WO2024093638A1 - 一种信息处理的方法和装置 - Google Patents

一种信息处理的方法和装置 Download PDF

Info

Publication number
WO2024093638A1
WO2024093638A1 PCT/CN2023/124235 CN2023124235W WO2024093638A1 WO 2024093638 A1 WO2024093638 A1 WO 2024093638A1 CN 2023124235 W CN2023124235 W CN 2023124235W WO 2024093638 A1 WO2024093638 A1 WO 2024093638A1
Authority
WO
WIPO (PCT)
Prior art keywords
related information
channel time
domain related
time domain
information
Prior art date
Application number
PCT/CN2023/124235
Other languages
English (en)
French (fr)
Inventor
廉晋
蔡世杰
刘鹍鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024093638A1 publication Critical patent/WO2024093638A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the embodiments of the present application relate to the field of communications, and more specifically, to a method and device for information processing.
  • the channel of the terminal device may change dramatically at different times, resulting in performance degradation, which is also known as the "channel aging" problem.
  • the terminal device can combine the downlink channel measurement information of multiple times or multiple OFDM symbols (for example, channel state information reference signal (CSI-RS), tracking reference signal (TRS)) to feed back the channel time domain related information to the network device.
  • CSI-RS channel state information reference signal
  • TRS tracking reference signal
  • the channel time domain related information can indicate the change of the channel over time or the speed of the change over time.
  • the network device will dynamically adjust the configuration of the downlink reference signal or the downlink precoding method based on the channel time domain related information, so as to better serve the current terminal device.
  • the terminal device when calculating the channel time domain related information, the terminal device does not consider the receiving method of the antenna port of the terminal device, resulting in poor accuracy of the calculated channel time domain related information, thereby affecting the configuration or decision of the network device and reducing performance.
  • the embodiments of the present application provide a method and apparatus for information processing, which enable network equipment to obtain more accurate channel time domain related information, thereby better serving terminal equipment and improving performance.
  • a method for information processing is provided.
  • the method may be executed by a terminal device or by a chip or circuit configured in the terminal device, and the present application does not limit this.
  • the method includes: determining at least two groups of channel time domain related information respectively according to at least two groups of antenna ports of a terminal device, and sending the at least two groups of channel time domain related information to a network device, or sending a group of channel time domain related information determined according to the at least two groups of channel time domain related information to a network device, wherein each group of channel time domain related information corresponds one-to-one to each group of antenna ports of the terminal device, each group of antenna ports of the terminal device includes at least one antenna port, and each group of channel time domain related information includes M channel time domain related information, and the M channel time domain related information are used to indicate the correlation between the channels of the T time moments or T orthogonal frequency division multiplexing OFDM symbols.
  • At least two groups of channel time domain related information can be fed back to the network device based on at least two groups of antenna ports of the terminal device, or a group of channel time domain related information determined based on the at least two groups of channel time domain related information. Due to different receiving channel powers or signal-to-noise ratios or random phase noises of different antenna ports of the terminal device, and the diversity of the arrangement positions of the antenna ports of the terminal device, different antenna ports may obtain different channel time domain related information. Therefore, at least two groups of channel time domain related information corresponding to at least two groups of antenna ports are all fed back to the network device, or a group of channel time domain related information determined based on the at least two groups of channel time domain related information is fed back to the network device. In this way, the accuracy of the channel time domain related information fed back by the terminal device to the network device can be improved, so that the changing characteristics of the channel over time can be more accurately reflected.
  • a method for information processing is provided.
  • the method can be executed by a terminal device or by a chip or circuit configured in the terminal device, and the present application does not limit this.
  • the method comprises: determining a set of channel time domain related information according to at least two antenna ports of a terminal device, and reporting the set of channel time domain related information to a network device, wherein the set of channel time domain related information comprises M channel time domain related information, each of which is determined according to the at least two antenna ports, and the M channel time domain related information is used to indicate the T time instants Or the correlation between T orthogonal frequency division multiplexing OFDM symbol channels.
  • each channel time domain related information in a set of channel time domain related information fed back by the terminal device to the network device is determined based on at least two antenna ports, that is, the channel time domain related information corresponding to at least two antenna ports of the terminal device is taken into account, and when calculating each channel time domain related information, the average between different antenna ports of the terminal device can be performed, thereby increasing the number of samples for calculating each channel time domain related information, thereby realizing the function of reducing the calculation noise of each channel time domain related information, and improving the accuracy of the channel time domain related information fed back by the terminal device to the network device, so that the changing characteristics of the channel over time can be more accurately reflected.
  • the channel time-domain related information includes a channel time-domain correlation coefficient or an amplitude of the channel time-domain correlation coefficient.
  • each group of channel time domain related information is determined based on at least two antenna ports included in each group of antenna ports, and each group of the channel time domain related information includes M channel time domain related information, and the M channel time domain related information is used to indicate the correlation between channels of T time moments or T orthogonal frequency division multiplexing OFDM symbols, and each of the channel time domain related information is determined based on the at least two antenna ports.
  • the method also includes: determining at least one confidence information, the at least one confidence information corresponding to the set of channel time domain related information, and the at least one confidence information is used to indicate the confidence of the set of channel time domain related information.
  • the method further includes: sending the one confidence information to the network device.
  • the at least one confidence information is determined based on the channel power indicated by the set of channel time domain related information; or the at least one confidence information is determined based on the channel amplitude indicated by the set of channel time domain related information; or the at least one confidence information is determined based on the channel reception signal-to-noise ratio indicated by the set of channel time domain related information and the number of antenna ports; or the at least one confidence information is determined based on the time domain related information signal-to-noise ratio corresponding to the set of channel time domain related information.
  • the method also includes: determining at least two confidence information, the at least two confidence information respectively corresponding to the at least two groups of channel time domain related information, and the at least two confidence information respectively used to indicate the confidence of the corresponding at least two groups of channel time domain related information.
  • the method further includes: sending the at least two pieces of confidence information to the network device.
  • the at least two confidence information are determined based on the channel power corresponding to the at least two sets of channel time domain related information; or the at least two confidence information are determined based on the channel amplitude corresponding to the at least two sets of channel time domain related information; or the at least two confidence information are determined based on the channel reception signal-to-noise ratio corresponding to the at least two sets of channel time domain related information and the number of antenna ports; or the at least two confidence information are determined based on the time domain related information signal-to-noise ratio corresponding to the at least two sets of channel time domain related information.
  • a group of channel time domain related information is selected from the at least two groups of channel time domain related information as the group of channel time domain related information; or based on the confidence levels corresponding to the at least two groups of channel time domain related information, a weighted average is performed on the at least two groups of channel time domain related information to obtain the group of channel time domain related information; or the group of channel time domain related information is the arithmetic average of the at least two groups of channel time domain related information.
  • the method further includes: sending the maximum channel time domain related information in the group of channel time domain related information and M-1 normalization results to the network device, and the M-1 normalization results are the results obtained after normalizing the other M-1 channel time domain related information in the group of channel time domain related information except the maximum channel time domain related information to the maximum channel time domain related information.
  • the maximum channel time domain related information is the channel time domain related information corresponding to the minimum time interval or time difference or OFDM symbol interval in the set of channel time domain related information.
  • the method further includes: sending to the network device a time interval or time difference or OFDM symbol interval corresponding to the maximum channel time domain related information in the set of channel time domain related information.
  • the maximum channel time domain related information is not the minimum time interval in the set of channel time domain related information. Or the channel time domain related information corresponding to the time difference or OFDM symbol interval.
  • the method also includes: using L1 bits to quantize the maximum channel time domain related information in the group of channel time domain related information; using L2 bits to quantize the other M-1 channel time domain related information in the group of channel time domain related information except the maximum channel time domain related information, and the L2 is less than or equal to L1.
  • first information is determined based on the number of quantization bits L and first channel time domain related information, the first information is L bits, and the first information is used to indicate that the first channel time domain related information corresponds to a value in the first sequence, and the first channel time domain related information is the maximum channel time domain related information or one of the M-1 channel time domain related information.
  • the first sequence is or
  • the first sequence is 2 0 , 2 -1 , ..., 2 -(L-1) ; or 2 -1 , 2 -2 , ..., 2 -L .
  • a communication method is provided.
  • the method may be executed by a network device or by a chip or circuit configured in the network device, and the present application does not limit the method.
  • the method includes: receiving at least two groups of channel time domain related information or one group of channel time domain related information sent by a terminal device, and configuring the terminal device according to the at least two groups of channel time domain related information or the one group of channel time domain related information, wherein the at least two groups of channel time domain related information are respectively determined by the terminal device according to at least two groups of antenna ports of the terminal device, each group of channel time domain related information corresponds one-to-one to each group of antenna ports of the terminal device, each group of antenna ports of the terminal device includes at least one antenna port, and each group of channel time domain related information includes M channel time domain related information, and the M channel time domain related information are used to indicate the correlation between channels of the T time moments or T orthogonal frequency division multiplexing OFDM symbols.
  • the various implementation methods of the third aspect are methods of network devices corresponding to the various implementation methods of the first aspect or the second aspect.
  • beneficial technical effects of the various implementation methods of the third aspect please refer to the description of the relevant implementation methods of the first aspect or the second aspect, which will not be repeated here.
  • the downlink reference signal of the terminal device is configured or the downlink precoding method is dynamically adjusted accordingly.
  • the channel time-domain related information includes a channel time-domain correlation coefficient or an amplitude of the channel time-domain correlation coefficient.
  • the method also includes: receiving at least two confidence information or at least one confidence information sent by the terminal device, wherein the at least two confidence information are respectively used to indicate the confidence of the corresponding at least two groups of channel time domain related information, and the at least one confidence information is used to indicate the confidence of the group of channel time domain related information.
  • the method also includes: selecting a group of channel time domain related information from the at least two groups of channel time domain related information as the group of channel time domain related information based on the confidence levels corresponding to the at least two groups of channel time domain related information; or performing weighted averaging of the at least two groups of channel time domain related information to obtain the group of channel time domain related information based on the confidence levels corresponding to the at least two groups of channel time domain related information; or performing arithmetic averaging of the at least two groups of channel time domain related information to obtain the first channel time domain related information.
  • the method also includes: receiving the maximum channel time domain related information in the set of channel time domain related information sent by the terminal device and M-1 normalization results, the M-1 normalization results being the results obtained after normalizing the other M-1 channel time domain related information in the set of channel time domain related information except the maximum channel time domain related information to the maximum channel time domain related information.
  • the maximum channel time domain related information is the channel time domain related information corresponding to the minimum time interval or time difference or OFDM symbol interval in the set of channel time domain related information.
  • the method further includes: receiving a time interval or time difference or OFDM symbol interval corresponding to the maximum channel time domain related information sent by the terminal device.
  • the maximum channel time domain related information is not the minimum time interval in the set of channel time domain related information. Or the channel time domain related information corresponding to the time difference or OFDM symbol interval.
  • a communication device which has the function of implementing the method in the first aspect or any possible implementation of the first aspect.
  • the function can be implemented by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions.
  • a communication device which has the function of implementing the method in the second aspect, or any possible implementation of the second aspect.
  • the function can be implemented by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions.
  • a communication device which has the function of implementing the method in the third aspect, or any possible implementation of the third aspect.
  • the function can be implemented by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions.
  • a communication device comprising a processor and a memory.
  • a transceiver may also be included.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, and control the transceiver to send and receive signals, so that the communication device executes the method in any possible implementation of the first aspect or any aspect of the first aspect.
  • the communication device is a terminal device.
  • a communication device comprising a processor and a memory.
  • a transceiver may also be included.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, and control the transceiver to send and receive signals, so that the communication device executes the method in any possible implementation of the second aspect or any aspect of the second aspect.
  • the communication device is a terminal device.
  • a communication device comprising a processor and a memory.
  • a transceiver may also be included.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, and control the transceiver to send and receive signals, so that the communication device executes the method in any possible implementation of the third aspect or any aspect of the third aspect.
  • the communication device is a network device.
  • a communication device comprising a processor and a communication interface, wherein the communication interface is used to receive data and/or information and transmit the received data and/or information to the processor, and the processor processes the data and/or information, and the communication interface is also used to output the data and/or information processed by the processor, so that the method in any possible implementation of the first aspect, or any aspect of the first aspect, is executed.
  • the communication device may be a chip applied to a terminal device.
  • a communication device comprising a processor and a communication interface, wherein the communication interface is used to receive data and/or information and transmit the received data and/or information to the processor, and the processor processes the data and/or information, and the communication interface is also used to output the data and/or information processed by the processor, so that the method in any possible implementation of the second aspect, or any aspect of the second aspect, is executed.
  • the communication device may be a chip applied to a terminal device.
  • a communication device comprising a processor and a communication interface, wherein the communication interface is used to receive data and/or information and transmit the received data and/or information to the processor, and the processor processes the data and/or information, and the communication interface is also used to output the data and/or information processed by the processor, so that the method in any possible implementation of the third aspect, or any aspect of the third aspect, is executed.
  • the communication device may be a chip applied to network equipment.
  • a computer-readable storage medium in which computer instructions are stored.
  • the method in any possible implementation of the first aspect, the second aspect, the third aspect, or any of these aspects is executed.
  • a computer program product which includes a computer program code.
  • the computer program code runs on a computer, the method in any possible implementation of the first aspect, the second aspect, the third aspect, or any of these aspects is executed.
  • a wireless communication system comprising a communication device as described in the fourth aspect or the fifth aspect, and/or a communication device as described in the sixth aspect.
  • FIG. 1 is a schematic diagram of a communication system applicable to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of an information processing method provided in an embodiment of the present application.
  • FIG3 is a schematic flowchart of another information processing method provided in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a multi-port channel series connection provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of a multi-port channel parallel connection provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of a multi-port channel parallel-series combination provided in an embodiment of the present application.
  • FIG7 is a schematic diagram of a channel time domain related information provided by an embodiment of the present application that changes with the time interval or time difference or OFDM symbol interval.
  • FIG8 is a schematic diagram of another type of channel time domain related information provided by an embodiment of the present application that changes with time interval or time difference or OFDM symbol interval.
  • FIG. 9 is a schematic block diagram of a communication device provided in an embodiment of the present application.
  • FIG. 10 is another schematic structural diagram of a communication device provided in an embodiment of the present application.
  • FIG. 11 is another schematic structural diagram of a communication device provided in an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G mobile communication system can be a non-standalone (NSA) or an independent network (SA).
