WO2023138507A1 - 一种通信方法、装置及系统 - Google Patents

一种通信方法、装置及系统 Download PDF

Info

Publication number
WO2023138507A1
WO2023138507A1 PCT/CN2023/072096 CN2023072096W WO2023138507A1 WO 2023138507 A1 WO2023138507 A1 WO 2023138507A1 CN 2023072096 W CN2023072096 W CN 2023072096W WO 2023138507 A1 WO2023138507 A1 WO 2023138507A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
power offset
parameter
power
value
Prior art date
Application number
PCT/CN2023/072096
Other languages
English (en)
French (fr)
Inventor
丁洋
李胜钰
李锐杰
官磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023138507A1 publication Critical patent/WO2023138507A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/143Downlink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiment of the present application relates to the communication field.
  • it relates to a communication method, device and system.
  • the network device sends a measurement signal to the terminal device, and the terminal obtains channel state information (CSI) according to the measurement signal, and reports the CSI to the network device, and the network device and the terminal device communicate according to the CSI.
  • CSI channel state information
  • the transmission power of the measurement signal may be different from the power of the downlink data transmitted by the network equipment.
  • the network device cannot perform accurate link adaptation based on the CSI reported by the terminal device, which will affect communication performance. Therefore, how to improve the accuracy of the channel state information obtained by the network equipment to improve the reliability of data transmission is an urgent problem to be solved.
  • Embodiments of the present application propose a communication method, device, and system, and the method can improve reliability of data transmission.
  • the embodiment of the present application provides a communication method, and the method may be executed by a terminal device, or may also be executed by a chip or a circuit used for the terminal device, which is not limited in the present application.
  • the following uses execution by a terminal device as an example for description.
  • the terminal device receives first information, where the first information is used to instruct the terminal device to send a first parameter, where the first parameter is used to represent a correspondence between power offset and channel quality information, and the terminal device reports the first parameter according to the first information.
  • the network device instructs the terminal device to report the corresponding relationship between the power offset and the channel quality information, and determining the transmission power of the downlink data according to the corresponding relationship can enable the network device to flexibly adjust the transmission power of the data, which is beneficial to the energy saving of the network device, avoids the mismatch between the fixed power offset and the transmission power of the downlink data, and can improve the accuracy of the transmission power of the downlink data, thereby improving the communication quality.
  • the first parameter includes a first subparameter and a second subparameter, where the first subparameter is used to indicate a correspondence between a power offset corresponding to a first rank value and channel quality information, and the second subparameter is used to indicate a correspondence between a power offset corresponding to a second rank value and channel quality information.
  • the network device can use the corresponding relationship under different rank values as a reference to determine the transmission power of the downlink data, which improves the flexibility of the network device to determine the transmission power of the downlink data, and can further improve the accuracy of the transmission power of the downlink data.
  • the corresponding relationship between the power offset and the channel quality information is a linear relationship.
  • the first parameter is the ratio of the first difference to the second difference
  • the first difference is the difference between the first power offset and the second power offset
  • the second difference is the value of the first channel quality information and the second channel quality information
  • the first power offset corresponds to the value of the first channel quality information
  • the second power offset corresponds to the value of the second channel quality information
  • the reporting ratio indicates the linear relationship between the power offset and the channel quality information, which can save signaling overhead compared to reporting a plurality of channel state information.
  • the channel quality information includes at least one of the following: a signal-to-interference-noise ratio, a channel quality indicator (CQI), transmission efficiency, or a modulation and coding scheme (MCS).
  • a signal-to-interference-noise ratio a channel quality indicator (CQI)
  • CQI channel quality indicator
  • MCS modulation and coding scheme
  • the first information is also used to configure channel state information measurement or channel state information reporting.
  • the first information may be carried in channel state information measurement configuration information or channel state information reporting configuration information.
  • the first parameter is carried in channel state information.
  • the first capability information is sent, where the first capability information is used to indicate the number of channel state information processing units corresponding to the first parameter reported. Or, send the number of channel state information processing units corresponding to the first parameter.
  • the number of channel state information processing units corresponding to the first parameter may also be understood as the processing capability of the terminal device for channel state information under the first parameter.
  • the terminal device reports the number of channel state information processing units or the first capability information to the network device, and the network device can reasonably schedule measurement resources according to the number or capability.
  • the embodiment of the present application provides a communication method, and the method may be executed by a network device, or may also be executed by a chip or a circuit used for the network device, which is not limited in the present application.
  • the method may include: the network device sends first information, the first information is used to instruct the terminal device to send a first parameter, the first parameter is used to represent the correspondence between power offset and channel quality information, and the network device receives the first parameter.
  • the first parameter includes at least one sub-parameter, and any sub-parameter in the at least one sub-parameter is used to represent a correspondence between a power offset of a rank value and channel quality information.
  • the corresponding relationship between the power offset and the channel quality information is a linear relationship.
  • the first parameter includes a first subparameter and a second subparameter, where the first subparameter is used to indicate a correspondence between a power offset corresponding to a first rank value and channel quality information, and the second subparameter is used to indicate a correspondence between a power offset corresponding to a second rank value and channel quality information.
  • the channel quality information includes at least one of the following: signal to interference and noise ratio, CQI, transmission efficiency, or MCS.
  • the first information is also used to configure channel state information measurement or channel state information reporting.
  • channel state information is received, and the first parameter is carried in the channel state information.
  • first capability information is received, where the first capability information is used to indicate the number of channel state information processing units that report the first parameter, and a measurement resource is determined according to the first capability information, and the measurement resource is used for the terminal device to measure the channel state.
  • the second aspect is a method on the network device side corresponding to the first aspect, and the relevant explanations, supplements, and descriptions of beneficial effects of the first aspect are also applicable to the second aspect, and will not be repeated here.
  • the embodiment of the present application provides a communication method, and the method may be executed by a terminal device, or may also be executed by a chip or a circuit used for the terminal device, which is not limited in the present application.
  • the method may include: the terminal device receives second information, the second information is used to indicate M transmission efficiency values, where M is a positive integer, and the terminal device sends N power offsets according to the second information, the N power offsets are carried in the channel state information, and N is a positive integer less than or equal to M.
  • the method indicates the transmission efficiency through the network device, and the terminal device calculates the corresponding power offset according to the transmission efficiency, which improves the matching degree between the power offset reported by the terminal device and the transmission efficiency, and the network device can determine a more reasonable power for sending downlink data, thereby improving the communication quality.
  • the second information is also used to configure channel state information measurement or channel state information reporting.
  • the M transmission efficiency values correspond to S rank values, where S is a positive integer.
  • S is equal to M
  • the M transmission efficiency values correspond to the S rank values one-to-one.
  • the M is equal to N, and the M transmission efficiency values are in one-to-one correspondence with the N power offsets.
  • the number of the power offsets is greater than 1, and sending the M power offsets includes: sending a first power offset and a first power offset offset value, where the first power offset offset value is a difference between the second power offset and the first power offset value, and the first power offset offset value is one of at least one power offset offset value, and the at least one power offset offset value corresponds to a power offset other than the first power offset among the N power offsets.
  • N is greater than 1
  • the N power offsets include a first reference power offset and (N-1) power offset offset values, where the (N-1) power offset offset values are respectively differences between the (N-1) power offsets and the first reference power offset, and the first reference power offset may be one of the N power offsets.
  • the N power offsets are determined according to the M transmission efficiency values.
  • the second capability information is sent, where the second capability information is used to indicate the number of channel state information processing units corresponding to the N power offsets reported. Or, send the number of channel state information processing units corresponding to the N power offsets.
  • the number of channel state information processing units corresponding to N power offsets can also be understood as the processing capability of the terminal device to determine channel state information corresponding to N power offsets.
  • the terminal device reports the number of channel state information processing units or the second capability information to the network device, and the network device can reasonably schedule measurement resources according to the number or capability to further improve communication efficiency.
  • the embodiment of the present application provides a communication method, and the method may be executed by a network device, or may also be executed by a chip or a circuit used for the network device, which is not limited in the present application.
  • the method may include: the network device sending second information, where the second information is used to indicate M transmission efficiency values, where M is a positive integer, and the network device receives N power offsets, where the N power offsets are carried in channel state information, where N is a positive integer less than or equal to M, and the N power offsets are determined according to the second information.
  • the second information is also used to configure channel state information measurement or channel state information report.
  • the M transmission efficiency values correspond to S rank values, where S is a positive integer.
  • S is equal to M
  • the M transmission efficiency values correspond to the S rank values one-to-one.
  • the M is equal to N, and the M transmission efficiency values are in one-to-one correspondence with the N power offsets.
  • N is greater than 1
  • receiving the M power offsets includes: receiving a first power offset and a first power offset offset value, where the first power offset offset value is a difference between the second power offset and the first power offset value, and the first power offset offset value is one of the at least one power offset offset value, and the at least one power offset offset value corresponds to a power offset other than the first power offset among the N power offsets.
  • the N power offsets are determined according to the M transmission efficiency values.
  • second capability information is received, where the second capability information is used to indicate the number of channel state information processing units corresponding to the N power offsets reported.
  • the fourth aspect is a method on the network device side corresponding to the third aspect, and the relevant explanations, supplements, and descriptions of beneficial effects of the third aspect are also applicable to the fourth aspect, and will not be repeated here.
  • an embodiment of the present application provides a communication device, the device includes a processing module and a transceiver module, and the transceiver module may be used to receive first information, the first information is used to instruct the terminal device to send a first parameter, the first parameter is used to represent a correspondence between power offset and channel quality information, and the transceiver module is further used to report the first parameter according to the first information.
  • an embodiment of the present application provides a communication device, where the communication device includes a transceiver module and a processing module, where the transceiver module is configured to send first information, where the first information is used to instruct a terminal device to send a first parameter, where the first parameter is used to characterize a correspondence between a power offset and channel quality information, and where the transceiver module is further configured to receive the first parameter.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a transceiver module and a processing module.
  • the transceiver module is used to receive second information, the second information is used to indicate M transmission efficiency values, where M is a positive integer, and the transceiver module is also used to send N power offsets according to the second information, the N power offsets are carried in channel state information, and N is a positive integer.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a transceiver module and a processing module.
  • the transceiver module is used to send second information, and the second information is used to indicate M transmission efficiency values, where M is a positive integer.
  • the transceiver module is also used to receive N power offsets, the N power offsets are carried in channel state information, the N is a positive integer, and the N power offsets are determined according to the second information.
  • fifth, sixth, seventh, and eighth aspects are implementations on the device side corresponding to the first, second, third, and fourth aspects, respectively, and the relevant explanations, supplements, possible implementations, and descriptions of beneficial effects of the first, second, third, and fourth aspects are also applicable to the fifth, sixth, seventh, and eighth aspects, respectively, and will not be repeated here.
  • the embodiment of the present application provides a communication device, including an interface circuit and a processor, the interface circuit is used to realize the function of the transceiver module in the fifth aspect or the seventh aspect, and the processor is used to realize the function of the processing module in the fifth aspect or the seventh aspect.
  • the embodiment of the present application provides a communication device, including an interface circuit and a processor, the interface circuit is used to realize the function of the transceiver module in the sixth aspect or the eighth aspect, and the processor is used to realize the function of the processing module in the sixth aspect or the eighth aspect.
  • the embodiment of the present application provides a computer-readable medium, where the computer-readable medium stores program code for execution by a terminal device, and the program code includes instructions for executing the method of the first aspect or the third aspect, or any possible method of the first aspect or the third aspect, or all possible methods of the first aspect or the third aspect.
  • the embodiment of the present application provides a computer-readable medium, where the computer-readable medium stores program code for execution by a network device, and the program code includes instructions for executing the method of the second aspect or the fourth aspect, or any possible mode of the second aspect or the fourth aspect, or all possible modes of the second aspect or the fourth aspect.
  • a thirteenth aspect provides a computer program product storing computer-readable instructions.
  • the computer-readable instructions When the computer-readable instructions are run on a computer, the computer is made to execute the method of the first aspect or the third aspect, or any possible method of the first aspect or the third aspect, or, all possible methods of the first aspect or the third aspect.
  • a fourteenth aspect provides a computer program product storing computer-readable instructions.
  • the computer is made to execute the method of the second aspect or the fourth aspect, or any possible method of the second aspect or the fourth aspect, or, all possible methods of the second aspect or the fourth aspect.
  • a fifteenth aspect provides a communication system, and the communication system includes a device that implements the above-mentioned first aspect or the third aspect, or any possible way in the first aspect or the third aspect, or all possible ways in the first aspect or the third aspect and functions of various possible designs, and the second aspect or the fourth aspect, or any possible way in the second aspect or the fourth aspect, or a device that implements all possible ways in the second aspect or the fourth aspect.
  • a processor configured to be coupled with a memory, for executing the method of the first aspect or the third aspect, or any possible manner in the first aspect or the third aspect, or, all possible manners in the first aspect or the third aspect.
  • a processor configured to be coupled with a memory, for executing the method of the second aspect or the fourth aspect, or any possible manner in the second aspect or the fourth aspect, or, all possible manners in the second aspect or the fourth aspect.
  • a chip system in an eighteenth aspect, includes a processor, and may further include a memory for executing computer programs or instructions stored in the memory, so that the chip system implements the method in any one of the foregoing first to fourth aspects, and any possible implementation of any aspect.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • a nineteenth aspect provides a computer program product storing computer-readable instructions.
  • the computer is made to execute the method in the first aspect or the third aspect, or any possible manner in the first aspect or the third aspect, or, all possible implementation manners in the first aspect or the third aspect.
  • a computer program product storing computer-readable instructions.
  • the computer-readable instructions When the computer-readable instructions are run on a computer, the computer is made to execute the method in the second aspect or the fourth aspect, or any possible manner in the second aspect or the fourth aspect, or, all possible implementation manners in the second aspect or the fourth aspect.
  • a twenty-first aspect provides a communication system, including at least one communication device according to the fifth aspect and/or at least one communication device according to the sixth aspect, and the communication system is used to implement the method of the first aspect or the second aspect, or any possible way of the first aspect or the second aspect, or all possible implementation ways of the first aspect or the second aspect.
  • a twenty-second aspect provides a communication system, including at least one communication device as described in the seventh aspect and at least one communication device as described in the eighth aspect, and the communication system is used to implement the above third or fourth aspect, or, the first Any possible manner in the third aspect or the fourth aspect, or, all possible implementation manners in the third aspect or the fourth aspect.
  • Fig. 1 shows a system architecture applicable to this embodiment of the present application.
  • FIG. 2 shows a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 3 shows a schematic diagram of a correspondence relationship between power offset and channel quality information provided by an embodiment of the present application.
  • FIG. 4 shows a schematic flowchart of another communication method provided by an embodiment of the present application.
  • Fig. 5 shows a schematic block diagram of a communication device provided by an embodiment of the present application.
  • Fig. 6 shows a schematic block diagram of another communication device provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a communication system 1000 applied in an embodiment of the present application.
  • the communication system includes a radio access network 100 and a core network 200 , and optionally, the communication system 1000 may also include the Internet 300 .
  • the radio access network 100 may include at least one radio access network device (such as 110a and 110b in FIG. 1 ), and may also include at least one terminal (such as 120a-120j in FIG. 1 ).
  • the terminal is connected to the wireless access network device in a wireless manner, and the wireless access network device is connected to the core network in a wireless or wired manner.
  • the core network equipment and the radio access network equipment may be independent and different physical equipment, or the functions of the core network equipment and the logical functions of the radio access network equipment may be integrated on the same physical equipment, or a physical equipment may integrate part of the functions of the core network equipment and part of the functions of the radio access network equipment.
  • Terminals and wireless access network devices may be connected to each other in a wired or wireless manner.
  • FIG. 1 is only a schematic diagram.
  • the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 1 .
