WO2022067784A1 - 一种信号传输的指示方法和通信装置 - Google Patents

一种信号传输的指示方法和通信装置 Download PDF

Info

Publication number
WO2022067784A1
WO2022067784A1 PCT/CN2020/119700 CN2020119700W WO2022067784A1 WO 2022067784 A1 WO2022067784 A1 WO 2022067784A1 CN 2020119700 W CN2020119700 W CN 2020119700W WO 2022067784 A1 WO2022067784 A1 WO 2022067784A1
Authority
WO
WIPO (PCT)
Prior art keywords
precoding granularity
target
target value
granularity
precoding
Prior art date
Application number
PCT/CN2020/119700
Other languages
English (en)
French (fr)
Inventor
高翔
董昶钊
刘鹍鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/119700 priority Critical patent/WO2022067784A1/zh
Priority to CN202080105453.4A priority patent/CN116326023A/zh
Publication of WO2022067784A1 publication Critical patent/WO2022067784A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of wireless communication, and more particularly, to a signal transmission indication method and communication device.
  • precoding technology is one of the key technologies of multiple input and output (multiple input multiple output, MIMO).
  • Consecutive resource blocks (Resource block, RB) with the same precoding matrix are called Precoding Resource Block Group (Precoding Resource Block Group, PRG).
  • PRG size is determined by the physical resource block (PRB) binding (physical resource block bundling, PRB bundling) process.
  • PRB bundling is to bind multiple consecutive PRBs together for joint processing.
  • the network device can use the same preprocessing method (including beamforming and precoding) for the multiple PRBs, and the terminal device can combine the multiple PRBs for channel processing. estimate.
  • the terminal device When the terminal device performs joint channel estimation based on multiple PRBs, the channel correlation between consecutive frequency domain resources can be used to improve the accuracy of the channel estimation.
  • the only supported PRG sizes in the current protocol are 2 resource blocks (RBs), 4RBs or full bandwidth.
  • the present application provides an indication method and communication device for signal transmission, which can support an indication method with a precoding granularity smaller than 2RB.
  • the present application provides an indication method for signal transmission.
  • the method may be executed by a terminal device, or may also be executed by a chip configured in the terminal device, which is not limited in this application.
  • the method includes: the terminal device receives first indication information, where the first indication information is used to indicate at least one target value, the target value corresponds to at least one precoding granularity, and the target value is determined according to a precoding granularity set , the precoding granularity set includes a precoding granularity less than 2 resource blocks RB; the target precoding granularity is determined from the precoding granularity corresponding to the at least one target value; the signal is detected according to the target precoding granularity .
  • the precoding granularity set includes a precoding granularity smaller than 2 RB, and thus, the target value may correspond to a precoding granularity smaller than 2 RB. Therefore, the terminal device can have more choices.
  • the target precoding granularity determined by the terminal device may be a precoding granularity smaller than 2RB, thereby ensuring that the terminal device can support finer precoding granularity and improving the precoding granularity selected by the terminal device. flexibility.
  • the terminal device can support finer precoding granularity, which is beneficial to multi-user (Multi-User), multi-input and output (Multi-input Multi-output,
  • Multi-User multi-user
  • Multi-input Multi-output Multi-input Multi-output
  • the interference suppression between different paired users in MIMO further reduces the interference between users, further adapts to the channel frequency selection characteristics, and increases the maximum number of streams that can be paired.
  • the method further includes: receiving second indication information, where the second indication information is used to indicate A first target value among the at least two target values, and the target precoding granularity is determined by the first target value.
  • the terminal device by receiving the second indication information, the terminal device can narrow the range in which the terminal device determines the target precoding granularity, and reduce the time period for the terminal device to determine.
  • the at least one target value includes a first target value and a second target value
  • the target precoding is determined from the precoding granularity corresponding to the at least one target value
  • the granularity includes: according to the precoding granularity corresponding to the second target value, determining the target precoding granularity from the precoding granularity corresponding to the first target value.
  • the first target value corresponds to a first target precoding granularity and a second target precoding granularity
  • Determining the target precoding granularity from the precoding granularity corresponding to the first target value includes: if the second target precoding granularity is the same as the precoding granularity corresponding to the second target value, then The first target precoding granularity is the target precoding granularity; or, in the case that the second target precoding granularity is different from the precoding granularity corresponding to the second target value, the second target precoding granularity
  • the precoding granularity is the target precoding granularity.
  • the first target value includes a first target precoding granularity and a second target precoding granularity. If the second target precoding granularity is the same as the precoding granularity corresponding to the second target value, then the The first target precoding granularity is the target precoding granularity; or, if the second target precoding granularity is different from the precoding granularity corresponding to the second target value, the second target precoding granularity is the target precoding granularity.
  • the second target precoding granularity is the same as the precoding granularity corresponding to the second target value, which can be understood as: the second target precoding granularity and the precoding granularity corresponding to the second target value At least one of the coding granularities is the same as the precoding granularity.
  • the difference between the second target precoding granularity and the precoding granularity corresponding to the second target value can be understood as: at least one of the second target precoding granularity and the precoding granularity corresponding to the second target value
  • the precoding granularity is different.
  • the determining the target precoding granularity from the precoding granularity corresponding to the at least one target value includes: according to capability information of the terminal device, from the at least one target value.
  • the target precoding granularity is determined from the precoding granularity corresponding to a target value.
  • a terminal device reports capability information, where the capability information is used to indicate that the terminal device supports capability information of less than 2 RBs.
  • the terminal device before receiving the first indication information, the terminal device reports capability information to the network device; in another possible implementation, after receiving the first indication information, the terminal device reports capability information to the network device.
  • the set of precoding granularities includes a first set and a second set
  • the first set includes: 1RB, 2RB, 4RB and full bandwidth
  • the second set includes: 2RB and full bandwidth; or, the first set includes: 2RB, 4RB and full bandwidth
  • the second Sets include: 1RB, 4RB and full bandwidth.
  • the terminal device can support a more flexible combination of PRB bundling indications without introducing additional signaling overhead.
  • the present application provides an indication method for signal transmission.
  • the method may be executed by a network device, or may also be executed by a chip configured in the network device, which is not limited in this application.
  • the method includes: the network device sends first indication information, where the first indication information is used to indicate at least one target value, the target value corresponds to at least one precoding granularity, and the target value is determined according to a precoding granularity set , the precoding granularity set includes a precoding granularity less than 2 resource blocks RB; the target precoding granularity is determined from the precoding granularity corresponding to the at least one target value; and the signal is precoded according to the target precoding granularity coding.
  • the precoding granularity set includes a precoding granularity smaller than 2 RB, and thus, the target value may correspond to a precoding granularity smaller than 2 RB. Therefore, the terminal device can have more choices.
  • the target precoding granularity determined by the terminal device may be a precoding granularity smaller than 2RB, thereby ensuring that the terminal device can support finer precoding granularity and improving the precoding granularity selected by the terminal device. flexibility.
  • the terminal device can support finer precoding granularity, which is beneficial to multi-user (Multi-User), multi-input and output (Multi-input Multi-output,
  • Multi-User multi-user
  • Multi-input Multi-output Multi-input Multi-output
  • the interference suppression between different paired users in MIMO further reduces the interference between users, further adapts to the channel frequency selection characteristics, and increases the maximum number of streams that can be paired.
  • the method further includes: sending second indication information, where the second indication information is used to indicate A first target value among the at least two target values, and the target precoding granularity is determined by the first target value.
  • the at least one target value includes a first target value and a second target value; the target precoding is determined from the precoding granularity corresponding to the at least one target value
  • the granularity includes: according to the precoding granularity corresponding to the second target value, determining the target precoding granularity from the precoding granularity corresponding to the first target value.
  • the first target value corresponds to a first target precoding granularity and a second target precoding granularity
  • Determining the target precoding granularity from the precoding granularity corresponding to the first target value includes: if the second target precoding granularity is the same as the precoding granularity corresponding to the second target value, then The first target precoding granularity is the target precoding granularity; or, in the case that the second target precoding granularity is different from the precoding granularity corresponding to the second target value, the second target precoding granularity
  • the precoding granularity is the target precoding granularity.
  • the determining the target precoding granularity from the precoding granularity corresponding to the at least one target value includes: including: according to the capability information of the terminal device, from the The target precoding granularity is determined from the precoding granularity corresponding to the at least one target value.
  • the network device receives capability information reported by the terminal device, where the capability information is used to indicate that the terminal device supports capability information of less than 2 RBs.
  • the terminal device before receiving the first indication information, the terminal device reports capability information to the network device; in another possible implementation, after receiving the first indication information, the terminal device reports capability information to the network device.
  • the set of precoding granularities includes a first set and a second set
  • the first set includes: 1RB, 2RB, 4RB and full bandwidth
  • the second set includes: 2RB and full bandwidth; or, the first set includes: 2RB, 4RB and full bandwidth
  • the second Sets include: 1RB, 4RB and full bandwidth.
  • the network device can support a more flexible combination of PRB bundling indications without introducing additional signaling overhead.
  • the present application further provides a communication device.
  • the communication apparatus has part or all of the functions of the terminal device described in the first aspect.
  • the functions of the apparatus may have the functions of some or all of the embodiments of the terminal device in this application, and may also have the functions of independently implementing any one of the embodiments of this application.
  • the functions can be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a processing unit and a communication unit, and the processing unit is configured to support the communication device to perform the corresponding functions in the above method.
  • the communication unit is used to support communication between the communication device and other devices.
  • the communication device may also include a storage unit for coupling with the processing unit and the communication unit, which stores program instructions and data necessary for the communication device.
  • the communication device includes:
  • a communication unit configured to receive first indication information, where the first indication information is used to indicate at least one target value, the target value corresponds to at least one precoding granularity, the target value is determined according to a precoding granularity set, and the precoding granularity
  • the coding granularity set includes precoding granularity less than 2 resource block RBs;
  • a processing unit configured to determine a target precoding granularity from the precoding granularity corresponding to the at least one target value
  • the processing unit is further configured to detect the signal according to the target precoding granularity.
  • the processing unit may be a processor
  • the communication unit may be a transceiver or a communication interface
  • the storage unit may be a memory.
  • the communication device may include:
  • a transceiver configured to receive first indication information, where the first indication information is used to indicate at least one target value, the target value corresponds to at least one precoding granularity, the target value is determined according to a precoding granularity set, and the precoding granularity
  • the coding granularity set includes precoding granularity less than 2 resource block RBs;
  • a processor configured to determine a target precoding granularity from the precoding granularity corresponding to the at least one target value
  • the processor is further configured to detect the signal according to the target precoding granularity.
  • the processor may be used to perform, for example but not limited to, baseband related processing
  • the transceiver may be used to perform, for example but not limited to, radio frequency transceiving.
  • the above-mentioned devices may be respectively arranged on chips that are independent of each other, or at least part or all of them may be arranged on the same chip.
  • processors can be further divided into analog baseband processors and digital baseband processors.
  • the analog baseband processor can be integrated with the transceiver on the same chip, and the digital baseband processor can be set on a separate chip. With the continuous development of integrated circuit technology, more and more devices can be integrated on the same chip.
  • a digital baseband processor can be integrated with a variety of application processors (such as but not limited to graphics processors, multimedia processors, etc.) on the same chip.
  • application processors such as but not limited to graphics processors, multimedia processors, etc.
  • Such a chip may be called a System on Chip. Whether each device is independently arranged on different chips or integrated on one or more chips often depends on the needs of product design. The embodiments of the present application do not limit the implementation form of the foregoing device.
  • the present application further provides a communication device.
  • the communication apparatus has part or all of the functions of the network device in the method example described in the second aspect.
  • the function of the communication device may have the function of some or all of the embodiments of the present application, and may also have the function of independently implementing any one of the embodiments of the present application.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a processing unit and a communication unit, and the processing unit is configured to support the communication device to perform the corresponding functions in the above method.
  • the communication unit is used to support communication between the communication device and other devices.
  • the communication device may further include a storage unit for coupling with the processing unit and the sending unit, which stores necessary program instructions and data of the communication device.
  • the communication device includes:
  • a communication unit configured to send first indication information, where the first indication information is used to indicate at least one target value, the target value corresponds to at least one precoding granularity, the target value is determined according to a precoding granularity set, and the precoding granularity
  • the coding granularity set includes precoding granularity less than 2 resource block RBs;
  • a processing unit configured to determine a target precoding granularity from the precoding granularity corresponding to the at least one target value
  • the processing unit is further configured to precode the signal according to the target precoding granularity.
  • the processing unit may be a processor
  • the communication unit may be a transceiver or a communication interface
  • the storage unit may be a memory.
  • the communication device includes:
  • a transceiver configured to receive first indication information, where the first indication information is used to indicate at least one target value, the target value corresponds to at least one precoding granularity, the target value is determined according to a precoding granularity set, and the precoding granularity
  • the coding granularity set includes precoding granularity less than 2 resource block RBs;
  • a processor configured to determine a target precoding granularity from the precoding granularity corresponding to the at least one target value
  • the processor is further configured to precode the signal according to the target precoding granularity.
  • the processor may be used to perform, for example but not limited to, baseband related processing
  • the transceiver may be used to perform, for example but not limited to, radio frequency transceiving.
  • the above-mentioned devices may be respectively arranged on chips that are independent of each other, or at least part or all of them may be arranged on the same chip.
  • processors can be further divided into analog baseband processors and digital baseband processors.
  • the analog baseband processor can be integrated with the transceiver on the same chip, and the digital baseband processor can be set on a separate chip. With the continuous development of integrated circuit technology, more and more devices can be integrated on the same chip.
  • a digital baseband processor can be integrated with a variety of application processors (such as but not limited to graphics processors, multimedia processors, etc.) on the same chip.
  • application processors such as but not limited to graphics processors, multimedia processors, etc.
  • Such a chip may be called a System on Chip. Whether each device is independently arranged on different chips or integrated on one or more chips often depends on the needs of product design. The embodiments of the present application do not limit the implementation form of the foregoing device.
  • the present application further provides a processor for executing the above-mentioned various methods.
  • the process of sending and receiving the above-mentioned information in the above-mentioned methods can be understood as the process of outputting the above-mentioned information by the processor and the process of receiving the above-mentioned information input by the processor.
  • the processor When outputting the above-mentioned information, the processor outputs the above-mentioned information to the transceiver for transmission by the transceiver. After the above-mentioned information is output by the processor, other processing may be required before reaching the transceiver.
  • the transceiver receives the above-mentioned information and inputs it into the processor. Furthermore, after the transceiver receives the above-mentioned information, the above-mentioned information may need to perform other processing before being input to the processor.
  • the sending of the first indication information mentioned in the foregoing method may be understood as the processor outputting the first indication information.
  • receiving the first indication information may be understood as the processor receiving the inputted first indication information.
  • the above-mentioned processor may be a processor specially used to execute these methods, or may be a processor that executes computer instructions in a memory to execute these methods, such as a general-purpose processor.
  • the above-mentioned memory can be a non-transitory (non-transitory) memory, such as a read-only memory (Read Only Memory, ROM), which can be integrated with the processor on the same chip, or can be set on different chips respectively.
  • ROM read-only memory
  • the embodiment does not limit the type of the memory and the setting manner of the memory and the processor.
  • the present application further provides a communication system, the system includes at least one terminal device and at least one network device according to the above aspects.
  • the system may further include other devices that interact with the terminal or network device in the solution provided in this application.
  • the present application provides a computer-readable storage medium for storing computer software instructions, and when the instructions are executed by a computer, the method described in the first aspect above is implemented.
  • the present application provides a computer-readable storage medium for storing computer software instructions, which, when executed by a computer, enable a communication device to implement the method described in the second aspect.
  • the present application also provides a computer program product comprising instructions, which, when executed on a computer, cause the computer to execute the method described in the first aspect above.
  • the present application further provides a computer program product comprising instructions, which, when executed on a computer, cause the computer to execute the method described in the second aspect above.
  • the present application provides a chip system, the chip system includes a processor and an interface, the interface is used to obtain a program or an instruction, and the processor is used to call the program or instruction to implement or support a terminal device To implement the functions involved in the first aspect, for example, to determine or process at least one of the data and information involved in the above method.
