WO2018141272A1 - 终端、网络设备和通信方法 - Google Patents

终端、网络设备和通信方法 Download PDF

Info

Publication number
WO2018141272A1
WO2018141272A1 PCT/CN2018/075132 CN2018075132W WO2018141272A1 WO 2018141272 A1 WO2018141272 A1 WO 2018141272A1 CN 2018075132 W CN2018075132 W CN 2018075132W WO 2018141272 A1 WO2018141272 A1 WO 2018141272A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink control
control information
terminal
spatial
information
Prior art date
Application number
PCT/CN2018/075132
Other languages
English (en)
French (fr)
Inventor
李华
栗忠峰
秦熠
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18748272.4A priority Critical patent/EP3562245A4/en
Publication of WO2018141272A1 publication Critical patent/WO2018141272A1/zh
Priority to US16/530,673 priority patent/US11337189B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present application relates to the field of communications and, more particularly, to terminals, network devices, and communication methods.
  • the network equipment and the terminal In the high frequency band, in order to overcome the path fading of the high frequency band and increase the coverage, the network equipment and the terminal usually use the beam to communicate. That is, the network device or the terminal performs analog weighting on multiple antenna elements of the antenna, so that the signal energy formed by the weighting is enhanced in a certain direction, and the signal is sent to the opposite end or the signal sent by the opposite end is received in the direction.
  • the terminal may send an uplink data channel to the network device by using a beam. Further, the terminal may transmit uplink control information on the uplink data channel.
  • the diffracting ability of the signal is poor, and it is easily affected by the obstruction.
  • the link quality caused by the occlusion is degraded, thereby reducing the reliability of the control information transmission.
  • the terminal adopts the beam mode. How to reliably transmit the uplink control information on the uplink data channel is currently a problem to be solved.
  • the present invention provides a terminal and a network device, and a communication method performed by the terminal and the network device, so that the terminal can use the beam to improve the transmission reliability of the uplink control information when transmitting the uplink control information on the uplink data channel. Improve the reliability of communication.
  • a communication method includes: a terminal transmitting, by using a plurality of spatial resources in a first set of spatial resources, first uplink control information.
  • the terminal uses multiple spatial resources to transmit uplink control information, which can improve the transmission reliability of the uplink control information, thereby improving the reliability of the communication.
  • the multiple spatial resources in the first set of spatial resources may correspond to different QCL information.
  • the terminal uses the multiple spatial resources in the first set of spatial resources to send the first uplink control information, including: using, by the terminal, the first spatial resource The plurality of spatial resources in the set send the first uplink control information in time units of multiple time divisions.
  • the communications method further includes: receiving, by the terminal, first indication information, where the first indication information is used to indicate the first Multiple spatial resources in a collection of spatial resources.
  • the terminal receives the first indication information, and may send the uplink control information by using multiple spatial resources indicated by the first indication information, so that the flexibility of the traffic can be improved.
  • the first uplink control information includes at least one of the following information: a hybrid automatic repeat request message, and a rank indication information.
  • a hybrid automatic repeat request message includes at least one of the following information: a hybrid automatic repeat request message, and a rank indication information.
  • Channel quality indication information precoding matrix index, repair request information, resource identification information, and reference signal received power.
  • the terminal uses the multiple spatial resources in the first spatial resource set to send the
  • the first uplink control information includes: the terminal mapping the first uplink control information into the time domain resource according to the resource mapping priority of the first uplink control information.
  • the communications method further includes: the terminal receiving downlink scheduling information, where the downlink scheduling information includes a first time a modulation and coding mode of a plurality of time units in a set of cells; a spatial resource in the first set of spatial resources is a spatial resource used when transmitting the first transport block, and a modulation and coding mode of the first transport block is The modulation coding method that satisfies the first condition in the modulation coding mode of the time units.
  • the first condition includes: the value of the modulation coding mode is the highest.
  • the first indication information includes an index of the first uplink control information, and the An index of a spatial resource in a collection of spatial resources.
  • the first spatial resource set is a subset of the second spatial resource set, where the The second spatial resource set includes a plurality of spatial resources used by the terminal to send the second uplink control information, where the second uplink control information and the first uplink control information are different types of information.
  • the communications method further includes: the terminal sending, by using the second space resource set, the second uplink control information.
  • the terminal by using the second space resource set, to send the second uplink control information, that: the terminal uses the second The plurality of spatial resources in the set of spatial resources send the second uplink control information in time units of multiple time divisions.
  • the communications method further includes: the terminal receiving the second indication information, where the second indication information is used And indicating the second set of space resources.
  • the second indication information includes an index of the second uplink control information and the second space The index of the spatial resource in the collection of resources.
  • the second uplink control information includes at least one of the following information: HARQ-ACK, RR, RI, BI And the RSRP, the first uplink control information includes at least one of BI, RSRP, CQI, and PMI except the second uplink control information.
  • a second aspect provides a communication method, where the communication method includes: the network device receiving terminal transmitting the first uplink control information by using multiple spatial resources in the first spatial resource set.
  • the network device receives the uplink control information that the terminal uses multiple spatial resources and transmits, which can improve the transmission reliability of the uplink control information, thereby improving the reliability of the communication.
  • the multiple spatial resources in the first set of spatial resources may correspond to different QCL information.
  • the network device receiving, by the terminal, the first uplink control information that is sent by using the multiple spatial resources in the first set of spatial resources includes: the network device receiving the terminal The plurality of spatial resources in the first set of spatial resources, the first uplink control information sent in time units of multiple time divisions.
  • the communications method further includes: the network device sends first indication information, where the first indication information is used to indicate Describe a plurality of spatial resources in the first set of spatial resources.
  • the network device sends the first indication information, and the terminal can flexibly instruct the terminal to use the multiple spatial resources indicated by the first indication information to send the uplink control information, so that the flexibility of the traffic can be improved.
  • the first uplink control information includes at least one of the following information: a hybrid automatic repeat request message, and a rank indication information.
  • a hybrid automatic repeat request message includes at least one of the following information: a hybrid automatic repeat request message, and a rank indication information.
  • Channel quality indication information precoding matrix index, repair request information, resource identification information, and reference signal received power.
  • the network device receiving terminal uses multiple spatial resources in the first spatial resource set, and is in uplink
  • the first uplink control information sent by the data channel includes: the network device acquiring the first uplink control information in the time domain resource according to the resource mapping priority of the first uplink control information.
  • the communications method further includes: the network device sends downlink scheduling information, where the downlink scheduling information includes the first a modulation and coding mode of a plurality of time units in a set of time units; a spatial resource in the first set of spatial resources is a spatial resource used when transmitting the first transport block, and a modulation and coding manner of the first transport block is A modulation and coding scheme that satisfies the first condition in a modulation coding scheme of a plurality of time units.
  • the first condition includes: the value of the modulation coding mode is the highest.
  • the first indication information includes an index of the first uplink control information, and the An index of a spatial resource in a collection of spatial resources.
  • the first spatial resource set is a subset of the second spatial resource set, where the The second spatial resource set includes a plurality of spatial resources used by the terminal to send the second uplink control information, where the second uplink control information and the first uplink control information are different types of information.
  • the communications method further includes: the network device receiving, by the terminal, the second uplink control information that is sent by using the second space resource set.
  • the network device receiving, by using the second space resource set, the second uplink control information that is sent by the uplink data channel includes: The network device receives the second uplink control information that is sent by the terminal in a plurality of time-division time units by using the plurality of spatial resources in the second spatial resource set.
  • the communication method further includes: the network device sending the second indication information, the second indication information, in the eleventh possible implementation manner Used to indicate the second set of space resources.
  • the second indication information includes an index of the second uplink control information and the second space The index of the spatial resource in the collection of resources.
  • the second uplink control information includes at least one of the following information: HARQ-ACK, RR, RI,
  • the second uplink control information includes at least one of BI, RSRP, CQI, and PMI except the second uplink control information.
  • a terminal comprising means for performing the communication method of the first aspect or any of the possible implementations of the first aspect.
  • a network device comprising means for performing the communication method of any of the possible implementations of the second aspect or the second aspect.
  • an embodiment of the present application provides a terminal, including a receiver, and optionally, a processor and a transmitter, where the receiver, the transmitter, and the processor are used to implement the first aspect or the first aspect.
  • a communication method in any of the possible implementations.
  • the embodiment of the present application provides a network device, including a transmitter, and optionally, a processor and a receiver, where the transmitter, the receiver, and the processor are used to implement the second aspect or the second A communication method in any of the possible implementations of the aspects.
  • the embodiment of the present application provides a computer readable medium storing program code for execution by a terminal, where the program code includes any one of the first aspect or the first aspect.
  • the embodiment of the present application provides a computer readable medium storing program code for execution by a network device, where the program code includes any of the second aspect or the second aspect.
  • the embodiment of the present application provides a computer program product comprising instructions, when executed on a terminal, causing the terminal to perform the communication method in any one of the possible implementations of the first aspect or the first aspect.
  • the embodiment of the present application provides a computer program product, including instructions, when the network device is running on a network device, causing the network device to perform communication in any one of the possible implementation manners of the second aspect or the second aspect. method.
  • an apparatus in an eleventh aspect, has a function to implement the behavior of a terminal or network device in the above method aspects, and includes means for performing the steps or functions described in the above method aspects.
  • the steps or functions may be implemented by software, or by hardware (such as a circuit), or by a combination of hardware and software.
  • the above apparatus includes one or more processors and communication units.
  • the one or more processors are configured to support the apparatus to perform the corresponding functions of the terminal in the above method.
  • the communication unit is configured to support the device to communicate with other devices to implement receiving and/or transmitting functions.
  • the apparatus may further comprise one or more memories for coupling with the processor, which store program instructions and/or data necessary for the device.
  • the one or more memories may be integrated with the processor or may be separate from the processor. This application is not limited.
  • the device may be a smart terminal or a wearable device or the like, and the communication unit may be a transceiver or a transceiver circuit.
  • the transceiver may also be an input/output circuit or an interface.
  • the device can also be a communication chip.
  • the communication unit may be an input/output circuit or interface of a communication chip.
  • the above apparatus includes a transceiver, a processor, and a memory.
  • the processor is for controlling a transceiver or an input/output circuit for transmitting and receiving signals, the memory for storing a computer program for executing a computer program in the memory, such that the device performs either of the first aspect or the first aspect Possible implementation of the method in the terminal.
  • the above apparatus includes one or more processors and communication units.
  • the one or more processors are configured to support the apparatus to perform the corresponding functions of the network device in the above method.
  • the communication unit is configured to support the device to communicate with other devices to implement receiving and/or transmitting functions.
  • the apparatus may further comprise one or more memories for coupling with the processor, which store program instructions and/or data necessary for the network device.
  • the one or more memories may be integrated with the processor or may be separate from the processor. This application is not limited.
  • the device may be a base station, a gNB or a TRP, etc.
  • the communication unit may be a transceiver, or a transceiver circuit.
  • the transceiver may also be an input/output circuit or an interface.
  • the device can also be a communication chip.
  • the communication unit may be an input/output circuit or interface of a communication chip.
  • the above apparatus includes a transceiver, a processor, and a memory.
  • the processor is for controlling a transceiver or input/output circuit for transmitting and receiving signals, the memory for storing a computer program for executing a computer program in the memory, such that the device performs any of the second aspect or the second aspect The method of implementing the network device in the implementation mode.
  • a system comprising the above terminal and network device.
  • FIG. 1 is an exemplary structural diagram of a communication system to which a communication method of an embodiment of the present application can be applied.
  • FIG. 2 is an exemplary flowchart of a communication method of an embodiment of the present application.
  • FIG. 3 is a diagram showing an example of a method for transmitting downlink scheduling information according to an embodiment of the present application.
  • FIG. 4 is a diagram showing an example of a method for transmitting downlink scheduling information according to another embodiment of the present application.
  • FIG. 5 is a schematic diagram of resource mapping according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of resource mapping according to another embodiment of the present application.
  • FIG. 7 is a schematic diagram of resource mapping according to another embodiment of the present application.
  • FIG. 8 is an exemplary flowchart of a terminal of an embodiment of the present application.
  • FIG. 9 is an exemplary flow chart of a network device of an embodiment of the present application.
  • FIG. 10 is an exemplary flowchart of a terminal of another embodiment of the present application.
  • FIG. 11 is an exemplary flowchart of a network device of another embodiment of the present application.
  • FIG. 12 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 1 An exemplary structural diagram of a communication system to which the communication method of the embodiment of the present application can be applied is as shown in FIG. 1. It should be understood that the embodiment of the present application is not limited to the system architecture shown in FIG. 1. In addition, the device in FIG. 1 may be hardware, functionally divided software, or a combination of the two.
  • the communication system to which the communication method of the embodiment of the present application can be applied may include the network device 110 and the terminal 120.
  • Network device 110 can be a base station. It should be understood that the specific type of the base station is not limited in the embodiment of the present application. In systems with different wireless access technologies, the names of devices with base station functions may vary. For convenience of description, in all embodiments of the present application, the foregoing apparatus for providing a wireless communication function to a terminal is collectively referred to as a base station, such as a base station device, a small base station device (pico), and the like in a future network.
  • a base station such as a base station device, a small base station device (pico), and the like in a future network.
  • the network device may be a device with a wireless transceiver function or a chip that can be disposed on the device, including but not limited to: an evolved Node B (eNB), a radio network controller (RNC), Node B (NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), access point (AP), wireless relay node, wireless backhaul node, transmission point (transmission and reception point, TRP or transmission) in wireless fidelity (WIFI) system Point, TP), etc., may also be 5G, such as NR, gNB in the system, or transmission point (TRP or TP), one or a group of base stations (including multiple antenna panels) in the 5G system, Alternatively, it may be a network node constituting a gNB or a transmission point, such as a baseband unit (BBU), or a distributed unit (DU), or the like.
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU implements radio resource control (RRC), the function of the packet data convergence protocol (PDCP) layer, and the DU implements the wireless chain.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU implements the wireless chain.
  • the functions of the radio link control (RLC), the media access control (MAC), and the physical (PHY) layer Since the information of the RRC layer eventually becomes information of the PHY layer or is transformed by the information of the PHY layer, high-level signaling, such as RRC layer signaling or PHCP layer signaling, can also be used in this architecture.
  • the network device can be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU may be divided into network devices in the access network RAN, and the CU may be divided into network devices in the core network CN, which is not limited herein.
  • the terminal 120 can be a user equipment (UE).
  • the UE may communicate with one or more core networks via a radio access network (RAN).
  • RAN radio access network
