WO2024061093A1 - 一种上行预编码的指示方法及通信装置 - Google Patents

一种上行预编码的指示方法及通信装置 Download PDF

Info

Publication number
WO2024061093A1
WO2024061093A1 PCT/CN2023/118738 CN2023118738W WO2024061093A1 WO 2024061093 A1 WO2024061093 A1 WO 2024061093A1 CN 2023118738 W CN2023118738 W CN 2023118738W WO 2024061093 A1 WO2024061093 A1 WO 2024061093A1
Authority
WO
WIPO (PCT)
Prior art keywords
codeword
uplink transmission
indication information
transmission layers
terminal device
Prior art date
Application number
PCT/CN2023/118738
Other languages
English (en)
French (fr)
Inventor
徐军
金黄平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024061093A1 publication Critical patent/WO2024061093A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present application relates to the field of wireless communication technology, and more specifically, to an uplink precoding indication method and a communication device.
  • the fifth generation (5G) mobile communication system has higher requirements on system capacity, spectrum efficiency and other aspects.
  • the application of massive multiple-input multiple-output (massive-MIMO) technology plays a crucial role in improving the spectrum efficiency of the system.
  • massive-MIMO technology terminal equipment needs to precode the data when sending uplink data.
  • the codebook-based uplink transmission mode is a precoding method for uplink transmission.
  • the base station selects an appropriate codeword for the terminal device from a predefined uplink codebook and indicates the selected codeword to the terminal device.
  • the predefined uplink codebook is stored in the base station and terminal equipment.
  • the number of available codewords is limited, the number of supported transmit antenna ports and the number of uplink transmission layers are limited.
  • terminal equipment supports an increasing number of transmit antenna ports.
  • the existing predefined uplink codebooks are obviously unable to adapt, limiting the performance of uplink transmission.
  • This application provides a communication method and communication device, enabling the codewords in the uplink codebook to support terminal equipment with a greater number of antenna ports, and improving the uplink transmission performance of the terminal equipment.
  • the first aspect provides a method of communication.
  • the method may be executed by the network device, or may also be executed by a component (such as a chip or chip system) configured in the network device.
  • the method includes: obtaining the first codebook; when the number of uplink transmission layers of the terminal device is less than or equal to X, determining the first information.
  • the first information includes first indication information and third indication information.
  • the first indication information It is used to indicate the index of the first codeword in the first codebook and the number of uplink transmission layers of the first codeword.
  • the third indication information is used to indicate that the number of uplink transmission layers of the terminal device is less than or equal to X; when the uplink transmission of the terminal device When the number of layers is greater than The number of uplink transmission layers of a codeword, the second indication information is used to indicate the index of the second codeword in the first codebook and the number of uplink transmission layers of the second codeword, and the third indication information is used to indicate the uplink transmission of the terminal device The number of layers is greater than any value of .
  • the network device can obtain the predefined codebook and indicate the predefined codeword index and the number of uplink transmission layers of the codeword to the first terminal device, thereby allowing the first terminal device to determine the uplink precoding matrix.
  • Uplink precoding can be based on the 4Tx uplink codebook in the existing protocol, enable codebook instructions that support greater than 4Tx terminal equipment, realize flexible uplink precoding matrix instructions, adapt to more transmit antenna ports, and can effectively Improve the performance of uplink transmission. There is no need to redesign the codebook, and the joint indication method of the uplink transmission layer indicator (TRI) and the transmitted precoding matrix indicator (TPMI) in the existing protocol is not changed, so the impact on the protocol is small. , strong forward compatibility.
  • TRI uplink transmission layer indicator
  • TPMI transmitted precoding matrix indicator
  • the association relationship between the joint index, the codeword index and the transmission layer number is defined, for example, the table index is redesigned based on the existing indication table, so that the second codeword can be indicated.
  • the codeword is selected from codewords with the same coherence capability as the first codeword, which reduces bit overhead compared with the existing codeword indication method.
  • the first information when the number of uplink transmission layers of the terminal device is less than or equal to X, the first information also includes fourth indication information, and the fourth indication information is used to indicate the first coefficient. Used to indicate the sending day corresponding to the uplink precoding matrix. The phase difference between the first half of the transmit antenna port and the second half of the transmit antenna port in the line port.
  • the first information further includes second indication information, and the second indication information is used to indicate the index of the second codeword in the first codebook and the number of uplink transmission layers of the second codeword. ; Wherein, the number of uplink transmission layers of the first codeword is the same as the number of uplink transmission layers of the second codeword, and the second codeword and the first codeword have the same coherence capabilities.
  • the first information when the number of uplink transmission layers of the terminal device is greater than X, the first information further includes fourth indication information, and the fourth indication information is used to indicate the first coefficient.
  • the first codeword and the second codeword are selected from codewords with an uplink transmission layer number of 1-4.
  • the second codeword or the first codeword is selected from codewords with an uplink transmission layer number of 4.
  • the first codeword or the second codeword can select a codeword with an uplink transmission layer number of 4, and the first codeword and the second codeword have the same
  • the number of uplink transmission layers defines the relationship between the joint index, the codeword index and the number of transmission layers, so that when indicating the second codeword, the codeword with the same coherence capability as the first codeword and the number of uplink transmission layers is 4
  • the selection requires only 1 bit of overhead, further saving overhead.
  • the fourth indication information indicates that the number of uplink transmission layers of the first terminal device is less than or equal to X, the number of uplink transmission layers of the first terminal device is equal to the uplink transmission layer of the first codeword. number; when the fourth indication information indicates that the number of uplink transmission layers of the first terminal device is greater than X, the number of uplink transmission layers of the first terminal device is equal to the number of uplink transmission layers of the first codeword and the number of uplink transmission layers of the second codeword and.
  • the fourth indication information indicates that the number of uplink transmission layers of the first terminal device is greater than X
  • the number of uplink transmission layers of the first terminal device is equal to the number of uplink transmission layers of the first codeword or The sum of the uplink transmission layer number of the second codeword and 4.
  • the first codeword or the second codeword can select a codeword with an uplink transmission layer number of 4.
  • the number of uplink transmission layers is The sum of the uplink transmission layer number of the first codeword or the uplink transmission layer number of the second codeword and 4.
  • the sum of the indicated bit overheads of the first codeword, the second codeword and the coefficient is the first value.
  • the first terminal device needs to know the total DCI length before receiving downlink control information (DCI), otherwise it needs to be re-detected.
  • DCI downlink control information
  • the first terminal device After limiting the total length of DCI, the first terminal device The device can avoid redetection.
  • the second aspect provides a communication method.
  • the method may be executed by a terminal device, or may be executed by a component (such as a chip or chip system) configured in the terminal device.
  • the method includes: obtaining a first codebook; receiving first information, where the first information includes first indication information and third indication information, and the first indication information is used to indicate the index of the first codeword in the first codebook. and the number of uplink transmission layers of the first codeword, and the third indication information is used to indicate that the number of uplink transmission layers of the terminal device is less than or equal to X; or, receiving the first information, the first information includes the first indication information and the second indication information and third indication information.
  • the first indication information is used to indicate the index of the first codeword in the first codebook and the number of uplink transmission layers of the first codeword.
  • the second indication information is used to indicate the second codeword in the first codebook.
  • the index of the word and the number of uplink transmission layers of the second codeword is used to indicate that the number of uplink transmission layers of the terminal device is greater than X.
  • the second codeword and the first codeword have the same coherence capability; according to the first information Determine the uplink precoding matrix; where X is any value among 1, 2, 3, and 4.
  • the first terminal device can obtain the predefined codebook, and determine the uplink precoding matrix to perform uplink precoding based on the predefined codeword index and the number of uplink transmission layers of the codeword indicated by the network device, and can perform uplink precoding based on the current
  • There is a 4Tx uplink codebook in the protocol which enables support for codebook instructions larger than 4Tx terminal equipment, realizes flexible uplink precoding matrix instructions, adapts to more transmit antenna ports, and can effectively improve the performance of uplink transmission.
  • the first information when the third indication information indicates that the number of uplink transmission layers of the terminal device is less than or equal to X, the first information further includes fourth indication information, and the fourth indication information is used to indicate the One coefficient, the first coefficient is used to indicate the phase difference between the first half of the transmit antenna ports and the second half of the transmit antenna ports corresponding to the uplink precoding matrix.
  • the first information further includes second indication information, and the second indication information is used to indicate the index of the second codeword in the first codebook and the number of uplink transmission layers of the second codeword. ; Wherein, the number of uplink transmission layers of the first codeword is the same as the number of uplink transmission layers of the second codeword, and the second codeword and the first codeword have the same coherence capabilities.
  • the first information when the third indication information indicates that the number of uplink transmission layers of the terminal device is greater than X, the first information also includes fourth indication information, and the fourth indication information is used to indicate the first coefficient.
  • the first codeword and the second codeword are selected from codewords with an uplink transmission layer number of 1-4.
  • the second codeword or the first codeword is selected from the codewords with an uplink transmission layer number of 4.
  • the first codeword or the second codeword can select a codeword with an uplink transmission layer number of 4, and the first codeword and the second codeword have the same
  • the number of uplink transmission layers defines the relationship between the joint index, the codeword index and the number of transmission layers, so that when indicating the second codeword, the codeword with the same coherence capability as the first codeword and the number of uplink transmission layers is 4
  • the selection requires only 1 bit of overhead, further saving overhead.
  • the number of uplink transmission layers of the first terminal device when the number of uplink transmission layers of the first terminal device is less than or equal to X, the number of uplink transmission layers of the first terminal device is equal to the number of uplink transmission layers of the first codeword; first When the number of uplink transmission layers of the terminal device is greater than X, the number of uplink transmission layers of the first terminal device is equal to the sum of the number of uplink transmission layers of the first codeword and the number of uplink transmission layers of the second codeword.
  • the number of uplink transmission layers of the first terminal device when the number of uplink transmission layers of the first terminal device is greater than X, the number of uplink transmission layers of the first terminal device is equal to the number of uplink transmission layers of the first codeword or the second codeword. The sum of the uplink transmission layer number and 4.
  • the sum of the indicated bit overheads of the first codeword, the second codeword and the first coefficient is the first value.
  • the first terminal device needs to know the total DCI length before receiving DCI, otherwise it needs to re-detect. In this solution, after limiting the total length of DCI, the first terminal device can avoid re-detection.
  • the third aspect provides a communication method.
  • the method may be executed by the network device, or may also be executed by a component (such as a chip or chip system) configured in the network device.
  • the method includes: obtaining a first codebook; when the number of uplink transmission layers of the first terminal device is less than or equal to X, generating and sending first indication information and third indication information, the first indication information is used to indicate the third The index of the first codeword in a codebook and the number of uplink transmission layers of the first codeword.
  • the third indication information is used to indicate that the number of uplink transmission layers of the first terminal device is less than or equal to X. The index of the first codeword and the number of uplink transmission layers of the first codeword.
  • the number of uplink transmission layers of a codeword is used by the first terminal device to determine the first uplink precoding matrix and perform uplink precoding; when the number of uplink transmission layers of the first terminal device is greater than Second indication information and third indication information.
  • the second indication information is used to indicate the index of the second codeword in the first codebook and the number of uplink transmission layers of the second codeword.
  • the third indication information is used to indicate the number of the first terminal device.
  • the number of uplink transmission layers is greater than
  • the precoding matrix is used to perform uplink precoding, where the first codeword and the second codeword have the same coherence capability; where X is any value among 1, 2, 3, and 4.
  • the network device can obtain the predefined codebook and indicate the predefined codeword index and the number of uplink transmission layers of the codeword to the first terminal device, thereby allowing the first terminal device to determine the uplink precoding matrix.
  • Uplink precoding can be based on the 4Tx uplink codebook in the existing protocol, enable codebook instructions that support greater than 4Tx terminal equipment, realize flexible uplink precoding matrix instructions, adapt to more transmit antenna ports, and can effectively Improve the performance of uplink transmission. There is no need to redesign the codebook and the joint indication method of TRI and TPMI in the existing protocol is not changed. Therefore, the impact of the protocol is small and the forward compatibility is strong.
  • the association relationship between the joint index, the codeword index and the number of transmission layers is defined, so that when indicating the second codeword, it can have the same coherence capability as the first codeword.
  • Coherence-capable codeword selection reduces bit overhead compared to existing indication tables.
  • the fourth aspect provides a communication method.
  • the method may be executed by a terminal device, or may be executed by a component (such as a chip or chip system) configured in the terminal device.
  • the method includes: obtaining a first codebook; receiving first indication information and third indication information, determining according to the third indication information that the number of uplink transmission layers of the first terminal device is less than or equal to X, and determining according to the first indication information
  • the first uplink precoding matrix is determined based on the index of the first codeword and the number of uplink transmission layers of the first codeword in the first codebook and the uplink precoding is performed.
  • the index of a codeword and the number of uplink transmission layers of the first codeword are determined according to the second indication information.
  • the index of the second codeword in the first codebook and the number of uplink transmission layers of the second codeword are determined according to the number of uplink transmission layers of the first codeword.
  • the index, the number of uplink transmission layers of the first codeword, the index of the second codeword, and the number of uplink transmission layers of the second codeword determine the first uplink precoding matrix and perform uplink precoding, where the first codeword and the second codeword
  • the codewords have the same coherence capability; where X is any one of 1, 2, 3, and 4.
  • the first terminal device can obtain the predefined codebook, and determine the uplink precoding matrix to perform uplink precoding based on the predefined codeword index and the number of uplink transmission layers of the codeword indicated by the network device, and can perform uplink precoding based on the current
  • There is a 4Tx uplink codebook in the protocol which enables support for codebook instructions larger than 4Tx terminal equipment, realizes flexible uplink precoding matrix instructions, adapts to more transmit antenna ports, and can effectively improve the performance of uplink transmission.
  • the first codeword and the second codeword are selected from codewords with uplink transmission layer numbers of 1-4.
  • the second codeword or the first codeword is a code whose number of uplink transmission layers is 4. word selected.
  • the third indication information indicates that the number of uplink transmission layers of the first terminal device is less than or equal to X
  • the number of uplink transmission layers of the first terminal device is equal to the first code The number of uplink transmission layers of the word; when the third indication information indicates that the number of uplink transmission layers of the first terminal device is greater than The sum of the number of uplink transmission layers.
  • the third indication information indicates that the number of uplink transmission layers of the first terminal device is greater than X
  • the number of uplink transmission layers of the first terminal device is equal to the number of the first codeword.
  • a fifth aspect provides a communication device, which may be a network device, or may be a component (such as a chip or chip system) configured in the network device.
  • the device includes: a processing unit, configured to obtain the first codebook; a processing unit, also configured to determine the first information when the number of uplink transmission layers of the terminal device is less than or equal to X, and the first information includes the first indication information and third indication information.
  • the first indication information is used to indicate the index of the first codeword in the first codebook and the number of uplink transmission layers of the first codeword.
  • the third indication information is used to indicate the number of uplink transmission layers of the terminal device. Less than or equal to X; the processing unit is also configured to determine the first information when the number of uplink transmission layers of the terminal device is greater than The information is used to indicate the index of the first codeword in the first codebook and the number of uplink transmission layers of the first codeword.
  • the second indication information is used to indicate the index of the second codeword in the first codebook and the number of the second codeword.
  • the number of uplink transmission layers, the third indication information is used to indicate that the number of uplink transmission layers of the terminal device is greater than Used by the terminal equipment to determine the uplink precoding matrix; where X is any one of 1, 2, 3, and 4.
  • the first information when the number of uplink transmission layers of the terminal device is less than or equal to X, the first information also includes fourth indication information, and the fourth indication information is used to indicate the first coefficient. Used to indicate the phase difference between the first half of the transmit antenna ports and the second half of the transmit antenna ports corresponding to the uplink precoding matrix.
  • the first information also includes second indication information, and the second indication information is used to indicate the index of the second codeword in the first codebook and the number of uplink transmission layers of the second codeword; wherein the number of uplink transmission layers of the first codeword is the same as the number of uplink transmission layers of the second codeword, and the second codeword and the first codeword have the same coherence capability.
  • the first information when the number of uplink transmission layers of the terminal device is greater than X, the first information further includes fourth indication information, and the fourth indication information is used to indicate the first coefficient.
  • the first codeword and the second codeword are selected from codewords with an uplink transmission layer number of 1-4.
  • the second codeword or the first codeword is selected from codewords with an uplink transmission layer number of 4.
  • the fourth indication information indicates that the number of uplink transmission layers of the first terminal device is less than or equal to X, the number of uplink transmission layers of the first terminal device is equal to the uplink transmission layer of the first codeword. number; when the fourth indication information indicates that the number of uplink transmission layers of the first terminal device is greater than X, the number of uplink transmission layers of the first terminal device is equal to the number of uplink transmission layers of the first codeword and the number of uplink transmission layers of the second codeword and.
  • the fourth indication information indicates that the number of uplink transmission layers of the first terminal device is greater than X
  • the number of uplink transmission layers of the first terminal device is equal to the number of uplink transmission layers of the first codeword or The sum of the uplink transmission layer number of the second codeword and 4.
  • the sum of the indication bit overhead of the first codeword, the second codeword and the coefficient is the first value.
  • a communication device may be a terminal device, or may be a component (such as a chip or chip system) configured in the terminal device.
  • the device includes: a processing unit, used to obtain the first codebook; a transceiver unit, used to receive the first information, the first information includes first indication information and third indication information, the first indication information is used to indicate the third The index of the first codeword in a codebook and the number of uplink transmission layers of the first codeword, and the third indication information is used to indicate that the number of uplink transmission layers of the terminal device is less than or equal to X; or, the transceiver unit is used to receive the first Information, the first information includes first indication information, second indication information and third indication information, the first indication information is used to indicate the index of the first codeword in the first codebook and the number of uplink transmission layers of the first codeword, The second indication information is used to indicate the index of the second codeword in the first codebook and the number of uplink transmission layers of the second codeword.
  • the third indication information is used to indicate that the number of uplink transmission layers of the terminal device is greater than X.
  • the second codeword It has the same coherence capability as the first codeword; the processing unit is also used to determine the uplink precoding matrix according to the first information; where X is any one of 1, 2, 3, and 4.
  • the first information when the number of uplink transmission layers of the terminal device is less than or equal to X, the first information further includes fourth indication information, and the fourth indication information is used to indicate the first coefficient, the first The coefficient is used to indicate the phase difference between the first half of the transmit antenna ports and the second half of the transmit antenna ports corresponding to the uplink precoding matrix.
  • the first information further includes second indication information, and the second indication information is used to indicate the index of the second codeword in the first codebook and the uplink transmission layer of the second codeword. number; wherein, the number of uplink transmission layers of the first codeword is the same as the number of uplink transmission layers of the second codeword, and the second codeword and the first codeword have the same coherence capability.
  • the first information when the number of uplink transmission layers of the terminal device is greater than X, the first information further includes fourth indication information, and the fourth indication information is used to indicate the first coefficient.
  • the first codeword and the second codeword are selected from codewords with an uplink transmission layer number of 1-4.
  • the second codeword or the first codeword is selected from the codewords with an uplink transmission layer number of 4.
