WO2022267876A1 - 一种波束管理的方法和装置 - Google Patents

一种波束管理的方法和装置 Download PDF

Info

Publication number
WO2022267876A1
WO2022267876A1 PCT/CN2022/097277 CN2022097277W WO2022267876A1 WO 2022267876 A1 WO2022267876 A1 WO 2022267876A1 CN 2022097277 W CN2022097277 W CN 2022097277W WO 2022267876 A1 WO2022267876 A1 WO 2022267876A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
terminal device
capability information
measured
configuration information
Prior art date
Application number
PCT/CN2022/097277
Other languages
English (en)
French (fr)
Inventor
袁世通
周恩
张希
陈雷
刘凤威
冯淑兰
李铁
类春阳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022267876A1 publication Critical patent/WO2022267876A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access

Definitions

  • the present application relates to the communication field, and more specifically, to a beam management method and device.
  • the present application provides a method and device for beam management.
  • the beam management capabilities of the terminal equipment are diversified, and further enable when configuring beam management resources for the terminal equipment. It can be configured according to the capability of the terminal equipment when there is no downlink data scheduling, and has greater flexibility.
  • a beam management method includes: a terminal device determines first capability information, where the first capability information includes first beam measurement capability information and/or first reference signal measurement capability information, and the first The beam measurement capability information is used to indicate the number of beams that the terminal device can measure when there is no physical downlink shared channel PDSCH scheduling, and the first reference signal measurement capability information is used to indicate the number of beams that the terminal device can measure when there is no PDSCH scheduling. The number of reference signal resources.
  • the terminal device sends the first capability information to the network device.
  • the network device can know the first capability information when the terminal device has no downlink data scheduling, further, the network device is in When configuring beam management resources for a terminal device, it can be configured according to the capabilities of the terminal device in this scenario, which has greater flexibility.
  • the first beam measurement capability information is used to indicate the number of beams that the terminal device supports or can measure when there is no physical downlink shared channel PDSCH scheduling
  • the first reference signal measurement capability information is used to indicate that the terminal device does not have PDSCH scheduling The number of reference signal resources supported or capable of being measured when is the reference signal resource used for beam measurement.
  • the method further includes: the terminal device receives first resource configuration information from the network device, and the first The resource configuration information is used to indicate the first resource to be measured of the terminal device when there is no PDSCH scheduling, and the first resource to be measured is determined according to the first capability information.
  • the terminal device performs beam measurement according to the first resource configuration information.
  • this application configures the first resource to be measured of the terminal device when there is no downlink data scheduling, so that the terminal device can perform centralized beam measurement when there is no downlink data scheduling, thereby preventing the terminal device from being woken up intermittently and helping to reduce Power consumption of end equipment.
  • the terminal device performs beam measurement according to the first resource configuration information, including: the terminal device uses the first resource to be measured to perform beam measurement without PDSCH scheduling.
  • the terminal device performs the beam measurement method according to the first resource configuration information, including: the terminal device uses the second resource to be measured to perform beam measurement in the case of PDSCH scheduling , the second resource to be measured is the resource to be measured when the terminal device has PDSCH scheduling.
  • the terminal device can determine the corresponding measurement resource according to the communication scenario where it is located, for example, whether there is downlink data transmission within the measurement duration unit. Compared with the prior art, the terminal device must perform measurement according to the measurement resource indicated by the network device, so that the beam measurement of the terminal device has higher flexibility.
  • the terminal device will preferentially use the second resource to be measured to perform beam measurement when there is PDSCH scheduling, and will use the first resource to be measured to perform beam measurement when there is no PDSCH scheduling.
  • the method further includes: the terminal device receives second resource configuration information from the network device, where the second resource configuration information is used to indicate the second resource to be measured; or , the terminal device determines the second resource to be measured according to the first resource to be measured.
  • the second resource to be measured may be a part of the first resource to be measured
  • the terminal device determining the second resource to be measured according to the first resource to be measured may include the following situation: the terminal device determines a part of the first resource to be measured is the second resource to be measured.
  • the first capability information is capability information of the terminal device within a preset period of time.
  • the preset time length can be understood as a continuous period of time in the time domain. For example, several consecutive OFDM symbols, or several consecutive time slots.
  • the preset time length is 1 time slot or N consecutive OFDM symbols, where N is an integer greater than 1.
  • the N continuous OFDM symbols may refer to N symbols in one time slot, or may be N symbols that are continuous in the time domain across time slots.
  • the consecutive 5 symbols can be the 1st symbol to the 5th symbol on the 1st time slot, or the 13th to 14th symbols on the 1st time slot symbols and the 1st to 3rd symbols on the 2nd slot.
  • the aforementioned preset time length is T time slots, where T is a positive integer, such as 2 time slots or 3 time slots.
  • the terminal device does not have a physical downlink control channel (PDCCH) scheduled for a preset period of time. That is, the first capability information is capability information of the terminal device when there is no PDSCH and no PDCCH scheduling.
  • PDCCH physical downlink control channel
  • the first capability information is capability information of the terminal device when there is no PDSCH but there is PDCCH scheduling.
  • the first capability information is capability information of the terminal device on M component carriers CC, where M is a positive integer.
  • the method before the terminal device sends the first capability information to the network device, the method further includes: the terminal device receives a request message from the network device, and the request message is used to request The terminal device sends the first capability information.
  • the method further includes: the terminal device determines second capability information, where the second capability information includes second beam measurement capability information and/or second reference signal measurement capability information, the second beam measurement capability information is used to indicate the number of beams that the terminal device can measure when there is physical downlink shared channel PDSCH scheduling, and the second reference signal measurement capability information is used to indicate that the terminal device can measure when there is PDSCH scheduling The number of reference signal resources used for beam measurement.
  • the terminal device sends the second capability information to the network device.
  • the second capability information is capability information of the terminal device when there is a PDSCH and there is PDCCH scheduling.
  • the second capability information is capability information of the terminal device when there is a PDSCH but no PDCCH scheduling.
  • this application defines the capability information of the terminal equipment in different scenarios to make the beam management capabilities of the terminal equipment diverse, so that the network equipment can configure diversified beam management capabilities for the terminal equipment according to the beam capabilities of the terminal equipment in different scenarios. Measure resources for greater flexibility.
  • the first resource to be measured is a centralized synchronization signal/physical broadcast channel block SSB resource
  • the centralized SSB resource includes multiple SSBs that are continuous in the time domain, wherein, each of the multiple SSBs occupies Y OFDM symbols, and Y is a positive integer.
  • this application uses centralized SSB resources to enable terminal devices to perform centralized beam measurement when there is no data scheduling, thereby avoiding continuous wake-up and sleep of terminal devices due to beam measurement, and helping to reduce power consumption of terminal devices. Improve user experience.
  • a beam management method includes: a network device receives first capability information from a terminal device, where the first capability information includes first beam measurement capability information and/or first reference signal measurement capability information , the first beam measurement capability information is used to indicate the number of beams that the terminal device can measure when there is no physical downlink shared channel PDSCH scheduling, and the first reference signal measurement capability information is used to indicate the number of beams that the terminal device can measure when there is no PDSCH scheduling The number of reference signal resources used for beam measurements.
  • the network device determines the first resource to be measured according to the first capability information, and the first resource to be measured is a resource to be measured of the terminal device when there is no PDSCH scheduling.
  • the network device can know the first capability information when the terminal device has no downlink data scheduling, further, the network device is in When configuring beam management resources for a terminal device, it can be configured according to the capabilities of the terminal device in this scenario, which has greater flexibility.
  • the first resource to be measured includes at least one of the following: the number of ports, the position of the port, the time domain position and time domain duration, the number of resources, and the resource set The number and cycle of resources.
  • the method further includes: the network device sends first resource configuration information to the terminal device, and the first resource configuration information is used to indicate the first resource to be measured, so that the terminal device The device performs beam measurement according to resource configuration information.
  • this application configures the first resource to be measured of the terminal device when there is no downlink data scheduling, so that the terminal device can perform centralized beam measurement when there is no downlink data scheduling, thereby preventing the terminal device from being woken up intermittently and helping to reduce Power consumption of end equipment.
  • the first resource configuration information includes reporting configuration information, where the reporting configuration information is used to indicate reporting parameters of the terminal device.
  • the method further includes: the network device determining a second resource to be measured, where the second resource to be measured is a resource to be measured when the terminal device has PDSCH scheduling.
  • the network device sends second resource configuration group information, where the second resource configuration information is used to indicate the second resource to be measured.
  • the present application configures multiple measurement resources for the terminal device, so that the terminal device can flexibly select according to its scenario, thereby improving the flexibility of beam management of the terminal device.
  • this method can reduce the signaling overhead of the network device, thereby reducing the signaling overhead for the terminal device to receive configuration information of the network device, further saving power consumption of the terminal device, and improving user experience.
  • the second resource to be measured includes at least one of the following: the number of ports, the position of the port, the time domain position and time domain duration, the number of resources, and the resource set The number and cycle of resources.
  • the second resource configuration information includes reporting configuration information, where the reporting configuration information is used to indicate reporting parameters of the terminal device.
  • the method before the network device receives the first capability information from the terminal device, the method further includes: the network device sends a request message to the terminal device, and the request message is used to request the terminal device The device sends first capability information.
  • the first capability information is capability information of the terminal device within a preset period of time.
  • the preset time length is 1 time slot or N consecutive symbols, where N is an integer greater than 1.
  • the terminal device is not scheduled for a physical downlink control channel (PDCCH) within a preset period of time. That is, the first capability information is capability information of the terminal device when there is no PDSCH and no PDCCH scheduling.
  • PDCCH physical downlink control channel
  • the first capability information is capability information of the terminal device when there is no PDSCH but there is PDCCH scheduling.
  • the first capability information is capability information of the terminal device on M component carriers CC, where M is a positive integer.
  • the method further includes: the network device receives second capability information from the terminal device, where the second capability information includes the second beam measurement capability information and/or the first Two reference signal measurement capability information, the second beam measurement capability information is used to indicate the number of beams that the terminal device can measure when there is physical downlink shared channel PDSCH scheduling, the second reference signal measurement capability information is used to indicate that the terminal device has The quantity of reference signal resources used for beam measurement that can be measured during PDSCH scheduling.
  • the second capability information is capability information of the terminal device when there is a PDSCH and there is PDCCH scheduling.
  • the second capability information is capability information of the terminal device when there is a PDSCH but no PDCCH scheduling.
  • this application defines the capability information of the terminal equipment in different scenarios to make the beam management capabilities of the terminal equipment diverse, so that the network equipment can configure diversified beam management capabilities for the terminal equipment according to the beam capabilities of the terminal equipment in different scenarios. Measure resources for greater flexibility.
  • the network device determining the second resource to be measured includes: the network device determining the second resource to be measured according to the second capability information.
  • the first resource to be measured is a centralized synchronization signal/physical broadcast channel block SSB resource
  • the centralized SSB resource includes multiple SSBs that are continuous in the time domain, wherein, each of the multiple SSBs occupies Y OFDM symbols, and Y is a positive integer.
  • this application uses centralized SSB resources to enable terminal devices to perform centralized beam measurement when there is no data scheduling, thereby avoiding continuous wake-up and sleep of terminal devices due to beam measurement, and helping to reduce power consumption of terminal devices. Improve user experience.
  • a beam management method includes: a network device sends first configuration information to a terminal device, where the first configuration information is used to indicate a centralized synchronization signal/physical broadcast channel block SSB resource, the centralized
  • the SSB resources include multiple SSBs that are continuous in the time domain, where each of the multiple SSBs occupies Y orthogonal frequency division multiplexing OFDM symbols, and Y is a positive integer.
  • this application uses centralized SSB resources to enable terminal devices to perform centralized beam measurement when there is no data scheduling, thereby avoiding continuous wake-up and sleep of terminal devices due to beam measurement, and helping to reduce power consumption of terminal devices. Improve user experience.
  • the method further includes: the network device sends indication information to the terminal device, where the indication information is used to indicate the start position of the time domain where the centralized SSB resource is located, for example,
  • the start position in the time domain may be an offset value relative to the start position of a system frame, or the number of offset symbols of a certain time slot in a system frame.
  • the method further includes: the network device sends indication information to the terminal device, where the indication information is used to indicate the period of the centralized SSB resource.
  • the method further includes: the network device sends indication information to the terminal device, where the indication information is used to indicate whether the terminal device needs to operate in a discontinuous reception mode (discontinuous reception, DRX ) to receive centralized SSB resources outside of the wake-up period (On-Duration).
  • DRX discontinuous reception
  • On-Duration On-Duration
  • the method further includes: the network device sends indication information to the terminal device, where the indication information is used to instruct the terminal device to perform beam measurement (that is, uninterrupted time domain During the beam measurement of ), no other information processing is performed. For example, data reception and demodulation are not performed, data transmission is not performed, or terminal equipment does not need to wake up to receive discontinuous SSB signals in the time domain, and furthermore, there is no need to measure such discontinuous SSB signals in the time domain .
  • an apparatus for beam management which may be a terminal device, and the apparatus includes: a processing unit and a transceiver unit.
  • the processing unit is configured to: determine first capability information, where the first capability information includes beam measurement capability information and/or first reference signal measurement capability information, where the first beam measurement capability information is used to indicate that the terminal device does not have physical downlink sharing The number of beams that can be measured when the channel PDSCH is scheduled, and the first reference signal measurement capability information is used to indicate the number of reference signal resources used for beam measurement that the terminal device can measure when there is no PDSCH scheduling.
  • the transceiving unit is configured to: send the first capability information to the network device.
  • the network device can know the first capability information when the terminal device has no downlink data scheduling, further, the network device is in When configuring beam management resources for a terminal device, it can be configured according to the capabilities of the terminal device in this scenario, which has greater flexibility.
  • the transceiver unit is further configured to: receive first resource configuration information from the network device, where the first resource configuration information is used to instruct the terminal device when there is no PDSCH scheduling The first resource to be measured is determined according to the first capability information.
  • the processing unit is further configured to: perform beam measurement according to the first resource configuration information.
  • the processing unit is specifically configured to: use the first resource to be measured to perform beam measurement when there is no PDSCH scheduling.
  • the processing unit is specifically configured to: in the case of PDSCH scheduling, use the second resource to be measured to perform beam measurement, the second resource to be measured is the terminal device in Resources to be measured when there is PDSCH scheduling.
  • the transceiving unit is further configured to: receive second resource configuration information from the network device, where the second resource configuration information is used to indicate the second resource to be measured.
  • the processing unit is further configured to: determine the second resource to be measured according to the first resource to be measured.
  • the first capability information is capability information of the terminal device within a preset period of time.
  • the preset time length is 1 time slot or N consecutive symbols, where N is an integer greater than 1.
  • the terminal device does not have a physical downlink control channel (PDCCH) scheduled for the preset time length.
  • PDCCH physical downlink control channel
  • the first capability information is capability information of the terminal device on M component carriers CC, where M is a positive integer.
  • the transceiving unit is further configured to: receive a request message from the network device, where the request message is used to request the apparatus to send the first capability information.
  • an apparatus for beam management including: a processing unit and a transceiver unit, where the transceiver unit is configured to: receive first capability information from a terminal device, where the first capability information includes first beam measurement capability information and/or or first reference signal measurement capability information, the first beam measurement capability information is used to indicate the number of beams that the terminal device can measure when there is no physical downlink shared channel PDSCH scheduling, the first reference signal measurement capability information is used to indicate the terminal device The number of measurable reference signal resources for beam measurement when there is no PDSCH scheduling.
  • the processing unit is configured to: determine a first resource to be measured according to the first capability information, where the first resource to be measured is a resource to be measured of the terminal device when there is no PDSCH scheduling.
  • the first resource to be measured includes at least one of the following:
  • the transceiving unit is further configured to: send first resource configuration information to the terminal device, where the first resource configuration information is used to indicate the first resource to be measured, so that the terminal device The device performs beam measurement according to resource configuration information.
  • the first resource configuration information includes reporting configuration information, where the reporting configuration information is used to indicate reporting parameters of the terminal device.
  • the processing unit is further configured to: determine a second resource to be measured, where the second resource to be measured is a resource to be measured when the terminal device has PDSCH scheduling.
  • the transceiving unit is further configured to: send second resource configuration group information, where the second resource configuration information is used to indicate the second resource to be measured.
  • the second resource to be measured includes at least one of the following: the number of ports, the position of the port, the time domain position and time domain duration, the number of resources, the resource The number of collections and the period of the resource.
  • the second resource configuration information includes reporting configuration information, where the reporting configuration information is used to indicate reporting parameters of the terminal device.
  • the transceiving unit is further configured to: send a request message to the terminal device, where the request message is used to request the terminal device to send the first capability information.
  • a beam management apparatus which includes: a transceiver unit configured to: send first configuration information to a terminal device, where the first configuration information is used to indicate a centralized synchronization signal/physical broadcast channel A block SSB resource, the centralized SSB resource includes multiple SSBs that are continuous in the time domain, where each of the multiple SSBs occupies Y orthogonal frequency division multiplexing OFDM symbols, and Y is a positive integer.
  • this application uses centralized SSB resources to enable terminal devices to perform centralized beam measurement when there is no data scheduling, thereby avoiding continuous wake-up and sleep of terminal devices due to beam measurement, and helping to reduce power consumption of terminal devices. Improve user experience.
  • the transceiver unit is further configured to: send indication information to the terminal device, where the indication information is used to indicate the start position of the time domain where the centralized SSB resource is located, for example,
  • the start position in the time domain may be an offset value relative to the start position of a system frame, or the number of offset symbols of a certain time slot in a system frame.
  • the transceiving unit is further configured to: send indication information to the terminal device, where the indication information is used to indicate the period of the centralized SSB resource.
  • the transceiver unit is further configured to: send indication information to the terminal device, where the indication information is used to indicate whether the terminal device needs to operate in a discontinuous reception mode (discontinuous reception, DRX) ) to receive centralized SSB resources outside of the wake-up period (On-Duration).
  • DRX discontinuous reception
  • On-Duration On-Duration
  • the transceiver unit is further configured to: send indication information to the terminal device, where the indication information is used to indicate that the terminal device is performing beam measurement (that is, uninterrupted in the time domain) During the beam measurement of ), no other information processing is performed. For example, data reception and demodulation are not performed, data transmission is not performed, or terminal equipment does not need to wake up to receive discontinuous SSB signals in the time domain, and furthermore, there is no need to measure such discontinuous SSB signals in the time domain .
  • the present application provides a beam management device, which includes: at least one processor, the at least one processor is coupled to at least one memory, and the at least one processor is used to execute the computer stored in the at least one memory A program or an instruction, so that the device executes the method in any possible implementation manner of the first aspect to the third aspect and any one of the first aspect to the third aspect.
  • the present application provides a computer-readable medium, on which a computer program or instruction is stored, and when the computer program or instruction is run on a computer, the computer can realize the above-mentioned first aspect to The third aspect and the method in any possible implementation manner of the first aspect to the third aspect.
  • the present application provides a computer program product, including computer programs or instructions, which are used to implement any of the first to third aspects and any of the first to third aspects above when the computer program or instructions are executed.
  • a method in one possible implementation.
  • the present application provides a system-on-a-chip, including: a processor configured to execute computer programs or instructions in the memory, so that the system-on-a-chip implements the first to third aspects and the first to third aspects above.
  • the method in any possible implementation manner in the third aspect.
  • a communication device configured to execute the method in any possible implementation manner of the first aspect to the third aspect and any possible implementation manners of the first aspect to the third aspect.
  • Fig. 1 is a schematic diagram of a communication system applicable to the embodiment of the present application.
  • Fig. 2 is a schematic diagram of a communication system applicable to the embodiment of the present application.
  • FIG. 3 is a schematic diagram of a hardware structure of a network device and a terminal device provided in an embodiment of the present application.
  • Fig. 4 is a schematic diagram of a beam management method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a beam management method provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a beam management method provided by an embodiment of the present application.
  • Fig. 7 is a schematic diagram of a centralized SSB resource provided by an embodiment of the present application.
  • Fig. 8 is a schematic block diagram of an apparatus for beam management provided by an embodiment of the present application.
  • FIG. 9 is another schematic block diagram of an apparatus for beam management provided by an embodiment of the present application.
  • FIG. 10 is another schematic block diagram of an apparatus for beam management provided by an embodiment of the present application.
  • Fig. 11 is another schematic block diagram of an apparatus for beam management provided by an embodiment of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS Universal Mobile Telecommunications System
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5G Fifth Generation
  • 5G Fifth Generation
  • New Radio new radio
  • the terminal equipment in the embodiment of the present application may refer to user equipment, access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device.
  • a terminal device can be a device that provides voice/data connectivity to a user.
  • the terminal device can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, personal digital assistant (personal digital assistant, PDA), handheld device with wireless communication function, computing device or other processing device connected to a wireless modem, it can also be a virtual reality (virtual reality, VR) device, augmented reality (augmented reality (AR) equipment, wireless terminals in industrial control (for example, cameras, customer premise equipment (CPE)), wireless terminals in self driving, remote medical Wireless terminals in surgery, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home (For example, home appliances such as TV sets, smart boxes, game consoles, bathroom products), terminal equipment in 5G networks or terminal equipment in the future evolution of public land mobile network (PLMN), etc., this application implements Examples are not limited to this.
  • VR virtual reality
  • AR augmented reality
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the terminal device can also be a vehicle or a complete vehicle, and communication can be realized through the Internet of Vehicles, or it can be a component located in the vehicle (for example, placed in the vehicle or installed in the vehicle), that is, the vehicle terminal device , on-board module or on-board unit (OBU).
  • OBU on-board module or on-board unit
  • the terminal device can also be a terminal device in the Internet of Things (IoT) system.
  • IoT Internet of Things
  • IoT is an important part of the development of information technology in the future, and its main technical feature is that items can be Connect with the network to realize the intelligent network of man-machine interconnection and object interconnection.
  • the network device in this embodiment of the present application may be a device for communicating with a terminal device, for example, a radio access network (radio access network, RAN) node that connects the terminal device to a wireless network.
  • the network equipment can be a base transceiver station (BTS) in a global system for mobile communications (GSM) system or code division multiple access (CDMA), or a wideband code division multiple access (CDMA)
  • BTS base transceiver station
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • CDMA wideband code division multiple access
  • the network device can be a transmission reception point (transmission reception point, TRP), relay station, access point, vehicle-
  • the network device may include a centralized unit (centralized unit, CU) node, or a distributed unit (distributed unit, DU) node, or a RAN device including a CU node and a DU node.
  • a centralized unit centralized unit, CU
  • DU distributed unit
  • RAN device including a CU node and a DU node.
  • a terminal device or a network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also called main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiment of the present application does not specifically limit the specific structure of the execution subject of the method provided by the embodiment of the present application, as long as the program that records the code of the method provided by the embodiment of the present application can be run to provide the method according to the embodiment of the present application.
  • the execution subject of the method provided by the embodiment of the present application may be a terminal device or a network device, or a functional module in a terminal device or a network device that can call a program and execute the program.
  • various aspects or features of the present application may be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques.
  • article of manufacture covers a computer program accessible from any computer readable device, carrier or media.
  • computer-readable media may include, but are not limited to: magnetic storage devices (e.g., hard disks, floppy disks, or tapes, etc.), optical disks (e.g., compact discs (compact discs, CDs), digital versatile discs (digital versatile discs, DVDs), etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), card, stick or key drive, etc.).
  • magnetic storage devices e.g., hard disks, floppy disks, or tapes, etc.
  • optical disks e.g., compact discs (compact discs, CDs), digital versatile discs (digital versatile discs, DVDs), etc.
  • smart cards and flash memory devices for example, erasable programmable read-only
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing and/or carrying instructions and/or data.
  • FIG. 1 is a schematic diagram of a communication system 100 applicable to this embodiment of the present application.
  • the communication system 100 includes a network device 110 and multiple terminal devices 120 (such as a terminal device 120 a and a terminal device 120 b shown in FIG. 1 ).
  • the network device 110 may simultaneously transmit multiple analog beams through multiple radio frequency channels to transmit data or control signaling for multiple terminal devices.
  • the network device transmits beam 1 and beam 2 at the same time, wherein beam 1 is used to transmit data or control signaling for terminal device 120a, and beam 2 is used to transmit data or control signaling for terminal device 120b.
  • Beam 1 may be referred to as a serving beam for terminal device 120a