  • a UE may be referred to as an access terminal, a terminal device, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a wireless communication device, a user agent, or a user device.
  • the UE may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), and a wireless communication function.
  • the embodiments of the present application can be applied to a traditional typical network or to a UE-centric network in the future.
  • the UE-centric network introduces a non-cell network architecture, that is, deploys a large number of small stations in a specific area to form a hyper cell, and each station is a transmission point of the Hyper cell ( Transmission Point, TP) or TRP, and connected to a centralized controller.
  • TP Transmission Point
  • TRP Transmission Point
  • the network side device selects a new sub-cluster (sub-cluster) for the UE to serve, thereby avoiding true cell handover and achieving continuity of the UE service.
  • the network side device includes a wireless network device.
  • multiple network-side devices such as small stations
  • controllers such as distributed controllers
  • different base stations may be base stations with different identifiers, or may be base stations deployed in different geographical locations with the same identifier.
  • the base station, or the baseband chip should support the method provided by the embodiment of the present application before deployment, because the base station does not know whether it will involve the scenario applied by the embodiment of the present application before the base station is deployed. It can be understood that the foregoing base station with different identifiers may be a base station identifier, or may be a cell identifier or other identifier.
  • the scenario in the embodiment of the present application is described by taking the scenario of the NR network in the wireless communication network as an example. It should be noted that the solution in the embodiment of the present application may also be applied to other wireless communication networks, and the corresponding names may also be used in other scenarios. The name of the corresponding function in the wireless communication network is replaced.
  • the network device 110 and the terminal 120 can transmit data to each other on the resources of the high frequency band by using a beam.
  • the shorter wavelengths in the high frequency band allow the antenna spacing to be reduced, allowing more antenna elements to be placed over the same area.
  • a large number of antenna elements can form large-scale array antennas, and large-scale array antennas can bring array gain by beamforming, thereby effectively increasing coverage and overcoming path attenuation in high frequency bands.
  • the analog beam can be formed at the network device or at the terminal.
  • the network device or terminal can enhance the energy of the signal in a certain direction by changing the phase weight of the antenna element, so that it can better receive or transmit the signal in the direction.
  • a signal that enhances energy in that direction or that transmits enhanced energy in that direction is referred to as a beam, that is, a network device or terminal can transmit beams in different directions or receive beams in different directions.
  • analog beams or analog and digital hybrid weighting, can be used to meet coverage requirements.
  • the analog beam or the hybrid beam when the information is transmitted on multiple beams for the same antenna panel, the multiple beams are transmitted in a time division manner. That is to say, if the analog beam or the hybrid beam is used for communication, for the same antenna panel, only one analog beam can be formed at the same time, pointing in one direction, that is, covering a certain area.
  • a large number of antenna elements can be set on the network device 110 and the terminal 120.
  • the terminal 120 sends information to the network device 110 (such as uplink data information or uplink control information)
  • the terminal 120 can set a phase shift on its own radio frequency end. And changing the phase weight of the antenna element by the phase shifter, realizing the analog phase weighting of the plurality of antenna elements, and enhancing the capability of the signal in the direction of the network device, forming an analog beam aligned with the network device 120, and passing the The analog beam network device 110 transmits information.
  • the network device may also set a phase shifter on its own radio frequency end, and change the phase weight of the antenna array element by the phase shifter to implement analog phase weighting on multiple antenna array elements to form a receiving beam to receive the terminal 120.
  • the network device when the network device sends the information (that is, the downlink data information or the downlink control information) to the terminal 120, the foregoing communication method may also be used, and details are not repeatedly described herein.
  • a beam can be understood as a space resource. Different beams can be considered as different spatial resources. Different from the beam in the LTE, the beam in the embodiment of the present application is mainly an analog beam, that is, only one analog beam can be formed on one antenna panel at a time. If the terminal or the network device has only one antenna panel, multiple beam transmission is required. Different beams can only be time-divided.
  • the technical solution of the present application can be applied not only to scenarios in which different beams are used for transmission, but also to scenarios in which different port resources are used for transmission. Because the port itself is a logical resource identifier, it can be used to distinguish different spatial resources, which can be used to distinguish different beams.
  • different spatial resources may have different quasi-co-located (QCL) information.
  • QCL information is generally used to indicate the relationship between the reference signal ports.
  • the terminal needs to send an uplink reference signal to perform beam scanning to determine the transmitting beam used by the terminal to transmit data and the receiving beam used by the network device.
  • the reference signal may be a sounding reference signal (SRS) signal, or other reference signal.
  • SRS sounding reference signal
  • the reference signal may also be a downlink reference signal.
  • Reciprocity means that the uplink beam of the terminal can be determined according to the downlink scan result, that is, the optimal receive beam determined by the terminal through the downlink beam scan corresponds to the uplink optimal transmit beam.
  • the QCL information in this application may be a parameter describing a spatial relationship, such as an angle-of-departure (AOD) or a spatial correlation of a transmit beam antenna.
  • AOD angle-of-departure
  • the corresponding transmission beam can be determined by using the QCL information, for example, by determining a physical uplink shared channel (PUSCH) or a physical uplink control channel.
  • the port of the demodulation reference signal (DMRS) of the physical uplink control channel (PUCCH) is the QCL of the SRS of the previous scan, that is, the beam direction of the PUSCH or PUCCH and the previous SRS.
  • the beam directions are the same. In the present application, when multiple beams are required for transmission, beams in different directions are required, and therefore, different beams have different QCL information.
  • a quasi co-location (QCL) relationship between two antenna ports means that the channel large-scale parameter of one antenna port can be inferred by the large-scale parameter of the channel obtained by another antenna port ( Infer).
  • Large-scale parameters may include average gain, average delay, delay spread, Doppler shift, Doppler spread, spatial parameters ( One or more of the spatial parameter, or spatial Rx parameters.
  • the spatial parameters may include an angle of arrival (AOA), a dominant AoA, an average AoA, an angle of departure (AOD), a channel correlation matrix, and an angle of arrival power.
  • AOA angle of arrival
  • AOD angle of departure
  • Beamforming average departure angle
  • power angle spread spectrum of departure angle transmit channel correlation
  • receive channel correlation receive beamforming
  • receive beamforming receive beamforming
  • spatial channel correlation spatial filter
  • weight information One or more of filtering parameters, or spatial receiving parameters, or weight information.
  • FIG. 1 is only an example diagram, and the number of the network device 110 and the terminal 120 is not limited to the solution provided by the present application. In practical applications, network deployment can be performed in different numbers as shown in FIG. 1.
  • the solution provided by the present application may also be applied to any communication system that uses a beam to communicate in other modes than the one in FIG. 1 , which is not limited in this embodiment of the present application.
  • FIG. 12 shows a possible application environment of an embodiment of the present application.
  • the base station shown in FIG. 12 may be a base station in 5G.
  • a base station may perform a separation of a central unit (CU) and a distributed unit (DU), or a protocol stack separation.
  • CUs and DUs can handle different protocol layers.
  • the DU can handle the Radio Link Control (RLC) protocol and the following protocols, and the CU can process protocols above the RLC layer.
  • RLC Radio Link Control
  • the CU can handle a Packet Data Convergence Protocol (PDCP) or a Radio Resource Control (RRC) protocol.
  • PDCP Packet Data Convergence Protocol
  • RRC Radio Resource Control
  • the DU can be used to process the Physical Layer (PHY) protocol, the Media Access Control (MAC) protocol, and the RLC protocol.
  • PHY Physical Layer
  • MAC Media Access Control
  • RLC Radio Link Control
  • the same CU may be connected to one or more DUs, and the same DU may include one or more cells.
  • the CU and the DU may be collectively referred to as a gNB.
  • FIG. 2 is a schematic flowchart of a communication method according to an embodiment of the present application. It should be understood that FIG. 2 illustrates steps or operations of the communication method, but these steps or operations are merely examples, and other embodiments of the present application may also perform other operations or variations of the operations in FIG. 2. Moreover, the various steps in FIG. 2 may be performed in a different order than that presented in FIG. 2, and it is possible that not all operations in FIG. 2 are to be performed.
  • the terminal sends the first uplink control information by using multiple spatial resources in the first spatial resource set.
  • the network device receives the first uplink control information.
  • the first set of spatial resources may be pre-configured on the terminal.
  • the first spatial resource set may be configured on the terminal and the network device, where the first spatial resource set may include index or identification information of the multiple spatial resources.
  • the terminal uses the multiple spatial resources to send the first uplink control information.
  • the uplink control information transmitted on some of the spatial resources is affected, the other spatial resources can still transmit the uplink control information, thereby improving the uplink control information. Transmission reliability can ultimately improve the communication reliability between the terminal and the network device.
  • the spatial resource in the embodiment of the present application may be a beam.
  • the first set of spatial resources can be understood as a first set of beams.
  • the first set of spatial resources includes a plurality of spatial resources. It can be understood that the first set of spatial resources includes multiple beams. Wherein each beam has a corresponding analog phase weighting value.
  • the following content in the embodiment of the present application takes the spatial resource as a beam as an example to further describe the communication method in the embodiment of the present application. It should be understood that the beams in the following may be replaced with ports or other names that have the same meaning as the beam.
  • the network device may determine, as the first beam set, a plurality of beams with better communication quality (such as RSRP value) or less spatial correlation between the network device and the terminal, and specifically, the communication quality of the beam that can be used by the terminal is better or A plurality of beams that are less correlated are determined as the first beam set.
  • each beam may be a beam in a transmit and receive beam that has been paired between the network device and the terminal.
  • the communication quality of the beams in the first beam set may be superior to the communication quality of other beams that can be used for communication between the network device and the terminal.
  • the network device can determine the 3 beams as the first beam set.
  • the terminal sends the first uplink control information by using a beam with good communication quality, which can further improve the communication reliability between the terminal and the network device.
  • the first uplink control information may include one or more types of information.
  • the beam sets indicating the multiple types of information are the same, and both are the first beam set.
  • the first uplink control information may include a beam index (BI).
  • BI beam index
  • the first uplink control information may include a beam repair request (RR) message.
  • RR beam repair request
  • the terminal can notify the network device that the communication has been interrupted through the RR message. After receiving the RR message, the network device takes certain measures, such as switching beams, to repair the communication.
  • the first uplink control information may include reference signal receiving power (RSRP) of the beam.
  • RSRP reference signal receiving power
  • the first uplink control information may further include at least one of the following: a hybrid auto retransmission request-acknowledgement (HARQ-ACK), a rank indicator (RI), and a channel quality indicator (CQI). And precoding matrix index (PMI).
  • HARQ-ACK hybrid auto retransmission request-acknowledgement
  • RI rank indicator
  • CQI channel quality indicator
  • PMI precoding matrix index
  • the terminal may use the multiple spatial resources in the first spatial resource set to send the first uplink control information on the uplink data channel.
  • the communication method shown in FIG. 2 may further include: S210, the network device sends first indication information, where the first indication information is used to indicate a first spatial resource set, where the first spatial resource set includes multiple spatial resources.
  • the terminal receives the first indication information. Accordingly, the terminal receives the first indication information.
  • the network device When the first uplink control information includes multiple types of information, the network device indicates, by using a first indication information, a beam set when the terminal sends multiple types of information, which can save signaling, that is, save communication resources.
  • the first indication information may include an index of each information in the first uplink control information and an index of each beam in the first beam set or an index of a beam pair to which each beam belongs or an index of a beam group to which each beam belongs.
  • the first indication information may also include QCL related information for indicating that the spatial parameters between the ports are similar. If the terminal is able to obtain similar spatial parameters between the ports, then the two ports have similar spatial characteristics.
  • the terminal in order to indicate that the terminal uses different transmit beams, information about the QCL of a certain parameter between the DMRS port carrying the PUCCH or the PUSCH and the port of the SRS may be used in the first indication information.
  • the QCL parameter may be an AOA, or a spatial correlation of the transmit antenna. In this way, it is possible to transmit control information on different beams.
  • the network device may send the first indication information by using high layer signaling.
  • the terminal can receive the first indication information by using high layer signaling.
  • the high layer signaling may include radio resource control (RRC) signaling and medium access control-control element (MAC-CE) signaling.
  • RRC radio resource control
  • MAC-CE medium access control-control element
  • the network device may send the first indication information by using the downlink control information, and correspondingly, the terminal may receive the first indication information by using the downlink control information.
  • the communication method shown in FIG. 2 may further include: the network device sends downlink scheduling information, where the downlink scheduling information includes a modulation and coding manner of multiple time units.
  • the terminal receives the downlink scheduling information.
  • the terminal may determine a modulation and coding mode that satisfies a certain condition in the multiple time units, such as a modulation and coding mode that is greater than a certain threshold, and determine transmission of the modulation and coding mode value in the multiple time units.
  • the beam corresponding to the block constitutes the first beam set
  • the beam in the first beam set described in S220 is a beam used when transmitting the first transport block
  • the modulation coding mode of the first transport block is that the first condition is met in the modulation coding mode of the multiple time units. Modulation coding method.
  • the terminal sends the first uplink control information by using the beam corresponding to the transport block whose modulation and coding mode value meets the first condition in the multiple time units, and the communication reliability of the first uplink control information may be further improved.
  • the first condition may be pre-configured on the terminal, such as may be configured according to a communication standard, or may be configured according to configuration information sent by the network device.
  • the first condition may be that the modulation coding mode value is the highest, that is, the modulation coding mode value of the first transmission block is the highest among the modulation coding modes of the plurality of time units.
  • the one time unit may be one subframe, that is, the modulation and coding manner that may be multiple subframes included in the downlink scheduling information. It should be understood that the modulation coding manner of each subframe may be multiple.
  • each subframe includes 7 symbols, the first subframe is a bidirectional subframe, and the second subframe is a full uplink subframe, and the downlink symbol of the first subframe carries the same. Scheduling information for two subframes.
  • the terminal may receive the modulation and coding mode information used by the two subframes in the scheduling information of the first downlink subframe. Then, the terminal can determine which of the two subframes has a larger modulation and coding mode, and send the first uplink control information by using a beam corresponding to the transport block of the larger modulation and coding mode.
  • the terminal can be pre-configured, for example, according to the standard configuration information: when there are multiple modulation coding modes with the highest value, that is, when there are multiple transmission blocks with the highest modulation and coding mode, the transmission block corresponding to the modulation coding mode having the highest value can be used.
  • the beam with the highest time in the beam transmits the first uplink control information.
  • each time unit When each time unit is not in centralized scheduling, it is required to indicate a first beam set when transmitting the first uplink control information. As shown in FIG. 4, there are two subframes, each of which is 7 symbols, and each of the subframes includes its own scheduling information. Therefore, when the network device schedules the uplink data channel of the terminal in multiple subframes, The indication information may be sent to the terminal indicating in which subframe the first uplink control information is transmitted.
  • the first beam set may be a subset of the second beam set.
  • the second beam set includes multiple beams that can be used when the terminal sends the second uplink control information, and the second uplink control information and the first uplink control information are different types of information.
  • the second uplink control information may include at least one of HARQ-ACK, RR, RI, BI, and RSRP;
  • the first uplink control information may include information included in the first uplink control information in the BI, RSRP, CQI, and PMI. At least one of the rest.
