WO2023029942A1 - 测量干扰的方法和装置 - Google Patents

测量干扰的方法和装置 Download PDF

Info

Publication number
WO2023029942A1
WO2023029942A1 PCT/CN2022/111997 CN2022111997W WO2023029942A1 WO 2023029942 A1 WO2023029942 A1 WO 2023029942A1 CN 2022111997 W CN2022111997 W CN 2022111997W WO 2023029942 A1 WO2023029942 A1 WO 2023029942A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbol
terminal device
signal
network device
analog
Prior art date
Application number
PCT/CN2022/111997
Other languages
English (en)
French (fr)
Inventor
耿长青
钱丰勇
张涵
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CA3230606A priority Critical patent/CA3230606A1/en
Publication of WO2023029942A1 publication Critical patent/WO2023029942A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present application relates to the communication field, in particular to a method and device for measuring interference in the communication field.
  • MU-MIMO multi-user multiple-input multiple-output
  • the MU-MIMO technology allows multiple users to communicate with the base station simultaneously by sharing time-frequency resources without increasing the cost of terminal equipment. Since the number of users with communication needs in the actual communication system is often greater than the number of users that the system can accommodate, and there is some interference between users, user pairing is an important means to ensure that MU-MIMO technology can obtain multi-user diversity gain and multiplexing gain.
  • the mmWave base station In the hybrid beamforming (HBF) architecture, the mmWave base station generates an analog beam by changing the phase shifter, and communicates with multiple users through the analog beam.
  • MU-MIMO technology can be used, and the Multiple users are paired, and the interference of different users using analog beam communication needs to be measured before pairing.
  • the interference calculation formula of the existing digital beam is ⁇ H A W B ⁇ 2 , where H A is the spatial channel of user A, and W B is the transmission weight of user B.
  • the base station is using an analog beam
  • the signals received by each antenna are collected by multiple power amplifiers (power amplifiers, PAs) and then aggregated, so the array-level channel on each PA cannot be identified, that is, the parameter H A in the above formula cannot be completely determined , so when MU-MIMO technology is used for multi-user pairing, the interference calculation formula of digital beam cannot be used to calculate the interference between different users through analog beam communication. How to obtain the interference between paired users through analog beam communication when using MU-MIMO technology is an urgent problem to be solved at present.
  • the present application provides a method and device for measuring interference, which can reduce measurement overhead.
  • a method for measuring interference may be executed by a network device, or may also be executed by a component configured in the network device (such as a chip or a chip system, etc.), which is not limited in this application.
  • the method includes: the network device sends first instruction information to the terminal device, the first instruction information instructs the terminal device to measure the signal quality of the first signal, and the network device sends the first signal to the terminal device through N analog beams, where N is greater than or An integer equal to 1, the analog beam satisfies a first preset condition, and the network device receives a measurement result from the terminal device, where the measurement result is the signal quality of the first signal.
  • the network device selects an analog beam that satisfies a preset condition to send the first signal, so that the network device does not need to calculate interference between all analog beams on the network device side when calculating interference, thereby reducing measurement overhead.
  • the terminal device satisfies a second preset condition
  • the second preset condition includes at least one of the following: the amount of scheduled data of the terminal device is greater than or equal to the first threshold , the signal quality of the communication between the terminal device and the network device is greater than or equal to the second threshold.
  • the network device determines the terminal device to participate in the measurement through the scheduling data volume of the terminal device and/or the signal quality of the communication with the network device, thereby preventing all terminal devices under the coverage of the network device from participating in the measurement, which can further reduce the Measure overhead.
  • the analog beam meeting the first preset condition includes at least one of the following: the signal quality of the signal transmitted through the analog beam is greater than or equal to a third threshold, and the analog beam It is a serving beam of a terminal device that satisfies the second preset condition.
  • the network device determines the terminal device and/or the set of analog beams to be measured, and the N analog beams belong to the set of analog beams to be measured.
  • the network device determines the terminal device participating in the measurement and the set of analog beams to be measured, and sends the first signal to the determined terminal device through the analog beam in the set of analog beams to be measured until the set of analog beams to be measured All analog beams in the network complete the measurement, and then the network equipment can calculate the interference between the analog beams for user pairing.
  • the network device repeatedly sends the first signal to the terminal device on multiple symbols through N analog beams, where the multiple symbols include the first symbol and a second symbol, the first symbol includes an extended cyclic prefix of the second symbol, and the first symbol is adjacent to the second symbol.
  • the network device repeatedly sends the first signal to the terminal device on multiple symbols through N analog beams, where the multiple symbols include a third symbol , the fourth symbol and the fifth symbol, the third symbol and/or the fifth symbol include the extended cyclic prefix of the fourth symbol, the fourth symbol is located in the middle of the third symbol and the fifth symbol, and the third symbol, the fourth symbol adjacent to the fifth symbol.
  • the network device sends second indication information to the terminal device, where the second indication information instructs the terminal device to measure the first The signal quality of the signal.
  • the network device when the network device repeatedly sends the first signal through two symbols and instructs the terminal device to measure the signal quality of the first signal carried on the next symbol, it can avoid the problem caused by the supercyclic prefix with too large timing advance The first signal reception is incomplete and thus the measurement is inaccurate.
  • the network device When the network device repeatedly sends the first signal through three symbols, and instructs the terminal device to measure the signal quality of the first signal carried on the middle symbol, it can avoid the hypercyclic prefix with too large timing advance, or the small timing advance ( There is a blank at the end of the middle symbol), which causes the incomplete reception of the first signal and thus inaccurate measurement.
  • the measurement result includes reference signal received power.
  • the network device triggers the terminal device to measure the reference signal received power of the first signal (such as CSI), so that the network device calculates the interference between simulated beams after receiving the measurement result.
  • the interference calculation scheme it does not completely depend on the ability of the terminal equipment to calculate interference, and can be compatible with existing R15 terminal equipment.
  • a method for measuring interference may be executed by a terminal device, or may also be executed by a component configured in the terminal device (such as a chip or a chip system, etc.), which is not limited in the present application.
  • the method includes: the terminal device receives first indication information from the network device, the first indication information instructs the terminal device to measure the signal quality of the first signal, and the terminal device receives the first signal sent by the network device through N analog beams, where N is An integer greater than or equal to 1, the analog beam satisfies a first preset condition, and the terminal device sends a measurement result to the network device, where the measurement result is the signal quality of the first signal.
  • the network device selects an analog beam that satisfies the preset condition to send the first signal, so that the terminal device does not need to measure the first signal sent through all the analog beams on the network device side during measurement, thereby reducing measurement overhead.
  • the terminal device satisfies a second preset condition
  • the second preset condition includes at least one of the following: the amount of scheduled data of the terminal device is greater than or equal to the first threshold , the signal quality of the communication between the terminal device and the network device is greater than or equal to the second threshold.
  • the terminal equipment only participates in the measurement when the scheduled data volume of the terminal equipment and/or the signal quality of the communication with the network equipment meets the second preset condition, thereby preventing all terminal equipment under the coverage of the network equipment from participating in the measurement, and can Further reduce measurement overhead.
  • the analog beam meeting the first preset condition includes at least one of the following: the signal quality of the signal transmitted through the analog beam is greater than or equal to a third threshold, and the analog beam It is a serving beam of a terminal device that satisfies the second preset condition.
  • the terminal device receives the first signal repeatedly sent by the network device on multiple symbols through N analog beams, where the multiple symbols include the first A symbol and a second symbol, the first symbol includes an extended cyclic prefix of the second symbol, and the first symbol and the second symbol are adjacent.
  • the terminal device receives the first signal repeatedly sent by the network device on multiple symbols through N analog beams, where the multiple symbols include the third symbol, the fourth symbol and the fifth symbol, the third symbol and/or the fifth symbol include the extended cyclic prefix of the fourth symbol, the fourth symbol is located in the middle of the third symbol and the fifth symbol, and the third symbol, the fourth The symbol is adjacent to the fifth symbol.
  • the terminal device receives second indication information from the network device, where the second indication information instructs the terminal device to measure the second symbol carried on the second symbol or the fourth symbol.
  • a signal quality of a signal is a signal.
  • the terminal device when the terminal device receives the first signal through two symbols and measures the signal quality of the first signal carried on the next symbol, it can avoid receiving the first signal caused by the hypercyclic prefix when the timing advance is too large incomplete and thus inaccurately measured.
  • the terminal device receives the first signal through three symbols, and measures the signal quality of the first signal carried on the middle symbol, it can avoid that the timing advance is too large for the hypercyclic prefix, or the timing advance is too small (at the end of the middle symbol) Blank) caused by incomplete reception of the first signal, resulting in inaccurate measurement.
  • the measurement result includes reference signal received power.
  • the terminal device reports the reference signal received power of the first signal (such as CSI) and does not participate in the interference calculation.
  • the reference signal received power of the first signal such as CSI
  • this solution does not completely depend on the terminal device
  • the ability to calculate interference can be compatible with existing R15 terminal equipment.
  • a device for measuring interference may be a network device, or a larger device including the network device, or may also be a component configured in the network device (such as a chip or a chip system, etc.), which is not limited in the present application.
  • the apparatus includes a transceiving unit, the transceiving unit is used to send first instruction information to the terminal equipment, the first instruction information instructs the terminal equipment to measure the signal quality of the first signal, and the transceiver unit is also used to transmit the signal quality to the terminal equipment through N analog beams Sending a first signal, N is an integer greater than or equal to 1, the analog beam satisfies a first preset condition, and the transceiver unit is also used to receive a measurement result from a terminal device, the measurement result being the signal quality of the first signal .
  • the network device selects an analog beam that satisfies a preset condition to send the first signal, so that the network device does not need to calculate interference between all analog beams on the network device side when calculating interference, thereby reducing measurement overhead.
  • the terminal device satisfies a second preset condition
  • the second preset condition includes at least one of the following: the amount of scheduled data of the terminal device is greater than or equal to the first Threshold, the quality of the signal communicated between the terminal device and the network device is greater than or equal to the second threshold.
  • the analog beam meeting the first preset condition includes at least one of the following: the signal quality of the signal transmitted through the analog beam is greater than or equal to a third threshold, and the analog beam It is a serving beam of a terminal device that satisfies the second preset condition.
  • the apparatus further includes a processing unit configured to determine a terminal device and/or a set of analog beams to be measured, and the N analog beams belong to the analog beams to be measured collection of beams.
  • the transceiver unit is specifically configured to repeatedly send the first signal to the terminal device on multiple symbols through N analog beams, where the multiple symbols It includes a first symbol and a second symbol, the first symbol includes an extended cyclic prefix of the second symbol, and the first symbol and the second symbol are adjacent.
  • the transceiver unit is specifically configured to repeatedly send the first signal to the terminal device on multiple symbols through N analog beams, where the multiple symbols includes a third symbol, a fourth symbol and a fifth symbol, the third symbol and/or the fifth symbol includes an extended cyclic prefix of the fourth symbol, the fourth symbol is located in the middle of the third symbol and the fifth symbol, and the third symbol , the fourth and fifth symbols are adjacent.
  • the transceiver unit is further configured to send second indication information to the terminal device, where the second indication information instructs the terminal device to measure The signal quality of the first signal on .
  • the measurement result includes reference signal received power.
  • a device for measuring interference may be a terminal device, or a larger device including the terminal device, or may also be a component configured in the terminal device (such as a chip or a chip system, etc.), which is not limited in this application.
  • the device includes a transceiver unit: the transceiver unit is used to receive the first instruction information from the network equipment, the first instruction information instructs the terminal equipment to measure the signal quality of the first signal, and the transceiver unit is also used to receive the network equipment through N simulations
  • N is an integer greater than or equal to 1
  • the analog beam satisfies the first preset condition
  • the transceiver unit is also used to send a measurement result to the network device, and the measurement result is the signal quality of the first signal.
  • the network device selects an analog beam that satisfies the preset condition to send the first signal, so that the terminal device does not need to measure the first signal sent through all the analog beams on the network device side during measurement, thereby reducing measurement overhead.
  • the device satisfies a second preset condition
  • the second preset condition includes at least one of the following: the amount of scheduled data of the device is greater than or equal to the first threshold, The signal quality of the communication between the apparatus and the network equipment is greater than or equal to the second threshold.
  • the analog beam meeting the first preset condition includes at least one of the following: the signal quality of the signal transmitted through the analog beam is greater than or equal to a third threshold, and the analog beam It is a serving beam of a terminal device that satisfies the second preset condition.
  • the transceiver unit is further configured to receive the first signal repeatedly sent by the network device on multiple symbols through N analog beams, where the multiple The symbols include a first symbol and a second symbol, the first symbol includes an extended cyclic prefix of the second symbol, and the first symbol and the second symbol are adjacent.
  • the transceiver unit is further configured to receive the first signal repeatedly sent by the network device on multiple symbols through N analog beams, where the multiple The symbols include a third symbol, a fourth symbol and a fifth symbol, the third symbol and/or the fifth symbol include an extended cyclic prefix of the fourth symbol, the fourth symbol is located in the middle of the third symbol and the fifth symbol, and the third symbols, the fourth symbol and the fifth symbol are adjacent.
  • the transceiving unit is further configured to receive second indication information from the network device, where the second indication information instructs the terminal device to measure the information carried by the second symbol or the fourth The signal quality of the first signal on the symbol.
  • the measurement result includes reference signal received power.
  • a communication device the device includes a processor, the processor is coupled with a memory, and can be used to execute instructions in the memory, so as to implement the above first aspect or any possible implementation manner of the first aspect method.
  • the device further includes a memory, and the memory and the processor may be deployed separately or in a centralized manner.
  • the device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication interface may be a transceiver, or an input/output interface.
  • the device is a chip configured in a network device.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor may also be embodied as a processing circuit or logic circuit.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the above-mentioned processor can be one or more chips
  • the input circuit can be an input pin
  • the output circuit can be an output pin
  • the processing circuit can be a transistor, a gate circuit, a flip-flop and various logic circuits, etc. .
  • the input signal received by the input circuit may be received and input by the receiver, but the signal output by the output circuit may be but not limited to be output to the transmitter and transmitted by the transmitter, and the input circuit and the output circuit may be The same circuit, which is used as an input circuit and an output circuit at different times.
  • the embodiment of the present application does not limit the specific implementation manners of the processor and various circuits.
  • a communication device the device includes a processor, the processor is coupled to a memory, and can be used to execute instructions in the memory, so as to implement the second aspect or any possible implementation manner of the second aspect method.
  • the device further includes a memory, and the memory and the processor may be deployed separately or in a centralized manner.
  • the device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication interface may be a transceiver, or an input/output interface.
  • the device is a chip configured in a terminal device.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor may also be embodied as a processing circuit or logic circuit.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the above-mentioned processor can be one or more chips
  • the input circuit can be an input pin
  • the output circuit can be an output pin
  • the processing circuit can be a transistor, a gate circuit, a flip-flop and various logic circuits, etc. .
  • the input signal received by the input circuit may be received and input by the receiver, but the signal output by the output circuit may be but not limited to be output to the transmitter and transmitted by the transmitter, and the input circuit and the output circuit may be The same circuit, which is used as an input circuit and an output circuit at different times.
  • the embodiment of the present application does not limit the specific implementation manners of the processor and various circuits.
  • a computer program product includes: a computer program (also referred to as code, or an instruction), which, when the computer program is executed, causes the computer to execute the above-mentioned first aspect to the second aspect any one of the aspects, and the method in any one of the possible implementations of the first aspect to the second aspect.
