WO2018137703A1 - 一种信息传输方法和装置 - Google Patents

一种信息传输方法和装置 Download PDF

Info

Publication number
WO2018137703A1
WO2018137703A1 PCT/CN2018/074292 CN2018074292W WO2018137703A1 WO 2018137703 A1 WO2018137703 A1 WO 2018137703A1 CN 2018074292 W CN2018074292 W CN 2018074292W WO 2018137703 A1 WO2018137703 A1 WO 2018137703A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
transmission delay
reference signal
indication information
measurement
Prior art date
Application number
PCT/CN2018/074292
Other languages
English (en)
French (fr)
Inventor
王婷
钱锋
窦圣跃
李元杰
楼群芳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018137703A1 publication Critical patent/WO2018137703A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present application relates to the field of communications technologies, and in particular, to an information transmission method and apparatus.
  • MIMO Multiple input multiple output
  • 3G third-generation
  • 4G fourth-generation
  • a plurality of transmit antennas of a conventional centralized MIMO system are concentrated on a base station (BS).
  • BS base station
  • multiple transmit antennas of distributed MIMO systems are distributed in different geographical locations, and each pair of transceiver links is more independent, with large capacity, low power consumption, better coverage, and low body.
  • Advantages such as electromagnetic damage are considered to be one of the alternatives for future wireless communication systems.
  • a multi-point diversity or multi-point multi-stream transmission method may be considered.
  • CoMP Coordinated multipoint transmission
  • Multiple neighbor cells in CoMP technology can jointly process or coordinate edge user equipment to avoid interference and improve edge user throughput.
  • the downlink CoMP scenarios mainly include joint transmission (JT), coordinated scheduling and beamforming (CS/CB), and dynamic point selection/dynamic point blanking (DPS/DPB). Among them, JT is divided into coherent JT and non-coherent JT.
  • the scenarios of uplink CoMP include joint reception (JR, joint reception), CS and DPS/DPB.
  • the transmission delay is different, as shown in FIG. 1a.
  • the middle T1 is the transmission delay of the first base station to the UE1
  • the T2 is the transmission delay of the second base station to the UE1.
  • the difference between T1 and T2 may result in a decrease in transmission performance.
  • Embodiments of the present invention provide a method and an apparatus for transmitting information, a wireless network device, and a user equipment, so that transmission delays of different wireless network devices are measurable.
  • an embodiment of the present invention provides a method for information transmission, including:
  • the signal determines a second transmission delay.
  • the resources occupied by the first reference signal and the second reference signal may be located in the same bandwidth portion, or different bandwidth portions; and/or,
  • the resources occupied by the first reference signal and the second reference signal may be located on the same carrier, or different carriers; and/or,
  • the resources occupied by the first reference signal and the second reference signal may be located in the same serving cell or different serving cells.
  • the antenna port of the first reference signal and the antenna port of the second reference signal may be non-co-located.
  • the method further includes:
  • the user equipment receives the first indication information and/or the second indication information, where the first indication information is used to indicate that the first reference signal is used for measurement of a transmission delay, and the second indication information is used to indicate that the second reference signal is used for transmission delay Measurement;
  • Determining, by the user equipment, the transmission delay difference between the first reference signal and the second reference signal according to the first reference signal and the second reference signal including:
  • the user equipment determines, according to the first indication information and the second indication information, a transmission delay difference between the first reference signal and the second reference signal according to the first reference signal and the second reference signal; or
  • Determining the first transmission delay according to the first reference signal and/or determining the second transmission delay according to the second reference signal includes:
  • the user equipment determines the second transmission delay according to the second reference signal based on the second indication information.
  • the first indication information is used to indicate that the measurement of the first reference signal for the transmission delay includes:
  • the first indication information is included in at least one of a channel state information measurement set field, a channel state information report set domain, or a reference signal resource field, where the first indication information is used to indicate the channel state information measurement
  • the reference domain, the channel state information reporting the aggregation domain, or the reference signal corresponding to one of the reference signal resource identifiers included in at least one of the reference signal resource domains is a first reference signal, and the first reference signal is used by the first reference signal Measurement of transmission delay.
  • the first indication information may be indicated by a resource identifier as a dimension, such as by a field in a domain including resource identifier information, where the field may be a Boolean value, or may be measured by using a delay measurement as a dimension.
  • the indication, as indicated by a field in the domain for measurement of the delay, the field may be one or more resource identification information, where the resource identification information may be a channel state information measurement set identifier, a resource set identifier, or a resource identifier .
  • the second indication information is used to indicate that the measurement of the second reference signal for the transmission delay includes:
  • the second indication information is included in at least one of a channel state information measurement set field, a channel state information report set domain, or a reference signal resource field, where the first indication information is used to indicate the channel state information measurement
  • the aggregation domain, the channel state information reporting the aggregation domain, or the reference signal corresponding to one of the reference signal resource identifiers included in at least one of the reference signal resource domains is a second reference signal, and the second reference signal is used by the second reference signal. Measurement of transmission delay.
  • the second indication information may be indicated by using the resource identifier as a dimension, such as by a field in the domain including the resource identifier information, where the field may be a Boolean value, or may be measured by using a delay measurement as a dimension.
  • the indication, as indicated by a field in the domain for measurement of the delay, the field may be one or more resource identification information, where the resource identification information may be a channel state information measurement set identifier, a resource set identifier, or a resource identifier .
  • the first reference signal is a reference baseline used for transmission delay measurement
  • the first indication information is further used to indicate that the first reference signal is a reference baseline used for transmission delay measurement.
  • the first indication information is further used to indicate that the first reference signal is a reference baseline for transmission delay measurement, including:
  • the first indication information is included in a first information field, where the first information field is used to indicate information used to transmit a reference baseline for delay measurement.
  • the first information field further includes third indication information except the first indication information, where the third indication information is used to indicate information of another reference baseline used for transmitting the delay measurement.
  • the method further includes: the user equipment receives the fourth indication information, where the fourth indication information is used to indicate that the baseline referenced by the second reference signal for measuring the transmission delay is the first Reference signal.
  • the first reference signal is a reference baseline used for transmission delay measurement
  • the method further includes:
  • the user equipment receives the fifth indication information, where the fifth indication information is used to indicate that the first reference signal is a reference baseline used for transmission delay measurement.
  • the method may further include: the user equipment receives the fourth indication information, where the fourth indication information is used to indicate that the baseline referenced by the second reference signal for measuring the transmission delay is the First reference signal.
  • the method further includes:
  • the information of the transmission delay difference includes an index of the transmission delay difference, or a quantized value of the transmission delay difference, or a value of a function of a transmission delay difference (or a value obtained by quantizing the transmission delay difference), or
  • the user equipment sends the information of the first transmission delay and/or the second transmission delay, or the value of the function of the first transmission delay and/or the value of the function of the second transmission delay.
  • the function may be a Fourier transform, or an inverse Fourier transform.
  • the method further includes:
  • the user equipment receives the sixth indication information, where the sixth indication information is used to indicate feedback information of the transmission delay difference and/or the transmission delay.
  • the information indicating that the sixth indication information is used to indicate the transmission delay difference and/or the transmission delay includes:
  • the sixth indication information includes information related to periodic feedback, and/or includes information related to aperiodic feedback, the information related to the periodic feedback includes information for indicating a periodic feedback period and an offset,
  • the information related to the aperiodic feedback includes information for indicating the start of the transmission delay difference and/or the start of the feedback of the transmission delay, and information of the number of feedbacks for indicating the transmission delay difference and/or the transmission delay.
  • the end information of the feedback or one or more of information for indicating a transmission delay difference and/or a start time and an end time of the transmission delay feedback, wherein the information of the feedback times is used to indicate the The number of feedback delays and/or transmission delays.
  • the information about the transmission delay difference and/or the transmission delay includes an index of the transmission delay difference and/or a transmission delay, or a quantization of the transmission delay difference and/or transmission delay. After the value.
  • the information about the transmission delay difference and/or the transmission delay is included in the uplink control channel or included in the channel state information.
  • the information about the transmission delay difference and/or the transmission delay is included in the channel state information, where the method further includes:
  • the user equipment receives the seventh indication information, where the information indicating the transmission delay difference and/or the transmission delay is included in the channel state information.
  • the seventh indication information is a feedback type of channel state information.
  • the embodiment of the present invention further provides an information transmission method, which is described from the perspective of a wireless network device, and may refer to the method for information transmission provided in the first aspect.
  • the method includes:
  • the wireless network device sends configuration information, the configuration information including information related to transmission delay measurement;
  • the wireless network device receives information of a transmission delay and/or a transmission delay difference from the user equipment.
  • the configuration information includes first indication information and/or second indication information, where the first indication information is used to indicate that the first reference signal is used for measurement of a transmission delay, and the second indication information is used to indicate the second reference.
  • the signal is used to measure the transmission delay.
  • the first indication information is used to indicate that the measurement of the first reference signal for the transmission delay includes:
  • the first indication information is included in at least one of a channel state information measurement set field, a channel state information report set domain, or a reference signal resource field, where the first indication information is used to indicate the channel state information measurement
  • the reference domain, the channel state information reporting the aggregation domain, or the reference signal corresponding to one of the reference signal resource identifiers included in at least one of the reference signal resource domains is a first reference signal, and the first reference signal is used by the first reference signal Measurement of transmission delay.
  • the second indication information is used to indicate that the measurement of the second reference signal for the transmission delay includes:
  • the second indication information is included in at least one of a channel state information measurement set field, a channel state information report set domain, or a reference signal resource field, where the first indication information is used to indicate the channel state information measurement
  • the aggregation domain, the channel state information reporting the aggregation domain, or the reference signal corresponding to one of the reference signal resource identifiers included in at least one of the reference signal resource domains is a second reference signal, and the second reference signal is used by the second reference signal. Measurement of transmission delay.
  • the first reference signal is a reference baseline used for transmission delay measurement
  • the first indication information is further used to indicate that the first reference signal is a reference baseline used for transmission delay measurement.
  • the first indication information is further used to indicate that the first reference signal is a reference baseline for transmission delay measurement, including:
  • the first indication information is included in a first information field, where the first information field is used to indicate information used to transmit a reference baseline for delay measurement.
  • the first information field further includes third indication information except the first indication information, where the third indication information is used to indicate information of another reference baseline used for transmitting the delay measurement.
  • the configuration information further includes fourth indication information, where the reference information used to indicate that the second reference signal is used for measurement of the transmission delay is the first reference signal.
  • the first reference signal is a reference baseline used for transmission delay measurement
  • the configuration information further includes fifth indication information, where the fifth indication information is used to indicate that the first reference signal is used for Reference baseline for transmission delay measurements.
  • the configuration information further includes sixth indication information, where the sixth indication information is used to indicate feedback information about the transmission delay difference and/or the transmission delay.
  • the information indicating that the sixth indication information is used to indicate the transmission delay difference and/or the transmission delay includes:
  • the sixth indication information includes information related to periodic feedback, and/or includes information related to aperiodic feedback, the information related to the periodic feedback includes information for indicating a periodic feedback period and an offset,
  • the information related to the aperiodic feedback includes information for indicating the start of the transmission delay difference and/or the start of the feedback of the transmission delay, and information of the number of feedbacks for indicating the transmission delay difference and/or the transmission delay.
  • the end information of the feedback or one or more of information for indicating a transmission delay difference and/or a start time and an end time of the transmission delay feedback, wherein the information of the feedback times is used to indicate the The number of feedback delays and/or transmission delays.
  • the information about the transmission delay difference and/or the transmission delay is included in the uplink control channel or included in the channel state information.
  • the information about the transmission delay difference and/or the transmission delay is included in the channel state information, where the configuration information further includes seventh indication information, where the seventh indication information is used to indicate a transmission delay difference and / or transmission delay information is included in the channel status information.
  • an apparatus comprising a processor and a memory
  • the memory is for storing instructions for executing the memory stored instructions, and when the processor executes the instructions stored by the memory, the user equipment is configured to complete the user equipment as described in the first aspect Any of the methods involved.
  • the device may further comprise a transceiver.
  • the device may be a user equipment or a chip that can be disposed in the user equipment.
  • an apparatus including a processor and a memory
  • the memory is for storing instructions
  • the processor is configured to execute the memory stored instructions
  • the wireless network device is configured to complete the wireless as described in the second aspect Any method involved in a network device.
  • the device may further comprise a transceiver.
  • the device may be a wireless network device or a chip that can be disposed in the wireless network device.
  • an apparatus for information transmission comprising a module for implementing any one of the methods involved in the foregoing user equipment.
  • the specific modules may correspond to the method steps, and are not described herein.
  • an apparatus for information transmission including modules for implementing any of the methods involved in the foregoing wireless network device.
  • the specific modules may correspond to the method steps, and are not described herein.
  • the above apparatus includes one or more processors and communication units.
  • the one or more processors are configured to support the apparatus to perform the corresponding functions of the wireless network device in the above method.
  • the communication unit is configured to support the device to communicate with other devices to implement receiving and/or transmitting functions. For example, send configuration information.
  • the apparatus may further comprise one or more memories for coupling with the processor, which store program instructions and/or data necessary for the wireless network device.