  • the multiple beams included in the second set of beams may be used to send information about the second uplink control information, which may be configured on the terminal or indicated by the network device. If the network device indicates, the communication method shown in FIG. 2 or the various possible implementation manners of the communication method may further include: the network device sends the second indication information, where the second indication information is used to indicate that the terminal sends the The second beam set when the second uplink control information. Correspondingly, the terminal receives the second indication information.
  • the importance of the various information in the second uplink control information may be higher than the importance of the various information in the first uplink control information.
  • the influence of various information in the second uplink control information on the communication between the terminal and the network device is greater than the influence of various information in the first uplink control information on the communication between the terminal and the network device.
  • the second beam set includes more beams, that is, the terminal can use more beams to transmit the second uplink control information with high importance, so that the communication reliability of the second uplink control information can be improved.
  • the first beam set includes fewer beams, that is, the terminal can transmit the first uplink control information with low importance using fewer beams, thereby saving communication resources.
  • the network device may send the second indication information by using high layer signaling.
  • the terminal can receive the second indication information by using the high layer signaling.
  • the high layer signaling may include RRC signaling and medium access control-control element (MAC-CE) signaling.
  • MAC-CE medium access control-control element
  • the network device may send the second indication information by using the downlink control information, and correspondingly, the terminal may receive the second indication information by using the downlink control information.
  • the second uplink control information may include one or more types of information.
  • the beam sets indicating the multiple types of information are the same, and both are the second beam set. That is to say, the network device can indicate the beam set when the terminal sends multiple kinds of information through a second indication information, thereby saving signaling, that is, saving communication resources.
  • the second indication information may include an index of each information in the second uplink control information and an index of each beam in the second beam set or an index of a beam pair to which each beam belongs or an index of a beam group to which each beam belongs.
  • the terminal uses multiple beams in the first beam set, and when the uplink data channel sends the first uplink control information, the terminal may use the first uplink.
  • the resource mapping priority of the information included in the control information performs time domain resource mapping on the first uplink control information.
  • the terminal can obtain the resource mapping priority and/or the resource mapping manner. Then, the first uplink control information is mapped to the time domain resource according to the resource mapping priority and the resource mapping manner.
  • the resource mapping mode and/or the resource mapping priority may be configured according to a communication standard or may be received from a network device.
  • the time domain resource may specifically be a time domain symbol.
  • the resource mapping manner may include: if the resource mapping priority of the information is higher, the smaller the symbol distance of the target time domain symbol of the information relative to the time domain symbol of the reference signal, and vice versa; if the resource mapping of the information The higher the priority, the target time domain symbol of the information is before the time domain symbol of the reference signal, and vice versa.
  • the resource mapping manner may include: if the resource mapping priority of the information is lower, the information is transmitted on less time domain symbols, or when the information with higher priority is in conflict when mapping, the low priority Information is discarded first and vice versa. Or, on the resources with less uplink time domain symbols, only the information with high priority is mapped, and on the larger resources, the information with high priority and low priority can be mapped.
  • the reference signal is a demodulation reference signal (DMRS)
  • the DMRS occupies the first time domain symbol
  • the resource mapping priority is (HARQ-ACK and RR)>(RI, BI, and RSRP)>(CQI)
  • FIG. 5 a resource mapping diagram obtained according to the foregoing resource mapping manner is shown in FIG. 5.
  • resource mapping priority is only an example, and should not be construed as limiting the embodiments of the present application.
  • other resource mapping priorities may be used, such as (HARQ-ACK and RR) > (RI) > (BI, RSRP, CQI, and PMI) > Data.
  • the target time domain symbols of the HARQ-ACK and the RR are placed next to the time domain symbols of the DMRS; the target time domain symbols of the RI and BI are on the second time domain symbol following the time domain symbols of the DMRS;
  • the target time domain symbol of RSRP is on the 4th and 5th symbols after the time domain symbol of DMRS, the target time domain symbol of CQI and PMI is after the target time domain symbol of RSRP, and the time domain symbol after this is the time when the data can be occupied. Domain symbol.
  • the information on each time domain symbol is processed in a frequency division manner.
  • the DMRS occupies the second symbol in the subframe, and the resource mapping priority is (HARQ-ACK and RR) > (RI, BI, and RSRP) > (CQI and PMI) > Data (Data) resources
  • the resource mapping priority is (HARQ-ACK and RR) > (RI, BI, and RSRP) > (CQI and PMI) > Data (Data) resources
  • FIG. 6 A resource mapping diagram obtained according to the foregoing resource mapping manner is shown in FIG. 6.
  • the target time domain symbols of (HARQ-ACK and RR) are the first time domain symbols
  • the target time domain symbols of RI and BI are the third time domain symbols
  • the target time domain symbols of RSRP are 4, 5 symbols
  • CQI and PMI target time domain symbols are after the RSRP target time domain symbols
  • the subsequent time domain symbols are time domain symbols that the data can occupy.
  • Figure 6 shows the case where one subframe has one DMRS.
  • each slot and mini-slot may have its own DMRS.
  • resource mapping can be performed uniformly on multiple slots or minislots.
  • the DMRS occupies the second symbol in the subframe, and the resource mapping priority is (HARQ-ACK and RR) > (RI, BI, and RSRP) > (CQI and PMI) > Data (Data) resources
  • the resource mapping priority is (HARQ-ACK and RR) > (RI, BI, and RSRP) > (CQI and PMI) > Data (Data) resources
  • FIG. 7 A schematic diagram of uniformly performing resource mapping on multiple slots or minislots according to the foregoing resource mapping manner is shown in FIG. 7.
  • the target time domain symbols of ACK and RR can be in the vicinity of the time domain symbols occupied by the DMRS of the first slot or mini-slot, and the target time domain symbols of RI, CRI and BI can be in the second slot or The mini-slot's DMRS occupies near the time domain symbol.
  • the second uplink control information may be mapped according to the resource mapping priority.
  • the specific implementation manner may refer to the implementation manner of the first uplink control information. For the sake of brevity, it will not be repeated here.
  • the method for transmitting a slot may include: when the network device sends a data of a transmission block (TB) to the terminal, after the code block division, channel coding, rate matching, and code block cascading, the current usage may be used.
  • Techniques modulate the number of generated bits in accordance with an assigned modulation and coding scheme (MCS). This method differs from the prior art in that the number of generated bits is separately modulated according to different modulation schemes.
  • MCS modulation and coding scheme
  • a simple way to use different modulation methods for the number of bits is to divide evenly, and then generate corresponding modulation symbols according to different modulation methods. Interleaving of modulation symbols can also be considered before resource mapping.
  • the intermodulation symbols may be interleaved by using inter-time symbol interleaving; if the content is transmitted If there is no requirement for delay, the modulation symbols may be interleaved by using an interleaving manner inside each time domain symbol. Finally, the mapping of resources is performed.
  • the terminal when receiving the data, the terminal first demodulates the received symbols according to the offsets of the reference MCS and the MCS in the downlink control information (DCI) in the scheduling signaling to obtain corresponding bits. . Then, according to the reference MCS in the signaling, the corresponding TB size (the size of the TB block) is determined, and the number and size of the coding blocks (CBs) in the TB are determined, thereby solving the corresponding TB.
  • DCI downlink control information
  • the advantage of this approach is to use different MCS in different frequency bands to obtain the frequency selection scheduling gain.
  • multiple MCSs are indicated, one of which is set to the reference MCS, and the remaining MCSs are represented as relative values relative to the reference MCS. This can have the benefit of reducing scheduling overhead.
  • the differential MCS in the method is applied in the same time domain symbol by using an overhead-saving scheme, and can be used on different sub-bands, or on different code blocks, or on different code block groups, wherein one sub-band is allocated correspondingly. Part of the bandwidth, the part corresponds to one CB or multiple CBs (CB group). Similarly, the method can also be used in different time units.
  • the terminal can receive a reference MCS and a relative value. The corresponding MCS can be obtained.
  • the sending method of the other slot may include: when the network device sends one TB of data to the terminal, after performing code block segmentation, channel coding, rate matching, and code block cascading, the modulation is directly performed by using the prior art.
  • the method differs from the prior art in that interleaving of code blocks is performed, and after interleaving, modulation is performed using the same MCS, and then mapping of REs is performed.
  • the code block may be interleaved by interleaving with time domain symbols; if the content is transmitted If there is no requirement for delay, the code blocks may be interleaved by interleaving in each symbol. Finally, the mapping of resources is performed.
  • the terminal when receiving the data, demodulates the received symbol according to the MCS in the DCI in the scheduling signaling, demodulates and deinterleaves according to the used interleaving manner, thereby releasing the corresponding TB. .
  • the advantage of this approach is that the interleaving of the code blocks is performed to combat the frequency selective fading, and the interleaving method also considers different delay requirements.
  • the method for transmitting another slot may include: when the network device sends a TB data to the terminal, after performing code block division, channel coding, rate matching, code block cascading, and using the same MCS for modulation, after the modulation is completed, Use existing technology to directly map resources.
  • the method differs from the prior art in that interleaving of modulation symbols is performed, and then mapping of resources is performed.
  • the intermodulation symbols may be interleaved by using inter-time symbol interleaving; if the content is transmitted If there is no requirement for delay, the modulation symbols may be interleaved by using an interleaving manner inside each time domain symbol. After the interleaving, the mapping of resources is performed.
  • the three schemes can also be applied to the case of transmitting multiple TBs, for example, different TBs correspond to different sub-bands.
  • the sending method of another slot may include: the network device sends configuration information about the Subband (subband) to the terminal, where one subband corresponds to a part of the allocated bandwidth, and the part corresponds to one CB or multiple CBs (CB group, Code block group).
  • the configuration information may include the bandwidth, and the number of subbands, or the frequency domain size of the subband and the number of subbands, or the bandwidth, and the frequency domain size of the subband, or the bandwidth, the frequency domain size of the subband, and the subband.
  • the number The UE can obtain the corresponding sub-band division by using the configuration information, so as to determine the corresponding fftsize.
  • the UE can report the number of cells (carriers) that can be supported by itself, or the number of sub-bands, or the number of cells and the number of sub-bands.
  • code block interleaving may be performed inside one code block group, and the interleaving may be performed on the coded bits, or may be performed on the modulated symbols after modulation.
  • the terminal and the network device in the embodiment of the present application are described below with reference to FIG. 8 to FIG.
  • FIG. 8 is an exemplary structural diagram of a terminal according to an embodiment of the present application. It should be understood that the terminal 800 shown in FIG. 8 is only an example, and the terminal in the embodiment of the present application may further include other modules or units, or include modules similar in function to the respective modules in FIG. 8, or not included in FIG. All modules.
  • the sending module 810 is configured to send the first uplink control information by using multiple spatial resources in the first set of spatial resources.
  • the terminal uses multiple spatial resources to transmit uplink control information, which can improve the transmission reliability of the uplink control information, thereby improving the reliability of the communication.
  • the sending module may be specifically configured to: send the first uplink control information in a time unit of multiple time divisions by using multiple spatial resources in the first spatial resource set.
  • the terminal may further include a receiving module 820, where the receiving module is configured to receive first indication information, where the first indication information is used to indicate multiple spatial resources in the first spatial resource set.
  • the first uplink control information may include at least one of the following: a hybrid automatic repeat request message, rank indication information, channel quality indication information, a precoding matrix index, repair request information, resource identification information, and a reference signal. Receive power.
  • the terminal may further include a processing module 830, configured to map the first uplink control information into the time domain resource according to the resource mapping priority of the first uplink control information.
  • a processing module 830 configured to map the first uplink control information into the time domain resource according to the resource mapping priority of the first uplink control information.
  • the terminal further includes a receiving module, configured to receive downlink scheduling information, where the downlink scheduling information includes a modulation and coding manner of multiple time units in the first time unit set, where the first spatial resource set
  • the spatial resource is a spatial resource used when transmitting the first transport block
  • the modulation and coding mode of the first transport block is a modulation and coding mode that satisfies the first condition in the modulation and coding manner of the plurality of time units.
  • the first spatial resource set is a subset of the second spatial resource set
  • the second spatial resource set includes multiple spatial resources used by the terminal to send the second uplink control information, where the second The uplink control information and the first uplink control information are different types of information.
  • FIG. 9 is an exemplary structural diagram of a network device according to an embodiment of the present application. It should be understood that the network device 900 shown in FIG. 9 is only an example, and the network device in the embodiment of the present application may further include other modules or units, or include modules similar to those of the modules in FIG. 9, or not including the figure. All modules in 9.
  • the receiving module 910 is configured to receive the first uplink control information that is sent by the terminal by using multiple spatial resources in the first set of spatial resources.
  • the network device receives the uplink control information that the terminal uses multiple spatial resources to transmit, which can improve the transmission reliability of the uplink control information, thereby improving the reliability of the communication.
  • the receiving module may be specifically configured to: receive, by the terminal, the first uplink control information that is sent in a time unit of multiple time divisions by using multiple spatial resources in the first spatial resource set.
  • the network device further includes a sending module 920, configured to send first indication information, where the first indication information is used to indicate multiple spatial resources in the first spatial resource set.
  • a sending module 920 configured to send first indication information, where the first indication information is used to indicate multiple spatial resources in the first spatial resource set.
  • the first uplink control information includes at least one of the following information: a hybrid automatic repeat request message, rank indication information, channel quality indication information, a precoding matrix index, repair request information, resource identification information, and reference signal reception. power.
  • the network device further includes a processing module 930, configured to acquire the first uplink control information in the time domain resource according to the resource mapping priority of the first uplink control information.
  • the network device further includes: a sending module, configured to send downlink scheduling information, where the downlink scheduling information includes a modulation and coding manner of multiple time units in the first time unit set; wherein the first spatial resource
  • the spatial resource in the set is a spatial resource used when transmitting the first transport block, and the modulation and coding mode of the first transport block is a modulation and coding mode that satisfies the first condition in the modulation and coding manner of the plurality of time units.
  • the first spatial resource set is a subset of the second spatial resource set
  • the second spatial resource set includes multiple spatial resources used by the terminal to send the second uplink control information, where the second The uplink control information and the first uplink control information are different types of information.
  • FIG. 10 is a schematic structural diagram of a terminal 1000 according to another embodiment of the present application. It should be understood that the terminal shown in FIG. 10 is only an example, and the terminal in the embodiment of the present application may further include other modules or units, or include modules similar in function to the respective modules in FIG. 10, or are not included in FIG. All modules.
  • the processor 1030 can be used to perform the steps or operations that can be performed by the processing module 830 of FIG. 8.
  • the transmitter 1010 can be used to perform the steps or operations that the transmitting module 810 of FIG. 8 can perform.
  • the receiver 1020 can be used for The steps or operations that can be performed by the receiving module 820 in FIG. 8 are performed. For the sake of brevity, it will not be repeated here.
  • receiver 1020 and the transmitter 1010 can exist independently or can be integrated together, which is called a transceiver.
  • FIG. 11 is a schematic structural diagram of a network device 1100 according to another embodiment of the present application. It should be understood that the network device shown in FIG. 11 is only an example, and the network device in the embodiment of the present application may further include other modules or units, or include modules similar to those of the modules in FIG. 11, or not including FIG. All modules in .
  • the processor 1130 can be used to perform the steps or operations that can be performed by the processing module 930 of FIG. 9.
  • the transmitter 1120 can be used to perform the steps or operations that the transmitting module 920 of FIG. 9 can perform, and the receiver 1110 can be used for The steps or operations that can be performed by the receiving module 810 in FIG. 8 are performed. For the sake of brevity, it will not be repeated here.
  • receiver 1110 and the transmitter 1120 can exist independently or can be integrated together, which is called a transceiver.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code. .