  • a computer program also referred to as code, or an instruction
  • a computer-readable storage medium stores a computer program (also referred to as code, or instruction) which, when run on a computer, causes the computer to perform the above-mentioned first to Any aspect in the second aspect, and the method in any possible implementation manner in the first aspect to the second aspect.
  • a computer program also referred to as code, or instruction
  • a communication system in a ninth aspect, includes the foregoing network device and terminal device.
  • FIG. 1 is a schematic diagram of a base station generating analog beams to communicate with a user through an antenna port.
  • FIG. 2 is a schematic diagram of a communication system 100 applicable to the embodiment of the present application.
  • Fig. 3 is an interaction flowchart of a solution for measuring interference provided by an embodiment of the present application.
  • Fig. 4 is a schematic diagram of a symbol carrying a first signal provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another symbol carrying a first signal provided by an embodiment of the present application.
  • Fig. 6 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • Fig. 7 is a schematic block diagram of another communication device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a communication system 100 applicable to the embodiment of the present application.
  • the communication system 100 may include at least one network device, for example, the network device 120 shown in FIG. 2 .
  • the communication system 100 may further include at least one terminal device, for example, the terminal device 110 and the terminal device 130 shown in FIG. 2 . Connections can be established between terminal devices and network devices, and between terminal devices to communicate, and the sending device can indicate the scheduling information of the data through the control information, so that the receiving device can correctly receive the data according to the control information.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • general packet radio service general packet radio service
  • LTE LTE frequency division duplex
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunications system
  • WiMAX worldwide interconnection microwave access
  • 5G fifth generation, 5G
  • 5G fifth generation, 5G
  • 5G fifth generation, 5G
  • future evolution communication system vehicle to other devices
  • V2X can include vehicle to Internet (vehicle to network, V2N), vehicle to vehicle (vehicle to vehicle, V2V), vehicle to infrastructure (vehicle to infrastructure, V2I), Vehicle to pedestrian (vehicle to pedestrian, V2P), etc.
  • V2X can include vehicle to Internet (vehicle to network, V2N), vehicle to vehicle (vehicle to vehicle, V2V), vehicle to infrastructure (vehicle to infrastructure, V2I), Vehicle to pedestrian (vehicle to pedestrian, V
  • the terminal equipment in the embodiment of the present application may refer to user equipment, access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent or user device .
  • the terminal in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal, an augmented reality (augmented reality, AR) terminal, an industrial Wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety Wireless terminals in smart cities, wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop ( wireless local loop (WLL) station, personal digital assistant (personal digital assistant, PDA), handheld device with wireless communication function, computing device or other processing device connected to a wireless modem, vehicle-mounted device, wearable device, 5G network A terminal or
  • wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories.
  • Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the terminal device may also be a terminal device in an Internet of Things (internet of things, IoT) system.
  • IoT Internet of things
  • Its main technical feature is to connect objects to the network through communication technology, so as to realize the intelligent network of human-machine interconnection and object interconnection.
  • the present application does not limit the specific form of the terminal device.
  • the terminal device may be a device for realizing the function of the terminal device, or may be a device capable of supporting the terminal device to realize the function, such as a chip system, and the device may be installed in the terminal device.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • the terminal device in the embodiment of the present application supports measuring the signal sent by the network device through the analog beam.
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (active antenna unit, AAU for short).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and realizing the functions of radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer.
  • the DU is responsible for processing physical layer protocols and real-time services, realizing the functions of the radio link control (radio link control, RLC) layer, media access control (media access control, MAC) layer and physical (physical, PHY) layer.
  • the AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this architecture, high-level signaling, such as RRC layer signaling, can also be considered to be sent by the DU , or, sent by DU+AAU.
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in an access network (radio access network, RAN), and the CU can also be divided into network devices in a core network (core network, CN), which is not limited in this application.
  • the network device may be a device for realizing the function of the network device, or may be a device capable of supporting the network device to realize the function, such as a chip system, and the device may be installed in the network device.
  • the network device in the embodiment of the present application may be a network device based on the HBF architecture, capable of generating analog beams, and communicating with terminal devices through the analog beams.
  • the network device when the network device adopts MU-MIMO technology and communicates with multiple users through analog beams, before pairing the users, the network device cannot obtain the array-level channel, so it cannot pass the interference calculation formula of the digital beam Calculation of interference between different users communicating via analog beams.
  • the terminal device periodically scans the downlink signal sent by the network device through the analog beam, measures the reference signal receiving power (RSRP) of the downlink signal, and selects the four downlink signals corresponding to the highest RSRP. Analog beams report to network devices.
  • RSRP reference signal receiving power
  • the downlink signal may be channel state information (channel state information, CSI).
  • channel state information channel state information, CSI.
  • the terminal device reports four analog beams, and the network device can obtain the interference information between the four analog beams. Since the number of analog beams on the network device side is much more than four, that is, the network device and the terminal device The number of analog beams communicating is much greater than four.
  • the network device before the network device uses MU-MIMO technology for user pairing, it cannot obtain the interference information of other analog beams except the above four analog beams. It should be understood that the interference information that cannot be obtained can be the four The interference information between an analog beam and other analog beams may also be the interference information between other analog beams.
  • the network device binds a pair of analog beams, for example, binds analog beam #1 and analog beam #2.
  • the analog beam #1 can be called the serving analog beam
  • the analog beam # 2 communicates with a terminal device, and the communication quality is lower than (lower than or equal to) a certain threshold
  • the analog beam #2 may be called an interference analog beam.
  • the network device sends a downlink signal to the terminal device through the service beam and the analog beam at the same time, the terminal device receives the downlink signal, and measures the signal to interference plus noise ratio (SINR) of the downlink signal, and the subsequent terminal device will The measured SINR is reported to the network device, and the network device can obtain the interference information of the service beam and the analog beam.
  • SINR signal to interference plus noise ratio
  • the downlink signal may be CSI.
  • all terminal devices within the coverage of the network device need to participate in the interference measurement, which requires high compatibility of the terminal devices, for example, R15 terminal devices do not support this measurement.
  • Fig. 3 is an interactive flow chart of a method for measuring interference provided in an embodiment of the present application.
  • the method 200 shown in FIG. 3 includes:
  • Step S220 the network device sends first instruction information to the terminal device, the first instruction information instructs the terminal device to measure the signal quality of the first signal, and correspondingly, the terminal device receives the first instruction information.
  • the first signal is a signal sent through an analog beam.
  • the first signal mentioned in the embodiment of the present application may be the CSI, and of course, the first signal may also be other signals used for measuring interference, which is not limited in the present application.
  • the terminal device satisfies a second preset condition, where the second preset condition includes at least one of the following:
  • the amount of scheduled data of the terminal device is greater than or equal to the first threshold
  • the signal quality of the communication between the terminal device and the network device is greater than or equal to the second threshold
  • the distance between the geographic locations of the terminal device and the network device is less than or equal to a certain threshold.
  • the network device sends the first indication information to the terminal device meeting the second preset condition, instructing to measure the signal quality of the first signal, and correspondingly, the terminal device meeting the second preset condition receives the first instruction information.
  • the network device may select a part of terminal devices within its coverage area that meet the second preset condition for measurement, thereby saving measurement overhead.
  • step S230 the network device sends a first signal to the terminal device through N analog beams, where N is an integer greater than or equal to 1, and the analog beams meet a first preset condition.
  • the terminal device receives the first signal.
  • the network device sends the first signal to the terminal device meeting the second preset condition through N analog beams, and correspondingly, the terminal device meeting the second preset condition receives the first signal.
  • the analog beam meeting the first preset condition includes at least one of the following:
  • the signal quality of the signal transmitted by the analog beam is greater than or equal to a third threshold
  • the analog beam is a serving beam of a terminal device, and the terminal device may be a terminal device satisfying a second preset condition.
  • the network device can select a part of the analog beams satisfying the first preset condition from the analog beams on the network device side as the analog beams to be measured, avoiding too many combinations of analog beams for interference measurement, and further reducing the measurement overhead.
  • the network device sends the first signal to the terminal device through N analog beams at the same time, or the network device periodically sends the first signal to the terminal device through N analog beams (that is, periodically sends N times in different time domain resources)
  • the first signal the first signal is sent through one analog beam each time, N times through different N analog beams
  • the network device aperiodically sends the first signal to the terminal device through N analog beams (that is, aperiodic
  • the first signal is sent N times in different time domain resources, the first signal is sent through one analog beam each time, and the first signal is sent N times through different N analog beams).
  • the receiving beam of the terminal device is determined by the position of the simulated beam of the network device sending the synchronization signal block (synchronization signal block, SSB) measured by the terminal device, and the network device transmits the simulated beam of the SSB
  • the first signal is sent through N analog beams, specifically, the first signal can be sent through N analog beams at the same time, or the first signal is sent periodically through N analog beams (same as above, each time through 1
  • the first signal is sent through different N analog beams for N times), or the first signal is sent aperiodically through N analog beams (same as above, each time the first signal is sent through 1 analog beam, N times sent through different N analog beams).
  • the terminal device receives the first signal according to the determined position of the receiving beam, and performs measurement.
  • N 4
  • the network device sending the first signal to the terminal device through the N analog beams includes:
  • the network device repeatedly sends the first signal on multiple symbols through N analog beams.
  • the symbol may be an orthogonal frequency division multiplexing (OFDM) symbol, which is not limited in this application .
  • OFDM orthogonal frequency division multiplexing
  • the multiple symbols include a first symbol and a second symbol, where the first symbol includes an extended cyclic prefix of the second symbol, and the first symbol and the second symbol are adjacent.
  • the multiple symbols include a third symbol, a fourth symbol, and a fifth symbol
  • the third symbol and/or the fifth symbol include an extended cyclic prefix of the fourth symbol
  • the fourth symbol is located in the third In the middle of the symbol and the fifth symbol, the third symbol, the fourth symbol and the fifth symbol are adjacent.
  • method 200 also includes:
  • Step S240 the network device sends second indication information to the terminal device, where the second indication information instructs the terminal device to measure the signal quality of the first signal carried on the second symbol.
  • the terminal device receives the second indication information, and measures the signal quality of the first signal carried on the second symbol.
  • the measurement symbol is the second symbol, that is, the network device indicates through the second indication information that the terminal device measures the first signal carried on the second symbol.
  • Signal quality the first symbol includes the extended cyclic prefix (or extended cyclic prefix) of the second symbol, that is, the content carried by some bits at the back end of the second symbol is transmitted in the first symbol as the extended cyclic prefix through cyclic shift , which is equivalent to increasing the length of a cyclic prefix (CP).
  • CP cyclic prefix
  • the network device transmits the first signal on symbol M (first symbol) and symbol M+1 (second symbol), wherein the back end of symbol M includes an extended cycle of symbol M+1 prefix, the content copied by the extended cyclic prefix is the content carried by some bits at the back end of the symbol M+1, and the content copied by the extended cyclic prefix does not include the part carried by the bits at the back end of the symbol M+1 copied by the cyclic prefix included in the symbol M+1 Content.
  • the network device instructs the terminal device to measure the signal quality of the first signal carried on symbol M+1, where M is an integer greater than or equal to 0.
  • Figure 4 shows the specific situation of two consecutive symbols carrying the first signal in the three cases of TA alignment, TA is too large to exceed CP, and TA is too small. It can be concluded that the first signal is sent through two consecutive symbols , which can avoid the problem of inaccurate measurement due to incomplete reception of the first signal when the timing advance (timing advance, TA) is too large to exceed the CP. However, when the TA is too small, the terminal device receives the first signal carried on the second symbol in advance, and a blank will appear at the end of the second symbol, which will also affect the accuracy of the first signal measurement.
  • timing advance timing advance
  • the measurement symbol is the middle symbol, that is, the fourth symbol, that is, the network device indicates through the second indication information that the terminal device measures that the measurement is carried on the fourth symbol.
  • the third symbol and/or the fifth symbol includes the extended cyclic prefix of the fourth symbol, that is, the content carried by some bits at the back end of the fourth symbol is used as the extended cyclic prefix in the third symbol and/or through cyclic shift. It should be understood that the contents included in the extended cyclic prefix and the cyclic prefix do not overlap.
  • the network device transmits the first signal on symbol T (third symbol), symbol T+1 (fourth symbol) and symbol T+2 (fifth symbol), wherein, symbol T
  • the back end includes the extended cyclic prefix of symbol T+1, and the content copied by the extended cyclic prefix is the content carried by some bits at the back end of symbol T+1, and the content copied by the extended cyclic prefix does not include the content included in symbol T+1 Content carried by some bits at the back end of the symbol T+1 copied by the cyclic prefix.
  • the front end of the symbol T+2 includes the extended cyclic prefix of the symbol T+1, and the content copied by the extended cyclic prefix is the content carried by some bits at the back end of the symbol T+1, and the content copied by the extended cyclic prefix does not include the symbol T +1 includes the cyclic prefix that replicates the part of the bit-carrying content of the symbol T+1 backend.
  • the network device instructs the terminal device to measure the signal quality of the first signal carried on symbol T+1, where T is an integer greater than or equal to 0.
  • Figure 5 shows the specific situation of three consecutive symbols carrying the first signal in the three cases of TA alignment, TA is too large to exceed CP, and TA is too small.
  • the first signal is sent through three consecutive symbols It can avoid the problem of inaccurate measurement due to incomplete reception of the first signal when the TA is too large and exceeds the CP, or prevent the terminal device from receiving the first signal carried on the middle symbol in advance when the TA is too small (the middle symbol blank at the end), leading to inaccurate measurements.
  • NLOS non-line-of-sight
  • Timing advance Timing advance
  • TA timing advance
  • method 200 includes:
  • Step S210 the network device determines the terminal device and the set of analog beams to be measured.
  • the network device determines a set of analog beams to be measured according to a first preset condition, and the above N analog beams belong to the set of analog beams to be measured.
  • the network device determines the terminal device according to the second preset condition, and the number of the terminal device may be one or more.
  • step S220 may be replaced by the network device sending first instruction information to one or more terminal devices, the first instruction information instructing the terminal device to measure the signal quality of the first signal, and correspondingly, the one or more terminal devices receive The first indication information.
  • Step S230 may be replaced by the network device sending the first signal to one or more terminal devices through N analog beams, where N is an integer greater than or equal to 1, and the analog beams satisfy the first preset condition.
  • one or more terminal devices receive the first signal.
  • Step S240 may be replaced by the network device sending second instruction information to one or more terminal devices, where the second instruction information instructs the terminal devices to measure the signal quality of the first signal carried on the second symbol.
  • Step S250 may be replaced by one or more terminal devices sending a measurement result to the network device, where the measurement result is the signal quality of the first signal.
  • the network device receives the measurement result.
  • Step S250 the terminal device sends a measurement result to the network device, where the measurement result is the signal quality of the first signal.
  • the network device receives the measurement result.
  • the measurement result includes a reference signal receiving power (reference signal receiving power, RSRP) of the first signal.
  • RSRP reference signal receiving power
  • the network device After the network device receives the measurement result from the terminal device, it subsequently sends the first signal through N analog beams at the corresponding time domain position.
  • the sending method is the same as the above, and may be sent simultaneously. It may be sent periodically or aperiodically until all the analog beams in the set of analog beams to be measured are measured.
  • Subsequent network devices can calculate the interference between corresponding analog beams according to the measurement results of all analog beams in the set of analog beams to be measured reported by the terminal device, or the network device can combine analog beams to perform isolation calculation, so as to perform user pairing.