  • the technical solution provided in the present application can also be applied to machine type communication (MTC), long term evolution-machine (LTE-M), device-to-device (D2D) network, machine-to-machine (M2M) network, Internet of Things (IoT) network or other networks.
  • IoT network can include vehicle networking, for example.
  • vehicle to X, V2X, X can represent anything
  • the V2X can include: vehicle to vehicle (V2V) communication, vehicle to infrastructure (V2I) communication, vehicle to pedestrian (V2P) communication or vehicle to network (V2N) communication, etc.
  • the technical solution provided in this application can also be applied to future communication systems, such as the sixth generation (6G) mobile communication system. This application does not limit this.
  • 6G sixth generation
  • the terminal device may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • UE user equipment
  • the terminal device may be a device that provides voice/data connectivity to the user, for example, a handheld device with wireless connection function, a vehicle-mounted device, etc.
  • some examples of terminals may be: mobile phones, tablet computers (pad), computers with wireless transceiver functions (such as laptops, PDAs, etc.), mobile Internet devices (mobile internet devices, MIDs), virtual reality (VR) devices, augmented reality (AR) devices, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes (for example, home appliances such as televisions, smart boxes, game consoles), cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (PDAs), and wireless terminals in smart cities.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDAs personal digital assistants
  • PDA personal digital assistant
  • handheld devices with wireless communication function computing devices or other processing devices connected to a wireless modem
  • vehicle-mounted devices wearable devices
  • terminal devices in 5G networks or terminal devices in future evolved public land mobile communication networks public land mobile network, PLMN
  • wearable devices can also be called wearable smart devices, which are a general term for the intelligent design and development of wearable devices for daily wear using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • Wearable devices are portable devices that are worn directly on the body or integrated into the user's clothes or accessories.
  • Wearable devices are not only hardware devices, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, and independent of smartphones to achieve complete or partial functions, such as smart watches or smart glasses, as well as those that only focus on a certain type of application function and need to be used in conjunction with other devices such as smartphones, such as various smart bracelets and smart jewelry for vital sign monitoring.
  • the terminal device can also be a terminal device in the Internet of Things (IoT) system.
  • IoT Internet of Things
  • Its main technical feature is to connect objects to the network through communication technology, thereby realizing an intelligent network of human-machine interconnection and object-to-object interconnection.
  • IoT technology can achieve massive connections, deep coverage, and terminal power saving through narrowband (NB) technology, for example.
  • NB narrowband
  • the terminal device may also be a vehicle or a whole vehicle, which can achieve communication through the Internet of Vehicles, or it may be a component located in the vehicle (for example, placed in the vehicle or installed in the vehicle), that is, a vehicle-mounted terminal device, a vehicle-mounted module or a vehicle-mounted unit (on-board unit, OBU).
  • a vehicle-mounted terminal device for example, placed in the vehicle or installed in the vehicle
  • OBU on-board unit
  • terminal devices can also include sensors such as smart printers, train detectors, and gas stations. Their main functions include collecting data (part of the terminal equipment), receiving control information and downlink data from network devices, and sending electromagnetic waves to transmit uplink data to network devices.
  • sensors such as smart printers, train detectors, and gas stations.
  • Their main functions include collecting data (part of the terminal equipment), receiving control information and downlink data from network devices, and sending electromagnetic waves to transmit uplink data to network devices.
  • the device for realizing the function of the terminal device may be the terminal device; or it may be a device capable of supporting the terminal device to realize the function, such as a chip system, a hardware circuit, a software module, or a hardware circuit plus a software module, which may be installed in the terminal device or may be used in combination with the terminal device.
  • the technical solution provided by the present disclosure is described by taking the device for realizing the function of the terminal device as the terminal device, and the terminal device as the UE as an example.
  • the network device can be any device with wireless transceiver function.
  • the device includes but is not limited to: evolved Node B (eNB), radio network controller (RNC), Node B (NB), base station controller (BSC), base transceiver station (BTS), home base station (e.g., home evolved Node B, or home Node B, HNB), baseband unit (BBU), wireless fidelity (Wi-Fi), etc.
  • eNB evolved Node B
  • RNC radio network controller
  • NB Node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station e.g., home evolved Node B, or home Node B, HNB
  • BBU baseband unit
  • Wi-Fi wireless fidelity
  • the access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP) in the system can also be a gNB in a 5G, such as NR, system, or a transmission point (TRP or TP), one or a group of (including multiple antenna panels) antenna panels of a base station in a 5G system, or a network node constituting a gNB or a transmission point, such as a baseband unit (BBU), or a distributed unit (DU), or a base station in a next generation communication 6G system, etc.
  • a 5G such as NR, system
  • TRP or TP transmission point
  • TRP or TP transmission point
  • a network node constituting a gNB or a transmission point such as a baseband unit (BBU), or a distributed unit (DU), or a base station in a next generation communication 6G system, etc.
  • BBU baseband unit
  • DU distributed unit
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • the CU implements some of the gNB functions, and the DU implements some of the gNB functions.
  • the CU is responsible for processing non-real-time protocols and services, and implements the functions of the radio resource control (RRC) and packet data convergence protocol (PDCP) layers.
  • the DU is responsible for processing physical layer protocols and real-time services, and implements the functions of the radio link control (RLC) layer, the medium access control (MAC) layer, and the physical (PHY) layer.
  • the AAU implements some physical layer processing functions, RF processing, and related functions of active antennas.
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU may be classified as a network device in an access network (radio access network, RAN), or the CU may be classified as a network device in a core network (core network, CN), and this application does not limit this.
  • the network equipment provides services for the cell, and the terminal equipment communicates with the cell through the transmission resources (for example, frequency domain resources, or spectrum resources) allocated by the network equipment.
  • the cell can belong to a macro base station (for example, macro eNB or macro gNB, etc.), or to a base station corresponding to a small cell.
  • the small cells here may include: metro cell, micro cell, pico cell, femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the device for realizing the function of the access network device may be the access network device; or it may be a device capable of supporting the access network device to realize the function, such as a chip system, a hardware circuit, a software module, or a hardware circuit plus a software module, which may be installed in the access network device or may be used in conjunction with the access network device.
  • the technical solution provided in the present application is described by taking the device with the function of being an access network device and the access network device being a base station as an example.
  • FIG. 1 is a schematic diagram of a communication system 100 applicable to a communication method according to an embodiment of the present application.
  • the communication system 100 may include at least one network device, such as the network device 110 shown in FIG. 1 ; the communication system 100 may also include at least one terminal device, such as the terminal device 120 shown in FIG. 1 .
  • the network device 110 and the terminal device 120 may communicate via a wireless link.
  • Each communication device, such as the network device 110 or the terminal device 120 may be configured with multiple antennas.
  • the configured multiple antennas may include at least one transmitting antenna for transmitting signals and at least one receiving antenna for receiving signals. Therefore, communication between the communication devices in the communication system and between the network device 110 and the terminal device 120 may be performed via multiple antenna technology.
  • FIG. 1 is only a simplified schematic diagram for ease of understanding, and the communication system may also include other network devices or other terminal devices, which are not shown in FIG. 1 .
  • the architecture applicable to the embodiment of the present application shown in Figure 1 above is only an example, and the architecture applicable to the embodiment of the present application is not limited to this. Any architecture that can realize the functions of the above-mentioned devices is applicable to the embodiment of the present application.
  • the network device needs to perform channel estimation on the wireless channel before transmitting data to the terminal device.
  • the network device can perform channel estimation based on the sounding reference signal (SRS) from the terminal device to obtain uplink channel state information (CSI), which represents the state of the channel at the time when the network device receives the reference signal (time 1).
  • SRS sounding reference signal
  • CSI uplink channel state information
  • time division duplexing (TDD) system the uplink and downlink of the wireless channel are different. Therefore, in the channel estimation process, the network device obtains the downlink CSI based on the uplink CSI, uses the downlink CSI to calculate the downlink precoding used for data transmission, and uses the downlink precoding (at time 2) to transmit data to the terminal device.
  • CSI is used to characterize the characteristics of a wireless channel, and may include at least one of a pre-coding matrix indicator (PMI), a channel quality indicator (CQI), a CSI-RS resource indicator (CRI), a synchronization signal and physical broadcast channel block (SSB) resource indicator (SSBRI), a layer indicator (LI), a rank indicator (RI), a reference signal received power (RSRP), and a signal to interference plus noise ratio (SINR).
  • PMI pre-coding matrix indicator
  • CQI channel quality indicator
  • CQI channel quality indicator
  • CQI channel quality indicator
  • CQI channel quality indicator
  • CQI channel quality indicator
  • CQI channel quality indicator
  • CQI channel quality indicator
  • CQI channel quality indicator
  • CQI channel quality indicator
  • CQI channel quality indicator
  • CQI channel quality indicator
  • CQI channel quality indicator
  • CQI channel quality indicator
  • CQI channel quality indicator
  • CQI channel quality indicator
  • CQI channel quality indicator
  • the channel of the terminal device at time 2 may have changed dramatically compared to time 1, resulting in a mismatch between the downlink precoding and the channel of the terminal device at time 2, causing performance degradation, which is the "channel aging" problem.
  • the terminal device can combine the downlink channel measurement information at multiple times (for example, channel state information reference signal (CSI-RS), tracking reference signal (TRS)) to feed back channel time domain related information to the network device.
  • CSI-RS channel state information reference signal
  • TRS tracking reference signal
  • the network device can use the channel at time 1, the channel obtained by several reference signals before time 1, and the channel time domain related information to predict the channel at time 2, thereby overcoming the performance degradation caused by channel aging and improving performance.
  • the channel time domain related information fed back by the terminal device can also help the network device configure the downlink reference signal, so as to better serve the terminal device and improve performance.
  • the channel time domain related information can indicate how the channel changes over time or how fast it changes over time. For example, when the network device determines that the channel of the current terminal device changes very quickly over time (generally speaking, it indicates that the terminal device is moving at high speed), the network device will dynamically adjust the configuration of the downlink reference signal or the precoding method or the uplink feedback channel method of the terminal device accordingly, so as to better serve the current terminal device.
  • the terminal device in order to enable the network device to better serve the terminal device and improve performance, it is particularly important for the terminal device to report the channel time domain related information to the network device accurately.
  • the channel time domain related information is calculated by the following formula.
  • n the number of subcarriers
  • H n (t) represents the channel CSI of the subcarrier at time t or the OFDM symbol
  • H n (t+ ⁇ ) represents the channel CSI at time t+ ⁇ or the OFDM symbol subcarrier
  • A(t, ⁇ ) is the channel time domain related information, which indicates the severity of the channel change over time in the time period from time t or OFDM symbol to time t+ ⁇ or OFDM symbol.
  • the receiving method of the antenna port of the terminal device is not taken into account, resulting in poor accuracy of the calculated channel time domain related information, thereby affecting the network device's configuration of the downlink reference signal or determination of the precoding method or channel prediction, thereby reducing performance.
  • an embodiment of the present application provides a method for information processing, which can take into account the receiving mode of the antenna port of the terminal device in the process of calculating the channel time domain related information of the terminal device, thereby improving the accuracy of the channel time domain related information.
  • the antenna port can also be a port, an antenna, a receiving port, or a receiving antenna.
  • FIG. 2 A method for information processing provided by an embodiment of the present application is described in detail below in conjunction with Figures 2 and 3. It should be understood that the methods of Figures 2 and 3 can be executed by a terminal device, or can also be executed by a chip having the functions of a terminal device.
  • Fig. 2 is a schematic flow chart of an information processing method provided by an embodiment of the present application. As shown in Fig. 2, the method may include steps 210-220, and steps 210-220 are described in detail below.
  • Step 210 Determine at least two groups of channel time domain related information according to at least two groups of antenna ports of the terminal device.
  • multiple antenna ports of the terminal device may be divided into at least two groups, each of which may include at least one antenna port.
  • a set of channel time domain related information may be fed back, that is, for at least two groups of antenna ports of the terminal device, at least two sets of channel time domain related information may be generated or determined, and each set of channel time domain related information corresponds to each group of antenna ports one by one.
  • each of the above-mentioned groups of channel time domain related information may include M channel time domain related information corresponding to multiple T moments or T orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols, and the M channel time domain related information are used to indicate the correlation between the channels of the T moments or T OFDM symbols.
  • M channel time domain related information corresponding to multiple T moments or T orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols
  • OFDM orthogonal frequency division multiplexing
  • the terminal device may determine the grouping method and feed the grouping method back to the network device.
  • the network device may notify the terminal device to perform corresponding grouping.
  • the terminal device and the network device may predetermine the grouping method for the multiple antenna ports of the terminal device.
  • a group of channel time domain related information is determined, when a group includes more than one antenna port, it can be determined based on at least two antenna ports included in the group of antenna ports. This will be described in detail below in conjunction with a specific formula and will not be repeated here.
  • Step 220 Send the at least two groups of channel time domain related information or one group of channel time domain related information to the network device.
  • the terminal device can send at least two groups of channel time domain related information determined as above to the network device, or can also send a group of channel time domain related information determined based on the at least two groups of channel time domain related information to the network device.
  • the embodiment of the present application does not make any specific limitations on this.
  • the terminal device may select a group of channel time domain related information from the at least two groups of channel time domain related information as the group of channel time domain related information based on the confidence levels corresponding to the at least two groups of channel time domain related information.
  • the terminal device may weight the at least two groups of channel time domain related information based on the confidence levels corresponding to the at least two groups of channel time domain related information.
  • the terminal device may calculate the arithmetic average of at least two sets of channel time domain related information to obtain the set of channel time domain related information.
  • the terminal device sends at least two groups of channel time domain related information to the network device.
  • the network device can calculate the arithmetic average of at least two groups of channel time domain related information to obtain the group of channel time domain related information.
  • the terminal device can also send at least two confidence information corresponding to at least two groups of channel time domain related information to the network device.
  • the network device can determine a group of channel time domain related information based on at least two groups of channel time domain related information and the corresponding confidence.
  • the network device can select a group of channel time domain related information with the highest confidence from the at least two groups of channel time domain related information as the group of channel time domain related information based on the confidence corresponding to the at least two groups of channel time domain related information.
  • the network device can perform weighted averaging on the at least two groups of channel time domain related information based on the confidence corresponding to the at least two groups of channel time domain related information to obtain the group of channel time domain related information.
  • At least two groups of channel time domain related information can be fed back to the network device based on at least two groups of antenna ports of the terminal device, or a group of channel time domain related information determined according to the at least two groups of antenna ports. Due to different receiving channel powers or signal-to-noise ratios or random phase noises of different antenna ports of the terminal device, and the diversity of the arrangement positions of the antenna ports of the terminal device, different antenna ports may obtain different channel time domain related information. Therefore, at least two groups of channel time domain related information corresponding to at least two groups of antenna ports are all fed back to the network device, or a group of channel time domain related information determined according to the at least two groups of channel time domain related information is fed back to the network device. In this way, the accuracy of the channel time domain related information fed back by the terminal device to the network device can be improved, so that the changing characteristics of the channel over time can be more accurately reflected.
  • Fig. 3 is a schematic flow chart of another information processing method provided by an embodiment of the present application. As shown in Fig. 3, the method may include steps 310-320, and steps 310-320 are described in detail below.
  • Step 310 Determine a group of channel time domain related information according to the channel time domain related information respectively corresponding to at least two antenna ports of the terminal device.
  • a group of channel time domain related information can be determined based on the channel time domain related information corresponding to at least two antenna ports of the terminal device, and the group of channel time domain related information includes M channel time domain related information corresponding to T time moments or T OFDM symbols. Each channel time domain related information is determined based on at least two antenna ports, and the M channel time domain related information is used to indicate the correlation between channels at T time moments or T OFDM symbols.
  • Step 320 Send a set of channel time domain related information to the network device.
  • the terminal device may send the set of channel time domain related information to the network device.