Abstract

本申请提供终端和网络设备、以及由终端和网络设备执行的通信方法。通信方法包括:终端使用第一空间资源集合中的多个空间资源,发送第一上行控制信息,网络设备通过第一空间资源集合中的多个空间资源接收第一上行控制信息。本申请提供的终端和网络设备、以及由终端和网络设备执行的通信方法,可以使得终端采用波束的方式传输上行控制信息时,可以提高上行控制信息的传输可靠性,从而提高通信的可靠性。

Description

终端、网络设备和通信方法
本申请要求于2017年02月04日提交中国专利局、申请号为201710064511.3、申请名称为“终端、网络设备和通信方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及终端、网络设备和通信方法。
背景技术
随着通信技术的发展,在新无线(new radio,NR)通信技术中,高频段的频谱资源的应用成为实现大数据速率通信的一种有效方式。
在高频段上,为克服高频段的路径衰落,增加覆盖,网络设备和终端通常采用波束的方式进行通信。即网络设备或者终端,对自身的多个天线阵元进行模拟加权,使加权后形成的信号能量在某个方向增强,在该方向上向对端发送信号或者接收对端发送的信号。
在实际应用中,终端可以采用波束的方式向网络设备发送上行数据信道。进一步地,终端可以在该上行数据信道上传输上行控制信息。
因为高频通信本身的波长较短,所以信号的绕射能力较差,容易受到遮挡物的影响。当上行的控制信息在波束上传输的时候,就会发生因为遮挡导致的链路质量下降,从而降低了控制信息传输的可靠性。
终端采用波束的方式,如何在上行数据信道上可靠地传输上行控制信息是目前一个待解决的问题。
发明内容
本申请提供一种终端和网络设备、以及由终端和网络设备执行的通信方法,使得终端采用波束的方式,在上行数据信道上传输上行控制信息时,可以提高上行控制信息的传输可靠性,从而提高通信的可靠性。
第一方面,提供了一种通信方法,所述通信方法包括:终端使用第一空间资源集合中的多个空间资源,发送第一上行控制信息。
终端采用多个空间资源,传输上行控制信息,可以提高上行控制信息的传输可靠性,从而提高通信的可靠性。
其中,可选地,所述第一空间资源集合中的多个空间资源可以对应不同的QCL信息。
结合第一方面,在第一种可能的实现方式中,所述终端使用第一空间资源集合中的多个空间资源,发送第一上行控制信息,包括:所述终端使用所述第一空间资源集合中的多个空间资源,在多个时分的时间单元中发送所述第一上行控制信息。
结合第一方面或第一种可能的实现方式,在第二种可能的实现方式中,所述通信方法 还包括:终端接收第一指示信息,所述第一指示信息用于指示所述第一空间资源集合中的多个空间资源。
本申请实施例中,终端接收第一指示信息,可以使用第一指示信息指示的多个空间资源发送上行控制信息,从而可以提高通行的灵活性。
结合第一方面或第一或第二种可能的实现方式,在第三种可能的实现方式中,所述第一上行控制信息包括以下至少一种信息:混合自动重传请求消息、秩指示信息、信道质量指示信息、预编码矩阵索引、修复请求信息、资源标识信息和参考信号接收功率。
结合第一方面或第一至第三中任意一种可能的实现方式,在第四种可能的实现方式中,所述终端使用所述第一空间资源集合中的多个空间资源,发送所述第一上行控制信息,包括:所述终端根据所述第一上行控制信息的资源映射优先级,将所述第一上行控制信息映射到时域资源中。
结合第一方面或第一或第四种可能的实现方式,在第五种可能的实现方式中,所述通信方法还包括:所述终端接收下行调度信息,所述下行调度信息包括第一时间单元集合中的多个时间单元的调制编码方式;所述第一空间资源集合中的空间资源为传输第一传输块时使用的空间资源,所述第一传输块的调制编码方式为所述多个时间单元的调制编码方式中满足第一条件的调制编码方式。
结合第五种可能的实现方式,在第六种可能的实现方式中,所述第一条件包括:调制编码方式的值最高。
结合第一方面或第一至第六种中任意一种可能的实现方式,在第七种可能的实现方式中,所述第一指示信息包括所述第一上行控制信息的索引和所述第一空间资源集合中的空间资源的索引。
结合第一方面或第一至第七种中任意一种可能的实现方式,在第八种可能的实现方式中,所述第一空间资源集合为第二空间资源集合的子集,所述第二空间资源集合包括所述终端发送第二上行控制信息时使用的多个空间资源,所述第二上行控制信息与所述第一上行控制信息是不同类型的信息。
结合第八种可能的实现方式,在第九种可能的实现方式中,所述通信方法还包括:所述终端使用所述第二空间资源集合,发送所述第二上行控制信息。
结合第九种可能的实现方式,在第十种可能的实现方式中,所述终端使用所述第二空间资源集合,发送所述第二上行控制信息,包括:所述终端使用所述第二空间资源集合中的多个空间资源,在多个时分的时间单元中发送所述第二上行控制信息。
结合第八至第十种中任意一种可能的实现方式,在第十一种可能的实现方式中,所述通信方法还包括:所述终端接收第二指示信息,所述第二指示信息用于指示所述第二空间资源集合。
结合第八至第十一种中任意一种可能的实现方式,在第十二种可能的实现方式中,所述第二指示信息包括所述第二上行控制信息的索引和所述第二空间资源集合中的空间资源的索引。
结合第八至第十二中任意一种可能的实现方式,在第十三种可能的实现方式中,所述第二上行控制信息包括以下至少一种信息:HARQ-ACK、RR、RI、BI和RSRP,所述第一上行控制信息包括BI、RSRP、CQI和PMI中除第二上行控制信息外的至少一种信息。
第二方面,提供了一种通信方法,所述通信方法包括:网络设备接收终端使用第一空间资源集合中的多个空间资源发送所述第一上行控制信息。
网络设备接收的是终端采用多个空间资源,传输的上行控制信息,可以提高上行控制信息的传输可靠性,从而提高通信的可靠性。
其中,可选地,所述第一空间资源集合中的多个空间资源可以对应不同的QCL信息。
结合第二方面,在第一种可能的实现方式中,所述网络设备接收终端使用第一空间资源集合中的多个空间资源发送的第一上行控制信息,包括:所述网络设备接收终端使用所述第一空间资源集合中的多个空间资源,在多个时分的时间单元中发送的所述第一上行控制信息。
结合第二方面或第一种可能的实现方式,在第二种可能的实现方式中,所述通信方法还包括:所述网络设备发送第一指示信息,所述第一指示信息用于指示所述第一空间资源集合中的多个空间资源。
本申请实施例中,网络设备发送第一指示信息,可以灵活指示终端使用第一指示信息指示的多个空间资源发送上行控制信息,从而可以提高通行的灵活性。
结合第二方面或第一或第二种可能的实现方式,在第三种可能的实现方式中,所述第一上行控制信息包括以下至少一种信息:混合自动重传请求消息、秩指示信息、信道质量指示信息、预编码矩阵索引、修复请求信息、资源标识信息和参考信号接收功率。
结合第二方面或第一至第三中任意一种可能的实现方式,在第四种可能的实现方式中,所述网络设备接收终端使用第一空间资源集合中的多个空间资源,在上行数据信道发送的第一上行控制信息,包括:所述网络设备根据所述第一上行控制信息的资源映射优先级,获取时域资源中的所述第一上行控制信息。
结合第二方面或第一或第四种可能的实现方式,在第五种可能的实现方式中,所述通信方法还包括:所述网络设备发送下行调度信息,所述下行调度信息包括第一时间单元集合中的多个时间单元的调制编码方式;所述第一空间资源集合中的空间资源为传输第一传输块时使用的空间资源,所述第一传输块的调制编码方式为所述多个时间单元的调制编码方式中满足第一条件的调制编码方式。
结合第五种可能的实现方式,在第六种可能的实现方式中,所述第一条件包括:调制编码方式的值最高。
结合第二方面或第一至第六种中任意一种可能的实现方式,在第七种可能的实现方式中,所述第一指示信息包括所述第一上行控制信息的索引和所述第一空间资源集合中的空间资源的索引。
结合第二方面或第一至第七种中任意一种可能的实现方式,在第八种可能的实现方式中,所述第一空间资源集合为第二空间资源集合的子集,所述第二空间资源集合包括所述终端发送第二上行控制信息时使用的多个空间资源,所述第二上行控制信息与所述第一上行控制信息是不同类型的信息。
结合第八种可能的实现方式,在第九种可能的实现方式中,所述通信方法还包括:所述网络设备接收终端使用所述第二空间资源集合发送的所述第二上行控制信息。
结合第九种可能的实现方式,在第十种可能的实现方式中,所述网络设备接收终端使用所述第二空间资源集合,在上行数据信道发送的第二上行控制信息,包括:所述网络设 备接收所述终端使用所述第二空间资源集合中的多个空间资源,在多个时分的时间单元中发送的所述第二上行控制信息。
结合第八至第十种中任意一种可能的实现方式,在第十一种可能的实现方式中,所述通信方法还包括:所述网络设备发送第二指示信息,所述第二指示信息用于指示所述第二空间资源集合。
结合第八至第十一种中任意一种可能的实现方式,在第十二种可能的实现方式中,所述第二指示信息包括所述第二上行控制信息的索引和所述第二空间资源集合中的空间资源的索引。
结合第八至第十二种中任意一种可能的实现方式,在第十三种可能的实现方式中,所述第二上行控制信息包括以下至少一种信息:HARQ-ACK、RR、RI、BI和RSRP,所述第一上行控制信息包括BI、RSRP、CQI和PMI中除第二上行控制信息外的至少一种信息。
第三方面,提供了一种终端,所述终端包括用于执行第一方面或第一方面中任意一种可能的实现方式中的通信方法的模块。
第四方面,提供了一种网络设备,所述网络设备包括用于执行第二方面或第二方面中任意一种可能的实现方式中的通信方法的模块。
第五方面,本申请实施例提供了一种终端,包括接收器,可选地,还可以包括处理器和发送器,所述接收器、发送器和处理器用于实现第一方面或第一方面中任意一种可能的实现方式中的通信方法。
第六方面,本申请实施例提供了一种网络设备,包括发送器,可选地,还可以包括处理器和接收器,所述发送器、接收器和处理器用于实现第二方面或第二方面中任意一种可能的实现方式中的通信方法。
第七方面,本申请实施例提供了一种计算机可读介质,所述计算机可读介质存储用于终端执行的程序代码,所述程序代码包括用于执行第一方面或第一方面中任意一种可能的实现方式中的通信方法的指令。
第八方面,本申请实施例提供了一种计算机可读介质,所述计算机可读介质存储用于网络设备执行的程序代码,所述程序代码包括用于执行第二方面或第二方面中任意一种可能的实现方式中的通信方法的指令。
第九方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在终端上运行时,使得终端执行第一方面或第一方面中任意一种可能的实现方式中的通信方法。
第十方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在网络设备上运行时,使得网络设备执行第二方面或第二方面中任意一种可能的实现方式中的通信方法。
第十一方面,提供了一种装置。本申请提供的装置具有实现上述方法方面中终端或网络设备行为的功能,其包括用于执行上述方法方面所描述的步骤或功能相对应的部件(means)。所述步骤或功能可以通过软件实现,或硬件(如电路)实现,或者通过硬件和软件结合来实现。
在一种可能的设计中,上述装置包括一个或多个处理器和通信单元。所述一个或多个处理器被配置为支持所述装置执行上述方法中终端相应的功能。所述通信单元用于支持所述装置与其他设备通信,实现接收和/或发送功能。
可选的,所述装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存装置必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
所述装置可以为智能终端或者可穿戴设备等,所述通信单元可以是收发器,或收发电路。可选的,所述收发器也可以为输入/输出电路或者接口。
所述装置还可以为通信芯片。所述通信单元可以为通信芯片的输入/输出电路或者接口。
另一个可能的设计中,上述装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行该存储器中的计算机程序,使得该装置执行第一方面或第一方面中任一种可能实现方式中终端完成的方法。
在一种可能的设计中,上述装置包括一个或多个处理器和通信单元。所述一个或多个处理器被配置为支持所述装置执行上述方法中网络设备相应的功能。所述通信单元用于支持所述装置与其他设备通信,实现接收和/或发送功能。
可选的,所述装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存网络设备必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
所述装置可以为基站,gNB或TRP等,所述通信单元可以是收发器,或收发电路。可选的,所述收发器也可以为输入/输出电路或者接口。
所述装置还可以为通信芯片。所述通信单元可以为通信芯片的输入/输出电路或者接口。
另一个可能的设计中,上述装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行存储器中的计算机程序,使得该装置执行第二方面或第二方面中任一种可能实现方式中网络设备完成的方法。
第十二方面,提供了一种系统,该系统包括上述终端和网络设备。
附图说明
图1是可以应用本申请实施例的通信方法的通信系统的示例性结构图。
图2是本申请实施例的通信方法的示例性流程图。
图3是本申请一个实施例的下行调度信息的发送方法的示例图。
图4是本申请另一个实施例的下行调度信息的发送方法的示例图。
图5是本申请一个实施例的资源映射示意图。
图6是本申请另一个实施例的资源映射示意图。
图7是本申请另一个实施例的资源映射示意图。
图8是本申请一个实施例的终端的示例性流程图。
图9是本申请一个实施例的网络设备的示例性流程图。
图10是本申请另一个实施例的终端的示例性流程图。
图11是本申请另一个实施例的网络设备的示例性流程图;
图12是本申请实施例的一个应用场景的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
可以应用本申请实施例的通信方法的通信系统的示例性结构图如图1所示。应理解,本申请实施例并不限于图1所示的系统架构中,此外,图1中的装置可以是硬件,也可以是从功能上划分的软件或者以上二者的结合。
从图1可知,可以应用本申请实施例的通信方法的通信系统可以包括网络设备110和终端120。
网络设备110可以是基站。应理解,本申请实施例对基站的具体类型不作限定。采用不同无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同。为方便描述,本申请所有实施例中,上述为终端提供无线通信功能的装置统称为基站,例如未来网络中的基站设备、小基站设备(pico)等。
网络设备可以为具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(DU,distributed unit)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
终端120可以是用户设备(user equipment,UE)。UE可以经无线接入网(radio access network,RAN)与一个或多个核心网(core network)进行通信。UE可称为接入终端、终端设备、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。UE可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设 备或连接到无线调制解调器的其它设备、车载设备、可穿戴设备或物联网、车辆网中的终端设备以及未来网络中的任意形态的终端设备等。