  • the chip system further includes a memory for storing necessary program instructions and data of the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present application provides a chip system, the chip system includes a processor and an interface, the interface is used to obtain a program or an instruction, and the processor is used to call the program or instruction to implement or support a network device To implement the functions involved in the second aspect, for example, to determine or process at least one of the data and information involved in the above method.
  • the chip system further includes a memory for storing necessary program instructions and data of the network device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • FIG. 1 shows a schematic diagram of a communication system applicable to an indication method for signal transmission and a communication device according to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of an indication method for signal transmission provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • the technical solutions of the present application can be applied to fifth generation (5th generation, 5G) systems or new radio (NR) systems, and can also be applied to future networks, such as 6G systems or even future systems;
  • a device to device (D2D) system a vehicle-to-everything (V2X), a machine-to-machine (machine to machine, M2M) system
  • the embodiment of the present application does not limit the communication mode between the terminal device and the terminal device.
  • the network device in the communication system can be any device with a wireless transceiver function or a chip that can be provided in the device, and the device includes but is not limited to: evolved Node B (evolved Node B, eNB), wireless Network Controller (Radio Network Controller, RNC), Node B (Node B, NB), Base Station Controller (Base Station Controller, BSC), Base Transceiver Station (Base Transceiver Station, BTS), Home Base Station (for example, Home evolved NodeB , or Home Node B, HNB), baseband unit (BaseBand Unit, BBU), access point (Access Point, AP), wireless relay node, wireless backhaul node, wireless fidelity (Wireless Fidelity, WIFI) system Transmission point (TP) or transmit and receive point (TRP), etc., can also be used in 5G, 6G and even future systems, such as NR, gNB in the system, or transmission point (TRP or TP), 5G One or a group (including multiple antenna panels), 5G,
  • the network device may also be a device carrying base station functions in D2D, V2X, or M2M, etc.
  • the specific type of the network device is not limited in this application. It can be understood that, in systems of different wireless access technologies, the names of the devices with network device functions may be different.
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU implements the functions of the radio resource control (RRC) layer and the packet data convergence protocol (PDCP) layer
  • the DU implements the functions of the radio resource control (RRC) layer.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RRC radio resource control
  • the network device may be a CU node, a DU node, or a device including a CU node and a DU node.
  • the CU may be divided into network equipment in the access network RAN, and the CU may also be divided into network equipment in the core network CN, which is not limited herein.
  • the apparatus for implementing the function of the network device may be a network device; it may also be an apparatus capable of supporting the network device to implement the function, such as a chip system, which may be installed in the network device.
  • terminal equipment in the communication system may also be referred to as user equipment (UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user Terminal, terminal, wireless communication device, user agent or user equipment.
  • UE user equipment
  • the terminal device in the embodiments of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, and an augmented reality (Augmented Reality, AR) terminal equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation security ( Wireless terminals in transportation safety), wireless terminals in smart cities, wireless terminals in smart homes, wireless terminals in the aforementioned V2X Internet of Vehicles, or RSUs of the wireless terminal type, etc.
  • the embodiments of the present application do not limit application scenarios.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • indication may include direct indication and indirect indication, and may also include explicit indication and implicit indication.
  • the information indicated by a certain information is called the information to be indicated.
  • the information to be indicated In the specific implementation process, there are many ways to indicate the information to be indicated. For example, but not limited to, it is possible to directly indicate the information to be indicated. information, such as the information to be indicated itself or the index of the information to be indicated.
  • the information to be indicated may also be indirectly indicated by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while other parts of the information to be indicated are known or agreed in advance.
  • the indication of specific information can also be implemented by means of a pre-agreed (for example, a protocol stipulated) arrangement order of various information, so as to reduce the indication overhead to a certain extent.
  • the first, second, and various numeral numbers are only distinguished for convenience of description.
  • the technical features in this technical feature are distinguished by “first”, “second”, “third”, etc. ” and “Third” describe the technical features in no order or order of magnitude. It is not used to limit the scope of the embodiments of the present application. For example, different indications, different beams, different panels, etc. are distinguished.
  • At least one means one or more, and “plurality” means two or more.
  • And/or which describes the association relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, which can indicate: the existence of A alone, the existence of A and B at the same time, and the existence of B alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one (a) of a, b and c may represent: a, or b, or c, or a and b, or a and c, or b and c, or a, b and c, wherein a, b, c can be single or multiple.
  • the embodiments disclosed herein will present various aspects, embodiments or features of the present application around a system including a plurality of devices, components, modules, and the like. It is to be understood and appreciated that the various systems may include additional devices, components, modules, etc., and/or may not include all of the devices, components, modules, etc. discussed in connection with the figures. In addition, combinations of these schemes can also be used.
  • predefined may be defined by a protocol, and may be pre-saved in devices (for example, including terminal devices and network devices) with corresponding codes, tables, or other information that can be used to indicate relevant information, and this application does not limit its specific implementation.
  • the downlink precoding frequency domain granularity defined in the NR protocol a group of downlink precoding granularity is called a precoding resource block group.
  • the target precoding granularity that can be indicated by the current NR protocol includes n2, n4 and wideband (WB) precoding granularity, that is, the frequency domain granularity using the same precoding weight matrix supported by the current protocol is 2RB, 4RB and WB respectively.
  • the terminal device may assume that the precoding frequency domain granularity is consecutive x RBs, where x may be specified as a value in ⁇ n2, n4, WB ⁇ .
  • x is designated as WB
  • the terminal device is only scheduled on consecutive RBs, and the UE assumes that the same precoding matrix is used on all allocated frequency domain resources.
  • x is specified as n2
  • the terminal device is scheduled on consecutive 2RBs, and the UE assumes that the same precoding matrix is used on the consecutive 2RBs.
  • x is specified as n4
  • the terminal device is scheduled on consecutive 4RBs, and the UE assumes that the same precoding matrix is used on the consecutive 4RBs.
  • the size of the precoding resource block group is determined by physical resource block bundling (physical resource block bundling, PRB bundling), and resources are bound on different communication device sides may be called differently, but have the same meaning.
  • PRG resource binding granularity at the sender (eg, network device) side
  • PRB bundling physical resource block bundling
  • resources are bound on different communication device sides
  • PRG resource binding granularity at the sender (eg, network device) side
  • PRG resource binding granularity at the sender (eg, network device) side
  • PRG resource binding granularity at the sender in the same PRG uses the same precoding
  • the receiver eg, terminal device
  • the granularity is called PRG, and the data transmitted by the transmitter in the same PRG adopts the same precoding, and the receiver performs joint channel estimation on the data transmitted in the same PRG.
  • the resource bundling granularity on the sender side and the receiver side may refer to PRG, or both the resource binding on the sender side and the receiver side may refer to PRB bundling, and the embodiment of the present application is not limited to this.
  • the PRG on the network device side may correspond to the PRB bundling on the terminal device side.
  • the method for determining the PRG on the network device side and the method for determining the PRB bundling on the terminal device side may be the same.
  • the corresponding PRG determination methods or PRB bundling methods are different.
  • the precoding granularity n1 is a precoding granularity smaller than 2RB.
  • n1 may be, for example but not limited to, a precoding granularity of 0.5RB, 1RB or 1.5RB. In the embodiments of this application, n1 is 1RB for exemplary description.
  • the n1/wideband (n1/WB) field is a newly added indication field. Exemplarily, taking n1 as 1RB as an example, the n1/WB field is interpreted.
  • the network device sends indication information to the terminal device, and the indication information indicates that the downlink precoding granularity of the terminal device is 1RB. ;
  • the network device indicates through the indication information that the downlink precoding granularity of the terminal device is WB.
  • n1/WB is only an example, and may also be expressed as n1-wideband, and other new fields may also be defined, which are not limited in this embodiment of the present application.
  • n1/n4 taking n1 as 1RB as an example, for a terminal device that supports 1RB precoding granularity, the network device sends indication information to the terminal device, and the indication information indicates that the downlink precoding granularity of the terminal device is 1RB; For a terminal device that supports 1RB precoding granularity, the network device indicates through the indication information that the downlink precoding granularity of the terminal device is 4RB.
  • the network device sends indication information to the terminal device, the indication information indicates that the downlink precoding granularity of the terminal device is 1RB; for a terminal device that does not support 1RB precoding granularity The network device indicates that the downlink precoding granularity of the terminal device is 2RB through the indication information.
  • FIG. 1 shows a schematic diagram of a communication system 100 suitable for an indication method for signal transmission according to an embodiment of the present application.
  • the communication system 100 may include at least one terminal device, such as the terminal device 101 shown in the figure, or a chip configured in the terminal device; the communication system 100 may also include at least one network device , the network device #1 102 or the network device #2 103 shown in the figure may also be a chip configured in the network device.
  • the communication system 100 may include one or more network devices, such as network device #1 102 and network device #2 103 as shown in the figure.
  • the network device #1 102 and the network device #2 103 may be network devices in the same cell, or may be network devices in different cells, which are not limited in this application.
  • the figure is only an example, showing an example in which the network device #1 102 and the network device #2 103 are located in the same cell.
  • precoding technology is one of the key technologies of multiple input and output (multiple input multiple output, MIMO).
  • Consecutive resource blocks (Resource block, RB) with the same precoding matrix are called Precoding Resource Block Group (Precoding Resource Block Group, PRG).
  • PRG size is determined by the physical resource block bundling (Physical Resource block bundling, PRB bundling) process. The smaller the PRG, the higher the matching degree between the precoding matrix and the corresponding channel matrix, and the better the ability to adapt to channel frequency selection. powerful.
  • the physical resource block bundling (Physical Resource block bundling, PRB bundling) process can be configured in a static indication manner and a dynamic indication manner.
  • the high-level parameter can be prb-BundlingType
  • the PRG size is a single value indicated by the high-level parameter bundleSize.
  • the PRG size is jointly indicated by the precoding granularity set bundleSizeSet1 and the precoding granularity set bundleSizeSet2, where the PRG size value set in bundleSizeSet1 can be ⁇ n4, wideband, n2-wideband , n4-wideband ⁇ , a total of 4 options, the value set of PRG size in bundleSizeSet2 can be ⁇ n4, wideband ⁇ , a total of 2 options.
  • the protocol of the high-level parameter prb-BundlingType is specifically defined as follows:
  • the PRG size is determined by the combined indication of bundleSizeSet1 and bundleSizeSet2, and there are eight cases of PRG size combinations that can be dynamically indicated.
  • Set1 and Set2 correspond to bundleSizeSet1 and bundleSizeSet2 in the protocol, respectively.
  • Set1 when Set1 indicates 4RB, Set2 may indicate 4RB or WB; when Set1 indicates WB, Set2 may indicate 4RB or WB. It can be seen from this that in the first four states in Table 1, the actual valid PRG size indicates that the state only includes 4RB or WB.
  • the embodiments of the present application provide an indication method for signal transmission, which can support finer precoding granularity, thereby facilitating multi-user (Multi-User) multi-input multi-output (Multi-input Multi-output, MIMO)
  • the interference suppression between different paired users further reduces the interference between users; at the same time, the finer frequency domain granularity can better adapt to the frequency selection characteristics of the channel and increase the maximum number of streams that can be paired.
  • the embodiment of the present application by utilizing the redundant indication bits in the existing protocol, a richer combination of PRG size values is indicated, and a more flexible dynamic PRB bundling selection process is supported.
  • the communication method provided by the present application can be applied to a wireless communication system, for example, the communication system 100 shown in FIG. 1 .
  • Communication devices in the communication system may have a wireless communication connection relationship.
  • the terminal device 101 shown in FIG. 1 may have a wireless communication connection relationship with the network device #1 102 and the network device #2 103 respectively, which is not limited in this application.
  • FIG. 2 is a schematic flowchart of a signal transmission indication method 200 provided by an embodiment of the present application, shown from the perspective of device interaction. As shown in FIG. 2 , the method 200 shown in FIG. 2 may include steps 210 to 230 . Each step in the method 200 will be described in detail below with reference to the accompanying drawings.
  • Step 210 the terminal device receives the first indication information.
  • the network device sends the first indication information.
  • step 210 can also be understood as: the network device sends the first indication information to the terminal device, and the terminal device receives the first indication information from the network device.
  • the first indication information is used to indicate at least one target value, the target value corresponds to at least one precoding granularity, and the target value is determined according to a precoding granularity set, and the precoding granularity set includes precoding less than 2 resource blocks RB granularity.
  • the first indication information may be bundleSize, and at this time the high-level parameter (prb-BundlingType) is configured as a static indication (staticBundling); the first indication information may also be bundleSizeSet1 and bundleSizeSet2, at this time the high-level parameter (prb-BundlingType) Configured for dynamic Bundling.
  • the above-mentioned first indication information is only an example, and the first indication information can also be carried in, for example, but not limited to, a radio resource control (radio resource control, RRC) message, a media access control element (Media access control element) , MAC-CE) and downlink control signaling (Downlink control information, DCI) in one or more.
  • RRC radio resource control
  • Media access control element Media access control element
  • MAC-CE media access control element
  • DCI downlink control information
  • the first indication information may also be carried in newly added signaling. It should be understood that the RRC message, the MAC-CE and the DCI are only examples for ease of understanding, and should not constitute any limitation to the present application. This application does not exclude the possibility of using other signaling to carry the indication information, nor does it exclude the possibility of defining other names for the above signaling. In other words, the first indication information may be carried in one or more of physical layer signaling and high layer signaling. This application does not limit this.
  • the precoding granularity set includes a first set and a second set.
  • the first set includes: 1RB, 2RB, 4RB and full bandwidth
  • the second set includes: 2RB and full bandwidth.
  • the first set is denoted as A1
  • the second set is denoted as A2, that is, A1 is ⁇ n4, n1/wideband, n2-wideband, n4-wideband ⁇ , and A2 is ⁇ n4, wideband ⁇ .
  • the first set includes: 2RB, 4RB and full bandwidth
  • the second set includes: 1RB, 4RB and full bandwidth
  • the first set is denoted as A1
  • the second set is denoted as A2, that is, A1 is ⁇ n4, n2, n2-wideband, n4-wideband ⁇
  • A2 is ⁇ n1-n4, n1-wideband ⁇ .
  • the first set includes: 1RB, 2RB, 4RB and full bandwidth
  • the second set includes: 1RB, 4RB and full bandwidth.
  • the first set is denoted as A1
  • the second set is denoted as A2, that is, A1 is ⁇ n4, n2-n1, n2-wideband, n4-wideband ⁇
  • A2 is ⁇ n1-n4, n1-wideband ⁇ .
  • A1 is the set of target values corresponding to when the first indication information is bundleSizeSet1, and bundleSizeSet1 indicates a target value in A1;
  • A2 is the set of target values corresponding to when the first indication information is bundleSizeSet2, and bundleSizeSet2 indicates the set of target values in A2. a target value of .
  • the precoding granularities included in the first set and the second set given above are only examples given for convenience of description, which are not limited in this embodiment of the present application.
  • the target precoding granularity PRG size may be determined through a joint indication of bundleSizeSet1 and bundleSizeSet2.
  • A1 is the corresponding target value set when the first indication information is bundleSizeSet1, and bundleSizeSet1 indicates a target value in A1
  • A2 is the corresponding target value set when the first indication information is bundleSizeSet2, and bundleSizeSet2 indicates a target in A2 Value
  • the definition of n1/wideband has been explained in detail in the above terminology explanation, and will not be repeated here.
  • n2-wideband and n4-wideband are exemplarily described, where n2-wideband is a precoding granularity value of n2 or wideband, and n4-wideband is a precoding granularity value of n4 or wideband.
  • the prb-bundling type configuration parameters corresponding to Set1 and Set2 above can be defined as follows:
  • the method further includes: receiving second indication information, where the second indication information is used to indicate a first target value among the at least two target values.
  • the target precoding granularity is determined from the precoding granularity corresponding to the first target value.
  • the second indication information may indicate the index of the precoding granularity set associated with the first target value.
  • the precoding granularity sets are recorded as the first set and the second set
  • the second indication information may be a field in the DCI, and when the field in the DCI indicates 0, the first target value is associated with the second set. Index, when the field in the DCI indicates 1, the first target value is associated with the index of the first set.
  • the target precoding granularity is determined by the index of the precoding granularity set. It can be seen that, in this embodiment, the index of the precoding granularity set is indicated by a field in the DCI, and no additional indication information needs to be added, which greatly saves signaling overhead.
  • Step 220 the terminal device determines the target precoding granularity from the precoding granularity corresponding to at least one target value.
  • the network device also determines the target precoding granularity from the precoding granularity corresponding to at least one target value.
  • the target precoding granularity is determined according to the capability information of the terminal device.
  • the capability information is whether the terminal device supports information of less than 2 RBs.
  • the terminal device reports capability information to the network device, where the capability information indicates that the terminal device supports capability information of less than 2 RBs.
  • the terminal device before receiving the first indication information, the terminal device reports capability information to the network device; in another possible implementation, after receiving the first indication information, the terminal device reports capability information to the network device. This embodiment of the present application does not limit this.
  • the terminal device or the network device may determine the target precoding granularity by using the first indication information, or may determine the target precoding granularity by jointly indicating the first indication information and the second indication information.
  • the target precoding granularity may be determined by the first indication information; when the first indication information indicates at least two target values, the first indication information and the second indication may be used. The information is jointly indicated to determine the target precoding granularity.
  • determining the target precoding granularity from the precoding granularity corresponding to at least one target value includes: at least one target value includes a first target value, and determining the target precoding granularity from the precoding granularity corresponding to the first target value. Encoding granularity. At this time, the target precoding granularity is determined through the indication of the first indication information.
