数值加1。在BFI指示计数器的计数值大于或等于最大计数值时,MAC层触发波束失败恢复过程。可选地,MAC层在启动BFI指示计数器时还启动波束失败检测计时器,在该波束失败检测计时器运行期间,若BFI指示计数器达到最大计数值,终端设备触发第一小区的波束失败恢复过程;若该波束失败检测计时器超时,终端设备重置该BFI指示计数器。但本申请不限于此。
方式二,终端设备检测第一资源的信道质量和第二资源的信道质量,如果第一资源的信道质量小于或等于第一门限值,第一小区的BFI指示计数器的计数值加1,如果第二资源的信道质量小于或等于第二门限值,第一小区的BFI指示计数器的计数值加1。
一种实施方式中,如果BFI指示计数器的计数值大于或等于预设的最大计数值,终端设备触发第一小区的波束失败恢复过程。
另一种实施方式中,在BFI指示计数器启动时,终端设备还启动波束失败检测计时器,在该波束失败检测计时器运行期间,若BFI指示计数器达到最大计数值,终端设备触发第一小区的波束失败恢复过程;若该波束失败检测计时器超时,终端设备重置该BFI指示计数器。
也就是说,每当终端设备检测到第一资源的信道质量小于或等于第一门限值时,BFI指示计数器的计数值加1,每当终端设备检测到第二资源的信道质量小于或等于第二门限值时,BFI指示计数器的计数值加1。如果BFI指示计数器的计数值达到最大值,终端设备触发波束失败恢复流程。
可选地,具体可以由终端设备的物理层检测第一资源的信道质量和第二资源的信道质量,如果第一资源的信道质量小于或等于第一门限值,物理层向MAC层发送第二指示信息,该第二指示信息用于指示发生一次波束失败事例,或者,该第二指示信息用于指示发生因该第一资源的信道质量小于或等于第一门限值的波束失败事例。每当第二资源的信道质量小于或等于第二门限值,物理层向MAC层发送第三指示信息,该第三指示信息用于 指示发生一次波束失败事例,或者,该第三指示信息用于指示发生因第二资源的信道质量小于或等于第二门限值的波束失败事例。MAC层在如果接收到第二指示信息,控制BFI指示计数器的计数值加1;以及MAC层如果接收到第三指示信息,控制BFI指示计数器的计数值加1。可选地,MAC层在BFI指示计数器启动时,还启动波束失败检测计时器,在该波束失败检测计时器运行期间,若BFI指示计数器达到最大计数值,MAC层触发第一小区的波束失败恢复过程;若该波束失败检测计时器超时,MAC层重置该BFI指示计数器。
例如,在通信过程中,物理层检测第一资源的信道质量和第二资源的信道质量,如果第一资源的信道质量小于或等于第一门限值,物理层生成第二指示信息,如果第二资源的信道质量小于或等于第二门限值,物理层生成第三指示信息。物理层可以在生成第二指示信息或第三指示信息后即发送至MAC层物理层,也可以周期性地向MAC层上报一个周期内生成的第二指示信息和第三指示信息。MAC层接收到物理层上报的第二指示信息和第三指示信息,根据第二指示信息和第三指示信息的个数,控制BFI指示计数器的计数值增加相应的值。例如,MAC层收到来自物理层的一个上报周期中的2个第二指示信息和1个第三指示信息,则MAC层控制BFI指示计数器的计数值增加3。但本申请不限于此。
方式三,终端设备检测第一资源的信道质量和第二资源的信道质量,如果第一资源的信道质量小于或等于第一门限值,第一小区的BFI指示计数器的计数值加1,如果第二资源的信道质量小于或等于第二门限值,且BFI指示计数器的计数值大于或等于第一预设值,终端设备触发波束失败恢复过程。
也就是说,终端设备检测到第一资源的信道质量小于或等于第一门限值的次数达到第一预设值,且终端设备又检测到一次第二资源的信道质量小于或等于第二门限值,则终端设备确定第一小区发生波束失败,触发波束失败恢复过程。
例如,第一预设值可以是1,终端设备已经检测到至少一次第一资源的信道质量小于或等于第一门限值,第一小区的BFI指示计数器的计数值大于或等于1,如果终端设备检测到一次第二资源的信道质量小于或等于第二门限值,且BFI指示计数器的计数值为大于或等于1,则终端设备触发波束失败恢复流程。如果终端设备检测到第二资源的信道质量小于或等于第二门限值,而BFI指示计数器未启动或计数值为0,终端设备不触发波束失败恢复流程。
在方式三中,如果BFI指示计数器的计数值大于或等于预设的最大计数值,终端设备也触发波束失败恢复过程。
可选地,具体可以由终端设备的物理层检测第一资源的信道质量和第二资源的信道质量,如果第一资源的信道质量小于或等于第一门限值,物理层向MAC层发送第二指示信息,该第二指示信息用于指示发生因所述第一资源的信道质量小于或等于第一门限值的波束失败事例。如果物理层检测到第二资源的信道质量小于或等于第二门限值,物理层向MAC层发送第三指示信息,该第三指示信息用于指示发生因第二资源的信道质量小于或等于第二门限值的波束失败事例。MAC层在如果接收到第二指示信息,控制BFI指示计数器的计数值加1;MAC层如果接收到第三指示信息,且该BFI指示计数器的计数值大于或等于第一预设值,MAC层触发波束失败恢复过程。
例如,该第一预设值为5,物理层检测第一资源的信道质量和第二资源的信道质量, 如果第一资源的信道质量小于或等于第一门限值,物理层生成第二指示信息,可以向MAC层发送第二指示信息,或者在上报周期结束时向MAC层发送该周期内的第二指示信息,若该周期内还存在第三指示信息则物理层还向MAC层发送第三指示信息。MAC层接收到第二指示信息后,控制BFI指示计数器的计数值加1。若在该BFI指示计数器的计数值未达到最大计数值的情况下,MAC层接收到物理层发送的第三指示信息,则MAC层判断BFI指示计数器的计数值是否大于或等于5,如果BFI指示计数器的计数值大于或等于5,MAC层触发波束失败恢复流程;如果BFI指示计数器的计数值小于5,且该BFI指示计数器的计数值达到最大计数值,MAC层不触发波束失败恢复流程;若该BFI指示计数器的计数值达到最大计数值,则MAC层触发波束失败恢复流程。但本申请不限于此。
可选地,MAC层在BFI指示计数器启动时,还启动波束失败检测计时器,在该波束失败检测计时器运行期间,如果BFI指示计数器达到最大计数值或MAC层接收到第三指示信息且BFI指示计数器大于或等于第一预设值,MAC层触发第一小区的波束失败恢复过程;若该波束失败检测计时器超时,MAC层重置该BFI指示计数器。
需要说明的是,在本申请实施例中,资源(例如,第一资源、第二资源等)的信道质量可以替换为资源的信道质量损失。例如,资源的信道质量小于或等于门限值,可以替换为资源的信道质量损失小于或等于门限值。也就是说,终端设备可以通过测量资源的信道质量判断是否发生了波束失败事例,也可以通过测量资源的信道质量损失判断是否发生了波束失败事例。其中,资源的信道质量损失是指该资源的信道质量与前一次或之前的多次测量该资源得到的信道质量之间的差值。当该差值为负数时,表示信道质量有损失,可以认为通信波束可能因被遮挡而信道质量变差。