  • beam 2 may be referred to as a serving beam for terminal device 120b.
  • the terminal device 120a and the terminal device 120b may belong to the same cell. It can be understood that the communication system 100 above is a scenario of single TRP transmission.
  • FIG. 2 is a schematic diagram of a communication system 200 applicable to this embodiment of the present application.
  • the communication system 200 may include at least two network devices (such as the network device 210a and the network device 210b shown in FIG. 2), and the communication system 200 may also include at least one terminal device, such as Terminal device 220 is shown.
  • the terminal device 220 may establish a wireless link with the network device 210a and the network device 210b through a dual connectivity (dual connectivity, DC) technology or a multi-connection technology.
  • the network device 210a may be, for example, a primary base station
  • the network device 210b may be, for example, a secondary base station.
  • the network device 210a is the network device when the terminal device 220 initially accesses, and is responsible for radio resource control (radio resource control, RRC) communication with the terminal device 220, and the network device 210b may be added during RRC reconfiguration , used to provide additional wireless resources.
  • RRC radio resource control
  • FIG. 1 and FIG. 2 are only schematic diagrams, and do not constitute any limitation to the communication system applicable to the embodiment of the present application.
  • FIG. 3 is a schematic diagram of a hardware structure of a network device and a terminal device provided in an embodiment of the present application.
  • the terminal device includes at least one processor 101 , at least one memory 102 and at least one transceiver 103 .
  • the processor 101, the memory 102 and the transceiver 103 are connected through a bus.
  • the processor 101 can be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, a specific application integrated circuit (application-specific integrated circuit, ASIC), or one or more for controlling the execution of the application program program integrated circuit.
  • the processor 101 may also include multiple CPUs, and the processor 101 may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, or processing cores for processing data such as computer program instructions.
  • the memory 102 can be a read-only memory (read-only memory, ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM) or other types that can store information and instructions It can also be an electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact disc, laser disc, optical disc, digital versatile disc, blu-ray disc, etc.), magnetic disk storage medium or other magnetic storage device, or can be used to carry or store desired program code in the form of instructions or data structures and can be accessed by a computer Any other medium, which is not limited in this embodiment of the present application.
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • optical disc storage including compact disc, laser disc, optical disc, digital versatile disc, blu-ray disc, etc.
  • magnetic disk storage medium or other magnetic storage device or can be used to carry or store desired program code
  • the memory 102 may exist independently, and is connected to the processor 101 through a bus.
  • the memory 102 can also be integrated with the processor 101 .
  • the memory 102 is used to store the application program code for executing the solution of the present application, and the execution is controlled by the processor 101 .
  • the processor 101 is configured to execute computer program codes stored in the memory 102, so as to implement the method provided by the embodiment of the present application.
  • the transceiver 103 includes a transmitter 1031 and a receiver 1032 .
  • the transceiver 103 can use any device like a transceiver for communicating with other devices or communication networks, such as Ethernet, radio access network (radio access network, RAN), wireless local area network (wireless local area networks, WLAN) and so on.
  • radio access network radio access network
  • WLAN wireless local area network
  • the terminal device may further include an output device and an input device (not shown in FIG. 3 ).
  • the output device communicates with the processor 101 to display information in various ways.
  • the output device may be a liquid crystal display (liquid crystal display, LCD), a light emitting diode (light emitting diode, LED) display device, a cathode ray tube (cathode ray tube, CRT) display device, or a projector (projector), etc.
  • the input device communicates with the processor 101 and can receive user input in a variety of ways.
  • the input device may be a mouse, a keyboard, a touch screen device, or a sensing device, among others.
  • the input and output correspond to receiving and sending in the method embodiment respectively.
  • the network device includes at least one processor 201 , at least one memory 202 and at least one transceiver 203 .
  • the processor 201, the memory 202 and the transceiver 203 are connected through a bus.
  • the processor 201, the memory 202, and the transceiver 203 reference may be made to the description of the processor 101, the memory 102, and the transceiver 103 in the terminal device, and details are not repeated here.
  • the embodiment of the beam in the NR protocol can be a spatial filter (spatial filter), or a spatial filter (spatial filter) or a spatial parameter (spatial parameters).
  • a beam used to transmit a signal may be called a transmission beam (transmission beam, Tx beam), may be called a spatial domain transmit filter (spatial domain transmit filter) or a spatial domain transmit parameter (spatial domain transmit parameter);
  • a beam used to receive a signal may be It is called a reception beam (Rx beam), which can be called a spatial domain receive filter or a spatial domain receive parameter.
  • the transmitting beam may refer to the distribution of signal strength formed in different directions in space after the signal is transmitted by the antenna
  • the receiving beam may refer to the distribution of signal strength in different directions in space of the wireless signal received from the antenna.
  • the beams may be wide beams, or narrow beams, or other types of beams.
  • the beamforming technique may be beamforming technique or other techniques.
  • the beamforming technology may be a digital beamforming technology, an analog beamforming technology, or a hybrid digital/analog beamforming technology, and the like. Different beams can be considered as different resources. The same information or different information can be transmitted through different beams.
  • Beams generally correspond to resources. For example, when performing beam measurement, network devices use different resources to measure different beams. Terminal devices feed back the measured resource quality, and network devices know the quality of the corresponding beams. During data transmission, beam information is also indicated through its corresponding resource. For example, the network device indicates the information of the physical downlink shared channel (physical downlink shared channel, PDSCH) beam of the terminal device through the transmission configuration indicator (transmission configuration indicator, TCI) resource in the downlink control information (downlink control information, DCI).
  • transmission configuration indicator transmission configuration indicator
  • multiple beams with the same or similar communication characteristics are regarded as one beam.
  • One or more antenna ports can be included in one beam, used to transmit data channels, control channels and sounding signals, etc.
  • One or more antenna ports forming a beam can also be regarded as an antenna port set.
  • a beam refers to a transmission beam of a network device.
  • each beam of a network device corresponds to a resource, so the resource index can be used to uniquely identify the beam corresponding to the resource.
  • the beam in the embodiment of the present application may be represented by a transmission configuration indication (transmission configuration indication, TCI) state, or may be represented by a quasi-co-location (quasi-co-location, QCL) relationship.
  • TCI transmission configuration indication
  • QCL quasi-co-location
  • the signals corresponding to the antenna ports having a QCL relationship have the same parameters, or, the parameters of one antenna port can be used to determine the parameters of another antenna port having a QCL relationship with this antenna port, or, the two antenna ports have the same parameters , or, the parameter difference between the two antenna ports is smaller than a certain threshold.
  • the parameters may include one or more of the following: delay spread (delay spread), Doppler spread (doppler spread), Doppler frequency shift (doppler shift), average delay (average delay), average Gain, spatial Rx parameters.
  • the space reception parameters can include one or more of the following: angle of arrival (angle of arrival, AOA), average AOA, AOA extension, angle of departure (angle of departure, AOD), average angle of departure AOD, AOD extension, reception Antenna spatial correlation parameters, transmitting antenna spatial correlation parameters, transmitting beams, receiving beams, and resource identifiers.
  • the quasi-colocation may be used to indicate whether the channel state information reference signals sent by at least two groups of antenna ports come from the same transmission point, or whether they come from the same beam group.
  • the QCL relationship can be divided into the following four types (QCL-type) based on different parameters:
  • Type A Doppler frequency shift, Doppler spread, average delay, delay spread;
  • Type B Doppler frequency shift, Doppler spread
  • Type C Doppler frequency shift, average delay
  • Type D space to receive parameters.
  • Transmission configuration indication transmission configuration indication (transmission configuration indication, TCI)
  • the beam used by the downlink channel or the beam indication corresponding to the reference signal transmission is realized by associating the reference resource index in the transmission configuration indication TCI state table.
  • the network device configures a TCI state table (corresponding to TCI-states in 3GPP standard 38.331) through radio resource control (radio resource control, RRC) high-level signaling.
  • Each TCI state table contains several TCI states (corresponding to TCI-states in 3GPP standard 38.331). TCI-RS-Set).
  • Each TCI state includes TCI state ID (Transmission configuration indicator state ID), one or two quasi-parallel QCL type indications (QCL-type A/B/C/D), and reference signal index RS-ID corresponding to each type indication .
  • the network device can activate one or more TCI-states through high-layer signaling (such as medium access control-control element (medium access control-control element, MAC-CE)).
  • the activated TCI-state is a subset of the TCI-state list configured in the above RRC message.
  • the network device may also indicate a selected TCI-state through a TCI field in physical layer signaling (such as downlink control information (DCI)).
  • DCI downlink control information
  • the DCI may be applicable to DCI for scheduling physical downlink resources.
  • the configuration information of a TCI-state may include the identifiers of one or two reference signal resources, and the associated QCL types.
  • QCL represents a certain consistency relationship between a signal/channel to be received currently and a previously known reference signal. If there is a QCL relationship, the UE can inherit the receiving or sending parameters when receiving a reference signal before, to receive or send the upcoming signal/channel.
  • the QCL relationship is configured as one of type A, B, or C, it is used to indicate information such as time domain and frequency domain offset, and the terminal device can demodulate the physical downlink control channel (physical downlink control channel, PDCCH) or physical downlink shared channel (physical downlink shared channel, PDSCH).
  • the QCL relationship When the QCL relationship is configured as type D, it can be regarded as airspace QCL, and the terminal device can know which transmit beam is used by the network device to send signals, and then can determine which receive beam to use to receive signals according to the beam pairing relationship determined by the channel measurement described above. The terminal device can determine the receiving beam for receiving the PDSCH according to the TCI field in the DCI on the PDCCH.
  • Reference signal reference signal
  • uplink communication includes transmission of uplink physical channels and uplink signals.
  • the uplink physical channel including random access channel (random access channel, PRACH), uplink control channel (physical uplink control channel, PUCCH), uplink data channel (physical uplink shared channel, PUSCH), etc.
  • uplink signal including sounding reference signal (sounding reference signal, SRS), uplink control channel demodulation reference signal (PUCCH de-modulation reference signal, PUCCH-DMRS), uplink data channel demodulation reference signal PUSCH-DMRS, uplink phase noise tracking reference signal (phase noise tracking reference signal, PTRS), uplink positioning reference signal (uplink positioning RS), etc.
  • Downlink communication includes the transmission of downlink physical channels and downlink signals.
  • the downlink physical channels include: broadcast channel (physical broadcast channel, PBCH), downlink control channel (physical downlink control channel, PDCCH), downlink data channel (physical downlink shared channel, PDSCH), etc.
  • downlink signals include: synchronization signal/physical broadcast Channel block (synchronization signal/physical broadcast channel block, SS/PBCH block, SSB), primary synchronization signal (primary synchronization signal, PSS), secondary synchronization signal (secondary synchronization signal, SSS), downlink control channel demodulation reference signal (PDCCH de-modulation reference signal, PDCCH-DMRS), downlink data channel demodulation reference signal PDSCH-DMRS, downlink phase noise tracking reference signal PTRS, channel status information reference signal (channel status information reference signal, CSI-RS), cell signal ( Cell reference signal, CRS) (NR does not have), fine synchronization signal (time/frequency tracking reference signal, TRS) (LTE does not have), downlink positioning reference signal (down
  • Beam management includes configuring beam management resources, measuring and selecting beams, and beam reporting. details as follows.
  • Beam management resources are resources used to measure beam quality. Beam measurement means to obtain beam quality information by measuring reference signals.
  • the parameters used to measure beam quality include reference signal receiving power (reference signal receiving power, RSRP), but not limited thereto.
  • RSRP reference signal receiving power
  • beam quality can also be obtained through reference signal receiving quality (reference signal receiving quality, RSRQ), channel state information (channel status information, CSI), signal-noise ratio (signal-noise ratio, SNR), signal-to-interference-noise ratio (signal to interference plus noise ratio (SINR), block error rate (block error rate, BLER) and other parameters.
  • the CSI includes but is not limited to at least one of the following information: channel quality indicator (channel quality indicator, CQI), precoding matrix indicator (precoding matrix indicator, PMI), precoding type indicator (precoding type indicator, PTI), Rank indication (rank indication, RI), CSI-RS resource indication (CSI-RS resource indicator, CRI), layer indication (layer indication, LI).
  • the beam management resources include reference signals used for beam measurement, and the reference signals can be used for channel measurement or channel estimation.
  • Reference signal resources can be used to configure the transmission properties of reference signals, such as time-frequency resource locations, port mapping relationships, power factors, and scrambling codes.
  • the sending end device can send reference signals based on reference signal resources, and the receiving end device can Receive reference signal.
  • the network device can configure beam measurement reporting to the terminal device.
  • the beam measurement report includes one or more of the following parameters: report configuration ID, time-frequency domain position of reference signal resources used for beam measurement, time-domain behavior of report configuration (periodic/semi-static/triggered), report configuration Frequency domain behavior (subband/bandwidth, etc.), the specific content of the report, etc.
  • the specific content may include, for example, any one or more of the following: SINR, RSRP, CQI, PMI, RI, and so on.
  • the network device sends the beam measurement reference signal to the terminal device based on the beam measurement reporting configuration.
  • the beam measurement reference signal may include any one or more of the above-mentioned various reference signals.
  • the terminal device receives the reference signal at a corresponding time-frequency domain position based on the beam measurement reporting configuration.
  • the terminal device selects N (N is an integer greater than 1) transmission beams from the transmission beams delivered by the network device, and reports the resource IDs corresponding to these N beams (in 3GPP, the resource ID can be CSI -RS resource index, can also be SSB index) and signal receiving power to network equipment.
  • N is an integer greater than 1
  • the resource ID can be CSI -RS resource index, can also be SSB index
  • the selection criterion of the beam reported by the terminal device may be specified by the network device, or may be an internal implementation algorithm of the terminal device. For example, the terminal device may select the first few beams with the best beam quality from the configured non-zero power CSI-RS resource set for beam management to report.
  • Beam management mainly includes network equipment configuring beam management resources, network equipment sending beam management resource configuration information to terminal equipment, network equipment sending beam management resources to terminal equipment, terminal equipment performing beam quality measurement according to the beam management resources, and terminal equipment reporting measurement beam quality, etc.
  • the network device when the network device configures the beam management resource for the terminal device, it will determine it according to the beam management capability information reported by the terminal device.
  • the existing protocols do not define the beam management capabilities of terminal devices in different communication scenarios. Scheduling without control information, transmission with reference signals and transmission without reference signals have different capabilities. The existing technology does not take this into consideration, which makes the beam management capability of terminal equipment too simple, and further makes network equipment configure beams for terminal equipment. When measuring resources, it cannot be combined with the communication scenario where the terminal device is located, resulting in poor flexibility of beam management of the terminal device.
  • the present application provides a method and device for beam management.
  • the network device can know that the terminal device is here The first capability information in a communication scenario (that is, without downlink data scheduling), and further, when the network device configures beam management resources for the terminal device, it can be configured according to the capability of the terminal device when there is no downlink data scheduling, which has stronger flexibility sex.
  • the beam management method provided by the embodiment of the present application will be described below with reference to the accompanying drawings. It should be understood that the beam management method provided in this application may be applicable to a wireless communication system, for example, the wireless communication system 100 shown in FIG. 1 or the wireless communication system 200 shown in FIG. 2 .
  • FIG. 4 shows a beam management method provided by the present application from the perspective of device interaction, and the method may be executed by the devices or systems in FIGS. 1 to 3 .
  • the terminal device determines first capability information, where the first capability information includes first beam measurement capability information and/or first reference signal measurement capability information, where the first beam measurement capability information is used to indicate that the terminal device does not have physical downlink sharing The number of beams that can be measured when the channel PDSCH is scheduled, and the first reference signal measurement capability information is used to indicate the number of reference signal resources used for beam management that the terminal device can measure when there is no PDSCH scheduling.
  • the first beam measurement capability information is used to indicate the number of beams that the terminal device can measure when there is no PDSCH scheduling, and the number of measurable beams can be understood as the number of beams that the terminal device switches when there is no PDSCH scheduling.
  • the terminal device needs to adjust the spatial filter parameters of its antenna array to maximize the parameters such as RSRP or RSRQ of the received signal.
  • the number of measurable beams can be the terminal device The maximum number of beams that can be switched without PDSCH scheduling.
  • the terminal device can fix the receiving beam to complete the reception of the signals sent by the base station through different downlink beams.
  • the number of measurable beams can be the terminal device when there is no PDSCH scheduling The maximum number of downlink beams that can be received.
  • the first reference signal measurement capability information is used to indicate the number of reference signal resources used for beam management that the terminal device can measure when there is no PDSCH scheduling, or it can also be said that the terminal device supports beam management when there is no PDSCH scheduling
  • the measured number of reference signal resources may refer to CSI-RS resources or SSB resources of a single or multiple ports.
  • the measurable quantity of reference signal resources used for beam management may refer to the measurable quantity of at least one of the above resources that the terminal equipment uses when there is no PDSCH scheduling, for example, refers to the number that the terminal equipment uses for any one or more resources when there is no PDSCH scheduling.
  • the maximum number of RSRP and/or SINR measurements that can be measured by this resource may be used to indicate the number of reference signal resources used for beam management that the terminal device can measure when there is no PDSCH scheduling, or it can also be said that the terminal device supports beam management when there is no PDSCH scheduling
  • the measured number of reference signal resources may refer to CSI-RS resources or SSB resources of
  • the terminal device may determine the measurement capability of multiple ports according to the measurement capability of a single port.
  • the measurement capability of the multi-port CSI-RS resources may be the sum of the measurement capabilities of multiple single-port CSI-RS resources of the terminal device.
  • the number of reference signal resources used for beam management may also be understood as the number of reference signal resources used for beam measurement.
  • the first beam measurement capability information is used to indicate the number of beams that the terminal device supports or can measure when there is no physical downlink shared channel PDSCH scheduling
  • the first reference signal measurement capability information is used to indicate that the terminal device does not have PDSCH scheduling The number of reference signal resources supported or capable of being measured when is the reference signal resource used for beam measurement.
  • the first reference signal measurement capability information may include all activated serving cells (serving cells), component carriers (component carriers, CCs) of the terminal device, and/or all activated downlink bandwidth parts (bandwidth part, On the BWP), the number of reference signal resources used for beam management that can be measured when there is no downlink data scheduling.
  • the first reference signal measurement capability information may include the number of aperiodic CSI-RS measurements supported by the terminal device in a certain period of time when there is no downlink data scheduling.
  • the reference signal that can be used to measure the first beam measurement capability information and/or the first reference signal measurement capability information includes but is not limited to at least one of the following: synchronization signal/physical broadcast channel block SSB, channel state Information reference signal CSI-RS, path loss reference signal PL-RS, reference signal BFD-RS for beam failure recovery, reference signal RLM-RS for radio link detection and downlink reference signal PRS for positioning, sounding A reference signal SRS and a sounding reference signal positioningSRS for positioning.
  • the first beam measurement capability is not necessarily the sum of the first beam measurement capabilities when one parameter measurement is performed.
  • the terminal device performs RSRP measurement, the number of switchable beams is 8, and if it performs CSI measurement, the number of switchable beams is 4.
  • the first capability information reported by the terminal device may include the number of measurements of at least one parameter among RSRP, RSRQ, CSI, SINR, and SNR supported when there is no PDSCH scheduling.
  • the RSRP may be L1-RSRP
  • the SINR may be L1-SINR.
  • the first capability information of the terminal device may also include the maximum number of supported TCI states when there is no PDSCH scheduling.
  • the terminal device can measure the reference signal according to X TCI states
  • the TCI states include at least different QCL Type-D information, wherein the capability of the terminal device can support the maximum number of X when there is no PDSCH scheduling.
  • the foregoing first capability information may also include the minimum number of measurements supported by the terminal device when there is no PDSCH scheduling.
  • the first capability information of the terminal device may include only the first beam measurement capability information, or only the first reference signal measurement capability information, or may include the first beam measurement capability information and the first reference signal measurement capability information.
  • the first capability information of the terminal device refers to the capability information of the terminal device when there is no downlink data scheduling, or, also It can be said that it is the capability information of the terminal device when there is no physical downlink control channel (PDSCH).
  • PDSCH physical downlink control channel
  • the terminal device when the terminal device does not have PDSCH scheduling, it may mean that the terminal device only has no PDSCH scheduling, or it may refer to the terminal
  • the device not only does not have PDSCH scheduling, but also does not transmit at least one of the following information: PUSCH, control information (for example, PDCCH, PUCCH), downlink reference signal (for example, SSB, CSI-RS, TRS), uplink reference signal (for example, SRS )Wait.
  • control information for example, PDCCH, PUCCH
  • downlink reference signal for example, SSB, CSI-RS, TRS
  • uplink reference signal for example, SRS
  • the first capability information in this application may refer to the capability of the terminal device to schedule downlink control information (for example, PDCCH) without downlink data (for example, PDSCH) scheduling. It can also be said that the first capability information refers to the capabilities supported by the terminal device in a scenario where there is no downlink data scheduling but downlink control information scheduling.
  • downlink control information for example, PDCCH
  • PDSCH downlink data
  • the first capability information in this application may refer to the capability of the terminal device when there is no downlink data (eg, PDSCH) scheduling and no downlink control information (eg, PDCCH) scheduling. That is, the first capability information is for the capability supported by the terminal device in a scenario where there is no downlink data scheduling and no downlink control information scheduling.
  • PDSCH downlink data
  • PDCCH downlink control information
  • the terminal device when there is no downlink data scheduling, the terminal device does not transmit uplink control information, uplink data, uplink signals, and any information unrelated to beam measurement, that is, the terminal device's first
  • the capability information is the capability supported when the terminal device only performs beam measurement.
  • the terminal device may also determine the second capability information when there is data scheduling, similarly, the second capability information of the terminal device includes the second beam measurement capability information and/or the second reference signal measurement capability information, the second beam measurement capability information is used to indicate the number of beams that the terminal device can measure when there is physical downlink shared channel PDSCH scheduling, and the second reference signal measurement capability information is used to indicate that the terminal device can measure when there is PDSCH scheduling The number of reference signal resources used for beam management.
  • the second capability information may be the capability information of the terminal device defined in 3GPP protocol TS 38.306.
  • the second capability information of the terminal device may include capability information of the terminal device in a scenario where downlink data is scheduled and downlink control information is scheduled. That is, the second capability information is the capability information of the terminal device when there is a PDSCH and there is PDCCH scheduling.
  • the second capability information of the terminal device may also include capability information of the terminal device in a scenario where there is downlink data scheduling but no downlink control information scheduling. That is, the second capability information is the capability information of the terminal device when there is a PDSCH but no PDCCH scheduling
  • the beam management capabilities of the terminal device are diversified, so that the network device can configure diversification for the terminal device according to the beam capability information of the terminal device in different scenarios
  • the measurement resources therefore, have greater flexibility.
  • the first/second capability information of the terminal device may refer to capability information of the terminal device within a preset period of time. That is, the first/second capability information of the terminal device is for a continuous period of time.
  • the preset time length may be indicated by the network device to the terminal device, or may be defined by a protocol, which is not limited in this application.
  • the above preset time length is 1 time slot or N consecutive orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols, where N is an integer greater than 1.
  • the preset time length is 2 consecutive symbols, or 3 consecutive symbols, or 4 consecutive symbols, or a plurality of consecutive symbols.
  • the consecutive N symbols may refer to N symbols in one time slot, or may be N symbols that are continuous in time across time slots.
  • the consecutive 5 symbols can be the 1st symbol to the 5th symbol on the 1st time slot, or the 13th to 14th symbols on the 1st time slot symbols and the 1st to 3rd symbols on the 2nd slot.
  • the preset time length is T time slots, where T is a positive integer, such as 2 time slots or 3 time slots.
  • a time slot may have 14 symbols.
  • a time slot includes 14 symbols.
  • a time slot can also be 12 symbols, for example, for an OFDM symbol with an extended cyclic prefix (extended cyclic prefix), a time slot includes 12 symbols.
  • this application does not exclude that in future communication technologies, the number of OFDM symbols included in a time slot is other values.
  • the first capability information of the terminal device includes that the terminal device has no physical downlink control channel (PDCCH) scheduling within the preset time period. That is, the terminal device may not have downlink data information and downlink control information scheduled for the aforementioned preset time length.
  • PDCCH physical downlink control channel
  • the first/second capability information of the terminal device is capability information of the terminal device on M component carriers (component carriers, CCs), where M is a positive integer. That is, the first/second capability information of the terminal device is for M CCs, and may be the measurement capability of one CC, or the sum of the measurement capabilities of multiple CCs, for example, 2 CCs, 3 CCs CC or multiple CCs.
  • component carriers component carriers
  • the first/second capability information of the terminal device is capability information of the terminal device in L frequency ranges, where L is a positive integer. That is, the first/second capability information of the terminal device may be for a single frequency range, or for multiple frequency ranges, for example, the sum of capability information for two frequency ranges, or for three frequency ranges The sum of the capabilities of the range.
  • the frequency range may be FR1 defined in the standard, that is, a frequency band of 6 GHz and below, or FR2, that is, a frequency range from 6 GHz to 71 GHz.
  • the frequency range may also be other numerical ranges defined in future standards, or may also be a self-defined frequency range.
  • the frequency range in the present invention refers generally and is not limited to specific numerical values.
  • parameters such as the preset time length, the number of component carriers, and the number of frequency ranges targeted by the first capability information and the second capability information may be the same or different, which is not limited in this application.
  • the terminal device sends the first capability information to the network device, and the network device receives the first capability information.
  • the first capability information sent by the terminal device to the network device is the first beam measurement capability information or the first reference signal measurement capability information. capability information.
  • the terminal device may send the two measurement capability information as a whole to the network device together in the first capability information .
  • the terminal device may also report the determined first beam measurement capability information and the first reference signal measurement capability information as two pieces of information to the network device respectively.
  • the first capability information sent by the terminal device to the network device may be included in the PUCCH or the PUSCH.
  • the terminal device may also send the second capability information to the network device.
  • the signaling carried by the first/second capability information reported by the terminal device to the network device may refer to the provisions in 3GPP standard TS 38.331, which is not limited in this application.
  • the network device determines a first resource to be measured according to the received first capability information, where the first resource to be measured is a resource to be measured of the terminal device when there is no PDSCH scheduling.