本申请实施例既可以应用在传统的典型网络中,也可以应用在未来的以UE为中心(UE-centric)的网络中。UE-centric网络引入无小区(Non-cell)的网络架构,即在某个特定的区域内部署大量小站,构成一个超级小区(Hyper cell),每个小站为Hyper cell的一个传输点(Transmission Point,TP)或TRP,并与一个集中控制器(controller)相连。当UE在Hyper cell内移动时,网络侧设备时时为UE选择新的sub-cluster(子簇)为其服务,从而避免真正的小区切换,实现UE业务的连续性。其中,网络侧设备包括无线网络设备。或者是,在以UE为中心的网络中,多个网络侧设备,如小站,可以有独立的控制器,如分布式控制器,各小站能够独立调度用户,小站之间在长期上存在交互信息,使得在为UE提供协作服务时,也能够有一定的灵活性。
本申请实施例中不同基站可以为具有不同的标识的基站,也可以为具有相同的标识的被部署在不同地理位置的基站。由于在基站被部署前,基站并不会知道其是否会涉及本申请实施例所应用的场景,因而,基站,或基带芯片,都应在部署前就支持本申请实施例所提供的方法。可以理解的是,前述具有不同标识的基站可以为基站标识,也可以为小区标识或者其他标识。
本申请实施例中部分场景以无线通信网络中NR网络的场景为例进行说明,应当指出的是,本申请实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。在图1所示的通信系统下,网络设备110和终端120间可以采用波束的方式在高频段的资源上相互传输数据。
高频段的波长较短,使得天线间距可以缩小,从而在同样的面积上可以放置更多的天线阵元。大量的天线阵元可以形成大规模的阵列天线,大规模的阵列天线可以通过波束赋形带来阵列增益,从而有效增加覆盖,克服高频段的路径衰减。
对大规模的天线阵列而言,从成本的角度考虑,无法实现每一个天线阵元都连接一个射频通道。在有限个射频通道的条件下,通过在射频端采用移相器,可以在射频端实现模拟相位的加权,从而在射频端形成了模拟波束。
模拟波束可以在网络设备形成,也可以在终端形成。网络设备或终端可以通过改变天线阵元的相位权重,增强某个方向上信号的能量,使得其在该方向上可以更好地接收或发送信号。可以将该方向上增强了能量的信号或在该方向上发送增强了能量的信号天线端口称为波束,也就是说,网络设备或终端可以向不同的方向发送波束,或接收不同方向的波束。
对高频段而言,可以采用模拟波束,或者模拟和数字混合加权的方式,以满足覆盖需求。
如果采用模拟波束或混合波束的方式进行通信,则对于同一个天线面板而言,采用多个波束上发送信息时,这多个波束采用时分发送的方式。也就是说,如果采用模拟波束或混合波束的方式进行通信,则对于同一个天线面板而言,同一个时间只能形成一个模拟波束,指向一个方向,即覆盖某一个区域。
如:网络设备110和终端120上可以设置大量的天线阵元,在终端120向网络设备110发送信息时(如上行数据信息或上行控制信息)时,终端120可以在自身的射频端设 置移相器,通过移相器改变天线阵元的相位权重,实现对多个天线阵元的模拟相位加权,增强网络设备方向上的信号的能力,形成一个对准网络设备120的模拟波束,并通过该模拟波束网络设备110发送信息。
对应的,网络设备也可以在自身的射频端设置移相器,通过该移相器改变天线阵元的相位权重,实现对多个天线阵元的模拟相位加权,形成一个接收波束来接收终端120发送的信息。
同理,作为上行传输的逆过程,在网络设备向终端120发送信息(即下行数据信息或下行控制信息)时,也可以采用上述的通信方式,在此不再重复赘述。
本申请的实施例中,波束可以理解为一种空间资源。不同的波束可以认为是不同的空间资源。与LTE中的波束不同,本申请实施例中的波束主要是模拟波束,即一个天线面板上同一时间只能形成一个模拟波束,如果终端或网络设备只有1个天线面板,在需要多波束发送的时候,不同的波束只能采取时分的方式。
本申请的技术方案不仅可以适用于利用不同波束进行传输的场景,也可以适用于利用不同端口资源进行传输的场景。因为端口本身是一种逻辑的资源标识,可以用来区分不同的空间资源,也就可以用来区分不同的波束。
在本申请中,不同的空间资源可以具有不同的准共址(quasi-co-located,QCL)信息。QCL信息一般用于指示参考信号端口之间的关系。采用波束的通信方式中,采用上行波束进行数据传输之前,需要进行波束的配对扫描,终端需要发送上行参考信号进行波束的扫描,以确定终端发送数据时采用的发送波束和网络设备采用的接收波束。该参考信号可以是探测参考信号(sounding reference signal,SRS)信号,或者其他的参考信号,当终端的基于波束的对应性或互易性存在时,该参考信号也可以是某个下行的参考信号。互易性是指终端的上行的波束可以根据下行的扫描结果来确定,即终端通过下行波束扫描确定的最优的接收波束,就对应上行最优的发送波束。
本申请中的QCL信息可以是对空间关系进行描述的一种参数,比如离开角(angle-of-departure,AOD)或者发送波束天线的空间相关性。在实际采用某个波束进行数据通信时,如果终端获得了QCL信息,则可以通过QCL信息来确定对应的发送波束,比如通过确定物理上行共享信道(physical uplink shared channel,PUSCH)或物理上行控制信道(physical uplink control channel,PUCCH)的解调参考信号(demodulation reference signal,DMRS)的端口同之前扫描时的SRS的端口是QCL的,也就是说PUSCH或PUCCH的波束方向和之前的某个SRS的波束方向是相同的。在本申请中,当需要采用多个波束进行发送的时候,需要采用不同方向的波束,因此,不同的波束就具有不同的QCL信息。
两个天线端口之间具有准共址(quasi co-located,QCL)关系,指的是,一个天线端口的信道大尺度参数可以通过另一个天线端口得到的(conveyed)信道大尺度参数而推知(infer)。大尺度参数可以包括平均增益(average gain),平均时延(average delay),时延扩展(delay spread),多普勒频移(Doppler shift),多普勒扩展(Doppler spread),空间参数(spatial parameter,或spatial Rx parameters)中的一项或多项。
其中,空间参数可以包括到达角(angle of arrival,AOA)、主到达角(dominant AoA)、平均到达角(average AoA)、出发角(angle of departure,AOD)、信道相关矩阵,到达角的功率角度扩展谱,平均出发角(average AoD)、出发角的功率角度扩展谱、发射信 道相关性、接收信道相关性、发射波束成型、接收波束成型、空间信道相关性、空间滤波器,或,空间滤波参数,或,空间接收参数,或,权值信息等中的一项或多项。
需要说明的是,图1仅为示例图,其中网络设备110和终端120的个数对本申请提供的方案不构成限定。在实际应用中,可以以不同图1所示的个数进行网络部署。
此外,本申请提供的方案还可以适用于除图1之外的其他任一采用波束的方式进行通信的通信系统中,本申请实施例对此不进行限定。
图12示出了本申请实施例的一种可能的应用环境。图12所示的基站可以是5G中的基站。具体地,在5G系统中,基站可以进行集中式单元(Central Unit,CU)和分布式单元(distributed unit,DU)分离,或者说协议栈分离。换句话说,CU和DU可以处理不同的协议层。CU和DU之间可以存在通信连接,以互相传递相关协议层的信息。例如,作为一种可能的方案,DU可以处理无线链路层控制(Radio Link Control,RLC)协议及以下的协议,CU可以处理RLC层以上的协议。例如,CU可以处理分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)或无线资源控制(Radio Resource Control,RRC)协议。DU可以用于处理物理层(Physical Layer,PHY)协议、媒体接入控制层(Media Access Control,MAC)协议和RLC协议。同一个CU可以与一个或多个DU连接,同一个DU可以包括一个或多个小区。可选地,CU和DU可以合称为gNB。
本申请下面实施例仅以图1所示的通信系统为例,对本申请提供的通信方法、网络设备和终端进行说明。
图2是本申请一个实施例的通信方法的示意性流程图。应理解,图2示出了通信方法的步骤或操作,但这些步骤或操作仅是示例,本申请实施例还可以执行其他操作或者图2中的各个操作的变形。此外,图2中的各个步骤可以按照与图2呈现的不同的顺序来执行,并且有可能并非要执行图2中的全部操作。
S220,终端使用第一空间资源集合中的多个空间资源,发送第一上行控制信息。相应地,网络设备接收该第一上行控制信息。
其中,该第一空间资源集合可以是终端上预先配置的。具体地,终端和网络设备上均可以配置有第一空间资源集合,其中,第一空间资源集合可以包括多个空间资源的索引或标识信息。
该通信方法中,终端使用多个空间资源发送第一上行控制信息,当其中部分空间资源上传输的上行控制信息受影响时,其他空间资源依然可以传输上行控制信息,从而可以提高上行控制信息的传输可靠性,最终可以提高终端与网络设备之间的通信可靠性。
本申请实施例中的空间资源可以是波束。此时第一空间资源集合可以理解为第一波束集合;第一空间资源集合包括多个空间资源,可以理解为:第一空间资源集合包括多个波束。其中,每个波束有对应的模拟相位加权值。
本申请实施例中以下内容均以空间资源为波束为例,进一步详述本申请实施例的通信方法。应理解,以下内容中的波束均可以替换成端口或与波束有相同含义的其他名称。
网络设备可以将网络设备与终端之间通信质量(如RSRP值)较好或空间相关性小的多个波束确定为第一波束集合,具体可以是将终端可以采用的波束中通信质量较好或相关性较小的多个波束确定为第一波束集合。或者,每个波束可以是网络设备与终端之间已经配好对的收发波束中的波束。
即第一波束集合中的波束的通信质量可以优于网络设备与终端之间通信可以使用的其他波束的通信质量。
如,网络设备与该终端之间可以通过5个波束通信,但其中3个波束的质量比其他2个波束的质量好,则网络设备可以将这3个波束确定为第一波束集合。
终端使用通信质量较好的波束发送第一上行控制信息,可以进一步提高终端与网络设备之间的通信可靠性。
第一上行控制信息可以包括一种或多种信息。
当第一上行控制信息包括多种信息时,表示多种信息的波束集合相同,均为第一波束集合。
第一上行控制信息可以包括波束标识(beam index,BI)。如网络设备下发测量参考信号、终端测量参考信号后,可以通过该BI向网络设备上报究竟哪些波束的质量更好,以利于网络设备根据测量的结果进行波束的调度。
第一上行控制信息可以包括波束修复请求(recovery request,RR)消息。高频通信系统中采用波束通信时,波束受到影响,如被遮挡导致波束中断时,终端可以通过RR消息通知网络设备通信已经中断。网络设备收到RR消息后,会采取一定的措施,比如切换波束等,进行通信的修复。
第一上行控制信息可以包括波束的参考信号接收功率(reference signal receiving power,RSRP)。
第一上行控制信息还可以包括以下至少一种信息:混合自动重传请求(hybrid auto retransmission request-acknowledgement,HARQ-ACK)、秩指示(rank indicator,RI)、信道质量指示(channel quality indicator,CQI)和预编码矩阵索引(precoding matrix index,PMI)。RI、HARQ-ACK、CQI、PMI和RSRP的定义可以参考LTE技术中相同或相似术语的定义,为了简洁,此处不再赘述。
其中,终端可以使用第一空间资源集合中的多个空间资源,在上行数据信道上发送第一上行控制信息。
图2所示的通信方法中,可选地,第一控制资源集合中的多个资源可以不是终端上预先配置的。此时,图2所示的通信方法还可以包括:S210,网络设备发送第一指示信息,该第一指示信息用于指示第一空间资源集合,该第一空间资源集合包括多个空间资源。相应地,终端接收该第一指示信息。相应地,终端接收第一指示信息。
第一上行控制信息包括多种信息时,网络设备通过一个第一指示信息指示终端发送多种信息时的波束集合,可以节省信令,即节省通信资源。
第一指示信息可以包括第一上行控制信息中每种信息的索引和第一波束集合中每个波束的索引或每个波束所属的波束对的索引或每个波束所属的波束组的索引。通过索引指示信息和波束,可以节省信令开销,从而可以节省通信资源。
第一指示信息还可以包括QCL相关的信息,所述QCL相关的信息是用于指示端口之间的关于某个空间参数的是相似的。如果终端能够获得端口之间的关于某个空间参数是相似的,则两个端口具有相似的空间特性。
在本申请中,为了指示终端采用不同的发送波束,可以通过在第一指示信息中,携带PUCCH或PUSCH的DMRS端口同SRS的端口之间关于某个参数是QCL的信息。所述 QCL参数可以是AOA,或者发送天线的空间相关性。这样,就可以实现在不同的波束上发送控制信息。网络设备可以通过高层信令发送第一指示信息。相应地,终端可以通过高层信令接收第一指示信息。
高层信令可以包括有无线资源控制(radio resource control,RRC)信令和媒体接入控制-控制单元(medium access control-control element,MAC-CE)信令。
网络设备可以通过下行控制信息发送第一指示信息,相应地,终端可以通过下行控制信息接收第一指示信息。
图2所示的通信方法中,可选地,第一控制资源集合中的多个资源可以不是终端上预先配置的。此时,图2所示的通信方法中还可以包括:网络设备发送下行调度信息,所述下行调度信息包括多个时间单元的调制编码方式。相应地,终端接收该下行调度信息。终端接收下行调度信息后,可以确定该多个时间单元中满足某个条件的调制编码方式,如大于某个阈值的调制编码方式,并确定该多个时间单元内采用该调制编码方式值的传输块所对应的波束组成第一波束集合
也就是说,S220中所述的第一波束集合中的波束为传输第一传输块时使用的波束,第一传输块的调制编码方式为上述多个时间单元的调制编码方式中满足第一条件的调制编码方式。
本申请实施例中,终端使用多个时间单元中调制编码方式值满足第一条件的传输块对应的波束发送第一上行控制信息,可以进一步提高第一上行控制信息的通信可靠性。
第一条件可以是终端上预先配置的,如可以是根据通信标准配置的,也可以是根据网络设备发送的配置信息配置的。
第一条件具体可以是调制编码方式值最高,即第一传输块的调制编码方式值在上述多个时间单元的调制编码方式中最高。
其中,一个时间单元可以是一个子帧,也就是说下行调度信息中包括的可以是多个子帧的调制编码方式。应理解,每个子帧的调制编码方式可以是多个。
如图3所示的两个子帧中,每个子帧包括7个符号,第一个子帧为双向子帧,第二个子帧为全上行子帧,第一个子帧的下行符号携带有这两个子帧的调度信息。
此时,终端可以在第一个下行子帧的调度信息中收到这两个子帧所采用的调制编码方式信息。然后,终端可以判断这两个子帧中哪个子帧的调制编码方式较大,并通过采用该较大调制编码方式的传输块对应的波束发送第一上行控制信息。
终端上可以预先配置,如按照标准配置如下信息:当值最高的调制编码方式有多个,即调制编码方式最高的传输块有多个时,可以使用与调制编码方式值最高的传输块对应的波束中、时间最靠前的波束发送第一上行控制信息。
当每个时间单元不是集中调度时,则需要指示发送第一上行控制信息时的第一波束集合。如图4所示,包含有2个子帧,每个子帧为7个符号,其中每个子帧都包含有自己的调度信息,所以,当网络设备在多个子帧上调度终端的上行数据信道时,可以向终端发送指示信息,指示第一上行控制信息会在哪个子帧上传输。