可选地,在执行图2实施例提供的通信方法之前,终端设备可以向网络设备上报终端设备的第一能力信息(或者称为第二能力参数),该能力信息用于指示终端设备是否支持根据PMI确定资源的能力,或者,该能力信息用于指示终端设备是否支持高频参考信号资源和低频参考信号资源联合进行波束失败检测的能力。
根据上述方案,基于不同小区可能部分波束方向相同,例如,当两个不同小区的天线面板架设在同一根天线立柱上,或者共用天线面板时,这两个小区通过在该天线立柱上的天线面板形成的部分波束的波束方向可能是相同或相近的。不同小区的相同或相近方向的波束经历的传播路径也相似,波束的质量可以相互参考。本申请实施例提出网络设备通过第一信息通知终端设备第一小区关联的第二小区,使终端设备可以根据第一小区的第一资源和第二小区的第二资源检测第一小区的波束失败。也就是说具有关联关系的第二小区的资源辅助第一小区的波束失败检测,或者说,具有关联关系的、第二小区的资源信道质量信息可以作为第一小区的波束失败检测的置信加权。一方面能够减小因网络设备时分发送用于波束失败检测的参考信号资源带来的中终端设备的波束失败检测时延,能够提高波束失败检测的效率。另一方面可以节省第一小区的波束失败检测资源的开销,提高资源的利用率。
本申请实施例中的第二小区的第二资源可以是第二小区的低频波束对应的资源,该低频波束的方向与该高频波束的方向相同,或者说该低频波束的覆盖范围包含第一资源对应的第一小区的高频波束的覆盖范围。当有遮挡发生时,第一小区的高频波束和第二小区的低频波束由于波束方向其信道质量均会有一定损失。而为了获得可靠的高频波束失败检测 结果,需要获得服务波束信道质量测量的多次采样结果(也即对波束失败检测参考信号进行多次测量)。本申请提供的通信方法可以通过低频波束的测量结果辅助第一小区的波束失败检测,可以有效提高高频波束失败检测的可靠性,降低波束失败检测的时延。
本申请实施例还提供了一种波束失败恢复的方法。下面介绍本申请提供的波束失败恢复的方法。
目前,终端设备在确定第一小区发生波束失败后,可以通过发起波束失败恢复过程,对网络设备的多个波束进行测量选择较优的波束上报给网络设备。为了克服路径损耗,在波束失败恢复过程中,网络设备需要发送方向性较强的多个窄波束信号以便终端设备能够选择到较优的波束方向进行失败恢复。然而,多个窄波束信号需要网络设备分时段发送(即时分发送),目前的波束失败机制将导致终端设备检测新波束方向的时间较长
本申请实施例提出在终端设备进行波束失败恢复过程时,终端设备检测至少一个参考信号资源的信道质量,终端设备根据该至少一个参考信号资源的信道质量,确定该至少一个参考信号资源中的第三资源。终端设备检测与第三资源相关联的第一候选资源集合中的候选资源的信道质量,确定第一候选资源集合中用于波束失败恢复的第四资源。终端设备根据第四资源,发送波束失败恢复请求信息。能够减小终端设备确定用于波束失败恢复的资源的时延,提高波束失败恢复的效率。
图4是本申请实施例提供的通信方法的另一个示意性流程图。
S410,终端设备检测至少一个参考信号资源的信道质量。
其中,该至少一个参考信号资源与第一小区的用于波束失败恢复的至少一个候选资源集合相关联。每个候选资源集合包括用于波束失败恢复的至少一个候选资源。
作为示例非限定,该至少一个参考信号资源中包括CSI-RS资源和/或SSB。和/或,该至少一个候选资源集合中包括CSI-RS资源和/或SSB。
一种实施方式中,在S410之前,终端设备可以接收来自网络设备的第二信息,该第二信息用于指示与用于波束失败恢复的至少一个候选资源相关联的该至少一个参考信号资源。
网络设备可以根据波束指向关系或QCL关系确定与第一小区的该至少一个候选资源集合相关联的该至少一个参考信号资源,并通过第二信息通知终端设备。
一个示例中,该至少一个参考信号资源为至少一个第二小区的资源,该第二小区为终端设备的服务小区。例如,该第二小区采用低频全向覆盖或宽波束进行通信,第二小区的一个波束的覆盖范围包含第一小区的一个候选资源集合中的候选资源对应的波束的覆盖范围,则网络设备可以确定该第二小区的该波束对应的参考信号资源与该候选资源集合关联。同理,可以确定每个候选资源集合相关联的参考信号资源,但本申请不限于此。
另一个示例中,该至少一个参考信号资源为第一小区的资源,例如,终端设备仅与一个服务小区建立了通信连接,网络设备可以为终端设备配置确定第一小区的一个宽波束的覆盖范围包含第一小区的一个候选资源集合的候选资源对应的波束的覆盖范围,则网络设备可以确定该宽波束对应的参考信号资源与该候选资源集合相关联。同理,可以确定每个候选资源集合相关联的参考信号资源,但本申请不限于此。
另一个示例中,该至少一个参考信号资源包括第一小区的资源和/或第二小区的资源。也就是说,网络设备可以在终端设备的服务小区的资源中确定与第一小区的至少一个候选 资源集合相关联的参考信号资源,并通过第二信息通知终端设备,但本申请不限于此。
可选地,在该至少一个参考信号资源中包括第二小区的参考信号资源的情况下,第二信息还可以包括第二小区的标识信息。
可选地,该第二信息包括该至少一个参考信号资源中每个参考信号资源的标识信息。
例如,网络设备向终端设备发送的第一小区的候选资源集合的配置信息中可以包括该第二信息。该候选资源集合的配置信息用于配置该第一小区的至少一个候选资源集合。例如,该候选资源集合的配置信息配置该每个候选资源集合时,配置了每个候选资源集合包含的候选资源,以及还配置与每个候选资源集合相关联的参考信号资源,例如,该配置信息中包括每个候选资源集合相关联的参考信号资源的标识信息。但本申请不限于此。
再例如,网络设备可以先通过配置信息为终端设备配置了第一小区的至少一个候选资源集合。在网络设备确定与该至少一个候选资源相关联的至少一个参考信号资源后,网络设备向终端设备发送第二信息,通知终端设备该至少一个参考信号资源。该第二信息包括至少一个参考信号资源中的每个参考信号资源的标识信息。例如,至少一个参考信号资源按照每个参考信号资源的标识信息在第二信息中的排列顺序与至少一个候选资源集合标识信息由大到小或由到大的顺序依次对应。或者,该第二信息还包括该至少一个候选资源集合的标识信息,在第二信息中一个候选资源集合的标识信息与相关联的参考信号资源的标识信息相对应。但本申请不限于此。
可选地,该第二信息包括至少一个向量信息,终端设备根据该第二信息中的至少一个向量信息确定该至少一个参考信号资源。
也就是说,第二信息通过指示至少一个向量信息隐式指示该至少一个参考信号资源。
一个示例中,该至少一个参考信号资源为至少一个第二小区的资源,该第二信息中还包括第二小区的标识信息。例如,网络设备通过第二信息指示第二小区的PMI 1(即向量信息的一个示例)与候选资源集合1相关联,终端设备接收到该第二信息后,测量接收到的第二小区的参考信号资源的信道信息,如果一个参考信号资源的信道信息包括该PMI 1,则终端设备可以确定该参考信号资源与该候选资源集合1相关联。以及,可以在S420测量该参考信号资源的信道质量,进而在后续步骤中确定用于波束恢复的参考信号资源。
另一个示例中,该至少一个参考信号资源为第一小区的资源,则终端设备测量接收到的第一小区的参考信号资源的信道信息确定信道信息中包含第二信息指示的向量信息的参考信号资源。