  • the network device may determine, according to the first capability information of the terminal device when there is no PDSCH scheduling, that the terminal device is more suitable for the first resource to be measured in this communication scenario.
  • the capability of a terminal device when there is no PDSCH scheduling is stronger than that when there is PDSCH scheduling. Therefore, after the terminal device reports the first capability information, the network device can determine and configure a channel that is more suitable for the terminal device without downlink data scheduling. resources of the communication environment, so that the terminal equipment can complete the beam measurement in a shorter time.
  • the manner in which the network device determines the first resource to be measured may be that there is a correspondence between the first capability information and the first resource to be measured, wherein the correspondence may be preconfigured in the network device, or may be defined by the protocol.
  • the network device may determine the first resource to be measured according to parameters such as its current communication environment and performance of the terminal device. The above methods are for illustration only, and are not limited in this application.
  • the network device can know the capability of the terminal device when there is no downlink data scheduling. Furthermore, when the network device configures beam management resources for the terminal device, it can according to the It can be configured according to the capabilities of the equipment, so it has more flexibility.
  • the first resource to be measured may be a resource or a resource set, that is, a group of resources.
  • the first resource to be measured includes at least one of the following: number of ports, position of ports, time domain position and time domain duration, number of resources, number of resource sets, and period of resources.
  • the first resource to be measured may include information about ports used for beam measurement, such as the number or quantity of ports, positions of ports, and time domain information of beam measurement, such as time domain start time or time domain position .
  • the time domain duration may also include the number of resources used for beam measurement, or the number of resource sets and the period of these resources.
  • the method further includes: S440.
  • the network device sends first resource configuration information to the terminal device, where the first resource configuration information is used to indicate the first resource to be measured, so that the terminal device can Configuration information for beam measurements.
  • the network device may use the first indication information to instruct the terminal device to use the resource when it is determined that the terminal device is in a scenario where there is no downlink data scheduling according to the information scheduling situation of the terminal device.
  • Beam measurement is performed on the first resource to be measured, where the first indication information may be included in the first resource configuration information, or sent separately from the first resource configuration information, or directly indicated by the first resource configuration information.
  • the network device may also immediately send the first configuration information to the terminal device, so that when the terminal device performs beam measurement, it can Resources and other information to determine the appropriate measurement resources.
  • the network device may not schedule the terminal device within its configured time domain range, that is, not send downlink data to the terminal device within the configured time domain range.
  • the network often configures a large number of periodic reference signals for beam measurement, and for scheduling or other implementation considerations, these reference signals are scattered on time domain resources, resulting in high-frequency It is difficult for the terminal to sleep for a long time.
  • the terminal device by configuring the first resource to be measured for the terminal device when there is no downlink data scheduling, the terminal device can perform centralized beam measurement when there is no downlink data scheduling, thereby preventing the terminal device from being woken up intermittently, which is helpful To reduce the power consumption of terminal equipment.
  • the network device may send the first resource configuration information to the terminal device. Furthermore, since the terminal device has strong capability at this stage and the beam measurement resources match its capability, the beam measurement can be completed in a short wake-up time, and the terminal device can continue to sleep after the beam measurement is completed. In this way, it is avoided that the terminal equipment needs a longer wake-up time to complete the beam measurement due to the low matching degree between the measurement resource and the measurement capability. That is to say, this method can reduce the The wake-up time of the terminal equipment is reduced, thereby reducing power consumption and improving user experience.
  • the first resource configuration information may include reporting configuration information
  • the reporting configuration information is used to indicate the reporting parameters of the terminal device, that is, the network device can configure the reporting parameters to the terminal device to instruct the terminal device how to report, and the terminal device according to the first
  • the resources to be measured are reported according to these reporting parameters after the beam measurement is performed.
  • the reporting parameters may include the reported time domain position and/or frequency domain position, and the specific content of the report, for example, one or more of RSRP, CQI, SINR, PMI, RI, and the like.
  • the above method further includes: S450, the terminal device performs beam measurement according to the first resource configuration information.
  • the terminal device may select an appropriate resource to perform beam measurement according to the first resource to be measured and its own communication environment. Specifically, the following situation may be included: the terminal device uses the first resource to be measured to perform beam measurement without PDSCH scheduling. Or, in the case of PDSCH scheduling, the terminal device uses the second resource to be measured to perform beam measurement, and the second resource to be measured is the resource to be measured of the terminal device when there is PDSCH scheduling.
  • FIG. 5 is another schematic diagram of a beam management method provided by an embodiment of the present application.
  • the network device configures a CSI-RS measurement resource (an example of the first resource to be measured) without data scheduling in a time slot to the terminal device, which occupies the 7th to 12th symbols in the time domain.
  • the terminal device has no data scheduling for this time slot, so the terminal device can measure the CSI-RS resources of the 7th to 12th symbols according to its own communication environment and network device configuration.
  • FIG. 6 is a schematic diagram of a beam management method provided by an embodiment of the present application.
  • the network device configures a CSI-RS measurement resource (an example of the first resource to be measured) without data scheduling in a time slot to the terminal device, which occupies the 7th to 12th symbols in the time domain.
  • the terminal device has data scheduling in the 1st to 5th symbols of the time slot. Therefore, the terminal device can only measure the 9th-12th symbol according to its own communication environment (that is, whether there is downlink data transmission) and the configuration of the network device.
  • Symbolic CSI-RS resource is an example of the second resource to be measured.
  • the terminal device has no data scheduling in the 7th to 12th symbols, and the network device may instruct the terminal device not to perform data scheduling within the time domain range.
  • the terminal device can determine the corresponding measurement resource according to the communication scenario where it is located, for example, whether there is downlink data transmission within the measurement duration unit. Compared with the prior art, the terminal device must perform measurement according to the measurement resource indicated by the network device, so that the beam measurement of the terminal device has higher flexibility.
  • the foregoing second resource to be measured may be configured by the network device to the terminal device.
  • the above method further includes: S460, the network device determines the second resource to be measured. S470.
  • the network device sends second resource configuration information, where the second resource configuration information is used to indicate the second resource to be measured.
  • the network device can determine the second resource to be measured according to the second capability information of the terminal device, and the second resource to be measured is the resource to be measured when the terminal device has PDSCH scheduling. resource. It should be understood that if the terminal device does not send the second capability information to the network device, the network device may also refer to the first capability information of the terminal device to configure the terminal device with a second resource to be measured that is not larger than the first resource to be measured, that is, the second The resource to be measured is a subset of the first resource to be measured. The network device may also refer to the capability information reported by the terminal device in the past without distinguishing between scenarios, and determine the second resource to be measured, which is not limited in this application.
  • the network device may, according to the information scheduling situation of the terminal device, instruct the terminal device to use the second resource to be measured through the second indication information when determining that the terminal device is in a scenario where downlink data is scheduled.
  • the resource performs beam measurement, where the second indication information may be included in the second resource configuration information, or may be sent separately from the second resource configuration information, or may be directly indicated by the second resource configuration information.
  • the network device determines the second resource to be measured, it can also immediately send the second configuration information to the terminal device, so that the terminal device can perform beam measurement according to its own scene and the second resource to be measured Resources and other information to determine the appropriate measurement resources.
  • the second resource to be measured may also be preconfigured in the terminal device.
  • the above-mentioned second resources to be measured may also be partial resources selected by the terminal device from the first resources to be measured configured by the network device, that is, the network device does not need to configure the second resource to be measured to the terminal device, and the terminal device can configure the second resource to be measured according to
  • the first to-be-measured resource determines the second to-be-measured resource, for example, the terminal device determines a part of the first to-be-measured resource as the second to-be-measured resource.
  • the second resource to be measured includes at least one of the following: the number of ports, the position of the port, the time domain position and time domain duration, the number of resources, the number of resource sets, and the period of the resources.
  • the second resource to be measured may include information on ports used for beam measurement, such as the number or quantity of ports, the location of ports, and time domain information of beam measurement, such as time domain start time or time domain position .
  • the time domain duration may also include the number of resources used for beam measurement, or the number of resource sets and the period of these resources.
  • the second resource configuration information may also include reporting configuration information, and the reporting configuration information is used to indicate the reporting parameters of the terminal device, that is, the network device can configure the reporting parameters to the terminal device to instruct the terminal device how to report, and the terminal device according to the first 2. Report according to these reporting parameters after the resources to be measured perform beam measurement.
  • the reporting parameters may include the reported time domain position and/or frequency domain position, and the specific content of the report, for example, one or more of RSRP, CQI, SINR, PMI, RI, and the like.
  • the present application configures multiple measurement resources for the terminal device, so that the terminal device can flexibly select according to its scenario, thereby improving the flexibility of beam management of the terminal device.
  • this method can reduce the signaling overhead of the network device, thereby reducing the signaling overhead for the terminal device to receive configuration information of the network device, further saving power consumption of the terminal device, and improving user experience.
  • the above method may further include: after the terminal device completes the beam measurement, reporting the beam measurement result.
  • the terminal device may report according to the reported configuration information in the first resource configuration information or the second resource configuration information.
  • the terminal device may report according to locally pre-configured or protocol-specified reporting configuration information.
  • the above-mentioned reported configuration information may also be sent separately from the first/second resource configuration information, which is not limited in this application.
  • the network device may also send indication information to the terminal device to indicate the reporting timing of the terminal device. For example, it may be indicated by downlink control information (downlink control, DCI).
  • DCI downlink control information
  • the network device may also send indication information to the terminal device, indicating that the terminal device reports opportunity.
  • the indication may be indicated by activating a signaling medium access control element (medium access control control element, MAC-CE).
  • the above method further includes: S480, the terminal device may receive a request message sent by the network device, where the request message is used to request the terminal device to send the first capability information and/or the second capability information. That is, before S410, the terminal device may send the first capability information and/or the second capability information to the network device according to the request of the network device. It should be understood that the request message used to request the first capability information and the request message used to request the second capability information may be the same or different, which is not limited in this application.
  • the first resource to be measured may be a centralized SSB resource
  • the centralized SSB resource includes multiple SSBs that are continuous in the time domain, that is, the centralized SSB resource has no Orthogonal frequency division multiplexing (OFDM) symbol spacing.
  • OFDM Orthogonal frequency division multiplexing
  • Fig. 7 is a schematic diagram of a centralized SSB resource provided by an embodiment of the present application.
  • one SSB occupies 4 symbols in the time domain, and each SSB in the figure represents a signal sent through a different beam.
  • the network device may configure centralized SSB resources to the terminal device according to the first capability information of the terminal device, and then send multiple SSBs to the terminal device, and the multiple SSBs are continuous in the time domain for the terminal device to perform beam measurement.
  • each of the multiple SSBs included in the centralized SSB resource in this application may also occupy 1, 2, 3 or 5 symbols, Or the number of symbols occupied is other values, which are not limited in this application.
  • each of the plurality of SSBs included in the centralized SSB resource may include a primary synchronization signal PSS and/or a secondary synchronization signal SSS.
  • the first indication information sent by the network device to the terminal device may also be used to indicate the start position of the time domain where the centralized SSB resources are located.
  • the start position of the time domain may be relative to the start of a system frame The offset value of the position, or the offset symbol number of a slot in a system frame.
  • the first indication information sent by the network device to the terminal device may also be used to indicate the period of the centralized SSB resource.
  • the first indication information sent by the network device to the terminal device may also be used to indicate whether the terminal device needs to receive the centralized SSB outside the wake-up period (On-Duration) of the discontinuous reception mode (discontinuous reception, DRX) resource.
  • On-Duration the wake-up period of the discontinuous reception mode (discontinuous reception, DRX) resource.
  • the first indication information sent by the network device to the terminal device may also be used to instruct the terminal device not to perform other information during beam measurement (that is, uninterrupted beam measurement in the time domain). deal with. For example, data reception and demodulation are not performed, data transmission is not performed, or terminal equipment does not need to wake up to receive discontinuous SSB signals in the time domain, and furthermore, there is no need to measure such discontinuous SSB signals in the time domain .
  • the terminal device may perform beam measurement according to an existing protocol at a time other than performing the above beam measurement (that is, uninterrupted beam measurement in the time domain).
  • the SSB used for beam measurement usually lasts for a long time (for example, 5 ms) and has a short period (for example, 20 ms), so the terminal device needs to wake up constantly to measure the SSB.
  • this application uses centralized SSB resources to enable terminal devices to perform centralized beam measurement when there is no data scheduling, thereby avoiding continuous wake-up and sleep of terminal devices due to beam measurement, and helping to reduce the cost of terminal devices. Power consumption, improve user experience.
  • the content indicated by the first indication information may be sent in one indication information, or may be indicated in different information in an explicit or implicit manner, which is not limited in this application.
  • the network device may send first configuration information to the terminal device, where the first configuration information is used to indicate a centralized synchronization signal/physical broadcast channel block SSB resource, and the centralized SSB resource is included in the time domain Multiple SSBs in a continuous range, wherein each of the multiple SSBs occupies Y orthogonal frequency division multiplexing OFDM symbols, and Y is a positive integer.
  • the terminal device may receive the first configuration information, and then perform beam measurement according to the first configuration information.
  • the beam management method provided by the embodiment of the present application is described in detail above with reference to FIG. 1 to FIG. 7 , and the beam management device provided by the embodiment of the present application will be described below in conjunction with FIG. 8 to FIG. 11 .
  • FIG. 8 is a schematic block diagram of an apparatus for beam management provided by an embodiment of the present application.
  • the apparatus 800 may be a terminal device, or may be a component configured in the terminal device (for example, a unit, a module, a chip or a chip system), and the apparatus 800 includes: a processing unit 810 and a transceiver unit 820 .
  • the processing unit 810 is configured to: determine first capability information, where the first capability information includes first beam measurement capability information and/or first reference signal measurement capability information, where the first beam measurement capability information is used to indicate that the device does not physically The number of beams that can be measured when the downlink shared channel PDSCH is scheduled, and the first reference signal measurement capability information is used to indicate the number of reference signal resources used for beam management that the apparatus can measure when there is no PDSCH scheduling.
  • the transceiving unit 820 is configured to: send the first capability information to the network device.
  • the network device can know the first capability information when the terminal device does not have downlink data scheduling, and further, the network device is in When configuring beam management resources for a terminal device, it can be configured according to the capabilities of the terminal device in this scenario, which has greater flexibility.
  • the transceiving unit 820 is also configured to: receive first resource configuration information from the network device, the first resource configuration information is used to indicate the first resource to be measured when the terminal device does not have PDSCH scheduling, the first resource to be measured The measurement resource is determined according to the first capability information.
  • the processing unit 810 is further configured to: perform beam measurement according to the first resource configuration information.
  • the processing unit 810 is specifically configured to: use the first resource to be measured to perform beam measurement in the absence of PDSCH scheduling.
  • the processing unit 810 is specifically configured to: in the case of PDSCH scheduling, use the second resource to be measured to perform beam measurement, and the second resource to be measured is the resource to be measured of the terminal device when there is PDSCH scheduling.
  • the transceiving unit 820 is further configured to: receive second resource configuration information from the network device, where the second resource configuration information is used to indicate the second resource to be measured.
  • the processing unit 810 is further configured to: determine the second resource to be measured according to the first resource to be measured.
  • the first capability information is capability information of the terminal device within a preset period of time.
  • the preset time length is 1 time slot or N consecutive symbols, where N is an integer greater than 1.
  • the terminal device is not scheduled for the physical downlink control channel PDCCH within the preset time length.
  • the first capability information is capability information of the terminal device on M component carriers CC, where M is a positive integer.
  • the transceiving unit 820 is further configured to: receive a request message from the network device, where the request message is used to request the apparatus to send the first capability information.
  • the device 800 here is embodied in the form of functional units.
  • the term "unit” here may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor for executing one or more software or firmware programs (such as a shared processor, a dedicated processor, or a group processor, etc.) and memory, incorporated logic, and/or other suitable components to support the described functionality.
  • ASIC application specific integrated circuit
  • the apparatus 800 may specifically be the terminal device in the above-mentioned embodiment of the method 400, and the apparatus 800 may be used to execute each process corresponding to the terminal device in the above-mentioned embodiment of the method 400 and/or or steps, in order to avoid repetition, no more details are given here.
  • the above-mentioned transceiver unit 820 may include a receiving unit 821 and a sending unit 822, wherein the receiving unit 821 is configured to perform a receiving function in the above-mentioned transceiver unit 820, for example, receiving first resource configuration information from a network device, and the sending unit 822 It is used to execute the sending function in the transceiving unit 820, for example, sending the first capability information to the network device.
  • FIG. 9 is a schematic block diagram of an apparatus for beam management provided by an embodiment of the present application.
  • the apparatus 900 may be a network device, or may be a component configured in the network device (for example, a unit, a module, a chip or a chip system), and the apparatus 900 includes: a processing unit 910 and a transceiver unit 920 .
  • the transceiver unit 920 is configured to: receive first capability information from a terminal device, where the first capability information includes first beam measurement capability information and/or first reference signal measurement capability information, where the first beam measurement capability information is used to indicate that the terminal The number of beams that the device can measure when there is no physical downlink shared channel PDSCH scheduling, and the first reference signal measurement capability information is used to indicate the number of reference signal resources used for beam management that the terminal device can measure when there is no PDSCH scheduling.
  • the processing unit 910 is configured to: determine a first resource to be measured according to the first capability information, where the first resource to be measured is a resource to be measured of the terminal device when there is no PDSCH scheduling.
  • the first resource to be measured includes at least one of the following: number of ports, position of ports, time domain position and time domain duration, number of resources, number of resource sets, and period of resources.
  • the transceiving unit 920 is further configured to: send first resource configuration information to the terminal device, where the first resource configuration information is used to indicate the first resource to be measured, so that the terminal device performs beam measurement according to the resource configuration information.
  • the first resource configuration information includes reporting configuration information, where the reporting configuration information is used to indicate reporting parameters of the terminal device.
  • the processing unit 910 is further configured to: determine a second resource to be measured, where the second resource to be measured is a resource to be measured when the terminal device has PDSCH scheduling.
  • the transceiving unit 920 is further configured to: send second resource configuration group information, where the second resource configuration information is used to indicate the second resource to be measured.
  • the second resource to be measured includes at least one of the following: number of ports, position of ports, time domain position and time domain duration, number of resources, number of resource sets, and period of resources.
  • the second resource configuration information includes reporting configuration information, where the reporting configuration information is used to indicate reporting parameters of the terminal device.
  • the transceiving unit 920 is further configured to: send a request message to the terminal device, where the request message is used to request the terminal device to send the first capability information.
  • the device 900 here is embodied in the form of functional units.
  • the term "unit” herein may refer to ASICs, electronic circuits, processors (such as shared processors, dedicated processors or group processors, etc.) and memory for executing one or more software or firmware programs, incorporating logic circuits and and/or other suitable components that support the described functionality.
  • the apparatus 900 may specifically be the network device in the above-mentioned embodiment of the method 400, and the apparatus 900 may be used to execute each process corresponding to the network device in the above-mentioned embodiment of the method 900 and/or or steps, in order to avoid repetition, no more details are given here.
  • the above-mentioned transceiver unit 920 may include a receiving unit 921 and a sending unit 922, wherein the receiving unit 921 is configured to perform a receiving function in the above-mentioned transceiver unit 920, for example, receiving first capability information from a terminal device, and the sending unit 922 uses To execute the sending function in the transceiver unit 920, for example, send the first resource configuration information to the terminal device.
  • FIG. 10 shows an apparatus 1000 for beam management provided by an embodiment of the present application.
  • the apparatus 1000 may be the terminal device described in FIG. 1 to FIG. 4 , and the apparatus 1000 may adopt the hardware architecture shown in FIG. 10 .
  • the apparatus may include a processor 1010, a transceiver 1020, and a memory 1030 that communicate with each other through internal connection paths.
  • Related functions implemented by the processing unit 810 in FIG. 8 may be implemented by the processor 1010
  • related functions implemented by the transceiver unit 820 may be implemented by the processor 1010 controlling the transceiver 1020 .
  • the processor 1010 may include one or more processors, such as one or more central processing units (central processing unit, CPU).
  • processors such as one or more central processing units (central processing unit, CPU).
  • CPU central processing unit
  • the CPU may be a single-core CPU, or Can be a multi-core CPU.
  • the transceiver 1020 is used to transmit and receive data and/or information, and to receive data and/or information.
  • the transceiver may include a transmitter for transmitting data and/or signals and a receiver for receiving data and/or signals.
  • the memory 1030 includes, but is not limited to, random access memory (random access memory, RAM), read-only memory (read-only memory, ROM), erasable programmable memory (erasable programmable read only memory, EPROM), read-only CD-ROM (compact disc read-only memory, CD-ROM), the memory 1030 is used to store related instructions and data.
  • random access memory random access memory
  • ROM read-only memory
  • EPROM erasable programmable memory
  • CD-ROM compact disc read-only memory
  • the memory 1030 is used to store program codes and data of the device, and may be a separate device or integrated in the processor 1010 .
  • the processor 1010 is configured to control the transceiver to perform information/data transmission with the network device.
  • the processor 1010 is configured to control the transceiver to perform information/data transmission with the network device.
  • Fig. 10 only shows a simplified design of the device.
  • the device can also include other necessary components, including but not limited to any number of transceivers, processors, controllers, memories, etc., and all devices that can implement the application are within the scope of protection of the application Inside.
  • the device 1000 can be replaced by a chip device, for example, a communication chip that can be used in the device to implement related functions of the processor 1010 in the device.
  • the chip device can be a field programmable gate array for realizing relevant functions, an application-specific integrated chip, a system chip, a central processing unit, a network processor, a digital signal processing circuit, a microcontroller, or a programmable controller or other integrated chips .
  • the chip may optionally include one or more memories for storing program codes, which enable the processor to implement corresponding functions when the codes are executed.
  • FIG. 11 shows an apparatus 1100 for beam management provided by an embodiment of the present application.
  • the apparatus 1100 may be the network device described in FIG. 1 to FIG. 4 , and the apparatus 1100 may adopt the hardware architecture shown in FIG. 11 .
  • the apparatus may include a processor 1110, a transceiver 1120, and a memory 1130 that communicate with each other through an internal connection path.
  • the relevant functions implemented by the processing unit 910 in FIG. 9 may be implemented by the processor 1110
  • the related functions implemented by the transceiver unit 920 in FIG. 9 may be implemented by the processor 1110 controlling the transceiver 1120 .
  • the processor 1110 may include one or more processors, for example, one or more CPUs.
  • the processor may be one or more single-core CPU or a multi-core CPU.
  • the transceiver 1120 is used to transmit and receive data and/or information, and to receive data and/or information.
  • the transceiver may include a transmitter for sending data and/or information and a receiver for receiving data and/or information.
  • the memory 1130 includes but not limited to RAM, ROM, EPROM, CD-ROM, and the memory 1130 is used to store relevant instructions and data.
  • the memory 1130 is used to store program codes and data of the device, and may be a separate device or integrated in the processor 1110 .
  • the processor 1110 is configured to control the transceiver to perform information transmission with the terminal device.
  • the processor 1110 is configured to control the transceiver to perform information transmission with the terminal device.
  • Fig. 11 only shows a simplified design of the device.
  • the device can also include other necessary components, including but not limited to any number of transceivers, processors, controllers, memories, etc., and all devices that can implement the application are within the scope of protection of the application Inside.
  • the device 1100 can be replaced by a chip device, for example, a communication chip that can be used in the device to implement related functions of the processor 1110 in the device.
  • the chip device can be a field programmable gate array for realizing relevant functions, an application-specific integrated chip, a system chip, a central processing unit, a network processor, a digital signal processing circuit, a microcontroller, or a programmable controller or other integrated chips .
  • the chip may optionally include one or more memories for storing program codes, which enable the processor to implement corresponding functions when the codes are executed.
  • transceivers or transceiver units may be input and output interfaces, where the receiver or receiving unit may be understood as an input interface, a transmitter or a sending unit It can be understood as an output interface.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of this application are also applicable to similar technical problems.
  • references to "one embodiment” or “some embodiments” or the like in this specification means that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically stated otherwise.
  • the terms “including”, “comprising”, “having” and variations thereof mean “including but not limited to”, unless specifically stated otherwise.
  • At least one means one or more
  • multiple means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B, which may indicate: including the existence of A alone, the existence of A and B at the same time, and the existence of B alone, where A, B can be singular or plural.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种波束管理的方法和装置,该方法包括:终端设备确定第一能力信息,该第一能力信息包括第一波束测量能力信息和/或第一参考信号测量能力信息,该第一波束测量能力信息用于指示终端设备在没有物理下行共享信道PDSCH调度时可测量的波束的数量,该第一参考信号测量能力信息用于指示终端设备在没有PDSCH调度时可测量的用于波束测量的参考信号资源的数量。终端设备向网络设备发送该第一能力信息。本申请通过确定并上报第一波束测量能力信息和/或第一参考信号测量能力信息,使得网络设备在为终端设备配置波束管理资源时,可以根据终端设备在该场景下的能力而配置,具有更强的灵活性。