  • the one or more memories may be integrated with the processor or may be separate from the processor. This application is not limited.
  • the device may be a base station, a gNB or a TRP, etc.
  • the communication unit may be a transceiver, or a transceiver circuit.
  • the transceiver may also be an input/output circuit or an interface.
  • the device can also be a communication chip.
  • the communication unit may be an input/output circuit or interface of a communication chip.
  • the above apparatus includes a transceiver, a processor, and a memory.
  • the processor is for controlling a transceiver or input/output circuit for transmitting and receiving signals, the memory for storing a computer program for executing a computer program in the memory, such that the device performs any of the second aspect or the second aspect A method of implementing a wireless network device in an implementation.
  • the above apparatus includes one or more processors and communication units.
  • the one or more processors are configured to support the apparatus to perform the corresponding functions of the terminal device in the above method. For example: determine the transmission delay or transmission delay difference.
  • the communication unit is configured to support the device to communicate with other devices to implement receiving and/or transmitting functions. For example, the first reference signal and/or the second reference signal are received.
  • the apparatus may further comprise one or more memories for coupling with the processor, which store program instructions and/or data necessary for the device.
  • the one or more memories may be integrated with the processor or may be separate from the processor. This application is not limited.
  • the device may be a smart terminal or a wearable device or the like, and the communication unit may be a transceiver or a transceiver circuit.
  • the transceiver may also be an input/output circuit or an interface.
  • the device can also be a communication chip.
  • the communication unit may be an input/output circuit or interface of a communication chip.
  • the above apparatus includes a transceiver, a processor, and a memory.
  • the processor is for controlling a transceiver or an input/output circuit for transmitting and receiving signals, the memory for storing a computer program for executing a computer program in the memory, such that the device performs either of the first aspect or the first aspect A possible implementation of the method in which the terminal device is completed.
  • a computer storage medium for storing instructions that, when executed, can perform any of the methods involved in the foregoing user equipment or wireless network device.
  • the eighth aspect further provides a communication system, comprising the user equipment provided by the foregoing third aspect and the wireless network device provided by the fourth aspect.
  • a communication system comprising the user equipment provided by the foregoing third aspect and the wireless network device provided by the fourth aspect.
  • 3GPP Third Generation Partnership Project
  • 3GPP Third Generation Partnership Project
  • 3GPP related organization is referred to as a 3GPP organization.
  • a wireless communication network is a network that provides wireless communication functions.
  • the wireless communication network may adopt different communication technologies, such as code division multiple access (CDMA), wideband code division multiple access (WCDMA), and time division multiple access (time division multiple access).
  • TDMA code division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • the network can be classified into 2G (generation) network, 3G network, 4G network, or future evolution network, such as 5G network, according to factors such as capacity, rate, and delay of different networks.
  • a typical 2G network includes a global system for mobile communications/general packet radio service (GSM) network or a general packet radio service (GPRS) network.
  • GSM general packet radio service
  • GPRS general packet radio service
  • a typical 3G network includes a universal mobile communication system (universal mobile communication system).
  • a typical 4G network includes a long term evolution (LTE) network.
  • the UMTS network may also be referred to as a universal terrestrial radio access network (UTRAN).
  • the LTE network may also be referred to as an evolved universal terrestrial radio access network (E-).
  • E- evolved universal terrestrial radio access network
  • UTRAN Universal Terrestriality
  • it can be divided into a cellular communication network and a wireless local area network (WLAN), wherein the cellular communication network is dominated by scheduling, and the WLAN is dominant.
  • WLAN wireless local area network
  • the aforementioned 2G, 3G and 4G networks are all cellular communication networks.
  • the cellular communication network is a type of wireless communication network, which adopts a cellular wireless networking mode, and is connected between the terminal device and the network device through a wireless channel, thereby enabling users to communicate with each other during activities. Its main feature is the mobility of the terminal, and it has the function of handoff and automatic roaming across the local network.
  • a user equipment is a terminal device, which may be a mobile terminal device or a non-mobile terminal device.
  • the device is mainly used to receive or send business data.
  • User equipment can be distributed in the network.
  • User equipments have different names in different networks, such as: terminals, mobile stations, subscriber units, stations, cellular phones, personal digital assistants, wireless modems, wireless communication devices, handheld devices, knees.
  • the user equipment can communicate with one or more core networks via a radio access network (RAN) (access portion of the wireless communication network), such as exchanging voice and/or data with the radio access network.
  • RAN radio access network
  • a base station (BS) device also referred to as a base station, is a device deployed in a wireless access network to provide wireless communication functions.
  • a device that provides a base station function in a 2G network includes a base transceiver station (BTS) and a base station controller (BSC), and the device that provides the base station function in the 3G network includes a Node B (English NodeB) and A radio network controller (RNC), which provides a base station function in a 4G network, includes an evolved NodeB (eNB).
  • a device that provides a base station function is an access point.
  • AP access point.
  • devices providing base station functions include Node B (gNB), TRP (transmission and reception point), or TP (transmission point). point).
  • gNB Node B
  • TRP transmission and reception point
  • TP transmission point
  • the TRP or TP may not include the baseband portion, only the radio frequency portion, and may also include the baseband portion and the radio frequency portion.
  • a wireless device refers to a device that is located in a wireless communication network and that can communicate wirelessly.
  • the device may be a base station, a user equipment, or other network elements.
  • a network-side device is a device located on the network side in a wireless communication network, and may be an access network element, such as a base station or a controller (if any), or may be a core network element or other network. yuan.
  • NR new radio refers to a new generation of wireless access network technology that can be applied to future evolved networks, such as 5G networks.
  • Wireless local area networks refer to local area networks that use radio waves as a data transmission medium.
  • the transmission distance is generally only a few tens of meters.
  • RRC radio resource control
  • the RRC processes the third layer information of the control plane between the UE and the radio access network.
  • the RRC processes the third layer information of the control plane between the UE and the radio access network.
  • Usually contains at least one of the following features:
  • the information provided by the non-access stratum of the broadcast core network is responsible for broadcasting the network system information to the UE.
  • System information is usually repeated according to certain basic rules, and RRC is responsible for execution planning, segmentation, and repetition. It also supports the broadcast of upper layer information.
  • the RRC is responsible for broadcasting the network system information to the UE.
  • System information is usually repeated according to certain basic rules, and RRC is responsible for execution planning, segmentation, and repetition.
  • an RRC connection is established by the higher layer of the UE.
  • the RRC connection setup procedure includes several steps of reselection of available cells, access grant control, and establishment of a layer 2 signal link.
  • the RRC connection release is also requested by the upper layer to tear down the last signal connection; or when the RRC link fails, it is initiated by the RRC layer. If the connection fails, the UE will request to re-establish an RRC connection. If the RRC connection fails, the RRC releases the allocated resources.
  • the functionality of the RRC may also change, and the description herein is not limiting.
  • 1a and 1b are schematic views of a CoMP scenario
  • FIG. 2 is a schematic diagram of a possible system network
  • FIG. 3 is a schematic flowchart diagram of an information transmission method according to an embodiment of the present disclosure.
  • FIG. 4a is a schematic diagram of an apparatus (such as a user equipment) for information transmission according to an embodiment of the present invention
  • FIG. 4b is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
  • 5a is a schematic diagram of another apparatus (such as a wireless network device) for information transmission according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a wireless network device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of bandwidth resources of a system bandwidth according to an embodiment of the present invention.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread in execution, a program, and/or a computer.
  • an application running on a computing device and the computing device can be a component.
  • One or more components can reside within a process and/or thread of execution, and a component can be located in a computer and/or distributed between two or more computers. Moreover, these components can execute from various computer readable media having various data structures thereon.
  • These components may be passed, for example, by having one or more data packets (eg, data from one component that interacts with the local system, another component of the distributed system, and/or signaled through, such as the Internet)
  • the network interacts with other systems to communicate in a local and/or remote process.
  • the wireless network device is one type of wireless device and the wireless device can also be a terminal device.
  • the wireless network device may be a base station, the base station may be used to communicate with one or more user equipments, or may be used to communicate with one or more base stations having partial user equipment functions (such as a macro base station and a micro base station, such as Incoming, communication between the two); the wireless device can also be a user equipment, the user equipment can be used for communication (such as D2D communication) of one or more user equipments, and can also be used for communication with one or more base stations.
  • partial user equipment functions such as a macro base station and a micro base station, such as Incoming, communication between the two
  • the wireless device can also be a user equipment, the user equipment can be used for communication (such as D2D communication) of one or more user equipments, and can also be used for communication with one or more base stations.
  • User equipment may also be referred to as user terminals and may include systems, subscriber units, subscriber stations, mobile stations, mobile wireless terminals, mobile devices, nodes, devices, remote stations, remote terminals, terminals, wireless communication devices, wireless communication devices, or Some or all of the features of the user agent.
  • User equipment can be cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, smart phones, wireless local loop (WLL) stations, personal digital assistants (PDAs), laptop computers, handheld communication devices, handheld computing Devices, satellite wireless devices, wireless modem cards, and/or other processing devices for communicating over wireless systems.
  • SIP Session Initiation Protocol
  • WLL wireless local loop
  • PDAs personal digital assistants
  • laptop computers handheld communication devices
  • handheld computing Devices satellite wireless devices
  • wireless modem cards wireless modem cards
  • a base station may also be referred to as an access point, a node, a Node B, an evolved Node B (eNB), a gNB, a Transceiver Point (TRP), a Transmission Point (TP), or some other network entity, and may include the functions of the above network entities. Some or all of the features.
  • the base station can communicate with the wireless terminal over the air interface. This communication can be done by one or more sectors.
  • the base station can act as a router between the wireless terminal and the rest of the access network by converting the received air interface frame to an IP packet, wherein the access network includes an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate the management of air interface attributes and can also be a gateway between the wired network and the wireless network.
  • the application will present various aspects, embodiments, or features in a system that can include multiple devices, components, modules, and the like. It is to be understood and appreciated that the various systems may include additional devices, components, modules, etc. and/or may not include all of the devices, components, modules, etc. discussed in connection with the figures. In addition, a combination of these schemes can also be used.
  • the word "exemplary” is used to mean an example, an illustration, or a description. Any embodiment or design described as “example” in this application should not be construed as preferred or advantageous over other embodiments or designs. Rather, the term use examples is intended to present concepts in a concrete manner.
  • information, signal, message, and channel may sometimes be mixed. It should be noted that the meaning to be expressed is consistent when the difference is not emphasized. “of”, “corresponding (relevant)” and “corresponding” can sometimes be mixed. It should be noted that the meanings to be expressed are consistent when the distinction is not emphasized.
  • Embodiments of the present invention may form the subject of the non-typo as W1, while not emphasize the difference, to express their meaning is the same.
  • the network architecture and the service scenario described in the embodiments of the present invention are used to more clearly illustrate the technical solutions of the embodiments of the present invention, and do not constitute a limitation of the technical solutions provided by the embodiments of the present invention.
  • the technical solutions provided by the embodiments of the present invention are equally applicable to similar technical problems.
  • the embodiment of the present invention can be applied to a time division duplex (TDD) scenario or a frequency division duplex (FDD) scenario.
  • TDD time division duplex
  • FDD frequency division duplex
  • FIG. 2 shows a schematic diagram of a possible system network of an embodiment of the present invention.
  • a radio access network RAN
  • the RAN includes at least one base station (BS), and for the sake of clarity, only one base station and one UE are shown.
  • the RAN is connected to a core network (CN).
  • the CN may be coupled to one or more external networks, such as the Internet, a public switched telephone network (PSTN), and the like.
  • PSTN public switched telephone network
  • the embodiments of the present invention can be applied to a traditional typical network or to a UE-centric network in the future.
  • the UE-centric network introduces a non-cell network architecture, that is, deploys a large number of small stations in a specific area to form a hyper cell, and each station is a transmission point of the Hyper cell ( Transmission Point, TP) or TRP, and connected to a centralized controller.
  • TP Transmission Point
  • TRP Transmission Point
  • the network side device selects a new sub-cluster (sub-cluster) for the UE to serve, thereby avoiding true cell handover and achieving continuity of the UE service.
  • the network side device includes a wireless network device.
  • different base stations have different transmission delays to the UE, which may result in a decrease in transmission performance.
  • the embodiment of the present invention provides an information transmission method, so that the transmission delay difference of different base stations to the UE is measurable, so that the base station can receive the transmission delay difference from the UE, and perform corresponding phase according to the transmission delay difference.
  • the adjustment is such that the transmission delay difference of the base station transmitting with the same UE is within an acceptable range, such as less than a preset threshold, thereby improving transmission performance.
  • different base stations may be base stations with different identifiers, or may be base stations deployed in different geographical locations with the same identifier.
  • the base station, or the baseband chip should support the method provided by the embodiment of the present invention before deployment, because the base station does not know whether it will involve the scenario applied by the embodiment of the present invention before the base station is deployed.
  • the foregoing base station with different identifiers may be a base station identifier, or may be a cell identifier or other identifier.
