WO2023005989A1 - 一种参考信号资源确定的方法及装置 - Google Patents

一种参考信号资源确定的方法及装置 Download PDF

Info

Publication number
WO2023005989A1
WO2023005989A1 PCT/CN2022/108340 CN2022108340W WO2023005989A1 WO 2023005989 A1 WO2023005989 A1 WO 2023005989A1 CN 2022108340 W CN2022108340 W CN 2022108340W WO 2023005989 A1 WO2023005989 A1 WO 2023005989A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
resource
signal resources
resources
time slots
Prior art date
Application number
PCT/CN2022/108340
Other languages
English (en)
French (fr)
Inventor
张永平
张闽
余政
李铁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22848594.2A priority Critical patent/EP4380091A1/en
Publication of WO2023005989A1 publication Critical patent/WO2023005989A1/zh
Priority to US18/423,512 priority patent/US20240243873A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities

Definitions

  • the embodiments of the present application relate to fields such as communications, and in particular to a method and device for determining reference signal resources.
  • NR is based on multi-input-multi-output (MIMO).
  • MIMO multi-input-multi-output
  • NCJT non-coherent joint transmission
  • multiple transmission points can provide data transmission services for the same terminal device at the same time.
  • the terminal device receives reference signals on the two reference signal resources included in the same channel measurement resource pair, and performs joint channel estimation on the reference signals received on these two reference signal resources according to the NCJT measurement assumption .
  • the terminal device receives reference signals on the two reference signal resources included in the same channel measurement resource pair, and performs joint channel estimation on the reference signals received on these two reference signal resources according to the NCJT measurement assumption .
  • CSI channel state information
  • the embodiment of the present application provides a method and device for determining reference signal resources, which are used to solve the problem that the terminal equipment is receiving signals from different transmission points during the CSI measurement process due to the uplink transmission between There is a phase discontinuity problem on the reference signals of different transmission points.
  • a method for determining reference signal resources is provided, which is applied to a terminal device or a chip in the terminal device.
  • the configuration information of the reference signal resource set is acquired, the configuration information of the reference signal resource set includes the configuration information of K reference signal resources, and the configuration information of the K reference signal resources is used to determine the K reference signal resources, so
  • K is a positive integer; wherein, the time slots where at least two of the K reference signal resources are located are different time slots, or the first time slot of the at least two reference signal resources among the K reference signal resources There is an uplink symbol in an interval.
  • the problem of phase difference caused by uplink and downlink switching can be avoided further by other means.
  • the time slots where at least two reference signal resources are located in the K reference signal resources are different time slots. Compared with the time slots where the K reference signal resources are located in the same time slot, the configuration of the reference signal resources is more flexible. It can be avoided that in order to solve the above-mentioned problems, too many restrictions on the reference signal resources are made, which causes the degradation of the performance of the entire network.
  • the determining the N reference signal resources included in the channel measurement resource pair includes: receiving first signaling, where the first signaling is used to indicate the N reference signal resources; and/ Or, determine the N reference signal resources among the K reference signal resources according to a pre-rule.
  • reference signals may also be received on the N reference signal resources; and/or, a CSI report associated with the N reference signal resources may be reported.
  • the N reference signal resources are in Q time slots, where Q is a positive integer less than or equal to N, the Q time slots are consecutive time slots, and the Q time slots only contain downlink symbols and/or flexible symbols;
  • the N reference signal resources are in T time slots, where T is a positive integer less than or equal to N, the T time slots are discontinuous time slots, and the T time slots only contain downlink symbols and /or flexible symbols, and the time slots between the T time slots only contain downlink symbols and/or flexible symbols; or, only downlink symbols and/or flexible symbols exist in the third interval of the N reference signal resources .
  • the implementation is configured to avoid phase inconsistency.
  • no reference signal is received on at least one of the N reference signal resources; and/or, no CSI report associated with the N reference signal resources is reported; and/or Or, report a non-updated CSI report.
  • the non-received reference signal may be processed as non-reception, or received and not used, and not treated as a valid signal/information.
  • the non-updated CSI report can be the last reported CSI report stored in the UE cache, or an out-of-range CSI report.
  • the channel quality indicator CQI contained in this out-of-range CSI report is 0, because CQI equal to 0 is a If the value exceeds the range, the network device will know that the CSI report is an out-of-range CSI report after receiving the CSI report.
  • the main purpose of reporting the unupdated CSI report is that when the CSI report is transmitted together with other uplink data, the uplink data capacity will be reduced if the CSI report is not reported, and the UE needs to perform rate matching again so that the uplink data can be accurately mapped to the network device Within the allocated uplink resources, this process will cause higher implementation complexity and higher power consumption of the UE.
  • This implementation avoids uplink and downlink switching between the N reference signal resources included in the channel measurement resource pair through the configuration of the network side equipment, thereby avoiding phase inconsistency.
  • the N reference signal resources are associated with the same transmission opportunity, and flexible symbols and/or uplink symbols exist in symbols corresponding to the transmission opportunities; or, the N reference signal resources are in Different time slots, and the reference signal resource type associated with the reference signal resource set is periodic or semi-persistent; or, there are uplink symbols and/or flexible symbols in the second interval of the N reference signal resources; or, the Uplink symbols and/or flexible symbols exist in the third interval of the N reference signal resources.
  • the first interval refers to the time range between the end symbol of the first reference signal resource and the start symbol of the second reference signal resource
  • the first reference signal resource and the The second reference signal resource is associated with the same transmission opportunity
  • the first reference resource is the first reference signal resource of the at least two reference signal resources
  • the second reference resource is the first reference signal resource of the at least two reference signal resources The final reference signal resource.
  • the second interval refers to the time range between the end symbol of the third reference signal resource and the start symbol of the fourth reference signal resource
  • the third reference signal resource and the The fourth reference signal resource is associated with the same transmission opportunity
  • the third reference resource is the first reference signal resource among the N reference signal resources
  • the fourth reference resource is the last among the N reference signal resources Reference signal resources.
  • the third interval refers to a time range between the first reference signal transmission opportunity of the fifth reference signal resource and the second reference signal transmission opportunity of the sixth reference signal resource, and the first Neither the reference signal transmission opportunity nor the second reference signal transmission opportunity is later than the CSI reference resource, and the first reference signal transmission opportunity is one of the reference signal transmission opportunities of the fifth reference signal resource that is closest to the CSI reference resource or Multiple reference signal transmission opportunities, the second reference signal transmission opportunity is one or more reference signal transmission opportunities closest to the CSI reference resource among the reference signal transmission opportunities of the sixth reference signal resource, and the fifth reference resource is the A reference signal resource in the N reference signal resources, the sixth reference resource is a reference signal resource in the N reference signal resources.
  • the time slot in which the first reference signal transmission opportunity is located and the time slot in which the second reference signal transmission opportunity is located are consecutive time slots.
  • first capability information may also be sent, where the first capability information is used to indicate that the terminal device supports the N reference signal resources in different time slots; or, the first capability information uses The purpose is to indicate that the terminal device does not support the N reference signal resources in different time slots; or, the first capability information is used to indicate that the terminal device only supports the N reference signal resources in different time slots.
  • second capability information may also be sent, where the second capability information is used to indicate that the terminal device supports uplink symbols in the second interval of the N reference signal resources; or, the second capability The information is used to indicate that the terminal device does not support the presence of uplink symbols in the second interval of the N reference signal resources; or, the second capability information is used to indicate that the terminal device only supports the second interval of the N reference signal resources. There is an ascending symbol.
  • third capability information may also be sent, where the third capability information is used to indicate that the terminal device supports the presence of uplink symbols in the third interval of the N reference signal resources; or, the third capability The information is used to indicate that the terminal device does not support the presence of uplink symbols in the third interval of the N reference signal resources; or, the third capability information is used to indicate that the terminal device only supports the third interval of the N reference signal resources. There is an ascending symbol.
  • a communication device in a second aspect, has a function of realizing the above-mentioned first aspect and any possible implementation of the first aspect.
  • These functions may be implemented by hardware, or may be implemented by executing corresponding software through hardware.
  • the hardware or software includes one or more functional modules corresponding to the above functions.
  • a communication device including a processor, and optionally, a memory; the processor is coupled to the memory; the memory is used to store computer programs or instructions; the processor, A terminal for executing part or all of the computer programs or instructions in the memory, when the part or all of the computer programs or instructions are executed, for realizing the above first aspect and any possible implementation method of the first aspect the functionality of the device.
  • the apparatus may further include a transceiver, where the transceiver is configured to send a signal processed by the processor, or receive a signal input to the processor.
  • the transceiver may perform the sending action or the receiving action performed by the terminal device in any possible implementation of the first aspect and the first aspect.
  • the present application provides a system-on-a-chip, which includes one or more processors (also referred to as processing circuits), and the electrical coupling between the processors and memories (also referred to as storage media)
  • the memory may or may not be located in the chip system; the memory is used to store computer programs or instructions; the processor is used to execute part or all of the memory
  • the computer program or instruction is used to realize the function of the terminal device in the above first aspect and any possible implementation method of the first aspect when part or all of the computer program or instruction is executed.
  • the chip system may further include an input and output interface (also referred to as a communication interface), the input and output interface is used to output the signal processed by the processor, or receive an input to the signal to the processor.
  • the input/output interface may perform the sending action or the receiving action performed by the terminal device in any possible implementation of the first aspect and the first aspect. Specifically, the output interface performs a sending action, and the input interface performs a receiving action.
  • system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • a computer-readable storage medium for storing a computer program, and the computer program includes instructions for realizing the functions of the first aspect and any possible implementation of the first aspect.
  • a computer-readable storage medium is used to store a computer program, and when the computer program is executed by a computer, the computer can execute the first aspect and the terminal device in any possible implementation method of the first aspect. Methods.
  • a computer program product includes: computer program code, when the computer program code is run on a computer, the computer is made to execute the above-mentioned first aspect and any possible method of the first aspect.
  • Figure 1a is a schematic diagram of a communication system provided in an embodiment of the present application.
  • Figure 1b is a schematic diagram of a multi-TRP transmission provided in the embodiment of the present application.
  • Figure 1c is a schematic diagram of a multi-TRP transmission provided in the embodiment of the present application.
  • FIG. 2 is a flow chart of a method for determining reference signal resources provided in an embodiment of the present application
  • FIG. 3 is a schematic diagram of a transmission opportunity of a periodic/semi-persistent reference signal resource provided in an embodiment of the present application
  • Fig. 4 is a schematic diagram of intervals of multiple reference signal resources in the same reference signal resource set provided in the embodiment of the present application;
  • FIG. 5 is a schematic diagram of a reference signal resource distribution provided in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a reference signal resource distribution provided in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a reference signal resource distribution provided in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a reference signal resource distribution provided in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a reference signal resource distribution provided in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a reference signal resource distribution provided in an embodiment of the present application.
  • FIG. 11 is a structural diagram of a communication device provided in an embodiment of the present application.
  • FIG. 12 is a structural diagram of a communication device provided in an embodiment of the present application.
  • system architecture of the method provided by the embodiments of the present application will be briefly described below. It can be understood that the system architecture described in the embodiments of the present application is for more clearly illustrating the technical solutions of the embodiments of the present application, and does not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as satellite communication systems and traditional mobile communication systems.
  • the satellite communication system may be integrated with a traditional mobile communication system (ie, a ground communication system).
  • Communication systems such as: wireless local area network (wireless local area network, WLAN) communication system, wireless fidelity (wireless fidelity, WiFi) system, long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) ) system, LTE time division duplex (time division duplex, TDD), fifth generation (5th generation, 5G) system or new radio (new radio, NR), sixth generation (6th generation, 6G) system, and other future Communication systems, etc., also support communication systems that integrate multiple wireless technologies. For example, they can also be applied to non-terrestrial networks such as unmanned aerial vehicles, satellite communication systems, and high altitude platform station (HAPS) communications.
  • NTN is a system that integrates terrestrial mobile communication networks.
  • Fig. 1a is a schematic structural diagram of a communication system 1000 applied by an embodiment of the present application.
  • the communication system includes a radio access network 100 and a core network 200 , and optionally, the communication system 1000 may also include the Internet 300 .
  • the radio access network 100 may include at least one radio access network device (such as 110a and 110b in Figure 1a), and may also include at least one terminal (such as 120a-120j in Figure 1a).
  • the terminal is connected to the wireless access network device in a wireless manner, and the wireless access network device is connected to the core network in a wireless or wired manner.
  • the core network equipment and the wireless access network equipment can be independent and different physical equipment, or the functions of the core network equipment and the logical functions of the wireless access network equipment can be integrated on the same physical equipment, or it can be a physical equipment It integrates some functions of core network equipment and some functions of wireless access network equipment. Terminals and wireless access network devices may be connected to each other in a wired or wireless manner.
  • Fig. 1a is only a schematic diagram, and the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in Fig. 1a.
  • the radio access network equipment can be a base station (base station), an evolved base station (evolved NodeB, eNodeB), a transmission reception point (transmission reception point, TRP), and the next generation in the fifth generation (5th generation, 5G) mobile communication system
  • Base station (next generation NodeB, gNB), the next generation base station in the sixth generation (6th generation, 6G) mobile communication system, the base station in the future mobile communication system or the access node in the WiFi system, etc.; it can also complete the base station part
  • a functional module or unit for example, can be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the radio access network device may be a macro base station (such as 110a in Figure 1a), a micro base station or an indoor station (such as 110b in Figure 1a), or a relay node or a donor node. It can be understood that all or part of the functions of the radio access network device in this application may also be realized by software functions running on hardware, or by virtualization functions instantiated on a platform (such as a cloud platform). The embodiment of the present application does not limit the specific technology and specific equipment form adopted by the radio access network equipment. For ease of description, a base station is used as an example of a radio access network device for description below.
  • a terminal may also be called terminal equipment, user equipment (user equipment, UE), mobile station, mobile terminal, and so on.
  • Terminals can be widely used in various scenarios, such as device-to-device (D2D), vehicle-to-everything (V2X) communication, machine-type communication (MTC), Internet of Things ( internet of things, IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wearables, smart transportation, smart city, etc.
  • Terminals can be mobile phones, tablet computers, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal.
  • Base stations and terminals can be fixed or mobile. Base stations and terminals can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and artificial satellites in the air. The embodiments of the present application do not limit the application scenarios of the base station and the terminal.
  • the helicopter or UAV 120i in FIG. base station for base station 110a, 120i is a terminal, that is, communication between 110a and 120i is performed through a wireless air interface protocol.
  • communication between 110a and 120i may also be performed through an interface protocol between base stations.
  • 120i compared to 110a, 120i is also a base station. Therefore, both the base station and the terminal can be collectively called a communication device, 110a and 110b in FIG. 1a can be called a communication device with a base station function, and 120a-120j in FIG. 1a can be called a communication device with a terminal function.
  • the communication between the base station and the terminal, between the base station and the base station, and between the terminal and the terminal can be carried out through the licensed spectrum, the communication can also be carried out through the unlicensed spectrum, and the communication can also be carried out through the licensed spectrum and the unlicensed spectrum at the same time; Communications may be performed on frequency spectrums below megahertz (gigahertz, GHz), or communications may be performed on frequency spectrums above 6 GHz, or communications may be performed using both frequency spectrums below 6 GHz and frequency spectrums above 6 GHz.
  • the embodiments of the present application do not limit the frequency spectrum resources used for wireless communication.
  • the functions of the base station may also be performed by modules (such as chips) in the base station, or may be performed by a control subsystem including the functions of the base station.
  • the control subsystem including base station functions here may be the control center in the application scenarios of the above-mentioned terminals such as smart grid, industrial control, intelligent transportation, and smart city.
  • the functions of the terminal may also be performed by a module (such as a chip or a modem) in the terminal, or may be performed by a device including the terminal function.
  • the base station sends a downlink signal or downlink information to the terminal, and the downlink information is carried on the downlink channel;
  • the terminal sends an uplink signal or uplink information to the base station, and the uplink information is carried on the uplink channel.
  • NR is based on multi-input-multi-output (MIMO).
  • MIMO multi-input-multi-output
  • a multi-TRP transmission technology was introduced in Release-16.
  • the multi-TRP transmission technology uses non-coherent joint transmission (non -coherent joint transmission, NCJT) mode.
  • NCJT non-coherent joint transmission
  • at most 2 TRPs can provide data transmission service for the same UE at the same time.
  • Release-16 currently provides two methods, method 1 is based on multiple downlink control information (DCI), refer to Figure 1b; method 2 is based on a single DCI method, refer to Figure 1c.
  • DCI downlink control information
  • two TRPs each transmit one downlink control information DCI, and schedule two physical layer downlink shared channels (Physical downlink share channel, PDSCH) to be sent to the same UE, wherein one DCI schedules one PDSCH.
  • DCI Downlink control information
  • mode 2 only one TRP among the two TRPs transmits one DCI and schedules one PDSCH. However, a part of the streams/layers (corresponding to some demodulation reference signal (demodulation reference signal, DMRS) ports) in this PDSCH is transmitted by one TRP, and another part of the streams/layers (corresponding to some DMRS ports) is transmitted by another TRP.
  • demodulation reference signal demodulation reference signal
  • the network side needs to obtain the channel state information CSI of the downlink channel between the TRP and different UEs in advance.
  • the acquisition process may be that the TRP transmits a channel state detection signal (for example, a non-zero power channel state information reference signal (non-zero power channel state information reference signal, NZP CSI-RS) is used in NR), and the UE measures resources in the pre-configured channel (channel measurement resource, CMR) to receive the NZP CSI-RS signal for channel estimation.
  • the network side will further configure a set of interference measurement resources (interference measurement resource, IMR) corresponding to the CMR for the UE, and the UE receives signals on these pre-configured IMRs to perform interference measurement.
  • IMR interference measurement resource
  • the CSI is calculated. Feedback to the network side through the uplink channel, and the network side sends service data to the UE on the downlink data channel (PDSCH) after scheduling according to the CSI report fed back by each UE.
  • PDSCH downlink data channel
  • the network side configures CMR and IMR for the UE, and the UE performs corresponding channel estimation and interference estimation based on the signals on the CMR and IMR.
  • the above The simplified description of the process is: UE performs CSI measurement on CMR and IMR.
  • the CSI measurement is based on the measurement assumption of a single TRP, that is, when the UE measures the CSI, it is assumed that the subsequent data transmission comes from one TRP, in one CMR and The corresponding CSI results are obtained by measuring on its associated IMR.
  • Release-16 introduces the multi-TRP transmission mode
  • the CSI measurement of Release-15 and Release-16 will not be able to support the measurement needs of the multi-TRP transmission mode (that is, the above-mentioned NCJT transmission mode).
  • the existing CSI measurement is enhanced to be able to support the CSI measurement assumed by the NCJT measurement.
  • NR Release-17 stipulates that the network device can configure K non-zero power channel state information reference signal NZP CSI-RS resources for channel measurement for the UE, and these resources form NZP A collection of CSI-RS resources.
  • the network side can further configure or indicate R (R ⁇ 1) channel measurement resource pairs (channel measurement resource pair, CMR pair) among the K NZP CSI-RS resources, and each channel measurement resource pair CMR pair contains 2 NZP CSI-RS resources, each NZP CSI-RS resource will be associated with a different TRP.
  • R R ⁇ 1 channel measurement resource pairs (channel measurement resource pair, CMR pair) among the K NZP CSI-RS resources, and each channel measurement resource pair CMR pair contains 2 NZP CSI-RS resources, each NZP CSI-RS resource will be associated with a different TRP.
  • two NZP CSI-RS resources corresponding to the same channel measurement resource pair will be associated with two different transmission configuration indicator state (TCI state) information, and the TCI state contains the Quasi co-location (quasi co-location, QCL) information of NZP CSI-RS resources.
  • TCI state transmission configuration indicator state
  • QCL Quasi co-location
  • the UE can only receive the reference signal on the corresponding NZP CSI-RS resource according to the QCL information contained in the TCI state.
  • the UE performs CSI calculation according to the NCJT measurement assumption on the 2 NZP CSI-RS resources included in each channel measurement resource pair. Therefore, when R channel measurement resource pairs are configured, it means that there are R NCJT measurement assumptions.
  • the two NZP CSI-RS resource configurations corresponding to the pair contain TCI states with different QCL information, and the QCL information in each TCI state can be associated with a different TRP.
