WO2022237625A1 - 资源配置方法、装置和系统 - Google Patents

资源配置方法、装置和系统 Download PDF

Info

Publication number
WO2022237625A1
WO2022237625A1 PCT/CN2022/091062 CN2022091062W WO2022237625A1 WO 2022237625 A1 WO2022237625 A1 WO 2022237625A1 CN 2022091062 W CN2022091062 W CN 2022091062W WO 2022237625 A1 WO2022237625 A1 WO 2022237625A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
srs
resource
sending
resources
Prior art date
Application number
PCT/CN2022/091062
Other languages
English (en)
French (fr)
Inventor
赵淼
朱有团
赵晓沐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022237625A1 publication Critical patent/WO2022237625A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • the present application relates to the communication field, and, more specifically, to a resource allocation method, device and system.
  • MIMO multi-input multi-output
  • LTE long term evolution
  • 5th generation, 5G fifth generation
  • the channel sounding reference signal (sounding reference signal, SRS) is used for channel measurement estimation and quality detection, etc., and the scheduling is relatively frequent.
  • SRS sounding reference signal
  • the SRS signal-to-noise ratio is likely to decrease and the system performance is poor, which is an urgent problem to be solved at present.
  • the present application provides a resource allocation method, device and system.
  • the SRS transmission period of the terminal equipment in the cell can be shortened while the signal-to-noise ratio can be effectively improved. , thereby increasing cell capacity and improving system performance.
  • a resource allocation method is provided.
  • the method may be executed by a network device, or may also be executed by a chip or a circuit configured in the network device, which is not limited in this application.
  • the method includes: sending resource configuration information to the first terminal device, the resource configuration information indicating the first base sequence identifier of the first terminal device, channel sounding reference signal SRS resources, and the period for the first terminal device to send SRS; wherein , the first terminal device and the second terminal device belong to the same cell, and the second terminal device corresponds to the second base sequence identifier; receive an SRS from the first terminal device, and the SRS is carried on the SRS resource.
  • the network device configures the base sequence identifier as k1 for the first terminal device, and configures the base sequence identifier as k2 for the second terminal device.
  • the base sequence identifier k1 corresponds to at least one terminal device, and the at least one terminal device includes the first terminal device; similarly, the base sequence identifier k2 also corresponds to at least one terminal device, and the at least one terminal device includes the second terminal device, and
  • the number of base sequence identifiers configured by the network device for the terminal devices in the cell may also be more than two, which is not limited in this application.
  • the first terminal device and the second terminal device belong to the same cell.
  • the SRS resource configured by the network device for the first terminal device and the SRS resource configured by the network device for the second terminal device may overlap in frequency domain, time domain and codeword.
  • the network device configures different base sequence identifiers for the terminal devices in the cell.
  • the network device can configure the terminal devices corresponding to different base sequence identifiers in the frequency domain.
  • the overlapping SRS resources in the time domain and the code word enable the terminal equipment in the cell to shorten the period of sending the SRS, thereby increasing the capacity of the cell and improving the system performance.
  • the number of SRS resources of the first terminal device and the period of sending SRS by the first terminal device are different from those of the second terminal device, and the first SRS resource of the first terminal device is different from the second SRS resource at the first moment.
  • the frequency domain positions of the resources are the same, the frequency domain position of the first SRS resource of the first terminal device is the same as that of the third SRS resource at the second moment, and the terminal device to which the second SRS resource and the third SRS resource belong corresponds to the second base sequence identifier.
  • different numbers of SRS resources are configured for the first terminal device and the second terminal device, and the periods of sending SRSs for the first terminal device and the second terminal device are different, so that the first SRS resources of the first terminal device and the When the time-frequency domain positions of the second SRS resource and the third SRS resource are the same, the SRS interference received by the first terminal device at different times is different, achieving the effect of randomizing the SRS interference of the terminal device in the cell.
  • the terminal devices to which the second SRS resource and the third SRS resource belong are different, or the terminal devices to which the second SRS resource and the third SRS resource belong are the same, but the information sending the second SRS resource and the third SRS resource The antenna ports are different.
  • the number of SRS resources of the first terminal device and the period for the first terminal device to send the SRS are 1/2 of that of the second terminal device.
  • the number of SRS resources of the first terminal device is 1, and the number of SRS resources of the second terminal device is 2; or the number of SRS resources of the first terminal device is 2, and the number of SRS resources of the second terminal device is 2.
  • the number of SRS resources is 4. It should be understood that, in both cases, the period for sending the SRS by the first terminal device is 1/2 of the period for sending the SRS by the second terminal device.
  • the method further includes: obtaining the SRS receiving channel response matrix at multiple moments, the multiple moments including the first moment and the second moment; the SRS receiving channel response matrix at the multiple moments A weighted average is performed to obtain the channel response matrix of the first terminal device.
  • a time interval between adjacent times among the multiple times is a period for the first terminal device to send the SRS.
  • the SRS interference experienced by the first terminal device at the first moment is different from that at the second moment, and a more accurate channel estimation is obtained through a weighted average filtering algorithm.
  • the number of SRS resources of the first terminal device and the period for the first terminal device to send the SRS are 2/3 of those of the second terminal device.
  • the number of SRS resources of the first terminal device is 2, the number of SRS resources of the second terminal device is 3, and the period of sending SRS by the first terminal device is the period of sending SRS by the second terminal device 2/3 of.
  • the above different schemes for configuring the number of SRS resources and the period of sending SRS can ensure that the frequency of sending SRS between the first terminal device and the second terminal device is relatively fair in the same period of time, so that the resources for sending SRS by terminal devices in the cell are fair At the same time, the effect of SRS interference randomization is achieved.
  • the method further includes acquiring the first SRS receiving channel response matrix at the first moment, the second SRS receiving channel response matrix at the second moment and the third SRS receiving channel response matrix at the third moment ; performing a weighted average on the first SRS receiving channel response matrix, the second SRS receiving channel response matrix and the third SRS receiving channel response matrix to obtain the second channel response matrix of the first terminal device.
  • the first terminal device will be interfered by three different SRS at the first moment, the second moment and the third moment, so the network device can obtain more accurate channel estimation through the filtering algorithm, which effectively improves the SRS signal-to-noise ratio and system performance.
  • a resource allocation method is provided.
  • the method may be executed by a terminal device, or may also be executed by a chip or a circuit configured in the terminal device, which is not limited in this application.
  • the method includes: receiving resource configuration information sent by the network device, the resource configuration information indicating the first base sequence identifier of the first terminal device, channel sounding reference signal SRS resources, and the period for the first terminal device to send the SRS; wherein, the The first terminal device and the second terminal device belong to the same cell, and the second terminal device corresponds to the second base sequence identifier; sending the SRS to the network device, and the SRS is carried on the SRS resource.
  • the base sequence identifier in the resource configuration information received by the first terminal device is different from that of the second terminal device.
  • the network device can assign different base sequence identifiers.
  • the terminal equipment corresponding to the identification is configured with overlapping SRS resources in the frequency domain, time domain, and codeword, so that the terminal equipment in the cell can shorten the period of sending SRS, thereby increasing the capacity of the cell and improving system performance.
  • the number of SRS resources of the first terminal device and the period of sending the SRS by the first terminal device are different from those of the second terminal device, and the first SRS resource of the first terminal device is The frequency domain position of the first SRS resource is the same as that of the second SRS resource at a moment, the frequency domain position of the first SRS resource of the first terminal device is the same as that of the third SRS resource at a second moment, and the second SRS resource and the third SRS resource belong to The terminal device corresponding to the second base sequence identifier.
  • the number of SRS resources of the first terminal device and the second terminal device are different, and the period of sending SRS between the first terminal device and the second terminal device is also different, so that the SRS resources of the first terminal device are different from the second SRS resources respectively.
  • resource when the time-frequency domain position of the third SRS resource is the same, the SRS interference received by the first terminal device at different times is different, and the effect of randomizing the SRS interference in the cell is achieved.
  • the number of SRS resources of the first terminal device and the period for the first terminal device to send the SRS are 1/2 of that of the second terminal device.
  • the number of SRS resources of the first terminal device is 1, and the number of SRS resources of the second terminal device is 2; or the number of SRS resources of the first terminal device is 2, and the number of SRS resources of the second terminal device is 2.
  • the number of resources is 4. It should be understood that, in both cases, the period for sending the SRS by the first terminal device is 1/2 of the period for sending the SRS by the second terminal device.
  • the number of SRS resources of the first terminal device and the period for sending the SRS by the first terminal device are 2/3 of those of the second terminal device.
  • the number of SRS resources of the first terminal device is 2, the number of SRS resources of the second terminal device is 3, and the period of sending the SRS by the first terminal device is the period of sending the SRS by the second terminal device 2/3.
  • the above two alternatives can ensure that the frequency of SRS transmission by the first terminal device and the second terminal device is relatively fair in the same period of time, so that the resources of the terminal devices in the cell to send SRS are fair and at the same time achieve the effect of SRS interference randomization .
  • an apparatus for resource allocation is provided.
  • the device may be a network device, or may also be a chip or a circuit configured in the network device, which is not limited in this application.
  • the apparatus includes a transceiving unit: the transceiving unit is configured to send resource configuration information to the first terminal device, where the resource configuration information indicates the first base sequence identifier of the first terminal device, channel sounding reference signal SRS resource, and the first terminal device The period for the device to send SRS; wherein, the first terminal device and the second terminal device belong to the same cell, and the second terminal device corresponds to the second base sequence identifier; the transceiver unit is also used to receive the SRS from the first terminal device , the SRS is carried on the SRS resource.
  • the network device configures different base sequence identifiers for the terminal devices in the cell.
  • the network device can configure the terminal devices corresponding to different base sequence identifiers in the frequency domain.
  • the overlapping SRS resources in the time domain and the code word enable the terminal equipment in the cell to shorten the period of sending the SRS, thereby increasing the capacity of the cell and improving the system performance.
  • the number of SRS resources of the first terminal device and the period of sending SRS by the first terminal device are different from those of the second terminal device, and the first SRS resource of the first terminal device is different from the second SRS resource at the first moment.
  • the frequency domain positions of the resources are the same, the frequency domain position of the first SRS resource of the first terminal device is the same as that of the third SRS resource at the second moment, and the terminal device to which the second SRS resource and the third SRS resource belong corresponds to the second base sequence identifier.
  • different numbers of SRS resources are configured for the first terminal device and the second terminal device, and the periods of sending SRSs for the first terminal device and the second terminal device are different, so that the first SRS resources of the first terminal device and the When the time-frequency domain positions of the second SRS resource and the third SRS resource are the same, the SRS interference received by the first terminal device at different times is different, achieving the effect of randomizing the SRS interference in the cell.
  • the number of SRS resources of the first terminal device and the period for the first terminal device to send the SRS are 1/2 of that of the second terminal device.
  • the number of SRS resources of the first terminal device is 1, and the number of SRS resources of the second terminal device is 2; or the number of SRS resources of the first terminal device is 2, and the number of SRS resources of the second terminal device is 2.
  • the number of SRS resources is 4. It should be understood that, in both cases, the period for sending the SRS by the first terminal device is 1/2 of the period for sending the SRS by the second terminal device.
  • the device further includes a processing unit: the processing unit is configured to obtain the SRS reception channel response matrix at multiple times, the multiple times including the first time and the second time; and for the multiple The channel response matrix of the first terminal device is obtained by performing a weighted average on the SRS receiving channel response matrix at each moment.
  • the network device effectively improves the SRS signal-to-noise ratio and system performance through a filtering algorithm.
  • a time interval between adjacent times among the multiple times is a period for the first terminal device to send the SRS.
  • the processing unit is configured to acquire the first SRS receiving channel response matrix at the first moment and the second SRS receiving channel response matrix at the second moment; the first SRS receiving channel response matrix and the second SRS receiving channel response matrix The response matrix is weighted and averaged to obtain the first channel response matrix of the first terminal device.
  • the number of SRS resources of the first terminal device and the period for the first terminal device to send the SRS are 2/3 of those of the second terminal device.
  • the number of SRS resources of the first terminal device is 2, the number of SRS resources of the second terminal device is 3, and the period of sending SRS by the first terminal device is the period of sending SRS by the second terminal device 2/3 of.
  • the above different schemes for configuring the number of SRS resources and the period of sending SRS can ensure that the frequency of sending SRS between the first terminal device and the second terminal device is relatively fair in the same period of time, so that the resources for sending SRS by terminal devices in the cell are fair At the same time, the effect of SRS interference randomization is achieved.
  • the device further includes a processing unit configured to obtain the first SRS receiving channel response matrix at the first moment, the second SRS receiving channel response matrix at the second moment, and the SRS receiving channel response matrix at the third moment.
  • the third SRS receiving channel response matrix ; and performing weighted average on the first SRS receiving channel response matrix, the second SRS receiving channel response matrix and the third SRS receiving channel response matrix to obtain the second channel response matrix of the first terminal device.
  • the first terminal device will be interfered by three different SRS at the first moment, the second moment and the third moment, so the network device can obtain more accurate channel estimation through the filtering algorithm, which effectively improves the SRS signal-to-noise ratio and system performance.
  • the transceiving unit is specifically configured to send radio resource control RRC signaling to the first terminal device, where the RRC signaling includes the resource configuration information.
  • an apparatus for resource allocation may be a terminal device, or may also be a chip or a circuit configured in the terminal device, which is not limited in this application.
  • the device includes a transceiving unit: the transceiving unit is used to receive resource configuration information sent by the network device, the resource configuration information indicates the first base sequence identifier of the first terminal device, the channel sounding reference signal SRS resource and the SRS sent by the first terminal device period; wherein, the first terminal device and the second terminal device belong to the same cell, and the second terminal device corresponds to the second base sequence identifier; the transceiver unit is also used to send the SRS to the network device, and the SRS is carried on The SRS resource is on.
  • the base sequence identifier in the resource configuration information received by the first terminal device is different from that of the second terminal device.
  • the network device can assign different base sequence identifiers.
  • the terminal equipment corresponding to the identification is configured with overlapping SRS resources in the frequency domain, time domain, and codeword, so that the terminal equipment in the cell can shorten the period of sending SRS, thereby increasing the capacity of the cell and improving system performance.
  • the number of SRS resources of the first terminal device and the period of sending the SRS by the first terminal device are different from those of the second terminal device.
  • the first SRS resource of the first terminal device has the same frequency domain position as the second SRS resource at the first moment, and the first SRS resource of the first terminal device has the same frequency domain position as the third SRS resource at the second moment,
  • the terminal device to which the second SRS resource and the third SRS resource belong corresponds to a second base sequence identifier.
  • the number of SRS resources of the first terminal device and the second terminal device are different, and the period of sending SRS between the first terminal device and the second terminal device is also different, so that the SRS resources of the first terminal device are different from the second SRS resources respectively.
