WO2023045759A1 - 定时提前方法、装置及存储介质 - Google Patents

定时提前方法、装置及存储介质 Download PDF

Info

Publication number
WO2023045759A1
WO2023045759A1 PCT/CN2022/117544 CN2022117544W WO2023045759A1 WO 2023045759 A1 WO2023045759 A1 WO 2023045759A1 CN 2022117544 W CN2022117544 W CN 2022117544W WO 2023045759 A1 WO2023045759 A1 WO 2023045759A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink signal
timing
adjustment value
terminal
adjustment information
Prior art date
Application number
PCT/CN2022/117544
Other languages
English (en)
French (fr)
Inventor
汤文
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2023045759A1 publication Critical patent/WO2023045759A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present disclosure relates to the technical field of communications, and in particular to a timing advance method, device and storage medium.
  • time synchronization technology is an important support and guarantee for the normal operation of the system.
  • time synchronization of satellite communication systems mainly focus on initial time synchronization under the premise of accurate ephemeris information and low-dynamic terminals, and have not yet involved time synchronization under the premise of inaccurate ephemeris information or high-dynamic terminals.
  • Embodiments of the present disclosure provide a timing advance method, device, and storage medium to solve the technical problem of inaccurate ephemeris information or no synchronization scheme in the case of high dynamic terminals in the prior art, and improve the accuracy of inaccurate or high ephemeris information. Synchronization accuracy in case of dynamic termination.
  • an embodiment of the present disclosure provides a timing advance method, including:
  • the timing is advanced according to the TA adjustment value.
  • determining the TA adjustment value based on the rate of change of the TA adjustment value includes:
  • the rate of change of the TA adjustment value is less than or equal to the first threshold value, determine the TA adjustment value according to the second timing adjustment information, or, according to the second timing adjustment information, receive the The TA adjustment value is determined based on the time of the second timing adjustment information and the rate of change of the last determined TA adjustment value.
  • the calculation formula for determining the TA adjustment value is as follows:
  • T 2 K(t 2 -t 1 )+T 1
  • T2 is the TA adjustment value at time t2
  • t2 is the time when T2 is determined
  • K is the rate of change of the TA adjustment value
  • t1 is the time when the second timing adjustment information is received
  • T1 is the time when the second timing adjustment information is received.
  • the first indication message is used to instruct the terminal to send an uplink signal;
  • the uplink signal includes the first uplink signal and the second uplink signal.
  • the second indication message is used to instruct the terminal to send the uplink signal according to a target period.
  • the first uplink signal is a PRACH signal
  • the second uplink signal is a PRACH signal or an uplink reference signal
  • the uplink signal is a PRACH signal or an uplink reference signal.
  • an embodiment of the present disclosure provides a timing advance method, including:
  • a first indication message is sent to the terminal; the first indication message is used to instruct the terminal to send The third uplink signal.
  • the second indication message is used to instruct the terminal to send an uplink signal according to a target period; the uplink signal includes the first uplink signal and the second uplink signal.
  • the first uplink signal is a PRACH signal
  • the second uplink signal is a PRACH signal or an uplink reference signal
  • the uplink signal is a PRACH signal or an uplink reference signal.
  • an embodiment of the present disclosure provides a terminal, including a memory, a transceiver, and a processor;
  • the memory is used to store computer programs; the transceiver is used to send and receive data under the control of the processor; the processor is used to read the computer programs in the memory and perform the following operations:
  • the timing is advanced according to the TA adjustment value.
  • determining the TA adjustment value based on the rate of change of the TA adjustment value includes:
  • the rate of change of the TA adjustment value is less than or equal to the first threshold value, determine the TA adjustment value according to the second timing adjustment information, or, according to the second timing adjustment information, receive the The TA adjustment value is determined based on the time of the second timing adjustment information and the rate of change of the last determined TA adjustment value.
  • the calculation formula for determining the TA adjustment value is as follows:
  • T 2 K(t 2 -t 1 )+T 1
  • T2 is the TA adjustment value at time t2
  • t2 is the time when T2 is determined
  • K is the rate of change of the TA adjustment value
  • t1 is the time when the second timing adjustment information is received
  • T1 is the time when the second timing adjustment information is received.
  • the first indication message is used to instruct the terminal to send an uplink signal;
  • the uplink signal includes the first uplink signal and the second uplink signal.
  • the second indication message is used to instruct the terminal to send the uplink signal according to a target period.
  • the first uplink signal is a PRACH signal
  • the second uplink signal is a PRACH signal or an uplink reference signal
  • the uplink signal is a PRACH signal or an uplink reference signal.
  • an embodiment of the present disclosure provides a network side device, including a memory, a transceiver, and a processor;
  • the memory is used to store computer programs; the transceiver is used to send and receive data under the control of the processor; the processor is used to read the computer programs in the memory and perform the following operations:
  • a first indication message is sent to the terminal; the first indication message is used to instruct the terminal to send The third uplink signal.
  • the second indication message is used to instruct the terminal to send an uplink signal according to a target period; the uplink signal includes the first uplink signal and the second uplink signal.
  • the first uplink signal is a PRACH signal
  • the second uplink signal is a PRACH signal or an uplink reference signal
  • the uplink signal is a PRACH signal or an uplink reference signal.
  • an embodiment of the present disclosure provides a timing advance device, including:
  • a first sending module configured to send a first uplink signal to a network side device
  • a first receiving module configured to receive first timing adjustment information sent by the network side device
  • a second sending module configured to send a second uplink signal to the network side device
  • the second receiving module is configured to receive the second timing adjustment information sent by the network side device
  • a first determining module configured to determine a rate of change of a timing advance TA adjustment value based on the first timing adjustment information and the second timing adjustment information;
  • a second determination module configured to determine a TA adjustment value based on a rate of change of the TA adjustment value
  • a timing advance module configured to advance timing according to the TA adjustment value.
  • the second determination module includes a judgment submodule and a first determination submodule, wherein:
  • the judging submodule is used to judge whether the rate of change of the TA adjustment value is greater than a first threshold
  • the first determining submodule is configured to, when the rate of change of the TA adjustment value is greater than the first threshold value, according to the second timing adjustment information, the time when the second timing adjustment information is received and the rate of change of the TA adjustment value determine the TA adjustment value;
  • the rate of change of the TA adjustment value is less than or equal to the first threshold value, determine the TA adjustment value according to the second timing adjustment information, or, according to the second timing adjustment information, receive the The TA adjustment value is determined based on the time of the second timing adjustment information and the rate of change of the last determined TA adjustment value.
  • the calculation formula for determining the TA adjustment value is as follows:
  • T 2 K(t 2 -t 1 )+T 1
  • T2 is the TA adjustment value at time t2
  • t2 is the time when T2 is determined
  • K is the rate of change of the TA adjustment value
  • t1 is the time when the second timing adjustment information is received
  • T1 is the time when the second timing adjustment information is received.
  • a fifth receiving module is also included.
  • the fifth receiving module is configured to receive a first indication message sent by the network side device; the first indication message is used to instruct the terminal to send an uplink signal; the uplink signal includes the first uplink signal and the second uplink signal 2. Uplink signal.
  • a sixth receiving module is also included.
  • the sixth receiving module is configured to receive a second indication message sent by the network side device; the second indication message is used to instruct the terminal to send the uplink signal according to a target period.
  • the first uplink signal is a PRACH signal
  • the second uplink signal is a PRACH signal or an uplink reference signal
  • the uplink signal is a PRACH signal or an uplink reference signal.
  • a timing advance device including:
  • a third receiving module configured to receive the first uplink signal sent by the terminal
  • a third determining module configured to determine first timing adjustment information according to the first uplink signal, and send the first timing adjustment information to the terminal;
  • a fourth receiving module configured to receive a second uplink signal sent by the terminal
  • a fourth determining module configured to determine second timing adjustment information according to the second uplink signal, and send the second timing adjustment information to the terminal.
  • a third sending module is also included.
  • the third sending module is configured to send a first indication message to the terminal when the TA adjustment value indicated by the second timing adjustment information is greater than a second threshold; the first indication message is used to indicate The terminal sends the third uplink signal.
  • a fourth sending module is also included.
  • the fourth sending module is configured to send a second indication message to the terminal; the second indication message is used to instruct the terminal to send an uplink signal according to a target period; the uplink signal includes the first uplink signal and the second uplink signal.
  • the first uplink signal is a PRACH signal
  • the second uplink signal is a PRACH signal or an uplink reference signal
  • the uplink signal is a PRACH signal or an uplink reference signal.
  • a fifth sending module is also included.
  • the fifth sending module is configured to send a third indication message to the terminal, where the third indication message is used to instruct the terminal to update the target period.
  • the embodiments of the present disclosure further provide a processor-readable storage medium, the processor-readable storage medium stores a computer program, and the computer program is used to enable the processor to execute the above-mentioned first aspect. Or the steps of the timing advance method described in the second aspect.
  • the timing advance method, device, and storage medium provided by the embodiments of the present disclosure determine the change rate of the TA adjustment value based on two uplink signals, and determine the subsequent uplink TA adjustment value based on the change rate of the TA adjustment value, which improves the inaccuracy of the ephemeris information Or synchronization accuracy in highly dynamic terminal cases.
  • FIG. 1 is one of the schematic flow charts of the timing advance method provided by an embodiment of the present disclosure
  • Fig. 2 is the second schematic flow diagram of the timing advance method provided by the embodiment of the present disclosure.
  • Fig. 3 is one of the schematic diagrams of the initial access timing synchronization process provided by the embodiment of the present disclosure
  • FIG. 4 is the second schematic diagram of the initial access timing synchronization process provided by the embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a terminal provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a network side device provided by an embodiment of the present disclosure.
  • FIG. 7 is one of the structural schematic diagrams of a timing advance device provided by an embodiment of the present disclosure.
  • Fig. 8 is a second structural schematic diagram of a timing advance device provided by an embodiment of the present disclosure.
  • Fig. 1 is one of the flow diagrams of the timing advance method provided by the embodiment of the present disclosure.
  • the embodiment of the present disclosure provides a timing advance method, and its execution body may be a terminal/user equipment (User Equipment, UE) , for example, cell phone, etc.
  • the method includes:
  • Step 101 Send a first uplink signal to a network side device.
  • the UE sends the first uplink signal to the network side device.
  • the network side device receives the first uplink signal sent by the UE.
  • the first uplink signal is a PRACH signal.
  • the first uplink signal is a PRACH signal or an uplink reference signal.
  • the uplink reference signal may be a sounding reference signal (Sounding Reference Signal, SRS), a demodulation reference signal (Demodulation Reference Signal, DMRS), and a phase tracking reference signal PTRS (PhaseTracking Reference Signal, PTRS).
  • SRS Sounding Reference Signal
  • DMRS demodulation Reference Signal
  • PTRS Phase Trackracking Reference Signal
  • Step 102 receiving first timing adjustment information sent by the network side device.
  • the network side device determines first timing adjustment information according to the first uplink signal, and sends the first timing adjustment information to the UE.
  • the UE receives the first timing adjustment information sent by the network side device.
  • the first timing adjustment information may include a timing advance (Timing Advance, TA) adjustment value.
  • Timing Advance Timing Advance
  • the first timing adjustment information may be carried in a random access response (Random Access Response, RAR).
  • RAR Random Access Response
  • the first timing adjustment information may be carried by a Media Access Control Control Element (MAC CE).
  • MAC CE Media Access Control Control Element
  • the network-side device correlates the received PRACH preamble sequence with the local root sequence, detects the position of the correlation peak, and then detects the residual time offset, and the network-side device converts the residual time offset into timing
  • TAC Timing Advance Command
  • the network-side device correlates the received uplink reference signal with the base sequence of the local reference signal to detect the position of the correlation peak to detect the residual time offset, and the network-side device converts the residual time offset into TAC
  • the corresponding number of bits is sent to the UE by MAC CE.
  • Step 103 sending a second uplink signal to the network side device.
  • the UE after receiving the first timing adjustment information, the UE performs timing advance according to the first timing adjustment information, and sends the second uplink signal to the network side device.
  • the second uplink signal is a PRACH signal or an uplink reference signal.
  • the second uplink signal is a PRACH signal or an uplink reference signal.
  • Step 104 receiving second timing adjustment information sent by the network side device.
  • the network side device determines the second timing adjustment information according to the second uplink signal, and sends the second timing adjustment information to the UE.
  • the UE receives the second timing adjustment information sent by the network side device.
  • the second timing adjustment information may include a timing advance (Timing Advance, TA) adjustment value.
  • Timing Advance Timing Advance
  • the second timing adjustment information may be carried by RAR.
  • the second timing adjustment information can be carried by MAC CE.
  • the network-side device correlates the received PRACH preamble sequence with the local root sequence, detects the position of the correlation peak, and then detects the residual time offset, and the network-side device converts the residual time offset into TAC
  • the corresponding number of bits is delivered to the UE along with the RAR.
  • the network-side device correlates the received uplink reference signal with the base sequence of the local reference signal to detect the position of the correlation peak to detect the residual time offset, and the network-side device converts the residual time offset into TAC
  • the corresponding number of bits is sent to the UE by MAC CE.
  • Step 105 Determine the rate of change of the TA adjustment value based on the first timing adjustment information and the second timing adjustment information.
  • determining the TA adjustment value based on a rate of change of the TA adjustment value includes:
  • Step 1051 Determine whether the rate of change of the TA adjustment value is greater than a first threshold.
  • the UE compares the rate of change of the TA adjustment value with the first threshold, and determines the magnitude of the rate of change of the TA adjustment value and the first threshold.
  • the specific value of the first threshold can be configured according to actual conditions, and no example is given here.
  • Step 1052 if the rate of change of the TA adjustment value is greater than the first threshold value, determine the TA adjustment value according to the second timing adjustment information, the time when the second timing adjustment information is received, and the rate of change of the TA adjustment value;
  • the rate of change of the TA adjustment value is less than or equal to the first threshold value, determine the TA adjustment value according to the second timing adjustment information, or, according to the second timing adjustment information, receive the The TA adjustment value is determined based on the time of the second timing adjustment information and the rate of change of the last determined TA adjustment value.
  • the UE when the rate of change of the TA adjustment value is less than or equal to the first threshold value, the UE still adopts the timing advance adjustment according to the TAC, that is, the timing advance adjustment is only performed when the TAC is received, and the timing advance adjustment is performed when the TAC is not received.