  • the first set A1 is ⁇ n4, n1/wideband, n2-wideband, n4-wideband ⁇ , assuming that the first target value corresponds to n4, the target precoding granularity determined according to the first target value is 4RB; A target value corresponds to n1/wideband. If the terminal device supports 1RB precoding granularity, the target precoding granularity determined according to the first target value is 1RB. If the terminal device does not support 1RB precoding granularity, the first target value The determined target precoding granularity is wideband.
  • determining the target precoding granularity from the precoding granularity corresponding to at least one target value includes: the at least one target value includes a first target value and a second target value. At this time, the target precoding granularity is determined through the joint indication of the first indication information and the second indication information.
  • the first set A1 is ⁇ n4, n1/wideband, n2-wideband, n4-wideband ⁇
  • the second set A2 is ⁇ n4, wideband ⁇
  • A1 is the set of target values corresponding to when the first indication information is bundleSizeSet1 , and bundleSizeSet1 indicates a target value in A1
  • A2 is a target value set corresponding to when the first indication information is bundleSizeSet2
  • bundleSizeSet2 indicates a target value in A2.
  • the corresponding prb-bundling Type configuration parameters can be defined as follows:
  • the first target value is determined from the first set
  • the second target value is determined from the second set.
  • the target precoding granularity is determined from the first target value and the second target value.
  • Schemes 1 to 3 are described in detail below by taking the second indication information as DCI and the field in the DCI as the PRB bundling size indicator as an example.
  • the target precoding granularity is determined from the precoding granularity corresponding to the second target value. That is, n4 is the target precoding granularity. That is, the target precoding granularity is 4RB.
  • the target precoding granularity is determined from the precoding granularity corresponding to the first target value.
  • the precoding granularity corresponding to the first target value is n4, and the target precoding granularity is 4RB.
  • the precoding granularity corresponding to the first target value is n1/wideband, and the target precoding granularity is determined according to capability information supported by the terminal device. If the terminal device supports the precoding granularity of 1RB, the target precoding granularity is 1RB; if the terminal device does not support the precoding granularity of 1RB, the target precoding granularity is wideband.
  • the target precoding granularity is determined from the precoding granularity corresponding to the first target value.
  • the target precoding granularity is wideband; when the scheduled PRBs are continuous and the number is less than or equal to the BWP
  • the target precoding granularity is n2 or n4.
  • the first target value corresponds to n2-wideband
  • the number of RBs included in the BWP is 48 RBs
  • the continuous bandwidth is 30 RBs.
  • half of the number of RBs included in the BWP is 24 RBs
  • the continuous bandwidth is greater than the bandwidth.
  • the RBs included in the BWP are 24 RBs.
  • Half of the number, the determined target precoding granularity is wideband. Assuming that the number of RBs included in the BWP is 48RB and the continuous bandwidth is 20RB, half of the number of RBs included in the BWP is 24RB, and the continuous bandwidth is less than half of the number of RBs included in the BWP, and the determined target precoding granularity is 2RB.
  • A1 is the corresponding target value set when the first indication information is bundleSizeSet1, and bundleSizeSet1 indicates a target value in A1;
  • A2 is the corresponding target value set when the first indication information is bundleSizeSet2, and bundleSizeSet2 indicates a target value in A2;
  • n1/WB is the newly added PRB-BundlingType dynamic indication combination that supports n1.
  • the terminal device when the terminal device supports the precoding granularity of n1, it indicates n1, which can achieve a finer precoding granularity; when the terminal device does not support the precoding granularity of n1, it still indicates WB.
  • the first target value corresponds to the first target precoding granularity and the second target precoding granularity
  • the target precoding granularity is determined from the precoding granularity corresponding to the first target value.
  • the first target precoding granularity is the target precoding granularity.
  • the second target precoding granularity when the second target precoding granularity is different from the precoding granularity corresponding to the second target value, the second target precoding granularity is the target precoding granularity.
  • the first set A1 is ⁇ n1-n4, n1-wideband ⁇
  • the second set A2 is ⁇ n4, n2, n2-wideband, n4-wideband ⁇ .
  • A1 is the corresponding target value set when the first indication information is bundleSizeSet1, and bundleSizeSet1 indicates a target value in A1;
  • A2 is the corresponding target value set when the first indication information is bundleSizeSet2, and bundleSizeSet2 indicates a target value in A2.
  • the corresponding prb-bundling Type configuration parameters can be defined as follows:
  • case1 corresponds to the first target precoding granularity
  • case2 corresponds to the second target precoding granularity
  • Set1 takes value 1
  • Set1 takes value 2 case1 n1 n1 case2 n4 wideband
  • the target precoding granularity determined by different cases of the first set and the second set includes the following three different cases, which are respectively recorded as Schemes 4 to 6.
  • Schemes 4 to 6 are described in detail below by taking the second indication information as DCI as an example.
  • the target precoding granularity is determined from the precoding granularity corresponding to the first target value.
  • the target precoding granularity corresponding to the second target value is one and is the same as the second target precoding granularity, the target precoding granularity is the first target precoding granularity. If the precoding granularity corresponding to the second target value is different from the second target precoding granularity, the target precoding granularity is the second target precoding granularity.
  • the precoding granularity corresponding to the second target value is n4
  • the second target precoding granularity is also n4
  • the precoding granularity corresponding to the second target value is the same as the second target precoding granularity, then the first target precoding The granularity is the target precoding granularity, ie n1.
  • the second target precoding granularity corresponding to the second target value is n2-wideband
  • the second target precoding granularity is n4
  • the precoding granularity corresponding to the second target value is different from the second target precoding granularity
  • the second target precoding The granularity is the target precoding granularity, ie n4.
  • the PRBs in the scheduled physical resource blocks are continuous and the number is greater than the number of RBs contained in the Bandwidth Part (BWP)
  • the target precoding granularity is n4; when the scheduled PRBs are continuous and the number is less than or equal to the bandwidth region (Bandwidth Part, BWP)
  • the second target value is n4, which is the same as the second target precoding granularity, and the target precoding granularity is n1.
  • the foregoing embodiments are only examples, and the case of dividing the second set into different cases is also applicable to the case of dividing the first set into different cases.
  • the case of dividing the first set into different cases reference may be made to the division manners in the foregoing embodiments, and there may also be different implementation manners, which are not limited in this embodiment of the present application.
  • the target precoding granularity is determined from the precoding granularity corresponding to the second target value.
  • the precoding granularity corresponding to the second target value is n4, and the target precoding granularity is 4RB.
  • the first target value corresponds to n2, and the target precoding granularity is 2RB.
  • the target precoding granularity is 1RB; if the terminal device does not support 1RB precoding granularity, the target precoding granularity is wideband.
  • the target precoding granularity is determined from the precoding granularity corresponding to the second target value.
  • the target precoding granularity is wideband; when the scheduled PRBs are continuous And when the number is less than or equal to half (half) the number of RBs included in the BWP, the target precoding granularity is n2 or n4.
  • the second target value corresponds to n2-wideband
  • the number of RBs included in the BWP is 48RB
  • the continuous bandwidth is 30RB
  • half (half) of the number of RBs included in the BWP is 24RB
  • the continuous bandwidth is greater than Half of the number of RBs included in the BWP
  • the determined target precoding granularity is wideband. Assuming that the number of RBs contained in BWP is 48RB and the continuous bandwidth is 20RB, then half (half) the number of RBs contained in BWP is 24RB, and the continuous bandwidth is less than half (half) the number of RBs contained in BWP 1), the determined target precoding granularity is 2RB.
  • the first set A1 is ⁇ n1-n4, n1-wideband ⁇
  • the second set A2 is ⁇ n4, n2, n2-wideband, n4-wideband ⁇ , which can be achieved Different PRB-BundlingType dynamic indication combinations.
  • the precoding granularity corresponding to the first target value determined in the first set A1 by the first indication information bundleSizeSet1 is n1-n4, and the first indication information bundleSizeSet2 is the first target value determined in the second set A2.
  • the precoding granularity corresponding to the two target values is n2, it can be expressed as n1-n4+n2. If n2 is different from n4, the precoding granularity corresponding to the first target value is n4.
  • Step 230 Precoding the signal according to the target precoding granularity.
  • the terminal device detects the signal according to the determined target precoding granularity.
  • the network device precodes the signal according to the determined target precoding granularity.
  • the methods provided by the embodiments of the present application are respectively introduced from the perspectives of network devices, terminals, and interaction between network devices and terminals.
  • the network device and the terminal may include hardware structures and software modules, and implement the above functions in the form of hardware structures, software modules, or hardware structures plus software modules.
  • a certain function among the above functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 3 is a schematic block diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication apparatus 1000 may include a communication unit 1100 and a processing unit 1200 .
  • the communication apparatus 1000 may correspond to the terminal device in the above method embodiments, for example, may be a terminal device or a chip configured in the terminal device.
  • the communication apparatus 1000 may correspond to the terminal device in the method in FIG. 2 according to an embodiment of the present application, and the communication apparatus 1000 may include a unit for executing the method performed by the terminal device in the method in FIG. 2 . Moreover, each unit in the communication apparatus 1000 and the other operations and/or functions mentioned above are respectively for realizing the corresponding flow of the method in the method in FIG. 2 .
  • the communication unit 1100 can be used to execute step 210 in the method
  • the processing unit 1200 can be used to execute step 220 in the method.
  • the communication unit 1100 in the communication apparatus 1000 may correspond to the transceiver 2020 in the terminal apparatus 2000 shown in FIG. 4
  • the processing unit 1200 in the communication apparatus 1000 may Corresponds to the processor 2010 in the terminal device 2000 shown in FIG. 4 .
  • the communication apparatus 1000 when the communication apparatus 1000 is a chip configured in a terminal device, the communication unit 1100 in the communication apparatus 1000 may be an input/output interface.
  • the communication apparatus 1000 may correspond to the network device in the above method embodiments, for example, may be a network device or a chip configured in the network device.
  • the communication apparatus 1000 may correspond to a network device in the method in FIG. 2 according to an embodiment of the present application, and the communication apparatus 1000 may include a unit for executing the method performed by the network device in the method in FIG. 2 . Moreover, each unit in the communication apparatus 1000 and the other operations and/or functions mentioned above are respectively for realizing the corresponding flow in the method in FIG. 2 .
  • the communication unit in the communication apparatus 1000 may correspond to the transceiver 3200 in the network apparatus 3000 shown in FIG. 5
  • the processing unit 1200 in the communication apparatus 1000 may Corresponds to the processor 3100 in the network device 3000 shown in FIG. 5 .
  • the communication apparatus 1000 when the communication apparatus 1000 is a chip configured in a network device, the communication unit 1100 in the communication apparatus 1000 may be an input/output interface.
  • FIG. 4 is a schematic structural diagram of a terminal device 2000 provided by an embodiment of the present application.
  • the terminal device 2000 can be applied to the system shown in FIG. 1 to perform the functions of the terminal device in the foregoing method embodiments.
  • the terminal device 2000 includes a processor 2010 and a transceiver 2020 .
  • the terminal device 2000 further includes a memory 2030 .
  • the processor 2010, the transceiver 2020 and the memory 2030 can communicate with each other through an internal connection path to transmit control and/or data signals.
  • the memory 2030 is used to store computer programs, and the processor 2010 is used to retrieve data from the memory 2030 The computer program is called and executed to control the transceiver 2020 to send and receive signals.
  • the terminal device 2000 may further include an antenna 2040 for sending the uplink data or uplink control signaling output by the transceiver 2020 through wireless signals.
  • the above-mentioned processor 2010 and the memory 2030 may be combined into a processing device, and the processor 2010 is configured to execute the program codes stored in the memory 2030 to realize the above-mentioned functions.
  • the memory 2030 may also be integrated in the processor 2010 or independent of the processor 2010 .
  • the processor 2010 may correspond to the processing unit in FIG. 3 .
  • the foregoing transceiver 2020 may correspond to the communication unit in FIG. 3 , and may also be referred to as a transceiver unit.
  • the transceiver 2020 may include a receiver (or receiver, receiving circuit) and a transmitter (or transmitter, transmitting circuit). Among them, the receiver is used for receiving signals, and the transmitter is used for transmitting signals.
  • the terminal device 2000 shown in FIG. 4 can implement various processes involving the terminal device in the method embodiment in FIG. 2 .
  • the operations and/or functions of each module in the terminal device 2000 are respectively to implement the corresponding processes in the foregoing method embodiments.
  • the above-mentioned processor 2010 may be used to perform the actions described in the foregoing method embodiments that are implemented inside the terminal device, and the transceiver 2020 may be used to perform the actions described in the foregoing method embodiments that the terminal device sends to or receives from the network device. action.
  • the transceiver 2020 may be used to perform the actions described in the foregoing method embodiments that the terminal device sends to or receives from the network device. action.
  • the above terminal device 2000 may further include a power supply 2050 for providing power to various devices or circuits in the terminal device.
  • the terminal device 2000 may further include one or more of an input unit 2060, a display unit 2070, an audio circuit 2080, a camera 2090, a sensor 2100, etc.
  • the audio circuit 2080 may also include a speaker 2082, a microphone 2084, and the like.
  • FIG. 5 is a schematic structural diagram of a network device provided by an embodiment of the present application, which may be, for example, a schematic structural diagram of a base station.
  • the base station 3000 can be applied to the system shown in FIG. 1 to perform the functions of the network device in the foregoing method embodiments.
  • the base station 3000 may include one or more radio frequency units, such as a remote radio unit (RRU) 3100 and one or more baseband units (BBU) (also referred to as digital units) , digital unit, DU)3200.
  • the RRU 3100 may be called a transceiver unit, which corresponds to the communication unit 1200 in FIG. 3 .
  • the transceiver unit 3100 may also be referred to as a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 3101 and a radio frequency unit 3102 .
  • the transceiver unit 3100 may include a receiving unit and a sending unit, the receiving unit may correspond to a receiver (or called a receiver, a receiving circuit), and the sending unit may correspond to a transmitter (or called a transmitter, a sending circuit).
  • the part of the RRU 3100 is mainly used for sending and receiving radio frequency signals and converting radio frequency signals to baseband signals, for example, for sending indication information to terminal equipment.
  • the part of the BBU 3200 is mainly used to perform baseband processing, control the base station, and the like.
  • the RRU 3100 and the BBU 3200 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 3200 is the control center of the base station, and can also be called a processing unit, which can correspond to the processing unit 1100 in FIG. 3 , and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, spread spectrum, and the like.
  • the BBU processing unit
  • the BBU may be used to control the base station to perform the operation procedure of the network device in the foregoing method embodiments, for example, to generate the foregoing indication information and the like.
  • the BBU 3200 may be composed of one or more boards, and the multiple boards may jointly support a wireless access network (such as an LTE network) of a single access standard, or may respectively support a wireless access network of different access standards.
  • Wireless access network (such as LTE network, 5G network or other network).
  • the BBU 3200 also includes a memory 3201 and a processor 3202.
  • the memory 3201 is used to store necessary instructions and data.
  • the processor 3202 is configured to control the base station to perform necessary actions, for example, to control the base station to perform the operation flow of the network device in the foregoing method embodiments.
  • the memory 3201 and processor 3202 may serve one or more single boards. That is to say, the memory and processor can be provided separately on each single board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits may also be provided on each single board.
  • the base station 3000 shown in FIG. 5 can implement various processes involving network devices in the method embodiment of FIG. 2 .
  • the operations and/or functions of each module in the base station 3000 are respectively to implement the corresponding processes in the foregoing method embodiments.
  • the above-mentioned BBU 3200 may be used to perform the actions described in the foregoing method embodiments that are implemented internally by the network device, while the RRU 3100 may be used to perform the actions described in the foregoing method embodiments that the network device sends to or receives from the terminal device.
  • the RRU 3100 may be used to perform the actions described in the foregoing method embodiments that the network device sends to or receives from the terminal device.
  • An embodiment of the present application further provides a processing apparatus, including a processor and an interface; the processor is configured to execute the communication method in the foregoing method embodiment.
  • the above processing device may be a chip.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or a It is a central processing unit (CPU), a network processor (NP), a digital signal processing circuit (DSP), or a microcontroller (microcontroller unit). , MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • MCU microcontroller unit
  • MCU programmable logic device
  • PLD programmable logic device
  • each step of the above-mentioned method can be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the software module may be located in random access memory, flash memory, read-only memory, programmable read-only memory or erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, detailed description is omitted here.
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the aforementioned processors may be general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components .
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • the methods, steps, and logic block diagrams disclosed in the embodiments of this application can be implemented or executed.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code runs on a computer, the computer is made to execute the embodiment of FIG. 2 . method.
  • the present application further provides a computer-readable medium, where the computer-readable medium stores program codes, when the program codes are executed on a computer, the computer is made to execute the method in the embodiment of FIG. 2 . method.
  • the present application further provides a system, which includes the aforementioned one or more terminal devices and one or more network devices.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media.
  • the available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, high-density digital video discs (DVDs)), or semiconductor media (eg, solid state discs, SSD)) etc.
  • the network equipment in each of the above apparatus embodiments completely corresponds to the terminal equipment and the network equipment or terminal equipment in the method embodiments, and corresponding steps are performed by corresponding modules or units.
  • a processing unit processor
  • processor For functions of specific units, reference may be made to corresponding method embodiments.
  • the number of processors may be one or more.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device may be components.
  • One or more components may reside within a process and/or thread of execution, and a component may be localized on one computer and/or distributed between 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may pass through a signal having one or more data packets (such as data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals) local and/or remote processes to communicate.
  • data packets such as data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • each functional unit may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions (programs). When the computer program instructions (programs) are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center is by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid state disks (SSDs)), and the like.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种信号传输的指示方法和通信装置,该方法包括:终端设备接收第一指示信息,该第一指示信息用于指示至少一个目标值,该目标值对应至少一个预编码粒度,该目标值根据预编码粒度集合确定,预编码粒度集合中包括小于2资源块RB的预编码粒度;从至少一个目标值对应的预编码粒度中确定目标预编码粒度;根据目标预编码粒度,对信号进行检测。通过在预编码粒度集合中包括小于2RB的预编码粒度,使得终端设备能够支持更精细的预编码粒度,降低用户间干扰,适应信道频选特性。