  • resource when the time-frequency domain position of the third SRS resource is the same, the SRS interference received by the first terminal device at different times is different, and the effect of randomizing the SRS interference in the cell is achieved.
  • the number of SRS resources of the first terminal device and the period for the first terminal device to send the SRS are 1/2 of that of the second terminal device.
  • the number of SRS resources of the first terminal device is 1, and the number of SRS resources of the second terminal device is 2; or the number of SRS resources of the first terminal device is 2, and the number of SRS resources of the second terminal device is 2.
  • the number of resources is 4. It should be understood that, in both cases, the period for sending the SRS by the first terminal device is 1/2 of the period for sending the SRS by the second terminal device.
  • the number of SRS resources of the first terminal device and the period for sending the SRS by the first terminal device are 2/3 of those of the second terminal device.
  • the number of SRS resources of the first terminal device is 2, the number of SRS resources of the second terminal device is 3, and the period of sending the SRS by the first terminal device is the period of sending the SRS by the second terminal device 2/3.
  • the above two alternatives can ensure that the frequency of sending SRS for the first terminal device and the second terminal device is relatively fair in the same period of time, so that the resources for sending SRS by the terminal device in the cell are fair and at the same time achieve the effect of SRS interference randomization .
  • the transceiving unit is specifically configured to receive radio resource control RRC signaling sent by the network device, where the RRC signaling includes the resource configuration information.
  • a fifth aspect provides a resource allocation device, which may be the network device in the first aspect above, or an electronic device configured in the network device, or a larger device including the network device.
  • the device is used to execute the method provided by the first aspect above.
  • the communication device includes a transceiver, and the transceiver is used to send resource configuration information to the first terminal device, where the resource configuration information indicates the first base sequence identifier of the first terminal device, channel sounding reference signal SRS resource, and the first terminal device The period for the device to send SRS; wherein, the first terminal device and the second terminal device belong to the same cell, and the second terminal device corresponds to the second base sequence identifier; the transceiver is also used to receive the SRS from the first terminal device , the SRS is carried on the SRS resource.
  • the device further includes a processor, the processor is coupled to the memory, and can be used to execute instructions in the memory, so as to implement the above first aspect and the method in any possible implementation manner of the first aspect.
  • the device further includes a memory, and the memory and the processor may be deployed separately or in a centralized manner.
  • the device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication interface may be a transceiver, or an input/output interface.
  • the device is a chip configured in a network device.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor may also be embodied as a processing circuit or logic circuit.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the above-mentioned processor can be one or more chips
  • the input circuit can be an input pin
  • the output circuit can be an output pin
  • the processing circuit can be a transistor, a gate circuit, a flip-flop and various logic circuits, etc. .
  • the input signal received by the input circuit may be received and input by the receiver, but the signal output by the output circuit may be but not limited to be output to the transmitter and transmitted by the transmitter, and the input circuit and the output circuit may be The same circuit, which is used as an input circuit and an output circuit at different times.
  • the embodiment of the present application does not limit the specific implementation manners of the processor and various circuits.
  • a resource allocation device which may be the first terminal device in the above second aspect, or an electronic device configured in the first terminal device, or a larger device including the first terminal device .
  • the device is used to execute the method provided by the second aspect above.
  • the device includes a transceiver, the transceiver is used to receive resource configuration information sent by the network device, the resource configuration information indicates the first base sequence identifier of the first terminal device, channel sounding reference signal SRS resource, and the first terminal device sends the SRS period; wherein, the first terminal device and the second terminal device belong to the same cell, and the second terminal device corresponds to the second base sequence identifier; the transceiver is also used to send the SRS to the network device, and the SRS is carried on The SRS resource is on.
  • the device further includes a memory, and the processor is coupled to the memory and can be used to execute instructions in the memory, so as to implement the second aspect and the communication method in any possible implementation manner of the second aspect.
  • the communication device further includes a memory, and the memory and the processor may be deployed separately or in a centralized manner.
  • the device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication interface may be a transceiver, or an input/output interface.
  • the device is a chip configured in a terminal device.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor may also be embodied as a processing circuit or logic circuit.
  • a computer program product includes: a computer program (also referred to as code, or instruction), which, when the computer program is executed, causes the computer to perform the above-mentioned first aspect or the second aspect And the method in any possible implementation of the first aspect or the second aspect.
  • a computer program also referred to as code, or instruction
  • a computer-readable storage medium stores a computer program (also referred to as code, or an instruction) which, when run on a computer, causes the computer to perform the above-mentioned first aspect or The second aspect and the method in any possible implementation manner of the first aspect or the second aspect.
  • a computer program also referred to as code, or an instruction
  • a communication system including the above-mentioned network device and terminal device.
  • FIG. 1 is a schematic diagram of a communication system 100 applicable to an embodiment of the present application.
  • Fig. 2 is a schematic flow diagram of a resource configuration method applicable to the embodiment of the present application.
  • Fig. 3 is a schematic diagram of a method for determining channel estimation applicable to the embodiment of the present application.
  • FIG. 4 is a schematic diagram of resource configuration provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another resource configuration provided by the embodiment of the present application.
  • Fig. 6 is a schematic diagram of another resource configuration provided by the embodiment of the present application.
  • Fig. 7 is a schematic block diagram of a communication device applicable to the embodiment of the present application.
  • Fig. 8 is a schematic block diagram of another communication device applicable to the embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a terminal device applicable to the embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a network device applicable to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a communication system 100 applicable to an embodiment of the present application.
  • the communication system 100 may include a network device 120 , for example, the network device shown in FIG. 1 .
  • the communication system 100 may further include at least one terminal device 110, for example, the terminal device shown in FIG. 1 . Connections can be established between terminal devices and network devices, and between terminal devices to communicate, and the sending device can indicate the scheduling information of the data through the control information, so that the receiving device can correctly receive the data according to the control information.
  • the terminal equipment in the embodiment of the present application may refer to user equipment, access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent or user device .
  • the terminal in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal, an augmented reality (augmented reality, AR) terminal, an industrial Wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety Wireless terminals in smart cities, wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop ( wireless local loop (WLL) station, personal digital assistant (personal digital assistant, PDA), handheld device with wireless communication function, computing device or other processing device connected to a wireless modem, vehicle-mounted device, wearable device, 5G network A terminal or
  • wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories.
  • Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the terminal device may also be a terminal device in an Internet of Things (internet of things, IoT) system.
  • IoT Internet of things
  • Its main technical feature is to connect objects to the network through communication technology, so as to realize the intelligent network of human-machine interconnection and object interconnection.
  • the present application does not limit the specific form of the terminal device.
  • the terminal device may be a device for realizing the function of the terminal device, or may be a device capable of supporting the terminal device to realize the function, such as a chip system, and the device may be installed in the terminal.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • the network device in this embodiment of the present application may be any device with a wireless transceiver function.
  • the equipment includes but is not limited to: evolved Node B (evolved Node B, eNB), Radio Network Controller (Radio Network Controller, RNC), Node B (Node B, NB), Base Station Controller (Base Station Controller, BSC) , Base Transceiver Station (Base Transceiver Station, BTS), home base station (for example, Home evolved NodeB, or Home Node B, HNB), base band unit (Base Band Unit, BBU), wireless fidelity (Wireless Fidelity, WIFI) system
  • the access point (Access Point, AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), etc. can also be 5G, such as, NR, a gNB in the system, or, a transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna panels
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (active antenna unit, AAU for short).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and realizing the functions of radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer.
  • the DU is responsible for processing physical layer protocols and real-time services, realizing the functions of the radio link control (radio link control, RLC) layer, media access control (media access control, MAC) layer and physical (physical, PHY) layer.
  • the AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this architecture, high-level signaling, such as RRC layer signaling, can also be considered to be sent by the DU , or, sent by DU+AAU.
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in an access network (radio access network, RAN), and the CU can also be divided into network devices in a core network (core network, CN), which is not limited in this application.
  • the network device may be a device for realizing the function of the network device, or a device capable of supporting the network device to realize the function, such as a chip system, and the device may be installed in the network device.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • general packet radio service general packet radio service
  • LTE LTE frequency division duplex
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunications system
  • WiMAX worldwide interconnection microwave access
  • 5G fifth generation, 5G
  • 5G fifth generation, 5G
  • 5G fifth generation, 5G
  • future evolution communication system vehicle to other devices
  • V2X can include vehicle to Internet (vehicle to network, V2N), vehicle to vehicle (vehicle to vehicle, V2V), vehicle to infrastructure (vehicle to infrastructure, V2I), Vehicle to pedestrian (vehicle to pedestrian, V2P), etc.
  • V2X can include vehicle to Internet (vehicle to network, V2N), vehicle to vehicle (vehicle to vehicle, V2V), vehicle to infrastructure (vehicle to infrastructure, V2I), Vehicle to pedestrian (vehicle to pedestrian, V
  • this application can be applied to independently deployed 5G or LTE systems, and can also be applied to non-independently deployed 5G or LTE systems, such as DC scenarios, including dual connectivity (E-UTRA-NR dual connectivity, EN-DC), etc. , and carrier aggregation (CA) scenarios.
  • DC scenarios including dual connectivity (E-UTRA-NR dual connectivity, EN-DC), etc.
  • CA carrier aggregation
  • Tianxuan terminal All physical antennas of the Tianxuan terminal have the ability to send signals. Taking the 2T4R Tianxuan terminal as an example, 2T4R means that the terminal has 4 physical antennas in total, and 2 of the physical antennas are used for each signal transmission. The effect of 4 physical antennas sending signals is realized by sending signals twice.
  • Unselected terminal The number of transmitting antennas of the terminal is less than the number of receiving antennas. Taking 2T4R unselected terminal as an example, 2T4R means that the terminal has a total of 4 physical antennas, and only 2 physical antennas are used for sending signals.
  • SRS resource the smallest allocation unit of SRS, including the time domain position that can be used for sending SRS, the frequency domain position that can be used for sending SRS, the bandwidth that can be used for sending SRS, and the antenna port for sending SRS.
  • SRS resource set it is composed of multiple SRS resources, and the SRS functions carried in different SRS resource sets are different.
  • SRS resource set with code book (code book, CB) attribute the SRS function carried by the SRS resource set is used for uplink codebook selection.
  • An SRS resource set with an antenna switching (antenna switching, AS) attribute the SRS function carried by the SRS resource set is used for antenna switching.
  • the network device allocates SRS resources for the terminal device, it allocates 1 resource set for sending SRS with CB attribute, and the resource set contains at most 2 SRS resources; allocates 1 resource set for sending SRS with AS attribute, if The terminal device is a non-selected terminal device, and the resource set used to send SRS with AS attributes contains at most 1 SRS resource. If the terminal device is a selected terminal device, the resource set used to send SRS with AS attributes contains at most The number of SRS resources included is the number of physical antennas of the naturally selected terminal device, that is, the upper limit of the number of SRS resources allocated to different terminal devices is different. In addition, the same SRS resource can be multiplexed in different resource sets, for example, the SRS resource res 0 can belong to both the SRS resource set of the CB attribute and the SRS resource set of the AS attribute.
  • LTE and 5G systems have introduced the same-frequency networking method due to high requirements on spectrum utilization, which brings inter-cell interference.
  • SRS scheduling is relatively frequent, so there will be serious interference when the terminal equipment between cells or in the cell uses the same resource to send SRS, thus causing the signal-to-noise ratio of the SRS to decrease.
  • the base sequence identifier for generating the SRS sequence is affected by u, v and the sequence length Nzc of the SRS, and the calculation formula of the base sequence identifier q value is as follows:
  • u is a group number, which can take a value of 0-29, and can represent 30 cells
  • v is a serial number, which can take a value of 0 or 1.
  • SRS group hopping for example, divide 30 cells into a group according to the cell ID, so that the SRS sequence of the group of cells jumps synchronously
  • Interference randomization means that the interference received by the terminal equipment will change over time.
  • the group hopping of the SRS cannot realize the randomization of the SRS interference within the cell during the process of realizing the randomization of the SRS interference between the cells.
  • the group hopping of SRS needs to be turned on synchronously in the whole network during the implementation process. If the cells in the same group are not turned on synchronously, the SRS sequence identifiers of two cells may jump to the same position at a certain moment, and the randomization of SRS interference between cells cannot be realized. , thus affecting the performance of the system.
  • the neighbor cell interference of the SRS is randomized to further improve the system performance, which can also be realized by modifying the value of v, that is, sequence hopping.
  • the v value in the sequence hopping is related to the pseudo-random sequence, and the v value will randomly generate 0 or 1 according to the slot number. Therefore, the SRS sequence of each terminal device will be changed randomly as the number of the time slot increases, thereby completing the randomization of SRS interference.
  • the bandwidth of scheduling SRS is 8RB
  • 2 comb points are configured for SRS
  • the sequence length Nzc of SRS is 47
  • pass The q calculated by the above formula is equal to 4, that is to say, in this case, the q value of starting sequence hopping in two different cells is the same, and a system error occurs, thereby affecting system performance.
  • the time slot symbol is 0-19, and the terminal device sends the SRS for the first time
  • the time slot symbol for the second SRS transmission will be repeated, and the SRS sequence of each terminal device cannot be changed randomly with the increase of the time slot symbol, so the effect of SRS interference randomization cannot be achieved.
  • Fig. 2 is a schematic flow diagram of a resource configuration method applicable to the embodiment of the present application.
  • the method 200 includes:
  • Step S210 the network device sends configuration information to the first terminal device.
  • the first terminal device receives the configuration information.
  • the configuration information indicates at least one of a first base sequence identifier of the first terminal device, a resource of the first signal, and a period of the first signal.
  • the configuration information includes at least one of the first base sequence identifier of the first terminal device, the resource of the first signal, and the period of the first signal.
  • the first terminal device and the second terminal device belong to the same cell, and the second terminal device corresponds to the second base sequence identifier.
  • the first signal is a reference signal for channel detection, such as SRS.
  • the resources of the first signal include at least one of time domain resources, frequency domain resources, and code word resources.
  • the cycle of the first signal is the cycle of sending the first signal by the first terminal device. Taking SRS as an example, the cycle of the first signal is the cycle of sending the SRS by the first terminal device.
  • the SRS is only an example of the first signal, and the first signal can also be other reference signals used for channel detection, or in the development of technology, the first signal can be an evolution signal of the SRS. Do not make any restrictions.
  • the following example using SRS is also similar, and will not be repeated in the following description.
  • the network device configures the base sequence identifier k 1 for the first terminal device, and configures the base sequence identifier k 2 for the second terminal device.
  • the base sequence identifier k 1 corresponds to at least one terminal device, and the at least one terminal device includes the first terminal device; similarly, the base sequence identifier k 2 also corresponds to at least one terminal device, and the at least one terminal device includes the second terminal device , and the number of base sequence identifiers configured by the network device for the terminal devices in the cell may be more than two, which is not limited in this application.