  • Time determine the TA adjustment value according to the second timing adjustment information, the time when the second timing adjustment information is received, and the change rate of the last determined TA adjustment value, and adjust the timing advance at any time according to the TA adjustment value.
  • the rate of change of the TA adjustment value is greater than the first threshold value, determine the TA adjustment value according to the second timing adjustment information, the time when the second timing adjustment information is received, and the rate of change of the TA adjustment value, and determine the TA adjustment value according to the TA adjustment value Adjust the timing advance at any moment.
  • the TA adjustment value when the rate of change of the TA adjustment value is greater than the first threshold value, the TA adjustment value is determined based on the rate of change of the TA adjustment value, and the timing at any time is advanced according to the TA adjustment value, thereby improving the timing. Advance efficiency.
  • Step 106 Determine the TA adjustment value based on the rate of change of the TA adjustment value.
  • the calculation formula for determining the TA adjustment value is as follows:
  • T 2 K(t 2 -t 1 )+T 1 + ⁇
  • T 2 is the TA adjustment value at time t 2
  • t 2 is the time when T 2 is determined
  • K is the change rate of TA adjustment value
  • t 1 is the time when the second timing adjustment information is received
  • T 1 is the second timing
  • is a preset correction value
  • the value of ⁇ may be zero.
  • the TA adjustment value at any time can be determined according to the rate of change of the TA adjustment value, the TA adjustment value in the last received TAC, and the time when the last TAC was received, thereby improving the accuracy of timing advance sex.
  • Step 107 advance the timing according to the TA adjustment value.
  • the UE after determining the TA adjustment value at any time, the UE performs timing advance according to the TA adjustment value, so as to ensure real-time synchronization.
  • the timing advance method determines the change rate of the TA adjustment value based on the two uplink signals, and determines the subsequent uplink TA adjustment value based on the change rate of the TA adjustment value, which can eliminate the problem caused by inaccurate ephemeris information or highly dynamic terminals.
  • the resulting defect that the TA adjustment value is inconsistent with the actual value improves the synchronization accuracy in the case of inaccurate ephemeris information or high dynamic terminal conditions.
  • the first indication message is used to instruct the terminal to send an uplink signal;
  • the uplink signal includes a first uplink signal and a second uplink signal.
  • the UE sends an uplink signal in an aperiodic manner.
  • the network side device determines the TA adjustment value according to the last uplink signal sent by the UE. If the TA adjustment value is greater than the second threshold value, the network side device sends a first indication message to the UE. An indication message is used to instruct the UE to send an uplink signal.
  • the specific value of the second threshold can be configured according to actual conditions, and no example is given here.
  • the UE receives the first indication message sent by the network side device, and sends an uplink signal, where the uplink signal may be the first uplink signal or the second uplink signal.
  • the first indication message may be triggered by a radio resource control (Radio Resource Control, RRC), MAC CE, or downlink control information (Downlink Control Information, DCI) command.
  • RRC Radio Resource Control
  • MAC CE MAC CE
  • DCI Downlink Control Information
  • the first indication message sent by the network side device instructs the terminal to send an uplink signal in an aperiodic manner, which can be corrected in time when the synchronization error is large, further improving the accuracy of inaccurate ephemeris information or Synchronization accuracy in highly dynamic terminal situations.
  • the second indication message is used to instruct the terminal to send the uplink signal according to the target period.
  • the UE sends the uplink signal in a combined aperiodic and periodic manner.
  • the network side device sends a second indication message to the UE, where the second indication message is used to instruct the UE to send the uplink signal according to the target period.
  • the target period may be associated with an update period of ephemeris information.
  • the uplink signal sending period may be configured as 1/20, 1/15, 1/10, 1/5, 1/2, 1, etc. of the ephemeris information update period.
  • the UE receives the second indication message sent by the network side device, and periodically sends the uplink signal according to the target period.
  • the uplink signal may be a first uplink signal and a second uplink signal.
  • the network side device determines the TA adjustment value according to the last uplink signal sent by the UE, and when the TA adjustment value is greater than the second threshold value, the network side device sends a first indication message to the UE, and the first indication message is used to indicate The UE sends an uplink signal.
  • the UE receives the first indication message sent by the network side device, and sends an uplink signal.
  • the UE sends the first uplink signal and the second uplink signal respectively according to the target period
  • the network side device receives the second uplink signal (the uplink signal sent by the UE last time), and determines the TA adjustment value according to the second uplink signal.
  • the network side device sends a first indication message and first timing adjustment information to the UE, where the first indication message is used to instruct the UE to send the third uplink signal.
  • the UE receives the first indication message sent by the network side device, and sends a third uplink signal.
  • the network side device receives the third uplink signal, determines the TA adjustment value according to the third uplink signal, and sends the second timing adjustment information to the UE.
  • the UE receives the first timing adjustment information and the second timing adjustment information sent by the network side device, and updates the rate of change of the TA adjustment value.
  • the uplink signal is sent in a combination of aperiodic and periodic, which can be corrected in time when the synchronization error is large, and further improves the synchronization accuracy in the case of inaccurate ephemeris information or high dynamic terminals .
  • FIG. 2 is the second schematic flow diagram of the timing advance method provided by the embodiment of the present disclosure.
  • the embodiment of the present disclosure provides a timing advance method
  • the execution subject may be a network side device, such as a base station.
  • the method includes:
  • Step 201 Receive a first uplink signal sent by a terminal.
  • the UE sends the first uplink signal to the network side device.
  • the network side device receives the first uplink signal sent by the UE.
  • the first uplink signal is a PRACH signal.
  • the first uplink signal is a PRACH signal or an uplink reference signal.
  • the uplink reference signal can be SRS, DMRS, PTRS.
  • Step 202 Determine first timing adjustment information according to the first uplink signal, and send the first timing adjustment information to the terminal.
  • the network side device determines first timing adjustment information according to the first uplink signal, and sends the first timing adjustment information to the UE.
  • the UE receives the first timing adjustment information sent by the network side device.
  • the first timing adjustment information may include a TA adjustment value.
  • the first timing adjustment information may be carried by RAR.
  • the first timing adjustment information can be carried by MAC CE.
  • the network-side device correlates the received PRACH preamble sequence with the local root sequence, detects the position of the correlation peak, and then detects the residual time offset, and the network-side device converts the residual time offset into TAC
  • the corresponding number of bits is delivered to the UE along with the RAR.
  • the network-side device correlates the received uplink reference signal with the base sequence of the local reference signal to detect the position of the correlation peak to detect the residual time offset, and the network-side device converts the residual time offset into TAC
  • the corresponding number of bits is sent to the UE by MAC CE.
  • Step 203 receiving a second uplink signal sent by the terminal.
  • the UE after receiving the first timing adjustment information, the UE performs timing advance according to the first timing adjustment information, and sends the second uplink signal to the network side device.
  • the second uplink signal is a PRACH signal or an uplink reference signal.
  • the second uplink signal is a PRACH signal or an uplink reference signal.
  • Step 204 Determine second timing adjustment information according to the second uplink signal, and send the second timing adjustment information to the terminal.
  • the network side device determines the second timing adjustment information according to the second uplink signal, and sends the second timing adjustment information to the UE.
  • the UE receives the second timing adjustment information sent by the network side device.
  • the second timing adjustment information may include a TA adjustment value.
  • the second timing adjustment information may be carried by RAR.
  • the second timing adjustment information can be carried by MAC CE.
  • the network-side device correlates the received PRACH preamble sequence with the local root sequence, detects the position of the correlation peak, and then detects the residual time offset, and the network-side device converts the residual time offset into TAC
  • the corresponding number of bits is delivered to the UE along with the RAR.
  • the network-side device correlates the received uplink reference signal with the base sequence of the local reference signal to detect the position of the correlation peak to detect the residual time offset, and the network-side device converts the residual time offset into TAC
  • the corresponding number of bits is sent to the UE by MAC CE.
  • the UE determines the rate of change of the TA adjustment value based on the first timing adjustment information and the second timing adjustment information, determines the TA adjustment value based on the rate of change of the TA adjustment value, and finally advances timing according to the TA adjustment value to achieve uplink synchronization.
  • the timing advance method determines the change rate of the TA adjustment value based on the two uplink signals, and determines the subsequent uplink TA adjustment value based on the change rate of the TA adjustment value, which can eliminate the problem caused by inaccurate ephemeris information or highly dynamic terminals.
  • the resulting defect that the TA adjustment value is inconsistent with the actual value improves the synchronization accuracy in the case of inaccurate ephemeris information or high dynamic terminal conditions.
  • a first indication message is sent to the terminal; the first indication message is used to instruct the terminal to send the third uplink signal.
  • the UE sends an uplink signal in an aperiodic manner.
  • the network side device determines the TA adjustment value according to the last uplink signal sent by the UE. If the TA adjustment value is greater than the second threshold value, the network side device sends a first indication message to the UE. An indication message is used to instruct the UE to send an uplink signal.
  • the specific value of the second threshold can be configured according to actual conditions, and no example is given here.
  • the UE receives the first indication message sent by the network side device, and sends an uplink signal.
  • the first indication message can be triggered by RRC, MAC CE, and DCI commands.
  • the network side device determines the TA adjustment value according to the second uplink signal (the last uplink signal sent by the UE), and when the TA adjustment value is greater than the second threshold value, the network side device sends the first indication message to the UE, The first indication message is used to instruct the UE to send the third uplink signal.
  • the UE receives the first indication message sent by the network side device, and sends a third uplink signal.
  • the uplink signal is sent in a non-periodic manner, which can be corrected in time when the synchronization error is large, and further improves the synchronization accuracy in the case of inaccurate ephemeris information or high dynamic terminals.
  • the second indication message is used to instruct the terminal to send an uplink signal according to a target period;
  • the uplink signal includes a first uplink signal and a second uplink signal.
  • the UE sends the uplink signal in a combined aperiodic and periodic manner.
  • the network side device sends a second indication message to the UE, where the second indication message is used to instruct the UE to send the uplink signal according to the target period.
  • the target period may be associated with an update period of ephemeris information.
  • the uplink signal sending period may be configured as 1/20, 1/15, 1/10, 1/5, 1/2, 1, etc. of the ephemeris information update period.
  • the UE receives the second indication message sent by the network side device, and periodically sends the uplink signal according to the target period.
  • the uplink signal may be a first uplink signal and a second uplink signal.
  • the network side device determines the TA adjustment value according to the last uplink signal sent by the UE, and when the TA adjustment value is greater than the second threshold value, the network side device sends a first indication message to the UE, and the first indication message is used to indicate The UE sends an uplink signal.
  • the UE receives the first indication message sent by the network side device, and sends an uplink signal.
  • the UE sends the first uplink signal and the second uplink signal respectively according to the target period
  • the network side device receives the second uplink signal (the uplink signal sent by the UE last time), and determines the TA adjustment value according to the second uplink signal.
  • the network side device sends a first indication message to the UE, where the first indication message is used to instruct the UE to send the third uplink signal.
  • the UE receives the first indication message sent by the network side device, and sends a third uplink signal.
  • the uplink signal is sent in a combination of aperiodic and periodic, which can be corrected in time when the synchronization error is large, and further improves the synchronization accuracy in the case of inaccurate ephemeris information or high dynamic terminals .
  • the UE sends uplink signals according to a preset period
  • the network side device can dynamically adjust the satellite channel according to the received uplink signal's Channel Quality Indicator (CQI), TA adjustment value and other information.
  • CQI Channel Quality Indicator
  • the network side device sends a third indication message to the UE, where the third indication message is used to instruct the UE to update the target period.
  • the network side device sends a third indication message to the UE, where the third indication message is used to instruct the UE to shorten the period for sending uplink signals.
  • resource waste is avoided by dynamically adjusting the period for sending uplink signals.
  • FIG 3 is a schematic diagram of the initial access timing synchronization process provided by the embodiment of the present disclosure.
  • the initial access process uses closed-loop timing synchronization
  • the initial access UE uses inaccurate ephemeris information to perform T a and T b Timing pre-compensation
  • the network side (device) correlates the received PRACH preamble sequence with the local root sequence, detects the position of the correlation peak, and then detects the residual time offset
  • the network side converts the residual time offset into the number of bits corresponding to TAC
  • the UE uses the received TAC to perform closed-loop timing offset correction.
  • the correction value delivered by the TAC can be approximately equal to T e .
  • T a is the transmission delay caused by user link transmission
  • T b is the time offset corresponding to the change of user link caused by different sending and receiving times
  • T e is the inaccurate ephemeris information or high dynamic terminal (the terminal is estimated based on GNSS The deviation delay of the estimated delay caused by inaccurate position or velocity information).
  • the ephemeris information update period is configured on the network side.
  • the network side carries the satellite's public validation public key (Public Validation Token, PVT) parameters or ephemeris parameters and initial access parameters in the downlink master system information block (Master Information Block, MIB) or system information block (System Information Block, SIB).
  • PVT Public Validation Token
  • MIB Master Information Block
  • SIB System Information Block
  • RACH Occasion, RO random access channel opportunity
  • the terminal After the terminal performs downlink synchronization, it obtains the satellite ephemeris information update period, the resources for sending PRACH, and the satellite's PVT parameters or ephemeris parameters.
  • the terminal calculates the rate of change of the fixed TA adjustment value based on the inaccurate ephemeris information and its own GNSS information.
  • the terminal calculates the delay and change delay corresponding to the service link according to the GNSS position information, ephemeris information and the change rate of the TA adjustment value, receives the ephemeris information at T1_1 time, and performs uplink timing pre-compensation, at T1_2 time Send PRACH (Msg1), considering that there is an error in the ephemeris information, the calculated T a and T b at this time deviate from the actual one, which is approximately T e .
  • Msg1 Send PRACH
  • the network side estimates the residual timing offset based on receiving and detecting the PRACH at T2_1, and uses the TAC in the RAR (Msg2) to send the correction information (that is, the residual timing offset estimated by PRACH detection) to the UE at T2_2, which is convenient for the UE Adjust the TA adjustment value to make the uplink time synchronization more accurate.
  • the terminal corrects the closed-loop timing error according to the TAC command received at time t3_1.
  • the time offset correction value issued by TAC is approximately T e 1, and sends the second PRACH (Msg1) or uplink reference to the spaceborne base station at time t3_2. signal, at this time the timing pre-compensation of T a and T b is performed.
  • the network side receives and detects the second PRACH or uplink reference signal at time t4_1 to estimate the residual timing offset, and uses the TAC in the RAR (Msg2) to send correction information to the UE at time t4_2 for the UE to adjust the TA adjustment value.