  • Isolation is the interference suppression measures taken to minimize the impact of various interferences on the receiver. There are usually two measures, one is to increase the spatial isolation, that is, to increase the space distance or avoid facing the interference source in the direction, and the other is to add a filter at the transmitting end or add metal in the direction of the receiving end interference. The isolation net is used as shielding.
  • the solution provided by this application is triggered by the network device, and the solution does not depend on the ability of the terminal device to measure SINR when the network device sends downlink signals through multiple analog beams, that is, the solution is compatible with existing R15 terminal devices, In addition, on the network device side, according to the measurement results reported by the terminal device, it is combined to calculate whether the SINR satisfies a certain condition, or to calculate the magnitude of the interference, which can greatly reduce the measurement overhead.
  • the method provided in this application can be applied to all network devices with analog beam design.
  • the downlink signal is sent through the analog beam to measure and predict the interference situation when multi-user pairing.
  • the method provided in this application can also be applied to the calculation and derivation of interference between uplink signals.
  • the above-mentioned signals, simulated beams and specific implementation methods can be replaced according to specific scenarios.
  • the method provided in the present application can also be applied to interference measurement between multiple network devices.
  • adjacent network devices obtain the RSRP of each analog beam in the beam set to be measured (the RSRP of the analog beam can be understood)
  • the downlink signal is sent by the network device through the analog beam, and the RSRP of the downlink signal is reported by the terminal device, so that the interference information of the adjacent network device can be obtained.
  • execution subject shown in FIG. 3 is only an example, and the execution subject may also be a chip, a chip system, or a processor that supports the execution subject to implement the method shown in FIG. 3 , which is not limited in the present application.
  • the methods and operations implemented by the terminal equipment may also be implemented by components (such as chips or circuits) that can be used for the terminal equipment, and the methods and operations implemented by the network equipment may also be implemented by A component (such as a chip or a circuit) implementation that can be used in a network device.
  • components such as chips or circuits
  • a component such as a chip or a circuit
  • each network element such as a transmitting end device or a receiving end device, includes a corresponding hardware structure and/or software module for performing each function in order to realize the above functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
  • the embodiment of the present application can divide the functional modules of the transmitting end device or the receiving end device according to the above method example, for example, each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module middle.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation. In the following, description will be made by taking the division of each functional module corresponding to each function as an example.
  • Fig. 6 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 300 includes a transceiver unit 310 and a processing unit 320 .
  • the transceiver unit 310 can communicate with the outside, and the processing unit 320 is used for data processing.
  • the transceiver unit 310 may also be called a communication interface or a communication unit.
  • the communication device 300 may further include a storage unit, which may be used to store instructions and/or data, and the processing unit 320 may read instructions or and/or data in the storage unit.
  • a storage unit which may be used to store instructions and/or data
  • the processing unit 320 may read instructions or and/or data in the storage unit.
  • the communication device 300 may be a network device
  • the transceiver unit 310 is used to perform the receiving or sending operation of the network device in the method embodiment above
  • the processing unit 320 is used to perform the operation of the network device in the method embodiment above Operations handled internally.
  • the communications apparatus 300 may be a device including a network device.
  • the communication apparatus 300 may be a component configured in a network device, for example, a chip in the network device.
  • the transceiver unit 310 may be an interface circuit, a pin, and the like.
  • the interface circuit may include an input circuit and an output circuit
  • the processing unit 320 may include a processing circuit.
  • the transceiver unit 310 is configured to send the first instruction information to the terminal device, the first instruction information instructs the terminal device to measure the signal quality of the first signal, and the transceiver unit 310 is also configured to pass N analog beams Sending the first signal to the terminal device, N is an integer greater than or equal to 1, the analog beam satisfies the first preset condition, the transceiver unit 310 is also used to receive a measurement result from the terminal device, the measurement result is the first The signal quality of the signal.
  • the network device selects an analog beam that satisfies a preset condition to send the first signal, so that the network device does not need to calculate interference between all analog beams on the network device side when calculating interference, thereby reducing measurement overhead.
  • the terminal device satisfies a second preset condition
  • the second preset condition includes at least one of the following: the amount of scheduled data of the terminal device is greater than or equal to a first threshold, and the terminal device and the network device The signal quality of the communication is greater than or equal to a second threshold.
  • the network device determines the terminal device to participate in the measurement through the scheduling data volume of the terminal device and/or the signal quality of the communication with the network device, thereby preventing all terminal devices under the coverage of the network device from participating in the measurement, which can further reduce the Measure overhead.
  • the analog beam meeting the first preset condition includes at least one of the following: the signal quality of the signal transmitted through the analog beam is greater than or equal to a third threshold, and the analog beam meets the second preset condition The serving beam for the terminal device.
  • the processing unit 320 is configured to determine a terminal device and/or a set of analog beams to be measured, and the N analog beams belong to the set of analog beams to be measured.
  • the network device can determine the terminal device participating in the measurement and the set of analog beams to be measured before measuring the interference, and send the first signal to the determined terminal device through the analog beam in the set of analog beams to be measured until the analog beam set to be measured All analog beams in the set complete the measurement, and then the network device can calculate the interference between the analog beams for user pairing.
  • the transceiver unit 310 is specifically configured to repeatedly send the first signal to the terminal device on multiple symbols through N analog beams, where the multiple symbols include the first symbol and the second symbols, the first symbol includes an extended cyclic prefix of the second symbol, and the first symbol is adjacent to the second symbol.
  • the transceiver unit 310 is specifically configured to repeatedly send the first signal to the terminal device on multiple symbols through N analog beams, where the multiple symbols include a third symbol, a fourth symbol and the fifth symbol, the third symbol and/or the fifth symbol includes the extended cyclic prefix of the fourth symbol, the fourth symbol is located in the middle of the third symbol and the fifth symbol, and the third symbol, the fourth symbol and the fifth symbol Symbols are adjacent.
  • the transceiving unit 310 is further configured to send second indication information to the terminal device, where the second indication information instructs the terminal device to measure the signal of the first signal carried on the second symbol or the fourth symbol quality.
  • the network device when the network device repeatedly sends the first signal through two symbols and instructs the terminal device to measure the signal quality of the first signal carried on the next symbol, it can avoid the problem caused by the supercyclic prefix with too large timing advance The first signal reception is incomplete and thus the measurement is inaccurate.
  • the network device When the network device repeatedly sends the first signal through three symbols, and instructs the terminal device to measure the signal quality of the first signal carried on the middle symbol, it can avoid the hypercyclic prefix with too large timing advance, or the small timing advance ( There is a blank at the end of the middle symbol), which causes the incomplete reception of the first signal and thus inaccurate measurement.
  • the measurement result includes reference signal received power.
  • the network device triggers the terminal device to measure the reference signal received power of the first signal, so that the network device calculates the interference between simulated beams after receiving the measurement result.
  • the network device does not completely depend on the ability of terminal equipment to calculate interference, and can be compatible with existing R15 terminal equipment.
  • Fig. 7 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 400 includes a transceiver unit 410 and a processing unit 420 .
  • the transceiver unit 410 can communicate with the outside, and the processing unit 420 is used for data processing.
  • the transceiver unit 410 may also be called a communication interface or a communication unit.
  • the communication device 400 may further include a storage unit, which may be used to store instructions and/or data, and the processing unit 420 may read instructions or and/or data in the storage unit.
  • a storage unit which may be used to store instructions and/or data
  • the processing unit 420 may read instructions or and/or data in the storage unit.
  • the communication device 400 may be a terminal device
  • the transceiver unit 410 is used to perform the receiving or sending operation of the terminal device in the method embodiment above
  • the processing unit 420 is used to perform the operation of the terminal device in the method embodiment above Operations handled internally.
  • the communications apparatus 400 may be a device including a terminal device.
  • the communication apparatus 400 may be a component configured in a terminal device, for example, a chip in the terminal device.
  • the transceiver unit 410 may be an interface circuit, a pin, and the like.
  • the interface circuit may include an input circuit and an output circuit
  • the processing unit 420 may include a processing circuit.
  • the transceiver unit 410 is configured to receive first indication information from the network device, the first indication information instructing the terminal device to measure the signal quality of the first signal, and the transceiver unit 410 is also configured to receive the The first signal sent by N analog beams, N is an integer greater than or equal to 1, the analog beam satisfies the first preset condition, the transceiver unit 410 is also used to send a measurement result to the network device, the measurement result is the first signal signal quality.
  • the network device selects an analog beam that satisfies the preset condition to send the first signal, so that the terminal device does not need to measure the first signal sent through all the analog beams on the network device side during measurement, thereby reducing measurement overhead.
  • the device satisfies a second preset condition
  • the second preset condition includes at least one of the following: the amount of scheduled data of the device is greater than or equal to the first threshold, and the signal communicated by the device with the network device The quality is greater than or equal to the second threshold.
  • the terminal equipment only participates in the measurement when the scheduled data volume of the terminal equipment and/or the signal quality of the communication with the network equipment meets the second preset condition, thereby preventing all terminal equipment under the coverage of the network equipment from participating in the measurement, and can Further reduce measurement overhead.
  • the analog beam meeting the first preset condition includes at least one of the following: the signal quality of the signal transmitted through the analog beam is greater than or equal to a third threshold, and the analog beam meets the second preset condition The serving beam for the terminal device.
  • the transceiver unit 410 is further configured to receive the first signal repeatedly sent by the network device on multiple symbols through N analog beams, where the multiple symbols include the first symbol and the first symbol Two symbols, the first symbol includes the extended cyclic prefix of the second symbol, and the first symbol and the second symbol are adjacent.
  • the transceiver unit 410 is further configured to receive the first signal repeatedly sent by the network device on multiple symbols through N analog beams, where the multiple symbols include a third symbol, the first signal The fourth symbol and the fifth symbol, the third symbol and/or the fifth symbol include the extended cyclic prefix of the fourth symbol, the fourth symbol is located in the middle of the third symbol and the fifth symbol, and the third symbol, the fourth symbol and the fourth symbol Five symbols are next to each other.
  • the transceiving unit 410 is further configured to receive second indication information from the network device, where the second indication information instructs the terminal device to measure the first signal carried on the second symbol or the fourth symbol. Signal quality.
  • the terminal device when the terminal device receives the first signal through two symbols and measures the signal quality of the first signal carried on the next symbol, it can avoid receiving the first signal caused by the hypercyclic prefix when the timing advance is too large incomplete and thus inaccurately measured.
  • the terminal device receives the first signal through three symbols, and measures the signal quality of the first signal carried on the middle symbol, it can avoid that the timing advance is too large for the hypercyclic prefix, or the timing advance is too small (at the end of the middle symbol) Blank) caused by incomplete reception of the first signal, resulting in inaccurate measurement.
  • the measurement result includes reference signal received power.
  • the terminal device reports the reference signal received power (such as CSI) of the first signal and does not participate in the interference calculation.
  • the reference signal received power such as CSI
  • this solution does not completely depend on the terminal device
  • the ability to calculate interference can be compatible with existing R15 terminal equipment.
  • the embodiment of the present application further provides a communication device 500 .
  • the communication device 500 includes a processor 510, the processor 510 is coupled with a memory 520, the memory 520 is used to store computer programs or instructions and/or data, and the processor 510 is used to execute the computer programs or instructions and/or data stored in the memory 520 , so that the methods in the above method embodiments are executed.
  • the communication device 500 includes one or more processors 510 .
  • the communication device 500 may further include a memory 520 .
  • the communication device 500 may include one or more memories 520 .
  • the memory 520 may be integrated with the processor 510, or set separately.
  • the communication device 500 may further include a transceiver 530 and/or a communication interface, and the transceiver 530 and/or the communication interface are used for receiving and/or sending signals.
  • the processor 510 is configured to control the transceiver 530 to receive and/or send signals.
  • the communications apparatus 500 is configured to implement the operations performed by the network device in the above method embodiments.
  • the processor 510 is configured to implement the operations performed internally by the network device in the above method embodiments
  • the transceiver 530 is configured to implement the receiving or sending operations performed by the network device in the above method embodiments.
  • the processing unit 320 in the apparatus 300 may be the processor in FIG. 8
  • the transceiver unit 310 may be the transceiver and/or the communication interface in FIG. 8 .
  • the operations performed by the processor 510 reference may be made to the description of the processing unit 320 above, and for the operations performed by the transceiver 530, reference may be made to the description of the transceiver unit 310, which will not be repeated here.
  • the embodiment of the present application further provides a communication device 600 .
  • the communication device 600 includes a processor 610, the processor 610 is coupled with a memory 620, the memory 620 is used to store computer programs or instructions and/or data, and the processor 610 is used to execute the computer programs or instructions and/or data stored in the memory 620 , so that the methods in the above method embodiments are executed.
  • the communication device 600 includes one or more processors 610 .
  • the communication device 600 may further include a memory 620 .
  • the communication device 600 may include one or more memories 620 .
  • the memory 620 may be integrated with the processor 610, or set separately.
  • the communication device 600 may further include a transceiver 630 and/or a communication interface, and the transceiver 630 and/or the communication interface are used for receiving and/or sending signals.
  • the processor 610 is configured to control the transceiver 630 and/or the communication interface to receive and/or send signals.
  • the communication apparatus 600 is used to implement the operations performed by the terminal device in the above method embodiments.
  • the processor 610 is configured to implement the operations performed internally by the terminal device in the above method embodiments
  • the transceiver 630 is configured to implement the receiving or sending operations performed by the terminal device in the above method embodiments.
  • the processing unit 420 in the apparatus 400 may be the processor in FIG. 9
  • the transceiver unit 410 may be the transceiver in FIG. 9 .
  • the present application also provides a computer-readable medium, the computer-readable medium stores program code, and when the program code is run on the computer, the computer executes the embodiment shown in FIG. 3 Methods.
  • the computer program when executed by a computer, the computer can implement the method executed by the network device or the method executed by the terminal device in the foregoing method embodiments.
  • the embodiments of the present application also provide a computer program product containing instructions, which when executed by a computer enable the computer to implement the method executed by the network device or the method executed by the terminal device in the above method embodiments.
  • An embodiment of the present application further provides a communication system, where the communication system includes the network device and the terminal device in the foregoing embodiments.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disc, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disc, SSD)
  • the network equipment and terminal equipment in the above-mentioned various apparatus embodiments correspond to the network equipment and terminal equipment in the method embodiments, and corresponding steps are performed by corresponding modules or units, for example, the communication unit (transceiver) performs the receiving or receiving in the method embodiments.
  • the communication unit transmits the receiving or receiving in the method embodiments.
  • other steps besides sending and receiving may be performed by a processing unit (processor).
  • processors for the functions of the specific units, reference may be made to the corresponding method embodiments. Wherein, there may be one or more processors.
  • a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device can be components.
  • One or more components can reside within a process and/or thread of execution and a component can be localized on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more packets of data (e.g., data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet via a signal interacting with other systems). Communicate through local and/or remote processes.
  • packets of data e.g., data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet via a signal interacting with other systems.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: various media that can store program codes such as U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种用于测量干扰的方法和装置,该测量干扰的方法包括:网络设备向终端设备发送第一指示信息,该第一指示信息指示终端设备测量第一信号的信号质量,网络设备通过N个模拟波束向终端设备发送第一信号,N为大于或等于1的整数,该模拟波束满足第一预设条件,网络设备接收来自终端设备的测量结果,该测量结果为该第一信号的信号质量。通过本申请提供的测量干扰的方法和装置,能够降低测量开销。