  • the SRS resource configured by the network device for one of the at least one terminal device corresponding to the base sequence identifier k 1 and the SRS resource configured by the network device for one of the at least one terminal device corresponding to the base sequence identifier k 2 are Frequency domain, time domain and codewords can overlap.
  • the terminal equipment in the cell by configuring two or more base sequence identifiers for the terminal equipment in the cell, it is possible to enable terminal equipment with different base sequence identifiers to allocate resources for the first signal to terminal equipment with different base sequence identifiers. Resources can overlap in the time domain, frequency domain and code word resources. Compared with the solution in the prior art that configures the same base sequence identifier for the terminal equipment in the cell, the terminal equipment in the cell can shorten the period of sending the first signal, thereby increasing the capacity of the cell and improving the system performance.
  • the period of the first signal is T1; when the same base sequence identifier is configured for the terminal equipment in the cell, the period of the first signal is T2, then T1 ⁇ T2.
  • the network device may use the identifier of the cell to which the terminal device belongs or randomly assign among identifiers from 0 to 29.
  • the network device allocates resources of the first signal to terminal devices with the same base sequence identifier, resources allocated to different terminal devices do not overlap in time domain, frequency domain and code word resources.
  • the number of resources of the first signal configured by the network device for the first terminal device is different from that of the second terminal device, and/or the period of the first signal configured by the network device for the first terminal device is different from that of the second
  • the two terminal devices are different.
  • the first resource of the first terminal device has the same frequency domain position as the second resource at the first moment
  • the first resource of the first terminal device has the same frequency domain position as the third resource at the second moment
  • the second base sequence identifier corresponds to the terminal device to which the third resource belongs.
  • the first resource is the resource of the first signal of the first terminal device
  • the second resource and the third resource may be the resource of the first signal of the second terminal device
  • the antenna ports of the second resource and the third resource are different.
  • the second resource is the resource of the first signal of the second terminal device
  • the third resource is the resource of the first signal of the third terminal device
  • the second terminal device and the third terminal device correspond to the second base sequence identifier
  • the second terminal The device and the third terminal device are different terminal devices.
  • the number of SRS resources configured by the network device for the first terminal device and the period of sending SRS are different from those of the second terminal device, and the first SRS resource of the first terminal device is different from the frequency domain of the second SRS resource at the first moment
  • the positions are the same, the first SRS resource of the first terminal device has the same frequency domain position as the third SRS resource at the second moment, and the terminal devices to which the second SRS resource and the third SRS resource belong correspond to the second base sequence identifier.
  • the second SRS resource and the third SRS resource belong to different terminal devices, or the second SRS resource and the third SRS resource belong to the same terminal device, but the second SRS resource and the third SRS resource have different antenna ports.
  • the number of resources of the first signal configured by the network device for the first terminal device and the period of the first signal are 1/2 of the second terminal device.
  • the number of SRS resources of the first terminal device and the sending period of the SRS are 1/2 of those of the second terminal device.
  • the following uses the SRS as an example to illustrate the specific configuration of the network device sending the first signal for the terminal device in the cell under different circumstances.
  • both the first terminal device and the second terminal device are unselected terminals
  • the network device configures one SRS resource with AS attributes for the first terminal device
  • the network device configures two SRS resources for the second terminal device Resources, one of which is the SRS resource of the AS attribute, and the other is the SRS resource of the CB attribute.
  • the network device configures the SRS sending period of the first terminal device as field Tsrs1, configures the SRS sending period of the second terminal device as field Tsrs2, and configures Tsrs1 as 1/2 of Tsrs2.
  • the first terminal device and the second terminal device are both selected terminals
  • the network device configures two SRS resources with AS attributes for the first terminal device
  • the network device configures four SRS resources for the second terminal device SRS resources, 2 of which are SRS resources of AS attribute, and the other 2 are SRS resources of CB attribute.
  • the network device configures the SRS sending period of the first terminal device as field Tsrs1, configures the SRS sending period of the second terminal device as field Tsrs2, and configures Tsrs1 as 1/2 of Tsrs2.
  • first terminal device and the second terminal device in one of the above examples may be 2T4R unselected terminals or 1T2R unselected terminals, but the first terminal device in another example and the second terminal device are exemplified by a 2T4R sky-selected terminal.
  • the number of resources of the first signal configured by the network device for the first terminal device and the period of the first signal are 2/3 of those of the second terminal device.
  • the number of SRS resources of the first terminal device and the sending period of the SRS are 2/3 of those of the second terminal device.
  • both the first terminal device and the second terminal device are selected terminals
  • the network device configures two SRS resources with AS attributes for the first terminal device, and the network device configures three SRS resources for the second terminal device Resources, two of which are SRS resources of AS attribute, and the other one is SRS resource of CB attribute.
  • the network device configures the SRS sending period of the first terminal device as field Tsrs1, configures the SRS sending period of the second terminal device as field Tsrs2, and configures Tsrs1 as 2/3 of Tsrs2.
  • the numbers of SRS resources with different attributes allocated by the network device to the first terminal device and the second terminal device in the above three examples are only examples, and the present application does not impose any limitation on this.
  • the ratio of the resource quantity of the first signal configured by the network device for the first terminal device and the second terminal device to the period of the first signal may be other ratios besides the 1/2 and 2/3 listed above , and this application does not make any limitation on it.
  • the configuration information in step S210 is carried in radio resource control signaling.
  • the configuration information is carried in RRC signaling.
  • Step S220 the terminal device sends a first signal, where the first signal is carried on a resource of the first signal.
  • the network device receives the first signal on the resource.
  • a terminal device sends an SRS, and the SRS is carried on an SRS resource.
  • the network device receives the SRS on the SRS resource.
  • the first signals with different base sequence identifiers are non-orthogonal signals, and if the first terminal device and the second terminal device transmit the first signals on the same time-frequency resource, mutual interference will occur.
  • the interference randomization process of the first signal will be specifically described below with respect to different configuration schemes of resources and transmission periods of the first signal in step S210.
  • Fig. 3 is a schematic diagram of a method for determining channel estimation applicable to the embodiment of the present application.
  • the network device needs to perform channel estimation according to the first signals received at different times.
  • the method 200 also includes:
  • Step S310 the network device acquires the first signal receiving channel response matrix at multiple times, where the multiple times include the first time and the second time.
  • the network device acquires the SRS reception channel response matrix at multiple times, where the multiple times include the first time and the second time.
  • the network device acquires the first SRS receiving channel response matrix at the first moment and the second SRS receiving channel response matrix at the second moment.
  • the network device acquires the first SRS receiving channel response matrix at the first moment, the second SRS receiving channel response matrix at the second moment, and the third SRS receiving channel response matrix at the third moment.
  • the network device acquiring the SRS receiving channel response matrix at a certain moment includes: the network device acquiring the SRS receiving real channel response matrix and the SRS interference item at a certain moment.
  • the SRS resource A of terminal device A at time t1 is the same as the SRS resource a0 of terminal device a in the frequency domain, then for terminal device A, the SRS receiving channel response matrix at time t1
  • H A (t1) is the real channel response matrix for SRS reception
  • Inf(a 0 ) is the SRS interference item.
  • a time interval between adjacent times among the multiple times is a period for the first terminal device to send the first signal.
  • the time interval between the first moment and the second moment is the period for the first terminal device to send the first signal
  • the time interval between the second moment and the third moment is the period for the first terminal device to send the first signal. cycle.
  • step S320 the network device performs a weighted average of the first signal receiving channel response matrices at multiple time points to obtain the channel response matrix of the first terminal device.
  • the network device performs a weighted average on the SRS reception channel response matrices at multiple time points to obtain the channel response matrix of the first terminal device.
  • the network device performs a weighted average on the first SRS receiving channel response matrix and the second SRS receiving channel response matrix to obtain the first channel response matrix of the first terminal device.
  • the network device performs a weighted average on the first SRS receiving channel response matrix, the second SRS receiving channel response matrix and the third SRS receiving channel response matrix to obtain the second channel of the first terminal device response matrix.
  • the following uses the SRS as an example to specifically describe the interference randomization process of the first signal in different configuration scenarios.
  • this scenario corresponds to the scheme of configuring SRS resources as an example in step S210 above.
  • the network device configures one SRS resource of AS attribute for the first terminal device
  • the network device configures two SRS resources for the second terminal device, wherein One is the SRS resource of the AS attribute, and the other is the SRS resource of the CB attribute.
  • the network device configures the SRS sending period of the first terminal device as field Tsrs1, configures the SRS sending period of the second terminal device as field Tsrs2, and configures Tsrs1 as 1/2 of Tsrs2.
  • the first terminal device may be terminal device A or terminal device B in FIG. 4 , and the base sequence identifier corresponding to terminal device A and terminal device B is k1; use A0 and B0 to identify SRS resources of terminal device A and terminal device B respectively.
  • the second terminal device can be terminal device a or terminal device b in Figure 4, and the base sequence identifier corresponding to terminal device a and terminal device b is k2; use a0 and a1 to identify the two SRS resources of terminal device a, b0 and b1 Two SRS resources of terminal device b are identified.
  • the period Tsrs2 for terminal equipment A and terminal equipment B to send SRS resources is configured as 2T
  • the period Tsrs1 for terminal equipment a and terminal equipment b to send SRS resources is configured as 4T, where T is the time interval between adjacent moments shown in the figure.
  • the SRS resources of terminal device A and terminal device B have the same frequency domain positions as the SRS resources of terminal device a and terminal device b, and the time domain position allocation is shown in FIG. 4 .
  • A0 resource and a0 resource will appear in the same time-frequency resource position to form interference
  • B0 resource and b0 resource will appear in the same time-frequency position to interfere with each other.
  • B0 resource and a1 resource will also be in the same time-frequency position. The same time-frequency domain positions interfere with each other.
  • Residual Interfering Components is smaller than Inf(a 0 ) and Inf(b 1 ), that is to say, after filtering algorithm Compared with the SRS receiving channel response matrix of terminal device A on the network device side at time t1 and t3 and more precise.
  • the SRS interference is randomized, thereby reducing the SRS interference in the cell through the filtering algorithm of the network equipment, and effectively improving the uplink and downlink system performance.
  • the number of terminal devices corresponding to the base sequence identified as k1 in FIG. 4 is only an example, and the above-mentioned weighted average filtering algorithm is only an example.
  • the network device can also obtain the first channel response matrix through other filtering algorithms. The present application There are no restrictions on this.
  • this scenario corresponds to the scheme of configuring SRS resources as an example in step S210 above.
  • the network device configures 2 SRS resources with AS attributes for the first terminal device
  • the network device configures 4 SRS resources for the second terminal device, where Two are SRS resources with AS attributes, and two are SRS resources with CB attributes.
  • the network device configures the SRS sending period of the first terminal device as field Tsrs1, configures the SRS sending period of the second terminal device as field Tsrs2, and configures Tsrs1 as 1/2 of Tsrs2.
  • the first terminal device can be terminal device A or terminal device B in Figure 5, and the base sequence identifier corresponding to terminal device A and terminal device B is k1; use A0, A1, B0, and B1 to identify terminal device A and terminal device B respectively 2 SRS resources.
  • the second terminal device can be terminal device a or terminal device b in Figure 5, and the base sequence identifier corresponding to terminal device a and terminal device b is k2; use a0, a1, a2 and a3 to identify the two SRS resources of terminal device a , b0, b1, b2 and b3 identify the four SRS resources of terminal device b.
  • the period Tsrs2 for sending SRS resources by terminal device A and terminal device B is configured as 4T
  • the period Tsrs1 for sending SRS resources by terminal device a and terminal device b is configured as 8T.
  • the SRS resources of terminal device A and terminal device B have the same frequency domain positions as the SRS resources of terminal device a and terminal device b, and the time domain position allocation is shown in FIG. 5 . It can be seen from Figure 5 that for terminal device A, the interference encountered at different times is different. Taking the resource A0 of terminal device A as an example, it collides with resource a0 of terminal device a at time t1, and at time t5 Collision resource a2 of end device a.
  • the channel is basically time-invariant in the range of t1 ⁇ t5, so H A0 (t1) ⁇ H A0 (t5), so the first channel response matrix of terminal device A can be obtained through interference randomization:
  • SRS resource a0 and SRS resource a2 are resources configured by the network device for the same terminal device, the antenna ports for sending SRS resource a0 and SRS resource a2 are different, so they are independent of each other in the statistics of SRS receiving channel response, so Residual Interfering Components is smaller than Inf(a 0 ) and Inf(a 2 ), that is to say, after filtering algorithm Compared with the receiving channel response matrix of terminal device A on the network device side at time t1 and t3 and more precise.
  • this scenario corresponds to the scheme of configuring SRS resources as another example in step S210 above.
  • the network device configures two SRS resources with AS attributes for the first terminal device, and the network device configures three SRS resources for the second terminal device, where Two are SRS resources with AS attributes, and one is SRS resources with CB attributes.
  • the network device configures the SRS sending period of the first terminal device as field Tsrs1, configures the SRS sending period of the second terminal device as field Tsrs2, and configures Tsrs1 as 2/3 of Tsrs2.
  • the first terminal device can be terminal device A in Fig. 6, terminal device B or terminal device C, terminal device A, terminal device B and terminal device C corresponding base sequence identifier is k1; Use A0, A1 to identify the 2 of terminal device A
  • the two SRS resources of the terminal device B are identified by B0 and B1
  • the two SRS resources of the terminal device C are identified by C0 and C1.
  • the second terminal device may be terminal device a, terminal device b or terminal device c in FIG.
  • For the three SRS resources of a, b0, b1 and b2 are used to identify the three SRS resources of the terminal device b, and c0, c1 and c2 are used to identify the three SRS resources of the terminal device c.
  • the period Tsrs2 for terminal device A, terminal device B and terminal device C to send SRS resources is configured as 6T, and the period Tsrs1 for terminal device a, terminal device b and terminal device c to send SRS resources is configured as 9T.
  • the channel is basically time-invariant in the range of t1 ⁇ t13, so that H A0 (t1) ⁇ H A0 (t13), so the second channel response matrix of terminal equipment A can be obtained through interference randomization:
  • Resource a0, resource c2 and resource b1 are SRS resources of different terminal devices, and the channels of different terminal devices are different, so they are independent of each other in the statistics of SRS receiving channel response, so Residual Interfering Components is less than Inf(a 0 ), Inf(c 2 ) and Inf(b 1 ), that is to say, after filtering algorithm Compared with t1, the SRS receiving channel response matrix of terminal device A on the network device side at time t7 and t13 and more precise.
  • the first terminal device is subject to different SRS interference at different times, so the network device can obtain more accurate channel estimation through a filtering algorithm, which effectively improves system performance.
  • execution subject illustrated in FIG. 2 and FIG. 3 is only an example, and the execution subject may also be a chip, a chip system, or a processor that supports the execution subject to implement method 200 and method 300, and this application does not make any limit.
  • the methods and operations implemented by the network device may also be implemented by components (such as chips or circuits) that can be used in the network device, and the methods and operations implemented by the terminal device may also be implemented by A component (such as a chip or a circuit) implementation that can be used in a terminal device.
  • components such as chips or circuits
  • a component such as a chip or a circuit
  • each network element such as a transmitting end device or a receiving end device, includes a corresponding hardware structure and/or software module for performing each function in order to realize the above functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