  • different wireless network devices such as a base station
  • the scenario in the embodiment of the present invention is described by taking a scenario of a 4G network in a wireless communication network as an example. It should be noted that the solution in the embodiment of the present invention may also be applied to other wireless communication networks, and corresponding names may also be used in other scenarios. The name of the corresponding function in the wireless communication network is replaced.
  • the method or apparatus in the embodiments of the present invention may be applied between a wireless network device and a user equipment, and may also be applied between a wireless network device and a wireless network device (such as a macro base station and a micro base station), and may also be Between the user equipment and the user equipment (such as a D2D scenario), in all embodiments of the present invention, the communication between the wireless network device and the UE is taken as an example for description.
  • FIG. 3 is a flowchart of a method for transmitting information according to an embodiment of the present invention. As shown in FIG. 3, the method includes:
  • the UE receives the first reference signal, and obtains a first transmission delay according to the first reference signal.
  • the UE receives the first reference signal from the second wireless network device.
  • the first reference signal may be a reference signal predefined by the protocol for transmitting the delay measurement, so that the UE does not need to determine which signal is used for the measurement of the transmission delay according to the configuration information.
  • the UE determines, according to the configuration information, that the first reference signal is a reference signal used for measurement of the transmission delay.
  • the UE receives the configuration information from the first wireless network device.
  • the first wireless network device may be the same wireless network device as the second wireless network device, or may be a different wireless network device.
  • the first wireless network device is a wireless network device to which the serving cell of the UE belongs
  • the second wireless network device is a wireless network device to which the non-serving cell of the UE belongs.
  • the first wireless network device and the second wireless network device may share a baseband unit and have different radio frequency units, such as radio frequency units that may be deployed in different geographical locations.
  • the first wireless network device and the second wireless network device may also share neither the baseband unit nor the radio unit.
  • the UE may receive a synchronization signal or a reference signal from the first wireless network device (the UE and the first wireless network device reach a synchronization state), and receive the first reference signal through the receiver of the UE. Since the sequence of the first reference signal is known to the UE, the UE can obtain the adjustment required to correctly receive the first reference signal by adjusting the receiver of the UE, thereby obtaining the transmission delay of the first reference signal.
  • resources occupied by the first reference signal and the second reference signal may be located in the same bandwidth portion, or different bandwidth portions;
  • the resources occupied by the first reference signal and the second reference signal may be located on the same carrier, or different carriers;
  • the resources occupied by the first reference signal and the second reference signal may be located in the same serving cell, or different serving cells.
  • the frame structures of different bandwidth portions may be the same or different.
  • the bandwidth part may be part of the system bandwidth.
  • the bandwidth portion may include at least one subcarrier that is continuous or discontinuous.
  • the bandwidth portion may also be referred to as a bandwidth resource, a carrier bandwidth part, a frequency resource part, a partial frequency resource, a carrier bandwidth part, a subband, a narrowband or other name.
  • FIG. 6 is a schematic diagram of bandwidth resources in a system bandwidth.
  • the system bandwidth includes three different bandwidth resources: bandwidth resource 0, bandwidth resource 1 and bandwidth resource 2, and the bandwidth portion may be bandwidth resource 0 and bandwidth.
  • the system bandwidth may include M bandwidth resources, and M is an integer greater than or equal to 1.
  • bandwidth resource 0 and bandwidth resource 1 may overlap partially or completely, or may not overlap at all.
  • OFDM orthogonal frequency division multiplexing
  • the frequency domain resources of the bandwidth resource 0 and the bandwidth resource 1 completely overlap, but the frame structure (such as the subcarrier spacing and/or The CP length is different, and the embodiment of the present application does not limit this.
  • the antenna port of the first reference signal and the antenna port of the second reference signal may be non-co-located.
  • a quasi co-location (QCL) relationship between two antenna ports means that the channel large-scale parameter of one antenna port can be inferred by the large-scale parameter of the channel obtained by another antenna port ( Infer).
  • Large-scale parameters may include average gain, average delay, delay spread, Doppler shift, Doppler spread, spatial parameters ( One or more of spatial parameter, or, spatial Rx parameters.
  • the spatial parameters may include an angle of arrival (AOA), a dominant AoA, an average AoA, an angle of departure (AOD), a channel correlation matrix, and an angle of arrival power.
  • AOA angle of arrival
  • AOD angle of departure
  • Beamforming average departure angle
  • power angle spread spectrum of departure angle transmit channel correlation
  • receive channel correlation receive beamforming
  • receive beamforming receive beamforming
  • spatial channel correlation spatial filter
  • weight information One or more of filtering parameters, or spatial receiving parameters, or weight information.
  • the UE sends the obtained information about the first transmission delay.
  • the information of the first transmission delay may be an index of the transmission delay corresponding to the first transmission delay, or may be the corresponding quantized information, and details are not described herein.
  • the correspondence between the information of the first transmission delay and the first transmission delay may be pre-stored on the UE and the wireless network device side, thereby reducing the overhead required for transmission delay transmission.
  • the UE sends the information of the first transmission delay to the first wireless network device and/or the second wireless network device.
  • the first wireless network device and/or the second wireless network device can perform phase adjustment according to the information of the first transmission delay.
  • the second wireless network device and the first wireless network device can be caused to transmit data (including signaling) to the UE, and the data received by the UE from the first wireless network device and the data from the second wireless network device is transmitted.
  • the delay can be less than a preset threshold, thereby improving transmission performance.
  • the information about the first transmission delay may be sent by the first wireless network device to the second wireless network device, thereby enabling The second wireless network device adjusts the phase according to the information of the first transmission delay.
  • the UE may receive the second reference signal.
  • the second reference signal is received from the third wireless network device.
  • the UE obtains the second transmission delay according to the second reference signal.
  • the second reference signal may be a reference signal predefined by the protocol for transmitting the delay measurement, so that the UE does not need to determine which signal is used for the measurement of the transmission delay according to the configuration information.
  • the UE determines, according to the configuration information, that the second reference signal is a reference signal used for measurement of the transmission delay.
  • the UE receives the configuration information from the first wireless network device.
  • S2 is similar to S1, and can be referred to the description in S1, and will not be described here.
  • the second reference signal and the first reference signal may be the same kind of reference signals, for example, reference signals for channel state information acquisition, such as channel state information reference signal CSI-RS, or different.
  • a kind of reference signal for example, one is a reference signal for channel state information acquisition, and the other is a reference signal for demodulation, such as a demodulation reference signal DMRS.
  • the third wireless network device and the first wireless network device or the second wireless network device may share a baseband unit and have different radio frequency units, such as radio frequency units that may be deployed in different geographical locations.
  • the third wireless network device and the first wireless network device or the second wireless network device may also share neither the baseband unit nor the radio frequency unit.
  • the UE may send information about the second transmission delay.
  • the information of the second transmission delay is transmitted to the first wireless network device and/or the third wireless network device.
  • the information of the second transmission delay may be an index of the transmission delay corresponding to the second transmission delay, or may be the corresponding quantized information, and details are not described herein.
  • the correspondence between the information of the second transmission delay and the second transmission delay may be pre-stored on the UE and the wireless network device side, thereby reducing the overhead required for transmission delay transmission.
  • the second wireless network device and/or the The three wireless network devices can perform corresponding phase adjustments, so that any two or three of the first, second, and third wireless network devices can have a transmission delay difference less than a threshold during communication with the UE.
  • the value reaches the effect of reaching the UE while approaching the theory.
  • S3 the UE obtains a transmission delay difference according to the first transmission delay and the second transmission delay.
  • the UE sends the information about the transmission delay difference.
  • the UE may send information of the transmission delay difference to at least one of the first, second, and third wireless network devices, so that at least one of the first, second, and third wireless network devices may be according to the transmission time.
  • the information of the delay is adjusted in phase, so that any two or three of the first, second, and third wireless network devices may have a transmission delay difference less than a threshold value during communication with the UE. Achieving the effect of reaching the UE while approaching the theory.
  • the information of the transmission delay difference may be an index of the transmission delay difference, or may be a information after the transmission delay difference is quantized, and details are not described herein.
  • the correspondence between the information of the transmission delay difference and the transmission delay difference may be pre-stored on the UE and the wireless network device side, thereby reducing the overhead required for transmission delay transmission.
  • the UE may learn, according to the configuration information included in S00, that the first reference signal and/or the second reference signal are used for obtaining the transmission delay and/or the transmission delay difference.
  • steps between the steps in FIG. 3 do not indicate the sequential relationship of the steps.
  • S1 and S2 may be performed simultaneously or at different times, and S00 may be preceded by other steps or may be mixed in other
  • the S00 may be included in the configuration, and may be included in the configuration.
  • the time of the multiple configuration may be performed according to the actual system requirements, which is not limited in the embodiment of the present invention.
  • the configuration information may include first indication information and/or second indication information, where the first indication information is used to indicate that the first reference signal is used for measurement of a transmission delay (eg, the UE obtains the transmission based on the first reference signal.
  • the second indication information is used to indicate that the second reference signal is used for measurement of the transmission delay (eg, the UE obtains a transmission delay difference and/or a transmission delay based on the second reference signal).
  • the configuration information in S00 in the following embodiments is sometimes described by taking the acquisition and/or feedback of the transmission delay difference as an example in the description. It can be understood that the corresponding configuration information can also be used for transmission.
  • the acquisition and/or feedback of the delay may replace the transmission delay difference with the first or second transmission delay, and details are not described herein.
  • the first indication information is used to indicate that the measurement of the first reference signal for the transmission delay includes:
  • the first indication information is included in at least one of a channel state information measurement set field, a channel state information report set field, or a reference signal resource field, where the first indication information is used to indicate the channel state information measurement
  • the reference domain, the channel state information report set domain, or the reference signal corresponding to one of the reference signal resource identifiers included in at least one of the reference signal resource domains is a first reference signal, and the first reference signal is used by the first reference signal Measurement of transmission delay.
  • a time delay measurement information field that is, first indication information
  • CSI measurement setting For example, a time delay measurement information field (Time-delay-Config), that is, first indication information, may be configured in a channel state information measurement set field (CSI measurement setting).
  • a resource setting ID is an identifier corresponding to configuration information of a set for performing CSI measurement
  • the resource setting ID is an identifier corresponding to configuration information of a resource set, where the resource set may include resources for channel measurement and/or
  • the resource ID is an identifier corresponding to the configuration information of the resource.
  • the UE may be configured with N ⁇ 1 CSI reporting setting, M ⁇ 1 resource set and 1 CSI measurement setting, where the CSI measurement setting may include L ⁇ 1 links.
  • Each CSI reporting setting includes at least: a reported CSI parameter, a CSI type (I or II) (if reported), a codebook configuration (including a codebook subset constraint), and a time domain behavior for CQI (channel quality) Channel quality indicator) and PMI (precoding matrix indicator) frequency interval, measurement constraint configuration, and the like.
  • Each resource set may include: a configuration of S ⁇ 1 CSI-RS resource sets (where different sets correspond to different choices from all CSI-RS resource pools configured to the UE).
  • the configuration of Ks ⁇ 1 CSI-RS resources in each set includes at least: mapping of resource elements (RE), number of ports, time domain behavior, and the like.
  • Each of the L links in the CSI measurement setting has a CSI reporting setting indication, a resource setting indication, quality information to be measured (eg, channel or interference), wherein one CSI reporting set can be combined with one or more resources.
  • the setting is associated, and multiple CSI reporting sets can be associated with the same resource setting.
  • the foregoing CSI measurement setting, resource setting, and resource may enable the UE to know what information the received information is by using a fixed location in the configuration information, or may obtain the received information by using different IDs thereof. What is the information.
  • Time-delay-Config a description of a possible Time-delay-Config is as follows:
  • Time-delay-Config SEQUENCE(SIZE(1..2))OF resource ID
  • a resource setting ID may include one or more resource IDs. If the resource setting field includes multiple resource IDs, the minimum ID may be predefined or the specific resource ID in the domain may be indicated by other indication information. In the transmission delay measurement, for example, when the resource setting ID is indicated, an index index indication is added, where the index indication is used to indicate that the first resource in the resource setting ID is used for transmission delay measurement, or the source under the resource setting ID is indicated. ID. Similarly, a CSI measurement setting ID may also include one or more resource setting IDs, and may also enable the UE to determine a specific resource for transmission delay measurement by using predefined or other indication information.
  • the resource ID included in the resource setting ID is 2, 3, and 5. Then, when index is 1, it indicates the first resource, that is, the resource ID is 2 corresponding to the RS resource; when the index is 2, it indicates the second resource, that is, the resource ID is the resource corresponding to 3; and so on. Or when the index is 0, it indicates the first resource, that is, the resource ID is the resource corresponding to 2; when the index is 1, it indicates the second resource, that is, the resource with the RS resource ID being 3; and so on.
  • the second indication information used to indicate that the second reference signal is used for the measurement of the transmission delay includes:
  • the second indication information is included in at least one of a channel state information measurement set field, a channel state information report set field, or a reference signal resource field, where the first indication information is used to indicate the channel state information measurement
  • the reference domain, the channel state information report set domain, or the reference signal corresponding to one of the reference signal resource identifiers included in at least one of the reference signal resource domains is a second reference signal, and the second reference signal is used by the second reference signal. Measurement of transmission delay.