  • each channel time domain related information in a group of channel time domain related information fed back by the terminal device to the network device is determined based on the joint average of the channels corresponding to at least two antenna ports, that is, the channel time domain related information corresponding to at least two antenna ports of the terminal device is taken into account, which is equivalent to averaging between different antenna ports of the terminal device when calculating each channel time domain related information, thereby increasing the number of samples for calculating each channel time domain related information, thereby realizing the function of reducing the calculation noise of each channel time domain related information, and improving the accuracy of the channel time domain related information fed back to the network device by the terminal device, so that it can more accurately reflect the changing characteristics of the channel over time.
  • the network device sends TRS or CSI-RS
  • the terminal device can obtain a channel with a total of N subcarriers
  • the terminal device reports the channel time domain related information (for example, the time domain correlation coefficient or the amplitude of the time domain correlation coefficient) of M time intervals or time differences or OFDM symbol intervals ⁇ 1 , ⁇ 2 ,..., ⁇ M, in combination with Figures 4-6, the specific implementation method of the method shown in Figures 2-3 is illustrated by example.
  • R 1*M is a set of channel time domain related information
  • the set of channel time domain related information includes M channel time domain related information, which are respectively ( ⁇ M ) ⁇ R( ⁇ 1 ), R( ⁇ 2 ), ..., R( ⁇ M ), ⁇ 1 , ⁇ 2 , ..., ⁇ M are M time intervals or time differences or OFDM symbol intervals.
  • R( ⁇ 1 ), R( ⁇ 2 ), ..., R( ⁇ M ) as the amplitude of the time domain correlation coefficient
  • the embodiment of the present application can be calculated by the following formula: R( ⁇ i ).
  • R( ⁇ i ) represents the severity of the channel change over time in the time period from time t to time t+ ⁇ i or from OFDM symbol t to OFDM symbol t+ ⁇ i (channel time domain related information);
  • h k,n (t) represents the channel information of subcarrier n corresponding to antenna port k of the terminal device at time t or OFDM symbol t;
  • h k,n (t+ ⁇ i ) represents the channel information of subcarrier n corresponding to antenna port k of the terminal device at time t+ ⁇ i or OFDM symbol t+ ⁇ i ;
  • the embodiment of the present application can also be calculated by the following formula:
  • R( ⁇ 1 ), R( ⁇ 2 ), ..., R( ⁇ M ) as time domain correlation coefficients
  • the embodiment of the present application can calculate R( ⁇ i ) by the following formula.
  • the above h k,n (t) can be obtained by the terminal device through the TRS or CSI-RS signal sent by the network device at time t
  • the above h k,n (t+ ⁇ i ) can be obtained by the terminal device through the TRS or CSI-RS signal sent by the network device at time t+ ⁇ i .
  • R( ⁇ 1 ) indicates the severity of the channel change over time in the time period from time t to time t+ ⁇ 1 (channel time domain related information), and R( ⁇ 1 ) is the joint average of the channel time domain related information of the 4 antenna ports h1 to h4 of the terminal device.
  • this implementation method "connects in series" the channel vectors of different antenna ports (h1 to h4) of the terminal device, expands the single-port channel to a multi-port channel, and increases the correlation from the original N samples to N*N r samples, which is equivalent to averaging different antenna ports when calculating the channel time domain related information, thereby achieving the noise reduction function.
  • a terminal device determines at least two groups of channel time domain related information based on channel time domain related information corresponding to at least two groups of antenna ports of the terminal device.
  • each group of antenna ports includes one antenna port, which can also be understood as "parallel connection" of the channel vectors of different antenna ports of the terminal device.
  • the terminal device can feed back a channel time domain related information matrix to the network device. That is, each antenna port of the terminal device feeds back the corresponding channel time domain related information, and a total of Nr groups of channel time domain related information are fed back.
  • the embodiment of the present application can calculate r k,m through the following formula.
  • the embodiment of the present application can calculate r k,m through the following formula.
  • each antenna port can feedback a set of channel time domain related information, and the 4 antenna ports can feedback 4 sets of channel time domain related information.
  • the channel vectors of different antenna ports (h1 to h4) are "connected in parallel", and each antenna port feeds back the corresponding channel time domain related information.
  • the feedback method of the channel time domain related information of the antenna ports in parallel of the above-mentioned terminal device takes into account that due to the antenna arrangement of the terminal device, the channels of different antenna ports may obtain different channel time domain related information, thereby improving performance.
  • each group of antenna ports includes at least two antenna ports.
  • the multiple antenna ports of the terminal device are divided into G groups, where the gth group includes N g antenna ports, and each group of antenna ports feeds back a set of channel time domain related information.
  • the terminal device can feed back a channel time domain related information matrix to the network device: That is, a total of G groups of channel time domain related information are fed back.
  • the embodiment of the present application can calculate r g,m through the following formula.
  • the embodiment of the present application can also be calculated by the following formula:
  • the embodiment of the present application can calculate r g,m through the following formula.
  • each group of antenna ports includes 2 antenna ports (the first group of antenna ports includes antenna ports h1 ⁇ h2, and the second group of antenna ports includes antenna ports h3 ⁇ h4)
  • the 2 groups of antenna ports can feedback 2 groups of channel time domain related information.
  • 1 group of channel time domain related information can be determined by joint averaging according to the channel time domain related information corresponding to the 2 antenna ports. That is, this implementation method "connects in parallel" the channel vectors of the 2 groups of antenna ports of the terminal device, and “connects in series” the channel vectors of the 2 antenna ports in each group.
  • the terminal device can feed back at least two groups of channel time domain related information to the network device or feed back a group of channel time domain related information determined based on the at least two groups of channel time domain related information. As shown in FIG. 3, the terminal device feeds back a group of channel time domain related information to the network device.
  • the confidence of the above-mentioned channel time domain related information can also be characterized by confidence information.
  • the confidence of a set of channel time domain related information can be represented by a confidence information.
  • the confidence of at least two sets of channel time domain related information can be represented by at least two confidence information, each confidence information corresponds to each set of channel time domain related information one by one, and is used to represent the confidence of the corresponding set of channel time domain related information.
  • the confidence of the set of channel time domain related information can be represented by a confidence information.
  • At least two confidence information respectively represent the confidence of at least two groups of channel time-domain related information.
  • G parameters W ⁇ w 1 ,w 2 , ..., w G ⁇ represent G confidence information, and the G confidence information are respectively used to characterize the confidence of G groups of channel time domain related information.
  • confidence information w g among the G confidence information is used to characterize the confidence of the gth group of channel time domain related information.
  • the wg may be the sum of the powers of the channels corresponding to the g-th group of antenna ports.
  • wg may be determined according to the formula shown below.
  • the wg may be the sum of normalized power values normalized to the maximum power.
  • wg may be determined according to the formula shown below, where the gm- th group of antenna ports corresponds to the maximum power sum.
  • the w g may be the sum of the amplitudes of the channels corresponding to the g-th group of antenna ports.
  • w g may be determined according to the formula shown below.
  • the wg may be the sum of normalized amplitude values normalized to the maximum power.
  • wg may be determined according to the formula shown below, where the gmth group of antenna ports corresponds to the sum of the maximum amplitude values.
  • the w g may be a received signal-to-noise ratio of a channel corresponding to the g-th group of antenna ports.
  • w g may be determined according to the following formula.
  • ⁇ 0 0, is the noise power corresponding to the channel of the g-th group of antenna ports at time t or the t-th OFDM symbol, is the sum of noise powers corresponding to the channels of the g-th group of antenna ports at time t, t+ ⁇ 1 , t+ ⁇ 2 , ..., t+ ⁇ M or OFDM symbols t, t+ ⁇ 1 , t+ ⁇ 2 , ..., t+ ⁇ M.
  • Example 6 The absolute value of the difference between wg and the maximum signal-to-noise ratio.
  • wg can be determined according to the formula shown below, that is, the maximum signal-to-noise ratio corresponding to the gm- th group of antenna ports.
  • ⁇ 0 0, is the noise power corresponding to the channel of the g-th group of antenna ports at time t or the t-th OFDM symbol, is the sum of noise powers corresponding to the channels of the g-th group of antenna ports at time t, t+ ⁇ 1 , t+ ⁇ 2 , ..., t+ ⁇ M or OFDM symbols t, t+ ⁇ 1 , t+ ⁇ 2 , ..., t+ ⁇ M.
  • SNR max can be determined according to the formula shown below.
  • the w g may be the absolute value of the difference between the minimum signal-to-noise ratio and the minimum signal-to-noise ratio.
  • w g may be determined according to the following formula: That is, the gm- th group of antenna ports corresponds to the minimum signal-to-noise ratio.
  • ⁇ 0 0, is the noise power corresponding to the channel of the g-th group of antenna ports at time t or the t-th OFDM symbol, is the sum of noise powers corresponding to the channels of the g-th group of antenna ports at time t, t+ ⁇ 1 , t+ ⁇ 2 , ..., t+ ⁇ M or OFDM symbols t, t+ ⁇ 1 , t+ ⁇ 2 , ..., t+ ⁇ M.
  • SNR min can be determined according to the formula shown below.
  • the w g may be a time domain related information signal-to-noise ratio corresponding to the g-th group of antenna ports.
  • w g may be determined according to the following formula.
  • ⁇ 0 0, is the noise power corresponding to the channel of the g-th group of antenna ports at time t+ ⁇ i or the t+ ⁇ i -th OFDM symbol.
  • the terminal device and the network device also need to align the number of antenna ports for obtaining each group of time domain related information.
  • the terminal device may determine the number of antenna ports Ng for each group of time domain related information and feed the information back to the network device.
  • the network device may notify the terminal device of the information.
  • the terminal device and the network device may predetermine the information.
  • the confidence of a channel time domain related information can also be represented by a confidence information.
  • the confidence of at least one channel time domain related information in the group of channel time domain related information can be represented by at least one confidence information.
  • noise power corresponding to the channel of the g-th group of antenna ports at time t or the t-th OFDM symbol is the noise power corresponding to the channel of the g-th group of antenna ports at time t+ ⁇ m or the t+ ⁇ m -th OFDM symbol.
  • the confidence of a channel of a group of antenna ports at time t or OFDM symbol t can also be represented by a confidence information.
  • w gt is used to represent the confidence of the channel of the g-th group of antenna ports at time t or OFDM symbol t.
  • w gt may be the sum of the powers of the channels corresponding to the g-th group of antenna ports at time t or the t-th OFDM symbol.
  • w gt may be determined according to the following formula.
  • w gt may be the sum of normalized power values of the channels corresponding to the g-th group of antenna ports at time t or the t-th OFDM symbol normalized to the maximum power.
  • w gt may be determined according to the formula shown below.
  • P max can be determined according to the following formula, the maximum power and
  • the w gt may be the sum of the amplitudes of the channels corresponding to the g-th group of antenna ports at time t or the t-th OFDM symbol.
  • w gt may be determined according to the following formula.
  • w gt may be the sum of normalized amplitude values of the channel corresponding to the g-th group of antenna ports at time t or the t-th OFDM symbol normalized to the maximum power.
  • w gt may be determined according to the formula shown below.
  • a max can be determined according to the formula shown below, which is the sum of the maximum amplitude values corresponding to the gm -th group of antenna ports.
  • the w gt may be a received signal-to-noise ratio of a channel corresponding to the g-th group of antenna ports at time t or the t-th OFDM symbol.
  • w gt may be determined according to the following formula.
  • w gt may be the absolute value of the difference between the channel received signal-to-noise ratio corresponding to the g-th group antenna port at time t or the t-th OFDM symbol and the maximum signal-to-noise ratio.
  • w g1 may be determined according to the formula shown below.
  • SNR max can be determined according to the formula shown below, where the g mth group of antennas corresponds to the maximum channel received signal-to-noise ratio
  • the w gt may be the absolute value of the difference between the received signal-to-noise ratio of the channel corresponding to the g-th group antenna port at time t or the t-th OFDM symbol and the minimum signal-to-noise ratio.
  • w gt may be determined according to the formula shown below.
  • SNR min can be determined according to the following formula, where the g mth group of antennas corresponds to the minimum channel received signal-to-noise ratio
  • the w gt may be a time domain related information signal-to-noise ratio of a channel corresponding to the g-th group of antenna ports at time t or the t-th OFDM symbol.
  • w gt may be determined according to the following formula.
  • the terminal device can determine the confidence corresponding to each group of channel time domain related information, and determine a group of channel time domain related information as the final result based on the confidence corresponding to each group of channel time domain related information, and feed it back to the network device.
  • the terminal device can directly send G confidences or G*M confidences or G*T confidences to the network device, and the network device can determine the confidence corresponding to each group of channel time domain related information, and determine a group of channel time domain related information as the final result based on the confidence corresponding to each group of channel time domain related information.
  • the terminal device may select a group with the highest confidence level from multiple groups of channel time domain related information as the final result based on the confidence level corresponding to each group of channel time domain related information.
  • the terminal device may merge multiple groups of channel time domain related information based on the confidence level corresponding to each group of channel time domain related information to obtain a group of channel time domain related information as the final result. For example, one possible merging method may be to perform weighted averaging of multiple groups of channel time domain related information by confidence information to obtain a group of channel time domain related information.
  • the terminal device may further normalize the channel time domain related information, thereby reducing the feedback overhead.
  • the terminal device feeding back a set of channel time domain related information of length M: R( ⁇ 1 ), R( ⁇ 2 ), ..., R( ⁇ M ) to the network device, several possible implementations of further normalizing the channel time domain related information are described in detail.
  • the minimum time interval or time difference or OFDM symbol interval corresponds to the maximum channel time domain related information.
  • the channel time domain related information decreases as the time interval or time difference or OFDM symbol interval increases.
  • R( ⁇ 1 ) corresponding to ⁇ 1 is the largest value among R( ⁇ 1 ), R( ⁇ 2 ),..., R( ⁇ M ).
  • R( ⁇ 2 ),..., R( ⁇ M ) can be further normalized by R( ⁇ 1 ), and the normalized result is The terminal device can feed back R( ⁇ 1 ) and the normalized result to the network device.
  • R( ⁇ 1 ) can be quantized using L 1 bits.
  • L 2 ⁇ L 1 bits may be used for quantization.
  • ⁇ 1 is the minimum time interval or time difference or OFDM symbol interval
  • R( ⁇ 1 ) corresponding to ⁇ 1 is not the largest value among R( ⁇ 1 ), R( ⁇ 2 ),..., R( ⁇ M )
  • R( ⁇ flag ) corresponding to ⁇ flag is the largest value among R( ⁇ 1 ), R( ⁇ 2 ),..., R( ⁇ M ).
  • R( ⁇ 1 ), R( ⁇ 2 ),..., R( ⁇ m ),..., R( ⁇ M ) can be further normalized by R( ⁇ flag ), and the normalized result is ⁇ m ⁇ flag .
  • R( ⁇ flag ) can be quantized using L 1 bits, L 2 ⁇ L 1 bits may be used for quantization.
  • uniform quantization can be used to use L bits to R( ⁇ flag ) or normalized Specifically, [0,1] can be divided into or These 2 L values, find the R( ⁇ flag ) to be quantized or normalized and or The most recent value in the Accordingly The corresponding L bits obtain their quantization results.
  • a possible implementation is to use the L-bit binary form corresponding to I or I-1 as the quantized L bits.
  • a non-uniform quantization method may be used to use L bits to R( ⁇ flag ) or normalized Quantize.
  • [0,1] can be divided into 2 L values: 2 0 , 2 -1 , ..., 2 -(L-1) or 2 -1 , 2 -2 , ..., 2 -L . That is, find the R( ⁇ flag ) to be quantized or normalized
  • the value 2 -I closest to 2 0 , 2 -1 , ..., 2 -(L-1) or 2 -1 , 2 -2 , ..., 2 -L is obtained according to the L bits corresponding to 2 -I .
  • a possible implementation method is to use the L-bit binary form corresponding to I or I-1 as the L bits after quantization.
  • FIG 9 is a schematic block diagram of a communication device provided in an embodiment of the present application.
  • the device 900 may include a transceiver unit 910 and a processing unit 920, wherein the transceiver unit 910 can communicate with the outside, for example, data/information received from the outside can be input into the processing unit, and for another example, data/information processed by the processing unit can be output to the outside.
  • the transceiver unit 910 can also be referred to as a communication interface or a communication unit.
  • the processing unit 920 is used to process data/information so that the functions of the terminal device in the method shown in Figures 2 to 3 above are implemented, or the functions of the network device in the method shown in Figures 2 to 3 above are implemented.
  • the device 900 may be a terminal device in the method shown in FIG. 2 to FIG. 3 above, or may be a chip for implementing the functions of the terminal device in the method shown in FIG. 2 to FIG. 3 above.
  • the device 900 may implement a process corresponding to the process executed by the terminal device in the method shown in FIG. 2 to FIG. 3 above, wherein the transceiver unit 910 and the processing unit 920 are used to perform operations related to the processing of the terminal device in the above method process.
  • the processing unit 920 is configured to determine at least two groups of channel time domain related information according to at least two groups of antenna ports of the terminal device, wherein each group of the channel time domain related information corresponds to each group of antenna ports of the terminal device, each group of antenna ports of the terminal device includes at least one antenna port, and each group of the channel time domain related information includes M channel time domain related information, and the M channel
  • the time domain related information is used to indicate the correlation between the channels of the T time moments or T OFDM symbols;
  • the transceiver unit 910 is used to send the at least two groups of channel time domain related information to the network device or to send a group of channel time domain related information determined based on the at least two groups of channel time domain related information to the network device.
  • a processing unit 920 is used to determine a set of channel time domain related information based on at least two antenna ports of a terminal device, wherein the set of channel time domain related information includes M channel time domain related information, each of which is determined based on the channel time domain related information corresponding to the at least two antenna ports, and the M channel time domain related information is used to indicate the correlation between the channels of the T time moments or T OFDM symbols; a transceiver unit 910 is used to report the set of channel time domain related information to a network device.
  • the channel time-domain related information includes a channel time-domain correlation coefficient or an amplitude of the channel time-domain correlation coefficient.
  • the processing unit 920 is also used to determine each group of channel time domain related information based on at least two antenna ports included in each group of antenna ports, each group of channel time domain related information includes M channel time domain related information, and each channel time domain related information is determined based on the channel time domain related information corresponding to the at least two antenna ports.