  • the embodiment of the present application can divide the functional modules of the transmitting end device or the receiving end device according to the above method example, for example, each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module middle.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation. In the following, description will be made by taking the division of each functional module corresponding to each function as an example.
  • Fig. 7 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 700 includes a transceiver unit 710 and a processing unit 720 .
  • the transceiver unit 710 can communicate with the outside, and the processing unit 720 is used for data processing.
  • the transceiver unit 710 may also be called a communication interface or a communication unit.
  • the communication device 700 may be a terminal device, wherein the transceiver unit 710 is used to perform the receiving or sending operation of the terminal device in the method embodiment above, and the processing unit 720 is used to perform the internal processing operation of the terminal device in the method embodiment above .
  • the transceiver unit 710 is configured to receive resource configuration information sent by a network device, where the resource configuration information indicates the first base sequence identifier of the first terminal device, the channel sounding reference signal SRS resource, and the resource configuration information of the first terminal device. A period for sending the SRS; wherein, the first terminal device and the second terminal device belong to the same cell, and the second terminal device corresponds to the second base sequence identifier.
  • the transceiving unit 710 is configured to send the SRS to the network device, and the SRS is carried on the SRS resource.
  • the number of SRS resources of the first terminal device and the period of sending the SRS by the first terminal device are different from those of the second terminal device, and the first SRS resource of the first terminal device is different from the second SRS resource at the first moment.
  • the frequency domain positions of the SRS resources are the same, the first SRS resource of the first terminal device is at the same frequency domain position as the third SRS resource at the second moment, and the terminal device to which the second SRS resource and the third SRS resource belong corresponds to the first Dibase sequence identifier.
  • the number of SRS resources of the first terminal device and the second terminal device are different, and the period of sending SRS between the first terminal device and the second terminal device is also different, so that the SRS resources of the first terminal device are different from the second SRS resources respectively.
  • resource when the time-frequency domain position of the third SRS resource is the same, the SRS interference received by the first terminal device at different times is different, and the effect of randomizing the SRS interference in the cell is achieved.
  • the number of SRS resources of the first terminal device and the period for the first terminal device to send the SRS are 1/2 of that of the second terminal device.
  • the number of SRS resources of the first terminal device is 1, and the number of SRS resources of the second terminal device is 2; or the number of SRS resources of the first terminal device is 2, and the number of SRS resources of the second terminal device is 2.
  • the number of resources is 4. It should be understood that, in both cases, the period for sending the SRS by the first terminal device is 1/2 of the period for sending the SRS by the second terminal device.
  • the number of SRS resources of the first terminal device and the period for sending the SRS by the first terminal device are 2/3 of those of the second terminal device.
  • the number of SRS resources of the first terminal device is 2, the number of SRS resources of the second terminal device is 3, and the period of sending the SRS by the first terminal device is the period of sending the SRS by the second terminal device 2/3.
  • the above two alternatives can ensure that the frequency of SRS transmission by the first terminal device and the second terminal device is relatively fair in the same period of time, so that the resources of the terminal devices in the cell to send SRS are fair and at the same time achieve the effect of SRS interference randomization .
  • the transceiving unit 710 is specifically configured to receive radio resource control RRC signaling sent by the network device, where the RRC signaling includes the resource configuration information.
  • the communication device 700 may further include a storage unit, which may be used to store instructions and/or data, and the processing unit 720 may read instructions or and/or data in the storage unit.
  • a storage unit which may be used to store instructions and/or data
  • the processing unit 720 may read instructions or and/or data in the storage unit.
  • transceiver unit 710 in the terminal device may correspond to the transceiver 920 in the terminal device shown in FIG. 9, and the processing unit 720 in the terminal device may correspond to the transceiver 920 in the terminal device shown in FIG. processor.
  • the transceiver unit 710 in the terminal device can be implemented through a communication interface (such as a transceiver or an input/output interface), for example, it can correspond to the antenna and the control circuit in the terminal device shown in FIG. 9 , the terminal device
  • the processing unit 720 in the terminal device may be implemented by at least one processor, for example, may correspond to the processor in the terminal device shown in FIG. 9 , and the processing unit 720 in the terminal device may also be implemented by at least one logic circuit.
  • the terminal device may further include a storage unit, which may be used to store instructions or data, and the processing unit may call the instructions or data stored in the storage unit to implement corresponding operations.
  • a storage unit which may be used to store instructions or data
  • the processing unit may call the instructions or data stored in the storage unit to implement corresponding operations.
  • Fig. 8 is a schematic block diagram of another communication device provided by an embodiment of the present application.
  • the communication device 800 includes a transceiver unit 810 and a processing unit 820 .
  • the transceiver unit 810 can communicate with the outside, and the processing unit 820 is used for data processing.
  • the transceiver unit 810 may also be called a communication interface or a communication unit.
  • the communication device 800 may be a network device, wherein the transceiver unit 810 is used to perform the receiving or sending operation of the network device in the method embodiment above, and the processing unit 820 is used to perform the internal processing operation of the network device in the method embodiment above .
  • the communication device 800 may further include a storage unit, which may be used to store instructions and/or data, and the processing unit 820 may read instructions or and/or data in the storage unit.
  • a storage unit which may be used to store instructions and/or data
  • the processing unit 820 may read instructions or and/or data in the storage unit.
  • the transceiver unit 810 is configured to send resource configuration information to the first terminal device, where the resource configuration information indicates the first base sequence identifier of the first terminal device, the channel sounding reference signal SRS resource, and the first terminal device A period for the device to send the SRS; wherein, the first terminal device and the second terminal device belong to the same cell, and the second terminal device corresponds to the second base sequence identifier.
  • the transceiving unit 810 is further configured to receive an SRS from the first terminal device, and the SRS is carried on the SRS resource.
  • the number of SRS resources of the first terminal device and the period of sending SRS by the first terminal device are different from those of the second terminal device, and the first SRS resource of the first terminal device is different from the second SRS resource at the first moment.
  • the frequency domain positions of the resources are the same, the frequency domain position of the first SRS resource of the first terminal device is the same as that of the third SRS resource at the second moment, and the terminal device to which the second SRS resource and the third SRS resource belong corresponds to the second base sequence identifier.
  • different numbers of SRS resources are configured for the first terminal device and the second terminal device, and the periods of sending SRSs for the first terminal device and the second terminal device are different, so that the first SRS resources of the first terminal device and the When the time-frequency domain positions of the second SRS resource and the third SRS resource are the same, the SRS interference received by the first terminal device at different times is different, achieving the effect of randomizing the SRS interference of the terminal device in the cell.
  • the terminal devices to which the second SRS resource and the third SRS resource belong are different, or the terminal devices to which the second SRS resource and the third SRS resource belong are the same, but the antennas of the second SRS resource and the third SRS resource The ports are different.
  • the number of SRS resources of the first terminal device and the period for the first terminal device to send the SRS are 1/2 of that of the second terminal device.
  • the number of SRS resources of the first terminal device is 1, and the number of SRS resources of the second terminal device is 2; or the number of SRS resources of the first terminal device is 2, and the number of SRS resources of the second terminal device is 2.
  • the number of SRS resources is 4. It should be understood that, in both cases, the period for sending the SRS by the first terminal device is 1/2 of the period for sending the SRS by the second terminal device.
  • the processing unit 820 is configured to obtain the SRS receiving channel response matrix at multiple moments, the multiple moments including the first moment and the second moment; and perform weighted average on the SRS receiving channel response matrices at the multiple moments to obtain The channel response matrix of the first terminal device.
  • a time interval between adjacent times among the multiple times is a period for the first terminal device to send the SRS.
  • the processing unit 820 is specifically configured to obtain the first SRS receiving channel response matrix at the first moment and the second SRS receiving channel response matrix at the second moment; the first SRS receiving channel response matrix and the second SRS receiving channel response matrix The channel response matrix is weighted and averaged to obtain the first channel response matrix of the first terminal device.
  • the number of SRS resources of the first terminal device and the period for sending the SRS by the first terminal device are 2/3 of those of the second terminal device.
  • the number of SRS resources of the first terminal device is 2, the number of SRS resources of the second terminal device is 3, and the period of sending SRS by the first terminal device is the period of sending SRS by the second terminal device 2/3 of.
  • the processing unit 820 is specifically configured to acquire the first SRS receiving channel response matrix at the first moment, the second SRS receiving channel response matrix at the second moment, and the third SRS receiving channel response matrix at the third moment; and The first SRS receiving channel response matrix, the second SRS receiving channel response matrix and the third SRS receiving channel response matrix are weighted and averaged to obtain the second channel response matrix of the first terminal device.
  • the transceiving unit 810 is specifically configured to send radio resource control RRC signaling to the first terminal device, where the RRC signaling includes the resource configuration information.
  • the network device may further include a storage unit, which may be used to store instructions or data, and the processing unit may call the instructions or data stored in the storage unit to implement corresponding operations.
  • a storage unit which may be used to store instructions or data
  • the processing unit may call the instructions or data stored in the storage unit to implement corresponding operations.
  • the transceiver unit 810 in the network device can be implemented through a communication interface (such as a transceiver or an input/output interface), for example, it can correspond to the transceiver 1030 in the network device shown in FIG. 10 , the network device
  • the processing unit 820 in the network device may be realized by at least one processor, for example, may correspond to the processor 1010 in the network device shown in FIG. 10
  • the processing unit 820 in the network device may be realized by at least one logic circuit.
  • FIG. 9 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the foregoing apparatus 700 may be configured in the terminal device 900 , or, the foregoing apparatus 700 itself may be the terminal device 900 .
  • the terminal device 900 may perform the actions performed by the terminal device in the foregoing method 200 .
  • FIG. 9 only shows main components of the terminal device.
  • the device 900 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal device, execute the software program, and process the data of the software program. described action.
  • the memory is mainly used for storing software programs and data, such as storing the codebook described in the above embodiments.
  • the control circuit is mainly used for conversion of baseband signal and radio frequency signal and processing of radio frequency signal.
  • the control circuit and the antenna can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 9 only shows a memory and a processor.
  • processors and memories there may be multiple processors and memories, and the processors and memories may be deployed separately or in a centralized manner.
  • a storage may also be called a storage medium or a storage device, etc., which is not limited in this embodiment of the present application.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used for processing communication protocols and communication data.
  • the central processing unit is mainly used for controlling the entire terminal equipment, executing software programs, and processing software programs. data.
  • the processor in FIG. 9 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors, interconnected through technologies such as a bus.
  • a terminal device may include multiple baseband processors to adapt to different network standards, a terminal device may include multiple central processors to enhance its processing capability, and various components of the terminal device may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit may also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • a terminal device 900 includes a transceiver unit 910 and a processing unit 920 .
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver device, and the like.
  • the device in the transceiver unit 910 for realizing the receiving function may be regarded as a receiving unit
  • the device in the transceiver unit 910 for realizing the sending function may be regarded as a sending unit, that is, the transceiver unit includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, receiver, receiving circuit, etc.
  • the sending unit may be called a transmitter, transmitter, or transmitting circuit, etc.
  • FIG. 10 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the embodiment of the present application further provides a communication device 1000 .
  • the communication apparatus 1000 may be a network device.
  • the above-mentioned device 800 may be configured in the communication device 1000 , or, the above-mentioned device 800 itself may be the communication device 1000 .
  • the communications apparatus 1000 may perform the actions performed by the network device in the method 200 or 300 above.
  • the communication device 1000 includes a processor 1010, the processor 1010 is coupled with a memory 1020, the memory 1020 is used to store computer programs or instructions or and/or data, and the processor 1010 is used to execute the computer programs or instructions and/or data stored in the memory 1020 , so that the methods in the above method embodiments are executed.
  • the communication device 1000 includes one or more processors 1010 .
  • the communication device 1000 may further include a memory 1020 .
  • the communication device 1000 may include one or more memories 1020 .
  • the memory 1020 may be integrated with the processor 1010, or set separately.
  • the communication device 1000 may further include a transceiver 1030, and the transceiver 1030 is used for receiving and/or sending signals.
  • the processor 1010 is configured to control the transceiver 1030 to receive and/or send signals.
  • the communications apparatus 1000 is used to implement the operations performed by the network device in the above method embodiments.
  • the processor 1010 is configured to implement the operations performed internally by the network device in the above method embodiments
  • the transceiver 1030 is configured to implement the receiving or sending operations performed by the network device in the above method embodiments.
  • the processing unit in apparatus 800 may be the processor in FIG. 10
  • the transceiver unit may be the transceiver in FIG. 10 .
  • the embodiment of the present application also provides a computer-readable storage medium, on which computer instructions for implementing the method executed by the terminal device or the network device in the foregoing method embodiments are stored.
  • the computer when the computer program is executed by a computer, the computer can implement the methods performed by the terminal device or the network device in the above method embodiments.
  • the embodiment of the present application also provides a computer program product including instructions, and when the instructions are executed by a computer, the computer implements the method executed by the terminal device or the network device in the above method embodiments.
  • processors mentioned in the embodiment of the present application may be a central processing unit (central processing unit, CPU), and may also be other general processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits ( application specific integrated circuit (ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM).
  • RAM can be used as an external cache.
  • RAM may include the following forms: static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM) , double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory and direct memory bus random access memory.
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module may be integrated in the processor.
  • memories described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device can be components.
  • One or more components can reside within a process and/or thread of execution and a component can be localized on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more packets of data (e.g., data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet via a signal interacting with other systems). Communicate through local and/or remote processes.
  • packets of data e.g., data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet via a signal interacting with other systems.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer may be a personal computer, a server, or a network device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, DSL) or wireless (eg, infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, or a magnetic tape), an optical medium (for example, DVD), or a semiconductor medium, such as a solid state disk (solid state disk, SSD) and the like.
  • the aforementioned available media may include, but are not limited to: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk, etc.
  • a medium that stores program code may be a magnetic medium (for example, a floppy disk, a hard disk, or a magnetic tape), an optical medium (for example, DVD), or a semiconductor medium, such as a solid state disk (solid state disk, SSD) and the like.
  • the aforementioned available media may include, but are not limited to: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种资源配置方法、装置和系统,该方法包括:向第一终端设备发送资源配置信息,该资源配置信息指示该第一终端设备的第一基序列标识,信道探测参考信号SRS资源以及发送SRS的周期;其中,该第一终端设备和第二终端设备属于同一个小区,该第二终端设备对应第二基序列标识;接收来自该第一终端设备的SRS,该SRS承载于该SRS资源上。本申请通过给小区内不同的终端设备分配不同的基序列标识和SRS资源,可以缩短小区内终端设备发送SRS的周期,从而增加小区容量,提升系统性能。