  • first indication information and the second indication information are included in the same Time-delay-Config, whether the first indication information or the second indication information can be distinguished by a predefined or fixed position or indication information.
  • the first indication information and the second indication information may also be included in different Time-delay-Configs.
  • the UE may distinguish the first indication information and the second indication information by using different fixed positions of the Time-delay-Config. It can also be distinguished by different Time-delay-Config IDs, and will not be described here.
  • the first reference signal is a reference baseline used for transmission delay measurement.
  • the manner in which the first reference signal and/or the second reference signal are used for obtaining the transmission delay may be:
  • the first indication information is further used to indicate that the first reference signal is a reference baseline used for transmission delay measurement.
  • the first indication information is further used to indicate that the first reference signal is a reference baseline for transmission delay measurement, and the method may include:
  • the first indication information is included in a first information field, where the first information field is used to indicate information used to transmit a reference baseline for delay measurement.
  • the first information field further includes third indication information except the first indication information, where the third indication information is used to indicate information of another reference baseline used for transmitting the delay measurement.
  • the configuration of the reference baseline information for transmitting the delay measurement may be indicated by higher layer signaling, such as RRC signaling or MAC (media access control) signaling, or by physical layer signaling, such as DCI signaling. It can also be instructed by the high-layer signaling and the physical layer signaling, for example, by performing high-level signaling to perform multiple configuration indications, and enabling one or more configurations by physical layer signaling. For example, by enabling the first reference signal as a reference baseline for transmission delay measurement, the UE learns that the reference baseline of the transmission delay measurement is the first reference signal.
  • the configuration information may not separately indicate which resource the reference signal is referenced when the second reference signal is used for measuring the transmission delay.
  • the configuration information may further include fourth indication information, where the fourth indication information is used to indicate that the second reference signal is used for transmission.
  • the baseline referenced in the measurement of the delay is the first reference signal, or the foregoing second indication information is further used to indicate that the baseline referenced when the second reference signal is used for measurement of the transmission delay is the first reference signal.
  • the first information field may be a time-delay baseline Time-delay-baseline field, and the domain may include a resource setting ID, a CSI measurement setting ID, or a resource ID.
  • the first information field includes the first indication information, such that the first indication information may be used to indicate that the first reference signal may be information for transmitting a reference baseline for delay (difference) measurement.
  • the first indication information may be a resource ID of the first reference signal, or a resource set ID to which the first reference signal belongs, or a CSI measurement setting ID to which the first reference signal belongs, or one or more of them The combination.
  • the combination refer to the description of the aforementioned Time-delay-Config field.
  • the configuration of the first information domain may be transmitted together with the configuration information of the specific first reference signal (such as the time domain behavior of the first reference signal, the number of ports, etc.), or may be separately transmitted.
  • the configuration information of the specific first reference signal such as the time domain behavior of the first reference signal, the number of ports, etc.
  • the UE may obtain a reference baseline for transmission delay measurement through the first information field.
  • the UE may also learn, by using the indication information in the CSI measurement setting, or the information in the foregoing Time-delay-Config field, that the transmission delay difference is required to be reported, and/or that the transmission delay difference needs to be performed for the second reference signal. Measurement and / or feedback. In this way, the UE can obtain the transmission delay difference between the two according to the second reference signal and the corresponding reference baseline, and then report the information of the transmission delay difference.
  • the wireless network device can also configure multiple reference baselines, for example, each reference baseline can be added with one identification information.
  • the reference baseline of the second reference signal is indicated in the CSI measurement setting or in the aforementioned Time-delay-Config field, and the UE can perform corresponding measurement and reporting.
  • the configuration example of the reference baseline is as follows.
  • the time-delay-baselineConfigID is the delay baseline configuration identifier field, and the time-delay-baselineConfigID can be a specific identifier value, such as 0, 1, 2, 3, ..., which can be a natural number or A positive integer.
  • Time-delay-baseline-resource is the baseline reference resource information field.
  • the configuration example in the CSI measurement setting is as follows, where the resouce-setting IDConfig is used to indicate the resource set ID, the CSI-reporting-setting IDConfig is used to indicate the CSI report (or feedback) set ID, and the time-delay-baselineConfigID is used to indicate the delay.
  • the configuration ID of the baseline is used to indicate the delay reference baseline ID.
  • the UE can learn the second reference signal for the measurement of the transmission delay (the specific second reference signal can be the resource in the CSI measurement setting, and can be separately indicated by the protocol pre-defined or indication information, please refer to the foregoing second
  • the description of the indication information, which is not described herein, and the resource information corresponding to the second reference signal, may also be used to obtain the delay reference referenced when the second reference signal is used for measuring the transmission delay. In this way, the UE can perform measurement of the transmission delay difference, and then report the information of the transmission delay difference.
  • the second indication information in the foregoing configuration may be the time-delay-baselineConfigID or the time-delay-baseline, that is, the second indication information is used to indicate the resource information corresponding to the second reference signal. It is also used to indicate the delay reference referenced when the second reference signal is used for the measurement of the transmission delay.
  • the second indication information may also trigger measurement and/or reporting of a transmission delay difference corresponding to the second reference signal.
  • an application scenario in which multiple reference datums are configured may be:
  • the cooperation set includes multiple cells or each cell includes multiple beams
  • the coordinated cell is 1, 2, 3, 4, 5, 6, it is assumed that the cell combinations that may be cooperatively transmitted are (1, 2), (1, 3), (4, 5), (4, 6).
  • the delay baseline 1 can be configured as the resource information sent by the cell 1, and the delay baseline 2 is the resource information of the cell 4.
  • CSI measurement setting 2 is measurement configuration information corresponding to cell 2
  • CSI measurement setting 3 is measurement configuration information corresponding to cell 3
  • CSI measurement setting 5 is measurement configuration information corresponding to cell 5
  • CSI measurement setting 6 is corresponding to cell 6.
  • the delay baseline configuration information can be as follows:
  • the foregoing delay baseline configuration may also be placed in a resource setting or CSI reporting setting field.
  • the configuration information further includes fifth indication information, where the fifth indication information is used to indicate that the first reference signal is a reference baseline used for transmission delay measurement.
  • the configuration of the reference baseline information for transmitting the delay measurement may be indicated by higher layer signaling, such as RRC signaling or MAC (media access control) signaling, or by physical layer signaling, such as DCI signaling. It can also be instructed by the high-layer signaling and the physical layer signaling, for example, by performing high-level signaling to perform multiple configuration indications, and enabling one or more configurations by physical layer signaling. For example, by enabling the first reference signal as a reference baseline for transmission delay measurement, the UE learns that the reference baseline of the transmission delay measurement is the first reference signal, such as the foregoing fifth indication information is used for the enabling.
  • the configuration information may not separately indicate which resource the reference signal is referenced when the second reference signal is used for measuring the transmission delay.
  • the configuration information may further include fourth indication information, where the fourth indication information is used to indicate that the second reference signal is used for transmission.
  • the baseline referenced in the measurement of the delay is the first reference signal, or the foregoing second indication information is further used to indicate that the baseline referenced when the second reference signal is used for measurement of the transmission delay is the first reference signal.
  • the fifth indication information such as the time-delay-baseline field
  • the fifth indication information may be added to the resource field corresponding to the first reference signal in the foregoing Time-delay-Config field, and when the field is 1, the first reference signal is used as the delay.
  • the reference when 0, indicates that the first reference signal does not need to be a delay reference.
  • the fourth indication information may be added to the resource domain corresponding to the second reference signal, where the fourth indication information may be a time-delay-baseline field, and the identifier in the field may indicate that the second reference signal is used for the transmission delay.
  • the baseline referenced during the measurement such as the resource identification of the first reference signal.
  • the UE may perform feedback of information about the transmission delay and/or the transmission delay difference according to the configuration information included in S00.
  • the configuration information may include sixth indication information, where the sixth indication information is used to indicate feedback information of a transmission delay and/or a transmission delay difference.
  • the obtaining and/or feedback of the transmission delay or the transmission delay difference may be periodic or non-periodic.
  • the sixth indication information is used to indicate feedback information of the transmission delay difference, including:
  • the sixth indication information may include information related to periodic feedback, and the information related to the periodic feedback includes information for indicating a periodic feedback period and an offset.
  • the information related to the periodic feedback may be indicated by high layer signaling, such as RRC signaling or MAC (media access control) signaling, or by physical layer signaling, such as DCI signaling. It can also be instructed by the high-layer signaling and the physical layer signaling, for example, by performing high-level signaling to perform multiple configuration indications, and enabling one or more configurations by physical layer signaling.
  • high layer signaling such as RRC signaling or MAC (media access control) signaling
  • physical layer signaling such as DCI signaling
  • the information used to indicate the periodic feedback period and the offset may be an identification information, where the identification information corresponds to a periodic feedback period and an offset, or the information used to indicate the periodic feedback period and the offset may also be periodic feedback.
  • the information of the period and the information of the periodic feedback offset may also be other methods, which are not described herein.
  • the UE can learn the period and offset of the periodic feedback according to the sixth indication information, and then perform corresponding feedback.
  • I time_delay is used to indicate the identifier of the corresponding one-cycle feedback period and offset
  • N pd is the period of the periodic feedback
  • N OFFSET is the offset of the periodic feedback.
  • n f is the number of the time unit including one or more time slots of the feedback, such as the subframe number
  • n s is the slot number of the feedback.
  • N ns represents the number of slots included in one of the aforementioned time units.
  • one radio frame includes 10 subframes in LTE.
  • One subframe includes 2 slots, and the slot number is an integer from 0 to 19.
  • the wireless frames are numbered from 0 to 1023.
  • Subframes are numbered from 0 to 9 integers.
  • I time_delay and N pd and N OFFSET can be as shown in Table 1 below:
  • the two slot slots constitute a larger time unit, such as a subframe subframe (which may also be called the name of other time units), and each slot may include There are 4 mini-slot mini-slots, each of which can include 7 symbols.
  • the specific reporting time can satisfy the following examples:
  • n f is the number of the time unit including one or more time slots of the feedback, such as the subframe number
  • n s is the slot number of the feedback.
  • N ns represents the number of slots included in one of the aforementioned time units.
  • the specific reporting time can satisfy the following examples:
  • n f is the number of the time unit including one or more slots, such as the subframe number
  • n s is the slot number of the feedback
  • n mini-s is the micro slot number of the feedback.
  • N ns represents the number of slots included in one of the aforementioned time units.
  • N minis represents the number of microslots included in a slot.
  • the specific reporting time can satisfy the following examples:
  • n f is the number of the time unit including one or more time slots of feedback, such as a subframe number
  • n minis is a feedback mini-slot number
  • N minis-s represents the number of microslots included in one of the aforementioned time units.
  • a radio frame in the NR includes 10 subframes.
  • One subframe includes 2 slots, and the slot number is an integer from 0 to 19.
  • the minislot number is an integer from 0 to 79.
  • the wireless frames are numbered from 0 to 1023.
  • Subframes are numbered from 0 to 9 integers.
  • I time_delay and N pd and N OFFSET can be as shown in Table 2 below:
  • the value unit of N pd can be a certain time unit, such as a subframe, a time slot, a micro time slot, etc.
  • the value unit of N OFFSET can be a certain time unit, such as a subframe, a time slot or a micro time slot. , the value units of the two can be the same or different
  • the sixth indication information used to indicate the feedback delay difference may include:
  • the sixth indication information includes information related to aperiodic feedback, and the information related to the aperiodic feedback may include information indicating a start of the feedback of the transmission delay difference, and information of the number of feedbacks for indicating The information of the end of the feedback of the transmission delay difference is used to indicate one or more of information such as the start time and the end time of the one-time transmission delay difference feedback. The information of the feedback times is used to indicate the number of feedbacks of the transmission delay difference.
  • the information related to the aperiodic feedback may be indicated by higher layer signaling, such as RRC signaling or MAC (media access control) signaling, or by physical layer signaling, such as DCI signaling. It can also be instructed by the high-layer signaling and the physical layer signaling, for example, by performing high-level signaling to perform multiple configuration indications, and enabling one or more configurations by physical layer signaling.
  • higher layer signaling such as RRC signaling or MAC (media access control) signaling
  • physical layer signaling such as DCI signaling.
  • the indication is performed by using RRC signaling, and specifically, the time-frequency domain resource information of the feedback may be indicated, and the time-frequency domain resource information may also be a protocol predefined, for example, the last symbol, or the first in the frequency domain. For the PRB or the last PRB, etc., the time-frequency domain resource information indicating the feedback may also be indicated by DCI signaling.
  • the information about the start of the feedback indicating the delay of the transmission delay may be sent by using the DCI signaling, and after receiving the trigger information, the UE may perform feedback at a specified time. For example, feedback is performed after several subframes by default, such as 4 subframes.
  • the triggering information of the transmission delay may be configured in the DCI, for example, the 1st bit indicates that the UE needs to report the transmission delay.
  • the measurement and/or reporting of the transmission delay may also be triggered based on the configuration in the RRC signaling.
  • the information of the feedback transmission delay and/or the transmission delay difference in the PUCCH may be used to indicate the transmission format of the PUCCH, such as the format 4 for indicating the measurement and/or reporting of the transmission delay (or transmission delay).