另一个示例中,该至少一个参考信号资源为服务小区的资源,则终端设备测量接收到的服务小区(服务小区包括第一小区和第二小区)的参考信号资源的信道信息确定信道信息中包含第二信息指示的向量信息的参考信号资源。
作为示例非限定,该第二信息为RRC消息或MAC CE。
另一种实施方式中,在S410之前,终端设备确定与用于波束失败恢复的至少一个候选资源相关联的该至少一个参考信号资源。并向网络设备发送第三信息,该第三信息用于指示该至少一个参考信号资源与该至少一个候选资源集合相关联。
终端设备可以根据波束方向关系或QCL关系确定与至少一个候选资源集合相关联的至少一个参考信号资源,终端设备可以向网络设备发送第三信息通知网络设备与该至少一个候选资源相关联的该至少一个参考信号资源。
可选地,该第三信息包括该至少一个参考信号资源中的每个参考信号资源的标识,或者,该第三信息包含该至少一个向量信息,该至少一个向量信息是测量该至少一个参考信号资源的信道信息获得的。
终端设备根据上述实施方式确定了与第一小区的该至少一个候选资源集合相关联的至少一个参考信号资源后,终端设备在S410中检测该至少一个参考信号资源的信道质量,并在S420中根据该至少一个参考信号资源的信道质量,确定第三资源。
S420,终端设备根据至少一个参考信号资源的信道质量,确定该至少一个参考信号资源中的第三资源。
其中,该第三资源的信道质量大于或等于第三门限值。终端设备在S410检测该至少一个参考信号资源的信道质量后,在该至少一个参考信号资源中确定信道质量大于或等于第三门限值的第三资源。
作为示例非限定,第三门限值可以是网络设备为终端设备配置的或协议预定义的。
例如,至少一个参考信号资源为宽波束对应的参考信号资源,在宽波束对应的参考信号资源的信道质量大于或等于第三门限值的情况下,与该宽波束关联的候选资源集合中的窄波束信道质量较高的概率较大(窄波束一般比同方向的宽波束能量集中,因此信道质量较高)。因此,终端设备可以检测与该宽波束关联的候选资源集合中的候选资源,以获取能够进行波束失败恢复的资源。但本申请不限于此。
S430,终端设备检测第一候选资源集合中的候选资源的信道质量,确定第一候选资源集合中用于波束失败恢复的第四资源,
其中,该第一候选资源集合为至少一个候选资源集合中与第三资源相关联的集合,该第四资源的信道质量大于或等于第四门限值。
作为示例非限定,第四门限值可以是网络设备为终端设备配置的或协议预定义的。
可选地,第三门限值和第四门限值可以是同一门限值也可以是不同门限值,本申请对此不做限定。
终端设备检测该第一候选资源集合中的候选资源的信道质量,确定信道质量大于或等于第四门限值的第四资源,用于第一小区的波束失败恢复。
S450,终端设备根据第四资源,发送第一小区的波束失败恢复请求信息。
终端设备在S430中确定了该第四资源的信道质量较高,可以用于波束失败恢复。则终端设备根据该第四资源,发送该第一小区的波束失败恢复请求信息。
可选地,第一小区的波束失败请求信息显示或隐式指示该第四资源。
例如,终端设备采用检测到的第四资源的空间相关参数等发送该第一小区的波束失败请求信息。但本申请不限于此。
相应地,网络设备接收来自终端设备的该第一小区的波束失败恢复请求信息。网络设备可以在接收到波束失败请求信息后向终端设备发送波束失败恢复响应信息,以协助终端设备完成第一小区的波束失败恢复。
可选地,在执行图4实施例中的通信方法之前,终端设备可以向网络设备上报终端设备的第二能力信息(或者称为第二能力参数),该能力信息用于指示终端设备是否支持根据PMI确定候选资源集合的能力,或者,该能力信息用于指示终端设备是否支持高频参考信号资源和低频参考信号资源联合进行波束失败恢复的能力。
根据上述方案,终端设备可以首先检测与至少一个候选资源集合相关联的参考信号资源的信道质量,从而确定在一个候选资源集合中选择用于波束失败恢复的资源。能够减小终端设备检测每个候选资源集合中的候选资源带来的时间延时。提高波束失败恢复的效率。
本申请实施例中至少一个参考信号资源可以是低频波束对应的资源,该低频波束与该高频波束具有角度域的相关性,终端设备可以通过检测低频波束对应的参考信号资源的信道质量,缩小检测高频波束的范围,能够减小终端设备检测每个候选资源集合中的候选资源带来的时间延时。提高波束失败恢复的效率。
以上,结合图2至图4详细说明了本申请实施例提供的方法。以下,结合图5至图7详细说明本申请实施例提供的装置。为了实现上述本申请实施例提供的方法中的各功能,各网元可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
图5是本申请实施例提供的通信装置的示意性框图。如图5所示,该通信装置500可以包括处理单元510和收发单元520。
在一种可能的设计中,该通信装置500可对应于上文方法实施例中的终端设备,或者配置于(或用于)终端设备中的芯片,或者其他能够实现终端设备的方法的装置、模块、电路或单元等。
应理解,该通信装置500可对应于根据本申请实施例的方法200、400中的终端设备,该通信装置500可以包括用于执行图2、图4中的方法200、400中终端设备执行的方法的单元。并且,该通信装置500中的各单元和上述其他操作和/或功能分别为了实现图2、图4中的方法200、400的相应流程。
还应理解,该通信装置500为配置于(或用于)终端设备中的芯片时,该通信装置500中的收发单元520可以为芯片的输入/输出接口或电路,该通信装置500中的处理单元510可以为芯片中的处理器。
可选地,通信装置500还可以包括处理单元510,该处理单元510可以用于处理指令或者数据,以实现相应的操作。
可选地,通信装置500还可以包括存储单元530,该存储单元530可以用于存储指令或者数据,处理单元510可以执行该存储单元中存储的指令或者数据,以使该通信装置实现相应的操作。该通信装置500中的该通信装置500中的收发单元520为可对应于图6中示出的终端设备600中的收发器610,存储单元530可对应于图6中示出的终端设备600中的存储器。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置500为终端设备时,该通信装置500中的收发单元520为可通过通信接口(如收发器、收发电路、管脚或输入/输出接口)实现,例如可对应于图6中示出的终端设备600中的收发器610,该通信装置500中的处理单元510可通过至少一个处理器实现,例如可对应于图6中示出的终端设备600中的处理器620,该通信装置500中的处理单元510可通过至少一个逻辑电路实现。
在另一种可能的设计中,该通信装置500可对应于上文方法实施例中的网络设备,例 如,或者配置于(或用于)网络设备中的芯片,或者其他能够实现网络设备的方法的装置、模块、电路或单元等。