  • the network device can configure the UE to perform CSI calculation on K NZP CSI-RS resources respectively according to a single TRP measurement assumption, that is, there are K single TRP measurement assumptions.
  • the network side can further configure or indicate M (M ⁇ K) NZP CSI-RS resources, that is, M CMRs and their associated interference measurement resources (interference measurement resource, IMR) are configured or indicated.
  • M CMRs and their associated interference measurement resources interference measurement resource, IMR
  • the UE performs CSI calculation on the M CMRs and their associated IMRs based on a single TRP measurement assumption.
  • the above NZP CSI-RS resource set includes M single TRP measurement hypotheses.
  • the NZP CSI-RS resources contained in the above NZP CSI-RS resource set are used for channel measurement, and in order to help assist network equipment scheduling, UE also needs to take interference into account when doing CSI measurement, that is, interference estimation based on IMR .
  • the network device will also configure a resource set for interference measurement that includes multiple IMRs for the UE, where the IMRs can be channel state information-interference measurement (channel state information-interference measurement, CSI-IM) resources, or is the NZP CSI-RS resource used for interference measurement.
  • the interference mainly includes the interference other than the TRP that participates in the cooperative NCJT transmission.
  • the interference estimation is only based on the CSI-IM resource, that is, in the above NCJT CSI estimation, the interference is This is accomplished by configuring channel state information-interference measurement CSI-IM resources on network devices.
  • NZP CSI-RS resources can be periodic, or semi-persistent, or aperiodic.
  • the NZP CSI-RS resource may be periodic (Periodic), and the NZP CSI-RS is sent on the periodic NZP CSI-RS resource according to a certain period.
  • the NZP CSI-RS resource may be semi-persistent (Semi-persistent), and the network device may activate or deactivate the transmission of the NZP CSI-RS on the semi-persistent NZP CSI-RS resource through downlink signaling.
  • NZP CSI-RS resources are periodic, and semi-persistent NZP CSI-RS resources can be understood as windowed periodic NZP CSI-RS resources.
  • the NZP CSI-RS resource may be aperiodic (Aperiodic), and the network device activates the NZP CSI-RS through downlink signaling to send once on the aperiodic NZP CSI-RS resource.
  • Aperiodic aperiodic
  • NR Release 17 stipulates that based on the above measurement resource configuration, the network side can configure the UE to include in the same CSI report:
  • Option 1 X CSI assumed by single TRP measurement and 1 CSI assumed by NCJT measurement; where X can be 0, 1, 2;
  • Option 2 1 CSI, which is measured under one of all single TRP measurement assumptions and NCJT measurement assumptions.
  • CSI includes: CSI-RS resource indicator (CSI-RS resource indicator, CRI), rank indicator (rank indicator, RI), channel quality indicator (channel quality indicator, CQI), precoding matrix indicator (precoding matrix indicator, PMI) , one or more items in layer indicator (layer indicator, LI).
  • CRI is used to indicate an NZP CSI-RS resource or channel measurement resource pair
  • RI used to indicate rank value
  • CQI is used to indicate channel quality
  • PMI is used to indicate precoding matrix information
  • layer indication is used to indicate layer information. Which of the above information is specifically included in the CSI is based on the network configuration.
  • the time slots of different NZP CSI-RS resources in the same NZP CSI-RS resource set may be the same or different.
  • the UE receives reference signals on the two NZP CSI-RS resources contained in the same channel measurement resource pair, and performs joint operations on the reference signals received on these two NZP CSI-RS resources according to the NCJT measurement assumption channel estimation.
  • the two NZP CSI-RS resources are in different time slots, and there is uplink transmission between the two time slots, there will be a phase on the reference signal received by the UE on the two NZP CSI-RS resources Difference.
  • each time the UE starts downlink reception there will be an initial random phase.
  • two NZP CSI-RS resources are in different time slots, and there is uplink transmission between the two time slots, when the reference signal is received on the NZP CSI-RS resource in the latter time slot, due to the previous There is uplink and downlink switching, and the UE restarts downlink reception, so there will be a new random phase, which is usually different from the random phase on the NZP CSI-RS resource in the previous slot.
  • the reference signals on the two NZP CSI-RS resources simulate the signals from the two TRPs in the same time slot.
  • the random phases from the two TRP signals are the same, there is no phase difference, and the phase difference in the channel estimation will cause the UE to be based on the two NZP CSI-RS resources contained in the same channel measurement resource pair.
  • the reference signal estimates inter-stream interference, biased.
  • the channel parameters obtained on the two NZP CSI-RS resources are represented by ⁇ 1*H1 and ⁇ 2*H2 respectively.
  • the channel parameters are a whole, and ⁇ and H cannot be distinguished.
  • ⁇ 1 represents a phase on one resource
  • ⁇ 2 represents a phase on another resource
  • H1 and H2 represent physical channel parameters between two TRPs and the UE.
  • H1 and H2 are Nr ⁇ Nt matrices, and Nr represents the number of receiving antenna ports of the UE. Assuming that the numbers of transmitting antenna ports of the two TRPs are the same, they are both represented by Nt.
  • ⁇ 1 is a diagonal matrix of Nr ⁇ Nr
  • ⁇ 2 is also a diagonal matrix of Nr ⁇ Nr
  • the elements on the diagonal are Among them, ⁇ a and ⁇ b are due to a random phase that appears when the radio frequency link of the UE is started, and this phase is completely random.
  • the UE estimates the channel quality indicator CQI, it is quantified based on the signal-to-interference-plus-noise ratio (SINR):
  • I inter-layer is inter-flow interference
  • I inter-cell is inter-cell interference
  • the network device After receiving the CQI fed back by the UE, the network device will select parameters for NCJT transmission, such as code rate and modulation order, based on the CQI value.
  • parameters for NCJT transmission such as code rate and modulation order
  • the present application proposes various schemes, in order to avoid in multi-TRP transmission, due to the uplink and downlink switching between multiple (two or even more) NZP CSI-RS resources of the same channel measurement resource pair The phase difference causes the estimated CSI parameters to be inaccurate.
  • the configuration of this application can be equivalent to an indication.
  • a method for determining reference signal resources including:
  • Step 201 The terminal device obtains configuration information of a reference signal resource set, the configuration information of the reference signal resource set includes configuration information of K reference signal resources, and the configuration information of the K reference signal resources is used to determine K reference signal resources resources, the K is a positive integer.
  • the terminal device may determine K reference signal resources for channel measurement according to the configuration information of the K reference signal resources, where K is a positive integer.
  • configuration information of a reference signal resource may determine a reference signal resource.
  • the configuration information of the reference signal resource set can configure that one or at least two reference signal resources are located in different time slots.
  • the configuration information of the reference signal resource set can configure uplink symbols to exist in the first interval of at least two reference signal resources.
  • the time slots where the K reference signal resources are located are the same time slot, which can solve the above-mentioned phase difference problem caused by uplink and downlink switching, but because too many reference signal resources are concentrated in In the same time slot, the number of configurable reference signal resources will be limited, resulting in a decrease in the performance of the entire network.
  • time slots where at least two reference signal resources among the K reference signal resources are located are different time slots.
  • the time slots where at least two of the K reference signal resources are located are different time slots. Compared with the time slots where the K reference signal resources are located are the same time slot, configuration of the reference signal resources is more flexible. It can be avoided that in order to solve the above-mentioned problems, too many restrictions on the reference signal resources are made, which causes the degradation of the performance of the entire network.
  • An example for the terminal device to acquire the configuration information of the reference signal resource set is as follows:
  • the terminal device receives configuration information of a reference signal resource set including configuration information of K reference signal resources sent by the network device.
  • the terminal device receives a signaling (the signaling may also be called CSI configuration information).
  • the CSI configuration information is used to indicate (associate) the configuration information of the reference signal resource set, and the configuration information of the reference signal resource set includes the configuration information of K reference signal resources. It can be understood that the CSI configuration information is used to instruct the terminal device to use some previously configured reference signal resource sets as the reference signal resource sets to be acquired in step 201 .
  • the configuration information of the reference signal resource set includes configuration information of K' reference signal resources, and the UE can determine K' reference signal resources for channel measurement according to the configuration information of K' reference signal resources, where K' is A positive integer greater than or equal to K.
  • the above K reference signal resources are K reference signal resources determined from the K' reference signal resources by signaling (the signaling may also be referred to as CSI configuration information), or the K reference signal resources are determined from K K reference signal resources determined in ' reference signal resources.
  • the CSI configuration information is sent through RRC signaling, such as RRC signaling CSI-MeasConfig, or the CSI configuration information is RRC signaling CSI-ReportConfig.
  • the CSI configuration information is CSI-MeasConfig
  • CSI-MeasConfig includes CSI report configuration information
  • the CSI report configuration information includes CSI-ResourceConfigId.
  • the CSI-ResourceConfig corresponding to the CSI-ResourceConfigId can determine one or more reference signal resource sets.
  • the number of reference signal resource sets determined by CSI-ResourceConfig is one.
  • the number of reference signal resource sets determined by the CSI-ResourceConfig is multiple.
  • the reference signal resource configuration information may configure the period and slot offset of the reference signal resource.
  • the reference signal resource configuration information includes a parameter periodicityAndOffset, which is used to configure the period and time slot offset of the reference signal resource. Based on the period and the time slot offset, the time slot in which each transmission opportunity of the reference signal resource is located can be determined. Specifically, the UE assumes that the reference signal is in the slot numbered launch, where Satisfy the following formula:
  • is used to determine the subcarrier spacing and is configured by the network device;
  • n f represents the frame number,
  • T offset and T CSI-RS are the time slot offset and period configured by the network device.
  • RRC signaling is usually carried by PDSCH.
  • UE needs to receive and decode PDSCH after receiving PDSCH. After decoding, it needs to make corresponding configuration according to the signaling content. This process takes a certain time. After the above operations are completed, UE can follow the The RRC signaling performs a corresponding action, and the RRC signaling officially takes effect. After the RRC signaling configured on the network side takes effect, according to the formula (1) introduced above, the UE assumes that there will be a reference signal transmission opportunity every T CSI-RS time slots.
  • the reference signal is sent in the nth period of the reference signal resource 0.
  • the reference signal resource 0 of the nth period mentioned here may be the nth transmission opportunity of the reference signal 1.
  • the reference signal is in the reference signal resource
  • the transmission in the n+1th period of 1, the reference signal resource 1 of the n+1th period mentioned here may be the n+1th transmission opportunity of the reference signal 2.
  • the reference signal resource type associated with the reference signal resource set is aperiodic
  • the reference signal has only one transmission opportunity on each reference signal resource, and the time slots of multiple reference signal resources in the same reference signal resource set are the same time slot.
  • This application defines intervals of multiple reference signal resources, the first one in the time domain is introduced below, and the last one in the time domain is the last.
  • the end symbol can be the start time of the end symbol or the end time of the end symbol.
  • the start symbol may be the start time of the start symbol or the end moment of the start symbol.
  • the time range between the end symbol of the first reference signal resource and the start symbol of the last reference signal resource is defined as: In the same transmission opportunity, a section of multiple reference signal resources in the same reference signal resource set. As shown in Figure 4, in the same transmission opportunity of multiple reference signal resources in the same reference signal resource set, the end time of the end symbol of the first reference signal resource and the time interval of the start symbol of the last reference signal resource The time range between start times is defined as: an interval of multiple reference signal resources in the same reference signal resource set in the same transmission opportunity.
  • the time range between the start symbol of the first reference signal resource and the end symbol of the last reference signal resource is defined as :
  • a section of multiple reference signal resources in the same reference signal resource set is defined as:
  • the time range between the start symbol of the first reference signal resource and the start symbol of the last reference signal resource is defined is: in the same transmission opportunity, a section of multiple reference signal resources in the same reference signal resource set.
  • the time range between the end symbol of the first reference signal resource and the end symbol of the last reference signal resource is defined as:
  • a section of multiple reference signal resources in the same reference signal resource set is defined as:
  • the first interval mentioned in this application refers to an interval of at least two reference signal resources among the K reference signal resources.
  • the second interval refers to an interval of N reference signal resources.
  • the first interval refers to the time range between the end symbol of the first reference signal resource and the start symbol of the second reference signal resource
  • the first reference signal resource is associated with the second reference signal resource
  • the first reference resource is the first reference signal resource of the at least two reference signal resources
  • the second reference resource is the last reference signal resource of the at least two reference signal resources.
  • the second interval refers to the time range between the end symbol of the third reference signal resource and the start symbol of the fourth reference signal resource
  • the third reference signal resource is associated with the fourth reference signal resource
  • the third reference resource is the first reference signal resource among the N reference signal resources
  • the fourth reference resource is the last reference signal resource among the N reference signal resources.
  • the third interval refers to the time range between the first reference signal transmission opportunity of the fifth reference signal resource and the second reference signal transmission opportunity of the sixth reference signal resource, the first reference signal transmission opportunity and the second reference signal transmission opportunity No two reference signal transmission opportunities are later than the CSI reference resource, and the first reference signal transmission opportunity is one or more reference signal transmission opportunities closest to the CSI reference resource among the reference signal transmission opportunities of the fifth reference signal resource, so The second reference signal transmission opportunity is one or more reference signal transmission opportunities closest to the CSI reference resource among the reference signal transmission opportunities of the sixth reference signal resource, and the fifth reference resource is one or more reference signal transmission opportunities among the N reference signal resources A reference signal resource, where the sixth reference resource is a reference signal resource in the N reference signal resources.
  • the time slot in which the first reference signal transmission opportunity is located and the time slot in which the second reference signal transmission opportunity is located are consecutive time slots.
  • Step 202 The terminal device determines N reference signal resources included in the channel measurement resource pair, and the N reference signal resources are N reference signal resources in the K reference signal resources, and the N is less than or equal to K , and a positive integer greater than 1.
  • the set of reference signal resources may support one or more pairs of channel measurement resources, and determining the N reference signal resources included in the pair of channel measurement resources in step 202 may be understood as determining one or more pairs of channel measurement resources supported by the set of reference signal resources
  • Each channel measurement resource pair of contains N reference signal resources. If multiple channel measurement resource pairs are supported, the N reference signal resources corresponding to different channel resource measurement pairs are generally different. For example, two channel resource measurement pairs are supported, respectively including N1 and N2 reference signal resources. The N1 reference signal resource and the N2 reference signal resource are usually different.
  • the configuration information of the reference signal resource set may indicate the number P of channel measurement resource pairs supported by the reference signal resource set, where P is an integer greater than or equal to 1.
  • the number P of channel measurement resource pairs supported by the reference signal resource set is indicated through other signaling (such as CSI configuration information).
  • the terminal device may receive first signaling, where the first signaling is used to indicate the N reference signal resources; and/or, according to a pre-rule, the K reference signal
  • the N reference signal resources are determined in resources.
  • the first signaling here may be included in the CSI configuration information, or included in the configuration information of the reference signal resource set.
  • the CSI configuration information or the configuration information of the reference signal resource set (such as the first signaling), or according to the preset rules, determine the N reference signal resources contained in the channel measurement resource pair among the K reference signal resources, and N is less than Or a positive integer equal to K and greater than 1.
  • each channel measurement resource pair includes two reference signal (such as NZP CSI-RS) resources, or contains more than two reference signal (such as NZP CSI-RS) resources.
  • NZP CSI-RS such as NZP CSI-RS
  • each channel measurement resource pair contains two reference signal (such as NZP CSI-RS) resources.
  • N reference signal resources contained in the channel measurement pair among the K reference signal resources is as follows:
  • Example 1 According to the CSI configuration information or the first signaling included in the configuration information of the reference signal resource set, determine the channel measurement resource pair among the K reference signal resources.
  • the first signaling may indicate the number P of channel measurement resource pairs, and P bitmaps of length K, where K represents the number of reference signal resources included in the reference signal resource set.
  • K represents the number of reference signal resources included in the reference signal resource set.
  • 0 in the bitmap indicates that the corresponding reference signal resource can be used as the reference signal resource corresponding to the measurement resource, and 1 indicates that the corresponding reference signal resource cannot be used as the reference signal resource corresponding to the measurement resource.
  • 0 in the bitmap indicates that the corresponding reference signal resource cannot be used as the reference signal resource corresponding to the measurement resource, and 1 indicates that the corresponding reference signal resource can be used as the reference signal resource corresponding to the measurement resource.
  • P 1 included in the first signaling and bitmap 0011, reference signal resources corresponding to #0 and #1 form a pair of channel measurement resources.
  • Example 2 According to a pre-rule, determine a pair of channel measurement resources among the K reference signal resources.
  • the two reference signal resources are respectively ⁇ #0, #1 ⁇ , then the reference signal resources corresponding to #0 and #1 form a pair of channel measurement resources.
  • the preset rule is: adjacent two of the K reference signal resources are combined into a channel measurement resource pair.
  • Example 3 Example 1 and Example 2 are combined to determine a pair of channel measurement resources.
  • the channel measurement resource pair is determined among the K reference signal resources according to the CSI configuration information or the first signaling included in the configuration information of the reference signal resource set, and pre-rules.
  • the first signaling indicates the number P of channel measurement resource pairs
  • the preset rule is: among the K reference signal resources, the first 2P reference signal resources that are adjacent to each other (also can be understood as pairwise) are combined into P channel measurement resource pairs.
  • the terminal device can receive reference signals on the N reference signal resources and/or report a CSI report associated with the N reference signal resources. It can be understood that modes 1 to 6 are to avoid phase inconsistency through configuration. Wherein, one channel measurement resource pair is associated with one CSI report.
  • the UE when the CSI reporting type is configured as option 2 (that is, the option 2 introduced above: 1 CSI, this CSI is measured under one of all single TRP measurement assumptions and NCJT measurement assumptions), The UE should determine a CSI in the single TRP measurement assumption and the NCJT measurement assumption, and report this CSI to the network device, so the CSI included in the final CSI report is not necessarily based on the N reference signal resources included in the channel measurement resource pair
  • the measured one may be associated with one reference signal resource in the K reference signal resources or a subset of the K reference signal resources, that is, the CSI assumed by a single TRP measurement.
  • the above CSI is the CSI determined after comparison of multiple CSIs measured on all measurement hypotheses, that is, K reference signal resources or K reference signal resource subsets, and determined channel measurement resource pairs.
  • the above CSI report should also be understood as being associated with the N reference signal resources included in the channel measurement resource pair.
  • the N reference signal resources included in one channel measurement resource pair may be in different time slots or in the same time slot.
  • reference signal resource 0 and reference signal resource 1 are in the same time slot, corresponding to symbols i+1 and i+3 respectively, and there are only downlink symbols (D) in the interval between i+1 and i+3 , there is no uplink symbol (U) and flexible symbol (F).
  • the UE There may be no uplink symbols in the interval of at least two reference signal resources among the K reference signal resources, then in the current transmission opportunity (transmission opportunities existing in the interval of two reference signal resources without uplink symbols), the UE The reference signal is received on the N reference signal resources included in the channel measurement resource pair, and the CSI report associated with the N reference signal resources is reported.
  • K 4 reference signal resources, respectively ⁇ #0, #1, #2, #3 ⁇
  • the channel measurement resource pair includes ⁇ #0, #1 ⁇ reference signal resources, ⁇ #0, #1 ⁇ reference
  • any other intervals of reference signal resources can have uplink symbols and/or flexible Symbols, the interval of ⁇ #0, #2 ⁇ reference signal resources, or the interval of ⁇ #0, #3 ⁇ reference signal resources, or the interval of ⁇ #0, #2, #3 ⁇ reference signal resources, etc., can exist Uplink symbols and/or flexible symbols, which greatly improves the flexibility of network device configuration.
  • No uplink transmission may be no transmission, zero power, or no effective signal/information transmission.
  • the UE does not require to transmit on the above-mentioned uplink symbols, and at this time, there is no uplink-downlink switching between the N reference signal resources, and there is also no problem of phase inconsistency. Then, in the current transmission opportunity, the UE receives the reference signal on the N reference signal resources included in the channel measurement resource pair, and reports the CSI report associated with the N reference signal resources.
  • the N reference signal resources are in the same time slot, and the reference signal resource type associated with the reference signal resource set is periodic or semi-persistent.
  • multiple (N) reference signal resources of the same channel measurement resource pair are restricted to be in the same time slot.
  • the UE receives the reference signal on the N reference signal resources included in the channel measurement resource pair, and reports the CSI report associated with the N reference signal resources.
  • reference signal resource 0 and reference signal resource 1 are in the same time slot, corresponding to symbols 1 and 5 respectively, and there are only downlink symbols (D) in the interval between symbols 1 and 5, and no uplink symbols ( U) and flexible symbols (F).
  • K 4 reference signal resources, respectively ⁇ #0, #1, #2, #3 ⁇
  • the channel measurement resource pair includes ⁇ #0, #1 ⁇ reference signal resources, ⁇ #0, #1 ⁇ reference
  • the signal resources are in the same time slot.
  • the possibility of uplink and downlink switching between ⁇ #0, #1 ⁇ reference signal resources is very low, and the problem of phase inconsistency is greatly alleviated.
  • the time slots of any other reference signal resources can be the same or Are not the same.
  • the time slot where ⁇ #0, #2 ⁇ reference signal resource is located, or the time slot where ⁇ #0, #3 ⁇ reference signal resource is located, or the time slot where ⁇ #0, #2, #3 ⁇ reference signal resource is located etc. can be the same or different, which greatly improves the flexibility of network device configuration.