Description

测量干扰的方法和装置
本申请要求于2021年8月31日提交中国国家知识产权局、申请号为202111012315.4、申请名称为“测量干扰的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,特别涉及通信领域中的测量干扰的方法和装置。
背景技术
近年来,多用户多输入多输出(multi-user multiple-input multiple-output,MU-MIMO)技术逐渐成为研究热点。MU-MIMO技术在不增加终端设备成本的情况下,允许多个用户以共享时频资源的方式与基站同时进行通信。由于实际通信系统中有通信需求的用户数往往大于系统所能接纳的用户数,且用户间存在一定干扰,所以用户配对是确保MU-MIMO技术获得多用户分集增益和复用增益的重要手段。
在混合波束成型(hybrid beamforming,HBF)架构中,毫米波基站通过改变移相器生成模拟波束,并通过模拟波束与多个用户通信,与多个用户通信时可以采用MU-MIMO技术,并对多个用户进行配对,在配对前需要测量不同用户使用模拟波束通信的干扰。现有的数字波束的干扰计算公式为‖H AW B2,其中,H A为用户A的空间信道,W B为用户B的发送权值,如图1所示,基站在使用模拟波束接收信号时,每个天线收到的信号由多个功率放大器(power amplifier,PA)接收后汇总,因此不能识别出每个PA上的阵子级信道,即无法完全确定上述公式中的参数H A,因此在采用MU-MIMO技术进行多用户配对时,无法通过数字波束的干扰计算公式计算不同用户间通过模拟波束通信的干扰。如何在采用MU-MIMO技术时获取配对用户间通过模拟波束通信的干扰是目前亟需解决的问题。
发明内容
本申请提供一种测量干扰的方法和装置,能够降低测量开销。
第一方面,提供了一种测量干扰的方法。该方法可以由网络设备执行,或者,也可以由配置在网络设备中的部件(如芯片或芯片系统等)执行,本申请对此不作限定。该方法包括:网络设备向终端设备发送第一指示信息,该第一指示信息指示终端设备测量第一信号的信号质量,网络设备通过N个模拟波束向终端设备发送第一信号,N为大于或等于1的整数,该模拟波束满足第一预设条件,网络设备接收来自终端设备的测量结果,该测量结果为所述第一信号的信号质量。
基于上述方案,网络设备选择满足预设条件的模拟波束发送第一信号,从而使得网络设备在计算干扰时,无需计算网络设备侧所有模拟波束间的干扰,从而降低测量开销。
结合第一方面,在第一方面的某些实现方式中,终端设备满足第二预设条件,该第二 预设条件包括以下至少一项:该终端设备的调度数据量大于或等于第一阈值,该终端设备与网络设备通信的信号质量大于或等于第二阈值。
基于上述方案,网络设备通过终端设备的调度数据量,和/或,与网络设备通信的信号质量确定参与测量的终端设备,从而避免网络设备覆盖范围下的所有终端设备都参与测量,能够进一步降低测量开销。
结合第一方面,在第一方面的某些实现方式中,该模拟波束满足第一预设条件包括以下至少一项:通过该模拟波束传输信号的信号质量大于或等于第三阈值,该模拟波束为满足第二预设条件的终端设备的服务波束。
结合第一方面,在第一方面的某些实现方式中,网络设备确定该终端设备和/或待测量模拟波束集合,该N个模拟波束属于该待测量模拟波束集合。
基于上述方案,网络设备在测量干扰前,确定参与测量的终端设备和待测量模拟波束集合,通过待测量模拟波束集合中的模拟波束向确定的终端设备发送第一信号,直至待测量模拟波束集合中的所有模拟波束完成测量,进而网络设备可以计算模拟波束间的干扰,用于用户配对。
结合第一方面,在第一方面的某些实现方式中,网络设备通过N个模拟波束,在多个符号上向终端设备重复发送所述第一信号,其中,该多个符号包括第一符号和第二符号,第一符号包括第二符号的扩展循环前缀,第一符号和第二符号相邻。
结合第一方面,在第一方面的某些实现方式中,网络设备通过N个模拟波束,在多个符号上向终端设备重复发送所述第一信号,其中,该多个符号包括第三符号,第四符号和第五符号,第三符号和/或第五符号包括该第四符号的扩展循环前缀,第四符号位于第三符号和第五符号的中间,且第三符号,第四符号和第五符号相邻。
结合第一方面,在第一方面的某些实现方式中,网络设备向终端设备发送第二指示信息,该第二指示信息指示终端设备测量承载于该第二符号或第四符号上的第一信号的信号质量。
基于上述方案,当网络设备通过两个符号重复发送第一信号,并指示终端设备测量承载于后一个符号上的第一信号的信号质量时,可以避免时间提前量偏大超循环前缀时导致的第一信号接收不完整,从而测量不准确的问题。当网络设备通过三个符号重复发送第一信号,并指示终端设备测量承载于中间符号上的第一信号的信号质量时,可以避免时间提前量偏大超循环前缀,或者时间提前量偏小(中间符号结尾处出现空白)时导致的第一信号接收不完整,从而测量不准确的问题。
结合第一方面,在第一方面的某些实现方式中,该测量结果包括参考信号接收功率。
基于上述方案,网络设备触发终端设备测量第一信号(例如CSI)的参考信号接收功率,从而网络设备接收到测量结果后计算模拟波束间的干扰,该方案相对于现有的由终端设备测量并计算干扰的方案而言,不完全依赖于终端设备计算干扰的能力,能够兼容现有的R15终端设备。
第二方面,提供了一种测量干扰的方法。该方法可以由终端设备执行,或者,也可以由配置在终端设备中的部件(如芯片或芯片系统等)执行,本申请对此不作限定。该方法包括:终端设备接收来自网络设备的第一指示信息,该第一指示信息指示终端设备测量第一信号的信号质量,终端设备接收网络设备通过N个模拟波束发送的第一信号,N为大于 或等于1的整数,该模拟波束满足第一预设条件,终端设备向网络设备发送测量结果,该测量结果为第一信号的信号质量。
基于上述方案,网络设备选择满足预设条件的模拟波束发送第一信号,从而使得终端设备在测量时,无需测量通过网络设备侧所有模拟波束发送的第一信号,从而降低测量开销。
结合第二方面,在第二方面的某些实现方式中,终端设备满足第二预设条件,该第二预设条件包括以下至少一项:该终端设备的调度数据量大于或等于第一阈值,该终端设备与网络设备通信的信号质量大于或等于第二阈值。
基于上述方案,当终端设备的调度数据量,和/或,与网络设备通信的信号质量满足第二预设条件时才参与测量,从而避免网络设备覆盖范围下的所有终端设备都参与测量,能够进一步降低测量开销。
结合第二方面,在第二方面的某些实现方式中,该模拟波束满足第一预设条件包括以下至少一项:通过该模拟波束传输信号的信号质量大于或等于第三阈值,该模拟波束为满足第二预设条件的终端设备的服务波束。
结合第二方面,在第二方面的某些实现方式中,终端设备接收网络设备通过N个模拟波束,在多个符号上重复发送的所述第一信号,其中,该多个符号包括第一符号和第二符号,第一符号包括第二符号的扩展循环前缀,第一符号和第二符号相邻。
结合第二方面,在第二方面的某些实现方式中,终端设备接收网络设备通过N个模拟波束,在多个符号上重复发送的所述第一信号,其中,该多个符号包括第三符号,第四符号和第五符号,第三符号和/或第五符号包括该第四符号的扩展循环前缀,第四符号位于第三符号和第五符号的中间,且第三符号,第四符号和第五符号相邻。
结合第二方面,在第二方面的某些实现方式中,终端设备接收来自网络设备的第二指示信息,该第二指示信息指示终端设备测量承载于该第二符号或第四符号上的第一信号的信号质量。
基于上述方案,当终端设备通过两个符号接收第一信号,并测量承载于后一个符号上的第一信号的信号质量时,可以避免时间提前量偏大超循环前缀时导致的第一信号接收不完整,从而测量不准确的问题。当终端设备通过三个符号接收第一信号,并测量承载于中间符号上的第一信号的信号质量时,可以避免时间提前量偏大超循环前缀,或者时间提前量偏小(中间符号结尾处出现空白)时导致的第一信号接收不完整,从而测量不准确的问题。
结合第二方面,在第二方面的某些实现方式中,该测量结果包括参考信号接收功率。
基于上述方案,终端设备上报第一信号(例如CSI)的参考信号接收功率,不参与干扰计算,相对于现有的由终端设备测量并计算干扰的方案而言,该方案不完全依赖于终端设备计算干扰的能力,能够兼容现有的R15终端设备。
第三方面,提供了一种测量干扰的装置。该装置可以是网络设备,或者,包括网络设备的较大设备,或者也可以是配置在网络设备中的部件(如芯片或芯片系统等),本申请对此不作限定。该装置包括收发单元,该收发单元用于向终端设备发送第一指示信息,该第一指示信息指示终端设备测量第一信号的信号质量,该收发单元还用于通过N个模拟波束向终端设备发送第一信号,N为大于或等于1的整数,该模拟波束满足第一预设条件, 该收发单元还用于接收来自终端设备的测量结果,该测量结果为所述第一信号的信号质量。
基于上述方案,网络设备选择满足预设条件的模拟波束发送第一信号,从而使得网络设备在计算干扰时,无需计算网络设备侧所有模拟波束间的干扰,从而降低测量开销。
结合第三方面,在第三方面的某些实现方式中,该终端设备满足第二预设条件,该第二预设条件包括以下至少一项:该终端设备的调度数据量大于或等于第一阈值,该终端设备与网络设备通信的信号质量大于或等于第二阈值。
结合第三方面,在第三方面的某些实现方式中,该模拟波束满足第一预设条件包括以下至少一项:通过该模拟波束传输信号的信号质量大于或等于第三阈值,该模拟波束为满足第二预设条件的终端设备的服务波束。
结合第三方面,在第三方面的某些实现方式中,该装置还包括处理单元,该处理单元用于确定终端设备和/或待测量模拟波束集合,该N个模拟波束属于该待测量模拟波束集合。
结合第三方面,在第三方面的某些实现方式中,该收发单元具体用于通过N个模拟波束,在多个符号上向终端设备重复发送所述第一信号,其中,该多个符号包括第一符号和第二符号,第一符号包括第二符号的扩展循环前缀,第一符号和第二符号相邻。
结合第三方面,在第三方面的某些实现方式中,该收发单元具体用于通过N个模拟波束,在多个符号上向终端设备重复发送所述第一信号,其中,该多个符号包括第三符号,第四符号和第五符号,第三符号和/或第五符号包括该第四符号的扩展循环前缀,第四符号位于第三符号和第五符号的中间,且第三符号,第四符号和第五符号相邻。
结合第三方面,在第三方面的某些实现方式中,该收发单元还用于向终端设备发送第二指示信息,该第二指示信息指示终端设备测量承载于该第二符号或第四符号上的第一信号的信号质量。
结合第三方面,在第三方面的某些实现方式中,该测量结果包括参考信号接收功率。
第四方面,提供了一种测量干扰的装置。该装置可以是终端设备,或者,包括终端设备的较大设备,或者也可以是配置在终端设备中的部件(如芯片或芯片系统等),本申请对此不作限定。该装置包括收发单元:该收发单元用于接收来自网络设备的第一指示信息,该第一指示信息指示终端设备测量第一信号的信号质量,该收发单元还用于接收网络设备通过N个模拟波束发送的第一信号,N为大于或等于1的整数,该模拟波束满足第一预设条件,该收发单元还用于向网络设备发送测量结果,该测量结果为第一信号的信号质量。
基于上述方案,网络设备选择满足预设条件的模拟波束发送第一信号,从而使得终端设备在测量时,无需测量通过网络设备侧所有模拟波束发送的第一信号,从而降低测量开销。
结合第四方面,在第四方面的某些实现方式中,该装置满足第二预设条件,该第二预设条件包括以下至少一项:该装置的调度数据量大于或等于第一阈值,该装置与网络设备通信的信号质量大于或等于第二阈值。
结合第四方面,在第四方面的某些实现方式中,该模拟波束满足第一预设条件包括以下至少一项:通过该模拟波束传输信号的信号质量大于或等于第三阈值,该模拟波束为满足第二预设条件的终端设备的服务波束。
结合第四方面,在第四方面的某些实现方式中,该收发单元还用于接收网络设备通过 N个模拟波束,在多个符号上重复发送的所述第一信号,其中,该多个符号包括第一符号和第二符号,第一符号包括第二符号的扩展循环前缀,第一符号和第二符号相邻。
结合第四方面,在第四方面的某些实现方式中,该收发单元还用于接收网络设备通过N个模拟波束,在多个符号上重复发送的所述第一信号,其中,该多个符号包括第三符号,第四符号和第五符号,第三符号和/或第五符号包括该第四符号的扩展循环前缀,第四符号位于第三符号和第五符号的中间,且第三符号,第四符号和第五符号相邻。
结合第四方面,在第四方面的某些实现方式中,该收发单元还用于接收来自网络设备的第二指示信息,该第二指示信息指示终端设备测量承载于该第二符号或第四符号上的第一信号的信号质量。
结合第四方面,在第四方面的某些实现方式中,该测量结果包括参考信号接收功率。
第五方面,提供一种通信装置,该装置包括处理器,该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面或第一方面中任一种可能实现方式中的方法。可选地,该装置还包括存储器,该存储器与处理器可能是分离部署的,也可能是集中部署的。可选地,该装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为配置于网络设备中的芯片。当该装置为配置于网络设备中的芯片时,该通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
