WO2021223084A1 - 一种发送和接收上行参考信号的方法及通信装置 - Google Patents

一种发送和接收上行参考信号的方法及通信装置 Download PDF

Info

Publication number
WO2021223084A1
WO2021223084A1 PCT/CN2020/088690 CN2020088690W WO2021223084A1 WO 2021223084 A1 WO2021223084 A1 WO 2021223084A1 CN 2020088690 W CN2020088690 W CN 2020088690W WO 2021223084 A1 WO2021223084 A1 WO 2021223084A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
reference signal
precoding
resources
uplink
Prior art date
Application number
PCT/CN2020/088690
Other languages
English (en)
French (fr)
Inventor
吴晔
纪刘榴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/088690 priority Critical patent/WO2021223084A1/zh
Priority to CN202080099610.5A priority patent/CN115380493B/zh
Priority to EP20934304.5A priority patent/EP4131825A4/en
Publication of WO2021223084A1 publication Critical patent/WO2021223084A1/zh
Priority to US18/053,356 priority patent/US20230078895A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • This application relates to the field of wireless communication, and more specifically, to a method and communication device for sending and receiving uplink reference signals.
  • Multi-user multi-input multi-output can support communication between network devices and multiple terminal devices.
  • terminal equipment can eliminate interference by means of precoding.
  • the terminal device may use, for example, precoding polling (precoder cycling), random selection of precoding, etc., to select precoding for uplink data transmission.
  • the uplink transmission of the terminal equipment can usually be scheduled by the network equipment.
  • Network equipment often makes decisions for uplink scheduling based on the measurement results of the uplink channel.
  • the terminal device may send an uplink reference signal, such as a sounding reference signal (SRS) to the network device, so that the network device can measure the uplink channel. Therefore, how to configure the uplink reference signal to obtain accurate uplink channel measurement results so that network equipment can make reasonable decisions for uplink scheduling has become a technical problem to be solved urgently.
  • SRS sounding reference signal
  • the present application provides a method and communication device for sending and receiving uplink reference signals, in order to reasonably configure the uplink reference signals to obtain accurate uplink channel measurement results.
  • a method for sending an uplink reference signal is provided.
  • the method may be executed by a terminal device, or may also be executed by a component (such as a circuit, a chip, or a chip system, etc.) configured in the terminal device. This application does not limit this.
  • the method includes: according to resource allocation rules, determining downlink reference signal resources corresponding to multiple blocks of first resources used to carry uplink reference signals among the plurality of uplink reference signal resources, and each uplink reference signal resource includes one or more blocks
  • the first resource, the size of the first resource in the time domain or the frequency domain is determined based on a first precoding granularity, and the first precoding granularity represents consecutive data corresponding to the same precoding in an uplink reference signal resource
  • the size of the resource in the time domain or the frequency domain based on the downlink reference signal resource corresponding to each block of the first resource, determine the precoding corresponding to each block of the first resource; send the precoded uplink reference signal, and the precoded
  • the uplink reference signal is obtained by precoding the uplink reference signal based on the precoding corresponding to each block of the first resource.
  • the resource allocation rule may refer to a rule that can be used to determine the correspondence between the first resource on the time-frequency resource used to transmit the uplink reference signal and the downlink reference signal resource. Based on different dimensions, the resource allocation rule can be used to determine the correspondence between the first resource and the downlink reference signal resource in the frequency domain, or the correspondence between the first resource and the downlink reference signal resource in the time domain.
  • resource allocation rules include frequency domain resource allocation rules and time domain resource allocation rules. This application includes but is not limited to this.
  • the resource allocation rule includes a frequency domain resource allocation rule, and the frequency domain resource allocation rule is used to determine the correspondence between the multiple blocks of frequency division multiplexed first resources and the downlink reference signal resources.
  • the resource allocation rules include time-domain resource allocation rules, and the time-domain resource allocation rules are used to determine the correspondence between the time-division multiplexed multiple blocks of first resources and downlink reference signal resources.
  • the method further includes: receiving indication information of the resource allocation rule. That is, the resource allocation rule can be instructed by the network device.
  • the resource allocation rule is predefined.
  • the protocol is predefined. This application does not limit this.
  • the first precoding granularity may be understood as the granularity based on which the terminal device precodes the uplink reference signal.
  • the first precoding granularity may be less than or equal to one uplink reference signal resource.
  • one uplink reference signal resource may include one or more first resources.
  • the method further includes: receiving indication information of the first precoding granularity. That is, the granularity of the first precoding may be configured by the network device.
  • the first precoding granularity is predefined. For example, the protocol is predefined. This application does not limit this.
  • the terminal device may predetermine the downlink reference signal resources corresponding to the multiple blocks of the first resources in the uplink reference signal resources, and then determine the correspondence between the precoding and the first resource, and then according to the correspondence between the precoding and the first resource , Precoding the uplink reference signal carried on the uplink reference signal resource, so that the precoded uplink reference signal for subsequent transmission has a different arrangement.
  • the precoding used as the uplink reference signal no longer depends on the granularity of the uplink reference signal resource, but can
  • the first precoding granularity is used to obtain more possible precoding arrangements on the uplink reference signal resources. That is, the granularity based on precoding the uplink reference signal is decoupled from the size of the uplink reference signal resource, so as to obtain more and more flexible uplink reference signal resource configuration. It is conducive to the network equipment to obtain more accurate channel measurement results, and to perform reasonable scheduling for subsequent uplink data transmission.
  • the method further includes: determining multiple precodings for uplink reference signal transmission, the multiple precodings being based on The measurement of resources is determined, the multiple downlink reference signal resources correspond to the multiple uplink reference signal resources; the determining the precoding corresponding to each block of the first resource includes: determining each block based on the multiple precodings Precoding corresponding to the first resource.
  • the terminal device may perform measurement based on multiple downlink reference signal resources corresponding to the multiple uplink reference signal resources to determine multiple precodings used for uplink reference signal transmission. For each block of the first resource in the uplink reference signal resources, one or more of the plurality of precoding may be further determined to perform precoding on the uplink reference signal.
  • the determining the precoding corresponding to each block of the first resource based on the multiple precodings includes: a selection rule based on the precoding and the Multiple precodings are used to determine the precoding corresponding to each block of the first resource.
  • the terminal device can determine the precoding corresponding to each block of the first resource from the multiple precodings by itself.
  • the precoding selection rule is also used to determine the rule on which each block of the first resource is based.
  • the terminal device may determine the precoding corresponding to each block of the first resource based on the precoding selection rule.
  • the precoding selection rule includes: precoding polling, random selection, throughput maximization, and so on. This application includes but is not limited to this.
  • the method further includes: receiving indication information of the precoding selection rule. That is, the precoding selection rule is instructed by the network device.
  • the precoding selection rule is predetermined.
  • the protocol is predefined. This application does not limit this.
  • the method further includes: receiving first indication information, where the first indication information is used to indicate the plurality of uplink reference signal resources and the plurality of Correspondence of downlink reference signal resources.
  • the correspondence between the multiple uplink reference signal resources and the multiple downlink reference signal resources may be indicated by the network device through the first indication information.
  • each of the plurality of downlink reference signal resources is associated with at least one of the plurality of uplink reference signal resources.
  • Resource correspondence each uplink reference signal resource in the at least one uplink reference signal resource corresponds to one or more of the multiple precodings, and the precoding corresponding to each uplink reference signal resource is based on the corresponding The measured downlink reference signal resources are obtained.
  • Each downlink reference signal resource may correspond to one or more uplink reference signal resources.
  • the same uplink reference signal resource may correspond to one or more downlink reference signal resources.
  • the precoding corresponding to each uplink reference signal resource may be obtained based on the measurement of the corresponding one or more downlink reference signal resources.
  • a possible design is that the precoding corresponding to each uplink reference signal resource is obtained based on measurement of a corresponding downlink reference signal resource.
  • each uplink reference signal resource corresponds to one downlink reference signal resource.
  • One or more precodings can be obtained based on the measurement of a downlink reference signal resource, and the one or more precodings can be used to precode the uplink reference signal on the uplink reference signal resource corresponding to the downlink reference signal resource.
  • the downlink reference signal resource is a non-zero power channel state information reference signal (NZP CSI-RS) resource
  • the uplink reference signal resource is a sounding reference signal (sounding reference signal, SRS) resource.
  • the at least one SRS resource corresponding to each NZP CSI-RS resource in the multiple NZP CSI-RS resources is included in one SRS resource set.
  • One or more uplink reference signal resources corresponding to the same downlink reference signal resource may be referred to as an uplink reference signal resource set.
  • One downlink reference signal resource corresponds to one uplink reference signal resource set, which means that one downlink reference signal resource corresponds to one or more uplink reference signal resources in one uplink reference signal resource set.
  • NZP CSI-RS resources are used as an example of downlink reference signal resources
  • SRS resources are used as an example of uplink reference signal resources, which are only examples, and should not constitute any limitation in this application. This application does not limit the downlink reference signal resources and the uplink reference signal resources.
  • the method further includes: receiving second indication information, where the second indication information is used to indicate each SRS resource set of the multiple SRS resource sets
  • the precoding corresponding to one or more SRS resources of the one or more SRS resources is the precoding used for uplink data transmission.
  • the network device may determine the precoding used for subsequent uplink data transmission based on the measurement of the uplink reference signal resource. From the above-mentioned correspondence between the first resource and precoding and the relationship between the first resource and the uplink reference signal resource, it can be known that there is a correspondence between each SRS resource and precoding. Therefore, the network device indicates the SRS resource through the second indication information, that is, indirectly indicates the precoding selected for subsequent uplink data transmission.
  • the method further includes: based on the SRS resource indicated by the second indication information, and precoding corresponding to the multiple blocks of the first resource, Determine the precoding corresponding to multiple blocks of second resources in the uplink transmission resources, where the uplink transmission resources are used to carry uplink data, and the size of each second resource in the time domain or frequency domain is determined based on the second precoding granularity
  • the second precoding granularity indicates the size in the time domain or the frequency domain of consecutive resources corresponding to the same precoding in the uplink transmission resources; sending precoded uplink data, and the precoded uplink data It is obtained by precoding the uplink data based on the precoding corresponding to each second resource in the uplink transmission resource.
  • the terminal device Since the terminal device has determined the precoding corresponding to each block of the first resource when sending the uplink reference signal, that is, the precoding corresponding to each SRS resource has been determined. Therefore, the terminal device can determine the precoding used for uplink data transmission based on the SRS resource indicated by the second indication information.
  • the terminal device may also map the precoding selected for uplink transmission to the multiple second resources based on the correspondence between the multiple first resources and the multiple precodings, so that the multiple second resources and the multiple precodings
  • the correspondence relationship corresponds to the correspondence relationship between multiple blocks of first resources and multiple precodings.
  • the correspondence between the multiple blocks of second resources and the downlink reference signal resources may also be determined according to the resource allocation rules described above.
  • the resource allocation rule followed for determining the correspondence between the multiple blocks of second resources and the downlink reference signal resource is the same as the resource allocation rule followed for determining the correspondence between the multiple blocks of first resources and the downlink reference signal resource as described above.
  • the precoding corresponding to each second resource thus determined is determined based on the measurement of the precoded uplink reference signal.
  • the design of the precoding corresponding to the multiple blocks of the first resource used to carry the precoded uplink reference signal takes into account the different allocation of resources that may be made during subsequent uplink data transmission, and defines a finer precoding for the uplink reference signal resource. Coding granularity, so as to obtain more and more flexible correspondence between uplink reference signal resources and precoding. Therefore, it is beneficial for the network equipment to obtain more accurate channel measurement results, and perform reasonable scheduling for subsequent uplink data transmission.
  • the second indication information is also used to indicate the number of transmission layers used for the uplink data transmission, and one or more of each SRS resource set Each SRS resource in the SRS resource corresponds to a transmission layer, and the precoding corresponding to each SRS resource is used for uplink data transmission on the corresponding transmission layer.
  • the second indication information is also used to indicate one or more demodulation reference signal (DMRS) ports corresponding to one or more transmission layers, and the one or more transmission layers are used for The transmission layer of the uplink data transmission.
  • DMRS demodulation reference signal
  • the terminal device may establish a mapping relationship between the SRS resource indicated in the second indication information and its corresponding transmission layer and DMRS port.
  • Each SRS resource can be mapped to a transport layer, corresponding to a DMRS port.
  • the method further includes: receiving indication information of the second precoding granularity. That is, the second precoding granularity is configured by the network device.
  • the second precoding granularity is predefined.
  • the protocol is predefined. This application does not limit this.
  • the first precoding granularity is the same as the second precoding granularity.
  • the indication information of the first precoding granularity and the indication information of the second precoding granularity may be the same piece of indication information.
  • the first precoding granularity is different from the second precoding granularity.
  • a method for receiving an uplink reference signal is provided.
  • the method may be executed by a network device, or may also be executed by a component (such as a circuit, a chip, a chip system, etc.) configured in the network device.
  • a component such as a circuit, a chip, a chip system, etc.
  • the method includes: receiving a precoded uplink reference signal, where the precoded uplink reference signal is obtained by precoding the uplink reference signal based on the precoding corresponding to each block of the first resource, and the first A resource is a resource used to carry an uplink reference signal among multiple uplink reference signal resources.
  • the precoding corresponding to each block of the first resource is determined based on the measurement of the corresponding downlink reference signal resource, and the downlink reference signal corresponding to each block of the first resource Determined based on resource allocation rules; wherein the size of the first resource in the time domain or the frequency domain is determined based on a first precoding granularity, and the first precoding granularity indicates that one uplink reference signal resource corresponds to the same one
  • the size of the precoding continuous resource in the time domain or the frequency domain based on the precoded uplink reference signal, the precoding used for uplink data transmission is determined, and the precoding used for uplink data transmission is the multiple At least part of the precoding.
  • the resource allocation rule may refer to a rule that can be used to determine the correspondence between the first resource on the time-frequency resource used to transmit the uplink reference signal and the downlink reference signal resource. Based on different dimensions, the resource allocation rule can be used to determine the correspondence between the first resource and the downlink reference signal resource in the frequency domain, or the correspondence between the first resource and the downlink reference signal resource in the time domain.
  • resource allocation rules include frequency domain resource allocation rules and time domain resource allocation rules. This application includes but is not limited to this.
  • the resource allocation rule includes a frequency domain resource allocation rule, and the frequency domain resource allocation rule is used to determine the correspondence between the multiple blocks of frequency division multiplexed first resources and the downlink reference signal resources.
  • the resource allocation rules include time-domain resource allocation rules, and the time-domain resource allocation rules are used to determine the correspondence between the time-division multiplexed multiple blocks of first resources and downlink reference signal resources.
  • the method further includes: receiving indication information of the resource allocation rule. That is, the resource allocation rule can be instructed by the network device.
  • the resource allocation rule is predefined.
  • the protocol is predefined. This application does not limit this.
  • the first precoding granularity may be understood as the granularity based on which the terminal device precodes the uplink reference signal.
  • the first precoding granularity may be less than or equal to one uplink reference signal resource.
  • one uplink reference signal resource may include one or more first resources.
  • the method further includes: receiving indication information of the first precoding granularity. That is, the granularity of the first precoding may be configured by the network device.
  • the first precoding granularity is predefined. For example, the protocol is predefined. This application does not limit this.
  • the terminal device may predetermine the downlink reference signal resources corresponding to the multiple blocks of the first resources in the uplink reference signal resources, and then determine the correspondence between the precoding and the first resource, and then according to the correspondence between the precoding and the first resource , Precoding the uplink reference signal carried on the uplink reference signal resource, so that the precoded uplink reference signal for subsequent transmission has a different arrangement.
  • the precoding used as the uplink reference signal no longer depends on the granularity of the uplink reference signal resource, but can
  • the first precoding granularity is used to obtain more possible precoding arrangements on the uplink reference signal resources. That is, the granularity based on precoding the uplink reference signal is decoupled from the size of the uplink reference signal resource, so as to obtain more and more flexible uplink reference signal resource configuration. It is conducive to the network equipment to obtain more accurate channel measurement results, and to perform reasonable scheduling for subsequent uplink data transmission.
  • the method further includes: sending first indication information, where the first indication information is used to indicate the plurality of uplink reference signal resources and the plurality of Correspondence of downlink reference signal resources.
  • the correspondence between the multiple uplink reference signal resources and the multiple downlink reference signal resources may be indicated by the network device through the first indication information.
  • each of the plurality of downlink reference signal resources is associated with at least one of the plurality of uplink reference signal resources.
  • Resource correspondence each uplink reference signal resource in the at least one uplink reference signal resource corresponds to one or more of the multiple precodings, and the precoding corresponding to each uplink reference signal resource is based on the corresponding The measured downlink reference signal resources are obtained.
  • Each downlink reference signal resource may correspond to one or more uplink reference signal resources.
  • the same uplink reference signal resource may correspond to one or more downlink reference signal resources.
  • the precoding corresponding to each uplink reference signal resource may be obtained based on the measurement of the corresponding one or more downlink reference signal resources.
  • a possible design is that the precoding corresponding to each uplink reference signal resource is obtained based on measurement of a corresponding downlink reference signal resource.
  • each uplink reference signal resource corresponds to one downlink reference signal resource.
  • One or more precodings can be obtained based on the measurement of a downlink reference signal resource, and the one or more precodings can be used to precode the uplink reference signal on the uplink reference signal resource corresponding to the downlink reference signal resource.
  • the downlink reference signal resource is an NZP CSI-RS resource
  • the uplink reference signal resource is an SRS resource
  • the at least one SRS resource corresponding to each NZP CSI-RS resource in the multiple NZP CSI-RS resources is included in one SRS resource set.
  • One or more uplink reference signal resources corresponding to the same downlink reference signal resource may be referred to as an uplink reference signal resource set.
  • One downlink reference signal resource corresponds to one uplink reference signal resource set, which means that one downlink reference signal resource corresponds to one or more uplink reference signal resources in one uplink reference signal resource set.
  • NZP CSI-RS resources are used as an example of downlink reference signal resources
  • SRS resources are used as an example of uplink reference signal resources, which are only examples, and should not constitute any limitation in this application. This application does not limit the downlink reference signal resources and the uplink reference signal resources.
  • the method further includes: sending second indication information, where the second indication information is used to indicate each SRS resource set of the multiple SRS resource sets One or more SRS resources of the one or more SRS resources, and the precoding corresponding to the one or more SRS resources is the precoding used for the uplink data transmission.
  • the network device may determine the precoding used for subsequent uplink data transmission based on the measurement of the uplink reference signal resource. From the above-mentioned correspondence between the first resource and precoding and the relationship between the first resource and the uplink reference signal resource, it can be known that there is a correspondence between each SRS resource and precoding. Therefore, the network device indicates the SRS resource through the second indication information, that is, indirectly indicates the precoding selected for subsequent uplink data transmission.
  • the second indication information is also used to indicate the number of transmission layers used for the uplink data transmission, and one or more of each SRS resource set Each SRS resource in the SRS resource corresponds to a transmission layer, and the precoding corresponding to each SRS resource is used for uplink data transmission on the corresponding transmission layer.
  • the second indication information is also used to indicate one or more demodulation reference signal DMRS ports corresponding to one or more transmission layers, and the one or more transmission layers are used for the uplink data transmission. Transport layer.
  • the terminal device may establish a mapping relationship between the SRS resource indicated in the second indication information and its corresponding transmission layer and DMRS port.
  • Each SRS resource can be mapped to a transport layer, corresponding to a DMRS port.
  • the method further includes: receiving pre-coded uplink data, where the pre-coded uplink data is based on the pre-coded data corresponding to each block of the second resource.
  • the code is obtained by precoding the uplink data, and the precoding corresponding to each second resource is determined based on the SRS resource indicated by the second indication information and the precoding corresponding to the multiple first resources.
  • the size in the time domain or the frequency domain is determined based on the second precoding granularity, and the second precoding granularity represents the size of the continuous resources corresponding to the same precoding in the uplink transmission resource in the time domain or the frequency domain.
  • the second precoding granularity may be understood as the granularity based on which the terminal device precodes the uplink data.
  • the method further includes: sending indication information of the second precoding granularity. That is, the second precoding granularity is configured by the network device.
  • the second precoding granularity is predefined.
  • the protocol is predefined. This application does not limit this.
  • the first precoding granularity is the same as the second precoding granularity.
  • the indication information of the first precoding granularity and the indication information of the second precoding granularity may be the same piece of indication information.
  • the first precoding granularity is different from the second precoding granularity.
  • the terminal device Since the terminal device has determined the precoding corresponding to each block of the first resource when sending the uplink reference signal, that is, the precoding corresponding to each SRS resource has been determined. Therefore, the terminal device can determine the precoding used for uplink data transmission based on the SRS resource indicated by the second indication information.
  • the terminal device may also map the precoding selected for uplink transmission to the multiple second resources based on the correspondence between the multiple first resources and the multiple precodings, so that the multiple second resources and the multiple precodings
  • the correspondence relationship corresponds to the correspondence relationship between multiple blocks of first resources and multiple precodings.
  • the correspondence between the multiple blocks of second resources and the downlink reference signal resources may also be determined according to the resource allocation rules described above.
  • the resource allocation rule followed for determining the correspondence between the multiple blocks of second resources and the downlink reference signal resource is the same as the resource allocation rule followed for determining the correspondence between the multiple blocks of first resources and the downlink reference signal resource as described above.
  • the precoding corresponding to each second resource thus determined is determined based on the measurement of the precoded uplink reference signal.
  • the design of the precoding corresponding to the multiple blocks of the first resource used to carry the precoded uplink reference signal takes into account the different allocation of resources that may be made during subsequent uplink data transmission, and defines a finer precoding for the uplink reference signal resource. Coding granularity, so as to obtain more and more flexible correspondence between uplink reference signal resources and precoding. Therefore, it is beneficial for the network equipment to obtain more accurate channel measurement results, and perform reasonable scheduling for subsequent uplink data transmission.
  • the precoding corresponding to each block of the first resource is It is also determined based on the precoding selection rule.
  • the terminal device can determine the precoding corresponding to each block of the first resource from the multiple precodings by itself.
  • the precoding selection rule is also used to determine the rule on which each block of the first resource is based.
  • the terminal device may determine the precoding corresponding to each block of the first resource based on the precoding selection rule.
  • the precoding selection rule includes: precoding polling, random selection, throughput maximization, and so on. This application includes but is not limited to this.
  • the method further includes: sending indication information of the precoding selection rule. That is, the precoding selection rule is instructed by the network device.
  • the precoding selection rule is predefined.
  • the protocol is predefined. This application does not limit this.
  • a communication device may be a terminal device or a component in the terminal device.
  • the communication device may include various modules or units for executing the first aspect and the method in any one of the possible implementation manners of the first aspect.
  • a communication device including a processor.
  • the processor is coupled to the memory and can be used to execute instructions in the memory to implement the method in any one of the possible implementation manners of the first aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, the processor is coupled with the communication interface, and the communication interface is used to input and/or output information, and the information includes at least one of instructions and data.
  • the communication device is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the communication device is a chip or a chip system configured in a terminal device.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit, etc.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • a communication device may be a network device or a component in the network device.
  • the communication device may include various modules or units for executing the second aspect and the method in any one of the possible implementation manners of the second aspect.
  • a communication device including a processor.
  • the processor is coupled to the memory and can be used to execute instructions in the memory to implement the method in any one of the possible implementation manners of the second aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, the processor is coupled with the communication interface, and the communication interface is used to input and/or output information, and the information includes at least one of instructions and data.
  • the communication device is a network device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the communication device is a chip or a chip system configured in a network device.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin, or a related circuit.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes the method in any one of the foregoing first aspect and the second aspect.
  • the above-mentioned processor may be a chip, the input circuit may be an input pin, the output circuit may be an output pin, and the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver, and the signal output by the output circuit may be, for example, but not limited to, output to the transmitter and transmitted by the transmitter, and the input circuit and output
  • the circuit can be the same circuit, which is used as an input circuit and an output circuit at different times.
  • the embodiments of the present application do not limit the specific implementation manners of the processor and various circuits.
  • a processing device including a communication interface and a processor.
  • the communication interface is coupled with the processor.
  • the communication interface is used to input and/or output information.
  • the information includes at least one of instructions and data.
  • the processor is configured to execute a computer program, so that the processing device executes the method in any one of the possible implementation manners of the first aspect and the second aspect.
  • processors there are one or more processors, and one or more memories.
  • a processing device including a processor and a memory.
  • the processor is used to read instructions stored in the memory, and can receive signals through a receiver, and transmit signals through a transmitter, so that the processing device executes the method in any one of the possible implementation manners of the first aspect and the second aspect .
  • processors there are one or more processors, and one or more memories.
  • the memory may be integrated with the processor, or the memory and the processor may be provided separately.
  • the memory can be a non-transitory (non-transitory) memory, such as a read only memory (ROM), which can be integrated with the processor on the same chip, or can be set in different On the chip, the embodiment of the present application does not limit the type of the memory and the setting mode of the memory and the processor.
  • ROM read only memory
  • sending instruction information may be a process of outputting instruction information from the processor
  • receiving instruction information may be a process of inputting received instruction information to the processor.
  • the information output by the processing may be output to the transmitter, and the input information received by the processor may come from the receiver.
  • the transmitter and receiver can be collectively referred to as a transceiver.
  • the devices in the eighth and ninth aspects described above may be chips, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.;
  • the processor When implemented by software, the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated in the processor, may be located outside the processor, and exist independently.
  • a computer program product includes: a computer program (also called code, or instruction), which when the computer program is executed, causes the computer to execute the first aspect and the first aspect described above.
  • the method in any one of the two possible implementation modes.
  • a computer-readable medium stores a computer program (also referred to as code, or instruction) when it runs on a computer, so that the computer executes the above-mentioned first aspect and The method in any possible implementation of the second aspect.
  • a computer program also referred to as code, or instruction
  • a communication system including the aforementioned terminal device and network device.
  • FIG. 1 is a schematic diagram of a communication system applicable to the method provided by the embodiment of the present application
  • Figure 2 is a schematic diagram of SRS resources and PUSCH
  • FIG. 3 is a schematic flowchart of a method for sending and receiving uplink reference signals according to an embodiment of the present application
  • 4 and 5 are schematic diagrams of multiple blocks of first resources in uplink reference signal resources determined based on resource allocation rules
  • 6 to 8 are schematic diagrams of the correspondence between multiple downlink reference signal resources, multiple precodings, and multiple blocks of first resources;
  • SRS resource 9 is a schematic diagram of SRS resource 1 and SRS resource 2 as a resource as a whole, and SRS resource 3 and SRS resource 4 as a resource as a whole;
  • 10 and 11 are schematic diagrams of the correspondence between multiple downlink reference signal resources, multiple precodings, and multiple blocks of first resources;
  • FIG. 12 is a schematic diagram of the correspondence between multiple blocks of first resources, multiple precodings, and multiple ports;
  • 13 to 16 are schematic diagrams of the correspondence between multiple blocks of second resources and multiple precodings
  • FIG. 17 is a schematic flowchart of a method for sending and receiving uplink reference signals according to another embodiment of the present application.
  • 18-21 are schematic diagrams of the correspondence between multiple downlink reference signal resources, multiple precodings, and multiple uplink reference signal resources;
  • FIG. 22 and FIG. 23 are schematic block diagrams of communication devices provided by embodiments of the present application.
  • FIG. 24 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 25 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • LTE Long Term Evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS general mobile communication system
  • WiMAX worldwide Interoperability for microwave access
  • 5G fifth generation
  • NR new radio access technology
  • next-generation communications such as 6G.
  • the 5G mobile communication system can be non-standalone (NSA) or standalone (SA).
  • the technical solution provided in this application can also be applied to machine type communication (MTC), inter-machine communication long-term evolution technology (Long Term Evolution-machine, LTE-M), and device to device (device to device, D2D) networks , Machine to Machine (M2M) network, Internet of Things (IoT) network or other networks.
  • the IoT network may include, for example, the Internet of Vehicles.
  • vehicle-to-other devices vehicle-to-X, V2X, X can represent anything
  • the V2X may include: vehicle-to-vehicle (V2V) communication.
  • Infrastructure vehicle to infrastructure, V2I) communication, vehicle to pedestrian communication (V2P), or vehicle to network (V2N) communication, etc.
  • the technical solution provided herein can also be applied to future communication systems, such as the sixth generation (6 th Generation, 6G), mobile communication systems. This application does not limit this.
  • the network device may be any device that has a wireless transceiver function.
  • This equipment includes but is not limited to: evolved Node B (eNB), radio network controller (RNC), Node B (NB), base station controller (BSC) , Base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), wireless fidelity (wireless fidelity, WiFi) system Access point (AP), wireless relay node, wireless backhaul node, transmission point (TP), or transmission and reception point (TRP), etc., can also be 5G, such as NR ,
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • the CU implements some of the functions of the gNB, and the DU implements some of the functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implements radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and implements the functions of the radio link control (RLC) layer, medium access control (MAC) layer, and physical (physical, PHY) layer.
  • RLC radio link control
  • MAC medium access control
  • PHY physical
  • AAU realizes some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this architecture, high-level signaling, such as RRC layer signaling, can also be considered to be sent by the DU , Or, sent by DU and AAU.
  • the network device may be a device that includes one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network equipment in an access network (radio access network, RAN), and the CU can also be divided into network equipment in a core network (core network, CN), which is not limited in this application.
  • the network equipment provides services for the cell, and the terminal equipment communicates with the cell through the transmission resources (for example, frequency domain resources, or spectrum resources) allocated by the network equipment, and the cell may belong to a macro base station (for example, a macro eNB or a macro gNB, etc.) , It may also belong to a base station corresponding to a small cell, where the small cell may include: metrocell, micro cell, pico cell, femto cell, etc., These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-rate data transmission services.
  • a macro base station for example, a macro eNB or a macro gNB, etc.
  • the small cell may include: metrocell, micro cell, pico cell, femto cell, etc.
  • terminal equipment may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, Terminal, wireless communication equipment, user agent or user device.
  • UE user equipment
  • the terminal device may be a device that provides voice/data connectivity to the user, for example, a handheld device with a wireless connection function, a vehicle-mounted device, and so on.
  • some examples of terminals can be: mobile phone, tablet computer (pad), computer with wireless transceiver function (such as notebook computer, palmtop computer, etc.), mobile internet device (MID), virtual reality Virtual reality (VR) equipment, augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving (self-driving), and wireless in remote medical (remote medical) Terminals, wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless Telephone, session initiation protocol (SIP) telephone, wireless local loop (WLL) station, personal digital assistant (PDA), handheld device with wireless communication function, computing device or connection Other processing equipment to wireless modems, in-vehicle equipment, wearable equipment, terminal equipment in the 5G network, or terminal equipment in the public land mobile network
  • wearable devices can also be called wearable smart devices, which are the general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories.
  • Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • the terminal device may also be a terminal device in the Internet of Things (IoT) system.
  • IoT Internet of Things
  • Its main technical feature is to connect objects to the network through communication technology, so as to realize the intelligent network of human-machine interconnection and interconnection of things.
  • IoT technology can achieve massive connections, deep coverage, and power-saving terminals through, for example, narrowband (NB) technology.
  • NB narrowband
  • terminal devices can also include sensors such as smart printers, train detectors, gas stations, etc.
  • the main functions include collecting data (some terminal devices), receiving control information and downlink data from network devices, and sending electromagnetic waves to transmit uplink data to network devices. .
  • the embodiment of the present application describes the correspondence between multiple precodings and multiple first resources, and multiple precodings and multiple uplink reference signal resources in conjunction with multiple drawings.
  • the resources in these figures may adopt frequency division multiplexing (FDM) or time division multiplexing (TDM) resource multiplexing methods.
  • FDM frequency division multiplexing
  • TDM time division multiplexing
  • the drawings are only examples, taking FDM or TDM as an example for illustration, but this should not constitute any limitation to the application. Based on the same concept, those skilled in the art can transform the FDM resources in the figure into the TDM resource multiplexing mode, and can also transform the TDM resources in the figure into the FDM resource multiplexing mode.
  • pre-defined can be realized by pre-saving corresponding codes, tables, or other methods that can be used to indicate related information in devices (for example, including terminal devices and network devices). Make a limit.
  • saving may refer to storing in one or more memories.
  • the one or more memories may be provided separately, or integrated in an encoder or decoder, a processor, or a communication device.
  • the one or more memories may also be partly provided separately, and partly integrated in a decoder, a processor, or a communication device.
  • the type of the memory can be any form of storage medium, which is not limited in this application.
  • the “protocols” involved in the embodiments of the present application may refer to standard protocols in the communication field, for example, may include LTE protocol, NR protocol, and related protocols applied to future communication systems, which are not limited in this application.
  • used to indicate can include both used for direct indication and used for indirect indication.
  • the indication information may directly indicate A or indirectly indicate A, but it does not mean that A must be carried in the indication information.
  • the information indicated by the instruction information is called the information to be indicated.
  • the information to be indicated can be directly indicated, such as the information to be indicated or the information to be indicated. Indicates the index of the information, etc.
  • the information to be indicated can also be indicated indirectly by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while other parts of the information to be indicated are known or agreed in advance. For example, it is also possible to realize the indication of specific information by means of a pre-arranged order (for example, stipulated in an agreement) of various information, so as to reduce the indication overhead to a certain extent. At the same time, it can also identify the common parts of each information and unified instructions, so as to reduce the instruction overhead caused by separately indicating the same information.
  • the specific instruction manner may also be various existing instruction manners, such as but not limited to the foregoing instruction manners and various combinations thereof.
  • the required instruction method can be selected according to specific needs.
  • the embodiment of the application does not limit the selected instruction method.
  • the instruction method involved in the embodiment of the application should be understood as covering that can make the instruction to be instructed Various methods for obtaining information to be indicated.
  • the information to be instructed can be sent together as a whole, or divided into multiple sub-information to be sent separately, and the sending period and/or sending timing of these sub-information can be the same or different.
  • the specific sending method is not limited in this application.
  • the sending period and/or sending timing of these sub-information may be pre-defined, for example, pre-defined according to a protocol, or configured by the transmitting end device by sending configuration information to the receiving end device.
  • the configuration information may include, for example, but not limited to, one or a combination of at least two of radio resource control signaling, medium access control (medium access control, MAC) layer signaling, and physical layer signaling.
  • radio resource control signaling such as packet radio resource control (RRC) signaling
  • MAC layer signaling for example, includes MAC control element (CE);
  • physical layer signaling for example, includes downlink control information (downlink control). information, DCI).
  • SRS is used as an example of uplink reference signal
  • SRS resource is used as an example of uplink reference signal resource
  • NZP CSI-RS is used as an example of downlink reference signal
  • NZP CSI-RS resource is used as downlink reference signal.
  • One example of the resource illustrates multiple examples, but this should not constitute any limitation to this application. This application does not limit the specific content of the uplink reference signal, the uplink reference signal resource, the downlink reference signal, and the downlink reference signal resource.
  • the embodiments of the present application describe in detail the process of the terminal device determining the precoding used for the uplink reference signal and sending the precoded uplink reference signal.
  • network device #1 and network device #2 are taken as examples to illustrate the foregoing process in detail.
  • the terminal device is not aware of the internal implementation behavior and quantity of the network device.
  • network device #1 and network device #2 are listed in the article, this application does not limit the specific behavior and quantity of network devices.
  • the first indication information in the following embodiments may be sent by network equipment #1 and/or network equipment #2; the indication information of the resource allocation rule may be sent by network equipment #1 and/or network equipment #2 ; The indication information of the precoding selection rule may also be sent by the network device #1 and/or the network device #2.
  • different downlink reference signal resources can be configured by the same network device, such as one of network device #1 or network device #2; it can also be configured by different network devices, such as network device #1 And network device #2 are configured separately.
  • Different downlink reference signal resources can come from the same network device, such as from one of network device #1 or network device #2, or from different network devices, such as from network device #1 and network device #2. It should be noted that the configuration and transmission of downlink reference signal resources are two different processes, and the corresponding relationship with the network device is not necessarily consistent.
  • different downlink reference signal resources may be configured by the same network device but sent by different network devices.
  • different network devices When receiving the uplink reference signal sent by the terminal device, different network devices can receive the uplink reference signal on the uplink reference signal resource corresponding to the downlink reference signal resource sent by each, and can also receive the uplink reference signal on all the uplink reference signal resources. Signal. This application does not limit this.
  • the step of channel measurement based on the uplink reference signal may be performed by network device #1 and/or network device #2, and the second indication information and fifth indication information may be sent by, for example, the network device performing channel measurement, or may be sent by the network device that performs channel measurement.
  • One of network device #1 and network device #2 is sent.
  • different network devices when receiving uplink data sent by a terminal device, may each receive uplink data sent to themselves on uplink transmission resources, or may receive all uplink data on uplink transmission resources. This application does not limit this.
  • FIG. 1 is a schematic diagram of a wireless communication system 100 applicable to an embodiment of the present application.
  • the wireless communication system 100 may include at least one terminal device, such as the terminal device 110 shown in FIG. 1; the wireless communication system 100 may also include at least one network device, such as the network device 121 shown in FIG. Network equipment 122.
  • Each communication device such as the terminal device 110, the network device 121, and the network device 122 in FIG. 1, can be configured with multiple antennas.
  • the multiple antennas configured for each communication device may include at least one transmitting antenna for transmitting signals and at least one receiving antenna for receiving signals.
  • each communication device additionally includes a transmitter chain and a receiver chain.
  • Those of ordinary skill in the art can understand that they can all include multiple components related to signal transmission and reception (such as processors, modulators, multiplexers, etc.). , Demodulator, demultiplexer or antenna, etc.). Therefore, multiple antenna technology can be used to communicate between network devices and terminal devices.
  • the terminal device 110 can use the same time-frequency resource to communicate with multiple network devices, such as the network device 121 and the network device 122 in the figure.
  • the terminal device 110 may use frequency division multiplexing (FDM) or time division multiplexing (TDM) to multiplex the same time-frequency resources to communicate with multiple network devices.
  • FDM frequency division multiplexing
  • TDM time division multiplexing
  • the terminal device 110 may use the same time-frequency resource to send the same data to multiple network devices to obtain diversity gain, thereby improving the reliability of data transmission.
  • the terminal device 110 may use the same time-frequency resource to send different data to multiple network devices to implement space division multiplexing, thereby improving the throughput of data transmission.
  • the communication system 100 may also include other numbers of terminal devices.
  • the communication system 100 may also include more terminal devices and a larger number of network devices. This application does not limit this.
  • the terminal device may send uplink signals to the network device through the physical uplink control channel (PUCCH) and the physical uplink share channel (PUSCH), for example, the uplink control information (UCI) is transmitted through the PUCCH. ) Or transmit uplink data through PUSCH, etc.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink share channel
  • the terminal device can use the same time-frequency resource to send uplink data to multiple network devices, such as sending PUSCH.
  • this may cause mutual interference between multiple terminal devices, making the network device's receiving quality of uplink data poor, thereby affecting system transmission performance.
  • the terminal equipment can eliminate interference by precoding.
  • the uplink (UL) transmission schemes currently supported by PUSCH include codebook-based UL transmission and non-transmission.
  • the terminal device can determine the precoding used for the uplink transmission according to the instruction of the network device. For example, the network device indicates the precoding used for PUSCH transmission through the transmission precoding matrix indicator (TPMI).
  • TPMI transmission precoding matrix indicator
  • the precoding used by the terminal device is transparent to the network device.
  • the terminal equipment can use precoded uplink reference signals, such as precoded SRS (precoded SRS).
  • precoded SRS precoded SRS
  • Each SRS resource can be used to transmit one precoded SRS, that is, each SRS resource can correspond to one precoding.
  • the network device may subsequently indirectly indicate the precoding used for PUSCH by indicating SRS resources. That is to say, if the terminal device uses a certain precoding to precode the SRS, the obtained precoded SRS can be transmitted through one SRS resource. That is, precoding corresponds to SRS resources one-to-one. If the network device subsequently indicates the SRS resource, it is equivalent to instructing the terminal device to use the precoding corresponding to the SRS resource for PUSCH transmission.
  • the terminal device may use rules such as precoding polling, random selection, maximizing throughput, or a combination of multiple rules to determine the precoding used for PUSCH transmission.
  • the rules listed above for precoding polling, random selection, and maximizing throughput can be referred to as precoding selection rules. That is, the precoding used for PUSCH transmission may be determined based on the selection rule of the precoding.
  • the precoding selection rule includes but is not limited to this. This application does not limit this. The following text will combine specific examples to explain the precoding selection rules in detail. For the sake of brevity, I will not go into details here for the time being.
  • the uplink transmission of the terminal equipment can usually be scheduled by the network equipment.
  • Network equipment often makes decisions for uplink scheduling based on the measurement results of the uplink channel.
  • the terminal device can send an uplink reference signal (such as SRS) to the network device to facilitate the network device to measure the uplink channel.
  • SRS uplink reference signal
  • the current configuration of the SRS resource does not consider the above-mentioned precoding selection rule based on the data transmission. For example, when the terminal device uses the precoding polling method to determine the precoding for PUSCH transmission, the SRS may still not be processed by the precoding polling method.
  • Fig. 2 exemplarily shows SRS resources and PUSCH.
  • SRS resource is used as an example of uplink reference signal resource
  • PUSCH is used as an example of uplink data transmission resource. It should be understood that FIG. 2 is only an example, and this application does not limit uplink reference signal resources and uplink data transmission resources.