应理解,该通信装置500可对应于根据本申请实施例的方法200、400中的网络设备。该通信装置500可以包括用于执行图2、图4中的方法200、400中网络设备执行的方法的单元。并且,该通信装置500中的各单元和上述其他操作和/或功能分别为了实现图2、图4中的方法200、400的相应流程。
还应理解,该通信装置500为配置于(或用于)网络设备中的芯片时,该通信装置500中的收发单元为芯片中的输入/输出接口或电路,该通信装置500中的处理单元510可为芯片中的处理器。
可选地,通信装置500还可以包括处理单元510,该处理单元510可以用于处理指令或者数据,以实现相应的操作。
可选地,通信装置500还可以包括存储单元530,该存储单元可以用于存储指令或者数据,处理单元可以执行该存储单元530中存储的指令或者数据,以使该通信装置实现相应的操作。该通信装置500中的存储单元530为可对应于图7中示出的网络设备700中的存储器。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置500为网络设备时,该通信装置500中的收发单元520为可通过通信接口(如收发器、收发电路、管脚或输入/输出接口)实现,例如可对应于图7中示出的网络设备700中的收发器710,该通信装置500中的处理单元510可通过至少一个处理器实现,例如可对应于图7中示出的网络设备700中的处理器720,该通信装置500中的处理单元510可通过至少一个逻辑电路实现。
图6是本申请实施例提供的终端设备500的结构示意图。该终端设备600可应用于如图1所示的系统中,执行上述方法实施例中终端设备的功能。如图所示,该终端设备600包括处理器620和收发器610。可选地,该终端设备600还包括存储器。其中,处理器620、收发器610和存储器之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器用于存储计算机程序,该处理器620用于执行该存储器中的该计算机程序,以控制该收发器610收发信号。
上述处理器620可以和存储器可以合成一个处理装置,处理器620用于执行存储器中存储的程序代码来实现上述功能。具体实现时,该存储器也可以集成在处理器620中,或者独立于处理器620。该处理器620可以与图5中的处理单元对应。
上述收发器610可以与图5中的收发单元对应。收发器610可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
应理解,图6所示的终端设备600能够实现图2、图4所示方法实施例中涉及终端设备的过程。终端设备600中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述处理器620可以用于执行前面方法实施例中描述的由终端设备内部实现的动作, 而收发器610可以用于执行前面方法实施例中描述的终端设备向网络设备发送或从网络设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选地,上述终端设备600还可以包括电源,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备600还可以包括输入单元、显示单元、音频电路、摄像头和传感器等中的一个或多个,所述音频电路还可以包括扬声器、麦克风等。
图7是本申请实施例提供的网络设备的结构示意图,该网络设备700可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。例如可以为网络设备的相关结构的示意图。如图所示,该网络设备700包括处理器720和收发器710。可选地,该网络设备700还包括存储器。其中,处理器720、收发器710和存储器之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器用于存储计算机程序,该处理器720用于执行该存储器中的该计算机程序,以控制该收发器710收发信号。
应理解,图7所示的网络设备700能够实现图2、图4所示方法实施例中涉及网络设备的各个过程。网络设备700中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
应理解,图7所示出的网络设备700可以是eNB或gNB,可选地,网络设备包含CU、DU和AAU的网络设备等,可选地,CU可以具体分为CU-CP和CU-UP。本申请对于网络设备的具体架构不作限定。
应理解,图7所示出的网络设备700可以是CU节点或CU-CP节点。
本申请实施例还提供了一种处理装置,包括处理器和(通信)接口;所述处理器用于执行上述任一方法实施例中的方法。
应理解,上述处理装置可以是一个或多个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码(或指令),当该计算机程序代码由一个或多个处理器执行时,使得包括该处理器的装置执行图2、图4所示实施例中的方法。
本申请实施例提供的技术方案可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、终端设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质等。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有程序代码(或指令),当该程序代码由一个或多个处理器运行时,使得包括该处理器的装置执行图2、图4所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个网络设备。还系统还可以进一步包括前述的一个或多个终端设备。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
在本申请实施例中,在无逻辑矛盾的前提下,各实施例之间可以相互引用,例如方法 实施例之间的方法和/或术语可以相互引用,例如装置实施例之间的功能和/或术语可以相互引用,例如装置实施例和方法实施例之间的功能和/或术语可以相互引用。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (64)

  1. 一种通信方法,其特征在于,包括:
    接收第一信息,所述第一信息用于指示至少一个第二小区,所述第二小区是与第一小区关联的小区;
    根据所述第一小区的第一资源和所述第二小区的第二资源,检测所述第一小区的波束失败,其中,所述第一资源是用于波束失败检测的资源,所述第二资源是根据所述第一信息确定的。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信息包括以下一项或多项:
    所述第二资源的标识信息、所述第二小区的小区标识信息或向量信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述根据所述第一小区的第一资源和所述第二小区的第二资源,检测所述第一小区的波束失败,包括:
    检测所述第一资源的信道质量和所述第二资源的信道质量;