  • the radio access network equipment may be a base station (base station), an evolved base station (evolved NodeB, eNodeB), a transmission reception point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in a fifth generation (5th generation, 5G) mobile communication system, a next generation base station in a sixth generation (6th generation, 6G) mobile communication system, a base station in a future mobile communication system, or a WiFi system.
  • the radio access network device may be a macro base station (such as 110a in Figure 1), a micro base station or an indoor station (such as 110b in Figure 1), or a relay node or a donor node.
  • the embodiment of the present application does not limit the specific technology and specific equipment form adopted by the radio access network equipment.
  • a base station is used as an example of a radio access network device for description below.
  • a terminal may also be called terminal equipment, user equipment (user equipment, UE), mobile station, mobile terminal, and so on.
  • the terminal can be widely used in various scenarios, for example, device-to-device (device-to-device, D2D), vehicle (vehicle to everything (V2X) communication, machine-type communication (MTC), Internet of things (IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, etc.
  • Terminals can be mobile phones, tablet computers, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal.
  • Base stations and terminals can be fixed or mobile. Base stations and terminals can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and artificial satellites.
  • the embodiments of the present application do not limit the application scenarios of the base station and the terminal.
  • the helicopter or drone 120i in FIG. 1 can be configured as a mobile base station.
  • the terminal 120j that accesses the wireless access network 100 through 120i
  • the terminal 120i is a base station; but for the base station 110a, 120i is a terminal, that is, communication between 110a and 120i is performed through a wireless air interface protocol.
  • communication between 110a and 120i may also be performed through an interface protocol between base stations.
  • 120i is also a base station. Therefore, both the base station and the terminal can be collectively referred to as a communication device, 110a and 110b in FIG. 1 can be referred to as a communication device with a base station function, and 120a-120j in FIG. 1 can be referred to as a communication device with a terminal function.
  • Communication between base stations and terminals, between base stations, and between terminals can be performed through licensed spectrum, unlicensed spectrum, or both licensed spectrum and unlicensed spectrum; communication can be performed through spectrum below 6 gigahertz (GHz), communication can be performed through spectrum above 6 GHz, and spectrum below 6 GHz and spectrum above 6 GHz can also be used for communication at the same time.
  • GHz gigahertz
  • the embodiments of the present application do not limit the frequency spectrum resources used for wireless communication.
  • the functions of the base station may also be performed by modules (such as chips) in the base station, or may be performed by a control subsystem including the functions of the base station.
  • the control subsystem including base station functions here may be the control center in the above application scenarios such as smart grid, industrial control, intelligent transportation, and smart city.
  • the functions of the terminal may also be performed by a module (such as a chip or a modem) in the terminal, or may be performed by a device including the terminal function.
  • Wireless communication between communication devices may include: wireless communication between a network device and a terminal, wireless communication between a network device and a network device, and wireless communication between a terminal device and a terminal device.
  • wireless communication may also be referred to as “communication” for short, and the term “communication” may also be described as "data transmission”, “information transmission” or “transmission”.
  • the physical uplink shared channel (physical downlink share channel, PDSCH), the physical downlink control channel (physical downlink control channel, PDCCH) and the physical uplink shared channel (physical uplink share channel, PUSCH) are only used as an example of the downlink data channel, downlink control channel and uplink data channel respectively.
  • data channels and control Channels may have different names, which are not limited in this embodiment of the application.
  • Channel state information report configuration (CSI-ReportConfig): It is mainly used to configure parameters related to channel state reporting, such as the type of report, the measurement index to be reported, etc.
  • the report configuration identifier (reportConfigId) is the identification (identity, Id) number of the CSI-ReportConfig, which is used to mark the CSI-ReportConfig;
  • the channel measurement resource (resourcesForChannelMeasurement), which is used to configure channel state information for channel measurement-reference signal (CSI-Reference Signal, CSI-RS) resources are associated to resource configuration through CSI-ResourceConfigId; interference measurement resources (CSI-IM-RessourcesForInterference), resources configured for CSI-RS for interference measurement, are associated to resource configuration through CSI-ResourceConfigId.
  • parameters related to CSI reporting may include CSI reporting type (reportConfigType), CSI reporting quantity (reportQuantity), etc.
  • CSI reporting types may be divided into periodic, semi-persistent and non-periodic reporting; network devices may configure different reporting quantities to allow terminal devices to report different CSI, including CSI-RS resource indicator (CSI-RS resource indicator, CRI), rank indicator (rank indicator, RI), precoding matrix indicator (Pre-coding Matrix Indicator, PMI), Channel Quality Indicator (Channel Quantity Indicator, CQI), etc.
  • Channel state information resource configuration used to configure resource-related information for CSI measurement. It may include reporting resource identification (CSI-ResourceConfigId) and/or resource combination queue (CSI-RS-ResourceSetList), etc.
  • CSI-ResourceConfigId is used to mark the csi-ResourceConfig
  • the CSI-RS-ResourceSetList may include a resource set for channel measurement and a resource set for interference measurement.
  • Channel state information During the process of the signal passing through the wireless channel from the transmitter to the receiver, it may experience scattering, reflection, and energy attenuation with distance, resulting in fading.
  • CSI is used to characterize the characteristics of the wireless channel, including CQI, PMI, CRI, synchronization signal and physical broadcast channel block (synchronization signal and physical broadcast channel block, SSB) resource indication (SSB resource indicator, SSBRI), layer indication (layer indicator, LI), RI, L1-reference signal received power (reference signal received power, RSRP ) and at least one of L1-signal to interference plus noise ratio (signal to interference plus noise ratio, SINR).
  • the CSI can be sent by the terminal device to the network device through a physical uplink control channel (physical uplink control channel, PUCCH) or a physical uplink shared channel (physical uplink share channel, PUSCH).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • CSI report (CSI report): The CSI report is sent by the terminal to the base station for the network device to know the channel status when it sends downlink information to the terminal device.
  • One CSI report is used to instruct the terminal device to feed back one CSI, and different CSIs may correspond to different frequency bands, different transmission assumptions or different reporting modes.
  • a CSI report can be associated with one reference signal resource for channel measurement, and can also be associated with one or more reference signal resources for interference measurement.
  • a CSI report corresponds to a transmission resource, that is, the time-frequency resource used by the terminal device to send the CSI.
  • Reference signal a known signal provided by the transmitter to the receiver for channel estimation or channel detection.
  • the reference signal can be used for channel measurement, interference measurement, etc., such as measuring parameters such as reference signal receiving quality (reference signal receiving quality, RSRQ), SINR, CQI, and/or PMI.
  • RSRQ reference signal receiving quality
  • SINR reference signal receiving quality
  • CQI CQI
  • PMI PMI
  • Reference signal resources including at least one of resources such as time-frequency resources, antenna ports, power resources, and scrambling codes of reference signals.
  • the network device can send the reference signal to the terminal device based on the reference signal resource, and correspondingly, the terminal device can receive the reference signal based on the reference signal resource.
  • the reference signals involved in the embodiments of the present application may include one or more of the following reference signals: channel state information reference signal (channel state information-reference signal, CSI-RS), SSB or sounding reference signal (sounding reference signal, SRS).
  • the reference signal resources may include CSI-RS resources, SSB resources or SRS resources.
  • SSB may also refer to SSB resources.
  • Rank of the transmission channel can be regarded as the number of independent parallel channels on the transmission path between the sending and receiving parties. It can be understood as a relatively independent data path supported by both the sender and receiver during the communication process. a number A data channel can correspond to a data stream. For a multiple input multiple output (MIMO) system, the number of data streams used by the sending and receiving parties in the communication process is called the number of layers.
  • MIMO multiple input multiple output
  • the number of data streams that can be sent simultaneously according to the rank of the spatial channel, or in other words, it is necessary to determine the number of layers of the communication process according to the rank of the spatial channel, so as to reduce the interference between information, increase the accuracy of reception, and improve the capacity of information transmission. Since one data channel corresponds to one data stream, the number of data channels (or the number of data streams, also called the number of layers) can be represented by a rank value.
  • Modulation and coding scheme Commonly used modulation methods include binary phase shift keying (binary phase shift keying, BPSK), quadrature phase shift keying (quadrature phase shift keying, QPSK), quadrature amplitude modulation (quadrature amplitude modulation, QAM), such as 16QAM, 64QAM, etc.
  • MCS includes code rate, that is, the ratio of information bits to coded bits. MCS can also include spectral efficiency.
  • SINR refers to the ratio of the strength of the received useful signal to the strength of the received interference signal (noise and interference).
  • the communication device may refer to the SINR to select the MCS corresponding to the signal transmission.
  • Transmission efficiency It can also be understood as spectral efficiency, and the standard unit of spectral efficiency is bit/s/Hz.
  • Spectrum efficiency can be the number of information bits transmitted on a resource element (RE).
  • the number of information bits on an RE is related to the MCS, that is, the number of coded bits represented by the modulation mode, and the corresponding code rate represents the actual number of information bits transmitted.
  • Power offset The terminal device determines CSI based on the measurement result of the reference signal and reports it to the base station.
  • the CSI is used to assist the network device in determining link parameters for downlink data transmission, and data transmission and reference signal transmission may have different transmission powers (or power spectral densities)
  • the CSI calculated by the terminal device based on the measurement result of the reference signal may not be completely aligned with the CSI corresponding to the data transmission.
  • an optional way is to indicate the power offset in the configuration parameters of the reference signal.
  • the power offset is used to represent the power ratio between data transmission and reference signal transmission, and is generally expressed in decibels (dB).
  • a power offset can refer to a physical downlink shared channel (physical downlink shared channel, PDSCH).
  • the terminal device calculates the CSI and feeds it back to the network device according to the power offset and the measurement result of the reference signal. Since the transmission power of the data transmission indicated by the power offset is an aligned assumption of the data transmission power between the network device and the terminal device, it is not necessarily the same as the transmission power when the network device sends data transmission, so the power offset can also be understood as a power assumption.
  • the terminal device will take the power offset into account when reporting CSI, and then calculate CSI based on the power of the measurement signal and report it to the network device as a reference for the network device to send downlink data.
  • the difference between the power of the network device for sending downlink data and the power for sending the measurement signal may not be consistent with this power offset.
  • the network device cannot perform reasonable link adaptation based on the CSI reported by the terminal device, resulting in reduced reliability of data transmission.
  • network devices will obtain energy saving benefits by reducing the transmission power, and the matching degree between the power expectation value and the offset of the downlink data will be further reduced, which will affect the communication performance.
  • the embodiment of the present application proposes a communication method, which can improve the accuracy of the transmission power of downlink data and improve the communication quality.
  • the method may include the following steps:
  • Step 201 The network device sends first information to the terminal device, and the terminal device receives the first information correspondingly.
  • the first information is used to instruct the terminal equipment to send the first parameter
  • the first parameter is used to represent the correspondence between the power offset and the channel quality information.
  • the corresponding relationship between the power offset and the channel quality information is a functional relationship.
  • the channel quality information includes at least one of the following: signal to interference and noise ratio, channel quality indicator (CQI), transmission efficiency, or modulation and coding scheme (MCS). That is to say, the correspondence between the power offset and the channel quality information may be one or more of: the correspondence between the power offset and the signal-to-interference-noise ratio, the correspondence between the power offset and the MCS, the correspondence between the power offset and the CQI, or the correspondence between the power offset and the transmission efficiency.
  • the above correspondence between the power offset and the channel quality information may be a linear relationship.
  • the linear relationship may also be understood as a linear functional relationship.
  • the first parameter may be a ratio or a slope of a linear function.
  • the first parameter is the ratio of the first difference to the second difference
  • the first difference is the difference between the first power offset and the second power offset
  • the second difference is the difference between the value of the first channel quality information and the value of the second channel quality information
  • the first power offset corresponds to the value of the first channel quality information
  • the second power offset corresponds to the value of the second channel quality information.
  • the first parameter is the slope of the fitted plot of the power offset as a function of channel quality information.
  • the first parameter may be the slope of the fitting graph, or it may be understood that the first parameter may be an approximate value.
  • the ratios of SINR 1 to power offset 1 the ratios of SINR 2 to power offset 2
  • the ratios of SINR 5 to power offset 5 are on the fitting graph
  • the ratios of SINR 3 to power offset 3 and the ratios of SINR 4 to power offset 4 are not on the fitting graph.
  • the first information may be used to configure channel state information measurement or channel state information reporting, that is, the first information is carried in channel state information resource configuration (CSI-ResourceConfig) or channel state information report configuration (CSI-ReportConfig), and a new field may be added in the channel state information resource configuration or channel state information report configuration, and the terminal device is instructed to send the first parameter through this field.
  • the newly added field may indicate that the reporting quantity is CRI, RI, CQI and the first parameter K, and a possible example is as follows.
  • the first information may also be carried in other information, or be indicated by a network device alone, and this application does not Do limited.
  • the foregoing first parameter may include at least one sub-parameter, and any sub-parameter in the at least one sub-parameter is used to characterize a correspondence between a power offset of a rank value and channel quality information.
  • the first parameter can be understood as a set of parameters.
  • each sub-parameter included in the first parameter may be a correspondence between a power offset corresponding to a rank value and channel quality information, for example, the first parameter includes a first sub-parameter and a second sub-parameter, the first sub-parameter is used to indicate the correspondence between the power offset corresponding to the first rank value and the channel quality information, and the second sub-parameter is used to indicate the correspondence between the power offset corresponding to the second rank value and the channel quality information.
  • the rank value can be indicated by the above-mentioned CSI-ReportConfig.
  • the network device instructs the terminal device to report the first parameter K through cri-RI-CQI-K, where RI is used to indicate the value of the rank.
  • RI is used to indicate the value of the rank.
  • the rank value can have three situations: A, the rank value is 3; B, the rank value is 2; C, the rank value is 1.
  • the first parameter may include three sub-parameters, namely sub-parameter 1, sub-parameter 2 and sub-parameter 3.
  • the corresponding relationship between power offset and channel quality information is relationship A, which can be represented by sub-parameter 1; corresponding to the above-mentioned case B, the corresponding relationship between power offset and channel quality information is relationship B, which can be represented by sub-parameter 2; corresponding to the above case C, the corresponding relationship between power offset and channel quality information is relationship C, which can be represented by sub-parameter 3.
  • the value of the first parameter when the first parameter is a ratio, corresponding to different rank values, the value of the first parameter may be different. Under the same rank value, the value of the first parameter may also be different for different channel quality information.
  • the physical meaning represented by the rank value here is the number of data streams (number of layers). For example, a rank value of 2 means that two data streams are included.
  • the ratio of power offset to SINR is 2
  • the ratio of power offset to MCS is 2.1
  • the ratio of power offset to CQI is 2.6
  • the ratio of power offset to transmission efficiency is 2.3.
  • the ratio of power offset to SINR is 3
  • the ratio of power offset to MCS is 2.7
  • the ratio of power offset to CQI is 3.6
  • the ratio of power offset to transmission efficiency is 3.3. It should be understood that the values of the above ratios are only examples and not limitations. Of course, corresponding to different ranks, the value of the first parameter may also be the same, which is not limited in this application.
  • the terminal device calculates ⁇ CSI 2 ..., CSI m ⁇ based on the CSI measurement reference signal and the simulated power offset ⁇ 2 , ..., ⁇ m ⁇ , and then reports the slope value K obtained by fitting. for example,
  • the analog power offset ⁇ 2 ,..., ⁇ m ⁇ can be defined by the terminal device.
  • ⁇ 1 and ⁇ 2 ,..., ⁇ m ⁇ can form an arithmetic sequence
  • ⁇ 1 is the power offset sent by the network device to the terminal device.
  • ⁇ 1 can be configured by the resource configuration (CSI-ResourceConfig) of the CSI measurement reference signal.
  • the power offset ⁇ 1 can be understood as the transmission power of CSI-RS and the transmission of predefined downlink data difference in power.
  • the channel quality information CSI may be calculated by the terminal device according to the power offset.