  • the processing unit 920 is further used to determine at least one confidence information, where the at least one confidence information corresponds to the set of channel time domain related information, and the at least one confidence information is used to indicate the confidence of the set of channel time domain related information.
  • the transceiver unit 910 is further configured to send the at least one confidence information to the network device.
  • the processing unit 920 is further used to determine the at least one confidence information based on the channel power indicated by the set of channel time domain related information; or determine the at least one confidence information based on the channel amplitude indicated by the set of channel time domain related information; or determine the at least one confidence information based on the channel reception signal-to-noise ratio indicated by the set of channel time domain related information; or determine the at least one confidence information based on the time domain related information signal-to-noise ratio corresponding to the set of channel time domain related information.
  • the processing unit 920 is further used to determine at least two confidence information, which respectively correspond to the at least two groups of channel time domain related information, and the at least two confidence information are respectively used to indicate the confidence of the corresponding at least two groups of channel time domain related information.
  • the processing unit 920 is further used to determine the at least two confidence information based on the channel power corresponding to the at least two sets of channel time domain related information; or determine the at least two confidence information based on the channel amplitude corresponding to the at least two sets of channel time domain related information; or determine the at least two confidence information based on the channel reception signal-to-noise ratio corresponding to the at least two sets of channel time domain related information and the number of antenna ports; or determine the at least two confidence information based on the time domain related information signal-to-noise ratio corresponding to the at least two sets of channel time domain related information.
  • the transceiver unit 910 is further configured to send the at least two pieces of confidence information to the network device.
  • the processing unit 920 is further used to select a group of channel time domain related information from the at least two groups of channel time domain related information as the group of channel time domain related information based on the confidence levels corresponding to the at least two groups of channel time domain related information; or to perform weighted averaging of the at least two groups of channel time domain related information to obtain the group of channel time domain related information based on the confidence levels corresponding to the at least two groups of channel time domain related information; or the group of channel time domain related information is the arithmetic mean of the at least two groups of channel time domain related information.
  • the transceiver unit 910 is also used to send the maximum channel time domain related information in the group of channel time domain related information and M-1 normalization results to the network device, and the M-1 normalization results are the results obtained after normalizing the other M-1 channel time domain related information in the group of channel time domain related information except the maximum channel time domain related information to the maximum channel time domain related information.
  • the maximum channel time-domain related information is the channel time-domain related information corresponding to the minimum time interval or time difference or OFDM symbol interval in the set of channel time-domain related information.
  • the transceiver unit 910 is further configured to send the time interval or time difference or OFDM symbol interval corresponding to the maximum channel time domain related information in the set of channel time domain related information to the network device.
  • the maximum channel time domain related information is not the channel time domain related information corresponding to the minimum time interval or time difference or OFDM symbol interval in the set of channel time domain related information.
  • the processing unit 920 is further used to use L1 bits to quantize the maximum channel time domain related information in the group of channel time domain related information; and use L2 bits to quantize other M-1 channel time domain related information in the group of channel time domain related information except the maximum channel time domain related information, and L2 is less than or equal to L1.
  • the processing unit 920 is also used to determine the first information based on the number of quantization bits L and the first channel time domain related information, where the first information is L bits, and the first information is used to indicate that the first channel time domain related information corresponds to a value in the first sequence, and the first channel time domain related information is the maximum channel time domain related information or one of the M-1 channel time domain related information.
  • the first sequence is Or the first sequence is
  • the first sequence is 2 0 , 2 -1 , ..., 2 -(L-1) ; or the first sequence is 2 -1 , 2 -2 , ..., 2 -L .
  • processing unit 920 and transceiver unit 910 can also respectively execute any other steps, operations and/or functions implemented by the terminal device in the methods shown in Figures 2 to 3.
  • the specific process of each unit executing the above-mentioned corresponding steps has been described in detail in the above-mentioned method embodiment. For the sake of brevity, it will not be repeated here.
  • the device 900 may be a network device in the method shown in FIGS. 2 to 3 above, or a chip for implementing the functions of the network device in the method shown in FIGS. 2 to 3 above.
  • the device 900 may implement a process corresponding to the execution of the network device in the method shown in FIGS. 2 to 3 above, wherein the transceiver unit 910 and the processing unit 920 are used to perform operations related to the processing of the network device in the above method process.
  • a transceiver unit 910 is used to receive at least two groups of channel time domain related information or one group of channel time domain related information sent by a terminal device, wherein the at least two groups of channel time domain related information are respectively determined by the terminal device based on at least two groups of antenna ports of the terminal device, each group of the channel time domain related information corresponds one-to-one to each group of antenna ports of the terminal device, each group of antenna ports of the terminal device includes at least one antenna port, and each group of the channel time domain related information includes M channel time domain related information, and the M channel time domain related information are used to indicate the correlation between the channels of the T time moments or T OFDM symbols; a processing unit 920 is used to configure the terminal device based on the at least two groups of channel time domain related information or the one group of channel time domain related information.
  • the processing unit 920 is specifically used to configure a downlink reference signal for the terminal device or dynamically adjust the downlink precoding method accordingly according to the at least two groups of channel time domain related information or the one group of channel time domain related information.
  • the channel time-domain related information includes a channel time-domain correlation coefficient or an amplitude of the channel time-domain correlation coefficient.
  • the transceiver unit 910 is also used to receive at least two confidence information or at least one confidence information sent by the terminal device, wherein the at least two confidence information are respectively used to indicate the confidence of the corresponding at least two groups of channel time domain related information, and the at least one confidence information is used to indicate the confidence of the group of channel time domain related information.
  • the processing unit 920 is further used to select a group of channel time domain related information from the at least two groups of channel time domain related information as the group of channel time domain related information based on the confidence levels corresponding to the at least two groups of channel time domain related information; or to perform weighted averaging of the at least two groups of channel time domain related information based on the confidence levels corresponding to the at least two groups of channel time domain related information to obtain the group of channel time domain related information or to perform arithmetic averaging of the at least two groups of channel time domain related information to obtain the first channel time domain related information.
  • the transceiver unit 910 is also used to receive the maximum channel time domain related information in the group of channel time domain related information sent by the terminal device and M-1 normalization results, and the M-1 normalization results are the results obtained after normalizing the other M-1 channel time domain related information in the group of channel time domain related information except the maximum channel time domain related information to the maximum channel time domain related information.
  • the maximum channel time-domain related information is the channel time-domain related information corresponding to the minimum time interval or time difference or OFDM symbol interval in the set of channel time-domain related information.
  • the transceiver unit 910 is further configured to receive the time interval or time difference or OFDM symbol interval corresponding to the maximum channel time domain related information sent by the terminal device.
  • the maximum channel time domain related information is not the channel time domain related information corresponding to the minimum time interval or time difference or OFDM symbol interval in the set of channel time domain related information.
  • processing unit 920 and transceiver unit 910 can also respectively execute any other steps, operations and/or functions implemented by the network device in the methods shown in Figures 2 to 3 above.
  • the specific process of each unit executing the above-mentioned corresponding steps has been described in detail in the above-mentioned method embodiment. For the sake of brevity, it will not be repeated here.
  • the above-mentioned transceiver unit 910 may include a receiving unit and a sending unit, wherein the receiving unit is used to execute the receiving function in the above-mentioned transceiver unit 910, and the sending unit is used to execute the sending function in the above-mentioned transceiver unit 910.
  • the above-mentioned device 900 has the function of implementing the corresponding steps performed by the terminal device in the method shown in Figures 2 to 3, or the above-mentioned device 900 has the function of implementing the corresponding steps performed by the network device in the method shown in Figures 2 to 3.
  • the functions can be implemented by hardware, or by hardware executing corresponding software implementations.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions; for example, the transceiver unit can be replaced by a transceiver (for example, the sending unit in the transceiver unit can be replaced by a transmitter, and the receiving unit in the transceiver unit can be replaced by a receiver), and other units, such as the processing unit, can be replaced by a processor to respectively perform the transceiver operations and related processing operations in each method embodiment.
  • the transceiver unit can be replaced by a transceiver (for example, the sending unit in the transceiver unit can be replaced by a transmitter, and the receiving unit in the transceiver unit can be replaced by a receiver), and other units, such as the processing unit, can be replaced by a processor to respectively perform the transceiver operations and related processing operations in each method embodiment.
  • the device 900 here is embodied in the form of a functional unit.
  • the term "unit” here may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (such as a shared processor, a dedicated processor or a group processor, etc.) and a memory for executing one or more software or firmware programs, a merged logic circuit and/or other suitable components that support the described functions.
  • ASIC application specific integrated circuit
  • processor such as a shared processor, a dedicated processor or a group processor, etc.
  • memory for executing one or more software or firmware programs, a merged logic circuit and/or other suitable components that support the described functions.
  • the device 900 can be specifically a terminal device in the above-mentioned embodiment or a chip applied to the terminal device, and can be used to execute the process corresponding to the terminal device in the above-mentioned method embodiment, or the device 900 can be specifically a network device in the above-mentioned embodiment or a chip applied to the network device, and can be used to execute the process corresponding to the network device in the above-mentioned method embodiment. To avoid repetition, it is not repeated here.
  • the above-mentioned transceiver unit can also be a transceiver circuit (for example, it can include a receiving circuit and a sending circuit), and the processing unit can be a processing circuit.
  • the device 900 can be a terminal device or a network device in the aforementioned embodiment, or it can be a chip or a chip system, for example: a system on chip (SoC).
  • SoC system on chip
  • the transceiver unit can be an input and output circuit, a communication interface.
  • the processing unit is a processor or a microprocessor or an integrated circuit integrated on the chip. This is not limited here.
  • Figure 10 is another schematic structural diagram of a communication device provided in an embodiment of the present application.
  • the communication device 1000 includes: at least one processor 1010 and a transceiver 1020, the transceiver 1020 is used to send signals and/or receive signals, and the processor 1010 is used to execute instructions so that the functions of the terminal device in the methods shown in Figures 2 to 3 above are implemented, or the functions of the network device in the methods shown in Figures 2 to 3 above are implemented.
  • the communication device 1000 further includes a memory 1030 for storing instructions.
  • the processor 1010 is coupled to the memory and is configured to execute instructions stored in the memory to control the transceiver 1020 to send and/or receive signals.
  • processor 1010 and the memory 1030 can be combined into one processing device, and the processor 1010 is used to execute the program code stored in the memory 1030 to implement the above functions.
  • the memory 1030 can also be integrated into the processor 1010, or independent of the processor 1010.
  • the transceiver 1020 may include a receiver (or receiver) and a transmitter (or transmitter).
  • the transceiver 1020 may further include an antenna, and the number of antennas may be one or more.
  • the transceiver 1020 may also be a communication interface or an interface circuit.
  • the chip When the communication device 1000 is a chip, the chip includes a transceiver unit and a processing unit, wherein the transceiver unit may be an input/output circuit or a communication interface; and the processing unit may be a processor or a microprocessor or an integrated circuit integrated on the chip.
  • the present application also provides a processing device, including a processor and an interface.
  • the processor can implement the method in the above method embodiment.
  • the above-mentioned processing device can be a chip.
  • the processing device can be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), a central processor unit (CPU), a network processor (NP), a digital signal processor (DSP), a microcontroller unit (MCU), a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processor
  • MCU microcontroller unit
  • PLD programmable logic device
  • each step of the above method can be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the steps of the method disclosed in conjunction with the embodiment of the present application can be directly embodied as a hardware processor for execution, or a combination of hardware and software modules in a processor for execution.
  • the software module can be located in a storage medium mature in the art such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory or an electrically erasable programmable memory, a register, etc.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the above method in conjunction with its hardware. To avoid repetition, it is not described in detail here.
  • FIG11 is another schematic structural diagram of a communication device provided in an embodiment of the present application.
  • the device 1100 includes a processing circuit 1110 and a transceiver circuit 1120, and the processing circuit 1110 is used to execute instructions so that the functions of the terminal device in the method shown in FIG2 to FIG3 are implemented, or the functions of the network device in the method shown in FIG2 to FIG3 are implemented.
  • the processing circuit 1110 and the transceiver circuit 1120 communicate with each other through an internal connection path, and the processing circuit 1110 can control the transceiver circuit 1120 to send and/or receive signals.
  • the device 1100 may further include a storage medium 1130, which communicates with the processing circuit 1110 and the transceiver circuit 1120 via an internal connection path.
  • the storage medium 1130 is used to store instructions, and the processing circuit 1110 may execute the instructions stored in the storage medium 1130.
  • the apparatus 1100 is used to implement the process corresponding to the terminal device in the above method embodiment.
  • the apparatus 1100 is used to implement a process corresponding to the network device in the above method embodiment.
  • the present application also provides a computer program product, which includes instructions.
  • the instructions are executed by the processor, the functions of the terminal device in the method shown in Figures 2 to 3 above are implemented, or the functions of the network device in the method shown in Figures 2 to 3 above are implemented.
  • the present application also provides a computer-readable storage medium, which includes instructions.
  • the instructions are executed by a processor, the functions of the terminal device in the method shown in Figures 2 to 3 above are implemented, or the functions of the network device in the method shown in Figures 2 to 3 above are implemented.
  • the present application also provides a system, which includes one or more terminal devices and one or more network devices mentioned above.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions can be transmitted from a website site, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) mode to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center that includes one or more available media integrated.
  • the available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a magnetic tape), an optical medium (e.g., a high-density digital video disc (DVD)), or a semiconductor medium (e.g., a solid state disk (SSD)), etc.
  • a magnetic medium e.g., a floppy disk, a hard disk, a magnetic tape
  • an optical medium e.g., a high-density digital video disc (DVD)
  • DVD high-density digital video disc
  • SSD solid state disk
  • the size of the sequence number of each process does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • the names of all nodes and messages in this application are merely names set by this application for the convenience of description. The names in the actual network may be different. It should not be understood that this application limits the names of various nodes and messages. On the contrary, any name with the same or similar function as the node or message used in this application is regarded as the method or equivalent replacement of this application, and is within the scope of protection of this application.
  • pre-setting can be achieved by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in a device (for example, a terminal device).
  • a device for example, a terminal device.
  • the present application does not limit its specific implementation method, such as the preset rules and preset constants in the embodiments of the present application.
  • system and “network” are often used interchangeably in this article.
  • the term “and/or” in this article is only a description of the association relationship of associated objects, indicating that there can be three relationships.
  • a and/or B can mean: A exists alone, A and B exist at the same time, and B exists alone.
  • At least one of" or “at least one of" herein refers to all or any combination of the listed items.
  • at least one of A, B, and C or “at least one of A, B, or C” may refer to the following six situations: A exists alone, B exists alone, C exists alone, A and B exist at the same time, B and C exist at the same time, and A, B, and C exist at the same time.
  • At least one herein refers to one or more.
  • “More than one” refers to two or more.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean determining B only according to A, but B can also be determined according to A and/or other information.
  • the terms “include”, “comprises”, “has” and their variations all mean “including but not limited to”, unless otherwise specifically stated. Tune.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application can be essentially or partly embodied in the form of a software product that contributes to the prior art.
  • the computer software product is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种信息处理的方法和装置,该方法包括:根据终端设备的至少两组天线端口分别确定至少两组信道时域相关信息,并将该至少两组信道时域相关信息发送给网络设备或者将根据该至少两组信道时域相关信息确定的一组信道时域相关信息发送给网络设备。根据上述方案使得网络设备可以获得更准确的信道时域相关信息,从而更好的服务终端设备,提高性能。