  • the number of uplink transmission layers of the first terminal device when the number of uplink transmission layers of the first terminal device is less than or equal to X, the number of uplink transmission layers of the first terminal device is equal to the number of uplink transmission layers of the first codeword; first When the number of uplink transmission layers of the terminal device is greater than X, the number of uplink transmission layers of the first terminal device is equal to the sum of the number of uplink transmission layers of the first codeword and the number of uplink transmission layers of the second codeword.
  • the number of uplink transmission layers of the first terminal device when the number of uplink transmission layers of the first terminal device is greater than X, the number of uplink transmission layers of the first terminal device is equal to the number of uplink transmission layers of the first codeword or the second codeword. The sum of the uplink transmission layer number and 4.
  • the sum of the indication bit overheads of the first codeword, the second codeword and the first coefficient is the first value.
  • a communication device including various modules or units for performing the method in any one of the first to fourth aspects and possible implementations of the first to fourth aspects.
  • a communication device including a processor.
  • the processor is coupled to a memory and may be used to execute instructions in the memory to implement the method in any one of the above first to fourth aspects and possible implementation manners.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication device is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip configured in a terminal device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a processor including: an input circuit, an output circuit and a processing circuit.
  • the processing circuit is configured to receive signals through the input circuit and transmit signals through the output circuit, so that the processor executes the method in any one of the above first to fourth aspects and possible implementation manners.
  • the above-mentioned processor can be a chip, the input circuit can be an input pin, the output circuit can be an output pin, and the processing circuit can be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, the receiver, and the signal output by the output circuit may be, for example, but not limited to, output to and transmitted by the transmitter, and the input circuit and the output A circuit may be the same circuit that functions as an input circuit and an output circuit at different times.
  • the embodiments of this application do not limit the specific implementation methods of the processor and various circuits.
  • a processing device including a processor and a memory.
  • the processor is used to read instructions stored in the memory, and can receive signals through a receiver and transmit signals through a transmitter to execute the first to fourth aspects and the first to fourth aspects.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the memory can be a non-transitory memory, such as a read-only memory (ROM), which can be integrated on the same chip as the processor, or can be set in different On the chip, the embodiment of the present application does not limit the type of memory and the arrangement of the memory and the processor.
  • ROM read-only memory
  • sending instruction information may be a process of outputting instruction information from the processor
  • receiving capability information may be a process of the processor receiving input capability information.
  • the data output by the processing can be output to the transmitter, and the input data received by the processor can come from the receiver.
  • the transmitter and receiver can be collectively called a transceiver.
  • the processing device in the above tenth aspect may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software, At this time, the processor can be a general-purpose processor, which is implemented by reading the software code stored in the memory.
  • the memory can be integrated in the processor, or can be located outside the processor and exist independently.
  • a computer program product includes: a computer program (which may also be called a code, or an instruction).
  • a computer program which may also be called a code, or an instruction.
  • the computer program When the computer program is run, it causes the computer to execute the above-mentioned first to fourth aspects and The method in any possible implementation manner from the first aspect to the fourth aspect.
  • a computer-readable storage medium stores a computer program (which can also be called a code, or an instruction) that when run on a computer causes the computer to execute the above-mentioned first aspect to The fourth aspect and the method in any possible implementation manner of the first to fourth aspects.
  • a computer program which can also be called a code, or an instruction
  • a communication system comprising the aforementioned terminal device and network device.
  • Figure 1 is a schematic architectural diagram of a communication system suitable for the uplink precoding indication method provided by an embodiment of the present application;
  • Figure 2 is a schematic flow chart of an uplink precoding instruction method provided by an embodiment of the present application
  • Figure 3 is a schematic flow chart of an uplink precoding instruction method provided by an embodiment of the present application.
  • Figure 4 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • LTE Long Term Evolution
  • FDD frequency division duplex
  • UMTS time division duplex
  • WiMAX global interoperability for microwave access
  • 5G mobile communication system may include non-standalone networking (non-standalone, NSA) and/or independent networking (standalone, SA).
  • the technical solution provided by this application can also be applied to machine type communication (MTC), long-term evolution technology for machine-to-machine communication (Long Term Evolution-machine, LTE-M), and device-to-device (D2D).
  • MTC machine type communication
  • LTE-M Long Term Evolution-machine
  • D2D device-to-device
  • M2M machine to machine
  • IoT Internet of things
  • the IoT network may include, for example, the Internet of Vehicles.
  • the communication methods in the Internet of Vehicles system are collectively called vehicle to other devices (vehicle to X, V2X, X can represent anything).
  • the V2X can include: vehicle to vehicle (vehicle to vehicle, V2V) communication.
  • the network device may be any device with wireless transceiver functions.
  • This equipment includes but is not limited to: evolved Node B (eNB), radio network controller (RNC), Node B (Node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), access point (access point) in a wireless fidelity (WiFi) system, AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP), etc.
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station for example, home evolved NodeB, or home Node B, HNB
  • BBU baseband unit
  • access point access point
  • WiFi wireless fidelity
  • AP wireless relay node
  • TP transmission point
  • TRP transmission and reception point
  • It can also be 5G, such as NR, gNB in the system, or , transmission point (TRP or TP), one or a group (including multiple antenna panels) of antenna panels of a base station in a 5G system, or it can also be a network node that constitutes a gNB or transmission point, such as a baseband unit (BBU), Or, distributed unit (DU), etc.
  • 5G such as NR, gNB in the system, or , transmission point (TRP or TP), one or a group (including multiple antenna panels) of antenna panels of a base station in a 5G system
  • TRP or TP transmission point
  • BBU baseband unit
  • DU distributed unit
  • gNB may include centralized units (CUs) and DUs.
  • the gNB may also include an active antenna unit (AAU).
  • CU implements some functions of gNB, and DU implements some functions of gNB.
  • CU is responsible for processing non-real-time protocols and services, implementing radio resource control (RRC), and packet data convergence protocol (PDCP). layer functions.
  • DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the wireless link control (radio link control, RLC) layer, medium access control (medium access control, MAC) layer and physical (physical, PHY) layer.
  • RLC radio link control
  • MAC medium access control
  • PHY physical layer
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network equipment in the access network (radio access network, RAN), or the CU can be divided into network equipment in the core network (core network, CN), which is not limited in this application.
  • the network equipment provides services for the cell, and the terminal equipment communicates with the cell through the transmission resources (for example, frequency domain resources, or spectrum resources) allocated by the network equipment.
  • the cell may belong to a macro base station (for example, macro eNB or macro gNB, etc.) , or it can belong to the base station corresponding to a small cell.
  • the small cell here can include: metro cell, micro cell, pico cell, femto cell, etc. , these small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-rate data transmission services.
  • the terminal equipment may also be called user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, Terminal, wireless communication equipment, user agent or user device.
  • UE user equipment
  • the terminal device may be a device that provides voice/data connectivity to the user, such as a handheld device, a vehicle-mounted device, etc. with wireless connectivity capabilities.
  • some examples of terminals can be: mobile phones, tablets, computers with wireless transceiver functions (such as laptops, handheld computers, etc.), mobile Internet devices (mobile internet device, MID), virtual reality (virtual reality, VR) equipment, augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical Terminals, wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless Telephone, session initiation protocol (SIP) telephone, wireless local loop (WLL) station, personal digital assistant (PDA), handheld device with wireless communication capabilities, computing device or connection Other processing equipment to wireless modems, vehicle-mounted equipment, wearable devices, terminal equipment in the 5G network or terminal equipment in the future evolved public land mobile communication network (public land mobile network, PLMN), etc.
  • wearable devices can also be called wearable smart devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction. Broadly defined wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones. Use, such as various types of smart bracelets, smart jewelry, etc. for physical sign monitoring.
  • the terminal device may also be a terminal device in an Internet of Things (IoT) system.
  • IoT Internet of Things
  • Its main technical feature is to connect objects to the network through communication technology, thereby realizing an intelligent network of human-computer interconnection and object interconnection.
  • IoT technology can achieve massive connections and deep coverage through narrow band NB technology, for example. Terminal power saving.
  • terminal equipment can also include sensors such as smart printers, train detectors, and gas stations. Its main functions include collecting data (some terminal equipment), receiving control information and downlink data from network equipment, and sending electromagnetic waves to transmit uplink data to network equipment. .
  • FIG. 1 shows a schematic diagram of a communication system 100 suitable for the method provided by the embodiment of the present application.
  • the communication system 100 may include at least one network device, such as the network device 101 in the 5G system as shown in FIG. 1; the communication system 100 may also include at least one terminal device, as shown in FIG. 1 Terminal devices 102 to 107.
  • the terminal devices 102 to 107 can be mobile or fixed.
  • Network device 101 and one or more of terminal devices 102 to 107 may each communicate via wireless links.
  • Each network device can provide communications coverage for a specific geographic area and can communicate with end devices located within that coverage area.
  • the network device can send configuration information to the terminal device, and the terminal device can send uplink data to the network device based on the configuration information; for another example, the network device can send downlink data to the terminal device.
  • the network device can calculate the number of streams and uplink precoding transmitted by the terminal device in the uplink, and indicate this to the terminal device through downlink information. Therefore, the network device 101 and the terminal devices 102 to 107 in Fig. 1 constitute a communication system.
  • terminal devices can communicate directly with each other.
  • D2D technology can be used to achieve direct communication between terminal devices.
  • D2D technology can be used to communicate directly between terminal devices 105 and 106 and between terminal devices 105 and 107.
  • Terminal device 106 and terminal device 107 may communicate with terminal device 105 individually or simultaneously.
  • the terminal devices 105 to 107 can also communicate with the network device 101 respectively. For example, it can directly communicate with the network device 101.
  • the terminal devices 105 and 106 in the figure can communicate directly with the network device 101; it can also communicate with the network device 101 indirectly, such as the terminal device 107 in the figure communicates with the network device via the terminal device 106. 101 Communication.
  • FIG. 1 exemplarily shows one network device and multiple terminal devices, as well as communication links between the communication devices.
  • the communication system 100 may include multiple network devices, and other numbers of terminal devices may be included within the coverage of each network device, such as more or fewer terminal devices. This application does not limit this.
  • the terminal devices within the coverage area of each network device can send uplink data to any network device, or can send uplink data to multiple network devices.
  • uplink data sent by a terminal device in an adjacent area covered by two network devices can be received by one of the two network devices, or can be received jointly by the two network devices.
  • Each of the above-mentioned communication devices may be configured with multiple antennas.
  • the multiple antennas may include at least one transmitting antenna for sending signals and at least one receiving antenna for receiving signals.
  • each communication device also additionally includes a transmitter chain and a receiver chain, and those skilled in the art will appreciate that they may include multiple components related to signal transmission and reception (e.g., processors, modulators, multiplexers, demodulators, demultiplexers or antennas, etc.). Therefore, the network device and the terminal device may communicate via multi-antenna technology.
  • the wireless communication system 100 may also include other network entities such as a network controller and a mobility management entity, to which the embodiments of the present application are not limited.
  • network entities such as a network controller and a mobility management entity, to which the embodiments of the present application are not limited.
  • a terminal device can send uplink data to an access network device through multiple transmitting antenna ports.
  • the terminal device needs to precode the uplink transmission information during uplink transmission.
  • the precoding of the uplink transmission can be an uplink transmission mode based on a codebook.
  • the object for precoding is uplink data as an example for explanation.
  • the uplink data can be data such as uplink business data or uplink signaling, and in practice, the object for precoding can also be any uplink transmission information, which is not specifically limited in the embodiment of the present application.
  • the sending device can process the signal to be sent with the help of a precoding matrix that matches the channel status, so that the precoded signal to be sent adapts to the channel, thereby allowing the receiving device to eliminate channel differences.
  • the complexity of the impact is reduced.
  • the quality of the received signal such as signal to interference plus noise ratio (SINR), etc.
  • SINR signal to interference plus noise ratio
  • the sending device and multiple receiving devices can transmit on the same time-frequency resources, that is, multiple user multiple input multiple output (MU-MIMO) is realized.
  • MU-MIMO multiple user multiple input multiple output
  • the sending device can also perform precoding in other ways. For example, when the channel information (such as but not limited to the channel matrix) cannot be obtained, a preset precoding matrix or weighting processing method is used to perform precoding. For the sake of brevity, its specific content will not be repeated in this article.
  • the embodiment of the present application involves a transmitting antenna port of a terminal device.
  • One or more physical antennas of the terminal device constitute a logical antenna, and one transmitting antenna port corresponds to a port of a logical antenna.
  • the number of transmit antenna ports of the terminal device can be one or more.
  • the terminal device has 2 transmit antenna ports, 4 transmit antenna ports, 8 transmit antenna ports, 16 transmit antenna ports, 32 transmit antenna ports, etc.
  • the coherent capabilities of terminal equipment include non-coherent, partial coherent or fully coherent.
  • incoherence means that the terminal device can only send uplink data through one of the multiple transmit antenna ports at a time, or it can be described as incoherence between the multiple transmit antenna ports; partial coherence means that the terminal device can Simultaneously transmitting uplink data through some antenna ports (at least two) of multiple transmit antenna ports, or can be described as partial coherence between multiple transmit antenna ports; complete coherence means that the terminal device can transmit through multiple transmit antenna ports at the same time All antenna ports in the transmitter transmit uplink data, or it can be described as complete coherence between multiple transmit antenna ports.
  • the number of upstream transmission layers refers to the number of upstream data streams, or the number of spatial streams.
  • the maximum number of uplink transmission layers is the rank of the MIMO channel matrix.
  • the rank of the MIMO channel matrix is the intermediate value obtained by performing the transfer matrix singular value decomposition (SVD) on the MIMO channel matrix.
  • the number of diagonal elements (singular values) of a diagonal matrix is less than or equal to the number of transmit antenna ports of the terminal device, and the actual number of uplink transmission layers of the terminal device is less than or equal to the maximum number of uplink transmission layers of the terminal device.
  • the maximum number of uplink transmission layers of the terminal device is equal to the number of transmit antenna ports of the terminal device. For example, if the number of transmit antenna ports of the terminal device is 8, then the maximum number of transmission layers corresponding to the number of transmit antenna ports of the terminal device is 8.
  • the number of uplink transmission layers of the terminal device can be any integer from 1 to 8.
  • the codebook in the embodiment of this application mainly complies with the codebook defined by the 3rd Generation Partnership Project (3GPP) standard, such as the codebook defined in the 3GPP technical standard (technical specification, TS) 38.211 protocol, or also Can be described as an upstream codebook.
  • 3GPP 3rd Generation Partnership Project
  • multiple codebooks are defined in the V16.7.0 version of 3GPP TS 38.211.
  • Each codebook contains multiple codewords. Codewords in the same codebook correspond to the same number of transmit antenna ports and uplink transmission layer. number. A codeword is also called an uplink precoding matrix.
  • Table 1 and Table 2 below show the codebooks corresponding to the number of uplink transmission layers 1 and 2 respectively, and the number of transmit antenna ports is 2; Tables 3 to 6 below respectively show the number of corresponding uplink transmission layers. From 1 to 4, the codebook with the number of antenna ports all being sent is 4.
  • the transmitted precoding matrix indicator (TPMI) value corresponding to the 6 codewords shown in Table 1 from left to right is 0-5, for example, the TPMI of the first codeword from left to right is 0 , the TPMI of the sixth codeword from left to right is 5.
  • Each codeword is a 2 ⁇ 1 matrix, that is, each matrix includes 2 rows, indicating that the number of transmit antenna ports corresponding to the codeword is 2; each matrix includes 1 column, indicating that the number of uplink transmission layers corresponding to the codeword is 1; j represents an imaginary number.
  • TPMI can be understood as the sequence number or index of a codeword in a codebook.
  • each codeword is a 2 ⁇ 2 matrix, that is, each matrix includes 2 rows, indicating the transmit antenna port corresponding to the codeword. The number is 2; each matrix includes 2 columns, indicating that the number of uplink transmission layers corresponding to the codeword is 2.
  • Table 3 shows that the TPMI values corresponding to the 8 codewords in the first row from left to right are 0-7, and the TPMI values corresponding to the 8 codewords in the second row from left to right are 8-15.
  • the TPMI values corresponding to the 8 codewords in the three rows from left to right are 16-23, and the TPMI values corresponding to the 4 codewords in the fourth row from left to right are 24-27.
  • Each codeword is a 4 ⁇ 1 matrix, that is, each matrix includes 4 rows, indicating that the number of transmit antenna ports corresponding to the codeword is 4; each matrix includes 1 column, indicating that the number of uplink transmission layers corresponding to the codeword is 1.
  • Table 4 shows that the TPMI values corresponding to the 4 codewords in the first row from left to right are 0-3, the TPMI values corresponding to the 4 codewords in the second row from left to right are 4-7, the TPMI values corresponding to the 4 codewords in the third row from left to right are 8-11, the TPMI values corresponding to the 4 codewords in the fourth row from left to right are 12-15, the TPMI values corresponding to the 4 codewords in the fifth row from left to right are 16-19, and the TPMI values corresponding to the 2 codewords in the sixth row from left to right are 20-21.
  • Each codeword is a 4 ⁇ 2 matrix, that is, each matrix includes 4 rows, indicating that the number of transmit antenna ports corresponding to the codeword is 4; each matrix includes 2 columns, indicating that the number of uplink transmission layers corresponding to the codeword is 2.
  • each column of the codeword indicated by TPMI 0-5, indicating that the four transmit antenna ports corresponding to these codewords are incoherent.
  • Table 5 shows that the TPMI values corresponding to the four codewords in the first row from left to right are 0-3, and the TPMI values corresponding to the four codewords in the second row from left to right are 4-6.
  • Each codeword is a 4 ⁇ 3 matrix, that is, each matrix includes 4 rows, indicating the sending day corresponding to the codeword.
  • the number of line ports is 4; each matrix includes 3 columns, indicating that the number of uplink transmission layers corresponding to the codeword is 3.
  • Table 6 shows that the TPMI value corresponding to 4 codewords in the first row from left to right is 0-3, and the TPMI value corresponding to 1 codeword in the second row is 4.
  • Each codeword is a 4 ⁇ 4 matrix, that is, each matrix includes 4 rows, indicating that the number of transmit antenna ports corresponding to the codeword is 4; each matrix includes 4 columns, indicating that the number of uplink transmission layers corresponding to the codeword is 4.
  • the terminal device can determine its uplink transmission precoding matrix and the actual number of uplink transmission layers through the SRS resource indicator (SRS resource indicator), uplink transmission layer number indicator TRI (Transmission rank indicator) and TPMI in the downlink message, thereby performing uplink data transmission.
  • SRS resource indicator SRS resource indicator
  • TRI Transmission rank indicator
  • TPMI Transmission rank indicator
  • Table 7 shows Table 7.3.1.1.2-2 in the 3GPP TS 38.212 V16.7.0 protocol.
  • the terminal device selects a row in the table according to the instructions in the DCI. Determine TPMI and TRI.
  • the number of transmit antenna ports corresponding to Table 7 is 4, and the TPMI in Table 7 can be the TPMI in the codebook corresponding to the number of transmit antenna ports of 4, that is, the TPMI in the aforementioned Table 3-6.
  • the joint indication of TPMI and TRI can be understood as an index in Table 7 indicating the number of uplink transmission layers TRI corresponding to a codeword and the TPMI of the codeword, that is, the index can be understood as a joint index.
  • the irrelevant, partially relevant, and fully relevant mentioned in Table 7 correspond to the irrelevant codewords, partially relevant codewords, and fully relevant codewords in Table 3-6.
  • an ellipsis "" in Table 7 indicates the omission of the first index between the first index before the ellipsis and the first first index after the ellipsis, such as first index 4
  • the access network device usually estimates the channel condition of the wireless channel between the terminal device and the access network device based on the reference signal sent by the terminal device for measuring the uplink channel, such as the channel sounding reference signal (SRS).
  • the access network device determines the number of transmitting antenna ports used by the terminal device according to the channel condition, and then calculates the uplink precoding matrix that can be used by the terminal device when sending uplink data according to the number of transmitting antenna ports used by the terminal device and the channel condition.
  • the uplink precoding matrix calculated by the access network device is called the second uplink precoding matrix.
  • the second uplink precoding matrix corresponds to the number of transmitting antenna ports used by the terminal device and the specific number of uplink transmission layers.
  • the access network device selects the codeword closest to the second uplink precoding matrix from the codebook predefined by the aforementioned 3GPP protocol according to the specific number of uplink transmission layers, and indicates the TPMI and the number of uplink transmission layers corresponding to the codeword to the terminal device.
  • the number of transmit antenna ports corresponding to the TPMI indicated by the access network device can be used as the number of transmit antenna ports used by the terminal device to send uplink data
  • the number of uplink transmission layers indicated by the access network device can be used as the number of uplink transmission layers mapped to the uplink data to be sent by the terminal device.
  • the number of layers determines a codeword, the codeword is used to precode uplink data, and the precoded uplink data is sent based on the transmitting antenna port corresponding to the codeword and the number of uplink transmission layers.