  • One possible calculation is as follows:
  • a terminal device can determine the SINR based on the following items: the transmission channel corresponding to the target data flow from the network device to the terminal device, the receiving vector of the target data stream from the terminal device, the interference autocorrelation matrix outside the network device, power offset, and signal-to-interference-noise ratio.
  • the receiving SINR of the terminal equipment can be expressed as the relationship of formula (1):
  • h l is the transmission channel (including precoding processing) corresponding to the target data stream from the network device to the terminal device
  • h j is the transmission channel (including precoding processing) corresponding to the interference data stream from the network device to the terminal device.
  • Step 202 The terminal device reports the first parameter to the network device according to the first information, and correspondingly, the network device receives the first parameter.
  • the terminal device reports the first parameter to the network device, that is, the terminal device sends the multiple sub-parameters to the network device.
  • CQI 1 as an example of report quantity (reportQuantity), or taking CQI as an example of CSI
  • the terminal device can calculate CQI 1 to be reported according to the received CSI measurement reference signal and power offset ⁇ 1 .
  • CQI 1 generally refers to all reported wideband CQIs and narrowband CQIs.
  • one calculation method of CQI 1 is: obtain the SINR according to formula (2), and then find the corresponding CQI 1 in the CQI quantization table according to the SINR.
  • the terminal device may calculate the first parameters (that is, multiple sub-parameters) corresponding to all possible rank values through the above method. For example, RI is set to 3, indicating that the rank value is at most 3, which includes three cases of 1, 2, and 3 (refer to cases A, B, and C in step 201). The terminal device needs to calculate corresponding first parameters respectively for these three situations.
  • the first parameter K reported by the terminal device may be the reported value of K, or an index corresponding to the reported K value.
  • the network device pre-configures a candidate value of K and its index through RRC signaling, and the candidate value is a possible value of K.
  • the terminal device reports the index of the value to the network device. It should be understood that there may be a certain error between the K value determined by the terminal device and the candidate value of K preconfigured by the network device.
  • the K value determined by the terminal device is 2.13.
  • the terminal device may report a candidate value close to it, for example, report 2.1, or report the index #1 corresponding to 2.1.
  • the network device and the terminal device can pre-negotiate a reporting rule.
  • the rule can be: when there is an error between the K value determined by the terminal device and the candidate value, report the candidate value with the smallest difference from the K value, or report the index of the candidate value.
  • Another possible way is to allow a certain error between the K value determined by the terminal device and the candidate value pre-configured by the network device.
  • the candidate value is reported; Candidates whose difference between the determined K values are within the error range are selected and reported.
  • the error range may be predefined, configured by the network device for the terminal device, or indicated by the network device to the terminal device, which is not limited in this embodiment of the present application.
  • the terminal device when the terminal device determines that the value of K is 2.3, it may report 2.3 to the network device, or report #2 to the network device.
  • the terminal device may report multiple sub-parameters of the first parameter. For example, the terminal device receives cri-RI-CQI-K, and the value of RI is 3, corresponding to situations A, B and C in step 201, the terminal device reports subparameter 1, subparameter 2 and subparameter 3 to the network device. The terminal device may also report the indices corresponding to the multiple sub-parameters to the network device. The terminal device simultaneously reports the corresponding relationship between the channel quality information corresponding to multiple rank values and the power offset, which is conducive to improving the accuracy of network device scheduling and MCS selection.
  • Method 1 When the terminal device reports multiple K values, it can report the actual values or indexes of the multiple K values. For example, the terminal device needs to report three K values, which are 19, 18, and 17, and the terminal device can report 19, 18, and 17. Alternatively, the terminal device may report the indexes corresponding to the three K values, where the K value 19 corresponds to index 1, the K value 18 corresponds to index 2, and the K value 17 corresponds to index 3. Terminal equipment can report 1, 2, 3.
  • the terminal device may report a base K value and multiple offset values of the base K value.
  • the terminal device needs to report three K values, which are 19, 18, and 17 respectively.
  • the terminal device can report the actual value of the first K value (that is, the reference K value) and the offset values of the remaining two K values relative to the first K value.
  • the terminal device reports 19, 1, and 2.
  • the terminal may also report offset values of the indices of the multiple K values. For example, K value 19 corresponds to index 1, K value 18 corresponds to index 2, and K value 17 corresponds to index 3.
  • Terminal equipment can report 1, +1, +2.
  • the terminal device may report the actual value of the first K value, and the difference between the other K values and the previous K value. For example, the terminal device reports 19, 1, 1. Alternatively, report the difference between the index value of the first K value and the index value of the other two K values relative to the previous K value. For example, the terminal device needs to report three K values, which are 19, 18, and 17 respectively, where K value 19 corresponds to index 1, K value 18 corresponds to index 2, and K value 17 corresponds to index 3. Terminal equipment can report 1, +1, +1.
  • the terminal device After the terminal device determines the first parameter, it sends the first parameter to the network device.
  • the terminal device may carry the first parameter in the channel state information and report it to the network device. It should be understood that the terminal device may also report the first parameter separately, which is not limited in this application.
  • the method may further include step 203: the terminal device sends the first capability information to the network device, the The capability information instructs the terminal device to report the number of channel state information processing units (CSI processing units, CPUs) corresponding to the first parameter, and correspondingly, the network device receives the first capability information.
  • CSI processing units channel state information processing units
  • the number of CPUs required for calculating the first parameter may be greater than the number of CPUs required for CSI reporting when the first parameter is not calculated.
  • calculating and reporting may also be understood as measuring and reporting, or as processing.
  • the first capability information indicates the time domain expansion factor T corresponding to the first parameter.
  • the time domain expansion factor may be understood as a ratio of the number of time units used by the terminal device to calculate the first parameter relative to the number of time units used when the first parameter is not calculated. For example, when the terminal device does not calculate the first parameter, the number of CPUs required is 0 CPU, K1 and only occupies 1 time unit, then the terminal can still only use 0 CPU, K1 CPUs for reporting the first parameter, but due to the increased calculation amount, it takes 3 time units to complete the calculation, and the time domain expansion factor T is 3. That is to say, the content of the first capability information sent by the terminal device to the network device includes that the value of T is 3.
  • the foregoing time unit may be one or more symbols, or one or more time slots, which is not limited in this application.
  • the first capability information indicates a scaling factor Z of the number of CPUs corresponding to the first parameter.
  • the scaling factor may be understood as a ratio of the number of CPUs used by the terminal device to calculate the first parameter relative to the number of CPUs used when the first parameter is not calculated. For example, when the terminal device does not calculate the first parameter, the number of CPUs required is O CPU,K2 , then the number of CPUs required by the terminal to calculate the first parameter is Z*O CPU,K2 .
  • the first capability information can be understood as information that can indicate the number of CPUs required by the terminal device to calculate the first parameter, and the indication can include a displayed indication or an implicit indication, such as the above-mentioned T or Z, and the first capability information can also be understood as the number of CPUs required by the terminal device to calculate the first parameter, such as the value of Z*O CPU, K2 .
  • the terminal device When the terminal device reports the first capability information independently, it may report before the network device sends the first information, or after the terminal device reports the measurement report, which is not limited in this application.
  • the terminal device reports the first capability information to the network device, and the network device can schedule measurement resources based on the first capability information, thereby further improving measurement efficiency.
  • the network device instructs the terminal device to report the corresponding relationship between the power offset and the channel quality information, and the transmission power of the downlink data is determined according to the corresponding relationship, which is beneficial to the energy saving of the network equipment, and at the same time, accurate link self-adaptation adjustment is performed to avoid the mismatch between the fixed power offset and the transmission power of the downlink data, and the accuracy of the transmission power of the downlink data can be improved, thereby improving the communication quality.
  • the terminal equipment reports the corresponding relationship between the power offset and the channel quality information, and the network equipment determines the transmission power of the downlink data according to the corresponding relationship.
  • the network device can also configure the transmission efficiency for the terminal device.
  • the terminal device determines the power offset according to the transmission efficiency, and the network device then determines the transmission power of the downlink data according to the power offset, which can improve the accuracy of the power offset and further improve the communication quality.
  • the method may include the following steps:
  • Step 401 The network device sends second information to the terminal device, and the terminal device receives the second information correspondingly.
  • the second information is used to indicate M transmission efficiency values, where M is a positive integer.
  • the second information may also be used to configure channel state information measurement or channel state information reporting.
  • the second information may be carried in the channel state information report configuration (CSI-ReportConfig), or the second information may carry In the channel state information resource configuration (CSI-ResourceConfig).
  • CSI-ReportConfig channel state information report configuration
  • CSI-ResourceConfig channel state information resource configuration
  • M transmission efficiency values can be carried in CSI-ReportConfig or CSI-ResourceConfig
  • taking M transmission efficiency values can be carried in CSI-ReportConfig as an example
  • a possible reporting method is as follows:
  • the above second information may also be used to indicate the M transmission efficiency values, which are sent separately from the CSI-ReportConfig or the CSI-ResourceConfig. This application does not limit this.
  • the foregoing second information may include an MCS index and/or a CQI index.
  • the terminal device can look up the corresponding transmission efficiency from the predefined table according to the MCS index or the CQI index, or look up the modulation order and code rate from the predefined table, and further calculate the transmission efficiency value according to the modulation order and code rate.
  • the network device can indicate the transmission efficiency value to the terminal device.
  • M is 3, and the three transmission efficiency values are 0.8, 0.4, and 0.2 respectively.
  • the transmission efficiency value can also be understood as the absolute value of the transmission efficiency.
  • the network device may indicate the normalized transmission efficiency value to the terminal device.
  • the normalized value is generally between 0 and 1.
  • M is 3, the normalized three transmission efficiency values are 1, 0.5, 0.25 respectively, and the corresponding transmission efficiency values are 0.8, 0.4, 0.2 respectively.
  • a possible normalization method take 0.8 as the reference value of transmission efficiency, and the corresponding normalized transmission efficiency value is 1; 0.4 is one-half of 0.8, then the normalized transmission efficiency value corresponding to 0.4 is 0.5; 0.2 is one quarter of 0.8, then the normalized transmission efficiency value corresponding to 0.2 is 0.25.
  • the reference value may be any one of the transmission efficiency values. It should also be understood that the above numbers are by way of example only and are not limiting.
  • the above M transmission efficiency values may correspond to S rank values, where S is a positive integer.
  • M is smaller than S, and transmission efficiency values corresponding to different rank values may be the same or different.
  • S is 3, and the three rank values are 1, 2, and 3 respectively; M is 2, and the two transmission efficiencies are respectively 0.6 and 0.7. It may be that rank values of 1 and 2 both correspond to a transmission efficiency of 0.6, and a rank value of 3 corresponds to a transmission efficiency of 0.7.
  • M and S are equal, and M transmission efficiency values correspond to S rank values one-to-one.
  • S is 3, and the three rank values are 1, 2, and 3 respectively; M is 2, and the two transmission efficiencies are 0.6, 0.7, and 0.8, respectively.
  • a rank value of 1 corresponds to a transmission efficiency of 0.6
  • a rank value of 2 corresponds to a transmission efficiency of 0.6
  • a rank value of 3 corresponds to a transmission efficiency of 0.7.
  • M is greater than S, and one rank value may correspond to multiple transmission efficiency values.
  • S is 3, and the three rank values are 1, 2, and 3 respectively; M is 6, and the six transmission efficiencies are respectively 0.6, 0.7, 0.6, 0.7, 0.3, and 0.8.
  • a rank value of 1 corresponds to transmission efficiencies of 0.6 and 0.7
  • a rank value of 2 corresponds to transmission efficiencies of 0.6 and 0.7
  • a rank value of 3 corresponds to transmission efficiencies of 0.3 and 0.8.
  • Step 402 The terminal device sends N power offsets according to the second information, and correspondingly, the network device receives the N power offsets, where N is a positive integer.
  • the power offset may be a difference between the power of the CSI measurement signal and the power of sending downlink data using the corresponding transmission efficiency.
  • M is equal to N, that is, M transmission efficiency values correspond to N power offsets one-to-one.
  • the terminal device may determine N power offsets according to the M transmission efficiency values.
  • the terminal device calculates the CQI to be reported according to the received CSI measurement resources (CSI measurement reference signal and power offset ⁇ A ).
  • the CQI generally refers to the reported wideband CQI and narrowband CQI.
  • One way of calculating the CQI is: finding the corresponding CQI in the CQI quantization table according to the SINR.
  • One method of calculating the transmission efficiency is: according to the index of the MCS table corresponding to the CQI, and then according to the number of modulation symbol bits and the code rate of the MCS, the current transmission efficiency value SE real is calculated.
  • the terminal device may default SE real as the baseline (reference value), which means that the normalized value SE 1 is 1.
  • the terminal device calculates ⁇ m according to the CSI measurement reference signal and the next transmission efficiency value SE m , so that the transmission efficiency value calculated according to the CQI m obtained by ⁇ m is equal to SE m .
  • SE m is a value between 0 and 1.
  • the calculation process can refer to the algorithm of SE 1 . Among them, the calculation of ⁇ m may need to be determined by traversing values within a certain range, that is, try different ⁇ m values through formula (2), and determine which ⁇ m corresponds to the transmission efficiency value SE m .
  • the terminal device may calculate a corresponding transmission efficiency value for each rank value.
  • the terminal device After completing the calculation of the N power offsets, the terminal device sends the N power offsets.
  • the terminal device may report the power offset value in various ways, several examples are given below.
  • the terminal device can send N power offsets.
  • N is 4, and the four power offsets are 8, 4, 2, 1 respectively, and the terminal device sends 8, 4, 2, 1 to the network device.
  • the terminal device can also send the power offset offset value.
  • the power offset offset value may be understood as a difference between power offsets corresponding to different transmission efficiency values.
  • the terminal device sends the power offset corresponding to the first transmission efficiency value (ie, the first power offset), and reports the difference between the power offset corresponding to the remaining transmission efficiency values and the first power offset (ie, the power offset offset value).
  • N is 4.
  • the terminal device can report the power offset corresponding to the first transmission efficiency value as 8, report the offset value of the power offset corresponding to the second transmission efficiency value relative to the power offset corresponding to the first transmission efficiency value, report the offset value of the power offset corresponding to the third transmission efficiency value relative to the power offset corresponding to the first transmission efficiency value -6, and report the power offset corresponding to the fourth transmission efficiency value relative to the power corresponding to the first transmission efficiency value.
  • Offset has an offset value of -7.
  • the above-mentioned first transmission efficiency value may be any one of the M transmission efficiency values.
  • the terminal device sends the power offset corresponding to the first transmission efficiency value, and sends the difference between the power offsets corresponding to the remaining transmission efficiency values and the power offset corresponding to the last transmission efficiency value (ie, the power offset offset value).
  • N is 4.
  • the power offset corresponding to the first transmission efficiency value reported by the terminal device is 8
  • the offset value of the power offset corresponding to the second transmission efficiency value relative to the power offset corresponding to the first transmission efficiency value is -4
  • the offset value of the power offset corresponding to the third transmission efficiency value relative to the power offset corresponding to the second transmission efficiency value is -2
  • the power offset corresponding to the fourth transmission efficiency value is reported relative to the power offset corresponding to the third transmission efficiency value.
  • the terminal device may also report the absolute value of the power offset offset value, and indicate to the network device the magnitude relationship between the power offset corresponding to the power offset value and the reference power offset. For example, when the reference power offset is 8 and the power offset to be reported is 4, then the power offset value is -4, and the terminal device may report the absolute value of the power offset value to the network device 4, indicating that the network device The power offset that needs to be reported is smaller than the reference power offset. When the power offset value is positive, the terminal device may report the power offset value to the network device, or the terminal device may report the power offset value to the network device, and at the same time instruct the network device that the power offset to be reported is greater than the reference power offset.
  • the order in which the terminal equipment reports the power offset or the power offset offset value is consistent with the order in which the spectrum efficiency values sent by the network equipment.
