WO2022252963A1 - 信道状态信息的测量方法和装置 - Google Patents

信道状态信息的测量方法和装置 Download PDF

Info

Publication number
WO2022252963A1
WO2022252963A1 PCT/CN2022/092702 CN2022092702W WO2022252963A1 WO 2022252963 A1 WO2022252963 A1 WO 2022252963A1 CN 2022092702 W CN2022092702 W CN 2022092702W WO 2022252963 A1 WO2022252963 A1 WO 2022252963A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna port
antenna ports
antenna
port sets
csi
Prior art date
Application number
PCT/CN2022/092702
Other languages
English (en)
French (fr)
Inventor
张荻
李胜钰
刘鹍鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22815010.8A priority Critical patent/EP4333492A1/en
Priority to AU2022284108A priority patent/AU2022284108A1/en
Priority to BR112023025090A priority patent/BR112023025090A2/pt
Publication of WO2022252963A1 publication Critical patent/WO2022252963A1/zh
Priority to US18/519,544 priority patent/US20240098635A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0245Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal according to signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/028Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of wireless communication, and in particular to a method and device for measuring channel state information.
  • the base station needs to perform resource scheduling according to the channel state information (channel state information, CSI) reported by the terminal.
  • CSI channel state information
  • the base station may turn off some transmission channels, thereby reducing the energy consumption of the base station.
  • the present application provides a method for measuring CSI, which is used to enable a network device to dynamically adjust the number of transmission channels and reduce energy consumption of the network device.
  • the present application provides a method for measuring CSI.
  • the terminal device receives reference signal resource configuration information from the network device, where the reference signal resource configuration information indicates a first reference signal resource, where the first reference signal resource includes P antenna ports, where P is a positive integer.
  • the terminal device sends the first information, where the first information includes M CSIs that correspond one-to-one to M antenna port sets, and the antenna ports included in any antenna port set in the M antenna port sets belong to P antenna ports, where M is A positive integer, at least one antenna port set in the M antenna port sets includes less than P in the number of antenna ports.
  • the terminal device can obtain the CSI of the antenna port set whose number of antenna ports is less than the total number of antenna ports through the first reference signal resource, and report it to the network device, which is used by the network device to judge whether to enter the energy-saving mode or determine whether to send a signal
  • the number of transmission channels that need to be used so as to enable the network device to dynamically adjust the number of transmission channels and reduce the energy consumption of the network device.
  • M is an integer greater than or equal to 2.
  • the number of antenna ports in different antenna port sets is different; or, the number of antenna ports included in different antenna port sets is the same, but the included antenna ports are not completely the same or completely different.
  • the terminal device reports CSI of multiple dimensions (that is, a set of multiple antenna ports), which improves the accuracy of the network device in judging whether to enter the energy-saving mode or determining the number of transmission channels that need to be used for transmitting signals.
  • the M antenna port sets are predefined by the protocol.
  • the antenna ports included in any antenna port set in the M antenna port sets are the antenna ports in the above P antenna ports.
  • the M antenna port sets are the M antenna port sets in the N antenna port sets, the N antenna port sets are predefined by the protocol, and any antenna in the N antenna port sets
  • the antenna ports in the port set are all antenna ports in the P antenna ports, and N is an integer greater than M.
  • the terminal device receives first indication information, where the first indication information indicates N antenna port sets, and the M antenna port sets are M antenna port sets in the N antenna port sets, where N is An integer greater than or equal to M, and the antenna ports in any antenna port set in the N antenna port sets are the antenna ports in the P antenna ports.
  • the terminal device receives second indication information, and the second indication information indicates a CSI measurement mode, and the CSI measurement mode includes mode 1 or mode 2, wherein mode 1 is based on at least P antenna ports The CSI is measured on some of the antenna ports in the mode; the second mode is to measure the CSI based on all the antenna ports in the P antenna ports.
  • the terminal device determines the M antenna port sets according to the first threshold value, and the first threshold value is indicated by the third indication information; or, the terminal device determines the M antenna port sets according to the channel quality of the N antenna port sets Determine M antenna port sets.
  • the terminal device receives second indication information, where the second indication information indicates M antenna port sets; or, the second indication information indicates X antenna ports among the P antenna ports, where M The antenna ports in the antenna port sets are all antenna ports in the X antenna ports, or, the antenna ports in the M antenna port sets are all antenna ports except for the X antenna ports in the P antenna ports.
  • the second indication information indicates a second resource in the first reference signal resources, and the second resource corresponds to M antenna port sets, or the second resource corresponds to X antenna ports.
  • the second indication information indicates indices of X antenna ports among the P antenna ports, or, the second indication information indicates indices of a set of M antenna ports.
  • the first information includes M first bit fields, and the K1-th first bit field in the M first bit fields indicates the number of the first antenna port set in the M antenna port sets.
  • CSI the K2-th first bit field in the M first bit fields indicates the CSI of the second antenna port set in the M antenna port sets, where K1 and K2 are positive integers less than or equal to M, and K1 is less than K2 , the number of antenna ports included in the first antenna port set is greater than or equal to the number of antenna ports included in the second antenna port set.
  • the terminal device indicates M CSIs one by one through M first bit fields in the first information, and the M first bit fields are changed from large to large according to the number of antenna ports in the corresponding antenna port set. Sort in order of smallest.
  • the network device and the terminal device can have the same understanding of the sorting manner of the M first bit fields in the first information, ensuring correct transmission of the first information.
  • the above method can also enable the terminal device to discard low-priority bits in the first information when resources are limited, and give priority to ensuring effective transmission of CSI of the antenna port set with a large number of antenna ports, thereby improving system performance.
  • the first information includes M first bit fields, and the K1-th first bit field in the M first bit fields indicates the number of the first antenna port set in the M antenna port sets.
  • CSI the K2-th first bit field in the M first bit fields indicates the CSI of the second antenna port set in the M antenna port sets, where K1 and K2 are positive integers less than or equal to M, and K1 is less than K2 , the channel quality of the first antenna port set is greater than or equal to the channel quality of the second antenna port set.
  • the terminal device can discard bits with low priority in the first information, and give priority to ensuring effective transmission of CSI corresponding to antenna port sets with high channel quality, thereby improving system performance.
  • the first information includes M second bit fields, and the M second bit fields respectively indicate indexes of M antenna port sets.
  • the present application provides a method for measuring CSI.
  • the network device sends reference signal resource configuration information, where the reference signal resource configuration information indicates a first reference signal resource, where the first reference signal resource includes P antenna ports, and P is a positive integer.
  • the network device receives the first information, the first information includes M CSIs corresponding to the M antenna port sets one by one, and the antenna ports in any antenna port set in the M antenna port sets are the antennas in the P antenna port sets ports, where M is a positive integer, and the number of antenna ports in at least one of the M antenna port sets is smaller than P.
  • the network device can obtain the CSI corresponding to the antenna port set whose number of antenna ports is less than the total number of antenna ports, and then determine the number of transmission channels that need to be used for sending signals, so as to dynamically adjust the number of transmission channels and reduce the energy consumption of network equipment the goal of.
  • M is an integer greater than or equal to 2.
  • different antenna port sets include different numbers of antenna ports; or, different antenna port sets include the same number of antenna ports, but the included antenna ports are not completely the same or completely different.
  • the network device can obtain CSI of multiple dimensions (that is, a set of multiple antenna ports), dynamically adjust the number of transmission channels under the premise of meeting the information transmission requirements, and improve the network device's judgment whether to enter the energy-saving mode or determine the transmission signal. The accuracy of the number of transmit channels that need to be used.
  • the M antenna port sets are predefined by the protocol.
  • the antenna ports included in any antenna port set in the M antenna port sets are the antenna ports in the above P antenna ports.
  • the M antenna port sets are the M antenna port sets in the N antenna port sets, the N antenna port sets are predefined by the protocol, and any antenna in the N antenna port sets
  • the antenna ports in the port set are all antenna ports in the P antenna ports, and N is an integer greater than M.
  • the network device sends the first indication information, and the first indication information indicates N antenna port sets, and the M antenna port sets are M antenna port sets in the N antenna port sets, and the N antenna port sets are Antenna ports in any antenna port set in the antenna port set are antenna ports in the P antenna ports.
  • the network device sends second indication information to the terminal device, and the second indication information indicates the mode of CSI measurement, and the mode of CSI measurement includes mode 1 or mode 2, wherein mode 1 is at least based on P Some of the antenna ports in the P antenna ports measure CSI; Mode 2 is to measure the CSI based on all the antenna ports in the P antenna ports.
  • the network device sends third indication information to the terminal device, where the third indication information indicates a first threshold value, and the first threshold value is used to determine the M antenna port sets.
  • the network device sends second indication information to the terminal device, where the second indication information indicates M antenna port sets; or, the second indication information indicates X antenna ports among the P antenna ports, wherein, the antenna ports in the M antenna port sets are all antenna ports in the X antenna ports, or, the antenna ports in the M antenna port sets are all antenna ports except the X antenna ports in the P antenna ports .
  • the second indication information indicates a second resource in the first reference signal resources, and the second resource corresponds to M antenna port sets, or the second resource corresponds to X antenna ports.
  • the second indication information indicates indices of X antenna ports among the P antenna ports, or, the second indication information indicates indices of a set of M antenna ports.
  • the first information includes M first bit fields, and the K1-th first bit field in the M first bit fields indicates the number of the first antenna port set in the M antenna port sets.
  • CSI the K2th first bit field in the M first bit fields indicates the CSI of the second antenna port set in the M antenna port sets, where K1 and k2 are positive integers less than or equal to M, and K1 is less than K2 , the number of antenna ports included in the first antenna port set is greater than or equal to the number of antenna ports included in the second antenna port set.
  • the network device can preferentially obtain the CSI including the antenna port set with a large number of antenna ports, thereby improving system performance.
  • the first information includes M first bit fields, and the K1-th first bit field in the M first bit fields indicates the number of the first antenna port set in the M antenna port sets.
  • CSI the K2-th first bit field in the M first bit fields indicates the CSI of the second antenna port set in the M antenna port sets, where K1 and K2 are positive integers less than or equal to M, and K1 is less than K2 , the channel quality of the first antenna port set is greater than or equal to the channel quality of the second antenna port set.
  • the network device when the terminal device discards the lower bits in the first information due to limited resources, the network device can preferentially obtain the CSI of the antenna port set with better channel quality, thereby improving system performance.
  • the first information includes M second bit fields, and the M second bit fields respectively indicate indexes of M antenna port sets.
  • the present application provides a communication device, configured to implement the function of the terminal in the method provided in the first aspect above.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes a receiving unit and a sending unit.
  • the receiving unit is configured to receive reference signal resource configuration information, where the reference signal resource configuration information indicates a first reference signal resource, the first reference signal resource includes P antenna ports, and P is a positive integer.
  • the sending unit is used to send the first information, the first information includes M CSIs corresponding to the M antenna port sets one-to-one, and the antenna ports in any antenna port set in the M antenna port sets are all P antenna ports antenna ports, where M is a positive integer, and the number of antenna ports in at least one of the M antenna port sets is less than P.
  • the receiving unit is further configured to receive first indication information, where the first indication information indicates N antenna port sets, and the M antenna port sets are N antennas For the M antenna port sets in the port set, the antenna ports in any antenna port set in the N antenna port sets are the antenna ports in the P antenna ports.
  • the receiving unit is further configured to receive second indication information, where the second indication information indicates a CSI measurement mode, and the CSI measurement mode includes mode 1 or mode 2.
  • the communication device further includes a processing unit, configured to determine M antenna port sets according to a first threshold value, where the first threshold value is indicated by third indication information; or, The processing unit is configured to determine M antenna port sets according to channel qualities of the N antenna port sets.
  • the receiving unit is further configured to receive second indication information, where the second indication information indicates M antenna port sets; or, the second indication information indicates X antenna ports among the P antenna ports, wherein, the antenna ports in the M antenna port sets are all antenna ports in the X antenna ports, or, the antenna ports in the M antenna port sets are all antenna ports except the X antenna ports in the P antenna ports .
  • the present application provides a communication device, configured to implement the function of the network device in the method provided in the second aspect above.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes a sending unit and a receiving unit.
  • the sending unit is configured to send reference signal resource configuration information, where the reference signal resource configuration information indicates a first reference signal resource, the first reference signal resource includes P antenna ports, and P is a positive integer.
  • the receiving unit is configured to receive the first information, the first information includes M CSIs corresponding to the M antenna port sets one-to-one, and the antenna ports in any antenna port set in the M antenna port sets are all in the P antenna port sets antenna ports, where M is a positive integer, and the number of antenna ports in at least one of the M antenna port sets is less than P.
  • the sending unit is further configured to send first indication information, where the first indication information indicates N antenna port sets, and the M antenna port sets are M antenna port sets in the N antenna port sets , N is an integer greater than or equal to M, and the antenna ports in any one of the N antenna port sets are the antenna ports in the P antenna ports.
  • the sending unit is further configured to send second indication information, where the second indication information indicates a CSI measurement mode, and the CSI measurement mode includes mode 1 or mode 2.
  • the sending unit is further configured to send third indication information, where the third indication information is used to indicate a first threshold value, and the first threshold value is used to determine the M antenna port sets.
  • the sending unit is further configured to send second indication information, where the second indication information indicates M antenna port sets; or, the second indication information indicates X antenna ports among the P antenna ports, wherein, the antenna ports in the M antenna port sets are all antenna ports in the X antenna ports, or, the antenna ports in the M antenna port sets are all antenna ports except the X antenna ports in the P antenna ports .
  • the present application provides a communication device, which may be the terminal device in the method embodiment provided in the first aspect above, or a chip applied to the terminal device.
  • the communication device includes a processor and an interface circuit, the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or send signals from the processor to the communication device
  • the processor causes the communication device to execute the method performed by the terminal device in the above method embodiments through a logic circuit or by executing code instructions.
  • the present application provides a communication device.
  • the communication device may be the network device in the method embodiment provided in the second aspect above, or a chip applied to the network device.
  • the communication device includes a processor and an interface circuit, the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or send signals from the processor to the communication device
  • the processor causes the communication device to execute the method performed by the network device in the above method embodiments through a logic circuit or by executing code instructions.
  • the present application provides a computer-readable storage medium, the computer-readable storage medium stores instructions, and when the instructions are executed by the communication device, the method performed by the terminal device in the above-mentioned first aspect is executed , or cause the method performed by the network device in the above second aspect to be performed.
  • the present application provides a computer program product, the computer program product includes a computer program, and when the computer program runs, the method performed by the terminal device in the above first aspect is executed, or the above first aspect is executed. The method performed by the network device of the two aspects is performed.
  • the present application provides a chip system, where the chip system includes a processor, configured to implement the functions of the terminal device in the method of the first aspect above, or implement the functions of the network device in the method of the second aspect above.
  • the chip system further includes a memory, configured to store program instructions and/or data.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present application provides a communication system, including at least one communication device in the third aspect or the fifth aspect; and at least one communication device in the fourth aspect or the sixth aspect.
  • FIG. 1 is a schematic structural diagram of a mobile communication system applied in an embodiment of the present application
  • FIG. 2 is a schematic diagram of a relationship between an antenna port and a reference signal resource
  • Fig. 3 is the schematic diagram of CSI measuring method
  • FIG. 4 is a schematic flowchart of a CSI measurement method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a corresponding manner between an antenna port set and an antenna port provided by an embodiment of the present application
  • FIG. 6 is a schematic diagram of second indication information indicating a second resource
  • FIG. 7 is another schematic diagram of second indication information indicating a second resource
  • FIG. 8 is another schematic diagram of the second indication information indicating the second resource
  • FIG. 9 is a schematic flowchart of another CSI measurement method provided by the embodiment of the present application.
  • FIG. 10 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another communication device provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a communication system 1000 applied in an embodiment of the present application.
  • the communication system includes a radio access network 100 and a core network 200 , and optionally, the communication system 1000 may also include the Internet 300 .
  • the radio access network 100 may include at least one radio access network device (such as 110a and 110b in FIG. 1 ), and may also include at least one terminal (such as 120a-120j in FIG. 1 ).
  • the terminal is connected to the wireless access network device in a wireless manner, and the wireless access network device is connected to the core network in a wireless or wired manner.
  • the core network equipment and the wireless access network equipment can be independent and different physical equipment, or the functions of the core network equipment and the logical functions of the wireless access network equipment can be integrated on the same physical equipment, or it can be a physical equipment It integrates some functions of core network equipment and some functions of radio access network equipment. Terminals and wireless access network devices may be connected to each other in a wired or wireless manner.
  • FIG. 1 is only a schematic diagram.
  • the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 1 .
  • the radio access network equipment can be a base station (base station), an evolved base station (evolved NodeB, eNodeB), a transmission reception point (transmission reception point, TRP), and the next generation in the fifth generation (5th generation, 5G) mobile communication system
  • Base station (next generation NodeB, gNB), the next generation base station in the sixth generation (6th generation, 6G) mobile communication system, the base station in the future mobile communication system or the access node in the WiFi system, etc.; it can also complete the base station part
  • a functional module or unit for example, can be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the CU here completes the functions of the radio resource control protocol and the packet data convergence protocol (PDCP) of the base station, and also completes the function of the service data adaptation protocol (SDAP); the DU completes the functions of the base station
  • the functions of the radio link control layer and the medium access control (medium access control, MAC) layer can also complete the functions of part of the physical layer or all of the physical layer.
  • 3rd generation partnership project, 3GPP third generation partnership project
  • the radio access network device may be a macro base station (such as 110a in Figure 1), a micro base station or an indoor station (such as 110b in Figure 1), or a relay node or a donor node.
  • the embodiment of the present application does not limit the specific technology and specific equipment form adopted by the radio access network equipment.
  • a base station is used as an example of a radio access network device for description below.
  • a terminal may also be called terminal equipment, user equipment (user equipment, UE), mobile station, mobile terminal, and so on.
  • Terminals can be widely used in various scenarios, such as device-to-device (D2D), vehicle-to-everything (V2X) communication, machine-type communication (MTC), Internet of Things ( internet of things, IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wearables, smart transportation, smart city, etc.
  • Terminals can be mobile phones, tablet computers, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal.
  • Base stations and terminals can be fixed or mobile. Base stations and terminals can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and artificial satellites in the air. The embodiments of the present application do not limit the application scenarios of the base station and the terminal.
  • the helicopter or UAV 120i in FIG. base station for base station 110a, 120i is a terminal, that is, communication between 110a and 120i is performed through a wireless air interface protocol.
  • communication between 110a and 120i may also be performed through an interface protocol between base stations.
  • 120i compared to 110a, 120i is also a base station. Therefore, both the base station and the terminal can be collectively referred to as a communication device, 110a and 110b in FIG. 1 can be referred to as a communication device with a base station function, and 120a-120j in FIG. 1 can be referred to as a communication device with a terminal function.
  • the communication between the base station and the terminal, between the base station and the base station, and between the terminal and the terminal can be carried out through the licensed spectrum, the communication can also be carried out through the unlicensed spectrum, and the communication can also be carried out through the licensed spectrum and the unlicensed spectrum at the same time; Communications may be performed on frequency spectrums below megahertz (gigahertz, GHz), or communications may be performed on frequency spectrums above 6 GHz, or communications may be performed using both frequency spectrums below 6 GHz and frequency spectrums above 6 GHz.
  • the embodiments of the present application do not limit the frequency spectrum resources used for wireless communication.
  • the functions of the base station may also be performed by modules (such as chips) in the base station, or may be performed by a control subsystem including the functions of the base station.
  • the control subsystem including base station functions here may be the control center in the above application scenarios such as smart grid, industrial control, intelligent transportation, and smart city.
  • the functions of the terminal may also be performed by a module (such as a chip or a modem) in the terminal, or may be performed by a device including the terminal function.
  • the base station sends downlink signals or downlink information to the terminal, and the downlink information is carried on the downlink channel; the terminal sends an uplink signal or uplink information to the base station, and the uplink information is carried on the uplink channel.
  • the terminal In order to communicate with the base station, the terminal needs to establish a wireless connection with the cell controlled by the base station. A cell with which a terminal has established a wireless connection is called a serving cell of the terminal. When the terminal communicates with the serving cell, it will also be interfered by signals from neighboring cells.