  • the codebook predefined by the 3GPP protocol includes the second uplink precoding matrix, that is, the second uplink precoding matrix is a codeword in the codebook predefined by the 3GPP protocol. Then the codeword selected by the access network device is consistent with the second uplink precoding matrix. If the codebook predefined by the 3GPP protocol does not contain the second uplink precoding matrix, that is, the second uplink precoding matrix is not a codeword in the codebook predefined by the 3GPP protocol, the codeword selected by the access network device may be the same as The codeword with the smallest difference between the second uplink precoding matrices.
  • the smallest difference may be the smallest Euclidean distance between the codeword selected by the access network device in the codebook predefined by the 3GPP protocol and the second uplink precoding matrix; the smallest difference may also be the smallest difference between the access network device and the second uplink precoding matrix.
  • the codewords selected in the codebook predefined by the 3GPP protocol have the most identical elements with the second uplink precoding matrix.
  • the terminal equipment uses different codewords to precode the uplink data, which is equivalent to the terminal equipment using different beam patterns to send uplink data. That is, in any of the aforementioned tables 1 to 6, one column in each codeword corresponds to a beam pattern. For example, the number of columns of codewords in Table 1 is 1, and the access network equipment determines to select one of the six codewords in Table 1, which can also be described as selecting one of the six beam patterns. The beam pattern is indicated to the terminal equipment, and the terminal equipment can then send uplink data according to the beam pattern indicated by the access network equipment. For another example, the number of columns of codewords in Table 4 is 2. The access network equipment determines to select one of the 22 codewords in Table 4. It can also describe the first column of the selected codeword. The corresponding beam pattern instructs the terminal device to send layer 1 uplink data, and the beam pattern corresponding to the second column of the selected codeword instructs the terminal device to send layer 2 uplink data.
  • the current 3GPP protocol supports the maximum number of uplink transmission layers corresponding to the codewords indicated by the access network equipment is 4, and the maximum number of transmit antenna ports is 4.
  • terminal equipment supports more and more transmit antenna ports.
  • the number of transmit antenna ports of terminal equipment can be further increased to 8. It can be seen that the number of transmit antenna ports used by the terminal device may exceed the maximum number of transmit antenna ports corresponding to the code words supported by the current 3GPP protocol; accordingly, the number of uplink transmission layers may also exceed the maximum transmission layer corresponding to the code words supported by the current 3GPP protocol. number.
  • embodiments of the present application provide an uplink precoding indication method, which realizes flexible uplink precoding matrix indication through predefined codewords, adapts to more transmit antenna ports and uplink transmission layers, and can effectively Improve the performance of uplink transmission.
  • predefined can refer to what is defined by the communication protocol and configured in the network equipment and terminal equipment of the communicating parties; it can also be determined by the network equipment and configured to the terminal equipment, where the configuration can be explicit configuration through signaling or implicit configuration through other information.
  • instruction may include direct instruction and indirect instruction, and may also include explicit instruction and implicit instruction.
  • the information indicated by certain information is called information to be indicated, and during the specific implementation process, there are many ways to indicate the information to be indicated.
  • the information to be indicated may be directly indicated, wherein the information to be indicated itself or the index of the information to be indicated, or the like.
  • the information to be indicated may also be indirectly indicated by indicating other information, where there is an association relationship between the other information and the information to be indicated.
  • instructions for specific information can also be implemented by means of a pre-agreed (for example, protocol stipulated) arrangement order of each piece of information, thereby reducing the instruction overhead to a certain extent.
  • a precoding indication method provided by an embodiment of the present application will be described in detail below.
  • the terminal device can be replaced by components (such as chips or chip systems) configured in the terminal equipment.
  • the network devices shown in the following embodiments can also be replaced by components (such as chips or chip systems) configured in the network devices.
  • the embodiments shown below do not specifically limit the specific structure of the execution body of the method provided by the embodiment of the present application, as long as it can be provided according to the embodiment of the present application by running a program that records the code of the method provided by the embodiment of the present application.
  • the execution subject of the method provided by the embodiment of the present application can be a terminal device or a network device, or a functional module in the terminal device or network device that can call a program and execute the program.
  • Step S210 The terminal device sends an uplink reference signal to the network device.
  • Step S220 The network device sends precoding instruction information to the terminal device.
  • Step S230 The terminal device determines uplink precoding and sends uplink data.
  • the uplink reference signal is used by network equipment for channel measurement.
  • the uplink reference signal is SRS.
  • the precoding indication information includes an uplink precoding matrix indication and an indication of the number of uplink transmission layers used by the terminal equipment.
  • the terminal device determines the uplink precoding matrix and the number of uplink transmission layers according to the precoding indication information, thereby precoding the uplink data.
  • the network device After the network device performs channel measurement based on the uplink reference signal, it obtains the uplink channel information of the terminal device, calculates the uplink precoding matrix (second uplink precoding matrix) and the number of uplink transmission layers of the terminal device based on the uplink channel information, and Indicate the uplink precoding matrix and the number of uplink transmission layers to the terminal equipment.
  • the uplink precoding matrix second uplink precoding matrix
  • FIG. 3 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a communication method 300 provided by an embodiment of the present application from the perspective of device interaction.
  • the method 300 shown in FIG. 3 may include S310 to S350. Each step in the method 300 is described in detail below.
  • the network device obtains the first codebook.
  • the first codebook includes multiple predefined codewords, and the multiple predefined codewords are used by the network device to select the closest codeword based on the second uplink precoding matrix and the number of uplink transmission layers, so that Used to instruct the terminal device to perform uplink precoding.
  • the first codebook is used to determine the uplink precoding matrix used by the terminal device when transmitting uplink data (for convenience of description, it is referred to as the first uplink precoding matrix below). The process of determining the first codebook will be described in detail below.
  • the first codebook may be defined by the communication protocol, or may be other predefined codewords. And configured in the network equipment and terminal equipment of both communicating parties, it can also be determined by the network equipment and configured to the terminal equipment, where the configuration can be explicit configuration through signaling or implicit configuration through other information.
  • the predefined codewords may be pre-stored on the network device and the terminal device according to the 3GPP protocol; they may also be pre-stored on the network device and sent by the network device to the terminal device after the terminal device accesses the network; or It may be stored on the terminal device in advance and sent to the network device by the terminal device after the terminal device accesses the network; this is not specifically limited in the embodiments of the present application.
  • the network device can estimate the channel conditions of the wireless channel between the terminal device and the network device and determine the number of transmit antenna ports used by the terminal device based on the reference signal, such as SRS, sent by the terminal device for measuring the uplink channel.
  • the network device can calculate the above-mentioned second uplink precoding matrix based on the channel conditions and the number of transmit antenna ports of the terminal device.
  • the number of uplink transmission layers corresponding to the second uplink precoding matrix is determined as the number of uplink transmission layers of the terminal device.
  • the SRS resources occupied by the terminal device for sending SRS can be configured by the network device, and the number of SRS ports configured in the SRS resources is the same as the number of transmit antenna ports used by the terminal device.
  • the network device may determine the number of transmit antenna ports and the number of uplink transmission layers corresponding to each predefined codeword in the first codebook based on the number of transmit antenna ports and the number of uplink transmission layers of the terminal device.
  • the number of transmit antenna ports corresponding to each predefined codeword in the first codebook is the same, and the number of transmit antenna ports corresponding to each predefined codeword is smaller than the number of transmit antenna ports of the terminal device.
  • the embodiments of this application mainly relate to the situation where the number of transmit antenna ports of the terminal device is greater than the maximum number of transmit antenna ports supported by the current codeword predefined by the 3GPP protocol, which is 4.
  • the number of transmit antenna ports of the terminal device is 8, or described as 8Tx, and the number of transmit antenna ports corresponding to each predefined codeword in the first codebook may be 4.
  • the number of uplink transmission layers of the terminal device is composed of the number of uplink transmission layers corresponding to the predefined codewords, or it can be understood that the number of uplink transmission layers corresponding to the predefined codewords depends on the number of uplink transmission layers of the terminal device.
  • the number of uplink transmission layers of the terminal device is described as the first uplink transmission layer number below; the number of uplink transmission layers corresponding to the predefined codeword is described as the second uplink transmission layer number, that is, one predefined codeword corresponds to one second uplink transmission layer number, and the second uplink transmission layer numbers corresponding to different predefined codewords may be the same or different.
  • the second uplink transmission layer number corresponding to each predefined codeword in the first codebook is less than or equal to N, where N is a positive integer, and N is used to indicate the maximum uplink transmission layer number corresponding to the number of transmitting antenna ports corresponding to any predefined codeword in the predefined codewords.
  • the value of N is 4. It can be understood that the first uplink precoding matrix used by the terminal device to send uplink data corresponds to the first uplink The number of transmission layers and the number of transmit antenna ports of the terminal device.
  • the terminal device reports its related capabilities to the network device. Accordingly, the network device acquires the relevant capabilities of the terminal device.
  • the coherence capability reported by the terminal device may indicate that multiple transmit antenna ports of the terminal device are incoherent, partially coherent, or fully coherent.
  • a specific coherent pair may also be indicated.
  • the eight transmit antenna ports of the terminal device are recorded as 1-8, where ⁇ 1,3,5,7 ⁇ is a set of coherent pairs, indicating that the terminal device can simultaneously transmit uplink signals through transmit antenna ports 1, 3, 5, and 7. data.
  • ⁇ 1,3 ⁇ is a set of coherent pairs
  • ⁇ 5,7 ⁇ is another set of coherent pairs, which means that the terminal device can send uplink data through transmit antenna ports 1 and 3 at the same time.
  • the terminal device can send uplink data through transmit antenna ports 5 and 7 at the same time.
  • the network device can determine that the multiple transmit antenna ports corresponding to the first uplink precoding matrix are incoherent, partially coherent, or fully coherent; if the coherent capability of the terminal device is If the capability is partially coherent, the network device can determine that the multiple transmit antenna ports corresponding to the first uplink precoding matrix are incoherent or partially coherent; if the coherent capability of the terminal device is incoherent, the network device can determine that the first uplink precoding matrix is incoherent or partially coherent. The multiple transmit antenna ports corresponding to the matrix are incoherent. Further, the network device may determine whether the multiple transmit antenna ports corresponding to the first uplink precoding matrix used by the terminal device when transmitting uplink data are incoherent, partially coherent, or completely based on the calculated second uplink precoding matrix. coherent.
  • the first uplink when the number of uplink transmission layers of the terminal device (the number of first uplink transmission layers) is less than or equal to X (where X can be one of 1, 2, 3, or 4), the first uplink
  • the determination method of the precoding matrix can be understood with reference to the following formula (1).
  • the network device can determine the predefined codeword through the following formula (1), and then determine the first uplink precoding matrix.
  • P represents the first uplink precoding matrix
  • [ ] represents the matrix
  • P 1 represents a predefined codeword, which is referred to as the first codeword below.
  • the first uplink when the number of uplink transmission layers of the terminal device (the number of first uplink transmission layers) is greater than X (where X can be any one of 1, 2, 3, and 4), the first uplink
  • the determination method of the precoding matrix can be understood with reference to the following formula (2).
  • the network device can determine the predefined codeword through the following formula (2), and then determine the first uplink precoding matrix.
  • P represents the first uplink precoding matrix
  • [] represents a matrix
  • P 1 represents a predefined codeword, hereinafter referred to as the first predefined codeword or the first codeword
  • P 2 represents another predefined codeword.
  • the code word is hereinafter referred to as the second code word.
  • the first uplink precoding matrix can be understood with reference to the following formula (3).
  • the network device can determine the predefined codeword through the following formula (3), and then determine the first uplink precoding matrix.
  • P represents the first uplink precoding matrix
  • [] represents a matrix
  • P 1 represents a predefined codeword, hereinafter referred to as the first predefined codeword or the first codeword
  • P 2 represents another predefined codeword.
  • codeword hereinafter referred to as the second predefined codeword or the second codeword
  • the first coefficient is used to indicate the phase difference between the upper half of the transmit antenna ports and the lower half of the transmit antenna ports corresponding to the first uplink precoding matrix P.
  • the first coefficient is the phase difference between the first 4 transmit antenna ports and the last 4 transmit antenna ports among the 8 transmit antenna ports.
  • the value is determined based on the following equation (4).
  • the first uplink precoding matrix can be understood with reference to the following formula (5).
  • the network device can determine the predefined codeword through the following formula (5), and then determine the first uplink precoding matrix.
  • P represents the first uplink precoding matrix
  • [] represents a matrix
  • P 1 represents a predefined codeword, hereinafter referred to as the first predefined codeword or the first codeword It represents the first coefficient, and the detailed explanation can be referred to in the previous text, which will not be repeated here.
  • the value is determined according to the above formula (4).
  • the determination method of the first uplink precoding matrix can be understood by referring to the following formula (6).
  • the network device can determine the predefined codeword by the following formula (6), and then determine the first uplink precoding matrix.
  • P represents the first uplink precoding matrix
  • [ ] represents a matrix
  • P 1 represents a predefined codeword, hereinafter referred to as the first predefined codeword or first codeword
  • P 2 represents a predefined codeword.
  • the second predefined codeword or the second codeword Represents the first coefficient. Please refer to the detailed explanation in the previous article and will not go into details. The value is determined according to the above equation (4).
  • the first codeword and the second codeword are selected from codewords with an uplink transmission layer number of 1-4.
  • the network device can determine a corresponding codebook in the 3GPP TS 38.211 V16.7.0 protocol based on the number of uplink transmission layers and the number of transmit antenna ports corresponding to the second uplink precoding matrix, that is, in the aforementioned Tables 1 to 6 A table, the codebook can be understood as a candidate codebook for the first codeword and the second codeword, and the candidate codewords for the first codeword and the second codeword may include part or all of the codewords in the candidate codebook.
  • the second uplink precoding matrix may be an uplink precoding matrix calculated by the network device based on channel conditions of the wireless channel between the network device and the terminal device.
  • the candidate codewords of the first codeword and the second codeword may include all codewords in the candidate codebook of the first codeword and the second codeword. It can be understood that the codeword corresponding to the first codeword
  • the candidate codebook for the word and the second codeword includes multiple codewords, and the number of candidate codewords for the first codeword and the second codeword is multiple.
  • the network device defaults to the coherent capability of the terminal device being fully coherent; it may also include some codewords in the candidate codebook, and the network device needs to bring the determined candidate codewords into the formula to calculate P Whether it meets the relevant capabilities of the terminal equipment.
  • the network device obtains the coherent capability of the terminal device.
  • the relevant capability may be reported by the terminal device to the network device, or may be obtained by the network device through other methods, which is not limited in this application.
  • S320 The network device generates the first information according to the first codebook.
  • the first information is used to indicate the predefined codeword and the first uplink transmission layer number.
  • the first information is used to indicate the index of the predefined codeword and the number of the second uplink transmission layer, so that the terminal device determines the predefined codeword and the number of the first uplink transmission layer.
  • the first information when the number of uplink transmission layers (number of first uplink transmission layers) of the terminal device is less than or equal to X, the first information includes indication information #1 (an example of first indication information) and indication information #3 (An example of the third indication information), the indication information #1 is used to indicate the index of the first codeword in formula (1) and the number of uplink transmission layers of the first codeword, and the indication information #3 is used to indicate the first The number of uplink transmission layers is less than or equal to X.
  • the first codeword is selected from codewords with an uplink transmission layer number of 1-4. For example, using the joint index indication in Table 7 to select a codeword with an uplink transmission layer number of 1-4 requires 6 bits.
  • the first information when the number of uplink transmission layers of the terminal device (the number of first uplink transmission layers) is greater than X, the first information includes indication information #1, and indication information #2 (an example of the second indication information), and Indication information #3, in which indication information #1 is used to indicate the index of the first codeword and the uplink transmission layer number of the first codeword in formula (2), and indication information #2 is used to indicate the index of the first codeword in formula (2).
  • the indication information #3 is used to indicate that the number of the first uplink transmission layer is greater than X.
  • the first codeword is selected from codewords with an uplink transmission layer number of 1-4. For example, using the joint index indication in Table 7 to select a codeword with an uplink transmission layer number of 1-4 requires 6 bits.
  • the second codeword does not need to be selected from all 4Tx codewords in the existing protocol like the first codeword, but only needs to be selected from codewords with the same coherence capability as the first codeword, thus saving overhead.
  • Table 7 Table 7.3.1.1.2-2 in the 3GPP TS 38.212 V16.7.0 protocol. Since the terminal can learn the coherent capabilities through the first codeword, it needs to be classified according to different coherent capabilities and define the joint index, codeword index and number of transmission layers.
  • the correlation relationship such as Table 8-Table 10 below. Among them, Table 8 shows the case where the codebook subset is incoherent, Table 9 shows the case where the codebook subset is partially coherent, and Table 10 shows the case where the codebook subset is fully coherent.
  • any value in Table 8-Table 10 is selected according to the coherence capability of the first codeword, which only requires 5 bits, unlike the first codeword which requires 6 bits, thus saving 1 bit. overhead.
  • the network device may identify the predefined codeword by using an index associated with the TPMI of the predefined codeword and the second uplink transmission layer number TRI corresponding to the predefined codeword, that is, identifying the predefined codeword by using a joint indication of TRI and TPMI.
  • indexes in Table 8 to Table 10 above indicate the number of uplink transmission layers corresponding to a codeword and the TPMI of the codeword.
  • indexes in the tables below have the same meanings as here and will not be described again.
  • the network device can determine that the coherence capability of the second codeword is irrelevant, and then the index in Table 8 can be used to indicate the second codeword, which only requires 5 bits, saving 1 compared to the first codeword. Bit overhead.
  • the index may be 9 in Table 8.
  • the network device may include the binary bit corresponding to index 9: 01001 in the first information. It should be understood that since the index values in Table 8 can range from 0 to 31, 5 bits are required to represent any index in Table 8.
  • the above solution does not change the joint indication method of TRI and TPMI in the existing protocol, so the impact on the protocol is small and the forward compatibility is strong.
  • the association between the joint index, the codeword index and the number of transmission layers is defined.
  • the table index is redesigned based on the existing indication table (such as Table 7), which reduces the number of Indicates the air interface overhead.
  • the first information when the number of uplink transmission layers (number of first uplink transmission layers) of the terminal device is less than or equal to X, the first information includes indication information #1, indication information #2, indication information #3 and indication information #4, the indication information #1 is used to indicate the index of the first codeword in formula (3) and the number of uplink transmission layers of the first codeword, and the indication information #2 is used to indicate the second code in formula (3) The index of the word and the number of uplink transmission layers of the second codeword, indication information #3 is used to indicate that the number of the first uplink transmission layer is less than or equal to X, and indication information #4 is used to indicate the first coefficient.
  • the first codeword is selected from codewords with an uplink transmission layer number of 1-4. For example, using the joint index indication in Table 7 to select a codeword with an uplink transmission layer number of 1-4 requires 6 bits.
  • the second codeword and the first codeword have the same coherence capability and the same number of uplink transmission layers, so the second codeword can be selected only from codewords with the same coherence capability and the same number of uplink transmission layers as the first codeword. Save money.
  • Table 11 and Table 12 show the case where the codebook subset is irrelevant and the number of uplink transmission layers is 1.
  • Table 13 shows the case where the codebook subset is irrelevant and the number of uplink transmission layers is 2.
  • Table 11 14 and Table 15 show the case where the codebook subset is incoherent and the number of uplink transmission layers is 3.
  • Table 16 and Table 17 show the case where the codebook subset is incoherent and the number of uplink transmission layers is 4.
  • Table 18 represents the case where the codebook subset is partially coherent and the number of uplink transmission layers is 1.
  • Table 19 represents the case where the codebook subset is partially coherent and the number of uplink transmission layers is 2.
  • Table 20 and Table 21 represent It is the case where the codebook subset is partially coherent and the number of uplink transmission layers is 3.
  • Table 22 and Table 23 show the case where the codebook subset is partially coherent and the number of uplink transmission layers is 4.
  • Table 24 shows the codebook.
  • Table 25 and Table 26 show the case where the subset is fully coherent and the number of uplink transmission layers is 1.
  • Table 25 and Table 26 show the case where the codebook subset is fully coherent and the number of uplink transmission layers is 2.
  • Table 27 shows the case where the codebook subset is When the codebook subset is fully coherent and the number of uplink transmission layers is 3, Table 28 shows the case where the codebook subset is fully coherent and the number of uplink transmission layers is 4.
  • indexes in Table 11 to Table 28 above indicate the number of uplink transmission layers corresponding to a codeword and the TPMI of the codeword.
  • the second codeword can To select from Table 25, only 4 bits are required, and the second codeword can also be selected from Table 26, requiring only 3 bits.