  • the N reference signal resources are in Q time slots, wherein Q is a positive integer less than or equal to N and greater than or equal to 1, and when Q is greater than 1, the Q time slots are consecutive time slots (in are continuous in time), and the Q time slots only include downlink symbols and/or flexible symbols.
  • the Q time slots only contain downlink symbols and/or flexible symbols, for example, there may be only downlink symbols in the Q time slots, that is, all downlink symbols; for another example, there are only downlink symbols and flexible symbols in the Q time slots, That is, some downlink symbols and some flexible symbols; for another example, there are only flexible symbols in Q time slots, that is, all flexible symbols.
  • the reference signal resource type associated with the reference signal resource set is periodic or semi-persistent.
  • the UE receives the reference signal on the N reference signal resources included in the channel measurement resource pair, and reports the CSI report associated with the N reference signal resources.
  • N 3
  • reference signal resources 1 and 2 are in time slot 2
  • reference signal resource 3 is in time slot 3
  • time slot 2 and time slot 3 are continuous and only contain downlink symbols (D).
  • K 4 reference signal resources, respectively ⁇ #0, #1, #2, #3 ⁇ , wherein the channel measurement resource pair includes ⁇ #1, #2, #3 ⁇ reference signal resources, ⁇ #1 ,#2 ⁇ reference signal resource is in time slot 2, ⁇ #3 ⁇ reference signal resource is in time slot 3, time slot 2 and time slot 3 are consecutive time slots, and there are only downlink symbols in time slot 2 and time slot 3 . Therefore, when the UE receives reference signals on ⁇ #1, #2, #3 ⁇ reference signal resources, there will be no problem of phase inconsistency.
  • the N reference signal resources are in T time slots, where T is a positive integer less than or equal to N and greater than 1, the T time slots are discontinuous time slots, and the T time slots only contain downlink symbols and/or flexible symbols, and the time slots between the T time slots only include downlink symbols and/or flexible symbols.
  • the T time slots only contain downlink symbols and/or flexible symbols, for example, there may be only downlink symbols in the T time slots, that is, all downlink symbols; for another example, there are only downlink symbols and flexible symbols in the T time slots, That is, some downlink symbols and some flexible symbols; for another example, there are only flexible symbols in T time slots, that is, all flexible symbols.
  • the reference signal resource type associated with the reference signal resource set is periodic or semi-persistent.
  • the UE receives the reference signal on the N reference signal resources included in the channel measurement resource pair, and reports the CSI report associated with the N reference signal resources.
  • reference signal resource 1 is in time slot 2
  • reference signal resource 2 is in time slot 4
  • time slot 2 and time slot 4 only contain downlink symbols (D)
  • time slot 3 only contains Include a descender (D).
  • K 4 reference signal resources, respectively ⁇ #0, #1, #2, #3 ⁇ , where the channel measurement resource pair includes ⁇ #1, #2 ⁇ reference signal resources, and ⁇ #1 ⁇ reference signal
  • the resource is in time slot 2
  • the ⁇ #2 ⁇ reference signal resource is in time slot 4.
  • Time slot 2 and time slot 4 are discontinuous time slots. There are only downlink symbols in time slot 2 and time slot 4.
  • time slot 2 There are only downlink symbols in slot 3 between slot 4 and slot 4. Therefore, when the UE receives the reference signal on the ⁇ #1, #2 ⁇ reference signal resource, there will be no problem of phase inconsistency.
  • the third interval refers to the time range between the first reference signal transmission opportunity of the fifth reference signal resource and the second reference signal transmission opportunity of the sixth reference signal resource, the first reference signal transmission opportunity and the second reference signal transmission opportunity No two reference signal transmission opportunities are later than the CSI reference resource, and the first reference signal transmission opportunity is one or more reference signal transmission opportunities closest to the CSI reference resource among the reference signal transmission opportunities of the fifth reference signal resource, so The second reference signal transmission opportunity is one or more reference signal transmission opportunities closest to the CSI reference resource among the reference signal transmission opportunities of the sixth reference signal resource, and the fifth reference resource is one or more reference signal transmission opportunities among the N reference signal resources A reference signal resource, where the sixth reference resource is a reference signal resource in the N reference signal resources.
  • the time slot in which the first reference signal transmission opportunity is located and the time slot in which the second reference signal transmission opportunity is located are consecutive time slots.
  • the one or more reference signal transmission opportunities are not later than the CSI reference resource; or,
  • the one or more reference signal transmission opportunities are not later than the CSI reference resource, and the one or more reference signal transmission opportunities are reference signal transmission opportunities closest to the CSI reference resource.
  • the UE reports the CSI report associated with the N reference signal resources included in the channel measurement resource pair when the following conditions are met:
  • each reference signal resource if the reference signal resource is periodic, there are multiple transmission opportunities for the reference signal resource; if the reference signal resource is aperiodic, there is only one transmission opportunity for the reference signal resource .
  • one or more transmission opportunities that are not later than the CSI resource can be found, and one or more transmission opportunities that are closest to the CSI reference resource and not later than the CSI resource among the reference signal resources can be found. launch opportunity.
  • each reference signal resource if there are multiple transmission opportunities, there are no uplink symbols and/or flexible symbols among the multiple transmission opportunities. Further optionally, there are almost no uplink symbols and/or flexible symbols among all the transmissions corresponding to the N reference signal resources.
  • each reference signal resource if there is one transmission opportunity, there are no uplink symbols and/or flexible symbols among the N transmission opportunities corresponding to the N reference signal resources.
  • the time slot where the CSI reference resource is located may be nn CSI_ref .
  • n CSI_ref can be greater than or equal to , and make the time slot nn CSI_ref an effective downlink time slot, where ⁇ UL is used to determine the uplink subcarrier spacing.
  • ⁇ UL can be 0 or 1 or 2 or 3.
  • n CSI_ref can be greater than or equal to and make the slot nn CSI_ref a valid downlink slot.
  • n CSI_ref can be greater than or equal to and make the slot nn CSI_ref a valid downlink slot.
  • a set of values can be predefined according to different measurement types and requirements. This set of values defines the minimum time required for the UE to process different types of CSI measurements.
  • the value of Z' belongs to this set of values. The unit of Z' is the number of symbols , Indicates the number of symbols contained in a slot, Indicates rounding down.
  • the channel measurement resource pair includes reference signal resource 0 and reference signal resource 1
  • reference signal resource 0 is in the previous time slot of the time slot where the CSI reference resource is located
  • the reference resources are in the same time slot, and there are only downlink symbols between the transmission opportunities of the reference signal resource 0 and the reference signal resource 1 . Therefore, there will be no phase inconsistency problem when the UE receives the reference signal at reference signal resource 0 and reference signal resource 1, so the UE receives the reference signal at reference signal resource 0 and reference signal resource 1, and reports the N The CSI report associated with each reference signal resource.
  • the delay of UE processing CSI is fully considered, so before the above CSI reference resources, there is no
  • the condition of the uplink symbol and/or the flexible symbol can guarantee the delay requirement of the UE to process the CSI, and the UE can have at least one group of reference signal resources without the problem of phase consistency.
  • the following mode 7 can be understood as the configuration of the network side equipment, which causes the uplink and downlink switching between the N reference signal resources included in the channel measurement resource pair, so that there is a problem of phase inconsistency.
  • the UE may not receive a reference signal on at least one reference signal resource among the N reference signal resources.
  • the UE does not report the CSI report that contains the association relationship with the N reference signal resources, which can prevent the waste of uplink resources caused by invalid CSI reporting.
  • the UE reports the unupdated CSI report.
  • the non-received reference signal may be processed as non-reception, or received and not used, and not treated as a valid signal/information.
  • the CSI report that has not been updated here can be the last reported CSI report stored in the UE cache, or an over-range CSI report.
  • the channel quality indicator CQI contained in this over-range CSI report is 0, because CQI equals 0 is An out-of-range value, the network device will know that the CSI report is an out-of-range CSI report upon receiving the CSI report.
  • the main purpose of reporting the unupdated CSI report is that when the CSI report is transmitted together with other uplink data, the uplink data capacity will be reduced if the CSI report is not reported, and the UE needs to perform rate matching again so that the uplink data can be accurately mapped to the network device Within the allocated uplink resources, this process will cause higher implementation complexity and higher power consumption of the UE.
  • Case 1 The reference signal resource type associated with the reference signal resource set is periodic or semi-persistent, within the same transmission opportunity.
  • the N reference signal resources are associated with the same transmission opportunity, and flexible symbols and/or uplink symbols exist in symbols corresponding to the transmission opportunities.
  • the symbol corresponding to any one of the N reference signal resources included in the determined channel measurement resource pair is a flexible symbol.
  • N 2
  • the UE since the reference signal resource 1 in the channel measurement resource pair corresponds to the flexible symbol (F), the UE does not need to receive the reference signal on the reference signal resource 0 and the reference signal resource 1 .
  • the network device configures a subframe structure containing flexible symbols for the UE through high-level signaling.
  • the network device can configure the flexible symbols (F) configured in the subframe as uplink symbols (U) or downlink symbols through high-layer signaling or physical layer signaling. symbol (D).
  • the main reason for the above provisions is: according to the existing technology (such as NR Release15/16), for periodic or semi-persistent reference signal resources, when the symbol where the reference signal resource is located is a flexible symbol, the UE does not receive it.
  • the UE will not receive this reference signal resource in this receiving opportunity. Instead, wait until the next receiver opportunity to receive.
  • the reference signal resource 0 in the channel measurement resource pair is received at the first receiving opportunity, and the symbol in which it is located is a downlink symbol; the reference signal resource 1 in the channel measurement resource pair is in the first receiving opportunity, and the symbol in which it is located is The symbol is a flexible symbol, but no reception is performed; if the symbol where the reference signal resource 1 is located is a downlink symbol on the second receiving opportunity, the UE performs corresponding reception.
  • the symbol after the symbol where the first receiver opportunity of reference signal resource 1 is located is an uplink symbol, which means that the symbol where the first receiver opportunity of reference signal resource 0 is located is the same as the symbol where the second receiver opportunity of reference signal resource 1 is located.
  • Case 2 The reference signal resource type associated with the reference signal resource set is periodic or semi-persistent, and the N reference signal resources included in the channel measurement resource pair are in different time slots.
  • Case 3 Uplink symbols and/or flexible symbols exist in the second interval of the N reference signal resources included in the channel measurement resource pair.
  • the interval of N reference signal resources includes uplink and downlink switching, which will cause a problem of phase inconsistency.
  • the one or more reference signal transmission opportunities are Not later than the CSI reference resource, and the one or more reference signal transmission opportunities are reference signal transmission opportunities closest to the CSI reference resource.
  • the UE reports first capability information, and the first capability information is used to indicate that the UE supports the same channel measurement resource pair containing N reference signal resources in different time slots, or the first capability The information is used to indicate that the time slots of the N reference signal resources contained in the same channel measurement resource pair are not supported, or the first capability information is used to indicate that the UE only supports the N reference signal resources contained in the same channel measurement resource pair The time slot in which the resource resides is different.
  • the network side may configure the N reference signal resources included in the same channel measurement resource pair to be on different time slots. If it is not supported, then the network side configures the N reference signal resources included in the same channel measurement resource pair on the same time slot.
  • the UE reports the second capability information
  • the second capability information is used to indicate that the UE supports uplink symbols and/or flexible symbols in the second interval of the N reference signal resources included in the same channel measurement resource pair , or, the second capability information is used to indicate that the UE does not support uplink symbols and/or flexible symbols in the second interval of the N reference signal resources included in the same channel measurement resource pair, or the second capability information is used to indicate that the UE It is only supported that there are no uplink symbols in the second interval of the N reference signal resources included in the same channel measurement resource pair.
  • the network side can configure the second interval of the N reference signal resources included in the same channel measurement resource pair to include uplink symbols and/or flexible symbols. If it is not supported, then the network side may configure that the second interval of the N reference signal resources included in the same channel measurement resource pair does not include uplink symbols and/or flexible symbols.
  • the UE reports third capability information, and the third capability information is used to indicate that the UE supports uplink symbols and/or flexible symbols in the third section of the N reference signal resources included in the same channel measurement resource pair , or, the third capability information is used to indicate that the UE does not support the presence of uplink symbols and/or flexible symbols in the second interval of the N reference signal resources included in the same channel measurement resource pair, or the third capability information is used to indicate that the UE It is only supported that there is no uplink symbol in the third section of the N reference signal resources included in the same channel measurement resource pair.
  • the network side can configure the third section of the N reference signal resources included in the same channel measurement resource pair to include uplink symbols and/or flexible symbols. If it is not supported, then the network side may configure that the third interval of the N reference signal resources included in the same channel measurement resource pair does not include uplink symbols and/or flexible symbols.
  • the UE reports capability information, which is used to indicate whether to support the two reference signal resources contained in the same channel measurement resource pair in different time slots; and/or, used to indicate whether to support the two reference signal resources contained in the same channel measurement resource pair Uplink symbols exist between signal resources. By reporting the capability information, the network device can be properly configured for the terminal device.
  • the method in the embodiment of the present application is introduced above, and the device in the embodiment of the present application will be introduced in the following.
  • the method and the device are based on the same technical concept. Since the principles of the method and the device to solve problems are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • the embodiment of the present application may divide the device into functional modules according to the above method example, for example, each function may be divided into each functional module, or two or more functions may be integrated into one module.
  • These modules can be implemented not only in the form of hardware, but also in the form of software function modules. It should be noted that the division of the modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be another division manner during specific implementation.
  • the device 1100 may include: a processing module 1110, and optionally, a receiving module 1120a, a sending module 1120b, and a storage module 1130 .
  • the processing module 1110 may be connected to the storage module 1130 and the receiving module 1120a and the sending module 1120b respectively, and the storage module 1130 may also be connected to the receiving module 1120a and the sending module 1120b.
  • the above-mentioned receiving module 1120a and sending module 1120b may also be integrated together and defined as a transceiver module.
  • the apparatus 1100 may be a terminal device, or may be a chip or a functional unit applied in the terminal device.
  • the apparatus 1100 has any function of the terminal device in the above method, for example, the apparatus 1100 can execute each step performed by the terminal device in the above method in FIG. 2 .
  • the receiving module 1120a may perform the receiving action performed by the terminal device in the above method embodiments.
  • the sending module 1120b can execute the sending action performed by the terminal device in the above method embodiments.
  • the processing module 1110 may execute other actions except the sending action and the receiving action among the actions performed by the terminal device in the above method embodiments.
  • the processing module 1110 is configured to acquire configuration information of a reference signal resource set, where the configuration information of the reference signal resource set includes configuration information of K reference signal resources, and the configuration information of the K reference signal resources The configuration information is used to determine K reference signal resources, where K is a positive integer;
  • the time slots where at least two reference signal resources among the K reference signal resources are located are different time slots, or there are uplink symbol;
  • N reference signal resources included in the channel measurement resource pair and the N reference signal resources are N reference signal resources in the K reference signal resources, and the N is less than or equal to K and greater than 1 positive integer.
  • the receiving module 1120a is configured to receive first signaling, where the first signaling is used to indicate the N reference signal resources;
  • the processing module 1110 is configured to determine the N reference signal resources among the K reference signal resources according to a pre-rule.
  • the sending module 1120b is configured to receive reference signals on the N reference signal resources; and/or report a CSI report associated with the N reference signal resources.
  • the storage module 1130 may store computer-executed instructions of the method executed by the terminal device, so that the processing module 1110, the receiving module 1120a, and the sending module 1120b execute the method executed by the terminal device in the above examples.
  • the storage module may include one or more memories, and the memories may be devices used to store programs or data in one or more devices and circuits.
  • the storage module may be a register, cache or RAM, etc., and the storage module may be integrated with the processing module.
  • the storage module can be ROM or other types of static storage devices that can store static information and instructions, and the storage module can be independent from the processing module.
  • the transceiver module may be an input or output interface, a pin or a circuit, and the like.
  • the device can be realized by a general bus architecture.
  • FIG. 12 a schematic block diagram of a communication device 1200 is provided.
  • the apparatus 1200 may include: a processor 1210 , and optionally, a transceiver 1220 and a memory 1230 .
  • the transceiver 1220 can be used to receive programs or instructions and transmit them to the processor 1210, or the transceiver 1220 can be used for the device 1200 to communicate and interact with other communication devices, such as interactive control signaling and/or business data etc.
  • the transceiver 1220 may be a code and/or data read/write transceiver, or the transceiver 1220 may be a signal transmission transceiver between the processor and the transceiver.
  • the processor 1210 is electrically coupled to the memory 1230 .
  • the apparatus 1200 may be a terminal device, or may be a chip applied to the terminal device. It should be understood that the apparatus has any function of the terminal device in the above method, for example, the apparatus 1200 can execute the various steps performed by the terminal device in the method in FIG. 2 and above.
  • the memory 1230 is used to store computer programs; the processor 1210 can be used to call the computer programs or instructions stored in the memory 1230 to execute the method performed by the terminal device in the above example, or through the The transceiver 1220 executes the method executed by the terminal device in the above example.
  • the device may be implemented by a general-purpose processor (a general-purpose processor may also be referred to as a chip or system-on-a-chip).
  • a general-purpose processor may also be referred to as a chip or system-on-a-chip.
  • the general-purpose processor implementing the apparatus applied to the terminal device includes: a processing circuit (the processing circuit may also be referred to as a processor); optionally, further includes: a An input/output interface, a storage medium (the storage medium may also be referred to as a memory), the storage medium is used to store instructions executed by the processing circuit, so as to execute the method executed by the terminal device in the above examples.
  • the processing module 1110 in FIG. 11 may be implemented by a processing circuit.
  • the receiving module 1120a and the sending module 1120b in FIG. 11 can be implemented through input and output interfaces.
  • the input-output interface is divided into an input interface and an output interface, the input interface performs the function of the receiving module, and the output interface performs the function of the sending module.
  • the storage module 1130 in FIG. 11 may be implemented by a storage medium.
  • the device of the embodiment of the present application can also be realized using the following: one or more FPGAs (Field Programmable Gate Arrays), PLDs (Programmable Logic Devices), controllers, state machines, Any combination of gate logic, discrete hardware components, any other suitable circuitry, or circuitry capable of performing the various functions described throughout this application.
  • FPGAs Field Programmable Gate Arrays
  • PLDs Programmable Logic Devices
  • controllers state machines, Any combination of gate logic, discrete hardware components, any other suitable circuitry, or circuitry capable of performing the various functions described throughout this application.
  • the embodiment of the present application also provides a computer-readable storage medium storing a computer program, and when the computer program is executed by a computer, the computer can be used to execute the above-mentioned method for determining a reference signal resource.
  • the computer program includes instructions for implementing the above method for determining reference signal resources.
  • the embodiment of the present application also provides a computer program product, including: computer program code, when the computer program code is run on the computer, the computer can execute the method for determining the reference signal resource provided above.
  • An embodiment of the present application further provides a communication system, where the communication system includes: a terminal and a network device that execute the above method for determining reference signal resources.
  • processors mentioned in the embodiment of the present application may be a central processing unit (central processing unit, CPU), a baseband processor, and the baseband processor and the CPU may be integrated or separated, or may be a network processor (network processing unit).
  • processor NP
  • processors may further include hardware chips or other general-purpose processors.
  • the aforementioned hardware chip may be an application-specific integrated circuit (application-specific integrated circuit, ASIC), a programmable logic device (programmable logic device, PLD) or a combination thereof.
  • the above PLD can be complex programmable logic device (complex programmable logic device, CPLD), field programmable logic gate array (field-programmable gate array, FPGA), general array logic (generic array logic, GAL) and other programmable logic devices , discrete gate or transistor logic devices, discrete hardware components, etc., or any combination thereof.
  • CPLD complex programmable logic device
  • FPGA field programmable logic gate array
  • GAL general array logic
  • GAL generator array logic
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Memory Bus Random Access Memory Direct Rambus RAM, DR RAM
  • the transceiver mentioned in the embodiment of the present application may include a separate transmitter and/or a separate receiver, or the transmitter and the receiver may be integrated. Transceivers can operate under the direction of corresponding processors.
  • the transmitter may correspond to the transmitter in the physical device, and the receiver may correspond to the receiver in the physical device.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of the embodiment of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of software products, and the computer software products are stored in a storage medium
  • several instructions are included to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信技术领域,提供了一种参考信号资源确定的方法及装置,用以解决多点传输模式下,CSI测量过程中,由于来自不同传输点的参考信号之间存在上行发送,造成终端设备在接收来自不同传输点的参考信号上存在相位不连续的问题。首先,获取参考信号资源集合的配置信息,用于确定K个参考信号资源,K是正整数;其中,K个参考信号资源中的至少两个参考信号资源所在的时隙是不同的时隙,或K个参考信号资源中的至少两个参考信号资源的第一区间内存在上行符号。然后,确定信道测量资源对包含的N个参考信号资源,且N个参考信号资源是K个参考信号资源中的N个参考信号资源,N是小于或等于K、且大于1的正整数。