  • the left side of FIG. 2 shows multiple SRS resources, including SRS resource 1 to SRS resource 4, for example.
  • the multiple SRS resources occupy the same frequency domain resources but different time domain resources.
  • each SRS resource occupies an orthogonal frequency division multiplexing (OFDM) symbol in the time domain.
  • OFDM orthogonal frequency division multiplexing
  • TDM time division multiplexing
  • each SRS resource occupying one OFDM symbol in the time domain in FIG. 2 is only an example of the granularity of the SRS resource in the time domain.
  • the size on the domain and frequency domain is not limited.
  • each SRS resource may also occupy multiple OFDM symbols in the time domain, or occupy one or more slots, or occupy one or more mini slots, and so on.
  • the multiplexing mode of the multiple SRS resources to the resources may also be frequency division duplexing (FDM).
  • Each SRS resource can occupy one or more physical resource blocks (PRB) in the frequency domain, or occupy multiple RB groups (RB groups, RBG), or occupy precoding resource block groups (precoding resource block). , RBG) and so on.
  • PRB physical resource blocks
  • RBG RB groups
  • precoding resource block groups precoding resource block groups
  • one RBG may include multiple PRBs.
  • multiple time slots can be called slot groups, for example, multiple mini slots can be called mini slot groups, and multiple OFDM symbols can be called OFDM, for example.
  • Symbol group OFDM symbol group
  • the multiple SRS resources may be associated with multiple downlink reference signal resources (such as channel state information reference signal (CSI-RS) resources), or in other words, correspond to the multiple CSI-RS resources.
  • CSI-RS channel state information reference signal
  • it may be configured by one or more network devices, and the multiple CSI-RS resources may be used for one or more network devices to send CSI-RS. This application does not limit this.
  • SRS resource 1 and SRS resource 4 in the figure correspond to CSI-RS resource 1 sent by network device #1
  • SRS resource 2 and SRS resource 3 correspond to CSI-RS resource 2.
  • the terminal device can determine precoding 1 for SRS resource 1 and SRS transmitted on SRS resource 4 based on the measurement of CSI-RS resource 1, and can also determine precoding 1 for SRS resource 2 and SRS based on measurement of CSI-RS resource 2. Precoding 2 of the SRS transmitted on resource 3.
  • this application does not limit the correspondence between SRS resources and CSI-RS resources, and the correspondence between CSI-RS resources and precoding. It should also be understood that this application does not limit the correspondence between CSI-RS resources and network devices.
  • multiple CSI-RS resources can be sent by the same network device.
  • CSI-RS resource 1 and CSI-RS resource 2 can be sent by the same network device.
  • one SRS resource may also correspond to multiple CSI-RS resources.
  • SRS resource 1 may correspond to CSI-RS resource 1 and CSI-RS resource 2.
  • PUSCH An example of PUSCH is shown on the right side of FIG. 2.
  • the PUSCH can be divided into multiple resources in the time domain, for example, including resource 1 to resource 4.
  • each block of resource can correspond to one precoding.
  • the precoding polling method is used to determine the precoding corresponding to each resource.
  • Resource 1 corresponds to precoding 1
  • resource 2 corresponds to precoding 2
  • resource 3 corresponds to precoding 1
  • resource 4 corresponds to precoding 2.
  • the multiple blocks of resources may be alternately arranged to implement polling corresponding to the precoding obtained by measurement of different CSI-RS resources, so as to obtain diversity gain.
  • the precoding used for the uplink data transmitted by the resource 1 and resource 3 may be precoding 1; the precoding used for the uplink data transmitted by the resource 2 and resource 4 may be precoding 2.
  • each resource in the PUSCH shown in the figure occupy the same frequency domain resources but different time domain resources.
  • each resource occupies one OFDM symbol in the time domain, which is a TDM resource multiplexing mode.
  • each resource block in the PUSCH shown in the figure may also occupy multiple OFDM symbols, or occupy one or more time slots, or occupy one or more mini-slots, etc. in the time domain.
  • FDM may also be used to multiplex the resources in the PUSCH.
  • Each resource block may include one or more RBs, or one or more RBGs, and so on.
  • SRS resource 1 and SRS resource 4 shown in the left figure correspond to CSI-RS resource 1, and SRS resource 2, SRS resource 3 and CSI-RS resource 1.
  • the uplink data used for transmission of resource 1 and resource 3 shown in the right figure is obtained by precoding based on precoding 1, and precoding 1 is obtained based on the measurement of CSI-RS resource 1, that is, resource 1, Resource 3 corresponds to CSI-RS resource 1.
  • the uplink data used for resource 2 and resource 4 is pre-coded based on precoding 2, and precoding 2 is based on the measurement of CSI-RS resource 2. That is, resource 2 and resource 4 correspond to CSI-RS resource 2.
  • the network equipment often measures the uplink channel according to the received SRS, so as to schedule the PUSCH according to the measurement result.
  • the network device may determine the channel quality indicator (CQI) of the uplink channel according to the signal quality of the received SRS, and then determine the MCS used for uplink transmission.
  • CQI channel quality indicator
  • the network device may measure the uplink channel based on the SRS received on the SRS resource shown in FIG. 2, since the SRS transmitted on each SRS resource does not consider the precoding polling used in subsequent uplink data transmission, the network The MCS determined by the device may not be applicable to the PUSCH that is subsequently transmitted in the precoding polling manner, thereby affecting the transmission performance of the PUSCH.
  • the present application provides a method for sending and receiving uplink reference signals, in order to obtain accurate uplink channel measurement results, so as to facilitate network equipment to make reasonable decisions for uplink scheduling, thereby improving transmission performance.
  • the terminal device shown in the following embodiments can be replaced with components configured in the terminal device (such as circuits, chips, chip systems, or other functional modules that can call and execute programs, etc.);
  • the network devices shown in the following embodiments can be replaced For configuration and network equipment components (such as circuits, chips, chip systems or other functional modules that can call and execute programs, etc.).
  • the program recording the code of the method provided in the embodiment of the present application can be used to implement the sending and receiving of the uplink reference signal according to the method provided in the embodiment of the present application.
  • this application does not limit the applicable scenarios of the provided methods for sending and receiving uplink reference signals.
  • the methods for sending and receiving uplink reference signals provided in the embodiments of the present application can be applied to non-codebook uplink transmission schemes, and can also be applied to codebook-based uplink transmission schemes.
  • the method 300 shown in FIG. 3 below uses a non-codebook uplink transmission scheme as an example to illustrate the specific process of the method, but this should not constitute any limitation to this application.
  • FIG. 3 is a schematic flowchart of a method 200 for sending and receiving uplink reference signals according to an embodiment of the present application. As shown in FIG. 3, the method 200 may include step 201 to step 211. The steps in the method 200 are described in detail below.
  • FIG. 3 Some steps in Figure 3 can be executed by network device #1, network device #2, or network device #1 and network device #2.
  • the following embodiments mainly describe the execution process of the network device #1 in detail, which is shown in solid lines in the figure, and the operations performed on the network device #2 are shown in dashed lines.
  • the terminal device determines downlink reference signal resources corresponding to multiple blocks of first resources used to carry uplink reference signals among multiple uplink reference signal resources according to resource allocation rules.
  • the first resource belongs to the uplink reference signal resource and can be used to carry the uplink reference signal.
  • the first resource is a resource determined based on precoding granularity. More specifically, the size of the first resource in the time domain or the frequency domain may be determined based on the precoding granularity.
  • the precoding granularity mentioned here refers to the size of continuous resources corresponding to the same precoding in an uplink reference signal resource in the time domain or the frequency domain. In other words, the precoding granularity corresponds to the uplink reference signal. In order to distinguish it from the precoding granularity used for uplink data transmission in the following text, the precoding granularity corresponding to the uplink reference signal is recorded as the first precoding granularity here.
  • the first precoding granularity may be the granularity in the frequency domain, which is referred to as the frequency domain granularity for short; and may also be the granularity in the time domain, which is referred to as the time domain granularity for short. If the first precoding granularity is the granularity in the frequency domain, the size of the first resource in the frequency domain may be the size of the first precoding granularity; if the first precoding granularity is the granularity in the time domain, then The size of the first resource in the time domain may be the size of the first precoding granularity.
  • the first precoding granularity may be one or more physical resource blocks (PRB), one or more RB groups (RB groups, RBG, each RBG may include multiple PRBs), or a precoding resource block group (PRG), etc.
  • PRB physical resource blocks
  • PRG precoding resource block group
  • the first precoding granularity may be one or more time slots (for example, referred to as a time slot group), one or more mini time slots (for example, referred to as a mini time slot group) , Or one or more OFDM symbols (or called OFDM symbol group), etc. It should be understood that this application does not limit the specific naming of each frequency domain granularity and time domain granularity.
  • the first precoding granularity may be indicated by the network device, or may also be predefined by the protocol. This application does not limit this.
  • the method further includes: the terminal device receives indication information of the first precoding granularity.
  • the network device sends the indication information of the first precoding granularity.
  • the network device that sends the indication information of the first precoding granularity may be, for example, the network device #1 or the network device #2 shown in FIG. 3. This application does not limit this.
  • the resource multiplexing mode can be considered as frequency division multiplexing (FDM); when the first precoding granularity is the time domain granularity, it can be considered
  • the resource multiplexing method is time division multiplexing (TDM). Therefore, when the network device indicates the first precoding granularity, it can also be considered that the resource multiplexing mode is implicitly indicated.
  • the network device may indicate the resource multiplexing mode to indicate that the currently used first precoding granularity is Time domain granularity is also frequency domain granularity. In this case, it can also be considered that the indication of the resource multiplexing mode implicitly indicates the first precoding granularity.
  • the method further includes: the terminal device receives third indication information, where the third indication information is used to indicate a resource multiplexing mode.
  • the way of multiplexing resources may be predefined by the protocol. This application does not limit this.
  • the size of the first precoding granularity may be less than or equal to the size of one uplink reference signal resource.
  • the terminal device may divide each uplink reference signal resource into one or more first resources based on the first precoding granularity. Specifically, if the size of the first precoding granularity is smaller than the size of one uplink reference signal resource, one uplink reference signal resource may include multiple blocks of first resources; if the size of the first precoding granularity is equal to the size of one uplink reference signal resource Size, one uplink reference signal resource is a first resource. Therefore, the terminal device can determine multiple blocks of first resources from multiple uplink reference signal resources.
  • the location of the uplink reference signal resource may be determined first.
  • multiple uplink reference signal resources may correspond to multiple downlink reference signal resources, and each downlink reference signal resource may be associated with one or more uplink reference signal resources.
  • a network device configures multiple uplink reference signal resources associated with multiple downlink reference signal resources, it may only indicate its approximate range on the time-frequency resource, but cannot determine its specific location on the time-frequency resource.
  • the terminal device can determine the uplink reference signal resource to which each block of the first resource belongs according to the downlink reference signal resource corresponding to each block of the first resource, and then can determine the specific location of each uplink reference signal resource.
  • the downlink reference signal resource can be used to transmit the downlink reference signal.
  • the uplink reference signal resource can be used to transmit the uplink reference signal.
  • the uplink reference signal resource may be an SRS resource
  • the uplink reference signal may be an SRS
  • the downlink reference signal resource may be a CSI-RS resource (CSI-RS resource), more specifically , May be a non-zero power (non-zero power, NZP) CSI-RS resource
  • the downlink reference signal may be an NZP CSI-RS.
  • the method 200 further includes: step 202, the terminal device receives first indication information, where the first indication information is used to indicate the correspondence between multiple uplink reference signal resources and multiple downlink reference signal resources.
  • the foregoing multiple downlink reference signal resources may be resources used for different network devices to transmit downlink reference signals to terminal devices, and the foregoing multiple uplink reference signal resources may also be resources used for transmitting uplink reference signals to different network devices.
  • multiple downlink reference signal resources may correspond to multiple network devices, and multiple uplink reference signal resources may also correspond to multiple network devices.
  • the correspondence between the multiple uplink reference signal resources and the multiple downlink reference signal resources may be configured by multiple network devices, and each network device is configured with its own downlink reference signal resource and its corresponding uplink reference signal resource.
  • the network device #1 and the network device #2 respectively send first indication information to the terminal device to indicate the corresponding relationship between the uplink reference signal resources and the downlink reference signal resources respectively configured by each network device.
  • the multiple downlink reference signal resources and the respective corresponding uplink reference signal resources may also be configured by the same network device, for example, the network device #1 or the network device #2 in FIG. 3 sends the first indication to the terminal device Information to indicate the corresponding relationship between the uplink reference signal resources and the downlink reference signal resources respectively configured by each network device.
  • the foregoing multiple downlink reference signal resources may also be resources for the same network device to transmit downlink reference signals to the terminal device, and the foregoing multiple uplink reference signal resources may also be resources for the terminal device to transmit uplink reference signals to the network device.
  • multiple downlink reference signal resources may correspond to one network device, and multiple uplink reference signal resources may also correspond to one network device.
  • This application does not limit the correspondence between multiple downlink reference signal resources and network equipment, and the correspondence between multiple uplink reference signal resources and network equipment.
  • one NZP CSI-RS resource may correspond to one SRS resource set (SRS resource set), and each SRS resource set includes at least one SRS resource.
  • the network device may configure one or more SRS resource sets in SRS configuration signaling (such as SRS-Config information element), and indicate one of the SRS resource sets contained in each SRS resource set. Or multiple SRS reference signal resources, such as indicating the SRS resource indicator (SRS resource indicator) included therein; and further indicating the NZP CSI-RS resource associated with each SRS resource set, such as indicating the NZP associated with it CSI-RS resource indicator (NZP CSI-RS resource indicator).
  • the SRS configuration signaling may associate one or more SRS resources with one NZP CSI-RS resource. That is, the configuration signaling of the SRS may include the above-mentioned first indication information.
  • the specific manner of associating NZP CSI-RS resources with SRS resources through the SRS resource set shown above is only an example, and should not constitute any limitation to this application.
  • the network device can also directly associate the NZP CSI-RS resource with the SRS resource. This application does not limit the specific method.
  • the terminal device may determine, based on the first indication information, the start position and the end position of each uplink reference signal resource corresponding to each downlink reference signal resource on the time-frequency resource, that is, the area occupied in the time-frequency resource.
  • the terminal device may specifically determine the total number of PRBs occupied by the multiple uplink reference signal resources corresponding to the multiple downlink reference signal resources on the time-frequency resources.
  • the total number of PRBs can be denoted as n PRB , and n PRB is a positive integer, for example.
  • the area occupied by the multiple uplink reference signal resources configured by the network device for the terminal device in the time-frequency resource may be continuous or discontinuous.
  • continuous or discontinuous in the time domain or continuous or discontinuous in the frequency domain, or continuous or discontinuous in both the time and frequency domains. This application does not limit this.
  • the terminal device may further determine the downlink reference signal resource corresponding to each block of the first resource among the multiple uplink reference signal resources based on the resource allocation rule.
  • the resource allocation rule may refer to a rule that can be used to determine the corresponding relationship between the first resource and the downlink reference signal resource determined based on the precoding granularity on the time-frequency resource used for transmitting the uplink reference signal. Based on different dimensions, the resource allocation rule can be used to determine the correspondence between the first resource and the downlink reference signal resource in the frequency domain, or the correspondence between the first resource and the downlink reference signal resource in the time domain.
  • the resource allocation rules may include frequency domain resource allocation (FDRA) rules or time domain resource allocation (TDRA) rules.
  • FDRA frequency domain resource allocation
  • TDRA time domain resource allocation
  • the FDRA rule can be used to determine the correspondence between the multiple blocks of FDM first resources and the downlink reference signal resources in the frequency domain.
  • the TDRA rule can be used to determine the correspondence between the multiple first resources of TDM and the downlink reference signal resources in the time domain.
  • the terminal device determines the downlink reference signal resource corresponding to each block of the first resource based on the resource allocation rule, which is equivalent to determining the position of each block of the first resource in each uplink reference signal resource.
  • the location of an uplink reference signal resource is equivalent to determining the position of each block of the first resource in each uplink reference signal resource.
  • the terminal device may determine the downlink reference signal resource corresponding to each first resource among the multiple uplink reference signal resources based on different resource allocation rules. Take FDRA and TDRA as examples to illustrate.
  • the terminal device may determine the downlink reference signal resources corresponding to the multiple blocks of first resources used to carry the uplink reference signal in combination with the rules of the FDRA.
  • the n PRB PRBs may be divided into multiple blocks based on the first precoding granularity.
  • Resource after that, the odd-numbered first resource and the even-numbered first resource of the multiple first resources can be assigned to two different downlink reference signal resources, that is, different from the two downlink reference signal resources.
  • Resource association Since there is a correspondence between downlink reference signal resources and uplink reference signal resources, the terminal device can determine that the first resource of the odd-numbered block belongs to one uplink reference resource, and the first resource of the even-numbered block belongs to another uplink reference signal resource. .
  • the multiple blocks of first resources may be determined according to the method described above. For example, suppose that the first precoding granularity is the frequency domain granularity, and its value is 2, which means that the frequency domain granularity of the first precoding granularity is 2 PRBs. Then, the n PRBs in the foregoing multiple uplink reference signal resources may be divided into n PRB /2 blocks of first resources. The first resource of the odd-numbered block and the first resource of the even-numbered block are respectively assigned to two different downlink reference signal resources, that is, are associated with the two different downlink reference signal resources.
  • FIG. 4 shows downlink reference signal resources corresponding to multiple first resources in the uplink reference signal resources determined based on the rules of FDRA.
  • 8 PRBs are shown in FIG. 4, that is, an example where n PRB is 8. If the value of the first precoding granularity is 2, then every 2 PRBs is a piece of first resource.
  • the figure shows a total of 4 first resources. Wherein, the first resource of the odd-numbered block belongs to SRS resource 1, corresponding to NZP CSI-RS resource 1, and the first resource of the even-numbered block belongs to SRS resource 2, corresponding to NZP CSI-RS resource 2.
  • the first resource belonging to SRS resource 1 and the first resource belonging to SRS resource 2 are alternately arranged in the frequency domain, forming multiple periods. Although only 8 PRBs and two cycles are shown in FIG. 4, this should not constitute any limitation to this application. This application does not limit the number of PRBs included in the uplink reference signal resource, the number of PRBs included in the first precoding granularity, and the number of cycles.
  • each downlink reference signal resource corresponds to one network device
  • the uplink reference signal resource associated with each downlink reference resource also corresponds to one network device.
  • the distribution of the first resource is equivalent to polling two network devices in the frequency domain, and the polling cycle is Multiple.
  • the first precoding in the uplink reference signal resource One PRB is assigned to one downlink reference signal resource, that is, it is associated with one downlink reference signal resource; the remaining PRB is assigned to another downlink reference signal resource, that is, it is associated with another downlink reference signal resource. Since there is a corresponding relationship between downlink reference signal resources and uplink reference signal resources, the terminal equipment can determine that the previous A PRB is a block of the first resource and belongs to one uplink reference resource, and the remaining PRB is a block of the first resource and belongs to another uplink reference signal resource.
  • FIG. 5 shows downlink reference signal resources corresponding to multiple blocks of first resources in the uplink reference signal resources determined based on the rules of FDRA.
  • 8 PRBs are shown in FIG. 5, that is, an example where n PRB is 8.
  • the first 4 PRBs are a block of first resources
  • the last 4 PRBs are a block of first resources.
  • the figure shows a total of 2 first resources. Among them, the first block of the first resource belongs to SRS resource 1 and corresponds to NZP CSI-RS resource 1, and the second block of first resource belongs to SRS resource 2 and corresponds to NZP CSI-RS resource 2.
  • the SRS resource 1 and the SRS resource 2 are arranged back and forth in the frequency domain, which can also be regarded as a periodic alternate arrangement. Although only 8 PRBs and 2 first resources are shown in FIG. 4, this should not constitute any limitation to this application. This application does not limit the number of PRBs included in the uplink reference signal resource and the first precoding granularity.
  • each downlink reference signal resource corresponds to one network device
  • the uplink reference signal resource associated with each downlink reference resource also corresponds to one network device.
  • the distribution of the above-mentioned first resource is equivalent to polling two network devices in the frequency domain, as shown in the example in FIG. 4 The difference is that the polling cycle in this example is one.
  • downlink reference signal resources may also correspond to the same network device, that is, sent by the same network device.
  • the terminal device may determine the downlink reference signal resources corresponding to the multiple blocks of first resources used to carry the uplink reference signal in combination with the TDRA rule.
  • the area occupied by the multiple uplink reference signal resources may be divided into multiple blocks of first resources, and each block The first resource corresponds to the first precoding granularity in the time domain. Thereafter, each block of the first resource may be assigned to one downlink reference signal resource. For example, the first resource of the odd-numbered block is assigned to one downlink reference signal resource, and the first resource of the even-numbered block is assigned to another downlink reference signal resource. Since there is a correspondence between downlink reference signal resources and uplink reference signal resources, the terminal device can determine that the first resource of the odd-numbered block belongs to one uplink reference signal resource, and the first resource of the even-numbered block belongs to another uplink reference signal. resource.
  • the first precoding granularity may be a time slot level granularity, for example, the first precoding granularity includes one or more time slots, or called time slot groups, and each time slot group includes one or more time slots;
  • the first precoding granularity may also be an OFDM symbol level granularity.
  • the first precoding granularity includes one or more OFDM symbols, or OFDM symbol groups, and each OFDM symbol group includes one or more OFDM symbols.
  • the area occupied by the foregoing multiple uplink reference signal resources may also be divided into two halves, and the first half is assigned to one downlink reference signal resource , The second half is assigned to another downlink reference signal resource. Since there is a correspondence between the downlink reference signal resources and the uplink reference signal resources, the terminal device can thereby determine that the first half of the resources belong to one uplink reference signal resource, and the second half of the resources belong to another uplink reference signal resource. In this case, the two uplink reference signal resources adopt the TDM resource multiplexing mode to multiplex the same frequency domain resources. Each uplink reference signal resource can be used as a first resource.
  • the terminal device may also determine the downlink reference signal resource corresponding to each block of the first resource based on rules such as random selection.
  • the SRS resource to which the first resource belongs is not necessarily polled in the frequency domain or the time domain.
  • the drawings are not illustrated here.
  • the method further includes: step 203, the terminal device receives the indication information of the resource allocation rule.
  • the network device sends the indication information of the resource allocation rule.
  • the indication information of the resource allocation rule may be sent by, for example, the network device #1 and/or the network device #2 shown in FIG. 3, which is not limited in this application.
  • the network device and the terminal device can pre-appoint the indicator bits corresponding to each resource allocation rule, and the network device can send the indicator bits corresponding to the resource allocation rules determined to be currently used to the terminal device to facilitate the terminal
  • the device performs the operation in step 201 based on the corresponding resource allocation rule.
  • the resource allocation rule is predefined.
  • the protocol can predefine resource allocation rules.
  • the terminal device may perform the operation in step 201 based on the corresponding resource allocation rule.
  • step 204 the terminal device determines the precoding corresponding to each block of the first resource based on the downlink reference signal resource corresponding to each block of the first resource.
  • the terminal device may determine the precoding corresponding to each block of resources based on the measurement of the downlink reference signal resource corresponding to each block of the first resource.
  • the terminal device can determine multiple precodings used for uplink reference signal transmission, and the multiple precodings have a corresponding relationship with multiple downlink reference signal resources.
  • the terminal device performs channel measurement based on the downlink reference signal received on each downlink reference signal resource among the multiple downlink reference signal resources, and can determine the precoding corresponding to the downlink reference signal resource, and the precoding can be used for Precoding is performed on the uplink reference signal carried on the uplink reference signal resource corresponding to the downlink reference signal resource.
  • a precoding can be determined based on the measurement of the downlink reference signal resource, that is, the rank is 1.
  • the resources are corresponding, multiple precodings can be determined based on the measurement of the downlink reference signal resource, that is, the rank is greater than 1.
  • the downlink reference signal resource 1 corresponds to the uplink reference signal resource 1
  • the downlink reference signal resource 2 corresponds to the uplink reference signal resource 2.
  • the precoding determined by the terminal device based on the measurement of the downlink reference signal resource 1 is recorded as precoding 1
  • the precoding determined based on the measurement of the downlink reference signal resource 2 is recorded as precoding 2.
  • the terminal device may determine that the precoding corresponding to the first resource belonging to the uplink reference signal resource 1 is precoding 1, and the precoding corresponding to the first resource belonging to the uplink reference signal resource 2 is precoding 2.
  • FIG. 6 shows an example of the correspondence between multiple downlink reference signal resources, multiple precodings, and multiple blocks of first resources.
  • Figure 6 shows two NZP CSI-RS resources, including NZP CSI-RS resource 1 and NZP CSI-RS resource 2.
  • NZP CSI-RS resource 1 corresponds to SRS resource 1
  • NZP CSI-RS resource 2 corresponds to SRS resource 2. That is, each downlink reference signal resource corresponds to one uplink reference signal resource, and the rank is 1.
  • SRS resource 1 and SRS resource 2 are arranged back and forth in the time domain as two different first resources.
  • the first precoding granularity of the SRS resource shown in FIG. 6 is one SRS resource. That is, each SRS resource is a first resource, corresponding to the same precoding.
  • the precoding determined by the terminal device based on the measurement of the NZP CSI-RS resource 1 is recorded as precoding 1, for example, and the precoding determined based on the measurement of the NZP CSI-RS resource 2 is recorded as precoding 2, for example. Therefore, it can be determined that precoding 1 corresponds to SRS resource 1 and can be used to precode the SRS carried on SRS resource 1; precoding 2 corresponds to SRS resource 2 and can be used to precode the SRS carried on SRS resource 2. .
  • the correspondence between multiple SRS resources and multiple precodings shown in FIG. 6 is the correspondence between multiple blocks of first resources and multiple precodings. It can be seen that precoding 1 and precoding 2 in FIG. 6 can be used to precode SRS carried on different SRS resources in turn, that is, the number of polling times is 1.
  • the polling granularity is the first precoding granularity.
  • FIG. 7 shows another example of the correspondence relationship between multiple downlink reference signal resources, multiple precodings, and multiple blocks of first resources.
  • Figure 7 shows two NZP CSI-RS resources, including NZP CSI-RS resource 1 and NZP CSI-RS resource 2. Among them, NZP CSI-RS resource 1 corresponds to SRS resource 1, and NZP CSI-RS resource 2 corresponds to SRS resource 2. The rank is still 1.
  • the first precoding granularity of the SRS resource shown in FIG. 7 is smaller than one SRS resource.
  • the SRS resource 1 and the SRS resource 2 in the figure are respectively divided into a plurality of first resources, and the first resources of the SRS resource 1 and the SRS resource 2 are alternately distributed in the time domain.
  • the precoding determined by the terminal device based on the measurement of the NZP CSI-RS resource 1 is recorded as precoding 1, for example, and the precoding determined based on the measurement of the NZP CSI-RS resource 2 is recorded as precoding 2, for example. Therefore, it can be determined that precoding 1 corresponds to SRS resource 1 and can be used to precode the SRS carried on SRS resource 1; precoding 2 corresponds to SRS resource 2 and can be used to precode the SRS carried on SRS resource 2. .
  • each SRS resource in FIG. 7 includes multiple blocks of first resources.
  • the terminal device determines the corresponding relationship between the SRS resource and the precoding, that is, the corresponding relationship between each block of the first resource in the SRS resource and the precoding. It can be seen that precoding 1 and precoding 2 in FIG. 7 form multiple polls with the size of the first resource as the granularity, that is, the first precoding granularity is the polling granularity.
  • the downlink reference signal resource 1 corresponds to the uplink reference signal resource 1 and the uplink reference signal resource 2.
  • the precoding determined by the terminal device based on the measurement of the downlink reference signal resource 1 is denoted as precoding 1 and precoding 2. Then the terminal device may determine that the precoding corresponding to the first resource belonging to the uplink reference signal resource 1 is precoding 1 or precoding 2, and the precoding corresponding to the first resource belonging to the uplink reference signal resource 2 is also precoding 1 or precoding 2. For the first resource in each uplink reference signal resource, the terminal device may further determine the precoding corresponding to the first resource in each uplink reference signal resource based on the precoding selection rule.
  • step 204 further includes: the terminal device determines the precoding corresponding to each block of the first resource based on the precoding selection rule.
  • the precoding selection rules may include, but are not limited to, precoding polling, random selection, throughput maximization and other rules.
  • precoding polling random selection
  • throughput maximization and other rules.
  • the foregoing precoding selection rule is described below in conjunction with the corresponding relationship between the first resource and the precoding in the embodiment of the present application.
  • Precoding polling may refer to at least two predetermined precodings corresponding to at least two blocks of first resources, and the at least two precodings are used to precode the signals carried on the at least two blocks of first resources in turn, so that The precoding of the signals carried on the at least two first resources presents a periodic arrangement.
  • the multiple blocks of first resources include resources #1 to resource #2N arranged in sequence along the time domain or the frequency domain.
  • the uplink reference signals on the multiple blocks of first resources can be pre-coded through precoding 1 and precoding 2.
  • coding For example, the odd-numbered block resource may correspond to precoding 1, and the even-numbered block resource may correspond to precoding 2, thereby presenting precoding 1, precoding 2, precoding 1, precoding 2, ... in the time domain or frequency domain. ...Such a periodic arrangement.
  • precoding 1 is determined based on the measurement of downlink reference signal resource 1 sent by network device #1
  • precoding 2 is determined based on the measurement of downlink reference signal resource 2 sent by network device #2
  • the precoding polling process is equivalent to the network device polling process, that is, using the first precoding granularity as a unit
  • the resource #1 to the resource #2N are used to communicate to the network device #1 and the network device in turn. #2 Send the uplink reference signal.
  • Random selection may mean that, for each block of the first resource, randomly selecting a precoding corresponding to it from a plurality of predetermined precodings.
  • the multiple precodings may be precodings determined based on measurement of multiple downlink reference signal resources.
  • the predetermined multiple precodings include precoding 1 and precoding 2.
  • Precoding 1 is determined based on the measurement of the downlink reference signal resource 1 sent by network device #1
  • precoding 2 is based on the measurement of network device #2.
  • the sent downlink reference signal resource 2 is determined.
  • one precoding is randomly selected from the multiple precodings, that is, one is randomly selected from the network device #1 and the network device #2.
  • the multiple blocks of first resources are randomly allocated to the network device #1 or the network device #2, so as to send the uplink reference signal to the network device #1 and the network device #2.
  • the throughput maximization may specifically refer to precoding determined to obtain the maximum throughput at the first precoding granularity.
  • the precoding that can maximize the throughput of the first resource can be determined from one or more predetermined precodings corresponding to it.
  • the predetermined multiple precodings include precoding 1 and precoding 2.
  • Precoding 1 is determined based on the measurement of the downlink reference signal resource 1 sent by network device #1
  • precoding 2 is based on the measurement of network device #2.
  • the sent downlink reference signal resource 2 is determined.
  • determining the precoding that can obtain the maximum throughput from the multiple precodings may be to select one of the precoding 1 and precoding 2 to maximize the throughput on the first resource. .
  • precoding polling and random selection precoding are combined, or precoding polling and throughput maximization are combined, and so on.
  • the selection rules for precoding may also include, for example, applying corresponding eigenvectors to multiple uplink reference signal resources corresponding to the same downlink reference signal resource according to the strength of the eigenvalue. .
  • precoding selection rules listed above are only examples, and should not constitute any limitation to this application. This application does not limit the precoding selection rules.
  • FIG. 8 shows another example of the correspondence between multiple downlink reference signal resources, multiple precodings, and multiple blocks of first resources.
  • Figure 8 shows two NZP CSI-RS resources, including NZP CSI-RS resource 1 and NZP CSI-RS resource 2.
  • NZP CSI-RS resource 1 corresponds to SRS resource 1 and SRS resource 3
  • NZP CSI-RS resource 2 corresponds to SRS resource 2 and SRS resource 4. That is, each downlink reference signal resource corresponds to two uplink reference signal resources, and the rank is 2.
  • SRS resource 1 and SRS resource 2 are arranged back and forth in the time domain as two different first resources
  • SRS resource 3 and SRS resource 4 are arranged back and forth in the time domain as two different first resources.
  • the first precoding granularity of the SRS resource shown in FIG. 8 is one SRS resource. That is, each SRS resource is a first resource, corresponding to the same precoding.
  • the time-frequency region occupied by SRS resource 1 and SRS resource 2 as a whole resource may overlap or not overlap with the time-frequency region occupied by SRS resource 3 and SRS resource 4 as a whole resource.
  • SRS resource 1 and SRS resource 2 are the measurement resources corresponding to the whole resource, and the measurement resources corresponding to SRS resource 3 and SRS resource 4 as the whole resource may overlap or not overlap. This application does not limit this. It is understandable that when the time-frequency regions occupied by the two resources as a whole overlap, the resources can be reused in a code division manner. When the measurement resources corresponding to the two resources as a whole overlap, the resources can be multiplexed by time division, frequency division, or code division.
  • a possible situation is that the time-frequency regions occupied by the two resources as a whole can be distinguished by time division or frequency division, and the measurement resources corresponding to the two resources as a whole can be overlapped. Therefore, it can be considered that the two resources as a whole
  • the measurement resources are multiplexed by time division or frequency division.
  • FIG. 9 is used for further explanation.
  • SRS resource 1 and SRS resource 2 as a resource as a whole, occupy the odd number of subcarriers in the frequency domain, as shown in resource whole 1 in the figure;
  • SRS resource 3 and SRS resource 4 as a resource as a whole, Occupy the even-numbered subcarrier in the frequency domain, as shown in the resource overall 2 in the figure.
  • SRS resource 1 and SRS resource 2 are distributed in a comb-like shape as a whole resource;
  • SRS resources 3 and SRS resource 4 are also distributed in a comb-like shape as a whole resource.
  • the overall arrangement of the two resources happens to be staggered.
  • the two resources as a whole do not overlap with each other.
  • the frequency band spanned by each resource as a whole can be measured as a measurement bandwidth.
  • the measurement bandwidths corresponding to the two resources as a whole can be considered to be overlapping, and the two resources as a whole multiplex the measurement resources in a frequency division manner.
  • the two resources as a whole are multiplexed by the frequency division method shown in FIG. 9 is only shown for ease of understanding.
  • the two resources as a whole can also be used for multiplexing the measurement resources in a time division manner.
  • Those skilled in the art can perform equivalent transformations based on the example in FIG. 9 to obtain the two resource ensemble through time division multiplexing.
  • the network equipment can measure the two layers based on at least partially overlapping time domain and/or frequency domain resources, which is conducive to obtaining a more accurate signal-to-noise ratio (SNR), and then determining reasonable MCS.
  • SNR signal-to-noise ratio
  • the precoding determined by the terminal device based on the measurement of NZP CSI-RS resource 1 is recorded as precoding 1 and precoding 3, for example, and the precoding determined based on the measurement of NZP CSI-RS resource 2 is recorded as precoding 2 and precoding, for example.
  • Encoding 4 The terminal device may determine the precoding corresponding to each block of the first resource based on the precoding selection rules listed above.
  • the terminal device can use the stronger eigenvector of the eigenvectors determined based on the measurement of NZP CSI-RS resource 1 for the first SRS resource associated with NZP CSI-RS resource 1 according to the strength of the eigenvalue. That is, SRS resource 1, and the weaker feature vector is used for the second SRS resource associated with NZP CSI-RS resource 1, that is, SRS resource 3. If the feature value corresponding to precoding 1 is greater than the feature value corresponding to precoding 3, it can be considered that precoding 1 is strong and can correspond to SRS resource 1 for precoding the SRS carried on SRS resource 1; precoding 3 is weak and can correspond to SRS resource 3, and is used to precode the SRS carried on SRS resource 3.
  • SRS resource 2 and SRS resource 4 associated with NZP CSI-RS resource 2 the same method as above can also be used to determine the respective corresponding precoding.
  • the corresponding relationship between each SRS resource and precoding is shown in FIG. 8.
  • each SRS resource may correspond to one precoding, that is, the polling granularity is one SRS resource, that is, the polling granularity is the first precoding granularity.
  • the terminal device may adopt a random selection rule to randomly select one SRS resource associated with each NZP CSI-RS resource from the precoding determined based on the measurement of each NZP CSI-RS resource. For example, randomly select one from precoding 1 and precoding 3 to correspond to SRS resource 1 and use to precode the SRS carried on SRS resource 1; and randomly select one from precoding 1 and precoding 3 to correspond to SRS resource 1. Resource 3 is corresponding, and is used to precode the SRS carried on SRS resource 3. Randomly select one from precoding 2 and precoding 4 to correspond to SRS resource 2 for precoding the SRS carried on SRS resource 2; and randomly select one from precoding 2 and precoding 4 to correspond to SRS resource 4. Correspondingly, it is used to precode the SRS carried on the SRS resource 4.
  • the precoding corresponding to SRS resource 1 and the precoding corresponding to SRS resource 3 may be the same precoding, for example, both corresponding to precoding 1 or both corresponding to precoding 3; or they may be different.
  • one corresponds to precoding 1
  • the other corresponds to precoding 3.
  • the precoding corresponding to SRS resource 2 and the precoding corresponding to SRS resource 4 may be the same precoding, such as both corresponding to precoding 2 or both corresponding to precoding 4; it may also be different precoding, such as one corresponding to precoding 2, The other corresponds to precoding 4.
  • the terminal device may also adopt other precoding selection rules to determine the precoding corresponding to each SRS resource.
  • precoding selection rules For the sake of brevity, I will not illustrate them one by one.
  • Figures 10 and 11 show two more examples of the correspondence between multiple downlink reference signal resources, multiple precodings, and multiple blocks of first resources.
  • Figures 10 and 11 show two NZP CSI-RS resources, including NZP CSI-RS resource 1 and NZP CSI-RS resource 2. Among them, NZP CSI-RS resource 1 corresponds to SRS resource 1 and SRS resource 3, and NZP CSI-RS resource 2 corresponds to SRS resource 2 and SRS resource 4. The rank is still 2.
  • the first precoding granularity of the SRS resource shown in FIG. 10 and FIG. 11 is smaller than one SRS resource.
  • Each SRS resource in the figure is divided into multiple blocks of first resources, and the first resource in SRS resource 1 and SRS resource 2 are alternately arranged in the time domain, and the first resource in SRS resource 3 and SRS resource 4 They are also arranged alternately in the time domain.
  • the two first resources belonging to each SRS resource are shown in the figure, this is only an example for ease of understanding and should not constitute any limitation to this application. This application does not limit the number of first resources included in each SRS resource.
  • the precoding determined by the terminal device based on the measurement of NZP CSI-RS resource 1 is recorded as precoding 1 and precoding 3, for example, and the precoding determined based on the measurement of NZP CSI-RS resource 2 is recorded as precoding 2 and precoding, for example.
  • Encoding 4 The terminal device may determine the precoding corresponding to each block of the first resource based on the precoding selection rules listed above.
  • the terminal device may determine the precoding corresponding to each block of the first resource based on a random selection rule.
  • Fig. 9 shows an example of determining the precoding corresponding to each block of the first resource based on a random selection rule. Based on the random selection rule, the terminal device can randomly select a precoding corresponding to each block of the first resource. For each first resource in SRS resource 1 and SRS resource 3, the terminal device may randomly select from precoding 1 and precoding 3. As shown in Figure 10, the first block of the first resource in SRS resource 1 corresponds to precoding 1, and the second block of first resource corresponds to precoding 3; the first block of first resource in SRS resource 3 corresponds to precoding 3 corresponds to the first resource of the second block corresponds to precoding 1.
  • the terminal device may randomly select from precoding 2 and precoding 4. As shown in FIG. 10, two blocks of first resources in SRS resource 2 both correspond to precoding 4, and two blocks of first resources in SRS resource 4 correspond to precoding 2. It should be understood that the correspondence between the multiple blocks of first resources and the multiple precodings shown in FIG. 10 is only an example, and should not constitute any limitation to this application.
  • the terminal device may also correspond each first resource in SRS resource 1 to precoding 1, and each first resource in SRS resource 3 corresponds to precoding 3, and assign the first resource in SRS resource 2 to precoding 3.
  • One block of the first resource corresponds to precoding 2
  • the second block of first resources corresponds to precoding 4
  • the first block of SRS resource 4 corresponds to precoding 4
  • the second block of SRS resource 4 The first resource corresponds to precoding 2, and so on.
  • I will not list them all here.
  • the terminal device may determine the precoding corresponding to each block of the first resource based on the precoding polling rule.
  • FIG. 11 shows an example of determining the precoding corresponding to each block of the first resource based on the precoding polling rule. Since the SRS resources in FIG. 11 form an alternating pattern, the terminal device can randomly select a precoding corresponding to each SRS resource, so that the precoding corresponding to each block of the first resource in FIG. 11 is in the time domain. Form polling. Among them, for each SRS resource, a random selection rule can be adopted to determine the corresponding precoding.
  • SRS resource 1 is corresponded to precoding 1
  • SRS resource 2 is corresponded to precoding 2, thereby forming precoding 1, precoding 2, precoding 1, and precoding 2 polling on the first layer
  • SRS resource 3 is corresponded to precoding 3
  • SRS resource 4 is corresponded to precoding 4, thereby forming precoding 3, precoding 4, precoding 3, and precoding 4 polling on the second layer.
  • Figure 11 It should be understood that the correspondence between the multiple blocks of first resources and the multiple precodings shown in FIG. 11 is only an example, and should not constitute any limitation to this application.
  • the terminal device may also correspond SRS resource 1 to precoding 1, and SRS resource 2 to precoding 4 to form a polling of precoding 1, precoding 4, precoding 1, and precoding 4 on the first layer.
  • SRS resource 3 is corresponded to precoding 3
  • SRS resource 4 is corresponded to precoding 2, to form precoding 3, precoding 2, precoding 3, precoding 2 polling on the second layer, and so on.
  • the foregoing precoding selection rule may be, for example, indicated by the network device through signaling in advance.
  • the method further includes: step 205, the terminal device receives the indication information of the precoding selection rule.
  • the network device sends the indication information of the precoding selection rule.
  • the indication information of the resource allocation rule may be sent by, for example, network device #1 and/or network device #2 shown in FIG. 3, which is not limited in this application.
  • the network device and the terminal device may pre-appoint the indication bit corresponding to the precoding selection rule, and the network device may send the indication bit corresponding to the precoding selection rule determined to be currently used to the terminal device, So that the terminal device performs the operation in step 204 based on the corresponding precoding selection rule.
  • the precoding selection rule is predefined.
  • the protocol may predefine pre-coding selection rules.
  • the terminal device may perform the operation in step 204 based on a predefined precoding selection rule.
  • step 206 the terminal device sends the precoded uplink reference signal.
  • each network device receives the precoded uplink reference signal.
  • the terminal device may precode the uplink reference signal carried on each block of the first resource. For example, the terminal device may perform precoding on the uplink reference signal mapped to different time-frequency resources based on the corresponding relationship between the first resource and precoding as shown in the above in conjunction with FIGS. 6 to 11, to obtain the precoded uplink Reference signal.
  • the terminal device may map the uplink reference signal to the time-frequency resource after precoding, or may map the uplink reference signal to the time-frequency resource before performing precoding, which is not limited in this application.
  • the terminal device can pre-code the uplink reference signal mapped to the first layer and the first resource of the odd-numbered block based on precoding 1, and map to the first resource based on precoding 4.
  • the uplink reference signal of the first resource in the first resource layer and the even-numbered block is pre-coded; the terminal device can pre-code the uplink reference signal mapped to the second layer and the first resource in the odd-numbered block based on precoding 3.
  • the uplink reference signal mapped to the second layer and the first resource of the even-numbered block is pre-coded.
  • a pattern as shown in FIG. 12 is formed. This pattern describes the correspondence between multiple blocks of first resources, multiple precodings, and multiple ports.
  • the terminal device may send the precoded uplink reference signal through multiple uplink reference signal resources.
  • the network device may receive the precoded uplink reference signal based on multiple uplink reference signal resources.
  • the network device that receives the precoded uplink reference signal may be, for example, the network device #1 and/or the network device #2 shown in FIG. 3. This application does not limit this.
  • step 207 the network device performs channel measurement based on the precoded uplink reference signal.
  • the network device that receives the precoded uplink reference signal on each uplink reference signal resource may be at least one of the network device #1 and the network device #2 in FIG. 3.
  • One or more network devices that have received the precoded uplink reference signal can perform channel measurement.
  • Each network device can perform channel measurement based on the received precoded uplink reference signal, and then determine the MCS, SRS port and other information used for uplink transmission.
  • network device #1 Take network device #1 as an example below. It should be understood that the operation of network device #2 is similar to this. This is only for brevity, and the operation process of network device #1 is taken as an example for illustration.
  • Network device #1 can calculate parameters such as signal to noise ratio (SNR) and signal to interference plus noise ratio (SINR) based on the received precoded uplink reference signal, and then Determine the channel quality, such as channel quality indicator (channel quality indicator, CQI), and determine the corresponding MCS.
  • SNR signal to noise ratio
  • SINR signal to interference plus noise ratio
  • CQI channel quality indicator
  • the network device #1 performs channel measurement based on the precoded uplink reference signal received on the uplink reference signal resource 1, and may determine the corresponding MCS based on the channel quality determined by the channel measurement.
  • network device #1 is based on the received precoded uplink
  • the MCS determined by the reference signal is more accurate and more suitable for subsequent uplink data transmission, which is conducive to improving the uplink transmission performance.
  • the method further includes: step 208, the terminal device receives fourth indication information, where the fourth indication information is used to indicate an MCS used for uplink data transmission.
  • the network device sends fourth indication information, where the fourth indication information is used to indicate the MCS used for uplink data transmission.
  • the network device #1 may also determine the maximum number of transmission layers for subsequent uplink transmission based on the received precoded uplink reference signal, and which number of precodings can be used for each transmission layer.