图2所示的通信方法或该通信方法的各种可能的实现方式中,第一波束集合可以是第二波束集合的子集。其中,该第二波束集合包括的是终端发送第二上行控制信息时可以使用的多个波束,第二上行控制信息与第一上行控制信息是不同类型的信息。
如第二上行控制信息可以包括HARQ-ACK、RR、RI、BI和RSRP中至少一种;第一上行控制信息可以包括BI、RSRP、CQI和PMI中除第一上行控制信息中包括的信息之余的至少一种。
第二波束集合中包括的多个波束可以用于发送第二上行控制信息这一信息,可以是终端上配置的,也可以是网络设备指示的。若是网络设备指示的,则图2所示的通信方法或该通信方法的各种可能的实现方式中,还可也包括:网络设备发送第二指示信息,第二指示信息用于指示终端发送第二上行控制信息时的第二波束集合。相应地,终端接收该第二指示信息。
其中,第二上行控制信息中各种信息的重要度可以高于第一上行控制信息中各种信息的重要度。换句话说,第二上行控制信息中各种信息对终端与网络设备之间的通信的影响,比第一上行控制信息中各种信息对终端与网络设备之间的通信的影响大。
此时,第二波束集合包括的波束更多,即终端可以使用更多的波束发送重要度高的第二上行控制信息,从而可以提高第二上行控制信息的通信可靠性。第一波束集合包括的波束更少,即终端可以使用更少的波束发送重要度低的第一上行控制信息,从而可以节省通信资源。
网络设备可以通过高层信令发送第二指示信息。相应地,终端可以通过高层信令接收第二指示信息。
高层信令可以包括有RRC信令和媒体接入控制-控制单元(medium access control-control element,MAC-CE)信令。
网络设备可以通过下行控制信息发送第二指示信息,相应地,终端可以通过下行控制信息接收第二指示信息。
第二上行控制信息可以包括一种或多种信息。
当第二上行控制信息包括多种信息时,表示多种信息的波束集合相同,均为第二波束集合。也就是说,网络设备可以通过一个第二指示信息指示终端发送多种信息时的波束集合,从而可以节省信令,即节省通信资源。
第二指示信息可以包括第二上行控制信息中每种信息的索引和第二波束集合中每个波束的索引或每个波束所属的波束对的索引或每个波束所属的波束组的索引。通过索引指示信息和波束,可以节省信令开销,从而可以节省通信资源。
图2所示的通信方法或该通信方法的各种可能的实现方式中,终端使用第一波束集合中的多个波束,在上行数据信道发送第一上行控制信息时,终端可以根据第一上行控制信息包括的信息的资源映射优先级对第一上行控制信息进行时域资源映射。
在此之前,终端可以获取资源映射优先级和/或资源映射方式。然后根据资源映射优先级和资源映射方式对第一上行控制信息进行时域资源映射。
该资源映射方式和/或该资源映射优先级可以根据通信标准配置的,也可以是从网络设备接收的。
时域资源具体可以为时域符号。此时,资源映射方式可以包括:若信息的资源映射优先级越高,则该信息的目标时域符号相对于参考信号的时域符号的符号距离越小,反之越大;若信息的资源映射优先级越高,则该信息的目标时域符号位于参考信号的时域符号之前,反之在后。
或者,资源映射方式可以包括:若信息的资源映射优先级越低,该信息在较少时域符号上传输时,或者与优先级较高的信息在映射时发生冲突时,则低优先级的信息最先被丢弃,反之最后被丢弃。或者预定义在上行时域符号较少的资源上,仅映射优先级高的信息,而在较大的资源上,可以映射高优先级和低优先级的信息。
如,当参考信号为解调参考信号(demodulation reference signal,DMRS),DMRS占用最前面的时域符号,资源映射优先级为(HARQ-ACK和RR)>(RI、BI和RSRP)>(CQI和PMI)>数据(Data)的资源时,根据前述的资源映射方式得到的一个资源映射示意图如图5所示。
应理解,上述资源映射优先级只是一个示例,不应对本申请实施例构成限制。本申请实施例中,可以使用其他的资源映射优先级,如(HARQ-ACK和RR)>(RI)>(BI、RSRP、CQI和PMI)>数据(Data)。
如图5中所示,HARQ-ACK和RR的目标时域符号紧靠DMRS的时域符号放置;RI和BI的目标时域符号在DMRS的时域符号后的第二个时域符号上;RSRP的目标时域符号在DMRS的时域符号后的第4、5个符号上,CQI和PMI的目标时域符号在RSRP的目标时域符号之后,此后的时域符号是数据可以占用的时域符号。其中每个时域符号上的信息采用频分的方式处理。
当基准信号为DMRS,DMRS占用子帧中的第二个符号,资源映射优先级为(HARQ-ACK和RR)>(RI、BI和RSRP)>(CQI和PMI)>数据(Data)的资源时,根据前述的资源映射方式得到的一个资源映射示意图如图6所示。
如图6所示,(HARQ-ACK和RR)的目标时域符号为第一个时域符号,RI和BI的目标时域符号为第三个时域符号,RSRP的目标时域符号为第4、5个符号,CQI和PMI的目标时域符号在RSRP的目标时域符号之后,此后的时域符号是数据可以占用的时域符号。
图6介绍的是一个子帧有1个DMRS的情况。当支持时隙(slot)或者微时隙(mini-slot)聚合的情况下,每个slot和mini-slot可以有自己的DMRS。此时,可以在多个slot或者minislot上统一进行资源映射。
当基准信号为DMRS,DMRS占用子帧中的第二个符号,资源映射优先级为(HARQ-ACK和RR)>(RI、BI和RSRP)>(CQI和PMI)>数据(Data)的资源时,根据前述的资源映射方式,在多个slot或者minislot上统一进行资源映射的示意图如图7所示。
如图7所示,ACK和RR的目标时域符号可以在第一个slot或者mini-slot的DMRS占用的时域符号附近,RI、CRI和BI的目标时域符号可以在第二个slot或者mini-slot的DMRS占用的时域符号附近。
终端使用第二波束集合中的多个波束发送第二上行控制信息时,也可以根据资源映射优先级对第二上行控制信息进行资源映射,具体实现方式可以参考第一上行控制信息的实现方式,为了简洁,此处不再赘述。
下面介绍几种时隙(slot)的发送方法。
其中,一种slot的发送方法可以包括:网络设备向终端发送一个传输块(transmission block,TB)的数据时,在经过码块分割、信道编码、速率匹配、码块级联之后,可以使用 现有技术按照分配的调制编码方式(modulation and coding scheme,MCS)对生成的比特数进行调制。该方法与现有技术不同之处在于,将生成的比特数按照不同的调制方式进行分别调制。对比特数采用不同调制方式的一种简单方式就是均匀划分,然后分别按照不同的调制方式,生成对应的调制符号数。在资源映射之前,还可以考虑进行调制符号的交织。
所述交织方式中,如果mini-slot包含有多个时域符号,而且所传输的内容对时延没有要求,则可以采用跨时域符号的交织方式对调制符号进行交织;如果所传输的内容对时延没有要求,则可以采用每个时域符号内部的交织方式对调制符号进行交织。最后进行资源的映射。
对应的,终端在接收数据时,首先根据调度信令中的下行控制信息(downlink control information,DCI)中的reference MCS和MCS的偏移量,将接收到的符号进行解调,得到对应的比特。然后会根据该信令中的reference MCS,确定对应的TB size(TB块的大小),同时也就确定了TB中码块(coding block,CB)的数目和大小,从而解出对应的TB。
这种方式的好处就是在不同的频段采用不同的MCS,获得频选调度增益。在调度的信令DCI中,会指示多个MCS,其中1个设置为参考MCS,其余的MCS表示为相对于reference MCS的相对值。这样可以起到降低调度开销的好处。
该方法中的差分MCS采用节省开销的方案应用在相同的时域符号中,可以用在不同的子带上,或者不同的码块上,或者不同的码块组上,其中一个子带对应分配带宽的一部分,该部分对应一个CB或者多个CB(CB group,码块组),类似的,该方法还可以用到不同的时间单元中,终端可以通过接收一个参考MCS和一个相对值,就可以得到对应的MCS。
其中,另一种slot的发送方法可以包括:网络设备向终端发送一个TB的数据时,经过码块分割、信道编码、速率匹配、码块级联之后,使用现有技术直接进行调制。本方法与现有技术不同之处在于,进行码块的交织,交织完之后,采用相同的MCS进行调制,然后再进行RE的映射。
所述交织方式中,如果mini-slot包含有多个时域符号,而且所传输的内容对时延没有要求,则可以采用跨时域符号的交织方式对码块进行交织;如果所传输的内容对时延没有要求,则可以采用每个符号内部的交织方式对码块进行交织。最后进行资源的映射。
对应的,终端在接收数据的时候,根据调度信令中的DCI中的MCS对接收到的符号进行解调,解调出来后根据所采用的交织方式,进行解交织操作,从而解除对应的TB。
这种方式的好处就是进行了码块的交织,来对抗频率选择性衰落,同时交织的方式也考虑了不同的时延需求。
其中,另一种slot的发送方法可以包括:网络设备向终端发送一个TB的数据时,经过码块分割、信道编码、速率匹配、码块级联,且采用相同的MCS进行调制,调制完之后,使用现有技术直接进行资源的映射。本方法与现有技术的不同之处在于,进行调制符号的交织,然后再进行资源的映射。
所述交织方式中,如果mini-slot包含有多个时域符号,而且所传输的内容对时延没有要求,则可以采用跨时域符号的交织方式对调制符号进行交织;如果所传输的内容对时延没有要求,则可以采用每个时域符号内部的交织方式对调制符号进行交织。交织完之后进行资源的映射。
这种方式的好处就是进行了调制符号的交织,来对抗频率选择性衰落,同时交织的方式也考虑了不同的时延需求。
所述三种方案也可以应用到发送多个TB的情况,例如,不同的TB对应不同的子带。
其中,另一种slot的发送方法可以包括:网络设备向终端发送关于Subband(子带)的配置信息,其中一个子带对应分配带宽的一部分,该部分对应一个CB或者多个CB(CB group,码块组)。配置信息可以包括带宽,以及子带的个数,或者子带的频域大小以及子带的个数,或者带宽,以及子带的频域大小,或者带宽、子带的频域大小以及子带的个数。UE可以通过该配置信息获取对应的子带划分情况,从而确定自己对应的fftsize。作为一种UE能力,UE可以上报自己能支持的小区(载波)个数,或者子带的个数,或者小区个数及子带个数。
如果1个子带中包含1个码块组,则1个码块组内部可以进行码块的交织,该交织可以是对编码出来的比特进行的,或者可以是对调制之后的调制符号进行的。
下面结合图8至图11介绍本申请实施例的终端和网络设备。
图8为本申请一个实施例的终端的示例性结构图。应理解,图8示出的终端800仅是示例,本申请实施例的终端还可包括其他模块或单元,或者包括与图8中的各个模块的功能相似的模块,或者并非要包括图8中的所有模块。
发送模块810,用于使用第一空间资源集合中的多个空间资源,发送第一上行控制信息。
终端采用多个空间资源,传输上行控制信息,可以提高上行控制信息的传输可靠性,从而提高通信的可靠性。
可选地,所述发送模块可以具体用于:使用所述第一空间资源集合中的多个空间资源,在多个时分的时间单元中发送所述第一上行控制信息。
可选地,所述终端还可以包括接收模块820,所述接收模块用于接收第一指示信息,所述第一指示信息用于指示所述第一空间资源集合中的多个空间资源。
可选地,所述第一上行控制信息可以包括以下至少一种信息:混合自动重传请求消息、秩指示信息、信道质量指示信息、预编码矩阵索引、修复请求信息、资源标识信息和参考信号接收功率。
可选地,所述终端还可以包括处理模块830,用于根据所述第一上行控制信息的资源映射优先级,将所述第一上行控制信息映射到时域资源中。
可选地,所述终端还包括接收模块,用于接收下行调度信息,所述下行调度信息包括第一时间单元集合中的多个时间单元的调制编码方式;其中,所述第一空间资源集合中的空间资源为传输第一传输块时使用的空间资源,所述第一传输块的调制编码方式为所述多个时间单元的调制编码方式中满足第一条件的调制编码方式。
可选地,所述第一空间资源集合为第二空间资源集合的子集,所述第二空间资源集合包括所述终端发送第二上行控制信息时使用的多个空间资源,所述第二上行控制信息与所述第一上行控制信息是不同类型的信息。
应理解,图8所示本申请实施例的终端的各个单元的上述和其它操作和/或功能分别为了实现图2中的通信方法中由终端执行的相应流程,为了简洁,在此不再赘述。
图9为本申请一个实施例的网络设备的示例性结构图。应理解,图9示出的网络设备 900仅是示例,本申请实施例的网络设备还可包括其他模块或单元,或者包括与图9中的各个模块的功能相似的模块,或者并非要包括图9中的所有模块。
接收模块910,用于接收终端使用第一空间资源集合中的多个空间资源发送的所述第一上行控制信息。
网络设备接收的是终端采用多个空间资源传输的上行控制信息,可以提高上行控制信息的传输可靠性,从而提高通信的可靠性。
可选地,所述接收模块可以具体用于:接收所述终端使用所述第一空间资源集合中的多个空间资源,在多个时分的时间单元中发送的所述第一上行控制信息。
可选地,所述网络设备还包括发送模块920,用于发送第一指示信息,所述第一指示信息用于指示所述第一空间资源集合中的多个空间资源。
可选地,所述第一上行控制信息包括以下至少一种信息:混合自动重传请求消息、秩指示信息、信道质量指示信息、预编码矩阵索引、修复请求信息、资源标识信息和参考信号接收功率。
可选地,所述网络设备还包括处理模块930,用于根据所述第一上行控制信息的资源映射优先级,获取时域资源中的所述第一上行控制信息。
可选地,所述网络设备还包括发送模块,用于发送下行调度信息,所述下行调度信息包括第一时间单元集合中的多个时间单元的调制编码方式;其中,所述第一空间资源集合中的空间资源为传输第一传输块时使用的空间资源,所述第一传输块的调制编码方式为所述多个时间单元的调制编码方式中满足第一条件的调制编码方式。
可选地,所述第一空间资源集合为第二空间资源集合的子集,所述第二空间资源集合包括所述终端发送第二上行控制信息时使用的多个空间资源,所述第二上行控制信息与所述第一上行控制信息是不同类型的信息。
应理解,图9所示本申请实施例的网络设备的各个单元的上述和其它操作和/或功能分别为了实现图2所示的通信方法中由网络设备执行的相应流程,为了简洁,在此不再赘述。
图10是本申请另一个实施例的终端1000的示意性结构图。应理解,图10示出的终端仅是示例,本申请实施例的终端还可包括其他模块或单元,或者包括与图10中的各个模块的功能相似的模块,或者并非要包括图10中的所有模块。
处理器1030可以用于执行图8中的处理模块830所能执行的步骤或操作,发送器1010可以用于执行图8中的发送模块810所能执行的步骤或操作,接收器1020可以用于执行图8中的接收模块820所能执行的步骤或操作。为了简洁,在此不再赘述。
可以理解的是,接收器1020和发送器1010可以独立存在,也可以集成在一起,称为收发器。
图11是本申请另一个实施例的网络设备1100的示意性结构图。应理解,图11示出的网络设备仅是示例,本申请实施例的网络设备还可包括其他模块或单元,或者包括与图11中的各个模块的功能相似的模块,或者并非要包括图11中的所有模块。
处理器1130可以用于执行图9中的处理模块930所能执行的步骤或操作,发送器1120可以用于执行图9中的发送模块920所能执行的步骤或操作,接收器1110可以用于执行图8中的接收模块810所能执行的步骤或操作。为了简洁,在此不再赘述。
可以理解的是,接收器1110和发送器1120可以独立存在,也可以集成在一起,称为收发器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够全部或部分地通过软件、硬件、固件或者其任意组合来实现。。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟 悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (31)