Description

一种参考信号资源确定的方法及装置
相关申请的交叉引用
本申请要求在2021年07月29日提交中国专利局、申请号为202110865185.2、申请名称为“一种参考信号资源确定的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信等领域,尤其涉及一种参考信号资源确定的方法及装置。
背景技术
NR是基于多输入多输出(multiinput-multioutput,MIMO)的,为了提高下行链路性能,在版本(Release)-16中引入了多传输点技术,该多传输点技术采用非相干联合发送(non-coherent joint transmission,NCJT)模式。具体来说,可以同时由多个传输点为同一个终端设备提供数据传输服务。
在NCJT测量中,终端设备在同一个信道测量资源对所包含的2个参考信号资源上接收参考信号,在这两个参考信号资源上接收到的参考信号上,按照NCJT测量假设进行联合信道估计。而当2个参考信号资源之间存在上行发送时,终端设备在这2个参信号资源上接收到的参考信号上会存在相位差,这就会导致信道状态信息(channel state information,CSI)估计结果不准确。
基于此,如何避免或减少在多传输点的场景下,在CSI测量过程中,由于来自不同的传输点的参考信号之间存在上行发送,而造成终端设备在接收来自不同传输点的参考信号上存在相位不连续的情况,是需要解决的技术问题。
发明内容
本申请实施例提供一种参考信号资源确定的方法及装置,用以解决多点传输模式下,CSI测量过程中,由于来自不同传输点的参考信号之间存在上行发送,造成终端设备在接收来自不同传输点的参考信号上存在相位不连续的问题。
第一方面,提供了一种参考信号资源确定的方法,应用于终端设备或终端设备中的芯片。首先,获取参考信号资源集合的配置信息,所述参考信号资源集合的配置信息包括K个参考信号资源的配置信息,所述K个参考信号资源的配置信息用于确定K个参考信号资源,所述K是正整数;其中,所述K个参考信号资源中的至少两个参考信号资源所在的时隙是不同的时隙,或所述K个参考信号资源中的至少两个参考信号资源的第一区间内存在上行符号。然后,确定信道测量资源对包含的N个参考信号资源,且所述N个参考信号资源是所述K个参考信号资源中的N个参考信号资源,所述N是小于或等于K、且大于1的正整数。
当至少两个参考信号资源在不同的时隙时,进一步可以通过其它的方式来避免上下行切换引起的相位差的问题。K个参考信号资源中的至少两个参考信号资源所在的时隙是不 同的时隙,相对于,K个参考信号资源所在的时隙是相同的时隙,对于参考信号资源的配置更加灵活。可以规避为了解决上述问题,而对参考信号资源做过多的限制,而造成整个网络性能的下降。
在一种可能的实现中,所述确定信道测量资源对包含的N个参考信号资源,包括:接收第一信令,所述第一信令用于指示所述N个参考信号资源;和/或,根据预先规则在所述K个参考信号资源中确定所述N个参考信号资源。
在一种可能的实现中,还可以在所述N个参考信号资源上接收参考信号;和/或,上报所述N个参考信号资源关联的CSI报告。
在一种可能的实现中,所述N个参考信号资源的第二区间内不存在上行符号和/或灵活符号;或者,所述N个参考信号资源的第二区间内存在上行符号,且所述上行符号中不进行上行传输;或者,所述N个参考信号资源在相同的时隙,且所述参考信号资源集合关联的参考信号资源类型是周期或者半持续;或者,所述N个参考信号资源在Q个时隙,其中,Q是小于或等于N的正整数,所述Q个时隙是连续的时隙,且所述Q个时隙内只包含下行符号和/或灵活符号;或者,所述N个参考信号资源在T个时隙,其中T是小于或等于N的正整数,所述T个时隙是非连续的时隙,所述T个时隙内只包含下行符号和/或灵活符号,且所述T个时隙之间的时隙只包含下行符号和/或灵活符号;或者,所述N个参考信号资源的第三区间内只存在下行符号和/或灵活符号。
该实现为通过配置来避免相位不一致。
在一种可能的实现中,在所述N个参考信号资源中的至少一个参考信号资源上不接收参考信号;和/或,不上报与所述N个参考信号资源关联的CSI报告;和/或,上报未更新的CSI报告。
不接收参考信号可以是按照不接收处理,或者是接收了不使用,不当做有效信号/信息处理。
未更新的CSI报告可以是UE缓存中存储的上次上报的CSI报告,或者是超范围的CSI报告,这个超范围的CSI报告中所包含的信道质量指示CQI是0,因为CQI等于0是一个超范围的值,网络设备收到这个CSI报告,就会知道这个CSI报告是超范围的CSI报告。上报未更新的CSI报告的主要目的是,当CSI报告与其他上行数据一起传输时,CSI报告不上报会造成上行数据容量的降低,UE需要重新进行速率匹配,使得上行数据能够准确映射到网络设备分配的上行资源内,这个过程会造成UE更高的实现复杂度和更高的功耗。
该实现通过为网络侧设备的配置,避免信道测量资源对包含的N个参考信号资源之间存在上下行切换,从而避免存在相位不一致。
在一种可能的实现中,所述N个参考信号资源关联相同的发射机会,且所述发射机会所对应的符号中存在灵活符号和/或上行符号;或者,所述N个参考信号资源在不同的时隙,且所述参考信号资源集合关联的参考信号资源类型是周期或者半持续;或者,所述N个参考信号资源的第二区间内存在上行符号和/或灵活符号;或者,所述N个参考信号资源的第三区间内存在上行符号和/或灵活符号。
在一种可能的实现中,所述第一区间是指第一参考信号资源的结束符号到第二参考信号资源的起始符号之间的时间范围,且所述第一参考信号资源和所述第二参考信号资源关联相同的发射机会,所述第一参考资源是所述至少两个参考信号资源中最先的参考信号资源,所述第二参考资源是所述至少两个参考信号资源中最后的参考信号资源。
在一种可能的实现中,所述第二区间是指第三参考信号资源的结束符号到第四参考信号资源的起始符号之间的时间范围,且所述第三参考信号资源和所述第四参考信号资源关联相同的发射机会,所述第三参考资源是所述N个参考信号资源中最先的参考信号资源,所述第四参考资源是所述N个参考信号资源中最后的参考信号资源。
在一种可能的实现中,所述第三区间是指第五参考信号资源的第一参考信号发射机会与第六参考信号资源的第二参考信号发射机会之间的时间范围,所述第一参考信号发射机会和所述第二参考信号发射机会都不晚于CSI参考资源,且所述第一参考信号发射机会是第五参考信号资源的参考信号发射机会中最接近CSI参考资源的一个或多个参考信号发射机会,所述第二参考信号发射机会是第六参考信号资源的参考信号发射机会中最接近CSI参考资源的一个或多个参考信号发射机会,所述第五参考资源是所述N个参考信号资源中的参考信号资源,所述第六参考资源是所述N个参考信号资源中的参考信号资源。
在一种可能的实现中,所述第一参考信号发射机会所在的时隙,和所述第二参考信号发射机会所在的时隙,是连续的时隙。
在一种可能的实现中,还可以发送第一能力信息,所述第一能力信息用于指示终端设备支持所述N个参考信号资源在不同的时隙;或者,所述第一能力信息用于指示终端设备不支持所述N个参考信号资源在不同的时隙;或者,所述第一能力信息用于指示所述终端设备只支持所述N个参考信号资源在不同的时隙。
在一种可能的实现中,还可以发送第二能力信息,所述第二能力信息用于指示终端设备支持所述N个参考信号资源的第二区间存在上行符号;或者,所述第二能力信息用于指示终端设备不支持所述N个参考信号资源的第二区间存在上行符号;或者,所述第二能力信息用于指示终端设备只支持所述N个参考信号资源的第二区间不存在上行符号。
在一种可能的实现中,还可以发送第三能力信息,所述第三能力信息用于指示终端设备支持所述N个参考信号资源的第三区间存在上行符号;或者,所述第三能力信息用于指示终端设备不支持所述N个参考信号资源的第三区间存在上行符号;或者,所述第三能力信息用于指示终端设备只支持所述N个参考信号资源的第三区间不存在上行符号。
第二方面,提供了一种通信装置,所述装置具有实现上述第一方面及第一方面任一可能的实现中的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的功能模块。
第三方面,提供了一种通信装置,包括处理器,可选的,还包括存储器;所述处理器和所述存储器耦合;所述存储器,用于存储计算机程序或指令;所述处理器,用于执行所述存储器中的部分或者全部计算机程序或指令,当所述部分或者全部计算机程序或指令被执行时,用于实现上述第一方面及第一方面任一可能的实现的方法中终端设备的功能。
在一种可能的实现中,所述装置还可以包括收发器,所述收发器,用于发送所述处理器处理后的信号,或者接收输入给所述处理器的信号。所述收发器可以执行第一方面及第一方面任一可能的实现中终端设备执行的发送动作或接收动作。
第四方面,本申请提供了一种芯片系统,该芯片系统包括一个或多个处理器(也可以称为处理电路),所述处理器与存储器(也可以称为存储介质)之间电耦合;所述存储器 可以位于所述芯片系统中,也可以不位于所述芯片系统中;所述存储器,用于存储计算机程序或指令;所述处理器,用于执行所述存储器中的部分或者全部计算机程序或指令,当所述部分或者全部计算机程序或指令被执行时,用于实现上述第一方面及第一方面任一可能的实现的方法中终端设备的功能。
在一种可能的实现中,所述芯片系统还可以包括输入输出接口(也可以称为通信接口),所述输入输出接口,用于输出所述处理器处理后的信号,或者接收输入给所述处理器的信号。所述输入输出接口可以执行第一方面及第一方面任一可能的实现中终端设备执行的发送动作或接收动作。具体的,输出接口执行发送动作,输入接口执行接收动作。
在一种可能的实现中,该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第五方面,提供了一种计算机可读存储介质,用于存储计算机程序,所述计算机程序包括用于实现第一方面及第一方面任一可能的实现中的功能的指令。
或者,一种计算机可读存储介质,用于存储计算机程序,所述计算机程序被计算机执行时,可以使得所述计算机执行上述第一方面及第一方面任一可能的实现的方法中终端设备执行的方法。
第六方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面及第一方面任一可能的实现中由终端设备执行的方法。
上述第二方面至第六方面的技术效果可以参照第一方面中的描述,重复之处不再赘述。
附图说明
图1a为本申请实施例中提供的一种通信系统示意图;
图1b为本申请实施例中提供的一种多TRP传输示意图;
图1c为本申请实施例中提供的一种多TRP传输示意图;
图2为本申请实施例中提供的一种参考信号资源确定的方法流程图;
图3为本申请实施例中提供的一种周期/半持续参考信号资源的发射机会示意图;
图4为本申请实施例中提供的一种同一个参考信号资源集合内的多个参考信号资源的区间示意图;
图5为本申请实施例中提供的一种参考信号资源分布示意图;
图6为本申请实施例中提供的一种参考信号资源分布示意图;
图7为本申请实施例中提供的一种参考信号资源分布示意图;
图8为本申请实施例中提供的一种参考信号资源分布示意图;
图9为本申请实施例中提供的一种参考信号资源分布示意图;
图10为本申请实施例中提供的一种参考信号资源分布示意图;
图11为本申请实施例中提供的一种通信装置结构图;
图12为本申请实施例中提供的一种通信装置结构图。
具体实施方式
为便于理解本申请实施例的技术方案,下面将对本申请实施例提供的方法的系统架构进行简要说明。可理解的,本申请实施例描述的系统架构是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。
本申请实施例的技术方案可以应用于各种通信系统,例如:卫星通信系统、传统的移动通信系统。其中,所述卫星通信系统可以与传统的移动通信系统(即地面通信系统)相融合。通信系统例如:无线局域网(wireless local area network,WLAN)通信系统,无线保真(wireless fidelity,WiFi)系统,长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、第五代(5th generation,5G)系统或新无线(new radio,NR),第六代(6th generation,6G)系统,以及其他未来的通信系统等,还支持多种无线技术融合的通信系统,例如,还可以应用于无人机、卫星通信系统、高空平台(high altitude platform station,HAPS)通信等非地面网络(non-terrestrial network,NTN)融合地面移动通信网络的系统。
图1a是本申请的实施例应用的通信系统1000的架构示意图。如图1a所示,该通信系统包括无线接入网100和核心网200,可选的,通信系统1000还可以包括互联网300。其中,无线接入网100可以包括至少一个无线接入网设备(如图1a中的110a和110b),还可以包括至少一个终端(如图1a中的120a-120j)。终端通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端和终端之间以及无线接入网设备和无线接入网设备之间可以通过有线或无线的方式相互连接。图1a只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1a中未画出。
无线接入网设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、第五代(5th generation,5G)移动通信系统中的下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信系统中的下一代基站、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。无线接入网设备可以是宏基站(如图1a中的110a),也可以是微基站或室内站(如图1a中的110b),还可以是中继节点或施主节点等。可以理解,本申请中的无线接入网设备的全部或部分功能也可以通过在硬件上运行的软件功能来实现,或者通过平台(例如云平台)上实例化的虚拟化功能来实现。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。为了便于描述,下文以基站作为无线接入网设备的例子进行描述。
终端也可以称为终端设备、用户设备(user equipment,UE)、移动台、移动终端等。终端可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械 臂、智能家居设备等。本申请的实施例对终端所采用的具体技术和具体设备形态不做限定。
基站和终端可以是固定位置的,也可以是可移动的。基站和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对基站和终端的应用场景不做限定。
基站和终端的角色可以是相对的,例如,图1a中的直升机或无人机120i可以被配置成移动基站,对于那些通过120i接入到无线接入网100的终端120j来说,终端120i是基站;但对于基站110a来说,120i是终端,即110a与120i之间是通过无线空口协议进行通信的。当然,110a与120i之间也可以是通过基站与基站之间的接口协议进行通信的,此时,相对于110a来说,120i也是基站。因此,基站和终端都可以统一称为通信装置,图1a中的110a和110b可以称为具有基站功能的通信装置,图1a中的120a-120j可以称为具有终端功能的通信装置。
基站和终端之间、基站和基站之间、终端和终端之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信;可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线通信所使用的频谱资源不做限定。
在本申请的实施例中,基站的功能也可以由基站中的模块(如芯片)来执行,也可以由包含有基站功能的控制子系统来执行。这里的包含有基站功能的控制子系统可以是智能电网、工业控制、智能交通、智慧城市等上述终端的应用场景中的控制中心。终端的功能也可以由终端中的模块(如芯片或调制解调器)来执行,也可以由包含有终端功能的装置来执行。
在本申请中,基站向终端发送下行信号或下行信息,下行信息承载在下行信道上;终端向基站发送上行信号或上行信息,上行信息承载在上行信道上。
接下来对本申请涉及的相关技术进行介绍。
(1)多TRP传输技术。
NR是基于多输入多输出(multiinput-multioutput,MIMO)的,为了提高下行链路性能,在版本(Release)-16中引入了多TRP传输技术,该多TRP传输技术采用非相干联合发送(non-coherent joint transmission,NCJT)模式。具体来说,可以同时由最多2个TRP为同一个UE提供数据传输服务。从实现方式来说,目前Release-16中提供了2种方式,方式1是基于多下行控制信息(downlink control information,DCI)的方式,参考图1b;方式2是基于单DCI的方式,参考图1c。
在方式1中,2个TRP各自发射1个下行控制信息DCI,调度2个物理层下行共享信道(Physical downlink share channel,PDSCH)发送给同一个UE,其中,1个DCI调度1个PDSCH。
在方式2中,2个TRP中只有1个TRP发射1个DCI,调度1个PDSCH。但是这个PDSCH中的一部分的流/层(对应部分解调参考信号(demodulation reference signal,DMRS)端口,)由一个TRP发射,另一部分流/层(对应部分DMRS端口)由另一个TRP发射。
(2)信道状态信息(channel state information,CSI)测量与上报。
在无线系统的通信过程中,网络侧需要预先获取TRP与不同UE之间的下行信道的信道状态信息CSI。获取过程可以是TRP发射信道状态探测信号(例如,NR中采用非零功 率信道状态信息参考信号(non-zero power channel state information reference signal,NZP CSI-RS)),UE在预先配置的信道测量资源(channel measurement resource,CMR)上接收NZP CSI-RS信号进行信道估计。另外,网络侧还会进一步给UE配置一组与CMR对应的干扰测量资源(interference measurement resource,IMR),UE在这些预先配置的IMR上接收信号,进行干扰测量。基于CMR和IMR上的测量结果,计算出CSI。通过上行信道反馈给网络侧,网络侧根据各个UE反馈的CSI上报,进行调度后,在下行数据信道(PDSCH)上给UE发送业务数据。
需要说明的是:在NR协议中,网络侧是通过给UE配置CMR和IMR,UE基于CMR和IMR上的信号进行对应的信道估计和干扰估计的,而为了简化描述,在后续部分,将上述过程简化描述为:UE在CMR和IMR上进行CSI测量。
在NR的前期版本(Release-15和Release-16)中,CSI测量都是基于单TRP的测量假设的,即UE在CSI测量时,假设后续的数据发送来自于1个TRP,在一个CMR及其关联的IMR上测量得到相应的CSI结果。而在Release-16引入多TRP传输模式后,Release-15和Release-16的CSI测量将无法支持多TRP传输模式(即上述NCJT发送模式)的测量需要。为此在最新的Release-17中,对现有的CSI测量进行增强,以能够支持NCJT测量假设的CSI测量。
(3)CSI测量资源配置。
为了支持非相干联合发送NCJT测量假设的CSI测量,NR Release-17规定:网络设备可以为UE配置K个用于信道测量的非零功率信道状态信息参考信号NZP CSI-RS资源,这些资源组成NZP CSI-RS资源集合。
网络侧可以进一步在K个NZP CSI-RS资源中,配置或指示R(R≥1)个信道测量资源对(channel measurement resource pair,CMR pair),每个信道测量资源对CMR pair包含2个NZP CSI-RS资源,每个NZP CSI-RS资源会关联不同的TRP。
从配置的角度来看,同一个信道测量资源对所对应的2个NZP CSI-RS资源会关联2个不同的传输配置指示状态(transmission configuration indicator state,TCI state)信息,TCI state中包含了该NZP CSI-RS资源的准共站(quasi co-location,QCL)信息。UE根据TCI state所包含的QCL信息,才能接收对应的NZP CSI-RS资源上的参考信号。UE在每个信道测量资源对所包含的2个NZP CSI-RS资源上,按照NCJT测量假设进行CSI计算,因此当配置了R个信道测量资源对,意味着有R个NCJT测量假设。
对于UE而言,只需要知道QCL信息就可以了,并不一定要知道当前NZP CSI-RS资源到底是来自哪一个TRP,换句话说,从实现角度而言,网络设备只需要为同一个CMR pair所对应的2个NZP CSI-RS资源配置包含不同QCL信息的TCI state,每个TCI state中的QCL信息关联到1个不同的TRP上即可。
除此之外,网络设备可以配置UE分别按照单TRP测量假设在K个NZP CSI-RS资源上进行CSI计算,即存在K个单TRP测量假设。
为了控制基于所述NZP CSI-RS资源集合进行CSI测量的复杂度,在Release-17中在进一步讨论:网络侧还可以进一步在这K个NZP CSI-RS资源中,配置或指示M(M≤K)个NZP CSI-RS资源,即为配置或指示了M个CMR,以及与其关联的干扰测量资源(interference measurement resource,IMR)。UE在M个CMR及其关联的IMR上,按照单TRP测量假设进行CSI计算。这时,在上述NZP CSI-RS资源集合中,包含了M个单TRP 测量假设。
上述NZP CSI-RS资源集合所包含的NZP CSI-RS资源是用于信道测量,而为了帮助协助网络设备调度,UE在做CSI测量时,还需要将干扰情况考虑进去,即基于IMR进行干扰估计。而NR中,网络设备还会为UE配置包含多个IMR的用于干扰测量的资源集合,其中,IMR可以是信道状态信息-干扰测量(channel state information-interference measurement,CSI-IM)资源,或者是用于干扰测量的NZP CSI-RS资源。而在NCJT调度中,干扰主要包括参与协作进行NCJT发送的TRP以外的干扰,因此在Release-17的NCJT CSI测量中,干扰估计只基于CSI-IM资源,即在上述NCJT CSI估计中,干扰是通过网络设备配置信道状态信息-干扰测量CSI-IM资源来完成的。