  • network device #1 may determine the maximum number of transmission layers based on channel measurement. For example, the maximum number of transmission layers is determined by performing singular value decomposition on the channel. The network device #1 can also determine which precoding is used for each first resource in each transmission layer and each uplink reference signal resource based on criteria such as throughput maximization.
  • the precoding of the terminal equipment is transparent to the network equipment, but because each uplink reference signal resource can be configured with an uplink reference signal port (or port for short), for example, each SRS The resource can be configured with one SRS port, so the uplink reference signal resource and the uplink reference signal port have a one-to-one correspondence, and the precoding used on each uplink reference signal resource has been predetermined.
  • the correspondence between each block of the first resource and precoding in the reference signal resources has been predetermined. Therefore, the network device can perform measurements based on the received uplink reference signals of different ports to determine which one or more ports correspond to precoding.
  • the method further includes: step 209, the terminal device receives second indication information, where the second indication information is used to indicate precoding used for uplink data transmission among the foregoing multiple precodings.
  • the network device sends the second indication information.
  • the network device can indirectly determine the uplink reference signal resources corresponding to the received precoded reference signals. Instruct the terminal equipment to use which precoding to transmit the uplink data in the subsequent uplink transmission process. Alternatively, the network device can also indirectly instruct the terminal device which precoding to use in subsequent uplink transmissions to transmit uplink data according to the uplink reference signal port corresponding to the received precoded uplink reference signal (such as the above-mentioned SRS port) .
  • the second indication information may be, for example, an SRS resource identifier (SRS resource identifier, SRI) indication for PUSCH transmission other than a codebook in 3GPP technical specification (TS) 38.212
  • SRS resource identifier SRI
  • the foregoing SRI indication used for PUSCH transmission of non-codebook can be used to indicate the SRI corresponding to each index value when the maximum number of transmission layers (L max and L max are positive integers) are different values.
  • the index value in the table is the index value mapped to the bit indication field; N SRS is the number of SRS resources, and N SRS is a positive integer.
  • each index value corresponds to one or more SRI(s), that is, each index value indicates one or more SRS resources. Since the correspondence between each SRS resource and precoding can be determined by the terminal device based on step 204 described above, the network device indicates the maximum number of transmission layers L max , the number of SRS resources N SRS , and the index through the second indication information Value, it can indirectly indicate the precoding used for uplink transmission. The terminal device may determine which precoding is selected for uplink transmission based on the second indication information.
  • multiple second indication information may be used to indicate one or more selected precodings in the precoding corresponding to each downlink reference signal.
  • the multiple second indication information may be carried in different DCIs respectively, that is, the terminal device may receive multiple DCIs, each DCI carries one second indication information, and each second indication information corresponds to one or more SRI; the multiple second indication information may be multiple information elements carried in the same DCI, for example, the DCI includes multiple second indication information, and each second indication information corresponds to one or more SRIs.
  • FIG. 12 shows the SRS ports corresponding to the multiple precodings.
  • precoding 1 on SRS resource 1 corresponds to port a
  • precoding 2 on SRS resource 2 corresponds to port b
  • precoding 3 on SRS resource 3 corresponds to port c
  • precoding 4 on SRS resource 4 corresponds to At port d.
  • the network device determines that the number of transmission layers used for subsequent uplink transmission is 1, and the selected SRS ports are port a and port b, that is, the selected precoding is precoding 1 and precoding 2, then two The second indication information indicates SRS resource 1 and SRS resource 2 respectively; if the network device determines that the number of transmission layers used for subsequent uplink transmission is 1, the selected SRS ports are port a and port d, that is, the selected precoding For precoding 1 and precoding 4, SRS resource 1 and SRS resource 4 can be indicated respectively through two second indication information; if the network device determines that the number of transmission layers used for subsequent uplink transmission is 2, it is selected for the first The SRS ports of one transport layer are port a and port d, that is, the precoding selected for the first transport layer is precoding 1 and precoding 4, and the SRS port selected for the second transport layer is Port c and port b, that is, the precoding selected for the second transmission layer is precoding 3 and precoding 2, then SRS resource 1 and SRS resource 3 can be indicated through
  • the network device can directly determine the precoding used for subsequent uplink transmission.
  • the specific manner in which the network device indicates the precoding for uplink transmission through the second indication information is only an example, and should not constitute any limitation in this application.
  • a second indication information can also be used to indicate the precoding used for uplink transmission.
  • step 210 the terminal device determines the precoding corresponding to each second resource in the uplink transmission resource.
  • Uplink transmission resources may refer to resources used for transmission of uplink data.
  • the uplink transmission resource may be PUSCH, for example.
  • the uplink transmission resource may include multiple blocks of second resources.
  • the second resource is a resource determined based on the second precoding granularity. More specifically, the size of the second resource in the time domain or the frequency domain may be determined based on the second precoding granularity.
  • the second precoding granularity mentioned here is the precoding granularity corresponding to the uplink data.
  • the second precoding granularity may indicate the size of continuous resources corresponding to the same precoding in the uplink transmission resources.
  • the second precoding granularity may be the granularity in the frequency domain, referred to as the frequency domain granularity for short; or the granularity in the time domain, referred to as the time domain granularity for short. If the first precoding granularity is the frequency domain granularity, the size of the second resource in the frequency domain is the size of the second precoding granularity; if the second precoding granularity is the time domain granularity, the second resource is in the time domain The size above is the size of the second precoding granularity.
  • the first precoding granularity may be one or more PRBs, one or more RB groups (RB group, RBG, each RBG may include multiple PRB), or precoding resource block group (PRG), etc.
  • the first precoding granularity is the time domain granularity
  • the first precoding granularity may be one or more time slots (for example, referred to as a time slot group), one or more mini time slots (for example, referred to as a mini time slot group) , Or one or more OFDM symbols (or called OFDM symbol group), etc. It should be understood that this application does not limit the specific naming of each frequency domain granularity and time domain granularity.
  • the second precoding granularity is the same as the first precoding granularity. In another possible design, the second precoding granularity is different from the first precoding granularity.
  • the second precoding granularity may be indicated by the network device, or may also be predefined by the protocol. This application does not limit this.
  • the method further includes: the terminal device receives indication information of the second precoding granularity.
  • the network device sends the indication information of the second precoding granularity.
  • the network device that sends the indication information of the second precoding granularity may be, for example, the network device that sends the second indication information above. This application does not limit this.
  • the second precoding granularity may also be implicitly indicated by the indication information of the first precoding granularity, or in other words, the first precoding granularity and the first precoding granularity may be implicitly indicated.
  • the second precoding granularity is not distinguished, and they are all called precoding granularity, and the precoding granularity may be indicated by a signaling. This signaling may be referred to as indication information of precoding granularity, for example.
  • the network device can also indicate the second current use by indicating the resource multiplexing mode. Whether the precoding granularity is the time domain granularity or the frequency domain granularity. In this case, it can also be considered that the indication of the resource multiplexing mode implicitly indicates the second precoding granularity.
  • the terminal device Before sending the uplink data, the terminal device may establish a mapping relationship between the SRS resource indicated in the second indication information and its corresponding PUSCH transmission layer and DMRS port. Each SRS resource can be mapped to a PUSCH transmission layer, corresponding to a DMRS port.
  • the terminal device may use the same antenna port as the SRS port corresponding to the SRS resource indicated in the second indication information to transmit the PUSCH. Since there is a correspondence between the SRS port and the precoding, the terminal device uses the antenna port corresponding to the SRS port to transmit the PUSCH, which can be understood as the terminal device using the precoding corresponding to the SRS port to transmit the PUSCH.
  • the terminal device may also determine the precoding corresponding to each second resource in the plurality of second resources according to the second indication information and the previously determined correspondence between the plurality of first resources and the plurality of precodings. Specifically, the terminal device can determine the correspondence between multiple blocks of first resources and multiple precodings, for example, by using the method described above, and based on the correspondence, the terminal device can obtain multiple precodings on multiple blocks of first resources. The layout pattern on the top, for example, as shown in Figure 12. If the terminal device determines that one or more SRS ports are used for uplink data transmission according to the second indication information, it is also determined that the precoding corresponding to the one or more SRS ports and the corresponding first resource are in the first multiple blocks. The relative position in a resource.
  • the terminal device can use the determined precoding and the relative position of the first resource in the multiple blocks of the first resource to the uplink transmission resource, that is, use the precoding indicated by the second indication information, and use the precoding indicated by the second indication information.
  • the code is mapped to multiple blocks of second resources, so that the relative position of the second resource corresponding to each precoding in the multiple blocks of second resources and the relative position of the first resource corresponding to each precoding in the multiple blocks of first resources same.
  • the terminal device can determine that the number of transmission layers used for subsequent uplink transmission is 1, and Further, according to the relative positions of the first resources corresponding to precoding 1 and port b corresponding to port a, and the first resources corresponding to precoding 1 and precoding 2, in the multiple blocks of first resources, it is determined that they are different from precoding 1 , The relative position of the second resource corresponding to the precoding 2 in the plurality of second resources. From this, it can be obtained that the precoding corresponding to the multiple second resources in the uplink transmission resource also presents the polling of precoding 1, precoding 2, precoding 1, and precoding 2. As shown in Figure 13.
  • the terminal device may determine that the number of transmission layers used for subsequent uplink transmission is 1, and may further determine the number of transmission layers used for subsequent uplink transmission as per port a.
  • the relative positions of the corresponding precoding 1, precoding 4 corresponding to port d, and the first resources corresponding to precoding 1, and precoding 4 in the multiple blocks of first resources are determined to be respectively compared with precoding 1, precoding 4
  • the relative position of the corresponding second resource in the plurality of second resources Therefore, it can be obtained that the precoding corresponding to the multiple second resources in the uplink transmission resource also presents the polling of precoding 1, precoding 4, precoding 1, and precoding 4. As shown in Figure 14.
  • the terminal device can determine that the number of transmission layers used for subsequent uplink transmission is 2. , And can be further determined according to the relative positions of the first resources corresponding to precoding 1 and port b corresponding to port a, and the first resources corresponding to precoding 1 and precoding 2 in the multiple blocks of first resources.
  • the relative position of the second resource corresponding to code 4 in the plurality of second resources As shown in Figure 15.
  • the number of second resources included in the uplink transmission resource shown in the figure is the same as the number of first resources included in the uplink reference signal resource. But this should not constitute any limitation to this application.
  • the uplink transmission resource may include a larger number of second resources.
  • the terminal device may, according to the correspondence between the first resource and the precoding, divide the polled multiple precodings into a larger number.
  • the second resource is used in turn. As shown in FIG. 15, FIG. 15 shows the correspondence between multiple blocks of second resources and multiple precodings.
  • Figure 16 shows the pattern shown in Figure 14 and is further extended to more polling cycles.
  • the terminal device may determine the downlink reference signal resources corresponding to the plurality of second resources in the uplink transmission resources according to the second precoding granularity and the resource allocation rule.
  • the terminal device can first determine the size of each second resource based on the second precoding granularity, and then determine the downlink reference signal resource corresponding to each second resource according to resource allocation rules, such as the FDRA rule or TDRA rule described above .
  • resource allocation rules such as the FDRA rule or TDRA rule described above . It should be understood that the resource allocation rule followed by the terminal device determining the downlink reference signal resource corresponding to each block of the second resource is the same as the resource allocation rule followed by the terminal device determining the downlink reference signal resource corresponding to each block of the first resource.
  • the specific process of the terminal device determining the downlink reference signal resource corresponding to each block of the second resource based on the resource allocation rule may be similar to the specific process of determining the downlink reference signal resource corresponding to each block of the first resource based on the resource allocation rule described above , But the precoding granularity is changed from the first precoding granularity to the second precoding granularity. For the sake of brevity, it will not be detailed here with specific examples.
  • the terminal device may further determine one or more precodings corresponding to each second resource based on the downlink reference signal resource corresponding to each second resource.
  • the one or more precodings corresponding to each second resource are based on The corresponding downlink reference signal resource is measured. This is similar to the correspondence between the first resource and precoding.
  • the terminal device may determine the precoding selected for uplink data transmission based on the SRS port indicated by the second indication information.
  • the terminal device may know in advance the precoding corresponding to each SRS port, that is, the precoding corresponding to each SRS resource.
  • the terminal device may determine, according to the second indication information, which of the one or more precodings corresponding to each block of the second resource is selected for uplink data transmission. Therefore, the terminal device can determine the precoding corresponding to each block of the second resource.
  • step 211 the terminal device sends the precoded uplink data through the uplink transmission resource.
  • the terminal device can send uplink data through, for example, uplink transmission resources.
  • the network device #1 and the network device #2 can respectively receive uplink data on the uplink transmission resource.
  • the network device #1 and the network device #2 may each receive the uplink data sent to themselves, or may receive all the uplink data on the uplink transmission resource. This application does not limit this.
  • the terminal device may predetermine the downlink reference signal resources corresponding to the multiple blocks of the first resources in the uplink reference signal resources, and then determine the correspondence between the precoding and the first resource, and then according to the correspondence between the precoding and the first resource , Precoding the uplink reference signal carried on the uplink reference signal resource, so that the precoded uplink reference signal for subsequent transmission has a different arrangement.
  • the precoding used as the uplink reference signal no longer depends on the granularity of the uplink reference signal resource, but can
  • the first precoding granularity is used to obtain more possible precoding arrangements on the uplink reference signal resources. That is, the first precoding granularity is decoupled from the size of the uplink reference signal resources, so as to obtain more and more flexible uplink reference signal resource configurations. It is conducive to the network equipment to obtain more accurate channel measurement results, and to perform reasonable scheduling for subsequent uplink data transmission.
  • FIG. 17 is a schematic flowchart of a method 300 for sending and receiving uplink reference signals according to another embodiment of the present application. As shown in FIG. 17, the method 300 includes step 301 to step 311. The steps in the method 300 are described in detail below.
  • step 301 the terminal device determines the correspondence between multiple precodings used for uplink reference signal transmission and multiple downlink reference signal resources.
  • the terminal device Before sending the uplink reference signal, the terminal device may first determine the correspondence between multiple precodings used for uplink reference signal transmission and multiple downlink reference signal resources, so as to perform precoding on the uplink reference signal.
  • the multiple downlink reference signal resources may correspond to multiple uplink reference signal resources, or in other words, the multiple downlink reference signal resources may correspond to multiple downlink reference signal resources.
  • Uplink reference signal resource association Each downlink reference signal resource can be associated with one or more uplink reference signal resources.
  • Each uplink reference signal resource may correspond to one or more precoding.
  • the uplink reference signal carried by the uplink reference signal resource may be a precoded uplink reference signal.
  • the precoding used for the uplink reference signal may be the precoding determined based on the measurement of the downlink reference signal resource corresponding to the uplink reference signal resource, or in other words, the precoding determined based on the measurement of the downlink reference signal resource associated with the uplink reference signal resource Precoding.
  • the terminal device may determine a plurality of precodings used for uplink reference signal transmission, and the plurality of precodings may be obtained based on measurement of downlink reference signal resources associated with the uplink reference signal resources.
  • the measurement of the downlink reference signal resource is to perform channel measurement based on the downlink reference signal carried on the downlink reference signal resource.
  • the downlink reference signal resource 1 corresponds to the uplink reference signal resource 1.
  • the precoding determined by the terminal device based on the measurement of the downlink reference signal resource 1 is recorded as precoding 1. Then the terminal device can determine that the precoding 1 corresponds to the reference signal resource 1.
  • the downlink reference signal resource 1 corresponds to the uplink reference signal resource 1 and the uplink reference signal resource 2.
  • the precoding determined by the terminal device based on the measurement of the downlink reference signal resource 1 is denoted as precoding 1 and precoding 2. Then the terminal device may determine that one of precoding 1 or precoding 2 corresponds to uplink reference signal resource 1, and one of precoding 1 or precoding 2 corresponds to uplink reference signal resource 2.
  • precoding 1 corresponds to uplink reference signal resource 1
  • precoding 2 corresponds to uplink reference signal resource 2
  • precoding 1 corresponds to uplink reference signal resource 1 and uplink reference signal resource 2
  • precoding 2 corresponds to uplink reference signal resource 1
  • Reference signal resource 1 corresponds to uplink reference signal resource 2
  • precoding 2 corresponds to uplink reference signal resource 1
  • precoding 1 corresponds to uplink reference signal resource 2.
  • rank 2 the corresponding relationship between the precoding and the uplink reference signal resources can be further determined in conjunction with the selection rule of the precoding, which will be described in detail in the following with specific examples, and will not be described in detail here.
  • the uplink reference signal resource may be an SRS resource, the uplink reference signal may be an SRS; the downlink reference signal resource may be a CSI-RS resource, more specifically, it may be NZP CSI-RS resource, the downlink reference signal may be NZP CSI-RS.
  • Figures 18 to 21 show the correspondence between multiple downlink reference signal resources, multiple precodings, and multiple uplink reference signal resources.
  • Figures 18 and 19 show two NZP CSI-RS resources, including NZP CSI-RS resource 1 and NZP CSI-RS resource 2.
  • NZP CSI-RS resource 1 corresponds to SRS resource 1
  • NZP CSI-RS resource 2 corresponds to SRS resource 2. That is, each downlink reference signal resource corresponds to one uplink reference signal resource, and the rank is 1.
  • Each SRS resource shown in FIG. 18 is a piece of continuous resource, and SRS resource 1 and SRS resource 2 are arranged back and forth in the frequency domain. Different from that shown in FIG. 18, the SRS resources shown in FIG. 19 are discretely distributed in the frequency domain, or in other words, each SRS resource is distributed in a comb-tooth shape in the frequency domain.
  • the terminal device may determine that precoding 1 corresponds to SRS resource 1, and precoding 2 corresponds to SRS resource 2. As shown in Figure 18 and Figure 19.
  • FIG. 20 and FIG. 21 show two NZP CSI-RS resources, including NZP CSI-RS resource 1 and NZP CSI-RS resource 2.
  • NZP CSI-RS resource 1 corresponds to SRS resource 1 and SRS resource 3
  • NZP CSI-RS resource 2 corresponds to SRS resource 2 and SRS resource 4. That is, each downlink reference signal resource corresponds to two uplink reference signal resources, and the rank is 2.
  • Each SRS resource shown in Figure 20 is a piece of continuous resource.
  • SRS resource 1 and SRS resource 2 are located on the same layer and arranged back and forth in the frequency domain; SRS resource 3 and SRS resource 4 are located on the same layer, in the frequency domain. Arranged up front and back. Different from that shown in FIG. 20, the SRS resources shown in FIG. 21 are discretely distributed in the frequency domain, or in other words, each SRS resource is distributed in a comb-tooth shape in the frequency domain.
  • the terminal device may determine that one of precoding 1 and precoding 3 corresponds to SRS resource 1, and one of precoding 1 and precoding 3 corresponds to SRS resource 3; and one of precoding 2 and precoding 4 corresponds to SRS resource 1.
  • Resource 2 corresponds, and one of precoding 2 and precoding 4 corresponds to SRS resource 4.
  • the terminal device determines the precoding corresponding to each SRS resource based on the precoding selection rule.
  • the precoding selection rule may be indicated by the network device through signaling in advance, or may be predefined by the protocol. This application does not limit this.
  • the method further includes: step 302, the terminal device receives indication information of a precoding selection rule.
  • precoding 1 corresponds to SRS resource 1
  • precoding 2 corresponds to SRS resource 2
  • precoding 3 corresponds to SRS resource 3
  • precoding 4 corresponds to SRS resource 4.
  • the illustrations are only for ease of understanding, and should not constitute any limitation to this application.
  • multiple uplink reference signal resources occupy the same time domain resources and different frequency domain resources, and present an FDM resource multiplexing manner.
  • the multiple uplink reference signal resources may also occupy the same frequency domain resources and different time domain resources, for example, in a TDM resource multiplexing manner.
  • the terminal device only determines the area of the SRS resource, for example, based on the first indication information described below.
  • the specific position of each SRS resource on the time-frequency resource needs to be further implemented through the operation of step 304.
  • each SRS resource may correspond to one SRS port. As explained above, each SRS resource corresponds to one precoding, so each SRS port also corresponds to one precoding.
  • each downlink reference signal resource may correspond to one or more uplink reference signal resources.
  • the uplink reference signal resource corresponding to each downlink reference signal resource may be configured by a network device, for example.
  • the method further includes: Step 303: The terminal device receives first indication information, where the first indication information is used to indicate the correspondence between multiple uplink reference signal resources and multiple downlink reference signal resources.
  • step 303 may refer to the related description of step 202 in the method 200 above, and for the sake of brevity, it will not be repeated here.
  • step 304 the terminal device determines the precoding corresponding to each block of the first resource used for the uplink reference signal based on the multiple precodings.
  • the first resource belongs to the uplink reference signal resource and can be used to carry the uplink reference signal.
  • the first resource is a resource determined based on the first precoding granularity. More specifically, the first resource may be determined based on the first precoding granularity in the time domain or the frequency domain.
  • the first precoding granularity may be indicated by the network device, or may also be predefined by the protocol. This application does not limit this.
  • the method further includes: the terminal device receives indication information of the first precoding granularity.
  • the network device sends the indication information of the first precoding granularity.
  • the network device that sends the indication information of the first precoding granularity may be, for example, the network device #1 or the network device #2 shown in FIG. 17. This application does not limit this.
  • the resource multiplexing mode can be considered as FDM; when the first precoding granularity is the time domain granularity, the resource multiplexing mode can be considered as TDM. Therefore, when the network device indicates the first precoding granularity, it can also be considered that the resource multiplexing mode is implicitly indicated.
  • the network device may indicate the resource multiplexing mode to indicate that the currently used first precoding granularity is Time domain granularity is also frequency domain granularity. In this case, it can also be considered that the indication of the resource multiplexing mode implicitly indicates the first precoding granularity.
  • the method further includes: the terminal device receives third indication information, where the third indication information is used to indicate a resource multiplexing mode.
  • the way of multiplexing resources may be predefined by the protocol. This application does not limit this.
  • the size of the first precoding granularity is less than or equal to the size of one uplink reference signal resource, and the terminal device may divide each uplink reference signal resource into one or more blocks of the first resource based on the first precoding granularity . If the first precoding granularity is smaller than the size of one uplink reference signal resource, then one uplink reference signal resource may include multiple blocks of first resources; if the first precoding granularity is equal to the size of one uplink reference signal resource, then one uplink reference signal The resource is the first resource.
  • the terminal device may determine the downlink reference signal resource corresponding to one or more first resources in each uplink reference signal resource based on the resource allocation rule.
  • the resource allocation rule may be pre-indicated by the network device, or may be predefined by the protocol. This application does not limit this.
  • the method 300 further includes: step 305, the terminal device receives the indication information of the resource allocation rule.
  • step 305 please refer to the relevant description in step 203 of the method 200 above. For the sake of brevity, it will not be repeated here.
  • the terminal device determines the downlink reference signal resource corresponding to one or more first resources in each uplink reference signal resource based on the resource allocation rule.
  • the terminal device may determine the downlink reference signal resources corresponding to the multiple blocks of first resources used to carry the uplink reference signal in combination with the rules of the FDRA.
  • the first precoding granularity is one of the preset values ⁇ 2, 4 ⁇ , such as 2, and the terminal device can divide resources with a granularity of 2 PRBs, thereby dividing the first resources into multiple blocks.
  • the first resource of the odd-numbered block may be assigned to one downlink reference signal resource
  • the first resource of the even-numbered block may be assigned to another downlink reference signal resource, that is, the first resource of the odd-numbered block belongs to an uplink reference signal resource
  • the first resource of the even-numbered block belongs to another uplink reference signal resource.
  • the terminal device determines the downlink reference signal resource corresponding to one or more first resources in each uplink reference signal resource based on the resource allocation rule, which is equivalent to determining each first resource in each uplink reference signal resource.
  • the location of each uplink reference signal resource can also be determined.
  • step 305 the terminal device has determined the downlink reference signal resource corresponding to each block of the first resource in each uplink reference signal resource.
  • the precoding corresponding to each block of the first resource can be determined, that is, the correspondence between multiple precodings and multiple blocks of the first resource is determined.
  • the correspondence relationship can be referred to, for example, as shown in FIG. 12 to FIG. 16 in the above method 200. For the sake of brevity, it will not be repeated here.
  • step 306 the terminal device sends the precoded uplink reference signal.
  • the network device receives the pre-coded uplink reference signal.
  • step 307 the network device performs channel measurement based on the precoded uplink reference signal.
  • step 308 the terminal device receives fourth indication information, where the fourth indication information is used to indicate the MCS used for uplink data transmission.
  • the network device sends the fourth indication information.
  • step 309 the terminal device receives second indication information, where the second indication information is used to indicate precoding used for uplink data transmission.
  • the network device sends the second indication information.
  • step 310 the terminal device determines the precoding corresponding to each second resource in the uplink transmission resources.
  • the second resource is a resource determined based on the second precoding granularity. More specifically, the size of the second resource in the time domain or the frequency domain may be determined based on the second precoding granularity.
  • the second precoding granularity mentioned here is the precoding granularity corresponding to the uplink data.
  • the second precoding granularity may indicate the size of continuous resources corresponding to the same precoding in the uplink transmission resources.
  • the related description of the second precoding granularity please refer to the related description of the second precoding granularity in step 210 of the method 200 above. For brevity, it will not be repeated here.
  • the second precoding granularity is the same as the first precoding granularity. In another possible design, the second precoding granularity is different from the first precoding granularity.
  • the second precoding granularity may be indicated by the network device, or may also be predefined by the protocol. This application does not limit this.
  • the method further includes: the terminal device receives indication information of the second precoding granularity.
  • the network device sends the indication information of the second precoding granularity.
  • the network device that sends the indication information of the second precoding granularity may be, for example, the network device that sends the second indication information above. This application does not limit this.
  • the second precoding granularity may also be implicitly indicated by the indication information of the first precoding granularity, or in other words, the first precoding granularity and the first precoding granularity may be implicitly indicated.
  • the second precoding granularity is not distinguished, and they are all called precoding granularity, and the precoding granularity may be indicated by a signaling. This signaling may be referred to as indication information of precoding granularity, for example.
  • the network device can also indicate the second current use by indicating the resource multiplexing mode. Whether the precoding granularity is the time domain granularity or the frequency domain granularity. In this case, it can also be considered that the indication of the resource multiplexing mode implicitly indicates the second precoding granularity.
  • the terminal device can determine multiple blocks of second resources in the uplink transmission resources according to the second precoding granularity, and can further determine the precoding corresponding to each block of second resources according to the precoding indicated by the second indication information. coding.
  • the terminal device previously determined the downlink reference signal resources corresponding to the multiple blocks of the first resource in the uplink reference signal resources according to the resource allocation rules, and determined the precoding corresponding to each block of the first resource, that is, the terminal device determined the Patterns of correspondences between multiple blocks of first resources and multiple precodings.
  • the rules for determining the downlink reference signal resources corresponding to the multiple blocks of second resources in the uplink transmission resources and the downlink reference signal resources corresponding to the multiple blocks of the first resources in the uplink reference signal resources by the terminal device may be the same, that is, following the same Resource allocation rules. Therefore, after the terminal device determines the precoding selected for uplink data transmission according to the second indication information, it can select from the precoding selected for uplink data transmission according to the corresponding relationship between the precoding and the first resource. Determine the precoding corresponding to each second resource.
  • step 311 the terminal device sends the pre-coded uplink data.
  • the network device receives the pre-coded uplink data.
  • step 306 to step 311 please refer to the relevant descriptions of step 206 to step 211 in the method 200 above. For brevity, it will not be repeated here.
  • the terminal device can predetermine the correspondence between multiple uplink reference signal resources and multiple precodings, and then further determine the downlink reference signal resource corresponding to each block of the first resource in the uplink reference signal resources, and then can determine the first The corresponding relationship between the resource and the precoding, so that the uplink reference signal carried on the uplink reference signal resource can be precoded, so that the precoded uplink reference signal for subsequent transmission has a different arrangement.
  • the precoding used as the uplink reference signal no longer depends on the granularity of the uplink reference signal resource, but can
  • the first precoding granularity is used to obtain more possible precoding arrangements on the uplink reference signal resources. That is, the first precoding granularity is decoupled from the size of the uplink reference signal resources, so as to obtain more and more flexible uplink reference signal resource configurations. It is helpful for the network equipment to obtain more accurate channel measurement results and perform reasonable scheduling for subsequent uplink data transmission.
  • the terminal device and/or the network device may perform part or all of the steps in the embodiments. These steps or operations are only examples, and the embodiments of the present application may also perform other operations or variations of various operations.
  • each step may be performed in a different order presented in each embodiment, and it may not be necessary to perform all operations in the embodiments of the present application.
  • the size of the sequence number of each step does not mean the order of execution.
  • the execution sequence of each process should be determined by its function and internal logic, and should not constitute any limitation to the implementation process of the embodiments of the present application.
  • FIG. 22 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1000 may include a processing unit 1100 and a transceiving unit 1200.
  • the communication device 1000 may correspond to the terminal device in the above method embodiment, for example, it may be a terminal device, or a component (such as a circuit, a chip, or a chip system, etc.) configured in the terminal device.
  • a component such as a circuit, a chip, or a chip system, etc.
  • the communication device 1000 may correspond to the terminal device in the method 200 or the method 300 according to an embodiment of the present application, and the communication device 1000 may include a terminal device for executing the method 200 in FIG. 3 or the method 300 in FIG. The unit of the method performed by the device. In addition, each unit in the communication device 1000 and other operations and/or functions described above are used to implement the corresponding process of the method 200 in FIG. 3 or the method 300 in FIG. 17, respectively.
  • the processing unit 1100 can be used to perform step 201, step 204, and step 210 in the method 200, and the transceiver unit 1200 can be used to perform step 203 in the method 200.
  • step 205, step 206, step 208, step 209, and step 211 the specific process for each unit to execute the foregoing corresponding steps has been described in detail in the foregoing method embodiment, and is not repeated here for brevity.
  • the processing unit 1100 can be used to perform step 301, step 304, and step 310 in the method 300, and the transceiver unit 1200 can be used to perform step 302 and step 303 in the method 200. , Step 305, step 306, step 308, step 309, and step 311. It should be understood that the specific process for each unit to execute the foregoing corresponding steps has been described in detail in the foregoing method embodiment, and is not repeated here for brevity.
  • the transceiver unit 1200 in the communication device 1000 may be implemented by a transceiver, for example, it may correspond to the transceiver 2020 in the communication device 2000 shown in FIG. 23 or the transceiver 2020 in FIG. 24
  • the transceiver 3020 in the terminal device 3000 shown the processing unit 1100 in the communication device 1000 may be implemented by at least one processor, for example, may correspond to the processor 2010 in the communication device 2000 shown in FIG. 23 or FIG. 24
  • the transceiver unit 1200 in the communication device 1000 can be implemented through input/output interfaces, circuits, etc., and the processing unit 1100 in the communication device 1000 It can be implemented by a processor, microprocessor, or integrated circuit integrated on the chip or chip system.
  • the communication device 1000 may correspond to the network device in the above method embodiment (for example, network device #1 or network device #2), for example, it may be a network device, or a component configured in the network device (such as Circuit, chip or chip system, etc.).
  • the communication device 1000 may correspond to the network device #1 or the network device #2 in the method 200 or the method 300 according to the embodiment of the present application, and the communication device 1000 may include a method for executing the method 200 or diagram in FIG. 3 A unit of the method executed by the network device #1 or the network device #2 in the method 300 in 17.
  • each unit in the communication device 1000 and other operations and/or functions described above are used to implement the corresponding process of the method 200 in FIG. 3 or the method 300 in FIG. 17, respectively.
  • the processing unit 1100 can be used to execute step 207 in the method 200
  • the transceiver unit 1200 can be used to execute step 202, step 203, step 205, and step 205 in the method 200.
  • step 206, step 208, step 209, and step 211 At least one of step 206, step 208, step 209, and step 211.
  • the processing unit 1100 can be used to perform step 307 in the method 300, and the transceiver unit 1200 can be used to perform step 302, step 303, step 305, and step 306 in the method 300. , At least one of step 308, step 309, and step 311. It should be understood that the specific process for each unit to execute the foregoing corresponding steps has been described in detail in the foregoing method embodiment, and is not repeated here for brevity.
  • the transceiver unit 1200 in the communication device 1000 may be implemented by a transceiver, for example, it may correspond to the transceiver 2020 in the communication device 2000 shown in FIG. 23 or the transceiver 2020 in FIG. 25
  • the processing unit 1100 in the communication device 1000 may be implemented by at least one processor, for example, may correspond to the processor 2010 in the communication device 2000 shown in FIG. 23 or the processor 2010 shown in FIG. 25
  • the processing unit 4200 or the processor 4202 in the base station 4000 is output.
  • the transceiver unit 1200 in the communication device 1000 can be implemented through input/output interfaces, circuits, etc., and the processing unit 1100 in the communication device 1000 It can be implemented by a processor, microprocessor, or integrated circuit integrated on the chip or chip system.
  • FIG. 23 is another schematic block diagram of a communication device 2000 provided by an embodiment of the present application.
  • the communication device 2000 includes a processor 2010, a transceiver 2020, and a memory 2030.
  • the processor 2010, the transceiver 2020, and the memory 2030 communicate with each other through an internal connection path.
  • the memory 2030 is used to store instructions, and the processor 2010 is used to execute the instructions stored in the memory 2030 to control the transceiver 2020 to send signals and / Or receive the signal.
  • the communication apparatus 2000 may correspond to the terminal device in the foregoing method embodiment, and may be used to execute various steps and/or processes performed by the network device or terminal device in the foregoing method embodiment.
  • the memory 2030 may include a read-only memory and a random access memory, and provide instructions and data to the processor. A part of the memory may also include a non-volatile random access memory.
  • the memory 2030 may be a separate device or integrated in the processor 2010.
  • the processor 2010 may be used to execute instructions stored in the memory 2030, and when the processor 2010 executes the instructions stored in the memory, the processor 2010 is used to execute each of the above method embodiments corresponding to the network device or the terminal device. Steps and/or processes.
  • the communication device 2000 is the terminal device in the foregoing embodiment.
  • the communication device 2000 is the network device in the foregoing embodiment, such as network device #1 or network device #2.
  • the transceiver 2020 may include a transmitter and a receiver.
  • the transceiver 2020 may further include an antenna, and the number of antennas may be one or more.
  • the processor 2010, the memory 2030, and the transceiver 2020 may be devices integrated on different chips.
  • the processor 2010 and the memory 2030 may be integrated in a baseband chip, and the transceiver 2020 may be integrated in a radio frequency chip.
  • the processor 2010, the memory 2030, and the transceiver 2020 may also be devices integrated on the same chip. This application does not limit this.
  • the communication device 2000 is a component configured in a terminal device, such as a circuit, a chip, a chip system, and so on.
  • the communication device 2000 is a component configured in a network device, such as a circuit, a chip, a chip system, and the like.
  • the transceiver 2020 may also be a communication interface, such as an input/output interface, a circuit, and so on.
  • the transceiver 2020, the processor 2010 and the memory 2020 may be integrated in the same chip, such as integrated in a baseband chip.
  • FIG. 24 is a schematic structural diagram of a terminal device 3000 provided by an embodiment of the present application.
  • the terminal device 3000 can be applied to the system shown in FIG. 1 to perform the functions of the terminal device in the foregoing method embodiment.
  • the terminal device 3000 includes a processor 3010 and a transceiver 3020.
  • the terminal device 3000 further includes a memory 3030.
  • the processor 3010, the transceiver 3020, and the memory 3030 can communicate with each other through an internal connection path to transfer control and/or data signals.
  • the memory 3030 is used to store computer programs, and the processor 3010 is used to download from the memory 3030. Call and run the computer program to control the transceiver 3020 to send and receive signals.
  • the terminal device 3000 may further include an antenna 3040 for transmitting the uplink data or uplink control signaling output by the transceiver 3020 through a wireless signal.
  • the foregoing processor 3010 and the memory 3030 may be combined into a processing device, and the processor 3010 is configured to execute the program code stored in the memory 3030 to implement the foregoing functions.
  • the memory 3030 may also be integrated in the processor 3010 or independent of the processor 3010.
  • the processor 3010 may correspond to the processing unit 1100 in FIG. 22 or the processor 2010 in FIG. 23.
  • the aforementioned transceiver 3020 may correspond to the transceiver unit 1200 in FIG. 22 or the transceiver 2020 in FIG. 23.
  • the transceiver 3020 may include a receiver (or receiver, receiving circuit) and a transmitter (or transmitter, transmitting circuit). Among them, the receiver is used to receive signals, and the transmitter is used to transmit signals.
  • the terminal device 3000 shown in FIG. 24 can implement various processes involving the terminal device in the method embodiment shown in FIG. 2.
  • the operations and/or functions of each module in the terminal device 3000 are respectively for implementing the corresponding processes in the foregoing method embodiments.
  • the above-mentioned processor 3010 can be used to execute the actions described in the previous method embodiments implemented by the terminal device, and the transceiver 3020 can be used to execute the terminal device described in the previous method embodiments to send to or receive from the network device. action.
  • the transceiver 3020 can be used to execute the terminal device described in the previous method embodiments to send to or receive from the network device. action.
  • the aforementioned terminal device 3000 may further include a power supply 3050 for providing power to various devices or circuits in the terminal device.
  • the terminal device 3000 may also include one or more of the input unit 3060, the display unit 3070, the audio circuit 3080, the camera 3090, and the sensor 3100.
  • the audio circuit may also include a speaker 3082, a microphone 3084, and so on.
  • FIG. 25 is a schematic structural diagram of a network device provided by an embodiment of the present application, for example, it may be a schematic structural diagram of a base station.
  • the base station 4000 can be applied to the system shown in FIG. 1 to perform the functions of the network device in the foregoing method embodiment.
  • the base station 4000 may include one or more radio frequency units, such as a remote radio unit (RRU) 4100 and one or more baseband units (BBU) (also known as distributed unit (DU) )) 4200.
  • RRU 4100 may be called a transceiver unit, and may correspond to the transceiver unit 1200 in FIG. 22 or the transceiver 2020 in FIG. 23.
  • the RRU 4100 may also be called a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 4101 and a radio frequency unit 4102.
  • the RRU 4100 may include a receiving unit and a sending unit.
  • the receiving unit may correspond to a receiver (or receiver or receiving circuit), and the sending unit may correspond to a transmitter (or transmitter or transmitting circuit).
  • the RRU 4100 part is mainly used for receiving and sending radio frequency signals and conversion between radio frequency signals and baseband signals, for example, for sending instruction information to terminal equipment.
  • the 4200 part of the BBU is mainly used for baseband processing and control of base stations.
  • the RRU 4100 and the BBU 4200 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 4200 is the control center of the base station, and can also be called a processing unit. It can correspond to the processing unit 1100 in FIG. 22 or the processor 2010 in FIG. 23, and is mainly used to complete baseband processing functions, such as channel coding and multiplexing. , Modulation, spread spectrum and so on.
  • the BBU processing unit
  • the BBU may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment, for example, to generate the foregoing indication information.
  • the BBU 4200 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network with a single access standard (such as an LTE network), or support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 4200 further includes a memory 4201 and a processor 4202.
  • the memory 4201 is used to store necessary instructions and data.
  • the processor 4202 is used to control the base station to perform necessary actions, for example, to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 4201 and the processor 4202 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the base station 4000 shown in FIG. 25 can implement various processes involving network devices in the method embodiment shown in FIG. 3 or FIG. 17.
  • the operations and/or functions of the various modules in the base station 4000 are to implement the corresponding procedures in the foregoing method embodiments.
  • the above-mentioned BBU 4200 can be used to perform the actions described in the previous method embodiments implemented by the network device, and the RRU 4100 can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • the RRU 4100 can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • the base station 4000 shown in FIG. 25 is only a possible form of network equipment, and should not constitute any limitation in this application.
  • the method provided in this application can be applied to other types of network equipment.
  • it may include AAU, it may also include CU and/or DU, or it may include BBU and adaptive radio unit (ARU), or BBU; it may also be customer premises equipment (CPE), or it may be
  • AAU AAU
  • CU CU
  • DU BBU
  • BBU adaptive radio unit
  • BBU BBU
  • CPE customer premises equipment
  • the CU and/or DU can be used to perform the actions described in the previous method embodiment implemented by the network device, and the AAU can be used to perform the network device described in the previous method embodiment to send to or receive from the terminal device Actions.
  • the AAU can be used to perform the network device described in the previous method embodiment to send to or receive from the terminal device Actions.
  • the present application also provides a processing device including at least one processor, and the at least one processor is configured to execute a computer program stored in a memory, so that the processing device executes the terminal device or the network device in any of the foregoing method embodiments The method performed.
  • the embodiment of the present application also provides a processing device, including a processor and a communication interface.
  • the communication interface is coupled with the processor.
  • the communication interface is used to input and/or output information.
  • the information includes at least one of instructions and data.
  • the processor is used to execute a computer program, so that the processing apparatus executes the method executed by the terminal device or the network device in any of the foregoing method embodiments.
  • An embodiment of the present application also provides a processing device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the processing device executes the method executed by the terminal device or the network device in any of the foregoing method embodiments.
  • the aforementioned processing device may be one or more chips.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or It is a central processor unit (CPU), it can also be a network processor (NP), it can also be a digital signal processing circuit (digital signal processor, DSP), or it can be a microcontroller (microcontroller unit). , MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processing circuit
  • microcontroller unit microcontroller unit
  • MCU programmable logic device
  • PLD programmable logic device
  • each step of the above method can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product.
  • the computer program product includes: computer program code, which when the computer program code runs on a computer, causes the computer to execute the steps shown in FIG. 3 or FIG. The method executed by the terminal device or the method executed by the network device in the embodiment is shown.
  • the present application also provides a computer-readable storage medium that stores program code, which when the program code runs on a computer, causes the computer to execute FIG. 3 or FIG.
  • the present application also provides a system, which includes one or more of the aforementioned terminal devices and one or more of the aforementioned network devices.
  • the network equipment in each of the above-mentioned device embodiments corresponds completely to the network equipment or terminal equipment in the terminal equipment and method embodiments, and the corresponding modules or units execute the corresponding steps.
  • the communication unit executes the receiving or the terminal equipment in the method embodiments.
  • the processing unit executes the functions of specific units, refer to the corresponding method embodiments. Among them, there may be one or more processors.
  • the terminal device may be used as an example of the receiving device, and the network device may be used as an example of the sending device. But this should not constitute any limitation to this application.
  • the sending device and the receiving device may both be terminal devices and the like. This application does not limit the specific types of sending equipment and receiving equipment.
  • component used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, a processor, an object, an executable file, a thread of execution, a program, and/or a computer running on a processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or threads of execution, and components may be located on one computer and/or distributed among two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • the component can be based on, for example, a signal with one or more data packets (such as data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals) Communicate through local and/or remote processes.
  • a signal with one or more data packets such as data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals
  • Communicate through local and/or remote processes Communicate through local and/or remote processes.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种发送和接收上行参考信号的方法及通信装置,以期获得准确的上行信道测量结果。该方法包括:根据资源分配规则,确定多个上行参考信号资源中用于承载上行参考信号的多块第一资源对应的下行参考信号资源,每个上行参考信号资源包括一块或多块第一资源;基于每块第一资源对应的下行参考信号资源,确定每块第一资源对应的预编码;此后发送的预编码后的上行参考信号是基于每块第一资源对应的预编码对上行参考信号进行预编码得到的。此后,可以根据第一资源与预编码的对应关系确定用于上行数据传输的第二资源对应的预编码。因此,第一资源与预编码的对应关系和第二资源与预编码的对应关系是相应的,有利于为上行数据的传输做出合理调度。