Description

一种信息处理的方法和装置
本申请要求于2022年11月04日提交国家知识产权局、申请号为202211377789.3、发明名称为“一种信息处理的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,更具体地,涉及一种信息处理的方法和装置。
背景技术
在终端设备移动性场景下,终端设备在不同时刻的信道可能会发生剧烈变化,致使性能下降,也即“信道老化”问题。为了避免性能下降,终端设备可以联合多个时刻或多个OFDM符号的下行信道测量信息(例如,信道状态信息参考信号(channel state information reference signal,CSI-RS)、跟踪参考信号(tracking reference signal,TRS))将信道时域相关信息反馈给网络设备。信道时域相关信息能够指示信道随时间的变化或随时间的变化的快慢,网络设备会基于信道时域相关信息对下行参考信号的配置或下行预编码的方式进行相应地动态调整,从而更好地服务当前终端设备。
相关的技术方案中,终端设备在计算信道时域相关信息的过程中,未考虑终端设备的天线端口的接收方式,导致计算得到的信道时域相关信息的准确性较差,从而影响网络设备的配置或决策,降低了性能。
因此,如何提高终端设备向网络设备反馈的信道时域相关信息的准确性成为亟需要解决的技术问题。
发明内容
本申请实施例提供一种信息处理的方法和装置,能够使得网络设备可以获得更准确的信道时域相关信息,从而更好的服务终端设备,提高性能。
第一方面,提供了一种信息处理的方法,该方法可以由终端设备执行,也可以由配置于终端设备中的芯片或电路执行,本申请不作限定。
该方法包括:根据终端设备的至少两组天线端口分别确定至少两组信道时域相关信息,并将该至少两组信道时域相关信息发送给网络设备或者将根据该至少两组信道时域相关信息确定的一组信道时域相关信息发送给网络设备,其中,每组信道时域相关信息与该终端设备的每组天线端口一一对应,该终端设备的每组天线端口包括至少一个天线端口,每组信道时域相关信息包括M个信道时域相关信息,该M个该信道时域相关信息用于指示该T个时刻或T个正交频分复用OFDM符号的信道之间的相关性。
根据上述方案,可以基于终端设备的至少两组天线端口分别向网络设备反馈至少两组信道时域相关信息,或根据该至少两组信道时域相关信息确定的一组信道时域相关信息。终端设备不同的天线端口由于不同的接收信道功率或信噪比或随机相位噪声,再加上终端设备的天线端口排布位置的多样性,不同的天线端口可能会得到不同的信道时域相关信息,因此,将至少两组的天线端口对应的至少两组信道时域相关信息全部反馈给网络设备,或者将根据该至少两组信道时域相关信息确定的一组信道时域相关信息反馈给网络设备,这样,可以提高终端设备反馈给网络设备的信道时域相关信息的准确性,从而可以更准确的反映出信道随时间的变化特性。
第二方面,提供了一种信息处理的方法,该方法可以由终端设备执行,也可以由配置于终端设备中的芯片或电路执行,本申请不作限定。
该方法包括:根据终端设备的至少两个天线端口确定一组信道时域相关信息,并将该一组信道时域相关信息上报给网络设备,其中,该一组信道时域相关信息中包括M个信道时域相关信息,每个该信道时域相关信息是根据该至少两个天线端口确定的,该M个信道时域相关信息用于指示该T个时刻 或T个正交频分复用OFDM符号信道之间的相关性。
根据上述方案,终端设备向网络设备反馈的一组信道时域相关信息中的每个信道时域相关信息是根据至少两个天线端口确定的,也即考虑了终端设备的至少两个天线端口对应的信道时域相关信息,在计算每个信道时域相关信息时可以进行终端设备的不同天线端口之间的平均,增加了每个信道时域相关信息计算的样本数,从而实现了对每个信道时域相关信息的计算噪声进行降噪的功能,提高了终端设备反馈给网络设备的信道时域相关信息的准确性,从而可以更准确的反映出信道随时间的变化特性。
结合第一方面或第二方面,在第一方面或第二方面的某些实现方式中,该信道时域相关信息包括信道时域相关系数或该信道时域相关系数的幅度。
结合第一方面,在第一方面的某些实现方式中,根据每组天线端口中包括的至少两个天线端口确定每组信道时域相关信息,每组该道时域相关信息中包括M个信道时域相关信息,M个信道时域相关信息用于指示T个时刻或T个正交频分复用OFDM符号的信道之间的相关性,每个该信道时域相关信息是根据该至少两个天线端口确定的。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:确定至少一个置信度信息,该至少一个置信度信息与该一组信道时域相关信息对应,该至少一个置信度信息用于指示该一组信道时域相关信息的置信度。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:向该网络设备发送该一个置信度信息。
结合第二方面,在第二方面的某些实现方式中,根据该一组信道时域相关信息指示的信道功率确定该至少一个置信度信息;或者根据该一组信道时域相关信息指示的信道幅度确定该至少一个置信度信息;或者根据该一组信道时域相关信息指示的信道接收信噪比以及所述天线端口数量确定该至少一个置信度信息;或者根据该一组信道时域相关信息对应的时域相关信息信噪比确定该至少一个置信度信息。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:确定至少两个置信度信息,该至少两个置信度信息分别与该至少两组信道时域相关信息对应,该至少两个置信度信息分别用于指示对应的该至少两组信道时域相关信息的置信度。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:向所述网络设备发送所述至少两个置信度信息。
结合第一方面,在第一方面的某些实现方式中,根据所述至少两组信道时域相关信息对应的信道功率确定所述至少两个置信度信息;或者根据所述至少两组信道时域相关信息对应的信道幅度确定所述至少两个置信度信息;或者根据所述至少两组信道时域相关信息对应的信道接收信噪比以及所述天线端口数量确定所述至少两个置信度信息;或者根据所述至少两组信道时域相关信息对应的时域相关信息信噪比确定所述至少两个置信度信息。
结合第一方面,在第一方面的某些实现方式中,根据该至少两组信道时域相关信息对应的置信度,从该至少两组信道时域相关信息中选择一组信道时域相关信息作为该一组信道时域相关信息;或根据该至少两组信道时域相关信息对应的置信度,对该至少两组信道时域相关信息进行加权平均,得到该一组信道时域相关信息;或所述一组信道时域相关信息为所述至少两组信道时域相关信息的算术平均。
结合第一方面或第二方面,在第一方面或第二方面的某些实现方式中,该方法还包括:向该网络设备发送该一组信道时域相关信息中的最大信道时域相关信息以及M-1个归一化结果,该M-1个归一化结果是对该一组信道时域相关信息中除该最大信道时域相关信息之外的其他M-1个信道时域相关信息向所述最大信道时域相关信息进行归一化后得到的结果。
结合第一方面或第二方面,在第一方面或第二方面的某些实现方式中,该最大信道时域相关信息为该一组信道时域相关信息中最小时间间隔或时间差或OFDM符号间隔对应的信道时域相关信息。
结合第一方面或第二方面,在第一方面或第二方面的某些实现方式中,该方法还包括:向该网络设备发送该一组信道时域相关信息中最大信道时域相关信息对应的时间间隔或时间差或OFDM符号间隔。
应理解,上述实现方式中,最大信道时域相关信息不是该一组信道时域相关信息中最小时间间隔 或时间差或OFDM符号间隔对应的信道时域相关信息。
结合第一方面或第二方面,在第一方面或第二方面的某些实现方式中,该方法还包括:采用L1个比特对该一组信道时域相关信息中的最大信道时域相关信息进行量化;采用L2个比特对该一组信道时域相关信息中除该最大信道时域相关信息之外的其他M-1个信道时域相关信息进行量化,该L2小于或等于L1。
结合第一方面或第二方面,在第一方面或第二方面的某些实现方式中,根据量化比特数L与第一信道时域相关信息确定第一信息,该第一信息为L个比特,该第一信息用于指示该第一信道时域相关信息对应第一序列中的值,该第一信道时域相关信息为该最大信道时域相关信息或M-1个信道时域相关信息中的一个信道时域相关信息。
结合第一方面或第二方面,在第一方面或第二方面的某些实现方式中,该第一序列为或者为
结合第一方面或第二方面,在第一方面或第二方面的某些实现方式中,该第一序列为20,2-1,…,2-(L-1);或者为2-1,2-2,…,2-L
第三方面,提供了一种通信的方法,该方法可以由网络设备执行,也可以由配置于网络设备中的芯片或电路执行,本申请不作限定。
该方法包括:接收终端设备发送的至少两组信道时域相关信息或一组信道时域相关信息,根据该至少两组信道时域相关信息或该一组信道时域相关信息,对该终端设备进行配置,其中,该至少两组信道时域相关信息是该终端设备根据该终端设备的至少两组天线端口分别确定的,每组信道时域相关信息与该终端设备的每组天线端口一一对应,该终端设备的每组天线端口包括至少一个天线端口,每组信道时域相关信息包括M个信道时域相关信息,该M个该信道时域相关信息用于指示该T个时刻或T个正交频分复用OFDM符号的信道之间的相关性。
第三方面的各种实现方式是与第一方面或第二方面的各种实现方式对应的网络设备的方法,关于第三方面的各种实现方式的有益技术效果,可以参考第一方面或第二方面的相关实现方式的说明,在此不予以赘述。
结合第三方面,在第三方面的某些实现方式中,根据该至少两组信道时域相关信息或该一组信道时域相关信息,对该终端设备进行下行参考信号的配置或对下行预编码的方式进行相应地动态调整。
结合第三方面,在第三方面的某些实现方式中,该信道时域相关信息包括信道时域相关系数或该信道时域相关系数的幅度。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:接收该终端设备发送的至少两个置信度信息或至少一个置信度信息,其中,该至少两个置信度信息分别用于指示对应的该至少两组信道时域相关信息的置信度,该至少一个置信度信息用于指示该一组信道时域相关信息的置信度。
结合第三方面,在第三方面的某些实现方式中,如果接收到的是该终端设备发送的该至少两组信道时域相关信息,该方法还包括:根据该至少两组信道时域相关信息对应的置信度,从该至少两组信道时域相关信息中选择一组信道时域相关信息作为该一组信道时域相关信息;或根据该至少两组信道时域相关信息对应的置信度,对该至少两组信道时域相关信息进行加权平均,得到该一组信道时域相关信息;或对所述至少两组信道时域相关信息进行算术平均得到所述第一信道时域相关信息。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:接收该终端设备发送的该一组信道时域相关信息中的最大信道时域相关信息以及M-1个归一化结果,该M-1个归一化结果是对该一组信道时域相关信息中除该最大信道时域相关信息之外的其他M-1个信道时域相关信息向所述最大信道时域相关信息进行归一化后得到的结果。
结合第三方面,在第三方面的某些实现方式中,该最大信道时域相关信息为该一组信道时域相关信息中最小时间间隔或时间差或OFDM符号间隔对应的信道时域相关信息。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:接收该终端设备发送的该最大信道时域相关信息对应的时间间隔或时间差或OFDM符号间隔。
应理解,上述实现方式中,最大信道时域相关信息不是该一组信道时域相关信息中最小时间间隔 或时间差或OFDM符号间隔对应的信道时域相关信息。
第四方面,提供一种通信装置,该通信装置具有实现第一方面,或第一方面的任一可能的实现方式中的方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。
第五方面,提供一种通信装置,该通信装置具有实现第二方面,或第二方面的任一可能的实现方式中的方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。
第六方面,提供一种通信装置,该通信装置具有实现第三方面,或第三方面的任一可能的实现方式中的方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。
第七方面,提供一种通信装置,包括处理器和存储器。可选地,还可以包括收发器。其中,存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,并控制收发器收发信号,以使通信装置执行如第一方面,或第一方面中的任一方面的任一可能的实现方式中的方法。
示例性地,该通信装置为终端设备。
第八方面,提供一种通信装置,包括处理器和存储器。可选地,还可以包括收发器。其中,存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,并控制收发器收发信号,以使通信装置执行如第二方面,或第二方面中的任一方面的任一可能的实现方式中的方法。
示例性地,该通信装置为终端设备。
第九方面,提供一种通信装置,包括处理器和存储器。可选地,还可以包括收发器。其中,存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,并控制收发器收发信号,以使通信装置执行如第三方面,或第三方面中的任一方面的任一可能的实现方式中的方法。
示例性地,该通信装置为网络设备。
第十方面,提供一种通信装置,包括处理器和通信接口,该通信接口用于接收数据和/或信息,并将接收到的数据和/或信息传输至该处理器,该处理器处理该数据和/或信息,以及,通信接口还用于输出经处理器处理之后的数据和/或信息,以使得如第一方面,或第一方面中的任一方面的任一可能的实现方式中的方法被执行。
其中,该通信装置可以为应用于终端设备的芯片。
第十一方面,提供一种通信装置,包括处理器和通信接口,该通信接口用于接收数据和/或信息,并将接收到的数据和/或信息传输至该处理器,该处理器处理该数据和/或信息,以及,通信接口还用于输出经处理器处理之后的数据和/或信息,以使得如第二方面,或第二方面中的任一方面的任一可能的实现方式中的方法被执行。
其中,该通信装置可以为应用于终端设备的芯片。
第十二方面,提供一种通信装置,包括处理器和通信接口,该通信接口用于接收数据和/或信息,并将接收到的数据和/或信息传输至该处理器,该处理器处理该数据和/或信息,以及,通信接口还用于输出经处理器处理之后的数据和/或信息,以使得如第三方面,或第三方面中的任一方面的任一可能的实现方式中的方法被执行。
其中,该通信装置可以为应用于网络设备的芯片。
第十三方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得如第一方面或第二方面或第三方面,或这些方面中的任一方面的任一可能的实现方式中的方法被执行。
第十四方面,提供一种计算机程序产品,该计算机程序产品包括计算机程序代码,当该计算机程序代码在计算机上运行时,使得如第一方面或第二方面或第三方面,或这些方面中的任一方面的任一可能的实现方式中的方法被执行。
第十五方面,提供一种无线通信系统,包括如第四方面或第五方面该的通信装置,和/或如第六方面该的通信装置。
附图说明
图1是适用于本申请实施例的一种通信系统的示意图。
图2是本申请实施例提供的一种信息处理的方法的示意性流程图。
图3是本申请实施例提供的另一种信息处理的方法的示意性流程图。
图4是本申请实施例提供的一种多端口信道串联的示意图。
图5是本申请实施例提供的一种多端口信道并联的示意图。
图6是本申请实施例提供的一种多端口信道并串联结合的示意图。
图7是本申请实施例提供的一种信道时域相关信息随着时间间隔或时间差或OFDM符号间隔的变化示意图。
图8是本申请实施例提供的另一种信道时域相关信息随着时间间隔或时间差或OFDM符号间隔的变化示意图。
图9是本申请实施例提供的一种通信装置的示意性框图。
图10是本申请实施例提供的通信装置的又一示意性结构图。
图11是本申请实施例提供的通信装置的又一示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th Generation,5G)移动通信系统或新空口(new radio,NR)。其中,5G移动通信系统可以是非独立组网(non-standalone,NSA)或独立组网(standalone,SA)。
本申请提供的技术方案还可以应用于机器类通信(machine type communication,MTC)、机器间通信长期演进技术(long term evolution-machine,LTE-M)、设备到设备(device-to device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)网络或者其他网络。其中,IoT网络例如可以包括车联网。其中,车联网系统中的通信方式统称为车到其他设备(vehicle to X,V2X,X可以代表任何事物),例如,该V2X可以包括:车辆到车辆(vehicle to vehicle,V2V)通信,车辆与基础设施(vehicle to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
本申请提供的技术方案还可以应用于未来的通信系统,如第六代(6th Generation,6G)移动通信系统等。本申请对此不作限定。
在本申请实施例中,终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。
终端设备可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例可以为:手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑(如笔记本电脑、掌上电脑等)、移动互联网设备(mobile internet device,MID)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端(例如,电视机等家电、智慧盒子、游戏机)、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。
其中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,终端设备还可以是物联网(Internet of things,IoT)系统中的终端设备。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。IoT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。
在本申请实施例中,该终端设备还可以是车辆或整车,通过车联网可以实现通信,也可以是位于车辆内(例如放置在车辆内或安装在车辆内)的部件,即车载终端设备、车载模块或者车载单元(on-board unit,OBU)。
此外,终端设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
本申请中,用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片系统、硬件电路、软件模块、或硬件电路加软件模块,该装置可以被安装在终端设备中或可以与终端设备匹配使用。本公开提供的技术方案中,以用于实现终端设备的功能的装置是终端设备,终端设备是UE为例,描述本公开提供的技术方案。
本申请实施例中,网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU),或者下一代通信6G系统中的基站等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(medium access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU和CU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
网络设备为小区提供服务,终端设备通过网络设备分配的传输资源(例如,频域资源,或者说,频谱资源)与小区进行通信,该小区可以属于宏基站(例如,宏eNB或宏gNB等),也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
本申请中,用于实现接入网设备的功能的装置可以是接入网设备;也可以是能够支持接入网设备实现该功能的装置,例如芯片系统、硬件电路、软件模块、或硬件电路加软件模块,该装置可以被安装在接入网设备中或可以与接入网设备匹配使用。在本申请提供的技术方案中,以用于实现接入网设 备的功能的装置是接入网设备,接入网设备是基站为例,描述本申请提供的技术方案。
图1是适用于本申请实施例的通信方法的通信系统100的示意图。如图1所示,该通信系统100可以包括至少一个网络设备,例如图1所示的网络设备110;该通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备120。网络设备110与终端设备120可通过无线链路通信。各通信设备,如网络设备110或终端设备120,均可以配置多个天线。对于该通信系统中的每一个通信设备而言,所配置的多个天线可以包括至少一个用于发送信号的发送天线和至少一个用于接收信号的接收天线。因此,该通信系统中的各通信设备之间,网络设备110与终端设备120之间,可通过多天线技术通信。
应理解,图1仅为便于理解而示例的简化示意图,该通信系统中还可以包括其他网络设备或者还可以包括其他终端设备,图1中未予以画出。
上述图1所示的本申请实施例能够应用的架构仅是一种举例说明,适用本申请实施例的架构并不局限于此,任何能够实现上述各个设备的功能的架构都适用于本申请实施例。
还应理解,上述命名仅为便于区分不同的功能而定义,不应对本申请构成任何限定。本申请并不排除在5G网络以及未来其它的网络中采用其他命名的可能。例如,在6G网络中,上述各个设备中的部分或全部可以沿用5G中的术语,也可能采用其他名称等。图1中的各个设备之间的接口名称只是一个示例,具体实现中接口的名称可能为其他的名称,本申请对此不作具体限定。此外,上述各个设备之间的所传输的消息(或信令)的名称也仅仅是一个示例,对消息本身的功能不构成任何限定。
为了提高信号传输质量或者速率,网络设备在向终端设备传输数据之前,需要对无线信道进行信道估计。网络设备可以根据来自终端设备的探测参考信号(sounding reference signal,SRS)进行信道估计,得到上行信道状态信息(channel state information,CSI),该信道状态信息表征网络设备接收到参考信号的时刻(时刻1)的信道的状态。在时分复用(time division duplexing,TDD)系统中,无线信道的上下行具有互异性,因此在信道估计过程中,网络设备根据该上行CSI获得下行CSI,利用下行CSI计算出进行数据传输所使用的下行预编码,并使用该下行预编码(在时刻2)向终端设备传输数据。
应理解,信号通过无线信道由发射端到接收端的过程中,由于可能经历散射、反射以及能量随距离的衰减,从而产生衰落。CSI用于表征无线信道的特征,可以包括预编码矩阵指示(pre-coding matrix indicator,PMI)、信道质量指示(channel quantity indicator,CQI)、CSI-RS资源指示(CSI-RS resource indicator,CRI)、同步信号和物理广播信道块(synchronization signal and physical broadcast channel block,SSB)资源指示(SSB resource indicator,SSBRI)、层指示(layer indicator,LI)、秩指示(rank indicator,RI)、参考信号接收功率(reference signal received power,RSRP)和信号与干扰噪声比(signal to interference plus noise ratio,SINR)中的至少一种。CSI可由终端设备通过物理上行控制信道(physical uplink control channel,PUCCH)或物理上行共享信道(physical uplink share channel,PUSCH)发送给网络设备。
由于时刻1和时刻2存在时延,在终端设备移动性场景下,终端设备在时刻2的信道相比于时刻1可能已经产生了剧烈变化,导致了下行预编码与时刻2的终端设备的信道不匹配,致使性能下降,也即“信道老化”问题。
为了避免性能下降,终端设备可以联合多个时刻的下行信道测量信息(例如,信道状态信息参考信号(channel state information reference signal,CSI-RS)、跟踪参考信号(tracking reference signal,TRS)),将信道时域相关信息反馈给网络设备。一方面,网络设备可以利用时刻1的信道,时刻1之前通过若干个参考信号得到的信道,以及信道时域相关信息预测时刻2的信道,从而克服信道老化带来的性能下降问题,提升性能。另一方面,终端设备反馈的信道时域相关信息也可以帮助网络设备进行下行参考信号的配置,从而更好地服务终端设备,提升性能。
应理解,信道时域相关信息能够指示信道随时间的变化或随时间的变化的快慢,例如网络设备确定当前终端设备信道随时间变化非常快的情况下(一般来说表征该终端设备在高速移动中),网络设备会对下行参考信号的配置或者预编码的方式或者终端设备上行反馈信道的方式进行相应地动态调整,从而更好地服务当前终端设备。
因此,为了使得网络设备更好的服务终端设备,提升性能,终端设备向网络设备上报信道时域相关信息的准确性显得尤为重要。
相关的技术方案中,通过如下公式计算信道时域相关信息。