Description

一种波束管理的方法和装置
本申请要求申请日为2021年6月26日、申请号为202110715210.9、申请名称为“一种波束管理的方法和装置”的中国发明专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,更具体地,涉及一种波束管理的方法和装置。
背景技术
随着移动通信使用的无线电波频率的提高,路径损耗也随之加大。基于这个事实,我们可以通过增加天线数量来补偿高频路径损耗。使用高频率载波的移动通信系统将面临改善覆盖和减少干扰的严峻挑战,一旦频率超过10GHz,衍射不再是主要的信号传播方式;对于非视距传播链路来说,反射和散射才是主要的信号传播方式。同时,在高频场景下,穿过建筑物的穿透损耗也会大大增加。这些因素都会大大增加信号覆盖的难度。通过生成高增益、可调节的赋形波束,从而明显改善信号覆盖,并且由于其波束非常窄,可以大大减少对周边的干扰。
相比于传统低频通信系统,工作在更高频段的终端设备需要波束管理来保证通信链路的质量。随着移动通信技术的进步,出现了多样化的通信场景。然而,现有协议在定义终端设备的波束管理能力时,并未考虑终端设备所处的通信场景,使得终端设备波束管理资源的配置不能更好地与其所处场景相适应,缺乏灵活性。
发明内容
本申请提供一种波束管理的方法和装置,通过定义终端设备在没有下行数据调度时的波束管理能力,使得终端设备的波束管理能力具有多样性,进一步使得在为终端设备配置波束管理资源时,可以根据终端设备在没有下行数据调度时的能力进行配置,具有更强的灵活性。
第一方面,提供一种波束管理的方法,该方法包括:终端设备确定第一能力信息,该第一能力信息包括第一波束测量能力信息和/或第一参考信号测量能力信息,该第一波束测量能力信息用于指示终端设备在没有物理下行共享信道PDSCH调度时可测量的波束的数量,该第一参考信号测量能力信息用于指示终端设备在没有PDSCH调度时可测量的用于波束测量的参考信号资源的数量。终端设备向网络设备发送该第一能力信息。
本申请的方案中,通过确定并上报第一波束测量能力信息和/或第一参考信号测量能力信息,使得网络设备可以获知终端设备没有下行数据调度时的第一能力信息,进一步,网络设备在为终端设备配置波束管理资源时,可以根据终端设备在该场景下的能力而配置,具有更强的灵活性。
应理解,本申请中,“可测量的”可以理解为所支持的,或者能够支持的。即,该第一波束测量能力信息用于指示终端设备在没有物理下行共享信道PDSCH调度时所支持或者能够测量的波束的数量,该第一参考信号测量能力信息用于指示终端设备在没有PDSCH调度时所支持或者能够测量的参考信号资源的数量,该参考信号资源是用于波束测量的参考信号资源。
结合第一方面,在第一方面的某些实现方式中,在终端设备向网络设备发送该第一能力信息之后,该方法还包括:终端设备接收来自网络设备的第一资源配置信息,第一资源配置信息用于指示终端设备在没有PDSCH调度时的第一待测量资源,第一待测量资源是根据该第一能力信息确定的。终端设备根据第一资源配置信息进行波束测量。
因此,本申请通过配置终端设备在无下行数据调度时的第一待测量资源,使得终端设备可以在没有下行数据调度时进行集中波束测量,从而避免终端设备被间断性唤醒,有助于减小终端设备的功耗。
结合第一方面,在第一方面的某些实现方式中,终端设备根据第一资源配置信息进行波束测量,包括:终端设备在没有PDSCH调度的情况下,使用第一待测量资源进行波束测量。
结合第一方面,在第一方面的某些实现方式中,终端设备根据第一资源配置信息进行波束测量方法,包括:终端设备在有PDSCH调度的情况下,使用第二待测量资源进行波束测量,第二待测量资源是终端设备在有PDSCH调度时的待测量资源。
因此,本申请中,终端设备可以根据所处的通信场景,例如,测量的时长单元内是否有下行数据传输,从而确定相应的测量资源。相比于现有技术中,终端设备必须按照网络设备所指示的测量资源执行测量,使得终端设备的波束测量具有更高的灵活性。
也可以说,终端设备在有PDSCH调度时,会优先使用第二待测量资源进行波束测量,当终端设备没有PDSCH调度时,会使用第一待测量资源进行波束测量。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:终端设备接收来自网络设备的第二资源配置信息,第二资源配置信息用于指示该第二待测量资源;或,终端设备根据第一待测量资源确定该第二待测量资源。
应理解,第二待测量资源可以是第一待测量资源的一部分,终端设备根据第一待测量资源确定该第二待测量资源可以包括以下情况:终端设备将第一待测量资源中的一部分确定为该第二待测量资源。
结合第一方面,在第一方面的某些实现方式中,该第一能力信息为终端设备在预设时间长度的能力信息。
可选地,预设时间长度可以理解为时域上连续的一段时间。例如,连续几个正交频分复用OFDM符号,或者连续几个时隙。
结合第一方面,在第一方面的某些实现方式中,该预设时间长度为1个时隙或连续N个正交频分复用OFDM符号,N为大于1的整数。
需要说明的是,本申请中连续N个OFDM符号可以是指一个时隙内的N个符号,也可以是跨时隙而在时域上连续的N个符号。例如,当一个时隙包括14个符号时,连续5个符号可以是第1个时隙上的第1个符号至第5个符号,也可以是第1个时隙上的第13至14个符号以及第2个时隙上的第1个符号至第3个符号。
可选地,上述预设时间长度为T个时隙,T为正整数,例如2个时隙或3个时隙。
结合第一方面,在第一方面的某些实现方式中,终端设备在预设时间长度没有物理下行控制信道PDCCH调度。即该第一能力信息为终端设备在没有PDSCH且没有PDCCH调度时的能力信息。
可选地,该第一能力信息为终端设备在没有PDSCH而有PDCCH调度时的能力信息。
结合第一方面,在第一方面的某些实现方式中,该第一能力信息为终端设备在M个分量载波CC上的能力信息,M为正整数。
结合第一方面,在第一方面的某些实现方式中,在终端设备向网络设备发送该第一能力信息之前,该方法还包括:终端设备接收来自网络设备的请求消息,请求消息用于请求终端设备发送该第一能力信息。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:终端设备确定第二能力信息,该第二能力信息包括第二波束测量能力信息和/或第二参考信号测量能力信息,该第二波束测量能力信息用于指示终端设备在有物理下行共享信道PDSCH调度时可测量的波束的数量,该第二参考信号测量能力信息用于指示终端设备在有PDSCH调度时可测量的用于波束测量的参考信号资源的数量。终端设备向网络设备发送该第二能力信息。
可选地,该第二能力信息为终端设备在有PDSCH且有PDCCH调度时的能力信息。
可选地,该第二能力信息为终端设备在有PDSCH而没有PDCCH调度时的能力信息。
因此,本申请通过定义终端设备在不同场景下的能力信息,使得终端设备的波束管理能力的多样性,从而使得网络设备可以根据终端设备在不同场景下的波束能力,为终端设备配置多样化的测量资源,从而具有更强的灵活性。
结合第一方面,在第一方面的某些实现方式中,第一待测量资源为集中式同步信号/物理广播信道块SSB资源,该集中式SSB资源包括在时域范围连续的多个SSB,其中,多个SSB中的每个占用Y个正交频分复用OFDM符号,Y为正整数。
因此,本申请通过集中式SSB资源,使得终端设备可以在没有数据调度时进行集中式波束测量,从而避免终端设备因为波束测量而不断地唤醒和休眠,有助于减小终端设备的功耗,提升用户体验。
第二方面,提供一种波束管理的方法,该方法包括:网络设备接收来自终端设备的第一能力信息,该第一能力信息包括第一波束测量能力信息和/或第一参考信号测量能力信息,该第一波束测量能力信息用于指示终端设备在没有物理下行共享信道PDSCH调度时可测量的波束的数量,该第一参考信号测量能力信息用于指示终端设备在没有PDSCH调度时可测量的用于波束测量的参考信号资源的数量。网络设备根据该第一能力信息确定第一待测量资源,该第一待测量资源是终端设备在没有PDSCH调度时的待测量资源。
本申请的方案中,通过确定并上报第一波束测量能力信息和/或第一参考信号测量能力信息,使得网络设备可以获知终端设备没有下行数据调度时的第一能力信息,进一步,网络设备在为终端设备配置波束管理资源时,可以根据终端设备在该场景下的能力而配置,具有更强的灵活性。
结合第二方面,在第二方面的某些实现方式中,第一待测量资源包括以下至少一种:端口的数量、端口的位置、时域位置与时域持续时间、资源的数量、资源集合的数量和资源的周期。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:网络设备向终端设备发送第一资源配置信息,第一资源配置信息用于指示第一待测量资源,以使得终端设备根据资源配置信息进行波束测量。
因此,本申请通过配置终端设备在无下行数据调度时的第一待测量资源,使得终端设备可以在没有下行数据调度时进行集中波束测量,从而避免终端设备被间断性唤醒,有助于减小终端设备的功耗。
结合第二方面,在第二方面的某些实现方式中,第一资源配置信息包括上报配置信息,该上报配置信息用于指示终端设备的上报参数。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:网络设备确定第二待测量资源,第二待测量资源是终端设备在有PDSCH调度时的待测量资源。网络设备发送第二资源配置组信息,第二资源配置信息用于指示第二待测量资源。
因此,本申请通过为终端设备配置多种测量资源,使得终端设备可以根据其所处场景进行灵活选择,从而提高终端设备波束管理的灵活性。
此外,这种方式可以减少网络设备的信令开销,从而减少终端设备接收网络设备配置信息的信令开销,进一步节省终端设备的功耗,提升用户体验。
结合第二方面,在第二方面的某些实现方式中,第二待测量资源包括以下至少一种:端口的数量、端口的位置、时域位置与时域持续时间、资源的数量、资源集合的数量和资源的周期。
结合第二方面,在第二方面的某些实现方式中,第二资源配置信息包括上报配置信息,该上报配置信息用于指示终端设备的上报参数。
结合第二方面,在第二方面的某些实现方式中,在网络设备接收来自终端设备的第一能力信息之前,该方法还包括:网络设备向终端设备发送请求消息,请求消息用于请求终端设备发送第一能力信息。
结合第二方面,在第二方面的某些实现方式中,该第一能力信息为终端设备在预设时间长度的能力信息。
结合第二方面,在第二方面的某些实现方式中,该预设时间长度为1个时隙或连续N个符号,N为大于1的整数。
结合第二方面,在第二方面的某些实现方式中,终端设备在预设时间长度没有物理下行控制信道PDCCH调度。即该第一能力信息为终端设备在没有PDSCH且没有PDCCH调度时的能力信息。
可选地,该第一能力信息为终端设备在没有PDSCH而有PDCCH调度时的能力信息。
结合第二方面,在第二方面的某些实现方式中,该第一能力信息为终端设备在M个分量载波CC上的能力信息,M为正整数。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:网络设备接收来自于终端设备的第二能力信息,该第二能力信息包括第二波束测量能力信息和/或第二参考信号测量能力信息,该第二波束测量能力信息用于指示终端设备在有物理下行共享信道PDSCH调度时可测量的波束的数量,该第二参考信号测量能力信息用于指示终端设备在有PDSCH调度时可测量的用于波束测量的参考信号资源的数量。
可选地,该第二能力信息为终端设备在有PDSCH且有PDCCH调度时的能力信息。
可选地,该第二能力信息为终端设备在有PDSCH而没有PDCCH调度时的能力信息。
因此,本申请通过定义终端设备在不同场景下的能力信息,使得终端设备的波束管理能力的多样性,从而使得网络设备可以根据终端设备在不同场景下的波束能力,为终端设备配置多样化的测量资源,从而具有更强的灵活性。
可选地,网络设备确定第二待测量资源,包括:网络设备根据该第二能力信息确定该第二待测量资源。
结合第二方面,在第二方面的某些实现方式中,第一待测量资源为集中式同步信号/物理广播信道块SSB资源,该集中式SSB资源包括在时域范围连续的多个SSB,其中,多个SSB中的每个占用Y个正交频分复用OFDM符号,Y为正整数。
因此,本申请通过集中式SSB资源,使得终端设备可以在没有数据调度时进行集中式波束测量,从而避免终端设备因为波束测量而不断地唤醒和休眠,有助于减小终端设备的功耗,提升用户体验。
第三方面,提供一种波束管理的方法,该方法包括:网络设备向终端设备发送第一配置信息,该第一配置信息用于指示集中式同步信号/物理广播信道块SSB资源,该集中式SSB资源包括在时域范围连续的多个SSB,其中,多个SSB中的每个占用Y个正交频分复用OFDM符号,Y为正整数。
因此,本申请通过集中式SSB资源,使得终端设备可以在没有数据调度时进行集中式波束测量,从而避免终端设备因为波束测量而不断地唤醒和休眠,有助于减小终端设备的功耗,提升用户体验。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:网络设备向终端设备发送指示信息,该指示信息用于指示集中式SSB资源所在的时域起始位置,例如,该时域起始位置可以是相对于一个系统帧起始位置的偏移值,或一个系统帧内某个时隙的偏移符号数。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:网络设备向终端设备发送指示信息,该指示信息用于指示该集中式SSB资源的周期。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:网络设备向终端设备发送指示信息,该指示信息用于指示终端设备是否需要在非连续接收模式(discontinuous reception,DRX)的唤醒期(On-Duration)之外接收集中式SSB资源。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:网络设备向终端设备发送指示信息,该指示信息用于指示终端设备在进行波束测量(即:时域上不间断的波束测量)期间,不进行其他信息处理。例如,不进行数据接收与解调,不进行数据的传输,或者,终端设备不需要唤醒而接收时域上不连续的SSB信号,进而,也不需要测量这种时域上不连续的SSB信号。
第四方面,提供一种波束管理的装置,该装置可以为终端设备,该装置包括:处理单元和收发单元。该处理单元用于:确定第一能力信息,该第一能力信息包括波束测量能力信息和/或第一参考信号测量能力信息,该第一波束测量能力信息用于指示终端设备在没有物理下行共享信道PDSCH调度时可测量的波束的数量,该第一参考信号测量能力信息用于指示终端设备在没有PDSCH调度时可测量的用于波束测量的参考信号资源的数量。该收发单元用于:向网络设备发送该第一能力信息。
本申请的方案中,通过确定并上报第一波束测量能力信息和/或第一参考信号测量能力信息,使得网络设备可以获知终端设备没有下行数据调度时的第一能力信息,进一步,网络设备在为终端设备配置波束管理资源时,可以根据终端设备在该场景下的能力而配置,具有更强的灵活性。
结合第四方面,在第四方面的某些实现方式中,该收发单元还用于:接收来自网络设备的第一资源配置信息,该第一资源配置信息用于指示终端设备在没有PDSCH调度时的第一待测量资源,该第一待测量资源是根据该第一能力信息确定的。该处理单元还用于:根据该第一资源配置信息进行波束测量。
结合第四方面,在第四方面的某些实现方式中,该处理单元具体用于:在没有PDSCH调度的情况下,使用第一待测量资源进行波束测量。
结合第四方面,在第四方面的某些实现方式中,该处理单元具体用于:在有PDSCH调度的情况下,使用第二待测量资源进行波束测量,第二待测量资源是终端设备在有PDSCH调度时的待测量资源。
结合第四方面,在第四方面的某些实现方式中,该收发单元还用于:接收来自网络设备的第二资源配置信息,第二资源配置信息用于指示该第二待测量资源。或者,该处理单元还用于:根据第一待测量资源确定该第二待测量资源。
结合第四方面,在第四方面的某些实现方式中,该第一能力信息为终端设备在预设时间长度的能力信息。
结合第四方面,在第四方面的某些实现方式中,该预设时间长度为1个时隙或连续N个符号,N为大于1的整数。
结合第四方面,在第四方面的某些实现方式中,终端设备在该预设时间长度没有物理下行控制信道PDCCH调度。
结合第四方面,在第四方面的某些实现方式中,该第一能力信息为终端设备在M个分量载波CC上的能力信息,M为正整数。
结合第四方面,在第四方面的某些实现方式中,该收发单元还用于:接收来自网络设备的请求消息,请求消息用于请求该装置发送第一能力信息。
第五方面,提供一种波束管理的装置,包括:处理单元和收发单元,该收发单元用于:接收来自终端设备的第一能力信息,该第一能力信息包括第一波束测量能力信息和/或第一参考信号测量能力信息,该第一波束测量能力信息用于指示终端设备在没有物理下行共享信道PDSCH调度时可测量的波束的数量,该第一参考信号测量能力信息用于指示终端设备在没有PDSCH调度时可测量的用于波束测量的参考信号资源的数量。该处理单元用于:根据该第一能力信息确定第一待测量资源,该第一待测量资源是终端设备在没有PDSCH调度时的待测量资源。
结合第五方面,在第五方面的某些实现方式中,该第一待测量资源包括以下至少一种:
端口的数量、端口的位置、时域位置与时域持续时间、资源的数量、资源集合的数量和资源的周期。
结合第五方面,在第五方面的某些实现方式中,该收发单元还用于:向终端设备发送第一资源配置信息,第一资源配置信息用于指示第一待测量资源,以使得终端设备根据资源配置信息进行波束测量。
结合第五方面,在第五方面的某些实现方式中,该第一资源配置信息包括上报配置信息,该上报配置信息用于指示终端设备的上报参数。
结合第五方面,在第五方面的某些实现方式中,该处理单元还用于:确定第二待测量资源,第二待测量资源是终端设备在有PDSCH调度时的待测量资源。该收发单元还用于:发送第二资源配置组信息,第二资源配置信息用于指示第二待测量资源。
结合第五方面,在第五方面的某些实现方式中,该第二待测量资源包括以下至少一种:端口的数量、端口的位置、时域位置与时域持续时间、资源的数量、资源集合的数量和资源的周期。
结合第五方面,在第五方面的某些实现方式中,该第二资源配置信息包括上报配置信息,该上报配置信息用于指示终端设备的上报参数。
结合第五方面,在第五方面的某些实现方式中,该收发单元还用于:向终端设备发送请求消息,请求消息用于请求终端设备发送该第一能力信息。
第六方面,提供一种波束管理的装置,该装置包括:收发单元,该收发单元用于:向终端设备发送第一配置信息,该第一配置信息用于指示集中式同步信号/物理广播信道块SSB资源,该集中式SSB资源包括在时域范围连续的多个SSB,其中,多个SSB中的每个占用Y个正交频分复用OFDM符号,Y为正整数。
因此,本申请通过集中式SSB资源,使得终端设备可以在没有数据调度时进行集中式波束测量,从而避免终端设备因为波束测量而不断地唤醒和休眠,有助于减小终端设备的功耗,提升用户体验。
结合第六方面,在第六方面的某些实现方式中,该收发单元还用于:向终端设备发送指示信息,该指示信息用于指示集中式SSB资源所在的时域起始位置,例如,该时域起始位置可以是相对于一个系统帧起始位置的偏移值,或一个系统帧内某个时隙的偏移符号数。
结合第六方面,在第六方面的某些实现方式中,该收发单元还用于:向终端设备发送指示信息,该指示信息用于指示该集中式SSB资源的周期。
结合第六方面,在第六方面的某些实现方式中,该收发单元还用于:向终端设备发送指示信息,该指示信息用于指示终端设备是否需要在非连续接收模式(discontinuous reception,DRX)的唤醒期(On-Duration)之外接收集中式SSB资源。
结合第六方面,在第六方面的某些实现方式中,该收发单元还用于:向终端设备发送指示信息,该指示信息用于指示终端设备在进行波束测量(即:时域上不间断的波束测量)期间,不进行其他信息处理。例如,不进行数据接收与解调,不进行数据的传输,或者,终端设备不需要唤醒而接收时域上不连续的SSB信号,进而,也不需要测量这种时域上不连续的SSB信号。
第七方面,本申请提供了一种波束管理的装置,该装置包括:至少一个处理器,该至少一个处理器与至少一个存储器耦合,该至少一个处理器用于执行该至少一个存储器中存储的计算机程序或指令,使得该装置执行上述第一方面至第三方面以及第一方面至第三方面中任一种可能实现方式中的方法。
第八方面,本申请提供了一种计算机可读介质,该计算机可读存储介质上存储有计算机程序或指令,当该计算机程序或指令在计算机上运行时,使得计算机可以实现上述第一 方面至第三方面以及第一方面至第三方面中任一种可能实现方式中的方法。
第九方面,本申请提供了一种计算机程序产品,包括计算机程序或指令,当该计算机程序或指令被执行时用于实现上述第一方面至第三方面以及第一方面至第三方面中任一种可能实现方式中的方法。
第十方面,本申请提供了一种芯片系统,包括:处理器,该处理器用于执行该存储器中的计算机程序或指令,使得该芯片系统实现上述第一方面至第三方面以及第一方面至第三方面中任一种可能实现方式中的方法。
第十一方面,提供了一种通信装置,该装置包括处理器,该处理器用于执行上述第一方面至第三方面以及第一方面至第三方面中任一种可能实现方式中的方法。
附图说明
图1是适用于本申请实施例的一种通信系统的示意图。
图2是适用于本申请实施例的一种通信系统的示意图。
图3是本申请实施例提供的一种网络设备与终端设备的硬件结构示意图。
图4是本申请实施例提供的一种波束管理的方法的示意图。
图5是本申请实施例提供的一种波束管理的方法的示意图。
图6是本申请实施例提供的一种波束管理的方法的示意图。
图7是本申请实施例提供的一种集中式SSB资源的示意图。
图8是本申请实施例提供的一种波束管理的装置的示意性框图。
图9是本申请实施例提供的一种波束管理的装置的又一示意性框图。
图10是本申请实施例提供的一种波束管理的装置的又一示意性框图。
图11是本申请实施例提供的一种波束管理的装置的又一示意性框图。
具体实施方式
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR)等。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。
终端设备可以是一种向用户提供语音/数据连通性的设备,终端设备可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备,也可以是虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端(例如,摄像头、客户终端设备(customer premise equipment,CPE))、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、 智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端(例如,电视机等家电、智慧盒子、游戏机、卫浴产品)、5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,该终端设备还可以是车辆或整车,通过车联网可以实现通信,也可以是位于车辆内(例如放置在车辆内或安装在车辆内)的部件,即车载终端设备、车载模块或者车载单元(on-board unit,OBU)。
此外,在本申请实施例中,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,例如将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点。该网络设备可以是全球移动通信(global system formobile communications,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为传输接收点(transmission reception point,TRP)、中继站、接入点、车载设备、可穿戴设备、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方 法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
作为示例,图1是适用于本申请实施例的一种通信系统100的示意图。如图1所示,该通信系统100包括一个网络设备110与多个终端设备120(如图1中所示的终端设备120a和终端设备120b)。网络设备110可以通过多个射频通道同时发送多个模拟波束来为多个终端设备传输数据或控制信令。如图1所示,网络设备同时发送波束1和波束2,其中波束1用于为终端设备120a传输数据或控制信令,波束2用于为终端设备120b传输数据或控制信令。波束1可以称为终端设备120a的服务波束,波束2可以称为终端设备120b的服务波束。终端设备120a和终端设备120b可以属于同一个小区。可以理解的是,上述通信系统100是单个TRP传输的场景。
作为示例定,图2是适用于本申请实施例的一种通信系统200的示意图。如图2所示,该通信系统200可以包括至少两个网络设备(如图2中所示的网络设备210a和网络设备210b),该通信系统200还可以包括至少一个终端设备,例如图2中所示的终端设备220。该终端设备220可以通过双连接(dual connectivity,DC)技术或者多连接技术等与网络设备210a和网络设备210b建立无线链路。其中,网络设备210a例如可以为主基站,网络设备210b例如可以为辅基站。此情况下,网络设备210a为终端设备220初始接入时的网络设备,负责与终端设备220之间的无线资源控制(radio resource control,RRC)通信,网络设备210b可以是RRC重配置时添加的,用于提供额外的无线资源。可以理解的是,上述通信系统200是多个TRP传输的场景。