  • Msg2 the TAC in the RAR
  • the terminal corrects the closed-loop timing error according to the TAC command received at time t5_1.
  • the time offset correction value issued by the TAC is approximately T e 2
  • the network side receives and detects Msg3 (uplink PUSCH) at time T6_1, and then feeds back Msg4 (downlink PDCCH/PDSCH) to UE at time T6_2 to complete the initial access.
  • Msg3 uplink PUSCH
  • Msg4 downlink PDCCH/PDSCH
  • the rate of change of the TA adjustment value is determined based on the two uplink signals, and the subsequent uplink TA adjustment value is determined based on the rate of change of the TA adjustment value, which can eliminate problems caused by inaccurate ephemeris information or highly dynamic terminals.
  • the defect that the TA adjustment value is inconsistent with the actual value improves the synchronization accuracy in the case of inaccurate ephemeris information or high dynamic terminal conditions.
  • Figure 4 is the second schematic diagram of the initial access timing synchronization process provided by the embodiment of the present disclosure.
  • the initial access process uses closed-loop timing synchronization, and the initial access UE uses inaccurate ephemeris information to perform T a and T
  • the network side correlates the received PRACH preamble sequence with the local root sequence to detect the position of the correlation peak to detect the residual time offset, and the network side converts the residual time offset into the number of bits corresponding to the TAC
  • the UE uses the received TAC to perform closed-loop timing offset correction, and at this time the correction value delivered by the TAC can be approximately equal to T e .
  • T a is the transmission delay caused by user link transmission
  • T b is the time offset corresponding to the change of user link caused by different sending and receiving times
  • T e is the inaccurate ephemeris information or high dynamic terminal (the terminal is estimated based on GNSS The deviation delay of the estimated delay caused by inaccurate position or velocity information).
  • the ephemeris information update period is configured on the network side.
  • the network side carries information such as PVT parameters or ephemeris parameters of satellites and RO resources required for the initial access process in the downlink MIB or SIB, and updates them periodically.
  • the terminal After the terminal performs downlink synchronization, it obtains the satellite ephemeris information update period, the resources for sending PRACH, and the satellite's PVT parameters or ephemeris parameters.
  • the terminal calculates the rate of change of the fixed TA adjustment value based on the inaccurate ephemeris information and its own GNSS information.
  • the terminal calculates the delay and change delay corresponding to the service link according to the GNSS position information, ephemeris information and the change rate of the TA adjustment value, receives the ephemeris information at T1_1 time, and performs uplink timing pre-compensation, at T1_2 time Sending PRACH (MsgA), considering the error in the ephemeris information, the calculated T a and T b at this time deviate from the actual one, which is approximately T e .
  • MsgA Sending PRACH
  • the network side estimates the residual timing offset based on receiving and detecting the PRACH at T2_1, and uses the TAC in the RAR (MsgB) to send the correction information (that is, the residual timing offset estimated by PRACH detection) to the UE at T2_2, which is convenient for the UE Adjust the TA adjustment value to make the uplink time synchronization more accurate.
  • MsgB the TAC in the RAR
  • the terminal corrects the closed-loop timing error according to the TAC command received at time t3_1.
  • the time offset correction value issued by TAC is approximately T e 1, and sends the second PRACH (MsgA) or uplink reference to the spaceborne base station at time t3_2. signal, at this time the timing pre-compensation of T a and T b is performed.
  • the network side receives and detects the second PRACH or uplink reference signal at t4_1 to estimate the residual timing offset, and uses the TAC in the RAR (MsgB) to send the correction information to the UE at t4_2 for the UE to adjust the TA adjustment value.
  • MsgB the TAC in the RAR
  • the terminal corrects the closed-loop timing error according to the TAC command received at time t5_1.
  • the time offset correction value issued by the TAC is approximately T e 2
  • the rate of change of the TA adjustment value is determined based on the two uplink signals, and the subsequent uplink TA adjustment value is determined based on the rate of change of the TA adjustment value, which can eliminate problems caused by inaccurate ephemeris information or highly dynamic terminals.
  • the defect that the TA adjustment value is inconsistent with the actual value improves the synchronization accuracy in the case of inaccurate ephemeris information or high dynamic terminal conditions.
  • open-loop timing maintenance After the initial access, a combination of open-loop timing maintenance and closed-loop timing maintenance can be used, that is, the terminal maintains uplink timing synchronization by itself, and the network side detects the terminal to estimate the uplink timing deviation according to the uplink signal sent aperiodically.
  • Open-loop timing maintenance means that the terminal does not need the TA command from the network, and the terminal maintains the uplink timing synchronization by itself.
  • the purpose of the closed-loop is to correct the error of the open-loop.
  • the network side performs open-loop error correction based on the aperiodic uplink reference signal (SRS/PTRS/DMRS).
  • the aperiodic uplink reference signal is triggered by the RRC/MAC CE/DCI command sent by the network side, and the TAC is used to notify the timing synchronization correction value.
  • the network side configures the ephemeris information update period, aperiodically triggers the transmission of the uplink reference signal and the timing deviation threshold value issued by the TAC, etc.
  • the network side carries the satellite's PVT parameters or ephemeris parameters in the downlink MIB or SIB, and updates them periodically.
  • the terminal After the terminal performs downlink synchronization, it obtains the satellite ephemeris information update cycle and the satellite's PVT parameters or ephemeris parameters.
  • the network side sends an RRC/MAC CE/DCI command to trigger the uplink reference signal when the threshold value is reached according to the CQI of the received signal and the time offset of the reference signal.
  • the terminal sends an uplink reference signal according to the RRC/MAC CE/DCI command issued by the network side.
  • the network side performs timing offset correction according to the received aperiodic uplink reference signal, and uses the TAC in the MAC CE to send the correction information to the UE, which is used for the UE to adjust the TA adjustment value to make the uplink time synchronization more accurate.
  • the terminal calculates the rate of change of T e according to the time offset errors received by the last two TACs and the UE timestamp.
  • the terminal calculates the delay corresponding to the service link and the change delay according to the GNSS position information and ephemeris information and the change rate ⁇ T e of T e , calculates T e using the time stamp and ⁇ T e , and performs uplink timing pre-compensation.
  • the terminal periodically receives the ephemeris information according to the ephemeris information update period configured on the network side.
  • the terminal corrects the closed-loop timing error according to the TAC command sent by the network side.
  • the rate of change of the TA adjustment value is determined based on the two uplink signals sent aperiodically by the UE, and the subsequent uplink TA adjustment value is determined based on the rate of change of the TA adjustment value, which can eliminate problems caused by inaccurate ephemeris information or high dynamics.
  • the defect that the TA adjustment value caused by the terminal is inconsistent with the actual value improves the synchronization accuracy in the case of inaccurate ephemeris information or high dynamic terminal conditions.
  • open-loop timing maintenance After the initial access, a combination of open-loop timing maintenance and closed-loop timing maintenance can be used, that is, the terminal maintains uplink timing synchronization by itself, and the network side detects the uplink signal sent by the terminal according to a combination of periodic and aperiodic to estimate the uplink timing deviation.
  • Open-loop timing maintenance means that the terminal does not need TA commands from the network, and the terminal maintains the uplink timing synchronization by itself.
  • the purpose of the closed-loop is to correct the error of the open-loop.
  • the network side performs open-loop error correction based on the uplink reference signal (SRS/PTRS/DMRS) sent periodically and aperiodically.
  • the aperiodic uplink reference signal is triggered by the RRC/MAC CE/DCI command issued by the network side, and the timing synchronization is notified by TAC Correction value.
  • the network side configures the ephemeris information update cycle, the uplink reference signal sending cycle (can be configured as 1/20, 1/15, 1/10, 1/5, 1/2, 1 of the ephemeris information update cycle, etc.), And aperiodically triggering the transmission of the uplink reference signal and the timing deviation threshold issued by the TAC, etc.
  • the network side carries the satellite's PVT parameters or ephemeris parameters in the downlink MIB or SIB, and updates them periodically.
  • the terminal After the terminal performs downlink synchronization, it obtains the satellite ephemeris information update cycle, the uplink reference signal sending cycle, and the PVT parameter or ephemeris parameter of the satellite.
  • the terminal periodically sends the uplink reference signal according to the uplink reference signal sending period configured on the network side.
  • the network side estimates the time deviation and other information based on the received signal, and dynamically adjusts the update period of the ephemeris information and the uplink reference signal when a certain threshold is reached, or sends RRC/MAC CE/DCI commands to trigger when the threshold is reached Aperiodic uplink reference signal.
  • the terminal sends an aperiodic uplink reference signal according to the RRC/MAC CE/DCI command issued by the network side.
  • the network side performs timing offset correction according to the received periodic or aperiodic uplink reference signal, and uses the TAC in the MAC CE to send the correction information to the UE for the UE to adjust the TA adjustment value to make the uplink time synchronization more accurate.
  • the terminal calculates the rate of change of T e according to the time offset errors received by the last two TACs and the UE timestamp.
  • the terminal calculates the delay according to the GNSS position information and ephemeris information, the rate of change of Te , the time offset error and the rate of change of the time offset error received by the last TAC, and the UE timestamp, and performs uplink timing pre-compensation.
  • the terminal periodically receives the ephemeris information according to the ephemeris information update period configured on the network side.
  • the terminal corrects the closed-loop timing error according to the TAC command sent by the network side.
  • the change rate of the TA adjustment value is determined based on the two uplink signals sent by the UE in combination of periodic and aperiodic, and the subsequent uplink TA adjustment value is determined based on the change rate of the TA adjustment value, which can eliminate the The defect that the TA adjustment value is inconsistent with the actual value caused by inaccurate or high dynamic terminals improves the synchronization accuracy in the case of inaccurate ephemeris information or high dynamic terminals.
  • Fig. 5 is a schematic structural diagram of a terminal provided by an embodiment of the present disclosure. As shown in Fig. 5, the terminal includes a memory 520, a transceiver 500, and a processor 510, wherein:
  • the memory 520 is used to store computer programs; the transceiver 500 is used to send and receive data under the control of the processor 510; the processor 510 is used to read the computer programs in the memory 520 and perform the following operations:
  • the timing is advanced according to the TA adjustment value.
  • the transceiver 500 is configured to receive and send data under the control of the processor 510 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 510 and various circuits of the memory represented by the memory 520 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, etc., which are well known in the art and therefore will not be further described herein.
  • the bus interface provides the interface.
  • Transceiver 500 may be a plurality of elements, including a transmitter and a receiver, providing means for communicating with various other devices over transmission media, including wireless channels, wired channels, fiber optic cables, etc. Transmission medium.
  • the user interface 530 may also be an interface capable of connecting externally and internally to required equipment, and the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 510 is responsible for managing the bus architecture and general processing, and the memory 520 may store data used by the processor 510 when performing operations.
  • the processor 510 may be a central processing unit (Central Processing Unit, CPU), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex Programmable Logic Device (Complex Programmable Logic Device, CPLD), the processor can also adopt a multi-core architecture.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD complex Programmable Logic Device
  • the processor is used to execute any one of the methods provided by the embodiments of the present disclosure according to the obtained executable instructions by calling the computer program stored in the memory.
  • the processor and memory may also be physically separated.
  • determining the TA adjustment value based on the rate of change of the TA adjustment value includes:
  • the rate of change of the TA adjustment value is less than or equal to the first threshold value, determine the TA adjustment value according to the second timing adjustment information, or, according to the second timing adjustment information, receive the The TA adjustment value is determined based on the time of the second timing adjustment information and the rate of change of the last determined TA adjustment value.
  • the calculation formula for determining the TA adjustment value is as follows:
  • T 2 K(t 2 -t 1 )+T 1
  • T2 is the TA adjustment value at time t2
  • t2 is the time when T2 is determined
  • K is the rate of change of the TA adjustment value
  • t1 is the time when the second timing adjustment information is received
  • T1 is the time when the second timing adjustment information is received.
  • the first indication message is used to instruct the terminal to send an uplink signal;
  • the uplink signal includes the first uplink signal and the second uplink signal.
  • the second indication message is used to instruct the terminal to send the uplink signal according to a target period.
  • the first uplink signal is a PRACH signal
  • the second uplink signal is a PRACH signal or an uplink reference signal
  • the uplink signal is a PRACH signal or an uplink reference signal.
  • Fig. 6 is a schematic structural diagram of a network-side device provided by an embodiment of the present disclosure.
  • the network-side device includes a memory 620, a transceiver 600, and a processor 610, wherein:
  • the memory 620 is used to store computer programs; the transceiver 600 is used to send and receive data under the control of the processor 610; the processor 610 is used to read the computer programs in the memory 620 and perform the following operations:
  • the transceiver 600 is configured to receive and send data under the control of the processor 610 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 610 and various circuits of the memory represented by the memory 620 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, etc., which are well known in the art and therefore will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 600 may be a plurality of elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over transmission media, including wireless channels, wired channels, optical cables, and other transmission media.
  • the processor 610 is responsible for managing the bus architecture and general processing, and the memory 620 can store data used by the processor 610 when performing operations.
  • the processor 610 may be a central processing unit (Central Processing Unit, CPU), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device, CPLD), the processor can also adopt a multi-core architecture.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • a first indication message is sent to the terminal; the first indication message is used to instruct the terminal to send The third uplink signal.
  • the second indication message is used to instruct the terminal to send an uplink signal according to a target period; the uplink signal includes the first uplink signal and the second uplink signal.
  • the first uplink signal is a PRACH signal
  • the second uplink signal is a PRACH signal or an uplink reference signal
  • the uplink signal is a PRACH signal or an uplink reference signal.
  • the above-mentioned network-side device provided by the embodiments of the present disclosure can implement all the method steps implemented by the above-mentioned method embodiment in which the execution subject is the network-side device, and can achieve the same technical effect, and no further description is given here in this embodiment.
  • the same parts and beneficial effects as those of the method embodiment will be described in detail.
  • FIG. 7 is one of the schematic structural diagrams of a timing advance device provided by an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a timing advance device, including a first sending module 701, a first receiving module 702, The second sending module 703, the second receiving module 704, the first determining module 705, the second determining module 706 and the timing advance module 707, wherein:
  • the first sending module 701 is used to send the first uplink signal to the network side device; the first receiving module 702 is used to receive the first timing adjustment information sent by the network side device; the second sending module 703 is used to send the first timing adjustment information to the network side
  • the device sends a second uplink signal; the second receiving module 704 is configured to receive the second timing adjustment information sent by the network side device; the first determining module 705 is configured to adjust the timing based on the first timing adjustment information and the second timing adjustment information.