其中,n表示子载波的数量;
Hn(t)表示t时刻或OFDM符号子载波的信道CSI;
Hn(t+τ)表示t+τ时刻或OFDM符号子载波的信道CSI;
A(t,τ)为信道时域相关信息,表示t时刻或OFDM符号至t+τ时刻或OFDM符号的时间段内信道随时间变化的剧烈程度。
上述计算信道时域相关信息的过程中,未考虑终端设备的天线端口的接收方式,导致计算得到的信道时域相关信息的准确性较差,从而影响网络设备对下行参考信号的配置或者预编码方式的确定或者信道预测,降低性能。
有鉴于此,本申请实施例提供了一种信息处理的方法,可以在终端设备计算信道时域相关信息的过程中,考虑了终端设备的天线端口的接收方式,从而提高信道时域相关信息的准确性。应理解,所述天线端口,也可以是端口,天线,接收端口,接收天线。
下面结合图2-图3,对本申请实施例提供的一种信息处理的方法进行详细描述。应理解,图2-图3的方法可以由终端设备执行,或者也可以由具有终端设备的功能的芯片执行。
图2是本申请实施例提供的一种信息处理的方法的示意性流程图。如图2所示,该方法可以包括步骤210-220,下面分别对步骤210-220进行详细描述。
步骤210:根据终端设备的至少两组天线端口分别确定至少两组信道时域相关信息。
本申请实施例中,可以将终端设备的多个天线端口分为至少两组,每组中可以包括至少一个天线端口。针对每一组天线端口而言,可以反馈一组信道时域相关信息,也即,针对终端设备的至少两组的天线端口,可以生成或确定至少两组信道时域相关信息,每一组信道时域相关信息和每一组天线端口一一对应。
其中,上述每组信道时域相关信息中可以包括多个T个时刻或T个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号对应的M个信道时域相关信息,该M个所述信道时域相关信息用于指示该T个时刻或T个OFDM符号的信道之间的相关性。
应理解,如何对终端设备的多个天线端口进行分组(也即如何将终端设备的多个天线端口划分为上述至少两组)的方式有多种,本申请实施例对此不做具体限定。一种可能的实现方式中,可以是终端设备确定分组方式,并将该分组方式反馈给网络设备的。另一种可能的实现方式中,还可以是网络设备通知终端设备进行相应的分组。另一种可能的实现方式中,还可以是终端设备和网络设备预先确定好对终端设备的多个天线端口的分组方式。
在一些实施例中,对于每一组天线端口确定一组信道时域相关信息而言,当一组中包括大于一个天线端口的情况下,可以根据该组天线端口中包括的至少两个天线端口确定。下面会结合具体的公式进行详细描述,此处不再赘述。
步骤220:向网络设备发送所述至少两组信道时域相关信息或一组信道时域相关信息。
本申请实施例中,终端设备可以向网络设备发送上述确定的至少两组信道时域相关信息,或者还可以向网络设备发送根据所述至少两组信道时域相关信息确定的一组信道时域相关信息,本申请实施例对此不做具体限定。
一个示例,如果终端设备向网络设备发送的是一组信道时域相关信息,那么该终端设备还需要根据至少两组信道时域相关信息确定出一组信道时域相关信息。具体的实现方式有多种,一种可能的实现方式中,终端设备可以根据至少两组信道时域相关信息对应的置信度,从所述至少两组信道时域相关信息中选择一组信道时域相关信息作为所述一组信道时域相关信息。一种可能的实现方式中,终端设备可以根据至少两组信道时域相关信息对应的置信度,对所述至少两组信道时域相关信息进行加权 平均,得到所述一组信道时域相关信息。一种可能的实现的方式中,终端设备可以根据至少两组信道时域相关信息计算其算术平均得到所述一组信道时域相关信息。
另一个示例,如果终端设备向网络设备发送的是至少两组信道时域相关信息。一种可能的实现的方式中,网络设备可以根据至少两组信道时域相关信息计算其算术平均得到所述一组信道时域相关信息。该终端设备还可以向网络设备发送至少两组信道时域相关信息分别对应的至少两个置信度信息。网络设备可以根据至少两组信道时域相关信息以及对应的置信度确定出一组信道时域相关信息。具体的实现方式有多种,一种可能的实现方式中,网络设备可以根据至少两组信道时域相关信息对应的置信度,从所述至少两组信道时域相关信息中选择一组置信度最高的信道时域相关信息作为所述一组信道时域相关信息。另一种可能的实现方式中,网络设备可以根据至少两组信道时域相关信息对应的置信度,对所述至少两组信道时域相关信息进行加权平均,得到所述一组信道时域相关信息。
上述技术方案中,可以基于终端设备的至少两组天线端口分别向网络设备反馈至少两组信道时域相关信息,或根据该至少两组信天线端口确定的一组信道时域相关信息。终端设备不同的天线端口由于不同的接收信道功率或信噪比或随机相位噪声,再加上终端设备的天线端口排布位置的多样性,不同的天线端口可能会得到不同的信道时域相关信息,因此,将至少两组的天线端口对应的至少两组信道时域相关信息全部反馈给网络设备,或者将根据该至少两组信道时域相关信息确定的一组信道时域相关信息反馈给网络设备,这样,可以提高终端设备反馈给网络设备的信道时域相关信息的准确性,从而可以更准确的反映出信道随时间的变化特性。
图3是本申请实施例提供的另一种信息处理的方法的示意性流程图。如图3所示,该方法可以包括步骤310-320,下面分别对步骤310-320进行详细描述。
步骤310:根据终端设备的至少两个天线端口分别对应的信道时域相关信息确定一组信道时域相关信息。
本申请实施例中可以根据终端设备的至少两个天线端口分别对应的信道时域相关信息确定一组信道时域相关信息,该一组信道时域相关信息中包括T个时刻或T个OFDM符号分别对应的M个信道时域相关信息。每个信道时域相关信息是根据至少两个天线端口确定的,M个信道时域相关信息用于指示T个时刻或T个OFDM符号的信道之间的相关性。
步骤320:向网络设备发送一组信道时域相关信息。
终端设备在获得上述一组信道时域相关信息后,可以将该一组信道时域相关信息发送给网络设备。
上述技术方案中,终端设备向网络设备反馈的一组信道时域相关信息中的每个信道时域相关信息是根据联合平均至少两个天线端口对应的信道确定的,也即考虑了终端设备的至少两个天线端口对应的信道时域相关信息,等效于在计算每个信道时域相关信息时进行了终端设备的不同天线端口之间的平均,增加了每个信道时域相关信息计算的样本数,从而实现了对每个信道时域相关信息的计算噪声进行降噪的功能,提高了终端设备反馈给网络设备的信道时域相关信息的准确性,从而可以更准确的反映出信道随时间的变化特性。
下面以终端设备有Nr个天线端口,网络设备发送TRS或CSI-RS,终端设备可以获得总共N个子载波的信道,终端设备上报τ12,…,τM这M个时间间隔或时间差或OFDM符号间隔的信道时域相关信息(例如,时域相关系数或时域相关系数的幅度)为例,结合图4-图6,对图2-图3中所示的方法的具体实现方式进行举例说明。
应理解,图4-图6的例子仅仅是为了帮助本领域技术人员理解本申请实施例,而非要将申请实施例限制于所示例的具体数值或具体场景。本领域技术人员根据下面所给出的图4-图6的例子,显然可以进行各种等价的修改或变化,这样的修改和变化也落入本申请实施例的范围内。
一个示例,对应于步骤310,以终端设备根据该终端设备的至少两个天线端口对应的信道时域相关信息联合平均确定一组信道时域相关信息R1*M={R(τ1),R(τ2),……,R(τM)}为例。其中,R1*M为一组信道时域相关信息,该组信道时域相关信息中包括M个信道时域相关信息,分别为(τM)}R(τ1),R(τ2),……,R(τM),τ1,τ2,……,τM为M个时间间隔或时间差或OFDM符号间隔。
例如,以R(τ1),R(τ2),…,R(τM)为时域相关系数的幅度,本申请实施例可以通过如下公式计算得到 R(τi)。

其中,R(τi)表示t时刻至t+τi时刻或OFDM符号t至OFDM符号t+τi的时间段内信道随时间变化的剧烈程度(信道时域相关信息);
hk,n(t)表示终端设备的天线端口k在t时刻或OFDM符号t对应的子载波n的信道信息;
hk,n(t+τi)表示终端设备的天线端口k在t+τi时刻或OFDM符号t+τi对应的子载波n的信道信息;
考虑到终端的天线端口可能有不同的接收相位噪声,本申请实施例也可以通过如下公式进行计算:

又如,以R(τ1),R(τ2),…,R(τM)为时域相关系数为例,本申请实施例可以通过如下公式计算得到R(τi)。

应理解,上述hk,n(t)可以是终端设备通过t时刻网络设备发送的TRS或CSI-RS信号获得的,上述hk,n(t+τi)可以是终端设备通过t+τi时刻网络设备发送的TRS或CSI-RS信
号获得的。
举例说明,如图4所示,以Nr=4为例,假设终端设备有4个天线端口,R(τ1)指示的t时刻至t+τ1时刻的时间段内信道随时间变化的剧烈程度(信道时域相关信息),该R(τ1)是对终端设备的h1~h4的4个天线端口的信道时域相关信息进行联合平均。也即该实现方式将终端设备的不同天线端口(h1~h4)的信道向量进行了“串联”,将单端口的信道扩展为多端口的信道,从原来的N样本相关提升为N*Nr个样本求相关,等效于在计算信道时域相关信息时进行了不同天线端口间的平均,从而实现了降噪的功能。对Nr个端口进行串联,等效于信噪比(signal noise ratio,SNR)提升了δ=10log10Nr dB。
另一个示例,对应于步骤210,以终端设备根据该终端设备的至少两组天线端口对应的信道时域相关信息确定至少两组信道时域相关信息为例。
一种情况,每组天线端口包括一个天线端口,也可以理解为将终端设备的不同天线端口的信道向量进行了“并联”。这种实现方式中,终端设备可以向网络设备反馈一个信道时域相关信息矩阵也即终端设备的每个天线端口反馈各自对应的信道时域相关信息,总共反馈Nr组信道时域相关信息。
例如,以Nr组信道时域相关信息中的每个元素rk,m为时域相关系数的幅度,本申请实施例可以通过如下公式计算得到rk,m
其中,k=1,2,…,Nr,m=1,2,…,M。
又如,以Nr组信道时域相关信息中的每个元素rk,m为时域相关系数,本申请实施例可以通过如下公式计算得到rk,m
举例说明,如图5所示,以Nr=4为例,假设终端设备有4个天线端口,每个天线端口可以反馈一组信道时域相关信息,4个天线端口可以反馈4组信道时域相关信息。也即该实现方式将终端设备的 不同天线端口(h1~h4)的信道向量进行了“并联”,每个天线端口反馈各自对应的信道时域相关信息。
上述终端设备的天线端口并联的信道时域相关信息的反馈方式,考虑了由于终端设备的天线排布,不同的天线端口的信道可能会的得到不同的信道时域相关信息,提升了性能。
另一种情况,每组天线端口包括至少两个天线端口。假设将终端设备的多个天线端口分为G组,其中第g组包含Ng个天线端口,每组天线端口反馈一组信道时域相关信息。这种实现方式中,终端设备可以向网络设备反馈一个信道时域相关信息矩阵也即总共反馈G组信道时域相关信息。
例如,以G组信道时域相关信息中的每个元素rg,m为时域相关系数的幅度,本申请实施例可以通过如下公式计算得到rg,m

其中,g=1,2,…,G,m=1,2,…,M。
考虑到统一组内的终端的天线端口可能有不同的接收相位噪声,本申请实施例也可以通过如下公式进行计算:

又如,以Nr组信道时域相关信息中的每个元素rg,m为时域相关系数,本申请实施例可以通过如下公式计算得到rg,m

举例说明,如图6所示,以Nr=4,G=2,N1=N2=2为例。假设终端设备有4个天线端口,将该4个天线端口分为2组,每组天线端口中包括2个天线端口(第一组天线端口中包括天线端口h1~h2,第二组天线端口中包括天线端口h3~h4),2组天线端口可以反馈2组信道时域相关信息。对于1组内的2个天线端口而言,可以根据该2个天线端口对应的信道时域相关信息联合平均确定1组信道时域相关信息。也即该实现方式将终端设备的2组天线端口的信道向量进行了“并联”,而每一组内的2个天线端口的信道向量进行了“串联”。
需要说明的是,终端设备的多个天线端口信道“串联”的方式可以理解为是G=1的一种特殊形式,终端设备的多个天线端口信道“并联”的方式可以理解为是G=Nr的一种特殊形式。
如上文所述,图2和图3中示出了两种不同的信息处理的方法,如图2所示,终端设备可以向网络设备反馈至少两组信道时域相关信息或反馈根据该至少两组信道时域相关信息确定的一组信道时域相关信息,如图3所示,终端设备向网络设备反馈一组信道时域相关信息。本申请实施例中还可以通过置信度信息表征上述信道时域相关信息的置信度。下面列举几种可能的实现方式。
一种可能的实现方式中,可以通过一个置信度信息表征一组信道时域相关信息的置信度。例如,对于图2中终端设备向网络设备反馈的至少两组信道时域相关信息而言,可以通过至少两个置信度信息分别表征至少两组信道时域相关信息的置信度,每个置信度信息与每组信道时域相关信息一一对应,分别用于表示对应的那组信道时域相关信息的置信度。又如,对于图2或图3中终端设备向网络设备反馈的一组信道时域相关信息而言,可以通过一个置信度信息表征该一组信道时域相关信息的置信度。
为了便于描述,下面以至少两个置信度信息分别表征至少两组信道时域相关信息的的置信度为例进行举例说明。
作为示例,以G个参量W={w1,w2,…,wG}表示G个置信度信息,该G个置信度信息分别用于表征G组信道时域相关信息的置信度。例如,G个置信度信息中的置信度信息wg用于表征第g组信道时域相关信息的置信度。
应理解,上述置信度信息的确定方式有多种,本申请实施例对此不做具体限定。为了便于描述,下面以置信度信息wg为例,对确定上述置信度信息的几种不同的方式进行举例说明。
示例1,所述wg可以为第g组天线端口对应的信道的功率之和。举例说明,wg可以根据如下所示的公式确定。
其中,τ0=0。
示例2,所述wg可以为向最大功率归一化后的归一化功率值之和。举例说明,wg可以根据如下所示的公式确定,其中第gm组天线端口对应最大的功率和。
其中,τ0=0,Pmax可以根据如下所示的公式确定。
示例3,所述wg可以为第g组天线端口对应的信道的幅度之和。举例说明,wg可以根据如下所示的公式确定。
其中,τ0=0。
示例4,所述wg可以为向最大功率归一化后的归一化幅度值之和。举例说明,wg可以根据如下所示的公式确定,其中第gm组天线端口对应最大的幅度值之和。
其中,τ0=0,Amax可以根据如下所示的公式确定。
示例5,所述wg可以为第g组天线端口对应的信道的接收信噪比。举例说明,wg可以根据如下所示的公式确定。
其中,τ0=0,为第g组天线端口t时刻或第t个OFDM符号的信道对应的噪声功率,为第g组天线端口t,t+τ1,t+τ2,…,t+τM时刻或OFDM符号t,t+τ1,t+τ2,…,t+τM的信道对应的噪声功率总和。
示例6,所述wg可以与最大信噪比的差值的绝对值。举例说明,wg可以根据如下所示的公式确定,也即第gm组天线端口对应最大信噪比。
其中,τ0=0,为第g组天线端口t时刻或第t个OFDM符号的信道对应的噪声功率,为第g组天线端口t,t+τ1,t+τ2,…,t+τM时刻或OFDM符号t,t+τ1,t+τ2,…,t+τM的信道对应的噪声功率总和。
SNRmax可以根据如下所示的公式确定。
示例7,所述wg可以与最小信噪比的差值的绝对值。举例说明,wg可以根据如下所示的公式确定, 也即第gm组天线端口对应最小信噪比。
其中,τ0=0,为第g组天线端口t时刻或第t个OFDM符号的信道对应的噪声功率,为第g组天线端口t,t+τ1,t+τ2,…,t+τM时刻或OFDM符号t,t+τ1,t+τ2,…,t+τM的信道对应的噪声功率总和。
SNRmin可以根据如下所示的公式确定。
示例8,所述wg可以是第g组天线端口对应的时域相关信息信噪比。举例说明,wg可以根据如下所示的公式确定。
其中,τ0=0,为第g组天线端口t+τi时刻或第t+τi个OFDM符号的信道对应的噪声功率。
需要说明的是,对于上述示例2,示例4,示例6以及示例7,即和其他wg反馈的物理意义有差异的情况下,可以对采用L1比特进行量化,wg采用L2≤L1比特进行量化。也可以反馈gm以及G-1个参量w1,w2,…,wg,…,wG,其中g≠gm
应理解,对上述示例5,6,7,终端设备与网络设备还需要对得到每组时域相关信息的天线端口数进行对齐。具体的实现方式有多种,本申请实施例对此不做具体限定。一种可能的实现方式中,可以是终端设备确定每组时域相关信息的天线端口数Ng,并将该信息反馈给网络设备的。另一种可能的实现方式中,还可以是网络设备通知终端设备该信息。另一种可能的实现方式中,还可以是终端设备和网络设备预先确定好该信息。
另一种可能的实现方式中,还可以通过一个置信度信息表征一个信道时域相关信息的置信度。例如,对于图2或图3中终端设备向网络设备反馈的一组信道时域相关信息而言,可以通过至少一个置信度信息表征该组信道时域相关信息中的至少一个信道时域相关信息的置信度。又如,对于图2中终端设备向网络设备反馈的至少两组信道时域相关信息而言,假设向网络设备反馈的是G组信道时域相关信息,每组信道时域相关信息中包括M个信道时域相关信息,本申请实施例可以通过G*M个参量W={wgm}分别表征G*M个信道时域相关信息的置信度。
为了便于描述,下面以终端设备通过G*M个参量W={wgm}分别表征G*M个信道时域相关信息的置信度为例进行举例说明,其中,wgm用于表征第g组天线端口第m个信道时域相关信息的置信度。
应理解,上述置信度信息的确定方式有多种,本申请实施例对此不做具体限定。为了便于描述,下面以置信度信息wgm为例,对确定上述置信度信息的几种不同的方式进行举例说明。
其中,为第g组天线端口t时刻或第t个OFDM符号的信道对应的噪声功率,为第g组天线端口t+τm时刻或第t+τm个OFDM符号的信道对应的噪声功率。
另一种可能的实现方式中,还可以通过一个置信度信息表征一组天线端口在t时刻或OFDM符号t的信道的置信度。例如,终端设备可以确定G*T个参量w={wgt},wgt用于表征第g组天线端口t时刻或OFDM符号t的信道的置信度。具体的确定wgt的方式有多种,下面列举几种可能的实现方式。
示例1,所述wgt可以为第g组天线端口t时刻或第t个OFDM符号对应的信道的功率之和。举例说明,wgt可以根据如下所示的公式确定。
示例2,所述wgt可以为第g组天线端口t时刻或第t个OFDM符号对应的信道的功率向最大功率归一化后的归一化功率值之和。举例说明,wgt可以根据如下所示的公式确定。
其中,Pmax可以根据如下所示的公式确定,第gm组天线端口对应最大的功率和
示例3,所述wgt可以为第g组天线端口t时刻或第t个OFDM符号对应的信道的幅度之和。举例说明,wgt可以根据如下所示的公式确定。
示例4,所述wgt可以为第g组天线端口t时刻或第t个OFDM符号对应的信道的幅度向最大功率归一化后的归一化幅度值之和。举例说明,wgt可以根据如下所示的公式确定。
其中,Amax可以根据如下所示的公式确定,第gm组天线端口对应最大的幅度值之和。
示例5,所述wgt可以为第g组天线端口t时刻或第t个OFDM符号对应的信道的接收信噪比。举例说明,wgt可以根据如下所示的公式确定。
其中,为第g组天线端口t时刻或第t个OFDM符号的信道对应的噪声功率
示例6,所述wgt可以为第g组天线端口t时刻或第t个OFDM符号对应的信道接收信噪比与最大信噪比的差值的绝对值。举例说明,wg1可以根据如下所示的公式确定。
SNRmax可以根据如下所示的公式确定,其中第gm组天线对应最大的信道接收信噪比
示例7,所述wgt可以为第g组天线端口t时刻或第t个OFDM符号对应的信道的接收信噪比与最小信噪比的差值的绝对值。举例说明,wgt可以根据如下所示的公式确定。
SNRmin可以根据如下所示的公式确定,其中第gm组天线对应最小的信道接收信噪比
示例8,所述wgt可以为第g组天线端口t时刻或第t个OFDM符号对应的信道的时域相关信息信噪比。举例说明,wgt可以根据如下所示的公式确定。
在一些实施例中,终端设备通过上述方法获得G个置信度或G*M个置信度或G*T个置信度后,一种实现方式中,该终端设备可以确定根据每组信道时域相关信息对应的置信度,并基于每组信道时域相关信息对应的置信度确定一组信道时域相关信息作为最终结果,并反馈给网络设备。另一种实现方式中,该终端设备可以直接将G个置信度或G*M个置信度或G*T个置信度发送给网络设备,该网络设备可以确定根据每组信道时域相关信息对应的置信度,并基于每组信道时域相关信息对应的置信度确定一组信道时域相关信息作为最终结果。
以终端设备基于每组信道时域相关信息对应的置信度确定一组信道时域相关信息作为最终结果为例,一种实现方式中,终端设备可以基于每组信道时域相关信息对应的置信度从多组信道时域相关信息中选择置信度最高的一组作为最终结果。另一种实现方式中,终端设备可以基于每组信道时域相关信息对应的置信度对多组信道时域相关信息进行合并,得到一组信道时域相关信息作为最终结果。例如,一种可能的合并方式可以是通过置信度信息对多组信道时域相关信息进行加权平均得到一组信道时域相关信息。
可选的,在一些实施例中,为了降低信道时域相关信息的反馈开销,终端设备还可以通过对信道时域相关信息做进一步的归一化,从而降低反馈开销。下面以终端设备向网络设备反馈一组长度为M的信道时域相关信息:R(τ1),R(τ2),…,R(τM)为例,对信道时域相关信息做进一步的归一化的几种可能的实现方式进行详细描述。
一个示例,最小时间间隔或时间差或OFDM符号间隔对应最大信道时域相关信息的情况。如图7所示,一般信道时域相关信息会随着时间间隔或时间差或OFDM符号间隔增大而降低,假设τ1为最小时间间隔或时间差或OFDM符号间隔,则τ1对应的R(τ1)是R(τ1),R(τ2),…,R(τM)中最大的值。本申请实施例可以通过R(τ1)对R(τ2),…,R(τM)做进一步的归一化,得到的归一化结果为该终端设备可以向网络设备反馈R(τ1)以及归一化结果
需要说明的是,上述R(τ1)可以采用L1个比特进行量化,可以采用L2≤L1个比特进行量化。
另一个示例,最小时间间隔或时间差或OFDM符号间隔并非对应最大信道时域相关信息的情况。如图8所示,τ1为最小时间间隔或时间差或OFDM符号间隔,τ1对应的R(τ1)不是R(τ1),R(τ2),…,R(τM)中最大的值,τflag对应的R(τflag)是R(τ1),R(τ2),…,R(τM)中最大的值。本申请实施例可以通过R(τflag)对R(τ1),R(τ2),…,R(τm),…,R(τM)做进一步的归一化,得到的归一化结果为 τm≠τflag该终端设备可以向网络设备反馈τflag=argmaxτR(τ)以及归一化结果τm≠τflag
需要说明的是,上述R(τflag)可以采用L1个比特进行量化,可以采用L2≤L1个比特进行量化。
下面对如何采用L个比特对R(τflag)或归一化后的进行量化的具体实现方式进行详细描述。
一种可能的实现方式中,可以采用均匀量化的方式采用L个比特对R(τflag)或归一化后进行量化。具体的,可以将[0,1]划分为这2L个值,找到待量化的R(τflag)或归一化后值中最近的一个值相应地根据对应的L个比特得到其量化结果。一种可能的实现方式,是I或I-1对应的L位二进制形式作为量化后的L个比特。
另一种可能的实现方式中,可以采用非均匀量化的方式采用L个比特对R(τflag)或归一化后进行量化。具体的,可以将[0,1]划分为20,2-1,…,2-(L-1)或2-1,2-2,…,2-L这2L个值。也即找到待量化的R(τflag)或归一化后与20,2-1,…,2-(L-1)或2-1,2-2,…,2-L值中最近的一个值2-I,相应地根据2-I对应的L个比特得到其量化结果。一种可能的实现方式,一种可能的实现方式,是I或I-1对应的L位二进制形式作为量化后的L个比特。
以上结合了图1至图8详细描述了本申请实施例中信息处理的方法提供的技术方案,下面结合图9至图11介绍本申请实施例提供的通信装置。
图9是本申请实施例提供的一种通信装置的示意性框图。如图9所示,装置900可以包括收发单元910和处理单元920,其中,收发单元910可以与外部进行通信,例如,可以将外部接收的数据/信息输入至处理单元,又如,可以将经过处理单元处理的数据/信息输出至外部。收发单元910还可以称为通信接口或通信单元。处理单元920用于进行数据/信息的处理,使得上述图2至图3所示的方法中终端设备的功能被实现,或者使得上述图2至图3所示的方法中网络设备的功能被实现。
在一种可能的实现方式中,该装置900可以是上文图2至图3所示的方法中的终端设备,也可以是用于实现上文图2至图3所示的方法中的终端设备的功能的芯片。具体地,该装置900可实现对应于上文图2至图3所示的方法中的终端设备执行的流程,其中,收发单元910和处理单元920用于执行上述方法流程中终端设备的处理相关的操作。
一个示例,处理单元920,用于根据终端设备的至少两组天线端口分别确定至少两组信道时域相关信息,其中,每组该信道时域相关信息与该终端设备的每组天线端口一一对应,该终端设备的每组天线端口包括至少一个天线端口,每组该信道时域相关信息包括M个信道时域相关信息,该M个该信道 时域相关信息用于指示该T个时刻或T个OFDM符号的信道之间的相关性;收发单元910,用于将该至少两组信道时域相关信息发送给网络设备或者将根据该至少两组信道时域相关信息确定的一组信道时域相关信息发送给网络设备。
另一个示例,处理单元920,用于根据终端设备的至少两个天线端口确定一组信道时域相关信息,其中,该一组信道时域相关信息中包括M个信道时域相关信息,每个该信道时域相关信息是根据该至少两个天线端口对应的信道时域相关信息确定的,该M个信道时域相关信息用于指示该T个时刻或T个OFDM符号的信道之间的相关性;收发单元910,用于将该一组信道时域相关信息上报给网络设备。
可选地,该信道时域相关信息包括信道时域相关系数或该信道时域相关系数的幅度。
可选地,处理单元920,还用于根据每组天线端口中包括的至少两个天线端口确定每组该信道时域相关信息,每组该信道时域相关信息中包括M个信道时域相关信息,每个该信道时域相关信息是根据该至少两个天线端口对应的信道时域相关信息确定的。
可选地,处理单元920,还用于确定至少一个置信度信息,该至少一个置信度信息与该一组信道时域相关信息对应,该至少一个置信度信息用于指示该一组信道时域相关信息的置信度。
可选地,收发单元910,还用于向该网络设备发送该至少一个置信度信息。
可选地,处理单元920,还用于根据该一组信道时域相关信息指示的信道功率确定该至少一个置信度信息;或者根据该一组信道时域相关信息指示的信道幅度确定该至少一个置信度信息;或者根据该一组信道时域相关信息指示的信道接收信噪比确定该至少一个置信度信息;或者根据所述一组信道时域相关信息对应的时域相关信息信噪比确定所述至少一个置信度信息。
可选地,处理单元920,还用于确定至少两个置信度信息,该至少两个置信度信息分别与该至少两组信道时域相关信息对应,该至少两个置信度信息分别用于指示对应的该至少两组信道时域相关信息的置信度。
可选地,处理单元920,还用于根据所述至少两组信道时域相关信息对应的信道功率确定所述至少两个置信度信息;或者根据所述至少两组信道时域相关信息对应的信道幅度确定所述至少两个置信度信息;或者根据所述至少两组信道时域相关信息对应的信道接收信噪比以及所述天线端口数量确定所述至少两个置信度信息;或者根据所述至少两组信道时域相关信息对应的时域相关信息信噪比确定所述至少两个置信度信息。
可选地,收发单元910,还用于向该网络设备发送该至少两个置信度信息。
可选地,处理单元920,还用于根据该至少两组信道时域相关信息对应的置信度,从该至少两组信道时域相关信息中选择一组信道时域相关信息作为该一组信道时域相关信息;或根据该至少两组信道时域相关信息对应的置信度,对该至少两组信道时域相关信息进行加权平均,得到该一组信道时域相关信息;或所述一组信道时域相关信息为所述至少两组信道时域相关信息的算术平均。
可选地,收发单元910,还用于向该网络设备发送该一组信道时域相关信息中的最大信道时域相关信息以及M-1个归一化结果,该M-1个归一化结果是对该一组信道时域相关信息中除该最大信道时域相关信息之外的其他M-1个信道时域相关信息向所述最大信道时域相关信息进行归一化后得到的结果。
可选地,该最大信道时域相关信息为该一组信道时域相关信息中最小时间间隔或时间差或OFDM符号间隔对应的信道时域相关信息。
可选地,收发单元910,还用于向该网络设备发送该一组信道时域相关信息中最大信道时域相关信息对应的时间间隔或时间差或OFDM符号间隔。应理解,这种实现方式中,该最大信道时域相关信息不是该一组信道时域相关信息中最小时间间隔或时间差或OFDM符号间隔对应的信道时域相关信息。
可选地,处理单元920,还用于采用L1个比特对该一组信道时域相关信息中的最大信道时域相关信息进行量化;采用L2个比特对该一组信道时域相关信息中除该最大信道时域相关信息之外的其他M-1个信道时域相关信息进行量化,该L2小于或等于L1。
可选地,处理单元920,还用于根据量化比特数L与第一信道时域相关信息确定第一信息,所述第一信息为L个比特,所述第一信息用于指示所述第一信道时域相关信息对应第一序列中的值,所述第一信道时域相关信息为所述最大信道时域相关信息或所述M-1个信道时域相关信息中的一个信道时域相关信息。
可选地,所述第一序列为或者所述第一序列为
可选地,所述第一序列为20,2-1,…,2-(L-1);或者所述第一序列为2-1,2-2,…,2-L
应理解,上述处理单元920和收发单元910还可以分别执行上述图2至图3所示的方法中由终端设备实现的任一其他步骤、操作和/或功能,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
在另一种可能的实现方式中,该装置900可以是上文图2至图3所示的方法中的网络设备,也可以是用于实现上文图2至图3所示的方法中的网络设备的功能的芯片。具体地,该装置900可实现对应于上文图2至图3所示的方法中的网络设备执行的流程,其中,收发单元910和处理单元920用于执行上述方法流程中网络设备的处理相关的操作。
一个示例,收发单元910,用于接收终端设备发送的至少两组信道时域相关信息或一组信道时域相关信息,其中,该至少两组信道时域相关信息是该终端设备根据该终端设备的至少两组天线端口分别确定的,每组该信道时域相关信息与该终端设备的每组天线端口一一对应,该终端设备的每组天线端口包括至少一个天线端口,每组该信道时域相关信息包括M个信道时域相关信息,该M个该信道时域相关信息用于指示该T个时刻或T个OFDM符号的信道之间的相关性;处理单元920,用于根据该至少两组信道时域相关信息或该一组信道时域相关信息,对该终端设备进行配置。
可选地,处理单元920,具体用于根据该至少两组信道时域相关信息或该一组信道时域相关信息,对该终端设备进行下行参考信号的配置或对下行预编码的方式进行相应地动态调整。
可选地,该信道时域相关信息包括信道时域相关系数或该信道时域相关系数的幅度。
可选地,收发单元910,还用于接收该终端设备发送的至少两个置信度信息或至少一个置信度信息,其中,该至少两个置信度信息分别用于指示对应的该至少两组信道时域相关信息的置信度,该至少一个置信度信息用于指示该一组信道时域相关信息的置信度。
可选地,如果接收到的是该终端设备发送的该至少两组信道时域相关信息,处理单元920,还用于根据该至少两组信道时域相关信息对应的置信度,从该至少两组信道时域相关信息中选择一组信道时域相关信息作为该一组信道时域相关信息;或根据该至少两组信道时域相关信息对应的置信度,对该至少两组信道时域相关信息进行加权平均,得到该一组信道时域相关信息或对所述至少两组信道时域相关信息进行算术平均得到所述第一信道时域相关信息。
可选地,收发单元910,还用于接收该终端设备发送的该一组信道时域相关信息中的最大信道时域相关信息以及M-1个归一化结果,该M-1个归一化结果是对该一组信道时域相关信息中除该最大信道时域相关信息之外的其他M-1个信道时域相关信息向所述最大信道时域相关信息进行归一化后得到的结果。
可选地,该最大信道时域相关信息为该一组信道时域相关信息中最小时间间隔或时间差或OFDM符号间隔对应的信道时域相关信息。
可选地,收发单元910,还用于接收该终端设备发送的该最大信道时域相关信息对应的时间间隔或时间差或OFDM符号间隔。应理解,这种实现方式中,该最大信道时域相关信息不是该一组信道时域相关信息中最小时间间隔或时间差或OFDM符号间隔对应的信道时域相关信息。
应理解,上述处理单元920和收发单元910还可以分别执行上述图2至图3所示的方法中由网络设备实现的任一其他步骤、操作和/或功能,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,在上述任一种实现方式中,上述收发单元910可以包括接收单元和发送单元,其中,接收单元用于执行上述收发单元910中的接收功能,发送单元用于执行上述收发单元910中的发送功能。
上述装置900具有实现图2至图3所示的方法中由终端设备所执行的相应步骤的功能,或者,上述装置900具有实现上述图2至图3所示的方法中由网络设备所执行的相应步骤的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如收发单元可以由收发机替代(例如,收发单元中的发送单元可以由发送机替代,收发单元中的接收单元可以由接收机替代),其它单元,如处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
应理解,这里的装置900以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置900可以具体为上述实施例中的终端设备或应用于终端设备的芯片,可以用于执行上述方法实施例中与终端设备对应的流程,或者,装置900可以具体为上述实施例中的网络设备或应用于网络设备的芯片,可以用于执行上述方法实施例中与网络设备对应的流程,为避免重复,在此不予赘述。
此外,上述收发单元还可以是收发电路(例如可以包括接收电路和发送电路),处理单元可以是处理电路。在本申请的实施例,装置900可以是前述实施例中的终端设备或网络设备,也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。其中,收发单元可以是输入输出电路、通信接口。处理单元为该芯片上集成的处理器或者微处理器或者集成电路。在此不做限定。
图10是本申请实施例提供的通信装置的又一示意性结构图。如图10所示,该通信装置1000包括:至少一个处理器1010和收发器1020,该收发器1020用于发送信号和/或接收信号,该处理器1010用于执行指令,使得上述图2至图3所示的方法中的终端设备的功能被实现,或者使得上述图2至图3所示的方法中中的网络设备的功能被实现。
可选地,该通信装置1000还包括存储器1030,用于存储指令。该处理器1010与存储器耦合,用于执行存储器中存储的指令,以控制收发器1020发送信号和/或接收信号。
应理解,上述处理器1010和存储器1030可以合成一个处理装置,处理器1010用于执行存储器1030中存储的程序代码来实现上述功能。具体实现时,该存储器1030也可以集成在处理器1010中,或者独立于处理器1010。
还应理解,收发器1020可以包括接收器(或者称,接收机)和发射器(或者称,发射机)。收发器1020还可以进一步包括天线,天线的数量可以为一个或多个。收发器1020有可以是通信接口或者接口电路。
当该通信装置1000为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供了一种处理装置,包括处理器和接口。所述处理器可以使得上述方法实施例中的方法被实现。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
图11是本申请实施例提供的通信装置的又一示意性结构图。如图11所示,该装置1100包括处理电路1110和收发电路1120,该处理电路1110用于执行指令,使得上述图2至图3所示的方法中的终端设备的功能被实现,或者使得上述图2至图3所示的方法中的网络设备的功能被实现。处理电路1110和收发电路1120通过内部连接通路互相通信,处理电路1110可以控制该收发电路1120发送信号和/或接收信号。
可选地,该装置1100还可以包括存储介质1130,该存储介质1130与处理电路1110、收发电路1120通过内部连接通路互相通信。该存储介质1130用于存储指令,该处理电路1110可以执行该存储介质1130中存储的指令。
在一种可能的实现方式中,装置1100用于实现上述方法实施例中的终端设备对应的流程。
在另一种可能的实现方式中,装置1100用于实现上述方法实施例中的网络设备对应的流程。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括指令,当该指令被处理器运行时,使得上述图2至图3所示的方法中的终端设备的功能被实现,或者使得上述图2至图3所示的方法中中的网络设备的功能被实现。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读存储介质包括指令,当该指令被处理器运行时,使得上述图2至图3所示的方法中的终端设备的功能被实现,或者使得上述图2至图3所示的方法中中的网络设备的功能被实现。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
在本申请实施例中,“示例的”、“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
应理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。本申请中所有节点、消息的名称仅仅是本申请为描述方便而设定的名称,在实际网络中的名称可能不同,不应理解本申请限定各种节点、消息的名称,相反,任何具有和本申请中用到的节点或消息具有相同或类似功能的名称都视作本申请的方法或等效替换,都在本申请的保护范围之内。
还应理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下UE或者基站会做出相应的处理,并非是限定时间,且也不要求UE或基站实现时一定要有判断的动作,也不意味着存在其它限定。
需要说明的是,本申请实施例中,“预先设定”、“预先配置”等可以通过在设备(例如,终端设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定,例如本申请实施例中预设的规则、预设的常数等。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本文中术语“……中的至少一个”或“……中的至少一种”,表示所列出的各项的全部或任意组合,例如,“A、B和C中的至少一种”,或者“A、B或C中的至少一种”,可以表示:单独存在A,单独存在B,单独存在C,同时存在A和B,同时存在B和C,同时存在A、B和C这六种情况。本文中的“至少一个”表示一个或者多个。“多个”表示两个或者两个以上。
应理解,在本申请各实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强 调。
应理解,在本申请的各种实施例中,第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的信息等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (33)