  • the spectrum efficiency values sent by the network device are 0.7, 0.5, 0.4, 0.1 in sequence
  • the power offsets reported by the terminal device are 8, 4, 2, 1 in sequence, where the power offset 8 corresponds to the transmission efficiency value 0.7, the power offset 4 corresponds to the transmission efficiency value 0.5, the power offset 2 corresponds to the transmission efficiency value 0.4, and the power offset 1 corresponds to the transmission efficiency value 0.1.
  • the order in which the terminal device reports the power offset or the power offset offset value may be consistent with the order of the transmission efficiency values sent by the network device by default, or may be pre-configured by the network device for the terminal device.
  • the terminal device may carry the above N power offsets or power offset offset values in the channel state information CSI.
  • the terminal device may also only report the power offset or power offset offset value corresponding to a part of the rank value, and in this case, the corresponding rank value needs to be carried in the reported content.
  • the network device predefined rank values are ⁇ 1,2,3,4 ⁇ , but the terminal device only reports the corresponding power offset or power offset offset value when the rank value is ⁇ 1,2 ⁇ . Take the power offsets corresponding to the rank values ⁇ 1, 2, 3, 4 ⁇ respectively as 8, 4, 2, and 1 as an example. When the terminal device only reports 8 and 4, it needs to report the rank values 1 and 2 at the same time.
  • the order of the power offsets 8 and 4 can be consistent with the order of the rank values 1 and 2.
  • the network device receives 8 and 4, it defaults that 8 is the power offset corresponding to the rank value 1, and 4 is the power offset corresponding to the rank value 2.
  • the method may further include step 403: the terminal device sends the second capability information to the network device, and the network device receives the second capability information correspondingly.
  • the second capability information is used to indicate the number of channel state information processing units corresponding to the N power offsets reported.
  • the number of channel state information processing units sent by the terminal device to the network device is 5, which means that 5 channel state information processing units are required only for calculating N power offsets.
  • the second capability indication information is used to indicate the time domain extension factors corresponding to the N power offsets.
  • the second capability indication information is used to indicate a scaling factor of the number of CPUs corresponding to the N power offsets.
  • step 203 Specifically, reference may be made to relevant descriptions of the first capability information in step 203, which will not be repeated here.
  • the network device can determine the power for sending downlink data according to the scheduled CQI/PMI and bandwidth when sending downlink data. For example, according to the CQI determined by scheduling, the network device obtains the power offset from the CSI report through interpolation and other methods, so as to obtain the power spectral density of the downlink data at this time, and then multiplies the bandwidth (the number of frequency domain resources) by the power spectral density to obtain the downlink data transmission power.
  • the network device may determine the power spectral density according to the power and bandwidth of the downlink data sent, so as to determine the precise CQI/PMI.
  • the network equipment indicates the transmission efficiency, and the terminal equipment calculates the corresponding power offset according to the transmission efficiency, and improves the transmission efficiency.
  • the matching degree between the power offset reported by the terminal equipment and the transmission efficiency is improved, and the network equipment can determine a more accurate power for sending downlink data, which improves the communication quality.
  • the network device and the terminal device include hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software with reference to the units and method steps of the examples described in the embodiments disclosed in the present application. Whether a certain function is executed by hardware or computer software drives the hardware depends on the specific application scenario and design constraints of the technical solution.
  • FIG. 5 and FIG. 6 are schematic structural diagrams of possible communication devices provided by the embodiments of the present application. These communication devices can be used to implement the functions of the terminal or the base station in the above method embodiments, and therefore can also realize the beneficial effects of the above method embodiments.
  • the communication device may be one of the terminals 120a-120j as shown in FIG. 1, or the base station 110a or 110b as shown in FIG. 1, or a module (such as a chip) applied to the terminal or the base station.
  • a communication device 500 includes a processing unit 510 and a transceiver unit 520 .
  • the communication apparatus 500 is configured to realize the functions of the terminal device or the network device in the method embodiment shown in FIG. 2 or FIG. 4 above.
  • the transceiver unit 520 is used to receive the first information; the processing unit 510 is used to determine the first parameter; the transceiver unit 520 is also used to send the first parameter; the transceiver unit 520 is also used to send the first capability information.
  • the transceiver unit 520 is used to send the first information; the transceiver unit 520 is also used to receive the first parameter; the processing unit 510 is used to determine the downlink data transmission power according to the first parameter; the transceiver unit 520 is also used to receive the first capability information.
  • the transceiver unit 520 is used to receive the second information; the processing unit 510 is used to determine N power offsets; the transceiver unit 520 is also used to send the power offset; the transceiver unit 520 is also used to send the second capability information.
  • the transceiver unit 520 is used to send the second information; the transceiver unit 520 is used to receive N power offsets; the processing unit 510 is used to determine the downlink data transmission power according to the power offset; the transceiver unit 520 is also used to receive the second capability information.
  • processing unit 510 and the transceiver unit 520 can be directly obtained by referring to the related descriptions in the method embodiment shown in FIG. 4 , and details are not repeated here.
  • the communication device 600 includes a processor 610 and an interface circuit 620 .
  • the processor 610 and the interface circuit 620 are coupled to each other.
  • the interface circuit 620 may be a transceiver or an input-output interface.
  • the communication device 600 may further include a memory 630 for storing instructions executed by the processor 610 or storing input data required by the processor 610 to execute the instructions or storing data generated after the processor 610 executes the instructions.
  • the processor 610 is used to implement the functions of the processing unit 510
  • the interface circuit 620 is used to implement the functions of the transceiver unit 520 .
  • the terminal chip When the above communication device is a chip applied to a terminal, the terminal chip implements the functions of the terminal in the above method embodiment.
  • the terminal chip receives information from other modules in the terminal (such as a radio frequency module or antenna), and the information is sent by the base station to the terminal; or, the terminal chip sends information to other modules in the terminal (such as a radio frequency module or antenna), and the information is sent by the terminal to the base station.
  • the base station module realizes the functions of the base station in the above-mentioned method embodiment able.
  • the base station module receives information from other modules in the base station (such as a radio frequency module or antenna), and the information is sent by the terminal to the base station; or, the base station module sends information to other modules in the base station (such as a radio frequency module or antenna), and the information is sent by the base station to the terminal.
  • the base station module here may be a baseband chip of the base station, or may be a DU or other modules, where the DU may be a DU under an open radio access network (open radio access network, O-RAN) architecture.
  • open radio access network open radio access network