Description

一种信号传输的指示方法和通信装置 技术领域
本申请涉及无线通信领域,并且更具体地,涉及一种信号传输的指示方法和通信装置。
背景技术
在新无线接入技术(new radio access technology,NR)中,预编码技术(precoding)是多输入输出(multiple input multiple output,MIMO)的关键技术之一。具有相同预编码矩阵的连续资源块(Resource block,RB)称为预编码资源块组(Precoding Resource Block Group,PRG)。而PRG的大小(PRG size)是由物理资源块(physical resource block,PRB)绑定(physical resource block bundling,PRB bundling)流程确定的。PRB绑定是将连续的多个PRB绑定在一起联合处理,网络设备可以对该多个PRB采用相同预处理方式(包括波束赋形和预编码),终端设备可以联合该多个PRB进行信道估计。终端设备基于多个PRB进行联合信道估计时,利用连续频域资源之间的信道相关性,可以提高信道估计的准确性。然而,当前协议中仅支持的PRG大小为2资源块(resource block,RB)、4RB或全带宽。
因此,亟需提出一种支持更精细化的预编码频域粒度的技术,进一步适应信道频选特性,提升下行权值准确性,进而提升基站的下行容量。
发明内容
本申请提供一种信号传输的指示方法和通信装置,能够支持小于2RB预编码粒度的指示方法。
第一方面,本申请提供一种信号传输的指示方法。该方法可以由终端设备执行,或者也可以由配置于终端设备中的芯片执行,本申请对此不作限定。
具体地,该方法包括:终端设备接收第一指示信息,所述第一指示信息用于指示至少一个目标值,所述目标值对应至少一个预编码粒度,所述目标值根据预编码粒度集合确定,所述预编码粒度集合中包括小于2资源块RB的预编码粒度;从所述至少一个目标值对应的预编码粒度中确定目标预编码粒度;根据所述目标预编码粒度,对信号进行检测。
本申请实施例中,预编码粒度集合中通过包括小于2RB的预编码粒度,由此,目标值可以对应于小于2RB的预编码粒度。从而,终端设备可以有更多的选择,如终端设备确定的目标预编码粒度可能为小于2RB的预编码粒度,由此保证终端设备能够支持更精细的预编码粒度,提高终端设备选择预编码粒度的灵活性。
可见,通过在预编码粒度集合中包括小于2RB的预编码粒度,使得终端设备能够支持更精细的预编码粒度,从而有利于多用户(Multi-User)多输入输出(Multi-input Multi-output,MIMO)中不同配对用户间的干扰抑制,使得用户间干扰进一步降低,进一步适应信道频选特性,增加可配对的最高流数。
结合第一方面,在某些可能的实现方式中,当所述第一指示信息指示至少两个目标值时, 所述方法还包括:接收第二指示信息,所述第二指示信息用于指示所述至少两个目标值中的第一目标值,所述目标预编码粒度由所述第一目标值确定。
本申请实施例中,终端设备通过接收第二指示信息,可缩小终端设备确定目标预编码粒度的范围,减小终端设备的确定时长。
结合第一方面,在某些可能的实现方式中,所述至少一个目标值包括第一目标值和第二目标值,所述从所述至少一个目标值对应的预编码粒度中确定目标预编码粒度,包括:根据所述第二目标值对应的预编码粒度,从所述第一目标值对应的预编码粒度中确定所述目标预编码粒度。
结合第一方面,在某些可能的实现方式中,所述第一目标值对应第一目标预编码粒度和第二目标预编码粒度,所述根据所述第二目标值对应的预编码粒度,从所述第一目标值对应的预编码粒度中确定所述目标预编码粒度,包括:在所述第二目标预编码粒度与所述第二目标值对应的预编码粒度相同的情况下,则所述第一目标预编码粒度为所述目标预编码粒度;或者,在所述第二目标预编码粒度与所述第二目标值对应的预编码粒度不同的情况下,则所述第二目标预编码粒度为所述目标预编码粒度。
换句话说,所述第一目标值包括第一目标预编码粒度和第二目标预编码粒度,若所述第二目标预编码粒度与所述第二目标值对应的预编码粒度相同,则所述第一目标预编码粒度为所述目标预编码粒度;或者,若所述第二目标预编码粒度与所述第二目标值对应的预编码粒度不同,则所述第二目标预编码粒度为所述目标预编码粒度。
本申请实施例中,所述第二目标预编码粒度与所述第二目标值对应的预编码粒度相同,可以理解为:所述第二目标预编码粒度与所述第二目标值对应的预编码粒度中的至少一个预编码粒度相同。所述第二目标预编码粒度与所述第二目标值对应的预编码粒度不同,可以理解为:所述第二目标预编码粒度与所述第二目标值对应的预编码粒度中的至少一个预编码粒度不同。
结合第一方面,在某些可能的实现方式中,所述从所述至少一个目标值对应的预编码粒度中确定目标预编码粒度,包括:根据所述终端设备的能力信息,从所述至少一个目标值对应的预编码粒度中确定所述目标预编码粒度。
结合第一方面,在某些可能的实现方式中,终端设备上报能力信息,所述能力信息用于指示所述终端设备支持小于2RB的能力信息。一种可能的实施方式,在接收第一指示信息之前,终端设备向网络设备上报能力信息;另一种可能的实施方式,在接收第一指示信息指示之后,终端设备向网络设备上报能力信息。
结合第一方面,在某些可能的实现方式中,预编码粒度集合包括第一集合和第二集合;
其中,所述第一集合包括:1RB、2RB、4RB和全带宽,所述第二集合包括:2RB和全带宽;或,所述第一集合包括:2RB、4RB和全带宽,所述第二集合包括:1RB、4RB和全带宽。
可见,在不引入额外信令开销的同时,终端设备能够支持更灵活的PRB bundling指示组合。
第二方面,本申请提供一种信号传输的指示方法。该方法可以由网络设备执行,或者也可以由配置于网络设备中的芯片执行,本申请对此不作限定。
具体地,该方法包括:网络设备发送第一指示信息,所述第一指示信息用于指示至少一个目标值,所述目标值对应至少一个预编码粒度,所述目标值根据预编码粒度集合确定,所述预 编码粒度集合中包括小于2资源块RB的预编码粒度;从所述至少一个目标值对应的预编码粒度中确定目标预编码粒度;根据所述目标预编码粒度,对信号进行预编码。
本申请实施例中,预编码粒度集合中通过包括小于2RB的预编码粒度,由此,目标值可以对应于小于2RB的预编码粒度。从而,终端设备可以有更多的选择,如终端设备确定的目标预编码粒度可能为小于2RB的预编码粒度,由此保证终端设备能够支持更精细的预编码粒度,提高终端设备选择预编码粒度的灵活性。
可见,通过在预编码粒度集合中包括小于2RB的预编码粒度,使得终端设备能够支持更精细的预编码粒度,从而有利于多用户(Multi-User)多输入输出(Multi-input Multi-output,MIMO)中不同配对用户间的干扰抑制,使得用户间干扰进一步降低,进一步适应信道频选特性,增加可配对的最高流数。
结合第二方面,在某些可能的实现方式中,当所述第一指示信息指示至少两个目标值时,所述方法还包括:发送第二指示信息,所述第二指示信息用于指示所述至少两个目标值中的第一目标值,所述目标预编码粒度由所述第一目标值确定。
结合第二方面,在某些可能的实现方式中,所述至少一个目标值包括第一目标值和第二目标值;所述从所述至少一个目标值对应的预编码粒度中确定目标预编码粒度,包括:根据所述第二目标值对应的预编码粒度,从所述第一目标值对应的预编码粒度中确定所述目标预编码粒度。
结合第二方面,在某些可能的实现方式中,所述第一目标值对应第一目标预编码粒度和第二目标预编码粒度,所述根据所述第二目标值对应的预编码粒度,从所述第一目标值对应的预编码粒度中确定所述目标预编码粒度,包括:在所述第二目标预编码粒度与所述第二目标值对应的预编码粒度相同的情况下,则所述第一目标预编码粒度为所述目标预编码粒度;或者,在所述第二目标预编码粒度与所述第二目标值对应的预编码粒度不同的情况下,则所述第二目标预编码粒度为所述目标预编码粒度。
结合第二方面,在某些可能的实现方式中,所述从所述至少一个目标值对应的预编码粒度中确定目标预编码粒度,包括:包括:根据所述终端设备的能力信息,从所述至少一个目标值对应的预编码粒度中确定所述目标预编码粒度。
结合第二方面,在某些可能的实现方式中,网络设备接收终端设备上报的能力信息,所述能力信息用于指示所述终端设备支持小于2RB的能力信息。一种可能的实施方式,在接收第一指示信息之前,终端设备向网络设备上报能力信息;另一种可能的实施方式,在接收第一指示信息指示之后,终端设备向网络设备上报能力信息。
结合第二方面,在某些可能的实现方式中,预编码粒度集合包括第一集合和第二集合;
其中,所述第一集合包括:1RB、2RB、4RB和全带宽,所述第二集合包括:2RB和全带宽;或,所述第一集合包括:2RB、4RB和全带宽,所述第二集合包括:1RB、4RB和全带宽。
可见,在不引入额外信令开销的同时,网络设备能够支持更灵活的PRB bundling指示组合。
第三方面,本申请还提供一种通信装置。该通信装置具有实现上述第一方面所述的终端设备的部分或全部功能。比如,装置的功能可具备本申请中终端设备的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可 以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该通信装置的结构中可包括处理单元和通信单元,所述处理单元被配置为支持通信装置执行上述方法中相应的功能。所述通信单元用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储单元,所述存储单元用于与处理单元和通信单元耦合,其保存通信装置必要的程序指令和数据。
一种实施方式中,所述通信装置包括:
通信单元,用于接收第一指示信息,所述第一指示信息用于指示至少一个目标值,所述目标值对应至少一个预编码粒度,所述目标值根据预编码粒度集合确定,所述预编码粒度集合中包括小于2资源块RB的预编码粒度;
处理单元,用于从所述至少一个目标值对应的预编码粒度中确定目标预编码粒度;
所述处理单元,还用于根据所述目标预编码粒度,对所述信号进行检测。
该实施方式的相关内容可参见上述第一方面的相关内容,此处不再详述。
作为示例,处理单元可以为处理器,通信单元可以为收发器或通信接口,存储单元可以为存储器。
另一种实施方式中,所述通信装置可包括:
收发器,用于接收第一指示信息,所述第一指示信息用于指示至少一个目标值,所述目标值对应至少一个预编码粒度,所述目标值根据预编码粒度集合确定,所述预编码粒度集合中包括小于2资源块RB的预编码粒度;
处理器,用于从所述至少一个目标值对应的预编码粒度中确定目标预编码粒度;
所述处理器,还用于根据所述目标预编码粒度,对所述信号进行检测。
该实施方式的相关内容可参见上述第一方面的相关内容,此处不再详述。
在实现过程中,处理器可用于进行,例如但不限于,基带相关处理,收发器可用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上。例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器。其中,模拟基带处理器可以与收发器集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多。例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(System on Chip)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的需要。本申请实施例对上述器件的实现形式不做限定。
第四方面,本申请还提供一种通信装置。该通信装置具有实现上述第二方面所述的方法示例中网络设备的部分或全部功能。比如,通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该通信装置的结构中可包括处理单元和通信单元,所述处理单元被配置为支持通信装置执行上述方法中相应的功能。所述通信单元用于支持通信装置与其他设备 之间的通信。所述通信装置还可以包括存储单元,所述存储单元用于与处理单元和发送单元耦合,其保存通信装置必要的程序指令和数据。
一种实施方式中,所述通信装置包括:
通信单元,用于发送第一指示信息,所述第一指示信息用于指示至少一个目标值,所述目标值对应至少一个预编码粒度,所述目标值根据预编码粒度集合确定,所述预编码粒度集合中包括小于2资源块RB的预编码粒度;
处理单元,用于从所述至少一个目标值对应的预编码粒度中确定目标预编码粒度;
所述处理单元,还用于根据所述目标预编码粒度,对所述信号进行预编码。
该实施方式的相关内容可参见上述第二方面的相关内容,此处不再详述。
作为示例,处理单元可以为处理器,通信单元可以为收发器或通信接口,存储单元可以为存储器。
在另一种实施方式中,所述通信装置包括:
收发器,用于接收第一指示信息,所述第一指示信息用于指示至少一个目标值,所述目标值对应至少一个预编码粒度,所述目标值根据预编码粒度集合确定,所述预编码粒度集合中包括小于2资源块RB的预编码粒度;
处理器,用于从所述至少一个目标值对应的预编码粒度中确定目标预编码粒度;
所述处理器,还用于根据所述目标预编码粒度,对所述信号进行预编码。
该实施方式的相关内容可参见上述第二方面的相关内容,此处不再详述。
在实现过程中,处理器可用于进行,例如但不限于,基带相关处理,收发器可用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上。例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器。其中,模拟基带处理器可以与收发器集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多。例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(System on Chip)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的需要。本申请实施例对上述器件的实现形式不做限定。
第五方面,本申请还提供一种处理器,用于执行上述各种方法。在执行这些方法的过程中,上述方法中有关发送上述信息和接收上述信息的过程,可以理解为由处理器输出上述信息的过程,以及处理器接收输入的上述信息的过程。在输出上述信息时,处理器将该上述信息输出给收发器,以便由收发器进行发射。该上述信息在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,处理器接收输入的上述信息时,收发器接收该上述信息,并将其输入处理器。更进一步的,在收发器收到该上述信息之后,该上述信息可能需要进行其他的处理,然后才输入处理器。
基于上述原理,举例来说,前述方法中提及的发送第一指示信息可以理解为处理器输出第一指示信息。又例如,接收第一指示信息可以理解为处理器接收输入的第一指示信息。
对于处理器所涉及的发射、发送和接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和接收、 输入等操作,而不是直接由射频电路和天线所进行的发射、发送和接收操作。
在实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器。上述存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(Read Only Memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第六方面,本申请还提供了一种通信系统,该系统包括上述方面的至少一个终端设备、至少一个网络设备。在另一种可能的设计中,该系统还可以包括本申请提供的方案中与终端或网络设备进行交互的其他设备。
第七方面,本申请提供了一种计算机可读存储介质,用于储存计算机软件指令,当所述指令被计算机执行时,实现上述第一方面所述的方法。
第八方面,本申请提供了一种计算机可读存储介质,用于储存计算机软件指令,当所述指令被计算机执行时,使得通信装置实现上述第二方面所述的方法。
第九方面,本申请还提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十方面,本申请还提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十一方面,本申请提供了一种芯片系统,该芯片系统包括处理器和接口,所述接口用于获取程序或指令,所述处理器用于调用所述程序或指令以实现或者支持终端设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。
在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十二方面,本申请提供了一种芯片系统,该芯片系统包括处理器和接口,所述接口用于获取程序或指令,所述处理器用于调用所述程序或指令以实现或者支持网络设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。