  1. 一种信息处理的方法,其特征在于,所述方法包括:
    根据终端设备的至少两组天线端口分别确定至少两组信道时域相关信息,每组所述信道时域相关信息与所述终端设备的每组天线端口一一对应,所述终端设备的每组天线端口包括至少一个天线端口,每组所述信道时域相关信息包括M个信道时域相关信息,所述M个所述信道时域相关信息用于指示T个时刻或T个正交频分复用OFDM符号的信道之间的相关性,T和M为大于等于1的正整数;
    向网络设备发送所述至少两组信道时域相关信息或一组信道时域相关信息,所述一组信道时域相关信息是根据所述至少两组信道时域相关信息确定的。
  2. 一种信息处理的方法,其特征在于,所述方法包括:
    根据终端设备的至少两个天线端口确定一组信道时域相关信息,所述一组信道时域相关信息中包括M个信道时域相关信息,每个所述信道时域相关信息是根据所述至少两个天线端口确定的,所述M个信道时域相关信息用于指示T个时刻或T个正交频分复用OFDM符号的信道之间的相关性,T和M为大于等于1的正整数;
    向网络设备发送所述一组信道时域相关信息。
  3. 根据权利要求1所述的方法,其特征在于,所述根据终端设备的至少两组天线端口分别确定至少两组信道时域相关信息,包括:
    根据每组所述天线端口中包括的至少两个天线端口确定每组所述信道时域相关信息,每组所述信道时域相关信息中包括M个信道时域相关信息,每个所述信道时域相关信息是根据所述至少两个天线端口确定的,所述M个信道时域相关信息用于指示所述T个时刻或T个正交频分复用OFDM符号的信道之间的相关性。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述信道时域相关信息包括信道时域相关系数或所述信道时域相关系数的幅度。
  5. 根据权利要求2或4所述的方法,其特征在于,所述方法还包括:
    确定至少一个置信度信息,所述至少一个置信度信息与所述一组信道时域相关信息对应,所述至少一个置信度信息用于指示所述一组信道时域相关信息的置信度。
  6. 根据权利要求5所述的方法,其特征在于,所述确定至少一个置信度信息,包括:
    根据所述一组信道时域相关信息对应的信道功率确定所述至少一个置信度信息;或者
    根据所述一组信道时域相关信息对应的信道幅度确定所述至少一个置信度信息;或者
    根据所述一组信道时域相关信息对应的信道接收信噪比以及所述天线端口数量确定所述至少一个置信度信息;或者
    根据所述一组信道时域相关信息对应的时域相关信息信噪比确定所述至少一个置信度信息。
  7. 根据权利要求5或6所述的方法,其特征在于,所述方法还包括:
    向所述网络设备发送所述至少一个置信度信息。
  8. 根据权利要求1或3或4中任一项所述的方法,其特征在于,所述方法还包括:
    确定至少两个置信度信息,所述至少两个置信度信息分别与所述至少两组信道时域相关信息对应,所述至少两个置信度信息分别用于指示对应的所述至少两组信道时域相关信息的置信度。
  9. 根据权利要求8所述的方法,其特征在于,所述确定至少两个置信度信息,包括:
    根据所述至少两组信道时域相关信息对应的信道功率确定所述至少两个置信度信息;或者
    根据所述至少两组信道时域相关信息对应的信道幅度确定所述至少两个置信度信息;或者
    根据所述至少两组信道时域相关信息对应的信道接收信噪比以及所述天线端口数量确定所述至少两个置信度信息;或者
    根据所述至少两组信道时域相关信息对应的时域相关信息信噪比确定所述至少两个置信度信息。
  10. 根据权利要求8或9所述的方法,其特征在于,所述方法还包括:
    向所述网络设备发送所述至少两个置信度信息。
  11. 根据权利要求8至10中任一项所述的方法,其特征在于,所述一组信道时域相关信息是根据 所述至少两组信道时域相关信息确定的,包括:
    根据所述至少两组信道时域相关信息对应的置信度,从所述至少两组信道时域相关信息中选择一组信道时域相关信息作为所述一组信道时域相关信息;或
    根据所述至少两组信道时域相关信息对应的置信度,对所述至少两组信道时域相关信息进行加权平均,得到所述一组信道时域相关信息;或
    所述一组信道时域相关信息为所述至少两组信道时域相关信息的算术平均。
  12. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    向所述网络设备发送所述一组信道时域相关信息中的最大信道时域相关信息以及M-1个归一化结果,所述M-1个归一化结果是对所述一组信道时域相关信息中除所述最大信道时域相关信息之外的其他M-1个信道时域相关信息向所述最大信道时域相关信息进行归一化后得到的结果。
  13. 根据权利要求12所述的方法,其特征在于,所述最大信道时域相关信息为所述一组信道时域相关信息中最小时间间隔或时间差或OFDM符号间隔对应的信道时域相关信息。
  14. 根据权利要求12所述的方法,其特征在于,向所述网络设备发送所述一组信道时域相关信息中最大信道时域相关信息对应的时间间隔或时间差或OFDM符号间隔。
  15. 根据权利要求12至14中任一项所述的方法,其特征在于,所述方法还包括:
    采用L1个比特对所述一组信道时域相关信息中的最大信道时域相关信息进行量化;
    采用L2个比特对所述一组信道时域相关信息中除所述最大信道时域相关信息之外的其他M-1个信道时域相关信息进行量化,所述L1与L2为大于等于1的正整数,所述L2小于或等于L1。
  16. 根据权利要求15所述的方法,其特征在于,所述进行量化包括:
    根据量化比特数L与第一信道时域相关信息确定第一信息,所述第一信息为L个比特,所述第一信息用于指示所述第一信道时域相关信息对应第一序列中的值,所述第一信道时域相关信息为所述最大信道时域相关信息或所述M-1个信道时域相关信息中的一个信道时域相关信息。
  17. 根据权利要求16所述的方法,其特征在于,
  18. 根据权利要求16所述的方法,其特征在于,
    所述第一序列为20,2-1,…,2-(L-1);或者
    所述第一序列为2-1,2-2,…,2-L
  19. 一种信息处理的方法,其特征在于,所述方法包括:
    接收终端设备发送的至少两组信道时域相关信息或一组信道时域相关信息,所述至少两组信道时域相关信息是所述终端设备根据所述终端设备的至少两组天线端口分别确定的,每组所述信道时域相关信息与所述终端设备的每组天线端口一一对应,所述终端设备的每组天线端口包括至少一个天线端口,每组所述信道时域相关信息包括M个信道时域相关信息,所述M个所述信道时域相关信息用于指示所述T个时刻或T个正交频分复用OFDM符号的信道之间的相关性,M为大于等于1的正整数;
    根据所述至少两组信道时域相关信息或所述一组信道时域相关信息,对所述终端设备进行配置。
  20. 根据权利要求19所述的方法,其特征在于,所述信道时域相关信息包括信道时域相关系数或所述信道时域相关系数的幅度。
  21. 根据权利要求19或20所述的方法,其特征在于,所述方法还包括:
    接收所述终端设备发送的至少两个置信度信息或至少一个置信度信息,其中,所述至少两个置信度信息分别用于指示对应的所述至少两组信道时域相关信息的置信度,所述至少一个置信度信息用于指示所述一组信道时域相关信息的置信度。
  22. 根据权利要求21所述的方法,其特征在于,如果接收到的是所述终端设备发送的所述至少两组信道时域相关信息,所述方法还包括:
    根据所述至少两组信道时域相关信息对应的置信度,从所述至少两组信道时域相关信息中选择一组信道时域相关信息作为所述一组信道时域相关信息;或
    根据所述至少两组信道时域相关信息对应的置信度,对所述至少两组信道时域相关信息进行加权平均,得到所述一组信道时域相关信息;或
    对所述至少两组信道时域相关信息进行算术平均得到所述第一信道时域相关信息。
  23. 根据权利要求19至22中任一项所述的方法,其特征在于,所述方法还包括:
    接收所述终端设备发送的所述一组信道时域相关信息中的最大信道时域相关信息以及M-1个归一化结果,所述M-1个归一化结果是对所述一组信道时域相关信息中除所述最大信道时域相关信息之外的其他M-1个信道时域相关信息向所述最大信道时域相关信息进行归一化后得到的结果。
  24. 根据权利要求23所述的方法,其特征在于,所述最大信道时域相关信息为所述一组信道时域相关信息中最小时间间隔或时间差或OFDM符号间隔对应的信道时域相关信息。
  25. 根据权利要求23所述的方法,其特征在于,所述方法还包括:
    接收所述终端设备发送的所述最大信道时域相关信息对应的时间间隔或时间差或OFDM符号间隔。
  26. 一种通信装置,其特征在于,包括:用于执行根据权利要求1至18中任一项所述的方法的单元或模块。
  27. 一种通信装置,其特征在于,包括:用于执行根据权利要求19至25中任一项所述的方法的单元或模块。
  28. 一种通信系统,其特征在于,包括:如权利要求26所述的通信装置和/或如权利要求27所述的通信装置。
  29. 一种通信装置,其特征在于,所述通信装置包括处理器和存储介质,所述存储介质存储有指令,所述指令被所述处理器运行时,使得根据权利要求1至18中任一项所述的方法被实现。
  30. 一种通信装置,其特征在于,所述通信装置包括处理器和存储介质,所述存储介质存储有指令,所述指令被所述处理器运行时,使得根据权利要求19至25中任一项所述的方法被实现。
  31. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括指令,当所述指令被处理器运行时,使得根据权利要求1至18中任一项所述的方法被实现,或者使得根据权利要求19至25中任一项所述的方法被实现。
  32. 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当所述指令被处理器运行时,使得根据权利要求1至18中任一项所述的方法被实现,或者使得根据权利要求19至25中任一项所述的方法被实现。
  33. 一种芯片,其特征在于,包括一个或多个处理电路,其中,所述一个或多个处理电路用于实现如权利要求1至18中任一项所述的方法,或者实现如权利要求19至25中任一项所述的方法。
PCT/CN2023/124235 2022-11-04 2023-10-12 一种信息处理的方法和装置 WO2024093638A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211377789.3A CN117998653A (zh) 2022-11-04 2022-11-04 一种信息处理的方法和装置
CN202211377789.3 2022-11-04

Publications (1)

Publication Number Publication Date
WO2024093638A1 true WO2024093638A1 (zh) 2024-05-10

Family

ID=90896143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/124235 WO2024093638A1 (zh) 2022-11-04 2023-10-12 一种信息处理的方法和装置

Country Status (2)

Country Link
CN (1) CN117998653A (zh)
WO (1) WO2024093638A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018126764A1 (zh) * 2017-01-06 2018-07-12 华为技术有限公司 一种信息指示的方法、网络设备和终端设备
WO2019214663A1 (zh) * 2018-05-11 2019-11-14 维沃移动通信有限公司 准共址配置方法、终端及网络设备
US20200099465A1 (en) * 2017-06-13 2020-03-26 Nec Corporation Methods and apparatuses for reference signal configuration
WO2021209979A1 (en) * 2020-04-17 2021-10-21 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for simultaneous transmission to multiple transmission and reception points (trps)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018126764A1 (zh) * 2017-01-06 2018-07-12 华为技术有限公司 一种信息指示的方法、网络设备和终端设备
US20200099465A1 (en) * 2017-06-13 2020-03-26 Nec Corporation Methods and apparatuses for reference signal configuration
WO2019214663A1 (zh) * 2018-05-11 2019-11-14 维沃移动通信有限公司 准共址配置方法、终端及网络设备
WO2021209979A1 (en) * 2020-04-17 2021-10-21 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for simultaneous transmission to multiple transmission and reception points (trps)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUANGDONG OPPO MOBILE TELECOM: "On time-domain SRS structure for channel reciprocity-based DL", 3GPP DRAFT; R1-1611707, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20161114 - 20161118, 13 November 2016 (2016-11-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051175677 *

Also Published As

Publication number Publication date
CN117998653A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
WO2018228532A1 (zh) 通信方法、终端及网络设备
WO2020143647A1 (zh) 传输信道状态信息的方法和装置
EP4135226A1 (en) Method and apparatus for adjusting neural network
US11431453B2 (en) Reference signal transmission method, and apparatus
WO2018126794A1 (zh) 一种资源指示方法、装置及系统
WO2019137441A1 (zh) 一种通信方法及装置
WO2021052473A1 (zh) 通信方法和通信装置
WO2018095305A1 (zh) 一种波束训练方法及装置
CN112087291B (zh) 更新传输配置指示tci信息的方法与通信装置
WO2018202137A1 (zh) 一种通信方法及装置
WO2018059470A1 (zh) 传输信息的方法和设备
US20230239014A1 (en) Information indication method and apparatus
US20230283342A1 (en) Apparatus for CSI Reporting Overhead Reduction Via Joint CSI Report Quantization and Encoding
US11990977B1 (en) Beam training method and apparatus
WO2024093638A1 (zh) 一种信息处理的方法和装置
WO2020156514A1 (zh) 测量上报方法和通信装置
CN110999112A (zh) 无线通信的波束指示
WO2019223665A1 (zh) 下行数据的传输方法、网络设备及终端
WO2024093906A1 (zh) 一种上行发送功率确定的方法和装置
CN113938907A (zh) 通信的方法及通信装置
WO2024061093A1 (zh) 一种上行预编码的指示方法及通信装置
WO2024093646A1 (zh) 一种资源配置的方法和装置
WO2023029942A1 (zh) 测量干扰的方法和装置
WO2023273969A1 (zh) 资源测量方法和通信装置
WO2024093867A1 (zh) 一种预编码的指示方法及通信装置