NZP CSI-RS资源可以是周期性的、或者半持续的、或者非周期性的。
例如,NZP CSI-RS资源可以是周期性(Periodic)的,NZP CSI-RS按照一定的周期,在周期性的NZP CSI-RS资源上进行发送。
例如,NZP CSI-RS资源可以是半持续(Semi-persistent)的,网络设备可以通过下行信令激活或者去激活NZP CSI-RS在半持续NZP CSI-RS资源上的发送。在激活期内,NZP CSI-RS资源是周期的,半持续NZP CSI-RS资源可以理解为加了窗的周期NZP CSI-RS资源。
例如,NZP CSI-RS资源可以是非周期的(Aperiodic),网络设备通过下行信令激活NZP CSI-RS在非周期NZP CSI-RS资源上发送一次。
为了匹配上述测量机制,NR Release 17规定:基于上述测量资源配置,网络侧可以配置UE在同一个CSI报告包含:
选项1:X个单TRP测量假设的CSI和1个NCJT测量假设的CSI;其中X可以为0、1、2;
选项2:1个CSI,这个CSI是所有单TRP测量假设和NCJT测量假设中的1个假设下测量得到的。
CSI包括:CSI-RS资源指示信息(CSI-RS resource indicator,CRI)、秩指示(rank indicator,RI)、信道质量指示(channel quality indicator,CQI)、预编码矩阵指示(precoding matrix indicator,PMI)、层指示(layer indicator,LI)中的一项或多项。
其中,CRI用于指示一个NZP CSI-RS资源或信道测量资源对;RI:用于指示秩值;CQI用于指示信道质量;PMI用于指示预编码矩阵信息;层指示用于指示层信息。CSI具体包括上述哪些信息是基于网络配置。
(4)不足之处。
在Release-15/16中,对于同一个NZP CSI-RS资源集合内的不同NZP CSI-RS资源所在的时隙可以相同,也可以不相同。
在NCJT测量中,UE在同一个信道测量资源对所包含的2个NZP CSI-RS资源上接收参考信号,在这两个NZP CSI-RS资源上接收到的参考信号上按照NCJT测量假设进行联合信道估计。而当两个NZP CSI-RS资源处于不同的时隙时,并且在这两个时隙之间存在上行发送,UE在这两个NZP CSI-RS资源上接收到的参考信号上会存在一个相位差。
例如,射频实际过程中,由于硬件的约束,UE在每次启动下行接收时,会有一个起始的随机相位。而当两个NZP CSI-RS资源处于不同的时隙,并且在这两个时隙之间存在上行发送时,在后一个时隙上的NZP CSI-RS资源上进行参考信号接收时,由于之前存在 上下行切换,UE是重新启动下行接收,因此会存在一个新的随机相位,这个新的随机相位与前一个时隙上的NZP CSI-RS资源上的随机相位通常是不同的。
而在NCJT发送时,这两个NZP CSI-RS资源上的参考信号所模拟的来自两个TRP信号是在同一个时隙内的。换句话说,来自两个TRP信号的随机相位是相同的,不存在相位差,而信道估计中的相位差会造成UE在基于同一个信道测量资源对所包含的2个NZP CSI-RS资源上的参考信号估计流间干扰,出现偏差。
假设,在2个NZP CSI-RS资源上得到的信道参数,分别用Φ1*H1和Φ2*H2表示,对于终端来说,该信道参数是一个整体,无法区分出Φ和H。其中,Φ1表示一个资源上的相位,Φ2表示另一个资源上的相位,H1和H2表示两个TRP与UE之间的物理信道参数。H1和H2是Nr×Nt的矩阵,Nr表示UE接收天线端口数,假设两个TRP的发射天线端口数相同,都用Nt表示。Φ1是Nr×Nr的对角阵,对角线上的元素是
Figure PCTCN2022108340-appb-000001
Figure PCTCN2022108340-appb-000002
Φ2也是Nr×Nr的对角阵,对角线上的元素是
Figure PCTCN2022108340-appb-000003
其中θ a和θ b是由于UE的射频链路启动时,出现的一个随机相位,这个相位是完全随机的。
请注意,在上述假设中,由于假设2个NZP CSI-RS资源来自于不同的TRP,因此实际上假设两个TRP的发射天线端口数量都是Nt,目前在Release17的讨论中为了简化UE处理的复杂,实际上限制了在同一个信道测量资源集合内的NZP CSI-RS资源的端口数量相同。为了得到NCJT测量假设下的流间干扰,可以将Φ1H1和Φ2H2合并成一个新的矩阵[Φ1H1Φ2H2],这是个Nr×2Nt的矩阵,其协方差矩阵R可以表示为:
Figure PCTCN2022108340-appb-000004
假设基于Φ1H1和Φ2H2估计得到的预编码为W1和W2,那么根据上式估计的流间干扰强度就是:
Figure PCTCN2022108340-appb-000005
上述估计的流间干扰中存在两个NZP CSI-RS资源上的相位差而引入对角阵:
Figure PCTCN2022108340-appb-000006
UE在估计信道质量指示CQI时,是基于信干噪比(signal-to-interference-plus-noise ratio,SINR)量化得到:
Figure PCTCN2022108340-appb-000007
其中I inter-layer为流间干扰,I inter-cell是小区间干扰。
网络设备接收UE反馈的CQI后,会基于CQI值,选择进行NCJT传输时的参数,例如码率、调制阶数等。而在基于NCJT PDSCH传输时,实际的流间干扰强度应该是
Figure PCTCN2022108340-appb-000008
没有上述相位差的原因是,基于NCJT的PDSCH传输中,两个TRP的信号是在同一个时隙内的,因此这时Φ1=Φ2。上述CSI估计与实际传输之间的失配,引起的CSI反馈不准确,会大大降低NCJT传输的性能。
换句话说,当同一个信道测量资源对的两个NZP CSI-RS资源处于不同时隙时,并且 这两个时隙之间存在上下行切换时,信道估计中所估计出来的流间干扰,会引入实际NCJT传输中不存在的相位差,从而造成NCJT传输性能下降。
需要注意的是:上述分析中,使用了非相干联合发送NCJT测量假设的CSI估计进行了分析,实际上,相干联合发送(coherent JT)下的CSI估计同样存在类似的问题。Coherent JT与NCJT的差别在于:在NCJT中,不同的数据流来自不同TRP,而Coherent JT中,同一个数据流来自于不同的TRP;在Coherent JT中,发送同一个数据流的TRP之间存在不同的相位差时,除了影响流间干扰从而导致CQI估计的不准确,还会造成预编码矩阵指示PMI估计的不准确,问题会变成更加复杂和严重。
总而言之,上述问题广泛存在与多传输点传输模式下,只要来自多个传输点的参考信号所在的发射资源之间存在上下行切换,UE在接收这些发射资源上接收来自多个传输点的参考信号上就会存在随机相位差,基于这些存在随机相位差的参考信号估计CSI参数就会出现不准确的问题。
基于此,本申请提出了多种方案,以避免在多TRP传输中,由于同一个信道测量资源对的多个(两个甚至更多个)NZP CSI-RS资源之间由于上下行切换引起的相位差,造成估计的CSI参数不准确的情况。
接下来将结合附图对方案进行详细介绍。附图中以虚线标识的特征或内容可理解为本申请实施例的可选操作或者可选结构。
本申请的配置可以等同为指示。
如图2所示,提供了一种参考信号资源的确定方法,包括:
步骤201:终端设备获取参考信号资源集合的配置信息,所述参考信号资源集合的配置信息包括K个参考信号资源的配置信息,所述K个参考信号资源的配置信息用于确定K个参考信号资源,所述K是正整数。
终端设备可以根据K个参考信号资源的配置信息,确定K个用于信道测量的参考信号资源,K是正整数。例如可以是一个参考信号资源的配置信息确定出一个参考信号资源。
所述参考信号资源集合的配置信息能够配置一个或至少两个参考信号资源所在的时隙是不同的时隙。或者,所述参考信号资源集合的配置信息能够配置至少两个参考信号资源的第一区间内存在上行符号。
在一种可选的示例中,所述K个参考信号资源所在的时隙是相同的时隙,这样可以解决上述由于上下行切换引起的相位差问题,但是由于过多的参考信号资源集中在同一个时隙,可配置的参考信号资源的个数会受到限制,从而造成整个网络性能的下降。
在一种可选的示例中,所述K个参考信号资源中的至少两个参考信号资源所在的时隙是不同的时隙。当至少两个参考信号资源在不同的时隙时,进一步可以通过其它的方式来避免上下行切换引起的相位差的问题。K个参考信号资源中的至少两个参考信号资源所在的时隙是不同的时隙,相对于,K个参考信号资源所在的时隙是相同的时隙,对于参考信号资源的配置更加灵活。可以规避为了解决上述问题,而对参考信号资源做过多的限制,而造成整个网络性能的下降。
在一种可选的示例中,所述K个参考信号资源中的至少两个参考信号资源的第一区间内存在上行符号。
终端设备获取参考信号资源集合的配置信息的示例如下:
一种示例中,终端设备接收网络设备发送的包括K个参考信号资源的配置信息的参考信号资源集合的配置信息。
一种示例中,终端设备接收一个信令(该信令也可以称为CSI配置信息)。其中,CSI配置信息用于指示(关联)参考信号资源集合的配置信息,参考信号资源集合的配置信息包含了K个参考信号资源的配置信息。可以理解为,通过CSI配置信息来指示终端设备,将之前已经配置的某些参考信号资源集合作为步骤201中要获取的参考信号资源集合。
例如,参考信号资源集合的配置信息包含了K’个参考信号资源的配置信息,UE可以根据K’个参考信号资源的配置信息,确定K’个用于信道测量的参考信号资源,K’是大于或等于K的正整数。
上述K个参考信号资源是由信令(该信令也可以称为CSI配置信息)从K’个参考信号资源中确定的K个参考信号资源,或者K个参考信号资源是根据预先规则从K’个参考信号资源中确定的K个参考信号资源。
例如,在NR中,CSI配置信息通过RRC信令发送,例如可以是RRC信令CSI-MeasConfig,或者CSI配置信息是RRC信令CSI-ReportConfig。
例如,CSI配置信息是CSI-MeasConfig,CSI-MeasConfig中包含了CSI报告配置信息,CSI报告配置信息中包含了CSI-ResourceConfigId。由CSI-ResourceConfigId所对应的CSI-ResourceConfig可以确定1个或多个参考信号资源集合。
例如,由CSI-ResourceConfig确定的参考信号资源类型是周期或者半持续时,CSI-ResourceConfig所确定的参考信号资源集合数量是1个。
例如,由CSI-ResourceConfig确定的参考信号资源类型是非周期时,CSI-ResourceConfig所确定的参考信号资源集合数量是多个。
参考信号资源集合关联的参考信号资源类型是周期或者半持续时,参考信号资源配置信息可以配置参考信号资源的周期和时隙偏移。例如,参考信号资源配置信息中包含了参数periodicityAndOffset,该参数用于配置参考信号资源的周期和时隙偏移。基于周期和时隙偏移,可以确定参考信号资源的每一个发射机会所在的时隙。具体而言,UE假设参考信号是在时隙编号为
Figure PCTCN2022108340-appb-000009
上发射,其中
Figure PCTCN2022108340-appb-000010
满足如下公式:
Figure PCTCN2022108340-appb-000011
其中,
Figure PCTCN2022108340-appb-000012
由下表1确定,其中μ用于确定子载波间隔,由网络设备配置;n f表示帧编号,T offset和T CSI-RS是网络设备配置的时隙偏移和周期。
表1
Figure PCTCN2022108340-appb-000013
RRC信令通常是由PDSCH承载的,UE接收到PDSCH需要进行接收解码,解码完成后,需要根据信令内容,做相应的配置,这个过程是需要一定时间的,完成上述操作后, UE才能按照RRC信令进行相应的动作,RRC信令正式起效。在网络侧配置的RRC信令起效后,根据上述介绍的公式(1),UE假设每隔T CSI-RS个时隙,会有一次参考信号的发射机会。如图3所示,参考信号资源0和参考信号资源1属于同一个信道测量资源对,并且参考信号资源0和参考信号资源1具有相同的周期,该周期是10个时隙,即T CSI-RS=10。参考信号资源0的时隙偏移是2,即T offset=2;参考信号资源1的时隙偏移是5,即T offset=5。参考信号在参考信号资源0的第n个周期内的发送,这里提到的第n个周期的参考信号资源0可以是参考信号1的第n个发射机会,同样的,参考信号在参考信号资源1的第n+1个周期内的发送,这里提到的第n+1个周期的参考信号资源1可以是参考信号2的第n+1个发射机会。
参考信号资源集合关联的参考信号资源类型是非周期时,参考信号在每个参考信号资源上都只有一次发射机会,并且同一个参考信号资源集合内的多个参考信号资源所在的时隙是同一个时隙。
本申请定义了多个参考信号资源的区间,下文介绍的最先为时域上的第一个,最后为时域上的最后一个。结束符号可以是结束符号的起始时刻,也可以是结束符号的结束时刻。起始符号可以是起始符号的起始时间,也可以是起始符号的结束时刻。
例如,同一个参考信号资源集合内的多个参考信号资源的同一个发射机会中,最先参考信号资源的结束符号至最后的参考信号资源的起始符号之间的时间范围,定义为:在同一个发射机会中,同一个参考信号资源集合内的多个参考信号资源的一个区间。如图4所示,同一个参考信号资源集合内的多个参考信号资源的同一个发射机会中,最先的参考信号资源的结束符号的结束时刻,至最后的参考信号资源的起始符号的起始时刻之间的时间范围,定义为:在同一个发射机会中,同一个参考信号资源集合内的多个参考信号资源的一个区间。
例如,同一个参考信号资源集合内的多个参考信号资源的同一个发射机会中,最先的参考信号资源的起始符号,至最后的参考信号资源的结束符号之间的时间范围,定义为:在同一个发射机会中,同一个参考信号资源集合内的多个参考信号资源的一个区间。
例如,同一个参考信号资源集合内的多个参考信号资源的同一个发射机会中,最先的参考信号资源的起始符号,至最后的参考信号资源的起始符号之间的时间范围,定义为:在同一个发射机会中,同一个参考信号资源集合内的多个参考信号资源的一个区间。
例如,同一个参考信号资源集合内的多个参考信号资源的同一个发射机会中,最先的参考信号资源的结束符号,至最后的参考信号资源的结束符号之间的时间范围,定义为:在同一个发射机会中,同一个参考信号资源集合内的多个参考信号资源的一个区间。
本申请中提及的第一区间指K个参考信号资源中的至少两个参考信号资源的区间。第二区间指N个参考信号资源的区间。
例如,所述第一区间是指第一参考信号资源的结束符号到第二参考信号资源的起始符号之间的时间范围,且所述第一参考信号资源和所述第二参考信号资源关联相同的发射机会,所述第一参考资源是所述至少两个参考信号资源中最先的参考信号资源,所述第二参考资源是所述至少两个参考信号资源中最后的参考信号资源。
例如,所述第二区间是指第三参考信号资源的结束符号到第四参考信号资源的起始符 号之间的时间范围,且所述第三参考信号资源和所述第四参考信号资源关联相同的发射机会,所述第三参考资源是所述N个参考信号资源中最先的参考信号资源,所述第四参考资源是所述N个参考信号资源中最后的参考信号资源。
所述第三区间是指第五参考信号资源的第一参考信号发射机会与第六参考信号资源的第二参考信号发射机会之间的时间范围,所述第一参考信号发射机会和所述第二参考信号发射机会都不晚于CSI参考资源,且所述第一参考信号发射机会是第五参考信号资源的参考信号发射机会中最接近CSI参考资源的一个或多个参考信号发射机会,所述第二参考信号发射机会是第六参考信号资源的参考信号发射机会中最接近CSI参考资源的一个或多个参考信号发射机会,所述第五参考资源是所述N个参考信号资源中的参考信号资源,所述第六参考资源是所述N个参考信号资源中的参考信号资源。
可选的,所述第一参考信号发射机会所在的时隙,和所述第二参考信号发射机会所在的时隙,是连续的时隙。
步骤202:终端设备确定信道测量资源对包含的N个参考信号资源,且所述N个参考信号资源是所述K个参考信号资源中的N个参考信号资源,所述N是小于或等于K、且大于1的正整数。
参考信号资源集合可以支持一个或多个信道测量资源对,步骤202中确定信道测量资源对包含的N个参考信号资源可以理解为,确定参考信号资源集合支持的一个或多个信道测量资源对中的每个信道测量资源对包含的N个参考信号资源。如果支持多个信道测量资源对,不同的信道资源测量对中分别对应的N个参考信号资源通常是不同的。例如,支持两个信道资源测量对,分别包含N1和N2个参考信号资源。这N1参考信号资源和这N2参考信号资源通常是不同的。
可选的,参考信号资源集合的配置信息可以指示该参考信号资源集合支持的信道测量资源对的数量P,该P为大于或等于1的整数。或者,通过其它的信令(例如CSI配置信息)指示该参考信号资源集合支持的信道测量资源对的数量P。
终端设备在确定N个参信号资源时,可以是终端设备接收第一信令,所述第一信令用于指示N个参考信号资源;和/或,根据预先规则在所述K个参考信号资源中确定所述N个参考信号资源。
此处的第一信令可以包含在CSI配置信息中,或者包含在参考信号资源集合的配置信息中。
根据CSI配置信息,或参考信号资源集合的配置信息(例如第一信令),或根据预设规则,在K个参考信号资源中确定信道测量资源对包含的N个参考信号资源,N是小于或等于K、且大于1的正整数。
可以理解的是,每个信道测量资源对包含两个参考信号(例如NZP CSI-RS)资源,或者包含大于两个参考信号(例如NZP CSI-RS)资源。为了描述方便,以下以每个信道测量资源对包含两个参考信号(例如NZP CSI-RS)资源为例说明,当每个信道测量资源对包含大于两个参考信号(例如NZP CSI-RS)资源的情况也在本申请的保护范围内。
在K个参考信号资源中确定信道测量对包含的N个参考信号资源的示例如下:
示例1:根据CSI配置信息、或者参考信号资源集合的配置信息中包含的第一信令,在K个参考信号资源中确定信道测量资源对。
例如,第一信令可以指示信道测量资源对的数量P、和P个K长的比特图,其中K表示参考信号资源集合包含的参考信号资源的数量。比特图中的0表示对应的参考信号资源可以被用于作为测量资源对应的参考信号资源,1表示对应的参考信号资源不可以被用于作为测量资源对应的参考信号资源。或者,比特图中的0表示对应的参考信号资源不可以被用于作为测量资源对应的参考信号资源,1表示对应的参考信号资源可以被用于作为测量资源对应的参考信号资源。
例如,参考信号资源集合包含4(即K=4)个参考信号资源,分别为{#0,#1,#2,#3}。第一信令包含的P=1和比特图0011,#0和#1所对应的参考信号资源,组成1个信道测量资源对。
示例2:根据预先规则,在K个参考信号资源中确定信道测量资源对。
例如,预设规则是:当参考信号资源集合包含2(K=2)个参考信号资源时,这两个参考信号资源组成1个信道测量资源对。例如这两个参考信号资源分别为{#0,#1},则#0和#1所对应的参考信号资源组成1个信道测量资源对。
预设规则是:K个参考信号资源中的相邻两个组合成一个信道测量资源对。例如,参考信号资源集合包含6(K=6个)参考信号资源,{#0,#1,#2,#3,#4,#5},则#0和#1参考信号资源组成一个信道测量资源对,#2和#3参考信号资源组成另一个信道测量资源对,#4和#5参考信号资源组成另一个信道测量资源对。
示例3:示例1和示例2结合,确定信道测量资源对。
例如根据CSI配置信息、或者参考信号资源集合的配置信息中包含的第一信令,和预先规则在K个参考信号资源中确定信道测量资源对。
例如,第一信令指示信道测量资源对的数量P,预设规则是:K个参考信号资源中的前2P个参考信号资源相邻的两个(也可以理解为按两两)组合成P个信道测量资源对。例如,参考信号资源集合包含6(K=6个)参考信号资源,{#0,#1,#2,#3,#4,#5},第一信令指示P=2,则#0和#1参考信号资源组成一个信道测量资源对,#2和#3参考信号资源组成另一个信道测量资源对。
接下来介绍几种避免相位不一致的方式。
以下的方式一至方式六,终端设备是可以在所述N个参考信号资源上接收参考信号和/或上报所述N个参考信号资源关联的CSI报告。可以理解为方式一至方式六是通过配置来避免相位不一致。其中,一个信道测量资源对关联一个CSI报告。
需要注意的是:当CSI上报类型配置为选项2(即上文介绍的选项2:1个CSI,这个CSI是所有单TRP测量假设和NCJT测量假设中的1个假设下测量得到的)时,UE应该在单TRP测量假设和NCJT测量假设中确定一个CSI,并将这个CSI上报给网络设备,因此最后CSI上报中所包含的CSI并不一定是基于信道测量资源对包含的N个参考信号资源测量得到的,而可能是与K个参考信号资源或K个参考信号资源子集中的1个参考信号资源关联的,即是一个单TRP测量假设的CSI。但是,上述CSI是在所有测量假设,即在K个参考信号资源或K个参考信号资源子集,以及确定的信道测量资源对上分别测量得到的多个CSI,比较后确定出来的CSI,因此上述CSI报告也应理解为是与信道测量资源对包含的N个参考信号资源具有关联关系。
方式一:
所述N个参考信号资源的第二区间内不存在上行符号(U)和/或不存在灵活符号(F)。
一个信道测量资源对包含的N个参考信号资源可以在不同的时隙或在相同的时隙。
图5所示,N=2,参考信号资源0和参考信号资源1在同一时隙,分别对应符号i+1和i+3,i+1和i+3的区间内只有下行符号(D),不存在上行符号(U)和灵活符号(F)。
K个参考信号资源中可以有至少两个参考信号资源的区间内不存在上行符号,那么当前发射机会(在两个参考信号资源不存在上行符号的区间内所存在的发射机会)内,UE在信道测量资源对包含的N个参考信号资源上接收参考信号,并上报与这N个参考信号资源所关联的CSI报告。
例如,K=4个参考信号资源,分别为{#0,#1,#2,#3},信道测量资源对包含{#0,#1}参考信号资源,{#0,#1}参考信号资源的区间内不存在上行符号和/或不存在灵活符号。这时,{#0,#1}参考信号资源之间不存在上下行切换,就不会有相位不一致的问题。同时,为了防止由于限制过多,造成网络设备配置实现困难,这时,除了{#0,#1}参考信号资源的区间,其他任意多个参考信号资源的区间可以存在上行符号和/或灵活符号,{#0,#2}参考信号资源的区间,或者{#0,#3}参考信号资源的区间,或者{#0,#2,#3}参考信号资源的区间等,都可以存在上行符号和/或灵活符号,这就大大提高了网络设备配置的灵活性。
方式二:
所述N个参考信号资源的第二区间内存在上行符号,且所述上行符号中不进行上行传输。