Description

一种发送和接收上行参考信号的方法及通信装置 技术领域
本申请涉及无线通信领域,并且更具体地,涉及一种发送和接收上行参考信号的方法及通信装置。
背景技术
多用户多输入多输出(multi-user multi-input multi-output,MU-MIMO)能够支持网络设备与多个终端设备之间的通信。为了提高上行传输性能,终端设备可以通过预编码的方式来消除干扰。为了提高传输性能,终端设备可以使用例如预编码轮询(precoder cycling)、随机选择预编码等方式来选择用于上行数据传输的预编码。
终端设备的上行传输通常可以由网络设备来调度。网络设备往往根据上行信道的测量结果来为上行调度做决策。终端设备可以向网络设备发送上行参考信号,如探测参考信号(sounding reference signal,SRS),以便于网络设备测量上行信道。因此,如何对上行参考信号进行配置,以获得准确的上行信道的测量结果,以便于网络设备为上行调度做出合理的决策,成为亟待解决的技术问题。
发明内容
本申请提供一种发送和接收上行参考信号的方法及通信装置,以期对上行参考信号进行合理配置,以获得准确的上行信道的测量结果。
第一方面,提供了一种发送上行参考信号的方法,该方法可以由终端设备执行,或者,也可以由配置在终端设备中的部件(如电路、芯片或芯片系统等)执行。本申请对此不做限定。
具体地,该方法包括:根据资源分配规则,确定多个上行参考信号资源中用于承载上行参考信号的多块第一资源对应的下行参考信号资源,每个上行参考信号资源包括一块或多块第一资源,所述第一资源在时域或频域上的大小基于第一预编码粒度而确定,所述第一预编码粒度表示在一个上行参考信号资源中对应于同一个预编码的连续资源在时域或频域上的大小;基于每块第一资源对应的下行参考信号资源,确定每块第一资源对应的预编码;发送预编码后的上行参考信号,所述预编码后的上行参考信号是基于每块第一资源对应的预编码对上行参考信号进行预编码得到的。
其中,资源分配规则可以是指,可用于确定用于传输上行参考信号的时频资源上的第一资源与下行参考信号资源的对应关系的规则。基于不同的维度,资源分配规则可用于确定第一资源在频域上与下行参考信号资源的对应关系,或者,在时域上与下行参考信号资源的对应关系。与之对应,资源分配规则包括频域资源分配规则和时域资源分配规则。本申请包括但不限于此。
可选地,所述资源分配规则包括频域资源分配规则,所述频域资源分配规则用于确定 频分复用的多块第一资源与下行参考信号资源的对应关系。所述资源分配规则包括时域资源分配规则,所述时域资源分配规则用于确定时分复用的多块第一资源与下行参考信号资源的对应关系。
在一种实现方式中,所述方法还包括:接收所述资源分配规则的指示信息。即,资源分配规则可以由网络设备指示。在另一种实现方式中,所述资源分配规则为预定义的。例如,协议预定义。本申请对此不做限定。
第一预编码粒度可以理解为终端设备对上行参考信号进行预编码所基于的粒度。第一预编码粒度可以小于或等于一个上行参考信号资源。换言之,一个上行参考信号资源可以包括一块或多块第一资源。
在一种实现方式中,所述方法还包括:接收所述第一预编码粒度的指示信息。即,第一预编码的粒度可以由网络设备配置。在另一种实现方式中,所述第一预编码粒度为预定义的。例如,协议预定义。本申请对此不做限定。
基于上述技术方案,终端设备可以预先确定上行参考信号资源中多块第一资源对应的下行参考信号资源,进而确定预编码与第一资源的对应关系,再根据预编码与第一资源的对应关系,对承载于上行参考信号资源上的上行参考信号进行预编码,以使得后续传输的预编码后的上行参考信号具有不同的排布方式。由于基于本申请实施例的方法而传输的预编码后的上行参考信号基于第一预编码粒度进行预编码,使得用作上行参考信号的预编码不再依赖于上行参考信号资源的粒度,而可以通过第一预编码粒度来获得更多可能的预编码在上行参考信号资源上的排布方式。也就是将对上行参考信号进行预编码所基于的粒度与上行参考信号资源的大小解耦,从而获得更多更灵活的上行参考信号资源的配置。有利于网络设备获得较为准确的信道测量结果,为后续的上行数据传输进行合理的调度。
结合第一方面,在第一方面的某些可能的实现方式中,所述方法还包括:确定用于上行参考信号传输的多个预编码,所述多个预编码基于对多个下行参考信号资源的测量确定,所述多个下行参考信号资源与所述多个上行参考信号资源对应;所述确定每块第一资源对应的预编码,包括:基于所述多个预编码,确定每块第一资源对应的预编码。
也就是说,终端设备可以基于多个上行参考信号资源对应的多个下行参考信号资源进行测量,以确定用于上行参考信号传输的多个预编码。对于上行参考信号资源中的每块第一资源,可以进一步从该多个预编码中确定一个或多个来对上行参考信号进行预编码。
结合第一方面,在第一方面的某些可能的实现方式中,所述基于所述多个预编码,确定每块第一资源对应的预编码,包括:基于预编码的选择规则以及所述多个预编码,确定每块第一资源对应的预编码。
也就是说,终端设备可以自行从多个预编码中确定每块第一资源对应的预编码。其中,预编码的选择规则也就是用于确定每块第一资源所基于的规则。在每块第一资源对应的预编码为多个的情况下,终端设备可以基于该预编码的选择规则确定每块第一资源对应的预编码。
作为示例而非限定,所述预编码的选择规则包括:预编码轮询、随机选择、吞吐量最大化等。本申请包括但不限于此。
在一种实现方式中,所述方法还包括:接收所述预编码的选择规则的指示信息。即,预编码的选择规则由网络设备指示。在另一种实现方式中,所述预编码的选择规则为预定 义的。例如,协议预定义。本申请对此不做限定。
结合第一方面,在第一方面的某些可能的实现方式中,所述方法还包括:接收第一指示信息,所述第一指示信息用于指示所述多个上行参考信号资源与多个下行参考信号资源的对应关系。
即,上述多个上行参考信号资源与多个下行参考信号资源的对应关系可以由网络设备通过第一指示信息来指示。
结合第一方面,在第一方面的某些可能的实现方式中,所述多个下行参考信号资源中的每个下行参考信号资源与所述多个上行参考信号资源中的至少一个上行参考信号资源对应,所述至少一个上行参考信号资源中的每个上行参考信号资源与所述多个预编码中的一个或多个预编码对应,每个上行参考信号资源对应的预编码基于对所对应的下行参考信号资源的测量得到。
每个下行参考信号资源可以与一个或多个上行参考信号资源对应。同一个上行参考信号资源可以与一个或多个下行参考信号资源对应。每个上行参考信号资源对应的预编码可以基于对其所对应的一个或多个下行参考信号资源的测量得到。
一种可能的设计是,每个上行参考信号资源对应的预编码基于对所对应的一个下行参考信号资源的测量得到。
即,每个上行参考信号资源与一个下行参考信号资源对应。基于对一个下行参考信号资源的测量可以到得到一个或多个预编码,该一个或多个预编码可用于对该下行参考信号资源对应的上行参考信号资源上的上行参考信号做预编码。
结合第一方面,在第一方面的某些可能的实现方式中,所述下行参考信号资源为非零功率信道状态信息参考信号(non-zero power channel state information reference signal,NZP CSI-RS)资源,所述上行参考信号资源为探测参考信号(sounding reference signal,SRS)资源。
在一种可能的设计中,多个NZP CSI-RS资源中的每个NZP CSI-RS资源所对应的所述至少一个SRS资源包含在一个SRS资源集中。
同一个下行参考信号资源所对应的一个或多个上行参考信号资源可以称为一个上行参考信号资源集。一个下行参考信号资源与一个上行参考信号资源集对应,也就实现了一个下行参考信号资源与一个上行参考信号资源集中的一个或多个上行参考信号资源对应。
应理解,将一个下行参考信号资源与一个上行参考信号资源集对应仅为一种可能的实现方式,不应对本申请构成任何限定。
应理解,NZP CSI-RS资源作为下行参考信号资源的一例,SRS资源作为上行参考信号资源的一例,仅为示例,不应对本申请构成任何限定。本申请对下行参考信号资源和上行参考信号资源不做限定。
结合第一方面,在第一方面的某些可能的实现方式中,所述方法还包括:接收第二指示信息,所述第二指示信息用于指示多个SRS资源集中的每个SRS资源集中的一个或多个SRS资源,所述一个或多个SRS资源对应的预编码为用于上行数据传输的预编码。
网络设备可以基于对上行参考信号资源的测量,确定用于后续上行数据传输的预编码。由上文所述的第一资源与预编码之间的对应关系以及第一资源与上行参考信号资源之间的关系可知,每个SRS资源与预编码之间具有对应关系。因此,网络设备通过第二指 示信息来指示SRS资源,也即间接地指示了被选择用于后续上行数据传输的预编码。
结合第一方面,在第一方面的某些可能的实现方式中,所述方法还包括:基于所述第二指示信息所指示的SRS资源,以及所述多块第一资源对应的预编码,确定上行传输资源中的多块第二资源对应的预编码,所述是上行传输资源用于承载上行数据,每块第二资源在时域或频域上的大小基于第二预编码粒度而确定,所述第二预编码粒度表示所述上行传输资源中对应于同一个预编码的连续资源在时域或频域上的大小;发送预编码后的上行数据,所述预编码后的上行数据是基于所述上行传输资源中每块第二资源对应的预编码对上行数据进行预编码得到的。
由于终端设备在发送上行参考信号时,已经确定了每块第一资源对应的预编码,也即确定了每个SRS资源对应的预编码。因此,终端设备可以基于第二指示信息所指示的SRS资源确定用于上行数据传输的预编码。终端设备还可以基于多块第一资源与多个预编码的对应关系,将被选择用于上行传输的预编码映射到多块第二资源上,使得多块第二资源与多个预编码的对应关系与多块第一资源与多个预编码的对应关系相对应。
换言之,多块第二资源与下行参考信号资源的对应关系也可以遵循上文所述的资源分配规则来确定。确定多块第二资源与下行参考信号资源的对应关系所遵循的资源分配规则与上文所述确定多块第一资源与下行参考信号资源的对应关系所遵循的资源分配规则是相同的。
由此而确定的每块第二资源对应的预编码是基于对预编码后的上行参考信号的测量所确定的。而用于承载预编码后的上行参考信号的多块第一资源对应的预编码的设计考虑到了后续上行数据传输时可能对资源作出的不同的分配,对上行参考信号资源定义了更细的预编码粒度,从而获得更多更灵活的上行参考信号资源与预编码的对应关系。因此有利于网络设备获得较为准确的信道测量结果,为后续的上行数据传输进行合理的调度。
结合第一方面,在第一方面的某些可能的实现方式中,所述第二指示信息还用于指示用于所述上行数据传输的传输层数,每个SRS资源集中的一个或多个SRS资源中的每个SRS资源对应一个传输层,每个SRS资源对应的预编码用于所对应的传输层上的上行数据传输。
进一步地,所述第二指示信息还用于指示与一个或多个传输层对应的一个或多个解调参考信号(demodulation reference signal,DMRS)端口,所述一个或多个传输层为用于所述上行数据传输的传输层。
终端设备可以将第二指示信息中所指示的SRS资源与其对应的传输层、DMRS端口建立映射关系。每个SRS资源可以映射至一个传输层,对应于一个DMRS端口。
在一种实现方式中,所述方法还包括:接收所述第二预编码粒度的指示信息。即,第二预编码粒度由网络设备配置。在另一种实现方式中,第二预编码粒度为预定义的。例如,协议预定义。本申请对此不做限定。
可选地,第一预编码粒度与第二预编码粒度相同。此情况下,上述第一预编码粒度的指示信息和第二预编码粒度的指示信息可以是同一条指示信息。
可选地,第一预编码粒度与第二预编码粒度不同。
第二方面,提供了一种接收上行参考信号的方法,该方法可以由网络设备执行,或者,也可以由配置在网络设备中的部件(例如电路、芯片、芯片系统等)执行。本申请对此不 做限定。
具体地,该方法包括:接收预编码后的上行参考信号,所述预编码后的上行参考信号是基于每块第一资源对应的预编码对上行参考信号进行预编码得到的,所述第一资源是多个上行参考信号资源中用于承载上行参考信号的资源,每块第一资源对应的预编码基于对所对应的下行参考信号资源的测量确定,每块第一资源对应的下行参考信号基于资源分配规则确定;其中,所述第一资源在时域或频域上的大小基于第一预编码粒度而确定,所述第一预编码粒度表示在一个上行参考信号资源中对应于同一个预编码的连续资源在时域或频域上的大小;基于所述预编码后的上行参考信号,确定用于上行数据传输的预编码,所述用于上行数据传输的预编码是所述多个预编码中的至少部分预编码。
其中,资源分配规则可以是指,可用于确定用于传输上行参考信号的时频资源上的第一资源与下行参考信号资源的对应关系的规则。基于不同的维度,资源分配规则可用于确定第一资源在频域上与下行参考信号资源的对应关系,或者,在时域上与下行参考信号资源的对应关系。与之对应,资源分配规则包括频域资源分配规则和时域资源分配规则。本申请包括但不限于此。
可选地,所述资源分配规则包括频域资源分配规则,所述频域资源分配规则用于确定频分复用的多块第一资源与下行参考信号资源的对应关系。所述资源分配规则包括时域资源分配规则,所述时域资源分配规则用于确定时分复用的多块第一资源与下行参考信号资源的对应关系。
在一种实现方式中,所述方法还包括:接收所述资源分配规则的指示信息。即,资源分配规则可以由网络设备指示。在另一种实现方式中,所述资源分配规则为预定义的。例如,协议预定义。本申请对此不做限定。
第一预编码粒度可以理解为终端设备对上行参考信号进行预编码所基于的粒度。第一预编码粒度可以小于或等于一个上行参考信号资源。换言之,一个上行参考信号资源可以包括一块或多块第一资源。
在一种实现方式中,所述方法还包括:接收所述第一预编码粒度的指示信息。即,第一预编码的粒度可以由网络设备配置。在另一种实现方式中,所述第一预编码粒度为预定义的。例如,协议预定义。本申请对此不做限定。
基于上述技术方案,终端设备可以预先确定上行参考信号资源中多块第一资源对应的下行参考信号资源,进而确定预编码与第一资源的对应关系,再根据预编码与第一资源的对应关系,对承载于上行参考信号资源上的上行参考信号进行预编码,以使得后续传输的预编码后的上行参考信号具有不同的排布方式。由于基于本申请实施例的方法而传输的预编码后的上行参考信号基于第一预编码粒度进行预编码,使得用作上行参考信号的预编码不再依赖于上行参考信号资源的粒度,而可以通过第一预编码粒度来获得更多可能的预编码在上行参考信号资源上的排布方式。也就是将对上行参考信号进行预编码所基于的粒度与上行参考信号资源的大小解耦,从而获得更多更灵活的上行参考信号资源的配置。有利于网络设备获得较为准确的信道测量结果,为后续的上行数据传输进行合理的调度。
结合第二方面,在第二方面的某些可能的实现方式中,所述方法还包括:发送第一指示信息,所述第一指示信息用于指示所述多个上行参考信号资源与多个下行参考信号资源的对应关系。
即,上述多个上行参考信号资源与多个下行参考信号资源的对应关系可以由网络设备通过第一指示信息来指示。
结合第二方面,在第二方面的某些可能的实现方式中,所述多个下行参考信号资源中的每个下行参考信号资源与所述多个上行参考信号资源中的至少一个上行参考信号资源对应,所述至少一个上行参考信号资源中的每个上行参考信号资源与所述多个预编码中的一个或多个预编码对应,每个上行参考信号资源对应的预编码基于对所对应的下行参考信号资源的测量得到。
每个下行参考信号资源可以与一个或多个上行参考信号资源对应。同一个上行参考信号资源可以与一个或多个下行参考信号资源对应。每个上行参考信号资源对应的预编码可以基于对其所对应的一个或多个下行参考信号资源的测量得到。
一种可能的设计是,每个上行参考信号资源对应的预编码基于对所对应的一个下行参考信号资源的测量得到。
即,每个上行参考信号资源与一个下行参考信号资源对应。基于对一个下行参考信号资源的测量可以到得到一个或多个预编码,该一个或多个预编码可用于对该下行参考信号资源对应的上行参考信号资源上的上行参考信号做预编码。
结合第二方面,在第二方面的某些可能的实现方式中,所述下行参考信号资源为NZP CSI-RS资源,所述上行参考信号资源为SRS资源。
在一种可能的设计中,多个NZP CSI-RS资源中的每个NZP CSI-RS资源所对应的所述至少一个SRS资源包含在一个SRS资源集中。
同一个下行参考信号资源所对应的一个或多个上行参考信号资源可以称为一个上行参考信号资源集。一个下行参考信号资源与一个上行参考信号资源集对应,也就实现了一个下行参考信号资源与一个上行参考信号资源集中的一个或多个上行参考信号资源对应。
应理解,将一个下行参考信号资源与一个上行参考信号资源集对应仅为一种可能的实现方式,不应对本申请构成任何限定。
应理解,NZP CSI-RS资源作为下行参考信号资源的一例,SRS资源作为上行参考信号资源的一例,仅为示例,不应对本申请构成任何限定。本申请对下行参考信号资源和上行参考信号资源不做限定。
结合第二方面,在第二方面的某些可能的实现方式中,所述方法还包括:发送第二指示信息,所述第二指示信息用于指示多个SRS资源集的每个SRS资源集中的一个或多个SRS资源,所述一个或多个SRS资源对应的预编码为用于所述上行数据传输的预编码。
网络设备可以基于对上行参考信号资源的测量,确定用于后续上行数据传输的预编码。由上文所述的第一资源与预编码之间的对应关系以及第一资源与上行参考信号资源之间的关系可知,每个SRS资源与预编码之间具有对应关系。因此,网络设备通过第二指示信息来指示SRS资源,也即间接地指示了被选择用于后续上行数据传输的预编码。
结合第二方面,在第二方面的某些可能的实现方式中,所述第二指示信息还用于指示用于所述上行数据传输的传输层数,每个SRS资源集中的一个或多个SRS资源中的每个SRS资源对应一个传输层,每个SRS资源对应的预编码用于所对应的传输层上的上行数据传输。
进一步地,所述第二指示信息还用于指示与一个或多个传输层对应的一个或多个解调 参考信号DMRS端口,所述一个或多个传输层为用于所述上行数据传输的传输层。
终端设备可以将第二指示信息中所指示的SRS资源与其对应的传输层、DMRS端口建立映射关系。每个SRS资源可以映射至一个传输层,对应于一个DMRS端口。
结合第二方面,在第二方面的某些可能的实现方式中,所述方法还包括:接收预编码后的上行数据,所述预编码后的上行数据是基于每块第二资源对应的预编码对上行数据进行预编码得到的,每块第二资源对应的预编码基于所述第二指示信息指示的SRS资源以及所述多块第一资源对应的预编码确定,所述第二资源在时域或频域上的大小基于第二预编码粒度而确定,所述第二预编码粒度表示在上行传输资源中对应于同一个预编码的连续资源在时域或频域上的大小。
其中,第二预编码粒度可以理解为终端设备对上行数据进行预编码所基于的粒度。
在一种实现方式中,所述方法还包括:发送所述第二预编码粒度的指示信息。即,第二预编码粒度由网络设备配置。在另一种实现方式中,第二预编码粒度为预定义的。例如,协议预定义。本申请对此不做限定。
可选地,第一预编码粒度与第二预编码粒度相同。此情况下,上述第一预编码粒度的指示信息和第二预编码粒度的指示信息可以是同一条指示信息。
可选地,第一预编码粒度与第二预编码粒度不同。
由于终端设备在发送上行参考信号时,已经确定了每块第一资源对应的预编码,也即确定了每个SRS资源对应的预编码。因此,终端设备可以基于第二指示信息所指示的SRS资源确定用于上行数据传输的预编码。终端设备还可以基于多块第一资源与多个预编码的对应关系,将被选择用于上行传输的预编码映射到多块第二资源上,使得多块第二资源与多个预编码的对应关系与多块第一资源与多个预编码的对应关系相对应。
换言之,多块第二资源与下行参考信号资源的对应关系也可以遵循上文所述的资源分配规则来确定。确定多块第二资源与下行参考信号资源的对应关系所遵循的资源分配规则与上文所述确定多块第一资源与下行参考信号资源的对应关系所遵循的资源分配规则是相同的。
由此而确定的每块第二资源对应的预编码是基于对预编码后的上行参考信号的测量所确定的。而用于承载预编码后的上行参考信号的多块第一资源对应的预编码的设计考虑到了后续上行数据传输时可能对资源作出的不同的分配,对上行参考信号资源定义了更细的预编码粒度,从而获得更多更灵活的上行参考信号资源与预编码的对应关系。因此有利于网络设备获得较为准确的信道测量结果,为后续的上行数据传输进行合理的调度。
结合第二方面,在第二方面的某些可能的实现方式中,对每块第一资源对应的下行参考信号资源的测量确定的预编码为多个时,每块第一资源对应的预编码还基于预编码的选择规则确定。
也就是说,终端设备可以自行从多个预编码中确定每块第一资源对应的预编码。其中,预编码的选择规则也就是用于确定每块第一资源所基于的规则。在每块第一资源对应的预编码为多个的情况下,终端设备可以基于该预编码的选择规则确定每块第一资源对应的预编码。
作为示例而非限定,所述预编码的选择规则包括:预编码轮询、随机选择、吞吐量最大化等。本申请包括但不限于此。
在一种实现方式中,所述方法还包括:发送所述预编码的选择规则的指示信息。即,预编码的选择规则由网络设备指示。在另一种实现方式中,所述预编码的选择规则为预定义的。例如,协议预定义。本申请对此不做限定。
第三方面,提供了一种通信装置,该通信装置可以是终端设备,或终端设备中的部件。该通信装置可以包括用于执行第一方面以及第一方面中任一种可能实现方式中的方法的各个模块或单元。
第四方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合,所述通信接口用于输入和/或输出信息,所述信息包括指令和数据中的至少一项。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,所述通信接口可以是收发器,或,输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片或芯片系统。当该通信装置为配置于终端设备中的芯片或芯片系统时,所述通信接口可以是输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
第五方面,提供了一种通信装置,该通信装置可以是网络设备,或网络设备中的部件。该通信装置可以包括用于执行第二方面以及第二方面中任一种可能实现方式中的方法的各个模块或单元。
第六方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合,所述通信接口用于输入和/或输出信息,所述信息包括指令和数据中的至少一项。
在一种实现方式中,该通信装置为网络设备。当该通信装置为网络设备时,所述通信接口可以是收发器,或,输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片或芯片系统。当该通信装置为配置于网络设备中的芯片或芯片系统时,所述通信接口可以是输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
第七方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述处理器执行上述第一方面和第二方面中任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可 以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第八方面,提供了一种处理装置,包括通信接口和处理器。所述通信接口与所述处理器耦合。所述通信接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。所述处理器用于执行计算机程序,以使得所述处理装置执行第一方面和第二方面中任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
第九方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以使得所述处理装置执行第一方面和第二方面中任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的信息交互过程,例如发送指示信息可以为从处理器输出指示信息的过程,接收指示信息可以为向处理器输入接收到的指示信息的过程。具体地,处理输出的信息可以输出给发射器,处理器接收的输入信息可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第八方面和第九方面中的装置可以是芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第十方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面和第二方面中任一种可能实现方式中的方法。
第十一方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面和第二方面中任一种可能实现方式中的方法。
第十二方面,提供了一种通信系统,包括前述的终端设备和网络设备。
附图说明
图1是适用于本申请实施例提供的方法的通信系统的示意图;
图2是SRS资源和PUSCH的示意图;
图3是本申请实施例提供的发送和接收上行参考信号的方法的示意性流程图;
图4和图5是基于资源分配规则确定的上行参考信号资源中多块第一资源的示意图;
图6至图8是多个下行参考信号资源、多个预编码与多块第一资源的对应关系的示意图;
图9是将SRS资源1和SRS资源2作为一个资源整体,并将SRS资源3和SRS资源4作为一个资源整体的示意图;
图10和图11是多个下行参考信号资源、多个预编码与多块第一资源的对应关系的示意图;
图12是多块第一资源与多个预编码、多个端口的对应关系的示意图;
图13至图16是多块第二资源与多个预编码的对应关系的示意图;
图17是本申请另一实施例提供的发送和接收上行参考信号的方法的示意性流程图;
图18至图21是多个下行参考信号资源、多个预编码与多个上行参考信号资源的对应关系的示意图;
图22和图23是本申请实施例提供的通信装置的示意性框图;
图24是本申请实施例提供的终端设备的结构示意图;
图25是本申请实施例提供的网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请提供的技术方案可以应用于长期演进(Long Term Evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5 th Generation,5G)移动通信系统或新无线接入技术(new radio access technology,NR)或者下一代通信,比如6G。其中,5G移动通信系统可以是非独立组网(non-standalone,NSA)或独立组网(standalone,SA)。
本申请提供的技术方案还可以应用于机器类通信(machine type communication,MTC)、机器间通信长期演进技术(Long Term Evolution-machine,LTE-M)、设备到设备(device to device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)网络或者其他网络。其中,IoT网络例如可以包括车联网。其中,车联网系统中的通信方式统称为车到其他设备(vehicle to X,V2X,X可以代表任何事物),例如,该V2X可以包括:车辆到车辆(vehicle to vehicle,V2V)通信,车辆与基础设施(vehicle to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
本申请提供的技术方案还可以应用于未来的通信系统,如第六代(6 th Generation,6G)移动通信系统等。本申请对此不作限定。
本申请实施例中,网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WiFi)系统 中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU),或者下一代通信6G系统中的基站等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、介质接入控制(medium access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU和AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
网络设备为小区提供服务,终端设备通过网络设备分配的传输资源(例如,频域资源,或者说,频谱资源)与小区进行通信,该小区可以属于宏基站(例如,宏eNB或宏gNB等),也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metrocell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
在本申请实施例中,终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。
终端设备可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例可以为:手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑(如笔记本电脑、掌上电脑等)、移动互联网设备(mobile internet device,MID)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。
其中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设 备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,终端设备还可以是物联网(Internet of things,IoT)系统中的终端设备。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。IoT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。
此外,终端设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
为便于理解本申请实施例,首先做出如下几点说明。
第一,本申请实施例结合多个附图描述了多个预编码与多块第一资源、多个预编码与多个上行参考信号资源的对应关系。这些附图中的资源可以采用频分复用(frequency division multiplexing,FDM)或时分复用(time division multiplexing,TDM)的资源复用方式。附图仅为示例,以FDM或TDM为例来说明,但这不应对本申请构成任何限定。本领域的技术人员基于相同的构思,可以将图中FDM的资源变换为TDM的资源复用方式,也可以将图中TDM的资源变换为FDM的资源复用方式。
第二,在下文示出的实施例中第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的指示信息等。
第三,“预定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。其中,“保存”可以是指,保存在一个或者多个存储器中。所述一个或者多个存储器可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或通信装置中。所述一个或者多个存储器也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
第四,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
第五,在本申请中,“用于指示”可以包括用于直接指示和用于间接指示。当描述某一指示信息用于指示A时,可以包括该指示信息直接指示A或间接指示A,而并不代表该指示信息中一定携带有A。
将指示信息所指示的信息称为待指示信息,则具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。同时,还可以识别各个信息的通用部分并统一指示,以降低单独指示同样的信息而带来的指示开 销。
此外,具体的指示方式还可以是现有各种指示方式,例如但不限于,上述指示方式及其各种组合等。各种指示方式的具体细节可以参考现有技术,本文不再赘述。由上文所述可知,举例来说,当需要指示相同类型的多个信息时,可能会出现不同信息的指示方式不相同的情形。具体实现过程中,可以根据具体的需要选择所需的指示方式,本申请实施例对选择的指示方式不做限定,如此一来,本申请实施例涉及的指示方式应理解为涵盖可以使得待指示方获知待指示信息的各种方法。
待指示信息可以作为一个整体一起发送,也可以分成多个子信息分开发送,而且这些子信息的发送周期和/或发送时机可以相同,也可以不同。具体发送方法本申请不进行限定。其中,这些子信息的发送周期和/或发送时机可以是预先定义的,例如根据协议预先定义的,也可以是发射端设备通过向接收端设备发送配置信息来配置的。其中,该配置信息可以例如但不限于包括无线资源控制信令、介质接入控制(medium access control,MAC)层信令和物理层信令中的一种或者至少两种的组合。其中,无线资源控制信令例如包无线资源控制(radio resource control,RRC)信令;MAC层信令例如包括MAC控制元素(control element,CE);物理层信令例如包括下行控制信息(downlink control information,DCI)。
第六,在本申请实施例中,“当……时”、“在……的情况下”、“若”以及“如果”等描述均指在某种客观情况下设备(如,终端设备或者网络设备)会做出相应的处理,并非是限定时间,且也不要求设备(如,终端设备或者网络设备)在实现时一定要有判断的动作,也不意味着存在其它限定。
第七,本申请实施例中以SRS为上行参考信号的一例、以SRS资源为上行参考信号资源的一例、以NZP CSI-RS为下行参考信号的一例、以NZP CSI-RS资源为下行参考信号资源的一例来说明了多个示例,但这不应对本申请构成任何限定。本申请对于上行参考信号、上行参考信号资源、下行参考信号、下行参考信号资源的具体内容不作限定。
第八,本申请实施例中详细描述了终端设备确定用于上行参考信号的预编码以及发送预编码后的上行参考信号的过程。出于方案的完整性的考虑,本申请实施例中以网络设备#1和网络设备#2为例详细说明了上述过程。但应注意,终端设备对于网络设备的内部实现行为及数量并不感知。文中虽然列举了网络设备#1和网络设备#2,但本申请并不限定网络设备的具体行为和数量。
例如,下文实施例中的第一指示信息可以是由网络设备#1和/或网络设备#2发送的;资源分配规则的指示信息可以是由网络设备#1和/或网络设备#2发送的;预编码的选择规则的指示信息也可以是由网络设备#1和/或网络设备#2发送的。
又例如,不同的下行参考信号资源可以是由同一网络设备配置的,如网络设备#1或网络设备#2中的一个来配置;也可以是不同的网络设备各自配置的,如网络设备#1和网络设备#2各自配置。不同的下行参考信号资源可以来自同一网络设备,如来自网络设备#1或网络设备#2中的一个;也可以来自不同的网络设备,如来自网络设备#1和网络设备#2。应注意,下行参考信号资源的配置和发送为两个不同的过程,与网络设备的对应关系并不一定是一致的。例如,不同的下行参考信号资源可以由同一网络设备配置,但由不同的网络设备发送。
在接收终端设备发送的上行参考信号时,不同的网络设备可以接收各自发送的下行参 考信号资源所对应的上行参考信号资源上的上行参考信号,也可以接收所有的上行参考信号资源上的上行参考信号。本申请对此不做限定。
再例如,基于上行参考信号进行信道测量的步骤可以由网络设备#1和/或网络设备#2执行,第二指示信息、第五指示信息例如可以由执行信道测量的网络设备发送,也可以由网络设备#1和网络设备#2中的一个来发送。
还例如,在接收终端设备发送的上行数据时,不同的网络设备可以各自在上行传输资源上接收发送给自己的上行数据,也可以在上行传输资源上接收全部的上行数据。本申请对此不做限定。
后文中为了简洁,省略对相同或相似情况的说明。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。图1是适用于本申请实施例的无线通信系统100的示意图。如图所示,该无线通信系统100可以包括至少一个终端设备,例如图1所示的终端设备110;该无线通信系统100还可以包括至少一个网络设备,例如图1所示的网络设备121和网络设备122。
各通信设备,比如图1中的终端设备110和网络设备121、网络设备122,均可以配置多个天线。每个通信设备所配置的多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。另外,各通信设备还附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。因此,网络设备与终端设备之间可通过多天线技术通信。
该终端设备110可以使用相同的时频资源与多个网络设备通信,如图中的网络设备121和网络设备122。例如,终端设备110可以使用频分复用(frequency division duplexing,FDM)或时分复用(time division duplexing,TDM)等方式复用相同的时频资源,以与多个网络设备通信。
可选地,终端设备110可以使用相同的时频资源向多个网络设备发送相同的数据,以获得分集增益,从而提高数据传输的可靠性。
可选地,终端设备110可以使用相同的时频资源向多个网络设备发送不同的数据,以实现空分复用,从而提高数据传输的吞吐量。
图中虽未示出,但可以理解,该通信系统100还可以包括其他数量的终端设备。例如,该通信系统100中还可以包括更多的终端设备和更多数量的网络设备。本申请对此不作限定。
终端设备例如可以通过物理上行控制信道(physical uplink control channel,PUCCH)和物理上行共享信道(physical uplink share channel,PUSCH)向网络设备发送上行信号,例如通过PUCCH传输上行控制信息(uplink control information,UCI)或通过PUSCH传输上行数据等。
如前所述,终端设备可以使用相同的时频资源向多个网络设备发送上行数据,比如发送PUSCH。但这可能会造成多个终端设备之间的相互干扰,使得网络设备对上行数据的接收质量不佳,从而影响系统传输性能。
终端设备可以通过预编码的方式来消除干扰。以物理上行共享信道(physical uplink  share channel,PUSCH)的传输为例,目前PUSCH可以支持的上行(uplink,UL)传输方案(transmission scheme)包括基于码本的上行传输(codebook based UL transmission)和非码本的上行传输(non-codebook based UL transmission)。无论是基于码本的上行传输还是非码本的上行传输,终端设备都对上行数据进行了预编码操作,以消除终端设备间的干扰,提高数据传输质量。
在基于码本的上行传输中,终端设备可以根据网络设备的指示确定用于上行传输的预编码。例如网络设备通过传输预编码矩阵指示(transmission precoding matrix indicator,TPMI)来指示用于PUSCH传输的预编码。
在非码本的上行传输中,终端设备使用的预编码对网络设备而言是透明的。终端设备可以使用预编码后的上行参考信号,如预编码后的SRS(precoded SRS)。每个SRS资源可用于发送一个预编码后的SRS,即,每个SRS资源可对应于一个预编码。网络设备后续可以通过指示SRS资源的方式来间接地指示用于PUSCH的预编码。也就是说,若终端设备采用某一个预编码对SRS进行预编码,得到的预编码后的SRS可通过一个SRS资源来传输。即,预编码与SRS资源一一对应。若网络设备后续指示了该SRS资源,也就相当于指示了终端设备采用该SRS资源对应的预编码用于PUSCH传输。
为了提高传输性能,终端设备可以使用例如预编码轮询、随机选择、最大化吞吐量等规则或者将多种规则结合使用来确定用于PUSCH传输的预编码。以上所列举的预编码轮询、随机选择、最大化吞吐量等规则可以称为预编码的选择规则。也就是说,用于PUSCH传输的预编码可以基于预编码的选择规则来确定。当然,预编码的选择规则包括但不限于此。本申请对此不作限定。后文会结合具体的例子来对预编码的选择规则做详细说明,为了简洁,这里暂且不做详述。
终端设备的上行传输通常可以由网络设备来调度。网络设备往往根据上行信道的测量结果来为上行调度做决策。终端设备可以向网络设备发送上行参考信号(如SRS)以便于网络设备测量上行信道。
然而,当前的SRS资源(SRS resource)的配置并未考虑上述数据传输时所基于的预编码的选择规则。例如当终端设备使用预编码轮询的方式来确定用于PUSCH传输的预编码时,SRS可能仍然并未使用预编码轮询的方式来处理。
图2示例性地示出了SRS资源和PUSCH。其中,SRS资源作为上行参考信号资源的一例,PUSCH作为上行数据的传输资源的一例。应理解,图2仅为示例,本申请对于上行参考信号资源以及上行数据的传输资源并不做限定。
如图所示,图2的左侧示出了多个SRS资源,例如包括SRS资源1至SRS资源4。如图所示,该多个SRS资源占用相同的频域资源、不同的时域资源。具体来说,每个SRS资源在时域上占用了一个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。换言之,该多个SRS资源对资源的复用方式为时分复用(time division duplexing,TDM)。
应理解,图2中SRS资源在时域上占用一个OFDM符号仅为SRS资源在时域上的粒度的示例,本申请对于该多个SRS资源对资源的复用方式以及每个SRS资源在时域和频域上的大小均不做限定。例如,每个SRS资源在时域上也可以占用多个OFDM符号,或者占用一个或多个时隙(slot),又或者占用一个或多个迷你时隙(mini slot)等等。又例 如,该多个SRS资源对资源的复用方式也可以是频分复用(frequency division duplexing,FDM)。每个SRS资源在频域上可以占用一个或多个物理资源块(physical resource block,PRB),或者占用多个RB组(RB group,RBG),又或者占用预编码资源块组(precoding resource block,RBG)等等。其中,一个RBG可以包括多个PRB。基于相同的命名方式,多个时隙例如可以称为时隙组(slot group)、多个迷你时隙例如可以称为迷你时隙组(mini slot group)、多个OFDM符号例如可以称为OFDM符号组(OFDM symbol group)。应理解,上文所列举的命名仅为示例,本申请对于具体命名不作限定。
该多个SRS资源可以与多个下行参考信号资源(如信道状态信息参考信号资源(channel state information reference signal(CSI-RS)resource)相关联,或者说,相对应。该多个CSI-RS资源例如可以是由一个或多个网络设备配置的,且该多个CSI-RS资源可用于一个或多个网络设备发送CSI-RS。本申请对此不做限定。