  • the second determination module includes a judgment submodule and a first determination submodule, wherein:
  • the judging submodule is used to judge whether the rate of change of the TA adjustment value is greater than a first threshold
  • the first determining submodule is configured to, when the rate of change of the TA adjustment value is greater than the first threshold value, according to the second timing adjustment information, the time when the second timing adjustment information is received and the rate of change of the TA adjustment value determine the TA adjustment value;
  • the rate of change of the TA adjustment value is less than or equal to the first threshold value, determine the TA adjustment value according to the second timing adjustment information, or, according to the second timing adjustment information, receive the The TA adjustment value is determined based on the time of the second timing adjustment information and the rate of change of the last determined TA adjustment value.
  • the calculation formula for determining the TA adjustment value is as follows:
  • T 2 K(t 2 -t 1 )+T 1
  • T2 is the TA adjustment value at time t2
  • t2 is the time when T2 is determined
  • K is the rate of change of the TA adjustment value
  • t1 is the time when the second timing adjustment information is received
  • T1 is the time when the second timing adjustment information is received.
  • a fifth receiving module is also included.
  • the fifth receiving module is configured to receive a first indication message sent by the network side device; the first indication message is used to instruct the terminal to send an uplink signal; the uplink signal includes the first uplink signal and the second uplink signal 2. Uplink signal.
  • a sixth receiving module is also included.
  • the sixth receiving module is configured to receive a second indication message sent by the network side device; the second indication message is used to instruct the terminal to send the uplink signal according to a target period.
  • the first uplink signal is a PRACH signal
  • the second uplink signal is a PRACH signal or an uplink reference signal
  • the uplink signal is a PRACH signal or an uplink reference signal.
  • the above-mentioned timing advance device provided by the embodiments of the present disclosure can realize all the method steps implemented by the above-mentioned method embodiments in which the execution subject is the terminal, and can achieve the same technical effect, and no further description of the method and method in this embodiment will be made here. The same parts and beneficial effects of the embodiments are described in detail.
  • FIG. 8 is the second structural schematic diagram of a timing advance device provided by an embodiment of the present disclosure. As shown in FIG. 8 , an embodiment of the present disclosure provides a timing advance device, including a third receiving module 801, a third determining module 802, The fourth receiving module 803 and the fourth determining module 804, wherein:
  • the third receiving module 801 is configured to receive the first uplink signal sent by the terminal; the third determining module 802 is configured to determine first timing adjustment information according to the first uplink signal, and send the first timing adjustment information to the terminal.
  • the fourth receiving module 803 is used to receive the second uplink signal sent by the terminal; the fourth determination module 804 is used to determine the second timing adjustment information according to the second uplink signal, and send the second timing adjustment information to the terminal Adjust information regularly.
  • a third sending module is also included.
  • the third sending module is configured to send a first indication message to the terminal when the TA adjustment value indicated by the second timing adjustment information is greater than a second threshold; the first indication message is used to indicate The terminal sends the third uplink signal.
  • a fourth sending module is also included.
  • the fourth sending module is configured to send a second indication message to the terminal; the second indication message is used to instruct the terminal to send an uplink signal according to a target period; the uplink signal includes the first uplink signal and the second uplink signal.
  • the first uplink signal is a PRACH signal
  • the second uplink signal is a PRACH signal or an uplink reference signal
  • the uplink signal is a PRACH signal or an uplink reference signal.
  • a fifth sending module is also included.
  • the fifth sending module is configured to send a third indication message to the terminal, and the third indication message is used to instruct the terminal to update the target period.
  • the above-mentioned timing advance device provided by the embodiments of the present disclosure can realize all the method steps implemented by the above-mentioned method embodiments in which the execution subject is the network-side device, and can achieve the same technical effect, and no further description will be made here in this embodiment.
  • the same parts and beneficial effects as those of the method embodiment will be described in detail.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is implemented in the form of a software function unit and sold or used as an independent product, it can be stored in a processor-readable storage medium.
  • the technical solution of the present disclosure is essentially or part of the contribution to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) execute all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .
  • a processor-readable storage medium stores a computer program, and the computer program is used to enable the processor to execute the methods provided in the above-mentioned embodiments, include:
  • the processor-readable storage medium may be any available medium or data storage device that the processor can access, including but not limited to magnetic storage (such as floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.) , optical memory (such as CD, DVD, BD, HVD, etc.), and semiconductor memory (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state hard drive (SSD)), etc.
  • magnetic storage such as floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical memory such as CD, DVD, BD, HVD, etc.
  • semiconductor memory such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state hard drive (SSD)
  • first and second in the embodiments of the present disclosure are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the present disclosure are capable of practice in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • the applicable system may be a global system of mobile communication (GSM) system, a code division multiple access (CDMA) system, a wideband code division multiple access (WCDMA) general packet Wireless business (general packet radio service, GPRS) system, long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) system, Long term evolution advanced (LTE-A) system, universal mobile telecommunications system (UMTS), worldwide interoperability for microwave access (WiMAX) system, 5G new air interface (New Radio, NR) system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet Wireless business
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • FDD frequency division duplex
  • TDD time division duplex
  • LTE-A Long term evolution advanced
  • the terminal device involved in the embodiments of the present disclosure may be a device that provides voice and/or data connectivity to users, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • the name of the terminal equipment may be different.
  • the terminal equipment may be called User Equipment (User Equipment, UE).
  • the wireless terminal equipment can communicate with one or more core networks (Core Network, CN) via the radio access network (Radio Access Network, RAN), and the wireless terminal equipment can be a mobile terminal equipment, such as a mobile phone (or called a "cellular "telephones) and computers with mobile terminal equipment, such as portable, pocket, hand-held, computer built-in or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • a mobile terminal equipment such as a mobile phone (or called a "cellular "telephones) and computers with mobile terminal equipment, such as portable, pocket, hand-held, computer built-in or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • PCS Personal Communication Service