  • the UE is triggered to perform measurement and/or reporting of a transmission delay (or transmission delay difference); or information that feeds back a transmission delay or a transmission delay difference in the CSI may be used by indicating a CSI feedback type, such as type 10 Indicating the measurement and/or reporting of the transmission delay (or transmission delay), triggering the UE to perform measurement and/or reporting of the transmission delay (or transmission delay), where the transmission delay or the transmission delay is
  • the information can be jointly coded with the CSI, for example, combined with the PMI and the CQI, and can be reported separately. For example, it can be reported separately with the RI after the independent coding, or independently reported after the independent coding (that is, the time domain is not multiplexed with the CSI report). Or frequency domain resources).
  • the start time and the end time of the feedback may be indicated in the RRC signaling or the DCI.
  • the manner of indicating the start time and the end time of the feedback may be one or more of the following ways:
  • the triggering information triggers the UE to feed back multiple times, for example, triggering the UE feedback 5 times, and the number of feedbacks herein may be predefined by the protocol.
  • the trigger information may also be an indication of the feedback times information.
  • Mode 2 indicating the number of feedback times.
  • the trigger information may be a semi-persistent report field, which is 1 bit, for example, 0 means that the normal trigger is reported once, and 1 is the case of multiple feedback.
  • the information of the number of times of the feedback may be the number of the report number, which is 1 bit or 2 bits or other.
  • the number of times of the number of times is determined according to the maximum number of times of reporting, and the information indicates the specific number of feedbacks.
  • the number of feedback times can be indicated by enumerating the number of feedbacks.
  • the enumerated value is used, such as report number ENUMERATED ⁇ 5, 10, 15, 20, spare1 ⁇ .
  • the feedback start time and the end time are indicated.
  • the start time is frame number 5
  • the end time is frame number 25.
  • StartReportFrameNumber indicates the frame number to be reported
  • StopReportFrameNumber indicates the frame number to be reported
  • the above frame number may also be other time units, such as a subframe, a time slot, and the like.
  • the trigger message is sent to start the report, and when the report is ended, the trigger message is sent to indicate the end of the report.
  • StartReportTrigger indicates that the message exists to indicate that the report is started.
  • the report action can take effect from the next time or the next X time.
  • X can be predefined for the protocol or indicated by other signaling.
  • StopReport Trigger indicates that the message is sent to stop reporting.
  • the end reporting behavior can also take effect at the next time or at the next Y time.
  • Y can be predefined for the protocol or indicated by other signaling.
  • the information about the transmission delay and/or the transmission delay difference may be included in an uplink control signal (channel), such as a physical uplink control channel (PUCCH), or may be included in the channel.
  • CSI state information
  • the information about the transmission delay and/or the transmission delay difference is included in the CSI.
  • the UE may further receive the seventh indication information, where the seventh indication information is used to indicate the transmission delay and/or the transmission time.
  • the information of the delay includes feedback in the channel state information. It can be understood that the seventh indication information can also be used to obtain and/or feedback information that triggers transmission delay and/or transmission delay difference.
  • the seventh indication information may be information of a CSI feedback type.
  • the information that the UE learns the transmission delay and/or the transmission delay difference includes performing feedback in the channel state information.
  • the feedback type of CSI is type 10 feedback, which indicates feedback that supports transmission delay and/or transmission delay difference.
  • the transmission delay and/or the transmission delay difference may be combined with CSI, such as PMI and CQI, to perform feedback, or may be separately encoded and fed back together with CSI, such as RI.
  • the information about the transmission delay and/or the transmission delay difference is included in the uplink control signal (channel), and a transmission format may be added for the feedback of the uplink control channel, for example, the format 4 may indicate that feedback is needed.
  • Information of the feedback transmission delay and/or the transmission delay difference in the uplink control channel can also be used to obtain and/or feedback information that triggers transmission delay and/or transmission delay.
  • the feedback of the transmission delay and/or the transmission delay difference may be feedback after the transmission delay and/or the transmission delay difference are quantized or encoded, for example, by using several bits, such as 3 bits or 4 bits. Give feedback.
  • the feedback is information about the transmission delay and/or the transmission delay difference, such as index information.
  • the transmission delay difference can be 100 ns, 200 ns, 300 ns, ..., -100 ns, -200 ns, -300 ns, indexed by the following table. It can be understood that the index and the numerical value are only examples, and may be other values.
  • the feedback of the transmission delay and/or the transmission delay difference may be obtained by quantizing the transmission delay and/or the transmission delay difference (or the transmission delay and/or the transmission delay difference). ) Feedback after the transformation of the function.
  • the function may be a Fourier transform, an inverse Fourier transform, or other function transform, which is not limited in this application.
  • the UE can obtain the transmission delay and/or the transmission delay difference according to the reference signal, and further, the UE transmits the transmission delay and/or the transmission delay difference to the UE.
  • the wireless network device may perform phase adjustment on at least one of the at least two wireless network devices that communicate with the UE, so that the transmission delay difference of the data received by the UE from the at least two wireless network devices is less than a threshold value. , to achieve close to the theoretical simultaneous reception effect, thereby improving transmission performance.
  • an embodiment of the present invention further provides an apparatus for information transmission, which may be a wireless device 10.
  • the wireless device 10 can correspond to a user device in the above method.
  • the apparatus can include a processor 110 and a memory 120. Further, the apparatus may further include a receiver 140 and a transmitter 150. Further, the apparatus may further include a bus system 130, wherein the processor 110, the memory 120, the receiver 140, and the transmitter 150 may be connected by the bus system 130.
  • the memory 120 is configured to store instructions for executing the instructions stored by the memory 120 to control the receiver 140 to receive signals and to control the transmitter 150 to transmit signals to perform the steps of the user equipment in the above method.
  • the receiver 140 and the transmitter 150 may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the memory 220 may be integrated in the processor 210 or may be provided separately from the processor 210.
  • the functions of the receiver 140 and the transmitter 150 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • the processor 110 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • a wireless device provided by an embodiment of the present invention may be implemented by using a general-purpose computer.
  • the program code that is to implement the functions of the processor 110, the receiver 140 and the transmitter 150 is stored in a memory, and the general purpose processor implements the functions of the processor 110, the receiver 140 and the transmitter 150 by executing the code in the memory.
  • FIG. 4b provides a schematic structural diagram of a user equipment UE.
  • the UE may be adapted for use in the system illustrated in Figure 2 and/or in the scenario illustrated in Figures 1a and 1b.
  • Figure 4b shows only the main components of the user equipment.
  • the user equipment 100 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used for processing communication protocols and communication data, and controlling the entire user equipment, executing software programs, processing data of the software programs, for example, for supporting the UE to perform the actions described in the FIG.
  • the memory is primarily used to store software programs and data, such as the codebooks described in the above embodiments.
  • the control circuit is mainly used for converting baseband signals and radio frequency signals and processing radio frequency signals.
  • the control circuit together with the antenna can also be called a transceiver, and is mainly used for transmitting and receiving RF signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 4b shows only one memory and processor for ease of illustration. In an actual user device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, and the like.
  • the processor may include a baseband processor and a central processing unit, and the baseband processor is mainly used to process communication protocols and communication data, and the central processing unit is mainly used to control and execute the entire user equipment.
  • the processor in FIG. 4b integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and interconnected by technologies such as a bus.
  • the user equipment may include a plurality of baseband processors to accommodate different network standards, and the user equipment may include a plurality of central processors to enhance its processing capabilities, and various components of the user equipment may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the functions of processing the communication protocol and the communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • the antenna and control circuit having the transceiving function can be regarded as the transceiving unit 101 of the UE 10, and the processor having the processing function is regarded as the processing unit 102 of the UE 10.
  • the UE 10 includes a transceiver unit 101 and a processing unit 102.
  • the transceiver unit can also be referred to as a transceiver, a transceiver, a transceiver, and the like.
  • the device for implementing the receiving function in the transceiver unit 101 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 101 is regarded as a sending unit, that is, the transceiver unit 101 includes a receiving unit and a sending unit.
  • the receiving unit may also be referred to as a receiver, a receiver, a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit.
  • the embodiment of the present invention further provides another device for information transmission, and the device may be a wireless device 20, and the wireless device 20 corresponds to the first wireless network device in the foregoing method. It can be understood that the second wireless device can also be other devices, which is not limited herein.
  • the apparatus can include a processor 210 and a memory 220. Further, the device may further include a receiver 240 and a transmitter 250. Still further, the apparatus can also include a bus system 230.
  • the processor 210, the memory 220, the receiver 240 and the transmitter 250 are connected by a bus system 230 for storing instructions for executing instructions stored in the memory 220 to control the receiver 240 to receive. Signaling, and controlling the transmitter 250 to transmit a signal, completes the steps of the first wireless network device in the above method.
  • the receiver 240 and the transmitter 250 may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the memory 220 may be integrated in the processor 210 or may be provided separately from the processor 210.
  • the functions of the receiver 240 and the transmitter 250 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • the processor 210 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • a wireless device provided by an embodiment of the present invention may be implemented by using a general-purpose computer.
  • the program code that is to implement the functions of the processor 210, the receiver 240 and the transmitter 250 is stored in a memory, and the general purpose processor implements the functions of the processor 210, the receiver 240, and the transmitter 250 by executing code in the memory.
  • an embodiment of the present invention further provides a schematic structural diagram of a wireless network device, such as a base station.
  • the base station can be applied to the system as shown in Figure 2 and/or in the scenario as shown in Figures 1a and 1b.
  • the base station 20 includes one or more radio frequency units, such as a remote radio unit (RRU) 201 and one or more baseband units (BBUs) (also referred to as digital units, DUs) 202.
  • RRU remote radio unit
  • BBUs baseband units
  • the RRU 201 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 2011 and a radio frequency unit 2012.
  • the RRU 201 is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals, for example, for transmitting signaling indications and/or reference signals described in the foregoing embodiments to user equipment.
  • the BBU 202 part is mainly used for performing baseband processing, controlling a base station, and the like.
  • the RRU 201 and the BBU 202 may be physically disposed together or physically separated, that is, distributed base stations.
  • the BBU 202 is a control center of a base station, and may also be referred to as a processing unit, and is mainly used to perform baseband processing functions such as channel coding, multiplexing, modulation, spread spectrum, and the like.
  • the BBU processing unit
  • the BBU can be used to control the base station to execute the flow shown in FIG.
  • the BBU 202 may be composed of one or more boards, and multiple boards may jointly support a single access standard radio access network (such as an LTE network), or may separately support different access modes of wireless. Access Network.
  • the BBU 202 also includes a memory 2021 and a processor 2022.
  • the memory 2021 is used to store necessary instructions and data.
  • the memory 2021 stores the correspondence between the information of the transmission delay difference and the transmission delay difference in the above embodiment.
  • the processor 2022 is configured to control the base station to perform necessary actions, such as for controlling the actions of the base station as shown in the portion of FIG.
  • the memory 2021 and the processor 2022 can serve one or more boards. That is, the memory and processor can be individually set on each board. It is also possible that multiple boards share the same memory and processor. In addition, the necessary circuits can be set on each board.
  • the embodiment of the present invention further provides a communication system, including the foregoing first wireless network device and one or more user devices.
  • the processor may be a central processing unit (“CPU"), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated integration. Circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory can include read only memory and random access memory and provides instructions and data to the processor.
  • a portion of the memory may also include a non-volatile random access memory.