应理解,图1和图2仅为示意,并不对适用于本申请实施例的通信系统构成任何限定。
作为示例,图3是本申请实施例提供的一种网络设备与终端设备的硬件结构示意图。如图3所示,终端设备包括至少一个处理器101、至少一个存储器102和至少一个收发器103。
处理器101、存储器102和收发器103通过总线相连接。处理器101可以是一个通用中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。处理器101也可以包括多个CPU,并且处理器101可以是一个单核(single-CPU)处理器或多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器102可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)或者可存 储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electricallyerasable programmable read-only memory,EEPROM)、只读光盘(compact discread-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,本申请实施例对此不作任何限制。存储器102可以是独立存在,通过总线与处理器101相连接。存储器102也可以和处理器101集成在一起。其中,存储器102用于存储执行本申请方案的应用程序代码,并由处理器101来控制执行。处理器101用于执行存储器102中存储的计算机程序代码,从而实现本申请实施例提供的方法。
收发器103包括发射机1031和接收机1032。收发器103可以使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网、无线接入网(radio access network,RAN)、无线局域网(wireless local areanetworks,WLAN)等。
可选的,终端设备还可以包括输出设备和输入设备(图3中并未示出)。其中,输出设备和处理器101通信,可以以多种方式来显示信息。例如,输出设备可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备和处理器101通信,可以以多种方式接收用户的输入。例如,输入设备可以是鼠标、键盘、触摸屏设备或传感设备等。输入和输出分别对应方法实施例中的接收与发送。
网络设备包括至少一个处理器201、至少一个存储器202和至少一个收发器203。处理器201、存储器202和收发器203通过总线相连接。另外,处理器201、存储器202和收发器203的相关描述可参考终端设备中处理器101,存储器102和收发器103的描述,在此不再赘述。
为了便于理解,下面对本申请实施例涉及到的术语或概念进行介绍。
1、波束(beam)
波束在NR协议中的体现可以是空域滤波器(spatial filter),或者称空间滤波器(spatial filter)或空间参数(spatial parameters)。用于发送信号的波束可以称为发送波束(transmission beam,Tx beam),可以称为空间发送滤波器(spatial domain transmit filter)或空间发射参数(spatial domain transmit parameter);用于接收信号的波束可以称为接收波束(reception beam,Rx beam),可以称为空间接收滤波器(spatial domain receive filter)或空间接收参数(spatial domain receive parameter)。
发送波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。
应理解,上文列举的NR协议中对于波束的体现仅为示例,不应对本申请构成任何限定。本申请并不排除在未来的协议中定义其他的术语来表示相同或相似的含义的可能。
此外,波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束赋形技术或者其他技术。波束赋形技术具体可以为数字波束赋形技术、模拟波束赋形技术或者混合数字/模拟波束赋形技术等。不同的波束可以认为是不同的资源。通过不同的波束可以发送相同的信息或者不同的信息。
波束一般和资源对应,例如进行波束测量时,网络设备通过不同的资源来测量不同的 波束,终端设备反馈测得的资源质量,网络设备就知道对应的波束的质量。在数据传输时,波束信息也是通过其对应的资源来进行指示的。例如网络设备通过下行控制信息(downlink control information,DCI)中的传输配置指示(transmission configuration indicator,TCI)资源,来指示终端设备物理下行共享信道(physical downlink shared channel,PDSCH)波束的信息。
可选地,将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束内可以包括一个或多个天线端口,用于传输数据信道、控制信道和探测信号等。形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。
在本申请实施例中,若未做出特别说明,波束是指网络设备的发送波束。在波束测量中,网络设备的每一个波束对应一个资源,因此可以通过资源的索引来唯一标识该资源对应的波束。
本申请实施例中的波束可以使用传输配置指示(transmission configuration indication,TCI)状态表示,也可以使用准同位(quasi-co-location,QCL)关系表示。
2、准共址(quasi-co-location,QCL)
准共址(quasi-co-location,QCL)或者称准同位。具有QCL关系的天线端口对应的信号中具有相同的参数,或者,一个天线端口的参数可用于确定与该天线端口具有QCL关系的另一个天线端口的参数,或者,两个天线端口具有相同的参数,或者,两个天线端口间的参数差小于某阈值。其中,所述参数可以包括以下一项或多项:时延扩展(delay spread),多普勒扩展(doppler spread),多普勒频移(doppler shift),平均时延(average delay),平均增益,空间接收参数(spatial Rx parameters)。其中,空间接收参数可以包括以下的一项或多项:到达角(angle of arrival,AOA)、平均AOA、AOA扩展、离开角(angle of departure,AOD)、平均离开角AOD、AOD扩展、接收天线空间相关性参数、发送天线空间相关性参数、发射波束、接收波束以及资源标识。具体地,准同位可以用于指示至少两组天线端口发送的信道状态信息参考信号是否来自相同的传输点,或者是否来自相同的波束组。
在NR协议中,QCL关系可以基于不同的参数分为以下四种类型(QCL-type):
类型A(type A):多普勒频移、多普勒扩展、平均时延、时延扩展;
类型B(type B):多普勒频移、多普勒扩展;
类型C(type C):多普勒频移、平均时延;
类型D(type D):空间接收参数。
3、传输配置指示(transmission configuration indication,TCI)
在NR中,下行信道所使用的波束或参考信号发送对应的波束指示是通过关联传输配置指示TCI状态表中的参考资源索引实现的。
网络设备通过无线资源控制(radio resource control,RRC)高层信令配置了一个TCI状态表(对应3GPP标准38.331中的TCI-states),每个TCI状态表包含若干个TCI状态(对应3GPP标准38.331中TCI-RS-Set)。每个TCI状态包括TCI状态ID(Transmission configuration indicator state ID)、一种或两种准同位QCL类型指示(QCL-type A/B/C/D)以及各个类型指示对应的参考信号索引RS-ID。
RRC配置后网络设备可以通过高层信令(如介质接入控制-控制元素(medium access  control-control element,MAC-CE))激活一个或多个TCI-state。被激活的TCI-state为上述RRC消息所配置的TCI-state列表的一个子集。网络设备还可以通过物理层信令(如下行控制信息(downlink control information,DCI))中的TCI字段指示一个被选择的TCI-state。该DCI例如可以适用于调度物理下行资源的DCI。
其中,一个TCI-state的配置信息可以包括一个或两个参考信号资源的标识,以及所关联的QCL类型。QCL表征了当前将要接收的信号/信道,与之前已知的某参考信号之间的某种一致性关系。若存在QCL关系,UE可以继承之前接收某参考信号时的接收或发送参数,来接收或发送将要到来的信号/信道。当QCL关系配置为类型A、或B、或C中的一种时,用于指示时域与频域偏移等信息,终端设备可以根据TCI-state的指示,解调物理下行控制信道(physical downlink control channel,PDCCH)或物理下行共享信道(physical downlink shared channel,PDSCH)。当QCL关系配置为类型D时,可以认为是空域QCL,终端设备可以知道网络设备使用哪个发射波束发送信号,进而可以根据前文所述的信道测量确定的波束配对关系确定使用哪个接收波束接收信号。终端设备可以根据PDCCH上DCI中的TCI字段来确定接收PDSCH的接收波束。
4、参考信号(reference signal,RS)
根据长期演进LTE/NR的协议,在物理层,上行通信包括上行物理信道和上行信号的传输。其中上行物理信道:包括随机接入信道(random access channel,PRACH)、上行控制信道(physical uplink control channel,PUCCH),上行数据信道(physical uplink shared channel,PUSCH)等,上行信号:包括探测参考信号(sounding reference signal,SRS)、上行控制信道解调参考信号(PUCCH de-modulation reference signal,PUCCH-DMRS)、上行数据信道解调参考信号PUSCH-DMRS、上行相位噪声跟踪参考信号(phase noise tracking reference signal,PTRS)、上行定位参考信号(uplink positioning RS)等。
下行通信包括下行物理信道和下行信号的传输。其中下行物理信道包括:广播信道(physical broadcast channel,PBCH)、下行控制信道(physical downlink control channel,PDCCH),下行数据信道(physical downlink shared channel,PDSCH)等,下行信号包括:同步信号/物理广播信道块(synchronization signal/physical broadcast channel block,SS/PBCH block,SSB),主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)、下行控制信道解调参考信号(PDCCH de-modulation reference signal,PDCCH-DMRS)、下行数据信道解调参考信号PDSCH-DMRS、下行相位噪声跟踪参考信号PTRS、信道状态信息参考信号(channel status information reference signal,CSI-RS)、小区信号(cell reference signal,CRS)(NR没有),精同步信号(time/frequency tracking reference signal,TRS)(LTE没有)、下行定位参考信号(downlinkpositioning RS)、用于测量路径损耗的参考信号(path loss RS,PL-RS)、用于波束失败恢复的参考信号(beam failure detection RS,BFD-RS)、用于无线链路检测的参考信号(radio link monitoring RS,RLM-RS)等。
5、波束管理
波束管理包括配置波束管理资源、测量和选择波束、波束上报等环节。具体如下。
(1)配置波束管理资源
波束管理资源是用于测量波束质量的资源。波束测量,即通过测量参考信号获得波束 质量信息,用于衡量波束质量的参数包括参考信号接收功率(reference signal receiving power,RSRP),但不限于此。例如,波束质量也可以通过参考信号接收质量(reference signal receiving quality,RSRQ)、信道状态信息(channel status information,CSI)、信噪比(signal-noise ratio,SNR)、信号与干扰噪声比(signal to interference plus noise ratio,SINR)、块误码率(block error rate,BLER)等参数衡量。其中,CSI包括但不限于下列信息中的至少一项:信道质量指示(channel quality indicator,CQI)、预编码矩阵指示(precoding matrix indicator,PMI)、预编码类型指示(precoding type indicator,PTI)、秩指示(rank indication,RI)、CSI-RS资源指示(CSI-RS resource indicator,CRI)、层指示(layer indication,LI)。
波束管理资源包括用于进行波束测量的参考信号,参考信号可用于信道测量或者信道估计等。参考信号资源可用于配置参考信号的传输属性,例如,时频资源位置、端口映射关系、功率因子以及扰码等,发送端设备可基于参考信号资源发送参考信号,接收端设备可基于参考信号资源接收参考信号。
网络设备可以向终端设备配置波束测量上报。波束测量上报包含以下参数的一种或多种:上报配置ID、用于波束测量的参考信号资源时频域位置、上报配置的时域行为(周期性/半静态/触发式)、上报配置的频域行为(子带/带宽等)、上报的具体内容等。其中,具体内容例如可以包括下列中的任一项或多项:SINR、RSRP、CQI、PMI、RI等。
网络设备基于波束测量上报配置,向终端设备发送波束测量参考信号。波束测量参考信号可以包括上述的多种参考信号的中任意一种或者多种。
(2)测量和选择波束,以及上报波束。
例如,终端设备基于波束测量上报配置,在相应的时频域位置接收参考信号。
终端设备基于特定的准则,从网络设备下发的发送波束中选择N(N为大于1的整数)个发送波束,并上报这N个波束对应的资源ID(在3GPP中,资源ID可以是CSI-RS resource index,也可以是SSB index)和信号接收功率给网络设备。
终端设备上报波束的选取准则可以是网络设备指定的,也可以是终端设备的内部实现算法。例如,终端设备可以从配置的用于波束管理的非零功率的CSI-RS的资源集合中选择波束质量最好的前几个波束进行上报。
波束管理主要包括网络设备配置波束管理资源、网络设备向终端设备发送波束管理资源配置信息、网络设备向终端设备发送波束管理资源、终端设备根据该波束管理资源进行波束质量测量、终端设备上报测量的波束质量等。
其中,网络设备在为终端设备配置波束管理资源时,会根据终端设备上报的波束管理能力信息来确定。然而,现有协议中并未定义终端设备在不同通信场景中的波束管理能力,具体而言,终端设备在不同的场景下,例如:有数据信息调度与无数据信息调度、有控制信息调度与无控制信息调度、有参考信号发送与无参考信号发送,其能力是不同的,现有技术并未考虑这一点,使得终端设备的波束管理能力过于单一,进一步使得网络设备在为终端设备配置波束测量的资源时,不能结合终端设备所处的通信场景,从而导致终端设备波束管理的灵活性较差。
本申请提供一种波束管理的方法和装置,通过确定并上报终端设备没有下行数据调度时的第一波束测量能力信息和/或第一参考信号测量能力信息,使得网络设备可以获知终端设备在这种通信场景(即没有下行数据调度)时的第一能力信息,进一步,网络设备在 为终端设备配置波束管理资源时,可以根据终端设备没有下行数据调度时的能力进行配置,具有更强的灵活性。
下面将结合附图对本申请实施例提供的波束管理的方法进行描述。应理解,本申请提供的波束管理的方法可适用于无线通信系统,例如,图1中所示的无线通信系统100或图2中所示的无线通信系统200。
图4是从设备交互的角度示出的本申请提供的一种波束管理的方法,该方法可以由图1至图3中的设备或系统执行。
S410,终端设备确定第一能力信息,该第一能力信息包括第一波束测量能力信息和/或第一参考信号测量能力信息,该第一波束测量能力信息用于指示终端设备在没有物理下行共享信道PDSCH调度时可测量的波束的数量,该第一参考信号测量能力信息用于指示终端设备在没有PDSCH调度时可测量的用于波束管理的参考信号资源的数量。
第一波束测量能力信息用于指示终端设备在没有PDSCH调度时可测量的波束的数量,可测量的波束的数量可以理解为终端设备在没有PDSCH调度时切换波束的数量。在一种可能的波束测量方法中,终端设备需要调整其天线阵列的空间滤波器参数,使得接收信号的RSRP或RSRQ等参数最大化,在这种情况下,可测量波束的数量可以是终端设备在没有PDSCH调度时能够切换波束的最大数量。在一种可能的波束测量方法中,终端设备可以固定接收波束,完成对基站通过不同下行波束发送的信号的接收,在这种情况下,可测量波束的数量可以是终端设备在没有PDSCH调度时能够接收下行波束的最大数量。
第一参考信号测量能力信息用于指示终端设备在没有PDSCH调度时可测量的用于波束管理的参考信号资源的数量,或者,也可以说终端设备在没有PDSCH调度时所支持的用于波束管理的参考信号资源的测量数量。作为示例,用于波束管理的参考信号资源可以是指单个或多个端口(port)的CSI-RS资源或者SSB资源等。可测量的用于波束管理的参考信号资源的数量可以是指终端设备在没有PDSCH调度时对以上至少一种资源的可测量数量,例如,指终端设备在没有PDSCH调度时对任一种或多种资源进行RSRP和/或SINR测量所能测量的最大数量。应理解,终端设备可以根据单端口的测量能力确定多端口的测量能力。例如,多端口的CSI-RS资源的测量能力可以是终端设备多个单端口的CSI-RS资源的测量能力之和。需要说明的是,本申请中,用于波束管理的参考信号资源的数量也可以理解为用于进行波束测量的参考信号资源的数量。
应理解,本申请中,“可测量的”可以理解为所支持的,或者能够支持的。即,该第一波束测量能力信息用于指示终端设备在没有物理下行共享信道PDSCH调度时所支持或者能够测量的波束的数量,该第一参考信号测量能力信息用于指示终端设备在没有PDSCH调度时所支持或者能够测量的参考信号资源的数量,该参考信号资源是用于波束测量的参考信号资源。
作为示例,第一参考信号测量能力信息可以包括终端设备在其所有的激活的服务小区(serving cell)、分量载波(component carrier,CC)上、和/或所有激活的下行带宽部分(bandwidth part,BWP)上,在没有下行数据调度时能够测量的用于波束管理的参考信号资源的数量。
作为示例,第一参考信号测量能力信息可以包括终端设备在没有下行数据调度时,在某段时间所支持的非周期CSI-RS的测量的数量。
应理解,本申请中,可以用于衡量第一波束测量能力信息和/或第一参考信号测量能力信息的参考信号包括但不限于以下至少一种:同步信号/物理广播信道块SSB、信道状态信息参考信号CSI-RS、路径损耗参考信号PL-RS、用于波束失败恢复的参考信号BFD-RS、用于无线链路检测的参考信号RLM-RS和用于定位的下行参考信号PRS、探测参考信号SRS和用于定位的探测参考信号positioningSRS。
应理解,终端设备在同时进行两种或三种参数测量时,第一波束测量能力不一定是进行一种参数测量时的第一波束测量能力的加和。例如,若终端设备进行RSRP测量,其可切换波束的数量为8个,若进行CSI测量,其可切换波束的数量为4个。然而,同时进行RSRP测量和CSI测量,其可切换波束的数量不一定为12个。对于第一参考信号测量能力来说,也是类似的。因此,终端设备上报的第一能力信息可以包括在没有PDSCH调度时所支持的对RSRP、RSRQ、CSI、SINR和SNR中至少一种参数进行测量的数量。其中的RSRP可以为L1-RSRP,SINR可以是L1-SINR。
在一种可能的实现方式中,终端设备的第一能力信息也可以包括在没有PDSCH调度时所支持的TCI状态的最大数量。例如:终端设备可以根据X个TCI状态对参考信号进行测量,该TCI状态至少包括不同的QCL Type-D信息,其中终端设备的能力可以在没有PDSCH调度时所支持的X的最大数量。
可选的,上述第一能力信息也可以包括终端设备在没有PDSCH调度时所支持的最小的测量数量。
应理解,终端设备的第一能力信息可以只包括第一波束测量能力信息,也可以只包括第一参考信号测量能力信息,也可以包括第一波束测量能力信息和第一参考信号测量能力信息。
需要强调的是,终端设备的第一能力信息,包括第一波束测量能力信息和/或第一参考信号测量能力信息,均指的是终端设备在没有下行数据调度时的能力信息,或者,也可以说,是终端设备在没有物理下行共享信道(physical downlink control channel,PDSCH)时的能力信息,其中,终端设备在没有PDSCH调度时,可以是指终端设备仅仅没有PDSCH调度,也可以是指终端设备不仅没有PDSCH调度,也没有以下至少一种信息的传输:PUSCH、控制信息(例如,PDCCH、PUCCH)、下行参考信号(例如,SSB、CSI-RS、TRS)、上行参考信号(例如,SRS)等。换言之,本申请中,对终端设备是否具有除下行数据之外的其他信息传输不做限定。
可选地,本申请中的第一能力信息可以是指终端设备在没有下行数据(例如,PDSCH)调度而有下行控制信息(例如,PDCCH)调度的能力。也可以说,该第一能力信息是针对终端设备在没有下行数据调度而有下行控制信息调度这种场景下所支持的能力。
可选地,本申请中的第一能力信息可以是指终端设备在没有下行数据(例如,PDSCH)调度也没有下行控制信息(例如,PDCCH)调度的能力。即,该第一能力信息是针对终端设备在没有下行数据调度也没有下行控制信息调度这种场景下所支持的能力。
在一种可能的实现方式中,终端设备在没有下行数据调度时,也不进行上行控制信息、上行数据、上行信号以及任何与波束测量无关的信息的传输,也就是说,终端设备的第一能力信息是终端设备只进行波束测量时的所支持的能力。
在一种可能的实现方式中,终端设备还可以确定有数据调度时的第二能力信息,类似 的,终端设备的第二能力信息包括第二波束测量能力信息和/或第二参考信号测量能力信息,该第二波束测量能力信息用于指示终端设备在有物理下行共享信道PDSCH调度时可测量的波束的数量,该第二参考信号测量能力信息用于指示终端设备在有PDSCH调度时可测量的用于波束管理的参考信号资源的数量。
可选地,第二能力信息可以是3GPP协议TS 38.306中定义的终端设备的能力信息。
类似的,终端设备的第二能力信息可以包括终端设备在有下行数据调度且有下行控制信息调度这种场景下的能力信息。即,该第二能力信息为终端设备在有PDSCH且有PDCCH调度时的能力信息。
类似的,终端设备的第二能力信息也可以包括终端设备在有下行数据调度而没有下行控制信息调度场景下的能力信息。即,该第二能力信息为终端设备在有PDSCH而没有PDCCH调度时的能力信息
本申请中,通过定义终端设备在不同场景下的能力信息,使得终端设备的波束管理能力的多样性,从而使得网络设备可以根据终端设备在不同场景下的波束能力信息,为终端设备配置多样化的测量资源,因此,具有更强的灵活性。
可选地,终端设备的第一/第二能力信息可以是指终端设备在预设时间长度的能力信息。即,终端设备的第一/第二能力信息是针对一段连续的时间长度而言。作为示例,该预设时间长度可以是网络设备向终端设备指示的,也可以是协议定义的,本申请不做限定。
作为一种实现方式,上述预设时间长度为1个时隙或连续N个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,其中,N为大于1的整数。例如,预设时间长度为连续2个符号,或连续3个符号,或连续4个符号,或连续多个符号。
需要说明的是,本申请中连续N个符号可以是指一个时隙内的N个符号,也可以是跨时隙而在时间上连续的N个符号。例如,当一个时隙包括14个符号时,连续5个符号可以是第1个时隙上的第1个符号至第5个符号,也可以是第1个时隙上的第13至14个符号以及第2个时隙上的第1个符号至第3个符号。
作为一种实现方式,上述预设时间长度为T个时隙,T为正整数,例如2个时隙或3个时隙。
需要说明的是,本申请中,一个时隙可以为14个符合,例如,对于正常循环前缀(normal cyclic prefix)的OFDM符号,一个时隙包括14个符号。一个时隙也可以为12个符号,例如,对于扩展循环前缀(extended cyclic prefix)的OFDM符号,一个时隙包括12个符号。当然,本申请不排除在未来通信技术中,一个时隙包括的OFDM符号的个数为其他值。
可选地,本申请中,终端设备的第一能力信息包括终端设备在上述预设时间长度没有物理下行控制信道PDCCH调度。即终端设备可以在上述预设时间长度上没有下行数据信息和下行控制信息调度。
可选地,终端设备的第一/第二能力信息为终端设备在M个分量载波(component carrier,CC)上的能力信息,其中M为正整数。即,终端设备的第一/第二能力信息是针对M个CC而言,可以是1个CC内的测量能力,也可以是多个CC的测量能力的总和,例如,2个CC、3个CC或者多个CC。