    如果所述第一资源的信道质量小于或等于第一门限值,且所述第二资源的信道质量小于或等于第二门限值,所述第一小区的波束失败事例指示计数器的计数值加1。
  4. 根据权利要求3所述的方法,其特征在于,所述通信方法由终端设备执行,
    所述检测所述第一资源的信道质量和所述第二资源的信道质量,包括:
    所述终端设备的物理层检测所述第一资源的信道质量和所述第二资源的信道质量;
    如果所述第一资源的信道质量小于或等于第一门限值,且所述第二资源的信道质量小于或等于第二门限值,所述终端设备的物理层向所述终端设备的媒体接入控制层发送第一指示信息;
    以及,
    所述第一小区的波束失败事例指示计数器的计数值加1,包括:
    所述终端设备的媒体接入控制层如果接收到所述第一指示信息,所述第一小区的波束失败事例指示计数器的计数值加1。
  5. 根据权利要求1或2所述的方法,其特征在于,所述根据所述第一小区的第一资源和所述第二小区的第二资源,检测所述第一小区的波束失败,包括:
    检测所述第一资源的信道质量和所述第二资源的信道质量;
    如果所述第一资源的信道质量小于或等于第一门限值,所述第一小区的波束失败事例指示计数器的计数值加1;
    如果所述第二资源的信道质量小于或等于第二门限值,所述第一小区的波束失败事例指示计数器的计数值加1。
  6. 根据权利要求5所述的方法,其特征在于,所述通信方法由终端设备执行,
    所述检测所述第一资源的信道质量和所述第二资源的信道质量,包括:
    所述终端设备的物理层检测所述第一资源的信道质量和所述第二资源的信道质量;
    如果所述第一资源的信道质量小于或等于第一门限值,所述终端设备的物理层向所述终端设备的媒体接入控制层发送第二指示信息;
    如果所述第二资源的信道质量小于或等于第二门限值,所述终端设备的物理层向所述终端设备的媒体接入控制层发送第三指示信息;
    以及,
    所述第一小区的波束失败事例指示计数器的计数值加1,包括:
    所述终端设备的媒体接入控制层如果接收到所述第二指示信息,所述第一小区的波束失败事例指示计数器的计数值加1;
    所述终端设备的媒体接入控制层如果接收到所述第三指示信息,所述第一小区的波束失败事例指示计数器的计数值加1。
  7. 根据权利要求3至6中任一项所述的方法,其特征在于,所述根据所述第一小区的第一资源和所述第二小区的第二资源,检测所述第一小区的波束失败,包括:
    如果所述波束失败事例指示计数器的计数值大于或等于预设的最大计数值,触发所述第一小区的波束失败恢复过程。
  8. 根据权利要求1或2所述的方法,其特征在于,
    所述根据所述第一小区的第一资源和所述第二小区的第二资源,检测所述第一小区的波束失败,包括:
    检测所述第一资源的信道质量和所述第二资源的信道质量;
    如果所述第一资源的信道质量小于或等于第一门限值,且所述第二资源对应的信道质量小于或等于第二门限值,触发所述第一小区的波束失败恢复过程。
  9. 根据权利要求1或2所述的方法,其特征在于,所述根据所述第一小区的第一资源和所述第二小区的第二资源,检测所述第一小区的波束失败,包括:
    检测所述第一资源的信道质量,如果所述第一资源的信道质量小于或等于第一门限值,所述第一小区的波束失败事例指示计数器的计数值加1;
    检测所述第二资源的信道质量,如果所述第二资源的信道质量小于或等于第二门限值,且所述波束失败事例指示计数器的计数值大于或等于第一预设值,触发所述第一小区的波束失败恢复过程。
  10. 根据权利要求9所述的方法,其特征在于,所述通信方法由终端设备执行,
    所述检测所述第一资源的信道质量,包括:
    所述终端设备的物理层检测所述第一资源的信道质量,如果所述第一资源对应的信道质量小于或等于第一门限值,向所述终端设备的媒体接入控制层发送第二指示信息;
    所述第一小区的波束失败事例指示计数器的计数值加1,包括:
    所述终端设备的媒体接入控制层如果接收到所述第二指示信息,所述第一小区的波束失败事例指示计数器的计数值加1;
    所述检测所述第二资源的信道质量,包括:
    所述终端设备的物理层检测所述第二资源的信道质量,如果所述第二资源的信道质量小于或等于第二门限值,向所述终端设备的媒体接入控制层发送第三指示信息;
    所述触发所述第一小区的波束失败恢复过程,包括:
    所述终端设备的媒体接入控制层如果接收到所述第三指示信息,且所述波束失败事例指示计数器的计数值大于或等于第一预设值,触发所述第一小区的波束失败恢复过程。
  11. 一种通信方法,其特征在于,包括:
    确定与第一小区关联的至少一个第二小区;
    发送第一信息,所述第一信息用于指示所述至少一个第二小区,所述第一信息用于终 端设备确定所述第二小区中的第二资源,所述第二资源用于检测所述第一小区的波束失败。
  12. 根据权利要求11所述的方法,其特征在于,所述第一信息包括以下一项或多项:
    所述第二资源的标识信息、所述第二小区的小区标识信息或向量信息。
  13. 根据权利要求11或12所述的方法,其特征在于,所述确定与第一小区关联的至少一个第二小区,包括:
    根据所述第一小区与所述至少一个第二小区的位置关系、波束指向关系、或准共址关系,确定与所述第一小区关联的至少一个所述第二小区。
  14. 一种通信方法,其特征在于,包括:
    检测至少一个参考信号资源的信道质量,根据所述至少一个参考信号资源的信道质量,确定所述至少一个参考信号资源中的第三资源,其中,所述至少一个参考信号资源与第一小区的用于波束失败恢复的至少一个候选资源集合相关联,所述第三资源的信道质量大于或等于第三门限值;
    检测第一候选资源集合中的候选资源的信道质量,确定所述第一候选资源集合中用于波束失败恢复的第四资源,所述第一候选集合是所述至少一个候选资源集合中与所述第三资源相关联的候选集合,所述第四资源的信道质量大于或等于第四门限值;
    根据所述第四资源,发送第一小区的波束失败恢复请求信息。
  15. 根据权利要求14所述的方法,其特征在于,所述至少一个参考信号资源中包括第二小区的资源。
  16. 根据权利要求14或15所述的方法,其特征在于,所述方法还包括:
    接收第二信息,所述第二信息用于指示与所述至少一个候选资源集合关联的所述至少一个参考信号资源。
  17. 根据权利要求16所述的方法,其特征在于,所述第二信息包括与所述至少一个候选资源集合中每个候选资源集合关联的参考信号资源的标识信息。
  18. 根据权利要求16所述的方法,其特征在于,所述第二信息包括与所述至少一个候选资源集合关联的至少一个向量信息,所述至少一个向量是测量所述至少一个参考信号资源获得的。
  19. 根据权利要求14或15所述的方法,其特征在于,所述方法还包括:
    确定与所述至少一个候选资源集合关联的所述至少一个参考信号资源;