  • SIP Session Initiated Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • Wireless terminal equipment can also be called system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point , remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), and user device (user device), which are not limited in the embodiments of the present disclosure.
  • the network device involved in the embodiments of the present disclosure may be a base station, and the base station may include multiple cells that provide services for terminals.
  • the base station can also be called an access point, or it can be a device in the access network that communicates with the wireless terminal device through one or more sectors on the air interface, or other names.
  • the network device can be used to interchange received over-the-air frames with Internet Protocol (IP) packets and act as a router between the wireless terminal device and the rest of the access network, which can include the Internet Protocol (IP) communication network.
  • IP Internet Protocol
  • Network devices may also coordinate attribute management for the air interface.
  • the network equipment involved in the embodiments of the present disclosure may be a network equipment (Base Transceiver Station, BTS) in Global System for Mobile communications (GSM) or Code Division Multiple Access (Code Division Multiple Access, CDMA) ), it can also be a network device (NodeB) in Wide-band Code Division Multiple Access (WCDMA), or it can be an evolved network device in a long-term evolution (long term evolution, LTE) system (evolutional Node B, eNB or e-NodeB), 5G base station (gNB) in the 5G network architecture (next generation system), can also be a home evolved base station (Home evolved Node B, HeNB), relay node (relay node) , a home base station (femto), a pico base station (pico), etc., are not limited in this embodiment of the present disclosure.
  • a network device may include a centralized unit (centralized unit, CU) node and a distributed unit (distributed unit, DU) node
  • MIMO transmission can be Single User MIMO (Single User MIMO, SU-MIMO) or Multi-User MIMO (Multiple User MIMO, MU-MIMO).
  • MIMO transmission can be 2D-MIMO, 3D-MIMO, FD-MIMO, or massive-MIMO, or diversity transmission, precoding transmission, or beamforming transmission, etc.
  • the embodiments of the present disclosure may be provided as methods, systems, or computer program products. Accordingly, the present disclosure can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • processor-executable instructions may also be stored in a processor-readable memory capable of directing a computer or other programmable data processing device to operate in a specific manner, such that the instructions stored in the processor-readable memory produce a manufacturing product, the instruction device realizes the functions specified in one or more procedures of the flow chart and/or one or more blocks of the block diagram.
  • processor-executable instructions can also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented
  • the executed instructions provide steps for implementing the functions specified in the procedure or procedures of the flowchart and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种定时提前方法、装置及存储介质,所述方法包括:向网络侧设备发送第一上行信号;接收所述网络侧设备发送的第一定时调整信息;向所述网络侧设备发送第二上行信号;接收所述网络侧设备发送的第二定时调整信息;基于所述第一定时调整信息和所述第二定时调整信息,确定定时提前TA调整值的变化率;基于所述TA调整值的变化率确定TA调整值;根据所述TA调整值进行定时提前。本公开实施例提供的定时提前方法、装置及存储介质,基于两次上行信号确定TA调整值的变化率,基于TA调整值的变化率确定后续上行TA的调整值,提高了星历信息不准确或高动态终端情况下的同步精度。

Description

定时提前方法、装置及存储介质
相关申请的交叉引用
本申请要求于2021年09月26日提交的申请号为202111130321.X,发明名称为“定时提前方法、装置及存储介质”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本公开涉及通信技术领域,尤其涉及一种定时提前方法、装置及存储介质。
背景技术
在卫星通信系统中,时间同步技术是系统正常运行的重要支撑和保障。
目前,针对卫星通信系统的时间同步的技术讨论,主要集中在星历信息准确和低动态终端前提下的初始时间同步,暂未涉及星历信息不准确或高动态终端前提下的时间同步。
因此,星历信息不准确或高动态终端前提下如何进行时间同步是亟待解决的技术问题。
发明内容
本公开实施例提供一种定时提前方法、装置及存储介质,用以解决现有技术中星历信息不准确或高动态终端情况下没有同步方案的技术问题,提高了星历信息不准确或高动态终端情况下的同步精度。
第一方面,本公开实施例提供一种定时提前方法,包括:
向网络侧设备发送第一上行信号;
接收所述网络侧设备发送的第一定时调整信息;
向所述网络侧设备发送第二上行信号;
接收所述网络侧设备发送的第二定时调整信息;
基于所述第一定时调整信息和所述第二定时调整信息,确定定时提前TA调整值的变化率;
基于所述TA调整值的变化率确定TA调整值;
根据所述TA调整值进行定时提前。
在一些实施例中,基于所述TA调整值的变化率确定TA调整值,包括:
判断所述TA调整值的变化率是否大于第一门限值;
在所述TA调整值的变化率大于所述第一门限值的情况下,根据所述第二定时调整信息、接收到所述第二定时调整信息的时间和TA调整值的变化率确定TA调整值;
在所述TA调整值的变化率小于或等于所述第一门限值的情况下,根据所述第二定时调整信息确定TA调整值,或,根据所述第二定时调整信息、接收到所述第二定时调整信息的时间和上一次确定的TA调整值的变化率确定TA调整值。
在一些实施例中,确定TA调整值的计算公式如下:
T 2=K(t 2-t 1)+T 1
其中,T 2为t 2时刻的TA调整值,t 2为确定T 2的时刻,K为TA调整值的变化率,t 1为接收到所述第二定时调整信息的时间,T 1为所述第二定时调整信息中包含的TA调整值。
在一些实施例中,还包括:
接收所述网络侧设备发送的第一指示消息;所述第一指示消息用于指示终端发送上行信号;所述上行信号包括所述第一上行信号和所述第二上行信号。
在一些实施例中,还包括:
接收所述网络侧设备发送的第二指示消息;所述第二指示消息用于指示所述终端按照目标周期发送所述上行信号。
在一些实施例中,在初始接入过程中,所述第一上行信号为PRACH信号,所述第二上行信号为PRACH信号或上行参考信号;
初始接入之后,所述上行信号为PRACH信号或上行参考信号。
第二方面,本公开实施例提供一种定时提前方法,包括:
接收终端发送的第一上行信号;
根据所述第一上行信号确定第一定时调整信息,并向所述终端发送所述第一定时调整信息;
接收所述终端发送的第二上行信号;
根据所述第二上行信号确定第二定时调整信息,并向所述终端发送所述第二定时调整信息。
在一些实施例中,在所述第二定时调整信息指示的TA调整值大于第二门限值的情况下,向所述终端发送第一指示消息;所述第一指示消息用于指示终端发送第三上行信号。
在一些实施例中,还包括:
向所述终端发送第二指示消息;所述第二指示消息用于指示所述终端按照目标周期发送上行信号;所述上行信号包括所述第一上行信号和所述第二上行信号。
在一些实施例中,在初始接入过程中,所述第一上行信号为PRACH信号,所述第二上行信号为PRACH信号或上行参考信号;
初始接入之后,所述上行信号为PRACH信号或上行参考信号。
在一些实施例中,还包括:
向所述终端发送第三指示消息,所述第三指示消息用于指示所述终端更新所述目标周期。
第三方面,本公开实施例提供一种终端,包括存储器,收发机, 处理器;
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
向网络侧设备发送第一上行信号;
接收所述网络侧设备发送的第一定时调整信息;
向所述网络侧设备发送第二上行信号;
接收所述网络侧设备发送的第二定时调整信息;
基于所述第一定时调整信息和所述第二定时调整信息,确定定时提前TA调整值的变化率;
基于所述TA调整值的变化率确定TA调整值;
根据所述TA调整值进行定时提前。
在一些实施例中,基于所述TA调整值的变化率确定TA调整值,包括:
判断所述TA调整值的变化率是否大于第一门限值;
在所述TA调整值的变化率大于所述第一门限值的情况下,根据所述第二定时调整信息、接收到所述第二定时调整信息的时间和TA调整值的变化率确定TA调整值;
在所述TA调整值的变化率小于或等于所述第一门限值的情况下,根据所述第二定时调整信息确定TA调整值,或,根据所述第二定时调整信息、接收到所述第二定时调整信息的时间和上一次确定的TA调整值的变化率确定TA调整值。
在一些实施例中,确定TA调整值的计算公式如下:
T 2=K(t 2-t 1)+T 1
其中,T 2为t 2时刻的TA调整值,t 2为确定T 2的时刻,K为TA调整值的变化率,t 1为接收到所述第二定时调整信息的时间,T 1为所述第二定时调整信息中包含的TA调整值。
在一些实施例中,还包括:
接收所述网络侧设备发送的第一指示消息;所述第一指示消息用于指示终端发送上行信号;所述上行信号包括所述第一上行信号和所述第二上行信号。
在一些实施例中,还包括:
接收所述网络侧设备发送的第二指示消息;所述第二指示消息用于指示所述终端按照目标周期发送所述上行信号。
在一些实施例中,在初始接入过程中,所述第一上行信号为PRACH信号,所述第二上行信号为PRACH信号或上行参考信号;
初始接入之后,所述上行信号为PRACH信号或上行参考信号。
第四方面,本公开实施例提供一种网络侧设备,包括存储器,收发机,处理器;
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
接收终端发送的第一上行信号;
根据所述第一上行信号确定第一定时调整信息,并向所述终端发送所述第一定时调整信息;
接收所述终端发送的第二上行信号;
根据所述第二上行信号确定第二定时调整信息,并向所述终端发送所述第二定时调整信息。
在一些实施例中,在所述第二定时调整信息指示的TA调整值大于第二门限值的情况下,向所述终端发送第一指示消息;所述第一指示消息用于指示终端发送第三上行信号。
在一些实施例中,还包括:
向所述终端发送第二指示消息;所述第二指示消息用于指示所述终端按照目标周期发送上行信号;所述上行信号包括所述第一上行信号和所述第二上行信号。
在一些实施例中,在初始接入过程中,所述第一上行信号为PRACH信号,所述第二上行信号为PRACH信号或上行参考信号;
初始接入之后,所述上行信号为PRACH信号或上行参考信号。
在一些实施例中,还包括:
向所述终端发送第三指示消息,所述第三指示消息用于指示所述终端更新所述目标周期。
第五方面,本公开实施例提供一种定时提前装置,包括:
第一发送模块,用于向网络侧设备发送第一上行信号;
第一接收模块,用于接收所述网络侧设备发送的第一定时调整信息;
第二发送模块,用于向所述网络侧设备发送第二上行信号;
第二接收模块,用于接收所述网络侧设备发送的第二定时调整信息;
第一确定模块,用于基于所述第一定时调整信息和所述第二定时调整信息,确定定时提前TA调整值的变化率;
第二确定模块,用于基于所述TA调整值的变化率确定TA调整值;
定时提前模块,用于根据所述TA调整值进行定时提前。
在一些实施例中,所述第二确定模块包括判断子模块和第一确定子模块,其中:
所述判断子模块用于判断所述TA调整值的变化率是否大于第一门限值;
所述第一确定子模块用于在所述TA调整值的变化率大于所述第一门限值的情况下,根据所述第二定时调整信息、接收到所述第二定时调整信息的时间和TA调整值的变化率确定TA调整值;
在所述TA调整值的变化率小于或等于所述第一门限值的情况下,根据所述第二定时调整信息确定TA调整值,或,根据所述第二定时 调整信息、接收到所述第二定时调整信息的时间和上一次确定的TA调整值的变化率确定TA调整值。
在一些实施例中,确定TA调整值的计算公式如下:
T 2=K(t 2-t 1)+T 1
其中,T 2为t 2时刻的TA调整值,t 2为确定T 2的时刻,K为TA调整值的变化率,t 1为接收到所述第二定时调整信息的时间,T 1为所述第二定时调整信息中包含的TA调整值。
在一些实施例中,还包括第五接收模块;
所述第五接收模块用于接收所述网络侧设备发送的第一指示消息;所述第一指示消息用于指示终端发送上行信号;所述上行信号包括所述第一上行信号和所述第二上行信号。
在一些实施例中,还包括第六接收模块;
所述第六接收模块用于接收所述网络侧设备发送的第二指示消息;所述第二指示消息用于指示所述终端按照目标周期发送所述上行信号。
在一些实施例中,在初始接入过程中,所述第一上行信号为PRACH信号,所述第二上行信号为PRACH信号或上行参考信号;
初始接入之后,所述上行信号为PRACH信号或上行参考信号。第六方面,本公开实施例提供一种定时提前装置,包括:
第三接收模块,用于接收终端发送的第一上行信号;
第三确定模块,用于根据所述第一上行信号确定第一定时调整信息,并向所述终端发送所述第一定时调整信息;
第四接收模块,用于接收所述终端发送的第二上行信号;
第四确定模块,用于根据所述第二上行信号确定第二定时调整信息,并向所述终端发送所述第二定时调整信息。
在一些实施例中,还包括第三发送模块;
所述第三发送模块用于在所述第二定时调整信息指示的TA调整值大于第二门限值的情况下,向所述终端发送第一指示消息;所述第 一指示消息用于指示终端发送第三上行信号。
在一些实施例中,还包括第四发送模块;
所述第四发送模块用于向所述终端发送第二指示消息;所述第二指示消息用于指示所述终端按照目标周期发送上行信号;所述上行信号包括所述第一上行信号和所述第二上行信号。
在一些实施例中,在初始接入过程中,所述第一上行信号为PRACH信号,所述第二上行信号为PRACH信号或上行参考信号;
初始接入之后,所述上行信号为PRACH信号或上行参考信号。
在一些实施例中,还包括第五发送模块;
所述第五发送模块用于向所述终端发送第三指示消息,所述第三指示消息用于指示所述终端更新所述目标周期。
第七方面,本公开实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行如上所述第一方面或第二方面所述的定时提前方法的步骤。
本公开实施例提供的定时提前方法、装置及存储介质,基于两次上行信号确定TA调整值的变化率,基于TA调整值的变化率确定后续上行TA的调整值,提高了星历信息不准确或高动态终端情况下的同步精度。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的定时提前方法的流程示意图之一;