可选地,该收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
在具体实现过程中,上述处理器可以为一个或多个芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是但不限于接收器接收并输入的,输出电路所输出的信号可以是但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第六方面,提供一种通信装置,该装置包括处理器,该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面或第二方面中任一种可能实现方式中的方法。可选地,该装置还包括存储器,该存储器与处理器可能是分离部署的,也可能是集中部署的。可选地,该装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为配置于终端设备中的芯片。当该装置为配置于终端设备中的芯片时,该通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
可选地,该收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
在具体实现过程中,上述处理器可以为一个或多个芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是但不限于接收器接收并输入的,输出电路所输出的信 号可以是但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第七方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序(也可以称为代码,或指令),当该计算机程序被运行时,使得计算机执行上述第一方面至第二方面中的任一方面,以及第一方面至第二方面中任一种可能实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面,以及第一方面至第二方面中任一种可能实现方式中的方法。
第九方面,提供了一种通信系统,该通信系统包括上述网络设备和终端设备。
附图说明
图1是基站通过天线端口生成模拟波束与用户通信的示意图。
图2是适用于本申请实施例的通信系统100的示意图。
图3是本申请实施例提供的测量干扰的方案的交互流程图。
图4是本申请实施例提供的一种承载第一信号的符号的示意图。
图5是本申请实施例提供的另一种承载第一信号的符号的示意图。
图6是本申请实施例提供的一种通信装置的示意性框图。
图7是本申请实施例提供的另一种通信装置的示意性框图。
图8是本申请实施例提供的一种通信装置的结构示意图。
图9是本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图2是适用于本申请实施例的通信系统100的示意图。
如图2所示,该通信系统100可以包括至少一个网络设备,例如,图2所示的网络设备120。该通信系统100还可以包括至少一个终端设备,例如,图2所示的终端设备110和终端设备130。终端设备与网络设备之间、终端设备与终端设备之间可以建立连接,进行通信,发送设备可以通过控制信息指示数据的调度信息,以便接收设备根据控制信息正确地接收数据。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system formobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、LTE系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统或未来演进的通信系统,车到其它设备(vehicle-to-X V2X),其中V2X可以包括车到互联网(vehicle to network,V2N)、车到车(vehicle to vehicle,V2V)、车到基础设 施(vehicle to infrastructure,V2I)、车到行人(vehicle to pedestrian,V2P)等、车间通信长期演进技术(long term evolution-vehicle,LTE-V)、车联网、机器类通信(machine type communication,MTC)、物联网(Internet of things,IoT)、机器间通信长期演进技术(long term evolution-machine,LTE-M),机器到机器(machine to machine,M2M),设备到设备(deviceto device,D2D)等。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端或者未来演进网络中的终端等。
其中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。本申请对于终端设备的具体形式不作限定。
应理解,本申请实施例中,终端设备可以是用于实现终端设备功能的装置,也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例中的终端设备支持测量网络设备通过模拟波束发送的信号。
本申请实施例中的网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(Radio Network Controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(Base Band Unit,BBU),无线保真(Wireless Fidelity,WIFI)系统中的接入点(Access Point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包 括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,简称AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
应理解,本申请实施例中,网络设备可以是用于实现网络设备功能的装置,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。本申请实施例中的网络设备可以是基于HBF架构下的网络设备,能够生成模拟波束,并通过模拟波束与终端设备通信。
在图2的场景中,当网络设备采用MU-MIMO技术,通过模拟波束与多个用户通信时,在对用户配对前,由于网络设备不能获取阵子级信道,因此无法通过数字波束的干扰计算公式计算不同用户间通过模拟波束通信的干扰。
一种可能的实施方式,终端设备周期扫描网络设备通过模拟波束发送的下行信号,并测量该下行信号的参考信号接收功率(reference signal receiving power,RSRP),选择RSRP最高的4个下行信号对应的模拟波束上报网络设备。
示例地,该下行信号可以是信道状态信息(channel state information,CSI)。
采用该实施方式,终端设备上报了4个模拟波束,网络设备能获取该4个模拟波束之间的干扰信息,由于网络设备侧的模拟波束的数量远多于4个,即网络设备与终端设备进行通信的模拟波束的数量远多于4个。
因此在该实施方式下,网络设备在采用MU-MIMO技术进行用户配对前,无法获取除上述4个模拟波束之外的其它模拟波束的干扰信息,应理解,无法获取的干扰信息可以是该4个模拟波束和其它模拟波束之间的干扰信息,也可以是其它模拟波束之间的干扰信息。
另一种可能的实施方式,网络设备将一对模拟波束绑定,例如将模拟波束#1和模拟波束#2绑定。其中,若网络设备通过模拟波束#1与终端设备通信,且通信质量高于或等于(高于)某阈值,则该模拟波束#1可被称为服务模拟波束,若网络设备通过模拟波束#2与终端设备通信,且通信质量低于(低于或等于)某阈值,则该模拟波束#2可被称为干扰模拟波束。
网络设备同时通过服务波束和模拟波束向终端设备发送下行信号,终端设备接收该下行信号,并测量该下行信号的信号与干扰加噪声比(signal to interference plus noise ratio, SINR),后续终端设备将测量的SINR上报网络设备,网络设备即可获知该服务波束和模拟波束的干扰信息。
示例地,该下行信号可以是CSI。
采用该实施方式,一次只能测量一对模拟波束的组合,但网络设备侧的模拟波束的数量较多,因此网络设备获取模拟波束的干扰信息需要经过多次模拟波束的组合和测量,开销较大。
例如,网络设备侧有8个模拟波束,如果是4个终端设备配对,则需从8个模拟波束中任选4个进行组合测量,在组合过程中有
Figure PCTCN2022111997-appb-000001
种选择,可见测量的次数倍数增长,测量开销较大。
并且在该实施方式中,网络设备覆盖范围内的所有终端设备都需参与干扰测量,这对终端设备的兼容性要求较高,例如,R15的终端设备不支持该测量。
图3是本申请实施例提供的一种测量干扰的方法的交互流程图。图3所示的方法200包括:
步骤S220,网络设备向终端设备发送第一指示信息,该第一指示信息指示终端设备测量第一信号的信号质量,对应的,终端设备接收该第一指示信息。
应理解,该第一信号为通过模拟波束发送的信号。本申请实施例提及的第一信号可以是CSI,当然,该第一信号也可以是用于测量干扰的其它信号,本申请对此不作任何限制。
可选地,该终端设备满足第二预设条件,该第二预设条件包括以下至少一项:
终端设备的调度数据量大于或等于第一阈值;
终端设备与网络设备通信的信号质量大于或等于第二阈值;
终端设备与网络设备所处的地理位置间的距离小于或等于某一门限。
一种可能的实施方式中,网络设备向满足第二预设条件的终端设备发送第一指示信息,指示测量第一信号的信号质量,对应的,满足第二预设条件的终端设备接收该第一指示信息。
网络设备可以通过该方案,在其覆盖范围内选择满足第二预设条件的一部分终端设备进行测量,从而节省测量开销。
步骤S230,网络设备通过N个模拟波束向终端设备发送第一信号,N为大于或等于1的整数,该模拟波束满足第一预设条件。对应的,终端设备接收该第一信号。
一种可能的实施方式中,网络设备通过N个模拟波束向满足第二预设条件的终端设备发送该第一信号,对应的,满足该第二预设条件的终端设备接收该第一信号。
可选地,模拟波束满足第一预设条件包括以下至少一项:
通过该模拟波束传输信号的信号质量大于或等于第三阈值;
该模拟波束为终端设备的服务波束,该终端设备可以为满足第二预设条件的终端设备。
网络设备可以通过该方案,从网络设备侧的模拟波束中选择满足第一预设条件的一部分模拟波束作为待测量模拟波束,避免了过多模拟波束组合进行干扰测量,进一步降低了测量开销。
可选地,网络设备同时通过N个模拟波束向终端设备发送第一信号,或网络设备周期的通过N个模拟波束向终端设备发送第一信号(即周期的在不同的时域资源发送N次第一信号,每次通过1个模拟波束发送第一信号,N次通过不同的N个模拟波束发送),或 网络设备非周期的通过N个模拟波束向终端设备发送第一信号(即非周期的在不同的时域资源发送N次第一信号,每次通过1个模拟波束发送第一信号,N次通过不同的N个模拟波束发送)。
示例地,当终端设备接入网络设备后,终端设备的接收波束由终端设备测量到的网络设备发送同步信号块(synchronization signal block,SSB)的模拟波束的位置确定,网络设备在发送SSB的模拟波束所对应的时域位置,通过N个模拟波束发送第一信号,具体可同时通过N个模拟波束发送第一信号,或者周期的通过N个模拟波束发送第一信号(同上,每次通过1个模拟波束发送第一信号,N次通过不同的N个模拟波束发送),或者非周期的通过N个模拟波束发送第一信号(同上,每次通过1个模拟波束发送第一信号,N次通过不同的N个模拟波束发送)。终端设备根据确定的接收波束的位置接收第一信号,并进行测量。
可选地,N取值为4,对现有协议改动较小。
可选地,网络设备通过N个模拟波束向终端设备发送第一信号包括:
网络设备通过N个模拟波束,在多个符号上重复发送该第一信号,应理解,该符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,本申请对此不做限制。
一种可能的实施方式中,多个符号包括第一符号和第二符号,其中,第一符号包括第二符号的扩展循环前缀,第一符号和第二符号相邻。
另一种可能的实施方式中,多个符号包括第三符号,第四符号和第五符号,第三符号和/或第五符号包括该第四符号的扩展循环前缀,第四符号位于第三符号和第五符号的中间,第三符号,第四符号和第五符号相邻。
可选地,方法200还包括:
步骤S240,网络设备向终端设备发送第二指示信息,该第二指示信息指示终端设备测量承载于第二符号上的该第一信号的信号质量。对应的,终端设备接收该第二指示信息,并测量承载于第二符号上的该第一信号的信号质量。
在多个符号包括第一符号和第二符号的实施方式中,测量符号为第二符号,即网络设备通过第二指示信息指示终端设备测量的是承载于第二符号上的该第一信号的信号质量。在该实施方式中第一符号包括第二符号的扩展循环前缀(或扩展的循环前缀),即通过循环移位将第二符号后端的部分比特承载的内容作为扩展循环前缀在第一符号内发送,相当于增加了循环前缀(cyclic prefix,CP)的长度,应理解,扩展循环前缀和循环前缀包括的内容不重叠。
示例地,如图4所示,网络设备在符号M(第一符号)和符号M+1(第二符号)上发送第一信号,其中,符号M的后端包括符号M+1的扩展循环前缀,该扩展循环前缀复制的内容为符号M+1后端的部分比特承载的内容,该扩展循环前缀复制的内容不包括符号M+1包括的循环前缀复制的符号M+1后端的部分比特承载的内容。网络设备指示终端设备测量承载于符号M+1上的第一信号的信号质量,其中M为大于或等于0的整数。图4示出了TA对齐,TA偏大超CP,TA偏小三种情况下,两个连续的符号承载第一信号的具体情况,可以得出结论,通过两个连续的符号发送第一信号,可以避免在时间提前量(timing advance,TA)偏大超CP的情况下,第一信号接收不完整,从而导致测量不准确 的问题。但当TA偏小时,终端设备提前收到第二符号上承载的第一信号,且第二符号结尾处会出现空白,因此也会影响第一信号测量的准确性。
在多个符号包括第三符号,第四符号和第五符号的实施方式中,测量符号为中间符号,即第四符号,即网络设备通过第二指示信息指示终端设备测量的是承载于第四符号上的该第一信号的信号质量。在该实施方式中第三符号和/或第五符号包括第四符号的扩展循环前缀,即通过循环移位将第四符号后端的部分比特承载的内容作为扩展循环前缀在第三符号和/或第五符号内发送,应理解,扩展循环前缀和循环前缀包括的内容不重叠。
示例地,如图5所示,网络设备在符号T(第三符号),符号T+1(第四符号)和符号T+2(第五符号)上发送第一信号,其中,符号T的后端包括符号T+1的扩展的循环前缀,该扩展的循环前缀复制的内容为符号T+1后端的部分比特承载的内容,该扩展的循环前缀复制的内容不包括符号T+1包括的循环前缀复制的符号T+1后端的部分比特承载的内容。符号T+2的前端包括符号T+1的扩展的循环前缀,该扩展的循环前缀复制的内容为符号T+1后端的部分比特承载的内容,该扩展的循环前缀复制的内容不包括符号T+1包括的循环前缀复制的符号T+1后端的部分比特承载的内容。网络设备指示终端设备测量承载于符号T+1上的第一信号的信号质量,其中T为大于或等于0的整数。图5示出了TA对齐,TA偏大超CP,TA偏小三种情况下,三个连续的符号承载第一信号的具体情况,可以得出结论,通过三个连续的符号发送第一信号可以避免在TA偏大超CP的情况下,第一信号接收不完整,从而导致测量不准确的问题,或者避免在TA偏小,终端设备提前收到中间符号上承载的第一信号(中间符号结尾处出现空白),从而导致测量不准确的问题。
应理解,上述方案适用于终端设备处于非视距传输(not line of sight,NLOS)环境时。
基于上述通过多个符号发送第一信号的实施方式中,能够避免在时间提前量(Timing advance,TA)偏大超CP,或者TA偏小(中间符号结尾处出现空白)时导致的第一信号接收不完整的问题,从而终端设备能够更加准确的测量第一信号,使得网络设备根据准确的测量结果计算模拟波束间的干扰。
可选地,在步骤S220之前,方法200包括:
步骤S210,网络设备确定终端设备和待测量模拟波束集合。
可选地,网络设备通过第一预设条件确定待测量模拟波束集合,上述N个模拟波束属于该待测量模拟波束集合。网络设备通过第二预设条件确定终端设备,该终端设备的数量可以是一个或多个。
也就是说,上述步骤S220,S230,S240,以及后文步骤S250中涉及的终端设备可以是一个或多个,该一个或多个终端设备是网络设备通过第二预设条件确定的。
示例地,步骤S220可替换为,网络设备向一个或多个终端设备发送第一指示信息,该第一指示信息指示终端设备测量第一信号的信号质量,对应的,一个或多个终端设备接收该第一指示信息。步骤S230可替换为,网络设备通过N个模拟波束向一个或多个终端设备发送第一信号,N为大于或等于1的整数,该模拟波束满足第一预设条件。对应的,一个或多个终端设备接收该第一信号。步骤S240可替换为,网络设备向一个或多个终端设备发送第二指示信息,该第二指示信息指示终端设备测量承载于第二符号上的该第一信号的信号质量。对应的,一个或多个终端设备接收该第二指示信息,并测量承载于第二符 号上的该第一信号的信号质量。步骤S250可替换为,一个或多个终端设备向网络设备发送测量结果,该测量结果为第一信号的信号质量。对应的,网络设备接收该测量结果。
步骤S250,终端设备向网络设备发送测量结果,该测量结果为第一信号的信号质量。对应的,网络设备接收该测量结果。
可选地,该测量结果包括第一信号的参考信号接收功率(reference signal receiving power,RSRP)。
在一种可能的实施方式中,网络设备收到来自终端设备的测量结果后,后续在对应时域位置再通过N个模拟波束发送第一信号,发送的方式同上所述,可以是同时发送,可以是周期的或非周期的依次发送,直到待测量模拟波束集合中的所有模拟波束全部被测量完成为止。
后续网络设备可根据终端设备上报的待测量模拟波束集合中所有模拟波束的测量结果,计算对应模拟波束间的干扰,或者由网络设备组合模拟波束进行隔离度计算,从而进行用户配对。隔离度就是为了尽量减少各种干扰对接收机的影响所采取的抑制干扰措施。通常有以下两种措施,一种是增加空间隔离度,即增加空间的距离或者避免方向上和干扰源面对面,另一种就是在发射端增加滤波器或者在接收端干扰来的方向上加金属隔离网做屏蔽。
采用本申请提供的方案,由网络设备触发,该方案不依赖于终端设备在网络设备通过多个模拟波束发送下行信号的情况下测量SINR的能力,即该方案可以兼容现有的R15终端设备,并且在网络设备侧根据终端设备上报的测量结果组合计算SINR是否满足一定条件,或计算干扰大小,能够大幅降低测量开销。
应理解,本申请提供的方法可以应用在所有含有模拟波束设计的网络设备,在无法获取终端设备间完整空间信道时,通过模拟波束发送下行信号测量预估多用户配对时的干扰情况。本申请提供的方法也可应用于上行信号间干扰的计算推导,具体应用时可根据具体场景更换上述提及的信号,模拟波束和具体实施方式。
还应理解,本申请提供的方法还可以应用在多个网络设备之间的干扰测量,例如,相邻网络设备之间获取彼此待测量波束集合中各模拟波束的RSRP(模拟波束的RSRP可理解为网络设备通过该模拟波束发送下行信号,终端设备上报的该下行信号的RSRP),从而可以获取相邻网络设备的干扰信息。
应理解,上述流程图中所示的虚线步骤为可选地步骤,并且各步骤的先后顺序依照方法的内在逻辑确定,图中所示的序号仅为示例,不对本申请步骤的先后顺序造成限制。
还应理解,本申请实施例提供的方法可以单独使用,也可以结合使用,本申请对此不做限制。
需注意的是,图3中示意的执行主体仅为示例,该执行主体也可以是支持该执行主体实现图3所示方法的芯片、芯片系统、或处理器,本申请对此不作限制。
上文结合附图描述了本申请实施例的方法实施例,下面描述本申请实施例的装置实施例。可以理解,方法实施例的描述与装置实施例的描述可以相互对应,因此,未描述的部分可以参见前面方法实施例。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和操作,也可以 由可用于网络设备的部件(例如芯片或者电路)实现。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图6是本申请实施例提供的通信装置的示意性框图。该通信装置300包括收发单元310和处理单元320。收发单元310可以与外部进行通信,处理单元320用于进行数据处理。收发单元310还可以称为通信接口或通信单元。
可选地,该通信装置300还可以包括存储单元,该存储单元可以用于存储指令或者和/或数据,处理单元320可以读取存储单元中的指令或者和/或数据。
在一种设计中,该通信装置300可以为网络设备,收发单元310用于执行上文方法实施例中网络设备的接收或发送的操作,处理单元320用于执行上文方法实施例中网络设备内部处理的操作。
在另一种设计中,该通信装置300可以为包括网络设备的设备。或者,该通信装置300可以为配置在网络设备中的部件,例如,网络设备中的芯片。这种情况下,收发单元310可以为接口电路、管脚等。具体地,接口电路可以包括输入电路和输出电路,处理单元320可以包括处理电路。
一种可能的实现方式中,收发单元310用于向终端设备发送第一指示信息,该第一指示信息指示终端设备测量第一信号的信号质量,该收发单元310还用于通过N个模拟波束向终端设备发送第一信号,N为大于或等于1的整数,该模拟波束满足第一预设条件,该收发单元310还用于接收来自终端设备的测量结果,该测量结果为所述第一信号的信号质量。
基于上述方案,网络设备选择满足预设条件的模拟波束发送第一信号,从而使得网络设备在计算干扰时,无需计算网络设备侧所有模拟波束间的干扰,从而降低测量开销。
一种可能的实现方式中,该终端设备满足第二预设条件,该第二预设条件包括以下至少一项:该终端设备的调度数据量大于或等于第一阈值,该终端设备与网络设备通信的信号质量大于或等于第二阈值。
基于上述方案,网络设备通过终端设备的调度数据量,和/或,与网络设备通信的信号质量确定参与测量的终端设备,从而避免网络设备覆盖范围下的所有终端设备都参与测量,能够进一步降低测量开销。
一种可能的实现方式中,该模拟波束满足第一预设条件包括以下至少一项:通过该模拟波束传输信号的信号质量大于或等于第三阈值,该模拟波束为满足第二预设条件的终端设备的服务波束。
一种可能的实现方式中,该处理单元320用于确定终端设备和/或待测量模拟波束集合,该N个模拟波束属于该待测量模拟波束集合。
基于上述方案,网络设备可以在测量干扰前,确定参与测量的终端设备和待测量模拟波束集合,通过待测量模拟波束集合中的模拟波束向确定的终端设备发送第一信号,直至待测量模拟波束集合中的所有模拟波束完成测量,进而网络设备可以计算模拟波束间的干扰,用于用户配对。
一种可能的实现方式中,该收发单元310具体用于通过N个模拟波束,在多个符号上向终端设备重复发送所述第一信号,其中,该多个符号包括第一符号和第二符号,第一符号包括第二符号的扩展循环前缀,第一符号和第二符号相邻。
一种可能的实现方式中,该收发单元310具体用于通过N个模拟波束,在多个符号上向终端设备重复发送所述第一信号,其中,该多个符号包括第三符号,第四符号和第五符号,第三符号和/或第五符号包括该第四符号的扩展循环前缀,第四符号位于第三符号和第五符号的中间,且第三符号,第四符号和第五符号相邻。
一种可能的实现方式中,该收发单元310还用于向终端设备发送第二指示信息,该第二指示信息指示终端设备测量承载于该第二符号或第四符号上的第一信号的信号质量。
基于上述方案,当网络设备通过两个符号重复发送第一信号,并指示终端设备测量承载于后一个符号上的第一信号的信号质量时,可以避免时间提前量偏大超循环前缀时导致的第一信号接收不完整,从而测量不准确的问题。当网络设备通过三个符号重复发送第一信号,并指示终端设备测量承载于中间符号上的第一信号的信号质量时,可以避免时间提前量偏大超循环前缀,或者时间提前量偏小(中间符号结尾处出现空白)时导致的第一信号接收不完整,从而测量不准确的问题。
一种可能的实现方式中,该测量结果包括参考信号接收功率。
基于上述方案,网络设备触发终端设备测量第一信号的参考信号接收功率,从而网络设备接收到测量结果后计算模拟波束间的干扰,该方案相对于现有的由终端设备测量并计算干扰的方案而言,不完全依赖于终端设备计算干扰的能力,能够兼容现有的R15终端设备。
图7是本申请实施例提供的通信装置的示意性框图。该通信装置400包括收发单元410和处理单元420。收发单元410可以与外部进行通信,处理单元420用于进行数据处理。收发单元410还可以称为通信接口或通信单元。
可选地,该通信装置400还可以包括存储单元,该存储单元可以用于存储指令或者和/或数据,处理单元420可以读取存储单元中的指令或者和/或数据。
在一种设计中,该通信装置400可以为终端设备,收发单元410用于执行上文方法实施例中终端设备的接收或发送的操作,处理单元420用于执行上文方法实施例中终端设备内部处理的操作。
在另一种设计中,该通信装置400可以为包括终端设备的设备。或者,该通信装置400可以为配置在终端设备中的部件,例如,终端设备中的芯片。这种情况下,收发单元 410可以为接口电路、管脚等。具体地,接口电路可以包括输入电路和输出电路,处理单元420可以包括处理电路。