也就是限制同一个信道测量资源对的多个参考信号(例如NZP CSI-RS)资源所在的符号之间,UE只做接收,或者既不做接收,也不做发送。不进行上行传输,可以是不发送、或者零功率,或者不发送有效信号/信息。
UE不要求在上述上行符号上进行发送,这时N个参考信号资源之间不存在上下行切换,同样也不会有相位不一致的问题。那么在当前发射机会内,UE在信道测量资源对包含的N个参考信号资源上,接收参考信号,并上报与这N个参考信号资源所关联的CSI报告。
方式三:
所述N个参考信号资源在相同的时隙,且所述参考信号资源集合关联的参考信号资源类型是周期或者半持续。
也就是限制同一个信道测量资源对的多个(N个)参考信号资源在同一个时隙内。
UE就在信道测量资源对包含的N个参考信号资源上,接收参考信号,并上报与这N个参考信号资源所关联的CSI报告。
如图6所示,N=2,参考信号资源0和参考信号资源1在同一时隙,分别对应符号1和5,符号1和5的区间内只有下行符号(D),不存在上行符号(U)和灵活符号(F)。
例如,K=4个参考信号资源,分别为{#0,#1,#2,#3},信道测量资源对包含{#0,#1}参考信号资源,{#0,#1}参考信号资源在相同的时隙,这时{#0,#1}参考信号资源之间存在上下行切换的可能性非常低,相位不一致的问题得到了大大的缓解。同时,为了防止由于限制过多,造成网络设备配置实现困难,这时,除了{#0,#1}参考信号资源在相同的时隙,其他任意多个参考信号资源所在的时隙可以相同或者不相同。例如{#0,#2}参考信号资源所在的时隙、或者{#0,#3}参考信号资源所在的时隙、或者{#0,#2,#3}参考 信号资源所在的时隙等,都可以相同或者不相同,这就大大提高了网络设备配置的灵活性。
方式四:
所述N个参考信号资源在Q个时隙,其中,Q是小于或等于N,且大于或等于1的正整数,当Q大于1时,所述Q个时隙是连续的时隙(在时间上是连续的),且所述Q个时隙内只包含下行符号和/或灵活符号。
所述Q个时隙内只包含下行符号和/或灵活符号,例如可以是Q个时隙内只有下行符号,即全是下行符号;再例如,Q个时隙内只有下行符号和灵活符号,即部分下行符号,部分灵活符号;再例如,Q个时隙内只有灵活符号,即全是灵活符号。
例如,参考信号资源集合关联的参考信号资源类型是周期或半持续。
UE就在信道测量资源对包含的N个参考信号资源上,接收参考信号,并上报与这N个参考信号资源所关联的CSI报告。
如图7所示,N=3,参考信号资源1和2在时隙2中,参考信号资源3在时隙3中,时隙2和时隙3连续,且只包含下行符号(D)。
例如,K=4个参考信号资源,分别为{#0,#1,#2,#3},其中,信道测量资源对包含{#1,#2,#3}参考信号资源,{#1,#2}参考信号资源在时隙2,{#3}参考信号资源在时隙3,时隙2和时隙3是连续的时隙,并且,时隙2和时隙3中只有下行符号。因此,UE在{#1,#2,#3}参考信号资源上接收参考信号时,不会有相位不一致的问题。
方式五:
所述N个参考信号资源在T个时隙,其中T是小于或等于N,且大于1的正整数,所述T个时隙是非连续的时隙,所述T个时隙内只包含下行符号和/或灵活符号,且所述T个时隙之间的时隙只包含下行符号和/或灵活符号。
所述T个时隙内只包含下行符号和/或灵活符号,例如可以是T个时隙内只有下行符号,即全是下行符号;再例如,T个时隙内只有下行符号和灵活符号,即部分下行符号,部分灵活符号;再例如,T个时隙内只有灵活符号,即全是灵活符号。
例如,参考信号资源集合关联的参考信号资源类型是周期或半持续。
UE就在信道测量资源对包含的N个参考信号资源上,接收参考信号,并上报与这N个参考信号资源所关联的CSI报告。
如图8所示,N=2,参考信号资源1在时隙2中,参考信号资源2在时隙4中,时隙2和时隙4只包含下行符号(D),时隙3也只包括下行符号(D)。
例如,K=4个参考信号资源,分别为{#0,#1,#2,#3},其中,信道测量资源对包含{#1,#2}参考信号资源,{#1}参考信号资源在时隙2,{#2}参考信号资源在时隙4,时隙2和时隙4是不连续的时隙,时隙2和时隙4中只有下行符号,同样的,时隙2和时隙4之间的时隙3中只有下行符号。因此,UE在{#1,#2}参考信号资源上接收参考信号时,不会有相位不一致的问题。
方式六:
所述N个参考信号资源的第三区间内只存在下行符号和/或灵活符号。
所述第三区间是指第五参考信号资源的第一参考信号发射机会与第六参考信号资源的第二参考信号发射机会之间的时间范围,所述第一参考信号发射机会和所述第二参考信号发射机会都不晚于CSI参考资源,且所述第一参考信号发射机会是第五参考信号资源的参考信号发射机会中最接近CSI参考资源的一个或多个参考信号发射机会,所述第二参考 信号发射机会是第六参考信号资源的参考信号发射机会中最接近CSI参考资源的一个或多个参考信号发射机会,所述第五参考资源是所述N个参考信号资源中的参考信号资源,所述第六参考资源是所述N个参考信号资源中的参考信号资源。
可选的,所述第一参考信号发射机会所在的时隙,和所述第二参考信号发射机会所在的时隙,是连续的时隙。
例如,所述N个参考信号资源中每个参考信号资源的一个或多个参考信号发射机会之间只存在下行符号和/或灵活符号。
其中,所述一个或多个参考信号发射机会不晚于CSI参考资源;或,
所述一个或多个参考信号发射机会不晚于CSI参考资源,且所述一个或多个参考信号发射机会是最接近CSI参考资源的参考信号发射机会。
可以理解为:UE在满足如下条件时,上报与信道测量资源对包含的N个参考信号资源所关联的CSI报告:
针对每个参考信号资源来说,如果该参考信号资源是周期性的,则该参考信号资源的发射机会有多个,如果该参考信号资源是非周期性的,该参考信号资源的发射机会只有一个。
针对每个参考信号资源来说,可以找到不晚于CSI资源的一个或多个发射机会,还可以找到该参考信号资源中的与CSI参考资源最近的,且不晚于CSI资源的一个或多个发射机会。
针对每个参考信号资源来说,如果有多个发射机会,则这多个发射机会之间不存在上行符号和/或灵活符号。进一步可选的地,N个参考信号资源对应的所有的发射几乎之间均不存在上行符号和/或灵活符号。
针对每个参考信号资源来说,如果有1个发射机会,则这N个参考信号资源对应的N个发射机会之间不存在上行符号和/或灵活符号。
上述CSI参考资源所在的时隙,在上报上述N个参考信号资源所关联的CSI报告所在的上行时隙之前,CSI参考资源大于或等于特定数量(例如下文介绍的
Figure PCTCN2022108340-appb-000014
Figure PCTCN2022108340-appb-000015
)中的最小个数的时隙,并且使得CSI参考资源所在的时隙是有效的下行时隙。
例如当假设上报CSI报告所在的上行时隙是时隙n,那么CSI参考资源所在时隙可以是在n-n CSI_ref
当CSI报告是周期的或者半持续的,并且参考信号资源集合包含1个参考信号资源时,n CSI_ref可以是大于或等于
Figure PCTCN2022108340-appb-000016
的最小值,并且使得时隙n-n CSI_ref是有效的下行时隙,其中μ UL用于确定上行子载波间隔。μ UL可以是0或1或2或3。
当CSI报告是周期的或者半持续的,并且参考信号资源集合包含多个参考信号资源时,n CSI_ref可以是大于或等于
Figure PCTCN2022108340-appb-000017
的最小值,并且使得时隙n-n CSI_ref是有效的下行时隙。
当CSI报告是非周期的,并且触发非周期上报的下行信令与上报CSI报告不要求在同一个时隙时,n CSI_ref可以是大于或等于
Figure PCTCN2022108340-appb-000018
的最小值,并且使得时隙n-n CSI_ref是有效的下行时隙。可以根据测量类型和需求不同,预定义的一组值,这组值定义了UE处理不同类型CSI测量所需的最短时间,Z′的取值属于这组值,Z′的单位是符号个数,
Figure PCTCN2022108340-appb-000019
表示一个时隙包含的符号数,
Figure PCTCN2022108340-appb-000020
表示向下取整。
如图9所示,N=2,信道测量资源对包含参考信号资源0和参考信号资源1,参考信号资源0在CSI参考资源所在的时隙的前一个时隙,而参考信号资源1与CSI参考资源在同一个时隙,并且参考信号资源0和参考信号资源1的发射机会之间只有下行符号。因此,UE在参考信号资源0和参考信号资源1接收参考信号不会存在相位不一致的问题,因此UE在参考信号资源0和参考信号资源1接收参考信号,并上报与信道测量资源对包含的N个参考信号资源所关联的CSI报告。
需要注意的是,CSI参考资源的定义中,充分考虑了UE处理CSI的时延,因此在上述CSI参考资源前,上述N个参考信号资源的最近的1个或多个发射机会之间不存在上行符号和/或灵活符号的条件,能够保证UE处理CSI的时延要求的基础上,UE至少能够有一组参考信号资源之间没有相位一致性的问题。
以下方式七可以理解为网络侧设备的配置,造成信道测量资源对包含的N个参考信号资源之间存在上下行切换,从而存在相位不一致的问题。
方式七:
1)、UE可以在所述N个参考信号资源中的至少一个参考信号资源上不接收参考信号。
2)、UE不上报包含与N个参考信号资源具有关联关系的CSI报告,这可以防止由于无效CSI上报带来的上行资源浪费。
3)、UE上报未更新的CSI报告。
以上方式七中的三种可以选择至少一种。
不接收参考信号可以是按照不接收处理,或者是接收了不使用,不当做有效信号/信息处理。
这里未更新的CSI报告可以是UE缓存中存储的上次上报的CSI报告,或者是超范围的CSI报告,这个超范围的CSI报告中所包含的信道质量指示CQI是0,因为CQI等于0是一个超范围的值,网络设备收到这个CSI报告,就会知道这个CSI报告是超范围的CSI报告。上报未更新的CSI报告的主要目的是,当CSI报告与其他上行数据一起传输时,CSI报告不上报会造成上行数据容量的降低,UE需要重新进行速率匹配,使得上行数据能够准确映射到网络设备分配的上行资源内,这个过程会造成UE更高的实现复杂度和更高的功耗。
如下介绍存在相位不一致的N个参考信号资源配置的几种情况:
情况1:参考信号资源集合关联的参考信号资源类型是周期或半持续,在同一个发射机会内。
所述N个参考信号资源关联相同的发射机会,且所述发射机会所对应的符号中存在灵活符号和/或上行符号。
上述确定信道测量资源对包含的N个参考信号资源中任意一个参考信号资源所对应的符号是灵活符号。
如图10所示,N=2,由于信道测量资源对中的参考信号资源1对应灵活符号(F),因此UE不需要在参考信号资源0和参考信号资源1上接收参考信号。
网络设备通过高层信令为UE配置包含灵活符号的子帧结构,网络设备可以通过高层信令或者物理层信令,将子帧中配置的灵活符号(F)配置为上行符号(U)或下行符号(D)。做如上规定的主要原因是:按照现有技术(例如NR Release15/16),对于周期或者半持续的参考信号资源,当参考信号资源所在的符号是灵活符号时,UE是不做接收的。
若按照现有技术进行信道测量资源对的接收,那么若是信道测量资源对中某1个或一部分参考信号资源在灵活符号上,那么UE在这次接收机会上是不会接收这个参考信号资源,而是要等到下一个接收机会再去接收。例如,信道测量资源对中的参考信号资源0在第一个接收机会上,所在的符号是下行符号,进行接收;信道测量资源对中的参考信号资源1在第一个接收机会上,所在的符号是灵活符号,而没有进行接收;如果在第二个接收机会上,参考信号资源1所在的符号是下行符号,UE进行了相应的接收。可以看到参考信号资源1第一个接收机会所在的符号后的一个符号是上行符号,这意味着,参考信号资源0的第一接收机会所在的符号与参考信号资源1的第二接收机会所在的符号之间,存在着上下行切换,会有相位不一致的问题。
情况2:参考信号资源集合关联的参考信号资源类型是周期或半持续,信道测量资源对包含的N个参考信号资源在不同的时隙。
情况3:信道测量资源对包含的N个参考信号资源的第二区间内存在上行符号和/或存在灵活符号。
这时,当前发射机会内,N个参考信号资源的区间内包含了上下行切换,从而会引起相位不一致的问题。
情况4:所述N个参考信号资源的第三区间内存在上行符号和/或灵活符号。
例如,所述N个参考信号资源中每个参考信号资源的1个或多个参考信号发射机会之间存在上行符号和/或灵活符号,其中,所述1个或多个参考信号发射机会是不晚于CSI参考资源,且所述1个或多个参考信号发射机会是最接近CSI参考资源的参考信号发射机会。
在一种可选的示例中,UE上报第一能力信息,第一能力信息用于指示所述UE支持同一个信道测量资源对包含的N个参考信号资源所在的时隙不同,或者第一能力信息用于指示不支持同一个信道测量资源对包含的N个参考信号资源所在的时隙不同,或者第一能力信息用于指示所述UE只支持同一个信道测量资源对包含的N个参考信号资源所在的时隙不同。
若是能够支持N个参考信号资源所在的时隙不同,那么网络侧可以配置同一个信道测量资源对包含的N个参考信号资源在不同的时隙上。若是不支持,那么网络侧配置同一个信道测量资源对包含的N个参考信号资源在相同的时隙上。
在一种可选的示例中,UE上报第二能力信息,第二能力信息用于指示UE支持同一个信道测量资源对包含的N个参考信号资源的第二区间存在上行符号和/或灵活符号,或者,第二能力信息用于指示UE不支持同一个信道测量资源对包含的N个参考信号资源的第二区间存在上行符号和/或灵活符号,或者所述第二能力信息用于指示UE只支持同一个信道测量资源对包含的N个参考信号资源的第二区间不存在上行符号。
若是能够支持,那么网络侧可以配置同一个信道测量资源对包含的N个参考信号资源的第二区间中包含上行符号和/或灵活符号。若是不支持,那么网络侧可以配置同一个信道测量资源对包含的N个参考信号资源的第二区间中不包含上行符号和/或灵活符号。
在一种可选的示例中,UE上报第三能力信息,第三能力信息用于指示UE支持同一个信道测量资源对包含的N个参考信号资源的第三区间存在上行符号和/或灵活符号,或者,第三能力信息用于指示UE不支持同一个信道测量资源对包含的N个参考信号资源的第二 区间存在上行符号和/或灵活符号,或者所述第三能力信息用于指示UE只支持同一个信道测量资源对包含的N个参考信号资源的第三区间不存在上行符号。
若是能够支持,那么网络侧可以配置同一个信道测量资源对包含的N个参考信号资源的第三区间中包含上行符号和/或灵活符号。若是不支持,那么网络侧可以配置同一个信道测量资源对包含的N个参考信号资源的第三区间中不包含上行符号和/或灵活符号。
UE上报能力信息,用于指示是否支持同一个信道测量资源对包含的两个参考信号资源在不同的时隙内;和/或,用于指示是否支持同一个信道测量资源对包含的两个参考信号资源之间存在上行符号。通过上报能力信息,使网络设备为终端设备进行合适的配置。
前文介绍了本申请实施例的方法,下文中将介绍本申请实施例中的装置。方法、装置是基于同一技术构思的,由于方法、装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
本申请实施例可以根据上述方法示例,对装置进行功能模块的划分,例如,可以对应各个功能划分为各个功能模块,也可以将两个或两个以上的功能集成在一个模块中。这些模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,具体实现时可以有另外的划分方式。
基于与上述方法的同一技术构思,参见图11,提供了一种通信装置1100结构示意图,该装置1100可以包括:处理模块1110,可选的,还包括接收模块1120a、发送模块1120b、存储模块1130。处理模块1110可以分别与存储模块1130和接收模块1120a和发送模块1120b相连,所述存储模块1130也可以与接收模块1120a和发送模块1120b相连。
在一种示例中,上述的接收模块1120a和发送模块1120b也可以集成在一起,定义为收发模块。
在一种示例中,该装置1100可以为终端设备,也可以为应用于终端设备中的芯片或功能单元。该装置1100具有上述方法中终端设备的任意功能,例如,该装置1100能够执行上述图2的方法中由终端设备执行的各个步骤。
所述接收模块1120a,可以执行上述方法实施例中终端设备执行的接收动作。
所述发送模块1120b,可以执行上述方法实施例中终端设备执行的发送动作。
所述处理模块1110,可以执行上述方法实施例中终端设备执行的动作中,除发送动作和接收动作外的其它动作。
在一种示例中,所述处理模块1110,用于获取参考信号资源集合的配置信息,所述参考信号资源集合的配置信息包括K个参考信号资源的配置信息,所述K个参考信号资源的配置信息用于确定K个参考信号资源,所述K是正整数;
其中,所述K个参考信号资源中的至少两个参考信号资源所在的时隙是不同的时隙,或所述K个参考信号资源中的至少两个参考信号资源的第一区间内存在上行符号;
确定信道测量资源对包含的N个参考信号资源,且所述N个参考信号资源是所述K个参考信号资源中的N个参考信号资源,所述N是小于或等于K、且大于1的正整数。
在一种示例中,所述接收模块1120a,用于接收第一信令,所述第一信令用于指示所述N个参考信号资源;
在一种示例中,所述处理模块1110,用于根据预先规则在所述K个参考信号资源中确定所述N个参考信号资源。
在一种示例中,所述发送模块1120b,用于在所述N个参考信号资源上接收参考信号;和/或,上报所述N个参考信号资源关联的CSI报告。
在一种示例中,所述存储模块1130,可以存储终端设备执行的方法的计算机执行指令,以使处理模块1110和接收模块1120a和发送模块1120b执行上述示例中终端设备执行的方法。
示例的,存储模块可以包括一个或者多个存储器,存储器可以是一个或者多个设备、电路中用于存储程序或者数据的器件。存储模块可以是寄存器、缓存或者RAM等,存储模块可以和处理模块集成在一起。存储模块可以是ROM或者可存储静态信息和指令的其他类型的静态存储设备,存储模块可以与处理模块相独立。
所述收发模块可以是输入或者输出接口、管脚或者电路等。
作为一种可能的产品形态,装置可以由一般性的总线体系结构来实现。
如图12所示,提供了一种通信装置1200的示意性框图。
该装置1200可以包括:处理器1210,可选的,还包括收发器1220、存储器1230。该收发器1220,可以用于接收程序或指令并传输至所述处理器1210,或者,该收发器1220可以用于该装置1200与其他通信设备进行通信交互,比如交互控制信令和/或业务数据等。该收发器1220可以为代码和/或数据读写收发器,或者,该收发器1220可以为处理器与收发机之间的信号传输收发器。所述处理器1210和所述存储器1230之间电耦合。
一种示例中,该装置1200可以为终端设备,也可以为应用于终端设备中的芯片。应理解,该装置具有上述方法中终端设备的任意功能,例如,所述装置1200能够执行上述图2、的方法中由终端设备执行的各个步骤。示例的,所述存储器1230,用于存储计算机程序;所述处理器1210,可以用于调用所述存储器1230中存储的计算机程序或指令,执行上述示例中终端设备执行的方法,或者通过所述收发器1220执行上述示例中终端设备执行的方法。
作为一种可能的产品形态,装置可以由通用处理器(通用处理器也可以称为芯片或芯片系统)来实现。
一种可能的实现方式中,实现应用于终端设备的装置的通用处理器包括:处理电路(处理电路也可以称为处理器);可选的,还包括:与所述处理电路内部连接通信的输入输出接口、存储介质(存储介质也可以称为存储器),所述存储介质用于存储处理电路执行的指令,以执行上述示例中终端设备执行的方法。
图11中的处理模块1110可以通过处理电路来实现。
图11中的接收模块1120a和发送模块1120b可以通过输入输出接口来实现。或者,输入输出接口分为输入接口和输出接口,输入接口执行接收模块的功能,输出接口执行发送模块的功能。
图11中的存储模块1130可以通过存储介质来实现。
作为一种可能的产品形态,本申请实施例的装置,还可以使用下述来实现:一个或多个FPGA(现场可编程门阵列)、PLD(可编程逻辑器件)、控制器、状态机、门逻辑、分 立硬件部件、任何其它适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。
本申请实施例还提供了一种计算机可读存储介质,存储有计算机程序,该计算机程序被计算机执行时,可以使得所述计算机用于执行上述参考信号资源确定的方法。或者说:所述计算机程序包括用于实现上述参考信号资源确定的方法的指令。
本申请实施例还提供了一种计算机程序产品,包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机可以执行上述提供的参考信号资源确定的方法。
本申请实施例还提供了一种通信的系统,所述通信系统包括:执行上述参考信号资源确定的方法的终端和网络设备。
另外,本申请实施例中提及的处理器可以是中央处理器(central processing unit,CPU),基带处理器,基带处理器和CPU可以集成在一起,或者分开,还可以是网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片或其他通用处理器。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)及其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等或其任意组合。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本申请描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例中提及的收发器中可以包括单独的发送器,和/或,单独的接收器,也可以是发送器和接收器集成一体。收发器可以在相应的处理器的指示下工作。可选的,发送器可以对应物理设备中发射机,接收器可以对应物理设备中的接收机。
本领域普通技术人员可以意识到,结合本文中所公开的实施例中描述的各方法步骤和单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各实施例的步骤及组成。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请中的“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。本申请中所涉及的多个,是指两个或两个以上。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。本申请中,“配置”可以等同为“指示”。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (31)