  • the bus system may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • a power bus may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the various buses are labeled as bus systems in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种信息传输方法和装置。该方法包括:用户设备接收第一参考信号和/或第二参考信号;用户设备根据第一参考信号和第二参考信号确定第一参考信号和第二参考信号之间的传输时延差;或者,根据第一参考信号确定第一传输时延和/或根据第二参考信号确定第二传输时延。通过该方法,可以使得不同无线网络设备的传输时延可测,进而提高传输性能。

Description

一种信息传输方法和装置 技术领域
本申请涉及通信技术领域,特别是涉及一种信息传输方法和装置。
背景技术
下一代移动通信系统要求大容量和高质量的数据传输。多输入多输出(MIMO,multiple input multiple output)技术被认为是可实现未来高速数据传输的关键技术之一,在第三代(3G)及第四代(4G)的移动通信系统中有着广阔的应用前景。传统的集中式MIMO系统的多根发射天线均集中于基站(BS,basestation)端。与集中式MIMO不同,分布式MIMO系统的多根发射天线分布于不同的地理位置,其各对收发链路之间更加独立,具有大容量、低功耗、更好的覆盖、对人体的低电磁损害等优势,被认为是未来无线通信系统的备选方案之一。在分布式MIMO的情况下,为了提高边缘用户设备的信号可靠性以及为了提高边缘小区的吞吐量,可以考虑采用多点分集或者多点多流的传输方法。
协同多点传输(CoMP,coordinated multipoint transmission)被认为是一种解决小区间干扰问题并提升边缘用户设备吞吐量的有效方法。CoMP技术中多个相邻小区可以联合处理或协调边缘用户设备来避免干扰并提升边缘用户吞吐量。下行CoMP的场景主要包括联合传输(JT,joint transmission)、协同调度和波束成型(CS/CB,coordinated scheduling and beamforming)和动态点选择/关闭(DPS/DPB,dynamic point selection/dynamic point blanking),其中JT分为相干JT和非相干JT,上行CoMP的场景包括联合接收(JR,Joint reception)、CS和DPS/DPB。
在上述CoMP的一些场景,如JT或DPS中,因为不同基站,如图1a中的第一基站和第二基站,到达用户设备(UE,userequipment),如UE1的传输时延不同,如图1a中T1为第一基站到达UE1的传输时延,T2为第二基站到达UE1的传输时延,T1和T2的不同会导致传输性能下降。
发明内容
本发明实施例提供一种信息传输的方法、装置,无线网络设备和用户设备,以使得不同无线网络设备的传输时延可测。
第一方面,本发明实施例提供一种信息传输的方法,包括:
用户设备接收第一参考信号和/或第二参考信号;
用户设备根据第一参考信号和第二参考信号确定第一参考信号和第二参考信号之间的传输时延差;或者,根据第一参考信号确定第一传输时延和/或根据第二参考信号确定第二传输时延。
可选的,第一参考信号和第二参考信号所占的资源可以位于相同的带宽部分,或者,不同的带宽部分;和/或,
第一参考信号和第二参考信号所占的资源可以位于相同的载波,或者,不同的载波;和/或,
第一参考信号和第二参考信号所占的资源可以位于相同的服务小区,或者,不同的服务小区。
可选的,第一参考信号的天线端口和第二参考信号的天线端口可以是非准共址的。
可选的,所述方法还包括:
用户设备接收第一指示信息和/或第二指示信息,第一指示信息用于指示第一参考信号用于传输时延的测量,第二指示信息用于指示第二参考信号用于传输时延的测量;
所述用户设备根据第一参考信号和第二参考信号确定第一参考信号和第二参考信号之间的传输时延差包括:
所述用户设备基于第一指示信息和第二指示信息,根据第一参考信号和第二参考信号确定第一参考信号和第二参考信号之间的传输时延差;或者,
所述根据第一参考信号确定第一传输时延和/或根据第二参考信号确定第二传输时延包括:
所述用户设备基于第一指示信息,根据第一参考信号确定第一传输时延,和/或,
所述用户设备基于第二指示信息,根据第二参考信号确定第二传输时延。
可选的,第一指示信息用于指示第一参考信号用于传输时延的测量包括:
所述第一指示信息包括在信道状态信息测量集合域,信道状态信息上报集合域,或者,参考信号资源域中的至少一项中,所述第一指示信息用于指示所述信道状态信息测量集合域,信道状态信息上报集合域,或者,参考信号资源域中的至少一项中所包括的参考信号资源标识中的一个所对应的参考信号为第一参考信号,所述第一参考信号用于传输时延的测量。
示例的,所述第一指示信息可以以资源标识为维度进行指示,如通过包括资源标识信息的域中的字段进行指示,该字段可以为布尔值,或者,可以以时延的测量为维度进行指示,如通过用于时延的测量的域中的字段进行指示,该字段可以为一个或多个资源标识信息,该资源标识信息可以为信道状态信息测量集合标识,资源集合标识,或资源标识。
可选的,第二指示信息用于指示第二参考信号用于传输时延的测量包括:
所述第二指示信息包括在信道状态信息测量集合域,信道状态信息上报集合域,或者,参考信号资源域中的至少一项中,所述第一指示信息用于指示所述信道状态信息测量集合域,信道状态信息上报集合域,或者,参考信号资源域中的至少一项中所包括的参考信号资源标识中的一个所对应的参考信号为第二参考信号,所述第二参考信号用于传输时延的测量。
类似的,所述第二指示信息可以以资源标识为维度进行指示,如通过包括资源标识信息的域中的字段进行指示,该字段可以为布尔值,或者,可以以时延的测量为维度进行指示,如通过用于时延的测量的域中的字段进行指示,该字段可以为一个或多个资源标识信息,该资源标识信息可以为信道状态信息测量集合标识,资源集合标识,或资源标识。
可选的,所述第一参考信号为用于传输时延测量的参考基线,所述第一指示信息还用于指示所述第一参考信号为用于传输时延测量的参考基线。这种情况下,可选的,所述第一指示信息还用于指示所述第一参考信号为用于传输时延测量的参考基线包括:
所述第一指示信息包括在第一信息域中,所述第一信息域用于指示用于传输时延测量的参考基线的信息。
可选的,所述第一信息域还包括除了第一指示信息之外的第三指示信息,所述第三指示信息用于指示用于传输时延测量的另一参考基线的信息。
可选的,所述方法还包括:所述用户设备接收第四指示信息,所述第四指示信息用于 指示第二参考信号用于传输时延的测量时所参考的基线为所述第一参考信号。
可选的,所述第一参考信号为用于传输时延测量的参考基线,所述方法还包括:
所述用户设备接收第五指示信息,所述第五指示信息用于指示所述第一参考信号为用于传输时延测量的参考基线。这种情况下,所述方法还可以包括:所述用户设备接收第四指示信息,所述第四指示信息用于指示第二参考信号用于传输时延的测量时所参考的基线为所述第一参考信号。
可选的,所述方法还包括:
所述用户设备发送所述传输时延差的信息,所述传输时延差的信息包括所述传输时延差的索引,或者,所述传输时延差的量化后的值,或者,所述传输时延差(或者所述传输时延差量化后的值)的函数的值,或者,
所述用户设备发送所述第一传输时延和/或第二传输时延的信息,或者,所述第一传输时延的函数的值和/或第二传输时延的函数的值。
可选的,所述函数可以为傅里叶变换,或者,反傅里叶变换。
可选的,所述方法还包括:
用户设备接收第六指示信息,第六指示信息用于指示传输时延差和/或传输时延的反馈信息,
所述用户设备根据所述第六指示信息发送传输时延差和/或传输时延的信息,
其中,第六指示信息用于指示传输时延差和/或传输时延的反馈信息包括:
所述第六指示信息包括与周期反馈相关的信息,和/或,包括与非周期反馈相关的信息,所述与周期反馈相关的信息包括用于指示周期反馈周期和偏置的信息,所述与非周期反馈相关的信息包括用于指示所述传输时延差和/或传输时延的反馈的开始的信息,反馈次数的信息,用于指示所述传输时延差和/或传输时延的反馈的结束的信息,或者,用于指示一次传输时延差和/或传输时延反馈的开始时刻和结束时刻的信息中的一个或多个,其中,反馈次数的信息用于指示所述传输时延差和/或传输时延的反馈次数。
可选的,所述传输时延差和/或传输时延的信息包括所述传输时延差和/或传输时延的索引,或者,所述传输时延差和/或传输时延的量化后的值。
可选的,所述传输时延差和/或传输时延的信息包括在上行控制信道中,或者,包括在信道状态信息中。
可选的,所述传输时延差和/或传输时延的信息包括在信道状态信息中,所述方法还包括:
用户设备接收第七指示信息,所述第七指示信息用于指示传输时延差和/或传输时延的信息包括在信道状态信息中。
可选的,所述第七指示信息为一种信道状态信息的反馈类型。
第二方面,本发明实施例还提供一种信息传输方法,该方法从无线网络设备的角度描述,可以参考第一方面中提供的信息传输的方法。该方法包括:
无线网络设备发送配置信息,所述配置信息包括与传输时延测量相关的信息;
所述无线网络设备接收来自用户设备的传输时延和/或传输时延差的信息。
可选的,所述配置信息包括第一指示信息和/或第二指示信息,第一指示信息用于指示第一参考信号用于传输时延的测量,第二指示信息用于指示第二参考信号用于传输时延的测量。
可选的,第一指示信息用于指示第一参考信号用于传输时延的测量包括:
所述第一指示信息包括在信道状态信息测量集合域,信道状态信息上报集合域,或者,参考信号资源域中的至少一项中,所述第一指示信息用于指示所述信道状态信息测量集合域,信道状态信息上报集合域,或者,参考信号资源域中的至少一项中所包括的参考信号资源标识中的一个所对应的参考信号为第一参考信号,所述第一参考信号用于传输时延的测量。
具体方式可以参考第一方面中的描述。
可选的,第二指示信息用于指示第二参考信号用于传输时延的测量包括:
所述第二指示信息包括在信道状态信息测量集合域,信道状态信息上报集合域,或者,参考信号资源域中的至少一项中,所述第一指示信息用于指示所述信道状态信息测量集合域,信道状态信息上报集合域,或者,参考信号资源域中的至少一项中所包括的参考信号资源标识中的一个所对应的参考信号为第二参考信号,所述第二参考信号用于传输时延的测量。
具体方式可以参考第一方面中的描述。
可选的,所述第一参考信号为用于传输时延测量的参考基线,所述第一指示信息还用于指示所述第一参考信号为用于传输时延测量的参考基线。
这种情况下,可选的,所述第一指示信息还用于指示所述第一参考信号为用于传输时延测量的参考基线包括:
所述第一指示信息包括在第一信息域中,所述第一信息域用于指示用于传输时延测量的参考基线的信息。
可选的,所述第一信息域还包括除了第一指示信息之外的第三指示信息,所述第三指示信息用于指示用于传输时延测量的另一参考基线的信息。
可选的,所述配置信息还包括第四指示信息,所述第四指示信息用于指示第二参考信号用于传输时延的测量时所参考的基线为所述第一参考信号。
可选的,所述第一参考信号为用于传输时延测量的参考基线,所述配置信息还包括第五指示信息,所述第五指示信息用于指示所述第一参考信号为用于传输时延测量的参考基线。
可选的,所述配置信息还包括第六指示信息,第六指示信息用于指示传输时延差和/或传输时延的反馈信息,
其中,第六指示信息用于指示传输时延差和/或传输时延的反馈信息包括:
所述第六指示信息包括与周期反馈相关的信息,和/或,包括与非周期反馈相关的信息,所述与周期反馈相关的信息包括用于指示周期反馈周期和偏置的信息,所述与非周期反馈相关的信息包括用于指示所述传输时延差和/或传输时延的反馈的开始的信息,反馈次数的信息,用于指示所述传输时延差和/或传输时延的反馈的结束的信息,或者,用于指示一次传输时延差和/或传输时延反馈的开始时刻和结束时刻的信息中的一个或多个,其中,反馈次数的信息用于指示所述传输时延差和/或传输时延的反馈次数。
可选的,所述传输时延差和/或传输时延的信息包括在上行控制信道中,或者,包括在信道状态信息中。
可选的,所述传输时延差和/或传输时延的信息包括在信道状态信息中,所述配置信息还包括第七指示信息,所述第七指示信息用于指示传输时延差和/或传输时延的信息包括在 信道状态信息中。
第三方面,还提供一种装置,包括处理器和存储器,
所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,当处理器执行所述存储器存储的指令时,所述用户设备用于完成如第一方面中所描述的用户设备所涉及的任意一种方法。
可选的,所述装置还可以包括收发器。
可选的,所述装置可以为用户设备,或可被设置于用户设备内的芯片。
第四方面,还提供一种装置,包括处理器和存储器,
所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,当处理器执行所述存储器存储的指令时,所述无线网络设备用于完成如第二方面中所描述的无线网络设备所涉及的任意一种方法。
可选的,所述装置还可以包括收发器。
可选的,所述装置可以为无线网络设备,或可被设置于无线网络设备内的芯片。
第五方面,还提供一种用于信息传输的装置,包括一些模块,用于实现前述用户设备所涉及的任意一种方法。具体模块可以和各方法步骤相对应,在此不予赘述。
第六方面,还提供一种用于信息传输的装置,包括一些模块,用于实现前述无线网络设备所涉及的任意一种方法。具体模块可以和各方法步骤相对应,在此不予赘述。
基于第五方面或第六方面,
在一种可能的设计中,上述装置包括一个或多个处理器和通信单元。所述一个或多个处理器被配置为支持所述装置执行上述方法中无线网络设备相应的功能。所述通信单元用于支持所述装置与其他设备通信,实现接收和/或发送功能。例如,发送配置信息。
可选的,所述装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存无线网络设备必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
所述装置可以为基站,gNB或TRP等,所述通信单元可以是收发器,或收发电路。可选的,所述收发器也可以为输入/输出电路或者接口。
所述装置还可以为通信芯片。所述通信单元可以为通信芯片的输入/输出电路或者接口。
另一个可能的设计中,上述装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行存储器中的计算机程序,使得该装置执行第二方面或第二方面中任一种可能实现方式中无线网络设备完成的方法。
在一种可能的设计中,上述装置包括一个或多个处理器和通信单元。所述一个或多个处理器被配置为支持所述装置执行上述方法中终端设备相应的功能。例如:确定传输时延或传输时延差。所述通信单元用于支持所述装置与其他设备通信,实现接收和/或发送功能。例如,接收第一参考信号和/或第二参考信号。