  • Table 26 saves 1 bit when indicating the second codeword. This saved 1 bit can be used to indicate the first coefficient, thereby ensuring that the first codeword, the second codeword and The total number of bits of the first coefficient is still fixed.
  • Table 11 and Table 12 Table 14 and Table 15, Table 16 and Table 17, Table 20 and Table 21, Table 22 and Table 23 can all be understood by referring to the relationship between Table 26 and Table 25, and will not be described again.
  • the first information when the number of uplink transmission layers (the number of first uplink transmission layers) of the terminal device is less than or equal to X, the first information includes indication information #1 and indication information #3, and the indication information #1 is used for Indicates the index of the first codeword in formula (5) and the number of uplink transmission layers of the first codeword.
  • the indication information #3 is used to indicate that the number of the first uplink transmission layer is less than or equal to X.
  • the first information when the number of uplink transmission layers of the terminal device (the number of first uplink transmission layers) is greater than X, the first information includes indication information #1, indication information #2, indication information #3 and indication information #4 , where the indication information #1 is used to indicate the index of the first codeword in formula (6) and the number of uplink transmission layers of the first codeword, and the indication information #2 is used to indicate the second codeword in formula (6) The index and the number of uplink transmission layers of the second codeword, the indication information #3 is used to indicate that the number of the first uplink transmission layer is greater than X, and the indication information #4 is used to indicate the first coefficient.
  • the first information may also include indication information #4.
  • the first codeword is selected from the codewords with the number of uplink transmission layers 1-4.
  • the codebook in the 3GPP TS 38.211 V16.7.0 protocol selects the codewords with the number of uplink transmission layers 1-4. Requires 6 bits.
  • the second codeword and the first codeword have the same coherence capability, so the second codeword can be selected only from codewords with the same coherence capability as the first codeword, thereby saving overhead.
  • the number of transmit antenna ports corresponding to the first uplink precoding matrix is 8, and X is 4.
  • 6 bits are required according to the first two columns of Table 7 (Table 7.3.1.1.2-2 in the 3GPP TS 38.212 V16.7.0 protocol).
  • the terminal since the terminal can learn the coherence capability through the first codeword, it needs to be classified according to different coherence capabilities and define the correlation between the joint index, the codeword index and the number of transmission layers, where the codebook subset For the case of partial coherence, see Table 9 above; for the case of fully coherent codebook subsets, see Table 10 above; for the case of irrelevant codebook subsets, see Table 29 below.
  • the index in Table 29 above indicates the number of uplink transmission layers corresponding to a codeword and the TPMI of the codeword.
  • the network device can determine that the coherence capability of the second codeword is irrelevant, and then the index in Table 29 can be used to indicate the second codeword, which only requires 4 bits, saving 2 compared to the first codeword. Bit overhead.
  • the first codeword or the second codeword can be selected only from codewords with an uplink transmission layer number of 4.
  • the indication table of the second codeword can be further designed, and it only needs to be selected from a codeword with the same coherence capability as the first codeword and a layer number of 4. is selected from the codewords, indicating that the overhead is further reduced.
  • Table 30-Table 32 shows the case where the codebook subset is incoherent
  • Table 31 shows the case where the codebook subset is partially coherent
  • Table 32 shows the case where the codebook subset is fully coherent. It can be seen that only 1 bit is required when using the instructions in Table 30-Table 32 below, which greatly reduces the overhead.
  • indexes in Tables 30 to 32 above indicate the number of uplink transmission layers corresponding to a codeword and the TPMI of the codeword.
  • the second codeword is selected from the fully coherent codeword with an uplink transmission layer number of 4, that is, it can be selected from Table 32, and only requires 1 bit, saving 5 bits of overhead.
  • association between the joint index, the codeword index and the number of transmission layers defined in the tables defined in this application needs to be predefined in the protocol and stored in the communication In both network equipment and terminal equipment.
  • the first information may be carried in DCI.
  • the indication information #1 and the indication information #2 can be any value field in the DCI, for example, the field can be the Precoding information and number of layers field. This field can jointly indicate the index of the first codeword, corresponding to TPMI1 and TRI1.
  • the indication information #3 can be understood as adding one bit to the DCI, and the added bit indicates that the number of the first uplink transmission layer is greater than X or less than or equal to X.
  • this bit when the value of this bit is 0, it indicates that the number of uplink transmission layers of the terminal device is less than or equal to X. When the value of this bit is 1, it indicates that the number of uplink transmission layers of the terminal device is greater than X.
  • the first coefficient Can be indicated by any value range in DCI.
  • log 2 N bits may be added to the DCI to indicate The value of .
  • the number of bits occupied by indication information #1, the number of bits occupied by indication information #2 and the indication is the first value.
  • the first value is a fixed bit length value.
  • the first value may be predetermined by a protocol, which is not limited in the embodiments of this application.
  • the first codeword is selected from codewords with an uplink transmission layer number of 1-4
  • the number of uplink transmission layers of the first codeword is 2
  • the coherence capability Assuming full coherence, the second codeword is selected from Table 26 and requires 3 bits.
  • the second codeword is selected from Table 20 , requiring 3 bits
  • the second codeword can also be selected from Table 21, requiring 1 bit, then the remaining 2 bits can be used to indicate the first coefficient, thereby ensuring that the total number of bits is constant.
  • S330 The network device sends the first information to the terminal device.
  • the network device sends the above-mentioned first information to the terminal device, and accordingly, the terminal device receives the above-mentioned first information from the network device.
  • S340 The terminal device determines the first uplink precoding matrix according to the first information.
  • the terminal device determines the predefined codewords in the first uplink precoding matrix and the number of the second uplink transmission layer according to the instructions of the first information, thereby determining the first uplink precoding matrix and the number of the first uplink transmission layer.
  • the terminal device determines that the number of the first uplink transmission layer is less than or equal to The index of determines the first codeword and the number of uplink transmission layers of the first codeword, thereby determining the first uplink precoding matrix corresponding to formula (1).
  • the terminal device determines that the number of first uplink transmission layers is greater than X according to the indication information #3 in the first information, The terminal device determines the first codeword, the number of uplink transmission layers of the first codeword, and the coherence capability of the first codeword according to the index of the first codeword indicated by the indication information #1 in the first information. The terminal device determines the first codeword according to the first information. The index of the second codeword indicated by the indication information #2 in and the coherence capability of the first codeword determine the second codeword and the number of uplink transmission layers of the second codeword, thereby determining the first uplink prediction corresponding to formula (2). Coding matrix.
  • the terminal device determines that the number of the first uplink transmission layer is less than or equal to
  • the index determines the first codeword, the number of uplink transmission layers of the first codeword, and the coherence capability of the first codeword.
  • the terminal device determines the index of the second codeword, the first codeword according to the indication information #2 in the first information.
  • the coherence capability of the word and the number of uplink transmission layers of the first codeword determine the second codeword and the number of uplink transmission layers of the second codeword.
  • the terminal device determines according to the phase difference value indicated by indication information #4 in the first information. value, thereby determining the first uplink precoding matrix corresponding to formula (3).
  • the terminal device determines that the number of the first uplink transmission layer is less than or equal to The index determines the first codeword and the number of uplink transmission layers of the first codeword, and the terminal device determines according to the phase difference value indicated by the indication information #4 in the first information. value, thereby determining the first uplink precoding matrix corresponding to formula (5).
  • the terminal device determines that the number of first uplink transmission layers is greater than Determine the first codeword, the number of uplink transmission layers of the first codeword, and the coherence capability of the first codeword.
  • the terminal device determines the index of the second codeword indicated by indication information #2 in the first information and the first codeword.
  • the coherence capability of one codeword determines the second codeword and the number of uplink transmission layers of the second codeword.
  • the terminal device determines based on the phase difference value indicated by indication information #4 in the first information. value, thereby determining the first uplink precoding matrix corresponding to formula (6).
  • the number of the first uplink transmission layer is equal to the sum of the number of the uplink transmission layer of the first codeword and the number of the uplink transmission layer of the second codeword.
  • S350 The terminal device sends uplink data based on the first uplink precoding matrix.
  • the terminal device may send uplink data based on the first uplink precoding matrix.
  • this embodiment enables 8Tx fully coherent and partially coherent codebooks based on the existing protocol 4Tx codebook, and there is no need to design an 8Tx codebook.
  • the method of joint indication of TPMI and uplink transmission layer number in existing protocols is not changed, reducing the impact on existing protocols and enhancing backward compatibility.
  • the association between the joint index, the codeword index and the number of transmission layers is defined, thereby reducing overhead.
  • FIG 4 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 400 includes a transceiver unit 420 and a processing unit 410, where the transceiver unit 420 can be used to implement corresponding communication functions, and the processing unit 410 can be used to perform data processing.
  • the transceiver unit 420 may also be called a communication interface or a communication unit, including a sending unit and/or a receiving unit.
  • the transceiver unit 420 may be a transceiver (including a transmitter and/or a receiver), an input/output interface (including an input and/or output interface), a pin or a circuit, etc.
  • the transceiver unit 420 may be used to perform the steps of sending and/or receiving in the above method embodiment.
  • the processing unit 410 may be a processor (may include one or more), a processing circuit with a processor function, etc., and may be used to execute other steps except sending and receiving in the above method embodiment.
  • the device 400 further includes a storage unit, which may be a memory, an internal storage unit (e.g., a register, a cache, etc.), an external storage unit (e.g., a read-only memory, a random access memory, etc.), etc.
  • the storage unit is used to store instructions, and the processing unit 410 executes the instructions stored in the storage unit so that the communication device executes the above method.
  • the device 400 can be used to perform the actions performed by the network device in each of the above method embodiments.
  • the device 400 can be used to perform the actions performed by the network device in the above method 400.
  • the device 400 can be a component of the network device.
  • the transceiver unit 420 is used to perform the transceiver-related operations of the network device in the above method.
  • the processing unit 410 is used to perform the processing-related operations of the network device in the above method embodiment. .
  • the processing unit 410 is configured to obtain the first codebook; the processing unit 410 is also configured to determine the first information when the number of uplink transmission layers of the terminal device is less than or equal to X, and the first information includes the first indication. information and third indication information.
  • the first indication information is used to indicate the index of the first codeword in the first codebook and the number of uplink transmission layers of the first codeword.
  • the third indication information is used to indicate Indicate that the number of uplink transmission layers of the terminal device is less than or equal to X; the processing unit 410 is also configured to determine the first information when the number of uplink transmission layers of the terminal device is greater than The second instruction information and the third instruction information, the said third instruction information An indication information is used to indicate the index of the first codeword in the first codebook and the number of uplink transmission layers of the first codeword, and the second indication information is used to indicate the second codeword in the first codebook.
  • the index of the codeword and the number of uplink transmission layers of the second codeword, the third indication information is used to indicate that the number of uplink transmission layers of the terminal device is greater than X, the second codeword and the first codeword
  • the words have the same coherence capability; the transceiver unit 420 is used to send the first information, which is used by the terminal device to determine the uplink precoding matrix; where X is 1, 2, 3, and 4 any value.
  • transceiver unit 420 and the processing unit 410 can also perform other operations performed by the network device in the above method 300, which will not be described in detail here.
  • the apparatus 400 may be used to execute the actions executed by the terminal device in each of the above method embodiments, such as the apparatus 400 may be used to execute the actions executed by the terminal device in the above methods 800 and 900.
  • the apparatus 400 may be a component of the terminal device
  • the transceiver unit 420 is used to execute the transceiver-related operations of the terminal device in the above method
  • the processing unit 410 is used to execute the processing-related operations of the terminal device in the above method embodiments.
  • the processing unit 410 is used to obtain the first codebook; the transceiver unit 420 is used to receive the first information, the first information includes the first indication information and the third indication information, and the first indication information is used to Indicates the index of the first codeword in the first codebook and the number of uplink transmission layers of the first codeword, and the third indication information is used to indicate that the number of uplink transmission layers of the terminal device is less than or equal to X;
  • the transceiver unit 420 is configured to receive first information, where the first information includes first indication information, second indication information and third indication information, where the first indication information is used to indicate in the first codebook The index of the first codeword and the uplink transmission layer number of the first codeword, and the second indication information is used to indicate the index of the second codeword in the first codebook and the uplink transmission layer number of the second codeword.
  • the processing unit 410 also uses Determine the uplink precoding matrix according to the first information; wherein, X is any one of 1, 2, 3, and 4.
  • transceiver unit 420 and the processing unit 410 can also perform other operations performed by the terminal device in the above method 300, which will not be described in detail here.
  • the device 400 here is embodied in the form of a functional unit.
  • the term "unit” as used herein may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (such as a shared processor, a proprietary processor, or a group of processors) used to execute one or more software or firmware programs. processor, etc.) and memory, merged logic circuitry, and/or other suitable components to support the described functionality.
  • ASIC application specific integrated circuit
  • the device 400 can be specifically the network device in the above embodiments, and can be used to execute various processes and/or steps corresponding to the network device in the above method embodiments, as To avoid repetition, we will not go into details here.
  • the apparatus 400 of each of the above solutions has the function of realizing the corresponding steps performed by the terminal device in the above method, or the device 400 of the above various solutions has the function of realizing the corresponding steps of the network equipment in the above method.
  • Functions can be implemented by hardware, or by hardware executing corresponding software.
  • Hardware or software includes one or more modules corresponding to the above functions; for example, the transceiver module can be replaced by a transceiver (for example, the sending unit in the transceiver module can be replaced by a transmitter, and the receiving unit in the transceiver module can be replaced by a receiver ), other units, such as processing modules, etc. can be replaced by processors to respectively perform the sending and receiving operations and related processing operations in each method embodiment.
  • transceiver unit 420 may also be a transceiver circuit (for example, it may include a receiving circuit and a transmitting circuit), and the processing module may be a processing circuit.
  • the device in Figure 4 can be the network element or device in the aforementioned embodiment, or it can be a chip or a chip system, such as a system on chip (SoC).
  • the transceiver module can be an input-output circuit or a communication interface; the processing module is a processor or microprocessor or integrated circuit integrated on the chip. No limitation is made here.
  • FIG5 is a schematic diagram of a communication architecture provided in an embodiment of the present application.
  • the communication device 500 shown in FIG5 includes: a processor 510, a memory 520, and a transceiver 530.
  • the processor 510 is coupled to the memory 520 and is used to execute instructions stored in the memory 520 to control the transceiver 530 to send and/or receive signals.
  • processor 510 and the memory 520 can be combined into one processing device, and the processor 510 is used to execute the program code stored in the memory 520 to implement the above functions.
  • the memory 520 can also be integrated in the processor 510 or independent of the processor 510 .
  • the processor 510 may also correspond to each processing unit in the front communication device, and the transceiver 530 may correspond to each receiving unit and sending unit in the front communication device.
  • transceiver 530 may include a receiver and a transmitter.
  • transceiver It may further include an antenna, and the number of antennas may be one or more.
  • the transceiver may also be a communication interface or interface circuit.
  • the communication device 500 may correspond to the terminal device and the network device in the method 700 and the method 800 according to the embodiment of the present application. It should be understood that the specific process of each unit performing the above corresponding steps has been described in detail in the above method embodiments, and will not be described again for the sake of brevity.
  • the chip When the communication device 500 is a chip, the chip includes an interface unit and a processing unit.
  • the interface unit may be an input-output circuit or a communication interface;
  • the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip.
  • the device may be as shown in Figure 6 .
  • the device may include one or more radio frequency units, such as a remote radio unit (RRU) 610 and one or more baseband units (BBU) (also called a digital unit, DU) 620.
  • RRU remote radio unit
  • BBU baseband units
  • the RRU 610 may be called a transceiver module, and the transceiver module may include a sending module and a receiving module, or the transceiving module may be a module that can implement sending and receiving functions.
  • the transceiver module may correspond to the transceiver module unit 420 in FIG. 4 , that is, the transceiver module performs the actions performed by the transceiver unit 420 .
  • the transceiver module may also be called a transceiver, a transceiver circuit, a transceiver, etc., and may include at least one antenna 611 and a radio frequency unit 612.
  • the RRU 610 part is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals.
  • the BBU 620 part is mainly used for baseband processing, base station control, etc.
  • the RRU 610 and the BBU 620 can be physically set together or physically separated, that is, a distributed base station. Among them, with the development of antenna technology, RRU can also evolve into an active antenna processing unit (active antenna unit, AAU).
  • active antenna unit active antenna unit
  • the BBU 620 is the control center of the base station and can also be called a processing module. It can correspond to the processing unit 410 in Figure 4 and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, spread spectrum, etc. In addition , the actions performed by the processing unit 410 may be performed by the processing module.
  • the BBU processing module
  • the BBU can be used to control the base station to execute the operation process related to the network device in the above method embodiment.
  • the BBU 620 can be composed of one or more single boards. Multiple single boards can jointly support a wireless access network of a single access standard (such as an LTE network), or can respectively support wireless access networks of different access standards. Access the network (such as LTE network, 5G network or other networks).
  • the BBU 620 also includes a memory 621 and a processor 622.
  • the memory 621 is used to store necessary instructions and data.
  • the processor 622 is used to control the base station to perform necessary actions, for example, to control the base station to perform the operation process of the network equipment in the above method embodiment.
  • the memory 621 and processor 622 may serve one or more single boards. In other words, the memory and processor can be set independently on each board. It is also possible for multiple boards to share the same memory and processor. In addition, necessary circuits can also be installed on each board.
  • each step of the above method can be completed by instructions in the form of hardware integrated logic circuits or software in the processor.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor for execution, or can be executed by a combination of hardware and software modules in the processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • This application also provides a computer-readable medium on which a computer program is stored.
  • the computer program is executed by a computer, the functions of any of the above method embodiments are implemented.
  • This application also provides a computer program product, which implements the functions of any of the above method embodiments when executed by a computer.
  • the computer program product includes one or more computers instruction.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the available media may be magnetic media (eg, floppy disk, hard disk, tape), optical media (eg, high-density digital video disc (DVD)), or semiconductor media (eg, solid state disk, SSD)) etc.
  • an embodiment means that a particular feature, structure, or characteristic associated with the embodiment is included in at least one embodiment of the present application. Therefore, various embodiments are not necessarily referred to the same embodiment throughout this specification. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the names of all nodes and messages in this application are only the names set by this application for the convenience of description.
  • the names in the actual network may be different. It should not be understood that this application limits the names of various nodes and messages. On the contrary, any names with and The names of nodes or messages with the same or similar functions used in this application are regarded as methods or equivalent replacements of this application, and are all within the protection scope of this application.
  • system and “network” are often used interchangeably in this article.
  • network and/or in this article is only a description of the association relationship of associated objects, indicating that three relationships can exist.
  • a and/or B can mean: A exists alone, A and B exist at the same time, and B exists alone.
  • At least one of! or "at least one of" herein refers to all or any combination of the listed items, for example, "at least one of A, B and C", It can mean: A exists alone, B exists alone, C exists alone, A and B exist simultaneously, B and C exist simultaneously, and A, B and C exist simultaneously. "At least one” in this article means one or more. "Multiple" means two or more.
  • B corresponding to A means that B is associated with A, and B can be determined based on A.
  • determining B based on A does not mean determining B only based on A.
  • B can also be determined based on A and/or other information.
  • the terms “including,” “includes,” “having,” and variations thereof all mean “including but not limited to,” unless otherwise specifically emphasized.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separate.
  • the components shown as units may be Or it may not be a physical unit, that is, it may be located in one place, or it may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种上行预编码的指示方法和通信装置。该方法包括:当终端设备的上行传输层数小于或等于X时,发送第一指示信息和第三指示信息;当上行传输层数大于X时,发送第一指示信息、第二指示信息和第三指示信息;第一指示信息用于指示第一码本中第一码字的索引和第一码字的上行传输层数,第二指示信息用于指示第一码本中第二码字的索引和第二码字的上行传输层数,第三指示信息用于指示终端设备的上行传输层数大于X,第二码字和第一码字相干能力相同;发送的上述指示信息用于终端设备确定上行预编码矩阵;其中,X为1、2、3、4中的任意一个值。通过该方法,适配于更多的发送天线端口数和上行传输层数,能够有效提升上行传输的性能。