在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
图1示出了适用于本申请实施例的信号传输的指示方法和通信装置的通信系统的示意图;
图2是本申请实施例提供的信号传输的指示方法的示意性流程图;
图3是本申请实施例提供的通信装置示意图;
图4是本申请实施例提供的终端设备的结构示意图;
图5是本申请实施例提供的网络设备的结构示意图;
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division  duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)。随着通信系统的不断发展,本申请的技术方案可应用于第五代(5th generation,5G)系统或新无线(new radio,NR),还可应用于未来网络,如6G系统甚至未来系统;或者,本申请实施例示出的终端设备与终端设备之间还可以通过设备到设备(device to device,D2D)系统、车与任何事物(vehicle-to-everything,V2X)、机器到机器(machine to machine,M2M)系统,本申请实施例对于终端设备与终端设备之间的通信方式不作限定。
应理解,该通信系统中的网络设备可以是任意一种具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(Radio Network Controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU),无线保真(Wireless Fidelity,WIFI)系统中的接入点(Access Point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(TRP)等,还可以为5G、6G甚至未来系统中使用的设备,如NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU),或微微基站(Picocell),或毫微微基站(Femtocell),或,车联网(vehicle to everything,V2X)或者智能驾驶场景中的路侧单元(road side unit,RSU)等。网络设备还可以为D2D、V2X或M2M中承载基站功能的设备等,本申请对网络设备的具体类型不作限定。可理解,在不同的无线接入技术的系统中,具备网络设备功能的设备的名称可能会有所不同。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC)层,分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理层(physical layer,PHY)的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
本申请公开的实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。
在本申请公开的实施例中,以用于实现网络设备的功能的装置是网络设备,以网络设备是基站为例,描述本申请公开的实施例提供的技术方案。
还应理解,该通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强 现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、前述的V2X车联网中的无线终端或无线终端类型的RSU等等。本申请的实施例对应用场景不做限定。
作为示例而非限定,在本发明实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,为了便于理解本申请实施例,作出以下几点说明。
第一,在本申请实施例中,“指示”可以包括直接指示和间接指示,也可以包括显式指示和隐式指示。将某一信息(如下文所述的配置信息)所指示的信息称为待指示信息,则具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。
第二,在下文示出的实施例中,部分场景以无线通信网络中NR网络的场景为例进行说明,应当指出的是,本申请公开的实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
第三,在下文示出的实施例中,第一、第二以及各种数字编号仅为描述方便进行的区分。在下文示出的实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”描述的技术特征间无先后顺序或者大小顺序。并不用来限制本申请实施例的范围。例如,区分不同的指示信息、不同的波束、不同的面板等。
第四,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b和c中的至少一项(个),可以表示:a,或b,或c,或a和b,或a和c,或b和c,或a、b和c,其中a,b,c可以是单个,也可以是多个。
第五,本申请公开的实施例将围绕包括多个设备、组件、模块等的系统来呈现本申请的各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方 案的组合。
第六,本申请公开的实施例中,“的(of)”,“相应的(relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
第七,在下文示出的实施例中,“预定义”可以为通过协议定义,可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
为便于理解本申请实施例,首先对本申请中涉及的几个术语做简单说明。
1、预编码资源块组(Precoding resource block group,PRG)
NR协议中定义的下行预编码频域粒度,一组下行预编码粒度称为预编码资源块组。当前NR协议可以指示的目标预编码粒度包括n2、n4和全带宽(wideband,WB)预编码粒度,即当前协议支持的采用相同预编码权值矩阵的频域粒度分别为2RB、4RB以及WB。终端设备可以假定预编码频域粒度为连续的x个RB,其中x可指定为{n2,n4,WB}中的一个值。示例性的,如果x被指定为WB,终端设备则只在连续的RB上被调度,且UE假定在所有被分配的频域资源上使用同样的预编码矩阵。如果x被指定为n2,终端设备则在连续的2RB上被调度,且UE假定在连续的2RB上使用同样的预编码矩阵。如果x被指定为n4,终端设备则在连续的4RB上被调度,且UE假定在连续的4RB上使用同样的预编码矩阵。
本申请实施例中,预编码资源块组的大小(Precoding resource block group size,PRG size)是由物理资源块绑定(physical resource block bundling,PRB bundling)确定的,在不同通信设备侧资源绑定的叫法可能不同,但其含义可以相同。例如,通常在发送端(例如,网络设备)侧资源绑定粒度称为PRG,且发送端在同一PRG中传输的数据采用相同的预编码;在接收端(例如,终端设备)侧资源绑定粒度称为PRG,且发送端在同一PRG中传输的数据采用相同的预编码,且接收端对同一PRG中传输的数据进行联合信道估计。
需要说明的是,例如,发送端侧和接收端侧的资源绑定粒度均可以指PRG,或者,发送端侧和接收端侧的资源绑定均可以指PRB bundling,本申请实施例并不限于此。
应理解,网络设备侧的PRG可以与终端设备侧的PRB bundling相对应。针对同一个资源绑定粒度取值,网络设备侧确定PRG的方法和终端设备侧确定PRB bundling的方法可以相同。但在同一侧,即在网络设备侧或终端设备侧,资源绑定粒度取值为第一目标值和第二目标值时对应的确定PRG的方法或PRB bundling的方法不同。
2、预编码粒度n1
预编码粒度n1为小于2RB的预编码粒度。
在本申请实施例中,为了提供更加精细化的预编码频域粒度,新增了预编码粒度集合包括小于2RB的预编码粒度,并将其定义为n1。其中,n1例如但不限于,可以为0.5RB、1RB或1.5RB的预编码粒度。本申请实施例中以n1为1RB进行示例性说明。
其中,n1/wideband(n1/WB)字段为新增的指示字段。示例性的,以n1为1RB为例,对n1/WB字段进行释义,对于支持1RB预编码粒度的终端设备,网络设备通过向终端设备发送指示信息,指示信息指示终端设备下行预编码粒度为1RB;对于不支持1RB预编码粒度的终端设备,网络设备通过指示信息指示终端设备下行预编码粒度为WB。n1-wideband,
可以理解的,n1/WB仅仅为示例,也可以表示为n1-wideband,还可以定义其它新的字段, 本申请实施例对此不作限定。例如但不限于,n1/n4,以n1为1RB为例,对于支持1RB预编码粒度的终端设备,网络设备通过向终端设备发送指示信息,指示信息指示终端设备下行预编码粒度为1RB;对于不支持1RB预编码粒度的终端设备,网络设备通过指示信息指示终端设备下行预编码粒度为4RB。n1/n2,以n1为1RB为例,对于支持1RB预编码粒度的终端设备,网络设备通过向终端设备发送指示信息,指示信息指示终端设备下行预编码粒度为1RB;对于不支持1RB预编码粒度的终端设备,网络设备通过指示信息指示终端设备下行预编码粒度为2RB。
为便于理解本申请实施例,下面以图1示出的通信系统为例详细说明适用于本申请实施例提供的信号传输的指示方法的通信系统。图1示出了适用于本申请实施例的信号传输的指示方法的通信系统100的示意图。如图1所示,该通信系统100可以包括至少一个终端设备,如图中所示的终端设备101,也可以为配置于该终端设备中的芯片;该通信系统100还可以包括至少一个网络设备,如图中所示的网络设备#1 102或网络设备#2 103,也可以为配置于该网络设备中的芯片。
可选地,该通信系统100可以包括一个或多个网络设备,如图中所示的网络设备#1 102和网络设备#2 103。该网络设备#1 102和网络设备#2 103可以是同一个小区中的网络设备,也可以是不同小区中的网络设备,本申请对此不作限定。图中仅为示例,示出了网络设备#1 102和网络设备#2 103位于同一个小区中的示例。
以下,不失一般性,以终端设备与网络设备之间的交互过程为例详细说明本申请实施例提供的信号传输方法。
目前,在新无线接入技术(new radio access technology,NR)中,预编码技术(precoding)是多输入输出(multiple input multiple output,MIMO)的关键技术之一。具有相同预编码矩阵的连续资源块(Resource block,RB)称为预编码资源块组(Precoding Resource Block Group,PRG)。而PRG的大小(PRG size)是由物理资源块捆绑(Physical Resource block bundling,PRB bundling)流程决定的,PRG越小,预编码矩阵与相应的信道矩阵匹配度越高,适应信道频选能力越强。
在NR相关协议中,物理资源块捆绑(Physical Resource block bundling,PRB bundling)流程可以被配置为静态指示方式和动态指示方式。当高层参数被配置为静态指示时,该高层参数可以是prb-BundlingType,则PRG size为通过高层参数bundleSize指示的单个值。当高层参数prb-BundlingType被配置为动态指示时,PRG size通过预编码粒度集合bundleSizeSet1和预编码粒度集合bundleSizeSet2联合指示,其中,bundleSizeSet1中PRG size的取值集合可以为{n4,wideband,n2-wideband,n4-wideband},共计4种选择,bundleSizeSet2中PRG size的取值集合可以为{n4,wideband},共计2种选择。在bundleSizeSet1或bundleSizeSet2的取值中确定PRG size。高层参数prb-BundlingType的协议具体定义如下:
Figure PCTCN2020119700-appb-000001
Figure PCTCN2020119700-appb-000002
上述通过bundleSizeSet1和bundleSizeSet2联合指示确定PRG size,能够动态指示的PRG size组合一共有八种情况。如表1所示,Set1和Set2分别对应协议中的bundleSizeSet1和bundleSizeSet2。示例性的,当Set1指示4RB时,Set2可以指示4RB或WB;当Set1指示WB时,Set2可以指示4RB或WB。由此可以看出,在表1前4种状态中,实际有效的PRG size指示状态只包括4RB或WB。
表1
编号 Set 1 Set 2
1 4 4
2 4 WB
3 WB 4
4 WB WB
5 n2-WB 4
6 n2-WB WB
7 n4-WB 4
8 n4-WB WB
由此可见,当前NR协议中,存在较多的冗余指示位,且支持的PRG size有限,仅为2RB、4RB或WB,不支持更精细的预编码粒度。因此,亟需提出一种支持更精细的预编码粒度的解决方案。
有鉴于此,本申请实施例提供一种信号传输的指示方法,能够支持更精细的预编码粒度,从而有利于多用户(Multi-User)多输入输出(Multi-input Multi-output,MIMO)中不同配对用户间的干扰抑制,使得用户间干扰进一步降低;同时,更精细的频域粒度能够更好地适配信道的频选特性,增加可配对的最高流数。在本申请实施例中,通过利用现有协议中存在冗余指示位,指示更为丰富的PRG size取值组合,支持更灵活的动态PRB bundling选择过程。
以下结合图2阐述本申请实施例提供的信号传输的指示方法。需要说明的是,本申请提供的通信方法可以应用于无线通信系统中,例如,图1中所示的通信系统100中。处于通信系统中的通信装置之间可具有无线通信连接关系。例如,图1中所示的终端设备101分别可以与网络设备#1 102和网络设备#2 103之间具有无线通信连接关系,本申请对此不作限定。
请参阅图2,图2是从设备交互的角度示出的本申请实施例提供的信号传输的指示方法200 的示意性流程图。如图2所示,图2中示出的方法200可以包括步骤210至步骤230。下面结合附图对方法200中的各个步骤做详细说明。
步骤210,终端设备接收第一指示信息。对应地,网络设备发送第一指示信息。
上述步骤210,也可以理解为:网络设备向终端设备发送第一指示信息,终端设备接收来自网络设备的第一指示信息。
其中,该第一指示信息用于指示至少一个目标值,该目标值对应至少一个预编码粒度,该目标值根据预编码粒度集合确定,该预编码粒度集合中包括小于2资源块RB的预编码粒度。
示例性的,第一指示信息可以为bundleSize,此时高层参数(prb-BundlingType)被配置为静态指示(staticBundling);第一指示信息也可以为bundleSizeSet1和bundleSizeSet2,此时高层参数(prb-BundlingType)被配置为动态指示(dynamicBundling)。可以理解的,上述第一指示信息仅为示例,该第一指示信息还可以携带在,例如但不限于,无线资源控制(radio resource control,RRC)消息、媒体接入控制元素(Media access control element,MAC-CE)和下行控制信令(Downlink control information,DCI)中的一项或多项中。该第一指示信息也可以携带在新增的信令中。应理解,RRC消息、MAC-CE和DCI仅为便于理解而示例,不应对本申请构成任何限定。本申请并不排除采用其他信令来携带指示信息的可能,也不排除对上述信令定义其他名称的可能。换句话说,该第一指示信息可以携带在物理层信令和高层信令的一项或多项中。本申请对此不作限定。
可选的,预编码粒度集合包括第一集合和第二集合。
一种可能的实施方式,第一集合包括:1RB、2RB、4RB和全带宽,第二集合包括:2RB和全带宽。示例性的,第一集合记为A1,第二集合记为A2,即A1为{n4,n1/wideband,n2-wideband,n4-wideband},A2为{n4,wideband}。
另一种可能的实施方式,第一集合包括:2RB、4RB和全带宽,第二集合包括:1RB、4RB和全带宽。示例性的,第一集合记为A1,第二集合记为A2,即A1为{n4,n2,n2-wideband,n4-wideband},A2为{n1-n4,n1-wideband}。
另一种可能的实施方式,第一集合包括:1RB、2RB、4RB和全带宽,第二集合包括:1RB、4RB和全带宽。示例性的,第一集合记为A1,第二集合记为A2,即A1为{n4,n2-n1,n2-wideband,n4-wideband},A2为{n1-n4,n1-wideband}。