可选的,所述装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存装置必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
所述装置可以为智能终端或者可穿戴设备等,所述通信单元可以是收发器,或收发电路。可选的,所述收发器也可以为输入/输出电路或者接口。
所述装置还可以为通信芯片。所述通信单元可以为通信芯片的输入/输出电路或者接口。
另一个可能的设计中,上述装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行该存储器中的计算机程序,使得该装置执行第一方面或第一方面中任一种可能实现方式中终端设备完成的方法。
第七方面,还提供一种计算机存储介质,用于存储一些指令,这些指令被执行时,可以完成前述用户设备或无线网络设备所涉及的任意一种方法。
第八方面,还提供一种通信系统,包括前述第三方面提供的用户设备和第四方面提供的无线网络设备。为了便于理解,示例的给出了与部分与本发明相关概念的说明以供参考。如下所示:
第三代合作伙伴计划(3 rd generation partnership project,简称3GPP)是一个致力于发展无线通信网络的项目。通常,将3GPP相关的机构称为3GPP机构。
无线通信网络,是一种提供无线通信功能的网络。无线通信网络可以采用不同的通信技术,例如码分多址(code division multiple access,简称CDMA)、宽带码分多址(wideband code division multiple access,简称WCDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,简称FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single Carrier FDMA,SC-FDMA)、载波侦听多路访问/冲突避免(Carrier Sense Multiple Access with Collision Avoidance)。根据不同网络的容量、速率、时延等因素可以将网络分为2G(generation)网络、3G网络、4G网络或者未来演进网络,如5G网络。典型的2G网络包括全球移动通信系统(global system for mobile communications/general packet radio service,GSM)网络或者通用分组无线业务(general packet radio service,GPRS)网络,典型的3G网络包括通用移动通信系统(universal mobile telecommunications system,UMTS)网络,典型的4G网络包括长期演进(long term evolution,LTE)网络。其中,UMTS网络有时也可以称为通用陆地无线接入网(universal terrestrial radio access network,UTRAN),LTE网络有时也可以称为演进型通用陆地无线接入网(evolved universal terrestrial radio access network,E-UTRAN)。根据资源分配方式的不同,可以分为蜂窝通信网络和无线局域网络(wireless local area networks,WLAN),其中,蜂窝通信网络为调度主导,WLAN为竞争主导。前述的2G、3G和4G网络,均为蜂窝通信网络。
蜂窝通信网络是无线通信网络的一种,其采用蜂窝无线组网方式,在终端设备和网络设备之间通过无线通道连接起来,进而实现用户在活动中可相互通信。其主要特征是终端的移动性,并具有越区切换和跨本地网自动漫游功能。
用户设备(user equipment,UE)是一种终端设备,可以是可移动的终端设备,也可以是不可移动的终端设备。该设备主要用于接收或者发送业务数据。用户设备可分布于网络中,在不同的网络中用户设备有不同的名称,例如:终端,移动台,用户单元,站台,蜂窝电话,个人数字助理,无线调制解调器,无线通信设备,手持设备,膝上型电脑,无绳电话,无线本地环路台,车载设备等。该用户设备可以经无线接入网(radio access network,RAN)(无线通信网络的接入部分)与一个或多个核心网进行通信,例如与无线接入网交换语音和/或数据。
基站(base station,BS)设备,也可称为基站,是一种部署在无线接入网用以提供无线 通信功能的装置。例如在2G网络中提供基站功能的设备包括基地无线收发站(base transceiver station,BTS)和基站控制器(base station controller,BSC),3G网络中提供基站功能的设备包括节点B(英文NodeB)和无线网络控制器(radio network controller,RNC),在4G网络中提供基站功能的设备包括演进的节点B(evolved NodeB,eNB),在WLAN中,提供基站功能的设备为接入点(access point,AP)。在未来5G网络如新无线(New Radio,NR)或LTE+中,提供基站功能的设备包括继续演进的节点B(gNB),TRP(transmission and reception point,收发点),或TP(transmission point,传输点)。其中,TRP或TP可以不包括基带部分,仅包括射频部分,也可以包括基带部分和射频部分。
无线设备,是指位于无线通信网络中的可以通过无线方式进行通信的设备。该设备可以是基站,也可以是用户设备,还可以是其他网元。
网络侧设备,是指位于无线通信网络中位于网络侧的设备,可以为接入网网元,如基站或控制器(如有),或者,也可以为核心网网元,还可以为其他网元。
NR(新无线,new radio),是指新一代无线接入网络技术,可以应用在未来演进网络,如5G网络中。
无线局域网络(wireless local area networks,WLAN),是指采用无线电波作为数据传送媒介的局域网,传送距离一般只有几十米。
RRC(radio resource control):无线资源控制
RRC处理UE和无线接入网之间控制平面的第三层信息。通常包含以下功能中的至少一项:
广播核心网非接入层提供的信息。RRC负责网络系统信息向UE的广播。系统信息通常情况下按照一定的基本规律重复,RRC负责执行计划、分割和重复。也支持上层信息的广播。
将广播信息关联到接入层。RRC负责网络系统信息向UE的广播。系统信息通常情况下按照一定的基本规律重复,RRC负责执行计划、分割和重复。
建立、重新建立、维持和释放在UE和无线接入网之间的RRC连接。为了建立UE的第一个信号连接,由UE的高层请求建立一个RRC的连接。RRC连接建立过程包括可用小区的重新选择、接入许可控制以及2层信号链路的建立几个步骤。RRC连接释放也是由高层请求,用于拆除最后的信号连接;或者当RRC链路失败的时候由RRC本层发起。如果连接失败,UE会要求重新建立RRC连接。如果RRC连接失败,RRC释放已经分配的资源。
随着网络的演进,RRC的功能也可能有所变化,此处的描述不作为限定。
附图说明
图1a和图1b为CoMP场景的示意图;
图2为一种可能的系统网络的示意图;
图3为本发明实施例提供的一种信息传输方法的流程示意图;
图4a为本发明实施例提供的用于信息传输的装置(如用户设备)的示意图;
图4b为本发明实施例提供的一种用户设备的结构示意图;
图5a为本发明实施例提供的另一用于信息传输的装置(如无线网络设备)的示意图;
图5b为本发明实施例提供的一种无线网络设备的结构示意图;
图6为本发明实施例提供的系统带宽的带宽资源的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如本申请所使用的,术语“组件”、“模块”、“系统”等等旨在指代计算机相关实体,该计算机相关实体可以是硬件、固件、硬件和软件的结合、软件或者运行中的软件。例如,组件可以是,但不限于是:在处理器上运行的处理、处理器、对象、可执行文件、执行中的线程、程序和/或计算机。作为示例,在计算设备上运行的应用和该计算设备都可以是组件。一个或多个组件可以存在于执行中的过程和/或线程中,并且组件可以位于一个计算机中以及/或者分布在两个或更多个计算机之间。此外,这些组件能够从在其上具有各种数据结构的各种计算机可读介质中执行。这些组件可以通过诸如根据具有一个或多个数据分组(例如,来自一个组件的数据,该组件与本地系统、分布式系统中的另一个组件进行交互和/或以信号的方式通过诸如互联网之类的网络与其它系统进行交互)的信号,以本地和/或远程过程的方式进行通信。
此外,本申请结合无线网络设备来描述各个方面,其中,无线网络设备为无线设备的一种,无线设备还可以为终端设备。该无线网络设备可以为基站,基站可以用于与一个或多个用户设备进行通信,也可以用于与一个或多个具有部分用户设备功能的基站进行通信(比如宏基站与微基站,如接入点,之间的通信);该无线设备还可以为用户设备,用户设备可以用于一个或多个用户设备进行通信(比如D2D通信),也可以用于与一个或多个基站进行通信。用户设备还可以称为用户终端,并且可以包括系统、用户单元、用户站、移动站、移动无线终端、移动设备、节点、设备、远程站、远程终端、终端、无线通信设备、无线通信装置或用户代理的功能中的一些或者所有功能。用户设备可以是蜂窝电话、无绳电话、会话发起协议(SIP)电话、智能电话、无线本地环路(WLL)站、个人数字助理(PDA)、膝上型计算机、手持式通信设备、手持式计算设备、卫星无线设备、无线调制解调器卡和/或用于在无线系统上进行通信的其它处理设备。基站还可以称为接入点、节点、节点B、演进节点B(eNB)、gNB、收发点(TRP),传输点(TP)或某种其它网络实体,并且可以包括以上网络实体的功能中的一些或所有功能。基站可以通过空中接口与无线终端进行通信。该通信可以通过一个或多个扇区来进行。基站可以通过将所接收的空中接口帧转换成IP分组,来用作无线终端和接入网络的其余部分之间的路由器,其中所述接入网络包括互联网协议(IP)网络。基站还可以对空中接口属性的管理进行协调,并且还可以是有线网络和无线网络之间的网关。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本发明实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本发明实施例中,信息(information),信号(signal),消息(message),信道(channel)有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的 是,在不强调其区别时,其所要表达的含义是一致的。
本发明实施例中,有时候下标如W 1可能会笔误为非下标的形式如W1,在不强调其区别时,其所要表达的含义是一致的。
本发明实施例描述的网络架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
本发明实施例既可以应用于时分双工(time division duplex,TDD)的场景,也可以适用于频分双工(frequency division duplex,FDD)的场景。
图2示出了本发明实施例的一种可能的系统网络示意图。如图2所示,至少一个用户设备UE10与无线接入网(radio access network,RAN)进行通信。所述RAN包括至少一个基站20(base station,BS),为清楚起见,图中只示出一个基站和一个UE。所述RAN与核心网络(core network,CN)相连。可选的,所述CN可以耦合到一个或者更多的外部网络(external network),例如英特网,公共交换电话网(public switched telephone network,PSTN)等。
本发明实施例既可以应用在传统的典型网络中,也可以应用在未来的以UE为中心(UE-centric)的网络中。UE-centric网络引入无小区(Non-cell)的网络架构,即在某个特定的区域内部署大量小站,构成一个超级小区(Hyper cell),每个小站为Hyper cell的一个传输点(Transmission Point,TP)或TRP,并与一个集中控制器(controller)相连。当UE在Hyper cell内移动时,网络侧设备时时为UE选择新的sub-cluster(子簇)为其服务,从而避免真正的小区切换,实现UE业务的连续性。其中,网络侧设备包括无线网络设备。
如图1a和图1b中所示的,不同基站到达UE的传输时延不同,会导致传输性能的下降。
有鉴于此,本发明实施例提供一种信息传输方法,使得不同基站到达UE的传输时延差可测,从而使得基站可以从UE接收传输时延差,并根据传输时延差进行相应的相位调整,使得与同一个UE进行传输的基站的传输时延差在可接受范围内,如小于预设的门限值,进而提高传输性能。
本发明实施例中不同基站可以为具有不同的标识的基站,也可以为具有相同的标识的被部署在不同地理位置的基站。由于在基站被部署前,基站并不会知道其是否会涉及本发明实施例所应用的场景,因而,基站,或基带芯片,都应在部署前就支持本发明实施例所提供的方法。可以理解的是,前述具有不同标识的基站可以为基站标识,也可以为小区标识或者而其他标识。也就是说,本发明实施例中的不同无线网络设备,如基站,主要指的是会导致到达UE的传输时延不同的无线网络设备,通常为射频单元被部署在不同地理位置的无线网络设备。
本发明实施例中部分场景以无线通信网络中4G网络的场景为例进行说明,应当指出的是,本发明实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
需指出的是,本发明实施例中的方法或装置可以应用于无线网络设备和用户设备之间,也可以应用于无线网络设备和无线网络设备(如宏基站和微基站)之间,还可以应用于用户设备和用户设备(如D2D场景)之间,在本发明所有实施例中,以无线网络设备和UE之间的通信为例进行描述。
图3为本发明实施例提供一种信息传输方法的流程,如图3所示,包括:
S1.UE接收第一参考信号,并根据所述第一参考信号获得第一传输时延。
示例的,UE从第二无线网络设备接收第一参考信号。
可选的,第一参考信号可以为协议预定义的用于传输时延测量的参考信号,这样,UE就无需根据配置信息来确定哪个信号用于传输时延的测量。
可选的,UE根据配置信息来确定第一参考信号为用于传输时延的测量的参考信号。
示例的,如S00所示,UE从第一无线网络设备接收所述配置信息。
可选的,第一无线网络设备可以与第二无线网络设备为同一无线网络设备,也可以为不同的无线网络设备。比如,第一无线网络设备为UE的服务小区所归属的无线网络设备,而第二无线网络设备为UE的非服务小区所归属的无线网络设备。可选的,第一无线网络设备和第二无线网络设备可以共用基带单元,而具有不同的射频单元,比如可以被部署在不同地理位置上的射频单元。第一无线网络设备和第二无线网络设备也可以既不共用基带单元,又不共用射频单元。