Description

一种上行预编码的指示方法及通信装置
本申请要求于2022年9月24日提交中国专利局、申请号为202211168758.7、申请名称为“一种上行预编码的指示方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,并且更具体地,涉及一种上行预编码的指示方法及通信装置。
背景技术
第五代(the 5th generation,5G)移动通信系统对系统容量、频谱效率等方面有了更高的要求。在5G通信系统中,大规模多输入多输出(massive multiple-input multiple-output,massive-MIMO)技术的应用对提高系统的频谱效率起到了至关重要的作用。利用massive-MIMO技术,终端设备在发送上行数据时需要对数据进行预编码。其中,基于码本的上行传输模式是一种上行传输的预编码方式。
目前,在基于码本的上行传输模式中,基站从预定义的上行码本中为终端设备选择合适的码字,并将选取的码字指示给终端设备。预定义的上行码本存储在基站和终端设备中,可供选择的码字数量有限,能支持的发送天线端口数以及上行传输层数有限。随着通信业务对上行系统容量需求越来越高,终端设备支持的发送天线端口数越来越多,现有的预定义的上行码本显然无法适配,限制了上行传输的性能。
发明内容
本申请提供一种通信的方法和通信装置,使能上行码本中码字支持更多天线端口数的终端设备,提高终端设备上行传输的性能。
第一方面,提供了一种通信的方法。该方法可以由网络设备执行,或者,也可以由配置于网络设备中的部件(如芯片或芯片系统等)执行。
具体地,该方法包括:获取第一码本;当终端设备的上行传输层数小于或等于X时,确定第一信息,第一信息包括第一指示信息和第三指示信息,第一指示信息用于指示第一码本中第一码字的索引和第一码字的上行传输层数,第三指示信息用于指示终端设备的上行传输层数小于或等于X;当终端设备的上行传输层数大于X时,确定第一信息,第一信息包括第一指示信息、第二指示信息和第三指示信息,第一指示信息用于指示第一码本中第一码字的索引和第一码字的上行传输层数,第二指示信息用于指示第一码本中第二码字的索引和第二码字的上行传输层数,第三指示信息用于指示终端设备的上行传输层数大于X,第二码字和第一码字具有相同的相干能力;发送第一信息,第一信息用于终端设备确定上行预编码矩阵;其中,X为1、2、3、4中的任意一个值。
基于上述技术方案,网络设备可以获取预定义的码本,并向第一终端设备指示预定义的码字索引和码字的上行传输层数,从而用于第一终端设备确定上行预编码矩阵进行上行预编码,能够基于现有协议中的4Tx上行码本,使能支持大于4Tx终端设备的码本指示,实现灵活的上行预编码矩阵指示,适配于更多的发送天线端口数,能够有效提升上行传输的性能。并且不需要重新设计码本,不改变现有协议中上行传输层数指示(transmission rank indicator,TRI)和传输预编码矩阵指示(transmitted precoding matrix indicator,TPMI)联合指示的方式,因而协议影响点小,前向兼容性强。进一步的,基于第一码字和第二码字具有相同相干能力,定义联合索引与码字索引及传输层数的关联关系,例如基于现有指示表格重新设计表格索引,从而可以在指示第二码字时从和第一码字具有相同相干能力的码字中选择,与现有的码字指示方法相比减少了比特开销。
结合第一方面,一种可能的实施中,当终端设备的上行传输层数小于或等于X时,第一信息还包括第四指示信息,第四指示信息用于指示第一系数,第一系数用于指示上行预编码矩阵对应的发送天 线端口中前半部分发送天线端口与后半部分发送天线端口之间的相位差。
结合第一方面,一种可能的实施中,第一信息还包括第二指示信息,第二指示信息用于指示第一码本中第二码字的索引和第二码字的上行传输层数;其中,第一码字的上行传输层数与第二码字的上行传输层数相同,第二码字和第一码字具有相同的相干能力。
结合第一方面,一种可能的实施中,当终端设备的上行传输层数大于X时,第一信息还包括第四指示信息,第四指示信息用于指示第一系数。
结合第一方面,一种可能的实施中,第一码字和第二码字是从上行传输层数为1-4的码字中选取的。
结合第一方面,一种可能的实施中,当第一终端设备的上行传输层数大于4时,第二码字或第一码字是从上行传输层数为4的码字中选取的。
该技术方案中,第一终端设备的上行传输层数大于4时,第一码字或第二码字可以选择上行传输层数为4的码字,第一码字和第二码字具有相同的上行传输层数,定义联合索引与码字索引及传输层数的关联关系,从而可以在指示第二码字时从和第一码字具有相同相干能力且上行传输层数为4的码字中选择,只需要1比特开销,进一步节省了开销。
结合第一方面,一种可能的实施中,第四指示信息指示第一终端设备的上行传输层数小于或等于X时,第一终端设备的上行传输层数等于第一码字的上行传输层数;第四指示信息指示第一终端设备的上行传输层数大于X时,第一终端设备的上行传输层数等于第一码字的上行传输层数和第二码字的上行传输层数之和。
结合第一方面,一种可能的实施中,第四指示信息指示第一终端设备的上行传输层数大于X时,第一终端设备的上行传输层数等于第一码字的上行传输层数或第二码字的上行传输层数与4的和值。
该技术方案中,第一终端设备的上行传输层数大于4时,第一码字或第二码字可以选择上行传输层数为4的码字,对于终端设备来说,上行传输层数为第一码字的上行传输层数或第二码字的上行传输层数与4的和值。
结合第一方面,一种可能的实施中,第一码字、第二码字和系数的指示比特开销之和为第一值。
该技术方案中,第一终端设备在接收下行控制信息(downlink control information,DCI)之前,需要知道总的DCI的长度,否则需要重新检测,该方案中,限定DCI的总长度之后,第一终端设备可以避免重新检测。
第二方面,提供了一种通信的方法。该方法可以由终端设备执行,或者,也可以由配置于终端设备中的部件(如芯片或芯片系统等)执行。
具体地,该方法包括:获取第一码本;接收第一信息,第一信息包括第一指示信息和第三指示信息,第一指示信息用于指示第一码本中第一码字的索引和第一码字的上行传输层数,第三指示信息用于指示终端设备的上行传输层数小于或等于X;或者,接收第一信息,第一信息包括第一指示信息、第二指示信息和第三指示信息,第一指示信息用于指示第一码本中第一码字的索引和第一码字的上行传输层数,第二指示信息用于指示第一码本中第二码字的索引和第二码字的上行传输层数,第三指示信息用于指示终端设备的上行传输层数大于X,第二码字和第一码字具有相同的相干能力;根据第一信息确定上行预编码矩阵;其中,X为1、2、3、4中的任意一个值。
基于上述技术方案,第一终端设备可以获取预定义的码本,并根据网络设备指示的预定义的码字索引和码字的上行传输层数确定上行预编码矩阵进行上行预编码,能够基于现有协议中的4Tx上行码本,使能支持大于4Tx终端设备的码本指示,实现灵活的上行预编码矩阵指示,适配于更多的发送天线端口数,能够有效提升上行传输的性能。
结合第二方面,一种可能的实施方式中,当第三指示信息指示终端设备的上行传输层数小于或等于X时,第一信息还包括第四指示信息,第四指示信息用于指示第一系数,第一系数用于指示上行预编码矩阵对应的发送天线端口中前半部分发送天线端口与后半部分发送天线端口之间的相位差。
结合第二方面,一种可能的实施方式中第一信息还包括第二指示信息,第二指示信息用于指示第一码本中第二码字的索引和第二码字的上行传输层数;其中,第一码字的上行传输层数与第二码字的上行传输层数相同,第二码字和第一码字具有相同的相干能力。
结合第二方面,一种可能的实施方式中,当第三指示信息指示终端设备的上行传输层数大于X时, 第一信息还包括第四指示信息,第四指示信息用于指示第一系数。
结合第二方面,一种可能的实施方式中,第一码字和第二码字是从上行传输层数为1-4的码字中选取的。
结合第二方面,一种可能的实施方式中,第一终端设备的上行传输层数大于4时,第二码字或第一码字是从上行传输层数为4的码字中选取的。
该技术方案中,第一终端设备的上行传输层数大于4时,第一码字或第二码字可以选择上行传输层数为4的码字,第一码字和第二码字具有相同的上行传输层数,定义联合索引与码字索引及传输层数的关联关系,从而可以在指示第二码字时从和第一码字具有相同相干能力且上行传输层数为4的码字中选择,只需要1比特开销,进一步节省了开销。
结合第二方面,一种可能的实施方式中,第一终端设备的上行传输层数小于或等于X时,第一终端设备的上行传输层数等于第一码字的上行传输层数;第一终端设备的上行传输层数大于X时,第一终端设备的上行传输层数等于第一码字的上行传输层数和第二码字的上行传输层数之和。
结合第二方面,一种可能的实施方式中,第一终端设备的上行传输层数大于X时,第一终端设备的上行传输层数等于第一码字的上行传输层数或第二码字的上行传输层数与4的和值。
结合第二方面,一种可能的实施方式中,第一码字、第二码字和第一系数的指示比特开销之和为第一值。
该技术方案中,第一终端设备在接收DCI之前,需要知道总的DCI的长度,否则需要重新检测,该方案中,限定DCI的总长度之后,第一终端设备可以避免重新检测。
第三方面,提供了一种通信的方法。该方法可以由网络设备执行,或者,也可以由配置于网络设备中的部件(如芯片或芯片系统等)执行。
具体地,该方法包括:获取第一码本;当第一终端设备的上行传输层数小于或者等于X时,生成并发送第一指示信息和第三指示信息,第一指示信息用于指示第一码本中第一码字的索引和第一码字的上行传输层数,第三指示信息用于指示第一终端设备的上行传输层数小于或等于X,第一码字的索引和第一码字的上行传输层数用于第一终端设备确定第一上行预编码矩阵并进行上行预编码;当第一终端设备的上行传输层数大于X时,生成并发送第一指示信息、第二指示信息和第三指示信息,第二指示信息用于指示第一码本中第二码字的索引和第二码字的上行传输层数,第三指示信息用于指示第一终端设备的上行传输层数大于X,第一码字的索引、第一码字的上行传输层数、第二码字的索引和第二码字的上行传输层数用于第一终端设备确定第一上行预编码矩阵并进行上行预编码,其中,第一码字和第二码字具有相同的相干能力;其中,X为1,2,3,4中的任意一个值。
基于上述技术方案,网络设备可以获取预定义的码本,并向第一终端设备指示预定义的码字索引和码字的上行传输层数,从而用于第一终端设备确定上行预编码矩阵进行上行预编码,能够基于现有协议中的4Tx上行码本,使能支持大于4Tx终端设备的码本指示,实现灵活的上行预编码矩阵指示,适配于更多的发送天线端口数,能够有效提升上行传输的性能。并且不需要重新设计码本,不改变现有协议中TRI和TPMI联合指示的方式,因而协议影响点小,前向兼容性强。进一步的,基于第一码字和第二码字具有相同相干能力,定义联合索引与码字索引及传输层数的关联关系,从而可以在指示第二码字时从和第一码字具有相同相干能力的码字中选择,与现有指示表格相比减少了比特开销。
第四方面,提供了一种通信的方法。该方法可以由终端设备执行,或者,也可以由配置于终端设备中的部件(如芯片或芯片系统等)执行。
具体地,该方法包括:获取第一码本;接收第一指示信息和第三指示信息,根据第三指示信息确定第一终端设备的上行传输层数小于或等于X,根据第一指示信息确定第一码本中第一码字的索引和第一码字的上行传输层数,根据第一码字的索引和第一码字的上行传输层数确定第一上行预编码矩阵并进行上行预编码;或者,接收第一指示信息、第二指示信息和第三指示信息,根据第三指示信息确定第一终端设备的上行传输层数大于X,根据第一指示信息确定第一码本中第一码字的索引和第一码字的上行传输层数,根据第二指示信息确定第一码本中第二码字的索引和第二码字的上行传输层数,根据第一码字的索引、第一码字的上行传输层数、第二码字的索引和第二码字的上行传输层数确定第一上行预编码矩阵并进行上行预编码,其中,第一码字和第二码字具有相同的相干能力;其中,X为1,2,3,4中的任意一个值。
基于上述技术方案,第一终端设备可以获取预定义的码本,并根据网络设备指示的预定义的码字索引和码字的上行传输层数确定上行预编码矩阵进行上行预编码,能够基于现有协议中的4Tx上行码本,使能支持大于4Tx终端设备的码本指示,实现灵活的上行预编码矩阵指示,适配于更多的发送天线端口数,能够有效提升上行传输的性能。
结合第三方面和第四方面,一种可能的实施方式中,第一码字和第二码字是从上行传输层数为1-4的码字中选取的。
结合第三方面和第四方面,一种可能的实施方式中,当第一终端设备的上行传输层数大于4时,第二码字或第一码字是从上行传输层数为4的码字中选取的。
结合第三方面和第四方面,一种可能的实施方式中,第三指示信息指示第一终端设备的上行传输层数小于或等于X时,第一终端设备的上行传输层数等于第一码字的上行传输层数;第三指示信息指示第一终端设备的上行传输层数大于X时,第一终端设备的上行传输层数等于第一码字的上行传输层数和第二码字的上行传输层数之和。
结合第三方面和第四方面,一种可能的实施方式中,第三指示信息指示第一终端设备的上行传输层数大于X时,第一终端设备的上行传输层数等于第一码字的上行传输层数或第二码字的上行传输层数与4的和值。
第五方面,提供一种通信装置,该装置可以是网络设备,或者,也可以是配置于网络设备中的部件(如芯片或芯片系统等)。
具体地,该装置包括:处理单元,用于获取第一码本;处理单元,还用于当终端设备的上行传输层数小于或等于X时,确定第一信息,第一信息包括第一指示信息和第三指示信息,第一指示信息用于指示第一码本中第一码字的索引和第一码字的上行传输层数,第三指示信息用于指示终端设备的上行传输层数小于或等于X;处理单元,还用于当终端设备的上行传输层数大于X时,确定第一信息,第一信息包括第一指示信息、第二指示信息和第三指示信息,第一指示信息用于指示第一码本中第一码字的索引和第一码字的上行传输层数,第二指示信息用于指示第一码本中第二码字的索引和第二码字的上行传输层数,第三指示信息用于指示终端设备的上行传输层数大于X,第二码字和第一码字具有相同的相干能力;收发单元,用于发送第一信息,第一信息用于终端设备确定上行预编码矩阵;其中,X为1、2、3、4中的任意一个值。
结合第五方面,一种可能的实施中,当终端设备的上行传输层数小于或等于X时,第一信息还包括第四指示信息,第四指示信息用于指示第一系数,第一系数用于指示上行预编码矩阵对应的发送天线端口中前半部分发送天线端口与后半部分发送天线端口之间的相位差。
结合第五方面,一种可能的实施中,第一信息还包括第二指示信息,第二指示信息用于指示第一码本中第二码字的索引和第二码字的上行传输层数;其中,第一码字的上行传输层数与第二码字的上行传输层数相同,第二码字和第一码字具有相同的相干能力。
结合第五方面,一种可能的实施中,当终端设备的上行传输层数大于X时,第一信息还包括第四指示信息,第四指示信息用于指示第一系数。
结合第五方面,一种可能的实施中,第一码字和第二码字是从上行传输层数为1-4的码字中选取的。
结合第五方面,一种可能的实施中,当第一终端设备的上行传输层数大于4时,第二码字或第一码字是从上行传输层数为4的码字中选取的。
结合第五方面,一种可能的实施中,第四指示信息指示第一终端设备的上行传输层数小于或等于X时,第一终端设备的上行传输层数等于第一码字的上行传输层数;第四指示信息指示第一终端设备的上行传输层数大于X时,第一终端设备的上行传输层数等于第一码字的上行传输层数和第二码字的上行传输层数之和。
结合第五方面,一种可能的实施中,第四指示信息指示第一终端设备的上行传输层数大于X时,第一终端设备的上行传输层数等于第一码字的上行传输层数或第二码字的上行传输层数与4的和值。
结合第五方面,一种可能的实施中,第一码字、第二码字和系数的指示比特开销之和为第一值。
第六方面,提供了一种通信装置。该装置可以是终端设备,或者,也可以是配置于终端设备中的部件(如芯片或芯片系统等)。
具体地,该装置包括:处理单元,用于获取第一码本;收发单元,用于接收第一信息,第一信息包括第一指示信息和第三指示信息,第一指示信息用于指示第一码本中第一码字的索引和第一码字的上行传输层数,第三指示信息用于指示终端设备的上行传输层数小于或等于X;或者,收发单元,用于接收第一信息,第一信息包括第一指示信息、第二指示信息和第三指示信息,第一指示信息用于指示第一码本中第一码字的索引和第一码字的上行传输层数,第二指示信息用于指示第一码本中第二码字的索引和第二码字的上行传输层数,第三指示信息用于指示终端设备的上行传输层数大于X,第二码字和第一码字具有相同的相干能力;处理单元,还用于根据第一信息确定上行预编码矩阵;其中,X为1、2、3、4中的任意一个值。
结合第六方面,一种可能的实施方式中,当终端设备的上行传输层数小于或等于X时,第一信息还包括第四指示信息,第四指示信息用于指示第一系数,第一系数用于指示上行预编码矩阵对应的发送天线端口中前半部分发送天线端口与后半部分发送天线端口之间的相位差。
结合第六方面,一种可能的实施方式中,第一信息还包括第二指示信息,第二指示信息用于指示第一码本中第二码字的索引和第二码字的上行传输层数;其中,第一码字的上行传输层数与第二码字的上行传输层数相同,第二码字和第一码字具有相同的相干能力。
结合第六方面,一种可能的实施方式中,当终端设备的上行传输层数大于X时,第一信息还包括第四指示信息,第四指示信息用于指示第一系数。
结合第六方面,一种可能的实施方式中,第一码字和第二码字是从上行传输层数为1-4的码字中选取的。
结合第六方面,一种可能的实施方式中,第一终端设备的上行传输层数大于4时,第二码字或第一码字是从上行传输层数为4的码字中选取的。
结合第六方面,一种可能的实施方式中,第一终端设备的上行传输层数小于或等于X时,第一终端设备的上行传输层数等于第一码字的上行传输层数;第一终端设备的上行传输层数大于X时,第一终端设备的上行传输层数等于第一码字的上行传输层数和第二码字的上行传输层数之和。
结合第六方面,一种可能的实施方式中,第一终端设备的上行传输层数大于X时,第一终端设备的上行传输层数等于第一码字的上行传输层数或第二码字的上行传输层数与4的和值。
结合第六方面,一种可能的实施方式中,第一码字、第二码字和第一系数的指示比特开销之和为第一值。
第七方面,提供了一种通信装置,包括用于执行第一方面至第四方面以及第一方面至第四方面中任一种可能实现方式中的方法的各个模块或单元。
第八方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面至第四方面以及第一方面至第四方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片。当该通信装置为配置于终端设备中的芯片时,通信接口可以是输入/输出接口。
可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
第九方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。处理电路用于通过输入电路接收信号,并通过输出电路发射信号,使得处理器执行上述第一方面至第四方面以及第一方面至第四方面中任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第十方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行第一方面至第四方面以及第一方面至第四方 面中任一种可能实现方式中的方法。
可选地,处理器为一个或多个,存储器为一个或多个。
可选地,存储器可以与处理器集成在一起,或者存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第十方面中的处理装置可以是芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第十一方面,提供了一种计算机程序产品,计算机程序产品包括:计算机程序(也可以称为代码,或指令),当计算机程序被运行时,使得计算机执行上述第一方面至第四方面以及第一方面至第四方面中任一种可能实现方式中的方法。
第十二方面,提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面至第四方面以及第一方面至第四方面中任一种可能实现方式中的方法。
第十三方面,提供了一种通信系统,包括前述的终端设备和网络设备。
附图说明
图1是适用于本申请实施例提供的上行预编码的指示方法的通信系统的架构示意图;
图2是本申请实施例提供的上行预编码的指示方法的示意性流程图;
图3是本申请实施例提供的上行预编码的指示方法的示意性流程图;
图4是本申请实施例提供的通信装置的示意性框图;
图5是本申请实施例提供的终端设备的结构示意图;
图6是本申请实施例提供的网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th Generation,5G)移动通信系统或新无线接入技术(new radio Access Technology,NR)。其中,5G移动通信系统可以包括非独立组网(non-standalone,NSA)和/或独立组网(standalone,SA)。
本申请提供的技术方案还可以应用于机器类通信(machine type communication,MTC)、机器间通信长期演进技术(Long Term Evolution-machine,LTE-M)、设备到设备(device-to device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)网络或者其他网络。其中,IoT网络例如可以包括车联网。其中,车联网系统中的通信方式统称为车到其他设备(vehicle to X,V2X,X可以代表任何事物),例如,该V2X可以包括:车辆到车辆(vehicle to vehicle,V2V)通信,车辆与基础设施(vehicle to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统等。本申请对此不作限定。
本申请实施例中,网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演 进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、介质接入控制(medium access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
网络设备为小区提供服务,终端设备通过网络设备分配的传输资源(例如,频域资源,或者说,频谱资源)与小区进行通信,该小区可以属于宏基站(例如,宏eNB或宏gNB等),也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
在本申请实施例中,终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。
终端设备可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例可以为:手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑(如笔记本电脑、掌上电脑等)、移动互联网设备(mobile internet device,MID)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。
其中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。IoT技术可以通过例如窄带(narrow band)NB技术,做到海量连接,深度覆盖, 终端省电。
此外,终端设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
为便于理解本申请实施例,首先结合图1详细说明适用于本申请实施例提供的方法的通信系统。图1示出了适用于本申请实施例提供的方法的通信系统100的示意图。如图所示,该通信系统100可以包括至少一个网络设备,如图1中所示的5G系统中的网络设备101;该通信系统100还可以包括至少一个终端设备,如图1中所示的终端设备102至107。其中,该终端设备102至107可以是移动的或固定的。网络设备101和终端设备102至107中的一个或多个均可以通过无线链路通信。每个网络设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备通信。例如,网络设备可以向终端设备发送配置信息,终端设备可以基于该配置信息向网络设备发送上行数据;又例如,网络设备可以向终端设备发送下行数据。又例如,网络设备可以计算出终端设备上行传输的流数和上行预编码,通过下行信息指示给终端设备。因此,图1中的网络设备101和终端设备102至107构成一个通信系统。
可选地,终端设备之间可以直接通信。例如可以利用D2D技术等实现终端设备之间的直接通信。如图中所示,终端设备105与106之间、终端设备105与107之间,可以利用D2D技术直接通信。终端设备106和终端设备107可以单独或同时与终端设备105通信。
终端设备105至107也可以分别与网络设备101通信。例如可以直接与网络设备101通信,如图中的终端设备105和106可以直接与网络设备101通信;也可以间接地与网络设备101通信,如图中的终端设备107经由终端设备106与网络设备101通信。
应理解,图1示例性地示出了一个网络设备和多个终端设备,以及各通信设备之间的通信链路。可选地,该通信系统100可以包括多个网络设备,并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,例如更多或更少的终端设备。本申请对此不做限定。
需要说明的是,通信系统100包括多个网络设备时,每个网络设备覆盖区域内的终端设备可以向任意网络设备发送上行数据,也可以向多个网络设备发送上行数据。例如,两个网络设备覆盖区域相邻区域的终端设备发送的上行数据可以由该两个网络设备中的一个接收,也可以由该两个网络设备联合接收。
上述各个通信设备,如图1中的网络设备101和终端设备102至107,可以配置多个天线。该多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。另外,各通信设备还附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。因此,网络设备与终端设备之间可通过多天线技术通信。
可选地,该无线通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例不限于此。
在massive-MIMO技术中,终端设备可以通过多个发送天线端口向接入网设备发送上行数据。为了利用massive-MIMO技术带来的空间自由度,终端设备在上行传输时需要对上行传输的信息进行预编码。其中,上行传输的预编码可以是基于码本的上行传输模式。需要注意的是,本申请实施例提供的方法中,以进行预编码的对象为上行数据为例进行说明。上行数据可以为诸如上行的业务数据或上行信令的数据等,而在实际中进行预编码的对象还可以为任意的上行传输的信息,本申请实施例对此不做具体限定。
为便于理解本申请实施例,下面对本申请实施例中涉及到的一些技术术语做简单介绍。
(1)预编码技术
发送设备可以在已知信道状态的情况下,借助与信道状态相匹配的预编码矩阵来对待发送信号进行处理,使得经过预编码的待发送信号与信道相适配,从而使得接收设备消除信道间影响的复杂度降低。通过对待发送信号的预编码处理,接收信号质量(例如信号与干扰加噪声比(signal to interference plus noise ratio,SINR)等)得以提升。因此,采用预编码技术,可以实现发送设备与多个接收设备在相同的时频资源上传输,也就是实现了多用户多输入多输出(multiple user multiple input multiple output,MU-MIMO)。应理解,本文中有关预编码技术的相关描述仅为便于理解而示例,并非用于限制本申请 实施例的保护范围。在具体实现过程中,发送设备还可以通过其他方式进行预编码。例如,在无法获知信道信息(例如但不限于信道矩阵)的情况下,采用预先设置的预编码矩阵或者加权处理方式进行预编码等。为了简洁,其具体内容本文不再赘述。
(2)发送天线端口
本申请实施例中涉及终端设备的发送天线端口,终端设备的一个或多个物理天线构成一个逻辑天线,一个发送天线端口对应一个逻辑天线的端口。终端设备的发送天线端口数可以为一个或多个,例如终端设备有2个发送天线端口、4个发送天线端口、8个发送天线端口、16个发送天线端口、32个发送天线端口等。
(3)终端设备的相干能力
终端设备的相干能力包括不相干(non coherent)、部分相干(partial coherent)或全相干(fully coherent)。其中,不相干指的是终端设备一个时刻只能通过多个发送天线端口中的一个天线端口发送上行数据,或者可以描述为多个发送天线端口之间不相干;部分相干指的是终端设备可以同时通过多个发送天线端口中的部分天线端口(至少两个)发送上行数据,或者可以描述为多个发送天线端口之间部分相干;完全相干指的是终端设备可以同时通过多个发送天线端口中的全部天线端口发送上行数据,或者可以描述为多个发送天线端口之间完全相干。
(4)上行传输层数
上行传输层数指的是上行数据的流数,或称为空间流数。对于空间复用来说,上行传输最大层数为MIMO信道矩阵的秩(rank),MIMO信道矩阵的秩为对MIMO信道矩阵进行转移矩阵奇异值分解(singular value decomposition,SVD)后得到的中间的对角矩阵的对角元素(奇异值)个数。通常地,终端设备的最大上行传输层数小于或等于终端设备的发送天线端口数,终端设备实际的上行传输层数小于或等于终端设备的最大上行传输层数。示例性地,终端设备的最大上行传输层数等于终端设备的发送天线端口数,例如,终端设备的发送天线端口数为8,则终端设备的发送天线端口数对应的最大传输层数为8,终端设备的上行传输层数可以为1至8中任意一个整数。
(5)码本与码字
本申请实施例中的码本主要遵从第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)标准定义的码本,例如3GPP技术标准(technical specification,TS)38.211协议中定义的码本,或也可以描述为上行码本。例如,在3GPP TS 38.211的V16.7.0版本的协议中定义多种码本,每个码本中包含多个码字,同一个码本中的码字对应相同的发送天线端口数以及上行传输层数。一个码字也称为一个上行预编码矩阵。为便于理解,下表1和表2分别示意出了对应上行传输层数为1和2,发送天线端口数均为2的码本;下表3至表6分别示意出了对应上行传输层数从1至4,发送天线端口数均为4的码本。
表1
其中,表1示意的6个码字从左至右对应的发射预编码矩阵指示(transmitted precoding matrix indicator,TPMI)值为0-5,例如从左至右的第1个码字的TPMI=0,从左至右的第6个码字的TPMI=5。每个码字为2×1的矩阵,即每个矩阵包括2行,表示码字对应的发送天线端口数为2;每个矩阵包括1列,表示码字对应的上行传输层数为1;j表示虚数。TPMI可以理解为一个码字在一个码本中的序号或索引。
TPMI=0和TPMI=1指示的码字中非零元素仅有一个,表示这些码字对应的2个发送天线端口之间不相干;TPMI=2-5指示的码字中的元素均为非零元素,表示这些码字对应2个发送天线端口之间完全相干。
表2
其中,表2示意的3个码字从左至右对应的TPMI值为0-2,每个码字为2×2的矩阵,即每个矩阵包括2行,表示码字对应的发送天线端口数为2;每个矩阵包括2列,表示码字对应的上行传输层数为2。
TPMI=0指示的码字的各列中非零元素仅有一个,表示该码字对应的2个发送天线端口之间不相干,TPMI=1和2指示的码字的各列中的元素均为非零元素,表示这些码字对应的2个发送天线端口之间完全相干。
表3
其中,表3示意第一行中的8个码字从左至右对应的TPMI值为0-7,第二行中的8个码字从左至右对应的TPMI值为8-15,第三行中的8个码字从左至右对应的TPMI值为16-23,第四行中的4个码字从左至右对应的TPMI值为24-27。每个码字为4×1的矩阵,即每个矩阵包括4行,表示码字对应的发送天线端口数为4;每个矩阵包括1列,表示码字对应的上行传输层数为1。
TPMI=0-3指示的码字中非零元素仅有一个,表示这些码字对应的4个发送天线端口之间不相干,TPMI=4-11指示的码字中部分元素为非零元素,部分元素值为0,表示这些码字对应的4个发送天线端口之间部分相干,TPMI=12-27指示的码字中的元素均为非零元素,表示这些码字对应的4个发送天线端口之间完全相干。
表4