可以理解的,上述A1为第一指示信息为bundleSizeSet1时对应的目标值集合,且bundleSizeSet1指示A1中的一个目标值;A2为第一指示信息为bundleSizeSet2时对应的目标值集合,且bundleSizeSet2指示A2中的一个目标值。且上述给出的第一集合和第二集合包含的预编码粒度仅为便于描述而给出的示例,本申请实施例对此不作限定。本申请实施例中所定义的集合,只要第一集合和第二集合任一集合中包括小于2RB的预编码粒度,或第一集合和第二集合均包括小于2RB的预编码粒度,均在本申请实施例所保护的范围。
可选的,在本申请实施例中,可以通过bundleSizeSet1和bundleSizeSet2联合指示确定目标预编码粒度PRG size。
以下以A1为{n4,n1/wideband,n2-wideband,n4-wideband},A2为{n4,wideband}为例,对本申请实施例进行示例性说明。其中,A1为第一指示信息为bundleSizeSet1时对应的目标值集合,且bundleSizeSet1指示A1中的一个目标值;A2为第一指示信息为bundleSizeSet2 时对应的目标值集合,且bundleSizeSet2指示A2中的一个目标值;n1/wideband的释义在上述术语解释中已详细说明,此处不再赘述。这里对n2-wideband和n4-wideband进行示例性说明,n2-wideband为预编码粒度取值为n2或wideband,n4-wideband为预编码粒度取值为n4或wideband。上述Set1和Set2对应prb-Bundling Type配置参数可以定义为如下所示:
Figure PCTCN2020119700-appb-000003
可选的,当第一指示信息指示至少两个目标值时,该方法还包括:接收第二指示信息,其中,第二指示信息用于指示至少两个目标值中的第一目标值。从第一目标值对应的预编码粒度中确定目标预编码粒度。上述对第一指示信息的解释,同样也适用于第二指示信息,本申请实施例在此不再赘述。可理解,终端设备还可以在步骤220之前,接收第二指示信息。例如,终端设备可以在接收第一指示信息之后,接收该第二指示信息。
可选的,第二指示信息可以指示第一目标值关联的预编码粒度集合的索引。示例性的,将预编码粒度集合记为第一集合和第二集合,第二指示信息可以为DCI中的一个字段,当该DCI中的字段指示0时,第一目标值关联第二集合的索引,当该DCI中的字段指示1时,第一目标值关联第一集合的索引。通过预编码粒度集合的索引,确定目标预编码粒度。可见,该中实施方式中,通过DCI中的字段指示预编码粒度集合的索引,不需要增加额外的指示信息,大大节省了信令开销。
步骤220,终端设备从至少一个目标值对应的预编码粒度中确定目标预编码粒度。对应地,网络设备也从至少一个目标值对应的预编码粒度中确定目标预编码粒度。
可选的,根据终端设备的能力信息,确定目标预编码粒度。其中,该能力信息为终端设备是否支持小于2RB的信息。
可选的,终端设备向网络设备上报能力信息,该能力信息指示终端设备支持小于2RB的能力信息。一种可能的实施方式,在接收第一指示信息之前,终端设备向网络设备上报能力信息;另一种可能的实施方式,在接收第一指示信息指示之后,终端设备向网络设备上报能力信息。本申请实施例对此不作限定。
可选的,终端设备或网络设备可以通过第一指示信息确定目标预编码粒度,也可以通过第一指示信息和第二指示信息联合指示确定目标预编码粒度。示例性的,当第一指示信息指示一个目标值时,可以通过第一指示信息确定目标预编码粒度;当第一指示信息指示至少两个目标值时,可以通过第一指示信息和第二指示信息联合指示确定目标预编码粒度。
一种可能的实施方式,从至少一个目标值对应的预编码粒度中确定目标预编码粒度,包括:至少一个目标值包括第一目标值,从第一目标值对应的预编码粒度中确定目标预编码粒度。此 时,通过第一指示信息的指示确定目标预编码粒度。
示例性的,第一集合A1为{n4,n1/wideband,n2-wideband,n4-wideband},假设第一目标值对应n4,则根据第一目标值确定的目标预编码粒度为4RB;假设第一目标值对应n1/wideband,若终端设备支持1RB的预编码粒度,则根据第一目标值确定的目标预编码粒度为1RB,若终端设备不支持1RB的预编码粒度,则根据第一目标值确定的目标预编码粒度为wideband。
在另一种可能的实施方式中,从至少一个目标值对应的预编码粒度中确定目标预编码粒度,包括:至少一个目标值包括第一目标值和第二目标值。此时,通过第一指示信息和第二指示信息联合指示确定目标预编码粒度。
示例性的,第一集合A1为{n4,n1/wideband,n2-wideband,n4-wideband},第二集合A2为{n4,wideband},A1为第一指示信息为bundleSizeSet1时对应的目标值集合,且bundleSizeSet1指示A1中的一个目标值;A2为第一指示信息为bundleSizeSet2时对应的目标值集合,且bundleSizeSet2指示A2中的一个目标值。例如,根据bundleSizeSet1和bundleSizeSet2对应prb-Bundling Type配置参数可以定义为如下所示:
Figure PCTCN2020119700-appb-000004
可选的,根据第一指示信息的指示,从第一集合中确定第一目标值,从第二集合中确定第二目标值。根据第二指示信息的指示,从第一目标值和第二目标值中确定目标预编码粒度。此时,包括三种不同的方案,记为方案一至方案三。
以下以第二指示信息为DCI,且DCI中字段为PRB bundling size indicator为例,对方案一至方案三进行详细阐述。
方案一
在DCI中指示字段配置为0的情况下,目标预编码粒度从第二目标值对应的预编码粒度中确定。即n4为目标预编码粒度。也就是说,目标预编码粒度为4RB。
方案二
在DCI中指示字段配置为1,且第一目标值对应的预编码粒度为n4或,n1/wideband时,目标预编码粒度从第一目标值对应的预编码粒度中确定。
一种可能的实施方式中,第一目标值对应的预编码粒度为n4,则目标预编码粒度为4RB。
另一种可能的实施方式中,第一目标值对应的预编码粒度为n1/wideband,根据终端设备支持的能力信息,确定目标预编码粒度。若终端设备支持1RB的预编码粒度,则目标预编码粒度为1RB;若终端设备不支持1RB的预编码粒度,则目标预编码粒度为wideband。
方案三
在DCI中指示字段配置为1,且第一目标值对应的预编码粒度为n2-wideband或n4-wideband时,目标预编码粒度从第一目标值对应的预编码粒度中确定。当调度的物理资源块PRB是连续的且数量大于带宽区域(Bandwidth Part,BWP)包含的RB个数的一半时,目标预编码粒度为wideband;当调度的PRB是连续的且数量小于或等于BWP包含的RB个数的一半时,目标预编码粒度为n2或n4。
示例性的,第一目标值对应n2-wideband,BWP包含的RB个数为48RB,连续的带宽为30RB,则,BWP包含的RB个数的一半为24RB,连续的带宽大于带宽BWP包含的RB个数的一半,确定的目标预编码粒度为wideband。假设BWP包含的RB个数为48RB,连续的带宽为20RB,则BWP包含的RB个数的一半为24RB,连续的带宽小于BWP包含的RB个数的一半,确定的目标预编码粒度为2RB。A1为第一指示信息为bundleSizeSet1时对应的目标值集合,且bundleSizeSet1指示A1中的一个目标值;A2为第一指示信息为bundleSizeSet2时对应的目标值集合,且bundleSizeSet2指示A2中的一个目标值;
可见,通过上述bundleSizeSet1(Set1)和bundleSizeSet2(Set2)的联合指示,可以实现不同的PRB-BundlingType动态指示组合,如表2所示。
表2
编号 Set 1 Set 2
1 n1/WB 4
2 n1/WB WB
3 WB 4
4 WB WB
5 n2-WB 4
6 n2-WB WB
7 n4-WB 4
8 n4-WB WB
表2中,n1/WB为新增的支持n1的PRB-BundlingType动态指示组合。根据表2,当终端设备支持n1的预编码粒度时,指示n1,可以实现更精细的预编码粒度;当终端设备不支持n1的预编码粒度时,依旧指示WB。
可选的,至少一个目标值包括第一目标值和第二目标值;从至少一个目标值对应的预编码粒度中确定目标预编码粒度,包括:根据第二目标值对应的预编码粒度,从第一目标值对应的预编码粒度中确定目标预编码粒度。
可选的,第一目标值对应第一目标预编码粒度和第二目标预编码粒度,根据第二目标值对应的预编码粒度,从第一目标值对应的预编码粒度中确定目标预编码粒度,包括:
一种可能的实施方式,在第二目标预编码粒度与第二目标值对应的预编码粒度相同的情况下,则第一目标预编码粒度为目标预编码粒度。
另一种可能的实施方式,在第二目标预编码粒度与第二目标值对应的预编码粒度不同的情况下,则第二目标预编码粒度为目标预编码粒度。
示例性的,第一集合A1为{n1-n4,n1-wideband},第二集合A2为{n4,n2,n2-wideband,n4-wideband}。A1为第一指示信息为bundleSizeSet1时对应的目标值集合,且bundleSizeSet1指示A1中的一个目标值;A2为第一指示信息为bundleSizeSet2时对应的目标值集合,且bundleSizeSet2指示A2中的一个目标值。例如根据bundleSizeSet1和bundleSizeSet2对应prb-Bundling Type配置参数可以定义为如下所示:
Figure PCTCN2020119700-appb-000005
将A1划分为不同的case,如表3所示,分别记为case1和case2。其中,case1对应第一目标预编码粒度,case2对应第二目标预编码粒度。
表3
不同case Set1取值1 Set1取值2
case1 n1 n1
case2 n4 wideband
此时,通过第一集合和第二集合的不同case确定的目标预编码粒度包括以下三种不同的情况,分别记为方案四至方案六。以下以第二指示信息为DCI为例,对方案四至方案六进行详细阐述。
方案四
在DCI中指示字段配置为0的情况下,目标预编码粒度从第一目标值对应的预编码粒度中确定。
若第二目标值对应的目标预编码粒度为一个,且与第二目标预编码粒度相同,则目标预编码粒度为第一目标预编码粒度。若第二目标值对应的预编码粒度与第二目标预编码粒度不同,则目标预编码粒度为第二目标预编码粒度。
示例性的,第二目标值对应的预编码粒度为n4,第二目标预编码粒度也为n4,第二目标值对应的预编码粒度与第二目标预编码粒度相同,则第一目标预编码粒度为目标预编码粒度,即n1。
若第二目标值对应的预编码粒度为n2-wideband,第二目标预编码粒度为n4,第二目标值对应的预编码粒度与第二目标预编码粒度均不相同,则第二目标预编码粒度为目标预编码粒度, 即n4。
若第二目标值对应的预编码粒度为n4-wideband,第二目标预编码粒度为n4,在调度的物理资源块PRB是连续的且数量大于带宽区域(Bandwidth Part,BWP)包含的RB个数的一半(二分之一)时,第二目标值为wideband,wideband与n4不同,则目标预编码粒度为n4;在调度的PRB是连续的且数量小于或等于带宽区域(Bandwidth Part,BWP)包含的RB个数的一半(二分之一)时,第二目标值为n4,与第二目标预编码粒度相同,则目标预编码粒度为n1。
在本申请实施例中,上述实施例仅为示例,将第二集合划分成不同case的情况,同样也适用将第一集合划分成不同case的情况。将第一集合划分成不同case的情况,可参照上述实施例的划分方式,也可以有不同的实施方式,本申请实施例对此不作限定。
方案五
在DCI中指示字段配置为1的情况下,且第二目标值对应的预编码粒度为n4或n2或n1/wideband时,目标预编码粒度从第二目标值对应的预编码粒度中确定。
一种可能的实施方式中,第二目标值对应的预编码粒度为n4,则目标预编码粒度为4RB。另一种可能的实施方式中,第一目标值对应n2,则目标预编码粒度为2RB。
另一种可能的实施方式中,若终端设备支持1RB的预编码粒度,则目标预编码粒度为1RB;若终端设备不支持1RB的预编码粒度,则目标预编码粒度为wideband。
方案六
在DCI中指示字段配置为1,且第二目标值对应的预编码粒度为n2-wideband或n4-wideband时,目标预编码粒度从第二目标值对应的预编码粒度中确定。当调度的物理资源块PRB是连续的且数量大于带宽区域(Bandwidth Part,BWP)包含的RB个数的一半(二分之一)时,目标预编码粒度为wideband;当调度的PRB是连续的且数量小于或等于BWP包含的RB个数的一半(二分之一)时,目标预编码粒度为n2或n4。
示例性的,第二目标值对应n2-wideband,BWP包含的RB个数为48RB,连续的带宽为30RB,则BWP包含的RB个数的一半(二分之一)为24RB,连续的带宽大于BWP包含的RB个数的一半,确定的目标预编码粒度为wideband。假设BWP包含的RB个数为48RB,连续的带宽为20RB,则BWP包含的RB个数的一半(二分之一)为24RB,连续的带宽小于BWP包含的RB个数的一半(二分之一),确定的目标预编码粒度为2RB。
可见,如表4所示,在上述实施例中,第一集合A1为{n1-n4,n1-wideband},第二集合A2为{n4,n2,n2-wideband,n4-wideband},可以实现不同的PRB-BundlingType动态指示组合。
在表4中,示例性的,通过第一指示信息bundleSizeSet1在第一集合A1确定的第一目标值对应的预编码粒度为n1-n4,第一指示信息bundleSizeSet2在第二集合A2中确定的第二目标值对应的预编码粒度为n2时,可以表示为n1-n4+n2,n2与n4不同,则第一目标值对应的预编码粒度为n4。
表4
Figure PCTCN2020119700-appb-000006
Figure PCTCN2020119700-appb-000007
步骤230,根据目标预编码粒度,对信号进行预编码。
终端设备根据确定的目标预编码粒度,对信号进行检测。对应地,网络设备根据确定的目标预编码粒度,对信号进行预编码。
上述本申请提供的实施例中,分别从网络设备、终端、以及网络设备和终端之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和终端可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
图3是本申请实施例提供的通信装置的示意性框图。如图3所示,该通信装置1000可以包括通信单元1100和处理单元1200。
在一种可能的设计中,该通信装置1000可对应于上文方法实施例中的终端设备,例如,可以为终端设备,或者配置于终端设备中的芯片。
具体地,该通信装置1000可对应于根据本申请实施例的图2中的方法中的终端设备,该通信装置1000可以包括用于执行图2中的方法中的终端设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图2中的方法中的方法的相应流程。
例如但不限于,当该通信装置1000用于执行图2中的方法时,通信单元1100可用于执行方法中的步骤210,处理单元1200可用于执行方法中的步骤220。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,可参见上述图2所述的相关内容,为了简洁,在此不再赘述。
还应理解,该通信装置1000为终端设备时,该通信装置1000中的通信单元1100可对应于图4中示出的终端设备2000中的收发器2020,该通信装置1000中的处理单元1200可对应于图4中示出的终端设备2000中的处理器2010。
还应理解,该通信装置1000为配置于终端设备中的芯片时,该通信装置1000中的通信单元1100可以为输入/输出接口。
在另一种可能的设计中,该通信装置1000可对应于上文方法实施例中的网络设备,例如,可以为网络设备,或者配置于网络设备中的芯片。
具体地,该通信装置1000可对应于根据本申请实施例图2中的方法中的网络设备,该通信装置1000可以包括用于执行图2中的方法中的网络设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图2中的方法中的相应流程。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,可参见上述图2所述的相关内容,为了简洁,在此不再赘述。
还应理解,该通信装置1000为网络设备时,该通信装置1000中的通信单元为可对应于图5中示出的网络设备3000中的收发器3200,该通信装置1000中的处理单元1200可对应于图5中示出的网络设备3000中的处理器3100。
还应理解,该通信装置1000为配置于网络设备中的芯片时,该通信装置1000中的通信单元1100可以为输入/输出接口。
图4是本申请实施例提供的终端设备2000的结构示意图。该终端设备2000可应用于如图1所示的系统中,执行上述方法实施例中终端设备的功能。
