WO2023124995A1 - 通信方法、终端设备、网络设备及通信系统 - Google Patents

通信方法、终端设备、网络设备及通信系统 Download PDF

Info

Publication number
WO2023124995A1
WO2023124995A1 PCT/CN2022/138858 CN2022138858W WO2023124995A1 WO 2023124995 A1 WO2023124995 A1 WO 2023124995A1 CN 2022138858 W CN2022138858 W CN 2022138858W WO 2023124995 A1 WO2023124995 A1 WO 2023124995A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
terminal device
moment
information
indication information
Prior art date
Application number
PCT/CN2022/138858
Other languages
English (en)
French (fr)
Inventor
何泓利
李雪茹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210074534.3A external-priority patent/CN116419280A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023124995A1 publication Critical patent/WO2023124995A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, relate to a communication method, a terminal device, a network device, and a communication system.
  • Quasi co-location (QCL) in new radio (new radio, NR) is defined as: if the channel characteristics represented by one antenna port on one symbol can be compared to the channel represented by another antenna port on one symbol It can be inferred that the two channel QCLs can be considered, and the following four QCL parameter types are defined in NR:
  • -'typeA' ⁇ Doppler shift, Doppler spread, average delay, delay spread ⁇
  • the QCL parameters of typeA, typeB and typeC can be used for time-frequency synchronization and channel estimation.
  • Obtaining Doppler offset can be understood as completing frequency domain synchronization;
  • obtaining average delay can be understood as completing time domain synchronization;
  • obtaining Doppler spread and delay spread can be used for channel estimation;
  • the QCL parameter of typeD indicates two antennas
  • the airspace receiving parameters adopted by the ports are the same or similar, and are used to assist the receiving device in determining its own receiving beam.
  • the QCL parameters are beneficial to the improvement of communication performance, so how to enable terminal devices and network devices to obtain the QCL parameters of some reference signals becomes an urgent problem to be solved.
  • An embodiment of the present application provides a communication method.
  • a terminal device reports whether the terminal device saves certain reference signal QCL parameters, so that the network device can know whether the terminal device saves certain reference signal QCL parameters.
  • a communication method is provided, and the method may be executed by a terminal device, or may also be executed by a component (such as a chip or a circuit) of the terminal device, which is not limited.
  • a component such as a chip or a circuit
  • terminal Device execution is taken as an example for description.
  • the communication method includes: a terminal device receives first configuration information from a network device, the first configuration information is used to instruct the terminal device to report channel state information, and the first configuration information includes one or more identifiers of first reference signals ;
  • the terminal device sends first information to the network device, where the first information includes channel state information of at least one second reference signal, where the at least one second reference signal is part or all of the one or more first reference signals ;
  • the first information includes first indication information, and the first indication information is used to indicate whether the terminal device saves the first quasi-co-located QCL parameter of the at least one second reference signal.
  • the terminal device when the terminal device reports the channel state information, it synchronously reports whether it includes the first QCL parameters of certain reference signals, so that the network device can know the first QCL parameters of the reference signals saved by the terminal device, and clearly whether the terminal device saves the first QCL parameter of the reference signal.
  • the first QCL parameters of certain reference signals are used to facilitate subsequent related configuration based on the first QCL parameters. For example, in the case of determining the effective time of the activated new TCI-state based on the first QCL parameter information, the efficiency of activating the new TCI-state can be improved.
  • the method further includes: the terminal device receiving the one or more first reference signals from the network device.
  • the first indication information indicates whether the terminal device stores the first QCL parameter of the at least one second reference signal, including: the first indication information indicates that the Whether the terminal device saves the second QCL parameter of at least one third reference signal in the at least one second reference signal, and the first indication information indicates that the terminal device saves at least one third reference signal in the at least one second reference signal
  • the first information further includes an identifier of the at least one third reference signal.
  • the terminal device instructs the terminal device which second QCL parameters of the reference signal are saved, and specifies that the terminal device saves the reference signal of the second QCL parameter, so as to facilitate subsequent related configuration based on the second QCL parameter.
  • any one of the at least one third reference signal and the synchronization signal block SSB or the tracking reference signal TRS satisfy a QCL relationship.
  • the third reference signal stored by the terminal device with the second QCL parameter can satisfy the QCL relationship with the SSB, or it can also be that the third reference signal stored by the terminal device with the second QCL parameter can satisfy the QCL relationship with the TRS, then It indicates that the second QCL parameter of the third reference signal can be obtained by measuring the SSB or TRS that has a QCL relationship with it. Generally speaking, the second QCL parameter obtained by measuring the SSB or TRS is more accurate.
  • the method further includes: the terminal device receiving second indication information from the network device, where the second indication information is used to indicate the activated transmission configuration indication state TCI- state; when the fourth reference signal corresponding to the TCI-state satisfies the first condition, the effective moment of the TCI-state is the first moment; when the fourth reference signal corresponding to the TCI-state does not meet the first condition, the TCI-state The effective moment of the state is the second moment; the first condition includes that the fourth reference signal is one of the at least one third reference signal, or the fourth reference signal is one of the at least one third reference signal.
  • the reference signal satisfies a QCL relationship, wherein the first instant is earlier than the second instant.
  • the first moment is the moment when a first duration has elapsed since the moment when the second indication information was received
  • the second moment is a moment since the moment when the second indication information was received 2.
  • the moment when the time of the indication information passes through the second duration, the second duration is greater than or equal to the first duration, the duration of waiting for the synchronization signal block SSB or the tracking reference signal TRS, and the duration of processing the SSB or TRS and.
  • the terminal device reports the second QCL parameter information, so that the network device can determine whether the terminal has the second QCL parameter information of the antenna port corresponding to the third reference signal, and the new TCI- There is a consistent understanding of whether the state can meet the first condition, and it can be determined whether the activation time of the new TCI-state is the first moment or the second moment according to whether the first condition is met.
  • the terminal device does not have the second QCL parameter corresponding to the TCI-state, so it needs to receive an additional SSB or TRS after the second indication information to perform the measurement and processing of the second QCL parameter.
  • the SSB or TRS associated with the TCI-state has a QCL relationship with the reference signal associated with the TCI-state, that is, the new TCI-state needs to be waited for a second period of time before using the new TCI-state; when the second condition is met, the terminal device has obtained the corresponding second QCL parameter , and the base station can also determine that the terminal equipment has obtained the corresponding second QCL parameter, so it only needs to use the new TCI-state after completing the corresponding processing of the second indication information, that is, it only needs to wait for the first duration.
  • the network device cannot determine whether the terminal device has the second QCL parameter information of the antenna port corresponding to the third reference signal, it can only use the new TCI-state after the second moment, and in In this solution, the network device and the terminal device have the opportunity to use the new TCI-state after the first moment, that is, use the QCL parameter to transmit the control and data channels, which improves the activation efficiency of the new TCI-state.
  • the fourth reference signal and one of the at least one third reference signal satisfy a QCL relationship, including: the fourth reference signal and the at least one third reference signal A third reference signal in a third reference signal satisfies a Type A QCL relationship, where the Type A QCL relationship includes a channel experienced by the antenna port that sends the fourth reference signal and a channel experienced by the antenna port that sends the third reference signal Channels have common: common: Doppler shift, Doppler spread, mean delay, and delay spread.
  • the first condition has stricter restrictions on the QCL relationship, so that the terminal device can use the TCI-state at the first moment when it obtains the A-type QCL parameters of the fourth reference signal.
  • QCL parameters contain more types of channel large-scale characteristics than C-type QCL parameters.
  • terminal devices When terminal devices have A-type QCL parameters, they can perform channel estimation more accurately, which improves the reliability of terminal devices using this new TCI-state to transmit data. sex.
  • the duration of the interval between the third moment and the fourth moment is less than or equal to the first threshold, where the third moment is when the terminal device receives the third indication information time, the fourth time is the time when the terminal device sends the first information.
  • the time interval between receiving the activation indication and reporting the first information by the terminal device cannot be too large to ensure timeliness.
  • the method further includes: the terminal device receiving third indication information from the network device, where the third indication information is used to instruct the terminal device to The type of the QCL parameter is reported, and the first information further includes fourth indication information, where the fourth indication information is used to indicate the type of the second QCL parameter of at least one third reference signal acquired by the terminal device.
  • the reported type of the second QCL parameter includes type A or type C.
  • the network device instructs the terminal device to report the obtained second QCL parameter type, and different configurations can be performed according to the second QCL parameter type obtained by the terminal. For example, when the second QCL parameter type obtained by the terminal is only C type If there is no type A, the terminal may have limited channel estimation accuracy, and the network device can use low-rate modulation and demodulation to improve transmission reliability when transmitting to the terminal device.
  • a communication method is provided.
  • This method can be executed by a network device, or can also be executed by a component (such as a chip or a circuit) of the network device.
  • a component such as a chip or a circuit
  • This is not limited.
  • the network Device execution is taken as an example for description.
  • the communication method includes: the network device sends first configuration information to the terminal device, the first configuration information is used to instruct the terminal device to report channel state information, and the first configuration information includes one or more identifiers of first reference signals;
  • the network device receives first information from the terminal device, where the first information includes channel state information of at least one second reference signal, where the at least one second reference signal is part or all of the one or more first reference signals ;
  • the first information includes first indication information, and the first indication information is used to indicate whether the terminal device saves the first quasi-co-located QCL parameter of the at least one second reference signal.
  • the method further includes: the network device sending the one or more first reference signals to the terminal device.
  • the first indication information indicates whether the terminal device stores the first QCL parameter of the at least one second reference signal, including: the first indication information indicates that the Whether the terminal device saves the second QCL parameter of at least one third reference signal in the at least one second reference signal, and the first indication information indicates that the terminal device saves at least one third reference signal in the at least one second reference signal
  • the first information further includes an identifier of the at least one third reference signal.
  • any one of the at least one third reference signal and the synchronization signal block SSB or the tracking reference signal TRS satisfy a QCL relationship.
  • the method further includes: the network device sending second indication information to the terminal device, where the second indication information is used to indicate activation of the transmission configuration indication state TCI-state ;
  • the effective moment of the TCI-state is the first moment;
  • the fourth reference signal corresponding to the TCI-state does not meet the first condition, the TCI-state The effective moment is the second moment;
  • the first condition includes that the fourth reference signal is one of the at least one third reference signal, or the fourth reference signal and a third reference signal in the at least one third reference signal The signal satisfies a QCL relationship, wherein the first instant is earlier than the second instant.
  • the first moment is the moment when a first duration has elapsed since the second indication information was received
  • the second moment is the moment since the second indication information was received. 2.
  • the moment when the time of the indication information passes through the second duration, the second duration is greater than or equal to the first duration, the duration of waiting for the synchronization signal block SSB or the tracking reference signal TRS, and the duration of processing the SSB or TRS and.
  • the fourth reference signal and one of the at least one third reference signal satisfy a QCL relationship, including: the fourth reference signal and the at least one third reference signal A third reference signal in a third reference signal satisfies a Type A QCL relationship, where the Type A QCL relationship includes a channel experienced by the antenna port that sends the fourth reference signal and a channel experienced by the antenna port that sends the third reference signal Channels have in common: Doppler Shift, Doppler Spread, Average Delay, and Delay Spread.
  • the duration of the interval between the third moment and the fourth moment is less than or equal to the first threshold, where the third moment is when the terminal device receives the third indication information time, the fourth time is the time when the terminal device sends the first information.
  • the method further includes: the network device sending third indication information to the terminal device, where the third indication information is used to instruct the terminal device to specify the second QCL The type of the parameter is reported, and the first information further includes fourth indication information, where the fourth indication information is used to indicate the type of the second QCL parameter of the at least one third reference signal acquired by the terminal device.
  • the reported type of the second QCL parameter includes type A or type C.
  • a communication method is provided, and the method may be executed by a terminal device, or may also be executed by a component (such as a chip or a circuit) of the terminal device, which is not limited.
  • a component such as a chip or a circuit
  • the communication method includes: a terminal device acquires a second quasi-co-located QCL parameter of at least one third reference signal; the terminal device sends first information to the network device, and the first information includes an identifier of the at least one third reference signal , the first information is used to indicate that the terminal device stores the second QCL parameter of the at least one third reference signal.
  • the terminal device reports the stored second QCL parameters of the reference signals, and it is clear that the terminal device stores the second QCL parameters of certain reference signals, so as to facilitate subsequent related configuration based on the second QCL parameters.
  • any one of the at least one third reference signal is a synchronization signal block SSB or a tracking reference signal TRS, or the at least one third reference signal Any third reference signal among the signals satisfies the QCL relationship with the synchronization signal block SSB or the tracking reference signal TRS.
  • the method further includes: the terminal device receives second indication information from the network device, where the second indication information is used to indicate the activated transmission configuration indication status TCI- state, when the at least one third reference signal includes a fourth reference signal corresponding to the TCI-state, the effective moment of the TCI-state is a moment after sending the first information.
  • the method further includes: the terminal device receives second indication information from the network device, where the second indication information is used to indicate the activated transmission configuration indication status TCI- state; when the fourth reference signal corresponding to the TCI-state satisfies the first condition, the effective moment of the TCI-state is the first moment; when the fourth reference signal corresponding to the TCI-state does not meet the first condition, the TCI-state The effective moment of the state is the second moment; the first condition includes that the fourth reference signal is one of the at least one third reference signal, or the fourth reference signal is one of the at least one third reference signal.
  • the reference signal satisfies a QCL relationship, wherein the first instant is earlier than the second instant.
  • the first moment is the moment when a first duration has elapsed since the moment when the second indication information was received
  • the second moment is a moment since the moment when the second indication information was received 2.
  • the moment when the time of the indication information passes through the second duration, the second duration is greater than or equal to the first duration, the duration of waiting for the synchronization signal block SSB or the tracking reference signal TRS, and the duration of processing the SSB or TRS and.
  • the fourth reference signal and one of the at least one third reference signal satisfy a QCL relationship, including: the fourth reference signal and the at least one third reference signal A third reference signal in a third reference signal satisfies a Type A QCL relationship, where the Type A QCL relationship includes a channel experienced by the antenna port that sends the fourth reference signal and a channel experienced by the antenna port that sends the third reference signal Channels have in common: Doppler Shift, Doppler Spread, Average Delay, and Delay Spread.
  • the duration of the interval between the third moment and the fourth moment is less than or equal to the first threshold, where the third moment is when the terminal device receives the third indication information time, the fourth time is the time when the terminal device sends the first information.
  • the method further includes: the terminal device receiving third indication information from the network device, where the third indication information is used to instruct the terminal device to The type of the QCL parameter is reported, and the first information further includes fourth indication information, where the fourth indication information is used to indicate the type of the second QCL parameter of at least one third reference signal acquired by the terminal device.
  • the reported type of the second QCL parameter includes type A or type C.
  • a communication method is provided, and the method may be executed by a network device, or may also be executed by a component (such as a chip or a circuit) of the network device, which is not limited.
  • a component such as a chip or a circuit
  • the network Device execution is taken as an example for description.
  • the communication method includes: the network device receives first information from the terminal device, the first information includes an identifier of the at least one third reference signal, and the first information is used to indicate that the terminal device stores the at least one third reference signal The second quasi-co-located QCL parameter of the signal; the network device determines that the terminal device stores the second QCL parameter of the at least one third reference signal.
  • any one of the at least one third reference signal is a synchronization signal block SSB or a tracking reference signal TRS, or the at least one third reference signal Any third reference signal among the signals satisfies the QCL relationship with the synchronization signal block SSB or the tracking reference signal TRS.
  • the method further includes: the network device sending second indication information to the terminal device, where the second indication information is used to indicate activation of the transmission configuration indication state TCI-state , when the at least one third reference signal includes a fourth reference signal corresponding to the TCI-state, the effective moment of the TCI-state is a moment after sending the first information.
  • the method further includes: the network device sending second indication information to the terminal device, where the second indication information is used to indicate activation of the transmission configuration indication state TCI-state ;
  • the effective moment of the TCI-state is the first moment;
  • the fourth reference signal corresponding to the TCI-state does not meet the first condition, the TCI-state The effective moment is the second moment;
  • the first condition includes that the fourth reference signal is one of the at least one third reference signal, or the fourth reference signal and a third reference signal in the at least one third reference signal The signal satisfies a QCL relationship, wherein the first instant is earlier than the second instant.
  • the first moment is the moment when a first duration has elapsed since the moment when the second indication information was received
  • the second moment is a moment since the moment when the second indication information was received 2.
  • the moment when the time of the indication information passes through the second duration, the second duration is greater than or equal to the first duration, the duration of waiting for the synchronization signal block SSB or the tracking reference signal TRS, and the duration of processing the SSB or TRS and.
  • the fourth reference signal and one of the at least one third reference signal satisfy a QCL relationship, including: the fourth reference signal and the at least one third reference signal A third reference signal in a third reference signal satisfies a Type A QCL relationship, where the Type A QCL relationship includes a channel experienced by the antenna port that sends the fourth reference signal and a channel experienced by the antenna port that sends the third reference signal Channels have in common: Doppler Shift, Doppler Spread, Average Delay, and Delay Spread.
  • the duration of the interval between the third moment and the fourth moment is less than or equal to the first threshold, where the third moment is when the terminal device receives the third indication information time, the fourth time is the time when the terminal device sends the first information.
  • the method further includes: the network device sending third indication information to the terminal device, where the third indication information is used to instruct the terminal device to specify the second QCL The type of the parameter is reported, and the first information further includes fourth indication information, where the fourth indication information is used to indicate the type of the second QCL parameter of the at least one third reference signal acquired by the terminal device.
  • the reported type of the second QCL parameter includes type A or type C.
  • a communication device configured to execute the method provided in the first aspect above.
  • the communication device includes:
  • a receiving unit configured to receive first configuration information from a network device, where the first configuration information is used to instruct the terminal device to report channel state information, where the first configuration information includes one or more identifiers of first reference signals; sending A unit, configured to send first information to the network device, where the first information includes channel state information of at least one second reference signal, where the at least one second reference signal is part or all of the one or more first reference signals ; Wherein, the first information includes first indication information, and the first indication information is used to indicate whether the communication device saves the first quasi-co-located QCL parameter of the at least one second reference signal.
  • the receiving unit is further configured to receive the one or more first reference signals from the network device.
  • any one of the at least one third reference signal and the synchronization signal block SSB or the tracking reference signal TRS satisfy a QCL relationship.
  • the first indication information indicates whether the terminal device stores the first QCL parameter of the at least one second reference signal, including: the first indication information indicates that the Whether the terminal device saves the second QCL parameter of at least one third reference signal in the at least one second reference signal, and the first indication information indicates that the terminal device saves at least one third reference signal in the at least one second reference signal
  • the first information further includes an identifier of the at least one third reference signal.
  • the receiving unit is further configured to receive second indication information from the network device, where the second indication information is used to indicate the activated transmission configuration indication state TCI-state ;
  • the effective moment of the TCI-state is the first moment; when the fourth reference signal corresponding to the TCI-state does not meet the first condition, the TCI-state’s The effective moment is the second moment; the first condition includes that the fourth reference signal is one of the at least one third reference signal, or the fourth reference signal and a third reference signal of the at least one third reference signal A QCL relationship is satisfied, wherein the first instant is earlier than the second instant.
  • the first moment is the moment when a first duration has elapsed since the moment when the second indication information was received
  • the second moment is a moment since the moment when the second indication information was received 2.
  • the moment when the time of the indication information passes through the second duration, the second duration is greater than or equal to the first duration, the duration of waiting for the synchronization signal block SSB or the tracking reference signal TRS, and the duration of processing the SSB or TRS and.
  • the fourth reference signal and one of the at least one third reference signal satisfy a QCL relationship, including: the fourth reference signal and the at least one third reference signal A third reference signal in a third reference signal satisfies a Type A QCL relationship, where the Type A QCL relationship includes a channel experienced by the antenna port that sends the fourth reference signal and a channel experienced by the antenna port that sends the third reference signal Channels have in common: Doppler Shift, Doppler Spread, Average Delay, and Delay Spread.
  • the duration of the interval between the third moment and the fourth moment is less than or equal to the first threshold, where the third moment is when the receiving unit receives the third indication information time, the fourth time is the time when the sending unit sends the first information.
  • the apparatus further includes: a receiving unit, configured to receive third indication information from the network device, where the third indication information is used to instruct the terminal device to The type of the second QCL parameter is reported, and the first information further includes fourth indication information, where the fourth indication information is used to indicate the indication information of the type of the second QCL parameter of the at least one third reference signal obtained by the processing unit. .
  • the reported type of the second QCL parameter includes type A or type C.
  • a communication device is provided, and the device is used to execute the method provided in the second aspect above.
  • the communication device includes:
  • the sending unit is configured to send first configuration information to the terminal device, the first configuration information is used to instruct the terminal device to report channel state information, the first configuration information includes one or more identifiers of the first reference signal; the receiving unit , for receiving first information from the terminal device, where the first information includes channel state information of at least one second reference signal, where the at least one second reference signal is part or all of the one or more first reference signals ; Wherein, the first information includes first indication information, and the first indication information is used to indicate whether the terminal device saves the first quasi-co-located QCL parameter of the at least one second reference signal.
  • the sending unit is further configured to send the one or more first reference signals to the terminal device.
  • the first indication information indicates whether the terminal device stores the first QCL parameter of the at least one second reference signal, including: the first indication information indicates that the Whether the terminal device saves the second QCL parameter of at least one third reference signal in the at least one second reference signal, and the first indication information indicates that the terminal device saves at least one third reference signal in the at least one second reference signal
  • the first information further includes an identifier of the at least one third reference signal.
  • any one of the at least one third reference signal and the synchronization signal block SSB or the tracking reference signal TRS satisfy a QCL relationship.
  • the sending unit is configured to send second indication information to the terminal device, where the second indication information is used to indicate activation of the transmission configuration indication state TCI-state; when The fourth reference signal corresponding to the TCI-state satisfies the first condition, and the TCI-state takes effect at the first moment; when the fourth reference signal corresponding to the TCI-state does not meet the first condition, the TCI-state takes effect The moment is a second moment; the first condition includes that the fourth reference signal is one of the at least one third reference signal, or the fourth reference signal and a third reference signal of the at least one third reference signal satisfy A QCL relationship, wherein the first moment is earlier than the second moment.
  • the first moment is the moment when a first duration has elapsed since the moment when the second indication information was received
  • the second moment is a moment since the moment when the second indication information was received 2.
  • the moment when the time of the indication information passes through the second duration, the second duration is greater than or equal to the first duration, the duration of waiting for the synchronization signal block SSB or the tracking reference signal TRS, and the duration of processing the SSB or TRS and.
  • the fourth reference signal and one of the at least one third reference signal satisfy a QCL relationship, including: the fourth reference signal and the at least one third reference signal A third reference signal in a third reference signal satisfies a Type A QCL relationship, where the Type A QCL relationship includes a channel experienced by the antenna port that sends the fourth reference signal and a channel experienced by the antenna port that sends the third reference signal Channels have in common: Doppler Shift, Doppler Spread, Average Delay, and Delay Spread.
  • the duration of the interval between the third moment and the fourth moment is less than or equal to the first threshold, where the third moment is when the terminal device receives the third indication information time, the fourth time is the time when the terminal device sends the first information.
  • the apparatus further includes: a sending unit, configured to send third indication information to the terminal device, where the third indication information is used to instruct the terminal device to The type of the second QCL parameter is reported, and the first information further includes fourth indication information, where the fourth indication information is used to indicate the type of the second QCL parameter of the at least one third reference signal obtained by the terminal device.
  • the reported type of the second QCL parameter includes type A or type C.
  • a communication device is provided, and the device is used to execute the method provided in the third aspect above.
  • the communication device includes:
  • a processing unit configured to acquire a second quasi-co-located QCL parameter of at least one third reference signal; a sending unit, configured to send first information to the network device, where the first information includes an identifier of the at least one third reference signal, The first information is used to indicate that the terminal device stores the second QCL parameter of the at least one third reference signal.
  • any one of the at least one third reference signal is a synchronization signal block SSB or a tracking reference signal TRS, or the at least one third reference signal Any third reference signal among the signals satisfies the QCL relationship with the synchronization signal block SSB or the tracking reference signal TRS.
  • the apparatus further includes: a receiving unit, configured to receive second indication information from the network device, where the second indication information is used to indicate an activated transmission configuration indication state TCI-state, when the at least one third reference signal includes a fourth reference signal corresponding to the TCI-state, the effective moment of the TCI-state is a moment after sending the first information.
  • a receiving unit configured to receive second indication information from the network device, where the second indication information is used to indicate an activated transmission configuration indication state TCI-state, when the at least one third reference signal includes a fourth reference signal corresponding to the TCI-state, the effective moment of the TCI-state is a moment after sending the first information.
  • the apparatus further includes: a receiving unit, configured to receive second indication information from the network device, where the second indication information is used to indicate an activated transmission configuration indication state TCI-state; when the fourth reference signal corresponding to the TCI-state satisfies the first condition, the effective moment of the TCI-state is the first moment; when the fourth reference signal corresponding to the TCI-state does not meet the first condition, the The effective moment of the TCI-state is the second moment; the first condition includes that the fourth reference signal is one of the at least one third reference signal, or one of the fourth reference signal and the at least one third reference signal The third reference signal satisfies a QCL relationship, wherein the first instant is earlier than the second instant.
  • a receiving unit configured to receive second indication information from the network device, where the second indication information is used to indicate an activated transmission configuration indication state TCI-state; when the fourth reference signal corresponding to the TCI-state satisfies the first condition, the effective moment of the TCI-state is the first moment; when the fourth reference signal
  • the first moment is the moment when a first duration has elapsed since the moment when the second indication information was received
  • the second moment is a moment since the moment when the second indication information was received 2.
  • the moment when the time of the indication information passes through the second duration, the second duration is greater than or equal to the first duration, the duration of waiting for the synchronization signal block SSB or the tracking reference signal TRS, and the duration of processing the SSB or TRS and.
  • the fourth reference signal and one of the at least one third reference signal satisfy a QCL relationship, including: the fourth reference signal and the at least one third reference signal A third reference signal in a third reference signal satisfies a Type A QCL relationship, where the Type A QCL relationship includes a channel experienced by the antenna port that sends the fourth reference signal and a channel experienced by the antenna port that sends the third reference signal Channels have in common: Doppler Shift, Doppler Spread, Average Delay, and Delay Spread.
  • the duration of the interval between the third moment and the fourth moment is less than or equal to the first threshold, where the third moment is when the receiving unit receives the third indication information time, the fourth time is the time when the sending unit sends the first information.
  • the apparatus further includes: a receiving unit, configured to receive third indication information from the network device, where the third indication information is used to instruct the terminal device to The type of the second QCL parameter is reported, and the first information further includes fourth indication information, where the fourth indication information is used to indicate the indication information of the type of the second QCL parameter of the at least one third reference signal obtained by the processing unit. .
  • the reported type of the second QCL parameter includes type A or type C.
  • a communication device is provided, and the device is used to execute the method provided in the fourth aspect above.
  • the communication device includes:
  • a receiving unit configured to receive first information from a terminal device, where the first information includes an identifier of the at least one third reference signal, and the first information is used to indicate that the terminal device stores the first information of the at least one third reference signal Two quasi-co-located QCL parameters; a processing unit configured to determine that the terminal device stores the second QCL parameters of the at least one third reference signal.
  • any one of the at least one third reference signal is a synchronization signal block SSB or a tracking reference signal TRS, or the at least one third reference signal Any third reference signal among the signals satisfies the QCL relationship with the synchronization signal block SSB or the tracking reference signal TRS.
  • the apparatus further includes: a sending unit, configured to send second indication information to the terminal device, where the second indication information is used to indicate activation of the transmission configuration indication state TCI -state, when the at least one third reference signal includes a fourth reference signal corresponding to the TCI-state, the effective moment of the TCI-state is a moment after sending the first information.
  • a sending unit configured to send second indication information to the terminal device, where the second indication information is used to indicate activation of the transmission configuration indication state TCI -state, when the at least one third reference signal includes a fourth reference signal corresponding to the TCI-state, the effective moment of the TCI-state is a moment after sending the first information.
  • the apparatus further includes: a sending unit, configured to send second indication information to the terminal device, where the second indication information is used to indicate activation of the transmission configuration indication state TCI -state; when the fourth reference signal corresponding to the TCI-state satisfies the first condition, the effective moment of the TCI-state is the first moment; when the fourth reference signal corresponding to the TCI-state does not meet the first condition, the TCI - the effective moment of the state is the second moment; the first condition includes that the fourth reference signal is one of the at least one third reference signal, or the fourth reference signal and one of the at least one third reference signal The three reference signals satisfy the QCL relationship, wherein the first instant is earlier than the second instant.
  • the first moment is the moment when a first duration has elapsed since the moment when the second indication information was received
  • the second moment is a moment since the moment when the second indication information was received 2.
  • the moment when the time of the indication information passes through the second duration, the second duration is greater than or equal to the first duration, the duration of waiting for the synchronization signal block SSB or the tracking reference signal TRS, and the duration of processing the SSB or TRS and.
  • the fourth reference signal and one of the at least one third reference signal satisfy a QCL relationship, including: the fourth reference signal and the at least one third reference signal A third reference signal in a third reference signal satisfies a type A QCL relationship, where the type A QCL relationship includes the channel experienced by the antenna port that sends the fourth reference signal and the channel experienced by the antenna port that sends the third reference signal Channels have in common: Doppler Shift, Doppler Spread, Average Delay, and Delay Spread.
  • the duration of the interval between the third moment and the fourth moment is less than or equal to the first threshold, where the third moment is when the terminal device receives the third indication information time, the fourth time is the time when the terminal device sends the first information.
  • the apparatus further includes: a sending unit, configured to send third indication information to the terminal device, where the third indication information is used to instruct the terminal device to The type of the second QCL parameter is reported, and the first information further includes fourth indication information, where the fourth indication information is used to indicate the type of the second QCL parameter of the at least one third reference signal obtained by the terminal device.
  • the reported type of the second QCL parameter includes type A or type C.
  • a communication device is provided, and the device is used to execute the method provided in the first aspect or the third aspect.
  • the communication device may include a unit and/or module for executing the method provided by any one of the above implementation manners of the first aspect or the third aspect, such as a processing unit and an acquiring unit.
  • the communication device is a terminal device.
  • the transceiver unit may be a transceiver, or an input/output interface; the processing unit may be at least one processor.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the transceiver unit may be an input/output interface, an interface circuit, an output circuit, or an input circuit on the chip, a chip system or a circuit. , pins or related circuits, etc.; the processing unit may be at least one processor, processing circuit or logic circuit, etc.
  • a communication device is provided, and the device is used to execute the method provided in the second or fourth aspect above.
  • the communications device may include units and/or modules for executing the method provided in the second or fourth aspect, such as a processing unit and an acquiring unit.
  • the communication device is a network device.
  • the transceiver unit may be a transceiver, or an input/output interface; the processing unit may be at least one processor.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the transceiver unit may be an input/output interface, an interface circuit, an output circuit, or an input circuit on the chip, a chip system or a circuit. , pins or related circuits, etc.; the processing unit may be at least one processor, processing circuit or logic circuit, etc.
  • the present application provides a processor configured to execute the methods provided in the foregoing aspects.
  • the processor's output and reception, input and other operations can also be understood as the sending and receiving operations performed by the radio frequency circuit and the antenna, which is not limited in this application.
  • a computer-readable storage medium stores program code for execution by a device, and the program code includes any implementation manner for performing the first aspect to the fourth aspect above provided method.
  • a computer program product containing instructions is provided, and when the computer program product is run on a computer, it causes the computer to execute the method provided by any one of the above first to fourth aspects.
  • a chip in a fourteenth aspect, includes a processor and a communication interface.
  • the processor reads the instructions stored in the memory through the communication interface, and executes the method provided by any one of the above-mentioned first to fourth aspects.
  • the chip further includes a memory, in which computer programs or instructions are stored, and the processor is used to execute the computer programs or instructions stored in the memory, and when the computer programs or instructions are executed, the processor is used to execute The method provided by any implementation manner of the first aspect to the fourth aspect above.
  • a fifteenth aspect provides a communication system, including the communication device described in the fifth aspect and the communication device described in the sixth aspect, or including the communication device described in the seventh aspect and the communication device described in the eighth aspect.
  • FIG. 1 is a schematic diagram of a communication system applicable to the present application.
  • Fig. 2 is a schematic diagram of beam training provided by the present application.
  • Fig. 3 is a schematic configuration diagram of a control resource set CORESET and a search space searchSpace provided by the present application.
  • Fig. 4 is a schematic diagram of a beam configuration update provided by the present application.
  • Fig. 5 is a schematic flowchart of a communication method provided by the present application.
  • Fig. 6 is a schematic diagram of a first moment and a second moment provided by the present application.
  • Fig. 7 is a schematic flowchart of another communication method provided by the present application.
  • Fig. 8 is a schematic diagram of a communication device provided by the present application.
  • FIG. 9 is a schematic structural diagram of a terminal device of the present application.
  • Fig. 10 is a schematic diagram of another communication device provided by the present application.
  • FIG. 11 is a schematic structural diagram of a network device of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: the fifth generation (5th generation, 5G) system or new radio (new radio, NR), long term evolution (long term evolution, LTE) system, LTE frequency Division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD), etc.
  • 5G fifth generation
  • NR new radio
  • long term evolution long term evolution
  • LTE frequency Division duplex frequency division duplex
  • FDD frequency division duplex
  • TDD time division duplex
  • the technical solution provided by this application can also be applied to future communication systems, such as the sixth generation mobile communication system.
  • the technical solution of the embodiment of the present application can also be applied to device to device (device to device, D2D) communication, vehicle-to-everything (V2X) communication, machine to machine (machine to machine, M2M) communication, machine Type communication (machine type communication, MTC), and Internet of things (internet of things, IoT) communication system or other communication systems.
  • D2D device to device
  • V2X vehicle-to-everything
  • M2M machine to machine
  • MTC machine Type communication
  • IoT Internet of things
  • the terminal equipment (terminal equipment) in the embodiment of the present application may refer to an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a relay station, a remote station, a remote terminal, a mobile device, a user terminal (user terminal), a user equipment (user equipment, UE), terminal (terminal), wireless communication device, user agent or user device.
  • the terminal device can also be a cellular phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (wireless local loop, WLL) station, a personal digital assistant (personal digital assistant, PDA), a Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks or terminals in the future evolution of public land mobile network (PLMN) Devices or terminal devices in the future Internet of Vehicles are not limited in this embodiment of the present application.
  • PLMN public land mobile network
  • wearable devices can also be referred to as wearable smart devices, which is a general term for intelligently designing daily wear and developing wearable devices by applying wearable technology, such as glasses, Gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, which need to be used in conjunction with other devices such as smart phones, such as All kinds of smart bracelets and smart jewelry for physical sign monitoring.
  • the terminal device can also be the terminal device in the IoT system.
  • IoT is an important part of the development of information technology in the future. Its main technical feature is to connect items to the network through communication technology, so as to realize Interconnection, an intelligent network that interconnects things.
  • the IOT technology can achieve massive connections, deep coverage, and terminal power saving through, for example, narrow band (NB) technology.
  • NB narrow band
  • the terminal device may also include a sensor, and its main functions include collecting data (part of the terminal device), receiving control information and downlink data of the network device, and sending electromagnetic waves to transmit uplink data to the network device.
  • the network device in this embodiment of the present application may be any communication device with a wireless transceiver function for communicating with a terminal device.
  • the device includes but is not limited to: evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), Node B (Node B, NB), home base station (home evolved NodeB, HeNB, or home Node B, HNB), baseband unit (baseBand unit, BBU), access point (access point, AP) in wireless fidelity (wireless fidelity, WIFI) system, wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or sending and receiving point (transmission and reception point, TRP), etc.
  • the network device in this embodiment of the present application may refer to a central unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the network device includes a CU and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and realizing the functions of radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, realizing the functions of the radio link control (radio link control, RLC) layer, media access control (media access control, MAC) layer and physical (physical, PHY) layer.
  • the AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this architecture, high-level signaling, such as RRC layer signaling, can also be considered to be sent by the DU , or, sent by DU+AAU.
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in an access network (radio access network, RAN), and the CU can also be divided into network devices in a core network (core network, CN), which is not limited in this application.
  • the CU can also be divided into a central unit of the control plane (CU-control plane, CU-CP) and a central unit of the user plane (CU-user plane, CU-UP).
  • the CU-CP and the CU-UP may also be deployed on different physical devices, and the CU-CP is responsible for a control plane function, mainly including an RRC layer and a PDCP control plane (PDCP-control, PDCP-C) layer.
  • the PDCP-C layer is mainly responsible for encryption and decryption of data on the control plane, integrity protection, and data transmission.
  • CU-UP is responsible for user plane functions, mainly including SDAP layer and PDCP user plane (PDCP-user, PDCP-U) layer.
  • the SDAP layer is mainly responsible for processing core network data and mapping flows to bearers.
  • the PDCP-U layer is mainly responsible for at least one function such as encryption and decryption of the data plane, integrity protection, header compression, serial number maintenance, and data transmission.
  • the CU-CP and the CU-UP are connected through a communication interface (for example, an E1 interface).
  • the CU-CP represents that the network device is connected to the core network device through a communication interface (for example, an Ng interface), and is connected to a DU through a communication interface (for example, an F1-C (control plane) interface).
  • CU-UP is connected to DU through a communication interface (for example, F1-U (User Plane) interface).
  • the PDCP-C layer is also included in the CU-UP.
  • the network device mentioned in the embodiment of this application may be a device including CU, or DU, or a device including CU and DU, or a control plane CU node (CU-CP node) and a user plane CU node (CU-UP node) and DU Node's device.
  • CU-CP node control plane CU node
  • CU-UP node user plane CU node
  • Network equipment and terminal equipment can be deployed on land, including indoors or outdoors, hand-held or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites in the air.
  • the scenarios where the network device and the terminal device are located are not limited.
  • a terminal device or a network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also called main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • various aspects or features of the present application may be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques.
  • article of manufacture covers a computer program accessible from any computer readable device, carrier or media.
  • computer-readable media may include, but are not limited to: magnetic storage devices (e.g., hard disk, floppy disk, or tape, etc.), optical disks (e.g., compact disc (compact disc, CD), digital versatile disc (digital versatile disc, DVD) etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), card, stick or key drive, etc.).
  • magnetic storage devices e.g., hard disk, floppy disk, or tape, etc.
  • optical disks e.g., compact disc (compact disc, CD), digital versatile disc (digital versatile disc, DVD) etc.
  • smart cards and flash memory devices for example, erasable programmable read-only memory (EPROM), card, stick or key drive, etc.
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable storage medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing and/or carrying instructions and/or data.
  • the communication system shown in FIG. 1 is taken as an example to describe in detail the communication system applicable to the embodiment of the present application.
  • the communication system 100 may include at least one network device, such as the network device 101 shown in FIG. 1 .
  • the communication system 100 may further include at least one terminal device, such as the terminal devices 102 to 107 shown in FIG. 1 .
  • the terminal devices 102 to 107 may be mobile or fixed.
  • Each of the network device 101 and one or more of the terminal devices 102 to 107 may communicate via a wireless link.
  • Each network device can provide communication coverage for a specific geographical area, and can communicate with terminal devices located in the coverage area.
  • terminal devices can communicate directly with each other.
  • a device to device (device to device, D2D) technology may be used to realize direct communication between terminal devices.
  • D2D device to device
  • FIG. 1 between terminal devices 105 and 106 , and between terminal devices 105 and 107 , direct communication can be made using the D2D technology.
  • Terminal device 106 and terminal device 107 may communicate with terminal device 105 individually or simultaneously.
  • Terminals 105 to 107 can also each communicate with network device 101 .
  • it can directly communicate with the network device 101, as shown in the figure, the terminal devices 105 and 106 can directly communicate with the network device 101; it can also communicate with the network device 101 indirectly, as shown in the figure, the terminal device 107 communicates with the network device via the terminal device 105 101 communications.
  • Each communication device may be configured with multiple antennas.
  • the configured multiple antennas may include at least one transmitting antenna for sending signals and at least one receiving antenna for receiving signals. Therefore, the communication devices in the communication system 100 can communicate through the multi-antenna technology.
  • FIG. 1 is only a simplified schematic diagram for easy understanding, and the communication system 100 may also include other network devices or other terminal devices, which are not shown in FIG. 1 .
  • the communication system 100 may further include core network equipment.
  • the access network device provides wireless access connection for the terminal device, and can send data to the terminal device or receive data sent by the terminal device; on the other hand, the access network device and the core network The data is forwarded to the core network, or the data that needs to be sent to the terminal device is received from the core network.
  • the millimeter wave frequency band is generally considered to be an electromagnetic wave frequency band with a frequency range from 30 GHz to 300 GHz. Compared with the traditional sub-6GHz frequency band (450MHz-6000Mhz), millimeter wave has wider spectrum resources, which can support high data rate transmission. At the same time, the wavelength of millimeter wave is very small, so the antenna size is smaller and more convenient. Multiple antennas Integration, so millimeter wave communication is a key technology in 5G communication systems and future communication systems.
  • the channel attenuation in the millimeter wave frequency band is very large, so devices communicating in the millimeter wave frequency band need to use beamforming or other technologies, and use specific spatial filtering parameters to make the energy of the signal Concentrate on a specific direction, that is, a specific beam direction, to increase the equivalent channel gain between transceiver devices, thereby ensuring the coverage performance and transmission data rate of millimeter wave communication.
  • the transceiver devices In the initial stage of establishing a connection between the transceiver devices, since the location and channel information between the transceiver devices is usually unknown, the transceiver devices need to perform a beam training process to find the appropriate beam direction and its corresponding spatial filtering parameters.
  • the beam training process between the base station and the terminal is completed by the channel state information (CSI-reporting) process.
  • the main process is that the network device first configures multiple channel state information reference signals (CSI-RS) for the terminal device, including the time-frequency position, index, port number, port pattern and other information of each CSI-RS .
  • CSI-RS channel state information reference signals
  • the CSI-RS can be a synchronization signal/physical broadcast channel block (Synchronization signal/Physical broadcast channel block, SSB) or a non-zero-power CSI-RS (Non-zero-power CSI-RS, NZP-CSI-RS).
  • the network device may use different airspace sending parameters, that is, the network device sends reference signals in different beam directions.
  • the terminal device receives each CSI-RS configured by the network device and measures the Reference signal received power (Reference signal received power, RSRP) or the signal to interference and noise ratio (SINR), and then reports the higher RSRP or SINR Reference signal indices of several CSI-RSs and their corresponding RSRP quantization values.
  • RSRP Reference signal received power
  • SINR signal to interference and noise ratio
  • the terminal device can also use different receiving beams when receiving and measuring CSI-RS, that is, for each transmitting beam of the network device, the terminal device can train its corresponding optimal receiving beam to complete the beam pair link (Beam pair link, BPL) training.
  • Beam pair link, BPL Beam pair link
  • the optimal BPL between the terminal device and the network device may change.
  • the beam between the device and the network device is always aligned.
  • the network device will periodically send CSI-RS for beam tracking to the terminal device, and the terminal device will correspondingly send these CSI-RS for tracking to the network device. RS measurement report.
  • FIG. 2 is a schematic diagram of beam training provided in the present application.
  • the network equipment transmits reference signals in different beam directions (NZP-CSI-RS#1, NZP-CSI-RS#2 and NZP-CSI-RS#3 shown in Figure 2 ).
  • the terminal device receives and measures the reference signal RSRP, and then reports a CSI measurement report (for example, reports reference signal indexes of several CSI-RSs with higher RSRPs and their corresponding RSRP quantization values).
  • the terminal device may also use different receiving beams (receiving beam #1, receiving beam #2 and receiving beam #3 shown in FIG. 2 ) when receiving and measuring CSI-RS.
  • QCL Quality of Service
  • -'typeA' ⁇ Doppler shift, Doppler spread, average delay, delay spread ⁇
  • obtaining Doppler offset can be understood as completing frequency domain synchronization; obtaining average delay can be understood as completing time domain synchronization; obtaining Doppler spread and delay spread can be used for channel estimation.
  • the QCL parameters of typeD indicate that the airspace receiving parameters adopted by the two antenna ports are the same or similar, and are used to assist the receiving device in determining its own receiving beam.
  • airspace receiving The parameters can also be understood as receiving beams, and the receiving beams can also be understood as airspace receiving parameters.
  • the QCL relationship of typeD can also be understood as the airspace transmission parameters adopted by the two antenna ports are the same or similar.
  • the receiving efficiency of the terminal device for receiving data or control channels can be improved.
  • the terminal device can measure and process these CSI-RS to obtain one or more of the above QCL parameters, for example, determine each The best receiving beam of CSI-RS (D-type QCL parameters), and the measured average delay and Doppler offset of each CSI-RS, so as to determine the time-frequency offset synchronization information corresponding to the CSI-RS, and at the same time
  • the terminal device can also measure the delay spread information and Doppler spread information of the TRS.
  • the terminal device can use the CSI-RS received before.
  • the receiving beam of the RS detects downlink control information (Downlink control information, DCI) on the CORESET.
  • DCI Downlink control information
  • the network device When the network device configures the terminal device, the network device indicates the DMRS of the CORESET and a certain CSI-RS typeA QCL to the terminal device, the terminal can follow the previous
  • the obtained time-frequency offset synchronization information is used to receive and detect DCI, and at the same time, channel estimation is performed by using the previously obtained delay extension and Doppler extension, and then demodulation and decoding of DCI is performed.
  • the QCL relationship can be configured and indicated through the Transmission Configuration Indicator state (TCI-state):
  • a TCI-state includes a downlink reference signal and the QCL relationship type of the reference signal; or, a TCI-state includes the indication information of the first downlink reference signal and the QCL relationship type corresponding to the reference signal and the second A downlink reference signal and the QCL type corresponding to the reference signal.
  • the QCL relationship type corresponding to the first downlink reference signal is typeA or typeB or typeC
  • the QCL relationship type corresponding to the second downlink reference signal is typeD.
  • the DCI between the network device and the terminal device is carried on the physical downlink control channel (PDCCH). Since the terminal device does not know in advance whether the network device will send DCI and where to send the DCI, the network device passes Configure CORESET and search space (searchSpace, SS) for the terminal device in advance to determine some candidate periodic time-frequency resource positions, and then instruct the terminal device to perform PDCCH blind detection at these positions to determine whether the network device schedules data transmission of the terminal device , channel state information reporting, etc.
  • PDCCH physical downlink control channel
  • the configuration information of the CORESET will configure information such as the frequency domain position of the CORESET, the number of symbols, the resource mapping method, and the TCI-State.
  • TCI-State is used to indicate the QCL source reference signal (Reference Signal, RS) of the DMRS of the PDCCH on the CORESET, which is used for channel reception and channel estimation of the PDCCH.
  • the configuration information about the CORESET at the RRC layer will contain multiple TCI-states, and one of the TCI-states is activated through the MAC control element (Control element, CE) on the MAC layer.
  • the receiving device can use the channel characteristics of the reference signal indicated by the TCI-State to assist in channel estimation when performing PDCCH blind detection on the CORESET, or determine the The receive beam used when performing PDCCH blind detection on the CORESET.
  • the searchSpace configuration information will configure the type of searchSpace, that is, user-specific or cell-specific, the cycle of searchSpace (the number of time slots) and the offset in the cycle, and the starting symbol position in the detection time slot , the number of candidate physical downlink channels under various aggregation levels, supported DCI formats and other information.
  • Each searchSpace is associated with a CORESET, so as to determine a specific time-frequency position for blind detection of the PDCCH.
  • Fig. 3 is a schematic configuration diagram of a control resource set CORESET and a search space searchSpace provided by the present application. It can be seen from Figure 3 that the network device configures two CORESETs for the terminal equipment (CORESET#0 and CORESET#1 as shown in Figure 3), where CORESET#0 occupies 2 symbols and 12 symbols in the frequency domain PRB, CORESET#1 occupies 1 symbol, and occupies 24 PRBs in the frequency domain; at the same time, the network device also configures 2 searchSpaces for terminal devices (SS#0 and SS#1 as shown in Figure 3), where SS# 0 is associated with CORESET#0, the period is 1 slot (slot), the start symbol appears in the symbol 0 in the corresponding slot, SS#1 is associated with CORESET#1, the period is 2 slots, and the start symbol appears in Corresponds to symbol 0 in the slot.
  • SS#0 is associated with CORESET#0
  • the period is 1 slot
  • slot the start symbol appears in the symbol 0
  • the data of the physical layer in the NR system is usually carried on the physical downlink shared channel (PDSCH), and is usually scheduled by the DCI.
  • the DCI can include the time-frequency position indication information of the PDSCH and the receiving beam indication information of the PDSCH.
  • the specific instruction process is as follows:
  • the network device configures multiple TCI-states available for PDSCH for the terminal device through RRC layer signaling;
  • the network device activates several TCI-states through MAC CE.
  • the DCI can contain the TCI code point (codepoint) field, and the different values of the TCI codepoint field have a one-to-one correspondence with the activated TCI-state, so the network device can pass the TCI in the DCI
  • codepoint indicates to the terminal equipment the receiving beam that the PDSCH scheduled this time should use.
  • This indication method mainly has the following advantages: the first point is that considering the limited payload in DCI, the size of the available TCI-state set is reduced after MAC CE activation, so the indication overhead of TCI codepoint is also reduced; The second point is that the terminal device can only maintain the channel information corresponding to the TCI-state activated by the MAC CE, which reduces the implementation complexity of the terminal device.
  • the optimal BPL of the terminal device and the network device will change, and the terminal device will report the optimal BPL of the network device through the CSI.
  • the network device receives the reported information, it is necessary to reconfigure the TCI-state of the CORESET of the terminal device, or add a new active TCI-state to the PSSCH, so that the network device and the terminal device are in the new Send and receive control information or data information on the BPL.
  • FIG. 4 is a schematic diagram of a beam configuration update provided in the present application.
  • the beam configuration update process includes:
  • the network device sends MAC CE to the terminal device to activate the new TCI-state
  • the terminal device will demodulate and decode the MAC CE and reply (Acknowledgment, ACK); in addition, the terminal device needs to process and analyze the specific information of the MAC CE, and indicate to each layer of the protocol stack that the network device may pass The new TCI-state is sent.
  • One reference signal in the new TCI-state has a typeA or typeC QCL relationship with the SSB.
  • the TCI-state may contain one reference signal or two reference signals, and one of the SSB and the new TCI-state
  • the reference signal has a QCL relationship of typeA or typeC, because in different beam directions, the signals received by the terminal device have different propagation paths in space, so the terminal device needs to re-perform when the new beam direction is in the new beam direction.
  • Frequency synchronization that is, calculating the average delay and average Doppler frequency offset).
  • for indication may include both direct indication and indirect indication.
  • indication information for indicating A it may include that the indication information directly indicates A or indirectly indicates A, but it does not mean that A must be included in the indication information.
  • the information indicated by the indication information is referred to as information to be indicated, and there are many ways to indicate the information to be indicated during the specific implementation process.
  • the information to be indicated may be directly indicated, such as the information to be indicated itself or an index of the information to be indicated.
  • the information to be indicated may also be indicated indirectly by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while other parts of the information to be indicated are known or agreed in advance.
  • the indication of specific information can also be realized by means of a pre-agreed (for example, protocol-specified) arrangement order of each information, thereby reducing the indication overhead to a certain extent.
  • each piece of information can also be identified and indicated in a unified manner, so as to reduce the indication overhead caused by individually indicating the same information.
  • a precoding matrix is composed of precoding vectors, and each precoding vector in the precoding matrix may have the same part in composition or other attributes.
  • specific indication manners may also be various existing indication manners, such as but not limited to, the above indication manners and various combinations thereof.
  • various indication manners reference may be made to the prior art, which will not be repeated herein. It can be known from the above that, for example, when multiple pieces of information of the same type need to be indicated, there may be a situation where different information is indicated in different ways.
  • the required indication method can be selected according to the specific needs.
  • the embodiment of the present application does not limit the selected indication method. In this way, the indication method involved in the embodiment of the present application should be understood as covering the There are various methods by which a party can obtain the information to be indicated.
  • a row vector can be expressed as a column vector
  • a matrix can be represented by the transposed matrix of the matrix
  • a matrix can also be expressed as a vector or an array.
  • the vector or array It can be formed by connecting each row vector or column vector of the matrix, etc.
  • the information to be indicated can be sent together as a whole, or can be divided into multiple sub-information and sent separately, and the sending periods and/or sending timings of these sub-information can be the same or different.
  • the specific sending method is not limited in this application.
  • the sending cycle and/or sending timing of these sub-information may be predefined, for example, pre-defined according to a protocol, or may be configured by the transmitting end device by sending configuration information to the receiving end device.
  • the configuration information may include, for example but not limited to, one or a combination of at least two of radio resource control signaling, media access control (media access control, MAC) layer signaling, and physical layer signaling.
  • the radio resource control signaling includes, for example, radio resource control (radio resource control, RRC) signaling;
  • the MAC layer signaling includes, for example, a MAC control element (control element, CE);
  • the physical layer signaling includes, for example, DCI.
  • preset may include being indicated by signaling of a network device, or being pre-defined, for example, defined by a protocol.
  • pre-defined can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices). limited.
  • the "storage" mentioned in the embodiment of the present application may refer to saving in one or more memories.
  • the one or more memories may be provided independently, or may be integrated in an encoder or decoder, a processor, or a communication device.
  • a part of the one or more memories may also be provided separately, and a part may be integrated in a decoder, a processor, or a communication device.
  • the type of the storage may be any form of storage medium, which is not limited in this application.
  • the "protocols" involved in the embodiments of the present application may refer to standard protocols in the communication field, for example, may include LTE protocols, NR protocols, and related protocols applied in future communication systems, which are not limited in this application.
  • control channel may include PUCCH, enhanced physical uplink control channel (enhanced physical uplink control channel, EPUCCH) and other physical layer control channels, but for the convenience of description, the following terms or concepts only refer to PUCCH An example is used for description, but this embodiment of the present application is not limited thereto.
  • PUCCH enhanced physical uplink control channel
  • EPUCCH enhanced physical uplink control channel
  • the uplink control channel is used as an example to illustrate the physical uplink control channel PUCCH, but this does not constitute a limitation to the embodiment of the present application. In fact, the uplink control channel may also be defined as other terms or concepts. The technical solutions of the embodiments of the present application are all applicable. In the embodiment of the present application, the uplink control channel and the PUCCH may be used interchangeably, and the PUCCH can be considered as an example description of the uplink control channel.
  • DCI Downlink Control Information
  • MAC-CE Medium Access Control Element
  • RRC Radio Resource Control
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • CORESET Control Resource Set
  • CSI-RS Channel State Information Reference Signal
  • SRS Sounding Reference Signal
  • SS/PBCH Synchronization Signal/Physical Broadcast Channel
  • SSB Synchronization Signal Block
  • TCI-state transmission configuration indication state
  • the moment when a certain information is received mentioned in this article can be understood as the moment when the information is started to be received, and can also be understood as the moment when the information is received and completed.
  • the terminal device may need to wait for a long time before actually receiving control information and/or data information in the beam direction indicated by the new TCI-state, affecting The actual data transfer rate of the end device.
  • the terminal device before the activation of the new TCI-state, the terminal device generally measures and reports the corresponding CSI-RS, so the terminal device has already obtained the corresponding CSI-RS when measuring the CSI-RS.
  • Some typeC QCL information Some typeC QCL information.
  • a method for updating the beam configuration is: the terminal device records the typeC QCL information of the reference signal (for example, the network device configures the terminal device to record and maintain the information for a period of time), then after the network device activates the new TCI-state , the terminal device actually still has the time-frequency offset synchronization information under the beam, so there is no need to wait for the SSB additionally.
  • the method of beam configuration update may have the following problems:
  • the resolution of the frequency offset is usually determined by the length of the measurement time, the longer the measurement time, the higher the resolution of the frequency offset.
  • one port of the CSI-RS used for beam training usually only occupies one symbol in one time slot.
  • the typeC QCL parameters obtained were less accurate.
  • the terminal device can usually only obtain the typeC and typeD QCL parameters corresponding to the reference signal when measuring the CSI-RS used for beam training, and cannot obtain the typeA QCL parameter, and the typeA QCL parameter is very important for channel estimation.
  • the terminal device does not have typeA
  • the estimation accuracy of the terminal device on the channel will be reduced, which may affect the accuracy of the terminal device's control or data channel demodulation and decoding.
  • the network device may wait until the terminal device receives the tracking reference signal (Tracking Reference signal, TRS) will be used to send control and data information to the terminal device after the new beam, which will bring a large delay.
  • Tracking Reference signal Tracking Reference signal
  • the embodiment of the present application provides a communication method.
  • the terminal device reports the channel state information, it synchronously reports whether it includes the QCL parameters of certain reference signals, so that the network device can know the QCL parameters of the reference signals saved by the terminal device, and further based on the In the case where the QCL parameter information determines the effective time of the activated new TCI-state, the efficiency of activating the new TCI-state can be improved.
  • the communication method provided by the embodiment of the present application may be applied to a system that communicates through a multi-antenna technology, for example, the communication system 100 shown in FIG. 1 .
  • the communication system may include at least one network device and at least one terminal device. Network devices and terminal devices can communicate through multi-antenna technology.
  • the embodiments shown below do not specifically limit the specific structure of the execution subject of the method provided by the embodiment of the present application, as long as the program that records the code of the method provided by the embodiment of the present application can be executed according to this application.
  • the method provided by the embodiment of the application is sufficient for communication.
  • the execution subject of the method provided by the embodiment of the application may be a terminal device or a network device, or a functional module in a terminal device or a network device that can call a program and execute the program.
  • Fig. 5 is a schematic flowchart of a communication method provided by the present application. Include the following steps:
  • the network device sends first configuration information to the terminal device, or the terminal device receives first configuration information from the network device.
  • the first configuration information is used to instruct the terminal device to report channel state information, and the first configuration information includes identifiers of one or more first reference signals.
  • the identifier of the first reference signal is used to identify the first reference signal, including but not limited to: an index of the first reference signal, an identifier of the first reference signal, and the like.
  • the identifier of the first reference signal may be used to indicate the reference signal, and the specific form is not limited in this application.
  • the above-mentioned first configuration information used to instruct the terminal device to report the channel state information may be: the first configuration information is used to instruct the terminal device to measure and report one or more RSRP values or SINR values of the first reference signal.
  • reporting the RSRP value or the SINR value of the first reference signal may be: reporting the quantized value of the RSRP or the SINR of the first reference signal.
  • the first reference signal includes CSI-RS.
  • the first reference signal may be NZP-CSI-RS. It should be understood that the first reference signal may also be other reference signals capable of implementing the channel state information reference signal function, which is not limited in this application.
  • the first reference signal can be configured to have a typeA QCL or typeC QCL relationship with the SSB and/or TRS (for ease of description, TRS is used hereinafter for illustration), that is, the first reference signal and the TRS have the same or similar average delay and Doppler frequency offset.
  • TRS for ease of description, TRS is used hereinafter for illustration
  • the first reference signal may be configured to have a typeD QCL relationship with the TRS, that is, the first reference signal and the TRS have the same or similar spatial transmission/reception parameters.
  • the measurement time length is longer than that of CSI-RS for beam training, so the accuracy of the measured QCL parameters can be improved .
  • the QCL parameters of the first reference signal can refer to the QCL parameters of the TRS, and the accuracy is relatively high.
  • the network device configures multiple TRSs (eg, TRS#1, TRS#2, and TRS#3) for the terminal device.
  • the network device configures multiple first reference signals (eg, NZP-CSI-RS#1, NZP-CSI-RS#2, and NZP-CSI-RS#3) for the terminal device.
  • the network device configures NZP-CSI-RS#1 and TRS#1 with typeA QCL relationship and typeD QCL relationship to the terminal device, NZP-CSI-RS#2 and TRS#2 have typeA QCL relationship and typeD QCL relationship, NZP-CSI - RS#3 and TRS#3 have typeAQCL relationship and typeD QCL relationship.
  • the first reference signal can be configured to indirectly have a QCL relationship with the TRS, that is, the first reference signal and the TRS have the same or similar average delay and Doppler frequency offset, and the same or similar Space send/receive parameters.
  • the network device configures multiple SSBs (for example, TRS#1, TRS#2 and TRS#3) for the terminal.
  • the network device configures multiple first reference signals (eg, NZP-CSI-RS#1, NZP-CSI-RS#2, and NZP-CSI-RS#3) for the terminal device.
  • the network device configures the terminal device with NZP-CSI-RS#1 and NZP-CSI-RS#4 having a QCL relationship, NZP-CSI-RS#2 and NZP-CSI-RS#5 having a QCL relationship, and NZP-CSI-RS #3 and NZP-CSI-RS#6 have a QCL relationship; at the same time, the network device configures NZP-CSI-RS#4, NZP-CSI-RS#5 and NZP-CSI-RS#6 respectively with TRS#1 to the terminal device , TRS#2 and TRS#3 have a QCL relationship, it can be considered that NZP-CSI-RS#1, NZP-CSI-RS#2 and NZP-CSI-RS#3 are respectively related to TRS#1, TRS#2 and TRS# 3 indirectly has a QCL relationship.
  • indirect QCL relationship When referring to the indirect QCL relationship again below, you can refer to the description of the indirect QCL relationship here, that is, when referring to the QCL relationship, it can be a direct QCL relationship or an indirect QCL relationship. The definition will not be repeated.
  • the terminal device can also receive the SSB (or TRS), and obtain the QCL parameters of the SSB, and the method flow shown in FIG. 5 may include:
  • the network device sends the SSB (or TRS) to the terminal device, or in other words, the terminal device receives the SSB (or TRS) from the network device.
  • the network device may send the SSB (or TRS) according to the time-frequency position of the SSB (or TRS).
  • Terminal equipment can receive SSB (or TRS).
  • SSB (or TRS) occupies multiple symbols in one time slot.
  • the TRS is used for terminal equipment to perform time-frequency offset synchronization, and can also be used for terminal equipment to estimate channel delay spread and Doppler spread (or frequency spread).
  • SSB (or TRS) is periodic.
  • the network device may transmit the SSB (or TRS) in multiple beam directions, and the multiple beam directions may include the beam directions being used by the network device and the terminal device control channel and data channel, or Other alternate beam directions may be included.
  • SSB or TRS
  • these spare beam directions may be beam directions being used by other terminal devices.
  • the network device transmits SSB (or TRS) in beam direction #1, beam direction #2 and beam direction #3, where beam direction #1 and beam direction #2 are the control channel and data channel of the network device and terminal equipment Beam direction used, beam direction #3 is the beam direction being used by network equipment and other terminal equipment control channels and data channels.
  • SSB or TRS
  • the terminal device can obtain typeA or typeC QCL parameters of these SSBs (or TRS).
  • the terminal device obtaining the QCL parameter of typeA may be understood as the terminal device obtaining the average delay information, Doppler offset information, delay spread information and Doppler spread information of the antenna port corresponding to the reference signal.
  • the fact that the terminal device has obtained the QCL parameter of typeC can be understood as that the terminal device has obtained the average delay information and Doppler offset information of the antenna port corresponding to the reference signal.
  • the terminal device has obtained the average delay information, which can be understood as the terminal device has completed the time domain synchronization with the corresponding antenna port; the terminal device has obtained the Doppler offset information, which can be understood as the terminal device has completed the frequency domain synchronization with the corresponding antenna port. Synchronize.
  • the network device may send the first reference signal to the terminal device according to the first configuration information, and the method flow shown in FIG. 5 further includes:
  • the network device sends one or more first reference signals to the terminal device, or in other words, the terminal device receives one or more first reference signals from the network device.
  • the network device may send one or more first reference signals to the terminal according to the configuration in S510.
  • the transmission beam/spatial transmission parameter used by the network device may be the same as the transmission beam/spatial transmission parameter for transmitting the SSB (or TRS) having a QCL relationship with the first reference signal, or
  • the transmission beam/space transmission parameters of the SSB (or TRS) having a QCL relationship with the first reference signal are similar, so that it can be ensured that the first reference signal and the SSB (or TRS) have a typeD QCL relationship and a type A QCL relationship.
  • the terminal device reports channel state information to the network device, and the method flow shown in FIG. 5 also includes:
  • the terminal device sends first information to the network device, or in other words, the network device receives the first information from the terminal device.
  • the first information includes channel state information of at least one second reference signal, where the at least one second reference signal is part or all of the above-mentioned one or more first reference signals, or in other words, the at least one second reference signal belongs to The one or more first reference signals, or in other words, the one or more first reference signals include the at least one second reference signal.
  • the terminal device reports the result of the beam measurement, and the first information (may be referred to as a measurement report) includes the identifier of the reference signal used for the beam measurement and the corresponding RSRP quantization value.
  • the first information further includes first indication information, where the first indication information is used to indicate whether the terminal device stores the quasi-co-located QCL parameters of the at least one second reference signal (for ease of distinction, may be referred to as the first QCL parameter).
  • the above-mentioned first indication information indicates whether the terminal device stores the first QCL parameter of the at least one second reference signal
  • a possible implementation manner is: the first indication information indicates whether the terminal device stores the first QCL parameter of the at least one second reference signal.
  • the first information further includes the at least one An identifier of the third reference signal.
  • the network device can also instruct the terminal device to report the type of the second QCL parameter through the third indication information, and the method flow shown in Figure 5 also includes:
  • the network device sends third indication information to the terminal device, or the terminal device receives third indication information from the network device.
  • the third indication information is used to instruct the terminal device to report the type of the second QCL parameter
  • the above-mentioned first information also includes indication information indicating the type of the second QCL parameter of the at least one third reference signal acquired by the terminal device, for example, the first information further includes fourth indication information, and the fourth indication The information is used to indicate the type of the second QCL parameter of at least one third reference signal.
  • the type of the second QCL parameter reported by the terminal device includes: type A or type C.
  • the type of the QCL parameter may be indirectly reported by reporting a certain type of QCL parameter.
  • the terminal device can report the A type by reporting the second QCL parameter of the A type (or called typeA QCL parameter, etc.); or, for example, the terminal device can report the C type of the second QCL parameter by reporting the C type QCL parameter (or typeC QCL parameter, etc.) implementation.
  • the third indication information is carried in the first configuration information.
  • the terminal device may additionally indicate to the network device whether the terminal device has the typeA QCL parameter or the typeC QCL parameter of the NZP-CSI-RS.
  • the typeA QCL parameter can be obtained by the terminal device through the SSB (or TRS) having a typeA QCL relationship with the NZP-CSI-RS; or the typeC QCL parameter can be obtained by the terminal device through the typeC QCL with the NZP-CSI-RS The relationship's SSB (or TRS) is obtained.
  • the NZP-CSI-RS and the three TRS configured by the network device for the terminal device to train three beams respectively have a typeA QCL relationship, a typeD QCL relationship or an indirect QCL relationship.
  • the terminal device has received TRS1 and TRS2 and recorded the QCL parameters of TRS1 and TRS2, then if the terminal device has reported the index and RSRP, it can also report to the network device that the terminal device has measured the corresponding antenna of NZP-CSI-RS1 QCL parameter of the port. Further, it is also possible to report to the network device whether the typeA QCL parameter or the typeC QCL parameter is measured by the terminal device.
  • the terminal device may also report to the network device that the terminal device has not measured the TRS3 QCL parameter, or may not give any indication.
  • the method flow shown in FIG. 5 also includes:
  • the network device sends the second indication information to the terminal device, or the terminal device receives the second indication information from the network device.
  • the second indication information is used to indicate activation of the TCI-state, for example, the second indication information includes MAC CE or DCI. It should be understood that the present application does not limit the specific form of the second indication information, and information that can be used to indicate activation of the TCI-state is within the protection scope of the present application.
  • the effective moment of the TCI-state is the first moment; when the fourth reference signal corresponding to the TCI-state does not satisfy the first condition, the The effective moment of the TCI-state is the second moment.
  • the reference signal corresponding to the TCI-state can be understood as the first reference signal contained in the TCI-state, or the second reference signal contained in the TCI-state, or the any reference signal.
  • the first condition includes that the fourth reference signal is one of the at least one third reference signal; or the fourth reference signal and one of the at least one third reference signal satisfy a QCL relationship, wherein the QCL relationship is satisfied
  • a relationship can be with a direct QCL relationship, or with an indirect QCL relationship.
  • the third reference signal is a reference signal reported by the terminal device, and the terminal device reports the typeA QCL parameter or typeC QCL parameter of the terminal device having the third reference signal when reporting the related measurement value of the third reference signal.
  • the duration of the interval between the third time and the fourth time is less than or equal to the first threshold, wherein the third time is when the terminal device receives The time of the second indication information is or the time when the terminal device replies ACK to the second indication information, and the fourth time is the time when the terminal device sends the first information or the time when the network device The moment when an ACK is replied to the first message.
  • the first threshold may be predefined for the protocol, and may also be determined through negotiation between the terminal device and the network device. This application does not limit the value and determination method of the first threshold.
  • the first moment is the first time period (for example, 3 ms) after the moment when the second indication information is received (or the moment when the terminal device replies ACK to the second indication information).
  • time is the time when the second time length (for example, 20 ms) elapses from the time when the second indication information is received (or when the terminal device replies ACK to the second indication information).
  • the second duration is greater than or equal to the sum of the first duration, the duration of waiting for the synchronization signal block SSB or the tracking reference signal TRS, and the third duration.
  • a reference signal in SSB or TRS and TCI state (such as the fourth reference signal) has a QCL relationship of typeA or typeC; or a reference signal in SSB or TRS and TCI state has an indirect QCL relationship of typeA or typeC.
  • the first duration and the second duration may be configured or preconfigured.
  • the third duration may be a duration for processing the SSB or TRS.
  • FIG. 6 is a schematic diagram of the first moment and the second moment provided by the present application.
  • the first moment is the first duration (for example, 3 ms) after the moment when the terminal device replies ACK to the second indication information;
  • the second moment is the time when the terminal device replies to the second indication information
  • the moment of the first duration eg, 20 ms after the moment of ACK.
  • FIG. 6 is only an example, and does not constitute any limitation to the protection scope of the present application.
  • the effective time of the TCI-state is the first time
  • the time for waiting for the reference signal for synchronization after activating the new TCI-state can be reduced.
  • the fourth reference signal and a third reference signal of the at least one third reference signal satisfy a QCL relationship: the fourth reference signal and a third reference signal of the at least one third reference signal
  • the three reference signals satisfy a Type A QCL relationship, wherein the Type A QCL relationship includes that the channel experienced by the antenna port that transmits the fourth reference signal and the channel experienced by the antenna port that transmits the third reference signal have a common: Doppler Offset, Doppler spread, average delay, delay spread.
  • the terminal device can use the TCI-state at the first moment after obtaining the A-type QCL parameters of the fourth reference signal, due to the large-scale characteristics of the channel contained in the A-type QCL parameters There are more types of QCL parameters than Type C.
  • the terminal equipment has the QCL parameters of Type A, it can perform channel estimation more accurately, which improves the reliability of the terminal equipment using the new TCI-state to transmit data.
  • the method flow shown in Figure 5 shows that the terminal device can inform the network device through the channel measurement report reporting process: whether the terminal device saves the QCL parameters of certain reference signals, it should be understood that the terminal device can report in other ways, for example, the terminal device can Before or after the network device activates the new TCI-state, report the QCL parameters with certain reference signals to the network device through a new message, and notify the network device of the reference signal monitored by the terminal device through a separate signaling, CSI-
  • the decoupling of RS reporting improves the flexibility of signaling interaction, which will be described below in conjunction with FIG. 7 .
  • Fig. 7 is a schematic flowchart of another communication method provided by the present application, including the following steps:
  • the terminal device acquires a second QCL parameter of at least one third reference signal.
  • the third reference signal is the SSB (or TRS) of the second QCL parameter monitored and recorded by the terminal device.
  • the terminal device can obtain the typeA or typeC QCL parameters of the SSB (or TRS), then the above step S710 can be understood as: the network device sends the SSB (or TRS) to the terminal device, and the terminal After receiving the SSB (or TRS), the device can acquire the second QCL parameter of at least one third reference signal.
  • the terminal device may report the fact that the second QCL parameter of at least one third reference signal is saved to the network device through the first information, and the method flow shown in FIG. 7 further includes:
  • the terminal device sends the first information to the network device, or the network device receives the first information from the terminal device.
  • the first information includes an identifier of the at least one third reference signal, and the first information is used to indicate that the terminal device stores the second QCL parameter of the at least one third reference signal.
  • the reporting of the first information by the terminal device may be performed in parallel with the reporting process of the channel state measurement report.
  • the reporting of the first information by the terminal device may be independent of the process of reporting the channel state measurement report.
  • the terminal device predicts which beams have a higher probability of becoming a new beam based on historical information, so it can use the corresponding SSB or TRS to complete synchronization in these beam directions in advance, and report the indexes of these SSB and TRS to the network device.
  • the terminal device may also report the first information based on a channel state measurement report report result.
  • the terminal device can track the TRS and SSB that have a QCL relationship with these reference signals in advance, and then report the indexes of these TRS and SSB to the network device, so that it can advance Initiate the synchronization of end-devices on these beam directions instead of waiting for the end-devices to start synchronization after these beams are activated through the TCI-state.
  • the reporting of the first information may be periodic or aperiodic.
  • the terminal device when the terminal device no longer tracks certain reference signals, that is, does not maintain synchronization in certain beam directions, the terminal device can also report this information to the network device and notify the network device of the synchronization information in these beam directions. The equipment is no longer maintained.
  • the network device may also instruct the terminal device to report the type of the second QCL parameter through the third indication information, and the method flow shown in FIG. 7 also includes:
  • the network device sends third indication information to the terminal device, or the terminal device receives third indication information from the network device.
  • the method flow shown in FIG. 7 also includes:
  • the network device sends the second indication information to the terminal device, or the terminal device receives the second indication information from the network device.
  • the second indication information is used to indicate activation of the TCI-state, for example, the second indication information is MAC CE or DCI. It should be understood that the present application does not limit the specific form of the second indication information, and information that can be used to indicate activation of the TCI-state is within the protection scope of the present application.
  • determining the TCI-state effective time includes the following two possibilities:
  • step S720 is executed before step S730.
  • the effective moment of the TCI-state is the first moment; when the fourth reference signal corresponding to the TCI-state does not meet the first condition , the effective moment of the TCI-state is the second moment.
  • the first condition includes that the fourth reference signal is one of the at least one third reference signal; or the fourth reference signal and one of the at least one third reference signal satisfy a QCL relationship, wherein the QCL relationship is satisfied
  • a relationship can be with a direct QCL relationship, or with an indirect QCL relationship.
  • the fourth reference signal and a third reference signal of the at least one third reference signal satisfy a QCL relationship: the fourth reference signal and a third reference signal of the at least one third reference signal
  • the three reference signals satisfy a Type A QCL relationship, wherein the Type A QCL relationship includes that the channel experienced by the antenna port that transmits the fourth reference signal and the channel experienced by the antenna port that transmits the third reference signal have a common: Doppler Offset, Doppler spread, average delay, delay spread.
  • the terminal device can use the TCI-state at the first moment after obtaining the A-type QCL parameters of the fourth reference signal, due to the large-scale characteristics of the channel contained in the A-type QCL parameters There are more types of QCL parameters than Type C.
  • the terminal equipment has the QCL parameters of Type A, it can perform channel estimation more accurately, which improves the reliability of the terminal equipment using the new TCI-state to transmit data.
  • the third reference signal is a reference signal reported by the terminal device, and the terminal device reports the second QCL parameter that the terminal device has the third reference signal through the first indication information, and further reports the second QCL parameter through the fourth indication information.
  • Two types of QCL parameters For example, the type of the second QCL parameter reported includes type A or type C; when the type of the second QCL parameter reported includes type A, it can be understood that the terminal device has the typeA QCL parameter of the third reference signal; when When the reported type of the second QCL parameter includes type C, it can be understood that the terminal device has the typeC QCL parameter of the third reference signal.
  • first moment and the second moment reference may be made to the description about the first moment and the second moment in step S530 in FIG. 5 , which will not be repeated here.
  • the duration of the interval between the third moment and the fourth moment is less than or equal to the first threshold.
  • the definition of the third moment and the fourth moment can refer to the third moment and the fourth moment in step S530 in FIG. 5 description and will not be repeated here.
  • step S720 is executed after step S730.
  • the terminal device does not report the reference signal containing the QCL parameters before receiving the second indication information for activating the TCI-state, but after receiving the second indication information, it reports the fourth reference signal corresponding to the TCI-state.
  • the QCL parameter of the signal can be understood as: when at least one third reference signal includes a fourth reference signal corresponding to the TCI-state, the effective moment of the TCI-state is when the first information is sent (or the receiving network device responds to the first information ACK) after the first duration of time.
  • the terminal device directly indicates to the network device the fourth reference signal QCL parameter corresponding to the TCI-state to be activated, and the rules and corresponding relationships are simpler.
  • sequence numbers of the above processes do not mean the order of execution, and the execution order of each process should be determined by its functions and internal logic, and should not constitute any limitation on the implementation process of the embodiment of the present application.
  • the equipment in the existing network architecture is used as an example for illustration (such as network equipment, terminal equipment, etc.). Examples are not limited. For example, devices that can implement the same function in the future are applicable to this embodiment of the application.
  • the methods and operations implemented by devices may also be implemented by components of the devices (eg, chips or circuits).
  • the communication method provided by the embodiment of the present application is described in detail with reference to FIG. 5 and FIG. 7 .
  • the foregoing communication method is mainly introduced from the perspective of interaction between network devices and terminal devices. It can be understood that, in order to realize the above-mentioned functions, the network device and the terminal device include corresponding hardware structures and/or software modules for performing various functions.
  • the embodiment of the present application can divide the functional modules of the transmitting end device or the receiving end device according to the above method example, for example, each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module middle.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation. In the following, description will be made by taking the division of each functional module corresponding to each function as an example.
  • FIG. 8 is a schematic diagram of a communication device provided by the present application.
  • an apparatus 800 includes a receiving unit 810 , a sending unit 820 and a processing unit 830 .
  • the receiving unit 810 is configured to receive first configuration information from a network device, the first configuration information is used to instruct the terminal device to report channel state information, and the first configuration information includes one or more first reference signal identification;
  • a sending unit 820 configured to send first information to the network device, where the first information includes channel state information of at least one second reference signal, where the at least one second reference signal is the information of the one or more first reference signals some or all of the
  • the first information includes first indication information, and the first indication information is used to indicate whether the communication device stores the first quasi-co-located QCL parameter of the at least one second reference signal.
  • the processing unit 830 is configured to acquire a second quasi-co-located QCL parameter of at least one third reference signal
  • a sending unit 820 configured to send first information to the network device, where the first information includes an identifier of the at least one third reference signal, and the first information is used to indicate that the terminal device stores the at least one third reference signal The second QCL parameter of .
  • the apparatus 800 corresponds to the terminal device in the method embodiment, and the apparatus 800 may be the terminal device in the method embodiment, or a chip or a functional module inside the terminal device in the method embodiment.
  • the corresponding units of the apparatus 800 are configured to execute corresponding steps performed by the terminal device in the method embodiments shown in FIG. 5 and FIG. 7 .
  • the processing unit 830 in the apparatus 800 is configured to execute steps related to processing corresponding to the terminal device in the method embodiment. For example, execute step S710 in FIG. 7 .
  • the receiving unit 810 in the apparatus 800 is configured to execute the receiving step of the terminal device in the method embodiment. For example, execute steps S511 , S510 , S521 , S522 and S530 in FIG. 5 , or execute step S721 in FIG. 7 .
  • the sending unit 820 in the apparatus 800 is configured to execute the step of sending by the terminal device in the method embodiment. For example, step S520 in FIG. 5 or step S720 in FIG. 7 is executed.
  • the processing unit 830 may be at least one processor.
  • the sending unit 820 may be a transmitter or an interface circuit
  • the receiving unit 810 may be a receiver or an interface circuit.
  • the receiver and transmitter can be integrated together to form a transceiver or an interface circuit.
  • the device 800 may also include a storage unit for storing data and/or signaling, and the processing unit 830, the sending unit 820, and the receiving unit 810 may interact or be coupled with the storage unit, for example, read or call the data and/or signaling, so that the methods of the foregoing embodiments are executed.
  • a storage unit for storing data and/or signaling
  • the processing unit 830, the sending unit 820, and the receiving unit 810 may interact or be coupled with the storage unit, for example, read or call the data and/or signaling, so that the methods of the foregoing embodiments are executed.
  • Each of the above units can exist independently, or can be fully or partially integrated.
  • FIG. 9 is a schematic structural diagram of a terminal device of the present application.
  • the terminal device 900 can be applied to the system shown in FIG. 1 .
  • FIG. 9 only shows main components of the terminal device.
  • a terminal device 900 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is used to control the antenna and the input and output devices to send and receive signals
  • the memory is used to store the computer program
  • the processor is used to call and run the computer program from the memory to execute the corresponding functions performed by the terminal device in the registration method proposed by this application. process and/or operation. I won't repeat them here.
  • FIG. 9 only shows a memory and a processor. In an actual terminal device, there may be multiple processors and memories.
  • a storage may also be called a storage medium or a storage device, etc., which is not limited in this embodiment of the present application.
  • FIG. 10 is a schematic diagram of another communication device provided by the present application.
  • an apparatus 1000 includes a receiving unit 1010 , a sending unit 1020 and a processing unit 1030 .
  • the sending unit 1020 is configured to send first configuration information to the terminal device, the first configuration information is used to instruct the terminal device to report channel state information, and the first configuration information includes one or more first reference signal identification;
  • a receiving unit 1010 configured to receive first information from the terminal device, where the first information includes channel state information of at least one second reference signal, where the at least one second reference signal is the one or more first reference signals part or all of the
  • the first information includes first indication information.
  • the first indication information is used to indicate whether the terminal device stores the first quasi-co-located QCL parameter of the at least one second reference signal.
  • the receiving unit 1010 is configured to receive first information from a terminal device, where the first information includes an identifier of the at least one third reference signal, and the first information is used to indicate that the terminal device stores the at least one third reference signal. a second quasi-co-located QCL parameter of a third reference signal;
  • the processing unit 1030 is configured to determine that the terminal device stores the second QCL parameter of the at least one third reference signal.
  • the apparatus 1000 corresponds to the network device in the method embodiment, and the apparatus 1000 may be the network device in the method embodiment, or a chip or a functional module inside the network device in the method embodiment.
  • the corresponding units of the apparatus 1000 are configured to perform corresponding steps performed by the network device in the method embodiments shown in FIG. 5 and FIG. 7 .
  • the processing unit 1030 in the apparatus 1000 is configured to execute the corresponding processing-related steps inside the network device in the method embodiment.
  • the sending unit 1020 in the apparatus 1000 is configured to perform steps related to network equipment sending. For example, execute steps S511 , S510 , S521 , S522 and S530 in FIG. 5 , or execute step S721 in FIG. 7 .
  • the receiving unit 1010 in the apparatus 1000 is configured to perform the receiving step of the network device in the method embodiment. For example, step S520 in FIG. 5 or step S720 in FIG. 7 is executed.
  • the receiving unit 1010 and the sending unit 1020 can form a transceiver unit, which has functions of receiving and sending at the same time.
  • the processing unit 1030 may be at least one processor.
  • the sending unit can be a transmitter or an interface circuit.
  • the receiving unit may be a receiver or an interface circuit.
  • the receiver and transmitter can be integrated together to form a transceiver or an interface circuit.
  • the device 1000 may also include a storage unit for storing data and/or signaling, and the processing unit 1030, the sending unit 1020, and the receiving unit 1010 may interact or be coupled with the storage unit, for example, read or call the data and/or signaling, so that the methods of the foregoing embodiments are executed.
  • a storage unit for storing data and/or signaling
  • the processing unit 1030, the sending unit 1020, and the receiving unit 1010 may interact or be coupled with the storage unit, for example, read or call the data and/or signaling, so that the methods of the foregoing embodiments are executed.
  • Each of the above units can exist independently, or can be fully or partially integrated.
  • FIG. 11 is a schematic structural diagram of a network device of the present application, which can be used to realize the functions of the network device in the above-mentioned communication method.
  • the network device 1100 may include CU, DU and AAU, compared to the access network device in the LTE communication system consisting of one or more radio frequency units , such as the remote radio unit (remote radio unit, RRU) 11010 and one or more base band units (base band unit, BBU), the non-real-time part of the original BBU will be separated and redefined as CU, responsible for processing non-real-time protocols And service, some physical layer processing functions of BBU are merged with the original RRU and passive antenna into AAU, and the remaining functions of BBU are redefined as DU, which is responsible for processing physical layer protocols and real-time services.
  • CU and DU are distinguished by the real-time nature of processing content
  • AAU is a combination of RRU and antenna.
  • CU, DU, and AAU can be separated or combined. Therefore, there will be various network deployment forms.
  • One possible deployment form is consistent with traditional 4G access network equipment, and CU and DU share hardware deployment. It should be understood that Figure 11 is just an example, and does not limit the scope of protection of this application.
  • the deployment form can also be that DUs are deployed in the 5G BBU equipment room, CUs are deployed in a centralized manner or DUs are deployed in a centralized manner, and CUs are centralized at a higher level.
  • the AAU 1101 that can realize the transceiver function is called the transceiver unit.
  • the transceiver unit may also be called a transceiver, a transceiver circuit, or a transceiver, and may include at least one antenna 11011 and a radio frequency unit 11010 .
  • the transceiver unit may include a receiving unit and a sending unit, the receiving unit may correspond to a receiver (or receiver, receiving circuit), and the sending unit may correspond to a transmitter (or transmitter, transmitting circuit).
  • the CU and DU 1102 can implement internal processing functions called processing units.
  • the processing unit may control the access network device, and may be called a controller.
  • the AAU 1101, the CU and the DU 1102 can be physically set together, or physically separated.
  • the access network equipment is not limited to the form shown in FIG. 11 , and may also be in other forms: for example: include BBU and ARU, or include BBU and AAU; it may also be CPE, or other forms, which are not limited in this application.
  • the network device 1100 shown in FIG. 11 can implement the network device involved in the method embodiments in FIG. 5 and FIG. 7 .
  • the operations and/or functions of each unit in the network device 1100 are respectively to implement the corresponding processes performed by the network device in the method embodiments of the present application. To avoid repetition, detailed descriptions are appropriately omitted here.
  • the structure of the network device illustrated in FIG. 11 is only a possible form, and should not constitute any limitation to this embodiment of the present application. This application does not exclude the possibility of other forms of network equipment structures that may appear in the future.
  • An embodiment of the present application further provides a communication system, which includes the aforementioned terminal device and network device.
  • the present application also provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the instructions are run on the computer, the computer executes the terminal device in the above-mentioned methods as shown in Figures 5 and 7 steps performed.
  • the present application also provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the instructions are run on a computer, the computer executes the network device in the method shown in Figure 5 and Figure 7 steps performed.
  • the present application also provides a computer program product containing instructions.
  • the computer program product is run on a computer, the computer is made to execute each step performed by the terminal device in the method shown in FIG. 5 and FIG. 7 .
  • the present application also provides a computer program product containing instructions.
  • the computer program product is run on a computer, the computer is made to execute each step performed by the network device in the method shown in FIG. 5 and FIG. 7 .
  • the present application also provides a chip, including a processor.
  • the processor is used to read and execute the computer program stored in the memory, so as to execute the corresponding operations and/or processes executed by the terminal device in the communication method provided in this application.
  • the chip further includes a memory, the memory is connected to the processor through a circuit or wires, and the processor is used to read and execute the computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive processed data and/or information, and the processor obtains the data and/or information from the communication interface, and processes the data and/or information.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip.
  • the processor may also be embodied as a processing circuit or logic circuit.
  • the present application also provides a chip, including a processor.
  • the processor is used to read and execute the computer program stored in the memory, so as to execute the corresponding operations and/or processes executed by the network device in the communication method provided by the present application.
  • the chip further includes a memory, the memory is connected to the processor through a circuit or wires, and the processor is used to read and execute the computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive processed data and/or information, and the processor obtains the data and/or information from the communication interface, and processes the data and/or information.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip.
  • the processor may also be embodied as a processing circuit or logic circuit.
  • the above-mentioned chip can also be replaced by a chip system, which will not be repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to the actual situation to realize the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .
  • the term "and/or” in this application is only an association relationship describing associated objects, indicating that there may be three relationships, for example, A and/or B may indicate: A exists alone, and A and B exist simultaneously , there are three cases of B alone.
  • the character "/" in this article generally means that the contextual objects are an "or” relationship; the term “at least one” in this application can mean “one” and "two or more", for example, A At least one of , B, and C can mean: A exists alone, B exists alone, C exists alone, A and B exist simultaneously, A and C exist simultaneously, C and B exist simultaneously, and A, B, and C exist simultaneously, which Seven situations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种通信方法。该方法包括:终端设备接收来自网络设备的第一配置信息,该第一配置信息用于指示该终端设备进行信道状态信息上报,该第一配置信息包括一个或者多个第一参考信号的标识。该终端设备向该网络设备发送第一信息,该第一信息包括至少一个第二参考信号的信道状态信息,该至少一个第二参考信号为该一个或者多个第一参考信号部分或者全部,该第一信息包括第一指示信息,该第一指示信息用于指示该终端设备是否保存有该至少一个第二参考信号的第一准共址QCL参数。通过终端设备上报该终端设备是否保存有某些参考信号的QCL参数,使得网络设备能够获知终端设备是否保存有某些参考信号的QCL参数。

Description

通信方法、终端设备、网络设备及通信系统
本申请要求于2021年12月29日提交中国专利局、申请号为202111640003.8、申请名称为“一种QCL参数上报方法、UE及网络设备”以及于2022年01月21日提交中国专利局、申请号为202210074534.3、申请名称为“通信方法、终端设备、网络设备及通信系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种通信方法、终端设备、网络设备及通信系统。
背景技术
在新无线(new radio,NR)中准共址(Quasi co-location,QCL)的定义为:如果一个天线端口在一个符号上表征的信道特性能从另一个天线端口在一个符号上表征的信道推断而出,则可认为这两个信道QCL,NR中定义了如下四种QCL参数类型:
-'typeA':{多普勒偏移,多普勒扩展,平均时延,时延扩展}
-'typeB':{多普勒偏移,多普勒扩展}
-'typeC':{多普勒偏移,平均时延}
-'typeD':{空域接收参数}
其中,typeA,typeB和typeC的QCL参数可以用于时频同步和信道估计。获取多普勒偏移可以理解为完成频域同步;获取平均时延可以理解为完成时域同步;获取多普勒扩展和时延扩展可以用于信道估计;typeD的QCL参数指示了两个天线端口采用的空域接收参数相同或相似,用于辅助接收设备确定自己的接收波束。
由上述可知QCL参数有利于通信性能的提升,因此如何使得终端设备和网络设备获知某些参考信号的QCL参数成为亟待解决的问题。
发明内容
本申请实施例提供一种通信方法,通过终端设备上报该终端设备是否保存有某些参考信号QCL参数,使得网络设备能够获知终端设备是否保存有某些参考信号的QCL参数。
第一方面,提供了一种通信方法,该方法可以由终端设备执行,或者,也可以由终端设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由终端设备执行为例进行说明。
该通信方法包括:终端设备接收来自网络设备的第一配置信息,该第一配置信息用于指示该终端设备进行信道状态信息上报,该第一配置信息包括一个或者多个第一参考信号的标识;该终端设备向该网络设备发送第一信息,该第一信息包括至少一个第二参考信号的信道状态信息,该至少一个第二参考信号为该一个或者多个第一参考信号的部分或全部;其中,该第一信息包括第一指示信息,该第一指示信息用于指示该终端设备是否保存有该 至少一个第二参考信号的第一准共址QCL参数。
基于上述技术方案,终端设备上报信道状态信息时同步上报是否包括某些参考信号的第一QCL参数,使得网络设备能够获知终端设备保存的参考信号的第一QCL参数情况,明确终端设备是否保存有某些参考信号的第一QCL参数,以便于后续基于该第一QCL参数进行相关配置。例如,在基于该第一QCL参数信息确定激活的新的TCI-state的生效时刻的情况下,能够提高激活新的TCI-state的效率。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该终端设备接收来自该网络设备的该一个或者多个第一参考信号。
结合第一方面,在第一方面的某些实现方式中,该第一指示信息指示该终端设备是否保存有该至少一个第二参考信号的第一QCL参数,包括:该第一指示信息指示该终端设备是否保存有该至少一个第二参考信号中至少一个第三参考信号的第二QCL参数,在该第一指示信息指示该终端设备保存有该至少一个第二参考信号中至少一个第三参考信号的第二QCL参数的情况下,该第一信息还包括该至少一个第三参考信号的标识。
基于上述技术方案,终端设备指示终端设备保存有哪些参考信号的第二QCL参数,明确终端设备保存有第二QCL参数的参考信号,以便于后续基于该第二QCL参数进行相关配置。
结合第一方面,在第一方面的某些实现方式中,该至少一个第三参考信号中的任一个第三参考信号与同步信号块SSB或追踪参考信号TRS满足QCL关系。
基于上述技术方案,终端设备保存有第二QCL参数的第三参考信号可以与SSB满足QCL关系,或者还可以是终端设备保存有第二QCL参数的第三参考信号可以与TRS满足QCL关系,则表明该第三参考信号的第二QCL参数可以是通过测量与其有QCL关系的SSB或TRS得到的,一般而言,通过SSB或者TRS测量得到的第二QCL参数更加准确。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该终端设备接收来自该网络设备的第二指示信息,该第二指示信息用于指示激活传输配置指示状态TCI-state;当该TCI-state对应的第四参考信号满足第一条件,该TCI-state的生效时刻为第一时刻;当该TCI-state对应的第四参考信号不满足第一条件,该TCI-state的生效时刻为第二时刻;该第一条件包括该第四参考信号为该至少一个第三参考信号中的一个,或该第四参考信号与该至少一个第三参考信号中的一个第三参考信号满足QCL关系,其中,该第一时刻早于该第二时刻。
结合第一方面,在第一方面的某些实现方式中,该第一时刻为自接收到该第二指示信息的时刻起始经过第一时长的时刻,该第二时刻为自接收到该第二指示信息的时刻起始经过第二时长的时刻,该第二时长大于或等于该第一时长、等待同步信号块SSB或追踪参考信号TRS的时长、以及处理该SSB或TRS的时长三者之和。
基于上述技术方案,通过终端设备上报第二QCL参数信息,使得网络设备能够确定终端是否具备第三参考信号对应的天线端口的第二QCL参数信息,并且网络设备和终端设备之间对于新TCI-state能否满足第一条件有一致的认识,并且能根据是否满足第一条件确定新TCI-state激活的时间为第一时刻还是第二时刻。当第一条件不满足时,终端设备并没有该TCI-state对应的第二QCL参数,因此需要在第二指示信息之后接收额外的SSB或TRS来进行第二QCL参数的测量和处理,该额外的SSB或TRS和该TCI-state关联的 参考信号具有QCL关系,即需要等待第二时长之后才能使用该新TCI-state;当第二条件满足时,终端设备已经获得了对应的第二QCL参数,并且基站也能确定终端设备获得了对应的第二QCL参数,因此只需要在完成对第二指示信息的相应处理后,即能使用该新TCI-state,即只需要等待第一时长。而在没有本技术方案的情况下,网络设备由于不能确定终端设备是否具备第三参考信号对应的天线端口的第二QCL参数信息,因此只能在第二时刻之后使用新TCI-state,而在本方案中,网络设备和终端设备有机会在第一时刻之后即使用新TCI-state,即利用该QCL参数进行控制和数据信道的传输,提升了新TCI-state激活的效率。
结合第一方面,在第一方面的某些实现方式中,该第四参考信号与该至少一个第三参考信号中的一个第三参考信号满足QCL关系,包括:该第四参考信号与该至少一个第三参考信号中的一个第三参考信号满足A类型QCL关系,其中,该A类型QCL关系包括发送该第四参考信号的天线端口经历的信道和发送该第三参考信号的天线端口经历的信道拥有共同的:共同的:多普勒偏移、多普勒扩展、平均时延和时延扩展。
基于上述技术方案,第一条件对QCL关系的限制更加严格,使得终端设备在获得了第四参考信号的A类型QCL参数的情况下,可以在第一时刻使用该TCI-state,由于A类型的QCL参数包含的信道大尺度特性种类要多于C类型的QCL参数,当终端设备具备A类型的QCL参数后能更准确地进行信道估计,提高了终端设备使用该新TCI-state传输数据的可靠性。
结合第一方面,在第一方面的某些实现方式中,第三时刻和第四时刻间隔的时长小于或者等于第一阈值,其中,该第三时刻为该终端设备接收到该第三指示信息的时刻,该第四时刻为该终端设备发送该第一信息的时刻。
基于上述技术方案,终端设备接收激活指示和上报第一信息之间的时间间隔不能太大,保证时效性。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该终端设备接收来自该网络设备的第三指示信息,该第三指示信息用于指示该终端设备对该第二QCL参数的类型进行上报,该第一信息还包括第四指示信息,该第四指示信息用于指示该终端设备获取的至少一个第三参考信号的该第二QCL参数的类型。
结合第一方面,在第一方面的某些实现方式中,上报的该第二QCL参数的类型包括A类型或C类型。
基于上述技术方案,网络设备指示终端设备对获得的第二QCL参数类型进行上报,可以根据终端获得的第二QCL参数类型进行不同的配置,例如当终端获得的第二QCL参数类型仅有C类型而没有A类型时,终端对于信道估计的准确度可能有限,网络设备向终端设备传输时可以使用低速率的调制解调方式,提高传输可靠性。
第二方面,提供了一种通信方法,该方法可以由网络设备执行,或者,也可以由网络设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由网络设备执行为例进行说明。
该通信方法包括:网络设备向终端设备发送第一配置信息,该第一配置信息用于指示该终端设备进行信道状态信息上报,该第一配置信息包括一个或者多个第一参考信号的标识;该网络设备接收来自该终端设备的第一信息,该第一信息包括至少一个第二参考信号 的信道状态信息,该至少一个第二参考信号为该一个或者多个第一参考信号的部分或全部;其中,该第一信息包括第一指示信息,该第一指示信息用于指示该终端设备是否保存有该至少一个第二参考信号的第一准共址QCL参数。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该网络设备向该终端设备发送该一个或者多个第一参考信号。
结合第二方面,在第二方面的某些实现方式中,该第一指示信息指示该终端设备是否保存有该至少一个第二参考信号的第一QCL参数,包括:该第一指示信息指示该终端设备是否保存有该至少一个第二参考信号中至少一个第三参考信号的第二QCL参数,在该第一指示信息指示该终端设备保存有该至少一个第二参考信号中至少一个第三参考信号的第二QCL参数的情况下,该第一信息还包括该至少一个第三参考信号的标识。
结合第二方面,在第二方面的某些实现方式中,该至少一个第三参考信号中的任一个第三参考信号与同步信号块SSB或追踪参考信号TRS满足QCL关系。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该网络设备向该终端设备发送第二指示信息,该第二指示信息用于指示激活传输配置指示状态TCI-state;当该TCI-state对应的第四参考信号满足第一条件,该TCI-state的生效时刻为第一时刻;当该TCI-state对应的第四参考信号不满足第一条件,该TCI-state的生效时刻为第二时刻;该第一条件包括该第四参考信号为该至少一个第三参考信号中的一个,或该第四参考信号与该至少一个第三参考信号中的一个第三参考信号满足QCL关系,其中,该第一时刻早于该第二时刻。
结合第二方面,在第二方面的某些实现方式中,该第一时刻为自接收到该第二指示信息的时刻起始经过第一时长的时刻,该第二时刻为自接收到该第二指示信息的时刻起始经过第二时长的时刻,该第二时长大于或等于该第一时长、等待同步信号块SSB或追踪参考信号TRS的时长、以及处理该SSB或TRS的时长三者之和。
结合第二方面,在第二方面的某些实现方式中,该第四参考信号与该至少一个第三参考信号中的一个第三参考信号满足QCL关系,包括:该第四参考信号与该至少一个第三参考信号中的一个第三参考信号满足A类型QCL关系,其中,该A类型QCL关系包括发送该第四参考信号的天线端口经历的信道和发送该第三参考信号的天线端口经历的信道拥有共同的:多普勒偏移、多普勒扩展、平均时延和时延扩展。
结合第二方面,在第二方面的某些实现方式中,第三时刻和第四时刻间隔的时长小于或者等于第一阈值,其中,该第三时刻为该终端设备接收到该第三指示信息的时刻,该第四时刻为该终端设备发送该第一信息的时刻。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该网络设备向该终端设备发送第三指示信息,该第三指示信息用于指示该终端设备对该第二QCL参数的类型进行上报,该第一信息还包括第四指示信息,该第四指示信息用于指示该终端设备获取的至少一个第三参考信号的该第二QCL参数的类型。
结合第二方面,在第二方面的某些实现方式中,上报的该第二QCL参数的类型包括A类型或C类型。
以上第二方面及其可能的设计所示方法的有益效果可参照第一方面及其可能的设计中的有益效果。
第三方面,提供了一种通信方法,该方法可以由终端设备执行,或者,也可以由终端设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由终端设备执行为例进行说明。
该通信方法包括:终端设备获取至少一个第三参考信号的第二准共址QCL参数;该终端设备向该网络设备发送第一信息,该第一信息中包括该至少一个第三参考信号的标识,该第一信息用于指示该终端设备保存有该至少一个第三参考信号的第二QCL参数。
基于上述技术方案,终端设备上报保存的参考信号的第二QCL参数情况,明确终端设备保存有某些参考信号的第二QCL参数,以便于后续基于该第二QCL参数进行相关配置。
结合第三方面,在第三方面的某些实现方式中,该至少一个第三参考信号中的任一个第三参考信号为同步信号块SSB或追踪参考信号TRS,或者,该至少一个第三参考信号中的任一个第三参考信号与同步信号块SSB或追踪参考信号TRS满足QCL关系。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:该终端设备接收来自该网络设备的第二指示信息,该第二指示信息用于指示激活传输配置指示状态TCI-state,当该至少一个第三参考信号包括该TCI-state对应的第四参考信号时,该TCI-state的生效时刻为发送该第一信息之后的一个时刻。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:该终端设备接收来自该网络设备的第二指示信息,该第二指示信息用于指示激活传输配置指示状态TCI-state;当该TCI-state对应的第四参考信号满足第一条件,该TCI-state的生效时刻为第一时刻;当该TCI-state对应的第四参考信号不满足第一条件,该TCI-state的生效时刻为第二时刻;该第一条件包括该第四参考信号为该至少一个第三参考信号中的一个,或该第四参考信号与该至少一个第三参考信号中的一个第三参考信号满足QCL关系,其中,该第一时刻早于该第二时刻。
结合第三方面,在第三方面的某些实现方式中,该第一时刻为自接收到该第二指示信息的时刻起始经过第一时长的时刻,该第二时刻为自接收到该第二指示信息的时刻起始经过第二时长的时刻,该第二时长大于或等于该第一时长、等待同步信号块SSB或追踪参考信号TRS的时长、以及处理该SSB或TRS的时长三者之和。
结合第三方面,在第三方面的某些实现方式中,该第四参考信号与该至少一个第三参考信号中的一个第三参考信号满足QCL关系,包括:该第四参考信号与该至少一个第三参考信号中的一个第三参考信号满足A类型QCL关系,其中,该A类型QCL关系包括发送该第四参考信号的天线端口经历的信道和发送该第三参考信号的天线端口经历的信道拥有共同的:多普勒偏移、多普勒扩展、平均时延和时延扩展。
结合第三方面,在第三方面的某些实现方式中,第三时刻和第四时刻间隔的时长小于或者等于第一阈值,其中,该第三时刻为该终端设备接收到该第三指示信息的时刻,该第四时刻为该终端设备发送该第一信息的时刻。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:该终端设备接收来自该网络设备的第三指示信息,该第三指示信息用于指示该终端设备对该第二QCL参数的类型进行上报,该第一信息还包括第四指示信息,该第四指示信息用于指示该终端设备获取的至少一个第三参考信号的该第二QCL参数的类型。
结合第三方面,在第三方面的某些实现方式中,上报的该第二QCL参数的类型包括A类型或C类型。
第四方面,提供了一种通信方法,该方法可以由网络设备执行,或者,也可以由网络设备的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由网络设备执行为例进行说明。
该通信方法包括:网络设备接收来自终端设备的第一信息,该第一信息中包括该至少一个第三参考信号的标识,该第一信息用于指示该终端设备保存有该至少一个第三参考信号的第二准共址QCL参数;该网络设备确定该终端设备保存有该至少一个第三参考信号的第二QCL参数。
结合第四方面,在第四方面的某些实现方式中,该至少一个第三参考信号中的任一个第三参考信号为同步信号块SSB或追踪参考信号TRS,或者,该至少一个第三参考信号中的任一个第三参考信号与同步信号块SSB或追踪参考信号TRS满足QCL关系。
结合第四方面,在第四方面的某些实现方式中,该方法还包括:该网络设备向该终端设备发送第二指示信息,该第二指示信息用于指示激活传输配置指示状态TCI-state,当该至少一个第三参考信号包括该TCI-state对应的第四参考信号时,该TCI-state的生效时刻为发送该第一信息之后的一个时刻。
结合第四方面,在第四方面的某些实现方式中,该方法还包括:该网络设备向该终端设备发送第二指示信息,该第二指示信息用于指示激活传输配置指示状态TCI-state;当该TCI-state对应的第四参考信号满足第一条件,该TCI-state的生效时刻为第一时刻;当该TCI-state对应的第四参考信号不满足第一条件,该TCI-state的生效时刻为第二时刻;该第一条件包括该第四参考信号为该至少一个第三参考信号中的一个,或该第四参考信号与该至少一个第三参考信号中的一个第三参考信号满足QCL关系,其中,该第一时刻早于该第二时刻。
结合第四方面,在第四方面的某些实现方式中,该第一时刻为自接收到该第二指示信息的时刻起始经过第一时长的时刻,该第二时刻为自接收到该第二指示信息的时刻起始经过第二时长的时刻,该第二时长大于或等于该第一时长、等待同步信号块SSB或追踪参考信号TRS的时长、以及处理该SSB或TRS的时长三者之和。
结合第四方面,在第四方面的某些实现方式中,该第四参考信号与该至少一个第三参考信号中的一个第三参考信号满足QCL关系,包括:该第四参考信号与该至少一个第三参考信号中的一个第三参考信号满足A类型QCL关系,其中,该A类型QCL关系包括发送该第四参考信号的天线端口经历的信道和发送该第三参考信号的天线端口经历的信道拥有共同的:多普勒偏移、多普勒扩展、平均时延和时延扩展。
结合第四方面,在第四方面的某些实现方式中,第三时刻和第四时刻间隔的时长小于或者等于第一阈值,其中,该第三时刻为该终端设备接收到该第三指示信息的时刻,该第四时刻为该终端设备发送该第一信息的时刻。
结合第四方面,在第四方面的某些实现方式中,该方法还包括:该网络设备向该终端设备发送第三指示信息,该第三指示信息用于指示该终端设备对该第二QCL参数的类型进行上报,该第一信息还包括第四指示信息,该第四指示信息用于指示该终端设备获取的至少一个第三参考信号的该第二QCL参数的类型。
结合第四方面,在第四方面的某些实现方式中,上报的该第二QCL参数的类型包括A类型或C类型。
以上第四方面及其可能的设计所示方法的有益效果可参照第三方面及其可能的设计中的有益效果。
第五方面,提供了一种通信装置,该装置用于执行上述第一方面提供的方法。具体地,该通信装置包括:
接收单元,用于接收来自网络设备的第一配置信息,该第一配置信息用于指示该终端设备进行信道状态信息上报,该第一配置信息包括一个或者多个第一参考信号的标识;发送单元,用于向该网络设备发送第一信息,该第一信息包括至少一个第二参考信号的信道状态信息,该至少一个第二参考信号为该一个或者多个第一参考信号的部分或全部;其中,该第一信息包括第一指示信息,该第一指示信息用于指示该通信装置是否保存有该至少一个第二参考信号的第一准共址QCL参数的。
结合第五方面,在第五方面的某些实现方式中,该接收单元还用于接收来自该网络设备的该一个或者多个第一参考信号。
结合第五方面,在第五方面的某些实现方式中,该至少一个第三参考信号中的任一个第三参考信号与同步信号块SSB或追踪参考信号TRS满足QCL关系。
结合第五方面,在第五方面的某些实现方式中,该第一指示信息指示该终端设备是否保存有该至少一个第二参考信号的第一QCL参数,包括:该第一指示信息指示该终端设备是否保存有该至少一个第二参考信号中至少一个第三参考信号的第二QCL参数,在该第一指示信息指示该终端设备保存有该至少一个第二参考信号中至少一个第三参考信号的第二QCL参数的情况下,该第一信息中还包括该至少一个第三参考信号的标识。
结合第五方面,在第五方面的某些实现方式中,该接收单元,还用于接收来自该网络设备的第二指示信息,该第二指示信息用于指示激活传输配置指示状态TCI-state;
当该TCI-state对应的第四参考信号满足第一条件,该TCI-state的生效时刻为第一时刻;当该TCI-state对应的第四参考信号不满足第一条件,该TCI-state的生效时刻为第二时刻;该第一条件包括该第四参考信号为该至少一个第三参考信号中的一个,或该第四参考信号与该至少一个第三参考信号中的一个第三参考信号满足QCL关系,其中,该第一时刻早于该第二时刻。
结合第五方面,在第五方面的某些实现方式中,该第一时刻为自接收到该第二指示信息的时刻起始经过第一时长的时刻,该第二时刻为自接收到该第二指示信息的时刻起始经过第二时长的时刻,该第二时长大于或等于该第一时长、等待同步信号块SSB或追踪参考信号TRS的时长、以及处理该SSB或TRS的时长三者之和。
结合第五方面,在第五方面的某些实现方式中,该第四参考信号与该至少一个第三参考信号中的一个第三参考信号满足QCL关系,包括:该第四参考信号与该至少一个第三参考信号中的一个第三参考信号满足A类型QCL关系,其中,该A类型QCL关系包括发送该第四参考信号的天线端口经历的信道和发送该第三参考信号的天线端口经历的信道拥有共同的:多普勒偏移、多普勒扩展、平均时延和时延扩展。
结合第五方面,在第五方面的某些实现方式中,第三时刻和第四时刻间隔的时长小于或者等于第一阈值,其中,该第三时刻为该接收单元接收到该第三指示信息的时刻,该第 四时刻为该发送单元发送该第一信息的时刻。
结合第五方面,在第五方面的某些实现方式中,该装置还包括:接收单元,用于接收来自该网络设备的第三指示信息,该第三指示信息用于指示该终端设备对该第二QCL参数的类型进行上报,该第一信息还包括第四指示信息,该第四指示信息用于指示该处理单元获取的至少一个第三参考信号的该第二QCL参数的类型的指示信息。
结合第五方面,在第五方面的某些实现方式中,上报的该第二QCL参数的类型包括A类型或C类型。
以上第五方面及其可能的设计所示方法的有益效果可参照第一方面及其可能的设计中的有益效果。
第六方面,提供了一种通信装置,该装置用于执行上述第二方面提供的方法。具体地,该通信装置包括:
发送单元,用于向终端设备发送第一配置信息,该第一配置信息用于指示该终端设备进行信道状态信息上报,该第一配置信息包括一个或者多个第一参考信号的标识;接收单元,用于接收来自该终端设备的第一信息,该第一信息包括至少一个第二参考信号的信道状态信息,该至少一个第二参考信号为该一个或者多个第一参考信号的部分或全部;其中,该第一信息包括第一指示信息,该第一指示信息用于指示该终端设备是否保存有该至少一个第二参考信号的第一准共址QCL参数的。
结合第六方面,在第六方面的某些实现方式中,该发送单元,还用于向该终端设备发送该一个或者多个第一参考信号。
结合第六方面,在第六方面的某些实现方式中,该第一指示信息指示该终端设备是否保存有该至少一个第二参考信号的第一QCL参数,包括:该第一指示信息指示该终端设备是否保存有该至少一个第二参考信号中至少一个第三参考信号的第二QCL参数,在该第一指示信息指示该终端设备保存有该至少一个第二参考信号中至少一个第三参考信号的第二QCL参数的情况下,该第一信息中还包括该至少一个第三参考信号的标识。
结合第六方面,在第六方面的某些实现方式中,该至少一个第三参考信号中的任一个第三参考信号与同步信号块SSB或追踪参考信号TRS满足QCL关系。
结合第六方面,在第六方面的某些实现方式中,该发送单元,用于向该终端设备发送第二指示信息,该第二指示信息用于指示激活传输配置指示状态TCI-state;当该TCI-state对应的第四参考信号满足第一条件,该TCI-state的生效时刻为第一时刻;当该TCI-state对应的第四参考信号不满足第一条件,该TCI-state的生效时刻为第二时刻;该第一条件包括该第四参考信号为该至少一个第三参考信号中的一个,或该第四参考信号与该至少一个第三参考信号中的一个第三参考信号满足QCL关系,其中,该第一时刻早于该第二时刻。
结合第六方面,在第六方面的某些实现方式中,该第一时刻为自接收到该第二指示信息的时刻起始经过第一时长的时刻,该第二时刻为自接收到该第二指示信息的时刻起始经过第二时长的时刻,该第二时长大于或等于该第一时长、等待同步信号块SSB或追踪参考信号TRS的时长、以及处理该SSB或TRS的时长三者之和。
结合第六方面,在第六方面的某些实现方式中,该第四参考信号与该至少一个第三参考信号中的一个第三参考信号满足QCL关系,包括:该第四参考信号与该至少一个第三 参考信号中的一个第三参考信号满足A类型QCL关系,其中,该A类型QCL关系包括发送该第四参考信号的天线端口经历的信道和发送该第三参考信号的天线端口经历的信道拥有共同的:多普勒偏移、多普勒扩展、平均时延和时延扩展。
结合第六方面,在第六方面的某些实现方式中,第三时刻和第四时刻间隔的时长小于或者等于第一阈值,其中,该第三时刻为该终端设备接收该第三指示信息的时刻,该第四时刻为该终端设备发送该第一信息的时刻。
结合第六方面,在第六方面的某些实现方式中,该装置还包括:发送单元,用于向该终端设备发送第三指示信息,该第三指示信息用于指示该终端设备对该第二QCL参数的类型进行上报,该第一信息还包括第四指示信息,该第四指示信息用于指示该终端设备获取的至少一个第三参考信号的该第二QCL参数的类型。
结合第六方面,在第六方面的某些实现方式中,上报的该第二QCL参数的类型包括A类型或C类型。
以上第六方面及其可能的设计所示方法的有益效果可参照第二方面及其可能的设计中的有益效果。
第七方面,提供了一种通信装置,该装置用于执行上述第三方面提供的方法。具体地,该通信装置包括:
处理单元,用于获取至少一个第三参考信号的第二准共址QCL参数;发送单元,用于向该网络设备发送第一信息,该第一信息包括该至少一个第三参考信号的标识,该第一信息用于指示该终端设备保存有该至少一个第三参考信号的第二QCL参数。
结合第七方面,在第七方面的某些实现方式中,该至少一个第三参考信号中的任一个第三参考信号为同步信号块SSB或追踪参考信号TRS,或者,该至少一个第三参考信号中的任一个第三参考信号与同步信号块SSB或追踪参考信号TRS满足QCL关系。
结合第七方面,在第七方面的某些实现方式中,该装置还包括:接收单元,用于接收来自该网络设备的第二指示信息,该第二指示信息用于指示激活传输配置指示状态TCI-state,当该至少一个第三参考信号包括该TCI-state对应的第四参考信号时,该TCI-state的生效时刻为发送该第一信息之后的一个时刻。
结合第七方面,在第七方面的某些实现方式中,该装置还包括:接收单元,用于接收来自该网络设备的第二指示信息,该第二指示信息用于指示激活传输配置指示状态TCI-state;当该TCI-state对应的第四参考信号满足第一条件,该TCI-state的生效时刻为第一时刻;当该TCI-state对应的第四参考信号不满足第一条件,该TCI-state的生效时刻为第二时刻;该第一条件包括该第四参考信号为该至少一个第三参考信号中的一个,或该第四参考信号与该至少一个第三参考信号中的一个第三参考信号满足QCL关系,其中,该第一时刻早于该第二时刻。
结合第七方面,在第七方面的某些实现方式中,该第一时刻为自接收到该第二指示信息的时刻起始经过第一时长的时刻,该第二时刻为自接收到该第二指示信息的时刻起始经过第二时长的时刻,该第二时长大于或等于该第一时长、等待同步信号块SSB或追踪参考信号TRS的时长、以及处理该SSB或TRS的时长三者之和。
结合第七方面,在第七方面的某些实现方式中,该第四参考信号与该至少一个第三参考信号中的一个第三参考信号满足QCL关系,包括:该第四参考信号与该至少一个第三 参考信号中的一个第三参考信号满足A类型QCL关系,其中,该A类型QCL关系包括发送该第四参考信号的天线端口经历的信道和发送该第三参考信号的天线端口经历的信道拥有共同的:多普勒偏移、多普勒扩展、平均时延和时延扩展。
结合第七方面,在第七方面的某些实现方式中,第三时刻和第四时刻间隔的时长小于或者等于第一阈值,其中,该第三时刻为该接收单元接收到该第三指示信息的时刻,该第四时刻为该发送单元发送该第一信息的时刻。
结合第七方面,在第七方面的某些实现方式中,该装置还包括:接收单元,用于接收来自该网络设备的第三指示信息,该第三指示信息用于指示该终端设备对该第二QCL参数的类型进行上报,该第一信息还包括第四指示信息,该第四指示信息用于指示该处理单元获取的至少一个第三参考信号的该第二QCL参数的类型的指示信息。
结合第七方面,在第七方面的某些实现方式中,上报的该第二QCL参数的类型包括A类型或C类型。
以上第七方面及其可能的设计所示方法的有益效果可参照第三方面及其可能的设计中的有益效果。
第八方面,提供了一种通信装置,该装置用于执行上述第四方面提供的方法。具体地,该通信装置包括:
接收单元,用于接收来自终端设备的第一信息,该第一信息包括该至少一个第三参考信号的标识,该第一信息用于指示该终端设备保存有该至少一个第三参考信号的第二准共址QCL参数;处理单元,用于确定该终端设备保存有该至少一个第三参考信号的第二QCL参数。
结合第八方面,在第八方面的某些实现方式中,该至少一个第三参考信号中的任一个第三参考信号为同步信号块SSB或追踪参考信号TRS,或者,该至少一个第三参考信号中的任一个第三参考信号与同步信号块SSB或追踪参考信号TRS满足QCL关系。
结合第八方面,在第八方面的某些实现方式中,该装置还包括:发送单元,用于向该终端设备发送第二指示信息,该第二指示信息用于指示激活传输配置指示状态TCI-state,当该至少一个第三参考信号包括该TCI-state对应的第四参考信号时,该TCI-state的生效时刻为发送该第一信息之后的一个时刻。
结合第八方面,在第八方面的某些实现方式中,该装置还包括:发送单元,用于向该终端设备发送第二指示信息,该第二指示信息用于指示激活传输配置指示状态TCI-state;当该TCI-state对应的第四参考信号满足第一条件,该TCI-state的生效时刻为第一时刻;当该TCI-state对应的第四参考信号不满足第一条件,该TCI-state的生效时刻为第二时刻;该第一条件包括该第四参考信号为该至少一个第三参考信号中的一个,或该第四参考信号与该至少一个第三参考信号中的一个第三参考信号满足QCL关系,其中,该第一时刻早于该第二时刻。
结合第八方面,在第八方面的某些实现方式中,该第一时刻为自接收到该第二指示信息的时刻起始经过第一时长的时刻,该第二时刻为自接收到该第二指示信息的时刻起始经过第二时长的时刻,该第二时长大于或等于该第一时长、等待同步信号块SSB或追踪参考信号TRS的时长、以及处理该SSB或TRS的时长三者之和。
结合第八方面,在第八方面的某些实现方式中,该第四参考信号与该至少一个第三参 考信号中的一个第三参考信号满足QCL关系,包括:该第四参考信号与该至少一个第三参考信号中的一个第三参考信号满足A类型QCL关系,其中,该A类型QCL关系包括发送该第四参考信号的天线端口经历的信道和发送该第三参考信号的天线端口经历的信道拥有共同的:多普勒偏移、多普勒扩展、平均时延和时延扩展。
结合第八方面,在第八方面的某些实现方式中,第三时刻和第四时刻间隔的时长小于或者等于第一阈值,其中,该第三时刻为该终端设备接收该第三指示信息的时刻,该第四时刻为该终端设备发送该第一信息的时刻。
结合第八方面,在第八方面的某些实现方式中,该装置还包括:发送单元,用于向该终端设备发送第三指示信息,该第三指示信息用于指示该终端设备对该第二QCL参数的类型进行上报,该第一信息还包括第四指示信息,该第四指示信息用于指示该终端设备获取的至少一个第三参考信号的该第二QCL参数的类型。
结合第八方面,在第八方面的某些实现方式中,上报的该第二QCL参数的类型包括A类型或C类型。
以上第八方面及其可能的设计所示方法的有益效果可参照第四方面及其可能的设计中的有益效果。
第九方面,提供了一种通信装置,该装置用于执行上述第一方面或第三方面提供的方法。具体地,该通信装置可以包括用于执行第一方面或第三方面的上述任意一种实现方式提供的方法的单元和/或模块,如处理单元和获取单元。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,收发单元可以是收发器,或,输入/输出接口;处理单元可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该通信装置为终端设备中的芯片、芯片系统或电路时,收发单元可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元可以是至少一个处理器、处理电路或逻辑电路等。
以上第六方面及其可能的设计所示方法的有益效果可参照第一方面或第三及其可能的设计中的有益效果。
第十方面,提供了一种通信装置,该装置用于执行上述第二或第四方面提供的方法。具体地,该通信装置可以包括用于执行第二或第四方面提供的方法的单元和/或模块,如处理单元和获取单元。
在一种实现方式中,该通信装置为网络设备。当该通信装置为网络设备时,收发单元可以是收发器,或,输入/输出接口;处理单元可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该通信装置为网络设备中的芯片、芯片系统或电路时,收发单元可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元可以是至少一个处理器、处理电路或逻辑电路等。
第十一方面,本申请提供一种处理器,用于执行上述各方面提供的方法。
对于处理器所涉及的发送和获取/接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则可以理解为处理器输出和接收、输入等操作,也可以理解为由射频电路和天线所进行的发送和接收操作,本申请对此不做限定。
第十二方面,提供一种计算机可读存储介质,该计算机可读存储介质存储用于设备执行的程序代码,该程序代码包括用于执行上述第一方面至第四方面的任意一种实现方式提供的方法。
第十三方面,提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面至第四方面的任意一种实现方式提供的方法。
第十四方面,提供一种芯片,芯片包括处理器与通信接口,处理器通过通信接口读取存储器上存储的指令,执行上述第一方面至第四方面的任意一种实现方式提供的方法。
可选地,作为一种实现方式,芯片还包括存储器,存储器中存储有计算机程序或指令,处理器用于执行存储器上存储的计算机程序或指令,当计算机程序或指令被执行时,处理器用于执行上述第一方面至第四方面的任意一种实现方式提供的方法。
第十五方面,提供一种通信系统,包括第五方面所述的通信装置和第六方面所述的通信装置,或者包括第七方面所述的通信装置和第八方面所述的通信装置。
附图说明
图1是本申请适用的通信系统示意图。
图2是本申请提供的一种波束训练示意图。
图3是本申请提供的一种控制资源集合CORESET和搜索空间searchSpace的配置示意图。
图4是本申请提供的一种波束配置更新的示意图。
图5是本申请提供的一种通信方法的示意性流程图。
图6是本申请提供的一种第一时刻和第二时刻的示意图。
图7是本申请提供的另一种通信方法的示意性流程图。
图8是本申请提供的一种通信装置的示意图。
图9是本申请的终端设备的结构示意图。
图10是本申请提供的另一种通信装置的示意图。
图11是本申请的网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)系统或新无线(new radio,NR)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统。本申请实施例的技术方案还可以应用于设备到设备(device to device,D2D)通信,车辆外联(vehicle-to-everything,V2X)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及物联网(internet of things,IoT)通信系统或者其他通信系统。
为便于理解本申请实施例,首先结合图1简单介绍本申请适用的通信系统。
本申请实施例中的终端设备(terminal equipment)可以指接入终端、用户单元、用户 站、移动站、移动台、中继站、远方站、远程终端、移动设备、用户终端(user terminal)、用户设备(user equipment,UE)、终端(terminal)、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备或者未来车联网中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是IoT系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。在本申请实施例中,IOT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。
此外,在本申请实施例中,终端设备还可以包括传感器,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
本申请实施例中的网络设备可以是用于与终端设备通信的任意一种具有无线收发功能的通信设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、家庭基站(home evolved NodeB,HeNB,或home Node B,HNB)、基带单元(baseBand unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G系统,如,NR系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,本申请实施例中的网络设备可以是指集中单元(central unit,CU)或者分布式单元(distributed unit,DU)或者,网络设备包括CU和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变 成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
进一步地,CU还可以划分为控制面的中央单元(CU-control plane,CU-CP)和用户面的中央单元(CU-user plane,CU-UP)。其中,CU-CP和CU-UP也可以部署在不同的物理设备上,CU-CP负责控制面功能,主要包含RRC层和PDCP控制面(PDCP-control,PDCP-C)层。PDCP-C层主要负责控制面数据的加解密,完整性保护,数据传输等。CU-UP负责用户面功能,主要包含SDAP层和PDCP用户面(PDCP-user,PDCP-U)层。其中SDAP层主要负责将核心网的数据进行处理并将流(flow)映射到承载。PDCP-U层主要负责数据面的加解密,完整性保护,头压缩,序列号维护,数据传输等至少一种功能。具体地,CU-CP和CU-UP通过通信接口(例如,E1接口)连接。CU-CP代表网络设备通过通信接口(例如,Ng接口)和核心网设备连接,通过通信接口(例如,F1-C(控制面)接口)和DU连接。CU-UP通过通信接口(例如,F1-U(用户面)接口)和DU连接。
还有一种可能的实现,PDCP-C层也包含在CU-UP中。
可以理解的是,以上关于CU和DU,以及CU-CP和CU-UP的协议层划分仅为示例,也可能有其他的划分方式,本申请实施例对此不做限定。
本申请实施例所提及的网络设备可以为包括CU、或DU、或包括CU和DU的设备、或者控制面CU节点(CU-CP节点)和用户面CU节点(CU-UP节点)以及DU节点的设备。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请实施例中对网络设备和终端设备所处的场景不做限定。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读存储介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。如图1所示,该通信系统100可以包括至少一个网络设备,例如图1所示的网络设备101。该通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备102至107。其中,该终端设备102至107可以是移动的或固定的。网络设备101和终端设备102至107中的一个或多个均可以通过无线链路通信。每个网络设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
可选地,终端设备之间可以直接通信。例如可以利用设备到设备(device to device,D2D)技术等实现终端设备之间的直接通信。如图1中所示,终端设备105与106之间、终端设备105与107之间,可以利用D2D技术直接通信。终端设备106和终端设备107可以单独或同时与终端设备105通信。
终端设备105至107也可以分别与网络设备101通信。例如可以直接与网络设备101通信,如图中的终端设备105和106可以直接与网络设备101通信;也可以间接地与网络设备101通信,如图中的终端设备107经由终端设备105与网络设备101通信。
各通信设备,均可以配置多个天线。对于该通信系统100中的每一个通信设备而言,所配置的多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。因此,该通信系统100中的各通信设备之间,可通过多天线技术通信。
应理解,图1仅为便于理解而示例的简化示意图,该通信系统100中还可以包括其他网络设备或者还可以包括其他终端设备,图1中未予以画出。例如,通信系统100中还可以包括核心网设备。接入网设备一方面为终端设备提供无线接入连接,可以向终端设备发送数据或者接收终端设备发送的数据;另一方面接入网设备和核心网设备也有连接,可以将从终端设备接收的数据转发至核心网,或者从核心网接收需要发送给终端设备的数据。
为便于理解本申请实施例,对本申请实施例中涉及的几个基本概念做简单说明。应理解,下文中所介绍的基本概念是以NR协议中规定的基本概念为例进行简单说明,但并不限定本申请实施例只能够应用于NR系统。因此,以NR系统为例描述时出现的标准名称,都是功能性描述,具体名称并不限定,仅表示设备的功能,可以对应的扩展到未来的其它系统。
1、毫米波频段。
毫米波频段通常认为是频率范围为从30GHz至300GHz之间的电磁波频段。相比于传统的sub-6GHz频段(450MHz-6000Mhz),毫米波拥有更宽的频谱资源,从而能够支持高数据率的传输,同时毫米波的波长很小,从而天线尺寸更小更方便多天线集成,所以毫米波通信是5G通信系统以及未来通信系统中的关键技术。但是同时,相比于传统的sub-6GHz频段,毫米波频段的信道衰减非常大,所以在毫米波频段通信的设备需要利用波束成形或其他技术,并采用特定的空域滤波参数使得信号的能量能集中在特定的方向,即特定的波束方向上,提高收发设备之间的等效信道增益,从而保证毫米波通信的覆盖性能和传输数据率。
2、波束训练和追踪。
在收发设备建立连接的初始阶段,由于收发设备间的位置和信道等信息通常是未知的,收发设备需要进行波束训练过程来找到合适的波束方向以及其对应的空域滤波参数。现有NR系统中基站和终端间的波束训练流程是由信道状态信息上报(Channel state information, CSI-reporting)流程完成的。其主要流程是网络设备首先为终端设备配置多个信道状态信息参考信号(Channel state information reference signal,CSI-RS),包括每个CSI-RS的时频位置、索引、端口数量、端口图样等信息。CSI-RS可以是同步信号/物理广播信道块(Synchronization signal/Physical broadcast channel block,SSB)或者非零功率CSI-RS(Non-zero-power CSI-RS,NZP-CSI-RS)。网络设备在发送每个CSI-RS时,可以采用不同的空域发送参数,即网络设备在不同的波束方向上发送参考信号。终端设备对网络设备配置的各个CSI-RS进行接收并测量参考信号接收功率(Reference signal received power,RSRP)或者信干燥比(Signal to interference and noise ratio,SINR),然后上报RSRP或者SINR较高的若干个CSI-RS的参考信号索引以及其对应的RSRP量化值。终端设备在接收和测量CSI-RS时也可以使用不同的接收波束,即针对网络设备的每个发送波束,终端设备可以训练自己对应的最佳接收波束,完成波束对链路(Beam pair link,BPL)训练。网络设备收到终端设备的上报信息后,由于网络设备自身知道发送各个CSI-RS所采用的发送波束,故网络设备最终能够确定采用哪几个波束方向上发送信号能使得终端设备接收到较高能量的信号,且终端设备针对网络设备的每个发送波束方向也能确定对应的接收波束,最终完成波束训练过程。
当终端设备和网络设备建立连接之后,考虑到终端设备是移动的以及终端设备和网络设备之间可能会出现遮挡,导致终端设备和网络设备之间最佳的BPL可能会发生变化,为了维持终端设备和网络设备之间的波束始终保持对准,网络设备会周期性地向终端设备发送用于波束追踪的CSI-RS,同时终端设备相应地也会向网络设备发送这些用于追踪的CSI-RS的测量报告。
为了便于理解,结合图2说明波束训练过程,图2是本申请提供的一种波束训练示意图。从图2中可以看出,网络设备在不同的波束方向上发送参考信号(如图2中所示的NZP-CSI-RS#1、NZP-CSI-RS#2和NZP-CSI-RS#3)。终端设备接收并测量参考信号RSRP,然后上报CSI测量报告(如,上报RSRP较高的若干个CSI-RS的参考信号索引以及其对应的RSRP量化值)。从图2中可以看出,终端设备在接收和测量CSI-RS时也可以使用不同的接收波束(如图2中所示的接收波束#1、接收波束#2和接收波束#3)。
3、准共址(Quasi co-location,QCL)。
NR系统中QCL的定义为:如果一个天线端口在一个符号上表征的信道大尺度特性能从另一个天线端口在一个符号上表征的信道大尺度特性推断而出,则可认为这两个信道QCL。NR中定义了如下四种QCL参数类型:
-'typeA':{多普勒偏移,多普勒扩展,平均时延,时延扩展}
-'typeB':{多普勒偏移,多普勒扩展}
-'typeC':{多普勒偏移,平均时延}
-'typeD':{空域接收参数}
其中,获取多普勒偏移可以理解为完成频域同步;获取平均时延可以理解为完成时域同步;获取多普勒扩展和时延扩展可以用于信道估计。
typeD(也可以称为D类型QCL参数)的QCL参数指示了两个天线端口采用的空域接收参数相同或相似,用于辅助接收设备确定自己的接收波束,在本申请中除非特别声明,空域接收参数也可以理解为接收波束,接收波束也可以理解为空域接收参数。考虑到NR 中是基于BPL建立连接的,因此typeD的QCL关系也可以理解为两个天线端口采用的空域发送参数相同或相似。
当网络设备配置了不同参考信号或者信道的QCL关系之后,可以提升终端设备接收数据或控制信道的接收效率。例如,当网络设备首先向终端设备配置了一些CSI-RS,终端设备可以对这些CSI-RS进行测量和处理,从而获得上述QCL参数中的一种或多种,例如通过接收波束训练确定每个CSI-RS的最佳接收波束(D类型QCL参数),以及测得每个CSI-RS的平均时延,和多普勒偏移,从而确定该CSI-RS对应的时频偏同步信息,同时当该CSI-RS是TRS时,终端设备还可以测得该TRS的时延扩展信息和多普勒扩展信息。
之后网络设备向终端设备指示控制资源集合(Control Resource Set,CORESET)的(Demodulation reference signal,DMRS)和某个波束训练过程中的CSI-RS typeD QCL时,终端设备即可使用之前接收该CSI-RS的接收波束在该CORESET上检测下行控制信息(Downlink control information,DCI),当网络设备向终端设备配置网络设备向终端设备指示CORESET的DMRS和某个CSI-RS typeA QCL时,终端可以按照之前得到的时频偏同步信息进行DCI的接收和检测,同时利用之前得到的时延扩展和多普勒扩展进行信道估计,随后进行DCI的解调解码。
具体的,QCL关系可以通过传输配置指示状态(Transmission Configuration Indicator state,TCI-state)来进行配置和指示:
示例性地,一个TCI-state包含一个下行参考信号以及该参考信号的QCL关系类型;或者,一个TCI-state包含第一个下行参考信号的指示信息和该参考信号对应的QCL关系类型以及第二个下行参考信号和该参考信号对应的QCL类型。其中,第一个下行参考信号对应的QCL关系类型为typeA或者typeB或者typeC,第二个下行参考信号对应的QCL关系类型为typeD。
4、控制信道的配置以及波束指示。
NR系统中网络设备和终端设备间的DCI承载在物理下行控制信道(physical downlink control channel,PDCCH)上,由于终端设备事先不知道网络设备是否会下发DCI以及具体在哪发DCI,网络设备通过提前为终端设备配置CORESET以及搜索空间(searchSpace,SS)确定一些候选的周期性的时频资源位置,然后指示终端设备在这些位置上进行PDCCH的盲检从而确定网络设备是否调度终端设备的数据传输,信道状态信息上报等。
其中,CORESET的配置信息中会配置CORESET的频域位置、符号数、资源映射方式以及TCI-State等信息。TCI-State用来指示CORESET上PDCCH的DMRS的QCL源参考信号(Reference Signal,RS),用于PDCCH的信道接收和信道估计。在具体实施过程中,RRC层关于CORESET的配置信息中会包含多个TCI-state,在MAC层上通过MAC控制单元(Control element,CE)激活其中的一个TCI-state。
当某个CORESET被配置或被激活了某个TCI-State之后,接收设备可以通过该TCI-State指示的参考信号的信道特征来辅助在该CORESET上进行PDCCH盲检时的信道估计,或者确定在该CORESET上进行PDCCH盲检时使用的接收波束。
searchSpace的配置信息中会配置searchSpace的类型,即是用户特定的还是小区特定的,searchSpace的周期(时隙数为单位)和在周期中的偏移量,在检测时隙中的起始符号位置,各种聚合等级下的候选物理下行信道数,支持的DCI格式等信息。每个searchSpace 与一个CORESET相关联,从而确定具体的用于盲检PDCCH的时频位置。
为了便于理解,结合图3说明CORESET和searchSpace的配置方式。图3是本申请提供的一种控制资源集合CORESET和搜索空间searchSpace的配置示意图。从图3中可以看出,网络设备为终端设备配置了两个CORESET(如图3中所示的CORESET#0和CORESET#1),其中CORESET#0占2个符号,频域上占12个PRB,CORESET#1占1个符号,频域上占24个PRB;同时网络设备还为终端设备配置了2个searchSpace(如图3中所示的SS#0和SS#1),其中SS#0关联了CORESET#0,周期为1个时隙(slot),起始符号出现在对应时隙中的符号0,SS#1关联了CORESET#1,周期为2个slot,起始符号出现在对应时隙中的符号0。
5、数据信道波束配置。
NR系统中物理层的数据通常承载在物理下行共享信道(Physical downlink shared channel,PDSCH)上,且通常由DCI进行调度,DCI可以包含PDSCH的时频位置指示信息、PDSCH的接收波束指示信息。具体的指示流程如下:
首先,网络设备通过RRC层信令为终端设备配置多个PDSCH可用的TCI-state;
然后,网络设备通过MAC CE进行激活其中的若干个TCI-state。
当网络设备通过DCI调度PDSCH时,DCI中可以包含TCI码点(codepoint)字段,TCI codepoint字段的不同值和已经激活的TCI-state有一一对应的关系,因此网络设备可以通过DCI中的TCI codepoint向终端设备指示此次调度的PDSCH应该使用的接收波束。
该指示方法主要有以下好处:第一点是考虑到DCI中有效载荷(payload)有限,通过MAC CE激活后降低了可用的TCI-state的集合大小,因此也降低了TCI codepoint的指示开销;第二点是终端设备可以只维护MAC CE激活的TCI-state对应的信道信息,降低了终端设备的实现复杂度。
6、波束配置更新。
当终端设备发生移动,终端设备和网络设备之间出现遮挡,周围散射体环境发生变化等情况出现时,终端设备和网络设备最优的BPL会发生变化,终端设备会通过CSI上报告知网络设备最佳波束的变化情况,当网络设备收到上报信息后,需要重新对终端设备的CORESET的TCI-state进行配置,或者对PSSCH增加新的激活的TCI-state,使得网络设备和终端设备在新的BPL上进行控制信息或数据信息的发送和接收。
为了便于理解,结合图4说明波束配置更新流程,图4是本申请提供的一种波束配置更新的示意图。从图4中可以看出,波束配置更新流程包括:
首先,网络设备向终端设备发送MAC CE用于激活新TCI-state;
然后,终端设备会对该MAC CE进行解调解码并进行回复(Acknowledgement,ACK);另外,终端设备需要对该MAC CE的具体信息进行处理并解析,向各层协议栈指示网络设备可能会通过新的TCI-state进行发送。
但实际新的TCI-state的使用还需要等待一个SSB,并对该SSB进行处理。新TCI-state中的1个参考信号和SSB有typeA或typeC的QCL关系,例如,该TCI-state中可能包含1个参考信号或2个参考信号,该SSB和新TCI-state中的1个参考信号有typeA或者typeC的QCL关系,是因为在不同的波束方向上,终端设备接收到的信号在空间中传播路径不同,因此在新的波束方向上终端设备在新波束方向上需要重新进行时频同步(即计算平均 时延和平均多普勒频偏)。
此外,为了便于理解本申请实施例,做出以下几点说明。
第一,在本申请中,“用于指示”可以包括用于直接指示和用于间接指示。当描述某一指示信息用于指示A时,可以包括该指示信息直接指示A或间接指示A,而并不代表该指示信息中一定包括有A。
将指示信息所指示的信息称为待指示信息,则具体实现过程中,对待指示信息进行指示的方式有很多种。例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。同时,还可以识别各个信息的通用部分并统一指示,以降低单独指示同样的信息而带来的指示开销。例如,本领域的技术人员应当明白,预编码矩阵是由预编码向量组成的,预编码矩阵中的各个预编码向量,在组成或者其他属性方面,可能存在相同的部分。
此外,具体的指示方式还可以是现有各种指示方式,例如但不限于,上述指示方式及其各种组合等。各种指示方式的具体细节可以参考现有技术,本文不再赘述。由上文所述可知,举例来说,当需要指示相同类型的多个信息时,可能会出现不同信息的指示方式不相同的情形。具体实现过程中,可以根据具体的需要选择所需的指示方式,本申请实施例对选择的指示方式不做限定,如此一来,本申请实施例涉及的指示方式应理解为涵盖可以使得待指示方获知待指示信息的各种方法。
此外,待指示信息可能存在其他等价形式,例如行向量可以表现为列向量,一个矩阵可以通过该矩阵的转置矩阵来表示,一个矩阵也可以表现为向量或者数组的形式,该向量或者数组可以由该矩阵的各个行向量或者列向量相互连接而成,等。本申请实施例提供的技术方案应理解为涵盖各种形式。举例来说,本申请实施例涉及的部分或者全部特性,应理解为涵盖该特性的各种表现形式。
待指示信息可以作为一个整体一起发送,也可以分成多个子信息分开发送,而且这些子信息的发送周期和/或发送时机可以相同,也可以不同。具体发送方法本申请不进行限定。其中,这些子信息的发送周期和/或发送时机可以是预先定义的,例如根据协议预先定义的,也可以是发射端设备通过向接收端设备发送配置信息来配置的。其中,该配置信息可以例如但不限于包括无线资源控制信令、媒体接入控制(media access control,MAC)层信令和物理层信令中的一种或者至少两种的组合。其中,无线资源控制信令例如包无线资源控制(radio resource control,RRC)信令;MAC层信令例如包括MAC控制元素(control element,CE);物理层信令例如包括DCI。
第二,在本申请中第一、第二以及各种数字编号(例如,“#1”、“#2”)仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的信息等。
第三,在本申请中,“预设的”可包括由网络设备信令指示,或者预先定义,例如,协议定义。其中,“预先定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
第四,本申请实施例中涉及的“保存”,可以是指的保存在一个或者多个存储器中。所述一个或者多个存储器,可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或通信装置中。所述一个或者多个存储器,也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
第五,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
第六,在本申请实施例中,控制信道可以包括PUCCH、增强物理上行控制信道(enhanced physical uplink control channel,EPUCCH)等其它物理层控制信道,但为了描述方便,下面的术语或概念仅以PUCCH为例进行说明,但本申请实施例并不限于此。
应理解,本申请实施例中是以上行控制信道为物理上行控制信道PUCCH为例进行说明,但并不对本申请实施例构成限定,事实上,上行控制信道也可能定义为其他的术语或概念,均适用本申请实施例的技术方案。在本申请实施例中,上行控制信道和PUCCH可能会交替使用,可以认为PUCCH是上行控制信道的一种示例描述。
第七,在本申请实施例中,各术语及英文缩略语,如下行控制信息(DCI)、媒体接入控制控制元素(MAC-CE)、无线资源控制(RRC)、物理下行控制信道(PDCCH)、物理下行共享信道(PDSCH)、控制资源集(CORESET)、信道状态信息参考信号(CSI-RS)、探测参考信号(SRS)、同步信号/物理广播信道(SS/PBCH)、同步信号块(SSB)、传输配置指示状态(TCI-state)等,均为方便描述而给出的示例性举例,不应对本申请构成任何限定。本申请并不排除在已有或未来的协议中定义其它能够实现相同或相似功能的术语的可能。
第八,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
第九、本文中涉及的接收到某个信息的时刻,可以理解为开始接收该信息的时刻,还可以理解为接收完成该信息的时刻。
上文结合图1简单介绍了本申请实施例提供的通信方法能够应用的场景,以及介绍了本申请实施例中可能涉及到的基本概念,下面将结合附图详细说明本申请实施例提供的通信方法。
由上述波束配置更新可知,当激活新TCI-state的MAC CE发送后,终端设备可能需要等待较长的时间才能实际在新TCI-state指示的波束方向上接收控制信息和/或数据信息,影响终端设备实际的数据传输速率。
需要说明的是,在新TCI-state激活之前,一般情况下终端设备都对相应的CSI-RS进行了测量以及上报,因此终端设备在测量该CSI-RS时已经获取了该CSI-RS对应的部分typeC QCL信息。一种波束配置更新的方法是:终端设备对该参考信号的typeC QCL信息进行记录(例如,网络设备配置该终端设备进行记录并维护该信息一段时间),则网络设备激活新的TCI-state后,终端设备实际依旧拥有该波束下的时频偏同步信息,因此可以不用额外等待SSB。
但是该波束配置更新的方法可能存在以下问题:
1)频偏的分辨率通常由测量时间的长度决定,测量时间长度越长,频偏分辨率越高。而用于波束训练的CSI-RS的一个端口通常在一个时隙内只占据一个符号。获得的typeC QCL参数准确度较低。
2)终端设备测量用于波束训练的CSI-RS通常只能获得该参考信号对应的typeC以及typeD的QCL参数,无法获得typeA QCL参数,而typeA QCL参数对信道估计十分重要,当终端设备没有typeA参数时,终端设备对信道的估计准确度会降低,可能会影响终端设备对控制或者数据信道解调解码的准确率,等效的,网络设备可能会等到终端设备后续接收到追踪参考信号(Tracking reference signal,TRS)之后才会给终端设备使用新的波束发送控制和数据信息,会带来较大的时延。
本申请实施例提供一种通信方法,终端设备上报信道状态信息时同步上报是否包括某些参考信号的QCL参数,使得网络设备能够获知终端设备保存的参考信号的QCL参数情况,进一步地在基于该QCL参数信息确定激活的新的TCI-state的生效时刻的情况下,能够提高激活新的TCI-state的效率。
应理解,本申请实施例提供的通信方法可以应用于通过多天线技术通信的系统,例如,图1中所示的通信系统100。该通信系统可以包括至少一个网络设备和至少一个终端设备。网络设备和终端设备之间可通过多天线技术通信。
还应理解,下文示出的实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
以下,以网络设备与终端设备之间的交互为例详细说明本申请实施例提供的通信方法。
图5是本申请提供的一种通信方法的示意性流程图。包括以下步骤:
S510,网络设备向终端设备发送第一配置信息,或者说终端设备接收来自网络设备的第一配置信息。
该第一配置信息用于指示终端设备进行信道状态信息上报,该第一配置信息包括一个或者多个第一参考信号的标识。
其中,第一参考信号的标识用于标识该第一参考信号,包括但不限于:该第一参考信号的索引、该第一参考信号的标识等。该第一参考信号的标识,能够用于指示该一参考信号即可,具体形式本申请中不做限制。
上述的第一配置信息用于指示终端设备进行信道状态信息上报可以是:第一配置信息用于指示终端设备测量和上报一个或者多个第一参考信号的RSRP值或者SINR值。其中,上报第一参考信号的RSRP值或者SINR值可以是:上报第一参考信号的RSRP或者SINR的量化值。
第一参考信号包括CSI-RS。例如,第一参考信号可以是NZP-CSI-RS。应理解,第一参考信号还可以是其他能够实现信道状态信息参考信号功能的参考信号,本申请对此不进行任何限定。
作为一种可能的实现方式,第一参考信号可以配置成和SSB和/或TRS(为了便于描述,下文中以TRS为了说明)具有typeA QCL或者typeC QCL关系,即第一参考信号和 TRS拥有相同或相近的平均时延和多普勒频偏。
作为另一种可能的实现方式,第一参考信号可以配置成和TRS具有typeD QCL关系,即第一参考信号和TRS拥有相同或相近的空间发送/接收参数。
由于TRS在一个时隙内可以占据多个符号,在针对TRS测量TRS对应的QCL参数时,测量时间长度相比于针对波束训练的CSI-RS要长,所以能够提高测得的QCL参数准确度。当第一参考信号配置成和TRS具有QCL关系时,第一参考信号的QCL参数可以参考TRS的QCL参数,准确度也比较高。
例如,网络设备为终端设备配置了多个TRS(如,TRS#1、TRS#2和TRS#3)。网络设备为终端设备配置了多个第一参考信号(如,NZP-CSI-RS#1、NZP-CSI-RS#2和NZP-CSI-RS#3)。网络设备向终端设备配置了NZP-CSI-RS#1和TRS#1具有typeA QCL关系和typeD QCL关系,NZP-CSI-RS#2和TRS#2具有typeA QCL关系和typeD QCL关系,NZP-CSI-RS#3和TRS#3具有typeAQCL关系和typeD QCL关系。
作为又一种可能的实现方式,第一参考信号可以配置成间接和TRS具有QCL关系,即第一参考信号和TRS拥有相同或相近的平均时延和多普勒频偏,以及相同或相近的空间发送/接收参数。
例如,网络设备在为终端配置了多个SSB(如,TRS#1、TRS#2和TRS#3)。网络设备为终端设备配置了多个第一参考信号(如,NZP-CSI-RS#1、NZP-CSI-RS#2和NZP-CSI-RS#3)。网络设备向终端设备配置了NZP-CSI-RS#1和NZP-CSI-RS#4具有QCL关系、NZP-CSI-RS#2和NZP-CSI-RS#5具有QCL关系、NZP-CSI-RS#3和NZP-CSI-RS#6具有QCL关系;同时网络设备向终端设备配置了NZP-CSI-RS#4、NZP-CSI-RS#5和NZP-CSI-RS#6分别和TRS#1、TRS#2和TRS#3具有QCL关系,则可以认为NZP-CSI-RS#1、NZP-CSI-RS#2和NZP-CSI-RS#3分别和TRS#1、TRS#2和TRS#3间接具有QCL关系。
下文中再次提及间接具有QCL关系时,可以参考这里对于间接具有QCL关系的描述,即提及具有QCL关系时可以是有直接的QCL关系或者间接的QCL关系,下文中对于间接具有QCL关系的定义不再赘述。
在上述的两种可能的实现方式下,可以理解终端设备还可以接收SSB(或TRS),并获取了SSB的QCL参数,图5所示的方法流程可能包括:
S511,网络设备向终端设备发送SSB(或TRS),或者说,终端设备接收来自网络设备的SSB(或TRS)。
具体地,网络设备可以根据SSB(或TRS)的时频位置进行SSB(或TRS)的发送。终端设备可以对SSB(或TRS)进行接收。其中,SSB(或TRS)在一个时隙中占据多个符号。TRS用于终端设备进行时频偏同步,同时也可用于终端设备估计信道的时延扩展和多普勒扩展(或频率扩展)。
作为一种可实现的方式,SSB(或TRS)为周期性的。
在一种可实现的方式中,网络设备可以在多个波束方向上发送SSB(或TRS),所述多个波束方向可以包括网络设备和终端设备控制信道和数据信道正在使用的波束方向,也可以包括其他一些备用的波束方向。
示例性地,这些备用的波束方向可以为其他终端设备正在使用的波束方向。
例如,网络设备在波束方向#1、波束方向#2和波束方向#3上发送SSB(或TRS), 其中,波束方向#1和波束方向#2为网络设备和终端设备控制信道和数据信道正在使用的波束方向,波束方向#3为网络设备和其他终端设备控制信道和数据信道正在使用的波束方向。
示例性地,终端设备接收上述的SSB(或TRS)后,可以得到这些SSB(或TRS)的typeA或typeC的QCL参数。
具体地,终端设备得到了typeA的QCL参数可以理解为终端设备获得了该参考信号对应天线端口的平均时延信息,多普勒偏移信息,时延扩展信息和多普勒扩展信息。终端设备得到了typeC的QCL参数可以理解为终端设备获得了该参考信号对应天线端口的平均时延信息,多普勒偏移信息。其中,终端设备得到了平均时延信息可以理解为终端设备完成了和对应天线端口的时域同步;终端设备得到了多普勒偏移信息可以理解为终端设备完成了和对应天线端口的频域同步。
进一步地,网络设备可以根据第一配置信息向终端设备发送第一参考信号,图5所示的方法流程还包括:
S521,网络设备向终端设备发送一个或者多个第一参考信号,或者说,终端设备接收来自网络设备的一个或者多个第一参考信号。
网络设备可以根据S510中的配置向终端发送多个一个或者多个第一参考信号。
示例性地,对于每个第一参考信号,网络设备使用的发送波束/空间发送参数可以和发送与该第一参考信号具有QCL关系的SSB(或TRS)的发送波束/空间发送参数相同,或者发送与该第一参考信号具有QCL关系的SSB(或TRS)的发送波束/空间发送参数相近,这样即可保证第一参考信号和SSB(或TRS)具有typeD QCL关系以及type A QCL关系。
进一步地,终端设备向网络设备上报信道状态信息,图5所示的方法流程还包括:
S520,终端设备向网络设备发送第一信息,或者说,网络设备接收来自终端设备的第一信息。
第一信息包括至少一个第二参考信号的信道状态信息,所述至少一个第二参考信号为上述的一个或者多个第一参考信号的部分或全部,或者说,该至少一个第二参考信号属于该一个或者多个第一参考信号,或者说一个或者多个第一参考信号包括该至少一个第二参考信号。具体地,终端设备进行波束测量的结果上报,该第一信息(可以称为测量报告)中包含了用于波束测量的参考信号的标识以及对应的RSRP量化值。
该实施例中,第一信息中还包括第一指示信息,该第一指示信息用于指示所述终端设备是否保存有所述至少一个第二参考信号的准共址QCL参数(为了便于区分,可以称为第一QCL参数)。
示例性地,上述的第一指示信息指示所述终端设备是否保存有所述至少一个第二参考信号的第一QCL参数,一种可能的实现方式是:第一指示信息指示终端设备是否保存有所述至少一个第二参考信号中至少一个第三参考信号的第二QCL参数。
在所述第一指示信息中指示所述终端设备保存有所述至少一个第二参考信号中至少一个第三参考信号的第二QCL参数的情况下,所述第一信息还包括所述至少一个第三参考信号的标识。
进一步地,网络设备还可以通过第三指示信息指示终端设备上报第二QCL参数的类 型,图5所示的方法流程还包括:
S522,网络设备向终端设备发送第三指示信息,或者说终端设备接收来自网络设备的第三指示信息。
第三指示信息用于指示所述终端设备对所述第二QCL参数的类型进行上报,
则上述的第一信息中还包括指示终端设备获取的至少一个第三参考信号的所述第二QCL参数的类型的指示信息,如,第一信息中还包括第四指示信息,该第四指示信息用于指示至少一个第三参考信号的所述第二QCL参数的类型。
可选地,终端设备上报的第二QCL参数的类型包括:A类型或C类型。另外,作为可替代的终端设备上报的第二QCL参数的类型可以通过上报某个类型的QCL参数而间接上报QCL参数的类型。例如,终端设备上报A类型可以通过上报A类型的第二QCL参数(或者称为typeA QCL参数等)实现;或者,还例如,终端设备上报第二QCL参数的C类型可以通过上报C类型的QCL参数(或者typeC QCL参数等)实现。
可选地,第三指示信息携带在第一配置信息中。
可选地,针对一个NZP-CSI-RS,终端设备还可以额外向网络设备指示终端设备是否具备该NZP-CSI-RS的typeA QCL参数或typeC QCL参数。其中,该typeA QCL参数可以是终端设备通过与该NZP-CSI-RS具有typeA QCL关系的SSB(或TRS)获得的;或typeC QCL参数可以是终端设备通过与该NZP-CSI-RS具有typeC QCL关系的SSB(或TRS)获得的。
为了便于理解,结合具体的例子说明如何指示终端设备保存有至少一个第三参考信号的第二QCL参数,以及第二QCL参数类型。
例如,网络设备为终端设备配置的用于3个波束训练的NZP-CSI-RS和3个TRS分别具有typeA QCL关系、typeD QCL关系或者间接QCL关系。如果终端设备已经接收TRS1和TRS2,并且记录了TRS1和TRS2的QCL参数,那么终端设备如果上报了的索引以及RSRP,则还可以向网络设备上报本终端设备已经测量了NZP-CSI-RS1对应天线端口的的QCL参数。进一步还可以向网络设备上报本终端设备测的是typeA QCL参数或者typeC QCL参数。可选地,终端设备还可以向网络设备上报本终端设备没有测量TRS3的QCL参数,或者不进行任何指示。
作为一种可能的实现方式,在网络设备确定需要激活新的TCI state的情况下,图5所示的方法流程还包括:
S530,网络设备向终端设备发送第二指示信息,或者说终端设备接收来自网络设备的第二指示信息。
第二指示信息用于指示激活TCI-state,例如,第二指示信息包括MAC CE或者DCI。应理解,本申请对第二指示信息的具体形式不做限定,能够用于指示激活TCI-state的信息都在本申请的保护范围之内。
当所述TCI-state对应的第四参考信号满足第一条件,所述TCI-state的生效时刻为第一时刻;当所述TCI-state对应的第四参考信号不满足第一条件,所述TCI-state的生效时刻为第二时刻。
所述TCI-state对应的参考信号可以理解为所述TCI-state中包含的第一个参考信号,或者所述TCI-state中包含的第二个参考信号,或者所述TCI-state中包含的任何一个参考 信号。
第一条件包括第四参考信号为所述至少一个第三参考信号中的一个;或者第四参考信号与所述至少一个第三参考信号中的一个第三参考信号满足QCL关系,其中,满足QCL关系可以是具有直接QCL关系,或者具有间接QCL关系。
由上述可知,第三参考信号为终端设备上报的一个参考信号,终端设备在上报第三参考信号的相关测量值时上报了终端设备具备该第三参考信号的typeA QCL参数或typeC QCL参数。
示例性地,在确定TCI-state生效时刻时,还需要满足以下条件:第三时刻和第四时刻间隔的时长小于或者等于第一阈值,其中,所述第三时刻为所述终端设备接收到所述第二指示信息的时刻或者为所述终端设备对所述第二指示信息回复ACK的时刻,所述第四时刻为所述终端设备发送所述第一信息的时刻或者为所述网络设备对所述第一信息回复ACK的时刻。
其中,第一阈值可是为协议预定义的,还可以终端设备和网络设备协商确定,本申请对第一阈值的取值和确定方式不做限定。
示例性地,所述第一时刻为接收到所述第二指示信息的时刻(或所述终端设备对所述第二指示信息回复ACK的时刻)起始经过第一时长(如,3ms)的时刻,所述第二时刻为接收到所述第二指示信息的时刻(或所述终端设备对所述第二指示信息回复ACK的时刻)起始经过第二时长(如,20ms)的时刻,所述第二时长大于或等于包括所述第一时长、等待同步信号块SSB或追踪参考信号TRS的时长、以及第三时长三者之和。其中,SSB或TRS和TCI state中的一个参考信号(如第四参考信号)具有typeA或typeC的QCL关系;或者SSB或TRS和TCI state中的一个参考信号具有typeA或typeC的间接QCL关系。可选地,第一时长、第二时长可以是配置或者预配置的。第三时长可以是用来处理所述SSB或TRS的时长。
为了便于理解,结合图6说明第一时刻和第二时刻的关系,图6是本申请提供的一种第一时刻和第二时刻的示意图。
从图6中可以看出第一时刻为终端设备对所述第二指示信息回复ACK的时刻之后第一时长(如,3ms)的时刻;第二时刻为终端设备对所述第二指示信息回复ACK的时刻之后第一时长(如,20ms)的时刻。
应理解,图6仅是示例,对本申请的保护范围不构成任何的限定。
在TCI-state的生效时刻为第一时刻的情况下,可降低激活新TCI-state后等待用于同步的参考信号的时间。
作为一种可能的实现方式,第四参考信号与所述至少一个第三参考信号中的一个第三参考信号满足QCL关系为:该第四参考信号与该至少一个第三参考信号中的一个第三参考信号满足A类型QCL关系,其中,该A类型QCL关系包括发送该第四参考信号的天线端口经历的信道和发送所述第三参考信号的天线端口经历的信道拥有共同的:多普勒偏移,多普勒扩展,平均时延,时延扩展。
在该实现方式下,可以理解为终端设备在获得了第四参考信号的A类型QCL参数的情况下,可以在第一时刻使用该TCI-state,由于A类型的QCL参数包含的信道大尺度特性种类要多于C类型的QCL参数,当终端设备具备A类型的QCL参数后能更准确地进 行信道估计,提高了终端设备使用该新TCI-state传输数据的可靠性。
图5所示的方法流程说明终端设备可以通过信道测量报告上报流程告知网络设备:终端设备是否保存有某些参考信号的QCL参数,应理解,终端设备可以通过其他方式上报,例如,终端设备可以在网络设备激活新的TCI-state之前或者之后,通过新增的消息向网络设备上报保存有某些参考信号的QCL参数,通过单独的信令向网络设备告知终端设备监测的参考信号,CSI-RS上报解耦提高了信令交互的灵活性,下面结合图7说明。
图7是本申请提供的另一种通信方法的示意性流程图,包括以下步骤:
S710,终端设备获取至少一个第三参考信号的第二QCL参数。
可选地,第三参考信号为终端设备监测并记录第二QCL参数的SSB(或TRS)。
可以理解,终端设备接收SSB(或TRS)后,可以得到SSB(或TRS)的typeA或typeC的QCL参数,则上述的步骤S710可以理解为:网络设备向终端设备发送SSB(或TRS),终端设备接收SSB(或TRS)后即可获取至少一个第三参考信号的第二QCL参数。
该实施例中,终端设备可以将保存有至少一个第三参考信号的第二QCL参数的情况,通过第一信息上报给网络设备,图7所示的方法流程还包括:
S720,终端设备向网络设备发送第一信息,或者说网络设备接收来自终端设备的第一信息。
第一信息中包括所述至少一个第三参考信号的标识,该第一信息用于指示所述终端设备保存有所述至少一个第三参考信号的第二QCL参数。
作为一种可能的实现方式,终端设备上报第一信息可以和信道状态测量报告的上报过程并行进行。
作为另一种可能的实现方式,终端设备上报第一信息可以和信道状态测量报告上报的过程无关。
例如,终端设备根据历史信息进行预测哪些波束成为新波束的概率较高,因此可以提前在这些波束方向上用对应的SSB或TRS完成同步,并将这些SSB和TRS的索引上报给网络设备。
作为又一种可能的实现方式,终端设备上报第一信息也可以是基于信道状态测量报告上报结果进行的。
例如,当终端设备上报了若干个RSRP较高的参考信号之后,终端设备可以提前追踪和这些参考信号有QCL关系的TRS和SSB,然后将这些TRS和SSB的索引上报给网络设备,从而能提前启动终端设备在这些波束方向上的同步,而不是等到这些波束通过TCI-state被激活后终端设备才开始同步。
另外,该第一信息的上报行为可以是周期的,也可以是非周期的。同时当终端设备对某些参考信号不再追踪时,即不维护某些波束方向上的同步时,终端设备也可以将该信息上报给网络设备,通知网络设备这些波束方向上的同步信息本终端设备不再维护。
进一步地,网络设备还可以通过第三指示信息指示终端设备上报第二QCL参数的类型,图7所示的方法流程还包括:
S721,网络设备向终端设备发送第三指示信息,或者说终端设备接收来自网络设备的第三指示信息。
可以参考上述图5中S522的描述,此处不再赘述。
作为一种可能的实现方式,在网络设备确定需要激活新的TCI state的情况下,图7所示的方法流程还包括:
S730,网络设备向终端设备发送第二指示信息,或者说终端设备接收来自网络设备的第二指示信息。
第二指示信息用于指示激活TCI-state,例如,第二指示信息为MAC CE或者DCI。应理解,本申请对第二指示信息的具体形式不做限定,能够用于指示激活TCI-state的信息都在本申请的保护范围之内。
示例性地,根据步骤S730和步骤S720的先后关系,确定TCI-state生效时刻包括以下两种可能:
可能一:上述的步骤S720在步骤S730之前执行。
在可能一下当所述TCI-state对应的第四参考信号满足第一条件,所述TCI-state的生效时刻为第一时刻;当所述TCI-state对应的第四参考信号不满足第一条件,所述TCI-state的生效时刻为第二时刻。
第一条件包括第四参考信号为所述至少一个第三参考信号中的一个;或者第四参考信号与所述至少一个第三参考信号中的一个第三参考信号满足QCL关系,其中,满足QCL关系可以是具有直接QCL关系,或者具有间接QCL关系。
作为一种可能的实现方式,第四参考信号与所述至少一个第三参考信号中的一个第三参考信号满足QCL关系为:该第四参考信号与该至少一个第三参考信号中的一个第三参考信号满足A类型QCL关系,其中,该A类型QCL关系包括发送该第四参考信号的天线端口经历的信道和发送所述第三参考信号的天线端口经历的信道拥有共同的:多普勒偏移,多普勒扩展,平均时延,时延扩展。
在该实现方式下,可以理解为终端设备在获得了第四参考信号的A类型QCL参数的情况下,可以在第一时刻使用该TCI-state,由于A类型的QCL参数包含的信道大尺度特性种类要多于C类型的QCL参数,当终端设备具备A类型的QCL参数后能更准确地进行信道估计,提高了终端设备使用该新TCI-state传输数据的可靠性。
由上述可知,第三参考信号为终端设备上报的一个参考信号,终端设备通过第一指示信息上报终端设备具有该第三参考信号的第二QCL参数,并且进一步地通过第四指示信息上报该第二QCL参数的类型。例如,上报的该第二QCL参数的类型包括A类型或C类型;当上报的该第二QCL参数的类型包括A类型时,可以理解为终端设备具备该第三参考信号的typeA QCL参数;当上报的该第二QCL参数的类型包括C类型时,可以理解为终端设备具备该第三参考信号的typeC QCL参数。
具体地,第一时刻和第二时刻的定义可以参考图5中步骤S530中关于第一时刻和第二时刻的描述,此处不再赘述。
示例性地,第三时刻和第四时刻间隔的时长小于或者等于第一阈值,具体地,第三时刻和第四时刻的定义可以参考图5中步骤S530中关于第三时刻和第四时刻的描述,此处不再赘述。
可能二:上述的步骤S720在步骤S730之后执行。
也就是终端设备在接收到激活TCI-state的第二指示信息之前没有上报保存有QCL参数的参考信号,而是在接收到第二指示信息之后,上报保存有该TCI-state对应的第四参 考信号的QCL参数,可以理解为:当至少一个第三参考信号包括TCI-state对应的第四参考信号时,TCI-state的生效时刻为发送第一信息(或者为接收网络设备针对该第一信息的ACK)之后的第一时长的时刻。
可能二下终端设备直接向网络设备指示待激活的TCI-state对应的第四参考信号QCL参数情况,规则和对应关系更加简单。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
还应理解,在上述一些实施例中,主要以现有的网络架构中的设备为例进行了示例性说明(如网络设备、终端设备等等),应理解,对于设备的具体形式本申请实施例不作限定。例如,在未来可以实现同样功能的设备都适用于本申请实施例。
可以理解的是,上述各个方法实施例中,由设备(如网络设备、终端设备)实现的方法和操作,也可以由设备的部件(例如芯片或者电路)实现。
以上,结合图5和图7详细说明了本申请实施例提供的通信方法。上述通信方法主要从网络设备和终端设备之间交互的角度进行了介绍。可以理解的是,网络设备和终端设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。
本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
以下,结合图8至图11详细说明本申请提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,部分内容不再赘述。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
参见图8,图8是本申请提供的一种通信装置的示意图。如图8示,装置800包括接收单元810、发送单元820和处理单元830。
作为一个示例,接收单元810,用于接收来自网络设备的第一配置信息,该第一配置信息用于指示该终端设备进行信道状态信息上报,该第一配置信息包括一个或者多个第一参考信号的标识;
发送单元820,用于向该网络设备发送第一信息,该第一信息中包括至少一个第二参考信号的信道状态信息,该至少一个第二参考信号为该一个或者多个第一参考信号的部分 或者全部,
该第一信息包括第一指示信息,该第一指示信息用于指示该通信装置是否保存有该至少一个第二参考信号的第一准共址QCL参数。
作为另一个示例,处理单元830,用于获取至少一个第三参考信号的第二准共址QCL参数;
发送单元820,用于向该网络设备发送第一信息,该第一信息中包括该至少一个第三参考信号的标识,该第一信息用于指示该终端设备保存有该至少一个第三参考信号的第二QCL参数。
装置800和方法实施例中的终端设备对应,装置800可以是方法实施例中的终端设备,或者方法实施例中的终端设备内部的芯片或功能模块。装置800的相应单元用于执行图5和图7所示的方法实施例中由终端设备执行的相应步骤。
其中,装置800中的处理单元830用于执行方法实施例中终端设备对应与处理相关的步骤。例如,执行图7中的步骤S710。
装置800中的接收单元810用于执行方法实施例中终端设备接收步骤。例如,执行图5中的步骤S511、S510、S521、S522和S530,或执行图7中的步骤S721。
装置800中的发送单元820,用于执行方法实施例中终端设备发送的步骤。例如,执行图5的步骤S520,或图7中的步骤S720。
其中,处理单元830可以是至少一个处理器。发送单元820可以是发射器或者接口电路,接收单元810可以是接收器或者接口电路。接收器和发射器可以集成在一起组成收发器或者接口电路。
可选的,装置800还可以包括存储单元,用于存储数据和/或信令,处理单元830、发送单元820、和接收单元810可以与存储单元交互或者耦合,例如读取或者调用存储单元中的数据和/或信令,以使得上述实施例的方法被执行。
以上各个单元可以独立存在,也可以全部或者部分集成。
参见图9,图9是本申请的终端设备的结构示意图。该终端设备900可应用于图1所示出的系统中。为了便于说明,图9仅示出了终端设备的主要部件。如图9所示,终端设备900包括处理器、存储器、控制电路、天线以及输入输出装置。处理器用于控制天线以及输入输出装置收发信号,存储器用于存储计算机程序,处理器用于从存储器中调用并运行该计算机程序,以执行本申请提出的用于注册的方法中由终端设备执行的相应流程和/或操作。此处不再赘述。
本领域技术人员可以理解,为了便于说明,图9仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
参见图10,图10是本申请提供的另一种通信装置的示意图。如图10所示,装置1000包括接收单元1010、发送单元1020和处理单元1030。
作为一个示例,发送单元1020,用于向终端设备发送第一配置信息,该第一配置信息用于指示该终端设备进行信道状态信息上报,该第一配置信息中包括一个或者多个第一参考信号的标识;
接收单元1010,用于接收来自该终端设备的第一信息,该第一信息中包括至少一个 第二参考信号的信道状态信息,该至少一个第二参考信号为该一个或者多个第一参考信号的部分或全部,
该第一信息包括第一指示信息。该第一指示信息用于指示该终端设备是否保存有该至少一个第二参考信号的第一准共址QCL参数的。
作为另一个示例,接收单元1010,用于接收来自终端设备的第一信息,该第一信息中包括该至少一个第三参考信号的标识,该第一信息用于指示该终端设备保存有该至少一个第三参考信号的第二准共址QCL参数;
处理单元1030,用于确定该终端设备保存有该至少一个第三参考信号的第二QCL参数。
装置1000和方法实施例中的网络设备对应,装置1000可以是方法实施例中的网络设备,或者方法实施例中的网络设备内部的芯片或功能模块。装置1000的相应单元用于执行图5和图7所示的方法实施例中由网络设备执行的相应步骤。
其中,装置1000中的处理单元1030用于执行方法实施例中网络设备内部对应于处理相关的步骤。装置1000中的发送单元1020,用于执行网络设备发送相关的步骤。例如,执行图5中的步骤S511、S510、S521、S522和S530,或执行图7中的步骤S721。
装置1000中的接收单元1010,用于执行方法实施例中网络设备的接收步骤。例如,执行图5的步骤S520,或图7中的步骤S720。
接收单元1010和发送单元1020可以组成收发单元,同时具有接收和发送的功能。处理单元1030可以是至少一个处理器。发送单元可以是发射器或者接口电路。接收单元可以是接收器或者接口电路。接收器和发射器可以集成在一起组成收发器或者接口电路。
可选的,装置1000还可以包括存储单元,用于存储数据和/或信令,处理单元1030、发送单元1020、和接收单元1010可以与存储单元交互或者耦合,例如读取或者调用存储单元中的数据和/或信令,以使得上述实施例的方法被执行。
以上各个单元可以独立存在,也可以全部或者部分集成。
参见图11,图11是本申请的网络设备的结构示意图,可以用于实现上述通信方法中的网络设备的功能。
一种可能的方式中,例如在5G通信系统中的某些实现方案中,网络设备1100可以包括CU、DU和AAU,相比于LTE通信系统中的接入网设备由一个或多个射频单元,如远端射频单元(remote radio unit,RRU)11010和一个或多个基带单元(base band unit,BBU)来说原BBU的非实时部分将分割出来,重新定义为CU,负责处理非实时协议和服务、BBU的部分物理层处理功能与原RRU及无源天线合并为AAU、BBU的剩余功能重新定义为DU,负责处理物理层协议和实时服务。简而言之,CU和DU,以处理内容的实时性进行区分、AAU为RRU和天线的组合。
CU、DU、AAU可以采取分离或合设的方式,所以,会出现多种网络部署形态,一种可能的部署形态与传统4G接入网设备一致,CU与DU共硬件部署。应理解,图11只是一种示例,对本申请的保护范围并不限制,例如,部署形态还可以是DU部署在5G BBU机房,CU集中部署或DU集中部署,CU更高层次集中等。
该AAU 1101可以实现收发功能称为收发单元。可选地,该收发单元还可以称为收发机、收发电路、或者收发器等,其可以包括至少一个天线11011和射频单元11010。可选 地,收发单元可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。该CU和DU 1102可以实现内部处理功能称为处理单元。可选地,该处理单元可以对接入网设备进行控制等,可以称为控制器。该AAU 1101与CU和DU 1102可以是物理上设置在一起,也可以物理上分离设置的。
另外,接入网设备不限于图11所示的形态,也可以是其它形态:例如:包括BBU和ARU,或者包括BBU和AAU;也可以为CPE,还可以为其它形态,本申请不限定。
应理解,图11所示的网络设备1100能够实现图5和图7的方法实施例中涉及的网络设备。网络设备1100中的各个单元的操作和/或功能,分别为了实现本申请方法实施例中由网络设备执行的相应流程。为避免重复,此处适当省略详述描述。图11示例的网络设备的结构仅为一种可能的形态,而不应对本申请实施例构成任何限定。本申请并不排除未来可能出现的其他形态的网络设备结构的可能。
本申请实施例还提供一种通信系统,其包括前述的终端设备和网络设备。
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述如图5和图7所示的方法中终端设备执行的各个步骤。
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述如图5和图7所示的方法中网络设备执行的各个步骤。
本申请还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如图5和图7所示的方法中终端设备执行的各个步骤。
本申请还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如图5和图7所示的方法中网络设备执行的各个步骤。
本申请还提供一种芯片,包括处理器。该处理器用于读取并运行存储器中存储的计算机程序,以执行本申请提供的通信方法中由终端设备执行的相应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是该芯片上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
本申请还提供一种芯片,包括处理器。该处理器用于读取并运行存储器中存储的计算机程序,以执行本申请提供的通信方法中由网络设备执行的相应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是该芯片上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
上述的芯片也可以替换为芯片系统,此处不再赘述。
本申请中的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
另外,本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;本申请中术语“至少一个”,可以表示“一个”和“两个或两个以上”,例如,A、B和C中至少一个,可以表示:单独存在A,单独存在B,单独存在C、同时存在A和B,同时存在A和C,同时存在C和B,同时存在A和B和C,这七种情况。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖 在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (29)

  1. 一种通信方法,其特征在于,包括:
    终端设备接收来自网络设备的第一配置信息,所述第一配置信息用于指示所述终端设备进行信道状态信息上报,所述第一配置信息包括一个或者多个第一参考信号的标识;
    所述终端设备向所述网络设备发送第一信息,所述第一信息包括至少一个第二参考信号的信道状态信息,所述至少一个第二参考信号为所述一个或者多个第一参考信号的部分或全部;
    其中,所述第一信息包括第一指示信息,所述第一指示信息用于指示所述终端设备是否保存有所述至少一个第二参考信号的第一准共址QCL参数。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述网络设备的所述一个或者多个第一参考信号。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一指示信息指示所述终端设备是否保存有所述至少一个第二参考信号的第一QCL参数,包括:
    所述第一指示信息指示所述终端设备是否保存有所述至少一个第二参考信号中至少一个第三参考信号的第二QCL参数,
    在所述第一指示信息指示所述终端设备保存有所述至少一个第二参考信号中至少一个第三参考信号的第二QCL参数的情况下,
    所述第一信息还包括所述至少一个第三参考信号的标识。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述至少一个第三参考信号中的任一个第三参考信号与同步信号块SSB或追踪参考信号TRS满足QCL关系。
  5. 一种通信方法,其特征在于,包括:
    终端设备获取至少一个第三参考信号的第二准共址QCL参数;
    所述终端设备向所述网络设备发送第一信息,所述第一信息包括所述至少一个第三参考信号的标识,所述第一信息用于指示所述终端设备保存有所述至少一个第三参考信号的第二QCL参数。
  6. 根据权利要求5所述的方法,其特征在于,所述至少一个第三参考信号中的任一个第三参考信号为同步信号块SSB或追踪参考信号TRS,或者,所述至少一个第三参考信号中的任一个第三参考信号与同步信号块SSB或追踪参考信号TRS满足QCL关系。
  7. 根据权利要求5或6所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示激活传输配置指示状态TCI-state,
    当所述至少一个第三参考信号包括所述TCI-state对应的第四参考信号时,所述TCI-state的生效时刻为发送所述第一信息之后的一个时刻。
  8. 根据权利要求3至7中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示激活传输配置指示状态TCI-state;
    当所述TCI-state对应的第四参考信号满足第一条件,所述TCI-state的生效时刻为第 一时刻;
    当所述TCI-state对应的第四参考信号不满足第一条件,所述TCI-state的生效时刻为第二时刻;
    所述第一条件包括所述第四参考信号为所述至少一个第三参考信号中的一个,或所述第四参考信号与所述至少一个第三参考信号中的一个第三参考信号满足QCL关系,
    其中,所述第一时刻早于所述第二时刻。
  9. 根据权利要求8所述的方法,其特征在于,所述第一时刻为自接收到所述第二指示信息的时刻起始经过第一时长的时刻,所述第二时刻为自接收到所述第二指示信息的时刻起始经过第二时长的时刻,所述第二时长大于或等于所述第一时长、等待同步信号块SSB或追踪参考信号TRS的时长、以及处理所述SSB或TRS的时长三者之和。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第四参考信号与所述至少一个第三参考信号中的一个第三参考信号满足QCL关系,包括:
    所述第四参考信号与所述至少一个第三参考信号中的一个第三参考信号满足A类型QCL关系,其中,所述A类型QCL关系包括发送所述第四参考信号的天线端口经历的信道和发送所述第三参考信号的天线端口经历的信道拥有共同的:多普勒偏移、多普勒扩展、平均时延和时延扩展。
  11. 根据权利要求8至10中任一项所述的方法,其特征在于,第三时刻和第四时刻间隔的时长小于或者等于第一阈值,
    其中,所述第三时刻为所述终端设备接收到所述第二指示信息的时刻,所述第四时刻为所述终端设备发送所述第一信息的时刻。
  12. 根据权利要求3至10中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述网络设备的第三指示信息,所述第三指示信息用于指示所述终端设备对所述第二QCL参数的类型进行上报,
    所述第一信息还包括第四指示信息,所述第四指示信息用于指示所述终端设备获取的至少一个第三参考信号的所述第二QCL参数的类型。
  13. 根据权利要求12所述的方法,其特征在于,上报的所述第二QCL参数的类型包括A类型或C类型。
  14. 一种通信方法,其特征在于,包括:
    网络设备向终端设备发送第一配置信息,所述第一配置信息用于指示所述终端设备进行信道状态信息上报,所述第一配置信息包括一个或者多个第一参考信号的标识;
    所述网络设备接收来自所述终端设备的第一信息,所述第一信息包括至少一个第二参考信号的信道状态信息,所述至少一个第二参考信号为所述一个或者多个第一参考信号的部分或全部;
    其中,所述第一信息包括第一指示信息,所述第一指示信息用于指示所述终端设备是否保存有所述至少一个第二参考信号的第一准共址QCL参数。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送所述一个或者多个第一参考信号。
  16. 根据权利要求15所述的方法,其特征在于,所述第一指示信息指示所述终端设备是否保存有所述至少一个第二参考信号的第一QCL参数,包括:
    所述第一指示信息指示所述终端设备是否保存有所述至少一个第二参考信号中至少一个第三参考信号的第二QCL参数,
    在所述第一指示信息指示所述终端设备保存有所述至少一个第二参考信号中至少一个第三参考信号的第二QCL参数的情况下,
    所述第一信息还包括所述至少一个第三参考信号的标识。
  17. 根据权利要求14至16中任一项所述的方法,其特征在于,所述至少一个第三参考信号中的任一个第三参考信号与同步信号块SSB或追踪参考信号TRS满足QCL关系。
  18. 一种通信方法,其特征在于,包括:
    网络设备接收来自终端设备的第一信息,所述第一信息包括所述至少一个第三参考信号的标识,所述第一信息用于指示所述终端设备保存有所述至少一个第三参考信号的第二准共址QCL参数;
    所述网络设备确定所述终端设备保存有所述至少一个第三参考信号的第二QCL参数。
  19. 根据权利要求18所述的方法,其特征在于,所述至少一个第三参考信号中的任一个第三参考信号为同步信号块SSB或追踪参考信号TRS,或者,所述至少一个第三参考信号中的任一个第三参考信号与同步信号块SSB或追踪参考信号TRS满足QCL关系。
  20. 根据权利要求18或19所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息用于指示激活传输配置指示状态TCI-state,
    当所述至少一个第三参考信号包括所述TCI-state对应的第四参考信号时,所述TCI-state的生效时刻为发送所述第一信息之后的一个时刻。
  21. 根据权利要求16至20中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息用于指示激活传输配置指示状态TCI-state;
    当所述TCI-state对应的第四参考信号满足第一条件,所述TCI-state的生效时刻为第一时刻;
    当所述TCI-state对应的第四参考信号不满足第一条件,所述TCI-state的生效时刻为第二时刻;
    所述第一条件包括所述第四参考信号为所述至少一个第三参考信号中的一个,或所述第四参考信号与所述至少一个第三参考信号中的一个第三参考信号满足QCL关系,
    其中,所述第一时刻早于所述第二时刻。
  22. 根据权利要求21所述的方法,其特征在于,所述第一时刻为自接收到所述第二指示信息的时刻起始经过第一时长的时刻,所述第二时刻为自接收到所述第二指示信息的时刻起始经过第二时长的时刻,所述第二时长大于或等于所述第一时长、等待同步信号块SSB或追踪参考信号TRS的时长、以及处理所述SSB或TRS的时长三者之和。
  23. 根据权利要求21或22所述的方法,其特征在于,所述第四参考信号与所述至少一个第三参考信号中的一个第三参考信号满足QCL关系,包括:
    所述第四参考信号与所述至少一个第三参考信号中的一个第三参考信号满足A类型QCL关系,其中,所述A类型QCL关系包括发送所述第四参考信号的天线端口经历的信道和发送所述第三参考信号的天线端口经历的信道拥有共同的:多普勒偏移、多普勒扩展、 平均时延和时延扩展。
  24. 根据权利要求21至23中任一项所述的方法,其特征在于,第三时刻和第四时刻间隔的时长小于或者等于第一阈值,
    其中,所述第三时刻为所述终端设备接收到所述第三指示信息的时刻,所述第四时刻为所述终端设备发送所述第一信息的时刻。
  25. 根据权利要求16至24中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第三指示信息,所述第三指示信息用于指示所述终端设备对所述第二QCL参数的类型进行上报,
    所述第一信息还包括第四指示信息,所述第四指示信息用于指示所述终端设备获取的至少一个第三参考信号的所述第二QCL参数的类型。
  26. 根据权利要求25所述的方法,其特征在于,上报的所述第二QCL参数的类型包括A类型或C类型。
  27. 一种通信系统,其特征在于,包括终端设备和网络设备,所述终端设备用于执行如权利要求1至权利要求13中任一项所述的方法,所述网络设备用于执行如权利要求14至权利要求26中任一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机指令,当所述计算机指令在终端设备上运行时,使得所述终端设备执行如权利要求1至26中任一项所述的方法。
  29. 一种计算机程序产品,其特征在于,包含指令,当所述计算机指令在网络设备上运行时,使得所述网络设备执行如权利要求1至26中任一项所述的方法。
PCT/CN2022/138858 2021-12-29 2022-12-14 通信方法、终端设备、网络设备及通信系统 WO2023124995A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111640003 2021-12-29
CN202111640003.8 2021-12-29
CN202210074534.3 2022-01-21
CN202210074534.3A CN116419280A (zh) 2021-12-29 2022-01-21 通信方法、终端设备、网络设备及通信系统

Publications (1)

Publication Number Publication Date
WO2023124995A1 true WO2023124995A1 (zh) 2023-07-06

Family

ID=86997730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138858 WO2023124995A1 (zh) 2021-12-29 2022-12-14 通信方法、终端设备、网络设备及通信系统

Country Status (1)

Country Link
WO (1) WO2023124995A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190268053A1 (en) * 2018-02-26 2019-08-29 Qualcomm Incorporated Beam tracking for periodic user equipment movement
CN112868189A (zh) * 2018-10-16 2021-05-28 高通股份有限公司 交换准同位信息和确认下行链路控制信息
CN113825229A (zh) * 2020-06-19 2021-12-21 华为技术有限公司 传输配置指示状态TCI state切换的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190268053A1 (en) * 2018-02-26 2019-08-29 Qualcomm Incorporated Beam tracking for periodic user equipment movement
CN112868189A (zh) * 2018-10-16 2021-05-28 高通股份有限公司 交换准同位信息和确认下行链路控制信息
CN113825229A (zh) * 2020-06-19 2021-12-21 华为技术有限公司 传输配置指示状态TCI state切换的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Enhancements on Multi-beam Operation", 3GPP TSG-RAN WG1 MEETING #104-E TDOC R1-2101313, 18 January 2021 (2021-01-18), XP051970717 *

Similar Documents

Publication Publication Date Title
CN110839290B (zh) 信号传输的方法和通信装置
CN110972156B (zh) 一种干扰测量方法、装置、芯片及存储介质
WO2021062709A1 (zh) 数据传输的方法和装置
WO2021057473A1 (zh) 一种共生网络中载波的调度方法、装置及存储介质
CN111294891B (zh) 一种天线面板及波束的管理方法和设备
CN112087291B (zh) 更新传输配置指示tci信息的方法与通信装置
WO2021134455A1 (zh) 无线资源管理测量的方法和装置
WO2020114357A1 (zh) 信道测量的配置方法及通信装置
WO2021052473A1 (zh) 通信方法和通信装置
WO2021017773A1 (zh) 上报信道状态信息的方法和装置
WO2023125223A1 (zh) 下行传输的方法及装置
WO2021134522A1 (zh) 用于切换的方法和装置
WO2018176415A1 (zh) 一种协作小区确定方法及网络设备
US20230137907A1 (en) Wireless communication method, terminal device, and network device
CN114007257A (zh) 确定传输功率的方法及装置
WO2021027919A9 (zh) 传输参考信号的方法及设备
WO2023011195A1 (zh) 一种通信方法及通信装置
WO2023124995A1 (zh) 通信方法、终端设备、网络设备及通信系统
US20220240116A1 (en) Link Failure Detection Method and Apparatus
WO2022012256A1 (zh) 通信的方法及通信装置
WO2020187125A1 (zh) 数据传输方法和装置
WO2021223084A1 (zh) 一种发送和接收上行参考信号的方法及通信装置
CN116419280A (zh) 通信方法、终端设备、网络设备及通信系统
WO2023216966A1 (zh) 通信方法及相关装置
WO2022267876A1 (zh) 一种波束管理的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914250

Country of ref document: EP

Kind code of ref document: A1