  • the radio frequency (radio frequency, RF) transmission channel is referred to as the transmission channel, which is a physical concept.
  • the transmit channels in the embodiments of the present application refer to ports of physical antennas rather than ports of logical antennas.
  • the transmit channel can receive the baseband signal from the baseband chip, perform radio frequency processing on the baseband signal (such as up-conversion, amplification and filtering) to obtain a radio frequency signal, and finally radiate the radio frequency signal into space through the antenna.
  • the transmission channel may include an antenna switch, an antenna tuner, a power amplifier (power amplifier, PA), a mixer (mixer), a local oscillator (local oscillator, LO), a filter (filter) and other electronic devices. One or more, these electronic devices can be integrated into one or more chips as needed.
  • the antenna can also sometimes be considered as part of the transmit channel.
  • the term "physical antenna” may sometimes be interchanged with "transmission channel”.
  • the antenna port may also be referred to as a port for short.
  • the antenna ports in the embodiments of the present application refer to logical antenna ports rather than physical antenna ports.
  • the signal transmitted on each antenna port is transmitted through the associated transmit channel.
  • the signal transmitted on each logical antenna port The signal is weighted by the weighting coefficient and then transmitted through multiple transmission channels.
  • multiple physical antennas are weighted by the weighting coefficient to form a logical antenna.
  • the weighting coefficients here may be complex numbers or real numbers, and the weighting coefficients on different physical antennas may be the same or different.
  • Each antenna port has corresponding time-frequency resources and reference signals.
  • Time-frequency resources corresponding to different antenna ports may be the same or different.
  • the reference signal transmitted by the base station through antenna port A can be used by the terminal to estimate the characteristics of the wireless channel from antenna port A to the terminal, and the characteristics of the wireless channel can be used by the terminal to estimate the physical channel transmitted through antenna port A, or use It is used to determine the modulation order, code rate and other information during data transmission.
  • One reference signal may correspond to one or more antenna ports.
  • CSI is used to characterize the characteristics of the wireless channel, which can include channel quality indicator (channel quality indicator, CQI), precoding matrix indicator (precoding matrix indicator, PMI), CSI-RS resource indicator (CSI-RS resource indicator, CRI), synchronization Synchronization signal/physical broadcast channel block (SSB) resource indicator (SSB resource indicator, SSBRI), layer indicator (layer indicator, LI), rank indicator (rank indicator, RI), L1-reference signal reception At least one of power (reference signal received power, RSRP) and L1-signal to interference plus noise ratio (signal to interference plus noise ratio, SINR).
  • These CSIs can be sent by the UE to the base station through PUCCH or PUSCH.
  • the reference signal is a known signal provided by the transmitting end to the receiving end for channel estimation or channel detection.
  • the reference signal can be used for channel measurement, interference measurement, etc., such as measuring reference signal receiving quality (reference signal receiving quality, RSRQ), signal-noise ratio (signal-noise ratio, SNR), SINR, CQI, PMI and other parameters.
  • the reference signal resources may specifically include at least one of resources such as time-frequency resources, antenna ports, power resources, and scrambling codes of reference signals.
  • the base station can send the reference signal based on the reference signal resource, and the terminal can receive the reference signal based on the reference signal resource.
  • the one or more antenna ports corresponding to the reference signal resources may also be understood as the one or more antenna ports included in the reference signal resources.
  • the reference signals involved in the embodiments of the present application may include one or more of the following reference signals: channel state information reference signal (channel state information-reference signal, CSI-RS), SSB or sounding reference signal ( sounding reference signal, SRS).
  • the reference signal resources may include CSI-RS resources, SSB resources or SRS resources.
  • SSB may also refer to SSB resources.
  • FIG. 2 is a schematic diagram of a corresponding relationship between antenna ports and reference signal resources, in which the horizontal axis represents the time domain, and the vertical axis represents the frequency domain.
  • a resource block (resource block, RB) includes 12 subcarriers and 14 orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols, and the OFDM symbols may also be referred to as time domain symbols or symbols for short.
  • the code division multiplexing (CDM) type of CSI-RS resources is CDM4-FD2-TD2, the number of antenna ports is configured as 32, the frequency domain position indication information is 111100, and the time domain position indication information indicates the CSI-RS resource occupancy
  • the time domain symbols of the time domain starting position of are 6 and 8.
  • CDM4 means that each CDM group includes 4 antenna ports
  • FD2 means that each CDM group occupies two subcarriers in the frequency domain
  • TD2 means that each CDM group occupies two time domains in the time domain symbol.
  • the CSI-RS includes 8 CDM groups
  • each CDM group occupies 4 resource elements (resource elements, REs)
  • each CDM group includes 4 antenna ports. That is, the reference signal resource includes 32 antenna ports, and indexes of the 32 antenna ports are 0-31 respectively.
  • Antenna ports 0, 1, 2, and 3 belong to CDM group 1
  • Antenna ports 4, 5, 6, and 7 belong to CDM group 2
  • Antenna ports 8, 9, 10, and 11 belong to CDM group 3
  • Antenna ports 12, 13, 14, and 15 belong to CDM group 4
  • antenna ports 16, 17, 18, and 19 belong to CDM group 5
  • antenna ports 20, 21, 22, and 23 belong to CDM group 6
  • antenna ports 24, 25, 26, and 27 belong to CDM Group 7, antenna ports 28, 29, 30, and 31 belong to CDM group 8.
  • the base station can indicate the subcarriers occupied by the 32 port resources through the 6-bit frequency domain position indication information.
  • each bit corresponds to two subcarriers on one RB, that is, among the 6 bits, the first bit Corresponding to subcarriers ⁇ 0,1 ⁇ , the second bit corresponds to subcarriers ⁇ 2,3 ⁇ , the third bit corresponds to subcarriers ⁇ 4,5 ⁇ , the fourth bit corresponds to subcarriers ⁇ 6,7 ⁇ , and the fifth bit corresponds to subcarriers Carrier ⁇ 8,9 ⁇ , the sixth bit corresponds to subcarrier ⁇ 10,11 ⁇ .
  • the state value of the 6-bit frequency domain position indication information is 111100
  • the frequency domain resource indication information indicates that the positions of the frequency domain resources occupied by the CSI-RS are subcarrier 0 to subcarrier 7 .
  • the base station then indicates that the time-domain symbols of the time-domain starting position occupied by the CSI-RS are 6 and 8 through the time-domain position indication information.
  • the terminal may determine resources occupied by the CSI-RS through the received time domain position indication information and frequency domain position indication information, thereby determining 32 antenna ports.
  • the terminal measures CSI based on all the antenna ports included in the reference signal resource configured by the base station. All the antenna ports included in the reference signal resource can be understood as a set of antenna ports, and the set of antenna ports is included as a reference signal resource Complete set of antenna ports included. If the number of antenna port sets is used as the dimension, there is only one dimension of CSI measurement in the prior art.
  • the multi-dimensional measurement of CSI may specifically mean that the terminal may measure CSI based on multiple antenna port subsets in the above-mentioned antenna port ensemble.
  • the antenna port subset includes at least one antenna port, and the antenna ports included in the antenna port subset are all antenna ports in the above-mentioned complete antenna port set.
  • the measurement dimension of CSI is the complete set of antenna ports included in the reference signal resources configured by the base station.
  • the dimensionality reduction measurement of CSI may specifically mean that the terminal may measure CSI based on the full set of antenna ports included in the reference signal resource, and may also measure CSI based on at least one proper subset of antenna ports in the full set of antenna ports.
  • the proper subset of antenna ports in the full set of antenna ports includes at least one antenna port, and the number of antenna ports included in the proper subset is smaller than the number of antenna ports included in the full set of antenna ports.
  • the base station in this energy saving scenario may be the radio access network device 110a or 110b in FIG. 1
  • the terminals may be 120a-120j in FIG. 1 .
  • the base station sends reference signal resource configuration information to the terminal.
  • the terminal receives reference signal resource configuration information from the base station.
  • the base station sends configuration information of reference signal resources to the terminal through radio resource control (radio rerource control, RRC) signaling.
  • the configuration information of the reference signal resource is used to indicate the reference signal resource, and the reference signal resource includes the CSI used by the terminal to measure CSI. Antenna port.
  • the reference signal resources include 32 antenna ports.
  • S302 The base station closes S transmission channels, or the base station adds S transmission channels, where S is a positive integer.
  • the base station dynamically turns off S transmission channels; or, after the base station closes some transmission channels, the base station dynamically increases S transmission channels due to an increase in transmission demand.
  • the base station adopts different transmission strategies for terminals with a short distance and terminals with a long distance, and the base station uses different numbers of transmission channels for information transmission between terminals with a short distance and terminals with a long distance. Since the base station requires less power when transmitting information to terminals at a closer distance, fewer transmission channels can be used. Correspondingly, when the base station transmits information to a terminal with a long distance, it needs relatively large power, and therefore needs to use more transmission channels.
  • the base station uses 16 transmission channels for information transmission, and for a terminal with a long distance, the base station uses 32 transmission channels for information transmission. Then, for a terminal that is far away, as the terminal moves closer to the base station, the base station may turn off part of the transmission channel, or, for a terminal that is closer, as the terminal moves away from the base station, It may happen that the base station increases the transmission channel.
  • the interval between closing and increasing the transmission channel may be one or more time units, and one time unit may be one OFDM symbol, one time slot, or one radio frame.
  • S303 The terminal measures and obtains the CSI according to the reference signal resource.
  • the terminal obtains the CSI based on all antenna port measurements included in the reference signal resource.
  • S304 The terminal reports the CSI to the base station.
  • the terminal reports the measured CSI to the base station, so that the base station performs resource scheduling according to the CSI.
  • step S301 due to the change in the number of transmission channels, the antenna port used by the base station to send the reference signal will also change. That is to say, the antenna port through which the base station sends the reference signal will be inconsistent with the antenna port included in the previously configured reference signal resources. If the terminal still receives the reference signal based on the previously configured antenna port, the CSI determined by the terminal will be inaccurate.
  • the base station when one transmission channel is associated with one antenna port and the reference signal resources include 32 antenna ports, the base station also has 32 transmission channels at this time, if the transmission channels closed by the base station in step S302 are 16 of the above-mentioned 32 antenna ports antenna ports, the number of antenna ports used by the base station to send reference signals is 16, and the terminal measures CSI based on the 32 antenna ports included in the reference signal resources.
  • the CSI determined by the terminal cannot accurately reflect the real channel conditions, which affects communication quality and efficiency. .
  • the present application provides a CSI measurement method.
  • the terminal can measure CSI based on at least one proper subset of antenna ports in the complete set of antenna ports included in the reference signal resource, or based on the complete set of antenna ports and at least one proper subset of antenna ports in the complete set.
  • CSI is measured to obtain CSI of different dimensions, which can realize multi-dimensional measurement or dimensionality reduction measurement of CSI.
  • the network equipment can dynamically adjust the number of transmission channels to reduce the energy consumption of the network equipment.
  • Fig. 4 is a schematic flowchart of a method for measuring CSI provided by the present application. Next, the operation shown in Fig. 4 will be described.
  • the base station sends reference signal resource configuration information to the terminal, and correspondingly, the terminal receives reference signal resource configuration information from the base station.
  • the reference signal resource configuration information is used to indicate the first reference signal resource, where the first reference signal resource includes P antenna ports, where P is a positive integer.
  • the reference signal resource configuration information includes information on transmission resources required for CSI measurement, and the CSI measurement may include channel measurement.
  • the reference signal resource configuration information includes frequency domain resource configuration, time domain resource configuration, code group configuration, antenna port configuration and other information.
  • the first reference signal resources may be CSI-RS resources or SSB resources.
  • the CSI-RS resources may be non-zero-power (none-zero-power, NZP) CSI-RS resources.
  • the first reference signal resource is a channel measurement resource (channel measurement resource, CMR).
  • the base station sends first indication information to the terminal, and correspondingly, the terminal receives the first indication information from the base station.
  • the first indication information is used to indicate N antenna port sets, where N is a positive integer.
  • the antenna ports included in any antenna port set in the N antenna port sets are all one of the above-mentioned P antenna ports, and there is at least one antenna port set in the N antenna port sets whose number of antenna ports is less than P .
  • the first indication information may be carried in RRC signaling, and the first indication information may be carried in the same piece of RRC signaling as the reference signal resource configuration information in S401 above.
  • the base station may select P(i) antenna ports from P antenna ports to form an antenna port set i, where i is a natural number less than N, and P(i) is a positive integer less than or equal to P.
  • N the number of antenna ports included in different antenna port sets is different; or, the number of antenna ports included in different antenna port sets is the same, but the included antenna ports are different; or, the number of antenna ports included in different antenna port sets and included antenna ports are different.
  • numbers of the P antenna ports are respectively 0 ⁇ (P ⁇ 1), and the numbers can also be understood as indexes of different antenna ports.
  • numbers of the N antenna port sets are respectively 0 to (N-1), and the numbers can also be understood as indexes of different antenna port sets. It can be understood that the numbers or indexes in the embodiments of the present application may start from 0 or 1.
  • FIG. 5 is an example of a set of N antenna ports provided by the embodiment of the present application.
  • P is 32
  • N is 4, and the number of antenna ports included in the antenna port set with index 0 is 32, that is, the antenna port set with index 0 includes all antenna ports corresponding to the first reference signal resource.
  • the number of antenna ports included in the antenna port set with index 1 is 16, corresponding to the 16 antenna ports with even indexes, and the antenna port set with index 1 can also be expressed as ⁇ 0, 2, 4, 6, 8, 10 , 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 ⁇ .
  • the number of antenna ports included in the antenna port set with index 2 is 8, corresponding to antenna ports with antenna port indexes 0, 2, 4, 6, 16, 18, 20, and 22, respectively.
  • the number of antenna ports included in the antenna port set with index 3 is 4, corresponding to antenna ports with antenna port indexes 0, 2, 16, and 18, respectively.
  • N may also be 6, 8, or 10 and other numerical values.
  • the N antenna port sets may also be predefined by the protocol.
  • the base station and the terminal may know in advance the number of antenna ports included in each of the N antenna port sets without signaling interaction.
  • Antenna port That is to say, S402 is optional.
  • the base station sends the second indication information to the terminal, and correspondingly, the terminal receives the second indication information from the base station.
  • the second indication information is used to indicate M antenna port sets, and the M antenna port sets are antenna port sets in the N antenna port sets. It can also be understood that the N antenna port sets include M antenna port sets.
  • the second indication information is used to indicate X antenna ports in the P antenna ports, wherein, the antenna ports in the M antenna port sets are all antenna ports in the X antenna ports, or, in the M antenna port sets The antenna ports of are all antenna ports except the X antenna ports among the P antenna ports.
  • M is a positive integer less than or equal to N.
  • the second indication information When the second indication information is used to indicate X antenna ports in the P antenna ports, the second indication information indicates the complete set of antenna ports in the M antenna port set, and it can also be understood at this time that the second indication information passes Indicates the complete set of antenna ports in the M antenna port sets, and indirectly indicates the M antenna port sets.
  • the second indication information indicates the complement of the antenna ports in the M antenna port sets in the P antenna ports, and the second indication information indicates the antenna ports that do not belong to the M antenna port sets among the P antenna ports, Indirectly indicates the set of M antenna ports.
  • M is greater than or equal to 2, and any antenna in the M antenna port sets
  • the antenna ports in the port set are the antenna ports in the X antenna ports.
  • M is 1, and all the X antenna ports form an antenna port set.
  • the second indication information indicates indexes of M antenna port sets.
  • the antenna port set indicated by the second indication information is the antenna port set with the index 0 and the antenna port set with the index 1.
  • the two antenna port sets indicated by the second indication information are ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 ⁇ and ⁇ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 ⁇ .
  • the second indication information indicates the M antenna port sets in the form of a bitmap.
  • the second indication information includes N bits, and the N bits correspond to N antenna port sets one by one.
  • a different state value of each bit indicates that the corresponding antenna port set belongs to or does not belong to the M antenna ports. gather. For example, a bit value of 0 indicates that the antenna port set corresponding to the bit does not belong to the M antenna port sets, a bit value of 1 indicates that the antenna port set corresponding to the bit belongs to the M antenna port sets; or, a bit value of 1 indicates that the antenna port set corresponding to the bit The port set does not belong to the M antenna port sets, and the bit value 0 indicates that the antenna port set corresponding to this bit belongs to the M antenna port sets.
  • the second indication information indicates the second resource in the first reference signal resource, and the second resource corresponds to M antenna port sets. That is, the second indication information notifies the terminal of the antenna port sets that need to measure the CSI by indicating the second resources corresponding to the M antenna port sets.
  • the second indication information is used to indicate X antenna ports among the P antenna ports, several possible implementation manners are given below.
  • the second indication information indicates the indexes of the X antenna ports, and the X antenna ports belong to the M antenna port sets, which can also be understood as the antenna ports in the M antenna port sets are all the antenna ports in the X antenna ports.
  • the M antenna port sets are an antenna port set composed of antenna ports with indexes 0, 2, 16, and 18, that is, the second The indication information indicates antenna port set 3 .
  • the second indication information indicates 0, 2, 16, 18, 4, 6, 20, 22, the second indication information indicates two antenna port sets, which are antenna port set 3 and antenna port set 2 respectively.
  • the second indication information indicates the indexes of the X antenna ports, and the X antenna ports do not belong to the M antenna port sets.
  • the antenna ports in the M antenna port sets are all the P antenna ports except the X antenna Antenna ports other than ports.
  • the division method of the antenna port set shown in FIG. 5 is described in detail.
  • the M antenna port sets do not include an index of 8, 10, 24, or 26.
  • the M antenna port sets are the antenna port set ⁇ 0, 2, 16, 18 ⁇ and the line port set ⁇ 0, 2, 16, 18, 4, 6 , 20, 22 ⁇ , that is, antenna port set 3 and antenna port set 2.
  • the second indication information indicates X antenna ports in the form of a bitmap
  • the second indication information includes P bits
  • the P bits are in one-to-one correspondence with the P antenna ports.
  • different state values of each bit indicate that the corresponding antenna port belongs to or does not belong to the M antenna port sets.
  • a bit value of 0 indicates that the antenna port corresponding to the bit does not belong to the M antenna port sets
  • a bit value of 1 indicates that the antenna port corresponding to the bit belongs to the M antenna port sets
  • a bit value of 1 indicates that the antenna port corresponding to the bit does not belong to the M antenna port sets
  • a bit value of 0 indicates that the antenna port corresponding to this bit belongs to M antenna port sets.
  • the second indication information indicates the second resource in the first reference signal resource, and the second resource corresponds to X antenna ports.
  • the second indication information notifies the terminal of antenna ports that need to measure CSI or antenna ports that do not measure CSI by indicating the second resources corresponding to the X antenna ports.
  • a detailed description is given by taking X antenna ports belonging to M antenna port sets as an example.
  • the second indication information indicates the second resource in the form of a bitmap
  • the second indication information includes a plurality of bits, each bit in the plurality of bits corresponds to a time-frequency resource, and each time-frequency resource corresponds to one or more Among the multiple bits, the different state values of each bit indicate that one or more antenna ports corresponding to the corresponding time-frequency resources belong to or do not belong to X antenna ports.
  • a bit value of 0 indicates that the bit corresponds to The one or more antenna ports corresponding to the time-frequency resources are not among the X antenna ports
  • the bit value 1 indicates that the one or more antenna ports corresponding to the time-frequency resources corresponding to this bit are among the X antenna ports.
  • the second indication information includes 8 bits, which correspond to the time-frequency resources corresponding to the 8 CDM groups respectively.
  • the 8 CDM groups are respectively Number 0 ⁇ 8.
  • the second resource indicated by the second indication information is the resource where CDM group 0, CDM group 1, CDM group 4, and CDM group 5 are located in the first reference signal resource.
  • the X antenna ports are 16 antenna ports included in CDM group 0, CDM group 1, CDM group 4, and CDM group 5.
  • the second indication information indicates the time domain position and/or frequency domain position where the second resource is located, and the antenna ports included in the first reference signal resource at the time domain position and/or frequency domain position are X antenna ports .
  • the CDM type of the first reference signal resource is CDM4-FD2-TD2
  • the number of antenna ports is configured as 32
  • the frequency domain position indication information is 111100
  • the time domain position indication information indicates the first reference signal
  • the start positions of the time domain occupied by resources are symbols 6 and 8.
  • the second indication information indicates the frequency domain position of the second resource, and the time domain resource of the second resource is the same as the first reference signal resource. Specifically, the second indication information indicates the frequency domain position in the second resource through the first bitmap.
  • the first bit of the first bitmap corresponds to the subcarrier ⁇ 0,1 ⁇ in the first reference signal resource
  • the second bit of the first bitmap corresponds to subcarriers ⁇ 2,3 ⁇
  • the third bit of the first bitmap corresponds to subcarriers ⁇ 4,5 ⁇
  • the fourth bit of the first bitmap corresponds to subcarriers ⁇ 6,7 ⁇ .
  • the first bitmap A value of 1010 indicates that the subcarriers occupied by the second resource are subcarriers 0, 1, 4, and 5 in the first reference signal resource, so the resources corresponding to the second resource are shown in Figure 7, and the second resource can be used for measurement CSI corresponding to an antenna port set including 16 antenna ports.
  • the second indication information indicates the time domain position of the second resource, and the frequency domain resource of the second resource is the same as the first reference signal resource. Specifically, the second indication information indicates the time domain position in the second resource through the second bitmap.
  • the first bit of the bitmap corresponds to the first symbol group in the first reference signal resource, that is, symbol 6 and symbol 7 .
  • the second bit of the bitmap corresponds to the second symbol group in the first reference signal resource, that is, symbol 8 and symbol 9 . Since each bit in the second bitmap corresponds to a symbol group, a value of 1 indicates that the second resource occupies the corresponding symbol group, and a value of 0 indicates that the second resource does not occupy the corresponding symbol group.
  • Bitmap 10 indicates that the symbol groups occupied by the second resource are symbol 6 and symbol 7 in the first reference signal resource.
  • Resources corresponding to the second resource are shown in FIG. 7 , and the second resource may be used to measure CSI corresponding to an antenna port set including 16 antenna ports.
  • the second indication information indicates a frequency domain position and a time domain position of the second resource.