Description

资源配置方法、装置和系统
本申请要求于2021年05月11日提交中国专利局、申请号为202110513107.6、申请名称为“资源配置方法、装置和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且,更具体地,涉及资源配置方法、装置和系统。
背景技术
在多入多出(multi-input multi-output,MIMO)无线通信系统中,因长期演进(long term evolution,LTE)系统与第五代(5th generation,5G)系统对频谱利用率要求较高,引入了同频组网。但是同频组网在提高频谱利用率的同时产生了小区间干扰的问题。
信道探测参考信号(sounding reference signal,SRS)用于信道的测量估计和质量探测等,调度较为频繁。在引入同频组网时容易造成SRS信噪比降低,系统性能差,是目前亟需解决的问题。
发明内容
本申请提供一种资源配置方法、装置和系统,通过给小区内不同的终端设备分配不同的基序列标识和SRS资源,在能够有效提升信噪比的同时,缩短小区内终端设备发送SRS的周期,从而增加小区容量,提升系统性能。
第一方面,提供了一种资源配置方法。该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片或电路执行,本申请对此不作限定。该方法包括:向第一终端设备发送资源配置信息,该资源配置信息指示该第一终端设备的第一基序列标识,信道探测参考信号SRS资源,以及该第一终端设备发送SRS的周期;其中,该第一终端设备和第二终端设备属于同一个小区,该第二终端设备对应第二基序列标识;接收来自该第一终端设备的SRS,该SRS承载于该SRS资源上。
示例地,网络设备为第一终端设备配置基序列标识为k1,为第二终端设备配置基序列标识为k2。应理解,基序列标识k1对应至少一个终端设备,该至少一个终端设备包括第一终端设备;同理,基序列标识k2也对应至少一个终端设备,该至少一个终端设备包括第二终端设备,并且网络设备为小区内终端设备配置的基序列标识的个数还可以是两个以上,本申请对此不做任何限定。该第一终端设备和第二终端设备同属于一个小区。网络设备为第一终端设备配置的SRS资源与网络设备为第二终端设备配置的SRS资源在频域,时域和码字上可以重叠。
基于上述方案,网络设备给小区内终端设备配置不同的基序列标识,相比为小区内终端设备分配相同的基序列标识的方案,网络设备可给不同基序列标识对应的终端设备配置在频域,时域和码字上重叠的SRS资源,使得小区内的终端设备能够缩短发送SRS的周 期,从而增加小区容量,提升系统性能。
可选地,该第一终端设备的SRS资源的数量和该第一终端设备发送SRS的周期和该第二终端设备不同,该第一终端设备的第一SRS资源在第一时刻与第二SRS资源的频域位置相同,该第一终端设备的第一SRS资源在第二时刻与第三SRS资源的频域位置相同,该第二SRS资源和该第三SRS资源所属的终端设备对应第二基序列标识。
该方案通过为第一终端设备和第二终端设备配置不同的SRS资源的数量,并且使得第一终端设备和第二终端设备发送SRS的周期不同,从而第一终端设备的第一SRS资源分别和第二SRS资源,第三SRS资源的时频域位置相同时,第一终端设备在不同的时刻所受到的SRS干扰不同,达到小区内终端设备的SRS干扰随机化的效果。
可选地,该第二SRS资源和第三SRS资源所属的终端设备不同,或者该第二SRS资源和第三SRS资源所属的终端设备相同,但发送该第二SRS资源和第三SRS资源的天线端口不同。
在一种可实施的方式中,该第一终端设备的SRS资源的数量和该第一终端设备发送该SRS的周期是该第二终端设备的1/2。
可选地,该第一终端设备的SRS资源的数量为1,该第二终端设备的SRS资源的数量为2;或该第一终端设备的SRS资源的数量为2,该第二终端设备的SRS资源的数量为4。应理解,两种情况下第一终端设备发送SRS的周期皆为该第二终端设备发送SRS的周期的1/2。
在一种可能的实施方式中,该方法还包括:获取多个时刻的SRS接收信道响应矩阵,该多个时刻包括该第一时刻和第二时刻;对该多个时刻的SRS接收信道响应矩阵进行加权平均得到该第一终端设备的信道响应矩阵。
可选地,该多个时刻中相邻时刻的时间间隔为该第一终端设备发送该SRS的周期。
可选地,获取该第一时刻的第一SRS接收信道响应矩阵和第二时刻的第二SRS接收信道响应矩阵;对该第一SRS接收信道响应矩阵和第二SRS接收信道响应矩阵进行加权平均得到该第一终端设备的第一信道响应矩阵。
基于上述方案,第一终端设备在第一时刻和第二时刻所受的SRS干扰不同,通过加权平均滤波算法得到更加准确的信道估计。
在一种可能的实施方式中,该第一终端设备的SRS资源的数量和该第一终端设备发送该SRS的周期是该第二终端设备的2/3。
可选地,该第一终端设备的SRS资源的数量为2,该第二终端设备的SRS资源的数量为3,且该第一终端设备发送SRS的周期为该第二终端设备发送SRS的周期的2/3。
上述不同的配置SRS资源的数目和发送SRS的周期的方案,可以保证第一终端设备和第二终端设备在同一段时间内发送SRS的频率相对公平,从而使得小区内终端设备发送SRS的资源公平的同时达到SRS干扰随机化的效果。
在一种可能的实施方式中,该方法还包括,获取第一时刻的第一SRS接收信道响应矩阵,第二时刻的第二SRS接收信道响应矩阵和第三时刻的第三SRS接收信道响应矩阵;对该第一SRS接收信道响应矩阵,第二SRS接收信道响应矩阵和第三SRS接收信道响应矩阵进行加权平均得到该第一终端设备的第二信道响应矩阵。
基于上述方案,第一终端设备在第一时刻,第二时刻以及第三时刻会受到三次不同的 SRS干扰,因此网络设备通过滤波算法得到更加准确的信道估计,有效提升了SRS信噪比和系统的性能。
可选地,向该第一终端设备发送无线资源控制RRC信令,该RRC信令包括该资源配置信息。
第二方面,提供了一种资源配置方法。该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或电路执行,本申请对此不作限定。该方法包括:接收网络设备发送的资源配置信息,该资源配置信息指示该第一终端设备的第一基序列标识,信道探测参考信号SRS资源,以及第一终端设备发送SRS的周期;其中,该第一终端设备和第二终端设备属于同一个小区,该第二终端设备对应第二基序列标识;向该网络设备发送该SRS,该SRS承载于该SRS资源上。
基于上述方案,第一终端设备接收到的资源配置信息中的基序列标识与第二终端设备的不同,相比小区内终端设备分配到相同的基序列标识的方案,网络设备可给不同基序列标识对应的终端设备配置在频域,时域和码字上重叠的SRS资源,使得小区内的终端设备能够缩短发送SRS的周期,从而增加小区容量,提升系统性能。
在一种可能的实施方式中,该第一终端设备的SRS资源的数量和该第一终端设备发送该SRS的周期和该第二终端设备不同,该第一终端设备的第一SRS资源在第一时刻与第二SRS资源的频域位置相同,该第一终端设备的第一SRS资源在第二时刻与第三SRS资源的频域位置相同,该第二SRS资源和该第三SRS资源所属的终端设备对应第二基序列标识。
该方案中,第一终端设备和第二终端设备的SRS资源的数量不同,并且第一终端设备和第二终端设备发送SRS的周期也不同,从而第一终端设备的SRS资源分别和第二SRS资源,第三SRS资源的时频域位置相同时,第一终端设备在不同的时刻所受到的SRS干扰不同,达到小区内的SRS干扰随机化的效果。
可选地,该第一终端设备的SRS资源的数量和该第一终端设备发送该SRS的周期是该第二终端设备的1/2。
示例地,该第一终端设备的SRS资源的数量为1,该第二终端设备的SRS资源的数量为2;或该第一终端设备的SRS资源的数量为2,该第二终端设备的SRS资源的数量为4。应理解,两种情况下第一终端设备发送SRS的周期皆为该第二终端设备发送SRS的周期的1/2。
可选地,该第一终端设备的SRS资源的数量和该第一终端设备发送该SRS的周期是该第二终端设备的2/3。
示例地,该第一终端设备的SRS资源的数量为2,该第二终端设备的SRS资源的数量为3,且该第一终端设备发送SRS的周期为该第二终端设备发送SRS的周期的2/3。
上述两种可选方案,可以保证第一终端设备和第二终端设备在同一段时间内发送SRS的频率相对公平,从而使得小区内终端设备发送SRS的资源公平的同时达到SRS干扰随机化的效果。
可选地,接收网络设备发送的无线资源控制RRC信令,该RRC信令包括该资源配置信息。
第三方面,提供了一种资源配置的装置。该装置可以是网络设备,或者,也可以是配 置于网络设备中的芯片或电路,本申请对此不作限定。该装置包括收发单元:该收发单元用于向第一终端设备发送资源配置信息,该资源配置信息指示该第一终端设备的第一基序列标识,信道探测参考信号SRS资源,以及该第一终端设备发送SRS的周期;其中,该第一终端设备和第二终端设备属于同一个小区,该第二终端设备对应第二基序列标识;该收发单元还用于接收来自该第一终端设备的SRS,该SRS承载于该SRS资源上。
基于上述方案,网络设备给小区内终端设备配置不同的基序列标识,相比为小区内终端设备分配相同的基序列标识的方案,网络设备可给不同基序列标识对应的终端设备配置在频域,时域和码字上重叠的SRS资源,使得小区内的终端设备能够缩短发送SRS的周期,从而增加小区容量,提升系统性能。
可选地,该第一终端设备的SRS资源的数量和该第一终端设备发送SRS的周期和该第二终端设备不同,该第一终端设备的第一SRS资源在第一时刻与第二SRS资源的频域位置相同,该第一终端设备的第一SRS资源在第二时刻与第三SRS资源的频域位置相同,该第二SRS资源和该第三SRS资源所属的终端设备对应第二基序列标识。
该方案通过为第一终端设备和第二终端设备配置不同的SRS资源的数量,并且使得第一终端设备和第二终端设备发送SRS的周期不同,从而第一终端设备的第一SRS资源分别和第二SRS资源,第三SRS资源的时频域位置相同时,第一终端设备在不同的时刻所受到的SRS干扰不同,达到小区内的SRS干扰随机化的效果。
在一种可能的实施方式中,该第一终端设备的SRS资源的数量和该第一终端设备发送该SRS的周期是该第二终端设备的1/2。
可选地,该第一终端设备的SRS资源的数量为1,该第二终端设备的SRS资源的数量为2;或该第一终端设备的SRS资源的数量为2,该第二终端设备的SRS资源的数量为4。应理解,两种情况下第一终端设备发送SRS的周期皆为该第二终端设备发送SRS的周期的1/2。
在一种可能的实施方式中,该装置还包括处理单元:该处理单元用于获取多个时刻的SRS接收信道响应矩阵,该多个时刻包括第一时刻和第二时刻;并对该多个时刻的SRS接收信道响应矩阵进行加权平均得到该第一终端设备的信道响应矩阵。
基于上述方案,在第一终端设备的SRS干扰随机化的情况下,网络设备通过滤波算法,有效提升了SRS信噪比和系统的性能。
可选地,该多个时刻中相邻时刻的时间间隔为该第一终端设备发送该SRS的周期。
可选地,该处理单元用于获取该第一时刻的第一SRS接收信道响应矩阵和第二时刻的第二SRS接收信道响应矩阵;对该第一SRS接收信道响应矩阵和第二SRS接收信道响应矩阵进行加权平均得到该第一终端设备的第一信道响应矩阵。
在一种可能的实施方式中,该第一终端设备的SRS资源的数量和该第一终端设备发送该SRS的周期是该第二终端设备的2/3。
可选地,该第一终端设备的SRS资源的数量为2,该第二终端设备的SRS资源的数量为3,且该第一终端设备发送SRS的周期为该第二终端设备发送SRS的周期的2/3。
上述不同的配置SRS资源的数目和发送SRS的周期的方案,可以保证第一终端设备和第二终端设备在同一段时间内发送SRS的频率相对公平,从而使得小区内终端设备发送SRS的资源公平的同时达到SRS干扰随机化的效果。
在一种可能的实施方式中,该装置还包括处理单元,该处理单元用于获取第一时刻的第一SRS接收信道响应矩阵,第二时刻的第二SRS接收信道响应矩阵和第三时刻的第三SRS接收信道响应矩阵;并对该第一SRS接收信道响应矩阵,第二SRS接收信道响应矩阵和第三SRS接收信道响应矩阵进行加权平均得到该第一终端设备的第二信道响应矩阵。
基于上述方案,第一终端设备在第一时刻,第二时刻以及第三时刻会受到三次不同的SRS干扰,因此网络设备通过滤波算法得到更加准确的信道估计,有效提升了SRS信噪比和系统的性能。
可选地,该收发单元具体用于向该第一终端设备发送无线资源控制RRC信令,该RRC信令包括该资源配置信息。
第四方面,提供了一种资源配置的装置。该装置可以是终端设备,或者,也可以是配置于终端设备中的芯片或电路,本申请对此不作限定。该装置包括收发单元:该收发单元用于接收网络设备发送的资源配置信息,该资源配置信息指示该第一终端设备的第一基序列标识,信道探测参考信号SRS资源以及第一终端设备发送SRS的周期;其中,该第一终端设备和第二终端设备属于同一个小区,该第二终端设备对应第二基序列标识;该收发单元还用于向该网络设备发送该SRS,该SRS承载于该SRS资源上。
基于上述方案,第一终端设备接收到的资源配置信息中的基序列标识与第二终端设备的不同,相比小区内终端设备分配到相同的基序列标识的方案,网络设备可给不同基序列标识对应的终端设备配置在频域,时域和码字上重叠的SRS资源,使得小区内的终端设备能够缩短发送SRS的周期,从而增加小区容量,提升系统性能。
在一种可能的实施方式中,该第一终端设备的SRS资源的数量和该第一终端设备发送该SRS的周期和该第二终端设备不同。该第一终端设备的第一SRS资源在第一时刻与第二SRS资源的频域位置相同,该第一终端设备的第一SRS资源在第二时刻与第三SRS资源的频域位置相同,该第二SRS资源和该第三SRS资源所属的终端设备对应第二基序列标识。
该方案中,第一终端设备和第二终端设备的SRS资源的数量不同,并且第一终端设备和第二终端设备发送SRS的周期也不同,从而第一终端设备的SRS资源分别和第二SRS资源,第三SRS资源的时频域位置相同时,第一终端设备在不同的时刻所受到的SRS干扰不同,达到小区内的SRS干扰随机化的效果。
可选地,该第一终端设备的SRS资源的数量和该第一终端设备发送该SRS的周期是该第二终端设备的1/2。
示例地,该第一终端设备的SRS资源的数量为1,该第二终端设备的SRS资源的数量为2;或该第一终端设备的SRS资源的数量为2,该第二终端设备的SRS资源的数量为4。应理解,两种情况下第一终端设备发送SRS的周期皆为该第二终端设备发送SRS的周期的1/2。
可选地,该第一终端设备的SRS资源的数量和该第一终端设备发送该SRS的周期是该第二终端设备的2/3。
示例地,该第一终端设备的SRS资源的数量为2,该第二终端设备的SRS资源的数量为3,且该第一终端设备发送SRS的周期为该第二终端设备发送SRS的周期的2/3。
上述两种可选方案,可以保证第一终端设备和第二终端设备在同一段时间内发送SRS 的频率相对公平,从而使得小区内终端设备发送SRS的资源公平的同时达到SRS干扰随机化的效果。
可选地,该收发单元具体用于接收网络设备发送的无线资源控制RRC信令,该RRC信令包括该资源配置信息。
第五方面,提供一种资源配置装置,该装置可以为上述第一方面中的网络设备,或者为配置在网络设备中的电子设备,或者为包括网络设备的较大设备。该装置用于执行上述第一方面提供的方法。该通信装置包括收发器,该收发器用于向第一终端设备发送资源配置信息,该资源配置信息指示该第一终端设备的第一基序列标识,信道探测参考信号SRS资源,以及该第一终端设备发送SRS的周期;其中,该第一终端设备和第二终端设备属于同一个小区,该第二终端设备对应第二基序列标识;该收发器还用于接收来自该第一终端设备的SRS,该SRS承载于该SRS资源上。
可选地,该装置还包括处理器,该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面以及第一方面中任一种可能实现方式中的方法。可选地,该装置还包括存储器,该存储器与处理器可能是分离部署的,也可能是集中部署的。可选地,该装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为配置于网络设备中的芯片。当该装置为配置于网络设备中的芯片时,该通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
可选地,该收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
在具体实现过程中,上述处理器可以为一个或多个芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是但不限于接收器接收并输入的,输出电路所输出的信号可以是但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第六方面,提供一种资源配置装置,该装置可以为上述第二方面中的第一终端设备,或者为配置在第一终端设备中的电子设备,或者为包括第一终端设备的较大设备。该装置用于执行上述第二方面提供的方法。装置包括收发器,该收发器用于接收网络设备发送的资源配置信息,该资源配置信息指示该第一终端设备的第一基序列标识,信道探测参考信号SRS资源,以及该第一终端设备发送SRS的周期;其中,该第一终端设备和第二终端设备属于同一个小区,该第二终端设备对应第二基序列标识;该收发器还用于向该网络设备发送该SRS,该SRS承载于该SRS资源上。
可选地,该装置还包括存储器,该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面以及第二方面中任一种可能实现方式中的通信方法。可选地,该通信装置还包括存储器,该存储器与处理器可能是分离部署的,也可能是集中部署的。可选地,该装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为配置于终端设备中的芯片。当该装置为配置于终端设备中的芯片时,该通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
第七方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序(也可以称为代码,或指令),当该计算机程序被运行时,使得计算机执行上述第一方面或第二方面以及第一方面或第二方面中任一种可能实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面或第二方面以及第一方面或第二方面中任一种可能实现方式中的方法。
第九方面,提供了一种通信系统,包括上述的网络设备和终端设备。
附图说明
图1是适用于本申请实施例的通信系统100的示意图。
图2是适用于本申请实施例的一种资源配置方法的流程交互示意图。
图3是适用于本申请实施例的一种确定信道估计的方法的示意图。
图4是本申请实施例提供的一种资源配置示意图。
图5是本申请实施例提供的另一种资源配置示意图。
图6是本申请实施例提供的再一种资源配置示意图。
图7是适用于本申请实施例的一种通信装置的示意性框图。
图8是适用于本申请实施例的另一种通信装置的示意性框图。
图9是适用于本申请实施例提供的终端设备的结构示意图。
图10是适用于本申请实施例提供的网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是适用于本申请实施例的通信系统100的示意图。
如图1所示,该通信系统100可以包括一个网络设备120,例如,图1所示的网络设备。该通信系统100还可以包括至少一个终端设备110,例如,图1所示的终端设备。终端设备与网络设备之间、终端设备与终端设备之间可以建立连接,进行通信,发送设备可以通过控制信息指示数据的调度信息,以便接收设备根据控制信息正确地接收数据。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal  digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端或者未来演进网络中的终端等。