例如,图中的SRS资源1、SRS资源4与网络设备#1发送的CSI-RS资源1对应,SRS资源2、SRS资源3与CSI-RS资源2对应。终端设备可基于对CSI-RS资源1的测量确定用于SRS资源1、SRS资源4上传输的SRS的预编码1,也可基于对CSI-RS资源2的测量确定用于SRS资源2、SRS资源3上传输的SRS的预编码2。
应理解,本申请对于SRS资源与CSI-RS资源的对应关系、CSI-RS资源与预编码的对应关系不做限定。还应理解,本申请对于CSI-RS资源与网络设备的对应关系不做限定。例如,多个CSI-RS资源可以由同一个网络设备发送。如,CSI-RS资源1与CSI-RS资源2可以由同一个网络设备发送。又例如,一个SRS资源也可以对应于多个CSI-RS资源。如,SRS资源1可对应于CSI-RS资源1和CSI-RS资源2。
图2的右侧示出了PUSCH的一例。如图所示,该PUSCH在时域上可以被分为多块资源,例如包括资源1至资源4。该PUSCH中,每块资源可对应一个预编码。比如,采用预编码轮询的方式来确定每块资源对应的预编码,资源1对应于预编码1、资源2对应于预编码2、资源3对应于预编码1、资源4对应于预编码2。
在一种可能的设计中,该多块资源可以交替排布,以实现对应不同CSI-RS资源测量所得的预编码的轮询,从而获得分集增益。比如,资源1、资源3用于传输的上行数据所使用的预编码可以为预编码1;资源2、资源4用于传输的上行数据所使用的预编码可以为预编码2。
应理解,上文列举的各块资源与预编码的对应关系仅为示例,不应对本申请构成任何限定。
此外,图中所示的PUSCH中的多块资源占用相同的频域资源、不同的时域资源。具体来说,每块资源在时域上占用了一个OFDM符号,呈TDM的资源复用方式。但应理解,图中所示的PUSCH中的每块资源在时域上与一个OFDM符号对应的关系仅为示例,本申请对于PUSCH对资源的复用方式以及在时域和频域上的大小均不做限定。例如,每块资源在时域上也可以占用多个OFDM符号,或者占用一个或多个时隙,或者占用一个或多个迷你时隙等。又例如,也可以采用FDM的方式复用PUSCH中的资源。每块资源可以包括一个或多个RB,或者一个或多个RBG等。
结合上文关于图2的描述可以看到,左图所示SRS资源与CSI-RS资源的对应关系和右图所示PUSCH中每块资源与CSI-RS资源的对应关系并不一致。左图所示的SRS资源 1、SRS资源4与CSI-RS资源1对应,SRS资源2、SRS资源3与CSI-RS资源1。右图所示的资源1、资源3用于传输的上行数据是基于预编码1进行预编码得到的,预编码1又是基于对CSI-RS资源1的测量得到的,也即,资源1、资源3与CSI-RS资源1对应;资源2、资源4用于传输的上行数据是基于预编码2进行预编码得到的,预编码2又是基于对CSI-RS资源2的测量得到的,也即,资源2、资源4与CSI-RS资源2对应。
然而,网络设备往往根据接收到的SRS测量上行信道,以根据测量结果对PUSCH进行调度。
例如,网络设备可以根据接收到的SRS的信号质量,确定上行信道的信道质量指示(channel quality indicator,CQI),进而确定用于上行传输的MCS。可以理解,若网络设备基于在图2中所示的SRS资源上接收到的SRS测量上行信道,由于各SRS资源上传输的SRS并未考虑后续上行数据传输时所采用的预编码轮询,网络设备所确定的MCS可能并不适用于后续采用预编码轮询的方式传输的PUSCH,从而影响PUSCH的传输性能。
有鉴于此,本申请提供一种发送和接收上行参考信号的方法,以期获得准确的上行信道的测量结果,从而便于网络设备为上行调度做出合理的决策,进而提高传输性能。
下面结合附图详细说明本申请实施例提供的发送和接收上行参考信号的方法。
应理解,下文仅为便于理解和说明,以设备之间的交互为例详细说明本申请实施例所提供的方法。但这不应对本申请提供的方法的执行主体构成任何限定。例如,下文实施例示出的终端设备可以替换为配置于终端设备中的部件(如电路、芯片、芯片系统或其他能够调用程序并执行程序的功能模块等);下文实施例示出的网络设备可以替换为配置与网络设备中的部件(如电路、芯片、芯片系统或其他能够调用程序并执行程序的功能模块等)。只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法实现上行参考信号的发送和接收即可。
还应理解,本申请对于所提供的发送和接收上行参考信号的方法的适用场景并不做限定。例如,本申请实施例提供的发送和接收上行参考信号的方法可以应用于非码本的上行传输方案中,也可以应用于基于码本的上行传输方案中。下文图3示出的方法300以非码本的上行传输方案为例来说明该方法的具体流程,但这不应对本申请构成任何限定。
图3是本申请实施例提供的发送和接收上行参考信号的方法200的示意性流程图。如图3所示,该方法200可以包括步骤201至步骤211。下面详细说明方法200中的各个步骤。
需要说明的是,图3中的某些步骤可以是由网络设备#1执行的,也可以是由网络设备#2执行的,或者还可以是由网络设备#1和网络设备#2执行的,下文实施例主要对网络设备#1的执行过程做了详细说明,图中以实线示出,而对网络设备#2执行的操作以虚线示出。
在步骤201中,终端设备根据资源分配(resource allocation)规则,确定多个上行参考信号资源中用于承载上行参考信号的多块第一资源对应的下行参考信号资源。
这里,第一资源属于上行参考信号资源,可用于承载上行参考信号。第一资源是基于预编码粒度而确定的资源。更具体地说,第一资源在时域上或频域上的大小可以基于预编码粒度而确定。这里所述的预编码粒度是指在一个上行参考信号资源中对应于同一个预编码的连续资源在时域上或频域上的大小。换言之,该预编码粒度与上行参考信号对应。为 便于与后文与用于上行数据传输的预编码粒度区分,这里将与上行参考信号对应的预编码粒度记为第一预编码粒度。
第一预编码粒度可以是频域上的粒度,简称为频域粒度;也可以是时域上的粒度,简称为时域粒度。若该第一预编码粒度为频域上的粒度,则第一资源在频域上的大小可以为该第一预编码粒度的大小;若该第一预编码粒度为时域上的粒度,则第一资源在时域上的大小可以为该第一预编码粒度的大小。
作为示例而非限定,若第一预编码粒度为频域粒度,该第一预编码粒度可以为一个或多个物理资源块(physical resource block,PRB)、一个或多个RB组(RB group,RBG,每个RBG可包括多个PRB)、或预编码资源块组(precoding resource block group,PRG)等。若第一预编码粒度为时域粒度,该第一预编码粒度可以为一个或多个时隙(例如称为时隙组)、一个或多个迷你时隙(例如称为迷你时隙组)、或一个或多个OFDM符号(或者称,OFDM符号组)等。应理解,本申请对于各频域粒度、时域粒度的具体命名不作限定。
第一预编码粒度可以由网络设备指示,或者,也可以由协议预定义。本申请对此不作限定。
若该第一预编码粒度由网络设备指示,则可选地,该方法还包括:终端设备接收第一预编码粒度的指示信息。相应地,网络设备发送第一预编码粒度的指示信息。发送该第一预编码粒度的指示信息的网络设备例如可以是图3中所示的网络设备#1或网络设备#2。本申请对此不作限定。
应理解,当第一预编码粒度为频域粒度时,可以认为对资源的复用方式为频分复用(frequency division multiplexing,FDM);当第一预编码粒度为时域粒度时,可以认为对资源的复用方式为时分复用(time division multiplexing,TDM)。因此,当网络设备指示了第一预编码粒度时,也可以认为隐式地指示了资源的复用方式。
或者,当第一预编码粒度为协议预定义时,例如,协议预定义了时域粒度和频域粒度,网络设备可以通过指示资源的复用方式,来指示当前使用的第一预编码粒度为时域粒度还是频域粒度。这种情况下,也可以认为对资源的复用方式的指示隐式地指示了第一预编码粒度。
可选地,该方法还包括:终端设备接收第三指示信息,该第三指示信息用于指示资源的复用方式。
可选地,对资源的复用方式可以由协议预定义。本申请对此不作限定。
第一预编码粒度的大小可以小于或等于一个上行参考信号资源的大小。终端设备可以基于第一预编码粒度,将每个上行参考信号资源划分为一块或多块第一资源。具体地,若第一预编码粒度的大小小于一个上行参考信号资源的大小,则一个上行参考信号资源中可以包括多块第一资源;若第一预编码粒度的大小等于一个上行参考信号资源的大小,则一个上行参考信号资源为一块第一资源。因此,终端设备可以从多个上行参考信号资源中确定多块第一资源。
要确定上述多个上行参考信号资源中多块第一资源,可以先确定上行参考信号资源的位置。在本申请实施例中,多个上行参考信号资源可以与多个下行参考信号资源对应,每个下行参考信号资源可关联一个或多个上行参考信号资源。网络设备在配置多个下行参考 信号资源所关联的多个上行参考信号资源时,可能只是指示了其在时频资源上的大致范围,而无法确定在时频资源上的具体位置。终端设备可以根据每块第一资源对应的下行参考信号资源,确定每块第一资源所属的上行参考信号资源,进而可以确定每个上行参考信号资源的具体位置。
其中,下行参考信号资源可用于传输下行参考信号。上行参考信号资源可用于传输上行参考信号。在本申请实施例中,作为示例而非限定,上行参考信号资源可以为SRS资源,上行参考信号可以为SRS;下行参考信号资源可以为CSI-RS资源(CSI-RS resource),更具体地说,可以为非零功率(non-zero power,NZP)CSI-RS资源,下行参考信号可以为NZP CSI-RS。
可选地,该方法200还包括:步骤202,终端设备接收第一指示信息,该第一指示信息用于指示多个上行参考信号资源与多个下行参考信号资源的对应关系。
上述多个下行参考信号资源可以是用于不同的网络设备向终端设备传输下行参考信号的资源,上述多个上行参考信号资源也可以是用于向不同的网络设备传输上行参考信号的资源。换言之,多个下行参考信号资源可以与多个网络设备对应,多个上行参考信号资源也可以与多个网络设备对应。
此情况下,上述多个上行参考信号资源与多个下行参考信号资源的对应关系例如可以由多个网络设备配置,每个网络设备配置各自使用的下行参考信号资源及其对应的上行参考信号资源。例如,网络设备#1和网络设备#2分别向终端设备发送第一指示信息,以指示各网络设备分别配置的上行参考信号资源与下行参考信号资源的对应关系。或者,该多个下行参考信号资源以及各自对应的上行参考信号资源也可以由同一个网络设备配置,例如,由图3中的网络设备#1或网络设备#2向终端设备发送该第一指示信息,以指示各网络设备分别配置的上行参考信号资源与下行参考信号资源的对应关系。
上述多个下行参考信号资源也可以是同一网络设备向终端设备传输下行参考信号的资源,上述多个上行参考信号资源也可以是用于终端设备向该网络设备传输上行参考信号的资源。换言之,多个下行参考信号资源可以与一个网络设备对应,多个上行参考信号资源也可以与一个网络设备对应。
本申请对于多个下行参考信号资源与网络设备的对应关系、多个上行参考信号资源与网络设备的对应关系均不做限定。
在一种可能的设计中,一个NZP CSI-RS资源可以与一个SRS资源集(SRS resource set)对应,每个SRS资源集包括至少一个SRS资源。示例性地,网络设备可以在SRS的配置信令(例如SRS配置信元(SRS-Config information element))中配置一个或多个SRS资源集,并在每个SRS资源集中指示其所包含的一个或多个SRS参考信号资源,比如指示其所包括的SRS参考信号资源的标识(SRS resource indicator);并进一步指示每个SRS资源集所关联的NZP CSI-RS资源,比如指示其所关联的NZP CSI-RS资源的标识(NZP CSI-RS resource indicator)。换言之,该SRS的配置信令可以将一个或多个SRS资源与一个NZP CSI-RS资源关联起来。即,该SRS的配置信令可以包括上述第一指示信息。
应理解,上文所示的通过SRS资源集将NZP CSI-RS资源与SRS资源关联的具体方式仅为示例,不应对本申请构成任何限定。比如,网络设备也可直接将NZP CSI-RS资源与SRS资源关联。本申请对该具体方式不作限定。
终端设备可以基于第一指示信息确定与各下行参考信号资源对应的各上行参考信号资源在时频资源上的起始位置和结束位置,也即在时频资源中占用的区域。在本申请实施例中,终端设备具体可以确定上述与多个下行参考信号资源对应的多个上行参考信号资源在时频资源上占用的总PRB数。该总PRB数例如可以记为n PRB,n PRB为正整数。
应理解,网络设备为终端设备配置的多个上行参考信号资源在时频资源中占用的区域可以是连续的,也可以是不连续的。例如,在时域上连续或不连续,或,在频域上连续或不连续,或,在时、频域上都连续或都不连续。本申请对此不做限定。
此后,终端设备可以进一步基于资源分配规则,确定上述多个上行参考信号资源中的每块第一资源对应的下行参考信号资源。
这里,资源分配规则可以是指,可用于确定用于传输上行参考信号的时频资源上基于预编码粒度确定的第一资源与下行参考信号资源的对应关系的规则。基于不同的维度,资源分配规则可用于确定第一资源在频域上与下行参考信号资源的对应关系,或者,在时域上与下行参考信号资源的对应关系。例如,资源分配规则可以包括频域资源分配(frequency domain resource allocation,FDRA)规则或时域资源分配(time domain resource allocation,TDRA)规则。其中,FDRA规则可用于确定FDM的多块第一资源在频域上与下行参考信号资源的对应关系。TDRA规则可用于确定TDM的多块第一资源在时域上与下行参考信号资源的对应关系。
应理解,终端设备基于资源分配规则确定了每块第一资源对应的下行参考信号资源,也就相当于确定了每个上行参考信号资源中的每块第一资源的位置,也就可以确定每个上行参考信号资源的位置。
终端设备可以基于不同的资源分配规则来确定上述多个上行参考信号资源中的每块第一资源对应的下行参考信号资源。下面分别以FDRA和TDRA为例来说明。
若第一预编码粒度为频域粒度,终端设备可以结合FDRA的规则确定用于承载上行参考信号的多块第一资源对应的下行参考信号资源。
在一种可能的设计中,当第一预编码粒度为频域粒度,且该频域粒度为预设值时,首先可以基于第一预编码粒度将上述n PRB个PRB划分为多块第一资源,此后,可以将上述多块第一资源中的第奇数块第一资源和第偶数块第一资源分别指派给两个不同的下行参考信号资源,也即与该两个不同的下行参考信号资源关联。由于下行参考信号资源与上行参考信号资源之间具有对应关系,终端设备由此可以确定,其中的第奇数块第一资源属于一个上行参考资源,第偶数块第一资源属于另一个上行参考信号资源。
一示例,当第一预编码粒度为频域粒度,且该频域粒度为预设值{2,4}中的一个值,则可以按照上文所述方法来确定多块第一资源。例如,假设第一预编码粒度为频域粒度,其值为2,也就表示第一预编码粒度的频域粒度为2个PRB。则可以将上述多个上行参考信号资源中的n PRB个PRB划分为n PRB/2块第一资源。其中,第奇数块第一资源和第偶数块第一资源分别指派给两个不同的下行参考信号资源,也即与该两个不同的下行参考信号资源关联。
图4示出了基于FDRA的规则确定的上行参考信号资源中多块第一资源对应的下行参考信号资源。如图所示,图4中示出了8个PRB,即,n PRB为8的一例。若第一预编码粒度的取值为2,则每2个PRB为一块第一资源。图中共示出了4块第一资源。其中,第奇 数块第一资源属于SRS资源1,对应于NZP CSI-RS资源1,第偶数块第一资源属于SRS资源2,对应于NZP CSI-RS资源2。可以看到属于SRS资源1的第一资源和属于SRS资源2的第一资源在频域上交替排布,形成多个周期。图4中虽然仅示出了8个PRB、两个周期,但这不应对本申请构成任何限定。本申请对于上行参考信号资源中包含的PRB个数、第一预编码粒度包含的PRB个数以及周期数均不做限定。
一种可能的情况是,每个下行参考信号资源对应于一个网络设备,每个下行参考资源所关联的上行参考信号资源也对应于一个网络设备。当上述SRS资源1对应于一个网络设备、SRS资源2对应于另一个网络设备时,上述第一资源的分布也就相当于在频域上对两个网络设备进行轮询,轮询的周期为多个。
在另一种可能的设计中,当第一预编码粒度为频域粒度,且该频域粒度被定义为“宽带(wideband)”,将上行参考信号资源中的前
Figure PCTCN2020088690-appb-000001
个PRB指派给一个下行参考信号资源,也即与一个下行参考信号资源关联;将剩下的PRB指派给另一下行参考信号资源,也即与另一个下行参考信号资源关联。由于下行参考信号资源与上行参考信号资源之间具有对应关系,终端设备由此可以确定,前
Figure PCTCN2020088690-appb-000002
个PRB为一块第一资源,属于一个上行参考资源,剩下的PRB为一块第一资源,属于另一个上行参考信号资源。
图5示出了基于FDRA的规则确定的上行参考信号资源中多块第一资源对应的下行参考信号资源。如图所示,图5中示出了8个PRB,即,n PRB为8的一例。若第一预编码粒度的取值为宽带,则前4个PRB为一块第一资源,后4个PRB为一块第一资源。图中共示出了2块第一资源。其中,前一块第一资源属于SRS资源1,对应于NZP CSI-RS资源1,后一块第一资源属于SRS资源2,对应于NZP CSI-RS资源2。该SRS资源1和SRS资源2在频域上前后排布,也可以视为是一个周期的交替排布。图4中虽然仅示出了8个PRB、2块第一资源,但这不应对本申请构成任何限定。本本申请对于上行参考信号资源中包含的PRB个数、第一预编码粒度不做限定。
一种可能的情况是,每个下行参考信号资源对应于一个网络设备,每个下行参考资源所关联的上行参考信号资源也对应于一个网络设备。当上述SRS资源1对应于一个网络设备、SRS资源2对应于另一个网络设备时,上述第一资源的分布也就相当于在频域上对两个网络设备进行轮询,与图4所示例所不同,本示例中轮询的周期为一个。
需要注意的是,不同的下行参考信号资源也可以对应于同一个网络设备,即,由同一个网络设备发送。
若第一预编码粒度为时域粒度,终端设备可以结合TDRA的规则确定用于承载上行参考信号的多块第一资源对应的下行参考信号资源。
一种可能的设计中,当第一预编码粒度为时域粒度时,首先,可以基于第一预编码粒度将上述多个上行参考信号资源所占用的区域划分为多块第一资源,每块第一资源在时域上对应于第一预编码粒度。此后,可以将每块第一资源指派给一个下行参考信号资源。例如将第奇数块第一资源指派给一个下行参考信号资源,将第偶数块第一资源指派给另一个下行参考信号资源。由于下行参考信号资源与上行参考信号资源之间具有对应关系,终端设备由此可以确定,其中的第奇数块第一资源属于一个上行参考信号资源,第偶数块第一资源属于另一个上行参考信号资源。
其中,第一预编码粒度可以是时隙级别的粒度,如,第一预编码粒度包括一个或多个 时隙,或者称,时隙组,每个时隙组包括一个或多个时隙;第一预编码粒度也可以是OFDM符号级别的粒度,如第一预编码粒度包括一个或多个OFDM符号,或者称,OFDM符号组,每个OFDM符号组包括一个或多个OFDM符号。
在另一种可能的设计中,当第一预编码粒度为时域粒度时,也可以将上述多个上行参考信号资源所占的区域划分为两半,前一半被指派给一个下行参考信号资源,后一半被指派给另一个下行参考信号资源。由于下行参考信号资源与上行参考信号资源之间具有对应关系,终端设备由此可以确定,前一半资源属于一个上行参考信号资源,后一半资源属于另一个上行参考信号资源。此情况下,两个上行参考信号资源采用TDM的资源复用方式,复用相同的频域资源。每个上行参考信号资源可以作为一块第一资源。
应理解,基于TDRA的规则确定多块第一资源对应的下行参考信号资源的附图可以参考上文基于FDRA的规则确定多块第一资源对应的下行参考信号资源的附图。为了简洁,这里不一一附图说明。
还应理解,上文仅为便于理解,示出了两个SRS资源在频域或时域上轮询的几例。但资源分配规则并不仅限于此。例如,终端设备也可以基于随机选择等规则来确定每块第一资源对应的下行参考信号资源。此情况下,第一资源所属的SRS资源并不一定在频域或时域上轮询。为了简洁,这里不一一附图说明。
可选地,该方法还包括:步骤203,终端设备接收资源分配规则的指示信息。相应地,在步骤203中,网络设备发送资源分配规则的指示信息。
该资源分配规则的指示信息例如可以是图3中所示的网络设备#1和/或网络设备#2发送,本申请对此不作限定。
在一种实现方式中,网络设备与终端设备可以预先约定各资源分配规则对应的指示比特,网络设备可以将被确定为当前使用的资源分配规则所对应的指示比特发送给终端设备,以便于终端设备基于所对应的资源分配规则执行步骤201中的操作。
可选地,该资源分配规则为预定义的。例如,协议可以预先定义资源分配规则。就如上文中结合FDRA和TDRA的示例,在第一预编码粒度满足不同条件的情况下,终端设备可以基于相对应的资源分配规则来执行步骤201中的操作。
在步骤204中,终端设备基于每块第一资源对应的下行参考信号资源,确定每块第一资源对应的预编码。
在本申请实施例中,终端设备可以基于对每块第一资源对应的下行参考信号资源的测量,确定每块资源对应的预编码。由此,终端设备可以确定用于上行参考信号传输的多个预编码,该多个预编码与多个下行参考信号资源之间具有对应关系。
具体来说,终端设备基于多个下行参考信号资源中的每个下行参考信号资源上接收到的下行参考信号进行信道测量,可以确定与该下行参考信号资源对应的预编码,该预编码可用于对该下行参考信号资源对应的上行参考信号资源上承载的上行参考信号进行预编码。
当一个下行参考信号资源与一个上行参考信号资源对应时,可以基于对该下行参考信号资源的测量确定一个预编码,即秩(rank)为1;当一个下行参考信号资源与多个上行参考信号资源对应时,可以基于对该下行参考信号资源的测量确定多个预编码,即秩大于1。
举例来说,下行参考信号资源1与上行参考信号资源1对应,下行参考信号资源2与上行参考信号资源2对应。终端设备基于对下行参考信号资源1的测量确定的预编码记为预编码1,基于对下行参考信号资源2的测量确定的预编码记为预编码2。则终端设备可以确定属于上行参考信号资源1的第一资源对应的预编码为预编码1,属于上行参考信号资源2的第一资源对应的预编码为预编码2。
图6示出了多个下行参考信号资源、多个预编码与多块第一资源的对应关系的一例。图6中示出了2个NZP CSI-RS资源,包括NZP CSI-RS资源1和NZP CSI-RS资源2。其中,NZP CSI-RS资源1与SRS资源1对应,NZP CSI-RS资源2与SRS资源2对应。也就是说,每个下行参考信号资源与一个上行参考信号资源对应,秩为1。
图中SRS资源1和SRS资源2作为两块不同的第一资源在时域上前后排布。换言之,图6中所示的SRS资源的第一预编码粒度为一个SRS资源。即,每个SRS资源为一块第一资源,对应同一个预编码。
终端设备基于对NZP CSI-RS资源1的测量确定的预编码例如记为预编码1,基于对NZP CSI-RS资源2的测量确定的预编码例如记为预编码2。因此可以确定预编码1与SRS资源1对应,可用于对承载于SRS资源1上的SRS进行预编码;预编码2与SRS资源2对应,可用于对承载于SRS资源2上的SRS进行预编码。可以理解,图6中所示的多个SRS资源与多个预编码的对应关系即多块第一资源与多个预编码的对应关系。可以看到,图6中预编码1和预编码2可用于轮流地对不同SRS资源上承载的SRS进行预编码,即,轮询次数为1。轮询粒度为第一预编码粒度。
图7示出了多个下行参考信号资源、多个预编码与多块第一资源的对应关系的另一例。图7中示出了2个NZP CSI-RS资源,包括NZP CSI-RS资源1和NZP CSI-RS资源2。其中,NZP CSI-RS资源1与SRS资源1对应,NZP CSI-RS资源2与SRS资源2对应。秩仍为1。
与图6中所示不同,图7中所示的SRS资源的第一预编码粒度小于一个SRS资源。图中的SRS资源1和SRS资源2分别被划分成了多块第一资源,且SRS资源1和SRS资源2中的第一资源在时域上交替分布。图中虽然仅示出了属于SRS资源1的两块第一资源和属于SRS资源2的两块第一资源,但这仅为便于理解而示例,不应对本申请构成任何限定。本申请对于每个SRS资源中包含的第一资源数不做限定。
终端设备基于对NZP CSI-RS资源1的测量确定的预编码例如记为预编码1,基于对NZP CSI-RS资源2的测量确定的预编码例如记为预编码2。因此可以确定预编码1与SRS资源1对应,可用于对承载于SRS资源1上的SRS进行预编码;预编码2与SRS资源2对应,可用于对承载于SRS资源2上的SRS进行预编码。可以理解,图7中的每个SRS资源中包含多块第一资源。终端设备确定了SRS资源与预编码的对应关系,也即确定了SRS资源中每块第一资源与预编码的对应关系。可以看到,图7中预编码1、预编码2以第一资源的大小为粒度形成了多次轮询,也即第一预编码粒度为轮询粒度。
又例如,下行参考信号资源1与上行参考信号资源1和上行参考信号资源2对应。终端设备基于对下行参考信号资源1的测量确定的预编码记为预编码1和预编码2。则终端设备可以确定属于上行参考信号资源1的第一资源对应的预编码为预编码1或预编码2,属于上行参考信号资源2的第一资源对应的预编码也为预编码1或预编码2。对于每个上 行参考信号资源中的第一资源,终端设备可以进一步基于预编码的选择规则来确定各上行参考信号资源中的第一资源对应的预编码。
可选地,步骤204进一步包括:终端设备基于预编码的选择规则,确定每块第一资源对应的预编码。
这里,预编码的选择规则可以包括但不限于,预编码轮询、随机选择、吞吐量最大化等规则。为便于理解,下面结合本申请实施例中的第一资源与预编码的对应关系来说明上述预编码的选择规则。
预编码轮询可以是指将预先确定的至少两个预编码与至少两块第一资源对应,通过该至少两个预编码轮流对该至少两块第一资源上承载的信号进行预编码,使得该至少两块第一资源上承载的信号的预编码呈现周期性的排布。比如,该多块第一资源包括沿时域或频域依次排布的资源#1至资源#2N,可以通过预编码1和预编码2对该多块第一资源上的上行参考信号进行预编码。如,第奇数块资源可以与预编码1对应,第偶数块资源可以与预编码2对应,从而在时域或频域上呈现预编码1、预编码2、预编码1、预编码2、……这样的周期性排布。
可以理解的是,如果预编码1是基于对网络设备#1发送的下行参考信号资源1的测量确定的,预编码2是基于对网络设备#2发送的下行参考信号资源2的测量确定的,则该预编码轮询的过程也就相当于是网络设备轮询的过程,即,以第一预编码粒度为单位,将资源#1至资源#2N轮流地用于向网络设备#1和网络设备#2发送上行参考信号。
随机选择可以是指,对于每块第一资源,从预先确定的多个预编码中随机选择一个预编码与之对应。该多个预编码可以是基于对多个下行参考信号资源的测量确定的预编码。
例如,预先确定的多个预编码包括预编码1和预编码2,预编码1是基于对网络设备#1发送的下行参考信号资源1的测量确定的,预编码2是基于对网络设备#2发送的下行参考信号资源2确定的。则对于每块第一资源,从该多个预编码中随机选择一个预编码,也即是从网络设备#1和网络设备#2中随机选择一个。换句话说,也就是将该多块第一资源随机分配给网络设备#1或网络设备#2,以用于向网络设备#1和网络设备#2发送上行参考信号。
吞吐量最大化具体可以是指,为获得第一预编码粒度上的吞吐量最大化而确定的预编码。在本实施例中,对于每块第一资源,可以从预先确定的一个或多个预编码中确定出可以使得该第一资源的吞吐量达到最大的预编码与之对应。
例如,预先确定的多个预编码包括预编码1和预编码2,预编码1是基于对网络设备#1发送的下行参考信号资源1的测量确定的,预编码2是基于对网络设备#2发送的下行参考信号资源2确定的。则对于每块第一资源,从该多个预编码中确定能够获得最大吞吐量的预编码可以是在预编码1和预编码2中选择一个预编码使得该第一资源上的吞吐量达到最大。换句话说,也就是确定每块第一资源是分配给网络设备#1还是分配给网络设备#2,从而向网络设备#1和网络设备#2发送上行参考信号。
上述多种预编码的选择规则可以单独使用,也可以结合使用。例如,将预编码轮询和随机选择预编码结合、或将预编码轮询和吞吐量最大化结合,等等。
除了上文列举的规则之外,预编码的选择规则例如还可以包括:按照特征值的强弱,将对应的特征向量依次用于同一个下行参考信号资源所对应的多个上行参考信号资源上。
应理解,上文列举的预编码的选择规则仅为示例,不应对本申请构成任何限定。本申请对于预编码的选择规则不作限定。
图8示出了多个下行参考信号资源、多个预编码与多块第一资源的对应关系的又一例。图8中示出了2个NZP CSI-RS资源,包括NZP CSI-RS资源1和NZP CSI-RS资源2。其中,NZP CSI-RS资源1与SRS资源1、SRS资源3对应,NZP CSI-RS资源2与SRS资源2、SRS资源4对应。即,每个下行参考信号资源与两个上行参考信号资源对应,秩为2。
图中SRS资源1和SRS资源2作为两块不同的第一资源在时域上前后排布,SRS资源3和SRS资源4作为两块不同的第一资源在时域上前后排布。换言之,图8中所示的SRS资源的第一预编码粒度为一个SRS资源。即,每个SRS资源为一块第一资源,对应同一个预编码。
应理解,SRS资源1和SRS资源2作为一个资源整体所占用的时频区域,与SRS资源3和SRS资源4作为一个资源整体所占用的时频区域可以重叠,或不重叠。SRS资源1和SRS资源2作为一个资源整体所对应的测量资源,与SRS资源3和SRS资源4作为一个资源整体所对应的测量资源可以重叠,或不重叠。本申请对此不做限定。可以理解的是,两个资源整体所占用的时频区域重叠时,可以通过码分的方式进行资源的复用。两个资源整体所对应的测量资源重叠时,可以通过时分、频分或者码分的方式进行资源的复用。
一种可能的情况是,该两个资源整体所占的时频区域可以通过时分或频分的方式来区分,两个资源整体所对应的测量资源可以是重叠的,因此可以认为两个资源整体通过时分或频分的方式对测量资源进行了复用。
为便于理解,这里通过图9做更进一步地说明。如图9所示,SRS资源1和SRS资源2作为一个资源整体,占用频域上的第奇数个子载波,如图中的资源整体1所示;SRS资源3和SRS资源4作为一个资源整体,占用频域上的第偶数个子载波,如图中的资源整体2所示。可以看到,SRS资源1和SRS资源2作为一个资源整体,呈梳齿状分布;SRS资源3和SRS资源4作为一个资源整体,也呈梳齿状分布。但两个资源整体之间正好交错排布。因此,可以认为该两个资源整体之间互不重叠。但在某些可能的设计中,网络设备在测量时,可以将各资源整体所跨越的频带作为一个测量带宽来测量。此情况下,该两个资源整体所对应的测量带宽可以认为是重叠的,且该两个资源整体通过频分的方式对测量资源进行了复用。
图9示出的两个资源整体通过频分的方式对测量资源进行复用的示例仅为便于理解而示出,该两个资源整体例如也可以通过时分的方式对测量资源进行复用,本领域的技术人员基于图9的示例进行等价的变换,便可得到通过时分复用的两个资源整体。
基于上述设计,网络设备对两个层的测量可以基于至少部分重叠的时域和/或频域资源来进行,因此有利于获得更加准确的信噪比(signal noise ratio,SNR),进而确定合理的MCS。
另一种可能的情况是,该两个资源整体所占的时频区域是重叠的,两个资源整体可以通过码分的方式对同一时频区域进行复用。此情况下,该两个资源整体分别对应的测量资源也是重叠的。为了简洁,这里不另附图说明。
假设终端设备基于对NZP CSI-RS资源1的测量确定的预编码例如记为预编码1和预编码3,基于对NZP CSI-RS资源2的测量确定的预编码例如记为预编码2和预编码4。终端设备可以基于上文所列举的预编码的选择规则,确定每块第一资源对应的预编码。
例如,终端设备可以根据特征值的的强弱,将基于对NZP CSI-RS资源1的测量确定的特征向量中较强的特征向量用于NZP CSI-RS资源1关联的第一个SRS资源,即SRS资源1,较弱的特征向量用于NZP CSI-RS资源1关联的第二个SRS资源,即SRS资源3。若预编码1对应的特征值大于预编码3对应的特征值,则可以认为预编码1较强,可以与SRS资源1对应,用于对承载于SRS资源1上的SRS进行预编码;预编码3较弱,可以与SRS资源3对应,用于对承载于SRS资源3上的SRS进行预编码。
对NZP CSI-RS资源2所关联的SRS资源2和SRS资源4,也可以采用如上相同的方法来确定各自对应的预编码。各SRS资源与预编码的对应关系如图8中所示。
可以理解,图8中所示的多个SRS资源与多个预编码的对应关系即多块第一资源与多个预编码的对应关系。可以看到,预编码1和预编码2可用于轮流地对一个层的SRS进行预编码,预编码3和预编码4可用于轮流地对另一个层的SRS进行预编码,即,轮询次数为1。每个SRS资源可对应一个预编码,即,轮询粒度为一个SRS资源,即,轮询粒度为第一预编码粒度。
又例如,终端设备可以采用随机选择规则,从基于对每个NZP CSI-RS资源的测量所确定的预编码中随机选择一个用于各NZP CSI-RS资源关联的SRS资源。比如,从预编码1和预编码3中随机选择一个与SRS资源1对应,用于对承载于SRS资源1上的SRS进行预编码;并从预编码1和预编码3中随机选择一个与SRS资源3对应,用于对承载于SRS资源3上的SRS进行预编码。从预编码2和预编码4中随机选择一个与SRS资源2对应,用于对承载于SRS资源2上的SRS进行预编码;并从预编码2和预编码4中随机选择一个与SRS资源4对应,用于对承载于SRS资源4上的SRS进行预编码。
图中虽未示出,但可以理解,SRS资源1对应的预编码和SRS资源3对应的预编码可能是相同的预编码,比如都对应预编码1或都对应预编码3;也可能是不同的预编码,比如一个对应预编码1,另一个对应预编码3。SRS资源2对应的预编码和SRS资源4对应的预编码可能是相同的预编码,比如都对应预编码2或都对应预编码4;也可能是不同的预编码,比如一个对应预编码2,另一个对应预编码4。
当然,终端设备还可以采用其他预编码的选择规则,确定与各SRS资源对应的预编码。为了简洁,这里不一一举例说明。
图10和图11示出了多个下行参考信号资源、多个预编码与多块第一资源的对应关系的再两例。图10和图11中示出了2个NZP CSI-RS资源,包括NZP CSI-RS资源1和NZP CSI-RS资源2。其中,NZP CSI-RS资源1与SRS资源1、SRS资源3对应,NZP CSI-RS资源2与SRS资源2、SRS资源4对应。秩仍为2。
与图8中所示不同,图10和图11中所示的SRS资源的第一预编码粒度小于一个SRS资源。图中的每个SRS资源被划分成了多块第一资源,且SRS资源1和SRS资源2中的第一资源在时域上交替排布,SRS资源3和SRS资源4中的第一资源在时域上也交替排布。图中虽然仅示出了属于各SRS资源的两块第一资源,但这仅为便于理解而示例,不应对本申请构成任何限定。本申请对于每个SRS资源中包含的第一资源数不做限定。
应理解,SRS资源1和SRS资源2作为一个资源整体所占用的时频区域与SRS资源3和SRS资源4作为一个资源整体所占用的时频资源的关系,以及各自对应的测量资源的关系,可以参考上文结合图9的相关描述,为了简洁,这里不再重复。
假设终端设备基于对NZP CSI-RS资源1的测量确定的预编码例如记为预编码1和预编码3,基于对NZP CSI-RS资源2的测量确定的预编码例如记为预编码2和预编码4。终端设备可以基于上文所列举的预编码的选择规则,确定每块第一资源对应的预编码。
例如,终端设备可以基于随机选择规则,确定每块第一资源对应的预编码。图9示出了基于随机选择规则确定每块第一资源对应的预编码的一例。基于随机选择规则,终端设备可以对每块第一资源随机选择一个预编码与之对应。对于SRS资源1和SRS资源3中的每块第一资源,终端设备可以从预编码1和预编码3中随机选择。如图10中所示,SRS资源1中的第一块第一资源与预编码1对应,第二块第一资源与预编码3对应;SRS资源3中的第一块第一资源与预编码3对应,第二块第一资源与预编码1对应。对于SRS资源2和SRS资源4中的第一资源,终端设备可以从预编码2和预编码4中随机选择。如图10中所示,SRS资源2中的两块第一资源均与预编码4对应,SRS资源4中的两块第一资源均与预编码2对应。应理解,图10中所示的多块第一资源与多个预编码的对应关系仅为示例,不应对本申请构成任何限定。例如,终端设备也可以将SRS资源1中的每块第一资源均与预编码1对应,并将SRS资源3中的每块第一资源均与预编码3对应,将SRS资源2中的第一块第一资源与预编码2对应,第二块第一资源与预编码4对应,将SRS资源4中的第一块第一资源与预编码4对应,将SRS资源4中的第二块第一资源与预编码2对应,等等。为了简洁,这里不一一列举。
又例如,终端设备可以基于预编码轮询规则确定每块第一资源对应的预编码。图11示出了基于预编码轮询规则确定每块第一资源对应的预编码的一例。由于图11中的SRS资源形成了交替排布的图样,终端设备可以对每个SRS资源随机选择一个预编码与之对应,以使得图11中每块第一资源对应的预编码在时域上形成轮询。其中,对于每个SRS资源可以采用随机选择规则来确定与之对应的预编码。例如,将SRS资源1与预编码1对应,将SRS资源2与预编码2对应,从而形成了预编码1、预编码2、预编码1、预编码2在第一个层上的轮询;将SRS资源3与预编码3对应,将SRS资源4与预编码4对应,从而形成了预编码3、预编码4、预编码3、预编码4在第二个层上的轮询。如图11中所示。应理解,图11中所示的多块第一资源与多个预编码的对应关系仅为示例,不应对本申请构成任何限定。例如,终端设备也可以将SRS资源1与预编码1对应,SRS资源2与预编码4对应,形成预编码1、预编码4、预编码1、预编码4在第一个层上的轮询,将SRS资源3与预编码3对应,将SRS资源4与预编码2对应,形成预编码3、预编码2、预编码3、预编码2在第二个层上的轮询,等等。为了简洁,这里不一一列举。
应理解,上文结合附图列举的多个下行参考信号资源、多个预编码与多块第一资源的对应关系仅为便于理解而示例,不应对本申请构成任何限定。
上述预编码的选择规则例如可以是网络设备预先通过信令指示的。可选地,该方法还包括:步骤205,终端设备接收预编码的选择规则的指示信息。相应地,在步骤205中,网络设备发送预编码的选择规则的指示信息。
该资源分配规则的指示信息例如可以是图3中所示的网络设备#1和/或网络设备#2发 送,本申请对此不作限定。
在一种实现方式中,网络设备与终端设备可以预先约定预编码的选择规则对应的指示比特,网络设备可以将被确定为当前使用的预编码的选择规则所对应的指示比特发送给终端设备,以便于终端设备基于所对应的预编码的选择规则执行步骤204中的操作。
可选地,该预编码的选择规则为预定义的。例如,协议可以预先定义预编码的选择规则。终端设备可以基于预定义的预编码的选择规则来执行步骤204中的操作。
在步骤206中,终端设备发送预编码后的上行参考信号。相应地,在步骤206中,各网络设备接收预编码后的上行参考信号。
终端设备基于步骤204中确定的每块第一资源对应的预编码,可以对承载于每块第一资源上的上行参考信号进行预编码。例如,终端设备可以基于如上文结合附图6至11所示的第一资源与预编码的对应关系,对映射到不同的时频资源上的上行参考信号进行预编码,得到预编码后的上行参考信号。
应理解,终端设备可以在对上行参考信号进行预编码之后再映射到时频资源上,也可以将上行参考信号映射到时频资源上之后再进行预编码,本申请对此不做限定。
以上文结合图11描述的示例为例,终端设备可以基于预编码1对映射到第一个层、第奇数块第一资源的上行参考信号进行预编码,基于预编码4对映射到第一个层、第偶数块第一资源的上行参考信号进行预编码;终端设备可以基于预编码3对映射到第二个层、第奇数块第一资源的上行参考信号进行预编码,基于预编码4对映射到第二个层、第偶数块第一资源的上行参考信号进行预编码。由此形成了如图12中所示的图样。该图样描述了多块第一资源与多个预编码、多个端口的对应关系。
终端设备可以通过多个上行参考信号资源发送预编码后的上行参考信号。网络设备可以基于多个上行参考信号资源接收预编码后的上行参考信号。接收该预编码后的上行参考信号的网络设备例如可以是图3中所示的网络设备#1和/或网络设备#2。本申请对此不做限定。
在步骤207中,网络设备基于预编码后的上行参考信号,进行信道测量。
如前所述,接收到各上行参考信号资源上的预编码后的上行参考信号的网络设备可以是图3中网络设备#1和网络设备#2中的至少一个。接收到该预编码后的上行参考信号的一个或多个网络设备可以进行信道测量。
各网络设备可以基于接收到的预编码后的上行参考信号进行信道测量,进而确定用于上行传输的MCS、SRS端口等信息。
下面以网络设备#1为例来说明。应理解,网络设备#2的操作与之相似。这里仅为简洁,以网络设备#1的操作过程为例来说明。
网络设备#1可以基于接收到的预编码后的上行参考信号,计算例如信号噪声比(signal noise ratio,SNR)、信号与干扰加噪声比(signal to interference plus noise ratio,SINR)等参数,进而确定信道质量,如信道质量指示(channel quality indicator,CQI),确定与之相应的MCS。
例如,网络设备#1基于上行参考信号资源1上接收到的预编码后的上行参考信号进行信道测量,并可以基于信道测量所确定的信道质量,确定相应的MCS。
如果在后续上行数据传输过程中,预编码在上行传输资源上的排布方式也与预编码在 上行参考信号资源上的排布方式一致,则网络设备#1基于接收到的预编码后的上行参考信号所确定的MCS则更加准确,也更适用于后续上行数据传输,有利于提高上行传输性能。
可选地,该方法还包括:步骤208,终端设备接收第四指示信息,该第四指示信息用于指示用于上行数据传输的MCS。相应地,在步骤208中,网络设备发送第四指示信息,该第四指示信息用于指示用于上行数据传输的MCS。
例如,网络设备#1还可以基于接收到的预编码后的上行参考信号,确定后续上行传输的最大传输层数,以及每个传输层可以使用哪几个预编码。
示例性地,网络设备#1可以基于信道测量,确定最大传输层数。如,通过对信道进行奇异值分解的方式确定最大传输层数。网络设备#1还可以吞吐量最大化等准则,确定每个传输层、每个上行参考信号资源中的每块第一资源使用哪个预编码。由于在非码本的上行传输方案中,终端设备的预编码对于网络设备是透明的,但由于每个上行参考信号资源可以被配置一个上行参考信号端口(或简称端口),如,每个SRS资源可以被配置一个SRS端口,故上行参考信号资源与上行参考信号端口具有一一对应关系,而每个上行参考信号资源上使用的预编码已经预先确定,如上文结合图12的描述可知,上行参考信号资源中每块第一资源与预编码的对应关系已经预先确定。因此,网络设备可以基于接收到的不同端口的上行参考信号进行测量,以确定使用哪一个或多个端口对应的预编码。