可选地,终端设备的第一/第二能力信息为终端设备在L个频率范围的能力信息,其中,L为正整数。即终端设备的第一/第二能力信息可以是针对单个频率范围内而言的,也可以是针对多个频率范围而言的,例如,2个频率范围的能力信息的总和,或者3个频率范围的能力的总和。
应理解,频率范围(frequency range,FR)可以是标准上定义的FR1,即6GHz及以下的频段,也可以是FR2,即6GHz至71GHz的频段。当然,频率范围还可以是未来标准中定义的其他数值范围,或者,也可以是自定义的频率范围,本发明的频率范围是泛指,不受具体数值的限定。
应理解,第一能力信息和第二能力信息所针对的预设时间长度、分量载波的个数、频率范围的个数等参数可以相同,也可以不同,本申请不做限定。
S420,终端设备向网络设备发送上述第一能力信息,网络设备接收该第一能力信息。
当终端设备的第一能力信息包括第一波束测量能力信息或第一参考信号测量能力信息时,终端设备向网络设备发送的第一能力信息即为第一波束测量能力信息或第一参考信号测量能力信息。
当终端设备的第一能力信息同时包括第一波束测量能力信息和第一参考信号测量能力信息时,终端设备可以将两种测量能力信息作为一个整体,在第一能力信息中一起发送至网络设备。终端设备也可以将确定的第一波束测量能力信息和第一参考信号测量能力信息作为两个信息分别上报至网络设备。
作为示例,终端设备向网络设备发送的第一能力信息可以包括于PUCCH或PUSCH中。
可选地,若终端设备确定上述第二能力信息,终端设备还可以向网络设备发送第二能力信息。
可选地,终端设备向网络设备上报的第一/第二能力信息所承载定的信令可以参考3GPP标准TS 38.331中的规定,本申请对此不做限定。
S430,网络设备根据接收到第一能力信息确定第一待测量资源,该第一待测量资源是终端设备在没有PDSCH调度时的待测量资源。
也就是说,网络设备可以根据终端设备在没有PDSCH调度时的第一能力信息,确定终端设备更适合于这种通信场景的第一待测量资源。一般来说,终端设备在没有PDSCH调度时的能力是强于有PDSCH调度时的能力的,因此,终端设备上报第一能力信息后,网络设备可以确定并配置更适合于终端设备没有下行数据调度的通信环境的资源,从而使得终端设备能够在更短的时间内完成波束测量。
作为示例,网络设备确定第一待测量资源的方式可以是,第一能力信息与第一待测量资源之间具有对应关系,其中,该对应关系可以是在网络设备中预配置的,也可以是由协议定义的。或者,网络设备可以根据自身当前的通信环境以及终端设备的性能等参数确定第一待测量资源。以上方式仅为举例说明,本申请不做限定。
因此,本申请的方案中,通过确定并上报第一能力信息,使得网络设备可以获知终端设备在没有下行数据调度时的能力,进一步,网络设备在为终端设备配置波束管理资源时,可以根据终端设备的能力而配置,因此具有更强的灵活性。
应理解,本申请中,第一待测量资源可以是一个资源或也可以是一个资源集合,即一 组资源。
在一种可能的实现方式中,第一待测量资源包括以下至少一种:端口的数量、端口的位置、时域位置与时域持续时间、资源的数量、资源集合的数量和资源的周期。
即第一待测量资源可以包括用于波束测量的端口的信息,如,端口的个数或数量、端口的位置,以及波束测量的时域信息,如,时域起始时间或者时域的位置、时域持续时间,还可以包括用于波束测量的资源的数量、或者资源集合的数量和这些资源的周期。
可选地,该方法还包括:S440,网络设备向终端设备发送第一资源配置信息,该第一资源配置信息用于指示所述第一待测量资源,从而使得终端设备可以根据该第一资源配置信息进行波束测量。
应理解,本申请中,网络设备确定的第一待测量资源后,可以根据终端设备的信息调度情况,在确定终端设备处于没有下行数据调度的场景时,通过第一指示信息指示终端设备使用该第一待测量资源进行波束测量,其中,该第一指示信息可以包含于第一资源配置信息中,也可以和第一资源配置信息分别发送,也可以直接通过第一资源配置信息指示。在某些情况下,网络设备确定第一待测量资源后,也可以立即将该第一配置信息发送至终端设备,从而终端设备在进行波束测量时,可以根据自身所处场景和第一待测量资源等信息,确定合适的测量资源。
可选地,若网络设备向终端设备发送了第一资源配置信息,网络设备也可以在其配置的时域范围内不对终端设备调度,即不在该配置的时域范围内向终端设备发送下行数据。相比现有技术中,网络往往会配置大量周期性的参考信号用于波束测量,并且出于调度或其他实现的考虑,这些参考信号较为分散的位于时域资源上,从而导致了高频的终端难以长时间的休眠。因此,本申请的方案,通过配置终端设备在无下行数据调度时的第一待测量资源,使得终端设备可以在没有下行数据调度时进行集中波束测量,从而避免终端设备被间断性唤醒,有助于减小终端设备的功耗。
作为一种可能的实现方式,终端设备上报第一能力信息后,网络设备可以向终端设备发送第一资源配置信息。进一步,由于终端设备在该阶段能力较强且波束测量资源与其能力相匹配,因而可以在较短的唤醒时间集中完成波束测量,波束测量完成后终端设备可以继续休眠。通过这种方式,避免了终端设备因为测量资源与测量能力的匹配度较低,从而导致在需要更长的唤醒时间才能完成波束测量,也就是说,这种方式能够减小高频通信系统中的终端设备的唤醒时间,进而减小功耗,提升用户体验。
可选地,第一资源配置信息可以包括上报配置信息,该上报配置信息用于指示终端设备的上报参数,即网络设备可以向终端设备配置上报参数,指示终端设备如何上报,终端设备根据第一待测量资源进行波束测量之后依据这些上报参数进行上报。例如,上报参数可以包括上报的时域位置和/或频域位置、上报的具体内容,例如,RSRP、CQI、SINR、PMI、RI等中的一种或多种。
可选地,上述方法还包括:S450,终端设备根据该第一资源配置信息进行波束测量。
当网络设备为终端设备配置了无数据调度时的第一待测量资源时,终端设备可以根据第一待测量资源以及自身的通信环境,选择合适的资源进行波束测量。具体可以包括以下情况:终端设备在没有PDSCH调度的情况下,使用第一待测量资源进行波束测量。或者,终端设备在有PDSCH调度的情况下,使用第二待测量资源进行波束测量,第二待测量资 源是终端设备在有PDSCH调度时的待测量资源。下面结合图5和图6对这两种方式进行说明。
图5是本申请实施例提供的一种波束管理的方法的又一示意图。在图5中,网络设备向终端设备配置了一个时隙内无数据调度的CSI-RS测量资源(第一待测量资源的一例),其占用时域上的第7至12个符号。终端设备该时隙没有数据调度,因此,终端设备可以根据自身的通信环境和网络设备的配置,测量第7-12个符号的CSI-RS资源。
图6是本申请实施例提供的一种波束管理的方法的示意图。在图6中,网络设备向终端设备配置了一个时隙内无数据调度的CSI-RS测量资源(第一待测量资源的一例),其占用时域上的第7至12个符号。然而,终端设备在该时隙的第1至5个符号有数据调度,因此,终端设备可以根据自身的通信环境(即是否有下行数据传输)和网络设备的配置,仅测量第9-12个符号的CSI-RS资源。其中,第9-12个符号的CSI-RS资源为第二待测量资源的一例。
可选地,以图6为例,终端设备在第7至12个符号没有数据调度,可以是网络设备设备指示终端设备在该时域范围内不进行数据调度。
因此,本申请中,终端设备可以根据所处的通信场景,例如,测量的时长单元内是否有下行数据传输,从而确定相应的测量资源。相比于现有技术中,终端设备必须按照网络设备所指示的测量资源执行测量,使得终端设备的波束测量具有更高的灵活性。
上述第二待测量资源可以是网络设备向终端设备配置的。例如,在一种可能的实现方式中,上述方法还包括:S460,网络设备确定第二待测量资源。S470,网络设备发送第二资源配置信息,该第二资源配置信息用于指示该第二待测量资源。
具体而言,若终端设备向网络设备发送第二能力信息,网络设备可以根据终端设备的第二能力信息确定第二待测量资源,第二待测量资源是终端设备在有PDSCH调度时的待测量资源。应理解,若终端设备没有向网络设备发送第二能力信息,网络设备也可以参考终端设备的第一能力信息,为终端设备配置不大于第一待测量资源的第二待测量资源,即第二待测量资源为第一待测量资源的子集。网络设备也可以参考以往终端设备上报的不区分场景的能力信息,确定第二待测量资源,本申请不作限定。
类似的,网络设备在确定第二待测量资源后,可以根据终端设备的信息调度情况,在确定终端设备处于有下行数据调度的场景时,通过第二指示信息指示终端设备使用该第二待测量资源进行波束测量,其中,该第二指示信息可以包含于第二资源配置信息中,也可以和第二资源配置信息分别发送,也可以直接通过第二资源配置信息指示。在某些情况下,网络设备确定第二待测量资源后,也可以立即将该第二配置信息发送至终端设备,从而终端设备在进行波束测量时,可以根据自身所处场景和第二待测量资源等信息,确定合适的测量资源。
可选地,上述第二待测量资源也可以是在终端设备中预配置的。
可选地,上述第二待测量资源也可以是终端设备从网络设备配置的第一待测量资源中选择的部分资源,即网络设备不需要向终端设备配置第二待测量资源,由终端设备根据第一待测量资源确定第二待测量资源,例如,终端设备确定第一待测量资源中的部分资源为第二待测量资源。
类似的,第二待测量资源包括以下至少一种:端口的数量、端口的位置、时域位置与 时域持续时间、资源的数量、资源集合的数量和资源的周期。
即第二待测量资源可以包括用于波束测量的端口的信息,如,端口的个数或数量、端口的位置,以及波束测量的时域信息,如,时域起始时间或者时域的位置、时域持续时间,还可以包括用于波束测量的资源的数量、或者资源集合的数量和这些资源的周期。
可选地,第二资源配置信息也可以包括上报配置信息,该上报配置信息用于指示终端设备的上报参数,即网络设备可以向终端设备配置上报参数,指示终端设备如何上报,终端设备根据第二待测量资源进行波束测量之后依照这些上报参数进行上报。例如,该上报参数可以包括上报的时域位置和/或频域位置、上报的具体内容,例如,RSRP、CQI、SINR、PMI、RI等中的一种或多种。
因此,本申请通过为终端设备配置多种测量资源,使得终端设备可以根据其所处场景进行灵活选择,从而提高终端设备波束管理的灵活性。
此外,这种方式可以减少网络设备的信令开销,从而减少终端设备接收网络设备的配置信息的信令开销,进一步节省终端设备的功耗,提升用户体验。
可选地,本申请中,上述方法还可以包括:终端设备完成波束测量后,上报波束测量结果。具体地,终端设备可以根据第一资源配置信息或第二资源配置信息中的上报配置信息进行上报。或者,终端设备可以根据本地预配置的或者协议规定的上报配置信息进行上报。
可选地,上述上报配置信息也可以和第一/第二资源配置信息分别发送,本申请不做限定。
可选地,本申请中,如果第一待测量资源和第二待测量资源被配置为非周期性的测量上报,网络设备还可以向终端设备发送指示信息,指示终端设备的上报时机。例如,可以通过下行控制信息(downlink control,DCI)指示。
可选地,本申请中,如果第一待测量资源和第二待测量资源被配置为半持续(semi-persistence)的测量上报,网络设备还可以向终端设备发送指示信息,指示终端设备的上报时机。例如,可以通过激活信令媒体接入控制元素(medium access control control element,MAC-CE)指示。
在一种可能的实现方式中,上述方法还包括:S480,终端设备可以接收网络设备发送的请求消息,该请求消息用于请求终端设备发送上述第一能力信息和/或第二能力信息。即在S410之前,终端设备可以根据网络设备的请求而向网络设备发送上述第一能力信息和/或第二能力信息。应理解,用于请求第一能力信息的请求消息和用于请求第二能力信息的请求消息可以相同,也可以不同,本申请不做限定。
作为一种可能的实现方式,第一待测量资源可以是集中式SSB资源,该集中式SSB资源包括在时域范围连续的多个SSB,也就是说,该集中式SSB资源在时域上没有正交频分复用(orthogonal frequency division multiplexing,OFDM)符号间隔。其中,每个SSB占用Y个OFDM符号,Y为正整数。
图7是本申请实施例提供的一种集中式SSB资源的示意图。其中,参考现有协议的定义,一个SSB占用时域上4个符号,图中每个SSB代表通过不同波束发送的信号。网络设备可以根据终端设备的第一能力信息,向终端设备配置集中式SSB资源,然后向发送多个SSB,这多个SSB在时域上连续,用于终端设备进行波束测量。
应理解,图7中的集中式SSB资源只是为了举例说明,本申请中的集中式SSB资源所包括的多个SSB中的每一个也可以占用1个、2个、3个或5个符号,或者占用的符号数为其他值,本申请都对此不做限定。可选地,在这种情况下,集中式SSB资源所包括的多个SSB中的每一个可以包括主同步信号PSS和/或辅同步信号SSS。
可选地,网络设备向终端设备发送的第一指示信息,还可以用于指示集中式SSB资源所在的时域起始位置,例如,该时域起始位置可以是相对于一个系统帧起始位置的偏移值,或一个系统帧内某个时隙的偏移符号数。
可选地,网络设备向终端设备发送的第一指示信息,还可以用于指示集中式SSB资源的周期。
可选地,网络设备向终端设备发送的第一指示信息,还可以用于指示终端设备是否需要在非连续接收模式(discontinuous reception,DRX)的唤醒期(On-Duration)之外接收集中式SSB资源。
在一种可能的实现方式中,网络设备向终端设备发送的第一指示信息,还可以用于指示终端设备在进行波束测量(即:时域上不间断的波束测量)期间,不进行其他信息处理。例如,不进行数据接收与解调,不进行数据的传输,或者,终端设备不需要唤醒而接收时域上不连续的SSB信号,进而,也不需要测量这种时域上不连续的SSB信号。
应理解,在进行上述波束测量(即:时域上不间断的波束测量)之外的时间上,终端设备可以根据现有协议进行波束测量。
现有技术中,用于波束测量的SSB往往持续较长时间(例如,5ms),周期较短(例如,20ms),因此终端设备需要不断地唤醒以测量SSB。相比而言,本申请通过集中式SSB资源,使得终端设备可以在没有数据调度时进行集中式波束测量,从而避免终端设备因为波束测量而不断地唤醒和休眠,有助于减小终端设备的功耗,提升用户体验。
应理解,上述第一指示信息所指示的内容可以在一个指示信息中发送,也可以分别在不同的信息中通过显式或隐式的方式指示,本申请不做限定。
在一种可能的实现方式中,网络设备可以向终端设备发送第一配置信息,该第一配置信息用于指示集中式同步信号/物理广播信道块SSB资源,该集中式SSB资源包括在时域范围连续的多个SSB,其中,多个SSB中的每个占用Y个正交频分复用OFDM符号,Y为正整数。对应地,终端设备可以接收第一配置信息,然后根据第一配置信息进行波束测量。
上面结合图1至图7详细介绍了本申请实施例提供的波束管理的方法,下面将结合图8至图11介绍本申请实施例提供的波束管理的装置。
图8是本申请实施例提供的波束管理的装置的示意性框图。该装置800可以为终端设备,也可以为配置在终端设备中的部件(例如,单元、模块、芯片或芯片系统),该装置800包括:处理单元810和收发单元820。
处理单元810用于:确定第一能力信息,该第一能力信息包括第一波束测量能力信息和/或第一参考信号测量能力信息,该第一波束测量能力信息用于指示该装置在没有物理下行共享信道PDSCH调度时可测量的波束的数量,该第一参考信号测量能力信息用于指示该装置在没有PDSCH调度时可测量的用于波束管理的参考信号资源的数量。
收发单元820用于:向网络设备发送该第一能力信息。
本申请的方案中,通过确定并上报波束测量第一能力信息和/或第一参考信号测量能力信息,使得网络设备可以获知终端设备没有下行数据调度时的第一能力信息,进一步,网络设备在为终端设备配置波束管理资源时,可以根据终端设备在该场景下的能力而配置,具有更强的灵活性。
可选地,该收发单元820还用于:接收来自网络设备的第一资源配置信息,该第一资源配置信息用于指示终端设备在没有PDSCH调度时的第一待测量资源,该第一待测量资源是根据该第一能力信息确定的。该处理单元810还用于:根据该第一资源配置信息进行波束测量。
可选地,该处理单元810具体用于:在没有PDSCH调度的情况下,使用第一待测量资源进行波束测量。
可选地,该处理单元810具体用于:在有PDSCH调度的情况下,使用第二待测量资源进行波束测量,第二待测量资源是终端设备在有PDSCH调度时的待测量资源。
可选地,该收发单元820还用于:接收来自网络设备的第二资源配置信息,第二资源配置信息用于指示该第二待测量资源。或者,该处理单元810还用于:根据第一待测量资源确定该第二待测量资源。
可选地,该第一能力信息为终端设备在预设时间长度的能力信息。
可选地,该预设时间长度为1个时隙或连续N个符号,N为大于1的整数。
可选地,终端设备在该预设时间长度没有物理下行控制信道PDCCH调度。
可选地,该第一能力信息为终端设备在M个分量载波CC上的能力信息,M为正整数。
可选地,该收发单元820还用于:接收来自网络设备的请求消息,请求消息用于请求该装置发送第一能力信息。
应理解,这里的装置800以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置800可以具体为上述方法400实施例中的终端设备,装置800可以用于执行上述方法400实施例中与终端设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
应理解,上述收发单元820可以包括接收单元821和发送单元822,其中,接收单元821用于执行上述收发单元820中的接收功能,例如,接收来自网络设备的第一资源配置信息,发送单元822用于执行上述收发单元820中的发送功能,例如,向网络设备发送该第一能力信息。
图9是本申请实施例提供的波束管理的装置的示意性框图。该装置900可以为网络设备,也可以为配置在网络设备中的部件(例如,单元、模块、芯片或芯片系统),该装置900包括:处理单元910和收发单元920。
收发单元920用于:接收来自终端设备的第一能力信息,该第一能力信息包括第一波束测量能力信息和/或第一参考信号测量能力信息,该第一波束测量能力信息用于指示终端设备在没有物理下行共享信道PDSCH调度时可测量的波束的数量,该第一参考信号测 量能力信息用于指示终端设备在没有PDSCH调度时可测量的用于波束管理的参考信号资源的数量。
处理单元910用于:根据该第一能力信息确定第一待测量资源,该第一待测量资源是终端设备在没有PDSCH调度时的待测量资源。
可选地,该第一待测量资源包括以下至少一种:端口的数量、端口的位置、时域位置与时域持续时间、资源的数量、资源集合的数量和资源的周期。
可选地,该收发单元920还用于:向终端设备发送第一资源配置信息,第一资源配置信息用于指示第一待测量资源,以使得终端设备根据资源配置信息进行波束测量。
可选地,该第一资源配置信息包括上报配置信息,该上报配置信息用于指示终端设备的上报参数。
可选地,该处理单元910还用于:确定第二待测量资源,第二待测量资源是终端设备在有PDSCH调度时的待测量资源。该收发单元920还用于:发送第二资源配置组信息,第二资源配置信息用于指示第二待测量资源。
可选地,该第二待测量资源包括以下至少一种:端口的数量、端口的位置、时域位置与时域持续时间、资源的数量、资源集合的数量和资源的周期。
可选地,该第二资源配置信息包括上报配置信息,该上报配置信息用于指示终端设备的上报参数。
可选地,该收发单元920还用于:向终端设备发送请求消息,请求消息用于请求终端设备发送该第一能力信息。
应理解,这里的装置900以功能单元的形式体现。这里的术语“单元”可以指ASIC、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置900可以具体为上述方法400实施例中的网络设备,装置900可以用于执行上述方法900实施例中与网络设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
应理解,上述收发单元920可以包括接收单元921和发送单元922,其中,接收单元921用于执行上述收发单元920中的接收功能,例如,接收来自终端设备的第一能力信息,发送单元922用于执行上述收发单元920中的发送功能,例如,向终端设备发送第一资源配置信息。
图10示出了本申请实施例提供的波束管理的装置1000,该装置1000可以为图1至图4中所述的终端设备,该装置1000可以采用如图10所示的硬件架构。该装置可以包括处理器1010、收发器1020和存储器1030,该处理器1010、收发器1020和存储器1030通过内部连接通路互相通信。图8中的处理单元810所实现的相关功能可以由处理器1010来实现,收发单元820所实现的相关功能可以由处理器1010控制收发器1020来实现。
该处理器1010可以包括是一个或多个处理器,例如包括一个或多个中央处理单元(central processing unit,CPU),在处理器是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该收发器1020用于发送和接收数据和/或信息,以及接收数据和/或信息。该收发器可以包括发射器和接收器,发射器用于发送数据和/或信号,接收器用于接收数据和/或信号。
该存储器1030包括但不限于是随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程存储器(erasable programmable read only memory,EPROM)、只读光盘(compact disc read-only memory,CD-ROM),该存储器1030用于存储相关指令及数据。
存储器1030用于存储装置的程序代码和数据,可以为单独的器件或集成在处理器1010中。
具体地,所述处理器1010用于控制收发器与网络设备进行信息/数据传输。具体可参见方法实施例中的描述,在此不再赘述。
可以理解的是,图10仅仅示出了装置的简化设计。在实际应用中,装置还可以分别包含必要的其他元件,包含但不限于任意数量的收发器、处理器、控制器、存储器等,而所有可以实现本申请的装置都在本申请的保护范围之内。
在一种可能的设计中,装置1000可以被替换为芯片装置,例如可以为可用于装置中的通信芯片,用于实现装置中处理器1010的相关功能。该芯片装置可以为实现相关功能的现场可编程门阵列,专用集成芯片,系统芯片,中央处理器,网络处理器,数字信号处理电路,微控制器,还可以采用可编程控制器或其他集成芯片。该芯片中,可选的可以包括一个或多个存储器,用于存储程序代码,当所述代码被执行时,使得处理器实现相应的功能。
图11示出了本申请实施例提供的波束管理的装置1100,该装置1100可以为图1至图4中所述的网络设备,该装置1100可以采用如图11所示的硬件架构。该装置可以包括处理器1110、收发器1120和存储器1130,该处理器1110、收发器1120和存储器1130通过内部连接通路互相通信。图9中的处理单元910所实现的相关功能可以由处理器1110来实现,图9中的收发单元920所实现的相关功能可以由处理器1110控制收发器1120来实现。
该处理器1110可以包括是一个或多个处理器,例如包括一个或多个CPU,在处理器是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该收发器1120用于发送和接收数据和/或信息,以及接收数据和/或信息。该收发器可以包括发射器和接收器,发射器用于发送数据和/或信息,接收器用于接收数据和/或信息。
该存储器1130包括但不限于是RAM、ROM、EPROM、CD-ROM,该存储器1130用于存储相关指令及数据。
存储器1130用于存储装置的程序代码和数据,可以为单独的器件或集成在处理器1110中。
具体地,所述处理器1110用于控制收发器与终端设备进行信息传输。具体可参见方法实施例中的描述,在此不再赘述。
可以理解的是,图11仅仅示出了装置的简化设计。在实际应用中,装置还可以分别包含必要的其他元件,包含但不限于任意数量的收发器、处理器、控制器、存储器等,而所有可以实现本申请的装置都在本申请的保护范围之内。
在一种可能的设计中,装置1100可以被替换为芯片装置,例如可以为可用于装置中的通信芯片,用于实现装置中处理器1110的相关功能。该芯片装置可以为实现相关功能的现场可编程门阵列,专用集成芯片,系统芯片,中央处理器,网络处理器,数字信号处 理电路,微控制器,还可以采用可编程控制器或其他集成芯片。该芯片中,可选的可以包括一个或多个存储器,用于存储程序代码,当所述代码被执行时,使得处理器实现相应的功能。
应理解,当上述装置800、900、1000、1100为芯片或者芯片系统时,其收发器或者收发单元可以是输入输出接口,其中,接收器或者接收单元可以理解为输入接口,发送器或者发送单元可以理解为输出接口。
在本申请实施例中,“示例的”、“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例描述的网络架构以及业务场景是为了更加清楚地说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:包括单独存在A,同时存在A和B,以及单独存在B的情况,其中A,B可以是单数或者复数。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
应理解,在本申请的各种实施例中,第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同条件下的带宽等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的 划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (34)