  • the processor in the embodiments of the present application may be a central processing unit (Central Processing Unit, CPU), and may also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), field programmable gate arrays (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented in hardware, and may also be implemented in software instructions executable by a processor.
  • the software instructions can be composed of corresponding software modules, and the software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory, registers, hard disk, mobile hard disk, CD-ROM or any other storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • a storage medium may also be an integral part of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC can be located in the base station or the terminal.
  • the processor and the storage medium may also exist in the base station or the terminal as discrete components.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs or instructions. When the computer program or instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer program or instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instructions may be transmitted from one website, computer, server or data center to another website, computer, server or data center by wired or wireless means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrating one or more available media.
  • the available medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; it may also be an optical medium, such as a digital video disk; or it may be a semiconductor medium, such as a solid state disk.
  • the computer readable storage medium may be a volatile or a nonvolatile storage medium, or may include both volatile and nonvolatile types of storage media.
  • “at least one” refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A and B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or”relationship; in the formulas of this application, the character “/” indicates that the contextual objects are a “division” relationship.
  • “Bag Including at least one of A, B, and C” may mean: including A; including B; including C; including A and B; including A and C; including B and C; including A, B, and C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法、装置及系统。该方法包括:网络设备指示终端设备上报功率偏置与信道质量信息的对应关系,终端设备上报该对应关系,网络设备根据该对应关系灵活调整数据的发送功率。采用本申请实施例,能够使网络设备灵活调整数据的发送功率,有利于网络设备的节能,同时进行准确的链路自适应调整,避免了固定的功率偏置与下行数据发送功率之间的不匹配的问题,从而提高了通信质量。

Description

一种通信方法、装置及系统
本申请要求于2022年1月22日提交中国国家知识产权局、申请号为202210075543.4、申请名称为“一种通信方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域。尤其涉及一种通信方法、装置及系统。
背景技术
在通信过程中,网络设备向终端设备发送测量信号,终端根据测量信号获得信道状态信息(channel state information,CSI),并将该CSI上报给网络设备,网络设备和终端设备根据该CSI进行通信。但是测量信号的发送功率与网络设备发送下行数据的功率可能不同。网络设备无法基于终端设备上报的CSI进行准确的链路自适应,会对通信性能造成影响。因此,如何提升网络设备获得的信道状态信息的准确性,以提升数据传输可靠性是亟待解决的问题。
发明内容
本申请实施例提出一种通信方法、装置及系统,该方法能够提升数据传输可靠性。
第一方面,本申请实施例提供一种通信方法,该方法可以由终端设备执行,或者,也可以由用于终端设备的芯片或电路执行,本申请对此不作限定。为了便于描述,下面以由终端设备执行为例进行说明。
终端设备接收第一信息,该第一信息用于指示终端设备发送第一参数,该第一参数用于表征功率偏置与信道质量信息的对应关系,终端设备根据该第一信息,上报该第一参数。
该方法中网络设备指示终端设备上报功率偏置与信道质量信息的对应关系,根据该对应关系确定下行数据的发送功率,能够使网络设备灵活调整数据的发送功率,有利于网络设备的节能,避免了固定的功率偏置与下行数据发送功率之间的不匹配,能够提高下行数据的发送功率的准确度,从而提高了通信质量。
在一种可能的实现方式中,第一参数包括第一子参数和第二子参数,该第一子参数用于指示第一秩值对应的功率偏置与信道质量信息的对应关系,该第二子参数用于指示第二秩值对应的功率偏置与信道质量信息的对应关系。
该方式中,通过上报不同秩值下功率偏置与该信道质量信息的对应关系,网络设备可以将不同秩值下的对应关系作为参考,确定下行数据的发送功率,提高了网络设备确定下行数据发送功率的灵活性,能够进一步提高下行数据的发送功率的准确度。
在一种可能的实现方式中,该功率偏置与该信道质量信息的对应关系为线性关系。
在一种可能的实现方式中,该第一参数为第一差值与第二差值的比值,该第一差值为第一功率偏置与第二功率偏置的差值,该第二差值为第一信道质量信息的值与第二信道质 量信息的值的差值,该第一功率偏置与该第一信道质量信息的值对应,该第二功率偏置与该第二信道质量信息的值对应。
该方式中,通过上报比值指示功率偏置与信道质量信息的线性关系,相比较上报多个信道状态信息而言,能够节省信令开销。
在一种可能的实现方式中,该信道质量信息包括以下至少一项:信号干扰噪声比、信道质量指示CQI、传输效率或者调制编码方案MCS。
该方式中可以上报多种对应关系,提高了上报功率偏置和信道质量信息对应关系的灵活性。
在一种可能的实现方式中,该第一信息还用于配置信道状态信息测量或者信道状态信息上报。
换句话说,第一信息可以承载于信道状态信息测量配置信息或者信道状态信息上报配置信息。
在一种可能的实现方式中,该第一参数承载于信道状态信息中。
上述方式中通过将多种信息承载在同一信令中上报,能够节省开销。
在一种可能的实现方式中,发送第一能力信息,该第一能力信息用于指示上报第一参数对应的信道状态信息处理单元的数目。或者,发送该第一参数对应的信道状态信息处理单元的数目。第一参数对应的信道状态信息处理单元的数目也可以理解为终端设备在该第一参数下对信道状态信息的处理能力。
终端设备向网络设备上报信道状态信息处理单元的数目或者第一能力信息,网络设备可以根据该数目或能力合理调度测量资源。
第二方面,本申请实施例提供一种通信方法,该方法可以由网络设备执行,或者,也可以由用于网络设备的芯片或电路执行,本申请对此不作限定。为了便于描述,下面以由网络设备执行为例进行说明。该方法可以包括:网络设备发送第一信息,该第一信息用于指示终端设备发送第一参数,该第一参数用于表征功率偏置与信道质量信息的对应关系,网络设备接收该第一参数。
在一种可能的实现方式中,该第一参数包括至少一个子参数,该至少一个子参数中的任一子参数用于表征一个秩值的功率偏置与信道质量信息的对应关系。
在一种可能的实现方式中,该功率偏置与信道质量信息的对应关系为线性关系。
在一种可能的实现方式中,第一参数包括第一子参数和第二子参数,该第一子参数用于指示第一秩值对应的功率偏置与信道质量信息的对应关系,该第二子参数用于指示第二秩值对应的功率偏置与信道质量信息的对应关系。
在一种可能的实现方式中,该信道质量信息包括以下至少一项:信号干扰噪声比、CQI、传输效率或者MCS。
在一种可能的实现方式中,该第一信息还用于配置信道状态信息测量或者信道状态信息上报。
在一种可能的实现方式中,接收信道状态信息,该第一参数承载于该信道状态信息中。
在一种可能的实现方式中,接收第一能力信息,该第一能力信息用于指示上报第一参数对应的信道状态信息处理单元的数目,根据该第一能力信息确定测量资源,该测量资源用于终端设备测量信道状态。
应理解,第二方面是与第一方面对应的网络设备侧的方法,第一方面的相关解释、补充和有益效果的描述对第二方面同样适用,此处不再赘述。
第三方面,本申请实施例提供一种通信方法,该方法可以由终端设备执行,或者,也可以由用于终端设备的芯片或电路执行,本申请对此不作限定。为了便于描述,下面以由终端设备执行为例进行说明。该方法可以包括:终端设备接收第二信息,该第二信息用于指示M个传输效率值,该M为正整数,终端设备根据该第二信息,发送N个功率偏置,该N个功率偏置承载于信道状态信息中,该N为小于或者等于M的正整数。
该方法通过网络设备指示传输效率,终端设备根据传输效率计算对应的功率偏置,提升了终端设备上报功率偏置与传输效率的匹配度,网络设备得以确定更为合理的发送下行数据的功率,提高了通信质量。
在一种可能的实现方式中,该第二信息还用于配置信道状态信息测量或者信道状态信息上报。
在一种可能的实现方式中,该M个传输效率值对应S个秩值,该S为正整数。
在一种可能的实现方式中,S等于M,M个传输效率值与S个秩值一一对应。
在一种可能的实现方式中,该M等于N,该M个传输效率值和该N个功率偏置一一对应。
在一种可能的实现方式中,该功率偏置的数量大于1,发送该功M个功率偏置包括:发送第一功率偏置和第一功率偏置偏移值,该第一功率偏置偏移值为第二功率偏置与该第一功率偏置的差值,该第一功率偏置偏移值为至少一个功率偏置偏移值中的一个,该至少一个功率偏置偏移值与N个功率偏置中除该第一功率偏置以外的功率偏置一一对应。
也就是,N大于1,该N个功率偏置包括第一参考功率偏置和(N-1)个功率偏置偏移值,该(N-1)个功率偏置偏移值分别为(N-1)个功率偏置相对于第一参考功率偏置的差值,第一参考功率偏置可以是N个功率偏置中的一个。
该方式通过上报一个基准值和多个差值,相对于上报多个功率偏置而言,能够进一步节省开销。
在一种可能的实现方式中,根据该M个传输效率值确定该N个功率偏置。
在一种可能的实现方式中,发送第二能力信息,该第二能力信息用于指示上报所述N个功率偏置对应的信道状态信息处理单元的数目。或者,发送该N个功率偏置对应的信道状态信息处理单元的数目。N个功率偏置对应的信道状态信息处理单元的数目也可以理解为终端设备确定N个功率偏置对应的信道状态信息的处理能力。
终端设备向网络设备上报信道状态信息处理单元的数目或者第二能力信息,网络设备可以根据该数目或能力合理调度测量资源,进一步提高通信效率。
第四方面,本申请实施例提供一种通信方法,该方法可以由网络设备执行,或者,也可以由用于网络设备的芯片或电路执行,本申请对此不作限定。为了便于描述,下面以由网络设备执行为例进行说明。该方法可以包括:网络设备发送第二信息,该第二信息用于指示M个传输效率值,该M为正整数,网络设备接收N个功率偏置,该N个功率偏置承载于信道状态信息中,该N为小于或者等于M的正整数,该N个功率偏置是根据该第二信息确定的。
在一种可能的实现方式中,该第二信息还用于配置信道状态信息测量或者信道状态信 息上报。
在一种可能的实现方式中,该M个传输效率值对应S个秩值,该S为正整数。
在一种可能的实现方式中,S等于M,M个传输效率值与S个秩值一一对应。
在一种可能的实现方式中,该M等于N,该M个传输效率值和该N个功率偏置一一对应。
在一种可能的实现方式中,N大于1,接收该M个功率偏置包括:接收第一功率偏置和第一功率偏置偏移值,该第一功率偏置偏移值为第二功率偏置与该第一功率偏置的差值,该第一功率偏置偏移值为该至少一个功率偏置偏移值中的一个,该至少一个功率偏置偏移值与N个功率偏置中除该第一功率偏置以外的功率偏置一一对应。
在一种可能的实现方式中,该N个功率偏置是根据该M个传输效率值确定的。
在一种可能的实现方式中,接收第二能力信息,该第二能力信息用于指示上报所述N个功率偏置对应的信道状态信息处理单元的数目。
应理解,第四方面是与第三方面对应的网络设备侧的方法,第三方面的相关解释、补充和有益效果的描述对第四方面同样适用,此处不再赘述。
第五方面,本申请实施例提供一种通信装置,该装置包括处理模块和收发模块,该收发模块可以用于接收第一信息,该第一信息用于指示终端设备发送第一参数,该第一参数用于表征功率偏置与信道质量信息的对应关系,该收发模块还用于根据该第一信息,上报该第一参数。
第六方面,本申请实施例提供一种通信装置,该通信装置包括收发模块和处理模块,该收发模块用于发送第一信息,该第一信息用于指示终端设备发送第一参数,该第一参数用于表征功率偏置与信道质量信息的对应关系,该收发模块还用于接收该第一参数。
第七方面,本申请实施例提供一种通信装置,该通信装置包括收发模块和处理模块,该收发模块用于接收第二信息,该第二信息用于指示M个传输效率值,该M为正整数,该收发模块还用于根据该第二信息,发送N个功率偏置,该N个功率偏置承载于信道状态信息中,该N为正整数。
第八方面,本申请实施例提供一种通信装置,该通信装置包括收发模块和处理模块,该收发模块用于发送第二信息,该第二信息用于指示M个传输效率值,该M为正整数,该收发模块还用于接收N个功率偏置,该N个功率偏置承载于信道状态信息中,该N为正整数,该N个功率偏置是根据该第二信息确定的。
应理解,第五方面、第六方面、第七方面、第八方面是与第一方面、第二方面、第三方面、第四方面分别对应的装置侧的实现方式,第一方面、第二方面、第三方面、第四方面的相关解释、补充、可能的实现方式和有益效果的描述分别对第五方面、第六方面、第七方面、第八方面同样适用,此处不再赘述。
第九方面,本申请实施例提供了一种通信装置,包括接口电路和处理器,该接口电路用于实现第五方面或第七方面中收发模块的功能,该处理器用于实现第五方面或第七方面中处理模块的功能。
第十方面,本申请实施例提供了一种通信装置,包括接口电路和处理器,该接口电路用于实现第六方面或第八方面中收发模块的功能,该处理器用于实现第六方面或第八方面中处理模块的功能。
第十一方面,本申请实施例提供了一种计算机可读介质,该计算机可读介质存储用于终端设备执行的程序代码,该程序代码包括用于执行第一方面或第三方面,或,第一方面或第三方面中任一可能的方式,或,第一方面或第三方面中所有可能的方式的方法的指令。
第十二方面,本申请实施例提供了一种计算机可读介质,该计算机可读介质存储用于网络设备执行的程序代码,该程序代码包括用于执行第二方面或第四方面,或,第二方面或第四方面中任一可能的方式,或,第二方面或第四方面中所有可能的方式的方法的指令。
第十三方面,提供了一种存储有计算机可读指令的计算机程序产品,当该计算机可读指令在计算机上运行时,使得计算机执行上述第一方面或第三方面,或,第一方面或第三方面中任一可能的方式,或,第一方面或第三方面中所有可能的方式的方法。
第十四方面,提供了一种存储有计算机可读令的计算机程序产品,当该计算机可读指令在计算机上运行时,使得计算机执行上述第二方面或第四方面,或,第二方面或第四方面中任一可能的方式,或,第二方面或第四方面中所有可能的方式的方法。
第十五方面,提供了一种通信系统,该通信系统包括具有实现上述第一方面或第三方面,或,第一方面或第三方面中任一可能的方式,或,第一方面或第三方面中所有可能的方式的方法及各种可能设计的功能的装置和第二方面或第四方面,或,第二方面或第四方面中任一可能的方式,或,第二方面或第四方面中所有可能的方式的方法及各种可能设计的功能的装置。
第十六方面,提供了一种处理器,用于与存储器耦合,用于执行上述第一方面或第三方面,或,第一方面或第三方面中任一可能的方式,或,第一方面或第三方面中所有可能的方式的方法。
第十七方面,提供了一种处理器,用于与存储器耦合,用于执行上述第二方面或第四方面,或,第二方面或第四方面中任一可能的方式,或,第二方面或第四方面中所有可能的方式的方法。
第十八方面,提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于执行该存储器中存储的计算机程序或指令,使得芯片系统实现前述第一方面至第四方面中任一方面、以及任一方面的任意可能的实现方式中的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十九方面,提供了一种存储有计算机可读令的计算机程序产品,当所述计算机可读指令在计算机上运行时,使得计算机执行上述第一方面或第三方面,或,第一方面或第三方面中任一可能的方式,或,第一方面或第三方面中所有可能的实现方式的方法。
第二十方面,提供了一种存储有计算机可读令的计算机程序产品,当所述计算机可读指令在计算机上运行时,使得计算机执行上述第二方面或第四方面,或,第二方面或第四方面中任一可能的方式,或,第二方面或第四方面中所有可能的实现方式的方法。
第二十一方面,提供一种通信系统,包括至少一个如第五方面所述的通信装置和/或至少一个如第六方面所述的通信装置,该通信系统用于实现上述第一方面或第二方面,或,第一方面或第二方面中任一可能的方式,或,第一方面或第二方面中所有可能的实现方式的方法。
第二十二方面,提供一种通信系统,包括至少一个如第七方面所述的通信装置和至少一个如第八方面所述的通信装置,该通信系统用于实现上述第三方面或第四方面,或,第 三方面或第四方面中任一可能的方式,或,第三方面或第四方面中所有可能的实现方式的方法。
附图说明
图1示出了一种本申请实施例适用的系统架构。
图2示出了本申请实施例提供的一种通信方法的流程示意图。
图3示出了本申请实施例提供的一种功率偏置与信道质量信息的对应关系示意图。
图4示出了本申请实施例提供的另一种通信方法的流程示意图。
图5示出了本申请实施例提供的一种通信装置的示意性框图。
图6示出了本申请实施例提供的又一种通信装置的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