可选地,该方法还包括:步骤209,终端设备接收第二指示信息,该第二指示信息用于指示上述多个预编码中用于上行数据传输的预编码。相应地,在步骤209中,网络设备发送第二指示信息。
在本实施例中,由于上行参考信号资源中存在多个预编码与第一资源的多个对应关系,网络设备可以根据接收到的预编码后的参考信号所对应的上行参考信号资源来间接地指示终端设备在后续的上行传输过程中使用哪些预编码来传输上行数据。或者,网络设备也可以根据接收到的预编码后的上行参考信号所对应的上行参考信号端口(如上述SRS端口)来间接地指示终端设备在后续的上行传输中使用哪些预编码来传输上行数据。
在一种可能的设计中,该第二指示信息例如可以是3GPP技术规范(technical specification,TS)38.212中的用于非码本的PUSCH传输的SRS参考信号资源标识(SRS resource identifier,SRI)指示(SRI indication for non-codebook based PUSCH transmission)中的索引值(index)。上述用于非码本的PUSCH传输的SRI指示可用于指示在最大传输层数(L max,L max为正整数)为不同值的情况下各索引值所对应的SRI。
下表所示为最大传输层数为2(L max=2)时用于非码本的PUSCH传输的SRI指示的一例。
索引值 SRI(s),N SRS=2 索引值 SRI(s),N SRS=3 索引值 SRI(s),N SRS=4
0 0 0 0 0 0
1 1 1 1 1 1
2 0,1 2 2 2 2
3 保留 3 0,1 3 3
    4 0,2 4 0,1
    5 1,2 5 0,2
    6-7 保留 6 0,3
        7 1,2
        8 1,3
        9 2,3
        10-15 保留
表中的索引值是被映射到比特指示域中的索引值;N SRS为SRS资源的个数,N SRS为正整数。在SRS资源的个数确定的情况下,每个索引值对应了一个或多个SRI(s),也即,每个索引值指示了一个或多个SRS资源。由于每个SRS资源与预编码的对应关系可以由终端设备基于上文所述的步骤204确定,网络设备通过第二指示信息指示最大传输层数L max、SRS资源的个数N SRS,以及索引值,便可间接地指示用于上行传输的预编码。终端设备可以基于该第二指示信息确定哪些预编码被选择用于上行传输。
在配置了多个下行参考信号资源的情况下,可以通过多个第二指示信息来指示每个下行参考信号对应的预编码中被选择的一个或多个预编码。该多个第二指示信息例如可以分别携带在不同的DCI中,即,终端设备可以接收到多个DCI,每个DCI中携带一个第二指示信息,每个第二指示信息对应一个或多个SRI;该多个第二指示信息可以是携带在同一个DCI中的多个信元,如,DCI中包括多个第二指示信息,每个第二指示信息对应一个或多个SRI。
以图11所示的多块第一资源与多个预编码的对应关系为例。图12示出了该多个预编码分别对应的SRS端口。例如,SRS资源1上的预编码1对应于端口a、SRS资源2上的预编码2对应于端口b、SRS资源3上的预编码3对应于端口c、SRS资源4上的预编码4对应于端口d。
若网络设备确定用于后续的上行传输的传输层数为1,被选择的SRS端口为端口a和端口b,即,被选择的预编码为预编码1和预编码2,则可以通过两个第二指示信息分别指示SRS资源1和SRS资源2;若网络设备确定用于后续的上行传输的传输层数为1,被选择的SRS端口为端口a和端口d,即,被选择的预编码为预编码1和预编码4,则可以通过两个第二指示信息分别指示SRS资源1和SRS资源4;若网络设备确定用于后续的上行传输的传输层数为2,被选择用于第一个传输层的SRS端口为端口a和端口d,即,被选择用于第一个传输层的预编码为预编码1和预编码4,被选择用于第二个传输层的SRS端口为端口c和端口b,即,被选择用于第二个传输层的预编码为预编码3和预编码2,则可以通过一个第二指示信息指示SRS资源1和SRS资源3,通过另一个第二指示信息指示SRS资源4和SRS资源2。
应理解,上述关于网络设备确定用于上行传输的SRS端口的相关描述也可以省略。即,网络设备可以直接确定用于后续的上行传输的预编码。
还应理解,网络设备通过第二指示信息指示用于上行传输的预编码的具体方式仅为示例,不应对本申请构成任何限定。例如,在可以区分不同的下行参考信号资源对应的上行参考信号资源的情况下,也可以通过一个第二指示信息来指示用于上行传输的预编码。
在步骤210中,终端设备确定上行传输资源中每块第二资源对应的预编码。
上行传输资源可以是指用于上行数据的传输的资源。该上行传输资源例如可以是PUSCH。该上行传输资源可以包括多块第二资源。
这里,第二资源是基于第二预编码粒度而确定的资源。更具体地说,第二资源在时域上或频域上的大小可以基于第二预编码粒度而确定。这里所述的第二预编码粒度是与上行数据对应的预编码粒度。第二预编码粒度可以表示在上行传输资源中对应于同一个预编码的连续资源的大小。
与第一预编码粒度相似,第二预编码粒度可以是频域上的粒度,简称为频域粒度;也可以是时域上的粒度,简称为时域粒度。若该第一预编码粒度为频域粒度,则第二资源在频域上的大小为第二预编码粒度的大小;若该第二预编码粒度为时域粒度,则第二资源在时域上的大小为第二预编码粒度的大小。
作为示例而非限定,若第一预编码粒度为频域粒度,该第一预编码粒度可以为一个或多个PRB、一个或多个RB组(RB group,RBG,每个RBG可包括多个PRB)、或预编码资源块组(precoding resource block group,PRG)等。若第一预编码粒度为时域粒度,该第一预编码粒度可以为一个或多个时隙(例如称为时隙组)、一个或多个迷你时隙(例如称为迷你时隙组)、或一个或多个OFDM符号(或者称,OFDM符号组)等。应理解,本申请对于各频域粒度、时域粒度的具体命名不作限定。
在一种可能的设计中,第二预编码粒度与第一预编码粒度相同。在另一种可能的设计中,第二预编码粒度与第一预编码粒度不同。
该第二预编码粒度可以由网络设备指示,或者,也可以由协议预定义。本申请对此不作限定。
若该第二预编码粒度由网络设备指示,则可选地,该方法还包括:终端设备接收第二预编码粒度的指示信息。相应地,网络设备发送第二预编码粒度的指示信息。发送该第二预编码粒度的指示信息的网络设备例如可以是上文发送第二指示信息的网络设备。本申请对此不作限定。
应理解,当第二预编码粒度与第一预编码粒度相同时,该第二预编码粒度也可以通过第一预编码粒度的指示信息来隐式指示,或者说,对第一预编码粒度和第二预编码粒度不作区分,都称为预编码粒度,该预编码粒度可以通过一个信令来指示。该信令例如可以称为预编码粒度的指示信息。
如前所述,当第二预编码粒度为协议预定义时,例如,协议预定义了时域粒度和频域粒度,网络设备也可以通过指示资源的复用方式,来指示当前使用的第二预编码粒度为时域粒度还是频域粒度。这种情况下,也可以认为对资源的复用方式的指示隐式地指示了第二预编码粒度。
终端设备在发送上行数据之前,可以将第二指示信息中所指示的SRS资源与其对应的PUSCH传输层和DMRS端口建立映射关系。每个SRS资源可映射至一个PUSCH传输层,对应于一个DMRS端口。
终端设备可以使用与第二指示信息中所指示的SRS资源所对应的SRS端口相同的天线端口来发送PUSCH。由于SRS端口与预编码之间具有对应关系,因此终端设备使用与SRS端口对应的天线端口来发送PUSCH,也就可以理解为,终端设备使用与SRS端口对应的预编码来发送PUSCH。
终端设备还可以根据第二指示信息以及在此前确定的多块第一资源与多个预编码的对应关系,确定多块第二资源中每块第二资源对应的预编码。具体来说,终端设备例如可以通过上文所述的方法来确定多块第一资源与多个预编码的对应关系,基于该对应关系,终端设备可以得到多个预编码在多块第一资源上的排布图样,例如图12中所示。若终端设备根据第二指示信息确定其中的一个或多个SRS端口用于上行数据传输,也即确定了该一个或多个SRS端口对应的预编码以及所对应的第一资源在该多块第一资源中的相对位置。终端设备可以将由此而确定的预编码以及第一资源在多块第一资源中的相对位置沿用到上行传输资源中,也即,使用该第二指示信息所指示的预编码,且将该预编码映射到多块第二资源上,使得各预编码所对应的第二资源在多块第二资源中的相对位置与各预编码所对应的第一资源在多块第一资源中的相对位置相同。
下面以图12为例的多块第一资源与多个预编码、多个端口的对应关系为例,结合图13至图15来说明终端设备确定每块第二资源对应的预编码的过程。图13至图15分别示出了基于图12所示的对应关系以及第二指示信息所确定的多块第二资源与多个预编码的对应关系。
假设网络设备(如网络设备#1)通过一个第二指示信息指示端口a,通过另一个第二指示信息指示端口b,则终端设备可以确定用于后续上行传输的传输层数为1,并可进一步根据端口a所对应的预编码1、端口b所对应的预编码2以及预编码1、预编码2分别对应的第一资源在多块第一资源中的相对位置,确定分别与预编码1、预编码2对应的第二资源在多块第二资源中的相对位置。由此可以得到上行传输资源中多块第二资源对应的预编码也呈现预编码1、预编码2、预编码1、预编码2的轮询。如图13中所示。
又例如,假设网络设备通过一个第二指示信息指示端口a,通过另一个第二指示信息指示端口d,则终端设备可以确定用于后续上行传输的传输层数为1,并可进一步根据端口a所对应的预编码1、端口d所对应的预编码4以及预编码1、预编码4分别对应的第一资源在多块第一资源中的相对位置,确定分别与预编码1、预编码4对应的第二资源在多块第二资源中的相对位置。由此可以得到上行传输资源中多块第二资源对应的预编码也呈现预编码1、预编码4、预编码1、预编码4的轮询。如图14中所示。
再例如,假设网络设备通过一个第二指示信息指示指示端口a和端口b,通过另一个第二指示信息指示端口c和端口d,则终端设备可以确定用于后续上行传输的传输层数为2,并可进一步根据端口a所对应的预编码1、端口b所对应的预编码2以及预编码1、预编码2分别对应的第一资源在多块第一资源中的相对位置,确定分别与预编码1、预编码2对应的第二资源在多块第二资源中的相对位置;还可以根据端口c所对应的预编码3、端口d所对应的预编码4以及预编码3、预编码4分别对应的第一资源在多块第一资源中的相对位置,确定分别与预编码1、预编码2对应的第二资源在多块第二资源中的相对位置,以及预编码3、预编码4对应的第二资源在多块第二资源中的相对位置。如图15中所示。
应理解,图中示出的上行传输资源包含的第二资源的数量和上行参考信号资源中包含的第一资源的数量相同。但这不应对本申请构成任何限定。比如,上行传输资源可以包含更多数量的第二资源。例如,若终端设备采用预编码轮询的选择规则来确定用于上行参考信号的预编码,终端设备可以依照第一资源与预编码的对应关系,将轮询的多个预编码在更多数量的第二资源上轮流使用。如图15所示,图15示出了多块第二资源与多个预编码的对应关系。图16所示是图14所示的图样的基础上进一步扩展到更多的轮询周期。
在另一种实现方式中,终端设备可以根据第二预编码粒度以及资源分配规则确定上行传输资源中的多块第二资源对应的下行参考信号资源。终端设备首先可以基于第二预编码粒度,确定每块第二资源的大小,进而根据资源分配规则,比如上文所述的FDRA规则或TDRA规则,确定每块第二资源对应的下行参考信号资源。应理解,终端设备确定每块第二资源对应的下行参考信号资源所遵循的资源分配规则,与终端设备确定每块第一资源对应的下行参考信号资源所遵循的资源分配规则是相同的。终端设备基于资源分配规则确定每块第二资源对应的下行参考信号资源的具体过程,可以与上文所述的基于资源分配规则,确定每块第一资源对应的下行参考信号资源的具体过程相似,只是预编码粒度由第一预编码粒度变为了第二预编码粒度。为了简洁,这里不再结合具体例子详述。
终端设备可以基于每块第二资源对应的下行参考信号资源,进一步确定每块第二资源对应的一个或多个预编码,每块第二资源对应的一个或多个预编码是基于对其所对应的下行参考信号资源的测量得到的。这与第一资源与预编码的对应关系相似。
此后,终端设备可以基于第二指示信息所指示的SRS端口,确定被选择用于上行数据传输的预编码。前已述及,终端设备可以预先知道每个SRS端口对应的预编码,也即每个SRS资源对应的预编码。也就是说,终端设备可以根据该第二指示信息确定每块第二资源对应的一个或多个预编码中,哪些预编码被选择用于上行数据传输。由此,终端设备可以确定每块第二资源对应的预编码。
应理解,上文所示终端设备确定每块第二资源对应的预编码的具体方式仅为示例。本申请包含但不限于此。
在步骤211中,终端设备通过上行传输资源发送预编码后的上行数据。
终端设备通过例如可以通过上行传输资源发送上行数据。网络设备#1和网络设备#2分别可以在该上行传输资源上接收上行数据。例如,网络设备#1和网络设备#2可以各自接收发送给自己的上行数据,也可以接收该上行传输资源上的全部上行数据。本申请对此不作限定。
应理解,终端设备通过上行传输资源发送上行数据以及网络设备接收上行数据的具体过程可以参考现有技术,为了简洁,这里不做详述。还应理解,本申请对于网络设备接收上行数据的具体过程不作限定。
基于上述技术方案,终端设备可以预先确定上行参考信号资源中多块第一资源对应的下行参考信号资源,进而确定预编码与第一资源的对应关系,再根据预编码与第一资源的对应关系,对承载于上行参考信号资源上的上行参考信号进行预编码,以使得后续传输的预编码后的上行参考信号具有不同的排布方式。由于基于本申请实施例的方法而传输的预编码后的上行参考信号基于第一预编码粒度进行预编码,使得用作上行参考信号的预编码不再依赖于上行参考信号资源的粒度,而可以通过第一预编码粒度来获得更多可能的预编 码在上行参考信号资源上的排布方式。也就是将第一预编码粒度与上行参考信号资源的大小解耦,从而获得更多更灵活的上行参考信号资源的配置。有利于网络设备获得较为准确的信道测量结果,为后续的上行数据传输进行合理的调度。
上文结合图3至图16详细说明了本申请实施例提供的发送和接收上行参考信号的方法。下文将结合图17至图21。详细说明本申请另一实施例提供的发送和接收上行参考信号的方法。
图17是本申请另一实施例提供的发送和接收上行参考信号的方法300的示意性流程图。如图17所示,该方法300包括步骤301至步骤311。下面详细说明方法300中的各个步骤。
在步骤301中,终端设备确定用于上行参考信号传输的多个预编码与多个下行参考信号资源的对应关系。
终端设备在发送上行参考信号之前,可以先确定用于上行参考信号传输的多个预编码与多个下行参考信号资源的对应关系,以便于对上行参考信号进行预编码。
上述多个预编码与多个下行参考信号资源的对应关系可以这样理解:该多个下行参考信号资源可以与多个上行参考信号资源对应,或者说,该多个下行参考信号资源可以与多个上行参考信号资源关联。每个下行参考信号资源可以关联一个或多个上行参考信号资源。每个上行参考信号资源可对应于一个或多个预编码。上行参考信号资源所承载的上行参考信号可以是预编码后的上行参考信号。用于上行参考信号的预编码可以是基于对该上行参考信号资源对应的下行参考信号资源的测量确定的预编码,或者说,是基于对该上行参考信号资源关联的下行参考信号资源的测量确定的预编码。换言之,在步骤301中,终端设备可以确定用于上行参考信号传输的多个预编码,该多个预编码可以是基于对上行参考信号资源所关联的下行参考信号资源的测量得到。
这里,对下行参考信号资源的测量,也就是基于承载于下行参考信号资源上的下行参考信号进行信道测量。
举例来说,下行参考信号资源1与上行参考信号资源1对应。终端设备基于对下行参考信号资源1的测量确定的预编码记为预编码1。则终端设备可以确定预编码1与参考信号资源1对应。
又例如,下行参考信号资源1与上行参考信号资源1和上行参考信号资源2对应。终端设备基于对下行参考信号资源1的测量确定的预编码记为预编码1和预编码2。则终端设备可以确定,预编码1或预编码2中的一个与上行参考信号资源1对应,预编码1或预编码2中的一个与上行参考信号资源2对应。比如,预编码1与上行参考信号资源1对应,预编码2与上行参考信号资源2对应;或,预编码1与上行参考信号资源1和上行参考信号资源2对应;或,预编码2与上行参考信号资源1和上行参考信号资源2对应,或,预编码2与上行参考信号资源1对应,预编码1与上行参考信号资源2对应。在秩为2的情况下,预编码与上行参考信号资源的对应关系还可以进一步结合预编码的选择规则确定,后文中会结合具体例子对此作出详细说明,这里暂且不做详述。
应理解,上文列举的下行参考信号资源与上行参考信号资源的对应关系,以及上行参考信号资源与预编码的对应关系仅为示例,不应对本申请构成任何限定。
在本申请实施例中,作为示例而非限定,该上行参考信号资源可以为SRS资源,该 上行参考信号可以为SRS;该下行参考信号资源可以为CSI-RS资源,更具体地说,可以为NZP CSI-RS资源,该下行参考信号可以为NZP CSI-RS。
图18至图21示出了多个下行参考信号资源、多个预编码与多个上行参考信号资源的对应关系。
图18和图19中示出了2个NZP CSI-RS资源,包括NZP CSI-RS资源1和NZP CSI-RS资源2。其中,NZP CSI-RS资源1与SRS资源1对应,NZP CSI-RS资源2与SRS资源2对应。即,每个下行参考信号资源与一个上行参考信号资源对应,秩为1。
图18所示的每个SRS资源为一片连续的资源,SRS资源1和SRS资源2在频域上前后排布。与图18所示不同,图19中所示的SRS资源离散地分布在频域上,或者说,每个SRS资源在频域上呈梳齿状分布。
假设终端设备基于对NZP CSI-RS资源1的测量确定的预编码记为预编码1,基于对NZP CSI-RS资源2的测量确定的预编码记为预编码2。则,终端设备可以确定预编码1与SRS资源1对应,预编码2与SRS资源2对应。如图18和图19中所示。
图20和图21示出了2个NZP CSI-RS资源,包括NZP CSI-RS资源1和NZP CSI-RS资源2。其中,NZP CSI-RS资源1与SRS资源1、SRS资源3对应,NZP CSI-RS资源2与SRS资源2、SRS资源4对应。即,每个下行参考信号资源与两个上行参考信号资源对应,秩为2。
图20所示的每个SRS资源为一片连续的资源,SRS资源1和SRS资源2位于同一个层,在频域上前后排布;SRS资源3和SRS资源4位于同一个层,在频域上前后排布。与图20所示不同,图21中所示的SRS资源离散地分布在频域上,或者说,每个SRS资源在频域上呈梳齿状分布。
假设终端设备基于对NZP CSI-RS资源1的测量确定的预编码记为预编码1和预编码3,基于对NZP CSI-RS资源2的测量确定的预编码记为预编码2和预编码4。则,终端设备可以确定预编码1和预编码3中的一个与SRS资源1对应,预编码1和预编码3中的一个与SRS资源3对应;预编码2和预编码4中的一个与SRS资源2对应,预编码2和预编码4中的一个与SRS资源4对应。
可选地,终端设备基于预编码的选择规则,确定每个SRS资源对应的预编码。
如前所述,预编码的选择规则可以由网络设备预先通过信令指示,也可以为协议预定义。本申请对此不作限定。
可选地,该方法还包括:步骤302,终端设备接收预编码的选择规则的指示信息。
在上文方法200中已经结合具体的例子详细说明了各种不同的预编码的选择规则,为了简洁,这里不作赘述。
图20和图21中示出了预编码1与SRS资源1对应、预编码2与SRS资源2对应、预编码3与SRS资源3对应、预编码4与SRS资源4对应的示例。但应理解,图示仅为便于理解,不应对本申请构成任何限定。
上文结合多个附图详细说明了多个下行参考信号资源、多个预编码与多个上行参考信号资源之间的对应关系。应理解,这些附图仅为示例,不应对本申请构成任何限定。图18至图21中所示的多个上行参考信号资源占用相同的时域资源、不同的频域资源,呈FDM的资源复用方式。图中虽未示出,但本领域的技术人员可以理解,该多个上行参考信号资 源例如也可以占用相同的频域资源、不同的时域资源,呈TDM的资源复用方式。
需要说明的是,上文结合附图示出的SRS资源仅为示例。在本申请实施例中,终端设备只是确定了SRS资源的区域,例如基于下文所述的第一指示信息来确定。而每个SRS资源在时频资源上的具体位置还需要进一步通过步骤304的操作来实现。
还需要说明的是,每个SRS资源可对应于一个SRS端口,前文已经说明,每个SRS资源与一个预编码对应,故每个SRS端口也与一个预编码对应。
由上文多个附图可以看到,每个下行参考信号资源可以对应于一个或多个上行参考信号资源。每个下行参考信号资源所对应的上行参考信号资源例如可以通过网络设备配置。
可选地,该方法还包括:步骤303,终端设备接收第一指示信息,该第一指示信息用于指示多个上行参考信号资源与多个下行参考信号资源的对应关系。
应理解,步骤303的具体过程可以参考上文方法200中步骤202的相关说明,为了简洁,这里不再重复。
在步骤304中,终端设备基于多个预编码确定用于上行参考信号的每块第一资源对应的预编码。
这里,第一资源属于上行参考信号资源,可用于承载上行参考信号。第一资源是基于第一预编码粒度而确定的资源。更具体地说,第一资源在时域上或频域上可以基于第一预编码粒度而确定。
关于第一预编码粒度的相关描述可以参考上文方法200中步骤201中关于第一预编码粒度的相关描述,为了简洁,这里不再重复。
第一预编码粒度可以由网络设备指示,或者,也可以由协议预定义。本申请对此不作限定。
若该第一预编码粒度由网络设备指示,则可选地,该方法还包括:终端设备接收第一预编码粒度的指示信息。相应地,网络设备发送第一预编码粒度的指示信息。发送该第一预编码粒度的指示信息的网络设备例如可以是图17中所示的网络设备#1或网络设备#2。本申请对此不作限定。
应理解,当第一预编码粒度为频域粒度时,可以认为对资源的复用方式为FDM;当第一预编码粒度为时域粒度时,可以认为对资源的复用方式为TDM。因此,当网络设备指示了第一预编码粒度时,也可以认为隐式地指示了资源的复用方式。
或者,当第一预编码粒度为协议预定义时,例如,协议预定义了时域粒度和频域粒度,网络设备可以通过指示资源的复用方式,来指示当前使用的第一预编码粒度为时域粒度还是频域粒度。这种情况下,也可以认为对资源的复用方式的指示隐式地指示了第一预编码粒度。
可选地,该方法还包括:终端设备接收第三指示信息,该第三指示信息用于指示资源的复用方式。
可选地,对资源的复用方式可以由协议预定义。本申请对此不作限定。
在本实施例中,第一预编码粒度的大小小于或等于一个上行参考信号资源的大小,终端设备可以基于第一预编码粒度将每个上行参考信号资源中划分为一块或多块第一资源。若第一预编码粒度小于一个上行参考信号资源的大小,则一个上行参考信号资源中可以包括多块第一资源;若第一预编码粒度等于一个上行参考信号资源的大小,则一个上行参考 信号资源为一块第一资源。
终端设备可以基于资源分配规则,确定每个上行参考信号资源中的一块或多块第一资源对应的下行参考信号资源。其中,资源分配规则可以由网络设备预先指示,也可以为协议预定义。本申请对此不作限定。
可选地,该方法300还包括:步骤305,终端设备接收资源分配规则的指示信息。
关于步骤305的详细说明可以参看上文方法200中的步骤203中的相关说明,为了简洁,这里不再重复。
为便于理解,这里结合一个简单的例子来说明终端设备基于资源分配规则,确定每个上行参考信号资源中的一块或多块第一资源对应的下行参考信号资源。
若第一预编码粒度为频域粒度,终端设备可以结合FDRA的规则确定用于承载上行参考信号的多块第一资源对应的下行参考信号资源。例如,第一预编码粒度为预设值{2,4}中的一个值,比如为2,终端设备可以以2个PRB为粒度来划分资源,由此可以划分出多块第一资源。其中,第奇数块第一资源可以被指派给一个下行参考信号资源,第偶数块第一资源可以被指派给另一个下行参考信号资源,即,第奇数块第一资源属于一个上行参考信号资源,第偶数块第一资源属于另一个上行参考信号资源。
因此,终端设备基于资源分配规则确定了每个上行参考信号资源中一块或多块第一资源对应的下行参考信号资源,也就相当于确定了每个上行参考信号资源中的每块第一资源的位置,也就可以确定每个上行参考信号资源的位置。
关于资源分配规则的进一步的详细说明可以参看上文方法200中的相关说明,为了简洁,这里不再重复。
由于终端设备在步骤301中已经确定了各上行参考信号资源与预编码的对应关系,在步骤305中,终端设备确定了各上行参考信号资源中每块第一资源对应的下行参考信号资源后,便可确定每块第一资源对应的预编码,即,确定了多个预编码与多块第一资源的对应关系。该对应关系例如可以参看上文方法200中的附图12至图16所示,为了简洁,这里不再重复。
在步骤306中,终端设备发送预编码后的上行参考信号。相应地,网络设备接收预编码后的上行参考信号。
在步骤307中,网络设备基于预编码后的上行参考信号,进行信道测量。
在步骤308中,终端设备接收第四指示信息,该第四指示信息用于指示用于上行数据传输的MCS。相应地,网络设备发送该第四指示信息。
在步骤309中,终端设备接收第二指示信息,该第二指示信息用于指示用于上行数据传输的预编码。相应地,网络设备发送该第二指示信息。
在步骤310中,终端设备确定上行传输资源中每块第二资源对应的预编码。
这里,第二资源是基于第二预编码粒度而确定的资源。更具体地说,第二资源在时域上或频域上的大小可以基于第二预编码粒度而确定。这里所述的第二预编码粒度是与上行数据对应的预编码粒度。第二预编码粒度可以表示在上行传输资源中对应于同一个预编码的连续资源的大小。
其中,关于第二预编码粒度的相关说明可以参看上文方法200的步骤210中对第二预编码粒度的相关说明,为了简洁,这里不再重复。
在一种可能的设计中,第二预编码粒度与第一预编码粒度相同。在另一种可能的设计中,第二预编码粒度与第一预编码粒度不同。
该第二预编码粒度可以由网络设备指示,或者,也可以由协议预定义。本申请对此不作限定。
若该第二预编码粒度由网络设备指示,则可选地,该方法还包括:终端设备接收第二预编码粒度的指示信息。相应地,网络设备发送第二预编码粒度的指示信息。发送该第二预编码粒度的指示信息的网络设备例如可以是上文发送第二指示信息的网络设备。本申请对此不作限定。
应理解,当第二预编码粒度与第一预编码粒度相同时,该第二预编码粒度也可以通过第一预编码粒度的指示信息来隐式指示,或者说,对第一预编码粒度和第二预编码粒度不作区分,都称为预编码粒度,该预编码粒度可以通过一个信令来指示。该信令例如可以称为预编码粒度的指示信息。
如前所述,当第二预编码粒度为协议预定义时,例如,协议预定义了时域粒度和频域粒度,网络设备也可以通过指示资源的复用方式,来指示当前使用的第二预编码粒度为时域粒度还是频域粒度。这种情况下,也可以认为对资源的复用方式的指示隐式地指示了第二预编码粒度。
在本实施例中,终端设备可以根据第二预编码粒度确定上行传输资源中的多块第二资源,并可进一步根据第二指示信息所指示的预编码,确定每块第二资源对应的预编码。
终端设备在此前根据资源分配规则确定了上行参考信号资源中多块第一资源对应的下行参考信号资源,并确定了每块第一资源对应的预编码,也即,终端设备确定了用于表示多块第一资源与多个预编码的对应关系的图样。终端设备确定上行传输资源中多块第二资源对应的下行参考信号资源与确定上行参考信号资源中多块第一资源对应的下行参考信号资源所遵循的规则可以是相同的,即,遵循相同的资源分配规则。因此,终端设备在根据第二指示信息确定了被选择用于上行数据传输的预编码之后,便可以根据上述预编码与第一资源的对应关系,从被选择用于上行数据传输的预编码中确定每块第二资源对应的预编码。
在步骤311中,终端设备发送预编码后的上行数据。相应地,网络设备接收预编码后的上行数据。
应理解,关于步骤306至步骤311的相关说明可以参看上文方法200中关于步骤206至步骤211的相关说明,为了简洁,这里不再重复。
基于上述技术方案,终端设备可以预先确定多个上行参考信号资源与多个预编码的对应关系,再进一步确定上行参考信号资源中每块第一资源对应的下行参考信号资源,进而可以确定第一资源与预编码的对应关系,从而可以对承载于上行参考信号资源上的上行参考信号进行预编码,以使得后续传输的预编码后的上行参考信号具有不同的排布方式。由于基于本申请实施例的方法而传输的预编码后的上行参考信号基于第一预编码粒度进行预编码,使得用作上行参考信号的预编码不再依赖于上行参考信号资源的粒度,而可以通过第一预编码粒度来获得更多可能的预编码在上行参考信号资源上的排布方式。也就是将第一预编码粒度与上行参考信号资源的大小解耦,从而获得更多更灵活的上行参考信号资源的配置。有利于网络设备获得较为准确的信道测量结果,为后续的上行数据传输进行合 理的调度。
应理解,在上文各实施例中,终端设备和/或网络设备可以执行各实施例中的部分或全部步骤。这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照各实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。且,各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
图22是本申请实施例提供的通信装置的示意性框图。如图22所示,该通信装置1000可以包括处理单元1100和收发单元1200。
可选地,该通信装置1000可对应于上文方法实施例中的终端设备,例如,可以为终端设备,或者配置于终端设备中的部件(如电路、芯片或芯片系统等)。
应理解,该通信装置1000可对应于根据本申请实施例的方法200或方法300中的终端设备,该通信装置1000可以包括用于执行图3中的方法200或图17中的方法300中终端设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图3中的方法200或图17中的方法300的相应流程。
其中,当该通信装置1000用于执行图3中的方法200时,处理单元1100可用于执行方法200中的步骤201、步骤204和步骤210,收发单元1200可用于执行方法200中的步骤203步骤203、步骤205、步骤206、步骤208、步骤209和步骤211。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该通信装置1000用于执行图17中的方法300时,处理单元1100可用于执行方法300中的步骤301、步骤304和步骤310,收发单元1200可用于执行方法200中的步骤302、步骤303、步骤305、步骤306、步骤308、步骤309和步骤311。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000为终端设备时,该通信装置1000中的收发单元1200可以通过收发器实现,例如可对应于图23中示出的通信装置2000中的收发器2020或图24中示出的终端设备3000中的收发器3020,该通信装置1000中的处理单元1100可通过至少一个处理器实现,例如可对应于图23中示出的通信装置2000中的处理器2010或图24中示出的终端设备3000中的处理器3010。
还应理解,该通信装置1000为配置于终端设备中的芯片或芯片系统时,该通信装置1000中的收发单元1200可以通过输入/输出接口、电路等实现,该通信装置1000中的处理单元1100可以通过该芯片或芯片系统上集成的处理器、微处理器或集成电路等实现。
可选地,该通信装置1000可对应于上文方法实施例中的网络设备(例如网络设备#1或网络设备#2),例如,可以为网络设备,或者配置于网络设备中的部件(如电路、芯片或芯片系统等)。
应理解,该通信装置1000可对应于根据本申请实施例的方法200或方法300中的网络设备#1或网络设备#2,该通信装置1000可以包括用于执行图3中的方法200或图17中的方法300中网络设备#1或网络设备#2执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图3中的方法200或图17中的方法300 的相应流程。
其中,当该通信装置1000用于执行图3中的方法200时,处理单元1100可用于执行方法200中的步骤207,收发单元1200可用于执行方法200中的步骤202、步骤203、步骤205、步骤206、步骤208、步骤209和步骤211中的至少一个步骤。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该通信装置1000用于执行图17中的方法300时,处理单元1100可用于执行方法300中的步骤307,收发单元1200可用于执行方法300中的步骤302、步骤303、步骤305、步骤306、步骤308、步骤309和步骤311中的至少一个步骤。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000为网络设备时,该通信装置1000中的收发单元1200可以通过收发器实现,例如可对应于图23中示出的通信装置2000中的收发器2020或图25中示出的基站4000中的RRU 4100,该通信装置1000中的处理单元1100可通过至少一个处理器实现,例如可对应于图23中示出的通信装置2000中的处理器2010或图25中示出的基站4000中的处理单元4200或处理器4202。
还应理解,该通信装置1000为配置于网络设备中的芯片或芯片系统时,该通信装置1000中的收发单元1200可以通过输入/输出接口、电路等实现,该通信装置1000中的处理单元1100可以通过该芯片或芯片系统上集成的处理器、微处理器或集成电路等实现。
图23是本申请实施例提供的通信装置2000的另一示意性框图。如图23所示,该通信装置2000包括处理器2010、收发器2020和存储器2030。其中,处理器2010、收发器2020和存储器2030通过内部连接通路互相通信,该存储器2030用于存储指令,该处理器2010用于执行该存储器2030存储的指令,以控制该收发器2020发送信号和/或接收信号。
应理解,该通信装置2000可以对应于上述方法实施例中的终端设备,并且可以用于执行上述方法实施例中网络设备或终端设备执行的各个步骤和/或流程。可选地,该存储器2030可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。存储器2030可以是一个单独的器件,也可以集成在处理器2010中。该处理器2010可以用于执行存储器2030中存储的指令,并且当该处理器2010执行存储器中存储的指令时,该处理器2010用于执行上述与网络设备或终端设备对应的方法实施例的各个步骤和/或流程。
可选地,该通信装置2000是前文实施例中的终端设备。
可选地,该通信装置2000是前文实施例中的网络设备,如网络设备#1或网络设备#2。
其中,收发器2020可以包括发射机和接收机。收发器2020还可以进一步包括天线,天线的数量可以为一个或多个。该处理器2010和存储器2030与收发器2020可以是集成在不同芯片上的器件。如,处理器2010和存储器2030可以集成在基带芯片中,收发器2020可以集成在射频芯片中。该处理器2010和存储器2030与收发器2020也可以是集成在同一个芯片上的器件。本申请对此不作限定。
可选地,该通信装置2000是配置在终端设备中的部件,如电路、芯片、芯片系统等。
可选地,该通信装置2000是配置在网络设备中的部件,如电路、芯片、芯片系统等。
其中,收发器2020也可以是通信接口,如输入/输出接口、电路等。该收发器2020与处理器2010和存储器2020都可以集成在同一个芯片中,如集成在基带芯片中。
图24是本申请实施例提供的终端设备3000的结构示意图。该终端设备3000可应用于如图1所示的系统中,执行上述方法实施例中终端设备的功能。如图所示,该终端设备3000包括处理器3010和收发器3020。可选地,该终端设备3000还包括存储器3030。其中,处理器3010、收发器3020和存储器3030之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器3030用于存储计算机程序,该处理器3010用于从该存储器3030中调用并运行该计算机程序,以控制该收发器3020收发信号。可选地,终端设备3000还可以包括天线3040,用于将收发器3020输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器3010可以和存储器3030可以合成一个处理装置,处理器3010用于执行存储器3030中存储的程序代码来实现上述功能。具体实现时,该存储器3030也可以集成在处理器3010中,或者独立于处理器3010。该处理器3010可以与图22中的处理单元1100或图23中的处理器2010对应。
上述收发器3020可以与图22中的收发单元1200或图23中的收发器2020对应。收发器3020可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
应理解,图24所示的终端设备3000能够实现图2所示方法实施例中涉及终端设备的各个过程。终端设备3000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述处理器3010可以用于执行前面方法实施例中描述的由终端设备内部实现的动作,而收发器3020可以用于执行前面方法实施例中描述的终端设备向网络设备发送或从网络设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选地,上述终端设备3000还可以包括电源3050,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备3000还可以包括输入单元3060、显示单元3070、音频电路3080、摄像头3090和传感器3100等中的一个或多个,所述音频电路还可以包括扬声器3082、麦克风3084等。
图25是本申请实施例提供的网络设备的结构示意图,例如可以为基站的结构示意图。该基站4000可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。如图所示,该基站4000可以包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)4100和一个或多个基带单元(BBU)(也可称为分布式单元(DU))4200。所述RRU 4100可以称为收发单元,可以与图22中的收发单元1200或图23中的收发器2020对应。可选地,该RRU 4100还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线4101和射频单元4102。可选地,RRU 4100可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。所述RRU 4100部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送指示信息。所述BBU 4200部分主要用于进 行基带处理,对基站进行控制等。所述RRU 4100与BBU 4200可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 4200为基站的控制中心,也可以称为处理单元,可以与图22中的处理单元1100或图23中的处理器2010对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述指示信息等。
在一个示例中,所述BBU 4200可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 4200还包括存储器4201和处理器4202。所述存储器4201用以存储必要的指令和数据。所述处理器4202用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器4201和处理器4202可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图25所示的基站4000能够实现图3或图17所示方法实施例中涉及网络设备的各个过程。基站4000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述BBU 4200可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而RRU 4100可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
应理解,图25所示出的基站4000仅为网络设备的一种可能的形态,而不应对本申请构成任何限定。本申请所提供的方法可适用于其他形态的网络设备。例如,包括AAU,还可以包括CU和/或DU,或者包括BBU和自适应无线单元(adaptive radio unit,ARU),或BBU;也可以为客户终端设备(customer premises equipment,CPE),还可以为其它形态,本申请对于网络设备的具体形态不做限定。
其中,CU和/或DU可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而AAU可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
本申请还提供了一种处理装置,包括至少一个处理器,所述至少一个处理器用于执行存储器中存储的计算机程序,以使得所述处理装置执行上述任一方法实施例中终端设备或网络设备所执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和通信接口。所述通信接口与所述处理器耦合。所述通信接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。所述处理器用于执行计算机程序,以使得所述处理装置执行上述任一方法实施例中终端设备或网络设备所执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于从所述存储器调用并运行所述计算机程序,以使得所述处理装置执行上述任一方法实施例中终端设备或网络设备所执行的方法。
应理解,上述处理装置可以是一个或多个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图3或图17所示实施例中的终端设备执行的方法或网络设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图3或图17所示实施例中的终端设备执行的方法或网络设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括一个或多个前述的终端设备以及一个或多个前述的网络设备。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
上述实施例中,终端设备可以作为接收设备的一例,网络设备可以作为发送设备的一例。但这不应对本申请构成任何限定。例如,发送设备和接收设备也可以均为终端设备等。本申请对于发送设备和接收设备的具体类型不作限定。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (43)