  • the second indication information may respectively indicate the frequency domain position and the time domain position of the second resource through the first bitmap and the second bitmap.
  • the first bitmap takes a value of 1010
  • the second bitmap takes a value of 10. Resources corresponding to the second resource are shown in FIG. 8 , and the second resource may be used to measure CSI corresponding to an antenna port set including 8 antenna ports.
  • the M antenna port sets may be indicated to the terminal by the base station through signaling, or may be determined by the terminal itself.
  • M can be a fixed value of N, or the protocol predefines the relationship between M and N.
  • N is predefined by the protocol
  • M is predefined by the protocol
  • the above M antenna port sets are predefined by the protocol. That is to say, S403 is optional.
  • the terminal sends first information to the base station, where the first information includes M CSIs that correspond one-to-one to the M antenna port sets, and correspondingly, the base station receives the first information sent by the terminal.
  • the CSIs corresponding to different antenna port sets in the M antenna port sets are different .
  • the first information includes M first bit fields, and each of the M first bit fields indicates the CSI corresponding to the M antenna port sets.
  • Table 1 shows an example of M first bit fields in the first information.
  • the first information includes a bit sequence, which can be divided into M sections of first bit fields, respectively a 0 , a 1 , a 2 , a 3 , a 4 , ... a (M-1) , where M
  • the antenna port sets are respectively O 0 , O 1 , O 2 , O 3 , O 4 , ... O (M-1) .
  • a i indicates the CSI of O i
  • i is a natural number smaller than M.
  • the order of the M first bit fields in the bit stream of the first information is determined according to the number of antenna ports in the antenna port set corresponding to the bit fields.
  • the corresponding The position of the first bit field in the bit stream of the first information is earlier, or in other words, the sequence number of the corresponding first bit field in the bit stream of the first information is smaller.
  • the K1-th first bit field in the M first bit fields indicates the CSI of the first antenna port set in the M antenna port sets
  • the K2-th first bit field in the M first bit fields indicates M
  • the CSI of the second antenna port set in the first antenna port set, K1 and K2 are positive integers less than or equal to M, where K1 is less than K2, and the number of antenna ports in the first antenna port set is greater than or equal to the second antenna port set The number of antenna ports in .
  • the priority of the bit at the back in the bit stream of the first information is higher, and the transmission opportunity will be obtained first when the transmission resources are limited, then for the antenna port set with a larger number of antenna ports, the corresponding The position of the first bit field in the bit stream of the first information is later, or in other words, the sequence number of the corresponding first bit field in the bit stream of the first information is higher.
  • the K1-th first bit field in the M first bit fields indicates the CSI of the first antenna port set in the M antenna port sets
  • the K2-th first bit field in the M first bit fields indicates M
  • the CSI of the second antenna port set in the antenna port set, K1 and K2 are positive integers less than or equal to M, where K1 is less than K2, and the number of antenna ports in the second antenna port set is greater than or equal to the first antenna port set The number of antenna ports in .
  • the base station and the terminal can have a consistent understanding of the sorting manner of the M first bit fields in the first information, ensuring correct transmission of the first information.
  • the above method can also enable the terminal to discard the bits with lower priority in the first information when resources are limited, and give priority to ensuring the effective transmission of CSI of the antenna port set with more antenna ports, thereby improving system performance.
  • the order of the M first bit fields in the bit stream of the first information is determined according to the channel quality of the antenna port set corresponding to the bit field.
  • the priority of the bit at the front i.e. the upper bit
  • the transmission opportunity will be obtained first when the transmission resources are limited
  • its The position of the corresponding first bit field in the bit stream of the first information is higher, or in other words, the sequence number of the corresponding first bit field in the bit stream of the first information is smaller.
  • the K1-th first bit field in the M first bit fields indicates the CSI of the first antenna port set in the M antenna port sets
  • the K2-th first bit field in the M first bit fields indicates M
  • the CSI of the second antenna port set in the antenna port set, K1 and K2 are positive integers less than or equal to M, where K1 is less than K2, and the channel quality of the second antenna port set is greater than or equal to the channel quality of the first antenna port set .
  • the bit in the bit stream of the first information (that is, the lower bit) has a higher priority, and the transmission opportunity will be obtained first when the transmission resource is limited, then for the antenna port set with better channel quality, its The position of the corresponding first bit field in the bit stream of the first information is later, or in other words, the sequence number of the corresponding first bit field in the bit stream of the first information is larger.
  • the K1-th first bit field in the M first bit fields indicates the CSI of the first antenna port set in the M antenna port sets
  • the K2-th first bit field in the M first bit fields indicates M
  • the CSI of the second antenna port set in the antenna port set, K1 and K2 are positive integers less than or equal to M, where K1 is less than K2, and the channel quality of the second antenna port set is greater than or equal to the channel quality of the first antenna port set .
  • the terminal can discard the bits with lower priority in the first information, and give priority to ensuring the effective transmission of CSI of the antenna port set with better channel quality, thereby improving system performance.
  • the channel quality of the antenna port set may also be referred to as the channel quality corresponding to the antenna port set, and refers to the channel quality obtained by the terminal measuring each port in the port set.
  • the terminal discards the high-order bits or low-order bits in the first information
  • the M antenna port sets have different priorities at this time. For example, when the position of the first bit field with a larger number of antenna ports in the corresponding antenna port set is lower, and the terminal resource is limited, the high-order bits in the first information are discarded.
  • An antenna port set that includes a large number of antenna ports has a higher priority.
  • the channel A set of antenna ports with better quality has higher priority.
  • the terminal may also report the indices of the M antenna port sets in the first information.
  • the first information further includes M second bit fields, the M second bit fields each indicate the indices of the M antenna port sets, and the M second bit fields correspond to the M first bit fields one by one.
  • Table 2 shows an example in which when M is equal to 4, the first information includes 4 CSIs corresponding to 4 antenna port sets one-to-one.
  • the "CSI report” also includes the first information of M CSIs.
  • the base station directly or indirectly indicates the M antenna port sets to the terminal through the second indication information, or the protocol predefines the M antenna port sets.
  • the base station does not directly or indirectly indicate the M antenna port sets through signaling, but the terminal determines the M antenna port sets by itself.
  • Fig. 9 is a schematic flowchart of a CSI measurement method provided by the present application.
  • the base station triggers the terminal to enter different modes through the second indication information (mode indication information), so as to realize multi-dimensional measurement of CSI or dimensionality reduction measurement of CSI.
  • mode indication information the second indication information
  • the operation shown in Fig. 9 will be described.
  • the base station sends reference signal resource configuration information to the terminal, and accordingly, the terminal receives reference signal resource configuration information from the base station.
  • reference signal resource configuration information For a detailed description of the reference signal resource configuration information, reference may be made to the relevant description of S401 in FIG. 4 .
  • the base station sends first indication information to the terminal, and correspondingly, the terminal receives the first indication information from the base station.
  • the first indication information is used to indicate N antenna port sets.
  • the first indication information and the N antenna port sets reference may be made to the related description of S402 in FIG. 4 .
  • the base station sends the second indication information to the terminal, and correspondingly, the terminal receives the second indication information from the base station.
  • the second indication information indicates a CSI measurement mode, and the CSI measurement mode includes mode 1 and/or mode 2.
  • the second indication information may be carried in RRC signaling, medium access control control element (medium access control control element, MAC CE) MAC CE or DCI.
  • Mode 1 is that the terminal measures CSI based on at least some of the P antenna ports, or it can be understood that the terminal can measure CSI based on some of the above P antenna ports, or based on some of the above P antenna ports.
  • CSI is measured on all antenna ports and all antenna ports.
  • Mode 1 may also be called an energy-saving mode, or a CSI dimensionality reduction measurement mode, or a CSI multi-dimensional measurement mode.
  • Mode 2 is that the terminal can only measure CSI based on all the antenna ports in the P antenna ports.
  • the second mode can also be called normal mode, or the mode after deactivating CSI dimensionality reduction measurement, or the mode after deactivating CSI multidimensional measurement, and can also be called non-CSI dimensionality reduction measurement mode or non-CSI multidimensional measurement mode.
  • the deactivation here can also be understood as turning off, that is to say, the second indication information is a functional switch indication.
  • the base station can send the second indication information to the terminal to indicate that the CSI measurement mode of the terminal is mode 1, and let the terminal feedback based on some antennas in the above P antenna ports The CSI of the port, or let the terminal feed back the CSI based on some of the above P antenna ports and the CSI based on all of the above P antenna ports.
  • the base station re-opens the closed S transmission channels, the base station enters the normal working mode, and the base station can send the second indication information to the terminal to indicate that the CSI measurement mode of the terminal is mode 2, and the terminal only needs to feed back information based on the above P antenna ports.
  • CSI of all antenna ports When the base station re-opens the closed S transmission channels, the base station enters the normal working mode, and the base station can send the second indication information to the terminal to indicate that the CSI measurement mode of the terminal is mode 2, and the terminal only needs to feed back information based on the above P antenna ports. CSI of all antenna ports.
  • the terminal For the terminal, if the second indication information indicating mode 1 is not received, the terminal measures CSI based on all antenna ports included in the reference signal resource (that is, the aforementioned P antenna ports). After the terminal receives the second indication information indicating mode 1, the terminal determines that the CSI can be measured based on the above-mentioned P antenna ports, and the CSI can also be measured based on a part of the above-mentioned P antenna ports. At this time, it can also be understood that the terminal Enable CSI dimensionality reduction measurement, CSI multidimensional measurement, or CSI measurement in energy-saving mode.
  • the terminal may measure CSI based on the 32 antenna ports, or measure CSI based on some of the 32 antenna ports.
  • the number of antenna port sets for the terminal to measure CSI is at least two, and the number of antenna ports in at least one antenna port set in the at least two antenna port sets is less than P, in this case, it can be considered that the second indication
  • the information indicates a dimensionality reduction measure of CSI, or indicates a multidimensional measure of CSI, or indicates an energy-saving mode.
  • the terminal For the terminal, if the terminal receives the second indication information indicating mode 1, the terminal starts CSI dimensionality reduction measurement, CSI multi-dimensional measurement or CSI measurement in energy-saving mode. If the second indication information indicating mode 2 is not received, the terminal maintains CSI dimensionality reduction measurement, CSI multi-dimensional measurement or CSI measurement in the energy-saving mode. After the terminal receives the second indication information of indication mode 2, the terminal disables CSI dimensionality reduction measurement, CSI multi-dimensional measurement or CSI measurement in energy-saving mode, and the terminal measures CSI based on the above P antenna ports.
  • the terminal determines that the CSI can be measured based on a part of the above-mentioned P antenna ports. Measure CSI. That is, at this time, the second indication information does not need to indicate mode 2, and after the terminal receives the second indication information indicating mode 1, the terminal enters mode 2 automatically after the above time threshold is exceeded.
  • the second indication information indicates mode 1 or mode 2 through different status values of the same indication field.
  • the 1-bit indication field included in the second indication information corresponds to state value 1 and state value 0, wherein state value 1 indicates mode 1, and state value 0 indicates mode 2.
  • the base station indicates that the CSI measurement mode is mode 1 or mode 2 by indicating the shutdown level.
  • the shutdown level may correspond to the number of S transmission channels that are closed, or may correspond to the number of remaining usable transmission channels after the S transmission channels are closed, or may correspond to the number of antenna ports.
  • the number of antenna ports here can also be understood as the number of remaining antenna ports that can be used after the S transmission channels are closed, or the number of antenna ports that are closed after the S transmission channels are closed.
  • the second indication information includes two bits, and the four state values of the two bits correspond to shutdown levels 1 to 4 respectively.
  • the two-bit state value 00 i.e. shutdown level 1 corresponds to P antenna ports
  • the two-bit state value 01 i.e. shutdown level 2 corresponds to P/2 antenna ports
  • the two-bit state value 10 That is, the shutdown level 3) corresponds to P/4 antenna ports
  • the two-bit status value 11 ie, shutdown level 4
  • P/8 antenna ports For example, P is 32, and N antenna ports are shown in Figure 5.
  • the terminal enters mode 1 after receiving the second indication information, and the terminal uses an antenna port with 16 antenna ports
  • the port set measures the CSI, that is, the antenna port set 1 measures the CSI. If the second indication information indicates that the shutdown level is 1, the terminal enters mode 2 after receiving the second indication information, and the terminal measures CSI based on the 32 antenna port CSIs included in the first reference signal resource, that is, measures CSI for antenna port set 0 .
  • the terminal sends first information to the base station, where the first information includes M CSIs that correspond one-to-one to the M antenna port sets, and correspondingly, the base station receives the first information sent by the terminal.
  • the M antenna port sets here may be predefined by the protocol, or may be selected by the terminal itself. Regarding how the terminal selects the M pieces of CSI corresponding to the set of M antenna ports to report to the base station, several possible examples are given below.
  • Mode e1 the terminal measures CSI for N antenna port sets, obtains N CSIs corresponding to the N antenna port sets, selects M CSIs with the best channel quality from the N CSIs, and reports them to the base station through the first information . That is to say, the M antenna port sets are the M antenna port sets with the best channel quality among the N antenna port sets.
  • the channel quality may be at least one of CQI, RSRP, SINR, and RSRQ.
  • the terminal selects the first M antenna port sets with the largest number of antenna ports from the N antenna port sets to measure CSI, obtains M CSIs corresponding to the M antenna port sets, and passes the M CSIs through The first information is sent to the base station. At this time, the terminal does not need to measure the CSI corresponding to the antenna port sets except the M antenna port sets among the N antenna port sets. That is to say, the above M antenna port sets are the M antenna port sets that include the largest number of antenna ports in the above N antenna port sets.
  • the terminal measures the CSI corresponding to one or more antenna port sets in the N antenna port sets until M antenna port sets that meet the preset conditions are selected or the number of measured antenna port sets reaches L.
  • L is a positive integer less than or equal to N.
  • L is the maximum number of antenna port sets that can be measured by the capability of the terminal.
  • the preset condition may be that the channel quality corresponding to the antenna port set is greater than the first threshold.
  • the terminal measures the CSI corresponding to one or more antenna port sets in the N antenna port sets according to the priority of the antenna port sets from high to low, until M antenna port sets or The number of antenna port sets to be measured reaches L.
  • L is the maximum number of antenna port sets to be measured that can be supported by the terminal capability.
  • the priority of the N antenna ports may be that the priority of the antenna port set with a large number of antenna ports is higher, or may be the priority of the antenna port set with a small number of antenna ports.
  • the level is higher, and this application does not limit the priority rules of the antenna port set.
  • the value of M may be predetermined by the protocol, or may be indicated by the base station through signaling.
  • Mode e5 The terminal measures CSI for N antenna port sets, selects one or more antenna port sets that meet the preset conditions as M antenna port sets, and passes the M CSIs corresponding to the M antenna port sets through the first A message is sent to the base station.
  • the preset condition may be that the channel quality corresponding to the antenna port set is greater than the first threshold.
  • the terminal does not need to know the value of M in advance, but uses the antenna port sets corresponding to one or more CSIs among the N CSIs that meet the preset conditions as the M antenna port sets.
  • the measurement here may also consider the number L of the maximum antenna port set that the terminal can support for measurement mentioned in the above manner e3.
  • the measurement may be performed according to the priorities of the N antenna port sets from high to low.
  • the method shown in FIG. 9 further includes step S9031: the base station sends third indication information to the terminal, and the third indication information is used to indicate the first threshold value.
  • the third indication information may be carried in RRC signaling, MAC CE or DCI.
  • the M antenna port sets determined by the terminal are unknown to the base station.
  • the terminal may determine M sets of antenna ports, and report the indexes of the sets of M antenna ports to the base station.
  • the terminal may also report L CSIs of M antenna port sets through the first information, where L is a positive integer greater than M.
  • the first information includes M pieces of channel state information CSI corresponding to M sets of antenna ports
  • the first information includes L channel state information CSI, L is a positive integer.
  • the base station configures multiple second reference signal resources for interference measurement in addition to configuring the first reference signal resource for CSI measurement, in the first information reported by the terminal, in addition to including
  • the M pieces of CSI obtained by measuring part of the second reference signal resources in the second reference signal resources may also include the measurements obtained by the terminal based on the first reference signal resource and other second reference signal resources in the plurality of second reference signal resources One or more CSIs.
  • the base station may configure one first reference signal resource for channel measurement, and configure two second reference signal resources for interference measurement, where the two second reference signal resources are the first second reference signal resource and the second reference signal resource respectively.
  • second reference signal resource at this time, for each antenna port set, the terminal obtains a CSI based on the first reference signal resource and the first second reference signal resource, and the terminal obtains a CSI based on the first reference signal resource and the second second reference signal resource
  • Another CSI is obtained by two reference signal resource measurements, and the terminal reports 2M CSIs of M antenna port sets through the first information.
  • the methods provided in the embodiments of the present application are introduced from the perspectives of the base station, the terminal, and the interaction between the base station and the terminal.
  • the base station and the terminal may include hardware structures and/or software modules, and implement the above various functions in the form of hardware structures or hardware structures plus software structures. Whether one of the above-mentioned functions is executed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the technical solution and design constraints.
  • FIG. 10 and FIG. 11 are schematic structural diagrams of possible communication devices provided by the embodiments of the present application. These communication devices can be used to implement the functions of the terminal or the base station in the above method embodiments, and therefore can also realize the beneficial effects of the above method embodiments.
  • the communication device may be a terminal as shown in FIG. 1, or a wireless access network device as shown in FIG. 1, or a Modules (such as chips).
  • a communication device 1000 includes a receiving module 1001 and a sending module 1002 .
  • the communication device 1000 may be used to implement the functions of the terminal or the base station in the method embodiment shown in FIG. 4 or FIG. 9 above.
  • the receiving module 1001 may be a receiver, and the sending module 1002 may be a transmitter, or the receiving module 1001 and the sending module 1002 may also be transceivers.
  • the receiving module 1101 is used to receive reference signal resource configuration information
  • the reference signal resource configuration information indicates the first reference signal resource
  • the second A reference signal resource includes P antenna ports, where P is a positive integer.
  • the sending module 1102 is used for the first information.
  • the first information includes M CSIs corresponding to the M antenna port sets one-to-one, and the antenna ports included in any antenna port set in the M antenna port sets are all P antenna ports. antenna ports, where M is a positive integer, and the number of antenna ports included in at least one of the M antenna port sets is less than P.
  • the sending module 1002 is used to send reference signal resource configuration information, the reference signal resource configuration information indicates the first reference signal resource, and the first reference
  • the signal resource includes P antenna ports, where P is a positive integer.
  • the receiving module 1101 is configured to receive the first information, the first information includes M CSIs corresponding to the M antenna port sets one-to-one, and any antenna port set in the M antenna port sets includes P antenna ports Antenna ports in , where M is a positive integer, and at least one of the M antenna port sets includes less than P in the number of antenna ports.
  • a communication device 1100 includes a processor 1101 and an interface circuit 1102 .
  • the processor 1101 and the interface circuit 1102 are coupled to each other.
  • the interface circuit 1102 may be a transceiver or an input/output interface.
  • the communication device 1100 may further include a memory 1103 for storing instructions executed by the processor 1101 or storing input data required by the processor 1101 to execute the instructions or storing data generated by the processor 1101 after executing the instructions.
  • the interface circuit 1102 is used to execute the functions of the above receiving module 1001 and sending module 1002 .
  • the terminal chip implements the functions of the terminal in the above method embodiment.
  • the terminal chip receives information from other modules in the terminal (such as radio frequency modules or antennas), and the information is sent to the terminal by the base station; or, the terminal chip sends information to other modules in the terminal (such as radio frequency modules or antennas), and the The information is sent by the terminal to the base station.
  • the base station module implements the functions of the base station in the above method embodiment.
  • the base station module receives information from other modules in the base station (such as radio frequency modules or antennas), and the information is sent to the base station by the terminal; or, the base station module sends information to other modules in the base station (such as radio frequency modules or antennas), the The information is sent by the base station to the terminal.
  • the base station module here may be a baseband chip of the base station, or a DU or other modules, and the DU here may be a DU under an open radio access network (O-RAN) architecture.
  • OF-RAN open radio access network
  • the processor in the embodiments of the present application can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented by means of hardware, or may be implemented by means of a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only Memory, registers, hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC can be located in the base station or the terminal.
  • the processor and the storage medium may also exist in the base station or the terminal as discrete components.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs or instructions. When the computer program or instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, a base station, user equipment or other programmable devices.
  • the computer program or instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instructions may be downloaded from a website, computer, A server or data center transmits to another website site, computer, server or data center by wired or wireless means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrating one or more available media.
  • the available medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; it may also be an optical medium, such as a digital video disk; and it may also be a semiconductor medium, such as a solid state disk.
  • the computer readable storage medium may be a volatile or a nonvolatile storage medium, or may include both volatile and nonvolatile types of storage media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种信道状态信息的测量方法,用于使能网络设备动态调整发射通道数,降低网络设备的能耗。网络设备向终端设备发送参考信号资源配置信息,该参考信号资源配置信息指示P个天线端口。终端设备基于该P个天线端口的全集中的一个或者多个天线端口真子集测量CSI并发送给网络设备。网络设备根据终端设备上报的不同维度的信道状态信息,可以动态调整发射通道的数目,降低网络设备的能耗。