  1. 一种参考信号资源确定的方法,其特征在于,包括
    获取参考信号资源集合的配置信息,所述参考信号资源集合的配置信息包括K个参考信号资源的配置信息,所述K个参考信号资源的配置信息用于确定K个参考信号资源,所述K是正整数;
    其中,所述K个参考信号资源中的至少两个参考信号资源所在的时隙是不同的时隙,或所述K个参考信号资源中的至少两个参考信号资源的第一区间内存在上行符号;
    确定信道测量资源对包含的N个参考信号资源,且所述N个参考信号资源是所述K个参考信号资源中的N个参考信号资源,所述N是小于或等于K、且大于1的正整数。
  2. 如权利要求1所述的方法,其特征在于,所述确定信道测量资源对包含的N个参考信号资源,包括:
    接收第一信令,所述第一信令用于指示所述N个参考信号资源;和/或,
    根据预先规则在所述K个参考信号资源中确定所述N个参考信号资源。
  3. 如权利要求1或2所述的方法,其特征在于,还包括
    在所述N个参考信号资源上接收参考信号;和/或,上报所述N个参考信号资源关联的CSI报告。
  4. 如权利要求3所述的方法,其特征在于,
    所述N个参考信号资源的第二区间内不存在上行符号和/或灵活符号;或者,
    所述N个参考信号资源的第二区间内存在上行符号,且所述上行符号中不进行上行传输;或者,
    所述N个参考信号资源在相同的时隙,且所述参考信号资源集合关联的参考信号资源类型是周期或者半持续;或者,
    所述N个参考信号资源在Q个时隙,其中,Q是小于或等于N的正整数,所述Q个时隙是连续的时隙,且所述Q个时隙内只包含下行符号和/或灵活符号;或者,
    所述N个参考信号资源在T个时隙,其中T是小于或等于N的正整数,所述T个时隙是非连续的时隙,所述T个时隙内只包含下行符号和/或灵活符号,且所述T个时隙之间的时隙只包含下行符号和/或灵活符号;或者,
    所述N个参考信号资源的第三区间内只存在下行符号和/或灵活符号。
  5. 如权利要求1或2所述的方法,其特征在于,
    在所述N个参考信号资源中的至少一个参考信号资源上不接收参考信号;和/或,
    不上报与所述N个参考信号资源关联的CSI报告;和/或,
    上报未更新的CSI报告。
  6. 如权利要求1或2或5所述的方法,其特征在于,
    所述N个参考信号资源关联相同的发射机会,且所述发射机会所对应的符号中存在灵活符号和/或上行符号;或者,
    所述N个参考信号资源在不同的时隙,且所述参考信号资源集合关联的参考信号资源类型是周期或者半持续;或者,
    所述N个参考信号资源的第二区间内存在上行符号和/或灵活符号;或者,
    所述N个参考信号资源的第三区间内存在上行符号和/或灵活符号。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述第一区间是指第一参考信号资源的结束符号到第二参考信号资源的起始符号之间的时间范围,且所述第一参考信号资源和所述第二参考信号资源关联相同的发射机会,所述第一参考资源是所述至少两个参考信号资源中最先的参考信号资源,所述第二参考资源是所述至少两个参考信号资源中最后的参考信号资源。
  8. 如权利要求4-7任一项所述的方法,其特征在于,所述第二区间是指第三参考信号资源的结束符号到第四参考信号资源的起始符号之间的时间范围,且所述第三参考信号资源和所述第四参考信号资源关联相同的发射机会,所述第三参考资源是所述N个参考信号资源中最先的参考信号资源,所述第四参考资源是所述N个参考信号资源中最后的参考信号资源。
  9. 如权利要求4或6或7所述的方法,其特征在于,所述第三区间是指第五参考信号资源的第一参考信号发射机会与第六参考信号资源的第二参考信号发射机会之间的时间范围,所述第一参考信号发射机会和所述第二参考信号发射机会都不晚于CSI参考资源,且所述第一参考信号发射机会是第五参考信号资源的参考信号发射机会中最接近CSI参考资源的一个或多个参考信号发射机会,所述第二参考信号发射机会是第六参考信号资源的参考信号发射机会中最接近CSI参考资源的一个或多个参考信号发射机会,所述第五参考资源是所述N个参考信号资源中的参考信号资源,所述第六参考资源是所述N个参考信号资源中的参考信号资源。
  10. 如权利要求9所述的方法,其特征在于,所述第一参考信号发射机会所在的时隙,和所述第二参考信号发射机会所在的时隙,是连续的时隙。
  11. 如权利要求1-10任一项所述的方法,其特征在于,所述方法还包括:
    发送第一能力信息,所述第一能力信息用于指示终端设备支持所述N个参考信号资源在不同的时隙;或者,所述第一能力信息用于指示终端设备不支持所述N个参考信号资源在不同的时隙;或者,所述第一能力信息用于指示所述终端设备只支持所述N个参考信号资源在不同的时隙。
  12. 如权利要求1-10任一项所述的方法,其特征在于,所述方法还包括:
    发送第二能力信息,所述第二能力信息用于指示终端设备支持所述N个参考信号资源的第二区间存在上行符号;或者,所述第二能力信息用于指示终端设备不支持所述N个参考信号资源的第二区间存在上行符号;或者,所述第二能力信息用于指示终端设备只支持所述N个参考信号资源的第二区间不存在上行符号。
  13. 如权利要求1-10任一项所述的方法,其特征在于,所述方法还包括:
    发送第三能力信息,所述第三能力信息用于指示终端设备支持所述N个参考信号资源的第三区间存在上行符号;或者,所述第三能力信息用于指示终端设备不支持所述N个参考信号资源的第三区间存在上行符号;或者,所述第三能力信息用于指示终端设备只支持所述N个参考信号资源的第三区间不存在上行符号。
  14. 一种通信装置,其特征在于,包括:
    处理模块,用于获取参考信号资源集合的配置信息,所述参考信号资源集合的配置信息包括K个参考信号资源的配置信息,所述K个参考信号资源的配置信息用于确定K个参考信号资源,所述K是正整数;其中,所述K个参考信号资源中的至少两个参考信号资源所在的时隙是不同的时隙,或所述K个参考信号资源中的至少两个参考信号资源的第一 区间内存在上行符号;确定信道测量资源对包含的N个参考信号资源,且所述N个参考信号资源是所述K个参考信号资源中的N个参考信号资源,所述N是小于或等于K、且大于1的正整数。
  15. 如权利要求14所述的装置,其特征在于,所述处理模块,用于接收第一信令,所述第一信令用于指示所述N个参考信号资源;和/或,根据预先规则在所述K个参考信号资源中确定所述N个参考信号资源。
  16. 如权利要求14或15所述的装置,其特征在于,还包括:
    接收模块,用于在所述N个参考信号资源上接收参考信号;和/或,发送模块,用于上报所述N个参考信号资源关联的CSI报告。
  17. 如权利要求16所述的装置,其特征在于,
    所述N个参考信号资源的第二区间内不存在上行符号和/或灵活符号;或者,
    所述N个参考信号资源的第二区间内存在上行符号,且所述上行符号中不进行上行传输;或者,
    所述N个参考信号资源在相同的时隙,且所述参考信号资源集合关联的参考信号资源类型是周期或者半持续;或者,
    所述N个参考信号资源在Q个时隙,其中,Q是小于或等于N的正整数,所述Q个时隙是连续的时隙,且所述Q个时隙内只包含下行符号和/或灵活符号;或者,
    所述N个参考信号资源在T个时隙,其中T是小于或等于N的正整数,所述T个时隙是非连续的时隙,所述T个时隙内只包含下行符号和/或灵活符号,且所述T个时隙之间的时隙只包含下行符号和/或灵活符号;或者,
    所述N个参考信号资源的第三区间内只存在下行符号和/或灵活符号。
  18. 如权利要求14或15所述的装置,其特征在于,
    在所述N个参考信号资源中的至少一个参考信号资源上不接收参考信号;和/或,
    不上报与所述N个参考信号资源关联的CSI报告;和/或,
    上报未更新的CSI报告。
  19. 如权利要求14或15或18所述的装置,其特征在于,
    所述N个参考信号资源关联相同的发射机会,且所述发射机会所对应的符号中存在灵活符号和/或上行符号;或者,
    所述N个参考信号资源在不同的时隙,且所述参考信号资源集合关联的参考信号资源类型是周期或者半持续;或者,
    所述N个参考信号资源的第二区间内存在上行符号和/或灵活符号;或者,
    所述N个参考信号资源的第三区间内存在上行符号和/或灵活符号。
  20. 如权利要求14-19任一项所述的装置,其特征在于,所述第一区间是指第一参考信号资源的结束符号到第二参考信号资源的起始符号之间的时间范围,且所述第一参考信号资源和所述第二参考信号资源关联相同的发射机会,所述第一参考资源是所述至少两个参考信号资源中最先的参考信号资源,所述第二参考资源是所述至少两个参考信号资源中最后的参考信号资源。
  21. 如权利要求17-20任一项所述的装置,其特征在于,所述第二区间是指第三参考信号资源的结束符号到第四参考信号资源的起始符号之间的时间范围,且所述第三参考信号资源和所述第四参考信号资源关联相同的发射机会,所述第三参考资源是所述N个参考信 号资源中最先的参考信号资源,所述第四参考资源是所述N个参考信号资源中最后的参考信号资源。
  22. 如权利要求17或19或20所述的装置,其特征在于,所述第三区间是指第五参考信号资源的第一参考信号发射机会与第六参考信号资源的第二参考信号发射机会之间的时间范围,所述第一参考信号发射机会和所述第二参考信号发射机会都不晚于CSI参考资源,且所述第一参考信号发射机会是第五参考信号资源的参考信号发射机会中最接近CSI参考资源的一个或多个参考信号发射机会,所述第二参考信号发射机会是第六参考信号资源的参考信号发射机会中最接近CSI参考资源的一个或多个参考信号发射机会,所述第五参考资源是所述N个参考信号资源中的参考信号资源,所述第六参考资源是所述N个参考信号资源中的参考信号资源。
  23. 如权利要求22所述的装置,其特征在于,所述第一参考信号发射机会所在的时隙,和所述第二参考信号发射机会所在的时隙,是连续的时隙。
  24. 如权利要求14-23任一项所述的装置,其特征在于,还包括:
    发送模块,用于发送第一能力信息,所述第一能力信息用于指示终端设备支持所述N个参考信号资源在不同的时隙;或者,所述第一能力信息用于指示终端设备不支持所述N个参考信号资源在不同的时隙;或者,所述第一能力信息用于指示所述终端设备只支持所述N个参考信号资源在不同的时隙。
  25. 如权利要求14-23任一项所述的装置,其特征在于,还包括:
    发送模块,用于发送第二能力信息,所述第二能力信息用于指示终端设备支持所述N个参考信号资源的第二区间存在上行符号;或者,所述第二能力信息用于指示终端设备不支持所述N个参考信号资源的第二区间存在上行符号;或者,所述第二能力信息用于指示终端设备只支持所述N个参考信号资源的第二区间不存在上行符号。
  26. 如权利要求14-23任一项所述的装置,其特征在于,还包括:
    发送模块,用于发送第三能力信息,所述第三能力信息用于指示终端设备支持所述N个参考信号资源的第三区间存在上行符号;或者,所述第三能力信息用于指示终端设备不支持所述N个参考信号资源的第三区间存在上行符号;或者,所述第三能力信息用于指示终端设备只支持所述N个参考信号资源的第三区间不存在上行符号。
  27. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合;
    所述存储器,用于存储计算机程序或指令;
    所述处理器,用于执行所述存储器中的部分或者全部计算机程序或指令,当所述部分或者全部计算机程序或指令被执行时,用于实现如权利要求1-13任一项所述的方法。
  28. 一种通信装置,其特征在于,包括处理器和存储器;
    所述存储器,用于存储计算机程序或指令;
    所述处理器,用于执行所述存储器中的部分或者全部计算机程序或指令,当所述部分或者全部计算机程序或指令被执行时,用于实现如权利要求1-13任一项所述的方法。
  29. 一种芯片系统,其特征在于,所述芯片系统包括:处理电路;所述处理电路与存储介质耦合;
    所述处理电路,用于执行所述存储介质中的部分或者全部计算机程序或指令,当所述部分或者全部计算机程序或指令被执行时,用于实现如权利要求1-13任一项所述的方法。
  30. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序包 括用于实现权利要求1-13任一项所述的方法的指令。
  31. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如权利要求1-13任一项所述的方法。
PCT/CN2022/108340 2021-07-29 2022-07-27 一种参考信号资源确定的方法及装置 WO2023005989A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22848594.2A EP4380091A1 (en) 2021-07-29 2022-07-27 Reference signal resource determination method and apparatus
US18/423,512 US20240243873A1 (en) 2021-07-29 2024-01-26 Reference signal resource determining method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110865185.2A CN115694754A (zh) 2021-07-29 2021-07-29 一种参考信号资源确定的方法及装置
CN202110865185.2 2021-07-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/423,512 Continuation US20240243873A1 (en) 2021-07-29 2024-01-26 Reference signal resource determining method and apparatus