一种可能的实现方式中,收发单元410用于接收来自网络设备的第一指示信息,该第一指示信息指示终端设备测量第一信号的信号质量,该收发单元410还用于接收网络设备通过N个模拟波束发送的第一信号,N为大于或等于1的整数,该模拟波束满足第一预设条件,该收发单元410还用于向网络设备发送测量结果,该测量结果为第一信号的信号质量。
基于上述方案,网络设备选择满足预设条件的模拟波束发送第一信号,从而使得终端设备在测量时,无需测量通过网络设备侧所有模拟波束发送的第一信号,从而降低测量开销。
一种可能的实现方式中,该装置满足第二预设条件,该第二预设条件包括以下至少一项:该装置的调度数据量大于或等于第一阈值,该装置与网络设备通信的信号质量大于或等于第二阈值。
基于上述方案,当终端设备的调度数据量,和/或,与网络设备通信的信号质量满足第二预设条件时才参与测量,从而避免网络设备覆盖范围下的所有终端设备都参与测量,能够进一步降低测量开销。
一种可能的实现方式中,该模拟波束满足第一预设条件包括以下至少一项:通过该模拟波束传输信号的信号质量大于或等于第三阈值,该模拟波束为满足第二预设条件的终端设备的服务波束。
一种可能的实现方式中,该收发单元410还用于接收网络设备通过N个模拟波束,在多个符号上重复发送的所述第一信号,其中,该多个符号包括第一符号和第二符号,第一符号包括第二符号的扩展循环前缀,第一符号和第二符号相邻。
一种可能的实现方式中,该收发单元410还用于接收网络设备通过N个模拟波束,在多个符号上重复发送的所述第一信号,其中,该多个符号包括第三符号,第四符号和第五符号,第三符号和/或第五符号包括该第四符号的扩展循环前缀,第四符号位于第三符号和第五符号的中间,且第三符号,第四符号和第五符号相邻。
一种可能的实现方式中,该收发单元410还用于接收来自网络设备的第二指示信息,该第二指示信息指示终端设备测量承载于该第二符号或第四符号上的第一信号的信号质量。
基于上述方案,当终端设备通过两个符号接收第一信号,并测量承载于后一个符号上的第一信号的信号质量时,可以避免时间提前量偏大超循环前缀时导致的第一信号接收不完整,从而测量不准确的问题。当终端设备通过三个符号接收第一信号,并测量承载于中间符号上的第一信号的信号质量时,可以避免时间提前量偏大超循环前缀,或者时间提前量偏小(中间符号结尾处出现空白)时导致的第一信号接收不完整,从而测量不准确的问题。
一种可能的实现方式中,该测量结果包括参考信号接收功率。
基于上述方案,终端设备上报第一信号的参考信号接收功率(例如CSI),不参与干扰计算,相对于现有的由终端设备测量并计算干扰的方案而言,该方案不完全依赖于终端设备计算干扰的能力,能够兼容现有的R15终端设备。
如图8所示,本申请实施例还提供一种通信装置500。该通信装置500包括处理器510,处理器510与存储器520耦合,存储器520用于存储计算机程序或指令或者和/或数据,处理器510用于执行存储器520存储的计算机程序或指令和/或者数据,使得上文方法实施例中的方法被执行。
可选地,该通信装置500包括的处理器510为一个或多个。
可选地,如图8所示,该通信装置500还可以包括存储器520。
可选地,该通信装置500包括的存储器520可以为一个或多个。
可选地,该存储器520可以与该处理器510集成在一起,或者分离设置。
可选地,如图8所示,该通信装置500还可以包括收发器530和/或通信接口,收发器530和/或通信接口用于信号的接收和/或发送。例如,处理器510用于控制收发器530进行信号的接收和/或发送。
作为一种方案,该通信装置500用于实现上文方法实施例中由网络设备执行的操作。
例如,处理器510用于实现上文方法实施例中由网络设备内部执行的操作,收发器530用于实现上文方法实施例中由网络设备执行的接收或发送的操作。装置300中的处理单元320可以为图8中的处理器,收发单元310可以为图8中的收发器和/或通信接口。处理器510执行的操作具体可以参见上文对处理单元320的说明,收发器530执行的操作可以参见对收发单元310的说明,这里不再赘述。
如图9所示,本申请实施例还提供一种通信装置600。该通信装置600包括处理器610,处理器610与存储器620耦合,存储器620用于存储计算机程序或指令或者和/或数据,处理器610用于执行存储器620存储的计算机程序或指令和/或者数据,使得上文方法实施例中的方法被执行。
可选地,该通信装置600包括的处理器610为一个或多个。
可选地,如图9所示,该通信装置600还可以包括存储器620。
可选地,该通信装置600包括的存储器620可以为一个或多个。
可选地,该存储器620可以与该处理器610集成在一起,或者分离设置。
可选地,如图9所示,该通信装置600还可以包括收发器630和/或通信接口,收发器630和/或通信接口用于信号的接收和/或发送。例如,处理器610用于控制收发器630和/或通信接口进行信号的接收和/或发送。
作为一种方案,该通信装置600用于实现上文方法实施例中由终端设备执行的操作。例如,处理器610用于实现上文方法实施例中由终端设备内部执行的操作,收发器630用于实现上文方法实施例中由终端设备执行的接收或发送的操作。装置400中的处理单元420可以为图9中的处理器,收发单元410可以为图9中的收发器。处理器610执行的操作具体可以参见上文对处理单元420的说明,收发器630执行的操作可以参见对收发单元410的说明,这里不再赘述。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图3所示实施例的方法。例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由网络设备执行的方法,或由终端设备执行的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该 计算机实现上述方法实施例中由网络设备执行的方法,或由终端设备执行的方法。
本申请实施例还提供一种通信系统,该通信系统包括上文实施例中的网络设备和终端设备。
上述提供的任一种通信装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中的网络设备和终端设备与方法实施例中的网络设备和终端设备对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通 过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-onlymemory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种测量干扰的方法,其特征在于,包括:
    网络设备向终端设备发送第一指示信息,所述第一指示信息指示所述终端设备测量第一信号的信号质量;
    所述网络设备通过N个模拟波束向所述终端设备发送所述第一信号,所述N为大于或等于1的整数,所述模拟波束满足第一预设条件;
    所述网络设备接收来自所述终端设备的测量结果,所述测量结果为所述第一信号的信号质量。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备满足第二预设条件,所述第二预设条件包括以下至少一项:
    所述终端设备的调度数据量大于或等于第一阈值;
    所述终端设备与所述网络设备通信的信号质量大于或等于第二阈值。
  3. 根据权利要求1或2所述的方法,其特征在于,所述模拟波束满足第一预设条件包括以下至少一项:
    通过所述模拟波束传输信号的信号质量大于或等于第三阈值;
    所述模拟波束为所述终端设备的服务波束。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备确定所述终端设备和/或待测量模拟波束集合,所述N个模拟波束属于所述待测量模拟波束集合。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述网络设备通过N个模拟波束向所述终端设备发送所述第一信号,包括:
    所述网络设备通过所述N个模拟波束,在多个符号上向所述终端设备重复发送所述第一信号;其中,
    所述多个符号包括第一符号和第二符号,所述第一符号包括所述第二符号的扩展循环前缀,所述第一符号和所述第二符号相邻;或
    所述多个符号包括第三符号,第四符号和第五符号,所述第三符号和/或所述第五符号包括所述第四符号的扩展循环前缀,所述第四符号位于所述第三符号和所述第五符号的中间,所述第三符号,所述第四符号和所述第五符号相邻;
    所述方法还包括:
    所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息指示所述终端设备测量承载于所述第二符号或第四符号上的所述第一信号的信号质量。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述测量结果包括参考信号接收功率。
  7. 一种测量干扰的方法,其特征在于,包括:
    终端设备接收来自网络设备的第一指示信息,所述第一指示信息指示所述终端设备测量第一信号的信号质量;
    所述终端设备接收所述网络设备通过N个模拟波束发送的所述第一信号,所述N为 大于或等于1的整数,所述模拟波束满足第一预设条件;
    所述终端设备向所述网络设备发送测量结果,所述测量结果为所述第一信号的信号质量。
  8. 根据权利要求7所述的方法,其特征在于,所述终端设备满足第二预设条件,所述第二预设条件包括以下至少一项:
    所述终端设备的调度数据量大于或等于第一阈值;
    所述终端设备与所述网络设备通信的信号质量大于或等于第二阈值。
  9. 根据权利要求7或8所述的方法,其特征在于,所述模拟波束满足第一预设条件包括以下至少一项:
    通过所述模拟波束传输信号的信号质量大于或等于第三阈值;
    所述模拟波束为所述终端设备的服务波束。
  10. 根据权利要求7至9中任一项所述的方法,其特征在于,所述终端设备接收所述网络设备通过N个模拟波束发送的所述第一信号,包括:
    所述终端设备接收所述网络设备通过所述N个模拟波束,在多个符号上重复发送的所述第一信号;其中,
    所述多个符号包括第一符号和第二符号,所述第一符号包括所述第二符号的扩展循环前缀,所述第一符号和所述第二符号相邻;或
    所述多个符号包括所述第三符号,所述第四符号和第五符号,所述第三符号和/或所述第五符号包括所述第四符号的扩展循环前缀,所述第四符号位于所述第三符号和所述第五符号的中间,所述第三符号,所述第四符号和所述第五符号相邻;
    所述方法还包括:
    所述终端设备接收来自所述网络设备的第二指示信息,所述第二指示信息指示所述终端设备测量承载于所述第二符号或第四符号上的所述第一信号的信号质量。
  11. 根据权利要求7至10中任一项所述的方法,其特征在于,所述测量结果包括参考信号接收功率。
  12. 一种通信装置,其特征在于,包括用于执行如权利要求1至6中任一项所述方法的模块。
  13. 一种通信装置,其特征在于,包括处理器和存储器;所述存储器用于存储一个或多个计算机程序,当所述一个或多个计算机程序被运行时,使得如权利要求1至6中任一项所述的方法被执行。
  14. 一种通信装置,其特征在于,包括用于执行如权利要求7至11中任一项所述方法的模块。
  15. 一种通信装置,其特征在于,包括处理器和存储器;所述存储器用于存储一个或多个计算机程序,当所述一个或多个计算机程序被运行时,使得如权利要求7至11中任一项所述的方法被执行。
  16. 一种通信系统,其特征在于,包括权利要求12或13所述的通信装置,和权利要求14或15所述的通信装置。
  17. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至6中 任一项所述的方法,或使得所述计算机执行如权利要求7至11中任一项所述的方法。
  18. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,实现如权利要求1至6中任一项所述的方法,或实现如权利要求7至11中任一项所述的方法。
PCT/CN2022/111997 2021-08-31 2022-08-12 测量干扰的方法和装置 WO2023029942A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA3230606A CA3230606A1 (en) 2021-08-31 2022-08-12 Interference measurement method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111012315.4 2021-08-31
CN202111012315.4A CN115734239A (zh) 2021-08-31 2021-08-31 测量干扰的方法和装置