Description

信道状态信息的测量方法和装置
本申请要求于2021年05月31日提交中国专利局、申请号为202110604622.5、申请名称为“信道状态信息的测量方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及无线通信领域,尤其涉及信道状态信息的测量方法和装置。
背景技术
在通信过程中,基站需要根据终端上报的信道状态信息(channel state information,CSI)进行资源调度。为了节能,基站可能会关断部分发射通道,从而降低基站的能耗。
发明内容
本申请提供了一种CSI测量的方法,用于使能网络设备动态调整发射通道数,降低网络设备的能耗。
第一方面,本申请提供一种CSI的测量方法。终端设备接收来自网络设备的参考信号资源配置信息,参考信号资源配置信息指示第一参考信号资源,第一参考信号资源包括P个天线端口,P为正整数。终端设备发送第一信息,第一信息包括M个天线端口集合一一对应的M个CSI,M个天线端口集合中的任一个天线端口集合包括的天线端口属于P个天线端口,其中,M为正整数,M个天线端口集合中的至少一个天线端口集合包括的天线端口的数目小于P。
通过上述测量方法,终端设备通过第一参考信号资源可以获得包括的天线端口数目小于天线端口总数的天线端口集合的CSI,并上报给网络设备,用于网络设备判断是否进入节能模式或者确定发送信号需要使用的发射通道的数目,从而使能网络设备动态调整发射通道数,降低网络设备的能耗。
在一种可选的实现方式中,M为大于或者等于2的整数。其中,不同天线端口集合中的天线端口数目不同;或者,不同天线端口集合包含的天线端口数目相同,但包含的天线端口不完全相同或完全不同。通过该实现方式,终端设备上报多个维度(即多个天线端口集合)的CSI,提高了网络设备判断是否进入节能模式或者确定发射信号需要使用的发射通道数目的准确性。
在一种可选的实现方式中,M个天线端口集合为协议预定义的。其中,该M个天线端口集合中的任一个天线端口集合包括的天线端口均为上述P个天线端口中的天线端口。
在一种可选的实现方式中,M个天线端口集合为N个天线端口集合中的M个天线端口集合,N个天线端口集合为协议预定义的,N个天线端口集合中的任一个天线 端口集合中的天线端口均为P个天线端口中的天线端口,N为大于M的整数。
在一种可选的实现方式中,终端设备接收第一指示信息,第一指示信息指示N个天线端口集合,M个天线端口集合为N个天线端口集合中的M个天线端口集合,N为大于或者等于M的整数,N个天线端口集合中的任一个天线端口集合中的天线端口均为P个天线端口中的天线端口。
在一种可选的实现方式中,终端设备接收第二指示信息,第二指示信息指示CSI测量的模式,CSI测量的模式包括模式一或模式二,其中,模式一为至少基于P个天线端口中的部分天线端口测量CSI;模式二为基于P个天线端口中的全部天线端口测量CSI。
在一种可选的实现方式中,终端设备根据第一门限值确定M个天线端口集合,第一门限值由第三指示信息指示;或者,终端设备根据N个天线端口集合的信道质量确定M个天线端口集合。
在一种可选的实现方式中,终端设备接收第二指示信息,第二指示信息指示M个天线端口集合;或者,第二指示信息指示P个天线端口中的X个天线端口,其中,M个天线端口集合中的天线端口均为X个天线端口中的天线端口,或者,M个天线端口集合中的天线端口均为P个天线端口中除X个天线端口之外的天线端口。
在一种可选的实现方式中,第二指示信息指示第一参考信号资源中的第二资源,第二资源对应M个天线端口集合,或者,第二资源对应X个天线端口。
在一种可选的实现方式中,第二指示信息指示P个天线端口中的X个天线端口的索引,或者,第二指示信息指示M个天线端口集合的索引。
在一种可选的实现方式中,第一信息包括M个第一比特域,M个第一比特域中的第K1个第一比特域指示M个天线端口集合中的第一天线端口集合的CSI,M个第一比特域中的第K2个第一比特域指示M个天线端口集合中的第二天线端口集合的CSI,其中,K1和K2为小于或者等于M的正整数,K1小于K2,第一天线端口集合包括的天线端口的数目大于或者等于第二天线端口集合包括的天线端口的数目。
在上述实现方式中,终端设备在第一信息中,通过M个第一比特域一一指示出M个CSI,且M个第一比特域按照对应的天线端口集合中的天线端口的数目由大到小的顺序排序。通过上述实现方式可以使得网络设备和终端设备对第一信息中的M个第一比特域的排序方式理解一致,保证第一信息的正确传输。此外,上述方法还可以使得终端设备在资源受限时,将第一信息中优先级低的比特位丢弃,优先保证天线端口数目多的天线端口集合的CSI的有效传输,进而提高系统性能。
在一种可选的实现方式中,第一信息包括M个第一比特域,M个第一比特域中的第K1个第一比特域指示M个天线端口集合中的第一天线端口集合的CSI,M个第一比特域中的第K2个第一比特域指示M个天线端口集合中的第二天线端口集合的CSI,其中,K1和K2为小于或者等于M的正整数,K1小于K2,第一天线端口集合的信 道质量大于或者等于第二天线端口集合的信道质量。
通过上述实现方式,终端设备在资源受限时,可以将第一信息中优先级低的比特位丢弃,优先保证信道质量高的天线端口集合对应的CSI的有效传输,进而提高系统性能。
在一种可选的实现方式中,第一信息包括M个第二比特域,M个第二比特域分别指示M个天线端口集合的索引。
第二方面,本申请提供一种CSI的测量方法。网络设备发送参考信号资源配置信息,参考信号资源配置信息指示第一参考信号资源,第一参考信号资源包括P个天线端口,P为正整数。网络设备接收第一信息,第一信息包括与M个天线端口集合一一对应的M个CSI,M个天线端口集合中的任一个天线端口集合中的天线端口均为P个天线端口中的天线端口,其中,M为正整数,M个天线端口集合中的至少一个天线端口集合中的天线端口的数目小于P。
通过上述测量方法,网络设备可以获得包括的天线端口数目小于天线端口总数的天线端口集合对应的CSI,进而确定发送信号需要使用的发射通道数目,从而达到动态调整发射通道数,降低网络设备能耗的目的。
在一种可选的实现方式中,M为大于或者等于2的整数。其中,不同天线端口集合包含的天线端口数目不同;或者,不同天线端口集合包含的天线端口数目相同,但包含的天线端口不完全相同或完全不同。通过该实现方式,网络设备可以获取多个维度(即多个天线端口集合)的CSI,在满足信息传输需求的前提下动态调整发射通道数,提高了网络设备判断是否进入节能模式或者确定发射信号需要使用的发射通道数目的准确性。
在一种可选的实现方式中,M个天线端口集合为协议预定义的。其中,该M个天线端口集合中的任一个天线端口集合包括的天线端口均为上述P个天线端口中的天线端口。
在一种可选的实现方式中,M个天线端口集合为N个天线端口集合中的M个天线端口集合,N个天线端口集合为协议预定义的,N个天线端口集合中的任一个天线端口集合中的天线端口均为P个天线端口中的天线端口,N为大于M的整数。
在一种可选的实现方式中,网络设备发送第一指示信息,第一指示信息指示N个天线端口集合,M个天线端口集合为N个天线端口集合中的M个天线端口集合,N个天线端口集合中的任一个天线端口集合中的天线端口均为P个天线端口中的天线端口。
在一种可选的实现方式中,网络设备向终端设备发送第二指示信息,第二指示信息指示CSI测量的模式,CSI测量的模式包括模式一或模式二,其中,模式一为至少基于P个天线端口中的部分天线端口测量CSI;模式二为基于P个天线端口中的全部天线端口测量CSI。
在一种可选的实现方式中,网络设备向终端设备发送第三指示信息,第三指示信 息指示第一门限值,第一门限值用于确定M个天线端口集合。
在一种可选的实现方式中,网络设备向终端设备发送第二指示信息,第二指示信息指示M个天线端口集合;或者,第二指示信息指示P个天线端口中的X个天线端口,其中,M个天线端口集合中的天线端口均为X个天线端口中的天线端口,或者,M个天线端口集合中的天线端口均为P个天线端口中除X个天线端口之外的天线端口。
在一种可选的实现方式中,第二指示信息指示第一参考信号资源中的第二资源,第二资源对应M个天线端口集合,或者,第二资源对应X个天线端口。
在一种可选的实现方式中,第二指示信息指示P个天线端口中的X个天线端口的索引,或者,第二指示信息指示M个天线端口集合的索引。
在一种可选的实现方式中,第一信息包括M个第一比特域,M个第一比特域中的第K1个第一比特域指示M个天线端口集合中的第一天线端口集合的CSI,M个第一比特域中的第K2个第一比特域指示M个天线端口集合中的第二天线端口集合的CSI,其中,K1和k2为小于或者等于M的正整数,K1小于K2,第一天线端口集合包括的天线端口的数目大于或者等于第二天线端口集合包括的天线端口的数目。
通过上述实现方式,在终端设备由于资源受限而将第一信息中排在后面的比特位丢弃时,网络设备可以优先获得包含天线端口数目多的天线端口集合的CSI,进而提高系统性能。
在一种可选的实现方式中,第一信息包括M个第一比特域,M个第一比特域中的第K1个第一比特域指示M个天线端口集合中的第一天线端口集合的CSI,M个第一比特域中的第K2个第一比特域指示M个天线端口集合中的第二天线端口集合的CSI,其中,K1和K2为小于或者等于M的正整数,K1小于K2,第一天线端口集合的信道质量大于或者等于第二天线端口集合的信道质量。
通过上述实现方式,在终端设备由于资源受限而将第一信息中排在后面的比特位丢弃时,网络设备可以优先获得信道质量更优的天线端口集合的CSI,进而提高系统性能。
在一种可选的实现方式中,第一信息包括M个第二比特域,M个第二比特域分别指示M个天线端口集合的索引。
第三方面,本申请提供一种通信装置,用于实现上述第一方面提供的方法中终端的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
所述通信装置包括接收单元和发送单元。接收单元用于接收参考信号资源配置信息,参考信号资源配置信息指示第一参考信号资源,第一参考信号资源包括P个天线端口,P为正整数。发送单元用于发送第一信息,第一信息包括与M个天线端口集合一一对应的M个CSI,M个天线端口集合中的任一个天线端口集合中的天线端口均为P个天线端口中的天线端口,其中,M为正整数,M个天线端口集合中的至少一 个天线端口集合中的天线端口的数目小于P。
在一种可选的实现方式中在一种可选的实现方式中,接收单元还用于接收第一指示信息,第一指示信息指示N个天线端口集合,M个天线端口集合为N个天线端口集合中的M个天线端口集合,N个天线端口集合中的任一个天线端口集合中的天线端口均为P个天线端口中的天线端口。
在一种可选的实现方式中,接收单元还用于接收第二指示信息,第二指示信息指示CSI测量的模式,CSI测量的模式包括模式一或模式二。
在一种可选的实现方式中,所述通信装置还包括处理单元,处理单元用于根据第一门限值确定M个天线端口集合,第一门限值由第三指示信息指示;或者,处理单元用于根据N个天线端口集合的信道质量确定M个天线端口集合。
在一种可选的实现方式中,接收单元还用于接收第二指示信息,第二指示信息指示M个天线端口集合;或者,第二指示信息指示P个天线端口中的X个天线端口,其中,M个天线端口集合中的天线端口均为X个天线端口中的天线端口,或者,M个天线端口集合中的天线端口均为P个天线端口中除X个天线端口之外的天线端口。
第四方面,本申请提供一种通信装置,用于实现上述第二方面提供的方法中网络设备的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
所述通信装置包括发送单元和接收单元。发送单元用于发送参考信号资源配置信息,参考信号资源配置信息指示第一参考信号资源,第一参考信号资源包括P个天线端口,P为正整数。接收单元用于接收第一信息,第一信息包括与M个天线端口集合一一对应的M个CSI,M个天线端口集合中的任一个天线端口集合中的天线端口均为P个天线端口中的天线端口,其中,M为正整数,M个天线端口集合中的至少一个天线端口集合中的天线端口的数目小于P。
在一种可选的实现方式中,发送单元还用于发送第一指示信息,第一指示信息指示N个天线端口集合,M个天线端口集合为N个天线端口集合中的M个天线端口集合,N为大于或者等于M的整数,N个天线端口集合中的任一个天线端口集合中的天线端口均为P个天线端口中的天线端口。
在一种可选的实现方式中,发送单元还用于发送第二指示信息,第二指示信息指示CSI测量的模式,CSI测量的模式包括模式一或模式二。
在一种可选的实现方式中,发送单元还用于发送第三指示信息,第三指示信息用于指示第一门限值,第一门限值用于确定M个天线端口集合。
在一种可选的实现方式中,发送单元还用于发送第二指示信息,第二指示信息指示M个天线端口集合;或者,第二指示信息指示P个天线端口中的X个天线端口,其中,M个天线端口集合中的天线端口均为X个天线端口中的天线端口,或者,M个天线端口集合中的天线端口均为P个天线端口中除X个天线端口之外的天线端口。
第五方面,本申请提供一种通信装置,该通信装置可以为上述第一方面提供的方法实施例中的终端设备,或者为应用于终端设备中的芯片。该通信装置包括处理器和接口电路,接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令使通信装置执行上述方法实施例中由终端设备所执行的方法。
第六方面,本申请提供一种通信装置,该通信装置可以为上述第二方面提供的方法实施例中的网络设备,或者为应用于网络设备中的芯片。该通信装置包括处理器和接口电路,接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令使通信装置执行上述方法实施例中由网络设备所执行的方法。
第七方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质存储有指令,当所述指令被通信装置执行时,使得上述第一方面中由终端设备执行的方法被执行,或使得上述第二方面中由网络设备执行的方法被执行。
第八方面,本申请提供一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序并运行时,使得上述第一方面中由终端设备执行的方法被执行,或使得上述第二方面中由网络设备执行的方法被执行。
第九方面,本申请提供一种芯片系统,该芯片系统包括处理器,用于实现上述第一方面的方法中终端设备的功能,或实现上述第二方面的方法中网络设备的功能。在一种可能的设计中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十方面,本申请提供一种通信系统,包括至少一个第三方面或第五方面中的通信装置;和至少一个第四方面或第六方面中的通信装置。
附图说明
图1为本申请的实施例应用的移动通信系统的架构示意图;
图2为天线端口和参考信号资源的一种关系示意图;
图3为CSI测量方法的示意图;
图4为本申请的实施例提供的一种CSI测量方法的流程示意图;
图5为本申请的实施例提供的一种天线端口集合与天线端口对应方式的示意图;
图6为第二指示信息示指示第二资源的一种示意图;
图7为第二指示信息示指示第二资源的另一种示意图;
图8为第二指示信息示指示第二资源的又一种示意图;
图9本申请的实施例提供的又一种CSI测量的方法的示意性流程图;
图10本申请的实施例提供的一种通信装置的示意图;
图11本申请的实施例提供的另一种通信装置的示意图。
具体实施方式
图1是本申请的实施例应用的通信系统1000的架构示意图。如图1所示,该通信系统包括无线接入网100和核心网200,可选的,通信系统1000还可以包括互联网300。其中,无线接入网100可以包括至少一个无线接入网设备(如图1中的110a和110b),还可以包括至少一个终端(如图1中的120a-120j)。终端通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端和终端之间以及无线接入网设备和无线接入网设备之间可以通过有线或无线的方式相互连接。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。
无线接入网设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、第五代(5th generation,5G)移动通信系统中的下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信系统中的下一代基站、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。这里的CU完成基站的无线资源控制协议和分组数据汇聚层协议(packet data convergence protocol,PDCP)的功能,还可以完成业务数据适配协议(service data adaptation protocol,SDAP)的功能;DU完成基站的无线链路控制层和介质访问控制(medium access control,MAC)层的功能,还可以完成部分物理层或全部物理层的功能,有关上述各个协议层的具体描述,可以参考第三代合作伙伴计划(3rd generation partnership project,3GPP)的相关技术规范。无线接入网设备可以是宏基站(如图1中的110a),也可以是微基站或室内站(如图1中的110b),还可以是中继节点或施主节点等。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。为了便于描述,下文以基站作为无线接入网设备的例子进行描述。
终端也可以称为终端设备、用户设备(user equipment,UE)、移动台、移动终端等。终端可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请的实施例对终端所采用的具体技术和具体设备形态不做限定。
基站和终端可以是固定位置的,也可以是可移动的。基站和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对基站和终端的应用场景不做限定。
基站和终端的角色可以是相对的,例如,图1中的直升机或无人机120i可以被配置成移动基站,对于那些通过120i接入到无线接入网100的终端120j来说,终端120i是基站;但对于基站110a来说,120i是终端,即110a与120i之间是通过无线空口协议进行通信的。当然,110a与120i之间也可以是通过基站与基站之间的接口协议进行通信的,此时,相对于110a来说,120i也是基站。因此,基站和终端都可以统一称为通信装置,图1中的110a和110b可以称为具有基站功能的通信装置,图1中的120a-120j可以称为具有终端功能的通信装置。
基站和终端之间、基站和基站之间、终端和终端之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信;可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线通信所使用的频谱资源不做限定。
在本申请的实施例中,基站的功能也可以由基站中的模块(如芯片)来执行,也可以由包含有基站功能的控制子系统来执行。这里的包含有基站功能的控制子系统可以是智能电网、工业控制、智能交通、智慧城市等上述应用场景中的控制中心。终端的功能也可以由终端中的模块(如芯片或调制解调器)来执行,也可以由包含有终端功能的装置来执行。
在本申请的实施例中,基站向终端发送下行信号或下行信息,下行信息承载在下行信道上;终端向基站发送上行信号或上行信息,上行信息承载在上行信道上。终端为了与基站进行通信,需要与基站控制的小区建立无线连接。与终端建立了无线连接的小区称为该终端的服务小区。当终端与该服务小区进行通信的时候,还会受到来自邻区的信号的干扰。
下面对出本申请实施例所使用的一些名词或术语进行解释说明。
(1)发射通道(transmitter,TX)
射频(radio frequency,RF)发射通道简称发射通道,是一个物理概念。如果没有特别说明,在本申请的实施例中的发射通道均指的是物理天线的端口,而不是逻辑天线的端口。发射通道可接收来自基带芯片的基带信号,对基带信号进行射频处理(如上变频、放大和滤波)以得到射频信号,并最终通过天线将该射频信号辐射到空间中。具体地,发射通道可以包括天线开关,天线调谐器,功率放大器(power amplifier,PA),混频器(mixer),本地振荡器(local oscillator,LO)、滤波器(filter)等电子器件中的一个或多个,这些电子器件可以根据需要集成到一个或多个芯片中。天线有时也可以认为是发射通道的一部分。在本申请的实施例中,术语“物理天线”有时可以和“发射通道”互换。
(2)天线端口(port)