    发送第三信息,所述第三信息用于指示与所述至少一个候选资源集合关联的所述至少一个参考信号资源。
  20. 根据权利要求19所述的方法,其特征在于,所述第三信息包括与所述至少一个候选资源集合中每个候选资源集合关联的参考信号资源的标识信息。
  21. 根据权利要求19所述的方法,其特征在于,所述第三信息包括与所述至少一个候选资源集合关联的至少一个向量信息,所述至少一个向量信息是测量所述至少一个参考信号资源的信道信息获得的。
  22. 一种通信方法,其特征在于,所述方法还包括:
    发送第二信息,所述第二信息用于指示与第一小区的至少一个候选资源集合关联的至少一个参考信号资源,其中,所述至少一个候选资源集合为所述第一小区的用于波束失败恢复的候选资源集合;
    接收波束失败请求信息,所述波束失败请求信息用于指示第四资源,所述第四资源为所述至少一个候选集合中的资源。
  23. 根据权利要求22所述的方法,其特征在于,所述至少一个参考信号资源中包括第二小区的资源。
  24. 根据权利要求22或23所述的方法,其特征在于,所述第二信息包括与所述至少一个候选资源集合中每个候选资源集合关联的参考信号资源的标识信息。
  25. 根据权利要求22或23所述的方法,其特征在于,所述第二信息包括与所述至少一个候选资源集合关联的至少一个向量信息,所述至少一个向量用于终端设备确定所述至少一个参考信号资源。
  26. 一种通信方法,其特征在于,所述方法还包括:
    接收第三信息,所述第三信息用于指示与第一小区的至少一个候选资源集合关联的至少一个参考信号资源,其中,所述至少一个候选资源集合为所述第一小区的用于波束失败恢复的候选资源集合;
    接收波束失败请求信息,所述波束失败请求信息用于指示第四资源,所述第四资源为所述至少一个候选集合中的资源。
  27. 根据权利要求26所述的方法,其特征在于,所述至少一个参考信号资源中包括第二小区的资源。
  28. 根据权利要求26或27所述的方法,其特征在于,所述第三信息包括与所述至少一个候选资源集合中每个候选资源集合关联的参考信号资源的标识信息。
  29. 根据权利要求26或27所述的方法,其特征在于,所述第三信息包括与所述至少一个候选资源集合关联的至少一个向量信息,所述至少一个向量是测量所述至少一个参考信号资源获得的。
  30. 一种通信装置,其特征在于,包括:
    收发单元,用于接收第一信息,所述第一信息用于指示至少一个第二小区,所述第二小区是与第一小区关联的小区;
    处理单元,用于根据所述第一小区的第一资源和所述第二小区的第二资源,检测所述第一小区的波束失败,其中,所述第一资源是用于波束失败检测的资源,所述第二资源是根据所述第一信息确定的。
  31. 根据权利要求30所述的装置,其特征在于,所述第一信息包括以下一项或多项:
    所述第二资源的标识信息、所述第二小区的小区标识信息或向量信息。
  32. 根据权利要求30或31所述的装置,其特征在于,所述处理单元具体用于检测所述第一资源的信道质量和所述第二资源的信道质量;
    如果所述第一资源的信道质量小于或等于第一门限值,且所述第二资源的信道质量小于或等于第二门限值,所述处理单元还用于控制所述第一小区的波束失败事例指示计数器的计数值加1。
  33. 根据权利要求32所述的装置,其特征在于,所述处理单元具体用于控制终端设备的物理层检测所述第一资源的信道质量和所述第二资源的信道质量;
    如果所述第一资源的信道质量小于或等于第一门限值,且所述第二资源的信道质量小于或等于第二门限值,所述处理单元还用于控制所述终端设备的物理层向所述终端设备的 媒体接入控制层发送第一指示信息;
    所述终端设备的媒体接入控制层如果接收到所述第一指示信息,所述处理单元还用于控制所述第一小区的波束失败事例指示计数器的计数值加1。
  34. 根据权利要求30或31所述的装置,其特征在于,
    所述处理单元具体用于检测所述第一资源的信道质量和所述第二资源的信道质量;
    如果所述第一资源的信道质量小于或等于第一门限值,所述处理单元还用于控制所述第一小区的波束失败事例指示计数器的计数值加1;
    如果所述第二资源的信道质量小于或等于第二门限值,所述处理单元还用于控制所述第一小区的波束失败事例指示计数器的计数值加1。
  35. 根据权利要求34所述的装置,其特征在于,
    所述处理单元具体用于控制终端设备的物理层检测所述第一资源的信道质量和所述第二资源的信道质量;
    如果所述第一资源的信道质量小于或等于第一门限值,所述处理单元还用于控制所述终端设备的物理层向所述终端设备的媒体接入控制层发送第二指示信息;
    如果所述第二资源的信道质量小于或等于第二门限值,所述处理单元还用于控制所述终端设备的物理层向所述终端设备的媒体接入控制层发送第三指示信息;
    所述终端设备的媒体接入控制层如果接收到所述第二指示信息,所述处理单元还用于控制所述第一小区的波束失败事例指示计数器的计数值加1;
    所述终端设备的媒体接入控制层如果接收到所述第三指示信息,所述处理单元还用于控制所述第一小区的波束失败事例指示计数器的计数值加1。
  36. 根据权利要求32至35中任一项所述的装置,其特征在于,
    如果所述波束失败事例指示计数器的计数值大于或等于预设的最大计数值,所述处理单元还用于触发所述第一小区的波束失败恢复过程。
  37. 根据权利要求30或31所述的装置,其特征在于,
    所述处理单元具体用于检测所述第一资源的信道质量和所述第二资源的信道质量;
    如果所述第一资源的信道质量小于或等于第一门限值,且所述第二资源对应的信道质量小于或等于第二门限值,所述处理单元还用于触发所述第一小区的波束失败恢复过程。
  38. 根据权利要求30或31所述的装置,其特征在于,所述处理单元还用于检测所述第一资源的信道质量,如果所述第一资源的信道质量小于或等于第一门限值,所述处理单元还用于控制所述第一小区的波束失败事例指示计数器的计数值加1;
    所述处理单元还用于检测所述第二资源的信道质量,如果所述第二资源的信道质量小于或等于第二门限值,且所述波束失败事例指示计数器的计数值大于或等于第一预设值,所述处理单元还用于控制触发所述第一小区的波束失败恢复过程。
  39. 根据权利要求38所述的装置,其特征在于,
    所述处理单元还用于控制终端设备的物理层检测所述第一资源的信道质量,如果所述第一资源对应的信道质量小于或等于第一门限值,所述处理单元还用于控制所述终端设备的物理层向所述终端设备的媒体接入控制层发送第二指示信息;
    所述终端设备的媒体接入控制层如果接收到所述第二指示信息,所述处理单元还用于控制所述第一小区的波束失败事例指示计数器的计数值加1;
    所述处理单元还用于控制所述终端设备的物理层检测所述第二资源的信道质量,如果所述第二资源的信道质量小于或等于第二门限值,所述处理单元还用于控制所述终端设备的物理层向所述终端设备的媒体接入控制层发送第三指示信息;