Publications (1)

Publication Number Publication Date
WO2023029942A1 true WO2023029942A1 (zh) 2023-03-09

Family

ID=85291444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111997 WO2023029942A1 (zh) 2021-08-31 2022-08-12 测量干扰的方法和装置

Country Status (3)

Country Link
CN (1) CN115734239A (zh)
CA (1) CA3230606A1 (zh)
WO (1) WO2023029942A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180062722A1 (en) * 2015-03-12 2018-03-01 China Academy Of Telecommunications Technology Hybrid beamforming transmission method and network device
US20180212658A1 (en) * 2016-11-30 2018-07-26 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for transmitting information
CN110958636A (zh) * 2018-09-26 2020-04-03 维沃移动通信有限公司 Csi报告的上报方法、终端设备及网络设备
CN111432427A (zh) * 2019-01-09 2020-07-17 中国移动通信有限公司研究院 一种测量方法和设备
CN111510946A (zh) * 2019-01-31 2020-08-07 成都华为技术有限公司 测量上报的方法与装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180062722A1 (en) * 2015-03-12 2018-03-01 China Academy Of Telecommunications Technology Hybrid beamforming transmission method and network device
US20180212658A1 (en) * 2016-11-30 2018-07-26 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for transmitting information
CN110958636A (zh) * 2018-09-26 2020-04-03 维沃移动通信有限公司 Csi报告的上报方法、终端设备及网络设备
CN111432427A (zh) * 2019-01-09 2020-07-17 中国移动通信有限公司研究院 一种测量方法和设备
CN111510946A (zh) * 2019-01-31 2020-08-07 成都华为技术有限公司 测量上报的方法与装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
APPLE: "R17 MIMO enhancements", 3GPP DRAFT; RP-192174 R17 NR MIMO ENHANCEMENTS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Newport Beach, USA; 20190916 - 20190920, 9 September 2019 (2019-09-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051782724 *

Also Published As

Publication number Publication date
CA3230606A1 (en) 2023-03-09
CN115734239A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
WO2018228532A1 (zh) 通信方法、终端及网络设备
WO2020155849A1 (zh) 发送和接收指示的方法和装置
WO2018137703A1 (zh) 一种信息传输方法和装置
WO2021052473A1 (zh) 通信方法和通信装置
WO2018082663A1 (zh) 一种参考信号传输的方法及装置
WO2020114357A1 (zh) 信道测量的配置方法及通信装置
WO2022048593A1 (zh) 信道测量的方法和装置
WO2020216145A1 (zh) 数据发送的方法和通信装置
WO2019029426A1 (zh) 用于传输参考信号的方法及装置
US20230137907A1 (en) Wireless communication method, terminal device, and network device
WO2021097631A1 (zh) 一种信息上报方法及装置
US11990977B1 (en) Beam training method and apparatus
WO2023109647A1 (zh) 信道状态信息的反馈方法及装置
JP2023513291A (ja) データ伝送方法及び装置
US20220240116A1 (en) Link Failure Detection Method and Apparatus
WO2023029942A1 (zh) 测量干扰的方法和装置
WO2022120855A1 (zh) 确定参考信号序列的方法及装置
WO2021013138A1 (zh) 无线网络通信方法和通信装置
EP2763456B1 (en) Method of Handling Interference Measurement in TDD System and Related Communication Device
WO2024093638A1 (zh) 一种信息处理的方法和装置
WO2024093906A1 (zh) 一种上行发送功率确定的方法和装置
WO2024093646A1 (zh) 一种资源配置的方法和装置
WO2024061093A1 (zh) 一种上行预编码的指示方法及通信装置
WO2024093867A1 (zh) 一种预编码的指示方法及通信装置
WO2022237625A1 (zh) 资源配置方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863082

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3230606

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022863082

Country of ref document: EP

Effective date: 20240311

NENP Non-entry into the national phase

Ref country code: DE