其中,表4示意第一行中的4个码字从左至右对应的TPMI值为0-3,第二行中的4个码字从左至右对应的TPMI值为4-7,第三行中的4个码字从左至右对应的TPMI值为8-11,第四行中的4个码字从左至右对应的TPMI值为12-15,第五行中的4个码字从左至右对应的TPMI值为16-19,第六行中的2个码字从左至右对应的TPMI值为20-21。每个码字为4×2的矩阵,即每个矩阵包括4行,表示码字对应的发送天线端口数为4;每个矩阵包括2列,表示码字对应的上行传输层数为2。
TPMI=0-5指示的码字的各列中非零元素仅有一个,表示这些码字对应的4个发送天线端口之间不相干,TPMI=6-13指示的码字的各列中部分元素为非零元素,部分元素值为0,表示这些码字对应的4个发送天线端口之间部分相干,TPMI=14-21指示的码字的各列中的元素均为非零元素,表示这些码字对应的4个发送天线端口之间完全相干。
表5
其中,表5示意第一行中的4个码字从左至右对应的TPMI值为0-3,第二行中的4个码字从左至右对应的TPMI值为4-6。每个码字为4×3的矩阵,即每个矩阵包括4行,表示码字对应的发送天 线端口数为4;每个矩阵包括3列,表示码字对应的上行传输层数为3。
TPMI=0指示的码字中各列的非零元素仅有一个,表示该码字对应的4个发送天线端口之间不相干,TPMI=1-2指示的码字的至少一列中部分元素为非零元素,部分元素值为0,表示这些码字对应的4个发送天线端口之间部分相干,TPMI=3-6指示的码字的各列中的元素均为非零元素,表示这些码字对应的4个发送天线端口之间完全相干。
表6
其中,表6示意第一行中的4个码字从左至右对应的TPMI值为0-3,第二行中的1个码字对应的TPMI值为4。每个码字为4×4的矩阵,即每个矩阵包括4行,表示码字对应的发送天线端口数为4;每个矩阵包括4列,表示码字对应的上行传输层数为4。
TPMI=0指示的码字中各列的非零元素仅有一个,表示该码字对应的4个发送天线端口之间不相干,TPMI=1和2指示的码字的各列中部分元素为非零元素,部分元素值为0,表示这些码字对应的4个发送天线端口之间部分相干,TPMI=3和4指示的码字的各列中的元素均为非零元素,表示这些码字对应的4个发送天线端口之间全相干。
(6)TPMI和TRI联合指示
终端设备可以通过下行消息中的SRS资源指示SRI(SRS resource indicator)、上行传输层数指示TRI(Transmission rank indicator)和TPMI确定其上行传输预编码矩阵及实际上行传输的层数,从而进行上行数据传输。其中,TRI和TPMI采用联合指示的方式进行指示,如下表7示出了3GPP TS 38.212 V16.7.0协议中的表格7.3.1.1.2-2,终端设备根据DCI中的指示选择表格中的一行,确定TPMI和TRI。
应理解,表7对应发送天线端口数为4,表7中的TPMI可以是对应发送天线端口数为4的码本中的TPMI,也即前述表格3-6中的TPMI。TPMI和TRI联合指示可以理解为表7中的一个索引指示了一个码字对应的上行传输层数TRI以及该码字的TPMI,也即该索引可理解为联合索引。表7中提及的不相干、部分相干以及完全相干对应表格3-6中的不相干码字、部分相干码字以及完全相干码字。例如表7中第一索引为0指示1层,TPMI=0,对应表格3中TPMI=0指示的不相干码字,该码字可应用于发送天线端口之间是完全相干、部分相干和不相干的情况;表7中第一索引为19指示1层,TPMI=11,对应表格3中TPMI=11指示的部分相干码字,该码字可应用于发送天线端口之间是完全相干和部分相干的情况;表7中第一索引为32指示1层,TPMI=12,对应表格3中TPMI=12指示的完全相干码字,该码字可应用于发送天线端口之间是完全相干的情况。
此外应理解的是,表7中的一个省略号“…”表示对于该省略号的前一个第一索引和该省略号之后的第一个第一索引之间的第一索引的省略,如第一索引4和第一索引9之间省略了第一索引5至8,其中第一索引5至8指示的层数(或称上行传输层数)均为2,TPMI依次递增。即第一索引5具体指示层数2,TPMI=1;第一索引6具体指示层数2,TPMI=2;第一索引7具体指示层数2,TPMI=3;第一索引8具体指示层数2,TPMI=4。
表7

在现有相关技术中,接入网设备通常会根据终端设备发送的用于测量上行信道的参考信号,如信道探测参考信号(sounding reference signal,SRS),估计终端设备与接入网设备之间无线信道的信道条件状况。接入网设备根据该信道条件状况确定终端设备使用的发送天线端口数,进而根据终端设备使用的发送天线端口数以及信道条件状况计算出终端设备发送上行数据时可使用的上行预编码矩阵,为了简便,接入网设备计算出的上行预编码矩阵称为第二上行预编码矩阵。该第二上行预编码矩阵对应终端设备使用的发送天线端口数以及特定的上行传输层数。接入网设备根据该特定的上行传输层数从前述3GPP协议预定义的码本中选择与该第二上行预编码矩阵最接近的码字,并将该码字对应的TPMI和上行传输层数指示给终端设备。其中,接入网设备指示的TPMI所对应的发送天线端口数可作为终端设备发送上行数据时使用的发送天线端口数,接入网设备指示的上行传输层数可作为终端设备要发送的上行数据所映射的上行传输层数。进而,终端设备按照接入网设备指示的TPMI和上行传输 层数确定码字,使用该码字对上行数据进行预编码,并基于该码字对应发送天线端口以及上行传输层数发送预编码后的上行数据。
应理解,如果3GPP协议预定义的码本(如前述表1~表6)包含了第二上行预编码矩阵,即第二上行预编码矩阵是3GPP协议预定义的码本中的一个码字,则接入网设备选择的码字与第二上行预编码矩阵一致。如果3GPP协议预定义的码本不包含第二上行预编码矩阵,即第二上行预编码矩阵不是3GPP协议预定义的码本中的一个码字,则接入网设备选择的码字可以是与第二上行预编码矩阵之间的差异最小的一个码字。示例性地,差异最小可以是接入网设备在3GPP协议预定义的码本中选择的码字与第二上行预编码矩阵之间的欧氏距离最小;差异最小也可以是接入网设备在3GPP协议预定义的码本中选择的码字与第二上行预编码矩阵中的相同元素最多。
应理解,终端设备使用不同码字对上行数据进行预编码,相当于终端设备使用不同的波束图(beam pattern)发送上行数据。即在前述表1~表6的任意一个表格中,每个码字中的一列对应一个波束图。例如,表1中的码字的列数为1,对于接入网设备确定从表1的6个码字中选取其中1个码字,也可以描述为从6个波束图中选择其中1个波束图指示给终端设备,进而终端设备可以根据接入网设备指示的波束图发送上行数据。又如,表4中的码字的列数为2,对于接入网设备确定从表4的22个码字中选取其中1个码字,也可以描述将该选取的码字的第1列所对应的波束图指示给终端设备发送第1层上行数据,并将该选取的码字的第2列所对应的波束图指示给终端设备发送第2层上行数据。
由上述介绍的码本可知,当前3GPP协议支持接入网设备指示的码字对应最大上行传输层数为4,最大发送天线端口数为4。随着天线技术的发展,终端设备支持的发送天线端口越来越多,例如终端设备的发送天线端口数可以进一步增加到8。由此可见终端设备使用的发送天线端口数可能超出当前3GPP协议支持的码字对应的最大发送天线端口数;相应地,上行传输层数也可能超出当前3GPP协议支持的码字对应的最大传输层数。若仍然采用从当前3GPP协议预定义的码本中选择码字指示给终端设备的方式,则无法适配于更多的发送天线端口数,难以有效发挥massive-MIMO技术在终端设备的应用,从而限制上行传输的性能。
基于此,本申请实施例提供一种上行预编码的指示方法,通过预定义码字,实现灵活的上行预编码矩阵指示,适配于更多的发送天线端口数和上行传输层数,能够有效提升上行传输的性能。
需要说明的是,在本申请的描述中,“预定义”可以是指通信协议定义的,并配置于通信双方的网络设备和终端设备中;也可以是由网络设备确定并配置给终端设备,其中配置可以是通过信令显示配置或通过其他信息隐式配置。
在本申请的描述中,“指示”可以包括直接指示和间接指示,也可以包括显式指示和隐式指示。将某一信息(如下文所述的第一指示信息、第二指示信息)所指示的信息称为待指示信息,则具体实现过程中,对所述待指示信息进行指示的方式有很多种。例如,可以直接指示所述待指示信息,其中所述待指示信息本身或者所述待指示信息的索引等。又例如,也可以通过指示其他信息来间接指示所述待指示信息,其中该其他信息与所述待指示信息之间存在关联关系。又例如,还可以仅仅指示所述待指示信息的一部分,而所述待指示信息的其他部分则是已知、提前约定或可推导出的。另外,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。
以下详细说明本申请实施例提供的一种预编码的指示方法。
应理解,下文仅为便于理解和说明,以终端设备与网络设备之间的交互为例详细说明本申请实施例提供的方法。但这不应对本申请提供的方法的执行主体构成任何限定。例如,下文实施例示出的终端设备可以替换为配置于终端设备中的部件(如芯片或芯片系统)等。下文实施例示出的网络设备也可以替换为配置于网络设备中的部件(如芯片或芯片系统)等。
下文示出的实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
为便于理解,下面结合图2说明现有协议中的一种上行码本指示方法的过程。
步骤S210,终端设备向网络设备发送上行参考信号。
步骤S220,网络设备向终端设备发送预编码指示信息。
步骤S230,终端设备确定上行预编码并发送上行数据。
其中,上行参考信号用于网络设备进行信道测量。可选地,上行参考信号是SRS。
其中,预编码指示信息包括上行预编码矩阵指示和终端设备使用的上行传输层数的指示。
进一步的,终端设备根据预编码指示信息确定上行预编码矩阵以及上行传输层数,从而进行上行数据的预编码。
例如,网络设备根据上行参考信号进行信道测量后,得到终端设备的上行信道信息,根据该上行信道信息计算出终端设备的上行预编码矩阵(第二上行预编码矩阵)以及上行传输层数,并将该上行预编码矩阵以及上行传输层数指示给终端设备。
需要注意的是,网络设备直接将上行预编码矩阵以及上行传输层数指示给终端设备时,由于上行预编码矩阵中,每个元素都是未量化的连续值,直接指示开销太大,因此现有协议设计了量化的上行预编码码本(如表1至表6所示)来指示。
图3是本申请实施例提供的通信的方法的示意性流程图。图3是从设备交互的角度示出的本申请实施例提供的通信的方法300的示意性流程图。图3示出的方法300可以包括S310至S350。下面详细说明方法300中的各步骤。
S310,网络设备获取第一码本。
具体的,第一码本包括多个预定义的码字,该多个预定义的码字用于网络设备基于第二上行预编码矩阵和上行传输层数来选择最接近的一个码字,从而用于指示终端设备进行上行预编码。换句话说,第一码本用于确定终端设备发送上行数据时使用的上行预编码矩阵(为便于描述,下文称为第一上行预编码矩阵)。下面对该第一码本的确定过程进行详细说明。
本申请中,第一码本可以是通信协议定义的,也可以是其他预定义的码字。并配置于通信双方的网络设备和终端设备中,也可以是由网络设备确定并配置给终端设备,其中配置可以是通过信令显示配置或通过其他信息隐式配置。
本申请实施例如下以预定义码字为3GPP协议预定义的码本中的码字为例进行说明。应理解,预定义码字可以是根据3GPP协议预先存储在网络设备和终端设备上的;也可以是预先存储在网络设备上,在终端设备接入网络后由网络设备发送给终端设备的;还可以是预先存储在终端设备上,在终端设备接入网络后由终端设备发送给网络设备的;本申请实施例对此不做具体限定。
示例性地,网络设备可以根据终端设备发送的用于测量上行信道的参考信号如SRS,估计终端设备与网络设备之间无线信道的信道条件状况并确定终端设备使用的发送天线端口数。网络设备可以根据该信道条件状况以及终端设备的发送天线端口数计算得到上述第二上行预编码矩阵。将第二上行预编码矩阵对应的上行传输层数确定为终端设备的上行传输层数。需要说明的是,终端设备发送SRS所占用的SRS资源可以由网络设备配置,该SRS资源中被配置的SRS端口数与终端设备使用的发送天线端口数相同。
进一步地,网络设备可以根据终端设备的发送天线端口数以及上行传输层数,确定第一码本中每个预定义码字对应的发送天线端口数以及上行传输层数。
其中,第一码本中每个预定义码字对应的发送天线端口数相同,且每个预定义码字对应的发送天线端口数小于终端设备的发送天线端口数。示例性的,本申请实施例主要涉及终端设备的发送天线端口数大于目前3GPP协议预定义的码字支持的最大发送天线端口数为4的情况。例如,终端设备的发送天线端口数为8,或描述为8Tx,第一码本中每个预定义码字对应的发送天线端口数可以为4。终端设备的上行传输层数由预定义码字各自对应的上行传输层数组成,或可以理解预定义码字各自对应的上行传输层数取决于终端设备的上行传输层数。
为便于区分,下文中将终端设备的上行传输层数描述为第一上行传输层数;将预定义码字对应的上行传输层数描述为第二上行传输层数,即一个预定义码字对应一个第二上行传输层数,不同的预定义码字对应的第二上行传输层数可以相同也可以不同。具体地,第一码本中每个预定义码字对应的第二上行传输层数小于或者等于N,N为正整数,N用于指示预定义码字中任意一个预定义码字对应的发送天线端口数所对应的最大上行传输层数。例如在前述3GPP TS 38.211 V16.7.0协议预定义的码本中,N的取值为4。可以理解的是,终端设备发送上行数据时使用的第一上行预编码矩阵对应第一上行 传输层数以及终端设备的发送天线端口数。
示例性地,终端设备向网络设备上报自身的相干能力。相应地,网络设备获取终端设备的相干能力。例如,终端设备上报的相干能力可以指示终端设备的多个发送天线端口之间不相干、部分相干、或者完全相干。可选的,在终端设备上报的相干能力指示终端设备的多个发送天线端口之间部分相干时,还可以指示具体的相干对。例如,终端设备的8个发送天线端口记作1-8,其中{1,3,5,7}为一组相干对,表示终端设备可以同时通过发送天线端口1、3、5、7发送上行数据。又例如,终端设备的8个发送天线端口中{1,3}为一组相干对,{5,7}为另一组相干对,表示终端设备可以同时通过发送天线端口1、3发送上行数据,以及终端设备可以同时通过发送天线端口5、7发送上行数据。
需要说明的是,如果终端设备的相干能力为完全相干,网络设备可以确定第一上行预编码矩阵对应的多个发送天线端口之间为不相干、部分相干、或者完全相干;如果终端设备的相干能力为部分相干,网络设备可以确定第一上行预编码矩阵对应的多个发送天线端口之间为不相干或者部分相干;如果终端设备的相干能力为不相干,网络设备可以确定第一上行预编码矩阵对应的多个发送天线端口之间不相干。进一步地,网络设备可以根据前述计算出的第二上行预编码矩阵,确定终端设备发送上行数据时使用的第一上行预编码矩阵对应的多个发送天线端口之间为不相干、部分相干或者完全相干。
本申请实施例结合以下方式给出预定义码字的示例。
在一种可能的实施方式中,终端设备的上行传输层数(第一上行传输层数)小于或者等于X(其中,X可以为1,2,3,4中的一个)时,第一上行预编码矩阵的确定方式可参照如下公式(1)理解。网络设备可以通过如下公式(1)来确定预定义码字,进而确定第一上行预编码矩阵。
其中,P表示所述第一上行预编码矩阵,[]表示矩阵,P1表示预定义的码字,下文简称为第一码字。
在一种可能的实施方式中,终端设备的上行传输层数(第一上行传输层数)大于X(其中,X可以为1,2,3,4中的任意一个值)时,第一上行预编码矩阵的确定方式可参照如下公式(2)理解。网络设备可以通过如下公式(2)来确定预定义码字,进而确定第一上行预编码矩阵。
其中,P表示所述第一上行预编码矩阵,[]表示矩阵,P1表示一个预定义的码字,下文简称为第一预定义码字或第一码字,P2表示另一个预定义的码字,下文简称为第二码字。
在一种可能的实施方式中,终端设备的上行传输层数(第一上行传输层数)小于或者等于X(其中,X可以为1,2,3,4中的任意一个值)时,第一上行预编码矩阵的确定方式可参照如下公式(3)理解。网络设备可以通过如下公式(3)来确定预定义码字,进而确定第一上行预编码矩阵。
其中,P表示所述第一上行预编码矩阵,[]表示矩阵,P1表示一个预定义的码字,下文简称为第一预定义码字或第一码字,P2表示另一个预定义的码字,下文简称为第二预定义码字或第二码字,表示所述第一系数,所述第一系数用于指示所述第一上行预编码矩阵P对应的发送天线端口中上半部分发送天线端口与下半部分发送天线端口之间的相位差。例如,第一上行预编码矩阵对应的发送天线端口数量为8时,第一系数为8个发送天线端口中前4个发送天线端口与后4个发送天线端口之间的相位差。具体地,值根据下式(4)确定。
在一种可能的实施方式中,终端设备的上行传输层数(第一上行传输层数)小于或者等于X(其中,X可以为1,2,3,4中的任意一个值)时,第一上行预编码矩阵的确定方式可参照如下公式(5)理解。网络设备可以通过如下公式(5)来确定预定义码字,进而确定第一上行预编码矩阵。
其中,P表示所述第一上行预编码矩阵,[]表示矩阵,P1表示预定义的码字,下文简称为第一预定义码字或第一码字表示所述第一系数,可参考前文中详细解释,不再赘述。值根据上式(4)确定。
在一种可能的实施方式中,终端设备的上行传输层数(第一上行传输层数)大于X(其中,X可以为1,2,3,4中的任意一个值)时,第一上行预编码矩阵的确定方式可参照如下公式(6)理解。网络设备可以通过如下公式(6)来确定预定义码字,进而确定第一上行预编码矩阵。
其中,P表示所述第一上行预编码矩阵,[]表示矩阵,P1表示预定义的码字,下文简称为第一预定义码字或第一码字,P2表示预定义的码字,下文简称为第二预定义码字或第二码字,表示第一系数,可参考前文中详细解释,不再赘述。值根据上式(4)确定。
具体地,第一码字和第二码字是从上行传输层数为1-4的码字中选取的。应理解,网络设备可以根据第二上行预编码矩阵对应的上行传输层数以及发送天线端口数,在3GPP TS 38.211 V16.7.0协议中确定对应的一个码本,也即前述表1~6中的一个表,该码本可以理解为第一码字和第二码字的候选码本,第一码字和第二码字的候选码字可以包括该候选码本中的部分或全部码字。其中,第二上行预编码矩阵可以是网络设备根据与终端设备之间无线信道的信道条件状况计算出的上行预编码矩阵。
在一种可能的实施方式中,第一码字和第二码字的候选码字可以包括第一码字和第二码字的候选码本中的全部码字,可以理解,对应第一码字和第二码字的候选码本包括多个码字,第一码字和第二码字的候选码字的数量为多个。示例性地,在该实施方式中,网络设备默认终端设备的相干能力为完全相干;也可以包括候选码本中的部分码字,网络设备需要将确定的候选码字带入公式中计算出P是否符合终端设备的相干能力。需要说明的是,在确定第一码字和第二码字之前,网络设备获取了终端设备的相干能力。该相干能力可以是终端设备上报给网络设备,也可以是网络设备通过其他方式获取,本申请对此不做限定。
S320,网络设备根据第一码本生成第一信息。
本申请中,第一信息用于指示预定义的码字和第一上行传输层数。
具体的,第一信息用于指示预定义的码字的索引以及第二上行传输层数,从而用于终端设备确定预定义码字和第一上行传输层数。
一种可能的实施方式中,终端设备的上行传输层数(第一上行传输层数)小于或者等于X时,第一信息包括指示信息#1(第一指示信息的一例)和指示信息#3(第三指示信息的一例),该指示信息#1用于指示公式(1)中的第一码字的索引和第一码字的上行传输层数,该指示信息#3用于指示第一上行传输层数小于或者等于X。
其中,第一码字是从上行传输层数为1-4的码字中选取的,例如,采用表7的联合索引的指示选择上行传输层数为1-4的码字,需要6比特。
一种可能的实施方式中,终端设备的上行传输层数(第一上行传输层数)大于X时,第一信息包括指示信息#1、和指示信息#2(第二指示信息的一例)和指示信息#3,其中,指示信息#1用于指示公式(2)中的第一码字的索引和第一码字的上行传输层数,指示信息#2用于指示公式(2)中的第二码字的索引和第二码字的上行传输层数,该指示信息#3用于指示第一上行传输层数大于X。
其中,第一码字是从上行传输层数为1-4的码字中选取的,例如,采用表7的联合索引的指示选择上行传输层数为1-4的码字,需要6比特。
其中,由于终端设备天线端口的相干能力在发送任意上行数据流时都是一致的,因此需要保证第一码字和第二码字的相干能力相同。基于该特性,第二码字可以不需要像第一码字一样从现有协议中所有4Tx码字中选择,而只需要从和第一码字相同相干能力的码字中选取,从而节省开销。
示例性的,假设第一上行预编码矩阵对应的发送天线端口数为8,X取4。在指示第一码字时,根据表7(3GPP TS 38.212 V16.7.0协议中的表格7.3.1.1.2-2)的方式,需要6比特。由于终端通过第一码字可以获知相干能力,因此需要根据不同的相干能力进行分类,定义联合索引与码字索引及传输层数 的关联关系,例如下表8-表10。其中,表8表示的是码本子集为不相干的情况,表9表示的是码本子集为部分相干的情况,表10表示的是码本子集为全相干的情况。在指示第二码字时,根据第一码字的相干能力选择表8-表10中的任意一个值,仅需要5比特,而不像第一码字需要6比特,因此节省了1比特的开销。
本申请中,针对一个预定义码字,网络设备可以采用与该预定义码字的TPMI以及该预定义码字对应的第二上行传输层数TRI关联的索引来对该预定义码字进行标识,即采用TRI和TPMI联合指示对该预定义码字进行标识。
表8
表9
表10