图1是本申请的实施例应用的通信系统1000的架构示意图。如图1所示,该通信系统包括无线接入网100和核心网200,可选的,通信系统1000还可以包括互联网300。其中,无线接入网100可以包括至少一个无线接入网设备(如图1中的110a和110b),还可以包括至少一个终端(如图1中的120a-120j)。终端通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端和终端之间以及无线接入网设备和无线接入网设备之间可以通过有线或无线的方式相互连接。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。
无线接入网设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、第五代(5th generation,5G)移动通信系统中的下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信系统中的下一代基站、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。这里的CU完成基站的无线资源控制协议和分组数据汇聚层协议(packet data convergence protocol,PDCP)的功能,还可以完成业务数据适配协议(service data adaptation protocol,SDAP)的功能;DU完成基站的无线链路控制层和介质访问控制(medium access control,MAC)层的功能,还可以完成部分物理层或全部物理层的功能,有关上述各个协议层的具体描述,可以参考第三代合作伙伴计划(3rd generation partnership project,3GPP)的相关技术规范。无线接入网设备可以是宏基站(如图1中的110a),也可以是微基站或室内站(如图1中的110b),还可以是中继节点或施主节点等。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。为了便于描述,下文以基站作为无线接入网设备的例子进行描述。
终端也可以称为终端设备、用户设备(user equipment,UE)、移动台、移动终端等。终端可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle  to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请的实施例对终端所采用的具体技术和具体设备形态不做限定。
基站和终端可以是固定位置的,也可以是可移动的。基站和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在飞机、气球和人造卫星上。本申请的实施例对基站和终端的应用场景不做限定。
基站和终端的角色可以是相对的,例如,图1中的直升机或无人机120i可以被配置成移动基站,对于那些通过120i接入到无线接入网100的终端120j来说,终端120i是基站;但对于基站110a来说,120i是终端,即110a与120i之间是通过无线空口协议进行通信的。当然,110a与120i之间也可以是通过基站与基站之间的接口协议进行通信的,此时,相对于110a来说,120i也是基站。因此,基站和终端都可以统一称为通信装置,图1中的110a和110b可以称为具有基站功能的通信装置,图1中的120a-120j可以称为具有终端功能的通信装置。
基站和终端之间、基站和基站之间、终端和终端之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信;可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线通信所使用的频谱资源不做限定。
在本申请的实施例中,基站的功能也可以由基站中的模块(如芯片)来执行,也可以由包含有基站功能的控制子系统来执行。这里的包含有基站功能的控制子系统可以是智能电网、工业控制、智能交通、智慧城市等上述应用场景中的控制中心。终端的功能也可以由终端中的模块(如芯片或调制解调器)来执行,也可以由包含有终端功能的装置来执行。
本申请实施例提供的技术方案可以应用于通信设备间的无线通信。通信设备间的无线通信可以包括:网络设备和终端间的无线通信、网络设备和网络设备间的无线通信以及终端设备和终端设备间的无线通信。其中,在本申请实施例中,术语“无线通信”还可以简称为“通信”,术语“通信”还可以描述为“数据传输”、“信息传输”或“传输”。
可以理解的是,本申请的实施例中,物理上行共享信道(physical downlink share channel,PDSCH)、物理下行控制信道(physical downlink control channel,PDCCH)和物理上行共享信道(physical uplink share channel,PUSCH)只是分别作为下行数据信道、下行控制信道和上行数据信道一种举例,在不同的系统和不同的场景中,数据信道和控制信道可能有不同的名称,本申请的实施例对此并不做限定。
为了便于理解本申请实施例的方案,对相关概念做一解释。
1.信道状态信息报告配置(CSI-ReportConfig):主要用于配置信道状态上报有关的参数,例如上报的类型,上报的测量的指标等。其中,上报配置标识(reportConfigId),为该CSI-ReportConfig的标识(identity,Id)号,用于标记该CSI-ReportConfig;信道测量资源(resourcesForChannelMeasurement),用于配置信道测量的信道状态信息-参考信号 (CSI-Reference Signal,CSI-RS)资源,通过CSI-ResourceConfigId关联到资源配置;干扰测量资源(CSI-IM-RessourcesForInterference),配置用于干扰测量的CSI-RS的资源,通过CSI-ResourceConfigId关联到资源配置。
可选的,与CSI上报的参数可以包括CSI上报类型(reportConfigType)、CSI上报量(reportQuantity)等,CSI上报类型可以分为周期性、半持久性和非周期性上报;网络设备可以通过不同的上报量配置,让终端设备上报不同的CSI,包括CSI-RS资源指示(CSI-RS resource indicator,CRI),秩指示(rank indicator,RI),预编码矩阵指示(Pre-coding Matrix Indicator,PMI),信道质量指示(Channel Quantity Indicator,CQI)等。
2.信道状态信息资源配置(CSI-ResourceConfig):用于配置CSI测量的资源相关的信息。可以包括上报资源标识(CSI-ResourceConfigId)和/或资源结合队列(CSI-RS-ResourceSetList)等。其中,CSI-ResourceConfigId用于标记该csi-ResourceConfig;CSI-RS-ResourceSetList可以包括用于信道测量的资源集合和用于干扰测量的资源集合。
3.信道状态信息(channel state information,CSI):信号通过无线信道由发射端到接收端的过程中,由于可能经历散射、反射以及能量随距离的衰减,从而产生衰落。CSI用于表征无线信道的特征,可以包括CQI、PMI、CRI、同步信号和物理广播信道块(synchronization signal and physical broadcast channel block,SSB)资源指示(SSB resource indicator,SSBRI)、层指示(layer indicator,LI)、RI、L1-参考信号接收功率(reference signal received power,RSRP)和L1-信号与干扰噪声比(signal to interference plus noise ratio,SINR)中的至少一种。CSI可由终端设备通过物理上行控制信道(physical uplink control channel,PUCCH)或物理上行共享信道(physical uplink share channel,PUSCH)发送给网络设备。
4.CSI报告(CSI report):CSI报告由终端发送给基站,用于网络设备获知其向终端设备发送下行信息时的信道状态。1个CSI report用于指示终端设备反馈1份CSI,不同CSI可以对应不同的频带,不同的传输假设或者不同的上报模式。
一般来说,一个CSI report可以关联1个用于信道测量的参考信号资源,还可以关联1个或多个用于干扰测量的参考信号资源。一个CSI report对应一个传输资源,即终端设备用于发送该CSI的时频资源。
5.参考信号:是由发射端提供给接收端用于信道估计或信道探测的一种已知信号。本申请的实施例中,参考信号可用于信道测量、干扰测量等,如测量参考信号接收质量(reference signal receiving quality,RSRQ)、SINR、CQI和/或PMI等参数。
6.参考信号资源:包括参考信号的时频资源、天线端口、功率资源以及扰码等资源中的至少一种。网络设备可以基于参考信号资源向终端设备发送参考信号,相应的,终端设备可以基于参考信号资源接收参考信号。
本申请实施例中涉及的参考信号可以包括以下一种或多种参考信号:信道状态信息参考信号(channel state information-reference signal,CSI-RS)、SSB或者探测参考信号(sounding reference signal,SRS)。与此对应地,参考信号资源可以包括CSI-RS资源、SSB资源或者SRS资源。在某些情况下,SSB也可以是指SSB资源。
7.传输信道的秩(rank):简称秩,可以看作收发双方之间的传输通路上独立的并行信道的数目。可以理解为通信过程中,收发双方同时支持的相对独立的数据通路。一个数 据通路可以对应一个数据流。对于多输入多输出(multiple input multiple output,MIMO)系统,收发双方通信过程中所使用的数据流数则称为层数。
MIMO系统中,需要根据空间信道的秩来确定所能同时发送的数据流数,或者说,需要根据空间信道的秩来确定通信过程的层数,以降低信息之间的干扰,增加接收准确性,提升信息传送容量。由于一个数据通路对应一个数据流,因此数据通路的数目(或者数据流数,也称层数)可以通过秩值表示。
8.调制编码方案(modulation and coding scheme,MCS):常用的调制方式包括二进制相移键控(binary phase shift keying,BPSK),正交相移键控(quadrature phase shift keying,QPSK),正交幅度调制(quadrature amplitude modulation,QAM),比如16QAM、64QAM等。MCS包括码率,即信息比特与编码后比特的比值。MCS还可以包括频谱效率。
9.SINR:是指接收到的有用信号的强度与接收到的干扰信号(噪声和干扰)的强度的比值。在通信过程中,通信设备可以参考SINR来选择信号传输所对应的MCS。
10.传输效率:也可以理解为频谱效率,频谱效率标准的单位是bit/s/Hz。频谱效率可以是一个资源单元(resource element,RE)上传输的信息比特数,一个RE上的信息比特数与MCS相关,即调制方式代表的编码后的比特数,对应的码率代表了传输的实际信息比特数。
11.功率偏置:终端设备基于参考信号的测量结果确定CSI并上报给基站,但是由于该CSI是用于辅助网络设备确定下行数据传输的链路参数的,而数据传输和参考信号传输可能具有不同的发送功率(或者说功率谱密度),因此终端设备基于参考信号的测量结果计算得到CSI与数据传输对应的CSI不一定完全对齐。为解决这个问题,一种可选的方式为在参考信号的配置参数中指示功率偏置,功率偏置用于表示数据传输和参考信号传输的功率比值,一般以分贝(dB)形式表示,例如一个功率偏置可以是指一种物理下行共享信道(physical downlink shared channel,PDSCH)中每个资源单元上的能量(energy per resource element,EPRE)相对于非零功率(none zero power,NZP)CSI-RS的EPRE的比值假设,单位可以是分贝(dB)或线性值。
功率偏置的数值越大,表示数据传输的功率谱密度和参考信号的功率谱密度比值越大。终端设备会根据功率偏置和参考信号测量结果,计算CSI反馈给网络设备。由于功率偏置指示的数据传输的发送功率是网络设备和终端设备关于数据传输功率的一个对齐的假设,不一定和网络设备发送数据传输时的发送功率相同,因此也可以将功率偏置理解为功率假设。
对于网络设备配置测量信号和功率偏置的方案,终端设备在上报CSI时,会将功率偏置考虑在内,然后根据测量信号的功率计算CSI并上报给网络设备,作为网络设备发送下行数据的参考。但是,网络设备发送下行数据的功率与发送测量信号的功率的差值,与这个功率偏置也可能不一致。在这种情况下,网络设备无法基于终端设备上报的CSI进行合理的链路自适应,导致数据传输可靠性降低。特别是考虑网络节能的情况下,网络设备会通过降低发送功率来获得节能收益,发送下行数据的功率期望值与偏置的匹配度进一步降低,会对通信性能造成影响。
针对上述问题,本申请实施例提出一种通信方法,能够提高下行数据的发送功率的准确度,提高通信质量。如图2所示,该方法可以包括下述步骤:
步骤201:网络设备向终端设备发送第一信息,对应地,终端设备接收该第一信息。
该第一信息用于指示终端设备发送第一参数,第一参数用于表征功率偏置与信道质量信息的对应关系。可选的,功率偏置与信道质量信息的对应关系为函数关系。其中,信道质量信息包括以下至少一项:信号干扰噪声比、信道质量指示CQI、传输效率或者调制编码方案MCS。也就是说,功率偏置与信道质量信息的对应关系可以是:功率偏置与信号干扰噪声比的对应关系、功率偏置与MCS的对应关系、功率偏置与CQI的对应关系或者功率偏置与传输效率的对应关系中的一项或者多项。
上述功率偏置与信道质量信息的对应关系可以是线性关系,当功率偏置与信道质量信息的对应关系为函数关系时,该线性关系也可以理解为一次函数关系,此时,第一参数可以是比值或者一次函数的斜率。示例地,第一参数为第一差值与第二差值的比值,第一差值为第一功率偏置与第二功率偏置的差值,第二差值为第一信道质量信息的值与第二信道质量信息的值的差值,第一功率偏置与第一信道质量信息的值对应,第二功率偏置与第二信道质量信息的值对应。在这种情况下,第一参数为功率偏置与信道质量信息函数关系的拟合图线的斜率。
需要说明的是,当存在多个功率偏置和信道质量信息时,第一参数可以是拟合图线的斜率,或者理解为,第一参数可以是近似值。换句话说,多个信道质量信息与多个功率偏置的比值中,可能存在某一个信道质量信息和其对应的功率偏置的比值与拟合斜率不同的情况。如图3所示,以信道质量信息为信号干扰噪声比为例,信号干扰噪声比1与功率偏置1的比值、信号干扰噪声比2与功率偏置2的比值、信号干扰噪声比5与功率偏置5的比值在拟合图线上,信号干扰噪声比3与功率偏置3的比值、信号干扰噪声比4与功率偏置4的比值不在拟合图线上。但是,可以近似地认为信号干扰噪声比3与功率偏置3的比值、信号干扰噪声比4与功率偏置4的比值遵循拟合图线的斜率。也就是说,允许信道质量信息与功率偏置的比值存在一定的偏离阈值。
一种可选的方式中,第一信息可以用于配置信道状态信息测量或者信道状态信息上报,也即第一信息承载于信道状态信息资源配置(CSI-ResourceConfig)或者信道状态信息报告配置(CSI-ReportConfig),可以在信道状态信息资源配置或者信道状态信息报告配置中新增字段,通过该字段指示终端设备发送第一参数。以第一信息承载于CSI-ReportConfig为例,新增字段可以指示上报量为CRI、RI、CQI和第一参数K,可能的一种示例如下。
应理解,第一信息也可以承载于其他信息,或者由网络设备单独指示,本申请对此不 做限定。
上述第一参数可以包括至少一个子参数,至少一个子参数中的任一子参数用于表征一个秩值的功率偏置与信道质量信息的对应关系。此时,第一参数可以理解为一个参数集合。这种方式下,可选的,第一参数包括的每个子参数可以为一个秩值对应的功率偏置与信道质量信息的对应关系,例如,第一参数包括第一子参数和第二子参数,第一子参数用于指示第一秩值对应的功率偏置与信道质量信息的对应关系,第二子参数用于指示第二秩值对应的功率偏置与信道质量信息的对应关系。
秩值可以通过上述CSI-ReportConfig指示。示例地,网络设备通过cri-RI-CQI-K指示终端设备上报第一参数K,其中,RI用于指示秩取值的情况。比如,RI为3时,表示秩取值最大为3,也就是说秩的取值可以有三种情况:A,秩取值为3;B,秩取值为2;C,秩取值为1。以RI取值为3为例,第一参数可以包括3个子参数,分别为子参数1、子参数2和子参数3。对应于上述情况A,功率偏置与信道质量信息的对应关系为关系A,可以用子参数1表征;对应于上述情况B,功率偏置与信道质量信息的对应关系为关系B,可以用子参数2表征;对应于上述情况C,功率偏置与信道质量信息的对应关系为关系C,可以用子参数3表征。
可以理解的是,第一参数为比值时,对应于不同的秩值,第一参数的取值可能不同。在同一个秩值下,针对不同的信道质量信息,第一参数的取值也可能不同。这里的秩值表示的物理含义是数据流数目(层数)。举个例子,秩值为2,表示包括两个数据流。示例地,当秩值取2,功率偏置与信号干扰噪声比的比值为2,功率偏置与MCS的比值为2.1,功率偏置与CQI的比值为2.6,功率偏置与传输效率的比值为2.3。当秩值取3,功率偏置与信号干扰噪声比的比值的值为3,功率偏置与MCS的比值为2.7,功率偏置与CQI的比值为3.6,功率偏置与传输效率的比值为3.3。应理解,上述比值的取值仅作为示例而非限定。当然,对应于不同的秩,第一参数的取值也可能相同,本申请对此不做限定。
当第一参数为步骤201中的斜率K时,一种可能的计算方式:
终端设备根据CSI测量参考信号,以及模拟的功率偏置{Δ2,……,Δm}计算出{CSI2…,CSIm},拟合得出斜率值K,进行上报。比如,
其中,模拟功率偏置{Δ2,……,Δm}可以是终端设备定义的,示例地,Δ1与{Δ2,……,Δm}可以构成等差数列,Δ1为网络设备发送给终端设备的功率偏置,比如,Δ1可以是该CSI测量参考信号的资源配置(CSI-ResourceConfig)所配置的,该功率偏置Δ1可以理解为CSI-RS的发送功率和预定义的下行数据的发送功率的差值。
信道质量信息CSI可以是终端设备根据功率偏置计算出来的。一种可能的计算方式如下:
以SINR为信道质量信息的一个示例,终端设备可以根据以下几项确定SINR:网络设备到终端设备的目标数据流对应的传输信道、终端设备对目标数据流的接收向量、网络设备外的干扰自相关矩阵、功率偏置和信号干扰噪声比。
具体地,在单用户多流或多用户多流传输下,假设用户侧采样最小均方误差(minimum mean square error,MMSE)接收机,终端设备接收到的参考信号的功率为P,网络设备向终端设备发送功率偏置Δ1后,终端设备可以根据ρ=(P-Δ1)/P计算得到功率偏置比例ρ。
终端设备的接收SINR可以表示为式(1)的关系:
可以得到,
其中,hl为网络设备到终端设备的目标数据流对应的传输信道(包含预编码处理),hj是网络设备到终端设备的干扰数据流对应的传输信道(包含预编码处理),这两项可以由CSI测量信号测量得到。Rinter为目标网络设备外的干扰自相关矩阵,可以由零功率的CSI测量信号得到。c为终端设备对目标数据流的接收向量。
从上述公式可见,当时,即当流间干扰是主要干扰时,终端设备的接收SINR与网络设备侧发送功率偏置比例ρ近似无关。反之,当时,终端设备的接收SINR随着网络设备侧发送功率偏置比例ρ线性降低。当Σj≠lhjhj H强度相当时,SINRl(ρ)的取值是介于SINRl(1)和ρ·SINRl(ρ)之间的一个取值。
步骤202:终端设备根据第一信息,向网络设备上报第一参数,对应地,网络设备接收该第一参数。
应理解,当第一参数包括多个子参数时,终端设备向网络设备上报第一参数,也即终端设备向网络设备发送该多个子参数。