如图所示,该终端设备2000包括处理器2010和收发器2020。可选地,该终端设备2000还包括存储器2030。其中,处理器2010、收发器2020和存储器2030之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器2030用于存储计算机程序,该处理器2010用于从该存储器2030中调用并运行该计算机程序,以控制该收发器2020收发信号。可选地,终端设备2000还可以包括天线2040,用于将收发器2020输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器2010和存储器2030可以合成一个处理装置,处理器2010用于执行存储器2030中存储的程序代码来实现上述功能。具体实现时,该存储器2030也可以集成在处理器2010中,或者独立于处理器2010。该处理器2010可以与图3中的处理单元对应。
上述收发器2020可以与图3中的通信单元对应,也可以称为收发单元。收发器2020可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
应理解,图4所示的终端设备2000能够实现图2中的方法实施例中涉及终端设备的各个过程。终端设备2000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
上述处理器2010可以用于执行前面方法实施例中描述的由终端设备内部实现的动作,而收发器2020可以用于执行前面方法实施例中描述的终端设备向网络设备发送或从网络设备接 收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选地,上述终端设备2000还可以包括电源2050,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备2000还可以包括输入单元2060、显示单元2070、音频电路2080、摄像头2090和传感器2100等中的一个或多个,所述音频电路2080还可以包括扬声器2082、麦克风2084等。
图5是本申请实施例提供的网络设备的结构示意图,例如可以为基站的结构示意图。该基站3000可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。
如图所示,该基站3000可以包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)3100和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)3200。所述RRU 3100可以称为收发单元,与图3中的通信单元1200对应。可选地,该收发单元3100还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线3101和射频单元3102。可选地,收发单元3100可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。所述RRU 3100部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送指示信息。所述BBU 3200部分主要用于进行基带处理,对基站进行控制等。所述RRU 3100与BBU 3200可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 3200为基站的控制中心,也可以称为处理单元,可以与图3中的处理单元1100对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述指示信息等。
在一个示例中,所述BBU 3200可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 3200还包括存储器3201和处理器3202。所述存储器3201用以存储必要的指令和数据。所述处理器3202用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器3201和处理器3202可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图5所示的基站3000能够实现图2方法实施例中涉及网络设备的各个过程。基站3000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
上述BBU 3200可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而RRU 3100可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
本申请实施例还提供了一种处理装置,包括处理器和接口;该处理器,用于执行上述方法实施例中的通信的方法。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit, ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图2实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图2实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设 备以及一个或多个网络设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可在上面存储有各种数据结构的各种计算机可读介质执行。部件可根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,各功能单元的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令(程序)。在计算机上加载和执行所述计算机程序指令(程序)时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种信号传输的指示方法,其特征在于,包括:
    终端设备接收第一指示信息,所述第一指示信息用于指示至少一个目标值,所述目标值对应至少一个预编码粒度,所述目标值根据预编码粒度集合确定,所述预编码粒度集合中包括小于2资源块RB的预编码粒度;
    从所述至少一个目标值对应的预编码粒度中确定目标预编码粒度;
    根据所述目标预编码粒度,对所述信号进行检测。
  2. 根据权利要求1所述的方法,其特征在于,当所述第一指示信息指示至少两个目标值时,所述方法还包括:
    接收第二指示信息,所述第二指示信息用于指示所述至少两个目标值中的第一目标值,所述目标预编码粒度由所述第一目标值确定。
  3. 根据权利要求1或2所述的方法,其特征在于,所述至少一个目标值包括第一目标值和第二目标值,所述从所述至少一个目标值对应的预编码粒度中确定目标预编码粒度,包括:
    根据所述第二目标值对应的预编码粒度,从所述第一目标值对应的预编码粒度中确定所述目标预编码粒度。
  4. 根据权利要求3所述的方法,其特征在于,所述第一目标值对应第一目标预编码粒度和第二目标预编码粒度,所述根据所述第二目标值对应的预编码粒度,从所述第一目标值对应的预编码粒度中确定所述目标预编码粒度,包括:
    在所述第二目标预编码粒度与所述第二目标值对应的预编码粒度相同的情况下,则所述第一目标预编码粒度为所述目标预编码粒度;或者,
    在所述第二目标预编码粒度与所述第二目标值对应的预编码粒度不同的情况下,则所述第二目标预编码粒度为所述目标预编码粒度。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述从所述至少一个目标值对应的预编码粒度中确定目标预编码粒度,包括:
    根据所述终端设备的能力信息,从所述至少一个目标值对应的预编码粒度中确定所述目标预编码粒度。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备上报能力信息,所述能力信息用于指示所述终端设备支持小于2RB的能力信息。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:
    所述预编码粒度集合包括第一集合和第二集合;
    其中,所述第一集合包括:1RB、2RB、4RB和全带宽,所述第二集合包括:2RB和全带宽;或,
    所述第一集合包括:2RB、4RB和全带宽,所述第二集合包括:1RB、4RB和全带宽。
  8. 一种信号传输的指示方法,其特征在于,包括:
    网络设备发送第一指示信息,所述第一指示信息用于指示至少一个目标值,所述目标值对应至少一个预编码粒度,所述目标值根据预编码粒度集合确定,所述预编码粒度集合中包括小 于2资源块RB的预编码粒度;
    从所述至少一个目标值对应的预编码粒度中确定目标预编码粒度;
    根据所述目标预编码粒度,对所述信号进行预编码。
  9. 根据权利要求8所述的方法,其特征在于,当所述第一指示信息指示至少两个目标值时,所述方法还包括:
    发送第二指示信息,所述第二指示信息用于指示所述至少两个目标值中的第一目标值,所述目标预编码粒度由所述第一目标值确定。
  10. 根据权利要求8或9所述的方法,其特征在于,所述至少一个目标值包括第一目标值和第二目标值,所述从所述至少一个目标值对应的预编码粒度中确定目标预编码粒度,包括:
    根据所述第二目标值对应的预编码粒度,从所述第一目标值对应的预编码粒度中确定所述目标预编码粒度。
  11. 根据权利要求10所述的方法,其特征在于,所述第一目标值对应第一目标预编码粒度和第二目标预编码粒度,所述根据所述第二目标值对应的预编码粒度,从所述第一目标值对应的预编码粒度中确定所述目标预编码粒度,包括:
    在所述第二目标预编码粒度与所述第二目标值对应的预编码粒度相同的情况下,则所述第一目标预编码粒度为所述目标预编码粒度;或者,
    在所述第二目标预编码粒度与所述第二目标值对应的预编码粒度不同的情况下,则所述第二目标预编码粒度为所述目标预编码粒度。
  12. 根据权利要求8-11任一项所述的方法,其特征在于,所述从所述至少一个目标值对应的预编码粒度中确定目标预编码粒度,包括:
    根据所述终端设备的能力信息,从所述至少一个目标值对应的预编码粒度中确定所述目标预编码粒度。
  13. 根据权利要求8-12任一项所述的方法,其特征在于,所述方法还包括:
    接收所述终端设备上报的能力信息,所述能力信息用于指示所述终端设备支持小于2RB的能力信息。
  14. 根据权利要求8-13任一项所述的方法,其特征在于,所述方法还包括:
    所述预编码粒度集合包括第一集合和第二集合;
    其中,所述第一集合包括:1RB、2RB、4RB和全带宽,所述第二集合包括:2RB和全带宽;或,
    所述第一集合包括:2RB、4RB和全带宽,所述第二集合包括:1RB、4RB和全带宽。
  15. 一种通信装置,其特征在于,包括:
    通信单元,用于接收第一指示信息,所述第一指示信息用于指示至少一个目标值,所述目标值对应至少一个预编码粒度,所述目标值根据预编码粒度集合确定,所述预编码粒度集合中包括小于2资源块RB的预编码粒度;
    处理单元,用于从所述至少一个目标值对应的预编码粒度中确定目标预编码粒度;
    所述处理单元,还用于根据所述目标预编码粒度,对所述信号进行检测。
  16. 根据权利要求15所述的装置,其特征在于,
    所述通信单元,还用于接收第二指示信息,所述第二指示信息用于指示所述至少两个目标 值中的第一目标值,所述目标预编码粒度由所述第一目标值确定。
  17. 根据权利要求15或16所述的装置,其特征在于,所述至少一个目标值包括第一目标值和第二目标值;
    所述处理单元,具体用于根据所述第二目标值对应的预编码粒度,从所述第一目标值对应的预编码粒度中确定所述目标预编码粒度。
  18. 根据权利要求17所述的装置,其特征在于,所述第一目标值包括第一目标预编码粒度和第二目标预编码粒度,
    所述处理单元,具体用于在所述第二目标预编码粒度与所述第二目标值对应的预编码粒度相同的情况下,则所述第一目标预编码粒度为所述目标预编码粒度;或者,
    在所述第二目标预编码粒度与所述第二目标值对应的预编码粒度不同的情况下,则所述第二目标预编码粒度为所述目标预编码粒度。
  19. 根据权利要求15-18任一项所述的装置,其特征在于,
    所述处理单元,具体用于根据终端设备的能力信息,从所述至少一个目标值对应的预编码粒度中确定所述目标预编码粒度。
  20. 根据权利要求15-19任一项所述的装置,其特征在于,
    所述通信单元,还用于上报能力信息,所述能力信息用于指示终端设备支持小于2RB的能力信息。
  21. 根据权利要求15-20任一项所述的装置,其特征在于,所述装置还包括:
    所述预编码粒度集合包括第一集合和第二集合;
    其中,所述第一集合包括:1RB、2RB、4RB和全带宽,所述第二集合包括:2RB和全带宽;或,
    所述第一集合包括:2RB、4RB和全带宽,所述第二集合包括:1RB、4RB和全带宽。
  22. 一种通信装置,其特征在于,包括:
    通信单元,用于发送第一指示信息,所述第一指示信息用于指示至少一个目标值,所述目标值对应至少一个预编码粒度,所述目标值根据预编码粒度集合确定,所述预编码粒度集合中包括小于2资源块RB的预编码粒度;
    处理单元,用于从所述至少一个目标值对应的预编码粒度中确定目标预编码粒度;
    所述处理单元,还用于根据所述目标预编码粒度,对所述信号进行预编码。
  23. 根据权利要求22所述的装置,其特征在于,
    所述通信单元,还用于接收第二指示信息,所述第二指示信息用于指示所述至少两个目标值中的第一目标值,所述目标预编码粒度由所述第一目标值确定。
  24. 根据权利要求22或23所述的装置,其特征在于,所述至少一个目标值包括第一目标值和第二目标值;
    所述处理单元,具体用于根据所述第二目标值对应的预编码粒度,从所述第一目标值对应的预编码粒度中确定所述目标预编码粒度。
  25. 根据权利要求24所述的装置,其特征在于,所述第一目标值对应第一目标预编码粒度和第二目标预编码粒度,
    所述处理单元,具体用于在所述第二目标预编码粒度与所述第二目标值对应的预编码粒度 相同的情况下,则所述第一目标预编码粒度为所述目标预编码粒度;或者,
    在所述第二目标预编码粒度与所述第二目标值对应的预编码粒度不同的情况下,则所述第二目标预编码粒度为所述目标预编码粒度。
  26. 根据权利要求22-25任一项所述的装置,其特征在于,
    所述处理单元,具体用于根据终端设备的能力信息,从所述至少一个目标值对应的预编码粒度中确定所述目标预编码粒度。
  27. 根据权利要求22-26任一项所述的装置,其特征在于,
    所述通信单元,还用于接收终端设备上报的能力信息,所述能力信息用于指示终端设备支持小于2RB的能力信息。
  28. 根据权利要求22-27任一项所述的装置,其特征在于,所述装置还包括:
    所述预编码粒度集合包括第一集合和第二集合;
    其中,所述第一集合包括:1RB、2RB、4RB和全带宽,所述第二集合包括:2RB和全带宽;或,
    所述第一集合包括:2RB、4RB和全带宽,所述第二集合包括:1RB、4RB和全带宽。
  29. 一种通信装置,其特征在于,包括:处理器和存储器;
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述存储器存储的计算机程序,使得所述通信装置执行如权利要求1至7任一项所述的方法,或,执行如权利要求8至14中任一项所述的方法。
  30. 一种通信装置,其特征在于,包括至少一个处理器和接口,所述至少一个处理器用于执行计算机程序,使得所述通信装置执行如权利要求1至7中任一项所述的方法,或,执行如权利要求8至14中任一项所述的方法。
  31. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至7中任一项所述的方法,或,执行如权利要求8至14中任一项所述的方法。
  32. 一种计算机程序产品,其特征在于,包括:当所述计算机程序产品在通信设备上运行时,使得所述通信设备执行如权利要求1至7中任一项所述的方法,或,执行如权利要求8至14中任一项所述的方法。
PCT/CN2020/119700 2020-09-30 2020-09-30 一种信号传输的指示方法和通信装置 WO2022067784A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/119700 WO2022067784A1 (zh) 2020-09-30 2020-09-30 一种信号传输的指示方法和通信装置
CN202080105453.4A CN116326023A (zh) 2020-09-30 2020-09-30 一种信号传输的指示方法和通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119700 WO2022067784A1 (zh) 2020-09-30 2020-09-30 一种信号传输的指示方法和通信装置