  1. 一种波束管理的方法,其特征在于,包括:
    终端设备确定第一能力信息,所述第一能力信息包括第一波束测量能力信息和/或第一参考信号测量能力信息,所述第一波束测量能力信息用于指示所述终端设备在没有物理下行共享信道PDSCH调度时可测量的波束的数量,所述第一参考信号测量能力信息用于指示所述终端设备在没有PDSCH调度时可测量的用于波束测量的参考信号资源的数量;
    所述终端设备向网络设备发送所述第一能力信息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自网络设备的第一资源配置信息,所述第一资源配置信息用于指示所述终端设备在没有PDSCH调度时的第一待测量资源,所述第一待测量资源是根据所述第一能力信息确定的;
    所述终端设备根据所述第一资源配置信息进行波束测量。
  3. 根据权利要求2所述的方法,其特征在于,所述终端设备根据所述第一资源配置信息进行波束测量,包括:
    所述终端设备在没有PDSCH调度的情况下,使用所述第一待测量资源进行波束测量。
  4. 根据权利要求2所述的方法,其特征在于,所述终端设备根据所述第一资源配置信息进行波束测量,包括:
    所述终端设备在有PDSCH调度的情况下,使用第二待测量资源进行波束测量,所述第二待测量资源是所述终端设备在有PDSCH调度时的待测量资源。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第二资源配置信息,所述第二资源配置信息用于指示所述第二待测量资源;或,
    所述终端设备根据所述第一待测量资源确定所述第二待测量资源。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一能力信息为所述终端设备在预设时间长度的能力信息。
  7. 根据权利要求6所述的方法,其特征在于,所述预设时间长度为1个时隙或连续N个符号,所述N为大于1的整数。
  8. 根据权利要求6或7所述的方法,其特征在于,所述终端设备在所述预设时间长度没有物理下行控制信道PDCCH调度。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述第一能力信息为所述终端设备在M个分量载波CC上的能力信息,所述M为正整数。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自网络设备的请求消息,所述请求消息用于请求所述终端设备发送所述第一能力信息。
  11. 一种波束管理的方法,其特征在于,包括:
    网络设备接收来自终端设备的第一能力信息,所述第一能力信息包括第一波束测量能力信息和/或第一参考信号测量能力信息,所述第一波束测量能力信息用于指示所述终端 设备在没有物理下行共享信道PDSCH调度时可测量的波束的数量,所述第一参考信号测量能力信息用于指示所述终端设备在没有PDSCH调度时可测量的用于波束测量的参考信号资源的数量;
    所述网络设备根据所述第一能力信息确定第一待测量资源,所述第一待测量资源是所述终端设备在没有PDSCH调度时的待测量资源。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第一资源配置信息,所述第一资源配置信息用于指示所述第一待测量资源,以使得所述终端设备根据所述第一资源配置信息进行波束测量。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第一待测量资源包括以下至少一种:
    端口的数量、端口的位置、时域位置与时域持续时间、资源的数量、资源集合的数量和资源的周期。
  14. 根据权利要求12或13所述的方法,其特征在于,所述第一资源配置信息包括上报配置信息,所述上报配置信息用于指示所述终端设备的上报参数。
  15. 根据权利要求11至14中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备确定第二待测量资源,所述第二待测量资源是所述终端设备在有PDSCH调度时的待测量资源;
    所述网络设备发送第二资源配置信息,所述第二资源配置信息用于指示所述第二待测量资源。
  16. 一种波束管理的装置,其特征在于,包括:
    处理单元,用于确定第一能力信息,所述第一能力信息包括第一波束测量能力信息和/或第一参考信号测量能力信息,所述第一波束测量能力信息用于指示所述装置在没有PDSCH调度时可测量的波束的数量,所述第一参考信号测量能力信息用于指示所述装置在没有PDSCH调度时可测量的用于波束测量的参考信号资源的数量;
    收发单元,用于向网络设备发送所述第一能力信息。
  17. 根据权利要求16所述的装置,其特征在于,
    所述收发单元还用于:接收来自网络设备的第一资源配置信息,所述第一资源配置信息用于指示所述装置在没有PDSCH调度时的第一待测量资源,所述第一待测量资源是根据所述第一能力信息确定的;
    所述处理单元还用于:根据所述第一资源配置信息进行波束测量。
  18. 根据权利要求17所述的装置,其特征在于,所述处理单元具体用于:
    在没有PDSCH调度的情况下,使用所述第一待测量资源进行波束测量。
  19. 根据权利要求17所述的装置,其特征在于,所述处理单元具体用于:
    在有PDSCH调度的情况下,使用第二待测量资源进行波束测量,所述第二待测量资源是所述装置在有PDSCH调度时的待测量资源。
  20. 根据权利要求19所述的装置,其特征在于,
    所述收发单元还用于:接收第二资源配置信息,所述第二资源配置信息用于指示所述第二待测量资源;或,
    所述处理单元还用于:根据所述第一待测量资源确定所述第二待测量资源。
  21. 根据权利要求16至20中任一项所述的装置,其特征在于,所述第一能力信息为所述装置在预设时间长度的能力信息。
  22. 根据权利要求21所述的装置,其特征在于,所述预设时间长度为1个时隙或连续N个符号,所述N为大于1的整数。
  23. 根据权利要求21或22所述的装置,其特征在于,所述装置在所述预设时间长度没有物理下行控制信道PDCCH调度。
  24. 根据权利要求16至23中任一项所述的装置,其特征在于,所述第一能力信息为所述装置在M个分量载波CC上的能力信息,所述M为正整数。
  25. 根据权利要求16至24中任一项所述的装置,其特征在于,所述收发单元还用于:
    接收来自网络设备的请求消息,所述请求消息用于请求所述装置发送所述第一能力信息。
  26. 一种波束管理的装置,其特征在于,包括:
    收发单元,用于接收来自终端设备的第一能力信息,所述第一能力信息包括第一波束测量能力信息和/或第一参考信号测量能力信息,所述第一波束测量能力信息用于指示所述终端设备在没有物理下行共享信道PDSCH调度时可测量的波束的数量,所述第一参考信号测量能力信息用于指示所述终端设备在没有PDSCH调度时可测量的用于波束测量的参考信号资源的数量;
    处理单元,用于根据所述第一能力信息确定第一待测量资源,所述第一待测量资源是所述终端设备在没有PDSCH调度时的待测量资源。
  27. 根据权利要求26所述的装置,其特征在于,所述收发单元还用于:
    向所述终端设备发送第一资源配置信息,所述第一资源配置信息用于指示所述第一待测量资源,以使得所述终端设备根据所述第一资源配置信息进行波束测量。
  28. 根据权利要求26或27所述的装置,其特征在于,所述第一待测量资源包括以下至少一种:
    端口的数量、端口的位置、时域位置与时域持续时间、资源的数量、资源集合的数量和资源的周期。
  29. 根据权利要求27或28所述的装置,其特征在于,所述第一资源配置信息包括上报配置信息,所述上报配置信息用于指示所述终端设备的上报参数。
  30. 根据权利要求26至29中任一项所述的装置,其特征在于,
    所述处理单元还用于:确定第二待测量资源,所述第二待测量资源是所述终端设备在有PDSCH调度时的待测量资源;
    所述收发单元还用于:发送第二资源配置信息,所述第二资源配置信息用于指示所述第二待测量资源。
  31. 一种波束管理的装置,其特征在于,包括:至少一个处理器,所述至少一个处理器与至少一个存储器耦合,所述至少一个处理器用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述装置执行如权利要求1至10中任一项或权利要求11至15中任一项所述的方法。
  32. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机执行如权利 要求1至10中任一项或权利要求11至15中任一项所述的方法。
  33. 一种芯片系统,其特征在于,包括:处理器,所述处理器用于执行存储器中的计算机程序或指令,以实现权利要求1至10中任一项或权利要求11至15中任一项所述的方法。
  34. 一种通信装置,其特征在于,包括:处理器,所述处理器用于执行如权利要求1至10中任一项或权利要求11至15中任一项所述的方法。
PCT/CN2022/097277 2021-06-26 2022-06-07 一种波束管理的方法和装置 WO2022267876A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110715210.9 2021-06-26
CN202110715210.9A CN115529667A (zh) 2021-06-26 2021-06-26 一种波束管理的方法和装置

Publications (1)

Publication Number Publication Date
WO2022267876A1 true WO2022267876A1 (zh) 2022-12-29

Family

ID=84544117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097277 WO2022267876A1 (zh) 2021-06-26 2022-06-07 一种波束管理的方法和装置

Country Status (2)

Country Link
CN (1) CN115529667A (zh)
WO (1) WO2022267876A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109089322A (zh) * 2017-06-14 2018-12-25 维沃移动通信有限公司 一种上行多波束传输方法、终端及网络设备
CN111357215A (zh) * 2017-11-17 2020-06-30 高通股份有限公司 参考信号传输期间的波束确定
WO2021056509A1 (en) * 2019-09-29 2021-04-01 Apple Inc. Sounding reference signal based downlink transmission configuration indication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109089322A (zh) * 2017-06-14 2018-12-25 维沃移动通信有限公司 一种上行多波束传输方法、终端及网络设备
CN111357215A (zh) * 2017-11-17 2020-06-30 高通股份有限公司 参考信号传输期间的波束确定
WO2021056509A1 (en) * 2019-09-29 2021-04-01 Apple Inc. Sounding reference signal based downlink transmission configuration indication

Also Published As

Publication number Publication date
CN115529667A (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
US11737082B2 (en) Signal transmission method and communications apparatus
JP7179156B2 (ja) 信号伝送方法及び通信機器
CN111510267B (zh) 波束指示的方法和通信装置
WO2020103793A1 (zh) 波束上报的方法和通信装置
EP4090063A1 (en) Resource configuration method and apparatus
CN111107630B (zh) 通信方法和通信装置
WO2022028373A1 (zh) 测量上报方法、装置及设备
US20210297886A1 (en) Communication method and device
CN111294891B (zh) 一种天线面板及波束的管理方法和设备
CN112087291B (zh) 更新传输配置指示tci信息的方法与通信装置
US11799520B2 (en) Communication method and communications apparatus
EP3968556A1 (en) Method and apparatus for determining cell activation delay
KR20230074558A (ko) 빔 처리 방법, 장치 및 관련 장비
US11963205B2 (en) Resource management method and apparatus
US20220394701A1 (en) Communication method and apparatus
CN114007257A (zh) 确定传输功率的方法及装置
CN115915167A (zh) 一种通信方法及通信装置
WO2020187125A1 (zh) 数据传输方法和装置
WO2022267876A1 (zh) 一种波束管理的方法和装置
WO2021013138A1 (zh) 无线网络通信方法和通信装置
WO2023124995A1 (zh) 通信方法、终端设备、网络设备及通信系统
CN116419280A (zh) 通信方法、终端设备、网络设备及通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22827372

Country of ref document: EP

Kind code of ref document: A1