  1. 一种通信方法,其特征在于,所述通信方法包括:
    终端使用第一空间资源集合中的多个空间资源,发送第一上行控制信息。
  2. 根据权利要求1所述的通信方法,其特征在于,所述终端使用第一空间资源集合中的多个空间资源,发送第一上行控制信息,包括:
    所述终端使用所述第一空间资源集合中的多个空间资源,在多个时分的时间单元中发送所述第一上行控制信息。
  3. 根据权利要求1或2所述的通信方法,其特征在于,所述通信方法还包括:所述终端接收第一指示信息,所述第一指示信息用于指示所述第一空间资源集合中的多个空间资源。
  4. 根据权利要求1至3中任一项所述的通信方法,其特征在于,所述第一上行控制信息包括以下至少一种信息:混合自动重传请求消息、秩指示信息、信道质量指示信息、预编码矩阵索引、修复请求信息、资源标识信息和参考信号接收功率。
  5. 根据权利要去1至4中任一项所述的通信方法,其特征在于,所述终端使用所述第一空间资源集合中的多个空间资源,发送所述第一上行控制信息,包括:
    所述终端根据所述第一上行控制信息的资源映射优先级,将所述第一上行控制信息映射到时域资源中。
  6. 根据权利要求1、2或5所述的通信方法,其特征在于,所述通信方法还包括:
    所述终端接收下行调度信息,所述下行调度信息包括第一时间单元集合中的多个时间单元的调制编码方式;
    其中,所述第一空间资源集合中的空间资源为传输第一传输块时使用的空间资源,所述第一传输块的调制编码方式为所述多个时间单元的调制编码方式中满足第一条件的调制编码方式。
  7. 根据权利要求1至6中任一项所述的通信方法,其特征在于,所述第一空间资源集合为第二空间资源集合的子集,所述第二空间资源集合包括所述终端发送第二上行控制信息时使用的多个空间资源,所述第二上行控制信息与所述第一上行控制信息是不同类型的信息。
  8. 一种通信方法,其特征在于,所述通信方法包括:
    网络设备接收终端使用第一空间资源集合中的多个空间资源发送的所述第一上行控制信息。
  9. 根据权利要求8所述的通信方法,其特征在于,所述网络设备接收终端使用第一空间资源集合中的多个空间资源发送的所述第一上行控制信息,包括:
    所述网络设备接收所述终端使用所述第一空间资源集合中的多个空间资源,在多个时分的时间单元中发送的所述第一上行控制信息。
  10. 根据权利要求8或9所述的通信方法,其特征在于,所述通信方法还包括:
    所述网络设备发送第一指示信息,所述第一指示信息用于指示所述第一空间资源集合中的多个空间资源。
  11. 根据权利要求8至10中任一项所述的通信方法,其特征在于,所述第一上行控制信息包括以下至少一种信息:混合自动重传请求消息、秩指示信息、信道质量指示信息、预编码矩阵索引、修复请求信息、资源标识信息和参考信号接收功率。
  12. 根据权利要去8至11中任一项所述的通信方法,其特征在于,所述网络设备接收终端使用第一空间资源集合中的多个空间资源发送的所述第一上行控制信息,包括:
    所述网络设备根据所述第一上行控制信息的资源映射优先级,获取时域资源中的所述第一上行控制信息。
  13. 根据权利要求8、9或12所述的通信方法,其特征在于,所述通信方法还包括:
    所述网络设备发送下行调度信息,所述下行调度信息包括第一时间单元集合中的多个时间单元的调制编码方式;
    所述第一空间资源集合中的空间资源为传输第一传输块时使用的空间资源,所述第一传输块的调制编码方式为所述多个时间单元的调制编码方式中满足第一条件的调制编码方式。
  14. 根据权利要求8至13中任一项所述的通信方法,其特征在于,所述第一空间资源集合为第二空间资源集合的子集,所述第二空间资源集合包括所述终端发送第二上行控制信息时使用的多个空间资源,所述第二上行控制信息与所述第一上行控制信息是不同类型的信息。
  15. 一种终端,其特征在于,包括:
    发送模块,用于使用第一空间资源集合中的多个空间资源,发送第一上行控制信息。
  16. 根据权利要求15所述的终端,其特征在于,所述发送模块具体用于:
    使用所述第一空间资源集合中的多个空间资源,在多个时分的时间单元中发送所述第一上行控制信息。
  17. 根据权利要求15或16所述的终端,其特征在于,所述终端还包括接收模块,所述接收模块用于接收第一指示信息,所述第一指示信息用于指示所述第一空间资源集合中的多个空间资源。
  18. 根据权利要求15至17中任一项所述的终端,其特征在于,所述第一上行控制信息包括以下至少一种信息:混合自动重传请求消息、秩指示信息、信道质量指示信息、预编码矩阵索引、修复请求信息、资源标识信息和参考信号接收功率。
  19. 根据权利要去15至18中任一项所述的终端,其特征在于,所述终端还包括处理模块,用于根据所述第一上行控制信息的资源映射优先级,将所述第一上行控制信息映射到时域资源中。
  20. 根据权利要求15、16或19所述的终端,其特征在于,所述终端还包括接收模块,用于接收下行调度信息,所述下行调度信息包括第一时间单元集合中的多个时间单元的调制编码方式;
    其中,所述第一空间资源集合中的空间资源为传输第一传输块时使用的空间资源,所述第一传输块的调制编码方式为所述多个时间单元的调制编码方式中满足第一条件的调制编码方式。
  21. 根据权利要求15至20中任一项所述的终端,其特征在于,所述第一空间资源集合为第二空间资源集合的子集,所述第二空间资源集合包括所述终端发送第二上行控制信 息时使用的多个空间资源,所述第二上行控制信息与所述第一上行控制信息是不同类型的信息。
  22. 一种网络设备,其特征在于,包括:
    接收模块,用于接收终端使用第一空间资源集合中的多个空间资源发送的所述第一上行控制信息。
  23. 根据权利要求22所述的网络设备,其特征在于,所述接收模块具体用于:
    接收所述终端使用所述第一空间资源集合中的多个空间资源,在多个时分的时间单元中发送的所述第一上行控制信息。
  24. 根据权利要求22或23所述的网络设备,其特征在于,所述网络设备还包括发送模块,用于发送第一指示信息,所述第一指示信息用于指示所述第一空间资源集合中的多个空间资源。
  25. 根据权利要求22至24中任一项所述的网络设备,其特征在于,所述第一上行控制信息包括以下至少一种信息:混合自动重传请求消息、秩指示信息、信道质量指示信息、预编码矩阵索引、修复请求信息、资源标识信息和参考信号接收功率。
  26. 根据权利要去22至25中任一项所述的网络设备,其特征在于,所述网络设备还包括处理模块,用于根据所述第一上行控制信息的资源映射优先级,获取时域资源中的所述第一上行控制信息。
  27. 根据权利要求22、23或26所述的网络设备,其特征在于,所述网络设备还包括发送模块,用于发送下行调度信息,所述下行调度信息包括第一时间单元集合中的多个时间单元的调制编码方式;
    其中,所述第一空间资源集合中的空间资源为传输第一传输块时使用的空间资源,所述第一传输块的调制编码方式为所述多个时间单元的调制编码方式中满足第一条件的调制编码方式。
  28. 根据权利要求22至27中任一项所述的网络设备,其特征在于,所述第一空间资源集合为第二空间资源集合的子集,所述第二空间资源集合包括所述终端发送第二上行控制信息时使用的多个空间资源,所述第二上行控制信息与所述第一上行控制信息是不同类型的信息。
  29. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合;
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述存储器中存储的计算机程序,以使得所述通信装置执行如权利要求1至14中任一项所述的通信方法。
  30. 一种可读存储介质,包括程序或指令,当所述程序或指令在计算机上运行时,如权利要求1至14中任意一项所述的通信方法被执行。
  31. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1至14中任一项所述的通信方法。
PCT/CN2018/075132 2017-02-04 2018-02-02 终端、网络设备和通信方法 WO2018141272A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18748272.4A EP3562245A4 (en) 2017-02-04 2018-02-02 TERMINAL, NETWORK DEVICE, AND COMMUNICATION METHOD
US16/530,673 US11337189B2 (en) 2017-02-04 2019-08-02 Terminal, network device, and communication method to improve transmission reliability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710064511.3 2017-02-04
CN201710064511.3A CN108401303B (zh) 2017-02-04 2017-02-04 终端、网络设备和通信方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/530,673 Continuation US11337189B2 (en) 2017-02-04 2019-08-02 Terminal, network device, and communication method to improve transmission reliability