Publications (1)

Publication Number Publication Date
WO2023005989A1 true WO2023005989A1 (zh) 2023-02-02

Family

ID=85059029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108340 WO2023005989A1 (zh) 2021-07-29 2022-07-27 一种参考信号资源确定的方法及装置

Country Status (4)

Country Link
US (1) US20240243873A1 (zh)
EP (1) EP4380091A1 (zh)
CN (1) CN115694754A (zh)
WO (1) WO2023005989A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024160185A1 (zh) * 2023-02-03 2024-08-08 华为技术有限公司 一种信道状态信息上报方法、装置及可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108933648A (zh) * 2017-05-27 2018-12-04 中兴通讯股份有限公司 信道状态信息的处理方法及装置、终端、基站
US20200021347A1 (en) * 2017-11-28 2020-01-16 Lg Electronics Inc. Method for reporting channel state information in wireless communication system and apparatus for the same
CN112134664A (zh) * 2019-06-25 2020-12-25 华为技术有限公司 资源确定方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108933648A (zh) * 2017-05-27 2018-12-04 中兴通讯股份有限公司 信道状态信息的处理方法及装置、终端、基站
US20200021347A1 (en) * 2017-11-28 2020-01-16 Lg Electronics Inc. Method for reporting channel state information in wireless communication system and apparatus for the same
CN112134664A (zh) * 2019-06-25 2020-12-25 华为技术有限公司 资源确定方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Enhancement to CSI Feedback", 3GPP DRAFT; R1-1705303 - FECOMP ENHANCEMENT TO CSI FEEDBACK, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20170403 - 20170407, 24 March 2017 (2017-03-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051250910 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024160185A1 (zh) * 2023-02-03 2024-08-08 华为技术有限公司 一种信道状态信息上报方法、装置及可读存储介质

Also Published As

Publication number Publication date
US20240243873A1 (en) 2024-07-18
CN115694754A (zh) 2023-02-03
EP4380091A1 (en) 2024-06-05

Similar Documents

Publication Publication Date Title
CN111510267B (zh) 波束指示的方法和通信装置
CN108289005B (zh) 信令发送、接收方法及装置
WO2018141272A1 (zh) 终端、网络设备和通信方法
KR20230156362A (ko) 무선 통신 시스템에서 채널 추정 및 이동성 향상을 위한 방법 및 장치
US20240243873A1 (en) Reference signal resource determining method and apparatus
KR20230169154A (ko) Ue 개시 빔 활성화 방법 및 장치
CN117561693A (zh) 用于参考符号模式适配的方法和装置
CN117796112A (zh) 用于控制信道的tci状态指示的方法和装置
WO2023060449A1 (zh) 无线通信的方法、终端设备和网络设备
KR20240071397A (ko) 업링크 프리코딩을 위한 멀티스테이지 dci를 위한 방법 및 장치
WO2022188081A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022188253A1 (zh) 无线通信的方法、终端设备和网络设备
CN118476255A (zh) 用于通信的方法、设备和计算机可读介质
WO2023125221A1 (zh) 一种信道质量指示的上报方法和装置
WO2023165460A1 (zh) 一种通信方法、装置及系统
WO2023201492A1 (zh) 基于ai的csi上报方法、接收方法、装置及存储介质
WO2023123399A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023138507A1 (zh) 一种通信方法、装置及系统
WO2023011234A1 (zh) 一种上报csi报告的方法及装置
WO2024032088A1 (en) Channel state information omissions from channel state information reports
WO2023050337A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024026650A1 (en) Methods, devices, and medium for communication
WO2024140409A1 (zh) 一种信道状态信息csi报告的配置方法及相关装置
WO2024149042A1 (zh) 通信方法和通信装置
WO2024131889A1 (zh) 一种通信方法、装置、芯片及模组设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848594

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024001712

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 202437007935

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2022848594

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11202400578W

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022848594

Country of ref document: EP

Effective date: 20240226

ENP Entry into the national phase

Ref document number: 112024001712

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20240126