图2是本公开实施例提供的定时提前方法的流程示意图之二;
图3是本公开实施例提供的初始接入定时同步流程示意图之一;
图4是本公开实施例提供的初始接入定时同步流程示意图之二;
图5是本公开实施例提供的一种终端的结构示意图;
图6是本公开实施例提供的一种网络侧设备的结构示意图;
图7是本公开实施例提供的一种定时提前装置的结构示意图之一;
图8是本公开实施例提供的一种定时提前装置的结构示意图之二。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
图1是本公开实施例提供的定时提前方法的流程示意图之一,如图1所示,本公开实施例提供一种定时提前方法,其执行主体可以为终端/用户设备(User Equipment,UE),例如,手机等。该方法包括:
步骤101、向网络侧设备发送第一上行信号。
UE向网络侧设备发送第一上行信号。
网络侧设备接收UE发送的第一上行信号。
在一些实施例中,在初始接入过程中,该第一上行信号为PRACH信号。初始接入之后,该第一上行信号为PRACH信号或上行参考信号。
上行参考信号可以为探测参考信号(Sounding Reference Signal, SRS)、解调参考信号(Demodulation Reference Signal,DMRS)、相位跟踪参考信号PTRS(PhaseTracking Reference Signal,PTRS)。
步骤102、接收网络侧设备发送的第一定时调整信息。
具体地,网络侧设备接收到UE发送的第一上行信号之后,根据第一上行信号确定第一定时调整信息,并向UE发送该第一定时调整信息。
UE接收网络侧设备发送的该第一定时调整信息。
该第一定时调整信息中可以包含定时提前(Timing Advance,TA)调整值。
在初始接入过程中,该第一定时调整信息可以通过随机接入响应(Random Access Response,RAR)来携带。
初始接入之后,该第一定时调整信息可以通过媒体访问控制控制单元(Media Access Control Control Element,MAC CE)来携带。
例如,在初始接入过程中,网络侧设备利用接收到的PRACH前导码序列与本地根序列做相关,检测相关峰位置,即可检测出残余时偏,网络侧设备将残余时偏转换成定时提前命令(Timing Advance Command,TAC)对应的比特数随着RAR下发给UE。
再例如,初始接入之后,网络侧设备利用接收到的上行参考信号与本地参考信号基序列做相关,检测相关峰位置,即可检测出残余时偏,网络侧设备将残余时偏转换成TAC对应的比特数,利用MAC CE下发给UE。
步骤103、向网络侧设备发送第二上行信号。
具体地,UE接收到第一定时调整信息之后,根据该第一定时调整信息进行定时提前,并向网络侧设备发送第二上行信号。
在一些实施例中,在初始接入过程中,该第二上行信号为PRACH信号或上行参考信号。初始接入之后,该第二上行信号为PRACH信号或上行参考信号。
步骤104、接收网络侧设备发送的第二定时调整信息。
具体地,网络侧设备接收到UE发送的第二上行信号之后,根据第二上行信号确定第二定时调整信息,并向UE发送该第二定时调整信息。
UE接收网络侧设备发送的该第二定时调整信息。
该第二定时调整信息中可以包含定时提前(Timing Advance,TA)调整值。
在初始接入过程中,该第二定时调整信息可以通过RAR来携带。
初始接入之后,该第二定时调整信息可以通过MAC CE来携带。
例如,在初始接入过程中,网络侧设备利用接收到的PRACH前导码序列与本地根序列做相关,检测相关峰位置,即可检测出残余时偏,网络侧设备将残余时偏转换成TAC对应的比特数随着RAR下发给UE。
再例如,初始接入之后,网络侧设备利用接收到的上行参考信号与本地参考信号基序列做相关,检测相关峰位置,即可检测出残余时偏,网络侧设备将残余时偏转换成TAC对应的比特数,利用MAC CE下发给UE。
步骤105、基于第一定时调整信息和第二定时调整信息,确定TA调整值的变化率。
在一些实施例中,基于TA调整值的变化率确定TA调整值,包括:
步骤1051、判断TA调整值的变化率是否大于第一门限值。
具体地,UE确定TA调整值的变化率之后,将TA调整值的变化率与第一门限值进行比较,判断TA调整值的变化率与该第一门限值的大小。
该第一门限值的具体值,可以根据实际情况进行配置,此处不再举例。
步骤1052、在TA调整值的变化率大于第一门限值的情况下,根据第二定时调整信息、接收到第二定时调整信息的时间和TA调整值的变化率确定TA调整值;
在所述TA调整值的变化率小于或等于所述第一门限值的情况下,根据所述第二定时调整信息确定TA调整值,或,根据所述第二定时调整信息、接收到所述第二定时调整信息的时间和上一次确定的TA调整值的变化率确定TA调整值。
具体地,在TA调整值的变化率小于或等于第一门限值的情况下,UE仍然采用根据TAC进行定时提前调整,即只在接收到TAC时进行定时提前调整,在未接收到TAC的时刻,根据第二定时调整信息、接收到第二定时调整信息的时间和上一次确定的TA调整值的变化率确定TA调整值,并根据TA调整值调整任意时刻的定时提前。
在TA调整值的变化率大于第一门限值的情况下,根据第二定时调整信息、接收到第二定时调整信息的时间和TA调整值的变化率确定TA调整值,并根据TA调整值调整任意时刻的定时提前。
本公开实施例中,在TA调整值的变化率大于第一门限值的情况下,基于TA调整值的变化率确定TA调整值,并根据TA调整值调整任意时刻的定时提前,提高了定时提前的效率。
步骤106、基于TA调整值的变化率确定TA调整值。
在一些实施例中,确定TA调整值的计算公式如下:
T 2=K(t 2-t 1)+T 1
其中,T 2为t 2时刻的TA调整值,t 2为确定T 2的时刻,K为TA调整值的变化率,t 1为接收到第二定时调整信息的时间,T 1为第二定时调整信息中包含的TA调整值,α为预设的修正值,α的值可以为零。
本公开实施例中,根据TA调整值的变化率、上一次接收到的TAC中的TA调整值以及上一次接收到TAC的时间,可以确定任意时刻的TA调整值,从而提高了定时提前的准确性。
步骤107、根据TA调整值进行定时提前。
具体地,UE在确定任意时刻的TA调整值之后,根据该TA调整值进行定时提前,从而保证实时同步。
本公开实施例提供的定时提前方法,基于两次上行信号确定TA调整值的变化率,基于TA调整值的变化率确定后续上行TA的调整值,可以消除由于星历信息不准确或高动态终端导致的TA调整值与实际值不一致的缺陷,提高了星历信息不准确或高动态终端情况下的同步精度。
在一些实施例中,还包括:
接收网络侧设备发送的第一指示消息;第一指示消息用于指示终端发送上行信号;上行信号包括第一上行信号和第二上行信号。
具体地,本公开实施例中,UE以非周期的方式发送上行信号。
UE发送上行信号之前,网络侧设备根据UE上一次发送的上行信号确定TA调整值,在该TA调整值大于第二门限值的情况下,网络侧设备向UE发送第一指示消息,该第一指示消息用于指示UE发送上行信号。
该第二门限值的具体值,可以根据实际情况进行配置,此处不再举例。
UE接收网络侧设备发送的第一指示消息,并发送上行信号,该上行信号可以为第一上行信号,也可以为第二上行信号。
该第一指示消息可以通过无线资源控制(Radio Resource Control,RRC)、MAC CE、下行控制信息(Downlink Control Information,DCI)命令触发。
本公开实施例中,网络侧设备发送的第一指示消息,指示终端以非周期的方式发送上行信号,能够在同步误差较大的情况下,及时进行校正,进一步提高了星历信息不准确或高动态终端情况下的同步精度。
在一些实施例中,还包括:
接收网络侧设备发送的第二指示消息;第二指示消息用于指示终端按照目标周期发送上行信号。
具体地,本公开实施例中,UE以非周期和周期相结合的方式发送上行信号。
网络侧设备向UE发送第二指示消息,该第二指示消息用于指示UE按照目标周期发送上行信号。
该目标周期可以与星历信息的更新周期相关联。
例如,上行信号发送周期可配置为星历信息更新周期的1/20、1/15、1/10、1/5、1/2、1等。
UE接收网络侧设备发送的第二指示消息,并根据该目标周期进行周期性发送上行信号。该上行信号可以为第一上行信号和第二上行信号。
网络侧设备根据UE上一次发送的上行信号确定TA调整值,在该TA调整值大于第二门限值的情况下,网络侧设备向UE发送第一指示消息,该第一指示消息用于指示UE发送上行信号。
UE接收网络侧设备发送的第一指示消息,并发送上行信号。
例如,UE按照目标周期分别发送第一上行信号和第二上行信号,网络侧设备接收第二上行信号(UE上一次发送的上行信号),并根据第二上行信号确定TA调整值,在该TA调整值大于第二门限值的情况下,网络侧设备向UE发送第一指示消息以及第一定时调整信息,该第一指示消息用于指示UE发送第三上行信号。
UE接收网络侧设备发送的第一指示消息,并发送第三上行信号。
网络侧设备接收第三上行信号,并根据第三上行信号确定TA调整值,网络侧设备向UE发送第二定时调整信息。
UE接收网络侧设备发送的第一定时调整信息及第二定时调整信息,更新TA调整值的变化率。
本公开实施例中,以非周期和周期相结合的方式发送上行信号,能够在同步误差较大的情况下,及时进行校正,进一步提高了星历信息不准确或高动态终端情况下的同步精度。
图2是本公开实施例提供的定时提前方法的流程示意图之二,如图2所示,本公开实施例提供一种定时提前方法,其执行主体可以为网络侧设备,例如,基站等。该方法包括:
步骤201、接收终端发送的第一上行信号。
具体地,UE向网络侧设备发送第一上行信号。
网络侧设备接收UE发送的第一上行信号。
在一些实施例中,在初始接入过程中,该第一上行信号为PRACH信号。初始接入之后,该第一上行信号为PRACH信号或上行参考信号。
上行参考信号可以为SRS、DMRS、PTRS。
步骤202、根据第一上行信号确定第一定时调整信息,并向终端发送第一定时调整信息。
具体地,网络侧设备接收到UE发送的第一上行信号之后,根据第一上行信号确定第一定时调整信息,并向UE发送该第一定时调整信息。
UE接收网络侧设备发送的该第一定时调整信息。
该第一定时调整信息中可以包含TA调整值。
在初始接入过程中,该第一定时调整信息可以通过RAR来携带。
初始接入之后,该第一定时调整信息可以通过MAC CE来携带。
例如,在初始接入过程中,网络侧设备利用接收到的PRACH前导码序列与本地根序列做相关,检测相关峰位置,即可检测出残余时偏,网络侧设备将残余时偏转换成TAC对应的比特数随着RAR下发给UE。
再例如,初始接入之后,网络侧设备利用接收到的上行参考信号 与本地参考信号基序列做相关,检测相关峰位置,即可检测出残余时偏,网络侧设备将残余时偏转换成TAC对应的比特数,利用MAC CE下发给UE。
步骤203、接收终端发送的第二上行信号。
具体地,UE接收到第一定时调整信息之后,根据该第一定时调整信息进行定时提前,并向网络侧设备发送第二上行信号。
在一些实施例中,在初始接入过程中,该第二上行信号为PRACH信号或上行参考信号。初始接入之后,该第二上行信号为PRACH信号或上行参考信号。
步骤204、根据第二上行信号确定第二定时调整信息,并向终端发送第二定时调整信息。
具体地,网络侧设备接收到UE发送的第二上行信号之后,根据第二上行信号确定第二定时调整信息,并向UE发送该第二定时调整信息。
UE接收网络侧设备发送的该第二定时调整信息。
该第二定时调整信息中可以包含TA调整值。
在初始接入过程中,该第二定时调整信息可以通过RAR来携带。
初始接入之后,该第二定时调整信息可以通过MAC CE来携带。
例如,在初始接入过程中,网络侧设备利用接收到的PRACH前导码序列与本地根序列做相关,检测相关峰位置,即可检测出残余时偏,网络侧设备将残余时偏转换成TAC对应的比特数随着RAR下发给UE。
再例如,初始接入之后,网络侧设备利用接收到的上行参考信号与本地参考信号基序列做相关,检测相关峰位置,即可检测出残余时偏,网络侧设备将残余时偏转换成TAC对应的比特数,利用MAC CE下发给UE。
UE基于第一定时调整信息和第二定时调整信息,确定TA调整 值的变化率,并基于TA调整值的变化率确定TA调整值,最后根据该TA调整值进行定时提前,实现上行同步。
本公开实施例提供的定时提前方法,基于两次上行信号确定TA调整值的变化率,基于TA调整值的变化率确定后续上行TA的调整值,可以消除由于星历信息不准确或高动态终端导致的TA调整值与实际值不一致的缺陷,提高了星历信息不准确或高动态终端情况下的同步精度。
在一些实施例中,在第二定时调整信息指示的TA调整值大于第二门限值的情况下,向终端发送第一指示消息;第一指示消息用于指示终端发送第三上行信号。
具体地,本公开实施例中,UE以非周期的方式发送上行信号。
UE发送上行信号之前,网络侧设备根据UE上一次发送的上行信号确定TA调整值,在该TA调整值大于第二门限值的情况下,网络侧设备向UE发送第一指示消息,该第一指示消息用于指示UE发送上行信号。
该第二门限值的具体值,可以根据实际情况进行配置,此处不再举例。
UE接收网络侧设备发送的第一指示消息,并发送上行信号。
该第一指示消息可以通过RRC、MAC CE、DCI命令触发。
例如,网络侧设备根据第二上行信号(UE上一次发送的上行信号)确定TA调整值,在该TA调整值大于第二门限值的情况下,网络侧设备向UE发送第一指示消息,该第一指示消息用于指示UE发送第三上行信号。
UE接收网络侧设备发送的第一指示消息,并发送第三上行信号。
本公开实施例中,以非周期的方式发送上行信号,能够在同步误差较大的情况下,及时进行校正,进一步提高了星历信息不准确或高动态终端情况下的同步精度。
在一些实施例中,还包括:
向终端发送第二指示消息;第二指示消息用于指示终端按照目标周期发送上行信号;上行信号包括第一上行信号和第二上行信号。
具体地,本公开实施例中,UE以非周期和周期相结合的方式发送上行信号。
网络侧设备向UE发送第二指示消息,该第二指示消息用于指示UE按照目标周期发送上行信号。
该目标周期可以与星历信息的更新周期相关联。
例如,上行信号发送周期可配置为星历信息更新周期的1/20、1/15、1/10、1/5、1/2、1等。
UE接收网络侧设备发送的第二指示消息,并根据该目标周期进行周期性发送上行信号。该上行信号可以为第一上行信号和第二上行信号。
网络侧设备根据UE上一次发送的上行信号确定TA调整值,在该TA调整值大于第二门限值的情况下,网络侧设备向UE发送第一指示消息,该第一指示消息用于指示UE发送上行信号。
UE接收网络侧设备发送的第一指示消息,并发送上行信号。
例如,UE按照目标周期分别发送第一上行信号和第二上行信号,网络侧设备接收第二上行信号(UE上一次发送的上行信号),并根据第二上行信号确定TA调整值,在该TA调整值大于第二门限值的情况下,网络侧设备向UE发送第一指示消息,该第一指示消息用于指示UE发送第三上行信号。
UE接收网络侧设备发送的第一指示消息,并发送第三上行信号。
本公开实施例中,以非周期和周期相结合的方式发送上行信号,能够在同步误差较大的情况下,及时进行校正,进一步提高了星历信息不准确或高动态终端情况下的同步精度。
在一些实施例中,还包括:
向终端发送第三指示消息,第三指示消息用于指示终端更新目标周期。
具体地,在本公开实施例中,UE按照预设周期发送上行信号,网络侧设备可以根据接收到的上行信号的信道质量指示(Channel Quality Indicator,CQI)、TA调整值大小等信息动态调整星历信息和上行信号的更新周期。
网络侧设备向UE发送第三指示消息,第三指示消息用于指示UE更新目标周期。
例如,在TA调整值大于某一门限值的情况下,网络侧设备向UE发送第三指示消息,第三指示消息用于指示UE缩小发送上行信号的周期。
本公开实施例中,通过动态调整发送上行信号的周期,即避免了资源浪费。
下面以几个具体的例子,对上述实施例中的方法进行进一步说明。
例1:
图3是本公开实施例提供的初始接入定时同步流程示意图,如图3所示,初始接入过程利用闭环定时同步,初始接入UE利用不准确的星历信息进行T a和T b的定时预补偿,网络侧(设备)利用接收到的PRACH前导码序列与本地根序列做相关,检测相关峰位置,即可检测出残余时偏,网络侧将残余时偏转换成TAC对应的比特数随着RAR下发给UE,UE利用接收到的TAC进行闭环的定时偏差校正,此时TAC下发的校正值可近似等于T e。其中,T a为用户链路传输造成的传输时延,T b为收发时间不同造成的用户链路对应的变化时偏,T e为星历信息不准确或高动态终端(终端基于GNSS预估位置或速度信息不准确)造成的预估时延的偏差时延。
网络侧配置星历信息更新周期等。
网络侧在下行主系统信息块(Master Information Block,MIB)或系 统信息块(System Information Block,SIB)中携带卫星的公共验证公钥(Public Validation Token,PVT)参数或星历参数以及初始接入过程需要的随机接入信道时机(RACH Occasion,RO)资源等信息,并周期更新。
终端进行下行同步后,获取卫星星历信息更新周期、发送PRACH的资源等以及卫星的PVT参数或星历参数。
终端基于不准确星历信息和自身GNSS信息,计算定TA调整值的变化率。首先,终端根据GNSS的位置信息以及星历信息和TA调整值的变化率计算服务链路对应的时延和变化时延,在T1_1时刻接收星历信息等,进行上行定时预补偿,在T1_2时刻发送PRACH(Msg1),考虑星历信息存在误差,此时计算的T a和T b与实际的存在偏差,近似为T e
网络侧根据在T2_1时刻接收并检测PRACH进行残余定时偏差的估计,利用RAR(Msg2)中的TAC在T2_2时刻将校正信息(即利用PRACH检测估计出来的残余定时偏差)下发给UE,便于UE调整TA调整值,使得上行时间同步更精确。
终端根据t3_1时刻接收到的TAC命令进行闭环定时误差的校正,此时TAC下发的时偏校正值近似为T e1,在t3_2时刻向星载基站发送第二次PRACH(Msg1)或上行参考信号,此时进行T a、T b的定时预补偿。
网络侧在t4_1时刻接收并检测第二次PRACH或上行参考信号进行残余定时偏差的估计,利用RAR(Msg2)中的TAC在t4_2时刻将校正信息下发给UE,用于UE调整TA调整值。
终端根据t5_1时刻接收到的TAC命令进行闭环定时误差的校正,此时TAC下发的时偏校正值近似为T e2,UE利用UE时间戳,计算T e的变化率ΔT e(TA调整值的变化率=(T e1-T e2)/(t3_1-t5_1)),每次收到TAC时记录一下时刻,每次上行信号发送时刻t_N,利用时间戳计算T e=ΔT e*(t N-t5 1)+T e2;在T5_2时刻向星载基站发送 Msg3(上行PUSCH),此时进行T a、T b和T e的定时预补偿,其中T e利用T e2和ΔT e以及UE时间戳计算。
网络侧在T6_1时刻接收并检测Msg3(上行PUSCH),然后在T6_2时刻向UE反馈Msg4(下行PDCCH/PDSCH),完成初始接入。
在四步初始接入过程中,基于两次上行信号确定TA调整值的变化率,基于TA调整值的变化率确定后续上行TA的调整值,可以消除由于星历信息不准确或高动态终端导致的TA调整值与实际值不一致的缺陷,提高了星历信息不准确或高动态终端情况下的同步精度。
例2:
图4是本公开实施例提供的初始接入定时同步流程示意图之二,如图4所示,初始接入过程利用闭环定时同步,初始接入UE利用不准确的星历信息进行T a和T b的定时预补偿,网络侧利用接收到的PRACH前导码序列与本地根序列做相关,检测相关峰位置,即可检测出残余时偏,网络侧将残余时偏转换成TAC对应的比特数随着RAR下发给UE,UE利用接收到的TAC进行闭环的定时偏差校正,此时TAC下发的校正值可近似等于T e。其中,T a为用户链路传输造成的传输时延,T b为收发时间不同造成的用户链路对应的变化时偏,T e为星历信息不准确或高动态终端(终端基于GNSS预估位置或速度信息不准确)造成的预估时延的偏差时延。
网络侧配置星历信息更新周期等。
网络侧在下行MIB或SIB中携带卫星的PVT参数或星历参数以及初始接入过程需要的RO资源等信息,并周期更新。
终端进行下行同步后,获取卫星星历信息更新周期、发送PRACH的资源等以及卫星的PVT参数或星历参数。
终端基于不准确星历信息和自身GNSS信息,计算定TA调整值的变化率。首先,终端根据GNSS的位置信息以及星历信息和TA调整值的变化率计算服务链路对应的时延和变化时延,在T1_1时刻接 收星历信息等,进行上行定时预补偿,在T1_2时刻发送PRACH(MsgA),考虑星历信息存在误差,此时计算的T a和T b与实际的存在偏差,近似为T e
网络侧根据在T2_1时刻接收并检测PRACH进行残余定时偏差的估计,利用RAR(MsgB)中的TAC在T2_2时刻将校正信息(即利用PRACH检测估计出来的残余定时偏差)下发给UE,便于UE调整TA调整值,使得上行时间同步更精确。
终端根据t3_1时刻接收到的TAC命令进行闭环定时误差的校正,此时TAC下发的时偏校正值近似为T e1,在t3_2时刻向星载基站发送第二次PRACH(MsgA)或上行参考信号,此时进行T a、T b的定时预补偿。
网络侧在t4_1时刻接收并检测第二次PRACH或上行参考信号进行残余定时偏差的估计,利用RAR(MsgB)中的TAC在t4_2时刻将校正信息下发给UE,用于UE调整TA调整值。
终端根据t5_1时刻接收到的TAC命令进行闭环定时误差的校正,此时TAC下发的时偏校正值近似为T e2,UE利用UE时间戳,计算T e的变化率ΔT e(TA调整值的变化率=(T e1-T e2)/(t3_1-t5_1)),每次收到TAC时记录一下时刻,每次上行信号发送时刻t_N,利用时间戳计算T e=ΔT e*(t N-t5 1)+T e2。
在两步初始接入过程中,基于两次上行信号确定TA调整值的变化率,基于TA调整值的变化率确定后续上行TA的调整值,可以消除由于星历信息不准确或高动态终端导致的TA调整值与实际值不一致的缺陷,提高了星历信息不准确或高动态终端情况下的同步精度。
例3:
初始接入后,可利用开环定时维护和闭环定时维护相结合的方式,即终端自行维护上行定时同步,网络侧检测终端按照非周期发送的上行信号来估计上行定时偏差。开环定时维护是指终端不需要网络的 TA指令,由终端自行维护上行定时同步,闭环目的是校正开环的误差。
网络侧基于非周期发送的上行参考信号(SRS/PTRS/DMRS)进行开环的误差校正,该非周期上行参考信号通过网络侧下发RRC/MAC CE/DCI命令触发,利用TAC通知定时同步校正数值。
网络侧配置星历信息更新周期、非周期触发上行参考信号发送和TAC下发的定时偏差门限值等。
网络侧在下行MIB或SIB中携带卫星的PVT参数或星历参数,并周期更新。
终端进行下行同步后,获取卫星星历信息更新周期以及卫星的PVT参数或星历参数。
网络侧根据接收的信号的CQI、参考信号的时间偏差等信息,在达到门限值的情况下发RRC/MAC CE/DCI命令触发上行参考信号。终端根据网络侧下发的RRC/MAC CE/DCI命令,发送上行参考信号。
网络侧根据接收到的非周期上行参考信号进行定时偏差校正,利用MAC CE中的TAC将校正信息下发给UE,用于UE调整TA调整值,使得上行时间同步更精确。
终端根据最近两次TAC接收到的时偏误差以及UE时间戳,计算T e的变化率。
终端根据GNSS的位置信息以及星历信息和T e的变化率ΔT e计算服务链路对应的时延和变化时延,利用时间戳和ΔT e计算T e,进行上行定时预补偿。
终端根据网络侧配置的星历信息更新周期,周期地接收星历信息。终端根据网络侧发送的TAC命令进行闭环定时误差的校正。
在初始接入后,基于UE非周期发送的两次上行信号确定TA调整值的变化率,基于TA调整值的变化率确定后续上行TA的调整值, 可以消除由于星历信息不准确或高动态终端导致的TA调整值与实际值不一致的缺陷,提高了星历信息不准确或高动态终端情况下的同步精度。
例4:
初始接入后,可利用开环定时维护和闭环定时维护相结合的方式,即终端自行维护上行定时同步,网络侧检测终端按照周期和非周期相结合地发送的上行信号来估计上行定时偏差。开环定时维护是指终端不需要网络的TA指令,由终端自行维护上行定时同步,闭环目的是校正开环的误差。
网络侧基于周期和非周期发送的上行参考信号(SRS/PTRS/DMRS)进行开环的误差校正,非周期上行参考信号通过网络侧下发RRC/MAC CE/DCI命令触发,利用TAC通知定时同步校正数值。
网络侧配置星历信息更新周期,上行参考信号发送周期(可配置为星历信息更新周期的1/20、1/15、1/10、1/5、1/2、1作为周期等)、以及非周期触发上行参考信号发送和TAC下发的定时偏差门限值等。
网络侧在下行MIB或SIB中携带卫星的PVT参数或星历参数,并周期更新。
终端进行下行同步后,获取卫星星历信息更新周期,上行参考信号发送周期以及卫星的PVT参数或星历参数。
终端根据网络侧配置的上行参考信号发送周期,周期地发送上行参考信号。
网络侧根据接收的信号预估时间偏差等信息,当达到某一门限值时,动态调整星历信息和上行参考信号的更新周期,或达到门限值下发RRC/MAC CE/DCI命令触发非周期上行参考信号。
终端根据网络侧下发的RRC/MAC CE/DCI命令,发送非周期上行参考信号。
网络侧根据接收到的周期或非周期上行参考信号进行定时偏差校正,利用MAC CE中的TAC将校正信息下发给UE,用于UE调整TA调整值,使得上行时间同步更精确。
终端根据最近两次TAC接收到的时偏误差以及UE时间戳,计算T e的变化率。
终端根据GNSS的位置信息以及星历信息和T e的变化率以及上次TAC接收到的时偏误差和时偏误差变化率以及UE时间戳计算时延,进行上行定时预补偿。
终端根据网络侧配置的星历信息更新周期,周期地接收星历信息。
终端根据网络侧发送的TAC命令进行闭环定时误差的校正。
在初始接入之后,基于UE按照周期和非周期相结合发送的两次上行信号确定TA调整值的变化率,基于TA调整值的变化率确定后续上行TA的调整值,可以消除由于星历信息不准确或高动态终端导致的TA调整值与实际值不一致的缺陷,提高了星历信息不准确或高动态终端情况下的同步精度。
图5是本公开实施例提供的一种终端的结构示意图,如图5所示,所述终端包括存储器520,收发机500,处理器510,其中:
存储器520,用于存储计算机程序;收发机500,用于在所述处理器510的控制下收发数据;处理器510,用于读取所述存储器520中的计算机程序并执行以下操作:
向网络侧设备发送第一上行信号;
接收所述网络侧设备发送的第一定时调整信息;
向所述网络侧设备发送第二上行信号;
接收所述网络侧设备发送的第二定时调整信息;
基于所述第一定时调整信息和所述第二定时调整信息,确定定时提前TA调整值的变化率;
基于所述TA调整值的变化率确定TA调整值;
根据所述TA调整值进行定时提前。
具体地,收发机500,用于在处理器510的控制下接收和发送数据。
其中,在图5中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器510代表的一个或多个处理器和存储器520代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机500可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,用户接口530还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器510负责管理总线架构和通常的处理,存储器520可以存储处理器510在执行操作时所使用的数据。
在一些实施例中,处理器510可以是中央处理器(Central Processing Unit,CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一所述方法。处理器与存储器也可以物理上分开布置。
在一些实施例中,基于所述TA调整值的变化率确定TA调整值,包括:
判断所述TA调整值的变化率是否大于第一门限值;
在所述TA调整值的变化率大于所述第一门限值的情况下,根据 所述第二定时调整信息、接收到所述第二定时调整信息的时间和TA调整值的变化率确定TA调整值;
在所述TA调整值的变化率小于或等于所述第一门限值的情况下,根据所述第二定时调整信息确定TA调整值,或,根据所述第二定时调整信息、接收到所述第二定时调整信息的时间和上一次确定的TA调整值的变化率确定TA调整值。
在一些实施例中,确定TA调整值的计算公式如下:
T 2=K(t 2-t 1)+T 1
其中,T 2为t 2时刻的TA调整值,t 2为确定T 2的时刻,K为TA调整值的变化率,t 1为接收到所述第二定时调整信息的时间,T 1为所述第二定时调整信息中包含的TA调整值。
在一些实施例中,还包括:
接收所述网络侧设备发送的第一指示消息;所述第一指示消息用于指示终端发送上行信号;所述上行信号包括所述第一上行信号和所述第二上行信号。
在一些实施例中,还包括:
接收所述网络侧设备发送的第二指示消息;所述第二指示消息用于指示所述终端按照目标周期发送所述上行信号。
在一些实施例中,在初始接入过程中,所述第一上行信号为PRACH信号,所述第二上行信号为PRACH信号或上行参考信号;
初始接入之后,所述上行信号为PRACH信号或上行参考信号。
在此需要说明的是,本公开实施例提供的上述终端,能够实现上述执行主体为终端的方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
图6是本公开实施例提供的一种网络侧设备的结构示意图,如图6所示,所述网络侧设备包括存储器620,收发机600,处理器610,其中:
存储器620,用于存储计算机程序;收发机600,用于在所述处理器610的控制下收发数据;处理器610,用于读取所述存储器620中的计算机程序并执行以下操作:
接收终端发送的第一上行信号;
根据所述第一上行信号确定第一定时调整信息,并向所述终端发送所述第一定时调整信息;
接收所述终端发送的第二上行信号;
根据所述第二上行信号确定第二定时调整信息,并向所述终端发送所述第二定时调整信息。
具体地,收发机600,用于在处理器610的控制下接收和发送数据。
其中,在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器610代表的一个或多个处理器和存储器620代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机600可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器610负责管理总线架构和通常的处理,存储器620可以存储处理器610在执行操作时所使用的数据。
处理器610可以是中央处理器(Central Processing Unit,CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
在一些实施例中,在所述第二定时调整信息指示的TA调整值大于第二门限值的情况下,向所述终端发送第一指示消息;所述第一指 示消息用于指示终端发送第三上行信号。
在一些实施例中,还包括:
向所述终端发送第二指示消息;所述第二指示消息用于指示所述终端按照目标周期发送上行信号;所述上行信号包括所述第一上行信号和所述第二上行信号。
在一些实施例中,在初始接入过程中,所述第一上行信号为PRACH信号,所述第二上行信号为PRACH信号或上行参考信号;
初始接入之后,所述上行信号为PRACH信号或上行参考信号。
在一些实施例中,还包括:
向所述终端发送第三指示消息,所述第三指示消息用于指示所述终端更新所述目标周期。
具体地,本公开实施例提供的上述网络侧设备,能够实现上述执行主体为网络侧设备的方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
图7是本公开实施例提供的一种定时提前装置的结构示意图之一,如图7所示,本公开实施例提供一种定时提前装置,包括第一发送模块701、第一接收模块702、第二发送模块703、第二接收模块704、第一确定模块705、第二确定模块706和定时提前模块707,其中:
第一发送模块701用于向网络侧设备发送第一上行信号;第一接收模块702用于接收所述网络侧设备发送的第一定时调整信息;第二发送模块703用于向所述网络侧设备发送第二上行信号;第二接收模块704用于接收所述网络侧设备发送的第二定时调整信息;第一确定模块705用于基于所述第一定时调整信息和所述第二定时调整信息,确定定时提前TA调整值的变化率;第二确定模块706用于基于所述TA调整值的变化率确定TA调整值;定时提前模块707用于根据所 述TA调整值进行定时提前。
在一些实施例中,所述第二确定模块包括判断子模块和第一确定子模块,其中:
所述判断子模块用于判断所述TA调整值的变化率是否大于第一门限值;
所述第一确定子模块用于在所述TA调整值的变化率大于所述第一门限值的情况下,根据所述第二定时调整信息、接收到所述第二定时调整信息的时间和TA调整值的变化率确定TA调整值;
在所述TA调整值的变化率小于或等于所述第一门限值的情况下,根据所述第二定时调整信息确定TA调整值,或,根据所述第二定时调整信息、接收到所述第二定时调整信息的时间和上一次确定的TA调整值的变化率确定TA调整值。
在一些实施例中,确定TA调整值的计算公式如下:
T 2=K(t 2-t 1)+T 1
其中,T 2为t 2时刻的TA调整值,t 2为确定T 2的时刻,K为TA调整值的变化率,t 1为接收到所述第二定时调整信息的时间,T 1为所述第二定时调整信息中包含的TA调整值。
在一些实施例中,还包括第五接收模块;
所述第五接收模块用于接收所述网络侧设备发送的第一指示消息;所述第一指示消息用于指示终端发送上行信号;所述上行信号包括所述第一上行信号和所述第二上行信号。
在一些实施例中,还包括第六接收模块;
所述第六接收模块用于接收所述网络侧设备发送的第二指示消息;所述第二指示消息用于指示所述终端按照目标周期发送所述上行信号。
在一些实施例中,在初始接入过程中,所述第一上行信号为PRACH信号,所述第二上行信号为PRACH信号或上行参考信号;
初始接入之后,所述上行信号为PRACH信号或上行参考信号。
具体地,本公开实施例提供的上述定时提前装置,能够实现上述执行主体为终端的方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
图8是本公开实施例提供的一种定时提前装置的结构示意图之二,如图8所示,本公开实施例提供一种定时提前装置,包括第三接收模块801、第三确定模块802、第四接收模块803和第四确定模块804,其中:
第三接收模块801用于接收终端发送的第一上行信号;第三确定模块802用于根据所述第一上行信号确定第一定时调整信息,并向所述终端发送所述第一定时调整信息;第四接收模块803用于接收所述终端发送的第二上行信号;第四确定模块804用于根据所述第二上行信号确定第二定时调整信息,并向所述终端发送所述第二定时调整信息。
在一些实施例中,还包括第三发送模块;
所述第三发送模块用于在所述第二定时调整信息指示的TA调整值大于第二门限值的情况下,向所述终端发送第一指示消息;所述第一指示消息用于指示终端发送第三上行信号。
在一些实施例中,还包括第四发送模块;
所述第四发送模块用于向所述终端发送第二指示消息;所述第二指示消息用于指示所述终端按照目标周期发送上行信号;所述上行信号包括所述第一上行信号和所述第二上行信号。
在一些实施例中,在初始接入过程中,所述第一上行信号为PRACH信号,所述第二上行信号为PRACH信号或上行参考信号;
初始接入之后,所述上行信号为PRACH信号或上行参考信号。
在一些实施例中,还包括第五发送模块;
所述第五发送模块用于向所述终端发送第三指示消息,所述第三 指示消息用于指示所述终端更新所述目标周期。
具体地,本公开实施例提供的上述定时提前装置,能够实现上述执行主体为网络侧设备的方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
需要说明的是,本公开上述各实施例中对单元/模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
在一些实施例中,还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行上述各实施例提供的方法,包括:
向网络侧设备发送第一上行信号;接收所述网络侧设备发送的第一定时调整信息;向所述网络侧设备发送第二上行信号;接收所述网络侧设备发送的第二定时调整信息;基于所述第一定时调整信息和所 述第二定时调整信息,确定定时提前TA调整值的变化率;基于所述TA调整值的变化率确定TA调整值;根据所述TA调整值进行定时提前。
或者包括:
接收终端发送的第一上行信号;根据所述第一上行信号确定第一定时调整信息,并向所述终端发送所述第一定时调整信息;接收所述终端发送的第二上行信号;根据所述第二上行信号确定第二定时调整信息,并向所述终端发送所述第二定时调整信息。
需要说明的是:所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
另外需要说明的是:本公开实施例中术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本公开的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。
本公开实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本公开实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
本公开实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile  communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、高级长期演进(long term evolution advanced,LTE-A)系统、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G新空口(New Radio,NR)系统等。这多种系统中均包括终端设备和网络设备。系统中还可以包括核心网部分,例如演进的分组系统(Evloved Packet System,EPS)、5G系统(5GS)等。
本公开实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、 接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本公开实施例中并不限定。