Publications (1)

Publication Number Publication Date
WO2022067784A1 true WO2022067784A1 (zh) 2022-04-07

Family

ID=80949471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119700 WO2022067784A1 (zh) 2020-09-30 2020-09-30 一种信号传输的指示方法和通信装置

Country Status (2)

Country Link
CN (1) CN116326023A (zh)
WO (1) WO2022067784A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024104151A1 (zh) * 2022-11-18 2024-05-23 维沃移动通信有限公司 预编码资源块组prg的确定、指示方法、装置和终端

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108631836A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 数据传输方法和装置
CN109803412A (zh) * 2017-11-17 2019-05-24 维沃移动通信有限公司 资源映射方法、确定方法、网络侧设备及用户终端
US20190260436A1 (en) * 2015-01-29 2019-08-22 Intel Corporation Precoding resource block group bundling enhancement for full dimension multi-in-multi-output

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190260436A1 (en) * 2015-01-29 2019-08-22 Intel Corporation Precoding resource block group bundling enhancement for full dimension multi-in-multi-output
CN108631836A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 数据传输方法和装置
CN109803412A (zh) * 2017-11-17 2019-05-24 维沃移动通信有限公司 资源映射方法、确定方法、网络侧设备及用户终端

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "PRB bundling for DL", 3GPP DRAFT; R1-1716344 PRB BUNDLING, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Nagoya, Japan; 20170918 - 20170921, 17 September 2017 (2017-09-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051339799 *
ERICSSON: "PRB bundling for DL", 3GPP DRAFT; R1-1718427 PRB BUNDLING, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, CZ; 20171009 - 20171013, 8 October 2017 (2017-10-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051341609 *
ERICSSON: "PRB bundling for DL", 3GPP DRAFT; R1-1720740 PRB BUNDLING, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20171127 - 20171201, 18 November 2017 (2017-11-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051370198 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024104151A1 (zh) * 2022-11-18 2024-05-23 维沃移动通信有限公司 预编码资源块组prg的确定、指示方法、装置和终端

Also Published As

Publication number Publication date
CN116326023A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
WO2018202181A1 (zh) 信道状态信息处理方法及其装置
WO2019136724A1 (zh) Srs传输方法及相关设备
WO2019136723A1 (zh) 上行数据传输方法及相关设备
WO2019015590A1 (zh) 一种传输方法及其装置
CA3053919C (en) Communication method, network device, terminal device, computer readable storage medium, computer program product, processing apparatus and communication system
WO2020238992A1 (zh) 一种通信方法及装置
WO2022037352A1 (zh) 一种信息传输方法和通信装置
WO2021017773A1 (zh) 上报信道状态信息的方法和装置
WO2021031048A1 (zh) 一种通信方法及装置
WO2021082930A1 (zh) 一种终端类型的确定方法、网络设备及终端
WO2019023851A1 (zh) 通信方法、通信装置和系统
KR20200044959A (ko) 신호 송신 방법, 관련 장치 및 시스템
US11381288B2 (en) Communication method, network device, and terminal device
WO2019129253A1 (zh) 一种通信方法及装置
WO2019137299A1 (zh) 通信的方法和通信设备
WO2022067784A1 (zh) 一种信号传输的指示方法和通信装置
WO2022199346A1 (zh) 指示方法及相关产品
WO2018202168A1 (zh) 信息传输方法及装置
WO2020156514A1 (zh) 测量上报方法和通信装置
WO2020221261A1 (zh) 一种通信方法及装置
WO2021088471A1 (zh) 连接恢复方法及装置
WO2021068261A1 (zh) 频域传输资源配置的方法以及装置
WO2021062806A1 (zh) 信道测量的方法和通信装置
WO2022082378A1 (zh) 一种信号传输方法和通信装置
WO2024061093A1 (zh) 一种上行预编码的指示方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955807

Country of ref document: EP

Kind code of ref document: A1