天线端口也可以简称端口。如果没有特别说明,在本申请的实施例中的天线端口均指的是逻辑天线的端口,而不是物理天线的端口。当一个发射通道关联一个天线端口时,每个天线端口上发射的信号都是通过与之关联的一个发射通道发射出去,当多个发射通道关联一个天线端口时,在每个逻辑天线端口上发射的信号通过加权系数加权后通过多个发射通道发射出去,也可以理解为,多个物理天线经过加权系数加权后形成一个逻辑天线。这里的加权系数可以是复数也可以是实数,不同物理天线上的加权系数可能相同也可能不同。每一个天线端口有对应的时频资源和参考信号。不同天线端口对应的时频资源可以相同也可以不同。基站通过天线端口A发射的参考信号,可以被终端用于估计天线端口A到终端的无线信道的特征,该无线信道的特征可以被该终端用于估计通过天线端口A发射的物理信道,或者用于确定数据传输时的调制阶数、码率等信息。一个参考信号可以对应一个或多个天线端口。
(3)CSI
信号通过无线信道由发射端到接收端的过程中,由于可能经历散射、反射以及能量随距离的衰减,从而产生衰落。CSI用于表征无线信道的特征,可以包括信道质量指示(channel quality indicator,CQI)、预编码矩阵指示(precoding matrix indicator,PMI)、CSI-RS资源指示(CSI-RS resource indicator,CRI)、同步信号/物理广播信道块(synchronization signal/physical broadcast channel block,SSB)资源指示(SSB resource indicator,SSBRI)、层指示(layer indicator,LI)、秩指示(rank indicator,RI)、L1-参考信号接收功率(reference signal received power,RSRP)和L1-信号与干扰噪声比(signal to interference plus noise ratio,SINR)中的至少一种。这些CSI可由UE通过PUCCH或PUSCH发送给基站。
(4)参考信号
参考信号是由发射端提供给接收端用于信道估计或信道探测的一种已知信号。本申请的实施例中,参考信号可用于信道测量、干扰测量等,如测量参考信号接收质量(reference signal receiving quality,RSRQ),信噪比(signal-noise ratio,SNR),SINR,CQI,PMI等参数。
(5)参考信号资源
参考信号资源具体可包括参考信号的时频资源、天线端口、功率资源以及扰码等资源中的至少一种。基站可基于参考信号资源发送参考信号,终端可基于参考信号资源接收参考信号。本申请的实施例中,参考信号资源对应的一个或者多个天线端口也可以理解为参考信号资源包括的一个或者多个天线端口。
具体地,本申请实施例中涉及的参考信号可以包括下述中的一种或多种参考信号:信道状态信息参考信号(channel state information-reference signal,CSI-RS)、SSB或者探测参考信号(sounding reference signal,SRS)。与此对应地,参考信号资源可以包括CSI-RS资源、SSB资源或者SRS资源。在某些情况下,SSB也可以是指SSB资源。
以CSI-RS资源为例,不同天线端口上的参考信号所使用的时频资源是不同的,或者,不同天线端口上的参考信号的时频资源相同但码资源不同。基站可以通过频域位置指示信息指示CSI-RS占用的频域资源,可以通过时域位置指示信息指示CSI-RS占 用的时域资源。终端可以通过CSI-RS占用的时域资源和频域资源从而确定天线端口。图2为天线端口和参考信号资源的一种对应关系示意图,图中横轴表示时域,纵轴表示频域。一个资源块(resource block,RB)包括12个子载波和14个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,OFDM符号也可以简称为时域符号或符号。CSI-RS资源的码分复用(code division multiplexing,CDM)类型为CDM4-FD2-TD2,天线端口数配置为32,频域位置指示信息为111100,时域位置指示信息指示CSI-RS资源占用的时域起始位置的时域符号为6和8。CDM4-FD2-TD2中,表示CDM4表示每个CDM组包括4个天线端口,FD2表示每个CDM组在频域上占用两个子载波,TD2表示每个CDM组在时域上占用两个时域符号。此时,该CSI-RS包括8个CDM组,每个CDM组占用4个资源元素(resource element,RE),每个CDM组包括4个天线端口。也即,该参考信号资源包括32个天线端口,该32个天线端口的索引分别为0~31。天线端口0,1,2和3属CDM组1,天线端口4,5,6,和7属于CDM组2,天线端口8,9,10,和11属于CDM组3,天线端口12,13,14,和15属于CDM组4,天线端口16,17,18,和19属于CDM组5,天线端口20,21,22和23属于CDM组6,天线端口24,25,26,和27属于CDM组7,天线端口28,29,30,和31属于CDM组8。基站可以通过6比特频域位置指示信息指示该32个port资源所占的子载波,6比特中,每个比特对应一个RB上的两个子载波,也即,该6个比特中,第一位对应子载波{0,1},第二位对应子载波{2,3},第三位对应子载波{4,5},第四位对应子载波{6,7},第五位对应子载波{8,9},第六位对应子载波{10,11}。图2中,该6比特频域位置指示信息的状态值为111100时,频域资源指示信息指示出CSI-RS占用的频域资源的位置为子载波0至子载波7。基站再通过时域位置指示信息指示该CSI-RS的占用的时域起始位置的时域符号为6和8。对应的,终端可以通过接收到的时域位置指示信息和频域位置指示信息确定CSI-RS占用的资源,从而确定32个天线端口。
(5)CSI的多维测量
现有技术中,终端基于基站配置的参考信号资源所包括的全部的天线端口测量CSI,该参考信号资源包括的全部的天线端口可以理解为一个天线端口集合,该天线端口集合包括为参考信号资源包括的天线端口的全集。若以天线端口集合的数目作为维度,现有技术中只有一个维度的CSI的测量。本申请的实施例中,CSI的多维测量具体可以指终端可以基于上述天线端口全集中的多个天线端口子集测量CSI。这里的天线端口子集包括至少一个天线端口,并且天线端口子集中包括的天线端口均为上述天线端口全集中的天线端口。
(6)CSI的降维测量
现有技术中,CSI的测量维度是基站配置的参考信号资源包括的天线端口的全集。本申请的实施例中,CSI的降维测量具体可以指终端可以基于参考信号资源包括的天线端口的全集测量CSI,还可以基于天线端口的全集中的至少一个天线端口真子集测量CSI。这里的天线端口全集中的天线端口真子集包括至少一个天线端口,且该真子集所包括的天线端口的个数小于天线端口全集中所包括的天线端口的个数。
基于图1提供的网络架构,下面结合图3对节能场景中终端和基站测量CSI的过 程进行描述。该节能场景中的基站可为图1中的无线接入网设备110a或110b,终端可为图1中的120a-120j。
S301:基站向终端发送参考信号资源配置信息。相应的,终端接收来自基站的参考信号资源配置信息。
具体的,基站通过无线资源控制(radio rerource control,RRC)信令向终端发送参考信号资源的配置信息,参考信号资源的配置信息用于指示参考信号资源,参考信号资源包括终端测量CSI所使用的天线端口。现有技术中,若基站配置32个天线端口,则参考信号资源包括32个天线端口。
S302:基站关闭S个发射通道,或者,基站增加S个发射通道,S为正整数。
具体的,为了节能,基站动态关断S个发射通道;或者,基站关闭部分发射通道后,由于传输需求增加,基站动态增加S个发射通道。一种可能的方式中,基站对距离较近的终端和距离较远的终端采用不同的发送策略,基站对距离较近的终端和距离较远的终端使用不同数目的发射通道进行信息传输。由于基站在向距离较近的终端发送信息时,所需的功率较小,因此可以使用较少的发射通道。与之对应的,基站在向距离较远的终端发送信息时,所需的功率较大,因此需要使用较多的发射通道。例如,对于距离较近的终端,基站采用16个发射通道进行信息传输,对于距离较远的终端,基站采用32个发射通道进行信息传输。那么,针对距离较远的终端,随着终端向靠近基站的方向移动,可能会出现基站关断部分发射通道的情况,或者,针对距离较近的终端,随着终端向远离基站的方向移动,可能会出现基站增加发射通道的情况。本申请的实施例中,发射通道的关闭和增加的间隔可以是一个或多个时间单元,一个时间单元可以是一个OFDM符号,一个时隙,或者一个无线帧等。
S303:终端根据参考信号资源,测量得到CSI。
具体的,终端基于参考信号资源包括的所有天线端口测量,获得CSI。
S304:终端向基站上报CSI。
具体的,终端将测量得到的CSI上报给基站,以便基站根据所述CSI进行资源调度。
在步骤S301中,由于发射通道的数目发生了变化,基站发送参考信号使用的天线端口也将发生改变。也就是说,基站发送参考信号的天线端口将与之前配置的参考信号资源包括的天线端口不一致,如果终端仍然基于之前配置的天线端口来接收参考信号,将导致终端确定的CSI不准确。例如,当一个发射通道关联一个天线端口,参考信号资源包括32个天线端口时,此时基站的发射通道也为32个,若基站在步骤S302关闭的发射通道为上述32个天线端口中的16个天线端口,则此时基站发送参考信号的天线端口为16个,终端基于参考信号资源包括的32个天线端口测量CSI,终端所确定的CSI不能准确反映真实的信道情况,影响通信质量和效率。
本申请提供一种CSI测量方法,终端可以基于参考信号资源包括的天线端口的全集中的至少一个天线端口真子集测量CSI,或者基于该天线端口的全集和该全集中的至少一个天线端口真子集测量CSI,从而获得不同维度的CSI,可以实现CSI的多维测量或降维测量。网络设备根据终端设备上报的不同维度的信道状态信息,可以动态 调整发射通道的数目,降低网络设备的能耗。
图4是本申请提供的一种CSI测量的方法的流程示意图。下面对图4所示的操作进行说明。
S401:基站向终端发送参考信号资源配置信息,相应的,终端接收来自基站的参考信号资源配置信息。
具体的,参考信号资源配置信息用于指示第一参考信号资源,所述第一参考信号资源包括P个天线端口,P为正整数。参考信号资源配置信息包括CSI测量所需要的传输资源的信息,CSI测量可以包括信道测量。可选的,参考信号资源配置信息包括频域资源配置,时域资源配置,码分组配置,天线端口配置等信息。
在一种可能的实现方式中,第一参考信号资源可以为CSI-RS资源或者SSB资源。CSI-RS资源可以为非零功率(none-zero-power,NZP)CSI-RS资源。
在一种可能的实现方式中,第一参考信号资源为信道测量资源(channel measurement resource,CMR)。
S402:基站向终端发送第一指示信息,相应的,终端接收来自基站的第一指示信息。
其中,第一指示信息用于指示N个天线端口集合,N为正整数。该N个天线端口集合中的任一个天线端口集合包括的天线端口均为上述P个天线端口中的一个,且该N个天线端口集合中存在至少一个天线端口集合包括的天线端口的数目小于P。该第一指示信息可以承载在RRC信令上,而且该第一指示信息可以与上述S401中的参考信号资源配置信息承载在同一条RRC信令上。
具体的,基站可以从P个天线端口中选择P(i)个天线端口组成天线端口集合i,其中i为小于N的自然数,P(i)为小于等于P的正整数。N个天线端口集合中,不同天线端口集合包括的天线端口数目不同;或者,不同天线端口集合包括的天线端口的数目相同,但包括的天线端口不同;或者,不同天线端口集合包括的天线端口数目和包括的天线端口都不同。为区分不同的天线端口,P个天线端口的编号分别为0~(P-1),该编号也可以理解为不同天线端口的索引。为区分不同的天线端口集合,N个天线端口集合的编号分别为0~(N-1),该编号也可以理解为不同天线端口集合的索引。可以理解的是,在本申请的实施例中的编号或索引,可以从0开始编号也可以从1开始编号。
图5为本申请实施例提供的一种N个天线端口集合的示例。在图5中,P为32,N为4,索引为0的天线端口集合包括的天线端口的数目为32,也即索引为0的天线端口集合包括第一参考信号资源对应的全部天线端口。索引为1的天线端口集合包括的天线端口的数目为16,分别对应索引为偶数的16个天线端口,索引为1的天线端口集合也可以表示为{0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30}。索引为2的天线端口集合包括的天线端口的数目为8,分别对应天线端口的索引为0,2,4,6,16,18,20,22的天线端口。索引为3的天线端口集合包括的天线端口的数目为4,分别对应天线端口的索引为0,2,16,18的天线端口。
应理解,本申请对N的数值以及P个天线端口与N个天线端口集合的关系不做限定。例如,N的值还可以是6,8,或者10等其他数值。
在一种可能的实现方式中,N个天线端口集合也可以是协议预定义的,此时,基站和终端无需通过信令交互即可预先获知N个天线端口集合中每个天线端口集合包括的天线端口。也就是说,S402是可选的。
S403:基站向终端发送第二指示信息,相应的,终端接收来自基站的第二指示信息。
其中,第二指示信息用于指示M个天线端口集合,M个天线端口集合为N个天线端口集合中的天线端口集合,也可以理解为,N个天端口集合包括M个天线端口集合。或者,第二指示信息用于指示P个天线端口中的X个天线端口,其中,M个天线端口集合中的天线端口均为X个天线端口中的天线端口,或者,M个天线端口集合中的天线端口均为P个天线端口中除X个天线端口之外的天线端口。其中,M为小于或等于N的正整数。
当第二指示信息用于指示P个天线端口中的X个天线端口时,第二指示信息指示了M个天线端口集合中的天线端口的全集,此时也可以理解为,第二指示信息通过指示M个天线端口集合中的天线端口的全集,间接指示M个天线端口集合。或者,第二指示信息指示了M个天线端口集合中的天线端口在P个天线端口中的补集,第二指示信息通过指示P个天线端口中,不属于M个天线端口集合的天线端口,间接指示M个天线端口集合。
以第二指示信息指示的X个天线端口为M个天线端口集合中的天线端口的全集为例,一种可能的实现方式中,M大于或者等于2,M个天线端口集合中的任一个天线端口集合中的天线端口为X个天线端口中的天线端口。另一种可能的实现方式,M为1,X个天线端口的全部组成了一个天线端口集合。
关于第二指示信息指示M个天线端口集合,以下给出几种可能的实现方式。
方式一,第二指示信息指示M个天线端口集合的索引。
例如,第二指示信息指示的索引为0和1,则第二指示信息指示的天线端口集合为索引为0的天线端口集合和索引为1的天线端口集合。当N个天线端口集合如图5所示时,第二指示信息指示的两个天线端口集合为{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31}和{0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30}。
方式二,第二指示信息通过比特位图的方式指示M个天线端口集合。
例如,第二指示信息包括N比特,该N比特一一对应N个天线端口集合,该N个比特中,每个比特的不同状态值表示其对应的天线端口集合属于或者不属于M个天线端口集合。例如,比特值0表示该比特对应的天线端口集合不属于M个天线端口集合,比特值1表示该比特对应的天线端口集合属于M个天线端口集合;或者,比特值1表示该比特对应的天线端口集合不属于M个天线端口集合,比特值0表示该比特对应的天线端口集合属于M个天线端口集合。
方式三,第二指示信息指示第一参考信号资源中的第二资源,第二资源对应M个 天线端口集合。也即第二指示信息通过指示M个天线端口集合对应的第二资源,告知终端需要测量CSI的天线端口集合。
关于第二指示信息用于指示P个天线端口中的X个天线端口时,以下给出几种可能的实现方式。
方式A,第二指示信息指示X个天线端口的索引,X个天线端口属于M个天线端口集合,也可以理解为M个天线端口集合中的天线端口均为X个天线端口中的天线端口。以图5为例,当第二指示信息指示0,2,16,18时,则M个天线端口集合为索引为0,2,16和18的天线端口组成的一个天线端口集合,即第二指示信息指示天线端口集合3。当第二指示信息指示0,2,16,18,4,6,20,22时,第二指示信息指示了两个天线端口集合,分别为天线端口集合3和天线端口集合2。或者,第二指示信息指示X个天线端口的索引,X个天线端口不属于M个天线端口集合,也可以理解为M个天线端口集合中的天线端口均为P个天线端口中除X个天线端口之外的天线端口。以图5所示的天线端口集合的划分方式进行详细说明,当第二指示信息指示8,10,24,26时,则M个天线端口集合为不包括索引为8,10,24,或26的天线端口组成的一个或多个天线端口集合,此时,M个天线端口集合为天线端口集合{0,2,16,18}和线端口集合{0,2,16,18,4,6,20,22},即天线端口集合3和天线端口集合2。
方式B,第二指示信息通过比特位图的方式指示X个天线端口,第二指示信息包括P个比特,该P个比特与P个天线端口一一对应。该P个比特中,每个比特的不同状态值表示其对应的天线端口属于或者不属于M个天线端口集合。例如,比特值0表示该比特对应的天线端口不属于M个天线端口集合,比特值1表示该比特对应的天线端口属于M个天线端口集合;或者,比特值1表示该比特对应的天线端口不属于M个天线端口集合,比特值0表示该比特对应的天线端口属于M个天线端口集合。
方式C,第二指示信息指示第一参考信号资源中的第二资源,第二资源对应X个天线端口。第二指示信息通过指示X个天线端口对应的第二资源,告知终端需要测量CSI的天线端口或者不测量CSI的天线端口。以X个天线端口属于M个天线端口集合为例进行详细描述。例如,第二指示信息通过比特位图的方式指示第二资源,第二指示信息包括多个比特,该多个比特中的每一个比特对应一个时频资源,每个时频资源对应一个或多个天线端口,该多个比特中,每个比特的不同状态值表示其对应的时频资源对应的一个或多个天线端口属于或者不属于X个天线端口,例如,比特值0表示该比特对应的时频资源对应的一个或多个天线端口不是X个天线端口中天线端口,比特值1表示该比特对应的时频资源对应的一个或多个天线端口为X个天线端口中的天线端口。例如,在图2所示的参考信号资源和天线端口对应的关系中,第二指示信息包括8比特,分别对应8个CDM组所对应的时频资源,为方便描述,对8个CDM组分别编号0~8。当该8个比特的状态值为11001100,那么第二指示信息指示的第二资 源为第一参考信号资源中,CDM组0,CDM组1,CDM组4,和CDM组5所在的资源,此时X个天线端口也即CDM组0,CDM组1,CDM组4,和CDM组5包括的16个天线端口。又例如,第二指示信息指示第二资源所在的时域位置和/或频域位置,该时域位置和/或频域位置上的第一参考信号资源包括的天线端口即为X个天线端口。结合图6,图7和图8进行详细描述。图6,图7和图8中,第一参考信号资源的CDM类型为CDM4-FD2-TD2,天线端口数配置为32,频域位置指示信息为111100,时域位置指示信息指示第一参考信号资源占用的时域起始位置为的符号为6和符号8。
一种可能的实现方式中,第二指示信息指示第二资源的频域位置,第二资源的时域资源与第一参考信号资源相同。具体的,第二指示信息通过第一位图指示第二资源中的频域位置,在图6中,第一位图的第一位对应第一参考信号资源中子载波{0,1},第一位图的第二位对应子载波{2,3},第一位图的第三位对应子载波{4,5},第一位图的第四位对应子载波{6,7}。由于第一位图中,每一位对应两个子载波,取值1表示第二资源占用对应的两个子载波,取值0表示第二资源未占用对应的两个子载波,因此,第一位图取值为1010表示第二资源占用的子载波为第一参考信号资源中的子载波0,1,4,5,因此第二资源对应的资源如图7所示,该第二资源可用于测量包括16个天线端口的天线端口集合对应的CSI。
一种可能的实现方式中,第二指示信息指示第二资源的时域位置,第二资源的频域资源与第一参考信号资源相同。具体的,第二指示信息通过第二位图指示第二资源中的时域位置。在图7中,位图的第一位比特对应第一参考信号资源中第一个符号组,也即符号6和符号7。位图的第二位比特对应第一参考信号资源中第二个符号组,也即符号8和符号9。由于第二位图中,每一位对应一个符号组,取值为1表示第二资源占用对应的符号组,取值为0表示第二资源未占用对应的符号组。位图10表示第二资源占用的符号组为第一参考信号资源中的符号6和符号7。第二资源对应的资源如图7所示,该第二资源可用于测量包括16个天线端口的天线端口集合对应的CSI。
一种可能的实现方式中,第二指示信息指示第二资源的频域位置和时域位置。第二指示信息可以通过第一位图和第二位图分别指示第二资源的频域位置和时域位置。例如,第一位图取值为1010,第二位图取值为10。第二资源对应的资源如图8所示,该第二资源可用于测量包括8个天线端口的天线端口集合对应的CSI。