其中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。本申请对于终端设备的具体形式不作限定。
应理解,本申请实施例中,终端设备可以是用于实现终端设备功能的装置,也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
本申请实施例中的网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(Radio Network Controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(Base Band Unit,BBU),无线保真(Wireless Fidelity,WIFI)系统中的接入点(Access Point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,简称AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
应理解,本申请实施例中,网络设备可以是用于实现网络设备功能的装置,也可以是 能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system formobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、LTE系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统或未来演进的通信系统,车到其它设备(vehicle-to-X V2X),其中V2X可以包括车到互联网(vehicle to network,V2N)、车到车(vehicle to vehicle,V2V)、车到基础设施(vehicle to infrastructure,V2I)、车到行人(vehicle to pedestrian,V2P)等、车间通信长期演进技术(long term evolution-vehicle,LTE-V)、车联网、机器类通信(machine type communication,MTC)、物联网(Internet of things,IoT)、机器间通信长期演进技术(long term evolution-machine,LTE-M),机器到机器(machine to machine,M2M),设备到设备(deviceto device,D2D)等。
应理解,本申请可应用于独立部署的5G或LTE系统,也可应用于非独立部署的5G或LTE系统,例如DC场景,包括双连接(E-UTRA-NR dual connectivity,EN-DC)等,以及载波聚合(carrier aggregation,CA)场景。
为便于理解本申请实施例,下面首先对本申请中涉及的几个术语做简单介绍。
1、天选终端:天选终端的所有物理天线都具备发送信号的能力,以2T4R天选终端为例,2T4R表示该终端共有4根物理天线,每次发送信号用其中2根物理天线,可通过两次发送信号实现4根物理天线发送信号的效果。
2、非天选终端:该终端的发送天线数目<接收天线数目,以2T4R非天选终端为例,2T4R表示该终端共4根物理天线,用于发送信号的物理天线只有2根。
3、SRS资源:SRS的最小分配单位,包括发送SRS能够使用的时域位置、发送SRS能够使用的频域位置、发送SRS能够使用的带宽和发送SRS的天线端口。
4、SRS资源集合:由多个SRS资源组成,不同的SRS资源集合中承载的SRS功能不同。
5、码本(code book,CB)属性的SRS资源集合:该SRS资源集合承载的SRS的功能是用于上行码本选择。
6、天线轮询(antenna switching,AS)属性的SRS资源集合:该SRS资源集合承载的SRS的功能是用于天线轮发。
网络设备为终端设备分配SRS资源时,分配1个用于发送CB属性的SRS的资源集合,该资源集合中最多包含2个SRS资源;分配1个用于发送AS属性的SRS的资源集合,若该终端设备为非天选终端设备,用于发送AS属性的SRS的资源集合中最多包含1个SRS资源,若该终端设备为天选终端设备,用于发送AS属性的SRS的资源集合中最多包含的SRS资源数目为该天选终端设备的物理天线数目,即为不同终端设备分配的SRS资源的数目上限是不同的。此外,相同的SRS资源可以复用在不同的资源集合中,例如,SRS资源res 0,可以既属于CB属性的SRS资源集合,又属于AS属性的SRS资源集合。
LTE与5G系统因对频谱利用率有较高的要求引入了同频组网的方式,从而带来了小区间干扰。SRS调度较为频繁,因此小区间或小区内终端设备设备采用同样资源发送SRS时会出现严重的干扰,从而造成了SRS的信噪比降低。
在一种可能的实施方式中,生成SRS序列的基序列标识受到u,v以及SRS的序列长度Nzc的影响,基序列标识q值的计算公式如下:
Figure PCTCN2022091062-appb-000001
q bar=Nzc*(u+1)/31
上述公式中的u为组号,可以取值为0-29,可以表示30个小区,v为序列号,可以取值为0或1。
若要提升SRS的信噪比,并期望SRS的邻区干扰随机化,需通过支持SRS的组跳(例如,按照小区标识将30个小区分为一组,使得该组小区的SRS序列同步跳跃)来实现u值的修改,从而在当不同小区的终端设备采用相同资源发送SRS时实现q值的变化。干扰随机化是指终端设备所受干扰会随着时间发生变化。
但是SRS的组跳在实现小区间SRS干扰随机化的过程中,不能实现小区内的SRS干扰随机化。并且SRS的组跳在实现过程中需全网同步开启,若同组的小区没有同步开启,可能在某个时刻两个小区的SRS序列标识跳跃至相同位置,不能实现小区间的SRS干扰随机化,从而影响系统的性能。
可选地,期望SRS的邻区干扰随机化,进一步提升系统性能,还可通过v值的修改来实现,即序列跳。序列跳中v值与伪随机序列相关,根据时隙编号v值会随机产生0或者1两种。从而会使得每个终端设备的SRS序列随着时隙编号的增加而随机性的改变,进而完成SRS干扰随机化。
但个别情况下,例如,调度SRS的带宽为8RB,为SRS配置2梳分,SRS的序列长度Nzc为47,v=1时,两个连续的u如u=1和u=2时,通过上述公式计算得到的q均等于4,也就是说这种情况下出现两个不同小区开启序列跳的q值相同,发生系统错误,从而影响系统性能。
而且上述组跳和序列跳的方案,在网络设备配置的发送SRS的周期较大时,例如大于20毫秒,以NR系统为例,时隙符号为0-19,则终端设备第一次发送SRS和第二次发送SRS的时隙符号会出现重复的情况,每个终端设备的SRS序列随着时隙符号的增加不能随机性的改变,因此达不到SRS干扰随机化的效果。
图2是适用于本申请实施例的一种资源配置方法的流程交互示意图。该方法200包括:
步骤S210,网络设备向第一终端设备发送配置信息。对应的,第一终端设备接收该配置信息。
一种可能的实施方式中,该配置信息指示第一终端设备的第一基序列标识,第一信号的资源,和第一信号的周期中的至少一种。或,该配置信息包括第一终端设备的第一基序列标识,第一信号的资源,和第一信号的周期中的至少一种。其中,该第一终端设备和第二终端设备属于同一个小区,该第二终端设备对应第二基序列标识。
可选地,第一信号为用于信道探测的参考信号,例如SRS。第一信号的资源包括时域资源,频域资源,和码字资源中的至少一种。第一信号的周期为第一终端设备发送第一信 号的周期,以SRS举例,即第一信号的周期为第一终端设备发送SRS的周期。
应理解,SRS仅为第一信号的一种举例,第一信号还可以是其他的用于信道探测的参考信号,或者在技术发展中,第一信号可以为SRS的演化信号,本申请对此不做任何限定。后文以SRS的举例也类似,在后文描述中不再赘述。
示例地,网络设备为第一终端设备配置基序列标识k 1,为第二终端设备配置基序列标识k 2。应理解,基序列标识k 1对应至少一个终端设备,该至少一个终端设备包括第一终端设备;同理,基序列标识k 2也对应至少一个终端设备,该至少一个终端设备包括第二终端设备,并且网络设备为小区内终端设备配置的基序列标识的个数还可以是两个以上,本申请对此不做任何限定。网络设备为基序列标识k 1对应的至少一个终端设备中的其中一个终端设备配置的SRS资源与网络设备为基序列标识k 2对应的至少一个终端设备中的其中一个终端设备配置的SRS资源在频域,时域和码字上可以重叠。
本申请通过给小区内的终端设备配置2个及2个以上的基序列标识,可以使得不同基序列标识的终端设备进行第一信号的资源分配时,为不同的基序列标识的终端设备分配的资源在时域,频域及码字资源上可以重叠。相较于现有技术中为小区内的终端设备配置相同的基序列标识的方案,能够使得小区内的终端设备缩短发送第一信号的周期,从而可以增加小区容量,提升系统性能。
可选地,为小区内的终端设备配置2个及2个以上的基序列标识时,第一信号的周期为T1,为小区内的终端设备配置相同的基序列标识时,第一信号的周期为T2,则T1≤T2。
可选地,网络设备在分配基序列标识时可以通过终端设备所属小区的标识或者在0~29的标识之间随机进行分配。网络设备针对相同基序列标识的终端设备进行第一信号的资源分配时,为不同的终端设备分配的资源在时域,频域及码字资源不重叠。
在一种可能的实施方式中,网络设备为第一终端设备配置的第一信号的资源数量和第二终端设备不同,和/或网络设备为第一终端设备配置的第一信号的周期和第二终端设备不同。该第一终端设备的第一资源在第一时刻与第二资源的频域位置相同,该第一终端设备的第一资源在第二时刻与第三资源的频域位置相同,该第二资源和该第三资源所属的终端设备对应第二基序列标识。其中,第一资源为第一终端设备的第一信号的资源,第二资源和第三资源可以为第二终端设备的第一信号的资源,第二资源和第三资源的天线端口不同。或者第二资源为第二终端设备的第一信号的资源,第三资源为第三终端设备的第一信号的资源,第二终端设备和第三终端设备对应第二基序列标识,第二终端设备和第三终端设备为不同的终端设备。
示例地,网络设备为第一终端设备配置的SRS资源的数量和发送SRS的周期和第二终端设备不同,该第一终端设备的第一SRS资源在第一时刻与第二SRS资源的频域位置相同,该第一终端设备的第一SRS资源在第二时刻与第三SRS资源的频域位置相同,该第二SRS资源和该第三SRS资源所属的终端设备对应第二基序列标识。该第二SRS资源和第三SRS资源所属的终端设备不同,或者该第二SRS资源和第三SRS资源所属的终端设备相同,但该第二SRS资源和第三SRS资源的天线端口不同。
可选地,网络设备为该第一终端设备配置的第一信号的资源数量和该第一信号的周期是该第二终端设备的1/2。例如,第一终端设备的SRS资源的数量和该SRS的发送周期是第二终端设备的1/2。
下面以SRS举例,说明不同情况下网络设备为小区内的终端设备发送第一信号的具体配置。
作为一种示例,第一终端设备和第二终端设备都是非天选终端,网络设备为该第一终端设备的配置1个AS属性的SRS资源,网络设备为该第二终端设备配置2个SRS资源,其中一个是AS属性的SRS资源,另一个是CB属性的SRS资源。网络设备为该第一终端设备的SRS的发送周期配置为字段Tsrs1,为第二终端设备的SRS的发送周期配置为字段Tsrs2,并将Tsrs1配置为Tsrs2的1/2。
作为另一种示例,第一终端设备和第二终端设备都是天选终端,网络设备为该第一终端设备的配置2个AS属性的SRS资源,网络设备为该第二终端设备配置4个SRS资源,其中2个是AS属性的SRS资源,其他2个是CB属性的SRS资源。网络设备为该第一终端设备的SRS的发送周期配置为字段Tsrs1,为第二终端设备的SRS的发送周期配置为字段Tsrs2,并将Tsrs1配置为Tsrs2的1/2。
应理解,上述一种示例中的第一终端设备和第二终端设备可以是以2T4R非天选终端举例,也可以是以1T2R非天选终端举例,但另一种示例中的第一终端设备和第二终端设备是以2T4R天选终端举例。
还应理解,本申请实施例提供的方法还可适用于1T4R终端设备,上述2T4R终端设备和1T2R终端设备仅为举例,本申请对此不做任何限制。
可选地,网络设备为该第一终端设备配置的第一信号的资源数量和该第一信号的周期是该第二终端设备的2/3。例如,第一终端设备的SRS资源的数量和该SRS的发送周期是第二终端设备的2/3。
作为再一种示例,第一终端设备和第二终端设备都是天选终端,网络设备为该第一终端设备配置2个AS属性的SRS资源,网络设备为该第二终端设备配置3个SRS资源,其中2个是AS属性的SRS资源,其余的1个是CB属性的SRS资源。网络设备为该第一终端设备的SRS的发送周期配置为字段Tsrs1,为第二终端设备的SRS的发送周期配置为字段Tsrs2,并将Tsrs1配置为Tsrs2的2/3。
应理解,上述三种示例中网络设备为第一终端设备和第二终端设备分配的不同属性的SRS资源的数目仅为举例,本申请对此不做任何限制。并且网络设备为第一终端设备和第二终端设备配置的第一信号的资源数量和该第一信号的周期的比值除了上述列举的1/2和2/3之外,还可以是其他的比值,本申请对此也不做任何限定。
可选地,步骤S210中的配置信息承载于无线资源控制信令中。例如,该配置信息承载于RRC信令中。
步骤S220,终端设备发送第一信号,该第一信号承载于第一信号的资源上。对应地,网络设备在该资源上接收该第一信号。
示例地,终端设备发送SRS,该SRS承载于SRS资源上。对应地,网络设备在该SRS资源上接收该SRS。
应理解,不同基序列标识的第一信号属于非正交信号,如果第一终端设备和第二终端设备在相同的时频资源上发送第一信号,会产生互相干扰。下面针对步骤S210中不同的第一信号的资源和发送周期的配置方案具体描述第一信号的干扰随机化过程。
图3是适用于本申请实施例的一种确定信道估计的方法的示意图。
可选地,步骤S220后,网络设备需根据不同时刻接收到的第一信号进行信道估计。该方法200还包括:
步骤S310,网络设备获取多个时刻的第一信号接收信道响应矩阵,该多个时刻包括该第一时刻和第二时刻。
示例地,网络设备获取多个时刻的SRS接收信道响应矩阵,该多个时刻包括该第一时刻和第二时刻。
一种可实现的方式,网络设备获取该第一时刻的第一SRS接收信道响应矩阵和第二时刻的第二SRS接收信道响应矩阵。
另一种可实现的方式,网络设备获取第一时刻的第一SRS接收信道响应矩阵,第二时刻的第二SRS接收信道响应矩阵和第三时刻的第三SRS接收信道响应矩阵。
可选地,网络设备获取某个时刻的SRS接收信道响应矩阵包括:网络设备获取某个时刻的SRS接收真实信道响应矩阵和SRS干扰项。
示例地,t 1时刻终端设备A的SRS资源A与终端设备a的SRS资源a 0在频域位置上相同,则对于终端设备A而言,在t 1时刻的SRS接收信道响应矩阵
Figure PCTCN2022091062-appb-000002
其中,H A(t1)为SRS接收真实信道响应矩阵,Inf(a 0)为SRS干扰项。
可选地,该多个时刻中相邻时刻的时间间隔为该第一终端设备发送该第一信号的周期。例如,第一时刻与第二时刻之间的时间间隔为第一终端设备发送该第一信号的周期,第二时刻与第三时刻之间的时间间隔为第一终端设备发送该第一信号的周期。
步骤S320,网络设备对该多个时刻的第一信号接收信道响应矩阵进行加权平均得到该第一终端设备的信道响应矩阵。
示例地,网络设备对该多个时刻的SRS接收信道响应矩阵进行加权平均得到该第一终端设备的信道响应矩阵。
对应于一种可实现的方式,网络设备对该第一SRS接收信道响应矩阵和第二SRS接收信道响应矩阵进行加权平均得到该第一终端设备的第一信道响应矩阵。
对应于另一种可实现的方式,网络设备对该第一SRS接收信道响应矩阵,第二SRS接收信道响应矩阵和第三SRS接收信道响应矩阵进行加权平均得到该第一终端设备的第二信道响应矩阵。
下面以SRS举例,具体说明不同配置场景中第一信号的干扰随机化过程。
作为一种示例,如图4所示,该场景对应于上述步骤S210中作为一种示例的配置SRS资源的方案。其中,第一终端设备和第二终端设备都是非天选终端,网络设备为该第一终端设备的配置1个AS属性的SRS资源,网络设备为该第二终端设备配置2个SRS资源,其中一个是AS属性的SRS资源,另一个是CB属性的SRS资源。网络设备为该第一终端设备的SRS的发送周期配置为字段Tsrs1,为第二终端设备的SRS的发送周期配置为字段Tsrs2,并将Tsrs1配置为Tsrs2的1/2。
第一终端设备可以是图4中终端设备A或终端设备B,终端设备A和终端设备B对应的基序列标识为k1;用A0和B0分别标识终端设备A和终端设备B的SRS资源。第二终端设备可以是图4中的终端设备a或终端设备b,终端设备a和终端设备b对应的基序列标识为k2;用a0与a1标识终端设备a的两个SRS资源,b0和b1标识终端设备b的两个SRS资源。终端设备A和终端设备B发送SRS资源的周期Tsrs2配置为2T,终端设 备a和终端设备b发送SRS资源的周期Tsrs1配置为4T,T为图中所示的相邻时刻的时间间隔。
图4中,终端设备A和终端设备B的SRS资源,与终端设备a和终端设备b的SRS资源的频域位置相同,时域位置分配如图4所示。其中A0资源与a0资源会出现在相同的时频资源位置形成干扰,B0资源与b0资源会出现在同样时频位置互相干扰,同理对于A0资源与b1资源,B0资源与a1资源也会在相同时频域位置互相干扰。
从图4可以看到,对于终端设备A而言,在不同的时刻碰撞到的干扰有所不同,以终端设备A的资源A0为例,在t1时刻碰撞终端设备a的资源a0,在t3时刻碰撞终端设备b的资源b1,由于终端设备a和终端设备b发送SRS的信道不同,相当于终端设备A在不同时刻碰撞的干扰不同,从而可以达到SRS干扰随机化的目的。
Figure PCTCN2022091062-appb-000003
表示t1时刻终端设备A在网络设备侧的第一SRS接收信道响应矩阵,
Figure PCTCN2022091062-appb-000004
表示t3时刻终端设备A在网络设备侧的第二SRS接收信道响应矩阵,H A表示终端设备A真实的信道响应矩阵。t1和t3时刻终端设备A在网络设备侧的接收信道响应矩阵的计算公式如下:
Figure PCTCN2022091062-appb-000005
Figure PCTCN2022091062-appb-000006
假设信道在t1~t3范围内基本不变,从而H A(t1)≈H A(t3),因而可以通过加权平均滤波算法得到终端设备A的第一信道响应矩阵
Figure PCTCN2022091062-appb-000007
Figure PCTCN2022091062-appb-000008
由于终端设备a和终端设备b的信道不同,因此在SRS接收信道响应统计时相互独立,因而
Figure PCTCN2022091062-appb-000009
的残留干扰成分
Figure PCTCN2022091062-appb-000010
小于Inf(a 0)和Inf(b 1),也就是说通过滤波算法后的
Figure PCTCN2022091062-appb-000011
相较于t1和t3时刻终端设备A在网络设备侧的SRS接收信道响应矩阵
Figure PCTCN2022091062-appb-000012
Figure PCTCN2022091062-appb-000013
更加准确。
基于上述基序列标识和SRS资源配置方案,使得SRS干扰随机化,从而通过网络设备的滤波算法,降低了小区内的SRS干扰,有效的提升了上下行的系统性能。
应理解,图4中对于基序列标识为k1对应的终端设备的个数仅为举例,上述加权平均滤波算法仅为示例,网络设备还可通过其他的滤波算法得到第一信道响应矩阵,本申请对此不做任何限制。
作为另一种示例,如图5所示,该场景对应于上述步骤S210中作为一种示例的配置SRS资源的方案。其中,第一终端设备和第二终端设备都是天选终端,网络设备为该第一终端设备的配置2个AS属性的SRS资源,网络设备为该第二终端设备配置4个SRS资源,其中2个是AS属性的SRS资源,2个是CB属性的SRS资源。网络设备为该第一终端设备的SRS的发送周期配置为字段Tsrs1,为第二终端设备的SRS的发送周期配置为字段Tsrs2,并将Tsrs1配置为Tsrs2的1/2。