以上表8-表10中的索引指示了一个码字对应的上行传输层数以及该码字的TPMI。
此外应理解的是,表8-表10中的省略号“…”表示对于该省略号的前一个索引和该省略号之后的索引之间的索引的省略,如表8中,索引4和索引9之间省略了索引5至8,其中索引5至8指示的层数(或称上行传输层数)均为2,TPMI依次递增。即索引5具体指示层数2,TPMI=1;索引6具体指示层数2,TPMI=2;索引7具体指示层数2,TPMI=3;索引8具体指示层数2,TPMI=4。下文表格中的索引与该处具有相同含义,不再赘述。
示例性的,假设X=4,且第一上行传输层数大于4,第一码字是从上行传输层数为1-4的码字中选取的,则需要6比特;假设第一码字为不相干,则网络设备可以确定第二码字的相干能力为不相干,则可以使用表8中的索引指示第二码字,只需要5比特,相比于第一码字节省了1比特的开销。
进一步的,假设网络设备确定第二码字为“2层,TPMI=5”的不相干码字,则索引可以为表8中的9。网络设备可以在第一信息中包括该索引为9对应的二进制比特:01001。应理解,由于表8中的索引取值可以为0至31,因此需要5个比特来表示表8中的任意一个索引。终端设备收到该第一信息后,可以根据01001从表8中查询索引为9指示的“2层,TPMI=5”。进而终端设备可以根据码本中TPMI=5指示的码字,获取第二码字。
上述方案不改变现有协议中TRI和TPMI联合指示的方式,因而协议影响点小,前向兼容性强。另外,基于第一码字和第二码字相同的相干能力,定义联合索引与码字索引及传输层数的关联关系,例如基于现有指示表格(如表7)重新设计表格索引,减少了指示的空口开销。
一种可能的实施方式中,终端设备的上行传输层数(第一上行传输层数)小于或者等于X时,第一信息包括指示信息#1、指示信息#2、指示信息#3和指示信息#4,该指示信息#1用于指示公式(3)中的第一码字的索引和第一码字的上行传输层数,指示信息#2用于指示公式(3)中的第二码字的索引和第二码字的上行传输层数,指示信息#3用于指示第一上行传输层数小于或者等于X,指示信息#4用于指示第一系数。
其中,第一码字是从上行传输层数为1-4的码字中选取的,例如,采用表7的联合索引的指示选择上行传输层数为1-4的码字,需要6比特。
其中,第二码字和第一码字的相干能力相同,上行传输层数相同,所以第二码字可以只从和第一码字相同相干能力且相同上行传输层数的码字中选取。节省开销。
示例性的,假设第一上行预编码矩阵对应的发送天线端口数为8,X取4。在指示第二码字时,需要根据不同的相干能力进行分类,定义联合索引与码字索引及传输层数的关联关系,例如下表11-表28。其中,表11和表12表示的是码本子集为不相干且上行传输层数为1的情况,表13表示的是码本子集为不相干且上行传输层数为2的情况,表14和表15表示的是码本子集为不相干且上行传输层数为3的情况,表16和表17表示的是码本子集为不相干且上行传输层数为4的情况,表18表示的是码本子集为部分相干且上行传输层数为1的情况,表19表示的是码本子集为部分相干且上行传输层数为2的情况,表20和表21表示的是码本子集为部分相干且上行传输层数为3的情况,表22和表23表示的是码本子集为部分相干且上行传输层数为4的情况,表24表示的是码本子集为全相干且上行传输层数为1的情况,表25和表26表示的是码本子集为全相干且上行传输层数为2的情况,表27表示的是码本子集为全相干且上行传输层数为3的情况,表28表示的是码本子集为全相干且上行传输层数为4的情况。
表11
表12
表13
表14
表15
表16
表17
表18
表19
表20