以CQI1为上报量(reportQuantity)的一个示例,或者说,以CQI为CSI的一个示例,终端设备可以根据接收到的CSI测量参考信号和功率偏置Δ1,计算要上报的CQI1。具体的。这里CQI1泛指所有上报的宽带CQI和窄带CQI。其中,CQI1的一种计算方法为:根据式(2)得到SINR,然后根据SINR在CQI量化表格中找到对应的CQI1
可选地,当RI大于1时,终端设备可以通过上述方法计算所有可能的秩值对应的第一参数(也就是多个子参数)。示例地,RI取3,表示秩值最大为3,也就是包括1、2、3三种情况(参考步骤201中的情况A、B、C)。终端设备需要针对这三种情况分别计算对应的第一参数。
可选地,终端设备上报第一参数K,可以是上报K的值,也可以是上报K值对应的索引。示例地,网络设备通过RRC信令预先配置K的候选取值及其索引,该候选取值为K的可能取值。终端设备在确定K的取值后,向网络设备上报该取值在该取值的索引。应理解,终端设备确定的K值与网络设备预配置的K的候选取值可能存在一定的误差。比如,终端设备确定的K值为2.13,这种情况下,终端设备可以上报与之相近的候选取值,比如,上报2.1,或者,上报2.1对应的索引#1。也就是说,网络设备与终端设备可以预先协议上报规则,比如,该规则可以是:终端设备确定的K值与候选取值存在误差时,上报与该K值差值最小的候选取值,或者上报该候选取值的索引。另一种可能的方式,允许终端设备确定的K值与网络设备预配置的候选取值之间存在一定的误差,当终端设备确定的K值与网络设备预配置的候选值的差值在该误差范围内,则上报该候选值;如果终端设备确定的K值与网络设备预配置的候选值的差值不在该误差范围内,则寻找与终端设备 确定的K值的差值在该误差范围内的候选取值并上报。该误差的范围可以是预定义的,也可以是网络设备为终端设备配置的,又或者,可以是网络设备指示给终端设备的,本申请实施例对此不做限定。
具体地,如表1所示,终端设备在确定K的取值为2.3时,可以向网络设备上报2.3,也可以向网络设备上报#2。
表1 K的候选取值与索引
应理解,表1只作为一种示例而非限定。
应理解,终端设备在上报第一参数K时,可以上报第一参数的多个子参数。示例地,终端设备接收到cri-RI-CQI-K,RI取值为3,对应于步骤201中的情况A、B和C,终端设备向网络设备上报子参数1、子参数2和子参数3。终端设备也可以向网络设备上报该多个子参数分别对应的索引。终端设备同时上报多个秩值对应的信道质量信息与功率偏置的对应关系,有利于提高网络设备调度和选择MCS的准确性。
终端设备可以有多种上报K值的方式,以下给出几种示例。
方式一,当终端设备上报多个K值时,可以上报该多个K值的实际取值或其索引,示例性的,终端设备需要上报三个K值,分别为19,18,17,终端设备可以上报19,18,17。或者,终端设备可以上报该三个K值对应的索引,K值19对应索引1,K值18对应索引2,K值17对应索引3。终端设备可以上报1,2,3。
方式二,终端设备可以上报一个基准K值和多个该基准K值的偏移值。示例地,终端设备需要上报三个K值,分别为19,18,17,终端设备可以上报第一个K值的实际值(也即,基准K值)与其余两个K值相对于该第一个K值的偏移值,比如终端设备上报19,1,2。终端也可以上报该多个K值的索引的偏移值,示例地,K值19对应索引1,K值18对应索引2,K值17对应索引3。终端设备可以上报1,+1,+2。
方式三,终端设备可以上报第一个K值的实际值,与,其余K值相对于前一个K值的差值。比如,终端设备上报19,1,1。或者是,上报第一K值的索引值,与,其余两个K值相对于前一个K值的索引值的差值,示例地,终端设备需要上报三个K值,分别为19,18,17,其中,K值19对应索引1,K值18对应索引2,K值17对应索引3。终端设备可以上报1,+1,+1。
上述方式二和方式三中,通过上报差值,相对于上报功率偏置而言,能够进一步节省开销。
在终端设备确定第一参数后,将该第一参数发送给网络设备。一种可能的方式,终端设备可以将该第一参数承载在信道状态信息中上报给网络设备。应理解,终端设备也可以单独上报该第一参数,本申请对此不做限定。
可选地,该方法还可以包括步骤203:终端设备向网络设备发送第一能力信息,所述 能力信息指示终端设备上报第一参数对应的信道状态信息处理单元(CSI processing unit,CPU)的数目,对应地,网络设备接收该第一能力信息。
由于终端设备在计算第一参数时可能需要多次计算CSI,所以计算第一参数所需要的CPU数目可能大于不计算第一参数时的CSI上报的CPU数目。其中,计算并上报还可以理解为测量并上报,或者理解为处理。
一种可能的实现,信道状态信息处理单元的数目OCPU,K=5,可以表示仅用于计算第一参数需要5个信道状态信息处理单元,或者可以表示计算第一参数并上报承载第一参数的CSI所需要的CPU数目为5。
另一种可能的实现,该第一能力信息指示第一参数对应的时域扩展因子T。该时域扩展因子可以理解为终端设备计算第一参数使用的时间单元的数量相对于不计算第一参数时使用的时间单元的数量的比值。示例地,终端设备不计算第一参数时所需要的CPU个数为OCPU,K1,并且只占用1个时间单元,那么终端上报第一参数可以仍然只使用OCPU,K1个CPU,但是由于计算量加大,需要3个时间单元才能计算完成,则时域扩展因子T为3。也就是说,终端设备向网络设备发送的第一能力信息的内容中包括T的值取3。上述时间单元可以是1个或多个符号,或者1个或多个时隙,本申请对此不做限定。
又一种可能的实现,该第一能力信息指示第一参数对应的CPU个数的比例因子Z。该比例因子可以理解为终端设备计算第一参数使用的CPU的数量相对于不计算第一参数时使用的CPU的数量的比值。示例地,终端设备不计算第一参数时所需要的CPU个数为OCPU,K2,那么终端计算第一参数所需要的CPU个数为Z*OCPU,K2
应理解,该第一能力信息可以理解为能够指示终端设备计算第一参数所需要的CPU个数的信息,该指示可以包括显示的指示或者隐式的指示,例如上述T或Z,第一能力信息也可以理解为终端设备计算第一参数所需要的CPU个数,例如Z*OCPU,K2的值。
当终端设备单独上报第一能力信息时,可以在网络设备发送第一信息前上报,也可以在终端设备上报测量报告之后上报,本申请对此不做限定。
终端设备向网络设备上报第一能力信息,网络设备可以第一能力信息调度测量资源,进一步提高测量效率。
该方法中网络设备指示终端设备上报功率偏置与信道质量信息的对应关系,根据该对应关系确定下行数据的发送功率,有利于网络设备的节能,同时进行准确的链路自适应调整,避免了固定的功率偏置与下行数据发送功率之间的不匹配,能够提高下行数据的发送功率的准确度,从而提高了通信质量。
上述方法通过终端设备上报功率偏置与信道质量信息的对应关系,网络设备根据该对应关系确定下行数据的发送功率。网络设备也可以为终端设备配置传输效率,终端设备根据传输效率确定功率偏置,网络设备再根据该功率偏置确定下行数据的发送功率,能够提升功率偏置的准确性,进一步提升通信质量,下面详细陈述该方案。
如图4所示,该方法可以包括下述步骤:
步骤401:网络设备向终端设备发送第二信息,对应地,终端设备接收该第二信息。
第二信息用于指示M个传输效率值,M为正整数。
第二信息还可以用于配置信道状态信息测量或者信道状态信息上报。换句话说,第二信息可以承载于信道状态信息报告配置(CSI-ReportConfig)中,或者,第二信息可以承载 于信道状态信息资源配置(CSI-ResourceConfig)中。示例地,上述M个传输效率值可以承载在CSI-ReportConfig或者CSI-ResourceConfig中,以M个传输效率值可以承载在CSI-ReportConfig为例,一种可能的上报方式如下:
应理解,上述第二信息也可以用于指示M个传输效率值,与CSI-ReportConfig或者CSI-ResourceConfig分别发送。本申请对此不做限定。
上述第二信息可以包括MCS索引和/或CQI索引。具体地,终端设备可以根据MCS索引或者CQI索引,从预定义的表格中查找对应的传输效率,或者是从预定义的表格中查找调制阶数和码率,进一步根据调制阶数和码率计算得到传输效率值。
网络设备可以向终端设备指示传输效率值,示例地,M为3,三个传输效率值分别为0.8,0.4,0.2,此时传输效率值也可以理解为传输效率的绝对值。
网络设备可以向终端设备指示归一化的传输效率值,应理解,归一化的取值一般在0到1之间。示例地,M为3,归一化的三个传输效率值分别为1,0.5,0.25,对应的传输效率的值分别为0.8,0.4,0.2。一种可能的归一化方式:以0.8为传输效率的基准值,对应归一化的传输效率值为1;0.4为0.8的二分之一,则0.4对应的归一化传输效率值为0.5;0.2为0.8的四分之一,则0.2对应的归一化传输效率值为0.25。应理解,基准值可以取传输效率值中的任一个。还应理解,上述数字仅作为示例而非限定。
上述M个传输效率值可以对应S个秩值,S为正整数。
一种可能的方式,M小于S,不同秩值对应的传输效率值可以相同,也可以不同。示例地,S为3,三个秩值分别为1、2、3;M为2,2个传输效率分别为0.6,0.7。可能是秩值为1和2时都对应传输效率0.6,秩值为3对应传输效率0.7。
另一种可能的方式,M和S相等,M个传输效率值与S个秩值一一对应。示例地,S为3,三个秩值分别为1、2、3;M为2,2个传输效率分别为0.6,0.7,0.8。可能是秩值为1时对应传输效率0.6,秩值为2对应传输效率0.6,秩值为3对应传输效率0.7。
再一种可能的方式,M大于S,一个秩值可以对应多个传输效率值。示例地,S为3,三个秩值分别为1、2、3;M为6,6个传输效率分别为0.6,0.7,0.6,0.7,0.3,0.8。可能是秩值为1时对应传输效率0.6,0.7,秩值为2时对应传输效率0.6,0.7,秩值为3时对应传输效率0.3,0.8。
关于秩值的指示和解释,可以参考步骤201中的相关说明,不再赘述。
步骤402:终端设备根据第二信息,发送N个功率偏置,对应地,网络设备接收该N个功率偏置,N为正整数。
其中,功率偏置可以是CSI测量信号的功率与使用对应的传输效率发送下行数据的功率的差值。一种可能的方式,M与N相等,也就是说,M个传输效率值和N个功率偏置一一对应。
终端设备可以根据M个传输效率值确定N个功率偏置。
示例地,终端设备根据接收到的CSI测量资源(CSI测量参考信号和功率偏置ΔA),计算要上报的CQI。这里CQI泛指上报的宽带CQI和窄带CQI。其中,CQI的一种计算方式为:根据SINR在CQI量化表格中找到对应的CQI。传输效率计算的一种方法是:根据CQI对应的MCS表格的索引,再根据MCS的调制符号比特数和码率,计算出当前的传输效率值SEreal
其中,SINR的一种计算方法可以参考步骤202中相关说明,不再赘述。
终端设备可以默认SEreal为基线(参考值),即代表归一化取值SE1为1。终端设备根据CSI测量参考信号,以及下一个传输效率值SEm,计算出Δm,使得根据Δm得到的CQIm计算的传输效率值等于SEm。一般情况下,SEm是一个0到1之间的数值。计算过程可以参考SE1的算法。其中,Δm的计算可能需要通过遍历一定范围内的值来确定,即通过式(2),尝试不同的Δm值,确定哪个Δm对应了传输效率值SEm
可选地,当RI取值大于1时,终端设备可以针对每一个秩值计算对应的传输效率值。
终端设备在完成N个功率偏置的计算后,发送该N个功率偏置。终端设备可以有多种上报功率偏置值的方式,以下给出几种示例。
方式甲:终端设备可以发送N个功率偏置。示例地,N为4,四个功率偏置分别为8,4,2,1,终端设备向网络设备发送8,4,2,1。
方式乙:终端设备也可以发送功率偏置偏移值。功率偏置偏移值可以理解为不同传输效率值对应的功率偏置之间的差值。
示例地,终端设备发送第一个传输效率值对应的功率偏置(即第一功率偏置),上报其余的传输效率值对应的功率偏置相对第一功率偏置的差值(即功率偏置偏移值)。比如,N为4,以四个功率偏置分别为8,4,2,1为例,终端设备可以上报第一个传输效率值对应的功率偏置为8,上报第二个传输效率值对应的功率偏置相对于第一个传输效率值对应的功率偏置的偏移值为-4,上报第三个传输效率值对应的功率偏置相对于第一个传输效率值对应的功率偏置的偏移值为-6,上报第四个传输效率值对应的功率偏置相对于第一个传输效率值对应的功率偏置的偏移值为-7。上述第一个传输效率值可以是M个传输效率值中的任一个。
又或者,终端设备发送第一个传输效率值对应的功率偏置,发送其余的传输效率值对应的功率偏置相对于上一个传输效率值对应的功率偏置的差值(即功率偏置偏移值)。比如,N为4,以四个功率偏置分别为8,4,2,1为例,终端设备上报第一个传输效率值对应的功率偏置为8,上报第二个传输效率值对应的功率偏置相对于第一个传输效率值对应的功率偏置的偏移值为-4,上报第三个传输效率值对应的功率偏置相对于第二个传输效率值对应的功率偏置的偏移值为-2,上报第四个传输效率值对应的功率偏置相对于第三个传输效率值对应的功率偏置的偏移值为-1。
应理解,终端设备也可以上报功率偏置偏移值的绝对值,向网络设备指示该功率偏置偏移值对应的功率偏置与作为基准的功率偏置的大小关系。示例地,当作为基准的功率偏置为8,需要上报的功率偏置为4,则功率偏置偏移值为-4,终端设备可以向网络设备上报功率偏置偏移值的绝对值4,指示网络设备该需要上报的功率偏置小于作为基准的功率偏置。功率偏置偏移值为正时,终端设备向网络设备上报功率偏置偏移值即可,又或者,终端设备可以向网络设备上报功率偏置偏移值,同时指示网络设备该需要上报的功率偏置大于作为基准的功率偏置。
该方式通过上报一个基准值和多个差值,相对于上报功率偏置而言,能够进一步节省开销。
其中,终端设备上报功率偏置或者功率偏置偏移值的顺序与网络设备发送的频谱效率值的顺序一致。示例地,网络设备发送的频谱效率值依次为0.7,0.5,0.4,0.1,终端设备上报功率偏置依次为8,4,2,1,其中功率偏置8与传输效率值0.7对应,功率偏置4与传输效率值0.5对应,功率偏置2与传输效率值0.4对应,功率偏置1与传输效率值0.1对应。终端设备上报功率偏置或者功率偏置偏移值的顺序可以是默认与网络设备发送的传输效率值的顺序一致,也可以是网络设备为终端设备预配置的。
终端设备上报时,可以将上述N个功率偏置或者功率偏置偏移值承载于信道状态信息CSI中。
终端设备也可以只上报一部分秩值对应的功率偏置或者功率偏置偏移值,此时需要在上报内容中携带对应的秩值。比如,网络设备预定义秩值是{1,2,3,4},但是终端设备只上报秩值为{1,2}时对应的功率偏置或者功率偏置偏移值。以秩值{1,2,3,4}分别对应的功率偏置依次为8,4,2,1为例,终端设备只上报8和4时,需要同时上报秩值1和2,功率偏置8和4的顺序可以与秩值1和2的顺序一致,网络设备接收到8和4时默认8是秩值1对应的功率偏置,4是秩值2对应的功率偏置。
应理解,上述取值仅为示例而非限定。
可选地,该方法还可以包括步骤403:终端设备向网络设备发送第二能力信息,对应地,网络设备接收该第二能力信息。
第二能力信息用于指示上报N个功率偏置对应的信道状态信息处理单元的数目。
示例地,终端设备向网络设备发送信道状态信息处理单元的数目为5,表示仅用于计算N个功率偏置就需要5个信道状态信息处理单元。或者,该第二能力指示信息用于指示N个功率偏置对应的时域扩展因子。又或者,该第二能力指示信息用于指示N个功率偏置对应的CPU个数的比例因子。
具体地,可以参考步骤203中第一能力信息的相关说明,此处不再赘述。
网络设备可以根据发送下行数据时调度的CQI/PMI和带宽,确定发送下行数据的功率。比如,网络设备根据调度确定的CQI,通过插值等方法,从CSI上报中得到功率偏置,从而得到此时发送下行数据的功率谱密度,再根据带宽(频域资源数)与功率谱密度相乘得到下行数据发送功率。
或者,网络设备可以根据发送下行数据的功率以及带宽,确定出功率谱密度,从而确定出精确的CQI/PMI。
该方法通过网络设备指示传输效率,终端设备根据传输效率计算对应的功率偏置,提 升了终端设备上报功率偏置与传输效率的匹配度,网络设备得以确定更为准确的发送下行数据的功率,提高了通信质量。
可以理解的是,为了实现上述实施例中功能,网络设备和终端设备包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图5和图6为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端或基站的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的终端120a-120j中的一个,也可以是如图1所示的基站110a或110b,还可以是应用于终端或基站的模块(如芯片)。
如图5所示,通信装置500包括处理单元510和收发单元520。通信装置500用于实现上述图2或图4中所示的方法实施例中终端设备或网络设备的功能。
当通信装置500用于实现图2所示的方法实施例中终端设备的功能时:收发单元520用于接收第一信息;处理单元510用于确定第一参数;收发单元520还用于发送第一参数;收发单元520还用于发送第一能力信息。
当通信装置500用于实现图2所示的方法实施例中网络设备的功能时:收发单元520用于发送第一信息;收发单元520还用于接收第一参数;处理单元510用于根据第一参数确定下行数据发送功率;收发单元520还用于接收第一能力信息。
当通信装置500用于实现图4所示的方法实施例中终端设备的功能时:收发单元520用于接收第二信息;处理单元510用于确定N个功率偏置;收发单元520还用于发送功率偏置;收发单元520还用于发送第二能力信息。
当通信装置500用于实现图4所示的方法实施例中网络设备的功能时:收发单元520用于发送第二信息;收发单元520用于接收N个功率偏置;处理单元510用于根据功率偏置确定下行数据发送功率;收发单元520还用于接收第二能力信息。
有关上述处理单元510和收发单元520更详细的描述可以直接参考图4所示的方法实施例中相关描述直接得到,这里不加赘述。
如图6所示,通信装置600包括处理器610和接口电路620。处理器610和接口电路620之间相互耦合。可以理解的是,接口电路620可以为收发器或输入输出接口。可选的,通信装置600还可以包括存储器630,用于存储处理器610执行的指令或存储处理器610运行指令所需要的输入数据或存储处理器610运行指令后产生的数据。
当通信装置600用于实现图2或图4所示的方法时,处理器610用于实现上述处理单元510的功能,接口电路620用于实现上述收发单元520的功能。
当上述通信装置为应用于终端的芯片时,该终端芯片实现上述方法实施例中终端的功能。该终端芯片从终端中的其它模块(如射频模块或天线)接收信息,该信息是基站发送给终端的;或者,该终端芯片向终端中的其它模块(如射频模块或天线)发送信息,该信息是终端发送给基站的。
当上述通信装置为应用于基站的模块时,该基站模块实现上述方法实施例中基站的功 能。该基站模块从基站中的其它模块(如射频模块或天线)接收信息,该信息是终端发送给基站的;或者,该基站模块向基站中的其它模块(如射频模块或天线)发送信息,该信息是基站发送给终端的。这里的基站模块可以是基站的基带芯片,也可以是DU或其他模块,这里的DU可以是开放式无线接入网(open radio access network,O-RAN)架构下的DU。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以在硬件中实现,也可以在可由处理器执行的软件指令中实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于基站或终端中。处理器和存储介质也可以作为分立组件存在于基站或终端中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
根据说明书是否用到可选:本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。“包 括A,B和C中的至少一个”可以表示:包括A;包括B;包括C;包括A和B;包括A和C;包括B和C;包括A、B和C。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (62)

  1. 一种通信方法,其特征在于,包括:
    接收第一信息,所述第一信息用于指示终端设备发送第一参数,所述第一参数用于表征功率偏置与信道质量信息的对应关系;
    根据所述第一信息,上报所述第一参数。