第一终端设备可以是图5中终端设备A或终端设备B,终端设备A和终端设备B对应的基序列标识为k1;用A0、A1和B0、B1分别标识终端设备A和终端设备B的2个SRS资源。第二终端设备可以是图5中的终端设备a或终端设备b,终端设备a和终端设备b对应的基序列标识为k2;用a0、a1、a2和a3标识终端设备a的两个SRS资源,b0、 b1、b2和b3标识终端设备b的4个SRS资源。终端设备A和终端设备B发送SRS资源的周期Tsrs2配置为4T,终端设备a和终端设备b发送SRS资源的周期Tsrs1配置为8T。
图5中,终端设备A和终端设备B的SRS资源,与终端设备a和终端设备b的SRS资源的频域位置相同,时域位置分配如图5所示。从图5可以看到,对于终端设备A而言,在不同的时刻碰撞到的干扰有所不同,以终端设备A的资源A0为例,在t1时刻碰撞终端设备a的资源a0,在t5时刻碰撞终端设备a的资源a2。
Figure PCTCN2022091062-appb-000014
表示t1时刻终端设备A在网络设备侧的第一SRS接收信道响应矩阵,
Figure PCTCN2022091062-appb-000015
表示t5时刻终端设备A在网络设备侧的第二SRS接收信道响应矩阵,H A表示终端设备A真实的信道响应矩阵。t1和t5时刻终端设备A在网络设备侧的SRS接收信道响应矩阵的计算公式如下:
Figure PCTCN2022091062-appb-000016
Figure PCTCN2022091062-appb-000017
假定信道在t1~t5范围内基本时不变,从而H A0(t1)≈H A0(t5),因而可以通过干扰随机化得到终端设备A的第一信道响应矩阵:
Figure PCTCN2022091062-appb-000018
虽然SRS资源a0和SRS资源a2是网络设备为同一终端设备配置的资源,但发送SRS资源a0和SRS资源a2的天线端口不同,因此在SRS接收信道响应统计时相互独立,因而
Figure PCTCN2022091062-appb-000019
的残留干扰成分
Figure PCTCN2022091062-appb-000020
小于Inf(a 0)和Inf(a 2),也就是说通过滤波算法后的
Figure PCTCN2022091062-appb-000021
相较于t1和t3时刻终端设备A在网络设备侧的接收信道响应矩阵
Figure PCTCN2022091062-appb-000022
Figure PCTCN2022091062-appb-000023
更加准确。
作为再一种示例,如图6所示,该场景对应于上述步骤S210中作为再一种示例的配置SRS资源的方案。其中,第一终端设备和第二终端设备都是天选终端,网络设备为该第一终端设备的配置2个AS属性的SRS资源,网络设备为该第二终端设备配置3个SRS资源,其中2个是AS属性的SRS资源,1个是CB属性的SRS资源。网络设备为该第一终端设备的SRS的发送周期配置为字段Tsrs1,为第二终端设备的SRS的发送周期配置为字段Tsrs2,并将Tsrs1配置为Tsrs2的2/3。
第一终端设备可以是图6中终端设备A,终端设备B或终端设备C,终端设备A,终端设备B和终端设备C对应的基序列标识为k1;用A0、A1标识终端设备A的2个SRS资源,用B0、B1标识终端设备B的2个SRS资源,用C0、C1标识终端设备C的2个SRS资源。第二终端设备可以是图6中的终端设备a,终端设备b或终端设备c,终端设备a,终端设备b和终端设备c对应的基序列标识为k2;用a0、a1和a2标识终端设备a的3个SRS资源,用b0、b1和b2标识终端设备b的3个SRS资源,用c0、c1和c2标识终端设备c的3个SRS资源。终端设备A,终端设备B和终端设备C发送SRS资源的周期Tsrs2配置为6T,终端设备a,终端设备b和终端设备c发送SRS资源的周期Tsrs1配置为9T。
从图6可以看到,对于终端设备A而言,在不同的时刻碰撞到的干扰有所不同,以终端设备A的资源A0为例,在t1时刻碰撞终端设备a的资源a0,在t7时刻碰撞终端设备c的资源c2,在t13时刻碰撞终端设备b的资源b1,出现3次不同的干扰。
Figure PCTCN2022091062-appb-000024
表示t1时刻终端设备A在网络设备侧的第一SRS接收信道响应矩阵,
Figure PCTCN2022091062-appb-000025
表示t5时刻终端设备A在网络设备侧的第二SRS接收信道响应矩阵,
Figure PCTCN2022091062-appb-000026
表示t13时刻终端设备A在网络设备侧的第三SRS接收信道响应矩阵,H A表示终端设备A真实的信道响应矩阵。t1,t7和t15时刻终端设备A在网络设备侧的SRS接收信道响应矩阵的计算公式如下:
Figure PCTCN2022091062-appb-000027
Figure PCTCN2022091062-appb-000028
Figure PCTCN2022091062-appb-000029
假定信道在t1~t13范围内基本时不变,从而H A0(t1)≈H A0(t13),因而可以通过干扰随机化得到终端设备A的第二信道响应矩阵:
Figure PCTCN2022091062-appb-000030
资源a0,资源c2和资源b1是不同终端设备的SRS资源,不同终端设备的信道不同,因此在SRS接收信道响应统计时相互独立,因而
Figure PCTCN2022091062-appb-000031
的残留干扰成分
Figure PCTCN2022091062-appb-000032
小于Inf(a 0),Inf(c 2)以及Inf(b 1),也就是说通过滤波算法后的
Figure PCTCN2022091062-appb-000033
相较于t1,t7和t13时刻终端设备A在网络设备侧的SRS接收信道响应矩阵
Figure PCTCN2022091062-appb-000034
Figure PCTCN2022091062-appb-000035
更加准确。
基于上述方案,第一终端设备在不同时刻受到不同的SRS干扰,因此网络设备可通过滤波算法得到更加准确的信道估计,有效提升了系统的性能。
应理解,上述计算信道响应矩阵时还可获取更多时刻的SRS接收信道响应矩阵,本申请在此不一一举例,并且本申请不限于上述滤波算法,也不限于上述滤波算法中加权系数的具体取值。
需注意的是,图2和图3中示意的执行主体仅为示例,该执行主体也可以是支持该执行主体实现方法200和方法300的芯片、芯片系统、或处理器,本申请对此不作限制。
上文结合附图描述了本申请实施例的方法实施例,下面描述本申请实施例的装置实施例。可以理解,方法实施例的描述与装置实施例的描述可以相互对应,因此,未描述的部分可以参见前面方法实施例。
可以理解的是,上述各个方法实施例中,由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现,由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模 块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图7是本申请实施例提供的一种通信装置的示意性框图。该通信装置700包括收发单元710和处理单元720。收发单元710可以与外部进行通信,处理单元720用于进行数据处理。收发单元710还可以称为通信接口或通信单元。
该通信装置700可以为终端设备,其中,收发单元710用于执行上文方法实施例中终端设备的接收或发送的操作,处理单元720用于执行上文方法实施例中终端设备内部处理的操作。
在一种设计中,收发单元710用于接收网络设备发送的资源配置信息,该资源配置信息指示该第一终端设备的第一基序列标识,信道探测参考信号SRS资源,以及该第一终端设备发送SRS的周期;其中,该第一终端设备和第二终端设备属于同一个小区,该第二终端设备对应第二基序列标识。该收发单元710用于向该网络设备发送该SRS,该SRS承载于该SRS资源上。
可选地,该第一终端设备的SRS资源的数量和该第一终端设备发送该SRS的周期和该第二终端设备不同,该第一终端设备的第一SRS资源在第一时刻与第二SRS资源的频域位置相同,该第一终端设备的第一SRS资源在第二时刻与第三SRS资源的频域位置相同,该第二SRS资源和该第三SRS资源所属的终端设备对应第二基序列标识。
该方案中,第一终端设备和第二终端设备的SRS资源的数量不同,并且第一终端设备和第二终端设备发送SRS的周期也不同,从而第一终端设备的SRS资源分别和第二SRS资源,第三SRS资源的时频域位置相同时,第一终端设备在不同的时刻所受到的SRS干扰不同,达到小区内的SRS干扰随机化的效果。
可选地,该第一终端设备的SRS资源的数量和该第一终端设备发送该SRS的周期是该第二终端设备的1/2。
示例地,该第一终端设备的SRS资源的数量为1,该第二终端设备的SRS资源的数量为2;或该第一终端设备的SRS资源的数量为2,该第二终端设备的SRS资源的数量为4。应理解,两种情况下第一终端设备发送SRS的周期皆为该第二终端设备发送SRS的周期的1/2。
可选地,该第一终端设备的SRS资源的数量和该第一终端设备发送该SRS的周期是该第二终端设备的2/3。
示例地,该第一终端设备的SRS资源的数量为2,该第二终端设备的SRS资源的数量为3,且该第一终端设备发送SRS的周期为该第二终端设备发送SRS的周期的2/3。
上述两种可选方案,可以保证第一终端设备和第二终端设备在同一段时间内发送SRS的频率相对公平,从而使得小区内终端设备发送SRS的资源公平的同时达到SRS干扰随机化的效果。
可选地,该收发单元710具体用于接收网络设备发送的无线资源控制RRC信令,该RRC信令包括该资源配置信息。
可选地,该通信装置700还可以包括存储单元,该存储单元可以用于存储指令或者和/或数据,处理单元720可以读取存储单元中的指令或者和/或数据。
还应理解,该终端设备中的收发单元710可对应于图9中示出的终端设备中的收发器920,该终端设备中的处理单元720可对应于图9中示出的终端设备中的处理器。
还应理解,该终端设备中的收发单元710可通过通信接口(如收发器或输入/输出接口)实现,例如可对应于图9中示出的终端设备中的天线和控制电路,该终端设备中的处理单元720可通过至少一个处理器实现,例如可对应于图9中示出的终端设备中的处理器,该终端设备中的处理单元720还可以通过至少一个逻辑电路实现。
可选地,终端设备还可以包括存储单元,该存储单元可以用于存储指令或者数据,处理单元可以调用该存储单元中存储的指令或者数据,以实现相应的操作。
图8是本申请实施例提供的另一种通信装置的示意性框图。该通信装置800包括收发单元810和处理单元820。收发单元810可以与外部进行通信,处理单元820用于进行数据处理。收发单元810还可以称为通信接口或通信单元。
该通信装置800可以为网络设备,其中,收发单元810用于执行上文方法实施例中网络设备的接收或发送的操作,处理单元820用于执行上文方法实施例中网络设备内部处理的操作。
可选地,该通信装置800还可以包括存储单元,该存储单元可以用于存储指令或者和/或数据,处理单元820可以读取存储单元中的指令或者和/或数据。
在一种设计中,收发单元810用于向第一终端设备发送资源配置信息,该资源配置信息指示该第一终端设备的第一基序列标识,信道探测参考信号SRS资源,以及该第一终端设备发送SRS的周期;其中,该第一终端设备和第二终端设备属于同一个小区,该第二终端设备对应第二基序列标识。该收发单元810还用于接收来自该第一终端设备的SRS,该SRS承载于该SRS资源上。
可选地,该第一终端设备的SRS资源的数量和该第一终端设备发送SRS的周期和该第二终端设备不同,该第一终端设备的第一SRS资源在第一时刻与第二SRS资源的频域位置相同,该第一终端设备的第一SRS资源在第二时刻与第三SRS资源的频域位置相同,该第二SRS资源和该第三SRS资源所属的终端设备对应第二基序列标识。
该方案通过为第一终端设备和第二终端设备配置不同的SRS资源的数量,并且使得第一终端设备和第二终端设备发送SRS的周期不同,从而第一终端设备的第一SRS资源分别和第二SRS资源,第三SRS资源的时频域位置相同时,第一终端设备在不同的时刻所受到的SRS干扰不同,达到小区内终端设备的SRS干扰随机化的效果。
可选地,该第二SRS资源和第三SRS资源所属的终端设备不同,或者该第二SRS资源和第三SRS资源所属的终端设备相同,但该第二SRS资源和第三SRS资源的天线端口不同。
在一种可实施的方式中,该第一终端设备的SRS资源的数量和该第一终端设备发送该SRS的周期是该第二终端设备的1/2。
可选地,该第一终端设备的SRS资源的数量为1,该第二终端设备的SRS资源的数量为2;或该第一终端设备的SRS资源的数量为2,该第二终端设备的SRS资源的数量为4。应理解,两种情况下第一终端设备发送SRS的周期皆为该第二终端设备发送SRS的周期的1/2。
可选地,处理单元820用于获取多个时刻的SRS接收信道响应矩阵,该多个时刻包 括该第一时刻和第二时刻;并对该多个时刻的SRS接收信道响应矩阵进行加权平均得到该第一终端设备的信道响应矩阵。
可选地,该多个时刻中相邻时刻的时间间隔为该第一终端设备发送该SRS的周期。
可选地,处理单元820具体用于获取该第一时刻的第一SRS接收信道响应矩阵和第二时刻的第二SRS接收信道响应矩阵;对该第一SRS接收信道响应矩阵和第二SRS接收信道响应矩阵进行加权平均得到该第一终端设备的第一信道响应矩阵。
在另一种可实施的方式中,该第一终端设备的SRS资源的数量和该第一终端设备发送该SRS的周期是该第二终端设备的2/3。
可选地,该第一终端设备的SRS资源的数量为2,该第二终端设备的SRS资源的数量为3,且该第一终端设备发送SRS的周期为该第二终端设备发送SRS的周期的2/3。
可选地,处理单元820具体用于获取第一时刻的第一SRS接收信道响应矩阵,第二时刻的第二SRS接收信道响应矩阵和第三时刻的第三SRS接收信道响应矩阵;并对该第一SRS接收信道响应矩阵,第二SRS接收信道响应矩阵和第三SRS接收信道响应矩阵进行加权平均得到该第一终端设备的第二信道响应矩阵。
可选地,该收发单元810具体用于向该第一终端设备发送无线资源控制RRC信令,该RRC信令包括该资源配置信息。
可选地,网络设备还可以包括存储单元,该存储单元可以用于存储指令或者数据,处理单元可以调用该存储单元中存储的指令或者数据,以实现相应的操作。
还应理解,该网络设备中的收发单元810为可通过通信接口(如收发器或输入/输出接口)实现,例如可对应于图10中示出的网络设备中的收发器1030,该网络设备中的处理单元820可通过至少一个处理器实现,例如可对应于图10中示出的网络设备中的处理器1010,该网络设备中的处理单元820可通过至少一个逻辑电路实现。
图9是本申请实施例提供的终端设备的结构示意图。上述装置700可以配置在该终端设备900中,或者,上述装置700本身可以即为该终端设备900。或者说,该终端设备900可以执行上述方法200中终端设备执行的动作。
为了便于说明,图9仅示出了终端设备的主要部件。如图9所示,装置900包括处理器、存储器、控制电路、天线以及输入输出装置。
处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述传输预编码矩阵的指示方法实施例中所描述的动作。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述的码本。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号 转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图9仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器,处理器与存储器可能是分离部署的,也可能是集中部署的。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
例如,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图9中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端设备900的收发单元910,将具有处理功能的处理器视为终端设备900的处理单元920。如图9所示,终端设备900包括收发单元910和处理单元920。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元910中用于实现接收功能的器件视为接收单元,将收发单元910中用于实现发送功能的器件视为发送单元,即收发单元包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
图10是本申请实施例提供的网络设备的结构示意图。
如图10所示,本申请实施例还提供一种通信装置1000。通信装置1000可以是网络设备。上述装置800可以配置在该通信装置1000中,或者,上述装置800本身可以即为通信装置1000。或者说,该通信装置1000可以执行上述方法200或300中网络设备执行的动作。
该通信装置1000包括处理器1010,处理器1010与存储器1020耦合,存储器1020用于存储计算机程序或指令或者和/或数据,处理器1010用于执行存储器1020存储的计算机程序或指令和/或者数据,使得上文方法实施例中的方法被执行。
可选地,该通信装置1000包括的处理器1010为一个或多个。
可选地,如图10所示,该通信装置1000还可以包括存储器1020。
可选地,该通信装置1000包括的存储器1020可以为一个或多个。
可选地,该存储器1020可以与该处理器1010集成在一起,或者分离设置。
可选地,如图10所示,该通信装置1000还可以包括收发器1030,收发器1030用于信号的接收和/或发送。例如,处理器1010用于控制收发器1030进行信号的接收和/或发送。
作为一种方案,该通信装置1000用于实现上文方法实施例中由网络设备执行的操作。例如,处理器1010用于实现上文方法实施例中由网络设备内部执行的操作,收发器1030 用于实现上文方法实施例中由网络设备执行的接收或发送的操作。装置800中的处理单元可以为图10中的处理器,收发单元可以为图10中的收发器。处理器1010执行的操作具体可以参见上文对处理单元的说明,收发器1030执行的操作可以参见对收发单元的说明,这里不再赘述。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由终端设备或网络设备执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由终端设备或网络设备执行的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例中由终端设备或网络设备执行的方法。
上述提供的任一种装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM可以包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器和直接内存总线随机存取存储器。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根 据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。例如,所述计算机可以是个人计算机,服务器,或者网络设备等。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质,例如固态硬盘(solid state disk,SSD)等。例如,前述的可用介质可以包括但不限于:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求和说明书的保护范 围为准。