表21
表22
表23
表24
表25
表26
表27
表28
以上表11-表28中的索引指示了一个码字对应的上行传输层数以及该码字的TPMI。
示例性的,假设X=4且第一上行传输层数小于等于4,第一码字是从上行传输层数为1-4的码字中选取的,则需要6比特;假设第一码字的上行传输层数为2,相干能力假设为全相干,则第二码字可 以从表25中选取,只需要4比特,第二码字也可以从表26中选取,只需要3比特。
需要说明的是,表26相比于表25,指示第二码字时节省了1比特,该节省的1比特可以用于第一系数的指示,从而确保第一码字、第二码字和第一系数的总比特数还是固定不变的。
同理,表11和表12,表14和表15,表16和表17,表20和表21,表22和表23,均可以参考表26和表25的关系理解,不再赘述。
一种可能的实施方式中,终端设备的上行传输层数(第一上行传输层数)小于或者等于X时,第一信息包括指示信息#1和指示信息#3,该指示信息#1用于指示公式(5)中的第一码字的索引和第一码字的上行传输层数,该指示信息#3用于指示第一上行传输层数小于或者等于X。
一种可能的实施方式中,终端设备的上行传输层数(第一上行传输层数)大于X时,第一信息包括指示信息#1、指示信息#2、指示信息#3和指示信息#4,其中,指示信息#1用于指示公式(6)中的第一码字的索引和第一码字的上行传输层数,指示信息#2用于指示公式(6)中的第二码字的索引和第二码字的上行传输层数,指示信息#3用于指示第一上行传输层数大于X,该指示信息#4用于指示第一系数。
其中,第一信息还可以包括指示信息#4。
其中,第一码字是从上行传输层数为1-4的码字中选取的,例如,在3GPP TS 38.211 V16.7.0协议中的码本选择上行传输层数为1-4的码字,需要6比特。
其中,第二码字和第一码字的相干能力相同,所以第二码字可以只从和第一码字相同相干能力的码字中选取,节省开销。
示例性的,假设第一上行预编码矩阵对应的发送天线端口数为8,X取4。在指示第一码字时,根据表7(3GPP TS 38.212 V16.7.0协议中的表格7.3.1.1.2-2)的前两列,需要6比特。在指示第二码字时,由于终端通过第一码字可以获知相干能力,需要根据不同的相干能力进行分类,定义联合索引与码字索引及传输层数的关联关系,其中,码本子集为部分相干的情况,见如上表9;相码本子集为全相干的情况,见上表10;码本子集为不相干的情况,见下表29。
表29
以上表29中的索引指示了一个码字对应的上行传输层数以及该码字的TPMI。
示例性的,假设X=4,且第一上行传输层数大于4,第一码字是从上行传输层数为1-4的码字中选取的,则需要6比特;假设第一码字为不相干,则网络设备可以确定第二码字的相干能力为不相干,则可以使用表29中的索引指示第二码字,只需要4比特,相比于第一码字节省了2比特的开销。
一种可能的实施方式中,当终端设备的上行传输层数(第一上行传输层数)大于4时,第一码字或第二码字可以只从上行传输层数为4的码字中选取。
例如,当第二码字从上行传输层数为4的码字中选取,则第二码字的指示表格可以做进一步的设计,仅需要从和第一码字相同相干能力且层数为4的码字中选取,指示开销进一步减小。
示例性的,假设第一上行预编码矩阵对应的发送天线端口数为8,X取4。在指示第二码字时,需要根据不同的相干能力对传输层数为4的码字进行分类,见如下表30-表32。其中,表30表示的是码本子集为不相干的情况,表31表示的是码本子集为部分相干的情况,表32表示的是码本子集为全相干的情况。可见,使用下表30-表32指示时仅需要1比特,大大减少了开销。
表30
表31
表32
以上表30-表32中的索引指示了一个码字对应的上行传输层数以及该码字的TPMI。
示例性的,假设第一上行传输层数大于4时,第一码字是从上行传输层数为1-4的码字中选取的,则需要6比特;假设第一码字相干能力为全相干,则第二码字从上行传输层数为4的全相干码字中选取,即可以从表32中选取,只需要1比特,节省了5比特的开销。
需要说明的是,本申请中定义的表格(例如表8-表32中的任意一个)所定义的联合索引与码字索引及传输层数的关联关系需要在协议中预定义,并存储于通信双方的网络设备和终端设备中。
作为示例而非限定,第一信息可以承载于DCI中。
其中,指示信息#1和指示信息#2可以分别是DCI中的任意一个值域,例如,该域可以是Precoding information and number of layers域。该域可以联合指示第一码字的索引,对应TPMI1和TRI1。
其中,指示信息#3可以理解为,在DCI中增加了一个比特,通过增加的比特来指示第一上行传输层数大于X或小于等于X。
例如,当该比特取值为0时,指示终端设备的上行传输层数小于或者等于X,当该比特取值为1时,指示终端设备的上行传输层数大于X。
本申请中,第一系数可以用DCI中的任意一个值域来指示。
示例性的,可以在DCI中增加log2N比特来指示的值。
可选的,指示信息#1占用的比特数、指示信息#2占用的比特数和指示的比特数之和为第一值,为了避免给终端设备增加盲检负担,该第一值为固定比特长度值。
其中,该第一值可以是协议预定的,本申请实施例对此不作限定。
可选的一种理解,比特数可根据第一码字的层数和相干能力变化,但要保证总比特数一定。
示例性的,假设第一上行传输层数小于等于4,第一码字是从上行传输层数为1-4的码字中选取的,第一码字的上行传输层数为2,相干能力假设为全相干,则第二码字从表26中选取,需要3比特,当第一码字的上行传输层数为3,相干能力假设为部分相干,则第二码字从表20中选取,需要3比特,第二码字也可以从表21中选取,需要1比特,则剩下的2比特可以用于指示第一系数,从而确保总比特数一定。
S330,网络设备向终端设备发送第一信息。
网络设备向终端设备发送上述第一信息,相应的,终端设备从网络设备接收上述第一信息。
S340,终端设备根据第一信息确定第一上行预编码矩阵。
具体的,终端设备根据第一信息的指示确定第一上行预编码矩阵中的预定义码字及第二上行传输层数,从而确定第一上行预编码矩阵和第一上行传输层数。
一种可能的实施方式中,终端设备根据第一信息中的指示信息#3确定第一上行传输层数小于或者等于X,终端设备根据第一信息中的指示信息#1指示的第一码字的索引确定第一码字及第一码字的上行传输层数,从而确定公式(1)对应的第一上行预编码矩阵。
一种可能的实施方式中,终端设备根据第一信息中的指示信息#3确定第一上行传输层数大于X, 终端设备根据第一信息中的指示信息#1指示的第一码字的索引确定第一码字、第一码字的上行传输层数以及第一码字的相干能力,终端设备根据第一信息中的指示信息#2指示的第二码字的索引以及第一码字的相干能力确定第二码字及第二码字的上行传输层数,从而确定公式(2)对应的第一上行预编码矩阵。
一种可能的实施方式中,终端设备根据第一信息中的指示信息#3确定第一上行传输层数小于或者等于X,终端设备根据第一信息中的指示信息#1指示的第一码字的索引确定第一码字、第一码字的上行传输层数以及第一码字的相干能力,终端设备根据第一信息中的指示信息#2指示的第二码字的索引、第一码字的相干能力及所述第一码字的上行传输层数确定第二码字及第二码字的上行传输层数,终端设备根据第一信息中的指示信息#4指示的相位差值确定值,从而确定公式(3)对应的第一上行预编码矩阵。
一种可能的实施方式中,终端设备根据第一信息中的指示信息#3确定第一上行传输层数小于或者等于X,终端设备根据第一信息中的指示信息#1指示的第一码字的索引确定第一码字及第一码字的上行传输层数,终端设备根据第一信息中的指示信息#4指示的相位差值确定值,从而确定公式(5)对应的第一上行预编码矩阵。
一种可能的实施方式中,终端设备根据第一信息中的指示信息#3确定第一上行传输层数大于X,终端设备根据第一信息中的指示信息#1指示的第一码字的索引确定第一码字、第一码字的上行传输层数及所述第一码字的相干能力,终端设备根据第一信息中的指示信息#2指示的第二码字的索引及所述第一码字的相干能力确定第二码字及第二码字的上行传输层数,终端设备根据第一信息中的指示信息#4指示的相位差值确定值,从而确定公式(6)对应的第一上行预编码矩阵。
其中,第一上行传输层数等于第一码字的上行传输层数和第二码字的上行传输层数之和。
S350,终端设备基于第一上行预编码矩阵发送上行数据。
具体的,终端设备确定了第一上行预编码矩阵后,可以基于该第一上行预编码矩阵来发送上行数据。
根据上述技术方案,本实施例在现有协议4Tx码本的基础上使能8Tx全相干和部分相干码本,不需要设计8Tx码本。不改变已有协议中采用TPMI和上行传输层数联合指示的方式,降低对已有协议的影响,能够增强后向兼容性。进一步的,基于预定义码字相同的相干能力,定义联合索引与码字索引及传输层数的关联关系,从而减少开销。
图4是本申请实施例提供的通信装置的示意性框图。如图4所示,该通信装置400包括收发单元420和处理单元410,其中,收发单元420可以用于实现相应的通信功能,处理单元410可以用于进行数据处理。
可选地,收发单元420还可以称为通信接口或通信单元,包括发送单元和/或接收单元。该收发单元420可以是收发器(包括发射器和/或接收器)、输入/输出接口(包括输入和/或输出接口)、管脚或电路等。该收发单元420可以用于执行上述方法实施例中发送和/或接收的步骤。
可选地,该处理单元410可以是处理器(可以包括一个多个)、具有处理器功能的处理电路等,可以用于执行上述方法实施例中除发送接收外的其它步骤。
可选地,该装置400还包括存储单元,该存储单元可以是存储器、内部存储单元(例如,寄存器、缓存等)、外部的存储单元(例如,只读存储器、随机存取存储器等)等。该存储单元用于存储指令,上述处理单元410执行该存储单元所存储的指令,以使该通信装置执行上述方法。
一种设计中,该装置400可以用于执行上文各个方法实施例中网络设备所执行的动作,如该装置400可以用于执行上文方法400中的网络设备所执行的动作。这时,该装置400可以为网络设备的组成部件,收发单元420用于执行上文方法网络设备的收发相关的操作,处理单元410用于执行上文方法实施例中网络设备的处理相关的操作。
具体的,处理单元410,用于获取第一码本;处理单元410,还用于当终端设备的上行传输层数小于或等于X时,确定第一信息,所述第一信息包括第一指示信息和第三指示信息,所述第一指示信息用于指示所述第一码本中第一码字的索引和所述第一码字的上行传输层数,所述第三指示信息用于指示所述终端设备的上行传输层数小于或等于X;处理单元410,还用于当终端设备的上行传输层数大于X时,确定第一信息,所述第一信息包括第一指示信息、第二指示信息和第三指示信息,所述第 一指示信息用于指示所述第一码本中第一码字的索引和所述第一码字的上行传输层数,所述第二指示信息用于指示所述第一码本中第二码字的索引和所述第二码字的上行传输层数,所述第三指示信息用于指示所述终端设备的上行传输层数大于X,所述第二码字和所述第一码字具有相同的相干能力;收发单元420,用于发送所述第一信息,所述第一信息用于所述终端设备确定上行预编码矩阵;其中,X为1、2、3、4中的任意一个值。
应理解,收发单元420以及处理单元410还可以执行上述方法300中由网络设备所执行的其他操作,这里不再一一详述。
一种设计中,该装置400可以用于执行上文各个方法实施例中终端设备所执行的动作,如该装置400可以用于执行上文方法800和900中的终端设备所执行的动作。这时,该装置400可以为终端设备的组成部件,收发单元420用于执行上文方法终端设备的收发相关的操作,处理单元410用于执行上文方法实施例中终端设备的处理相关的操作。
具体的,处理单元410,用于获取第一码本;收发单元420,用于接收第一信息,所述第一信息包括第一指示信息和第三指示信息,所述第一指示信息用于指示所述第一码本中第一码字的索引和所述第一码字的上行传输层数,所述第三指示信息用于指示所述终端设备的上行传输层数小于或等于X;或者,收发单元420,用于接收第一信息,所述第一信息包括第一指示信息、第二指示信息和第三指示信息,所述第一指示信息用于指示所述第一码本中第一码字的索引和所述第一码字的上行传输层数,所述第二指示信息用于指示所述第一码本中第二码字的索引和所述第二码字的上行传输层数,所述第三指示信息用于指示所述终端设备的上行传输层数大于X,所述第二码字和所述第一码字具有相同的相干能力;处理单元410,还用于根据所述第一信息确定上行预编码矩阵;其中,X为1、2、3、4中的任意一个值。
应理解,收发单元420以及处理单元410还可以执行上述方法300中由终端设备所执行的其他操作,这里不再一一详述。
还应理解,这里的装置400以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置400可以具体为上述实施例中的网络设备,可以用于执行上述各方法实施例中与网络设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置400具有实现上述方法中的终端设备所执行的相应步骤的功能,或者,上述各个方案的装置400具有实现上述方法中网络设备所执行的相应步骤的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块;例如收发模块可以由收发机替代(例如,收发模块中的发送单元可以由发送机替代,收发模块中的接收单元可以由接收机替代),其它单元,如处理模块等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
此外,上述收发单元420还可以是收发电路(例如可以包括接收电路和发送电路),处理模块可以是处理电路。
需要指出的是,图4中的装置可以是前述实施例中的网元或设备,也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。其中,收发模块可以是输入输出电路、通信接口;处理模块为该芯片上集成的处理器或者微处理器或者集成电路。在此不做限定。
图5是本申请实施例提供的一种通信架构的示意图。图5所示的通信装置500包括:处理器510、存储器520和收发器530。该处理器510与存储器520耦合,用于执行存储器520中存储的指令,以控制收发器530发送信号和/或接收信号。
应理解,上述处理器510和存储器520可以合成一个处理装置,处理器510用于执行存储器520中存储的程序代码来实现上述功能。具体实现时,该存储器520也可以集成在处理器510中,或者独立于处理器510。应理解,处理器510也可以和前面通信装置中的各个处理单元相对应,收发器530可以和前面通信装置中的各个接收单元和发送单元相对应。
还应理解,收发器530可以包括接收器(或者称,接收机)和发射器(或者称,发射机)。收发器 还可以进一步包括天线,天线的数量可以为一个或多个。收发器还可以是通信接口或者接口电路。
具体地,该通信装置500可对应于根据本申请实施例的方法700和方法800中的终端设备和网络设备。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该通信装置500为芯片时,该芯片包括接口单元和处理单元。其中,接口单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例中的装置为网络设备时,该装置可以如图6所示。该装置可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)610和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)620。所述RRU610可以称为收发模块,该收发模块可以包括发送模块和接收模块,或者,该收发模块可以是一个能够实现发送和接收功能的模块。该收发模块可以与图4中的收发模单元420对应,即可由收发模块执行由收发单元420执行的动作。可选地,该收发模块还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线611和射频单元612。该RRU 610部分主要用于射频信号的收发以及射频信号与基带信号的转换。该BBU 620部分主要用于进行基带处理,对基站进行控制等。该RRU610与BBU 620可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。其中,随着天线技术的发展RRU也可以演进为有源天线处理单元(active antenna unit,AAU)。
该BBU 620为基站的控制中心,也可以称为处理模块,可以与图4中的处理单元410对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等,此外,可由处理模块执行由处理单元410执行的动作。例如该BBU(处理模块)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
在一个示例中,该BBU620可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网络),也可以分别支持不同接入制式的无线接入网(如LTE网络,5G网络或其他网络)。该BBU620还包括存储器621和处理器622。该存储器621用以存储必要的指令和数据。该处理器622用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。该存储器621和处理器622可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
本申请还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机 指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
在本申请实施例中,“示例的”、“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
应理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。本申请中所有节点、消息的名称仅仅是本申请为描述方便而设定的名称,在实际网络中的名称可能不同,不应理解本申请限定各种节点、消息的名称,相反,任何具有和本申请中用到的节点或消息具有相同或类似功能的名称都视作本申请的方法或等效替换,都在本申请的保护范围之内。
还应理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下UE或者基站会做出相应的处理,并非是限定时间,且也不要求UE或基站实现时一定要有判断的动作,也不意味着存在其它限定。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本文中术语“……中的至少一个”或“……中的至少一种”,表示所列出的各项的全部或任意组合,例如,“A、B和C中的至少一种”,可以表示:单独存在A,单独存在B,单独存在C,同时存在A和B,同时存在B和C,同时存在A、B和C这六种情况。本文中的“至少一个”表示一个或者多个。“多个”表示两个或者两个以上。
应理解,在本申请各实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
应理解,在本申请的各种实施例中,第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的信息等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是 或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种上行预编码的指示方法,其特征在于,包括:
    获取第一码本;
    当终端设备的上行传输层数小于或等于X时,确定第一信息,所述第一信息包括第一指示信息和第三指示信息,所述第一指示信息用于指示所述第一码本中第一码字的索引和所述第一码字的上行传输层数,所述第三指示信息用于指示所述终端设备的上行传输层数小于或等于X;
    当终端设备的上行传输层数大于X时,确定第一信息,所述第一信息包括第一指示信息、第二指示信息和第三指示信息,所述第一指示信息用于指示所述第一码本中第一码字的索引和所述第一码字的上行传输层数,所述第二指示信息用于指示所述第一码本中第二码字的索引和所述第二码字的上行传输层数,所述第三指示信息用于指示所述终端设备的上行传输层数大于X,所述第二码字和所述第一码字具有相同的相干能力;
    发送所述第一信息,所述第一信息用于所述终端设备确定上行预编码矩阵;其中,X为1、2、3、4中的任意一个值。
  2. 根据权利要求1所述的方法,其特征在于,当所述终端设备的上行传输层数小于或等于X时,所述第一信息还包括第四指示信息,所述第四指示信息用于指示第一系数,所述第一系数用于指示所述上行预编码矩阵对应的发送天线端口中前半部分发送天线端口与后半部分发送天线端口之间的相位差。
  3. 根据权利要求2所述的方法,其特征在于,所述第一信息还包括第二指示信息,所述第二指示信息用于指示所述第一码本中第二码字的索引和所述第二码字的上行传输层数;其中,所述第一码字的上行传输层数与所述第二码字的上行传输层数相同,所述第二码字和所述第一码字具有相同的相干能力。
  4. 根据权利要求1所述的方法,其特征在于,当所述终端设备的上行传输层数大于X时,所述第一信息还包括第四指示信息,所述第四指示信息用于指示第一系数,所述第一系数用于指示所述上行预编码矩阵对应的发送天线端口中前半部分发送天线端口与后半部分发送天线端口之间的相位差。
  5. 根据权利要求1-4项中任一项所述的方法,其特征在于,所述第一码字和所述第二码字是从上行传输层数为1-4的码字中选取的。
  6. 根据权利要求1所述的方法,其特征在于,当所述第一终端设备的上行传输层数大于4时,所述第二码字或所述第一码字是从所述上行传输层数为4的码字中选取的。
  7. 根据权利要求1-6项中任一项所述的方法,其特征在于,所述第一码字、所述第二码字和所述系数的指示比特开销之和为第一值。
  8. 一种上行预编码的指示方法,其特征在于,包括:
    获取第一码本;
    接收第一信息,所述第一信息包括第一指示信息和第三指示信息,所述第一指示信息用于指示所述第一码本中第一码字的索引和所述第一码字的上行传输层数,所述第三指示信息用于指示所述终端设备的上行传输层数小于或等于X;或者
    接收第一信息,所述第一信息包括第一指示信息、第二指示信息和第三指示信息,所述第一指示信息用于指示所述第一码本中第一码字的索引和所述第一码字的上行传输层数,所述第二指示信息用于指示所述第一码本中第二码字的索引和所述第二码字的上行传输层数,所述第三指示信息用于指示所述终端设备的上行传输层数大于X,所述第二码字和所述第一码字具有相同的相干能力;
    根据所述第一信息确定上行预编码矩阵;其中,X为1、2、3、4中的任意一个值。
  9. 根据权利要求8所述的方法,其特征在于,当所述第三指示信息指示所述终端设备的上行传输层数小于或等于X时,所述第一信息还包括第四指示信息,所述第四指示信息用于指示第一系数,所述第一系数用于指示所述上行预编码矩阵对应的发送天线端口中前半部分发送天线端口与后半部分发送天线端口之间的相位差。
  10. 根据权利要求9所述的方法,其特征在于,所述第一信息还包括第二指示信息,所述第二指 示信息用于指示所述第一码本中第二码字的索引和所述第二码字的上行传输层数;其中,所述第一码字的上行传输层数与所述第二码字的上行传输层数相同,所述第二码字和所述第一码字具有相同的相干能力。
  11. 根据权利要求8所述的方法,其特征在于,当所述第三指示信息指示所述终端设备的上行传输层数大于X时,所述第一信息还包括第四指示信息,所述第四指示信息用于指示第一系数,所述第一系数用于指示所述上行预编码矩阵对应的发送天线端口中前半部分发送天线端口与后半部分发送天线端口之间的相位差。
  12. 根据权利要求8-11项中任一项所述的方法,其特征在于,所述第一码字和所述第二码字是从上行传输层数为1-4的码字中选取的。
  13. 根据权利要求8所述的方法,其特征在于,当所述第一终端设备的上行传输层数大于4时,所述第二码字或所述第一码字是从所述上行传输层数为4的码字中选取的。
  14. 根据权利要求8-13项中任一项所述的方法,其特征在于,所述第一码字、所述第二码字和所述系数的指示比特开销之和为第一值。
  15. 一种通信装置,其特征在于,包括:
    处理单元,用于获取第一码本;
    所述处理单元,当终端设备的上行传输层数小于或等于X时,用于确定第一信息,所述第一信息包括第一指示信息和第三指示信息,所述第一指示信息用于指示所述第一码本中第一码字的索引和所述第一码字的上行传输层数,所述第三指示信息用于指示所述终端设备的上行传输层数小于或等于X;
    所述处理单元,当终端设备的上行传输层数大于X时,用于确定第一信息,所述第一信息包括第一指示信息、第二指示信息和第三指示信息,所述第一指示信息用于指示所述第一码本中第一码字的索引和所述第一码字的上行传输层数,所述第二指示信息用于指示所述第一码本中第二码字的索引和所述第二码字的上行传输层数,所述第三指示信息用于指示所述终端设备的上行传输层数大于X,所述第二码字和所述第一码字具有相同的相干能力;
    收发单元,用于发送所述第一信息,所述第一信息用于所述终端设备确定上行预编码矩阵;其中,X为1、2、3、4中的任意一个值。
  16. 根据权利要求15所述的装置,其特征在于,当所述终端设备的上行传输层数小于或等于X时,所述第一信息还包括第四指示信息,所述第四指示信息用于指示第一系数,所述第一系数用于指示所述上行预编码矩阵对应的发送天线端口中前半部分发送天线端口与后半部分发送天线端口之间的相位差。
  17. 根据权利要求16所述的装置,其特征在于,所述第一信息还包括第二指示信息,所述第二指示信息用于指示所述第一码本中第二码字的索引和所述第二码字的上行传输层数;其中,所述第一码字的上行传输层数与所述第二码字的上行传输层数相同,所述第二码字和所述第一码字具有相同的相干能力。
  18. 根据权利要求15所述的装置,其特征在于,当所述终端设备的上行传输层数大于X时,所述第一信息还包括第四指示信息,所述第四指示信息用于指示第一系数,所述第一系数用于指示所述上行预编码矩阵对应的发送天线端口中前半部分发送天线端口与后半部分发送天线端口之间的相位差。
  19. 根据权利要求15-18项中任一项所述的装置,其特征在于,所述第一码字和所述第二码字是从上行传输层数为1-4的码字中选取的。
  20. 根据权利要求15所述的装置,其特征在于,当所述第一终端设备的上行传输层数大于4时,所述第二码字或所述第一码字是从所述上行传输层数为4的码字中选取的。
  21. 根据权利要求15-20项中任一项所述的装置,其特征在于,所述第一码字、所述第二码字和所述系数的指示比特开销之和为第一值。
  22. 一种通信装置,其特征在于,包括:
    处理单元,用于获取第一码本;
    收发单元,用于接收第一信息,所述第一信息包括第一指示信息和第三指示信息,所述第一指示 信息用于指示所述第一码本中第一码字的索引和所述第一码字的上行传输层数,所述第三指示信息用于指示所述终端设备的上行传输层数小于或等于X;或者
    所述收发单元,用于接收第一信息,所述第一信息包括第一指示信息、第二指示信息和第三指示信息,所述第一指示信息用于指示所述第一码本中第一码字的索引和所述第一码字的上行传输层数,所述第二指示信息用于指示所述第一码本中第二码字的索引和所述第二码字的上行传输层数,所述第三指示信息用于指示所述终端设备的上行传输层数大于X,所述第二码字和所述第一码字具有相同的相干能力;
    所述处理单元,还用于根据所述第一信息确定上行预编码矩阵;其中,X为1、2、3、4中的任意一个值。
  23. 根据权利要求22所述的装置,其特征在于,当所述第三指示信息指示所述终端设备的上行传输层数小于或等于X时,所述第一信息还包括第四指示信息,所述第四指示信息用于指示第一系数,所述第一系数用于指示所述上行预编码矩阵对应的发送天线端口中前半部分发送天线端口与后半部分发送天线端口之间的相位差。
  24. 根据权利要求23所述的装置,其特征在于,所述第一信息还包括第二指示信息,所述第二指示信息用于指示所述第一码本中第二码字的索引和所述第二码字的上行传输层数;其中,所述第一码字的上行传输层数与所述第二码字的上行传输层数相同,所述第二码字和所述第一码字具有相同的相干能力。
  25. 根据权利要求22所述的装置,其特征在于,当所述第三指示信息指示所述终端设备的上行传输层数大于X时,所述第一信息还包括第四指示信息,所述第四指示信息用于指示第一系数,所述第一系数用于指示所述上行预编码矩阵对应的发送天线端口中前半部分发送天线端口与后半部分发送天线端口之间的相位差。
  26. 根据权利要求22-25项中任一项所述的装置,其特征在于,所述第一码字和所述第二码字是从上行传输层数为1-4的码字中选取的。
  27. 根据权利要求22所述的装置,其特征在于,当所述第一终端设备的上行传输层数大于4时,所述第二码字或所述第一码字是从所述上行传输层数为4的码字中选取的。
  28. 根据权利要求22-27项中任一项所述的装置,其特征在于,所述第一码字、所述第二码字和所述系数的指示比特开销之和为第一值。
  29. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行存储器中的所述计算机程序或指令,使得所述装置执行如权利要求1至7中任一项所述的方法,或执行如权利要求8至14中任一项所述的方法。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机执行如权利要求1至7中任一项所述的方法;或,如权利要求8至14中任一项所述的方法。
  31. 一种芯片系统,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片系统的通信设备执行权利要求1至7中任一项所述的方法,或执行如权利要求8至14中任一项所述的方法。
  32. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得计算机执行如权利要求1至7中任一项所述的方法的步骤,或执行如权利要求8至14中任一项所述的方法的步骤。
PCT/CN2023/118738 2022-09-24 2023-09-14 一种上行预编码的指示方法及通信装置 WO2024061093A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211168758.7A CN117811622A (zh) 2022-09-24 2022-09-24 一种上行预编码的指示方法及通信装置
CN202211168758.7 2022-09-24

Publications (1)

Publication Number Publication Date
WO2024061093A1 true WO2024061093A1 (zh) 2024-03-28

Family

ID=90418652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/118738 WO2024061093A1 (zh) 2022-09-24 2023-09-14 一种上行预编码的指示方法及通信装置

Country Status (2)

Country Link
CN (1) CN117811622A (zh)
WO (1) WO2024061093A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255705A (zh) * 2011-07-08 2011-11-23 电信科学技术研究院 一种上行预编码信息指示方法及装置
CN108809386A (zh) * 2017-05-05 2018-11-13 华为技术有限公司 传输预编码矩阵的指示方法和设备
US20210143874A1 (en) * 2017-06-15 2021-05-13 Lg Electronics Inc. Codebook-based uplink transmission method in wireless communication system and device therefor
WO2022153395A1 (ja) * 2021-01-13 2022-07-21 株式会社Nttドコモ 端末、無線通信方法及び基地局

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255705A (zh) * 2011-07-08 2011-11-23 电信科学技术研究院 一种上行预编码信息指示方法及装置
CN108809386A (zh) * 2017-05-05 2018-11-13 华为技术有限公司 传输预编码矩阵的指示方法和设备
US20210143874A1 (en) * 2017-06-15 2021-05-13 Lg Electronics Inc. Codebook-based uplink transmission method in wireless communication system and device therefor
WO2022153395A1 (ja) * 2021-01-13 2022-07-21 株式会社Nttドコモ 端末、無線通信方法及び基地局

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Codebook based transmission for UL MIMO", 3GPP DRAFT; R1-1710447, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Qingdao, China; 20170627 - 20170630, 26 June 2017 (2017-06-26), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051299658 *

Also Published As

Publication number Publication date
CN117811622A (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
WO2021083068A1 (zh) 上报信道状态信息的方法和通信装置
EP4075682A1 (en) Method and apparatus for channel measurement
WO2021052473A1 (zh) 通信方法和通信装置
WO2021244344A1 (zh) 获取信道信息的方法及通信装置
US20230164004A1 (en) Channel parameter obtaining method and apparatus
WO2021083157A1 (zh) 一种预编码矩阵的处理方法和通信装置
US20230078895A1 (en) Uplink reference signal sending method, uplink reference signal receiving method, and communication apparatus
WO2023109647A1 (zh) 信道状态信息的反馈方法及装置
WO2022227033A1 (zh) 无线通信方法、终端设备和网络设备
US20230379020A1 (en) Precoding method and apparatus
WO2024027394A1 (zh) 一种通信方法及装置
WO2023169514A1 (zh) 一种通信的方法与装置
WO2022012256A1 (zh) 通信的方法及通信装置
WO2024061093A1 (zh) 一种上行预编码的指示方法及通信装置
WO2021189302A1 (zh) 更新的方法和通信装置
WO2022067784A1 (zh) 一种信号传输的指示方法和通信装置
WO2024093867A1 (zh) 一种预编码的指示方法及通信装置
WO2024093906A1 (zh) 一种上行发送功率确定的方法和装置
WO2024093638A1 (zh) 一种信息处理的方法和装置
WO2021207895A1 (zh) 一种用于传输上行信号的方法和通信装置
WO2024032241A1 (zh) 一种频域分量上报的方法及装置
WO2021134207A1 (zh) 一种指示和确定信道状态信息的方法及通信装置
WO2024022525A1 (zh) 信道状态信息报告传输方法与装置、终端设备和网络设备
WO2024093869A1 (zh) 一种通信方法和通信装置
WO2023207783A1 (zh) 一种通信方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867382

Country of ref document: EP

Kind code of ref document: A1