  2. 根据权利要求1所述的方法,其特征在于,所述第一参数包括第一子参数和第二子参数,所述第一子参数用于指示第一秩值对应的功率偏置与信道质量信息的对应关系,所述第二子参数用于指示第二秩值对应的功率偏置与信道质量信息的对应关系。
  3. 根据权利要求1或2所述的方法,其特征在于,所述功率偏置与所述信道质量信息的对应关系为线性关系。
  4. 根据权利要求3所述的方法,其特征在于,所述第一参数为第一差值与第二差值的比值,所述第一差值为第一功率偏置与第二功率偏置的差值,所述第二差值为第一信道质量信息的值与第二信道质量信息的值的差值,所述第一功率偏置与所述第一信道质量信息的值对应,所述第二功率偏置与所述第二信道质量信息的值对应。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述信道质量信息包括以下至少一项:
    信号干扰噪声比、信道质量指示CQI、传输效率或者调制编码方案MCS。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一信息还用于配置信道状态信息测量或者信道状态信息上报。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一参数承载于信道状态信息中。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:
    发送第一能力信息,所述第一能力信息用于指示上报所述第一参数对应的信道状态信息处理单元的数目。
  9. 一种通信方法,其特征在于,包括:
    发送第一信息,所述第一信息用于指示终端设备发送第一参数,所述第一参数用于表征功率偏置与信道质量信息的对应关系;
    接收所述第一参数。
  10. 根据权利要求9所述的方法,其特征在于,所述第一参数包括第一子参数和第二子参数,所述第一子参数用于指示第一秩值对应的功率偏置与信道质量信息的对应关系,所述第二子参数用于指示第二秩值对应的功率偏置与信道质量信息的对应关系。
  11. 根据权利要求9或10所述的方法,其特征在于,所述功率偏置与信道质量信息的对应关系为线性关系。
  12. 根据权利要求11所述的方法,其特征在于,所述第一参数为第一差值与第二差值的比值,所述第一差值为第一功率偏置与第二功率偏置的差值,所述第二差值为第一信道质量信息的值与第二信道质量信息的值的差值,所述第一功率偏置与所述第一信道质量信息的值对应,所述第二功率偏置与所述第二信道质量信息的值对应。
  13. 根据权利要求9至12中任一项所述的方法,其特征在于,所述信道质量信息包括以下至少一项:
    信号干扰噪声比、CQI、传输效率或者MCS。
  14. 根据权利要求9至13中任一项所述的方法,其特征在于,所述第一信息还用于配置信道状态信息测量或者信道状态信息上报。
  15. 根据权利要求9至14中任一项所述的方法,其特征在于,接收所述第一参数包括:
    接收信道状态信息,所述第一参数承载于所述信道状态信息中。
  16. 根据权利要求9至15中任一项所述的方法,其特征在于,所述方法还包括:
    接收第一能力信息,所述第一能力信息用于指示上报所述第一参数对应的信道状态信息处理单元的数目;
    根据所述第一能力信息,确定测量资源,所述测量资源用于终端设备测量信道状态。
  17. 一种通信方法,其特征在于,包括:
    接收第二信息,所述第二信息用于指示M个传输效率值,所述M为正整数;
    根据所述第二信息,发送N个功率偏置,所述N个功率偏置承载于信道状态信息中,所述N为小于或者等于M的正整数。
  18. 根据权利要求17所述的方法,其特征在于,所述第二信息还用于配置信道状态信息测量或者信道状态信息上报。
  19. 根据权利要求17或18所述的方法,其特征在于,所述M个传输效率值对应S个秩值,所述S为正整数。
  20. 根据权利要求17至19中任一项所述的方法,其特征在于,所述M等于N,所述M个传输效率值和所述N个功率偏置一一对应。
  21. 根据权利要求17至20中任一项所述的方法,其特征在于,所述N大于1,所述发送N个功率偏置包括:
    发送第一功率偏置和第一功率偏置偏移值,所述第一功率偏置偏移值为第二功率偏置与所述第一功率偏置的差值,所述第一功率偏置偏移值为(N-1)个功率偏置偏移值中的一个,所述(N-1)个功率偏置偏移值与所述N个功率偏置中除所述第一功率偏置以外的功率偏置一一对应。
  22. 根据权利要求17至21中任一项所述的方法,其特征在于,所述方法还包括:
    发送第二能力信息,所述第二能力信息用于指示上报所述N个功率偏置对应的信道状态信息处理单元的数目。
  23. 一种通信方法,其特征在于,包括:
    发送第二信息,所述第二信息用于指示M个传输效率值,所述M为正整数;
    接收N个功率偏置,所述N个功率偏置承载于信道状态信息中,所述N为小于或者等于M的正整数,所述N个功率偏置是根据所述第二信息确定的。
  24. 根据权利要求23所述的方法,其特征在于,所述第二信息还用于配置信道状态信息测量或者信道状态信息上报。
  25. 根据权利要求23或24所述的方法,其特征在于,所述M个传输效率值对应S个秩值,所述S为正整数。
  26. 根据权利要求23至25中任一项所述的方法,其特征在于,所述M等于N,所述M个传输效率值和所述N个功率偏置一一对应。
  27. 根据权利要求23至26中任一项所述的方法,其特征在于,所述N大于1,所述接收所述N个功率偏置包括:
    接收第一功率偏置和第一功率偏置偏移值,所述第一功率偏置偏移值为第二功率偏置与所述第一功率偏置的差值,所述第一功率偏置偏移值为(N-1)个功率偏置偏移值中的一个,所述(N-1)个功率偏置偏移值与所述N个功率偏置中除所述第一功率偏置以外的功率偏置一一对应。
  28. 根据权利要求23至27中任一项所述的方法,其特征在于,所述方法还包括:
    接收第二能力信息,所述第二能力信息用于指示上报所述N个功率偏置对应的信道状态信息处理单元的数目。
  29. 一种通信装置,其特征在于,包括处理模块和收发模块,所述收发模块用于接收第一信息,所述第一信息用于指示终端设备发送第一参数,所述第一参数用于表征功率偏置与信道质量信息的对应关系;所述处理模块用于根据所述第一信息,上报所述第一参数。
  30. 根据权利要求29所述的装置,其特征在于,所述第一参数包括第一子参数和第二子参数,所述第一子参数用于指示第一秩值对应的功率偏置与信道质量信息的对应关系,所述第二子参数用于指示第二秩值对应的功率偏置与信道质量信息的对应关系。
  31. 根据权利要求29或30所述的装置,其特征在于,所述功率偏置与所述信道质量信息的对应关系为线性关系。
  32. 根据权利要求31所述的装置,其特征在于,所述第一参数为第一差值与第二差值的比值,所述第一差值为第一功率偏置与第二功率偏置的差值,所述第二差值为第一信道质量信息的值与第二信道质量信息的值的差值,所述第一功率偏置与所述第一信道质量信息的值对应,所述第二功率偏置与所述第二信道质量信息的值对应。
  33. 根据权利要求29至32中任一项所述的装置,其特征在于,所述信道质量信息包括以下至少一项:
    信号干扰噪声比、信道质量指示CQI、传输效率或者调制编码方案MCS。
  34. 根据权利要求29至33中任一项所述的装置,其特征在于,所述第一信息还用于配置信道状态信息测量或者信道状态信息上报。
  35. 根据权利要求29至34中任一项所述的装置,其特征在于,所述第一参数承载于信道状态信息中。
  36. 根据权利要求29至35中任一项所述的装置,其特征在于,所述收发模块还用于发送第一能力信息,所述第一能力信息用于指示上报所述第一参数对应的信道状态信息处理单元的数目。
  37. 一种通信装置,其特征在于,包括收发模块,所述收发模块用于发送第一信息,所述第一信息用于指示终端设备发送第一参数,所述第一参数用于表征功率偏置与信道质量信息的对应关系;所述收发模块还用于接收所述第一参数。
  38. 根据权利要求37所述的装置,其特征在于,所述第一参数包括第一子参数和第二子参数,所述第一子参数用于指示第一秩值对应的功率偏置与信道质量信息的对应关系,所述第二子参数用于指示第二秩值对应的功率偏置与信道质量信息的对应关系。
  39. 根据权利要求37或38所述的装置,其特征在于,所述功率偏置与信道质量信息的对应关系为线性关系。
  40. 根据权利要求39所述的装置,其特征在于,所述第一参数为第一差值与第二差值的比值,所述第一差值为第一功率偏置与第二功率偏置的差值,所述第二差值为第一信道质量信息的值与第二信道质量信息的值的差值,所述第一功率偏置与所述第一信道质量信息的值对应,所述第二功率偏置与所述第二信道质量信息的值对应。
  41. 根据权利要求37至40中任一项所述的装置,其特征在于,所述信道质量信息包括以下至少一项:
    信号干扰噪声比、CQI、传输效率或者MCS。
  42. 根据权利要求37至41中任一项所述的装置,其特征在于,所述第一信息还用于配置信道状态信息测量或者信道状态信息上报。
  43. 根据权利要求37至42中任一项所述的装置,其特征在于,所述收发模块用于接收所述第一参数包括:
    所述收发模块用于接收信道状态信息,所述第一参数承载于所述信道状态信息中。
  44. 根据权利要求37至43中任一项所述的装置,其特征在于,所述收发模块还用于接收第一能力信息,所述第一能力信息用于指示上报所述第一参数对应的信道状态信息处理单元的数目;
    所述通信装置还包括处理模块,所述处理模块用于根据所述第一能力信息,确定测量资源,所述测量资源用于终端设备测量信道状态。
  45. 一种通信装置,其特征在于,所述通信装置包括收发模块和处理模块,所述收发模块用于接收第二信息,所述第二信息用于指示M个传输效率值,所述M为正整数;所述处理模块用于根据所述第二信息,发送N个功率偏置,所述N个功率偏置承载于信道状态信息中,所述N为小于或者等于M的正整数。
  46. 根据权利要求45所述的装置,其特征在于,所述第二信息还用于配置信道状态信息测量或者信道状态信息上报。
  47. 根据权利要求45或46所述的装置,其特征在于,所述M个传输效率值对应S个秩值,所述S为正整数。
  48. 根据权利要求45至47中任一项所述的装置,其特征在于,所述M等于N,所述M个传输效率值和所述N个功率偏置一一对应。
  49. 根据权利要求45至48中任一项所述的装置,其特征在于,所述N大于1,所述收发模块用于发送N个功率偏置包括:
    所述收发模块用于发送第一功率偏置和第一功率偏置偏移值,所述第一功率偏置偏移值为第二功率偏置与所述第一功率偏置的差值,所述第一功率偏置偏移值为(N-1)个功率偏置偏移值中的一个,所述(N-1)个功率偏置偏移值与所述N个功率偏置中除所述第一功率偏置以外的功率偏置一一对应。
  50. 根据权利要求45至49中任一项所述的装置,其特征在于,所述收发模块还用于发送第二能力信息,所述第二能力信息用于指示上报所述N个功率偏置对应的信道状态信息处理单元的数目。
  51. 一种通信装置,其特征在于,包括收发模块,所述收发模块用于发送第二信息, 所述第二信息用于指示M个传输效率值,所述M为正整数;所述收发模块还用于接收N个功率偏置,所述N个功率偏置承载于信道状态信息中,所述N为小于或者等于M的正整数,所述N个功率偏置是根据所述第二信息确定的。
  52. 根据权利要求51所述的装置,其特征在于,所述第二信息还用于配置信道状态信息测量或者信道状态信息上报。
  53. 根据权利要求51或52所述的装置,其特征在于,所述M个传输效率值对应S个秩值,所述S为正整数。
  54. 根据权利要求51至53中任一项所述的装置,其特征在于,所述M等于N,所述M个传输效率值和所述N个功率偏置一一对应。
  55. 根据权利要求51至54中任一项所述的装置,其特征在于,所述N大于1,所述收发模块用于接收所述N个功率偏置包括:
    所述收发模块用于接收第一功率偏置和第一功率偏置偏移值,所述第一功率偏置偏移值为第二功率偏置与所述第一功率偏置的差值,所述第一功率偏置偏移值为(N-1)个功率偏置偏移值中的一个,所述(N-1)个功率偏置偏移值与所述N个功率偏置中除所述第一功率偏置以外的功率偏置一一对应。
  56. 根据权利要求51至55中任一项所述的装置,其特征在于,所述收发模块还用于接收第二能力信息,所述第二能力信息用于指示上报所述N个功率偏置对应的信道状态信息处理单元的数目。
  57. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至8中任一项所述的方法,或者权利要求17至22中任一项所述的方法。
  58. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求9至16中任一项所述方法,或者权利要求23至28中任一项所述方法的模块。
  59. 一种计算机可读存储介质,其特征在于,所述存储介质中存储指令,当所述指令被通信装置执行时,实现如权利要求1至8中任一项所述的方法,或者权利要求17至23中任一项所述的方法。
  60. 一种计算机可读存储介质,其特征在于,所述存储介质中存储指令,当所述指令被通信装置执行时,实现如权利要求9至16中任一项所述方法,或者权利要求23至28中任一项所述方法。
  61. 一种通信系统,其特征在于,所述通信系统包括如权利要求29至36中任一项所述的通信装置,或者,所述通信系统包括如权利要求45至50中任一项所述的通信装置,或者所述通信系统包括如权利要求37至44中任一项所述的通信装置,或者,所述通信系统包括如权利要求51至56中任一项所述的通信装置。
  62. 一种芯片系统,其特征在于,所述芯片系统包括处理器,用于执行计算机程序或 指令,使得如权利要求1至8中任一项所述的方法,或者权利要求17至23中任一项所述的方法,或者如权利要求9至16中任一项所述方法,或者权利要求23至28中任一项所述方法被实现。
PCT/CN2023/072096 2022-01-22 2023-01-13 一种通信方法、装置及系统 WO2023138507A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210075543.4 2022-01-22
CN202210075543.4A CN116528283A (zh) 2022-01-22 2022-01-22 一种通信方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2023138507A1 true WO2023138507A1 (zh) 2023-07-27

Family

ID=87347808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072096 WO2023138507A1 (zh) 2022-01-22 2023-01-13 一种通信方法、装置及系统

Country Status (2)

Country Link
CN (1) CN116528283A (zh)
WO (1) WO2023138507A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109547164A (zh) * 2012-09-27 2019-03-29 华为技术有限公司 用于在通信系统中配置信道状态信息的系统和方法
CN110769456A (zh) * 2018-07-27 2020-02-07 成都华为技术有限公司 通信方法及装置
US20210289508A1 (en) * 2018-11-29 2021-09-16 Huawei Technologies Co., Ltd. Method, Device, And System For Notifying Information About Power Difference
WO2021208007A1 (en) * 2020-04-16 2021-10-21 Qualcomm Incorporated Subband power offset configuration for channel state information reporting
CN114337963A (zh) * 2020-10-10 2022-04-12 中兴通讯股份有限公司 信息反馈、接收方法、装置、设备和存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109547164A (zh) * 2012-09-27 2019-03-29 华为技术有限公司 用于在通信系统中配置信道状态信息的系统和方法
CN110769456A (zh) * 2018-07-27 2020-02-07 成都华为技术有限公司 通信方法及装置
US20210289508A1 (en) * 2018-11-29 2021-09-16 Huawei Technologies Co., Ltd. Method, Device, And System For Notifying Information About Power Difference
WO2021208007A1 (en) * 2020-04-16 2021-10-21 Qualcomm Incorporated Subband power offset configuration for channel state information reporting
CN114337963A (zh) * 2020-10-10 2022-04-12 中兴通讯股份有限公司 信息反馈、接收方法、装置、设备和存储介质

Also Published As

Publication number Publication date
CN116528283A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
US11750250B2 (en) Communications method and device
US11283503B2 (en) Communication method and communications apparatus
WO2020200059A1 (zh) 一种上报终端设备能力的方法和通信装置
WO2020207269A1 (zh) 干扰测量的方法和装置
CN111050390A (zh) 一种上行功率控制方法、终端设备及网络设备
WO2020207369A1 (zh) 一种信道测量方法和通信装置
WO2019196801A1 (zh) 数据传输的方法、通信装置及系统
WO2021017874A1 (zh) 一种通信方法及通信装置
WO2023005904A1 (zh) 一种信息传输方法及装置
WO2022012609A1 (zh) 一种测量反馈方法及装置
WO2020057375A1 (zh) 一种资源配置方法及通信装置
WO2022252963A1 (zh) 信道状态信息的测量方法和装置
WO2020034854A1 (zh) 资源管理的方法和装置
US20240172025A1 (en) Channel state information feedback method and communication apparatus
WO2022082775A1 (zh) 一种信道状态信息上报方法及装置
WO2020233500A1 (zh) 一种通信方法及通信装置
WO2023005989A1 (zh) 一种参考信号资源确定的方法及装置
WO2023138507A1 (zh) 一种通信方法、装置及系统
WO2023060449A1 (zh) 无线通信的方法、终端设备和网络设备
CN110504999A (zh) 通信方法、终端设备和网络设备
WO2023125221A1 (zh) 一种信道质量指示的上报方法和装置
WO2024067441A1 (zh) 通信方法、装置和系统
WO2023165460A1 (zh) 一种通信方法、装置及系统
WO2024146368A1 (zh) 通信方法和通信装置
WO2024149042A1 (zh) 通信方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23742822

Country of ref document: EP

Kind code of ref document: A1