需要说明的是,本申请的实施例中,M个天线端口集合可以是基站通过信令指示给终端的,也可以是终端自行确定的。例如,M可以固定取值为N,或者,协议预定义了M和N的关系。当M等于N,且N是协议预定义时,也可以理解为M是协议预定义的,上述M个天线端口集合是协议预定义的。也就是说,S403是可选的。
S404:终端向基站发送第一信息,第一信息包括与M个天线端口集合一一对应的M个CSI,相应的,基站接收终端发送的第一信息。
由于M个天线端口集合包括的天线端口的数目不同,或者M个天线端口集合包 括的天线端口不完全相同或完全不同,所以,M个天线端口集合中不同的天线端口集合对应的CSI是不同的。
可选的,第一信息包括M个第一比特域,M个第一比特域一一指示M个天线端口集合对应的CSI。
表1所示为第一信息中的M个第一比特域的一种示例。第一信息包括一个比特序列,该比特序列可分为M段第一比特域,分别为a 0,a 1,a 2,a 3,a 4,……a (M-1),其中,M个天线端口集合分别为O 0,O 1,O 2,O 3,O 4,……O (M-1)。其中,a i指示的是O i的CSI,i为小于M的自然数。
表1
a 0 a 1 a 2 a 3 a 4   a (M-1)
O 0 O 1 O 2 O 3 O 4   O (M-1)
以下给出几种可能的M个第一比特域在第一信息的比特流中的排序实现方式。
方式a,M个第一比特域在第一信息的比特流中的排序是根据该比特域对应的天线端口集合中的天线端口的数目确定的。
如果第一信息的比特流中位置靠前的比特的优先级更高,在传输资源受限的时候会优先获得传输机会的话,那么对于包含的天线端口的数目更多的天线端口集合,其对应的第一比特域在第一信息的比特流中的位置更靠前,或者说,其对应的第一比特域在第一信息的比特流中的序号更小。例如,M个第一比特域中的第K1个第一比特域指示M个天线端口集合中的第一天线端口集合的CSI,M个第一比特域中的第K2个第一比特域指示M个天线端口集合中的第二天线端口集合的CSI,K1和K2为小于等于M的正整数,其中,K1小于K2,第一天线端口集合中的天线端口的数目大于或者等于第二天线端口集合中的天线端口的数目。
如果第一信息的比特流中位置靠后的比特的优先级更高,在传输资源受限的时候会优先获得传输机会的话,那么对于包含的天线端口的数目更多的天线端口集合,其对应的第一比特域在第一信息的比特流中的位置更靠后,或者说,其对应的第一比特域在第一信息的比特流中的序号更大。例如,M个第一比特域中的第K1个第一比特域指示M个天线端口集合中的第一天线端口集合的CSI,M个第一比特域中的第K2个第一比特域指示M个天线端口集合中的第二天线端口集合的CSI,K1和K2为小于等于M的正整数,其中,K1小于K2,第二天线端口集合中的天线端口的数目大于或者等于第一天线端口集合中的天线端口的数目。
通过上述实现方式a,可以使得基站和终端对第一信息中的M个第一比特域的排序方式理解一致,保证第一信息的正确传输。此外,上述方法还可以使得终端在资源受限时,将第一信息中优先级低的比特位丢弃,优先保证天线端口数目更多的天线端口集合的CSI的有效传输,进而提高系统性能。
方式b,M个第一比特域在第一信息的比特流中的排序是根据该比特域对应的天线端口集合的信道质量确定的。
如果第一信息的比特流中位置靠前的比特(即高位比特)的优先级更高,在传输资源受限的时候会优先获得传输机会的话,那么对于信道质量更好的天线端口集合,其对应的第一比特域在第一信息的比特流中的位置更靠前,或者说,其对应的第一比特域在第一信息的比特流中的序号更小。例如,M个第一比特域中的第K1个第一比特域指示M个天线端口集合中的第一天线端口集合的CSI,M个第一比特域中的第K2个第一比特域指示M个天线端口集合中的第二天线端口集合的CSI,K1和K2为小于等于M的正整数,其中,K1小于K2,第二天线端口集合的信道质量大于或者等于第一天线端口集合的信道质量。
如果第一信息的比特流中位置靠后的比特(即低位比特)的优先级更高,在传输资源受限的时候会优先获得传输机会的话,那么对于信道质量更好的天线端口集合,其对应的第一比特域在第一信息的比特流中的位置更靠后,或者说,其对应的第一比特域在第一信息的比特流中的序号更大。例如,M个第一比特域中的第K1个第一比特域指示M个天线端口集合中的第一天线端口集合的CSI,M个第一比特域中的第K2个第一比特域指示M个天线端口集合中的第二天线端口集合的CSI,K1和K2为小于等于M的正整数,其中,K1小于K2,第二天线端口集合的信道质量大于或者等于第一天线端口集合的信道质量。
通过上述实现方式b,可以使得终端在资源受限时,将第一信息中优先级低的比特位丢弃,优先保证信道质量更好的天线端口集合的CSI的有效传输,进而提高系统性能。
在本申请的实施例中,天线端口集合的信道质量也可以称为天线端口集合对应的信道质量,是指终端对该端口集合中每个端口进行测量而得到的信道质量。
方式a或方式b中,由于终端将第一信息中的高位比特或低位比特丢弃,此时也可以理解为M个天线端口集合的优先级不同。例如,当对应的天线端口集合中的天线端口的数目较多的第一比特域的位置更低,且终端资源受限时将第一信息中的高位的比特丢弃,M个天线端口集合中,包括的天线端口数目多的天线端口集合的优先级更高。又例如,当对应的天线端口集合的信道质量更优的第一比特域的位置更低,且终端资源受限时将第一信息中的高位的比特丢弃时,M个天线端口集合中,信道质量更优的天线端口集合的优先级更高。
当M个天线端口集合的优先级排序为CSI中信道质量更优的天线端口集合的优先级更高时,由于基站无法预先获知每个第一比特域指示的CSI对应的天线端口集合,这种情况下,一种可能的实现方式中,终端还可以在第一信息中上报M个天线端口集合的索引。例如,第一信息还包括M个第二比特域,M个第二比特域一一指示M个天线端口集合的索引,且M个第二比特域与和M个第一比特域一一对应。
表2为M等于4时,第一信息包括与4个天线端口集合一一对应的4个CSI的一 种示例。“CSI报告”也即包括M个CSI的第一信息。表2中,第一信息中有4个第一比特域,分别对应4个天线端口集合的CSI,且4个CSI的排序是按照天线端口集合中包括的天线端口数从大到小排序的,也可以理解为包含的天线端口数目更多的天线端口集合的CSI优先级更高。
表2
Figure PCTCN2022092702-appb-000001
图4中,基站通过第二指示信息,直接或者间接的向终端指示M个天线端口集合,或者,协议预定义M个天线端口集合。下面对基站未通过信令直接或间接指示M个天线端口集合,而是终端自行确定M个天线端口集合的情况进行描述。
图9是本申请提供的一种CSI测量方法的示意性流程图。图10中,基站通过第二指示信息(模式指示信息),触发终端进入不同模式,从而实现CSI的多维测量或者CSI的降维测量。下面对图9所示的操作进行说明。
S901:基站向终端发送参考信号资源配置信息,相应的,终端接收来自基站的参考信号资源配置信息。
具体的,参考信号资源配置信息的详细描述可以参考图4中S401的相关描述。
S902:基站向终端发送第一指示信息,相应的,终端接收来自基站的第一指示信息。
其中,第一指示信息用于指示N个天线端口集合。第一指示信息和N个天线端口集合的详细描述可以参考图4中S402的相关描述。
S903:基站向终端发送第二指示信息,相应的,终端接收来自基站的第二指示信息。
具体的,第二指示信息指示CSI测量的模式,CSI测量的模式包括模式一和/或模式二。可选的,第二指示信息可以承载于RRC信令,媒体接入控制控制元素(medium access control control element,MAC CE)MAC CE或者DCI。
模式一为终端至少基于P个天线端口中的部分天线端口测量CSI,或者理解为,终端可以基于上述P个天线端口中的部分天线端口测量CSI,也可以基于上述P个天线端口中的部分天线端口和全部天线端口测量CSI。模式一也可以称为节能模式,或CSI降维测量模式,或CSI多维测量模式。
模式二为终端只能基于上述P个天线端口中的全部天线端口测量CSI。模式二也可以称为正常模式,或去激活CSI降维测量后的模式,或去激活CSI多维测量后的模式,也可以称为非CSI降维测量模式或非CSI多维测量模式。这里的去激活也可以理解为关闭,也就是说,第二指示信息为功能性的开关指示。基站为了判断是否可以进入节能模式(即是否可以关闭S个发射通道),可以给终端发送第二指示信息指示终端的CSI测量模式为模式一,让终端反馈基于上述P个天线端口中的部分天线端口的 CSI,或让终端反馈基于上述P个天线端口中的部分天线端口的CSI以及基于上述P个天线端口中的全部天线端口的CSI。当基站把关闭的S个发射通道重新打开之后,基站进入正常工作模式,基站可以给终端发送第二指示信息指示终端的CSI测量模式为模式二,终端后续只需要反馈基于上述P个天线端口中的全部天线端口的CSI。
对终端而言,若没有接收到指示模式一的第二指示信息,则终端基于参考信号资源包括的全部天线端口(即上述P个天线端口)测量CSI。当终端接收到指示模式一的第二指示信息后,终端确定可以基于上述P个天线端口测量CSI,还可以基于上述P个天线端口中的一部分天线端口测量CSI,此时也可以理解为,终端开启CSI降维测量、CSI多维测量或节能模式下的CSI测量。例如,P为32,终端接收到指示模式一的第二指示信息后,终端此时可以基于这32个天线端口测量CSI,也可以基于这32个天线端口中的部分天线端口测量CSI。当终端测量CSI的天线端口集合的数目为至少两个,且该至少两个天线端口集合中存在至少一个天线端口集合中的天线端口的数目小于P时,这种情况下,可以认为第二指示信息指示了CSI的降维测量,或指示了CSI的多维测量,或指示了节能模式。
对终端而言,若终端接收到指示模式一的第二指示信息,终端开启CSI降维测量、CSI多维测量或节能模式下的CSI测量。没有接收到指示模式二的第二指示信息,则终端保持CSI降维测量、CSI多维测量或节能模式下的CSI测量。当终端接收到指示模式二的第二指示信息后,终端关闭CSI降维测量、CSI多维测量或节能模式下的CSI测量,终端基于上述P个天线端口测量CSI。
可选的,当终端接收到第二指示信息后,在一个时间阈值内,终端确定可以基于上述P个天线端口中的一部分天线端口测量CSI,超出上述时间阈值,终端只基于上述P个天线端口测量CSI。也即此时,第二指示信息无需指示模式二,终端收到指示模式一的第二指示信息后,超过上述时间阈值后,终端自行进入模式二。
对于第二指示信息可以有以下两种可选的实现方式。
一种可选的实现方式是,第二指示信息通过同一指示字段的不同状态值指示模式一或模式二。例如,第二指示信息包括的1比特指示字段,该1比特指示字段对应状态值1和状态值0,其中,状态值1指示模式一,状态值0指示模式二。另一种可选的实现方式是,基站通过指示关断等级的形式指示CSI测量的模式为模式一或模式二。该关断等级可以是与关闭的S个发射通道数对应,也可以是与关闭S个发射通道后剩余还能使用的发射通道数对应,还可以是与天线端口数对应。这里的天线端口数也可以理解为是关闭S个发射通道后剩余还能使用的天线端口数,也可以是关闭S个发射通道后导致关闭的天线端口数。例如,第二指示信息包括两比特,该两比特的四种状态值分别对应关断等级1至关断等级4。该两比特的状态值00(即关断等级1)对应P个天线端口,该两比特的状态值01(即关断等级2)对应P/2个天线端口,该两比特的状态值10(即关断等级3)对应P/4个天线端口,该两比特的状态值11(即关断等 级4)对应P/8个天线端口。例如,P为32,N个天线端口如图5所示,若第二指示信息指示关断等级为2,则终端接收第二指示信息后,进入模式一,终端基于包含16个天线端口的天线端口集合测量CSI,也即对天线端口集合1测量CSI。若第二指示信息指示关断等级为1,则终端接收第二指示信息后,进入模式二,终端基于第一参考信号资源包括的32个天线端口CSI测量CSI,即对天线端口集合0测量CSI。
S904:终端向基站发送第一信息,第一信息包括与M个天线端口集合一一对应的M个CSI,相应的,基站接收终端发送的第一信息。
第一信息包括M个天线端口集合对应的M个CSI的详细描述可以参考图4中S404的相关描述。
这里的M个天线端口集合可以是协议预定义的,也可以是终端自行选择的。关于终端如何选择M个天线端口集合对应的M个CSI上报给基站,以下给出几种可能的示例。
方式e1,终端对N个天线端口集合测量CSI,获得与N个天线端口集合对应的N个CSI,并从N个CSI中选出信道质量最优的M个CSI,通过第一信息上报给基站。也就是说,M个天线端口集合是N个天线端口集合中信道质量最优的M个天线端口集合。在本申请的实施例中,信道质量可以是CQI,RSRP,SINR,RSRQ中至少一个。
方式e2,终端从N个天线端口集合中,选出包括的天线端口数最大的前M个天线端口集合测量CSI,获得该M个天线端口集合对应的M个CSI,并将该M个CSI通过第一信息发送给基站。此时,终端无需测量N个天线端口集合中除去这M个天线端口集合之外的天线端口集合对应的CSI。也就是说,上述M个天线端口集合是上述N个天线端口集合中包含的天线端口数最大的M个天线端口集合。
方式e3,终端对N个天线端口集合中的一个或者多个天线端口集合对应的CSI进行测量,直至选出满足预设条件的M个天线端口集合或者测量的天线端口集合数目达到了L个,L为小于或者等于N的正整数。可选的,L为终端能力所能支持的测量的最大天线端口集合的数目。可选的,该预设条件可以为天线端口集合对应的信道质量大于第一门限值。
方式e4,终端按照天线端口集合的优先级从高到低对N个天线端口集合中的一个或者多个天线端口集合对应的CSI进行测量,直至选出满足预设条件的M个天线端口集合或测量的天线端口集合数目达到了L个,可选的,L为终端能力所能支持的测量的最大天线端口集合的数目。
可以理解的,在本申请的实施例中,N个天线端口的优先级可以为包括天线端口数目多的天线端口集合的优先级更高,或者可以为包括天线端口数目少的天线端口集合的优先级更高,本申请对天线端口集合的优先级的规则不做限定。
上述方式e1至方式e4中,M的值可以是协议预定的,也可以是基站通过信令指示的。
方式e5:终端对N个天线端口集合的测量CSI,选出满足预设条件的一个或者多 个天线端口集合作为M个天线端口集合,并将该M个天线端口集合对应的M个CSI通过第一信息发送给基站。可选的,该预设条件可以为天线端口集合对应的信道质量大于第一门限值。与方式e1至方式e4不同,方式e5中,终端无需预先获知M的值,而是将N个CSI中满足预设条件的一个或者多个CSI对应的天线端口集合作为M个天线端口集合。可选的,这里的测量也可以考虑上述方式e3中提到的终端所能支持的测量的最大天线端口集合的数目L。可选的,终端在测量N个天线端口集合的CSI时,可以按照N个天线端口集合的优先级从高到低进行测量。
当第一门限值由基站通过信令指示,图9示的方法还包括步骤S9031:基站向终端发送第三指示信息,第三指示信息用于指示第一门限值。可选的,第三指示信息可以承载于RRC信令,MAC CE或者DCI。
当M个天线端口集合不是基站通过信令指示的或协议预定义的时,终端确定的M个天线端口集合对基站而言是未知的。此时,终端可以确定M个天线端口集合,并将M个天线端口集合的索引上报给基站。
应理解,本申请各实施例中,终端也可以通过第一信息上报M个天线端口集合的L个CSI,L为大于M的正整数。或者说,本申请各实施例中的“第一信息包括与M个天线端口集合一一对应的M个信道状态信息CSI”可以替换为,“第一信息包括与M个天线端口集合对应的L个信道状态信息CSI,L为正整数”。
当基站除了配置第一参考信号资源用于CSI测量外,还配置了多个第二参考信号资源用于干扰测量时,终端上报的第一信息中,除了包括终端基于第一参考信号资源和多个第二参考信号资源中的部分第二参考信号资源测量获得的M个CSI,还可以包括终端基于第一参考信号资源和多个第二参考信号资源中的其他第二参考信号资源测量获得的一个或多个CSI。
例如,基站可以配置一个第一参考信号资源用于信道测量,配置两个第二参考信号资源用于干扰测量,该两个第二参考信号资源分别为第一个第二参考信号资源和第二个第二参考信号资源,此时,对于每个天线端口集合,终端基于第一参考信号资源和第一个第二参考信号资源测量获得一个CSI,终端基于第一参考信号资源和第二个第二参考信号资源测量获得另一个CSI,终端通过第一信息上报M个天线端口集合的2M个CSI。
上述本申请提供的实施例中,分别从基站、终端、以及基站和终端之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,基站和终端可以包括硬件结构和/或软件模块,以硬件结构、或硬件结构加软件结构的形式实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案和设计约束条件。
图10和图11为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端或基站的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的终端, 也可以是如图1所示的无线接入网设备,还可以是应用于终端或无线接入网设备中的模块(如芯片)。
如图10所示,通信装置1000包括接收模块1001和发送模块1002。通信装置1000可用于实现上述图4或图9所示的方法实施例中终端或基站的功能。接收模块1001可以是接收器,发送模块1002可以是发送器,或者,接收模块1001和发送模块1002也可以是收发器。
当通信装置1000用于实现图4或图9所述方法实施例中终端的功能时:接收模块1101用于接收参考信号资源配置信息,所述参考信号资源配置信息指示第一参考信号资源,第一参考信号资源包括P个天线端口,P为正整数。发送模块1102用于第一信息,第一信息包括与M个天线端口集合一一对应的M个CSI,M个天线端口集合中的任一个天线端口集合包括的天线端口均为P个天线端口中的天线端口,其中,M为正整数,M个天线端口集合中的至少一个天线端口集合包括的天线端口的数目小于P。
当通信装置1000用于实现图4或图9所述方法实施例中基站的功能时:发送模块1002用于发送参考信号资源配置信息,参考信号资源配置信息指示第一参考信号资源,第一参考信号资源包括P个天线端口,P为正整数。接收模块1101用于接收第一信息,第一信息包括与M个天线端口集合一一对应的M个CSI,M个天线端口集合中的任一个天线端口集合包括的天线端口均为P个天线端口中的天线端口,其中,M为正整数,M个天线端口集合中的至少一个天线端口集合包括的天线端口的数目小于P。
如图11所示,通信装置1100包括处理器1101和接口电路1102。处理器1101和接口电路1102之间相互耦合。可以理解的是,接口电路1102可以为收发器或输入输出接口。可选的,通信装置1100还可以包括存储器1103,用于存储处理器1101执行的指令或存储处理器1101运行指令所需要的输入数据或存储处理器1101运行指令后产生的数据。
当通信装置1100用于实现上述方法实施例中的方法时,接口电路1102用于执行上述接收模块1001和发送模块1002的功能。
当上述通信装置为应用于终端的芯片时,该终端芯片实现上述方法实施例中终端的功能。该终端芯片从终端中的其它模块(如射频模块或天线)接收信息,该信息是基站发送给终端的;或者,该终端芯片向终端中的其它模块(如射频模块或天线)发送信息,该信息是终端发送给基站的。
当上述通信装置为应用于基站的模块时,该基站模块实现上述方法实施例中基站的功能。该基站模块从基站中的其它模块(如射频模块或天线)接收信息,该信息是终端发送给基站的;或者,该基站模块向基站中的其它模块(如射频模块或天线)发送信息,该信息是基站发送给终端的。这里的基站模块可以是基站的基带芯片,也可以是DU或其他模块,这里的DU可以是开放式无线接入网(open radio access network,O-RAN)架构下的DU。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、 现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于基站或终端中。当然,处理器和存储介质也可以作为分立组件存在于基站或终端中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、基站、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
根据说明书是否用到可选:“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。“包括A,B和C中的至少一个”可以表示:包括A;包括B;包括C;包括A和B;包括A和C;包括B和C;包括A、B和C。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (24)