  1. 一种发送上行参考信号的方法,其特征在于,包括:
    根据资源分配规则,确定多个上行参考信号资源中用于承载上行参考信号的多块第一资源对应的下行参考信号资源,每个上行参考信号资源包括一块或多块第一资源,所述第一资源在时域或频域上的大小基于第一预编码粒度而确定,所述第一预编码粒度表示在一个上行参考信号资源中对应于同一个预编码的连续资源在时域或频域上的大小;
    基于每块第一资源对应的下行参考信号资源,确定每块第一资源对应的预编码;
    发送预编码后的上行参考信号,所述预编码后的上行参考信号是基于每块第一资源对应的预编码对上行参考信号进行预编码得到的。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    确定用于上行参考信号传输的多个预编码,所述多个预编码基于对多个下行参考信号资源的测量确定,所述多个下行参考信号资源与所述多个上行参考信号资源对应;
    所述确定每块第一资源对应的预编码,包括:
    基于所述多个预编码,确定每块第一资源对应的预编码。
  3. 如权利要求2所述的方法,其特征在于,所述基于所述多个预编码,确定每块第一资源对应的预编码,包括:
    基于预编码的选择规则以及所述多个预编码,确定每块第一资源对应的预编码。
  4. 如权利要求3所述的方法,其特征在于,所述方法还包括:
    接收所述预编码的选择规则的指示信息。
  5. 如权利要求2至4中任一项所述的方法,其特征在于,所述方法还包括:
    接收第一指示信息,所述第一指示信息用于指示所述多个上行参考信号资源与多个下行参考信号资源的对应关系。
  6. 如权利要求5所述的方法,其特征在于,所述多个下行参考信号资源中的每个下行参考信号资源与所述多个上行参考信号资源中的至少一个上行参考信号资源对应,所述至少一个上行参考信号资源中的每个上行参考信号资源与所述多个预编码中的一个或多个预编码对应,每个上行参考信号资源对应的预编码基于对所对应的下行参考信号资源的测量得到。
  7. 如权利要求6所述的方法,其特征在于,每个上行参考信号资源对应的预编码基于对所对应的一个下行参考信号资源的测量得到。
  8. 如权利要求1至7中任一项所述的方法,其特征在于,所述下行参考信号资源为非零功率信道状态信息参考信号NZP CSI-RS资源,所述上行参考信号资源为探测参考信号SRS资源。
  9. 如权利要求8所述的方法,其特征在于,多个NZP CSI-RS资源中的每个NZP CSI-RS资源所对应的所述至少一个SRS资源包含在一个SRS资源集中。
  10. 如权利要求9所述的方法,其特征在于,所述方法还包括:
    接收第二指示信息,所述第二指示信息用于指示多个SRS资源集中的每个SRS资源集中的一个或多个SRS资源,所述一个或多个SRS资源对应的预编码为用于上行数据传 输的预编码。
  11. 如权利要求10所述的方法,其特征在于,所述方法还包括:
    基于所述第二指示信息所指示的SRS资源,以及所述多块第一资源对应的预编码,确定上行传输资源中的多块第二资源对应的预编码,所述是上行传输资源用于承载上行数据,每块第二资源在时域或频域上的大小基于第二预编码粒度而确定,所述第二预编码粒度表示所述上行传输资源中对应于同一个预编码的连续资源在时域或频域上的大小;
    发送预编码后的上行数据,所述预编码后的上行数据是基于所述上行传输资源中每块第二资源对应的预编码对上行数据进行预编码得到的。
  12. 如权利要求11所述的方法,其特征在于,所述第二指示信息还用于指示用于所述上行数据传输的传输层数,每个SRS资源集中的一个或多个SRS资源中的每个SRS资源对应一个传输层,每个SRS资源对应的预编码用于所对应的传输层上的上行数据传输。
  13. 如权利要求11或12所述的方法,其特征在于,所述第二指示信息还用于指示与一个或多个传输层对应的一个或多个解调参考信号DMRS端口,所述一个或多个传输层为用于所述上行数据传输的传输层。
  14. 如权利要求11至13中任一项所述的方法,其特征在于,所述方法还包括:
    接收所述第二预编码粒度的指示信息。
  15. 如权利要求1至14中任一项所述的方法,其特征在于,所述方法还包括:
    接收所述第一预编码粒度的指示信息。
  16. 如权利要求1至15中任一项所述的方法,其特征在于,所述方法还包括:
    接收所述资源分配规则的指示信息。
  17. 如权利要求1至16中任一项所述的方法,其特征在于,所述资源分配规则包括频域资源分配规则,所述频域资源分配规则用于确定频分复用的多块第一资源与下行参考信号资源的对应关系。
  18. 如权利要求1至16中任一项所述的方法,其特征在于,所述资源分配规则包括时域资源分配规则,所述时域资源分配规则用于确定时分复用的多块第一资源与下行参考信号资源的对应关系。
  19. 一种接收上行参考信号的方法,其特征在于,包括:
    接收预编码后的上行参考信号,所述预编码后的上行参考信号是基于每块第一资源对应的预编码对上行参考信号进行预编码得到的,所述第一资源是多个上行参考信号资源中用于承载上行参考信号的资源,每块第一资源对应的预编码基于对所对应的下行参考信号资源的测量确定,每块第一资源对应的下行参考信号基于资源分配规则确定;其中,所述第一资源在时域或频域上的大小基于第一预编码粒度而确定,所述第一预编码粒度表示在一个上行参考信号资源中对应于同一个预编码的连续资源在时域或频域上的大小;
    基于所述预编码后的上行参考信号,确定用于上行数据传输的预编码,所述用于上行数据传输的预编码是所述多个预编码中的至少部分预编码。
  20. 如权利要求19所述的方法,其特征在于,所述方法还包括:
    发送第一指示信息,所述第一指示信息用于指示所述多个上行参考信号资源与多个下行参考信号资源的对应关系。
  21. 如权利要求20所述的方法,其特征在于,所述多个下行参考信号资源中的每个 下行参考信号资源与所述多个上行参考信号资源中的至少一个上行参考信号资源对应,所述至少一个上行参考信号资源中的每个上行参考信号资源与所述多个预编码中的一个或多个预编码对应,每个上行参考信号资源对应的预编码基于对所对应的下行参考信号资源的测量得到。
  22. 如权利要求21所述的方法,其特征在于,每个上行参考信号资源对应的预编码基于对所对应的一个下行参考信号资源的测量得到。
  23. 如权利要求19至22中任一项所述的方法,其特征在于,所述下行参考信号资源为非零功率信道状态信息参考信号NZP CSI-RS资源,所述上行参考信号资源为探测参考信号SRS资源。
  24. 如权利要求23所述的方法,其特征在于,多个NZP CSI-RS资源中的每个NZP CSI-RS资源所对应的所述至少一个SRS资源包含在一个SRS资源集中。
  25. 如权利要求24所述的方法,其特征在于,所述方法还包括:
    发送第二指示信息,所述第二指示信息用于指示多个SRS资源集的每个SRS资源集中的一个或多个SRS资源,所述一个或多个SRS资源对应的预编码为用于所述上行数据传输的预编码。
  26. 如权利要求25所述的方法,其特征在于,所述第二指示信息还用于指示用于所述上行数据传输的传输层数,每个SRS资源集中的一个或多个SRS资源中的每个SRS资源对应一个传输层,每个SRS资源对应的预编码用于所对应的传输层上的上行数据传输。
  27. 如权利要求25或26所述的方法,其特征在于,所述第二指示信息还用于指示与一个或多个传输层对应的一个或多个解调参考信号DMRS端口,所述一个或多个传输层为用于所述上行数据传输的传输层。
  28. 如权利要求25至27中任一项所述的方法,其特征在于,所述方法还包括:
    接收预编码后的上行数据,所述预编码后的上行数据是基于每块第二资源对应的预编码对上行数据进行预编码得到的,每块第二资源对应的预编码基于所述第二指示信息指示的SRS资源以及所述多块第一资源对应的预编码确定,所述第二资源在时域或频域上的大小基于第二预编码粒度而确定,所述第二预编码粒度表示在上行传输资源中对应于同一个预编码的连续资源在时域或频域上的大小。
  29. 如权利要求25所述的方法,其特征在于,所述方法还包括:
    发送所述第二预编码粒度的指示信息。
  30. 如权利要求19至29中任一项所述的方法,其特征在于,对每块第一资源对应的下行参考信号资源的测量确定的预编码为多个时,每块第一资源对应的预编码还基于预编码的选择规则确定。
  31. 如权利要求30所述的方法,其特征在于,所述方法还包括:
    发送所述预编码的选择规则的指示信息。
  32. 如权利要求19至31中任一项所述的方法,其特征在于,所述方法还包括:
    发送所述第一预编码粒度的指示信息。
  33. 如权利要求19至32中任一项所述的方法,其特征在于,所述方法还包括:
    发送所述资源分配规则的指示信息。
  34. 如权利要求19至33中任一项所述的方法,其特征在于,所述资源分配规则包括 频域资源分配规则,所述频域资源分配规则用于确定频分复用的多块第一资源与下行参考信号资源的对应关系。
  35. 如权利要求19至33中任一项所述的方法,其特征在于,所述资源分配规则包括时域资源分配规则,所述时域资源分配规则用于确定时分复用的多块第一资源与下行参考信号资源的对应关系。
  36. 一种通信装置,其特征在于,包括用于实现如权利要求1至18中任一项所述的方法的单元。
  37. 一种通信装置,其特征在于,包括用于实现如权利要求19至35中任一项所述的方法的单元。
  38. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器用于执行存储器中存储的计算机程序,以使得所述通信装置实现如权利要求1至18中任一项所述的方法。
  39. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器用于执行存储器中存储的计算机程序,以使得所述通信装置实现如权利要求19至35中任一项所述的方法。
  40. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至18中任一项所述的方法。
  41. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求19至35中任一项所述的方法。
  42. 一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求1至18中任一项所述的方法。
  43. 一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求19至35中任一项所述的方法。
PCT/CN2020/088690 2020-05-06 2020-05-06 一种发送和接收上行参考信号的方法及通信装置 WO2021223084A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/088690 WO2021223084A1 (zh) 2020-05-06 2020-05-06 一种发送和接收上行参考信号的方法及通信装置
CN202080099610.5A CN115380493B (zh) 2020-05-06 2020-05-06 一种发送和接收上行参考信号的方法及通信装置
EP20934304.5A EP4131825A4 (en) 2020-05-06 2020-05-06 UPLINK REFERENCE SIGNAL TRANSMITTING METHOD, UPLINK REFERENCE SIGNAL RECEIVING METHOD AND COMMUNICATION DEVICE
US18/053,356 US20230078895A1 (en) 2020-05-06 2022-11-07 Uplink reference signal sending method, uplink reference signal receiving method, and communication apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/088690 WO2021223084A1 (zh) 2020-05-06 2020-05-06 一种发送和接收上行参考信号的方法及通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/053,356 Continuation US20230078895A1 (en) 2020-05-06 2022-11-07 Uplink reference signal sending method, uplink reference signal receiving method, and communication apparatus