Publications (1)

Publication Number Publication Date
WO2018141272A1 true WO2018141272A1 (zh) 2018-08-09

Family

ID=63040254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075132 WO2018141272A1 (zh) 2017-02-04 2018-02-02 终端、网络设备和通信方法

Country Status (4)

Country Link
US (1) US11337189B2 (zh)
EP (1) EP3562245A4 (zh)
CN (2) CN108401303B (zh)
WO (1) WO2018141272A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3836593A4 (en) * 2018-09-26 2021-11-17 Guangdong Oppo Mobile Telecommunications Corp., Ltd. WIRELESS COMMUNICATION PROCEDURE AND TERMINAL DEVICE
US11296767B2 (en) * 2018-05-04 2022-04-05 Lg Electronics Inc. Method for reporting channel state information in wireless communication system, and device therefor
RU2780817C1 (ru) * 2019-01-08 2022-10-04 Бейдзин Сяоми Мобайл Софтвэр Ко., Лтд. Способ передачи данных нисходящего канала, способ приема, устройство и носитель информации

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10397904B2 (en) * 2016-02-20 2019-08-27 Qualcomm Incorporated Communication of uplink control information
US10425922B2 (en) 2016-02-20 2019-09-24 Qualcomm Incorporated Communication of uplink control information
CN107315567B (zh) * 2016-04-26 2020-08-07 中科寒武纪科技股份有限公司 一种用于执行向量最大值最小值运算的装置和方法
US11012221B2 (en) 2017-03-08 2021-05-18 Lg Electronics Inc. Method and apparatus for transmitting and receiving radio signals in a wireless communication system
JP2020080443A (ja) * 2017-03-22 2020-05-28 シャープ株式会社 端末装置、基地局装置、および、通信方法
US11606176B2 (en) * 2018-06-29 2023-03-14 Qualcomm Incorporated Reference signal and uplink control channel association design
CN110839286B (zh) * 2018-08-16 2022-09-06 大唐移动通信设备有限公司 数据传输方法、装置、基站、终端及计算机可读存储介质
CN110838856B (zh) * 2018-08-17 2021-11-26 大唐移动通信设备有限公司 一种数据传输方法、终端及网络设备
CN109891993B (zh) * 2019-01-08 2021-10-26 北京小米移动软件有限公司 下行数据接收方法、发送方法、装置和储存介质
CN110535601B (zh) * 2019-01-10 2023-10-20 中兴通讯股份有限公司 一种确定空间关系信息的方法、装置和系统
WO2020145676A1 (ko) * 2019-01-10 2020-07-16 엘지전자 주식회사 무선 통신 시스템에서 상향링크 전송을 수행하는 방법 및 이에 대한 장치
CN114128340B (zh) * 2019-05-17 2023-12-26 株式会社Ntt都科摩 用户终端以及无线通信方法
US11888772B2 (en) * 2019-08-28 2024-01-30 Qualcomm Incorporated Channel state information reference signal processing for new radio in the unlicensed spectrum
CN112787784B (zh) * 2019-11-08 2023-06-09 维沃移动通信有限公司 一种信息传输方法及设备
US11877299B2 (en) * 2020-03-05 2024-01-16 Qualcomm Incorporated Control channel resources for group-feedback in multi-cast
CN113453274B (zh) * 2020-03-25 2023-03-03 华为技术有限公司 一种上行数据的分流方法及终端
US11570764B2 (en) * 2020-12-04 2023-01-31 Qualcomm Incorporated FD mode dependent UCI multiplexing
CN117640033A (zh) * 2022-08-12 2024-03-01 大唐移动通信设备有限公司 Dmrs端口的确定方法、设备、装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100195629A1 (en) * 2009-02-05 2010-08-05 Qualcomm Incorporated Efficient ack transmission for uplink semi-persistent scheduling release in lte
CN102651911A (zh) * 2011-02-25 2012-08-29 中兴通讯股份有限公司 上行控制信息的发送方法及装置
WO2014026381A1 (zh) * 2012-08-17 2014-02-20 华为技术有限公司 上行控制信息的发送方法和装置
CN107567099A (zh) * 2016-06-30 2018-01-09 华为技术有限公司 上行控制信道发送与接收方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8711671B2 (en) * 2009-07-03 2014-04-29 Nokia Siemens Networks Oy Extension of physical downlink control channel coverage
JP5940850B2 (ja) * 2012-03-19 2016-06-29 株式会社Nttドコモ 通信システム、基地局装置、移動端末装置及び通信方法
RU2617833C2 (ru) * 2012-04-19 2017-04-28 Самсунг Электроникс Ко., Лтд. Способ и устройство для идентификации квазисовмещения портов опорного символа для координированных многоточечных систем связи
WO2014107088A1 (ko) * 2013-01-07 2014-07-10 엘지전자 주식회사 신호를 송수신하는 방법 및 장치
KR20150143422A (ko) 2013-04-08 2015-12-23 엘지전자 주식회사 무선 통신 시스템에서 분할 빔포밍을 위한 채널 상태 정보 보고 방법 및 이를 위한 장치
US9900872B2 (en) * 2013-04-17 2018-02-20 Futurewei Technologies, Inc. Systems and methods for adaptive transmissions in wireless network
CN104683082B (zh) * 2013-12-03 2018-10-09 索尼公司 无线通信系统和在无线通信系统中进行无线通信的方法
JP2015142349A (ja) * 2014-01-30 2015-08-03 株式会社Nttドコモ ユーザ装置及び送信制御方法
EP3232636B1 (en) * 2015-01-05 2019-04-03 Huawei Technologies Co., Ltd. Information transmission method, device and system
US20180115965A1 (en) * 2015-04-09 2018-04-26 Ntt Docomo, Inc. User terminal, radio base station, radio communication system and radio communication method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100195629A1 (en) * 2009-02-05 2010-08-05 Qualcomm Incorporated Efficient ack transmission for uplink semi-persistent scheduling release in lte
CN102651911A (zh) * 2011-02-25 2012-08-29 中兴通讯股份有限公司 上行控制信息的发送方法及装置
WO2014026381A1 (zh) * 2012-08-17 2014-02-20 华为技术有限公司 上行控制信息的发送方法和装置
CN107567099A (zh) * 2016-06-30 2018-01-09 华为技术有限公司 上行控制信道发送与接收方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3562245A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11296767B2 (en) * 2018-05-04 2022-04-05 Lg Electronics Inc. Method for reporting channel state information in wireless communication system, and device therefor
EP3836593A4 (en) * 2018-09-26 2021-11-17 Guangdong Oppo Mobile Telecommunications Corp., Ltd. WIRELESS COMMUNICATION PROCEDURE AND TERMINAL DEVICE
RU2780817C1 (ru) * 2019-01-08 2022-10-04 Бейдзин Сяоми Мобайл Софтвэр Ко., Лтд. Способ передачи данных нисходящего канала, способ приема, устройство и носитель информации

Also Published As

Publication number Publication date
US20190357205A1 (en) 2019-11-21
US11337189B2 (en) 2022-05-17
CN108401303A (zh) 2018-08-14
EP3562245A4 (en) 2019-11-27
CN113726492A (zh) 2021-11-30
CN108401303B (zh) 2021-07-20
EP3562245A1 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
WO2018141272A1 (zh) 终端、网络设备和通信方法
CN110521135B (zh) 用于通信波束恢复的系统和方法
CN109195148B (zh) 用于资源分配和设备对设备发现跳的用户设备和方法
CN110809321A (zh) 接收和发送信号的方法以及通信装置
CN111436147B (zh) 传输信号的方法和装置
EP4195850A1 (en) Method for terminal transmitting channel state information in wireless communication system, and terminal that uses the method
WO2021027518A1 (zh) 处理数据的方法和通信装置
US11252611B2 (en) Apparatus and method for determining bandwidth in wireless communication system
US20240039583A1 (en) Method and Device for Multi-Antenna Transmission in UE and Base Station
WO2018099328A1 (zh) 通信方法、基站和终端设备
US20210111773A1 (en) Method for feedback of correlation of beams in wireless communication system and user equipment
CN113490278B (zh) 下行信号传输的方法和设备
US20210195466A1 (en) Apparatus and method for providing service in wireless communication system
WO2022016933A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20230361975A1 (en) Method of sharing srs resources between srs resource sets of different usages, and corresponding ue
US11451259B2 (en) Techniques for self-interference reporting
US20230171625A1 (en) Interference measurement of sensing signals
US20230072549A1 (en) Bandwidth part (bwp) partition and sub-bwp hopping
WO2021247903A1 (en) Wideband and subband precoder selection
CN115136711A (zh) 通信链路之间的优先化技术
WO2023019860A1 (zh) 无线通信的方法和终端设备
US20240147507A1 (en) Interference cancellation capability awareness for sidelink communications
WO2024067244A1 (zh) 数据发送的方法和装置
WO2023023946A1 (zh) 无线通信的方法和终端设备
CN113765638B (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748272

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018748272

Country of ref document: EP

Effective date: 20190722

NENP Non-entry into the national phase

Ref country code: DE