    所述终端设备的媒体接入控制层如果接收到所述第三指示信息,且所述波束失败事例指示计数器的计数值大于或等于第一预设值,所述处理单元还用于控制触发所述第一小区的波束失败恢复过程。
  40. 一种通信装置,其特征在于,包括:
    处理单元,用于确定与第一小区关联的至少一个第二小区;
    收发单元,用于发送第一信息,所述第一信息用于指示所述至少一个第二小区,所述第一信息用于终端设备确定所述第二小区中的第二资源,所述第二资源用于检测所述第一小区的波束失败。
  41. 根据权利要求40所述的装置,其特征在于,所述第一信息包括以下一项或多项:
    所述第二资源的标识信息、所述第二小区的小区标识信息或向量信息。
  42. 根据权利要求40或41所述的装置,其特征在于,所述处理单元具体用于根据所述第一小区与所述至少一个第二小区的位置关系、波束指向关系、或准共址关系,确定与所述第一小区关联的至少一个所述第二小区。
  43. 一种通信装置,其特征在于,包括:
    处理单元,用于检测至少一个参考信号资源的信道质量,根据所述至少一个参考信号资源的信道质量,确定所述至少一个参考信号资源中的第三资源,其中,所述至少一个参考信号资源与第一小区的用于波束失败恢复的至少一个候选资源集合相关联,所述第三资源的信道质量大于或等于第三门限值;
    所述处理单元还用于检测第一候选资源集合中的候选资源的信道质量,确定所述第一候选资源集合中用于波束失败恢复的第四资源,所述第一候选集合是所述至少一个候选资源集合中与所述第三资源相关联的候选集合,所述第四资源的信道质量大于或等于第四门限值;
    收发单元用于根据所述第四资源,发送第一小区的波束失败恢复请求信息。
  44. 根据权利要求43所述的装置,其特征在于,所述至少一个参考信号资源中包括第二小区的资源。
  45. 根据权利要求43或44所述的装置,其特征在于,所述收发单元还用于接收第二信息,所述第二信息用于指示与所述至少一个候选资源集合关联的所述至少一个参考信号资源。
  46. 根据权利要求45所述的装置,其特征在于,所述第二信息包括与所述至少一个候选资源集合中每个候选资源集合关联的参考信号资源的标识信息。
  47. 根据权利要求46所述的装置,其特征在于,所述第二信息包括与所述至少一个候选资源集合关联的至少一个向量信息,所述至少一个向量是测量所述至少一个参考信号资源获得的。
  48. 根据权利要求43或44所述的装置,其特征在于,所述处理单元还用于确定与所述至少一个候选资源集合关联的所述至少一个参考信号资源;
    所述收发单元还用于发送第三信息,所述第三信息用于指示与所述至少一个候选资源 集合关联的所述至少一个参考信号资源。
  49. 根据权利要求48所述的装置,其特征在于,所述第三信息包括与所述至少一个候选资源集合中每个候选资源集合关联的参考信号资源的标识信息。
  50. 根据权利要求48所述的装置,其特征在于,所述第三信息包括与所述至少一个候选资源集合关联的至少一个向量信息,所述至少一个向量信息是测量所述至少一个参考信号资源的信道信息获得的。
  51. 一种通信装置,其特征在于,包括:
    处理单元,用于确定与第一小区的至少一个候选资源集合关联的至少一个参考信号资源,其中,所述至少一个候选资源集合为所述第一小区的用于波束失败恢复的候选资源集合;
    收发单元,用于发送第二信息,所述第二信息用于指示所述至少一个参考信号资源;
    所述收发单元还用于接收波束失败请求信息,所述波束失败请求信息用于指示第四资源,所述第四资源为所述至少一个候选集合中的资源。
  52. 根据权利要求51所述的装置,其特征在于,所述至少一个参考信号资源中包括第二小区的资源。
  53. 根据权利要求51或52所述的装置,其特征在于,所述第二信息包括与所述至少一个候选资源集合中每个候选资源集合关联的参考信号资源的标识信息。
  54. 根据权利要求51或52所述的装置,其特征在于,所述第二信息包括与所述至少一个候选资源集合关联的至少一个向量信息,所述至少一个向量用于终端设备确定所述至少一个参考信号资源。
  55. 一种通信装置,其特征在于,
    收发单元,用于接收第三信息,所述第三信息用于指示与第一小区的至少一个候选资源集合关联的至少一个参考信号资源,其中,所述至少一个候选资源集合为所述第一小区的用于波束失败恢复的候选资源集合;
    处理单元,用于确定所述至少一个参考信号资源;
    所述收发单元还用于接收波束失败请求信息,所述波束失败请求信息用于指示第四资源,所述第四资源为所述至少一个候选集合中的资源。
  56. 根据权利要求55所述的装置,其特征在于,所述至少一个参考信号资源中包括第二小区的资源。
  57. 根据权利要求55或56所述的装置,其特征在于,所述第三信息包括与所述至少一个候选资源集合中每个候选资源集合关联的参考信号资源的标识信息。
  58. 根据权利要求55或56所述的装置,其特征在于,所述第三信息包括与所述至少一个候选资源集合关联的至少一个向量信息,所述至少一个向量是测量所述至少一个参考信号资源获得的。
  59. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行权利要求1至29中任一项所述的方法。
  60. 一种通信装置,其特征在于,包括处理器和通信接口,所述处理器利用所述通信接口,执行权利要求1至29中任一项所述的方法。
  61. 一种计算机可读存储介质,其特征在于,存储有指令,当所述指令在计算机上运 行时,使得所述计算机执行如权利要求1至29中任一项所述的方法。
  62. 一种计算机程序产品,其特征在于,包括指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1至29中任一项所述的方法。
  63. 一种通信系统,其特征在于,所述通信系统包括如权利要求30至39中任一项所述的通信装置和如权利要求40至42中任一项所述的通信装置。
  64. 一种通信系统,其特征在于,所述通信系统包括如权利要求43至50中任一项所述的通信装置,以及所述通信系统还包括如权利要求51至54中任一项所述的通信装置或如权利要求55至58中任一项所述的通信装置。
PCT/CN2020/141825 2020-12-30 2020-12-30 通信方法和通信装置 WO2022141303A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/141825 WO2022141303A1 (zh) 2020-12-30 2020-12-30 通信方法和通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/141825 WO2022141303A1 (zh) 2020-12-30 2020-12-30 通信方法和通信装置

Publications (1)