Claims (20)

  1. 一种资源配置方法,其特征在于,包括:
    向第一终端设备发送资源配置信息,所述资源配置信息指示所述第一终端设备的第一基序列标识,信道探测参考信号SRS资源,以及所述第一终端设备发送SRS的周期;
    其中,所述第一终端设备和第二终端设备属于同一个小区,所述第二终端设备对应第二基序列标识;
    接收来自所述第一终端设备的所述SRS,所述SRS承载于所述SRS资源上。
  2. 根据权利要求1所述的方法,其特征在于,所述第一终端设备的SRS资源的数量和所述第一终端设备发送所述SRS的周期与所述第二终端设备不同,所述第一终端设备的第一SRS资源在第一时刻与第二SRS资源的频域位置相同,所述第一终端设备的第一SRS资源在第二时刻与第三SRS资源的频域位置相同,所述第二SRS资源和所述第三SRS资源所属的终端设备对应所述第二基序列标识。
  3. 根据权利要求2所述的方法,其特征在于,所述第一终端设备的SRS资源的数量和所述第一终端设备发送所述SRS的周期是所述第二终端设备的1/2。
  4. 根据权利要求3所述的方法,其特征在于,所述第一终端设备的SRS资源的数量为1或2。
  5. 根据权利要求2所述的方法,其特征在于,所述第一终端设备的SRS资源的数量和所述第一终端设备发送所述SRS的周期是所述第二终端设备的2/3。
  6. 根据权利要求5所述的方法,其特征在于,所述第一终端设备的SRS资源的数量为2。
  7. 根据权利要求2至6中任一项所述的方法,其特征在于,所述方法还包括:
    获取多个时刻的SRS接收信道响应矩阵,所述多个时刻包括所述第一时刻和所述第二时刻;
    对所述多个时刻的SRS接收信道响应矩阵进行加权平均得到所述第一终端设备的信道响应矩阵。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述向第一终端设备发送资源配置信息包括:
    向所述第一终端设备发送无线资源控制RRC信令,所述RRC信令包括所述资源配置信息。
  9. 一种资源配置方法,其特征在于,包括:
    接收来自网络设备的资源配置信息,所述资源配置信息指示所述第一终端设备的第一基序列标识,信道探测参考信号SRS资源,以及所述第一终端设备发送SRS的周期;
    其中,所述第一终端设备和第二终端设备属于同一个小区,所述第二终端设备对应第二基序列标识;
    向所述网络设备发送所述SRS,所述SRS承载于所述SRS资源上。
  10. 根据权利要求9所述的方法,其特征在于,所述第一终端设备的SRS资源的数量和所述第一终端设备发送所述SRS的周期和所述第二终端设备不同,所述第一终端设 备的第一SRS资源在第一时刻与第二SRS资源的频域位置相同,所述第一终端设备的第一SRS资源在第二时刻与第三SRS资源的频域位置相同,所述第二SRS资源和所述第三SRS资源所属的终端设备对应所述第二基序列标识。
  11. 根据权利要求10所述的方法,其特征在于,所述第一终端设备的SRS资源的数量和所述第一终端设备发送所述SRS的周期是所述第二终端设备的1/2。
  12. 根据权利要求11所述的方法,其特征在于,所述第一终端设备的SRS资源的数量为1或2。
  13. 根据权利要求10所述的方法,其特征在于,所述第一终端设备的SRS资源的数量和所述第一终端设备发送所述SRS的周期是所述第二终端设备的2/3。
  14. 根据权利要求13所述的方法,其特征在于,所述第一终端设备的SRS资源的数量为2。
  15. 根据权利要求9至14中任一项所述的方法,其特征在于,所述接收来自网络设备的资源配置信息包括:
    接收来自所述网络设备的无线资源控制RRC信令,所述RRC信令包括所述资源配置信息。
  16. 一种资源配置装置,其特征在于,包括:
    用于实现权利要求1至8中任意一项所述的方法的单元;或者
    用于实现权利要求9至15中任意一项所述的方法的单元。
  17. 一种资源配置装置,其特征在于,所述装置包括处理器,所述处理器与存储器耦合,所述存储器存储有指令,所述指令被所述处理器运行时,
    使得所述处理器执行如权利要求1至8中任意一项所述的方法,或者
    使得所述处理器执行如权利要求9至15中任意一项所述的方法。
  18. 一种通信系统,其特征在于,所述通信系统包括网络设备和终端设备,所述网络设备用于执行如权利要求1至8中任意一项所述的方法,所述终端设备用于执行如权利要求9至15中任意一项所述的方法。
  19. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,
    使得所述计算机执行如权利要求1至8中任意一项所述的方法,或者
    使得所述计算机执行如权利要求9至15中任意一项所述的方法。
  20. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序被运行时,
    使得所述计算机执行如权利要求1至8中任意一项所述的方法,或者
    使得所述计算机执行如权利要求9至15中任意一项所述的方法。
PCT/CN2022/091062 2021-05-11 2022-05-06 资源配置方法、装置和系统 WO2022237625A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110513107.6 2021-05-11
CN202110513107.6A CN115334660A (zh) 2021-05-11 2021-05-11 资源配置方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2022237625A1 true WO2022237625A1 (zh) 2022-11-17

Family

ID=83912941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091062 WO2022237625A1 (zh) 2021-05-11 2022-05-06 资源配置方法、装置和系统

Country Status (2)

Country Link
CN (1) CN115334660A (zh)
WO (1) WO2022237625A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104160733A (zh) * 2012-03-09 2014-11-19 夏普株式会社 基站、终端、通信方法以及集成电路
CN110140323A (zh) * 2017-01-06 2019-08-16 夏普株式会社 用户设备、基站和方法
CN110168997A (zh) * 2017-03-24 2019-08-23 华为技术有限公司 探测参考信号设计

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104160733A (zh) * 2012-03-09 2014-11-19 夏普株式会社 基站、终端、通信方法以及集成电路
CN110140323A (zh) * 2017-01-06 2019-08-16 夏普株式会社 用户设备、基站和方法
CN110168997A (zh) * 2017-03-24 2019-08-23 华为技术有限公司 探测参考信号设计

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "UL Reference Signals for NR Positioning", 3GPP DRAFT; R1-1913136, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, NV, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051820324 *

Also Published As

Publication number Publication date
CN115334660A (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
CN110972156B (zh) 一种干扰测量方法、装置、芯片及存储介质
CN110581725B (zh) 用于波束训练的方法和通信装置
US11510159B2 (en) Signal transmission method, network device, and terminal device
CN113765830B (zh) 获取信道信息的方法及通信装置
CN110381588B (zh) 通信的方法和通信装置
CN111602445B (zh) 通信的方法、网络设备和终端设备
WO2021163938A1 (zh) 天线切换方法、终端设备和通信设备
CN110710149B (zh) 信息确定方法、终端设备和网络设备
US20220272668A1 (en) Wireless communication resource allocation method and apparatus, and communication device
WO2020020376A1 (zh) 一种参考信号发送、接收方法、装置及设备
WO2019238007A1 (zh) 检测波束的方法和装置
CN112312463A (zh) 上报信道状态信息的方法和装置
WO2022237625A1 (zh) 资源配置方法、装置和系统
JP2024512823A (ja) 通信方法および通信装置
WO2022120855A1 (zh) 确定参考信号序列的方法及装置
CN112399574B (zh) 一种无线通信的方法和装置以及通信设备
WO2021072602A1 (zh) 链路失败检测的方法和装置
WO2021062806A1 (zh) 信道测量的方法和通信装置
WO2021062869A1 (zh) 无线通信方法和终端设备
CN114071667A (zh) 通信的方法、通信装置及系统
WO2024093646A1 (zh) 一种资源配置的方法和装置
WO2023029942A1 (zh) 测量干扰的方法和装置
WO2024017019A1 (zh) 一种通信方法和装置
WO2024067869A1 (zh) 通信方法和通信装置
US20230129834A1 (en) Method for determining antenna panel for transmission, and terminal device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22806593

Country of ref document: EP

Kind code of ref document: A1