  1. 一种信道状态信息测量的方法,其特征在于,包括:
    接收参考信号资源配置信息,所述参考信号资源配置信息指示第一参考信号资源,所述第一参考信号资源包括P个天线端口,P为正整数;
    发送第一信息,所述第一信息包括与M个天线端口集合一一对应的M个信道状态信息CSI,所述M个天线端口集合中的任一个天线端口集合中的天线端口均为所述P个天线端口中的天线端口,其中,M为正整数,所述M个天线端口集合中的至少一个天线端口集合包括的天线端口的数目小于P。
  2. 如权利要求1所述的方法,其特征在于,
    所述M个天线端口集合为协议预定义的,所述M个天线端口集合中的任一个天线端口集合包括的天线端口均为所述P个天线端口中的天线端口;或者,
    所述M个天线端口集合为N个天线端口集合中的M个天线端口集合,其中,所述N个天线端口集合为协议预定义的,所述N个天线端口集合中的任一个天线端口集合包括的天线端口均为所述P个天线端口中的天线端口,N为大于M的整数。
  3. 如权利要求1所述的方法,其特征在于,还包括:
    接收第一指示信息,所述第一指示信息指示N个天线端口集合,所述M个天线端口集合为所述N个天线端口集合中的M个天线端口集合,所述N个天线端口集合中的任一个天线端口集合包括的天线端口均为所述P个天线端口中的天线端口,N为大于或者等于M的整数。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,还包括:
    接收第二指示信息,所述第二指示信息指示CSI测量的模式,所述CSI测量的模式包括模式一和/或模式二,其中,所述模式一为至少基于所述P个天线端口中的部分天线端口测量CSI;模式二为基于所述P个天线端口中的全部天线端口测量CSI。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,还包括:
    根据第一门限值确定所述M个天线端口集合,其中,所述M个天线端口集合对应的M个信道质量大于或等于所述第一门限值,所述第一门限值由第三指示信息指示;或者,
    根据所述N个天线端口集合的信道质量确定所述M个天线端口集合。
  6. 如权利要求1至3任一项所述的方法,其特征在于,还包括:
    接收第二指示信息,所述第二指示信息指示所述M个天线端口集合;或者,所述第二指示信息指示所述P个天线端口中的X个天线端口,其中,所述M个天线端口集合中的天线端口均为所述X个天线端口中的天线端口,或者,所述M个天线端口集合中的天线端口均为所述P个天线端口中除所述X个天线端口之外的天线端口。
  7. 如权利要求6所述的方法,其特征在于,
    所述第二指示信息指示所述第一参考信号资源中的第二资源,所述第二资源对应所述M个天线端口集合,或者,所述第二资源对应所述X个天线端口。
  8. 如权利要求1至7中任一项所述的方法,其特征在于,
    所述第一信息包括M个第一比特域,所述M个第一比特域中的第K1个第一比特域指示所述M个天线端口集合中的第一天线端口集合的CSI,所述M个第一比特域中 的第K2个第一比特域指示所述M个天线端口集合中的第二天线端口集合的CSI,其中,所述K1和所述K2为小于或者等于M的正整数,K1小于K2,所述第一天线端口集合包括的天线端口的数目大于或者等于所述第二天线端口集合包括的天线端口的数目。
  9. 如权利要求1至7中任一项所述的方法,其特征在于,
    所述第一信息包括M个第一比特域,所述M个第一比特域中的第K1个第一比特域指示所述M个天线端口集合中的第一天线端口集合的CSI,所述M个第一比特域中的第K2个第一比特域指示所述M个天线端口集合中的第二天线端口集合的CSI,其中,所述K1和所述K2为小于或者等于M的正整数,K1小于K2,所述第一天线端口集合的信道质量大于或者等于所述第二天线端口集合的信道质量。
  10. 如权利要求1至9中任一项所述的方法,其特征在于,
    所述第一信息包括M个第二比特域,所述M个第二比特域分别指示所述M个天线端口集合的索引。
  11. 一种信道状态信息测量的方法,其特征在于,包括:
    发送参考信号资源配置信息,所述参考信号资源配置信息指示第一参考信号资源,所述第一参考信号资源包括P个天线端口,P为正整数;
    接收第一信息,所述第一信息包括与M个天线端口集合一一对应的M个信道状态信息CSI,所述M个天线端口集合中的任一个天线端口集合包括的天线端口均为所述P个天线端口中的天线端口,其中,M为正整数,所述M个天线端口集合中的至少一个天线端口集合包括的天线端口的数目小于P。
  12. 如权利要求11所述的方法,其特征在于,
    所述M个天线端口集合为协议预定义的,所述M个天线端口集合中的任一个天线端口集合包括的天线端口均为所述P个天线端口中的天线端口;或者,
    所述M个天线端口集合为N个天线端口集合中的M个天线端口集合,其中,所述N个天线端口集合为协议预定义的,所述N个天线端口集合中的任一个天线端口集合包括的天线端口均为所述P个天线端口中的天线端口,N为大于M的整数。
  13. 如权利要求11所述的方法,其特征在于,还包括:
    发送第一指示信息,所述第一指示信息指示N个天线端口集合,所述M个天线端口集合为所述N个天线端口集合中的M个天线端口集合,所述N个天线端口集合中的任一个天线端口集合包括的天线端口均为所述P个天线端口中的天线端口,N为大于或者等于M的正整数。
  14. 如权利要求11至13中任一项所述的方法,其特征在于,还包括:
    发送第二指示信息,所述第二指示信息指示CSI测量的模式,所述CSI测量的模式包括模式一和/或模式二,其中,所述模式一为至少基于所述P个天线端口中的部分天线端口测量CSI;模式二为基于所述P个天线端口中的全部天线端口测量CSI。
  15. 如权利要求11至14中任一项所述的方法,其特征在于,还包括:
    发送第三指示信息,所述第三指示信息指示第一门限值,所述第一门限值用于确定所述M个天线端口集合。
  16. 如权利要求11至13中任一项所述的方法,其特征在于,还包括:
    发送第二指示信息,所述第二指示信息指示所述M个天线端口集合;或者,所述第二指示信息指示所述P个天线端口中的X个天线端口,所述M个天线端口集合中的天线端口均为所述X个天线端口中的天线端口,或者,所述M个天线端口集合中的天线端口均为所述P个天线端口中除所述X个天线端口之外的天线端口。
  17. 如权利要求16所述的方法,其特征在于,所述第二指示信息指示所述第一参考信号资源中的第二资源,所述第二资源对应所述M个天线端口集合,或者,所述第二资源对应所述X个天线端口。
  18. 如权利要求11至17中任一项所述的方法,其特征在于,
    所述第一信息包括M个第一比特域,所述M个第一比特域中的第K1个第一比特域指示所述M个天线端口集合中的第一天线端口集合的CSI,所述M个第一比特域中的第K2个第一比特域指示所述M个天线端口集合中的第二天线端口集合的CSI息,其中,所述K1和所述K2为小于或者等于M的正整数,K1小于K2,所述第一天线端口集合包括的天线端口的数目大于或者等于所述第二天线端口集合包括的天线端口的数目。
  19. 如权利要求11至17中任一项所述的方法,其特征在于,
    所述第一信息包括M个第一比特域,所述M个第一比特域中的第K1个第一比特域指示所述M个天线端口集合中的第一天线端口集合的CSI,所述M个第一比特域中的第K2个第一比特域指示所述M个天线端口集合中的第二天线端口集合的CSI,其中,所述K1和所述K2为小于或者等于M的正整数,K1小于K2,所述第一天线端口集合的信道质量大于或者等于所述第二天线端口集合的信道质量。
  20. 如权利要求11至19任一项所述的方法,其特征在于,
    所述第一信息包括M个第二比特域,所述M个第二比特域分别指示所述M个天线端口集合的索引。
  21. 一种通信装置,其特征在于,包括用于执行如权利要求1至10中任一项所述方法的单元或模块,或者包括用于执行如权利要求11-20任一项所述方法的单元或模块。
  22. 一种通信装置,其特征在于,包括至少一个处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述至少一个处理器的信号发送给所述通信装置之外的其它通信装置,所述至少一个处理器通过逻辑电路或执行代码指令用于实现如权利要求1至10或者如权利要求11至20中任一项所述的方法。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有指令,当所述指令被运行时,实现如权利要求1至10中任一项所述的方法,或者,实现如权利要求11至20中任一项所述的方法。
  24. 一种计算机程序产品,所述计算机程序产品包括:计算机程序,当所述计算机程序被运行时,使得如权利要求1至10中任一项所述的方法被执行,或者,使得如权利要求11至20中任一项所述的方法被执行。
PCT/CN2022/092702 2021-05-31 2022-05-13 信道状态信息的测量方法和装置 WO2022252963A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22815010.8A EP4333492A1 (en) 2021-05-31 2022-05-13 Method and apparatus for measuring channel state information
AU2022284108A AU2022284108A1 (en) 2021-05-31 2022-05-13 Channel state information measurement method, and apparatus
BR112023025090A BR112023025090A2 (pt) 2021-05-31 2022-05-13 Método de medição de informações de estado do canal e aparelho
US18/519,544 US20240098635A1 (en) 2021-05-31 2023-11-27 Channel state information measurement method, and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110604622.5A CN115484636A (zh) 2021-05-31 2021-05-31 信道状态信息的测量方法和装置
CN202110604622.5 2021-05-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/519,544 Continuation US20240098635A1 (en) 2021-05-31 2023-11-27 Channel state information measurement method, and apparatus