本公开实施例涉及的网络设备,可以是基站,该基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本公开实施例涉及的网络设备可以是全球移动通信系统(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本公开实施例中并不限定。在一些网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
网络设备与终端设备之间可以各自使用一或多根天线进行多输入多输出(Multi Input Multi Output,MIMO)传输,MIMO传输可以是单用户MIMO(Single User MIMO,SU-MIMO)或多用户MIMO(Multiple User MIMO,MU-MIMO)。根据根天线组合的形态和数量, MIMO传输可以是2D-MIMO、3D-MIMO、FD-MIMO或massive-MIMO,也可以是分集传输或预编码传输或波束赋形传输等。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不 脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (34)

  1. 一种定时提前方法,其中,包括:
    向网络侧设备发送第一上行信号;
    接收所述网络侧设备发送的第一定时调整信息;
    向所述网络侧设备发送第二上行信号;
    接收所述网络侧设备发送的第二定时调整信息;
    基于所述第一定时调整信息和所述第二定时调整信息,确定定时提前TA调整值的变化率;
    基于所述TA调整值的变化率确定TA调整值;
    根据所述TA调整值进行定时提前。
  2. 根据权利要求1所述的定时提前方法,其中,基于所述TA调整值的变化率确定TA调整值,包括:
    判断所述TA调整值的变化率是否大于第一门限值;
    在所述TA调整值的变化率大于所述第一门限值的情况下,根据所述第二定时调整信息、接收到所述第二定时调整信息的时间和TA调整值的变化率确定TA调整值;
    在所述TA调整值的变化率小于或等于所述第一门限值的情况下,根据所述第二定时调整信息确定TA调整值,或,根据所述第二定时调整信息、接收到所述第二定时调整信息的时间和上一次确定的TA调整值的变化率确定TA调整值。
  3. 根据权利要求2所述的定时提前方法,其中,确定TA调整值的计算公式如下:
    T 2=K(t 2-t 1)+T 1
    其中,T 2为t 2时刻的TA调整值,t 2为确定T 2的时刻,K为TA调整值的变化率,t 1为接收到所述第二定时调整信息的时间,T 1为所述第二定时调整信息中包含的TA调整值。
  4. 根据权利要求1所述的定时提前方法,其中,还包括:
    接收所述网络侧设备发送的第一指示消息;所述第一指示消息用于指示终端发送上行信号;所述上行信号包括所述第一上行信号和所述第二上行信号。
  5. 根据权利要求4所述的定时提前方法,其中,还包括:
    接收所述网络侧设备发送的第二指示消息;所述第二指示消息用于指示所述终端按照目标周期发送所述上行信号。
  6. 根据权利要求4或5所述的定时提前方法,其中,在初始接入过程中,所述第一上行信号为PRACH信号,所述第二上行信号为PRACH信号或上行参考信号;
    初始接入之后,所述上行信号为PRACH信号或上行参考信号。
  7. 一种定时提前方法,其中,包括:
    接收终端发送的第一上行信号;
    根据所述第一上行信号确定第一定时调整信息,并向所述终端发送所述第一定时调整信息;
    接收所述终端发送的第二上行信号;
    根据所述第二上行信号确定第二定时调整信息,并向所述终端发送所述第二定时调整信息。
  8. 根据权利要求7所述的定时提前方法,其中,在所述第二定时调整信息指示的TA调整值大于第二门限值的情况下,向所述终端发送第一指示消息;所述第一指示消息用于指示终端发送第三上行信号。
  9. 根据权利要求8所述的定时提前方法,其中,还包括:
    向所述终端发送第二指示消息;所述第二指示消息用于指示所述终端按照目标周期发送上行信号;所述上行信号包括所述第一上行信号和所述第二上行信号。
  10. 根据权利要求9所述的定时提前方法,其中,在初始接入过程中,所述第一上行信号为PRACH信号,所述第二上行信号为 PRACH信号或上行参考信号;
    初始接入之后,所述上行信号为PRACH信号或上行参考信号。
  11. 根据权利要求9所述的定时提前方法,其中,还包括:
    向所述终端发送第三指示消息,所述第三指示消息用于指示所述终端更新所述目标周期。
  12. 一种终端,其中,包括存储器,收发机,处理器;
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    向网络侧设备发送第一上行信号;
    接收所述网络侧设备发送的第一定时调整信息;
    向所述网络侧设备发送第二上行信号;
    接收所述网络侧设备发送的第二定时调整信息;
    基于所述第一定时调整信息和所述第二定时调整信息,确定定时提前TA调整值的变化率;
    基于所述TA调整值的变化率确定TA调整值;
    根据所述TA调整值进行定时提前。
  13. 根据权利要求12所述的终端,其中,基于所述TA调整值的变化率确定TA调整值,包括:
    判断所述TA调整值的变化率是否大于第一门限值;
    在所述TA调整值的变化率大于所述第一门限值的情况下,根据所述第二定时调整信息、接收到所述第二定时调整信息的时间和TA调整值的变化率确定TA调整值;
    在所述TA调整值的变化率小于或等于所述第一门限值的情况下,根据所述第二定时调整信息确定TA调整值,或,根据所述第二定时调整信息、接收到所述第二定时调整信息的时间和上一次确定的TA调整值的变化率确定TA调整值。
  14. 根据权利要求13所述的终端,其中,确定TA调整值的计算公式如下:
    T 2=K(t 2-t 1)+T 1
    其中,T 2为t 2时刻的TA调整值,t 2为确定T 2的时刻,K为TA调整值的变化率,t 1为接收到所述第二定时调整信息的时间,T 1为所述第二定时调整信息中包含的TA调整值。
  15. 根据权利要求12所述的终端,其中,还包括:
    接收所述网络侧设备发送的第一指示消息;所述第一指示消息用于指示终端发送上行信号;所述上行信号包括所述第一上行信号和所述第二上行信号。
  16. 根据权利要求15所述的终端,其中,还包括:
    接收所述网络侧设备发送的第二指示消息;所述第二指示消息用于指示所述终端按照目标周期发送所述上行信号。
  17. 根据权利要求15或16所述的终端,其中,在初始接入过程中,所述第一上行信号为PRACH信号,所述第二上行信号为PRACH信号或上行参考信号;
    初始接入之后,所述上行信号为PRACH信号或上行参考信号。
  18. 一种网络侧设备,其中,包括存储器,收发机,处理器;
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    接收终端发送的第一上行信号;
    根据所述第一上行信号确定第一定时调整信息,并向所述终端发送所述第一定时调整信息;
    接收所述终端发送的第二上行信号;
    根据所述第二上行信号确定第二定时调整信息,并向所述终端发送所述第二定时调整信息。
  19. 根据权利要求18所述的网络侧设备,其中,在所述第二定 时调整信息指示的TA调整值大于第二门限值的情况下,向所述终端发送第一指示消息;所述第一指示消息用于指示终端发送第三上行信号。
  20. 根据权利要求19所述的网络侧设备,其中,还包括:
    向所述终端发送第二指示消息;所述第二指示消息用于指示所述终端按照目标周期发送上行信号;所述上行信号包括所述第一上行信号和所述第二上行信号。
  21. 根据权利要求20所述的网络侧设备,其中,在初始接入过程中,所述第一上行信号为PRACH信号,所述第二上行信号为PRACH信号或上行参考信号;
    初始接入之后,所述上行信号为PRACH信号或上行参考信号。
  22. 根据权利要求20所述的网络侧设备,其中,还包括:
    向所述终端发送第三指示消息,所述第三指示消息用于指示所述终端更新所述目标周期。
  23. 一种定时提前装置,其中,包括:
    第一发送模块,用于向网络侧设备发送第一上行信号;
    第一接收模块,用于接收所述网络侧设备发送的第一定时调整信息;
    第二发送模块,用于向所述网络侧设备发送第二上行信号;
    第二接收模块,用于接收所述网络侧设备发送的第二定时调整信息;
    第一确定模块,用于基于所述第一定时调整信息和所述第二定时调整信息,确定定时提前TA调整值的变化率;
    第二确定模块,用于基于所述TA调整值的变化率确定TA调整值;
    定时提前模块,用于根据所述TA调整值进行定时提前。
  24. 根据权利要求23所述的定时提前装置,其中,所述第二确 定模块包括判断子模块和第一确定子模块;
    所述判断子模块用于判断所述TA调整值的变化率是否大于第一门限值;
    所述第一确定子模块用于在所述TA调整值的变化率大于所述第一门限值的情况下,根据所述第二定时调整信息、接收到所述第二定时调整信息的时间和TA调整值的变化率确定TA调整值;
    在所述TA调整值的变化率小于或等于所述第一门限值的情况下,根据所述第二定时调整信息确定TA调整值,或,根据所述第二定时调整信息、接收到所述第二定时调整信息的时间和上一次确定的TA调整值的变化率确定TA调整值。
  25. 根据权利要求24所述的定时提前装置,其中,确定TA调整值的计算公式如下:
    T 2=K(t 2-t 1)+T 1
    其中,T 2为t 2时刻的TA调整值,t 2为确定T 2的时刻,K为TA调整值的变化率,t 1为接收到所述第二定时调整信息的时间,T 1为所述第二定时调整信息中包含的TA调整值。
  26. 根据权利要求23所述的定时提前装置,其中,还包括第五接收模块;
    所述第五接收模块用于接收所述网络侧设备发送的第一指示消息;所述第一指示消息用于指示终端发送上行信号;所述上行信号包括所述第一上行信号和所述第二上行信号。
  27. 根据权利要求26所述的定时提前装置,其中,还包括第六接收模块;
    所述第六接收模块用于接收所述网络侧设备发送的第二指示消息;所述第二指示消息用于指示所述终端按照目标周期发送所述上行信号。
  28. 根据权利要求26或27所述的定时提前装置,其中,在初始接入过程中,所述第一上行信号为PRACH信号,所述第二上行信号 为PRACH信号或上行参考信号;
    初始接入之后,所述上行信号为PRACH信号或上行参考信号。
  29. 一种定时提前装置,其中,包括:
    第三接收模块,用于接收终端发送的第一上行信号;
    第三确定模块,用于根据所述第一上行信号确定第一定时调整信息,并向所述终端发送所述第一定时调整信息;
    第四接收模块,用于接收所述终端发送的第二上行信号;
    第四确定模块,用于根据所述第二上行信号确定第二定时调整信息,并向所述终端发送所述第二定时调整信息。
  30. 根据权利要求29所述的定时提前装置,其中,还包括第三发送模块;
    所述第三发送模块用于在所述第二定时调整信息指示的TA调整值大于第二门限值的情况下,向所述终端发送第一指示消息;所述第一指示消息用于指示终端发送第三上行信号。
  31. 根据权利要求30所述的定时提前装置,其中,还包括第四发送模块;
    所述第四发送模块用于向所述终端发送第二指示消息;所述第二指示消息用于指示所述终端按照目标周期发送上行信号;所述上行信号包括所述第一上行信号和所述第二上行信号。
  32. 根据权利要求31所述的定时提前装置,其中,在初始接入过程中,所述第一上行信号为PRACH信号,所述第二上行信号为PRACH信号或上行参考信号;
    初始接入之后,所述上行信号为PRACH信号或上行参考信号。
  33. 根据权利要求31所述的定时提前装置,其中,还包括第五发送模块;
    所述第五发送模块用于向所述终端发送第三指示消息,所述第三指示消息用于指示所述终端更新所述目标周期。
  34. 一种处理器可读存储介质,其中,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1至11中的任一项所述的定时提前方法。
PCT/CN2022/117544 2021-09-26 2022-09-07 定时提前方法、装置及存储介质 WO2023045759A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111130321.X 2021-09-26
CN202111130321.XA CN115884346A (zh) 2021-09-26 2021-09-26 定时提前方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2023045759A1 true WO2023045759A1 (zh) 2023-03-30

Family

ID=85719289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117544 WO2023045759A1 (zh) 2021-09-26 2022-09-07 定时提前方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN115884346A (zh)
WO (1) WO2023045759A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110446254A (zh) * 2019-09-12 2019-11-12 成都天奥集团有限公司 一种用于卫星通信系统的上行定时提前量终端预测方法
CN110611949A (zh) * 2019-09-12 2019-12-24 成都天奥集团有限公司 一种卫通系统上行定时提前量信关站预测方法
WO2020181201A1 (en) * 2019-03-07 2020-09-10 Apple Inc. Enhanced autonomous uplink timing adjustment
CN113347697A (zh) * 2020-02-18 2021-09-03 华为技术有限公司 更新定时偏移量的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020181201A1 (en) * 2019-03-07 2020-09-10 Apple Inc. Enhanced autonomous uplink timing adjustment
CN110446254A (zh) * 2019-09-12 2019-11-12 成都天奥集团有限公司 一种用于卫星通信系统的上行定时提前量终端预测方法
CN110611949A (zh) * 2019-09-12 2019-12-24 成都天奥集团有限公司 一种卫通系统上行定时提前量信关站预测方法
CN113347697A (zh) * 2020-02-18 2021-09-03 华为技术有限公司 更新定时偏移量的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OPPO: "NTN operation for Doppler and Timing Advance", 3GPP DRAFT; R1-1908984 NTN OPERATION FOR DOPPLER AND TIMING ADVANCE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, Czech; 20190826 - 20190830, 17 August 2019 (2019-08-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051765588 *

Also Published As

Publication number Publication date
CN115884346A (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
CN111800851B (zh) 一种时延补偿方法及装置
US11178632B2 (en) Time service method, terminal device, and network device
WO2020192424A1 (zh) 覆盖调整方法、装置及系统
US20240056825A1 (en) Ue capability information processing method and apparatus, device, and storage medium
US20220116882A1 (en) Reference signal determination method and device, and ue
WO2022078115A1 (zh) 功率确定方法、装置、终端及网络侧设备
US20220104281A1 (en) Random access method and apparatus
EP4027687A1 (en) Communication method and apparatus for activating secondary cell
CN114258092B (zh) 定时提前补偿方法、基站、终端和存储介质
US11115948B2 (en) Measurement signal sending method, indication information sending method, and device
WO2023045759A1 (zh) 定时提前方法、装置及存储介质
WO2022083752A1 (zh) 一种阵面选择方法、终端、网络设备及存储介质
CN115175295B (zh) 终端设备的控制方法、装置及存储介质
CN114501639A (zh) 一种阵面选择方法、终端、网络设备及存储介质
WO2024120192A1 (zh) 卫星通信系统频率同步方法、装置及存储介质
CN115052332B (zh) 信号传输方法、装置及存储介质
WO2023231767A1 (zh) 定时提前值传输方法、装置及存储介质
WO2023169401A1 (zh) 一种信息处理方法、装置及可读存储介质
WO2024022026A1 (zh) 信号传输方法、设备、装置及存储介质
CN114501558B (zh) 一种信息传输、获取方法及装置
WO2023029810A1 (zh) 一种信号处理方法、终端、设备及可读存储介质
WO2023130900A1 (zh) 定时测量上报、定时配置、信息传输方法、装置及设备
US12021603B2 (en) Time delay compensation method and apparatus and time delay control method and apparatus
WO2023016446A1 (zh) 基于ta的同步方法、设备、装置及存储介质
CN117545059A (zh) 定时提前获取方法、装置、终端及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE