WO2021134455A1 - 无线资源管理测量的方法和装置 - Google Patents

无线资源管理测量的方法和装置 Download PDF

Info

Publication number
WO2021134455A1
WO2021134455A1 PCT/CN2019/130451 CN2019130451W WO2021134455A1 WO 2021134455 A1 WO2021134455 A1 WO 2021134455A1 CN 2019130451 W CN2019130451 W CN 2019130451W WO 2021134455 A1 WO2021134455 A1 WO 2021134455A1
Authority
WO
WIPO (PCT)
Prior art keywords
trigger time
threshold value
threshold
signal quality
measurement
Prior art date
Application number
PCT/CN2019/130451
Other languages
English (en)
French (fr)
Inventor
严乐
曾清海
耿婷婷
张宏平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19958367.5A priority Critical patent/EP4072189A4/en
Priority to PCT/CN2019/130451 priority patent/WO2021134455A1/zh
Priority to CN201980103253.2A priority patent/CN114846838A/zh
Publication of WO2021134455A1 publication Critical patent/WO2021134455A1/zh
Priority to US17/855,237 priority patent/US20220330075A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • This application relates to the field of communications, and more specifically, to a method and device for wireless resource management measurement.
  • radio resource management radio resource management
  • RRC radio resource control
  • the serving base station sends a radio resource control (radio resource control, RRC) reconfiguration message containing measurement configuration information to the terminal device.
  • RRM measurement in some cases (for example, the terminal device is a drone at high altitude), the terminal device can detect/receive signals from multiple base stations, and the terminal device may send more and more frequent measurement reports. Therefore, it is necessary to enhance the RRM measurement mechanism of the terminal device (for example, when a predefined number of neighboring cells meet the trigger condition of the corresponding measurement report within the corresponding trigger time, the terminal device can send a measurement report to the serving base station) to avoid Implementation complexity, interference and other problems introduced by frequently sending measurement reports.
  • the existing enhanced RRM measurement mechanism may cause the terminal device to fail to send a measurement report to the serving base station when the terminal device is in the edge area of the serving cell, which affects the performance of the communication system. Therefore, providing a reasonable RRM measurement mechanism becomes an urgent problem to be solved.
  • the present application provides a method and device for radio resource management measurement.
  • the terminal device is based on the magnitude relationship between the detection value and the first threshold value, and the signal of at least one neighboring cell
  • the quality determines whether to report the measurement report, which can prevent the terminal device from reporting the measurement report frequently, and also avoid the terminal device from not reporting the measurement report in time, making the measurement mechanism more reasonable.
  • a wireless resource management measurement method may be executed by a terminal device, or may also be executed by a chip or circuit provided in the terminal device, which is not limited in this application.
  • execution by a terminal device can be used as an example for description.
  • the wireless resource management measurement method includes:
  • the terminal device receives measurement configuration information from the network device, where the measurement configuration information includes a first threshold value, where the first threshold value includes the first serving cell signal quality threshold value and/or the first detected cell Number threshold; the terminal device determines whether to report a measurement report according to the magnitude relationship between the detection value and the first threshold, and the signal quality of at least one neighboring cell.
  • the detection value can also be referred to as the detection value in the radio resource management measurement. The detection value is used to determine whether to report the measurement report.
  • the first detected cell number threshold can also be referred to as the first cell number threshold for short. .
  • the terminal device by carrying the signal quality threshold of the first serving cell and/or the first detected cell number threshold in the measurement configuration information, the terminal device according to the detection value The magnitude relationship with the first threshold value and the signal quality of at least one neighboring cell determine whether to report a measurement report.
  • the terminal device when the terminal device determines whether to report a measurement report, it is not only based on the signal quality of the neighboring cell, but also based on the magnitude relationship between the signal quality of the serving cell and the signal quality threshold of the first serving cell, and/or can detect
  • the relationship between the number of cells received and the threshold of the number of cells detected first can prevent the terminal equipment from reporting measurement reports frequently, and also prevent the terminal equipment from reporting measurement reports in time, making the measurement mechanism more reasonable.
  • the above-mentioned detection value includes the signal quality of the first serving cell; the above-mentioned detection value includes the signal quality of the serving cell; and the terminal equipment is based on the detection value and the first threshold value.
  • the signal quality of at least one neighboring cell determining whether to report a measurement report includes: when the signal quality of the serving cell is lower than or equal to the signal quality threshold of the first serving cell, and the signal quality of the at least one neighboring cell
  • the terminal device determines to report the measurement report; or, when the signal quality of the serving cell is greater than or equal to the signal quality threshold of the first serving cell, and the signal quality of the N neighboring cells meets the corresponding measurement
  • the terminal device determines to report the measurement report, where the N is the threshold of the number of neighboring cells included in the configuration information.
  • the above-mentioned first threshold value may be the signal quality of the first serving cell
  • the terminal device may be based on the magnitude relationship between the signal quality of the serving cell and the signal quality of the first serving cell, and at least one Whether the neighboring cell meets the measurement report trigger condition within the corresponding trigger time (time to trigger, TTT) determines whether to report the measurement report.
  • TTT time to trigger
  • the measurement report is reported when the area meets the corresponding measurement report trigger condition, where N is understood as the threshold of the number of neighboring areas, which is carried in the above measurement configuration information, and N is a positive integer. Therefore, it is avoided that the measurement report is frequently reported when the signal quality of the serving cell is good, and the measurement report is not reported in time when the signal quality of the serving cell is poor, and the radio link fails or the handover is too late.
  • the above-mentioned first threshold includes the first detected cell number threshold; the above-mentioned detection value includes the detected cell number; the According to the relationship between the detection value and the first threshold value, and the signal quality of at least one neighboring cell, determining whether to report a measurement report includes: when the number of detected cells is less than or equal to the number of first detected cells When the signal quality of at least one neighboring cell meets the measurement report trigger condition, the measurement report is determined to be reported; or, when the number of detected cells is greater than or equal to the first detected cell number threshold, And when the signal quality of the N neighboring cells all meet the corresponding measurement report trigger condition, it is determined to report the measurement report, where N is the threshold of the number of neighboring cells included in the configuration information.
  • the above-mentioned first threshold value may be a threshold value for the number of first detected cells, and the terminal device may determine the number of cells detected according to the number of detected cells and the number of first detected cells.
  • the magnitude relationship between the threshold values and whether at least one neighboring cell meets the measurement report trigger condition in the corresponding TTT determines whether to report the measurement report.
  • the terminal device can report the measurement report when the N neighboring cells meet the corresponding measurement report trigger conditions; when the number of detected cells is small, the measurement report can be at least A measurement report is reported when a neighboring cell meets the corresponding measurement report trigger condition. Therefore, it is avoided that the measurement report is frequently reported when the number of detected cells is large, and the measurement report is not reported in time when the number of detected cells is small, resulting in radio link failure or late handover.
  • the above-mentioned first threshold may include both the first detected cell number threshold and the first serving cell signal quality threshold, and the terminal device may be based on the signal of the serving cell.
  • the relationship between the quality and the signal quality threshold of the first serving cell, the relationship between the number of detected cells and the threshold of the number of first detected cells, and the relationship between at least one neighboring cell in the corresponding TTT Whether the measurement report trigger condition is satisfied in the internal determines whether to report the measurement report. That is to say, the above two implementation modes can be combined, which will not be repeated here.
  • the first threshold value is highly granular; the method further includes: the terminal device determines the first threshold value based on its own height.
  • the above-mentioned first threshold value may be a value related to a height. After receiving the above-mentioned measurement configuration information, the terminal device can determine a suitable first threshold value based on the height at which it is located.
  • the measurement configuration information includes a height threshold value.
  • the height threshold value can be carried in the measurement configuration information and sent to the terminal device.
  • the method further includes: sending a measurement report corresponding to the first neighboring cell; and sending the measurement report corresponding to the first neighboring cell.
  • the first timer is started, and the measurement report is no longer reported during the valid period of the first timer, or the measurement report corresponding to the second neighboring cell is reported, where the signal quality of the second neighboring cell is high The signal quality of the first neighboring cell.
  • the radio resource management measurement method After determining to report the measurement report, it is assumed that the measurement report reported by the terminal device corresponds to the measurement report of the first neighboring cell, and the terminal device reports the measurement report of the first neighboring cell
  • the first timer can be started, and it can be decided not to report measurement reports during the valid period of the first timer, or, during the valid period of the first timer, if the signal quality ratio of the second neighboring cell is detected
  • the signal quality of the first neighboring cell is high, and the terminal device can report a measurement report corresponding to the second neighboring cell.
  • the introduction of the first timer can avoid frequent reporting of measurement reports within a certain period of time.
  • the terminal device detects a second neighboring cell with better signal quality in the present application, it can report a measurement report during the valid period of the timer, which avoids false negatives in high-quality neighboring cells.
  • the measurement configuration information further includes a second threshold value, a third threshold value, and a first trigger time corresponding to at least one neighboring cell, where the first trigger time
  • the second threshold includes the signal quality threshold of the second serving cell and/or the second detected cell number threshold
  • the third threshold includes the signal quality threshold of the third serving cell and/or the third threshold.
  • a threshold value for the number of detected cells the method further includes: determining a second trigger time according to the relationship between the detected value and the second threshold value and/or the third threshold value, wherein the second threshold The limit value is less than or equal to the third threshold value, the second trigger time is obtained according to the first trigger time, and the detection value includes the signal quality of the serving cell and/or the number of detected cells.
  • the second detected cell number threshold may also be referred to as the second cell number threshold
  • the third detected cell number threshold may also be referred to as the third cell number threshold.
  • the second threshold value and the third threshold value, and the first trigger time corresponding to at least one neighboring cell may be carried in the above-mentioned measurement configuration information.
  • the second trigger time can be determined according to the signal quality threshold value of the serving cell and/or the number of detected cells and the second threshold value and/or the third threshold value to provide an adjustment trigger time. Feasible way.
  • the determining the second trigger time according to the magnitude relationship between the detection value and the second threshold value and/or the third threshold value includes: When the value is lower than the second threshold value, it is determined that the second trigger time is a trigger time less than the first trigger time; when the detection value is greater than the third threshold value, it is determined that the second trigger time is greater than the The trigger time of the first trigger time; when the detection value is greater than or equal to the second threshold value and less than or equal to the third threshold value, it is determined that the second trigger time is a trigger time equal to the first trigger time.
  • the detection value can be adjusted upward or downward based on the first trigger time according to the relationship between the detection value and the second threshold value and/or the third threshold value. Adjust or not adjust to get the second trigger time.
  • the determining that the second trigger time is a trigger time less than the first trigger time includes: determining that the second trigger time is the difference between the first trigger time and Q Product, the Q is a positive number less than 1; the determining that the second trigger time is a trigger time greater than the first trigger time includes: determining that the second trigger time is the product of the first trigger time and P, where P is A positive number greater than 1.
  • the determining that the second triggering time is a triggering time equal to the first triggering time includes: determining that the second triggering time is a product of the first triggering time and K, and the K is equal to 1.
  • adjusting the first trigger time upwards or downwards or not adjusting the first trigger time to obtain the second trigger time can be achieved by multiplying the first trigger time by a certain coefficient, or it can be achieved by multiplying the first trigger time by a certain coefficient. Time plus a certain parameter.
  • the second threshold value and/or the third threshold value are highly granular; the method further includes: the terminal device determines the second threshold value based on its own height The second threshold value and/or the third threshold value.
  • the foregoing second threshold value and/or third threshold value may be height-related values.
  • the terminal device After receiving the foregoing measurement configuration information, the terminal device can determine a suitable second threshold value based on the altitude at which it is located. Value and/or the third threshold value.
  • the aforementioned P and/or Q are highly granular.
  • the above-mentioned P and/or Q may be values related to height.
  • a method for measuring radio resource management may be executed by a network device, or may also be executed by a chip or circuit provided in the network device, which is not limited in this application.
  • execution by a network device can be used as an example for description.
  • the wireless resource management measurement method includes:
  • the network device determines measurement configuration information, and the measurement configuration information includes a first threshold value, where the first threshold value includes a first serving cell signal quality threshold value and/or a first detected cell number threshold value Value; the network device sends the measurement configuration information to the terminal device, where the first threshold value and the detection value are used by the terminal device to determine whether to report a measurement report.
  • the terminal device by carrying the signal quality threshold of the first serving cell and/or the first detected cell number threshold in the measurement configuration information, the terminal device according to the detection value The magnitude relationship with the first threshold value and the signal quality of at least one neighboring cell determine whether to report a measurement report.
  • the terminal device when the terminal device determines whether to report a measurement report, it is not only based on the signal quality of the neighboring cell, but also based on the magnitude relationship between the signal quality of the serving cell and the signal quality threshold of the first serving cell, and/or can detect
  • the relationship between the number of cells received and the threshold of the number of cells detected first can prevent the terminal equipment from reporting measurement reports frequently, and also prevent the terminal equipment from reporting measurement reports in time, making the measurement mechanism more reasonable.
  • the above-mentioned first threshold includes the signal quality threshold of the first serving cell; the method further includes: receiving a measurement report from the terminal device , Wherein the signal quality of the serving cell is lower than or equal to the signal quality threshold of the first serving cell, and the signal quality of at least one neighboring cell meets the measurement report trigger condition; or, receiving a measurement report from the terminal device, wherein , The signal quality of the serving cell is greater than or equal to the signal quality threshold of the first serving cell, and the signal quality of the N neighboring cells meets the corresponding measurement report trigger condition, where N is the neighboring cell carried in the configuration information. Threshold of the number of zones.
  • the above-mentioned first threshold value may be the signal quality of the first serving cell
  • the terminal device may be based on the magnitude relationship between the signal quality of the serving cell and the signal quality of the first serving cell, and at least one Whether the neighboring cell meets the measurement report trigger condition in the corresponding TTT determines whether to report the measurement report.
  • the terminal device can only report the measurement report when the N neighboring cells meet the corresponding measurement report trigger conditions; when the signal quality of the serving cell is poor, the terminal device can report the measurement report when the signal quality of the serving cell is poor.
  • the measurement report is reported when the neighboring cell meets the corresponding measurement report trigger condition, where N is understood as the threshold of the number of neighboring cells, which is carried in the above-mentioned measurement configuration information, and N is a positive integer. Therefore, it is avoided that the measurement report is frequently reported when the signal quality of the serving cell is good, and the measurement report is not reported in time when the signal quality of the serving cell is poor, and the radio link fails or the handover is too late.
  • the above-mentioned first threshold includes the first detected cell number threshold; the method further includes: receiving a measurement from the terminal device Report, wherein the number of cells detected by the terminal device is less than or equal to the first detected cell number threshold, and the signal quality of at least one neighboring cell meets the measurement report triggering condition; or, receiving from the terminal device The number of cells detected by the terminal device is greater than or equal to the first detected cell number threshold, and the signal quality of the N neighboring cells meets the corresponding measurement report triggering condition, and the N Is the threshold of the number of neighboring cells carried in the configuration information.
  • the above-mentioned first threshold value may be a threshold value for the number of first detected cells, and the terminal device may determine the number of cells detected according to the number of detected cells and the number of first detected cells.
  • the magnitude relationship between the threshold values and whether at least one neighboring cell meets the measurement report trigger condition in the corresponding TTT determines whether to report the measurement report.
  • the terminal device can only report the measurement report when the N neighboring cells meet the corresponding measurement report trigger conditions; when the number of detected cells is small, the terminal device can report the measurement report.
  • the measurement report is reported. Therefore, it is avoided that the measurement report is frequently reported when the number of detected cells is large, and the measurement report is not reported in time when the number of detected cells is small, resulting in radio link failure or late handover.
  • the above-mentioned first threshold may include both the first detected cell number threshold and the first serving cell signal quality threshold, and the terminal device may be based on the signal of the serving cell.
  • the relationship between the quality and the signal quality threshold of the first serving cell, the relationship between the number of detected cells and the threshold of the number of first detected cells, and the relationship between at least one neighboring cell in the corresponding TTT Whether the measurement report trigger condition is satisfied in the internal determines whether to report the measurement report. That is to say, the above two implementation modes can be combined, which will not be repeated here.
  • the first threshold value is highly granular.
  • the above-mentioned first threshold value may be a value related to a height.
  • the measurement configuration information includes a height threshold value.
  • the height threshold value can be carried in the measurement configuration information and sent to the terminal device.
  • the measurement configuration information further includes a second threshold value, a third threshold value, and a first trigger time corresponding to at least one neighboring cell, wherein the first trigger time
  • the second threshold includes the signal quality threshold of the second serving cell and/or the second detected cell number threshold
  • the third threshold includes the signal quality threshold of the third serving cell and/or the third threshold. Threshold for the number of detected cells, the second threshold and/or the third threshold are used by the terminal device to determine the second trigger time, and the second threshold is less than or equal to the third threshold , The second trigger time is obtained according to the first trigger time.
  • the second threshold value and the third threshold value, and the first trigger time corresponding to at least one neighboring cell can be carried in the above-mentioned measurement configuration information.
  • the second trigger time can be determined according to the signal quality threshold value of the serving cell and/or the number of detected cells and the second threshold value and/or the third threshold value to provide an adjustment trigger time. Feasible way.
  • the second threshold value and/or the third threshold value used by the terminal device to determine the second trigger time includes: when the detection value is lower than the first When the threshold value is two, the second trigger time is a trigger time less than the first trigger time; when the detection value is greater than the third threshold value, the second trigger time is a trigger time greater than the first trigger time ; When the detection value is greater than or equal to the second threshold value and less than or equal to the third threshold value, the second trigger time is a trigger time equal to the first trigger time, and the detection value includes the signal quality of the serving cell and/ Or the number of detected cells.
  • the detection value can be adjusted upward or downward based on the first trigger time according to the relationship between the detection value and the second threshold value and/or the third threshold value. Adjust or not adjust to obtain the second trigger time.
  • the second trigger time being a trigger time less than the first trigger time includes: the second trigger time is the product of the first trigger time and Q, the Q is a positive number less than 1.
  • the second trigger time being a trigger time greater than the first trigger time includes: the second trigger time is the product of the first trigger time and P, and P is a positive number greater than 1;
  • the second trigger time being a trigger time equal to the first trigger time includes: the second trigger time is the product of the first trigger time and K, and the K is equal to 1.
  • adjusting upward or downward or not adjusting the first trigger time to obtain the second trigger time may be multiplying the first trigger time by a coefficient to obtain the second trigger time.
  • the aforementioned P and/or Q are highly granular.
  • the above-mentioned P and/or Q may be values related to height.
  • the second threshold value and the third threshold value are highly granular.
  • the foregoing second threshold value and third threshold value may be values related to height.
  • a wireless resource management measurement method may be executed by a terminal device, or may also be executed by a chip or circuit provided in the terminal device, which is not limited in this application. For ease of description, execution by a terminal device can be used as an example for description.
  • the wireless resource management measurement method includes:
  • the terminal device receives measurement configuration information from the network device.
  • the measurement configuration information includes a second threshold value, a third threshold value, and a first trigger time corresponding to at least one neighboring cell, where the second threshold value includes the first trigger time.
  • the second trigger time is obtained according to the first trigger time, and the detection value includes the signal quality of the serving cell and/or the number of detected cells.
  • the second threshold value and the third threshold value, and the first trigger time corresponding to at least one neighboring cell may be carried in the above-mentioned measurement configuration information.
  • the second trigger time can be determined according to the signal quality threshold value of the serving cell and/or the number of detected cells and the second threshold value and/or the third threshold value to provide an adjustment trigger time. Feasible way.
  • the determining the second trigger time according to the magnitude relationship between the detection value and the second threshold value and/or the third threshold value includes: When the value is lower than the second threshold value, it is determined that the second trigger time is a trigger time less than the first trigger time; when the detection value is greater than the third threshold value, it is determined that the second trigger time is greater than the The trigger time of the first trigger time; when the detection value is greater than or equal to the second threshold value and less than or equal to the third threshold value, it is determined that the second trigger time is a trigger time equal to the first trigger time.
  • the detection value can be adjusted upward or downward based on the first trigger time according to the relationship between the detection value and the second threshold value and/or the third threshold value. Adjust or not adjust to get the second trigger time.
  • the determining that the second triggering time is a triggering time less than the first triggering time includes: determining that the second triggering time is the difference between the first triggering time and Q Product, the Q is a positive number less than 1; the determining that the second trigger time is a trigger time greater than the first trigger time includes: determining that the second trigger time is the product of the first trigger time and P, where P is A positive number greater than 1.
  • the determining that the second triggering time is a triggering time equal to the first triggering time includes: determining that the second triggering time is a product of the first triggering time and K, and the K is equal to 1.
  • adjusting upward or downward or not adjusting the first trigger time to obtain the second trigger time may be achieved by multiplying the first trigger time by a coefficient.
  • the aforementioned P and/or Q are highly granular.
  • the above-mentioned P and/or Q may be values related to height.
  • the second threshold value and/or the third threshold value are highly granular; the method further includes: the terminal device determines the second threshold value based on its own height The second threshold value and/or the third threshold value.
  • the foregoing second threshold value and/or third threshold value may be height-related values.
  • the terminal device After receiving the foregoing measurement configuration information, the terminal device can determine a suitable second threshold value based on the altitude at which it is located. Value and/or the third threshold value.
  • a wireless resource management measurement method may be executed by a network device, or may also be executed by a chip or circuit provided in the network device, which is not limited in this application. For ease of description, execution by a network device can be used as an example for description.
  • the wireless resource management measurement method includes:
  • the network device determines measurement configuration information, the measurement configuration information includes a second threshold value, a third threshold value, and a first trigger time corresponding to at least one neighboring cell, where the second threshold value includes a signal of the second serving cell A quality threshold value and/or a second detected cell number threshold value, where the third threshold value includes a third serving cell signal quality threshold value and/or a third detected cell number threshold value, The second threshold value and/or the relationship between the third threshold value and the detection value are used to determine the second trigger time. The second threshold value is less than or equal to the third threshold value, and the second threshold value is less than or equal to the third threshold value.
  • the trigger time is obtained according to the first trigger time, and the detection value includes the signal quality of the serving cell and/or the number of detected cells.
  • the second threshold value and the third threshold value, and the first trigger time corresponding to at least one neighboring cell may be carried in the above-mentioned measurement configuration information.
  • the second trigger time can be determined according to the signal quality threshold value of the serving cell and/or the number of detected cells and the second threshold value and/or the third threshold value to provide an adjustment trigger time. Feasible way.
  • the magnitude relationship between the second threshold value and/or the third threshold value and the detection value for determining the second trigger time includes: When the detection value is lower than the second threshold value, the second trigger time is a trigger time less than the first trigger time; when the detection value is greater than the third threshold value, the second trigger time is greater than the first trigger time A trigger time of a trigger time; when the detection value is greater than or equal to the second threshold value and less than or equal to the third threshold value, the second trigger time is a trigger time equal to the first trigger time.
  • the detection value can be adjusted upward or downward based on the first trigger time according to the relationship between the detection value and the second threshold value and/or the third threshold value. Adjust or not adjust to get the second trigger time.
  • the second trigger time being a trigger time less than the first trigger time includes: the second trigger time is the product of the first trigger time and Q, the Q is a positive number less than 1.
  • the second trigger time being a trigger time greater than the first trigger time includes: the second trigger time is the product of the first trigger time and P, and P is a positive number greater than 1;
  • the second trigger time being a trigger time equal to the first trigger time includes: the second trigger time is the product of the first trigger time and K, and the K is equal to 1.
  • adjusting upward or downward or not adjusting the first trigger time to obtain the second trigger time may be achieved by multiplying the first trigger time by a coefficient.
  • the aforementioned P and/or Q are highly granular.
  • the above-mentioned P and/or Q may be values related to height.
  • the second threshold value and the third threshold value are highly granular.
  • the foregoing second threshold value and third threshold value may be values related to height.
  • an apparatus for radio resource management measurement includes a processor, configured to implement the functions of the terminal device in the methods described in the first and third aspects.
  • the apparatus for radio resource management measurement may further include a memory, the memory is coupled with the processor, and the processor is configured to implement the functions of the terminal device in the methods described in the first aspect and the third aspect.
  • the memory is used to store program instructions and data.
  • the memory is coupled with the processor, and the processor can call and execute the program instructions stored in the memory to implement the functions of the terminal device in the methods described in the first aspect and the third aspect.
  • the apparatus for radio resource management measurement may further include a communication interface, and the communication interface is used for the apparatus for radio resource management measurement to communicate with other devices.
  • the radio resource management measurement device is a terminal device
  • the transceiver may be a communication interface or an input/output interface.
  • the radio resource management measurement apparatus includes a processor and a communication interface, which are used to implement the functions of the terminal device in the methods described in the first and third aspects above, and specifically include:
  • the processor communicates with the outside by using the communication interface
  • the processor is configured to run a computer program, so that the device implements any one of the methods described in the first aspect and the third aspect.
  • the exterior may be an object other than the processor, or an object other than the device.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, and a pin on the chip or the chip system. Or related circuits, etc.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • an apparatus for radio resource management measurement includes a processor, configured to implement the functions of the network device in the methods described in the second and fourth aspects above.
  • the apparatus for radio resource management measurement may further include a memory, the memory is coupled to the processor, and the processor is configured to implement the function of the network device in the methods described in the second aspect and the fourth aspect.
  • the memory is used to store program instructions and data.
  • the memory is coupled with the processor, and the processor can call and execute program instructions stored in the memory to implement the functions of the network device in the methods described in the second aspect and the fourth aspect.
  • the apparatus for radio resource management measurement may further include a communication interface, and the communication interface is used for the apparatus for radio resource management measurement to communicate with other devices.
  • the wireless resource management measurement device is a network device
  • the communication interface is a transceiver, an input/output interface, or a circuit.
  • the apparatus for radio resource management measurement includes a processor and a communication interface, which are used to implement the functions of the network device in the methods described in the second and fourth aspects above, and specifically include:
  • the processor communicates with the outside by using the communication interface
  • the processor is configured to run a computer program, so that the apparatus implements any one of the methods described in the second aspect and the fourth aspect.
  • the exterior may be an object other than the processor, or an object other than the device.
  • the wireless resource management measurement device is a chip or a chip system.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • a computer-readable storage medium on which a computer program is stored.
  • the communication device realizes the first aspect and the third aspect and the first and third aspects.
  • the method in any possible implementation of the aspect.
  • a computer-readable storage medium on which a computer program is stored.
  • the communication device realizes the second aspect and the fourth aspect, and the second and fourth aspects.
  • the method in any possible implementation of the aspect.
  • a computer program product containing instructions which when executed by a computer, enables a communication device to implement the first aspect and the third aspect, and the method in any possible implementation manner of the first aspect and the third aspect .
  • a computer program product containing instructions that when executed by a computer enable a communication device to implement the second aspect and the fourth aspect, and the method in any possible implementation manner of the second aspect and the fourth aspect .
  • a communication system including the radio resource management measurement device shown in the fifth aspect and the radio resource management measurement device shown in the sixth aspect.
  • FIG. 1 is a schematic diagram of a system 100 applicable to the method for measuring radio resource management in the embodiment of the present application.
  • Fig. 2 is a schematic flowchart of a radio resource management measurement method provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a method for adjusting TTT according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a radio resource management measurement apparatus 400 provided by the present application.
  • FIG. 5 is a schematic structural diagram of a terminal device 500 applicable to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a radio resource management measurement apparatus 600 provided by the present application.
  • FIG. 7 is a schematic structural diagram of a network device 700 applicable to an embodiment of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G fifth generation
  • new radio new radio
  • NR new network
  • future communication systems such as the sixth-generation mobile communication system.
  • the communication system can also be a public land mobile network (PLMN) network, a device-to-device (D2D) communication system, a machine-to-machine (M2M) communication system, and a device-to-device (D2D) communication system.
  • PLMN public land mobile network
  • D2D device-to-device
  • M2M machine-to-machine
  • D2D device-to-device
  • IoT Internet of Things
  • terminal equipment in the embodiments of the present application may refer to unmanned aerial vehicles (UAV), access terminals, user units, user stations, mobile stations, mobile stations, relay stations, remote stations, remote terminals, mobile Equipment, user terminal (user terminal), user equipment (user equipment, UE), terminal (terminal), wireless communication equipment, user agent, or user device.
  • UAV unmanned aerial vehicles
  • the terminal equipment can also be a cellular phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (personal digital assistant, PDA), with wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or terminals in the public land mobile network (PLMN) that will evolve in the future Devices or terminal devices in the future Internet of Vehicles, etc., which are not limited in the embodiment of the present application.
  • PLMN public land mobile network
  • wearable devices can also be referred to as wearable smart devices. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, Gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • the terminal device can also be a terminal device in the IoT system.
  • IoT is an important part of the development of information technology in the future. Its main technical feature is to connect objects to the network through communication technology to realize man-machine Interconnection, an intelligent network of interconnection of things.
  • the IOT technology can achieve massive connections, deep coverage, and power saving of the terminal through, for example, narrowband (NB) technology.
  • NB narrowband
  • the terminal equipment may also include sensors such as smart printers, train detectors, gas stations, etc.
  • the main functions include collecting data (part of the terminal equipment), receiving control information and downlink data from network equipment, and sending electromagnetic waves. , To transmit uplink data to network equipment.
  • the network device in the embodiment of the present application may be any communication device with a wireless transceiving function that is used to communicate with a terminal device.
  • the equipment includes but is not limited to: evolved Node B (eNB), radio network controller (RNC), Node B (NB), base station controller (BSC) , Base transceiver station (base transceiver station, BTS), home base station (home evolved NodeB, HeNB, or home Node B, HNB), baseband unit (baseband unit, BBU), wireless fidelity (wireless fidelity, WIFI) system Access point (AP), wireless relay node, wireless backhaul node, transmission point (TP), or transmission and reception point (TRP), etc., can also be a 5G system, such as, The gNB in the NR system, or the transmission point (TRP or TP), one or a group of antenna panels (including multiple antenna panels) of the base station in the 5G system, or the network node that forms the gNB or transmission point, Such as baseband unit (BBU),
  • the network device in the embodiment of the present application may refer to a centralized unit (CU) or a distributed unit (DU), or the network device includes a CU and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • the CU implements part of the functions of gNB, and the DU implements part of the functions of gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implements radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing the physical layer protocol and real-time services, and realizes the functions of the radio link control (RLC) layer, the media access control (MAC) layer, and the physical (PHY) layer.
  • AAU realizes some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this architecture, high-level signaling, such as RRC layer signaling, can also be considered to be sent by the DU , Or, sent by DU+AAU.
  • the network device may be a device including one or more of the CU node, the DU node, and the AAU node.
  • the CU can be divided into network equipment in an access network (radio access network, RAN), and the CU can also be divided into network equipment in a core network (core network, CN), which is not limited in this application.
  • the CU can also be divided into the central unit of the control plane (CU-CP) and the central unit of the user plane (CU-UP).
  • CU-CP and CU-UP can also be deployed on different physical devices.
  • CU-CP is responsible for the control plane function and mainly includes the RRC layer and the PDCP-C layer.
  • the PDCP-C layer is mainly responsible for encryption and decryption of control plane data, integrity protection, and data transmission.
  • CU-UP is responsible for the user plane function, mainly including SDAP layer and PDCP-U layer.
  • the SDAP layer is mainly responsible for processing the data of the core network and mapping the flow to the bearer.
  • the PDCP-U layer is mainly responsible for at least one function such as encryption and decryption of the data plane, integrity protection, header compression, serial number maintenance, and data transmission.
  • the CU-CP and the CU-UP are connected through a communication interface (for example, an E1 interface).
  • CU-CP represents that a network device is connected to a core network device through a communication interface (for example, Ng interface), and is connected to a DU through a communication interface (for example, F1-C (control plane) interface).
  • the CU-UP is connected to the DU through a communication interface (for example, an F1-U (user plane) interface).
  • the PDCP-C layer is also included in the CU-UP.
  • the network device mentioned in the embodiment of this application may be a device including CU, or DU, or CU and DU, or control plane CU node (CU-CP node) and user plane CU node (CU-UP node), and DU The device of the node.
  • CU-CP node control plane CU node
  • CU-UP node user plane CU node
  • Network equipment and terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons, or satellites in the air.
  • the scenes in which the network equipment and the terminal equipment are located are not limited.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system can be any one or more computer operating systems that implement business processing through processes, for example, Linux operating systems, Unix operating systems, Android operating systems, iOS operating systems, or windows operating systems.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • various aspects or features of the present application can be implemented as methods, devices, or products using standard programming and/or engineering techniques.
  • article of manufacture used in this application encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (DVD)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable storage medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • FIG. 1 is a schematic diagram of a communication system 100 applicable to the wireless resource management measurement method according to an embodiment of the present application.
  • the communication system 100 may include at least one network device, such as the network device 110 shown in FIG. 1; the communication system 100 may also include at least one terminal device, such as the terminal device 120 shown in FIG. 1.
  • the network device 110 and the terminal device 120 may communicate through a wireless link.
  • Each communication device, such as the network device 110 or the terminal device 120 can be equipped with at least one antenna.
  • the configured at least one antenna may include at least one transmitting antenna for transmitting signals and at least one receiving antenna for receiving signals.
  • the communication devices in the communication system 100 such as the network device 110 and the terminal device 120, can communicate through multi-antenna technology.
  • FIG. 1 is only a simplified schematic diagram of an example for ease of understanding.
  • the communication system 100 may also include other network devices or other terminal devices, which are not shown in FIG. 1.
  • the serving base station sends an RRC message containing measurement configuration information to the terminal device.
  • the RRC message may be an RRC connection reconfiguration message or an RRC reconfiguration message, which is not limited in this embodiment.
  • the measurement configuration information may include a measurement identifier (such as measID), a measurement object (such as measObject), and a report configuration (such as ReportConfig).
  • the measurement identifier can associate the measurement object with the reporting configuration, that is, the measurement object and the reporting configuration associated with the measurement identifier can be obtained through a certain measurement identifier; the measurement object can be a certain frequency or frequency band; the reporting configuration is used for Configure the event type of the reported event (or the event type of the trigger condition of the measurement report) and the corresponding parameters of the event type of the reported event (or the event type of the trigger condition of the measurement report), such as the threshold of the report condition, the trigger time ( Such as time to trigger, TTT), hysteresis value (such as hysteresis), etc.
  • the report configuration may mainly include the report type of the RRM measurement report (for example, the report type is periodic report or event-triggered report), event trigger configuration (when the report type is event-triggered report, the corresponding configuration information), periodic report configuration (When the reporting type is periodic reporting, the corresponding configuration information) and so on.
  • the event trigger configuration can include the event type of the reported event, the related configuration corresponding to the event, the reference signal type, the reporting interval, the number of reporting times, etc.
  • the periodic reporting configuration can include the reference signal type, the reporting interval, the number of reporting times, the maximum number of reporting cells, etc. .
  • the foregoing event type may be at least one of A1-A6; as an example, the related configuration corresponding to the foregoing event may include a threshold (for example, a reporting condition threshold corresponding to a reported event), a hysteresis value, TTT, and the like.
  • a threshold for example, a reporting condition threshold corresponding to a reported event
  • TTT hysteresis value
  • the event type of the reported event configured in the reporting configuration is A3 event
  • the corresponding threshold is the preset reporting condition threshold (for example, offset (offset) dB)
  • the preset reporting condition threshold for example, offset (offset) dB
  • the neighboring cell meets the A3 event trigger condition (or satisfies the measurement report trigger condition).
  • the signal quality includes reference signal received power (RSRP) and/or reference signal received quality (RSRQ) and/or signal to interference plus noise ratio (SINR).
  • the terminal device can send a measurement report to the serving base station (for example, the measurement report may include the neighbor cell identification, measurement Results etc.). If the measurement configuration information includes a TTT, when in the configured TTT, the neighboring cell always meets the A3 event trigger condition, and the terminal device can send a measurement report to the serving base station.
  • the mobile communication system is mainly designed for ground terminal equipment at the beginning of the design.
  • the problems of increased interference and frequent handover will occur.
  • UAV unmanned aerial vehicle
  • the drone when the flying height of the drone is higher than the base station, the following problems may arise when the drone connects to the network for communication:
  • the radiation direction of the base station signal is mainly toward the ground. Although there will be reflection or scattering of the ground signal, some of the signal will spread into the air, or the base station antenna will also have some side lobes radiating into the air, but in general, the UAV The received signal strength will be lower.
  • the UAV can send a measurement report to the serving base station, where the threshold N of the number of neighboring cells is included in In the measurement configuration information sent by the serving base station to the UAV, N is any integer greater than or equal to 1.
  • the wireless resource management measurement method can enable the drone to report the measurement report in time to avoid RLF or handover failure for scenarios where the drone is at the edge of the serving cell.
  • the wireless resource management measurement method provided in the embodiment of the application does not It is not limited to only being applicable to scenarios where the drone is at the edge of the serving cell.
  • used to indicate can include both used for direct indication and used for indirect indication.
  • the indication information can directly indicate A or indirectly indicate A, but it does not mean that A must be included in the indication information.
  • the information indicated by the instruction information is referred to as the information to be instructed.
  • the information to be indicated may be directly indicated, such as the information to be indicated itself or the index of the information to be indicated.
  • the information to be indicated can also be indicated indirectly by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while other parts of the information to be indicated are known or agreed in advance. For example, it is also possible to realize the indication of specific information by means of a pre-arranged order (for example, stipulated in an agreement) of various information, so as to reduce the indication overhead to a certain extent. At the same time, it can also identify the common parts of each information and give unified instructions, so as to reduce the instruction overhead caused by separately indicating the same information.
  • the first, second, and various numerical numbers are only for easy distinction for description, and are not used to limit the scope of the embodiments of this application. For example, distinguish different thresholds, distinguish different neighboring areas, and so on.
  • preset may include indication by network device signaling, or pre-defined, for example, protocol definition.
  • pre-defined can be implemented by pre-saving corresponding codes, tables or other methods that can be used to indicate related information in the equipment (for example, including terminal equipment and network equipment). This application does not make any specific implementation methods. limited.
  • the "saving" referred to in the embodiments of the present application may refer to storing in one or more memories.
  • the one or more memories may be provided separately, or integrated in an encoder or decoder, a processor, or a communication device.
  • the one or more memories may also be partly provided separately, and partly integrated in a decoder, a processor, or a communication device.
  • the type of the memory can be any form of storage medium, which is not limited in this application.
  • the “protocols” involved in the embodiments of the present application may refer to standard protocols in the communication field, for example, may include LTE protocol, NR protocol, and related protocols applied to future communication systems, which are not limited in this application.
  • the radio resource management measurement method provided in the embodiment of the present application can be applied to, for example, the communication system 100 shown in FIG. 1.
  • the communication system may include at least one network device and at least one terminal device.
  • the embodiments shown below do not specifically limit the specific structure of the execution body of the method provided by the embodiments of the present application, as long as the program that records the code of the method provided by the embodiments of the present application can be executed according to the present application.
  • the method provided in the application embodiment only needs to communicate.
  • the execution subject of the method provided in the embodiment of the application may be a terminal device or a network device, or a functional module in the terminal device or the network device that can call and execute the program.
  • Fig. 2 is a schematic flowchart of a radio resource management measurement method provided by an embodiment of the present application.
  • the execution subject in this flowchart includes terminal equipment and network equipment.
  • the terminal device may be a drone, for example.
  • the wireless resource management measurement method includes at least the following partial steps.
  • S210 The network device sends measurement configuration information to the terminal device.
  • the measurement configuration information includes the first threshold value.
  • the first threshold value includes the signal quality threshold value of the first serving cell and/or the first detected cell number threshold value.
  • the first threshold is used by the terminal device to determine whether to report a measurement report.
  • the RRC reconfiguration message may be sent to the terminal device.
  • the RRC reconfiguration message includes the measurement configuration information mentioned above, or it may be Send a piece of other signaling to the terminal device, and the signaling carries the above-mentioned measurement configuration information.
  • the measurement configuration information may be composed of multiple measurement configuration information, and the network device may send the multiple measurement configuration information to the terminal device at one time, or it may be sent multiple times, which is not in this application. limited.
  • the measurement configuration information may also include measurement configurations corresponding to L neighboring cells, and the measurement configurations of different neighboring cells may be the same or different (for example, the measurement identifier, measurement object, or report in the measurement configuration of different neighboring cells).
  • the configuration can be the same or different), which is not limited in this application.
  • the threshold value N is included in the measurement configuration information.
  • L is a positive integer
  • N is a positive integer less than or equal to L
  • N can be understood as the number threshold of neighboring cells configured by the network device, and is used by the terminal device to determine whether to report a measurement report.
  • the measurement configuration information in the embodiment shown in FIG. 2 also includes the above-mentioned measurement identifier, measurement object, and reporting configuration, etc., in addition to the first threshold value.
  • the information included in the measurement configuration information in the embodiment shown in FIG. 2 is similar to the content included in the measurement configuration information specified in the current protocol, and will not be repeated here.
  • the first threshold value is one or more threshold values sent by the network device to the terminal device, where the first threshold value is multiple threshold values sent by the network device to the terminal device
  • the terminal device can randomly select a threshold to use
  • the first threshold value may be highly granular or interval granular. That is, the first corresponding relationship is satisfied between the first threshold value and the height of the terminal device. Different heights or height intervals or height levels correspond to different first thresholds.
  • the height of the terminal device may be a height relative to the ground, or a height relative to the sea level, or a height relative to a certain reference point, which is not limited in this application.
  • the network device may send multiple first threshold values to the terminal device, and each first threshold value has a height or a height interval or a height level corresponding to the first threshold value.
  • the aforementioned measurement configuration information includes three first threshold values (such as first threshold value #1, first threshold value #2, and first threshold value #3), where the first threshold value #1 corresponds to altitude interval #1 (or when the altitude value is lower than altitude #1, the corresponding threshold is the first threshold value #1), then when the height of the terminal device is in altitude interval #1 (Or, lower than height #1), use the first threshold value #1; the first threshold value #2 corresponds to height interval #2 (or when the height value is higher than or equal to height #1 and lower than or equal to At height #2, the corresponding threshold is the first threshold #2), then when the height of the terminal device is in the height interval #2 (or, the height of the terminal device is higher than or equal to height #1 And is lower than or equal to height #2) use the first threshold value #2; the first threshold value #3 corresponds to the height interval #3 (or, when the height value is higher than the height #2, the corresponding threshold If the value is the first threshold value #3), the first threshold value #3 is used when the height of the terminal device is in the height interval #3 (
  • the network device may send a first threshold value to the terminal device, and as the height changes by an offset, the first threshold value may change by an offset accordingly.
  • the height offset and the first threshold value offset can be specified by the protocol, or set by the terminal device, or instructed by the network device (for example, the network device sends instruction information to the terminal device, and the instruction information is used
  • the indication information may be included in the above-mentioned measurement configuration information), which is not limited in this application.
  • the aforementioned measurement configuration information may include a first threshold value (such as the first threshold value #1) and height #1, where the first threshold value #1 corresponds to the altitude interval #1 (or when the altitude value is When it is lower than height #1, the corresponding threshold value is the first threshold value #1), and when the height of the terminal device is lower than height #1, the first threshold value #1 is used.
  • a first threshold value such as the first threshold value #1
  • height #1 corresponds to the altitude interval #1 (or when the altitude value is When it is lower than height #1, the corresponding threshold value is the first threshold value #1)
  • the first threshold value #1 is used.
  • the first threshold is increased by 2, where the first threshold is the threshold of the number of cells detected first.
  • the aforementioned measurement configuration information may include a first threshold value (such as the first threshold value #1) and height #1, where the first threshold value #1 corresponds to the altitude interval #1 (or when the altitude value is When it is lower than height #1, the corresponding threshold value is the first threshold value #1), and when the height of the terminal device is lower than height #1, the first threshold value #1 is used. Use ((first threshold #1)+2) when the height of the terminal device is higher than or equal to height #1 and lower than or equal to (height #1) + 10 (m), and so on, without repeating .
  • the measurement configuration information may include height range interval information.
  • the measurement configuration information may include height interval #1' information and height interval #2' information, where height interval #1' is [H1', H2'], and height interval #2' is [H3', H4'].
  • the measurement configuration information also includes the first threshold value #1' and the first threshold value #2'. When the height of the terminal device belongs to the height interval #1', the terminal device uses the first threshold value #1'; when the height of the terminal device belongs to the height interval #2', the terminal device uses the first threshold value #2'.
  • the use of the first threshold value described in the embodiment shown in FIG. 2 refers to that the terminal device determines whether to report a measurement report according to the first threshold value. For example, the terminal device may compare the detection value with the first threshold value. Make a comparison to determine whether to report a measurement report.
  • the measurement configuration information may include at least one height threshold.
  • the measurement configuration information includes the above-mentioned height #1, height #2, and height #3.
  • the unit of height #1, height #2, and height #3 involved in this application may be meters. However, this application is not limited to this.
  • the units of height #1, height #2, and height #3 can also be other height units such as kilometers, decimeters, centimeters, etc., which are not illustrated here.
  • the measurement configuration information may include height interval information.
  • the measurement configuration information may include height interval #1 information and height interval #2 information, where height interval #1 is [H1, H2] and height interval #2 is [H3, H4].
  • the measurement configuration information also includes the first threshold value #1 and the first threshold value #2. When the height of the terminal device belongs to the height interval #1, the terminal device uses the first threshold value #1; when the height of the terminal device belongs to the height interval #2, the terminal device uses the first threshold value #2.
  • the terminal device determines whether to report the measurement report. That is, the method flow shown in FIG. 2 further includes S220: the terminal device determines whether to report a measurement report.
  • the terminal device when the foregoing measurement configuration information includes multiple first threshold values related to height, or the measurement configuration information includes a first threshold value, and the first threshold value changes as the altitude changes
  • the terminal device receives the measurement configuration information, it can determine the appropriate first threshold value based on its own height; or,
  • the terminal device may randomly determine a first threshold value after receiving the measurement configuration information.
  • the appropriate first threshold value may be used to determine whether to report the measurement report.
  • the detection value for example, the detection value may be the signal quality of the serving cell and/or the number of detected cells
  • the first threshold value when the detection value is the signal quality of the serving cell, the first The threshold is the signal quality threshold of the first serving cell.
  • the detection value is the number of detected cells
  • the first threshold is the first detected cell number threshold.
  • the terminal device determines whether to report the measurement report including the following Several situations:
  • the first threshold includes the signal quality threshold of the first serving cell, and the detection value includes the signal quality of the serving cell.
  • the signal quality of the serving cell includes the cell signal quality of the serving cell, and/or the signal quality of the beams belonging to the serving cell (for example, the signal quality of the M beams with the best signal quality in the serving cell, or , The signal quality of the M1 beams with the worst signal quality under the serving cell, or the signal quality of other beams, where M and M1 are greater than or equal to 1).
  • the first serving cell signal quality threshold may include the first cell signal quality threshold, and/or the first beam signal quality threshold.
  • the signal quality threshold of the first serving cell is 10 dBm
  • the signal quality of the serving cell detected by the terminal device can be compared with 10 dBm.
  • the specific value of the signal quality threshold of the first serving cell is not limited.
  • the terminal device determines whether to report the measurement report according to the relationship between the detection value and the first threshold value, and the signal quality of at least one neighboring cell, including:
  • Possibility 1 The signal quality of the serving cell is less than or equal to the above-mentioned signal quality threshold of the first serving cell, and the terminal device follows the typical RRM measurement mechanism described above, that is, when the signal quality of at least one neighboring cell satisfies the measurement report When the trigger condition is triggered, the terminal device determines to report the measurement report.
  • the measurement report contains the measurement result of the at least one neighboring cell that meets the trigger condition of the measurement report, and specifically includes at least one of the following: the identification information of the at least one neighboring cell (such as PCI, frequency point information), the cell signal quality of the at least one neighboring cell, the identification information of the beam belonging to the at least one neighboring cell (such as SSB index, CSI-RS index), and the signal quality of the beam belonging to the at least one neighboring cell .
  • the identification information of the at least one neighboring cell such as PCI, frequency point information
  • the cell signal quality of the at least one neighboring cell such as SSB index, CSI-RS index
  • the signal quality of the beam belonging to the at least one neighboring cell such as SSB index, CSI-RS index
  • the terminal equipment follows the typical RRM measurement mechanism described in the previous section.
  • Possibility 2 The signal quality of the serving cell is higher than or equal to the above-mentioned signal quality threshold of the first serving cell, and the terminal equipment follows the enhanced RRM measurement mechanism described above, that is, when the signal quality of the N neighboring cells is satisfied When the corresponding measurement report trigger condition, the terminal device determines to report the measurement report.
  • the measurement report contains the measurement result of at least one of the N neighboring cells that meet the corresponding measurement report trigger condition, specifically including at least one of the following Item: the identification information of the at least one neighboring cell (such as PCI, frequency point information), the cell signal quality of the at least one neighboring cell, and the identification information of the beam belonging to at least one of the N neighboring cells (such as SSB index) CSI-RS index), the signal quality of the beam belonging to at least one neighboring cell among the N neighboring cells.
  • the identification information of the at least one neighboring cell such as PCI, frequency point information
  • the cell signal quality of the at least one neighboring cell such as SSB index
  • the identification information of the beam belonging to at least one of the N neighboring cells such as SSB index
  • CSI-RS index the signal quality of the beam belonging to at least one neighboring cell among the N neighboring cells.
  • the terminal equipment follows the enhanced RRM measurement mechanism described above.
  • the terminal device when the signal quality of the serving cell is equal to the signal quality threshold of the first serving cell, the terminal device can select the typical RRM measurement mechanism or the enhanced RRM measurement mechanism There is no limit to any one of them.
  • the content of the measurement report reported by selecting different RRM measurement mechanisms may be different or the same.
  • a mechanism for reporting measurement reports based on the signal quality of the serving cell is provided, so that terminal equipment can report measurement reports reasonably. On the one hand, it prevents the terminal equipment from reporting measurement reports frequently when the signal quality of the serving cell is good; on the other hand, it avoids RLF or late handover caused by the failure to report the measurement report in time when the signal quality of the serving cell is poor.
  • the first threshold value includes the first detected cell number threshold, and the detected value includes the detected cell number.
  • the terminal device determines whether to report the measurement report according to the relationship between the detection value and the first threshold value, and the signal quality of at least one neighboring cell, including:
  • the number of cells detected by the terminal device is less than or equal to the above-mentioned first detected cell number threshold, and the terminal device follows the typical RRM measurement mechanism described in the foregoing, that is, at least one When the signal quality of the neighboring cell meets the measurement report trigger condition, the terminal device determines to report the measurement report.
  • the content that can be included in the measurement report can refer to the possibility one described in Case 1, which will not be repeated here.
  • the terminal device determines to report the measurement report.
  • the content that can be included in the measurement report can refer to Possibility 2 described in Case 1, and will not be repeated here. .
  • the number of cells detected by the terminal device mentioned above refers to the number of neighboring cells that can be detected when the terminal device is located within the service range of the serving cell. For example, the signal quality of a certain neighboring cell is strong, even if the terminal device is located within the coverage of the serving cell, the terminal device can still detect the signal of the neighboring cell.
  • the number of cells detected by the terminal device mentioned above refers to the total number of serving cells and neighboring cells that can be detected when the terminal device is located within the service range of the serving cell.
  • the terminal device can select the typical RRM measurement mechanism or enhance Any one of the RRM measurement mechanisms is not limited. Specifically, after the terminal device selects different RRM measurement mechanisms, the content of the measurement report reported by the terminal device may be different or the same.
  • a mechanism for reporting the measurement report based on the number of cells detected by the terminal device is provided, so that the terminal device can report the measurement report reasonably.
  • it prevents the terminal device from reporting measurement reports frequently when the number of cells that can be detected by the terminal device is large; on the other hand, it avoids the RLF or RLF or the measurement report caused by the failure to report the measurement report when the number of cells that the terminal device can detect is small. Switch too late.
  • the first threshold includes the first detected cell number threshold and the first serving cell signal quality threshold, and the detected value includes the signal quality of the serving cell and the number of detected cells.
  • the terminal device determines whether to report the measurement report according to the relationship between the detection value and the first threshold value, and the signal quality of at least one neighboring cell, including:
  • the number of cells detected by the terminal equipment is less than or equal to the aforementioned first detected cell number threshold, and the signal quality of the serving cell is less than or equal to the aforementioned first serving cell signal quality threshold.
  • the terminal device follows the typical RRM measurement mechanism described in the previous section, that is, when the signal quality of at least one neighboring cell meets the measurement report trigger condition, the terminal device determines to report the measurement report.
  • the measurement report can contain For the content, please refer to Possibility One described in Case 1, which will not be repeated here.
  • the terminal equipment follows the enhanced RRM measurement mechanism described in the previous article, that is, when the signal quality of N neighboring cells all meet the corresponding measurement report trigger conditions, the terminal equipment determines to report the measurement report.
  • the content that can be included in the measurement report can refer to Possibility 2 described in Case 1, which will not be repeated here.
  • the terminal device follows the typical RRM measurement mechanism described in the previous article, that is, when the signal quality of at least one neighboring cell meets the measurement report trigger condition, the terminal device determines to report the measurement report.
  • the measurement report may include For the content, please refer to Possibility One described in Case 1, which will not be repeated here.
  • the terminal equipment follows the enhanced RRM measurement mechanism described in the previous article, that is, when the signal quality of N neighboring cells all meet the corresponding measurement report trigger conditions, the terminal equipment determines to report the measurement report.
  • the content that can be included in the measurement report can refer to Possibility 2 described in Case 1, which will not be repeated here.
  • the number of cells detected by the terminal device is higher than or equal to the above-mentioned first detected cell number threshold, and the signal quality of the serving cell is less than or equal to the above-mentioned first serving cell signal Quality threshold, then, 1)
  • the terminal device can follow the typical RRM measurement mechanism described in the previous article, that is, when the signal quality of at least one neighboring cell meets the measurement report trigger condition, the terminal device determines to report the measurement report.
  • the measurement The content that can be included in the report can refer to Possibility One described in Case 1, which will not be repeated here; 2)
  • the terminal device can follow the enhanced RRM measurement mechanism described in the previous section, that is, when the signal quality of N neighboring cells is When the corresponding measurement report trigger conditions are met, the terminal device determines to report the measurement report.
  • the content that can be included in the measurement report can refer to the possibility two described in Case 1, which will not be repeated here; 3) Or, it depends on the terminal Equipment realization.
  • the number of cells detected by the terminal device is less than or equal to the above-mentioned first detected cell number threshold, and the signal quality of the serving cell is higher than or equal to the above-mentioned first serving cell signal Quality threshold, then, 1)
  • the terminal device can follow the enhanced RRM measurement mechanism described in the previous article, that is, when the signal quality of the N neighboring cells all meet the corresponding measurement report trigger condition, the terminal device determines to report the measurement report, At this time, the content that can be included in the measurement report can refer to Possibility Two described in Case 1, which will not be repeated here; 2)
  • the terminal device can follow the typical RRM measurement mechanism described in the previous section, that is, at least one neighboring cell
  • the terminal device determines to report the measurement report.
  • the content that can be included in the measurement report can refer to the possible one described in Case 1, which will not be repeated here; 3) Or, it depends on the terminal Equipment realization.
  • the order of acquiring the number of cells detected by the terminal device and acquiring the signal quality of the serving cell is not limited, or, it may also be obtained at the same time to obtain the number of cells detected by the terminal device. Number and the signal quality of the serving cell.
  • the terminal device sends the measurement report corresponding to the first neighboring cell to the network device. And after sending the measurement report corresponding to the first neighboring cell, the first timer is started. Specifically, if the terminal device follows the typical RRM measurement mechanism, the first neighboring cell is at least one neighboring cell, and the signal quality of the at least one neighboring cell meets the measurement report trigger condition; if the terminal device follows the enhanced RRM measurement mechanism , The first neighboring cell is at least one neighboring cell among the N neighboring cells, and the signal quality of at least one neighboring cell among the N neighboring cells all meets the corresponding measurement report trigger condition. In the embodiments of the present application, there is no restriction on which or which neighboring regions the first neighboring region refers to.
  • the terminal device no longer reports a measurement report (for example, the terminal device can continue to measure, but no longer reports a measurement report), or the terminal device stops measuring;
  • the terminal device measures that the signal quality of the second neighboring cell is higher than the signal quality of the first neighboring cell included in the currently reported measurement report by a preset value (For example, the signal quality of the second neighboring cell is ZdBm higher than the signal quality of the first neighboring cell), where the preset value can be specified by the protocol, determined by the terminal device itself, or indicated by the network device (For example, included in the above measurement configuration information sent to the terminal device), this application is not limited to this.
  • the terminal device may report the measurement report corresponding to the second neighboring cell during the running of the first timer. For example, once the measurement report trigger condition corresponding to the second neighboring cell is satisfied, the terminal device reports the measurement corresponding to the second neighboring cell. Report; or, in another example, the terminal device may report the measurement report corresponding to the second neighboring cell after the first timer expires. For example, when the triggering condition of the measurement report corresponding to the second neighboring cell is met, the first timer is one When the timeout expires, the terminal device reports the measurement report corresponding to the second neighboring cell.
  • the effective time of the first timer may be specified by the protocol, or determined by the terminal device itself, or may be instructed by the network device (for example, included in the measurement configuration information mentioned above and sent to the terminal device).
  • the application method for determining the valid time of the first timer and the duration of the valid time are not limited.
  • the above measurement report may include information such as measurement results and neighboring cell identifiers.
  • the measurement report may include related information about the neighboring cell that meets the trigger condition of the measurement report, for example, the measurement result of the neighboring cell, the identifier of the neighboring cell, the identifier of the beam belonging to the neighboring cell, and the information of the beam belonging to the neighboring cell. Measurement results.
  • the related information of the neighboring cell included in the measurement report may be different in different situations, because the measurement report includes the measurement results of the neighboring cell that triggers the reporting of the measurement report, and the neighboring cell that triggers the reporting of the measurement report may be different in different situations. That is, when the aforementioned terminal device determines to report the measurement report, the content of the report may be different in different situations.
  • the content included in the measurement report is not limited in this application. You can refer to the provisions in the current agreement or in accordance with the provisions of the future agreement. This application mainly relates to the conditions under which the terminal device reports the measurement report. . It should also be understood that the measurement report trigger conditions corresponding to different neighboring cells may be the same or different, which is not limited in this application.
  • a beam may be understood as a spatial resource, and may refer to a transmission or reception precoding vector with energy transmission directivity.
  • the transmitted or received precoding vector can be identified by index information, and the index information can correspond to the resource identification (identity, ID) of the configuration terminal, for example, the index information can correspond to the identity or resource of the configured CSI-RS ; It may also be the identifier or resource of the correspondingly configured SSB; it may also be the identifier or resource of the correspondingly configured uplink sounding reference signal (Sounding Reference Signal, SRS).
  • the index information may also be index information that is displayed or implicitly carried by a signal or channel carried by a beam.
  • the energy transmission directivity may refer to the precoding processing of the signal to be sent through the precoding vector, the signal after the precoding processing has a certain spatial directivity, and receiving the precoding processing of the precoding vector
  • the signal has good received power, such as meeting the signal-to-noise ratio of reception and demodulation, etc.; the energy transmission directivity can also mean that the same signal sent from different spatial positions received through the precoding vector has different received power.
  • the embodiment of the present application also provides a solution for adjusting the TTT based on the signal quality of the serving cell and/or the number of detected cells, which is described in detail below with reference to FIG. 3.
  • FIG. 3 is a schematic flowchart of a method for adjusting TTT according to an embodiment of the present application.
  • the execution subject in this flowchart includes terminal equipment and network equipment.
  • the wireless resource management measurement method includes at least the following partial steps.
  • S310 The network device sends measurement configuration information to the terminal device.
  • the measurement configuration information includes a second threshold value, a third threshold value, and at least one first trigger time.
  • the first trigger time corresponding to different measurement identifiers or measurement frequency points or neighboring cells may be the same or different, which is not limited in this application.
  • the measurement configuration information may be composed of multiple measurement configuration information, and the network device may send the multiple measurement configuration information to the terminal device at one time or multiple times, which is not limited in this application. .
  • the second threshold includes the signal quality threshold of the second serving cell and/or the second detected cell number threshold
  • the third threshold includes the signal quality threshold of the third serving cell and/or the third threshold. Threshold for the number of detected cells. Wherein, the second threshold value is less than or equal to the third threshold value, and when the second threshold value is equal to the third threshold value, only the second threshold value or the third threshold value may be sent.
  • the magnitude relationship between the detection value and the second threshold value and/or the third threshold value is used to determine at least one second trigger time.
  • the terminal device may determine at least one second trigger time according to the detection value, the second threshold value, the third threshold value, The first trigger time determines the second trigger time.
  • the detection value is similar to the detection value (including the signal quality of the serving cell or the number of detected cells) in the foregoing embodiment, and will not be repeated here.
  • the measurement configuration information in the embodiment shown in FIG. 3 includes, in addition to the above-mentioned second threshold value and third threshold value, the measurement identifier, measurement object, report configuration, and trigger time introduced above. Except for the second threshold and the third threshold, the information included in the measurement configuration information in the embodiment shown in FIG. 3 is similar to the content included in the measurement configuration information specified in the current protocol, and will not be repeated here.
  • the second threshold value is one or more threshold values sent by the network device to the terminal device, where the second threshold value is multiple threshold values sent by the network device to the terminal device
  • the terminal device can randomly select a second threshold to use
  • the second threshold value may be highly granular or interval granular. That is, the second threshold value and the height at which the terminal device is located satisfy the second correspondence relationship. Different altitudes or altitude intervals or altitude levels correspond to different second thresholds.
  • the height of the terminal device may be a height relative to the ground, or a height relative to the sea level, or a height relative to a certain reference point, which is not limited in this application.
  • the network device may send multiple second threshold values to the terminal device, and each second threshold value has a height or a height interval or a height level corresponding to the second threshold value.
  • the network device may send a second threshold value to the terminal device, and as the height changes by an offset, the second threshold value may change by an offset accordingly.
  • the description of sending a first threshold value by the network device to the terminal device which will not be repeated here.
  • the third threshold value is one or more threshold values sent by the network device to the terminal device, where, when the third threshold value is multiple threshold values sent by the network device to the terminal device, the terminal The device can randomly select a third threshold to use; or,
  • the third threshold value may be highly granular or interval granular. That is, the third threshold value and the height of the terminal device satisfy the third correspondence relationship. That is, different altitudes or altitude intervals or altitude levels correspond to different third thresholds.
  • the network device may send multiple third threshold values to the terminal device, and each third threshold value has a height or a height interval or a height level corresponding to the third threshold value.
  • each third threshold value has a height or a height interval or a height level corresponding to the third threshold value.
  • the network device may send a third threshold value to the terminal device, and as the height changes an offset, the third threshold may change accordingly by an offset.
  • the description of sending a first threshold value by the network device to the terminal device which will not be repeated here.
  • the terminal device determines at least one second trigger time. That is, the method flow shown in FIG. 3 further includes S320: the terminal device determines at least one second trigger time.
  • the terminal device can determine the appropriate second threshold value based on its own height after receiving the measurement configuration information And/or the third threshold; or,
  • the terminal device may randomly determine an appropriate second threshold, and/ Or, when the foregoing measurement configuration information includes multiple third threshold values (which are not related to height), the terminal device may randomly determine an appropriate third threshold value after receiving the measurement configuration information.
  • the appropriate second threshold value and/or third threshold value may be used to determine the second trigger time.
  • the detection value for example, the detection value may be the signal quality of the serving cell and/or the number of detected cells
  • the second threshold value and/or the third threshold value are the signal quality threshold value of the first serving cell.
  • the detection value is the number of detected cells
  • the second threshold value and / Or the third threshold is the threshold of the number of the first detected cells
  • the detection value is the signal quality of the serving cell and the number of detected cells
  • the second threshold and/or the third threshold The value is the signal quality threshold of the first serving cell and the first detected cell number threshold
  • the terminal device determines at least one second trigger time including the following situations:
  • the second threshold includes the signal quality threshold of the second serving cell
  • the third threshold includes the signal quality threshold of the third serving cell
  • the detection value includes the signal quality of the serving cell.
  • the second threshold value is less than or equal to the third threshold value.
  • the second serving cell signal quality threshold may include the second cell signal quality threshold, and/or the second beam signal quality threshold.
  • the third serving cell signal quality threshold may include the third cell signal quality threshold, and/or the third beam signal quality threshold.
  • the terminal device determining at least one second trigger time according to the magnitude relationship between the detection value and the second threshold value and/or the third threshold value includes:
  • the second trigger time is equal to the first Trigger time The trigger time.
  • the second threshold includes the second detected cell number threshold
  • the third threshold includes the third detected cell number threshold
  • the detected value includes the detected cell number.
  • the second threshold value is less than or equal to the third threshold value.
  • the terminal device determining at least one second trigger time according to the magnitude relationship between the detection value and the second threshold value and/or the third threshold value includes:
  • the second trigger time is A trigger time equal to the first trigger time.
  • the second threshold includes the second detected cell number threshold and the second serving cell signal quality threshold
  • the third threshold includes the third detected cell number threshold and the third serving cell.
  • the signal quality threshold and detection value include the number of detected cells and the signal quality of the serving cell. Wherein, the second detected cell number threshold is less than or equal to the third detected cell number threshold, and the second serving cell signal quality threshold is less than or equal to the third serving cell signal quality threshold.
  • the terminal device determining at least one second trigger time according to the magnitude relationship between the detection value and the second threshold value and/or the third threshold value includes:
  • the second trigger time is a trigger time less than the first trigger time
  • the second trigger time is greater than the threshold The trigger time of the first trigger time
  • the second trigger time is a trigger time equal to the first trigger time.
  • the second trigger time is a trigger time less than the first trigger time
  • the second trigger time is greater than the threshold The trigger time of the first trigger time
  • the second trigger time is a trigger time equal to the first trigger time.
  • determining that the second trigger time is a trigger time greater than the first trigger time includes: determining that the second trigger time is the product of the first trigger time and P, and the P Being a positive number greater than 1, P may be specified by the protocol, determined by the terminal device itself, or indicated by the network device (for example, included in the measurement configuration information and sent to the terminal device).
  • the height at which the above-mentioned P and the terminal device are located satisfies the fifth correspondence relationship. That is, the above-mentioned P is the granularity of height or height interval or height level, and different heights or height intervals or height levels correspond to different P.
  • the agreement stipulates three Ps (such as P#1, P#2, and P#3), where P#1 corresponds to the height interval #1 (or, when the height value is lower than the height #1, the corresponding zoom The value is P#1), then P#1 is used when the height of the terminal device is in the height range #1 (or lower than the height #1); P#2 corresponds to the height range #2 (or when the height value When it is higher than height #1 and lower than height #2, the corresponding zoom value is P#2), then when the height of the terminal device is in the height range #2 (or the height of the terminal device is higher than the height# 1 and lower than height #2) use P#2; P#3 corresponds to height interval #3 (or when the height value is higher than height #2, the corresponding zoom value is P#3), then when the terminal P#3 is used when the height of the device is in the height range #3 (or the height of the terminal device is higher than the height #2).
  • height #1 is less than or equal to height #2.
  • the height #1 and the height #2 the height
  • the measurement configuration information may include height interval information.
  • the measurement configuration information may include information about altitude interval #1, information about altitude interval #2, and information about altitude interval #3, where altitude interval #1 is [H1, H2] and altitude interval #2 is [ H3, H4], height interval #3 is [H5, H6].
  • the measurement configuration information also includes P#1, P#2, and P#3.
  • P#1, P#2, and P#3 are all positive numbers greater than 1.
  • determining that the second trigger time is a trigger time greater than the first trigger time includes: determining that the second trigger time is the first trigger time plus a first preset offset Shift.
  • the first preset offset may be specified by the protocol, determined by the terminal device itself, or instructed by the network device (for example, included in the measurement configuration information and sent to the terminal device). It can be understood that the first preset offset is greater than or equal to zero.
  • the first preset offset and the height at which the terminal device is located satisfy a sixth correspondence relationship. That is, if the first preset offset is the granularity of height or height interval or height level, different heights or height intervals or height levels correspond to different first preset offsets.
  • determining that the second trigger time is a trigger time less than the first trigger time includes: determining that the second trigger time is the product of the first trigger time and Q, and the Q Being a positive number less than 1, Q can be specified by the protocol, determined by the terminal device itself, or instructed by the network device (for example, included in the measurement configuration information and sent to the terminal device).
  • the above-mentioned Q and the height of the terminal device satisfy the fourth correspondence relationship. That is, the aforementioned Q is the granularity of height or height interval or height level, and different heights or height intervals or height levels correspond to different Qs. In this case, reference may be made to the description of multiple Ps above, which will not be repeated here.
  • determining that the second trigger time is less than the first trigger time includes a trigger time: determining that the second trigger time is the first trigger time minus a second preset offset Shift.
  • the second preset offset may be specified by the protocol, may also be determined by the terminal device itself, or may be instructed by the network device (for example, included in the above-mentioned measurement configuration information and sent to the terminal device).
  • determining that the second trigger time is a trigger time equal to the first trigger time includes: determining that the second trigger time is the product of the first trigger time and K, and the K Equal to 1.
  • determining that the second trigger time is a trigger time equal to the first trigger time includes: not adjusting the first trigger time, that is, the aforementioned coefficient K may not exist, that is, no agreement is required K or network equipment indicates K.
  • the first trigger time is directly used as the second trigger time.
  • the measurement configuration information contains the second threshold value (such as the second threshold value #1, the second threshold value #2, the second threshold value #3), and the third threshold value (such as Third threshold value #1, third threshold value #2, third threshold value #3), height #1, height #2, Q (such as Q#1, Q#2, Q#3) and P (Such as P#1, P#2, P#3) Take an example to illustrate how to adjust the first trigger time.
  • the second threshold value is the signal quality threshold value of the second serving cell
  • the third threshold value is the signal quality threshold value of the third serving cell as an example for description.
  • the signal quality threshold used is the second threshold #1 and the third threshold #1. If the signal quality of the serving cell is higher than or equal to the third Threshold #1, the scaling value used is P#1, that is, the second trigger time actually used by the terminal device is (the first trigger time multiplied by P#1); if the signal quality of the serving cell is lower than or equal to the first trigger time If the threshold value #1 is two, the scaling value used is Q#1, that is, the second trigger time actually used by the terminal device is (the first trigger time multiplied by Q#1); if the signal quality of the serving cell is higher than the second trigger time If the threshold value #1 is lower than the third threshold value #1, the second trigger time actually used by the terminal device is the first trigger time.
  • the signal quality threshold used is the second threshold #2 and the third threshold #2. If the signal quality of the serving cell is Is higher than or equal to the third threshold #2, the scaling value used is P#2, that is, the second trigger time actually used by the terminal device is (the first trigger time multiplied by P#2); if the signal of the serving cell If the quality is lower than or equal to the second threshold #2, the scaling value used is Q#2, that is, the second trigger time actually used by the terminal device is (the first trigger time multiplied by Q#2); if the serving cell’s If the signal quality is higher than the second threshold value #2 and lower than the third threshold value #2, the second trigger time actually used by the terminal device is the first trigger time.
  • the signal quality threshold used is the second threshold #3 and the third threshold #3. If the signal quality of the serving cell is higher than or equal to the third Threshold #3, the scaling value used is P#3, that is, the second trigger time actually used by the terminal device is (the first trigger time multiplied by P#3); if the signal quality of the serving cell is lower than or equal to the first trigger time If the threshold value #3 is two, the scaling value used is Q#3, that is, the second trigger time actually used by the terminal device is (the first trigger time multiplied by Q#3); if the signal quality of the serving cell is higher than the second trigger time If the threshold value #3 is lower than the third threshold value #3, the second trigger time actually used by the terminal device is the first trigger time.
  • the terminal device determines to report the measurement report.
  • the solution for adjusting the TTT based on the signal quality of the serving cell and/or the number of detected cells is given, so that the terminal device can report the measurement report reasonably.
  • the signal quality of the serving cell is poor and/or the number of detected cells is small, reduce the TTT so that the terminal device can quickly report the measurement report, avoiding the RLF or lateness caused by the measurement report not being reported in time Handover;
  • the signal quality of the serving cell is good and/or the number of detected cells is large, the TTT is amplified so that the terminal equipment can slow down the frequency of reporting measurement reports and avoid frequent reporting of measurement reports.
  • the methods shown in FIG. 2 and FIG. 3 can be implemented separately or in combination, that is, after adjusting the TTT, the above-mentioned detection value can be used according to the signal quality of the serving cell and/or the detected cell.
  • the number and the first threshold value corresponding to the detection value determine whether to report the measurement report.
  • the above-mentioned second threshold value may be the same as or different from the above-mentioned first threshold value (when the first threshold value and the second threshold value are the same, it may be Configure one of the two thresholds), or the third threshold can be the same or different from the first threshold (when the first threshold and the third threshold are the same, you can configure One of the two thresholds), which is not limited in this embodiment.
  • the size of the sequence numbers of the foregoing processes does not imply the order of execution.
  • the execution order of the processes should be determined by their functions and internal logic, and should not constitute any limitation to the implementation process of the embodiments of this application. . And it may not be necessary to perform all operations in the foregoing method embodiments.
  • terminal device and/or the network device in the foregoing method embodiments may perform some or all of the steps in the embodiments. These steps or operations are only examples. The embodiments of the present application may also include performing other operations or variations of various operations. .
  • the method implemented by the terminal device can also be implemented by a component (such as a chip or circuit, etc.) that can be used for the terminal device, and the method implemented by a network device can also be implemented by a network device.
  • the components are realized.
  • radio resource management measurement method provided by the embodiment of the present application is described in detail above with reference to Figs. 2 and 3, and the radio resource management measurement device provided by the embodiment of the present application is described in detail below in conjunction with Figs. 4-7.
  • FIG. 4 is a schematic diagram of a radio resource management measurement apparatus 400 provided by the present application.
  • the device 400 includes a processing unit 410 and a receiving unit 420.
  • the receiving unit 420 is configured to receive measurement configuration information, where the measurement configuration information includes a first threshold value, where the first threshold value includes a first serving cell signal quality threshold value and/or a first detected value The threshold of the number of cells;
  • the processing unit 410 is configured to determine whether to report a measurement report according to the magnitude relationship between the detection value and the first threshold value, and the signal quality of at least one neighboring cell.
  • the apparatus 400 implements functions or steps corresponding to the terminal device in the method embodiment, and the apparatus 400 may be the terminal device in the method embodiment, or a chip or functional module inside the terminal device in the method embodiment.
  • the corresponding unit of the apparatus 400 is used to execute the corresponding steps performed by the terminal device in the method embodiment shown in FIG. 2 or FIG. 3, or in combination with FIG. 2 and FIG.
  • the processing unit 410 in the device 400 is used to perform processing related steps. For example, step S220 of determining whether to report a measurement report in FIG. 2 or step S320 of determining the second trigger time in FIG. 3 is performed.
  • the receiving unit 420 in the device 400 executes the corresponding receiving steps in the method embodiment. For example, step S210 of receiving measurement configuration information sent by a network device in FIG. 2 or step S310 of receiving measurement configuration information sent by a network device in FIG. 3 is performed.
  • the apparatus 400 may also include a sending unit, configured to perform corresponding sending steps, for example, sending information to other devices.
  • the receiving unit 420 and the sending unit may constitute a transceiver unit, and have the functions of receiving and sending at the same time.
  • the processing unit 410 may be at least one processor.
  • the sending unit may be a transmitter or an interface circuit
  • the receiving unit 420 may be a receiver or an interface circuit.
  • the receiver and transmitter can be integrated to form a transceiver or interface circuit.
  • the device 400 may further include a storage unit for storing data and/or signaling.
  • the processing unit 410, the sending unit, and the receiving unit 420 may interact or couple with the storage unit, for example, read or call the storage unit. Data and/or signaling to enable the method of the above-mentioned embodiment to be executed.
  • Each of the above units can exist independently, or can be fully or partially integrated.
  • FIG. 5 is a schematic structural diagram of a terminal device 500 suitable for an embodiment of the present application.
  • the terminal device 500 can be applied to the system shown in FIG. 1.
  • FIG. 5 only shows the main components of the terminal device.
  • the terminal equipment 500 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is used to control the antenna and the input and output devices to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory to execute the corresponding method executed by the terminal device in the method for registration proposed in this application. Process and/or operation. I won't repeat them here.
  • FIG. 5 only shows a memory and a processor. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • FIG. 6 is a schematic diagram of a radio resource management measurement apparatus 600 provided by the present application.
  • the device 600 includes a processing unit 610 and a sending unit 620.
  • the processing unit 610 is configured to determine measurement configuration information, where the measurement configuration information includes a first threshold value and a neighboring cell number threshold N, where the first threshold value includes a first serving cell signal quality threshold Limit value and/or the first detected cell number threshold;
  • the sending unit 620 is configured to send the measurement configuration information, where the magnitude relationship between the first threshold value and the detection value, and the signal quality of at least one neighboring cell are used to indicate whether the measurement report can be received.
  • the apparatus 600 implements functions or steps corresponding to the network device in the method embodiment.
  • the apparatus 600 may be the network device in the method embodiment, or a chip or functional module inside the network device in the method embodiment.
  • the corresponding unit of the apparatus 600 is used to execute the corresponding steps performed by the network device in the method embodiment shown in FIG. 2 or FIG. 3, or the method embodiment shown in combination with FIG. 2 and FIG.
  • the processing unit 610 in the device 600 is used to perform processing related steps.
  • the sending unit 620 in the apparatus 600 executes the corresponding sending steps in the method embodiment, for example, executes step S210 of sending measurement configuration information to the terminal device in FIG. 2 or executes step S310 of sending measurement configuration information to the terminal device in FIG. 3.
  • the device 600 may also include a receiving unit for performing corresponding receiving steps. For example, receiving information sent by other devices.
  • the receiving unit and the sending unit 620 may constitute a transceiver unit, and have the functions of receiving and sending at the same time.
  • the processing unit 610 may be at least one processor.
  • the sending unit 620 may be a transmitter or an interface circuit.
  • the receiving unit may be a receiver or an interface circuit. The receiver and transmitter can be integrated to form a transceiver or interface circuit.
  • the device 600 may further include a storage unit for storing data and/or signaling.
  • the processing unit 610, the sending unit 620, and the receiving unit may interact or couple with the storage unit, for example, read or call the storage unit. Data and/or signaling to enable the method of the above-mentioned embodiment to be executed.
  • Each of the above units can exist independently, or can be fully or partially integrated.
  • FIG. 7 is a schematic structural diagram of a network device 700 applicable to an embodiment of the present application, and can be used to implement the function of the network device in the above-mentioned paging method. It can be a schematic diagram of the structure of a network device.
  • the network device 700 may include CU, DU, and AAU.
  • the network device consists of one or more radio frequency units, such as For the remote radio unit (RRU) and one or more baseband units (BBU):
  • RRU remote radio unit
  • BBU baseband units
  • the non-real-time part of the original BBU will be divided and redefined as CU, which is responsible for processing non-real-time protocols and services.
  • Part of the physical layer processing functions of the BBU are merged with the original RRU and passive antennas into AAU, and the remaining functions of the BBU are redefined as DU.
  • CU and DU are distinguished by the real-time nature of processing content, and AAU is a combination of RRU and antenna.
  • CU, DU, and AAU can be separated or co-located. Therefore, there will be multiple network deployment forms.
  • One possible deployment form is consistent with traditional 4G network equipment.
  • CU and DU share hardware deployment.
  • FIG. 7 is only an example, and does not limit the scope of protection of this application.
  • the deployment form may also be DU deployment in a 5G BBU computer room, CU centralized deployment or DU centralized deployment, and CU higher-level centralized deployment.
  • the AAU 701 that can implement the transceiver function is called the transceiver unit 701, which corresponds to the sending unit 620 in FIG. 6.
  • the transceiver unit 701 may also be called a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 7011 and a radio frequency unit 7012.
  • the transceiving unit 701 may include a receiving unit and a transmitting unit, the receiving unit may correspond to a receiver (or receiver, receiving circuit), and the transmitting unit may correspond to a transmitter (or transmitter, transmitting circuit).
  • the CU and DU 702 that can implement internal processing functions are called processing unit 702.
  • the processing unit 702 may control network devices, etc., and may be referred to as a controller.
  • the AAU 701, the CU and the DU 702 may be physically set together, or may be physically separated.
  • the network device is not limited to the form shown in FIG. 7, and may also be in other forms: for example, including BBU and ARU, or including BBU and AAU; it may also be CPE or other forms, which is not limited by this application.
  • the network device 700 shown in FIG. 7 can implement the functions of the network device involved in the method embodiments of FIG. 2 and FIG. 3.
  • the operations and/or functions of each unit in the network device 700 are respectively for implementing the corresponding process executed by the network device in the method embodiment of the present application.
  • detailed descriptions are appropriately omitted here.
  • the structure of the network device illustrated in FIG. 7 is only a possible form, and should not constitute any limitation in the embodiment of the present application. This application does not exclude the possibility of other types of network equipment structures that may appear in the future.
  • the embodiment of the present application also provides a communication system, which includes the aforementioned terminal device and network device.
  • the present application also provides a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the computer can execute the foregoing as shown in Figure 2 or Figure 3, or Figure 2 and Figure 3. Combine the steps performed by the terminal device in the method shown.
  • the present application also provides a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the computer executes the foregoing as shown in Figure 2 or Figure 3, or Figure 2 and Figure 3. Combine the steps performed by the network device in the method shown.
  • This application also provides a computer program product containing instructions.
  • the computer program product runs on a computer, the computer executes the method shown in FIG. 2 or FIG. 3, or the method shown in FIG. 2 and FIG. 3 in combination. The various steps.
  • This application also provides a computer program product containing instructions.
  • the computer program product runs on a computer, the computer executes the method shown in FIG. 2 or FIG. 3, or the method shown in FIG. 2 and FIG. 3 in combination. The various steps.
  • the application also provides a chip including a processor.
  • the processor is used to read and run a computer program stored in the memory to execute the corresponding operation and/or process performed by the terminal device in the method for measuring wireless resource management provided by this application.
  • the chip further includes a memory, the memory and the processor are connected to the memory through a circuit or a wire, and the processor is used to read and execute the computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive processed data and/or information, and the processor obtains the data and/or information from the communication interface, and processes the data and/or information.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the application also provides a chip including a processor.
  • the processor is used to read and run a computer program stored in the memory to execute the corresponding operation and/or process performed by the network device in the method for measuring wireless resource management provided in the present application.
  • the chip further includes a memory, the memory and the processor are connected to the memory through a circuit or a wire, and the processor is used to read and execute the computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive processed data and/or information, and the processor obtains the data and/or information from the communication interface, and processes the data and/or information.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the above-mentioned chip can also be replaced with a chip system, which will not be repeated here.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual conditions to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks and other media that can store program codes. .
  • the term "and/or” in this application is only an association relationship that describes associated objects, which means that there can be three types of relationships, for example, A and/or B, which can mean that A alone exists, and both A and B exist. , There are three cases of B alone.
  • the character "/" in this document generally means that the associated objects before and after are in an "or” relationship; the term “at least one” in this application can mean “one” and "two or more", for example, A At least one of, B and C can mean: A alone exists, B alone exists, C alone exists, A and B exist alone, A and C exist at the same time, C and B exist at the same time, A and B and C exist at the same time, this Seven situations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种无线资源管理测量的方法和装置。该无线资源管理测量的方法包括:网络设备向终端设备发送的测量配置信息中携带第一门限值,终端设备基于检测值与第一门限值之间的大小关系,以及至少一个邻区的信号质量确定是否上报测量报告。本申请提供的技术方案可以使得终端设备在进行RRM测量的时候,根据服务小区的信号质量和/或检测到的小区个数与第一门限值的关系,以及至少一个邻区的信号质量确定是否上报测量报告,能够避免终端设备频繁上报测量报告,也避免终端设备未及时上报测量报告,使得测量机制更合理。

Description

无线资源管理测量的方法和装置 技术领域
本申请涉及通信领域,并且更具体地,涉及一种无线资源管理测量的方法和装置。
背景技术
无线资源管理(radio resource management,RRM)测量中,服务基站给终端设备发送包含测量配置信息的无线资源控制(radio resource control,RRC)重配置消息。对于RRM测量,某些情况下(例如,终端设备为处于高空的无人机),终端设备能够检测/接收到多个基站的信号,那么终端设备可能会发送较多、较频繁的测量报告,因此需要对终端设备的RRM测量机制进行增强(例如,当预定义数目的邻区在对应的触发时间内均满足对应的测量报告的触发条件时,终端设备可以向服务基站发送测量报告),避免频繁发送测量报告所引入的实现复杂、干扰等问题。
但是,现有的增强RRM测量机制当终端设备处于服务小区边缘区域的情况下,可能会导致终端设备无法给服务基站发送测量报告,影响通信系统性能。因此,提供一种合理的RRM测量机制成为亟待解决的问题。
发明内容
本申请提供一种无线资源管理测量的方法和装置,通过在测量配置信息中携带第一门限值,终端设备根据检测值与该第一门限值的大小关系,以及至少一个邻区的信号质量确定是否上报测量报告,能够避免终端设备频繁上报测量报告,也避免终端设备未及时上报测量报告,使得测量机制更合理。
第一方面,提供了一种无线资源管理测量的方法,该无线资源管理测量的方法可以由终端设备执行,或者,也可以由设置于终端设备中的芯片或电路执行,本申请对此不作限定,为了便于描述,可以以由终端设备执行为例进行说明。
该无线资源管理测量的方法包括:
终端设备接收来自网络设备的测量配置信息,该测量配置信息中包括第一门限值,其中,该第一门限值包括第一服务小区信号质量门限值和/或第一检测到的小区个数门限值;该终端设备根据检测值与该第一门限值的大小关系,以及至少一个邻区的信号质量,确定是否上报测量报告。该检测值也可以称为无线资源管理测量中的检测值,检测值用于确定是否上报测量报告,该第一检测到的小区个数门限值也可以简称为第一小区个数门限值。
根据本申请实施例提供的无线资源管理测量的方法,通过在测量配置信息中携带第一服务小区信号质量门限值和/或第一检测到的小区个数门限值,终端设备根据检测值与第一门限值的大小关系,以及至少一个邻区的信号质量确定是否上报测量报告。本申请实施例中,终端设备确定是否上报测量报告时,不仅仅根据邻区的信号质量,还根据服务小区信号质量与第一服务小区信号质量门限值的大小关系,和/或,能够检测到的小区个数与第一检测到的小区个数门限值的大小关系,能够避免终端设备频繁上报测量报告,也避免 终端设备未及时上报测量报告,使得测量机制更合理。
结合第一方面,在第一方面的某些实现方式中,上述的检测值包括第一服务小区信号质量;上述的检测值包括服务小区的信号质量;终端设备根据检测值与第一门限值的大小关系,以及至少一个邻区的信号质量,确定是否上报测量报告包括:当服务小区的信号质量低于或者等于该第一服务小区信号质量门限值,且该至少一个邻区的信号质量满足测量报告触发条件时,终端设备确定上报测量报告;或者,当该服务小区的信号质量大于或者等于该第一服务小区信号质量门限值,且N个邻区的信号质量均满足对应的测量报告触发条件时,终端设备确定上报测量报告,其中,该N为包括在该配置信息中的邻区个数门限值。
作为一种可能的实现方式,上述的第一门限值可以是第一服务小区信号质量,则终端设备可以根据服务小区的信号质量与第一服务小区信号质量之间的大小关系,以及至少一个邻区在对应的触发时间(time to trigger,TTT)内是否满足测量报告触发条件确定是否上报测量报告。当服务小区的信号质量较好的情况下,可以在N个邻区均满足对应的测量报告触发条件时终端设备上报测量报告;当服务小区的信号质量较差的情况下,可以在至少一个邻区满足对应的测量报告触发条件时上报测量报告,其中,N理解为邻区个数门限值,携带在上述的测量配置信息中,N为正整数。从而避免了服务小区的信号质量较好的情况下频繁地上报测量报告,也避免了服务小区的信号质量较差的情况下,未及时上报测量报告导致无线链路失败或过晚切换。
结合第一方面,在第一方面的某些实现方式中,上述的第一门限值包括该第一检测到的小区个数门限值;上述的检测值包括检测到的小区个数;该根据检测值与该第一门限值的大小关系,以及至少一个邻区的信号质量,确定是否上报测量报告包括:当该检测到的小区个数小于或者等于该第一检测到的小区个数门限值,且至少一个邻区的信号质量满足测量报告触发条件时,确定上报测量报告;或者,当该检测到的小区个数大于或者等于该第一检测到的小区个数门限值,且N个邻区的信号质量均满足对应的测量报告触发条件时,确定上报测量报告,其中,该N为包括在该配置信息中的邻区个数门限值。
作为另一种可能的实现方式,上述的第一门限值可以是第一检测到的小区个数门限值,则终端设备可以根据检测到的小区个数与第一检测到的小区个数门限值之间的大小关系,以及至少一个邻区在对应的TTT内是否满足测量报告触发条件确定是否上报测量报告。当检测到的小区个数较多的情况下,可以在N个邻区均满足对应的测量报告触发条件时终端设备上报测量报告;当检测到的小区个数较少的情况下,可以在至少一个邻区满足对应的测量报告触发条件时上报测量报告。从而避免了检测到的小区个数较多的情况下频繁地上报测量报告,也避免了检测到的小区个数较少的情况下,未及时上报测量报告导致无线链路失败或过晚切换。
作为又一种可能的实现方式,上述的第一门限值可以同时包括第一检测到的小区个数门限值和第一服务小区信号质量门限值,则终端设备可以根据服务小区的信号质量与第一服务小区信号质量门限值之间的大小关系、检测到的小区个数与第一检测到的小区个数门限值之间的大小关系、以及至少一个邻区在对应的TTT内是否满足测量报告触发条件确定是否上报测量报告。即可以结合上述的两种实现方式,这里不再赘述。
结合第一方面,在第一方面的某些实现方式中,该第一门限值是高度粒度的;该方法 还包括:终端设备基于自身的高度确定该第一门限值。
上述的第一门限值可以是与高度相关的值,则终端设备在接收到上述的测量配置信息之后,能够基于自身所处的高度确定合适的第一门限值。
结合第一方面,在第一方面的某些实现方式中,该测量配置信息中包括高度门限值。
根据本申请实施例提供的无线资源管理测量的方法,可以在测量配置信息中携带高度门限值发送给终端设备。
结合第一方面,在第一方面的某些实现方式中,在确定上报测量报告之后,该方法还包括:发送对应于第一邻区的测量报告;在发送该对应于第一邻区的测量报告之后,启动第一定时器,在该第一定时器的有效期间内,不再上报测量报告,或者,上报对应于第二邻区的测量报告,其中,该第二邻区的信号质量高于该第一邻区的信号质量。
根据本申请实施例提供的无线资源管理测量的方法,在确定上报测量报告之后,假设终端设备上报的测量报告是对应于第一邻区的测量报告,终端设备上报该第一邻区的测量报告之后,可以启动第一定时器,并决定在该第一定时器有效期间内,不再上报测量报告,或者,在该第一定时器有效期间内,如果检测到第二邻区的信号质量比第一邻区的信号质量高,终端设备可以上报对应于第二邻区的测量报告。引入第一定时器,可以避免在某个时间段内频繁上报测量报告。并且本申请中终端设备检测到信号质量较好的第二邻区时,在定时器有效期间内可以上报测量报告,避免了高质量邻区的漏报。
结合第一方面,在第一方面的某些实现方式中,该测量配置信息中还包括第二门限值、第三门限值以及至少一个邻区对应的第一触发时间,其中,该第二门限值包括第二服务小区信号质量门限值和/或第二检测到的小区个数门限值,该第三门限值包括第三服务小区信号质量门限值和/或第三检测到的小区个数门限值;该方法还包括:根据检测值与该第二门限值和/或该第三门限值的大小关系,确定第二触发时间,其中,该第二门限值小于或者等于该第三门限值,该第二触发时间是根据该第一触发时间得到的,该检测值包括服务小区信号质量和/或检测到的小区个数。该第二检测到的小区个数门限值也可以简称为第二小区个数门限值,该第三检测到的小区个数门限值也可以简称为第三小区个数门限值。
根据本申请实施例提供的无线资源管理测量的方法,可以在上述的测量配置信息中携带第二门限值和第三门限值,以及至少一个邻区对应的第一触发时间。具体地,可以根据服务小区信号质量门限值和/或检测到的小区个数与第二门限值和/或该第三门限值的大小关系,确定第二触发时间,提供调整触发时间的可行方式。
结合第一方面,在第一方面的某些实现方式中,该根据检测值与该第二门限值和/或该第三门限值的大小关系,确定第二触发时间包括:当该检测值低于该第二门限值时,确定该第二触发时间为小于该第一触发时间的触发时间;当该检测值大于该第三门限值时,确定该第二触发时间为大于该第一触发时间的触发时间;当该检测值大于或等于该第二门限值且小于或等于第三门限值时,确定该第二触发时间为等于该第一触发时间的触发时间。
根据本申请实施例提供的无线资源管理测量的方法,可以根据检测值与该第二门限值和/或该第三门限值的大小关系,在第一触发时间的基础上向上调整或向下调整或不调整得到第二触发时间。
结合第一方面,在第一方面的某些实现方式中,该确定该第二触发时间为小于该第一触发时间的触发时间包括:确定该第二触发时间为该第一触发时间与Q的乘积,该Q为小于1的正数;该确定该第二触发时间为大于该第一触发时间的触发时间包括:确定该第二触发时间为该第一触发时间与P的乘积,该P为大于1的正数;该确定该第二触发时间为等于该第一触发时间的触发时间包括:确定该第二触发时间为该第一触发时间与K的乘积,该K等于1。
作为一种可能的实现方式,向上调整或向下调整或不调整第一触发时间得到第二触发时间,可以是将第一触发时间乘以某个系数实现的,或者,可以是将第一触发时间加上某个参数实现的。
结合第一方面,在第一方面的某些实现方式中,该第二门限值和/或该第三门限值是高度粒度的;该方法还包括:终端设备基于自身的高度确定该第二门限值和/或该第三门限值。
上述的第二门限值和/或第三门限值可以是与高度相关的值,则终端设备在接收到上述的测量配置信息之后,能够基于自身所处的高度确定合适的第二门限值和/或该第三门限值。
结合第一方面,在第一方面的某些实现方式中,上述的P和/或Q为高度粒度的。
上述的P和/或Q可以是与高度相关的值。
第二方面,提供了一种无线资源管理测量的方法,该无线资源管理测量的方法可以由网络设备执行,或者,也可以由设置于网络设备中的芯片或电路执行,本申请对此不作限定,为了便于描述,可以以由网络设备执行为例进行说明。
该无线资源管理测量的方法包括:
网络设备确定测量配置信息,该测量配置信息中包括第一门限值,其中,该第一门限值包括第一服务小区信号质量门限值和/或第一检测到的小区个数门限值;网络设备向终端设备发送该测量配置信息,其中,该第一门限值与检测值用于所述终端设备确定是否上报测量报告。
根据本申请实施例提供的无线资源管理测量的方法,通过在测量配置信息中携带第一服务小区信号质量门限值和/或第一检测到的小区个数门限值,终端设备根据检测值与第一门限值的大小关系,以及至少一个邻区的信号质量确定是否上报测量报告。本申请实施例中,终端设备确定是否上报测量报告时,不仅仅根据邻区的信号质量,还根据服务小区信号质量与第一服务小区信号质量门限值的大小关系,和/或,能够检测到的小区个数与第一检测到的小区个数门限值的大小关系,能够避免终端设备频繁上报测量报告,也避免终端设备未及时上报测量报告,使得测量机制更合理。
结合第二方面,在第二方面的某些实现方式中,上述的第一门限值包括该第一服务小区信号质量门限值;所述方法还包括:接收来自所述终端设备的测量报告,其中,服务小区的信号质量低于或者等于该第一服务小区信号质量门限值,且至少一个邻区的信号质量满足测量报告触发条件;或者,接收来自所述终端设备的测量报告,其中,服务小区的信号质量大于或者等于该第一服务小区信号质量门限值,且N个邻区的信号质量均满足对应的测量报告触发条件,所述N为携带在所述配置信息中的邻区个数门限值。
作为一种可能的实现方式,上述的第一门限值可以是第一服务小区信号质量,则终端 设备可以根据服务小区的信号质量与第一服务小区信号质量之间的大小关系,以及至少一个邻区在对应的TTT内是否满足测量报告触发条件确定是否上报测量报告。当服务小区的信号质量较好的情况下,可以在N个邻区均满足对应的测量报告触发条件时终端设备才上报测量报告;当服务小区的信号质量较差的情况下,可以在至少一个邻区满足对应的测量报告触发条件时上报测量报告,其中,N理解为邻区个数门限值,携带在上述的测量配置信息中,N为正整数。从而避免了服务小区的信号质量较好的情况下频繁地上报测量报告,也避免了服务小区的信号质量较差的情况下,未及时上报测量报告导致无线链路失败或过晚切换。
结合第二方面,在第二方面的某些实现方式中,上述的第一门限值包括第一检测到的小区个数门限值;所述方法还包括:接收来自所述终端设备的测量报告,其中,终端设备检测到的小区个数小于或者等于该第一检测到的小区个数门限值,且至少一个邻区的信号质量满足测量报告触发条件;或者,接收来自所述终端设备的测量报告,其中,终端设备检测到的小区个数大于或者等于该第一检测到的小区个数门限值,且N个邻区的信号质量均满足对应的测量报告触发条件,所述N为携带在所述配置信息中的邻区个数门限值。
作为另一种可能的实现方式,上述的第一门限值可以是第一检测到的小区个数门限值,则终端设备可以根据检测到的小区个数与第一检测到的小区个数门限值之间的大小关系,以及至少一个邻区在对应的TTT内是否满足测量报告触发条件确定是否上报测量报告。当检测到的小区个数较多的情况下,可以在N个邻区均满足对应的测量报告触发条件时终端设备才上报测量报告;当检测到的小区个数较少的情况下,可以在至少一个邻区满足对应的测量报告触发条件时上报测量报告。从而避免了检测到的小区个数较多的情况下频繁地上报测量报告,也避免了检测到的小区个数较少的情况下,未及时上报测量报告导致无线链路失败或过晚切换。
作为又一种可能的实现方式,上述的第一门限值可以同时包括第一检测到的小区个数门限值和第一服务小区信号质量门限值,则终端设备可以根据服务小区的信号质量与第一服务小区信号质量门限值之间的大小关系、检测到的小区个数与第一检测到的小区个数门限值之间的大小关系、以及至少一个邻区在对应的TTT内是否满足测量报告触发条件确定是否上报测量报告。即可以结合上述的两种实现方式,这里不再赘述。
结合第二方面,在第二方面的某些实现方式中,该第一门限值是高度粒度的。
上述的第一门限值可以是与高度相关的值。
结合第二方面,在第二方面的某些实现方式中,该测量配置信息中包括高度门限值。
根据本申请实施例提供的无线资源管理测量的方法,可以在测量配置信息中携带高度门限值发送给终端设备。
结合第二方面,在第二方面的某些实现方式中,该测量配置信息中还包括第二门限值、第三门限值以及至少一个邻区对应的第一触发时间,其中,该第二门限值包括第二服务小区信号质量门限值和/或第二检测到的小区个数门限值,该第三门限值包括第三服务小区信号质量门限值和/或第三检测到的小区个数门限值,该第二门限值和/或该第三门限值用于终端设备确定第二触发时间,该第二门限值小于或者等于该第三门限值,该第二触发时间是根据该第一触发时间得到的。
根据本申请实施例提供的无线资源管理测量的方法,可以在上述的测量配置信息中携 带第二门限值和第三门限值,以及至少一个邻区对应的第一触发时间。具体地,可以根据服务小区信号质量门限值和/或检测到的小区个数与第二门限值和/或该第三门限值的大小关系,确定第二触发时间,提供调整触发时间的可行方式。
结合第二方面,在第二方面的某些实现方式中,该第二门限值和/或该第三门限值用于终端设备确定第二触发时间包括:当该检测值低于该第二门限值时,该第二触发时间为小于该第一触发时间的触发时间;当该检测值大于该第三门限值时,该第二触发时间为大于该第一触发时间的触发时间;当该检测值大于或等于该第二门限值且小于或等于第三门限值时,该第二触发时间为等于该第一触发时间的触发时间,检测值包括服务小区信号质量和/或检测到的小区个数。
根据本申请实施例提供的无线资源管理测量的方法,可以根据检测值与该第二门限值和/或该第三门限值的大小关系,在第一触发时间的基础上向上调整或向下调整或不调整,进而得到第二触发时间。
结合第二方面,在第二方面的某些实现方式中,该第二触发时间为小于该第一触发时间的触发时间包括:该第二触发时间为该第一触发时间与Q的乘积,该Q为小于1的正数;该第二触发时间为大于该第一触发时间的触发时间包括:该第二触发时间为该第一触发时间与P的乘积,该P为大于1的正数;该第二触发时间为等于该第一触发时间的触发时间包括:该第二触发时间为该第一触发时间与K的乘积,该K等于1。
作为一种可能的实现方式,向上调整或向下调整或不调整第一触发时间得到第二触发时间可以是,将第一触发时间乘以系数以得到第二触发时间。
结合第二方面,在第二方面的某些实现方式中,上述的P和/或Q为高度粒度的。
上述的P和/或Q可以是与高度相关的值。
结合第二方面,在第二方面的某些实现方式中,该第二门限值和该第三门限值是高度粒度的。
上述的第二门限值和第三门限值可以是与高度相关的值。
第三方面,提供了一种无线资源管理测量的方法,该无线资源管理测量的方法可以由终端设备执行,或者,也可以由设置于终端设备中的芯片或电路执行,本申请对此不作限定,为了便于描述,可以以由终端设备执行为例进行说明。
该无线资源管理测量的方法包括:
终端设备接收来自网络设备的测量配置信息,该测量配置信息中包括第二门限值、第三门限值以及至少一个邻区对应的第一触发时间,其中,该第二门限值包括第二服务小区信号质量门限值和/或第二检测到的小区个数门限值,该第三门限值包括第三服务小区信号质量门限值和/或第三检测到的小区个数门限值;根据检测值与该第二门限值和/或该第三门限值的大小关系,确定第二触发时间,其中,该第二门限值小于或者等于该第三门限值,该第二触发时间是根据该第一触发时间得到的,该检测值包括服务小区信号质量和/或检测到的小区个数。
根据本申请实施例提供的无线资源管理测量的方法,可以在上述的测量配置信息中携带第二门限值和第三门限值,以及至少一个邻区对应的第一触发时间。具体地,可以根据服务小区信号质量门限值和/或检测到的小区个数与第二门限值和/或该第三门限值的大小关系,确定第二触发时间,提供调整触发时间的可行方式。
结合第三方面,在第三方面的某些实现方式中,该根据检测值与该第二门限值和/或该第三门限值的大小关系,确定第二触发时间包括:当该检测值低于该第二门限值时,确定该第二触发时间为小于该第一触发时间的触发时间;当该检测值大于该第三门限值时,确定该第二触发时间为大于该第一触发时间的触发时间;当该检测值大于或等于该第二门限值且小于或等于第三门限值时,确定该第二触发时间为等于该第一触发时间的触发时间。
根据本申请实施例提供的无线资源管理测量的方法,可以根据检测值与该第二门限值和/或该第三门限值的大小关系,在第一触发时间的基础上向上调整或向下调整或不调整得到第二触发时间。
结合第三方面,在第三方面的某些实现方式中,该确定该第二触发时间为小于该第一触发时间的触发时间包括:确定该第二触发时间为该第一触发时间与Q的乘积,该Q为小于1的正数;该确定该第二触发时间为大于该第一触发时间的触发时间包括:确定该第二触发时间为该第一触发时间与P的乘积,该P为大于1的正数;该确定该第二触发时间为等于该第一触发时间的触发时间包括:确定该第二触发时间为该第一触发时间与K的乘积,该K等于1。
作为一种可能的实现方式,向上调整或向下调整或不调整第一触发时间得到第二触发时间可以是,将第一触发时间乘以系数实现。
结合第三方面,在第三方面的某些实现方式中,上述的P和/或Q为高度粒度的。
上述的P和/或Q可以是与高度相关的值。
结合第三方面,在第三方面的某些实现方式中,该第二门限值和/或该第三门限值是高度粒度的;该方法还包括:终端设备基于自身的高度确定该第二门限值和/或该第三门限值。
上述的第二门限值和/或第三门限值可以是与高度相关的值,则终端设备在接收到上述的测量配置信息之后,能够基于自身所处的高度确定合适的第二门限值和/或该第三门限值。
第四方面,提供了一种无线资源管理测量的方法,该无线资源管理测量的方法可以由网络设备执行,或者,也可以由设置于网络设备中的芯片或电路执行,本申请对此不作限定,为了便于描述,可以以由网络设备执行为例进行说明。
该无线资源管理测量的方法包括:
网络设备确定测量配置信息,该测量配置信息中包括第二门限值、第三门限值以及至少一个邻区对应的第一触发时间,其中,该第二门限值包括第二服务小区信号质量门限值和/或第二检测到的小区个数门限值,该第三门限值包括第三服务小区信号质量门限值和/或第三检测到的小区个数门限值,该第二门限值和/或该第三门限值与该检测值的大小关系,用于确定第二触发时间,该第二门限值小于或者等于该第三门限值,该第二触发时间是根据该第一触发时间得到的,该检测值包括服务小区信号质量和/或检测到的小区个数。
根据本申请实施例提供的无线资源管理测量的方法,可以在上述的测量配置信息中携带第二门限值和第三门限值,以及至少一个邻区对应的第一触发时间。具体地,可以根据服务小区信号质量门限值和/或检测到的小区个数与第二门限值和/或该第三门限值的大小关系,确定第二触发时间,提供调整触发时间的可行方式。
结合第四方面,在第四方面的某些实现方式中,该第二门限值和/或该第三门限值与该检测值的大小关系,用于确定第二触发时间包括:当该检测值低于该第二门限值时,该第二触发时间为小于该第一触发时间的触发时间;当该检测值大于该第三门限值时,该第二触发时间为大于该第一触发时间的触发时间;当该检测值大于或等于该第二门限值且小于或等于第三门限值时,该第二触发时间为等于该第一触发时间的触发时间。
根据本申请实施例提供的无线资源管理测量的方法,可以根据检测值与该第二门限值和/或该第三门限值的大小关系,在第一触发时间的基础上向上调整或向下调整或不调整得到第二触发时间。
结合第四方面,在第四方面的某些实现方式中,该第二触发时间为小于该第一触发时间的触发时间包括:该第二触发时间为该第一触发时间与Q的乘积,该Q为小于1的正数;该第二触发时间为大于该第一触发时间的触发时间包括:该第二触发时间为该第一触发时间与P的乘积,该P为大于1的正数;该第二触发时间为等于该第一触发时间的触发时间包括:该第二触发时间为该第一触发时间与K的乘积,该K等于1。
作为一种可能的实现方式,向上调整或向下调整或不调整第一触发时间得到第二触发时间可以是,将第一触发时间乘以系数实现。
结合第四方面,在第四方面的某些实现方式中,上述的P和/或Q为高度粒度的。
上述的P和/或Q可以是与高度相关的值。
结合第四方面,在第四方面的某些实现方式中,该第二门限值和该第三门限值是高度粒度的。
上述的第二门限值和第三门限值可以是与高度相关的值。
第五方面,提供一种无线资源管理测量的装置,所述无线资源管理测量的装置包括处理器,用于实现上述第一方面和第三方面描述的方法中终端设备的功能。
可选地,所述无线资源管理测量的装置还可以包括存储器,所述存储器与所述处理器耦合,所述处理器用于实现上述第一方面和第三方面描述的方法中终端设备的功能。
在一种可能的实现中,所述存储器用于存储程序指令和数据。所述存储器与所述处理器耦合,所述处理器可以调用并执行所述存储器中存储的程序指令,用于实现上述第一方面和第三方面描述的方法中终端设备的功能。
可选地,所述无线资源管理测量的装置还可以包括通信接口,所述通信接口用于所述无线资源管理测量的装置与其它设备进行通信。当该无线资源管理测量的装置为终端设备时,所述收发器可以是通信接口,或,输入/输出接口。
在一种可能的设计中,所述无线资源管理测量的装置包括:处理器和通信接口,用于实现上述第一方面和第三方面描述的方法中终端设备的功能,具体地包括:
所述处理器利用所述通信接口与外部通信;
所述处理器用于运行计算机程序,使得所述装置实现上述第一方面和第三方面描述的任一种方法。
可以理解,所述外部可以是处理器以外的对象,或者是所述装置以外的对象。
在另一种实现方式中,该无线资源管理测量的装置为芯片或芯片系统时,所述通信接口可以是该芯片或芯片系统上输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
第六方面,提供一种无线资源管理测量的装置,所述无线资源管理测量的装置包括处理器,用于实现上述第二方面和第四方面描述的方法中网络设备的功能。
可选地,所述无线资源管理测量的装置还可以包括存储器,所述存储器与所述处理器耦合,所述处理器用于实现上述第二方面和第四方面描述的方法中网络设备的功能。
在一种可能的实现中,所述存储器用于存储程序指令和数据。所述存储器与所述处理器耦合,所述处理器可以调用并执行所述存储器中存储的程序指令,用于实现上述第二方面和第四方面描述的方法中网络设备的功能。可选地,所述无线资源管理测量的装置还可以包括通信接口,所述通信接口用于所述无线资源管理测量的装置与其它设备进行通信。当该无线资源管理测量的装置为网络设备时,所述通信接口为收发器、输入/输出接口、或电路等。
在一种可能的设计中,所述无线资源管理测量的装置包括:处理器和通信接口,用于实现上述第二方面和第四方面描述的方法中网络设备的功能,具体地包括:
所述处理器利用所述通信接口与外部通信;
所述处理器用于运行计算机程序,使得所述装置实现上述第二方面和第四方面描述的任一种方法。
可以理解,所述外部可以是处理器以外的对象,或者是所述装置以外的对象。
在另一种可能的设计中,该无线资源管理测量的装置为芯片或芯片系统。所述通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
第七方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置实现第一方面和第三方面以及第一方面和第三方面的任一可能的实现方式中的方法。
第八方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置实现第二方面和第四方面以及第二方面和第四方面的任一可能的实现方式中的方法。
第九方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得通信装置实现第一方面和第三方面以及第一方面和第三方面的任一可能的实现方式中的方法。
第十方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得通信装置实现第二方面和第四方面以及第二方面和第四方面的任一可能的实现方式中的方法。
第十一方面,提供了一种通信系统,包括第五方面所示的无线资源管理测量的装置和第六方面所示的无线资源管理测量的装置。
附图说明
图1是能够适用本申请实施例无线资源管理测量的方法的系统100的示意图。
图2是本申请实施例提供的一种无线资源管理测量的方法示意性流程图。
图3是本申请实施例提供的一种调整TTT的方法示意性流程图。
图4是本申请提供的无线资源管理测量的装置400的示意图。
图5是适用于本申请实施例的用终端设备500的结构示意图。
图6是本申请提供的无线资源管理测量的装置600的示意图。
图7是适用于本申请实施例的网络设备700的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统、新无线(new radio,NR)或未来网络等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统。通信系统还可以是陆上公用移动通信网(public land mobile network,PLMN)网络、设备到设备(device-to-device,D2D)通信系统、机器到机器(machine to machine,M2M)通信系统、物联网(internet of Things,IoT)通信系统或者其他通信系统。
本申请实施例中的终端设备(terminal equipment)可以指无人机(unmanned aerial vehicle,UAV)、接入终端、用户单元、用户站、移动站、移动台、中继站、远方站、远程终端、移动设备、用户终端(user terminal)、用户设备(user equipment,UE)、终端(terminal)、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备或者未来车联网中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是IoT系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。在本申请实施例中,IOT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。
此外,在本申请实施例中,终端设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
本申请实施例中的网络设备可以是用于与终端设备通信的任意一种具有无线收发功能的通信设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base  station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(home evolved NodeB,HeNB,或home Node B,HNB)、基带单元(baseBand unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G系统,如,NR系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,本申请实施例中的网络设备可以是指集中单元(central unit,CU)或者分布式单元(distributed unit,DU)或者,网络设备包括CU和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
进一步地,CU还可以划分为控制面的中央单元(CU-CP)和用户面的中央单元(CU-UP)。其中,CU-CP和CU-UP也可以部署在不同的物理设备上,CU-CP负责控制面功能,主要包含RRC层和PDCP-C层。PDCP-C层主要负责控制面数据的加解密,完整性保护,数据传输等。CU-UP负责用户面功能,主要包含SDAP层和PDCP-U层。其中SDAP层主要负责将核心网的数据进行处理并将流(flow)映射到承载。PDCP-U层主要负责数据面的加解密,完整性保护,头压缩,序列号维护,数据传输等至少一种功能。具体地,CU-CP和CU-UP通过通信接口(例如,E1接口)连接。CU-CP代表网络设备通过通信接口(例如,Ng接口)和核心网设备连接,通过通信接口(例如,F1-C(控制面)接口)和DU连接。CU-UP通过通信接口(例如,F1-U(用户面)接口)和DU连接。
还有一种可能的实现,PDCP-C层也包含在CU-UP中。
可以理解的是,以上关于CU和DU,以及CU-CP和CU-UP的协议层划分仅为示例,也可能有其他的划分方式,本申请实施例对此不做限定。
本申请实施例所提及的网络设备可以为包括CU、或DU、或包括CU和DU的设备、或者控制面CU节点(CU-CP节点)和用户面CU节点(CU-UP节点)以及DU节点的设备。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球或者卫星上。本申请实施例中对网络设备和终端设备所处的场景不做限定。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读存储介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。图1是适用于本申请实施例的无线资源管理测量的方法的通信系统100的示意图。如图1所示,该通信系统100可以包括至少一个网络设备,例如图1所示的网络设备110;该通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备120。网络设备110与终端设备120可通过无线链路通信。各通信设备,如网络设备110或终端设备120,均可以配置至少一个天线。对于该通信系统100中的每一个通信设备而言,所配置的至少一个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。一种可能的方式中,该通信系统100中的各通信设备之间,如网络设备110与终端设备120之间,可通过多天线技术通信。
应理解,图1仅为便于理解而示例的简化示意图,该通信系统100中还可以包括其他网络设备或者还可以包括其他终端设备,图1中未予以画出。
为便于理解本申请实施例,对本申请实施例中涉及的几个基本概念做简单说明。应理解,下文中所介绍的基本概念是以NR协议中规定的基本概念为例进行简单说明,但并不限定本申请实施例只能够应用于NR系统。因此,以NR系统为例描述时出现的标准名称,都是功能性描述,具体名称并不限定,仅表示设备的功能,可以对应的扩展到其它系统,比如2G、3G、4G或未来通信系统中。
1、典型RRM测量。
典型RRM测量中,服务基站给终端设备发送包含测量配置信息的RRC消息,例如,该RRC消息可以是RRC连接重配置消息或RRC重配置消息,本实施例对此不做限定。该测量配置信息中可以包含测量标识(如measID)、测量对象(如measObject)和上报配置(如ReportConfig)。其中,测量标识可以将测量对象和上报配置关联起来,即通过某个测量标识可以获取到与该测量标识关联的测量对象和上报配置;测量对象可以是某一频点或频段;上报配置用于配置上报事件的事件类型(或测量报告的触发条件的事件类型)以及该上报事件的事件类型(或该测量报告的触发条件的事件类型)所对应的参数,如,上报条件阈值、触发时间(如time to trigger,TTT)、迟滞值(如hysteresis)等。
例如,上报配置可以主要包括RRM测量报告的上报类型(例如,上报类型为周期上报或事件触发上报)、事件触发配置(当上报类型为事件触发上报时,所对应的配置信息)、周期上报配置(当上报类型为周期上报时,所对应的配置信息)等。其中,事件触发配置可以包括上报事件的事件类型、事件对应的相关配置、参考信号类型、上报间隔、上报次数等;周期上报配置可以包括参考信号类型、上报间隔、上报次数、最大上报小区数目等。
作为示例,上述的事件类型可以为A1-A6中的至少一种;作为示例,上述的事件对应的相关配置可以包括阈值(例如,上报事件对应的上报条件阈值)、迟滞值、TTT等。
为了便于理解,以一个具体的例子说明典型RRM测量:
以A3事件为例:上报配置中配置的上报事件的事件类型是A3事件,对应的阈值为预设上报条件阈值(例如,为补偿(offset)dB),则当与该A3事件关联的某邻区的小区信号质量比服务小区的小区信号质量高出上述的预设上报条件阈值时,该邻区满足A3事件触发条件(或满足测量报告的触发条件)。其中,信号质量包括参考信号接收功率(reference signal received power,RSRP)和/或参考信号接收质量(reference signal received quality,RSRQ)和/或信干燥比(Signal to Interference plus Noise Ratio,SINR)。即当邻区的小区信号质量比服务小区的小区信号质量高出上述的预设上报条件阈值的情况下,终端设备可以向服务基站发送测量报告(例如,测量报告中可以包含邻区标识、测量结果等)。如果测量配置信息中包含TTT,则当在配置的该TTT内,邻区始终满足A3事件触发条件,终端设备可以向服务基站发送测量报告。
可以理解的是,上述典型RRM测量也可以称为传统RRM测量。
2、增强RRM测量。
移动通信系统在设计之初主要针对地面终端设备,在一些特殊场景下,例如,当终端设备的高度高于基站时,将会产生干扰增多和频繁切换的问题。以终端设备为无人机(unmanned aerial vehicle,UAV)为例,当无人机的飞行高度高于基站时,无人机接入网络进行通信可能会产生以下问题:
问题一、基站信号的辐射方向主要朝向地面,虽然会有地面信号的反射或者散射导致部分信号扩散向空中,或者基站天线也会有一些旁瓣向空中辐射,但总的来说,无人机接收到的信号强度会比较低。
问题二、无人机处于高空飞行时,由于遮挡物变少,无人机发出的信号能被更多的基站收到,且无人机能够接收到更多基站的信号,导致上行方向和下行方向上的干扰均有增加。对于典型RRM测量,当无人机处于某高度时,如果无人机能够接收到多个基站的信号,那么可能会触发更多、更频繁的测量报告,这样会造成干扰,且无人机耗电严重。为了减少干扰、节约能耗,无人机场景下的典型RRM测量机制做了增强(称为增强RRM测量):
当存在N个邻区,且这N个邻区在对应的TTT内均满足对应的测量事件触发条件,无人机可以向服务基站发送测量报告,其中,邻区个数门限值N包含在服务基站给无人机发送的测量配置信息中,其中,N是大于或等于1的任意整数。
上述的增强RRM测量机制中,当无人机处于服务小区的边缘区域时,服务小区的链路质量较差,如果此时无人机并没有测量到N个邻区均满足对应的测量事件触发条件,则无人机无法给服务基站发送测量报告,进而网络侧不会触发无人机进行切换流程,会发生 无线链路失败(radio link failure,RLF)或者说此场景下可能会发生过晚切换,从而影响通信系统的性能。本申请提供的无线资源管理测量的方法对于无人机处于服务小区边缘的场景,能够使得无人机及时上报测量报告避免RLF或切换失败,但是本申请实施例提供的无线资源管理测量的方法并不限于只能够应用于处于无人机处于服务小区边缘的场景。
此外,为了便于理解本申请实施例,做出以下几点说明。
第一,在本申请中,“用于指示”可以包括用于直接指示和用于间接指示。当描述某一指示信息用于指示A时,可以包括该指示信息直接指示A或间接指示A,而并不代表该指示信息中一定包括有A。
将指示信息所指示的信息称为待指示信息,则具体实现过程中,对待指示信息进行指示的方式有很多种。例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。同时,还可以识别各个信息的通用部分并统一指示,以降低单独指示同样的信息而带来的指示开销。
第二,在本申请中第一、第二以及各种数字编号(例如,“#1”、“#2”)仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的门限值、区分不同的邻区等。
第三,在本申请中,“预设的”可包括由网络设备信令指示,或者预先定义,例如,协议定义。其中,“预先定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
第四,本申请实施例中涉及的“保存”,可以是指的保存在一个或者多个存储器中。所述一个或者多个存储器,可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或通信装置中。所述一个或者多个存储器,也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
第五,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
上文结合图1简单介绍了本申请实施例提供的无线资源管理测量的方法能够应用的场景,以及介绍了本申请实施例中可能涉及到的基本概念,下面将结合附图详细说明本申请实施例提供的无线资源管理测量的方法。
应理解,本申请实施例提供的无线资源管理测量的方法可以应用于例如,图1中所示的通信系统100。该通信系统可以包括至少一个网络设备和至少一个终端设备。
还应理解,下文示出的实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模 块。
以下,不失一般性,以网络设备与终端设备之间的交互为例详细说明本申请实施例提供的无线资源管理测量的方法。
图2是本申请实施例提供的一种无线资源管理测量的方法示意性流程图。该流程图中执行主体包括终端设备和网络设备。一种可能的实施方式中,该终端设备例如可以是无人机。
该无线资源管理测量的方法至少包括以下部分步骤。
S210,网络设备向终端设备发送测量配置信息。
该测量配置信息中包括第一门限值。该第一门限值包括第一服务小区信号质量门限值和/或第一检测到的小区个数门限值。该第一门限值用于终端设备确定是否上报测量报告。
应理解,本申请实施例中对于网络设备如何向终端设备发送测量配置信息并不限制,可以是向终端设备发送RRC重配置消息,该RRC重配置消息中包括上述的测量配置信息,也可以是向终端设备发送一条其他的信令,该信令中携带上述的测量配置信息。
还应理解,该测量配置信息可以由多个测量配置信息组成,网络设备向终端设备发送该多个测量配置信息,可以是一次完成发送,也可以是分别多次发送,本申请对此并不限定。
进一步地,测量配置信息中还可以包括L个邻区对应的测量配置,不同的邻区的测量配置可以相同也可以不同(例如,不同的邻区的测量配置中的测量标识、测量对象或上报配置可以相同或不同),本申请对此并不限制。可选地,测量配置信息中包含门限值N。其中,L为正整数,N为小于或者等于L的正整数,N可以理解为网络设备配置的邻区个数门限值,用于终端设备判断是否上报测量报告。
应理解,图2所示的实施例中的测量配置信息除了包括上述的第一门限值之外还包括上文中介绍的测量标识、测量对象和上报配置等,除第一门限值之外图2所示的实施例中的测量配置信息所包括的信息与目前协议中规定的测量配置信息包括的内容类似,这里不再赘述。
作为一种可能的实现方式,第一门限值为网络设备发送给终端设备的一个或者多个门限值,其中,当第一门限值为网络设备发送给终端设备的多个门限值的情况下,终端设备可以随机选择一个门限值使用;
作为另一种可能的实现方式,第一门限值可以是高度粒度的或者高度区间粒度的。即第一门限值与所述终端设备所处的高度之间满足第一对应关系。不同的高度或者高度区间或者高度等级对应不同的第一门限值。其中,所述终端设备所处的高度可以是相对于地面的高度,或者,是相对于海平面的高度,或者,是相对于某个参考点的高度,本申请对此不作限定。
可选地,在该实现方式下,网络设备可以向终端设备发送多个第一门限值,每个第一门限值有与该第一门限值对应的高度或者高度区间或者高度等级。
例如,上述的测量配置信息中包括三个第一门限值(如第一门限值#1、第一门限值#2和第一门限值#3),其中,第一门限值#1对应于高度区间#1(或者,当高度值低于高度#1时,所对应的门限值为第一门限值#1),则当终端设备所处的高度属于高度区间#1(或者,低于高度#1)时使用第一门限值#1;第一门限值#2对应于高度区间#2(或者,当高 度值高于或等于高度#1且低于或等于高度#2时,所对应的门限值为第一门限值#2),则当终端设备所处的高度属于高度区间#2(或者,终端设备所处的高度高于或等于高度#1且低于或等于高度#2)时使用第一门限值#2;第一门限值#3对应于高度区间#3(或者,当高度值高于高度#2时,所对应的门限值为第一门限值#3),则当终端设备所处的高度属于高度区间#3(或者,终端设备所处的高度高于高度#2)时使用第一门限值#3。其中,高度#1小于或等于高度#2。高度#1、高度#2可以包含在上述的测量配置信息中。
可选地,在该实现方式下,网络设备可以向终端设备发送一个第一门限值,随着高度变化一个偏移量,第一门限值可以随之变化一个偏移量。其中,高度的偏移量以及第一门限值的偏移量大小可以由协议规定,或者终端设备设定,或者由网络设备指示(例如,网络设备向终端设备发送指示信息,该指示信息用于指示对应第一门限值的偏移量的大小,该指示信息可以包含在上述的测量配置信息中),本申请对此并不限定。
例如,高度增高10米,第一门限值增加20dBm,其中,第一门限值为第一服务小区信号质量门限值。上述的测量配置信息中可以包括一个第一门限值(如第一门限值#1)、高度#1,其中,第一门限值#1对应于高度区间#1(或者,当高度值低于高度#1时,所对应的门限值为第一门限值#1),则终端设备所处的高度低于高度#1时使用第一门限值#1。当终端设备的高度高于或等于高度#1且低于或等于(高度#1)+10(米)时使用((第一门限值#1)+20),以此类推,不做赘述。
还例如,高度增高10米,第一门限值增加2,其中,第一门限值为第一检测到的小区个数门限值。上述的测量配置信息中可以包括一个第一门限值(如第一门限值#1)、高度#1,其中,第一门限值#1对应于高度区间#1(或者,当高度值低于高度#1时,所对应的门限值为第一门限值#1),则终端设备所处的高度低于高度#1时使用第一门限值#1。当终端设备的高度高于或等于高度#1且低于或等于(高度#1)+10(米)时使用((第一门限值#1)+2),以此类推,不做赘述。
另一种示例,测量配置信息中可以包括高度范围区间信息。例如,作为一个示例,测量配置信息中可以包括高度区间#1’的信息、高度区间#2’的信息,其中,高度区间#1’为[H1’,H2’]、高度区间#2’为[H3’,H4’]。另外,测量配置信息中还包括第一门限值#1’、第一门限值#2’。当终端设备的高度属于高度区间#1’,则终端设备使用第一门限值#1’;当终端设备的高度属于高度区间#2’,则终端设备使用第一门限值#2’。
应理解,图2所示的实施例中描述的使用第一门限值指的是终端设备根据第一门限值确定是否上报测量报告,例如,终端设备可以将检测值与第一门限值进行比较,进而确定是否上报测量报告。
可选地,测量配置信息中可以包括至少一个高度门限值。例如,测量配置信息中包括上述的高度#1、高度#2和高度#3。一种可能的实现方式,本申请中涉及的高度#1、高度#2、高度#3的单位可以为米。但是,本申请对此并不限制,例如,高度#1、高度#2、高度#3的单位还可以为千米、分米、厘米等其他高度单位,这里不一一举例说明。
或者,可选地,测量配置信息中可以包括高度区间信息。作为一个示例,测量配置信息中可以包括高度区间#1的信息、高度区间#2的信息,其中,高度区间#1为[H1,H2]、高度区间#2为[H3,H4]。另外,测量配置信息中还包括第一门限值#1、第一门限值#2。当终端设备的高度属于高度区间#1,则终端设备使用第一门限值#1;当终端设备的高度属 于高度区间#2,则终端设备使用第一门限值#2。
进一步地,终端设备接收到测量配置信息之后,确定是否上报测量报告。即图2所示的方法流程还包括S220:终端设备确定是否上报测量报告。
可选地,当上述测量配置信息中包括多个与高度相关的第一门限值,或者,测量配置信息中包括一个第一门限值,且该第一门限值随着高度变化而变化时,终端设备在接收到测量配置信息之后,可以基于自身的高度,确定出合适的第一门限值;或者,
可选地,当上述测量配置信息中包括多个第一门限值(与高度无关联关系),终端设备在接收到测量配置信息之后,可以随机确定一个第一门限值。
进一步地,在终端设备确定合适的第一门限值之后,可以利用该合适的第一门限值确定是否上报测量报告。
示例性地,根据检测值(如,检测值可以为服务小区的信号质量和/或检测到的小区个数),以及第一门限值(当检测值为服务小区的信号质量时,第一门限值为第一服务小区信号质量门限值、当检测值为检测到的小区个数时,第一门限值为第一检测到的小区个数门限值、当检测值为服务小区的信号质量和检测到的小区个数时,第一门限值为第一服务小区信号质量门限值和第一检测到的小区个数门限值),终端设备确定是否上报测量报告包括以下几种情况:
情况一:
第一门限值包括第一服务小区信号质量门限值,检测值包括服务小区的信号质量。
可选地,服务小区的信号质量包括服务小区的小区信号质量,和/或,属于该服务小区的波束的信号质量(例如,该服务小区下信号质量最好的M个波束的信号质量,或,该服务小区下的信号质量最差的M1个波束的信号质量,或其他波束的信号质量,其中,M、M1为大于或等于1)。
可选地,第一服务小区信号质量门限值可以包括第一小区信号质量门限值,和/或,第一波束信号质量门限值。例如,第一服务小区信号质量门限值为10dBm,则可以将终端设备检测到的服务小区的信号质量与10dBm相比较。本申请实施例中对于第一服务小区信号质量门限值的具体取值并不限制。
在情况一下,终端设备根据检测值与第一门限值的大小关系,以及至少一个邻区的信号质量,确定是否上报测量报告包括:
可能一:服务小区的信号质量小于或者等于上述的第一服务小区信号质量门限值,则终端设备遵循前文中所述的典型RRM测量机制,即,当至少一个邻区的信号质量满足测量报告触发条件时,终端设备确定上报测量报告,此时,测量报告中包含该满足测量报告触发条件的至少一个邻区的测量结果,具体包含以下至少一项:该至少一个邻区的标识信息(如PCI、频点信息)、该至少一个邻区的小区信号质量、属于该至少一个邻区的波束的标识信息(如SSB index、CSI-RS index)、属于该至少一个邻区的波束的信号质量。具体地,例如,当服务小区的小区信号质量小于或者等于上述的第一小区信号质量门限值,和/或,当属于该服务小区的波束的信号质量小于或者等于上述的第一波束信号质量门限值时,终端设备遵循前文中所述的典型RRM测量机制。
可能二:服务小区的信号质量高于或者等于上述的第一服务小区信号质量门限值,则终端设备遵循前文中所述的增强RRM测量机制,即,当N个邻区的信号质量均满足对应 的测量报告触发条件时,终端设备确定上报测量报告,此时,测量报告中包含满足对应的测量报告触发条件的该N个邻区中的至少一个邻区的测量结果,具体包含以下至少一项:该至少一个邻区的标识信息(如PCI、频点信息)、该至少一个邻区的小区信号质量、属于该N个邻区中的至少一个邻区的波束的标识信息(如SSB index、CSI-RS index)、属于该N个邻区中的至少一个邻区的波束的信号质量。具体地,例如,当服务小区的小区信号质量高于或者等于上述的第一小区信号质量门限值,和/或,当属于该服务小区的波束的信号质量高于或者等于上述的第一波束信号质量门限值时,终端设备遵循前文中所述的增强RRM测量机制。
由上述情况一中所示的两种实现方式中的描述可知,当服务小区的信号质量等于第一服务小区信号质量门限值的情况下,终端设备可以选择典型RRM测量机制或者增强RRM测量机制中的任意一种,对此不做限定。选择不同的RRM测量机制所上报的测量报告的内容可能不同也可能相同。
情况一中,给出了一种基于服务小区的信号质量进行测量报告上报的机制,使得终端设备能合理地进行测量报告的上报。一方面,避免服务小区的信号质量较好时终端设备频繁地上报测量报告;另一方面,避免当服务小区的信号质量较差时,由于测量报告没有及时上报而造成的RLF或过晚切换。
情况二:
第一门限值包括第一检测到的小区个数门限值,检测值包括检测到的小区个数。
在情况二下,终端设备根据检测值与第一门限值的大小关系,以及至少一个邻区的信号质量,确定是否上报测量报告包括:
一种可能的实现方式,终端设备检测到的小区个数小于或者等于上述的第一检测到的小区个数门限值,则终端设备遵循前文中所述的典型RRM测量机制,即,至少一个邻区的信号质量满足测量报告触发条件时,终端设备确定上报测量报告,此时,测量报告中可以包含的内容可参考情况一中所述的可能一,这里不再赘述。
另一种可能的实现方式,终端设备检测到的小区个数高于或者等于上述的第一检测到的小区个数门限值,则终端设备遵循前文中所述的增强RRM测量机制,即,当N个邻区的信号质量均满足对应的测量报告触发条件时,终端设备确定上报测量报告,此时,测量报告中可以包含的内容可参考情况一中所述的可能二,这里不再赘述。
一种可能的实现方式,上述涉及的终端设备检测到的小区个数指的是在终端设备位于服务小区服务的范围之内,可以检测到的邻区的个数。例如,某个邻区的信号质量强,即使终端设备位于服务小区的覆盖范围之内,终端设备依然可以检测到该邻区的信号。
另一种可能的实现方式,上述涉及的终端设备检测到的小区个数指的是在终端设备位于服务小区服务的范围之内,可以检测到的服务小区以及邻区的总个数。
由上述情况二中所示的两种实现方式中的描述可知,当检测到的小区个数等于第一检测到的小区个数门限值的情况下,终端设备可以选择典型RRM测量机制或者增强RRM测量机制中的任意一种,对此不做限定。具体地,终端设备选择不同的RRM测量机制之后,终端设备所上报的测量报告的内容可能不同也可能相同。
情况二中,给出的一种基于终端设备检测到的小区个数进行测量报告上报的机制,使得终端设备能合理地进行测量报告的上报。一方面,避免终端设备可以检测到的小区数目 较多时终端设备频繁地上报测量报告;另一方面,避免终端设备可以检测到的小区数目较少时,由于测量报告没有及时上报而造成的RLF或过晚切换。
情况三:
第一门限值包括第一检测到的小区个数门限值和第一服务小区信号质量门限值,检测值包括服务小区的信号质量和检测到的小区个数。
在情况三下,终端设备根据检测值与第一门限值的大小关系,以及至少一个邻区的信号质量,确定是否上报测量报告包括:
一种可能的实现方式,终端设备检测到的小区个数小于或者等于上述的第一检测到的小区个数门限值,且服务小区的信号质量小于或者等于上述的第一服务小区信号质量门限值,则终端设备遵循前文中所述的典型RRM测量机制,即,当至少一个邻区的信号质量满足测量报告触发条件时,终端设备确定上报测量报告,此时,测量报告中可以包含的内容可参考情况一中所述的可能一,这里不再赘述。
另一种可能的实现方式,终端设备检测到的小区个数高于或者等于上述的第一检测到的小区个数门限值,且服务小区的信号质量高于或者等于上述的第一服务小区信号质量门限值,则终端设备遵循前文中所述的增强RRM测量机制,即,当N个邻区的信号质量均满足对应的测量报告触发条件时,终端设备确定上报测量报告,此时,测量报告中可以包含的内容可参考情况一中所述的可能二,这里不再赘述。
又一种可能的实现方式,终端设备检测到的小区个数小于或者等于上述的第一检测到的小区个数门限值,或服务小区的信号质量小于或者等于上述的第一服务小区信号质量门限值,则终端设备遵循前文中所述的典型RRM测量机制,即,当至少一个邻区的信号质量满足测量报告触发条件时,终端设备确定上报测量报告,此时,测量报告中可以包含的内容可参考情况一中所述的可能一,这里不再赘述。
又一种可能的实现方式,终端设备检测到的小区个数高于或者等于上述的第一检测到的小区个数门限值,或服务小区的信号质量高于或者等于上述的第一服务小区信号质量门限值,则终端设备遵循前文中所述的增强RRM测量机制,即,当N个邻区的信号质量均满足对应的测量报告触发条件时,终端设备确定上报测量报告,此时,测量报告中可以包含的内容可参考情况一中所述的可能二,这里不再赘述。
又一种可能的实现方式,终端设备检测到的小区个数高于或者等于上述的第一检测到的小区个数门限值,且服务小区的信号质量小于或者等于上述的第一服务小区信号质量门限值,则,1)终端设备可以遵循前文中所述的典型RRM测量机制,即,至少一个邻区的信号质量满足测量报告触发条件时,终端设备确定上报测量报告,此时,测量报告中可以包含的内容可参考情况一中所述的可能一,这里不再赘述;2)或者,终端设备可以遵循前文中所述的增强RRM测量机制,即,当N个邻区的信号质量均满足对应的测量报告触发条件时,终端设备确定上报测量报告,此时,测量报告中可以包含的内容可参考情况一中所述的可能二,这里不再赘述;3)或者,取决于终端设备实现。
又一种可能的实现方式,终端设备检测到的小区个数小于或者等于上述的第一检测到的小区个数门限值,且服务小区的信号质量高于或者等于上述的第一服务小区信号质量门限值,则,1)终端设备可以遵循前文中所述的增强RRM测量机制,即,当N个邻区的信号质量均满足对应的测量报告触发条件时,终端设备确定上报测量报告,此时,测量报 告中可以包含的内容可参考情况一中所述的可能二,这里不再赘述;2)或者,终端设备可以遵循前文中所述的典型RRM测量机制,即,至少一个邻区的信号质量满足测量报告触发条件时,终端设备确定上报测量报告,此时,测量报告中可以包含的内容可参考情况一中所述的可能一,这里不再赘述;3)或者,取决于终端设备实现。
需要说明的是,本申请实施例中,对于获取终端设备检测到的小区个数以及获取服务小区的信号质量的先后顺序不做限定,或者,也可以是同时获取得到终端设备检测到的小区个数以及服务小区的信号质量。
可选地,终端设备确定上报测量报告之后,向网络设备发送对应于第一邻区的测量报告。并在发送该对应于第一邻区的测量报告之后,启动第一定时器。具体地,如果终端设备遵循的是典型RRM测量机制,则第一邻区即为至少一个邻区,该至少一个邻区的信号质量满足测量报告触发条件;如果终端设备遵循的是增强RRM测量机制,则第一邻区即为N个邻区中的至少一个邻区,该N个邻区中的至少一个邻区的信号质量均满足对应的测量报告触发条件。本申请实施例中对于第一邻区具体指代哪些或哪个邻区并不限制。
一种可能的实现方式,在该第一定时器的有效期间内,终端设备不再上报测量报告(例如,终端设备可以继续测量,但不再上报测量报告),或者,终端设备停止测量;另一种可能的实现方式,在该第一定时器的有效期间内,终端设备测量到第二邻区的信号质量比当前上报的测量报告中包括的第一邻区的信号质量高出预设值(例如,第二邻区的信号质量比第一邻区的信号质量高出ZdBm),其中,该预设值可以为协议规定的,也可以是终端设备自行确定的,还可以是网络设备指示的(例如,包括在上述的测量配置信息中发送给终端设备),本申请对此并不限定。一种示例,终端设备可以在第一定时器的运行期间上报对应第二邻区的测量报告,例如,一旦第二邻区对应的测量报告触发条件满足,终端设备上报对应第二邻区的测量报告;或者,另一种示例,终端设备可以在第一定时器超时后再上报对应第二邻小区的测量报告,例如,当第二邻区对应的测量报告触发条件满足,第一定时器一超时,终端设备就上报对应第二邻区的测量报告。其中,该第一定时器的有效时间可以为协议规定的,也可以是终端设备自行确定的,还可以是网络设备指示的(例如,包括在上述的测量配置信息中发送给终端设备),本申请对第一定时器的有效时间的确定方式以及该有效时间的时长并不限定。
上述测量报告中可以包括测量结果、邻区标识等信息。具体地,测量报告中可以包括满足测量报告触发条件的邻区的相关信息,例如,该邻区的测量结果、邻区的标识、属于该邻区的波束的标识、属于该邻区的波束的测量结果。测量报告中包括的邻区的相关信息在不同的情况下可能不同,因为测量报告中包括的触发上报测量报告的邻区的测量结果等信息,不同情况下触发上报测量报告的邻区可能不同,即上述的终端设备确定上报测量报告时,不同情况下上报的内容可能不同。应理解,测量报告中包括的内容本申请并不限制,可以参考目前协议中的规定,也可以依照未来协议的规定,本申请主要涉及到在满足何种条件下,终端设备进行测量报告的上报。还应理解,不同邻区对应的测量报告触发条件可以相同也可以不同,本申请对此并不限制。
示例性的,本申请实施例中,波束可以理解为空间资源,可以指具有能量传输指向性的发送或接收预编码向量。并且,该发送或接收预编码向量能够通过索引信息进行标识,所述索引信息可以对应配置终端的资源标识(identity,ID),比如,所述索引信息可以对 应配置的CSI-RS的标识或者资源;也可以是对应配置的SSB的标识或者资源;也可以是对应配置的上行探测参考信号(Sounding Reference Signal,SRS)的标识或者资源。可选地,所述索引信息也可以是通过波束承载的信号或信道显示或隐式承载的索引信息。所述能量传输指向性可以指通过该预编码向量对所需发送的信号进行预编码处理,经过该预编码处理的信号具有一定的空间指向性,接收经过该预编码向量进行预编码处理后的信号具有较好的接收功率,如满足接收解调信噪比等;所述能量传输指向性也可以指通过该预编码向量接收来自不同空间位置发送的相同信号具有不同的接收功率。
进一步地,本申请实施例中还给出一种基于服务小区的信号质量和/或检测到的小区个数调整TTT的方案,下面结合图3详细说明。
图3是本申请实施例提供的一种调整TTT的方法示意性流程图。该流程图中执行主体包括终端设备和网络设备。
该无线资源管理测量的方法至少包括以下部分步骤。
S310,网络设备向终端设备发送测量配置信息。
该测量配置信息中包括第二门限值、第三门限值以及至少一个第一触发时间。其中,不同测量标识或测量频点或邻区对应的第一触发时间可以相同也可以不同,本申请对此并不限制。
应理解,该测量配置信息可以由多个测量配置信息组成,网络设备向终端设备发送该多个测量配置信息,可以是一次完成发送,也可以是分别多次发送,本申请对此并不限定。
第二门限值包括第二服务小区信号质量门限值和/或第二检测到的小区个数门限值,第三门限值包括第三服务小区信号质量门限值和/或第三检测到的小区个数门限值。其中,第二门限值小于或者等于第三门限值,当第二门限值等于第三门限值时,可以只发第二门限值或者第三门限值。
检测值与第二门限值和/或第三门限值的大小关系用于确定至少一个第二触发时间,例如,终端设备可以根据检测值、第二门限值、第三门限值、第一触发时间确定出第二触发时间。其中,检测值与上述实施例中的检测值(包括服务小区的信号质量或检测到的小区个数)类似,这里不再赘述。
应理解,图3所示的实施例中的测量配置信息除了包括上述的第二门限值和第三门限值之外还包括上文中介绍的测量标识、测量对象、上报配置和触发时间等,除第二门限值和第三门限之外图3所示的实施例中的测量配置信息所包括的信息与目前协议中规定的测量配置信息包括的内容类似,这里不再赘述。
作为一种可能的实现方式,第二门限值为网络设备发送给终端设备的一个或者多个门限值,其中,当第二门限值为网络设备发送给终端设备的多个门限值的情况下,终端设备可以随机选择一个第二门限值使用;
作为另一种可能的实现方式,第二门限值可以是高度粒度的或者高度区间粒度的。即第二门限值与所述终端设备所处的高度满足第二对应关系。不同的高度或者高度区间或者高度等级对应不同的第二门限值。其中,所述终端设备所处的高度可以是相对于地面的高度,或者,是相对于海平面的高度,或者,是相对于某个参考点的高度,本申请对此不作限定。
可选地,在该实现方式下,网络设备可以向终端设备发送多个第二门限值,每个第二 门限值有与该第二门限值对应的高度或者高度区间或者高度等级。
当网络设备向终端设备发送多个第二门限值的情况下,可以参考上述网络设备向终端设备发送多个第一门限值的描述,这里不再赘述。
可选地,在该实现方式下,网络设备可以向终端设备发送一个第二门限值,随着高度变化一个偏移量,第二门限值可以随之变化一个偏移量。可以参考上述网络设备向终端设备发送一个第一门限值的描述,这里不再赘述。
同理,第三门限值为网络设备发送给终端设备的一个或者多个门限值,其中,当第三门限值为网络设备发送给终端设备的多个门限值的情况下,终端设备可以随机选择一个第三门限值使用;或者,
第三门限值可以是高度粒度的或者高度区间粒度的。即第三门限值与所述终端设备所处的高度满足第三对应关系。即不同的高度或者高度区间或者高度等级对应不同的第三门限值。
可选地,在该实现方式下,网络设备可以向终端设备发送多个第三门限值,每个第三门限值有与该第三门限值对应的高度或者高度区间或者高度等级。当网络设备向终端设备发送多个第三门限值的情况下,可以参考上述网络设备向终端设备发送多个第一门限值的描述,这里不再赘述。
可选地,在该实现方式下,网络设备可以向终端设备发送一个第三门限值,随着高度变化的一个偏移量,第三门限值可以随之变化一个偏移量。可以参考上述网络设备向终端设备发送一个第一门限值的描述,这里不再赘述。
进一步地,终端设备接收到测量配置信息之后,确定至少一个第二触发时间。即图3所示的方法流程还包括S320:终端设备确定至少一个第二触发时间。
可选地,当上述测量配置信息中包括多个与高度相关的第二门限值和/或第三门限值,或者,测量配置信息中包括一个第二门限值和/或第三门限值,该第二门限值和/或第三门限值随着高度变化而变化时,终端设备在接收到测量配置信息之后,可以基于自身的高度,确定出合适的第二门限值和/或第三门限值;或者,
可选地,当上述测量配置信息中包括多个第二门限值(与高度无关联关系),终端设备在接收到测量配置信息之后,可以随机确定一个合适的第二门限值,和/或,当上述测量配置信息中包括多个第三门限值(与高度无关联关系),终端设备在接收到测量配置信息之后,可以随机确定一个合适的第三门限值。
进一步地,在终端设备确定合适的第二门限值和/或第三门限值之后,可以利用该合适的第二门限值和/或第三门限值确定第二触发时间。
示例性的,根据检测值(如,该检测值可以为服务小区的信号质量和/或检测到的小区个数),以及第二门限值和/或第三门限值,(当检测值为服务小区的信号质量时,第二门限值和/或第三门限值为第一服务小区信号质量门限值、当检测值为检测到的小区个数时,第二门限值和/或第三门限值为第一检测到的小区个数门限值、当检测值为服务小区的信号质量和检测到的小区个数时,第二门限值和/或第三门限值为第一服务小区信号质量门限值和第一检测到的小区个数门限值)终端设备确定至少一个第二触发时间包括以下几种情况:
情况一:
第二门限值包括第二服务小区信号质量门限值、第三门限值包括第三服务小区信号质量门限值、检测值包括服务小区的信号质量。其中,第二门限值小于或等于第三门限值。
可选地,第二服务小区信号质量门限值可以包括第二小区信号质量门限值,和/或,第二波束信号质量门限值。
可选地,第三服务小区信号质量门限值可以包括第三小区信号质量门限值,和/或,第三波束信号质量门限值。
在情况一下,终端设备根据检测值与所述第二门限值和/或所述第三门限值的大小关系,确定至少一个第二触发时间包括:
当所述服务小区的信号质量低于所述第二服务小区信号质量门限值时,确定所述第二触发时间为小于所述第一触发时间的触发时间;
当所述服务小区的信号质量大于所述第三服务小区信号质量门限值时,确定所述第二触发时间为大于所述第一触发时间的触发时间;
当所述服务小区的信号质量大于或等于所述第二服务小区信号质量门限值且小于或等于第三服务小区信号质量门限值时,确定所述第二触发时间为等于所述第一触发时间的触发时间。
情况二:
第二门限值包括第二检测到的小区个数门限值、第三门限值包括第三检测到的小区个数门限值、检测值包括检测到的小区个数。其中,第二门限值小于或等于第三门限值。
在情况二下,终端设备根据检测值与所述第二门限值和/或所述第三门限值的大小关系,确定至少一个第二触发时间包括:
当所述检测到的小区个数低于所述第二检测到的小区个数门限值时,确定所述第二触发时间为小于所述第一触发时间的触发时间;
当所述检测到的小区个数大于所述第三检测到的小区个数门限值时,确定所述第二触发时间为大于所述第一触发时间的触发时间;
当所述检测到的小区个数大于或等于所述第二检测到的小区个数门限值且小于或等于第三检测到的小区个数门限值时,确定所述第二触发时间为等于所述第一触发时间的触发时间。
情况三:
第二门限值包括第二检测到的小区个数门限值和第二服务小区信号质量门限值、第三门限值包括第三检测到的小区个数门限值和第三服务小区信号质量门限值、检测值包括检测到的小区个数和服务小区信号质量。其中,第二检测到的小区个数门限值小于或等于第三检测到的小区个数门限值,第二服务小区信号质量门限值小于或等于第三服务小区信号质量门限值。
在情况三下,终端设备根据检测值与所述第二门限值和/或所述第三门限值的大小关系,确定至少一个第二触发时间包括:
一种可能的实现方式,当所述检测到的小区个数低于第二检测到的小区个数门限值,且服务小区信号质量低于第二服务小区信号质量门限值时,确定所述第二触发时间为小于所述第一触发时间的触发时间;
当所述检测到的小区个数大于第三检测到的小区个数门限值,且服务小区信号质量大 于第三服务小区信号质量门限值时,确定所述第二触发时间为大于所述第一触发时间的触发时间;
当所述检测到的小区个数大于或等于所述第二检测到的小区个数门限值且小于或等于第三检测到的小区个数门限值,且服务小区的信号质量大于或等于所述第二服务小区信号质量门限值且小于或等于第三服务小区信号质量门限值时,确定所述第二触发时间为等于所述第一触发时间的触发时间。
另一种可能的实现方式,当所述检测到的小区个数低于第二检测到的小区个数门限值,或服务小区信号质量低于第二服务小区信号质量门限值时,确定所述第二触发时间为小于所述第一触发时间的触发时间;
当所述检测到的小区个数大于第三检测到的小区个数门限值,或服务小区信号质量大于第三服务小区信号质量门限值时,确定所述第二触发时间为大于所述第一触发时间的触发时间;
当所述检测到的小区个数大于或等于所述第二检测到的小区个数门限值且小于或等于第三检测到的小区个数门限值,或服务小区的信号质量大于或等于所述第二服务小区信号质量门限值且小于或等于第三服务小区信号质量门限值时,确定所述第二触发时间为等于所述第一触发时间的触发时间。
作为一种可能的实现方式,确定所述第二触发时间为大于所述第一触发时间的触发时间包括:确定所述第二触发时间为所述第一触发时间与P的乘积,所述P为大于1的正数,P可以为协议规定的,也可以是终端设备自行确定的,还可以是网络设备指示的(例如,包括在上述的测量配置信息中发送给终端设备)。
可选地,上述P与终端设备所处的高度满足第五对应关系。即上述的P为高度或者高度区间或者高度等级粒度的,不同的高度或者高度区间或者高度等级对应不同的P。
例如,协议规定三个P(如P#1、P#2和P#3),其中,P#1对应于高度区间#1(或者,当高度值低于高度#1时,所对应的缩放值为P#1),则当终端设备所处的高度属于高度区间#1(或者,低于高度#1)时使用P#1;P#2对应于高度区间#2(或者,当高度值高于高度#1且低于高度#2时,所对应的缩放值为P#2),则当终端设备所处的高度属于高度区间#2(或者,终端设备所处的高度高于高度#1且低于高度#2)时使用P#2;P#3对应于高度区间#3(或者,当高度值高于高度#2时,所对应的缩放值为P#3),则当终端设备所处的高度属于高度区间#3(或者,终端设备所处的高度高于高度#2)时使用P#3。其中,高度#1小于或等于高度#2。高度#1、高度#2可以包含在上述的测量配置信息中。
或者,又例如,测量配置信息中可以包括高度区间信息。作为一个示例,测量配置信息中可以包括高度区间#1的信息、高度区间#2的信息、高度区间#3的信息,其中,高度区间#1为[H1,H2]、高度区间#2为[H3,H4]、高度区间#3为[H5,H6]。另外,测量配置信息中还包括P#1、P#2、P#3。当终端设备的高度属于高度区间#1,则终端设备使用P#1;当终端设备的高度属于高度区间#2,则终端设备使用P#2;当终端设备的高度属于高度区间#3,则终端设备使用P#3。其中,P#1、P#2、P#3均为大于1的正数。
作为另一种可能的实现方式,确定所述第二触发时间为大于所述第一触发时间的触发时间包括:确定所述第二触发时间为所述第一触发时间加上第一预设偏移量。所述第一预设偏移量可以为协议规定的,也可以是终端设备自行确定的,还可以是网络设备指示的(例 如,包括在上述的测量配置信息中发送给终端设备)。可以理解的是,第一预设偏移量大于或者等于0。可选地,该第一预设偏移量与终端设备所处的高度满足第六对应关系。即第一预设偏移量为高度或者高度区间或者高度等级粒度的,不同的高度或者高度区间或者高度等级对应不同的第一预设偏移量。
作为一种可能的实现方式,确定所述第二触发时间为小于所述第一触发时间的触发时间包括:确定所述第二触发时间为所述第一触发时间与Q的乘积,所述Q为小于1的正数,Q可以为协议规定的,也可以是终端设备自行确定的,还可以是网络设备指示的(例如,包括在上述的测量配置信息中发送给终端设备)。
可选地,上述Q与终端设备所处的高度满足第四对应关系。即上述的Q为高度或者高度区间或者高度等级粒度的,不同的高度或者高度区间或者高度等级对应不同的Q。在该情况下,可以参考上述多个P的描述,这里不再赘述。
作为另一种可能的实现方式,确定所述第二触发时间为小于所述第一触发时间的包括触发时间:确定所述第二触发时间为所述第一触发时间减去第二预设偏移量。所述第二预设偏移量可以为协议规定的,也可以是终端设备自行确定的,还可以是网络设备指示的(例如,包括在上述的测量配置信息中发送给终端设备)。
作为一种可能的实现方式,确定所述第二触发时间为等于所述第一触发时间的触发时间包括:确定所述第二触发时间为所述第一触发时间与K的乘积,所述K等于1。
作为另一种可能的实现方式,确定所述第二触发时间为等于所述第一触发时间的触发时间包括:不对第一触发时间进行调整,即可以不存在上述的系数K,即无需协议规定K或网络设备指示K。也就是说直接将第一触发时间作为第二触发时间。
为了便于理解,以测量配置信息中包含了第二门限值(如第二门限值#1、第二门限值#2、第二门限值#3),第三门限值(如第三门限值#1、第三门限值#2、第三门限值#3),高度#1,高度#2,Q(如Q#1、Q#2、Q#3)和P(如P#1、P#2、P#3)为例说明如何调整第一触发时间。该例中,进一步地,以第二门限值为第二服务小区信号质量门限值,第三门限值为第三服务小区信号质量门限值为例进行说明。
当终端设备所处的高度低于高度#1时,使用的信号质量门限值为第二门限值#1、第三门限值#1,如果服务小区的信号质量高于或等于第三门限值#1,则使用的缩放值为P#1,即终端设备实际使用的第二触发时间为(第一触发时间乘以P#1);如果服务小区的信号质量低于或等于第二门限值#1,则使用的缩放值为Q#1,即终端设备实际使用的第二触发时间为(第一触发时间乘以Q#1);如果服务小区的信号质量高于第二门限值#1且低于第三门限值#1,则终端设备实际使用的第二触发时间即为第一触发时间。
当终端设备所处的高度高于高度#1且低于高度#2时,使用的信号质量门限值为第二门限值#2、第三门限值#2,如果服务小区的信号质量高于或等于第三门限值#2,则使用的缩放值为P#2,即终端设备实际使用的第二触发时间为(第一触发时间乘以P#2);如果服务小区的信号质量低于或等于第二门限值#2,则使用的缩放值为Q#2,即终端设备实际使用的第二触发时间为(第一触发时间乘以Q#2);如果服务小区的信号质量高于第二门限值#2且低于第三门限值#2,则终端设备实际使用的第二触发时间即为第一触发时间。
当终端设备所处的高度高于高度#2时,使用的信号质量门限值为第二门限值#3、第三门限值#3,如果服务小区的信号质量高于或等于第三门限值#3,则使用的缩放值为P#3, 即终端设备实际使用的第二触发时间为(第一触发时间乘以P#3);如果服务小区的信号质量低于或等于第二门限值#3,则使用的缩放值为Q#3,即终端设备实际使用的第二触发时间为(第一触发时间乘以Q#3);如果服务小区的信号质量高于第二门限值#3且低于第三门限值#3,则终端设备实际使用的第二触发时间即为第一触发时间。
可选地,基于第一触发时间调整得到第二触发时间之后,当N个邻区在对应的第二触发时间内均满足对应的测量报告触发条件时,终端设备确定上报测量报告。
图3所示的方法实施例中,给出的基于服务小区的信号质量和/或检测到的小区个数调整TTT的方案,使得终端设备能合理地进行测量报告的上报。一方面,当服务小区的信号质量较差和/或检测到的小区个数较少时,缩小TTT,使得终端设备能快速上报测量报告,避免由于测量报告没有及时上报而造成的RLF或过晚切换;另一方面,当服务小区的信号质量较好和/或检测到的小区个数较多时,放大TTT,使得终端设备能减慢测量报告的上报频率,避免测量报告的频繁上报。
应理解,图2和图3所示的方法可以单独实施,也可以结合实施,即可以在调整了TTT的基础上,再按照上述的检测值为服务小区的信号质量和/或检测到的小区个数,以及与该检测值相对应的第一门限值确定是否上报测量报告。在图2和图3所示的方法结合实施时,上述的第二门限值可以与上述的第一门限值相同或不同(当第一门限值和第二门限值相同时,可以配置两个门限值中的一个),或者,上述的第三门限值可以与上述的第一门限值相同或不同(当第一门限值和第三门限值相同时,可以配置两个门限值中的一个),本实施例对此不做限定。
上述方法实施例中,上述各过程的序列号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。并且有可能并非要执行上述方法实施例中的全部操作。
应理解,上述方法实施例中终端设备和/或网络设备可以执行施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以包括执行其它操作或者各种操作的变形。
可以理解的是,上述方法实施例中,由终端设备实现的方法,也可以由可用于终端设备的部件(例如芯片或者电路等)实现,由网络设备实现的方法,也可以由可用于网络设备的部件实现。
还应理解,在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述可以具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
上面结合图2和图3详细介绍了本申请实施例提供的无线资源管理测量的方法,下面结合图4-图7详细介绍本申请实施例提供的无线资源管理测量的装置。
参见图4,图4是本申请提供的无线资源管理测量的装置400的示意图。如图4所示,装置400包括处理单元410和接收单元420。
接收单元420,用于接收测量配置信息,所述测量配置信息中包括第一门限值,其中,所述第一门限值包括第一服务小区信号质量门限值和/或第一检测到的小区个数门限值;
处理单元410,用于根据检测值与所述第一门限值的大小关系,以及至少一个邻区的信号质量确定是否上报测量报告。
装置400实现方法实施例中的终端设备对应的功能或者步骤,装置400可以是方法实施例中的终端设备,或者方法实施例中的终端设备内部的芯片或功能模块。装置400的相应单元用于执行图2或者图3,或者图2和图3结合所示的方法实施例中由终端设备执行的相应步骤。
其中,装置400中的处理单元410用于执行处理相关的步骤。例如,执行图2中确定是否上报测量报告的步骤S220或者执行图3中确定第二触发时间的步骤S320。
装置400中的接收单元420执行方法实施例中相应的接收的步骤。例如,执行图2中接收网络设备发送测量配置信息的步骤S210或者执行图3接收网络设备发送测量配置信息的步骤S310。
装置400还可以包括发送单元,用于执行相应的发送的步骤,例如,向其他设备发送信息。接收单元420和发送单元可以组成收发单元,同时具有接收和发送的功能。其中,处理单元410可以是至少一个处理器。发送单元可以是发射器或者接口电路,接收单元420可以是接收器或者接口电路。接收器和发射器可以集成在一起组成收发器或者接口电路。
可选的,装置400还可以包括存储单元,用于存储数据和/或信令,处理单元410、发送单元、和接收单元420可以与存储单元交互或者耦合,例如读取或者调用存储单元中的数据和/或信令,以使得上述实施例的方法被执行。
以上各个单元可以独立存在,也可以全部或者部分集成。
参见图5,图5是适用于本申请实施例的用终端设备500的结构示意图。该终端设备500可应用于图1所示出的系统中。为了便于说明,图5仅示出了终端设备的主要部件。如图5所示,终端设备500包括处理器、存储器、控制电路、天线以及输入输出装置。处理器用于控制天线以及输入输出装置收发信号,存储器用于存储计算机程序,处理器用于从存储器中调用并运行该计算机程序,以执行本申请提出的用于注册的方法中由终端设备执行的相应流程和/或操作。此处不再赘述。
本领域技术人员可以理解,为了便于说明,图5仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
参见图6,图6是本申请提供的无线资源管理测量的装置600的示意图。如图6所示,装置600包括处理单元610和发送单元620。
处理单元610,用于确定测量配置信息,所述测量配置信息中包括第一门限值和邻区个数门限值N,其中,所述第一门限值包括第一服务小区信号质量门限值和/或第一检测到的小区个数门限值;
发送单元620,用于发送所述测量配置信息,其中,所述第一门限值与检测值的大小关系,以及至少一个邻区的信号质量用于指示能否接收到测量报告。
装置600实现方法实施例中的网络设备对应的功能或者步骤,装置600可以是方法实施例中的网络设备,或者方法实施例中的网络设备内部的芯片或功能模块。装置600的相应单元用于执行图2或者图3,或者图2和图3结合所示的方法实施例中由网络设备执行的相应步骤。
其中,装置600中的处理单元610,用于执行处理相关的步骤。
装置600中的发送单元620执行方法实施例中相应的发送的步骤,例如,执行图2中向终端设备发送测量配置信息的步骤S210或者执行图3中向终端设备发送测量配置信息的步骤S310。
装置600还可以包括接收单元,用于执行相应的接收的步骤。例如,接收其他设备发送的信息。接收单元和发送单元620可以组成收发单元,同时具有接收和发送的功能。其中,处理单元610可以是至少一个处理器。发送单元620可以是发射器或者接口电路。接收单元可以是接收器或者接口电路。接收器和发射器可以集成在一起组成收发器或者接口电路。
可选的,装置600还可以包括存储单元,用于存储数据和/或信令,处理单元610、发送单元620、和接收单元可以与存储单元交互或者耦合,例如读取或者调用存储单元中的数据和/或信令,以使得上述实施例的方法被执行。
以上各个单元可以独立存在,也可以全部或者部分集成。
参见图7,图7是适用于本申请实施例的网络设备700的结构示意图,可以用于实现上述寻呼的方法中的网络设备的功能。可以为网络设备的结构示意图。
一种可能的方式中,例如在5G通信系统中的某些实现方案中,网络设备700可以包括CU、DU和AAU,相比于LTE通信系统中的网络设备由一个或多个射频单元,如远端射频单元(remote radio unit,RRU)和一个或多个基带单元(base band unit,BBU)来说:
原BBU的非实时部分将分割出来,重新定义为CU,负责处理非实时协议和服务、BBU的部分物理层处理功能与原RRU及无源天线合并为AAU、BBU的剩余功能重新定义为DU,负责处理物理层协议和实时服务。简而言之,CU和DU,以处理内容的实时性进行区分、AAU为RRU和天线的组合。
CU、DU、AAU可以采取分离或合设的方式,所以,会出现多种网络部署形态,一种可能的部署形态与传统4G网络设备一致,CU与DU共硬件部署。应理解,图7只是一种示例,对本申请的保护范围并不限制,例如,部署形态还可以是DU部署在5G BBU机房,CU集中部署或DU集中部署,CU更高层次集中等。
所述AAU 701可以实现收发功能称为收发单元701,与图6中的发送单元620对应。可选地,该收发单元701还可以称为收发机、收发电路、或者收发器等,其可以包括至少一个天线7011和射频单元7012。可选地,收发单元701可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。所述CU和DU 702可以实现内部处理功能称为处理单元702。可选地,该处理单元702可以对网络设备进行控制等,可以称为控制器。所述AAU 701与CU和DU 702可以是物理上设置在一起,也可以物理上分离设置的。
另外,网络设备不限于图7所示的形态,也可以是其它形态:例如:包括BBU和ARU,或者包括BBU和AAU;也可以为CPE,还可以为其它形态,本申请不限定。
应理解,图7所示的网络设备700能够实现图2和图3的方法实施例中涉及的网络设备的功能。网络设备700中的各个单元的操作和/或功能,分别为了实现本申请方法实施例中由网络设备执行的相应流程。为避免重复,此处适当省略详述描述。图7示例的网络设备的结构仅为一种可能的形态,而不应对本申请实施例构成任何限定。本申请并不排除未来可能出现的其他形态的网络设备结构的可能。
本申请实施例还提供一种通信系统,其包括前述的终端设备和网络设备。
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述如图2或者图3,或者图2和图3结合所示的方法中终端设备执行的各个步骤。
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述如图2或者图3,或者图2和图3结合所示的方法中网络设备执行的各个步骤。
本申请还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如图2或者图3,或者图2和图3结合所示的方法中终端设备执行的各个步骤。
本申请还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如图2或者图3,或者图2和图3结合所示的方法中网络设备执行的各个步骤。
本申请还提供一种芯片,包括处理器。该处理器用于读取并运行存储器中存储的计算机程序,以执行本申请提供的无线资源管理测量的方法中由终端设备执行的相应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是该芯片上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
本申请还提供一种芯片,包括处理器。该处理器用于读取并运行存储器中存储的计算机程序,以执行本申请提供的无线资源管理测量的方法中由网络设备执行的相应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是该芯片上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
上述的芯片也可以替换为芯片系统,这里不再赘述。
本申请中的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
另外,本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;本申请中术语“至少一个”,可以表示“一个”和“两个或两个以上”,例如,A、B和C中至少一个,可以表示:单独存在A,单独存在B,单独存在C、同时存在A和B,同时存在A和C,同时存在C和B,同时存在A和B和C,这七种情况。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种无线资源管理测量的方法,其特征在于,包括:
    接收测量配置信息,所述测量配置信息中包括第一门限值,其中,所述第一门限值包括第一服务小区信号质量门限值和/或第一检测到的小区个数门限值;
    根据检测值与所述第一门限值的大小关系,以及至少一个邻区的信号质量确定是否上报测量报告。
  2. 如权利要求1所述的方法,其特征在于,所述第一门限值包括所述第一服务小区信号质量门限值;
    所述检测值包括服务小区的信号质量;
    所述根据检测值与所述第一门限值的大小关系,以及至少一个邻区的信号质量确定是否上报测量报告包括:
    当所述服务小区的信号质量低于或者等于所述第一服务小区信号质量门限值,且所述至少一个邻区的信号质量满足测量报告触发条件时,确定上报测量报告;或者,
    当所述服务小区的信号质量大于或者等于所述第一服务小区信号质量门限值,且N个邻区的信号质量均满足对应的测量报告触发条件时,确定上报测量报告,其中,所述N为携带在所述配置信息中的邻区个数门限值。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一门限值包括所述第一检测到的小区个数门限值;
    所述检测值包括检测到的小区个数;
    所述根据检测值与所述第一门限值的大小关系,以及至少一个邻区的信号质量确定是否上报测量报告包括:
    当所述检测到的小区个数小于或者等于所述第一检测到的小区个数门限值,且所述至少一个邻区的信号质量满足测量报告触发条件时,确定上报测量报告;或者,
    当所述检测到的小区个数大于或者等于所述第一检测到的小区个数门限值,且N个邻区的信号质量均满足对应的测量报告触发条件时,确定上报测量报告,其中,所述N为携带在所述配置信息中的邻区个数门限值。
  4. 如权利要求1-3中任一项所述的方法,其特征在于,所述第一门限值是高度粒度的;
    所述方法还包括:
    基于终端设备所处的高度确定所述第一门限值。
  5. 如权利要求1-4中任一项所述的方法,其特征在于,所述测量配置信息中包括高度门限值。
  6. 如权利要求1-5中任一项所述的方法,其特征在于,在确定上报测量报告之后,所述方法还包括:
    发送对应于第一邻区的测量报告;
    在发送所述对应于第一邻区的测量报告之后,启动第一定时器,
    在所述第一定时器的有效期间内,不再上报测量报告,或者,上报对应于第二邻区的测量报告,其中,所述第二邻区的信号质量高于所述第一邻区的信号质量。
  7. 如权利要求1-6中任一项所述的方法,其特征在于,所述测量配置信息中还包括第二门限值、第三门限值以及至少一个邻区对应的第一触发时间,其中,所述第二门限值包括第二服务小区信号质量门限值和/或第二检测到的小区个数门限值,所述第三门限值包括第三服务小区信号质量门限值和/或第三检测到的小区个数门限值;
    所述方法还包括:
    根据检测值与所述第二门限值和/或所述第三门限值的大小关系,确定第二触发时间,其中,所述第二门限值小于或者等于所述第三门限值,所述第二触发时间是基于所述第一触发时间得到的,所述检测值包括服务小区信号质量和/或检测到的小区个数。
  8. 如权利要求7所述的方法,其特征在于,所述根据检测值与所述第二门限值和/或所述第三门限值的大小关系,确定第二触发时间包括:
    当所述检测值低于所述第二门限值时,确定所述第二触发时间为小于所述第一触发时间的触发时间;
    当所述检测值大于所述第三门限值时,确定所述第二触发时间为大于所述第一触发时间的触发时间;
    当所述检测值大于或等于所述第二门限值且小于或等于第三门限值时,确定所述第二触发时间为等于所述第一触发时间的触发时间。
  9. 如权利要求8所述的方法,其特征在于,所述确定所述第二触发时间为小于所述第一触发时间的触发时间包括:
    确定所述第二触发时间为所述第一触发时间与Q的乘积,所述Q为小于1的正数;
    所述确定所述第二触发时间为大于所述第一触发时间的触发时间包括:
    确定所述第二触发时间为所述第一触发时间与P的乘积,所述P为大于1的正数;
    所述确定所述第二触发时间为等于所述第一触发时间的触发时间包括:
    确定所述第二触发时间为所述第一触发时间与K的乘积,所述K等于1。
  10. 如权利要求7-9中任一项所述的方法,其特征在于,所述第二门限值和/或所述第三门限值是高度粒度的;
    所述方法还包括:
    基于终端设备所处的高度确定所述第二门限值和/或所述第三门限值。
  11. 一种无线资源管理测量的方法,其特征在于,包括:
    确定测量配置信息,所述测量配置信息中包括第一门限值,其中,所述第一门限值包括第一服务小区信号质量门限值和/或第一检测到的小区个数门限值;
    向终端设备发送所述测量配置信息,其中,所述第一门限值用于所述终端设备确定是否上报测量报告。
  12. 如权利要求11所述的方法,其特征在于,所述第一门限值包括所述第一服务小区信号质量门限值;
    所述方法还包括:
    接收来自所述终端设备的测量报告,其中,服务小区的信号质量低于或者等于所述第一服务小区信号质量门限值,且至少一个邻区的信号质量满足测量报告触发条件;或者,
    接收来自所述终端设备的测量报告,其中,服务小区的信号质量大于或者等于所述第一服务小区信号质量门限值,且N个邻区的信号质量均满足对应的测量报告触发条件,所 述N为携带在所述配置信息中的邻区个数门限值。
  13. 如权利要求11或12所述的方法,其特征在于,所述第一门限值包括第一检测到的小区个数门限值;
    所述方法还包括:
    接收来自所述终端设备的测量报告,其中,终端设备检测到的小区个数小于或者等于所述第一检测到的小区个数门限值,且至少一个邻区的信号质量满足测量报告触发条件;或者,
    接收来自所述终端设备的测量报告,其中,终端设备检测到的小区个数大于或者等于所述第一检测到的小区个数门限值,且N个邻区的信号质量均满足对应的测量报告触发条件,所述N为携带在所述配置信息中的邻区个数门限值。
  14. 如权利要求11-13中任一项所述的方法,其特征在于,所述第一门限值是高度粒度的。
  15. 如权利要求11-14中任一项所述的方法,其特征在于,所述测量配置信息中包括高度门限值。
  16. 如权利要求11-15中任一项所述的方法,其特征在于,所述测量配置信息中还包括第二门限值、第三门限值以及至少一个邻区对应的第一触发时间,
    其中,所述第二门限值包括第二服务小区信号质量门限值和/或第二检测到的小区个数门限值,所述第三门限值包括第三服务小区信号质量门限值和/或第三检测到的小区个数门限值,
    所述第二门限值和/或所述第三门限值用于所述终端设备确定第二触发时间,所述第二门限值小于或者等于所述第三门限值,所述第二触发时间是基于所述第一触发时间得到的。
  17. 如权利要求16所述的方法,其特征在于,所述第二门限值和/或所述第三门限值用于所述终端设备确定第二触发时间包括:
    当检测值低于所述第二门限值时,所述第二触发时间为小于所述第一触发时间的触发时间;
    当所述检测值大于所述第三门限值时,所述第二触发时间为大于所述第一触发时间的触发时间;
    当所述检测值大于或等于所述第二门限值且小于或等于第三门限值时,所述第二触发时间为等于所述第一触发时间的触发时间,所述检测值包括服务小区信号质量和/或检测到的小区个数。
  18. 如权利要求17所述的方法,其特征在于,所述第二触发时间为小于所述第一触发时间的触发时间包括:
    所述第二触发时间为所述第一触发时间与Q的乘积,所述Q为小于1的正数;
    所述第二触发时间为大于所述第一触发时间的触发时间包括:
    所述第二触发时间为所述第一触发时间与P的乘积,所述P为大于1的正数;
    所述第二触发时间为等于所述第一触发时间的触发时间包括:
    所述第二触发时间为所述第一触发时间与K的乘积,所述K等于1。
  19. 如权利要求17或18所述的方法,其特征在于,所述第二门限值和/或所述第三 门限值是高度粒度的。
  20. 一种无线资源管理测量的方法,其特征在于,包括:
    接收来自网络设备的测量配置信息,所述测量配置信息中包括第二门限值、第三门限值以及至少一个邻区对应的第一触发时间,其中,所述第二门限值包括第二服务小区信号质量门限值和/或第二检测到的小区个数门限值,所述第三门限值包括第三服务小区信号质量门限值和/或第三检测到的小区个数门限值;
    根据检测值与所述第二门限值和/或所述第三门限值的大小关系,确定第二触发时间,其中,所述第二门限值小于或者等于所述第三门限值,所述第二触发时间是根据所述第一触发时间得到的,所述检测值包括服务小区信号质量和/或检测到的小区个数。
  21. 如权利要求20所述的方法,其特征在于,所述根据检测值与所述第二门限值和/或所述第三门限值的大小关系,确定第二触发时间包括:
    当所述检测值低于所述第二门限值时,确定所述第二触发时间为小于所述第一触发时间的触发时间;
    当所述检测值大于所述第三门限值时,确定所述第二触发时间为大于所述第一触发时间的触发时间;
    当所述检测值大于或等于所述第二门限值且小于或等于第三门限值时,确定所述第二触发时间为等于所述第一触发时间的触发时间。
  22. 如权利要求21所述的方法,其特征在于,所述确定所述第二触发时间为小于所述第一触发时间的触发时间包括:
    确定所述第二触发时间为所述第一触发时间与Q的乘积,所述Q为小于1的正数;
    所述确定所述第二触发时间为大于所述第一触发时间的触发时间包括:
    确定所述第二触发时间为所述第一触发时间与P的乘积,所述P为大于1的正数;
    所述确定所述第二触发时间为等于所述第一触发时间的触发时间包括:
    确定所述第二触发时间为所述第一触发时间与K的乘积,所述K等于1。
  23. 如权利要求20-22中任一项所述的方法,其特征在于,所述第二门限值和所述第三门限值是高度粒度的;
    所述方法还包括:
    基于终端设备所处的高度确定所述第二门限值和/或第三门限值。
  24. 一种无线资源管理测量的方法,其特征在于,包括:
    确定测量配置信息,所述测量配置信息中包括第二门限值、第三门限值以及至少一个邻区对应的第一触发时间,
    其中,所述第二门限值包括第二服务小区信号质量门限值和/或第二检测到的小区个数门限值,所述第三门限值包括第三服务小区信号质量门限值和/或第三检测到的小区个数门限值,
    向终端设备发送所述测量配置信息,其中,所述第二门限值和/或所述第三门限值用于所述终端设备确定第二触发时间,所述第二门限值小于或者等于所述第三门限值,所述第二触发时间是基于所述第一触发时间得到的。
  25. 如权利要求24所述的方法,其特征在于,所述第二触发时间是基于所述第一触发时间得到的包括:
    所述第二触发时间为所述第一触发时间与Q的乘积,所述Q为小于1的正数;
    或者,
    所述第二触发时间为所述第一触发时间与P的乘积,所述P为大于1的正数;
    或者,
    所述第二触发时间为所述第一触发时间与K的乘积,所述K等于1。
  26. 如权利要求24或25所述的方法,其特征在于,所述第二门限值和所述第三门限值是高度粒度的。
  27. 一种无线资源管理测量的装置,其特征在于,用于实现如权利要求1-10中任意一项所述的方法或者用于实现如权利要求20-23中任意一项所述的方法。
  28. 一种无线资源管理测量的装置,其特征在于,用于实现如权利要求11-19中任意一项所述的方法或者用于实现如权利要求24-26中任意一项所述的方法。
  29. 一种计算机可读存储介质,其特征在于,包括:所述计算机可读介质存储有计算机程序;所述计算机程序在计算机上运行时,使得计算机执行权利要求1-26中任一项所述的方法。
  30. 一种通信系统,其特征在于,包括:
    权利要求27所述的无线资源管理测量的装置和权利要求28所述的无线资源管理测量的装置。
PCT/CN2019/130451 2019-12-31 2019-12-31 无线资源管理测量的方法和装置 WO2021134455A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19958367.5A EP4072189A4 (en) 2019-12-31 2019-12-31 METHOD AND APPARATUS FOR MEASURING RADIO RESOURCE MANAGEMENT
PCT/CN2019/130451 WO2021134455A1 (zh) 2019-12-31 2019-12-31 无线资源管理测量的方法和装置
CN201980103253.2A CN114846838A (zh) 2019-12-31 2019-12-31 无线资源管理测量的方法和装置
US17/855,237 US20220330075A1 (en) 2019-12-31 2022-06-30 Radio resource management measurement method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130451 WO2021134455A1 (zh) 2019-12-31 2019-12-31 无线资源管理测量的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/855,237 Continuation US20220330075A1 (en) 2019-12-31 2022-06-30 Radio resource management measurement method and apparatus

Publications (1)

Publication Number Publication Date
WO2021134455A1 true WO2021134455A1 (zh) 2021-07-08

Family

ID=76687148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130451 WO2021134455A1 (zh) 2019-12-31 2019-12-31 无线资源管理测量的方法和装置

Country Status (4)

Country Link
US (1) US20220330075A1 (zh)
EP (1) EP4072189A4 (zh)
CN (1) CN114846838A (zh)
WO (1) WO2021134455A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210352506A1 (en) * 2020-05-07 2021-11-11 Qualcomm Incorporated Layer 1 measurement reporting using measurement index
WO2024027478A1 (zh) * 2022-08-03 2024-02-08 华为技术有限公司 通信方法、装置及存储介质
WO2024033841A1 (en) * 2022-08-09 2024-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Methods for aerial ue measurement reporting
WO2024139888A1 (zh) * 2022-12-26 2024-07-04 华为技术有限公司 一种通信方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117528623A (zh) * 2022-08-04 2024-02-06 华为技术有限公司 一种上报测量报告的方法、通信装置和通信系统
CN117793664A (zh) * 2022-09-29 2024-03-29 华为技术有限公司 一种测量报告发送方法、通信装置与通信系统
WO2024093600A1 (en) * 2023-09-28 2024-05-10 Lenovo (Beijing) Limited Height dependent measurment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101610536A (zh) * 2008-06-20 2009-12-23 中兴通讯股份有限公司 一种在测量中控制多个测量结果上报的方法及终端
CN104272804A (zh) * 2013-05-03 2015-01-07 华为技术有限公司 测量方法、测量控制方法及设备
CN105072643A (zh) * 2015-08-20 2015-11-18 中国联合网络通信集团有限公司 一种小区测量结果的上报方法及装置
WO2019098916A1 (en) * 2017-11-16 2019-05-23 Telefonaktiebolaget Lm Ericsson (Publ) Configuration for flight status indication of an aerial ue
CN110012497A (zh) * 2018-01-05 2019-07-12 中国移动通信有限公司研究院 测量方法和终端

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102026268B (zh) * 2009-09-17 2013-01-02 华为技术有限公司 一种小区载波信号测量上报方法和装置
US10231165B2 (en) * 2015-05-13 2019-03-12 Qualcomm Incorporated RRM measurement and reporting for license assisted access
CN109218344B (zh) * 2017-06-29 2021-11-09 华为技术有限公司 选择参数配置的方法、设备以及系统
CN110915261B (zh) * 2017-08-11 2022-02-18 华为技术有限公司 一种测量上报方法及装置
CN109548039A (zh) * 2017-08-11 2019-03-29 索尼公司 无线通信系统中的装置和方法、计算机可读存储介质
EP3462646A1 (en) * 2017-09-27 2019-04-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Wireless network handling flying ues
EP3783945A4 (en) * 2018-04-17 2021-11-24 Ntt Docomo, Inc. USER DEVICE AND MEASUREMENT REPORT TRANSFER PROCEDURE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101610536A (zh) * 2008-06-20 2009-12-23 中兴通讯股份有限公司 一种在测量中控制多个测量结果上报的方法及终端
CN104272804A (zh) * 2013-05-03 2015-01-07 华为技术有限公司 测量方法、测量控制方法及设备
CN105072643A (zh) * 2015-08-20 2015-11-18 中国联合网络通信集团有限公司 一种小区测量结果的上报方法及装置
WO2019098916A1 (en) * 2017-11-16 2019-05-23 Telefonaktiebolaget Lm Ericsson (Publ) Configuration for flight status indication of an aerial ue
CN110012497A (zh) * 2018-01-05 2019-07-12 中国移动通信有限公司研究院 测量方法和终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4072189A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210352506A1 (en) * 2020-05-07 2021-11-11 Qualcomm Incorporated Layer 1 measurement reporting using measurement index
WO2024027478A1 (zh) * 2022-08-03 2024-02-08 华为技术有限公司 通信方法、装置及存储介质
WO2024033841A1 (en) * 2022-08-09 2024-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Methods for aerial ue measurement reporting
WO2024139888A1 (zh) * 2022-12-26 2024-07-04 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
EP4072189A1 (en) 2022-10-12
EP4072189A4 (en) 2022-12-21
CN114846838A (zh) 2022-08-02
US20220330075A1 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
WO2021134455A1 (zh) 无线资源管理测量的方法和装置
US20230029758A1 (en) Power control method and apparatus
US20210219155A1 (en) Interference Measurement Method and Apparatus
WO2021057473A1 (zh) 一种共生网络中载波的调度方法、装置及存储介质
CN112087291B (zh) 更新传输配置指示tci信息的方法与通信装置
US20220338076A1 (en) Handover method and apparatus
US20220393963A1 (en) Method and apparatus for configuring minimization of drive-tests mdt
EP3846532A1 (en) Power control method and device
US20220263641A1 (en) Method For Configuring CLI Measurement And Communications Apparatus
WO2021203884A1 (zh) 一种中继通信方法及相关设备
US20210377916A1 (en) Wireless Communications Method and Apparatus
WO2021062730A1 (zh) 无线通信方法和装置
WO2021027919A9 (zh) 传输参考信号的方法及设备
WO2021159863A1 (zh) 一种多卡终端设备的通信参数测量方法、终端设备和接入网设备
WO2021062775A1 (zh) 一种寻呼消息的检测方法、装置及通信设备
CN111526533A (zh) 测量方法和通信装置
US20220240116A1 (en) Link Failure Detection Method and Apparatus
WO2021077437A1 (zh) 通信方法和装置
WO2022226777A1 (zh) 上报已记录测量报告的方法、终端设备和网络设备
WO2023124995A1 (zh) 通信方法、终端设备、网络设备及通信系统
WO2022021157A1 (zh) 已登录的最小化路测的方法、终端设备和网络设备
WO2024179568A1 (zh) 功率控制方法、通信装置及系统
US20240284504A1 (en) Method of sensing based interference management for network nodes
WO2024169430A1 (zh) 通信方法及装置
US20230042335A1 (en) Quasi co-located relationship management method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958367

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019958367

Country of ref document: EP

Effective date: 20220705

NENP Non-entry into the national phase

Ref country code: DE