Publications (1)

Publication Number Publication Date
WO2022252963A1 true WO2022252963A1 (zh) 2022-12-08

Family

ID=84322759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092702 WO2022252963A1 (zh) 2021-05-31 2022-05-13 信道状态信息的测量方法和装置

Country Status (6)

Country Link
US (1) US20240098635A1 (zh)
EP (1) EP4333492A1 (zh)
CN (1) CN115484636A (zh)
AU (1) AU2022284108A1 (zh)
BR (1) BR112023025090A2 (zh)
WO (1) WO2022252963A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117015010A (zh) * 2022-04-28 2023-11-07 大唐移动通信设备有限公司 一种信息处理方法、装置、网络设备及终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160301511A1 (en) * 2015-04-10 2016-10-13 Innovative Technology Lab Co., Ltd. Method and apparatus for transmitting and receiving channel state information reference signal in full dimension mimo wireless communication system
WO2018058456A1 (zh) * 2016-09-29 2018-04-05 华为技术有限公司 信道状态信息参考信号发送方法与接收方法及设备
CN109196905A (zh) * 2016-04-01 2019-01-11 瑞典爱立信有限公司 用于灵活的信道状态信息-参考信号传送的系统和方法
WO2021093204A1 (en) * 2020-02-13 2021-05-20 Zte Corporation Acquiring channel state information

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160301511A1 (en) * 2015-04-10 2016-10-13 Innovative Technology Lab Co., Ltd. Method and apparatus for transmitting and receiving channel state information reference signal in full dimension mimo wireless communication system
CN112311435A (zh) * 2015-04-10 2021-02-02 阿里斯卡尔股份有限公司 发送csi-rs的信令信息的方法和报告csi的方法
CN109196905A (zh) * 2016-04-01 2019-01-11 瑞典爱立信有限公司 用于灵活的信道状态信息-参考信号传送的系统和方法
WO2018058456A1 (zh) * 2016-09-29 2018-04-05 华为技术有限公司 信道状态信息参考信号发送方法与接收方法及设备
WO2021093204A1 (en) * 2020-02-13 2021-05-20 Zte Corporation Acquiring channel state information

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MCC: "Correction of typos due to wrong implementation of CR0283 "Clarification of valid subframe in eMTC"", 3GPP DRAFT; R1-1610439, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Lisbon, Portugal; 20161010 - 20161014, 9 October 2016 (2016-10-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051150432 *

Also Published As

Publication number Publication date
CN115484636A (zh) 2022-12-16
AU2022284108A1 (en) 2023-12-21
EP4333492A1 (en) 2024-03-06
BR112023025090A2 (pt) 2024-02-20
US20240098635A1 (en) 2024-03-21

Similar Documents

Publication Publication Date Title
WO2020134944A1 (zh) 干扰测量的方法和通信装置
WO2020207269A1 (zh) 干扰测量的方法和装置
WO2020143647A1 (zh) 传输信道状态信息的方法和装置
WO2020029942A1 (zh) 波束测量的方法和装置
CN112672378B (zh) 资源测量的方法和装置
CN110138469A (zh) 一种移动终端及其信道状态信息测量参考信号的测量方法
WO2020001343A1 (zh) 一种通信方法及装置
WO2020155604A1 (zh) 测量上报的方法与装置
US20240098635A1 (en) Channel state information measurement method, and apparatus
WO2019096210A1 (zh) 资源分配的方法和装置
WO2018196505A1 (zh) 星座图旋转方法及装置
CN109151875B (zh) 用于测量信道状态的方法和装置
CN116325877A (zh) 一种信道状态信息上报方法及装置
CN114424469A (zh) 一种干扰测量上报的方法和通信装置
WO2024067441A1 (zh) 通信方法、装置和系统
WO2023125221A1 (zh) 一种信道质量指示的上报方法和装置
WO2024146368A1 (zh) 通信方法和通信装置
WO2024032327A1 (zh) 信息传输方法、装置和系统
WO2023165460A1 (zh) 一种通信方法、装置及系统
WO2023138507A1 (zh) 一种通信方法、装置及系统
WO2023207277A1 (zh) 一种通信方法及装置
WO2023193771A1 (zh) 一种通信方法、装置及系统
WO2023125833A1 (zh) 一种通信方法及通信装置
EP4366186A1 (en) Channel state information feedback method and communication apparatus
WO2024032469A1 (zh) 测量参数的反馈方法、装置、终端和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815010

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022815010

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2022284108

Country of ref document: AU

Ref document number: AU2022284108

Country of ref document: AU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023025090

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2022284108

Country of ref document: AU

Date of ref document: 20220513

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022815010

Country of ref document: EP

Effective date: 20231201

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023025090

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231129