Publications (1)

Publication Number Publication Date
WO2021223084A1 true WO2021223084A1 (zh) 2021-11-11

Family

ID=78467724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088690 WO2021223084A1 (zh) 2020-05-06 2020-05-06 一种发送和接收上行参考信号的方法及通信装置

Country Status (4)

Country Link
US (1) US20230078895A1 (zh)
EP (1) EP4131825A4 (zh)
CN (1) CN115380493B (zh)
WO (1) WO2021223084A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023125296A1 (zh) * 2021-12-31 2023-07-06 华为技术有限公司 用于传输参考信号的方法和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230291612A1 (en) * 2022-03-09 2023-09-14 Qualcomm Incorporated Channel state feedback using demodulation reference signals

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244557A (zh) * 2010-05-12 2011-11-16 中国移动通信集团公司 发送与接收信道探测参考信号的方法及装置
US20170373809A1 (en) * 2016-06-24 2017-12-28 Lg Electronics Inc. Method of processing data block in wireless communication system and apparatus therefor
CN108282207A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种预编码矩阵指示方法、装置和系统
CN108809578A (zh) * 2017-05-05 2018-11-13 华为技术有限公司 传输数据的方法、终端设备和网络设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11025388B2 (en) * 2017-10-10 2021-06-01 Futurewei Technologies, Inc. System and method for control signaling
US10651900B2 (en) * 2018-05-18 2020-05-12 Futurewei Technologies, Inc. System and method for communications system training
US20210306123A1 (en) * 2018-07-27 2021-09-30 Nec Corporation Uplink transmission
CN113556220A (zh) * 2018-10-18 2021-10-26 华为技术有限公司 信息接收、发送方法及装置
EP3644522A1 (en) * 2018-10-26 2020-04-29 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Methods and apparatuses for providing antenna port related information in a communications network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244557A (zh) * 2010-05-12 2011-11-16 中国移动通信集团公司 发送与接收信道探测参考信号的方法及装置
US20170373809A1 (en) * 2016-06-24 2017-12-28 Lg Electronics Inc. Method of processing data block in wireless communication system and apparatus therefor
CN108282207A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种预编码矩阵指示方法、装置和系统
CN108809578A (zh) * 2017-05-05 2018-11-13 华为技术有限公司 传输数据的方法、终端设备和网络设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4131825A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023125296A1 (zh) * 2021-12-31 2023-07-06 华为技术有限公司 用于传输参考信号的方法和装置

Also Published As

Publication number Publication date
EP4131825A4 (en) 2023-06-07
CN115380493A (zh) 2022-11-22
US20230078895A1 (en) 2023-03-16
EP4131825A1 (en) 2023-02-08
CN115380493B (zh) 2024-06-18

Similar Documents

Publication Publication Date Title
WO2020207369A1 (zh) 一种信道测量方法和通信装置
US10911122B2 (en) Reference signal sending method, reference signal receiving method, network device, and terminal device
US20230078895A1 (en) Uplink reference signal sending method, uplink reference signal receiving method, and communication apparatus
US20230013510A1 (en) Method for indicating channel state information csi measurement and communication apparatus
WO2021203373A1 (zh) 一种信道测量方法和通信装置
WO2020057375A1 (zh) 一种资源配置方法及通信装置
CN116368744B (zh) 一种信息指示方法及装置
US20230379020A1 (en) Precoding method and apparatus
WO2020233500A1 (zh) 一种通信方法及通信装置
WO2021159309A1 (zh) 一种信道测量方法和通信装置
WO2019219022A1 (zh) 通信方法、终端设备和网络设备
WO2021189302A1 (zh) 更新的方法和通信装置
WO2021081964A1 (zh) 一种下行参考信号的发送端口的配置方法和通信装置
WO2023030291A1 (zh) 用于传输参考信号的方法和装置
WO2024093646A1 (zh) 一种资源配置的方法和装置
WO2021207895A1 (zh) 一种用于传输上行信号的方法和通信装置
WO2023125125A1 (zh) 一种通信方法及通信装置
WO2024032241A1 (zh) 一种频域分量上报的方法及装置
WO2023160692A1 (zh) 一种通信方法及通信装置
WO2024022525A1 (zh) 信道状态信息报告传输方法与装置、终端设备和网络设备
WO2024045855A1 (zh) Srs的传输方法和装置
WO2022218198A1 (zh) 一种通信方法及通信装置
WO2024140774A1 (zh) 一种通信方法及装置
CN112422245B (zh) 发送和接收指示的方法和装置
WO2024061093A1 (zh) 一种上行预编码的指示方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934304

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020934304

Country of ref document: EP

Effective date: 20221026

NENP Non-entry into the national phase

Ref country code: DE