Publication Number Publication Date
WO2022141303A1 true WO2022141303A1 (zh) 2022-07-07

Family

ID=82260082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141825 WO2022141303A1 (zh) 2020-12-30 2020-12-30 通信方法和通信装置

Country Status (1)

Country Link
WO (1) WO2022141303A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110972171A (zh) * 2018-09-28 2020-04-07 维沃移动通信有限公司 波束失败恢复请求传输方法、终端设备及网络设备
US20200245176A1 (en) * 2019-01-28 2020-07-30 Qualcomm Incorporated Beam reporting in a beam failure recovery request or a beam failure recovery procedure
CN111543024A (zh) * 2020-04-09 2020-08-14 北京小米移动软件有限公司 波束失败的检测方法、装置、设备及可读存储介质
CN111756458A (zh) * 2019-03-26 2020-10-09 华为技术有限公司 波束失败恢复方法和通信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110972171A (zh) * 2018-09-28 2020-04-07 维沃移动通信有限公司 波束失败恢复请求传输方法、终端设备及网络设备
US20200245176A1 (en) * 2019-01-28 2020-07-30 Qualcomm Incorporated Beam reporting in a beam failure recovery request or a beam failure recovery procedure
CN111756458A (zh) * 2019-03-26 2020-10-09 华为技术有限公司 波束失败恢复方法和通信装置
CN111543024A (zh) * 2020-04-09 2020-08-14 北京小米移动软件有限公司 波束失败的检测方法、装置、设备及可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUJITSU: "Discussion on beam failure recovery procedure", 3GPP DRAFT; R1-1707255 DISCUSSION ON BEAM FAILURE RECOVERY PROCEDURE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Hangzhou; 20170515 - 20170519, 14 May 2017 (2017-05-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051272468 *

Similar Documents

Publication Publication Date Title
US10893566B2 (en) Method for receiving beam recovery request and network device
US20220167191A1 (en) System and Method for Periodic Beam Failure Measurements
TWI732416B (zh) 波束失敗恢復方法、終端、基地台及電腦可讀存儲介質
US20210219155A1 (en) Interference Measurement Method and Apparatus
US20220046735A1 (en) Secondary cell activation method and apparatus
US11838784B2 (en) Methods for panel activation/deactivation for uplink MIMO transmission
WO2019137346A1 (zh) 监控信道质量的方法和终端设备
WO2020192566A1 (zh) 波束失败恢复方法和通信装置
US10368325B2 (en) System and method for beam adaptation in a beam-based communications system
US20220095125A1 (en) Secondary Cell Activation Method and Apparatus
US20230354117A1 (en) Cell handover method and apparatus
JP2020504549A (ja) リソース指示方法、装置およびシステム
WO2021052473A1 (zh) 通信方法和通信装置
US11122631B2 (en) Link recovery in wireless communications
US20200396664A1 (en) Method of performing beam failure recovery procedure and user equipment
WO2023050472A1 (zh) 用于寻呼的方法和装置
WO2019154372A1 (zh) 一种信息传输方法、相关设备及系统
US20220167339A1 (en) Beam failure recovery method and apparatus
WO2020151554A1 (zh) 一种信息发送、检测方法及装置
US20220240116A1 (en) Link Failure Detection Method and Apparatus
WO2022141303A1 (zh) 通信方法和通信装置
US20230353219A1 (en) Beam Selection Method and Communication Apparatus
WO2021013138A1 (zh) 无线网络通信方法和通信装置
WO2020192369A1 (zh) 一种波束失败的处理方法及装置
WO2023184385A1 (en) Indication method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20967642

Country of ref document: EP

Kind code of ref document: A1