示例的,UE可以从第一无线网络设备接收同步信号或参考信号(UE和第一无线网络设备达到同步状态),并通过UE的接收机接收第一参考信号。由于第一参考信号的序列为UE所已知的,通过UE的接收机的调整,UE可以获得正确接收第一参考信号所需的调整,进而获知第一参考信号的传输时延。
可选的,第一参考信号和第二参考信号所占的资源可以位于相同的带宽部分,或者,不同的带宽部分;
可选的,第一参考信号和第二参考信号所占的资源可以位于相同的载波,或者,不同的载波;
可选的,第一参考信号和第二参考信号所占的资源可以位于相同的服务小区,或者,不同的服务小区。
可选的,不同的带宽部分的帧结构可以相同,也可以不同。
所述带宽部分(bandwidth part,BWP)可以是系统带宽的一部分。带宽部分可以包括连续的或者不连续的的至少一个子载波。带宽部分也可以称为带宽资源,载波带宽部分(carrier bandwidth part),频率资源部分,部分频率资源,载波带宽部分,子带(subband),窄带(narrowband)或者其它名称。例如,图6所示为系统带宽中的带宽资源的示意图,系统带宽中包括带宽资源0、带宽资源1和带宽资源2共3个不同的带宽资源,所述带宽部分可以是带宽资源0、带宽资源1和带宽资源2中的一个。实际应用中,系统带宽可以包括M个带宽资源,M为大于或等于1的整数。对于不同的带宽资源,以带宽资源0和带宽资源1为例,带宽资源0与1的频域资源可以部分或全部重叠,或完全不重叠。示例性地,在基于正交频分复用技术(orthogonal frequency division multiplexing,OFDM)的通信系统中,带宽资源0和带宽资源1的频域资源完全重叠,但是帧结构(比如子载波间隔和/或CP长度)不同,本申请实施例对此不作限定。
可选的,第一参考信号的天线端口和第二参考信号的天线端口可以是非准共址的。
两个天线端口之间具有准共址(quasi co-located,QCL)关系,指的是,一个天线端口的信道大尺度参数可以通过另一个天线端口得到的(conveyed)信道大尺度参数而推知(infer)。大尺度参数可以包括平均增益(average gain),平均时延(average delay),时延扩展(delay spread),多普勒频移(Doppler shift),多普勒扩展(Doppler spread),空间参数(spatial parameter,或,spatial Rx parameters)中的一项或多项。
其中,空间参数可以包括到达角(angle of arrival,AOA)、主到达角(dominant AoA)、平均到达角(average AoA)、出发角(angle of departure,AOD)、信道相关矩阵,到达角的功率角度扩展谱,平均出发角(average AoD)、出发角的功率角度扩展谱、发射信道相关性、接收信道相关性、发射波束成型、接收波束成型、空间信道相关性、空间滤波器,或,空间滤波参数,或,空间接收参数,或,权值信息等中的一项或多项。
在一种可能的实施方式中,S11,UE发送获得的第一传输时延的信息。
可以理解的,第一传输时延的信息可以为第一传输时延所对应的传输时延的索引,也可以为所对应的量化后的信息,在此不予赘述。第一传输时延的信息与第一传输时延之间的对应关系可以预先存储于UE和无线网络设备侧,从而减少传输时延传输所需的开销。
示例的,UE向第一无线网络设备和/或第二无线网络设备发送第一传输时延的信息。这样,第一无线网络设备和/或第二无线网络设备可以根据第一传输时延的信息进行相位的调整。这样,可以使得第二无线网络设备与第一无线网络设备都向UE传输数据(包含信令)的情况下,UE收到的来自第一无线网络设备和来自第二无线网络设备的数据的传输时延可以小于预设的门限值,进而提高传输性能。可选的,UE未向第二无线网络设备发送第一传输时延的信息的情况下,可以由第一无线网络设备向第二无线网络设备发送所述第一传输时延的信息,进而使得第二无线网络设备根据所述第一传输时延的信息对相位进行调整。
可选的,S2,UE可以接收第二参考信号。示例的,从第三无线网络设备接收第二参考信号。UE根据第二参考信号获得第二传输时延。
可选的,第二参考信号可以为协议预定义的用于传输时延测量的参考信号,这样,UE就无需根据配置信息来确定哪个信号用于传输时延的测量。
可选的,UE根据配置信息来确定第二参考信号为用于传输时延的测量的参考信号。
示例的,如S00所示,UE从第一无线网络设备接收所述配置信息。
S2与S1类似,可以参考S1中的描述,在此不予赘述。
可以理解的是,第二参考信号和第一参考信号可以是相同种类的参考信号,比如,都是用于信道状态信息获取的参考信号,如信道状态信息参考信号CSI-RS,也可以是不同种类的参考信号,比如,一个是用于信道状态信息获取的参考信号,而另一个是用于解调的参考信号,如解调参考信号DMRS。
可选的,第三无线网络设备与第一无线网络设备或第二无线网络设备可以共用基带单元,而具有不同的射频单元,比如可以被部署在不同地理位置上的射频单元。第三无线网络设备与第一无线网络设备或第二无线网络设备也可以既不共用基带单元,又不共用射频单元。
在一种可能的实施方式中,S211,UE可以发送第二传输时延的信息。比如,向第一无线网络设备和/或第三无线网络设备发送第二传输时延的信息。可以理解的,第二传输时延的信息可以为第二传输时延所对应的传输时延的索引,也可以为所对应的量化后的信息,在此不予赘述。第二传输时延的信息与第二传输时延之间的对应关系可以预先存储于UE和无线网络设备侧,从而减少传输时延传输所需的开销。
这样,通过第一传输时延和/或第二传输时延的获得及第一传输时延的信息和/或第二传输时延的信息的传输,可以使得第二无线网络设备和/或第三无线网络设备可以进行相应的相位调整,进而使得第一,第二和第三无线网络设备中的任意两个或三个在与UE进行通信的过程中,传输时延差可以小于一门限值,达到接近理论上的同时到达UE的效果。
在另一种可能的实施方式中,S3,UE根据第一传输时延和第二传输时延获得传输时延差。
可选的,S31,UE发送所述传输时延差的信息。
示例的,UE可以向第一,第二和第三无线网络设备中的至少一个发送传输时延差的信息,从而使得第一,第二和第三无线网络设备中的至少一个可以根据传输时延差的信息进行相位的调整,进而使得第一,第二和第三无线网络设备中的任意两个或三个在与UE进行通信的过程中,传输时延差可以小于一门限值,达到接近理论上的同时到达UE的效果。
可以理解的是,传输时延差的信息可以为传输时延差的索引,也可以为传输时延差经量化后的信息,在此不予赘述。传输时延差的信息与传输时延差之间的对应关系可以预先存储于UE和无线网络设备侧,从而减少传输时延传输所需的开销。
可选的,UE可以根据S00中所包括的配置信息获知第一参考信号和/或第二参考信号用于用于传输时延和/或传输时延差的获得。
可以理解的是,图3中的步骤之间的前后并不表示各步骤的先后关系,比如,S1和S2可以同时进行,也可以不同时进行,S00可以在其他步骤之前,也可以夹杂在其他步骤之间进行,S00可以包括在一次配置中,也可以包括在多次配置中,这多次配置的时间可以根据实际系统需要进行,在本发明实施例中不予限定。
示例的,配置信息中可以包括第一指示信息和/或第二指示信息,其中,第一指示信息用于指示第一参考信号用于传输时延的测量(如UE基于第一参考信号获得传输时延差和/或传输时延),第二指示信息用于指示第二参考信号用于传输时延的测量(如UE基于第二参考信号获得传输时延差和/或传输时延)。
为了描述的简练,以下实施例中的S00中的配置信息在描述中有时仅以传输时延差的获得和/或反馈为例进行描述,可以理解的是,相应的配置信息也可以用于传输时延的获得和/或反馈,即将传输时延差替换为第一或第二传输时延即可,在此不予赘述。
可选的,第一指示信息用于指示第一参考信号用于传输时延的测量包括:
所述第一指示信息包括在信道状态信息测量集合域,信道状态信息报告集合域,或者,参考信号资源域中的至少一项中,所述第一指示信息用于指示所述信道状态信息测量集合域,信道状态信息报告集合域,或者,参考信号资源域中的至少一项中所包括的参考信号资源标识中的一个所对应的参考信号为第一参考信号,所述第一参考信号用于传输时延的测量。
示例的,可以在信道状态信息测量集合域(CSI measurement setting)中配置时延测量信息域(Time-delay-Config),即第一指示信息。
比如,可以在时延测量信息域中包括资源集合标识(resource setting ID),CSI测量集合ID(CSI measurement setting ID),资源ID(resource ID)中的一种或多种。其中,CSI measurement setting ID是指用于进行CSI测量的集合的配置信息对应的标识,resource setting ID是指资源集合的配置信息对应的标识,资源集合可以包括用于信道测量的资源和/或用于干扰测量的资源,资源ID为资源的配置信息对应的标识。示例的,UE可以被配置N≥1个CSI上报集合(reporting setting),M≥1个资源集合和1个CSI measurement setting,其中,CSI measurement setting可以包括L≥1条链路。其中,每个CSI reporting setting至少包括:上报的CSI参数,CSI类型(I或II)(如果上报的话),码本配置(包括码本子集约束),时域行为,用于CQI(信道质量信息,channel quality indicator)和PMI(预编码矩阵信息,precoding matrix  indicator)的频率间隔,测量约束配置等。每个资源集合中可以包括:S≥1个CSI-RS资源集合的配置(其中,不同集合对应于从所有配置给UE的CSI-RS资源池中的不同选择)。每个集合中的Ks≥1个CSI-RS资源的配置至少包括:资源元素(resource element,RE)的映射,端口数,时域行为等。CSI measurement setting中的L条链路中的每条都具有:CSI reporting setting指示,resource setting指示,需测量的质量信息(如是信道还是干扰),其中,一个CSI reporting集合可以和一个或多个resource setting相关联,多个CSI reporting集合可以和同一个resource setting相关联。
可选的,上述CSI measurement setting,resource setting和resource可以通过在配置信息中的固定位置来使得UE获知所接收到的信息是什么信息,也可以通过他们的ID的不同来获知所接收到的信息是什么信息。
具体的,一种可能的Time-delay-Config的描述如下:
Time-delay-Config SEQUENCE(SIZE(1..2))OF resource ID
and/or SEQUENCE(SIZE(1..2))OF resource setting ID
and/or SEQUENCE(SIZE(1..2))OF CSI measurement setting ID
可以理解的是,一个resource setting ID可以包括一个或者多个资源ID,如果resource setting域中包括多个资源ID,可以预定义采用最小的ID或者通过其他指示信息指示该域中具体的资源ID用于传输时延测量,比如指示resource setting ID时增加索引index指示,该index指示用于指示该resource setting ID中的第几个资源用于进行传输时延测量,或者,指示resource setting ID下的source ID。类似的,一个CSI measurement setting ID也可以包括一个或多个resource setting ID,也可以通过预定义或其他指示信息来使UE确定具体的用于传输时延测量的资源。
比如resource setting ID中包括的resource ID为2,3,5。则当index为1时,表示第一个resource,即resource ID为2对应的RS resource;当index为2时,表示第二个resource,即resource ID为3对应的resource;以此类推。或者当index为0时,表示第一个resource,即resource ID为2对应的resource;当index为1时,表示第二个resource,即RS resource ID为3对应的resource;以此类推。
类似的,第二指示信息用于指示第二参考信号用于传输时延的测量包括:
所述第二指示信息包括在信道状态信息测量集合域,信道状态信息报告集合域,或者,参考信号资源域中的至少一项中,所述第一指示信息用于指示所述信道状态信息测量集合域,信道状态信息报告集合域,或者,参考信号资源域中的至少一项中所包括的参考信号资源标识中的一个所对应的参考信号为第二参考信号,所述第二参考信号用于传输时延的测量。
第二指示信息具体如何指示可以参考前述第一指示信息的指示方式,在此不予赘述。
可以理解的是,第一指示信息和第二指示信息可以包括在同一个Time-delay-Config中时,可以通过预定义或固定位置或指示信息区分是第一指示信息还是第二指示信息。第一指示信息和第二指示信息也可以包括在不同的Time-delay-Config中,这时可以通过不同的Time-delay-Config的固定位置来使UE区分第一指示信息和第二指示信息,也可以通过不同的Time-delay-Config ID来进行区分,在此不予赘述。
在传输时延差测量的情况下,一种可能的实施方式中,所述第一参考信号为用于传输时延测量的参考基线。
这种方式下,获知第一参考信号和/或第二参考信号用于传输时延的获得的方式可以为:
方式一,所述第一指示信息还用于指示所述第一参考信号为用于传输时延测量的参考基线。
这种方式下,所述第一指示信息还用于指示所述第一参考信号为用于传输时延测量的参考基线可以包括:
所述第一指示信息包括在第一信息域中,所述第一信息域用于指示用于传输时延测量的参考基线的信息。
可选的,所述第一信息域还包括除了第一指示信息之外的第三指示信息,所述第三指示信息用于指示用于传输时延测量的另一参考基线的信息。
用于传输时延测量的参考基线的信息的配置可以通过高层信令如RRC信令或MAC(media access control)信令进行指示,也可以通过物理层信令,如DCI信令,进行指示。也可以通过高层信令和物理层信令共同指示的方式,比如,通过高层信令进行多种配置的指示,通过物理层信令使能其中的一种或多种配置。比如,通过使能第一参考信号作为用于传输时延测量的参考基线使UE获知传输时延测量的参考基线为第一参考信号。
在使能的参考基线为一个时,所述配置信息可以不用另行指示第二参考信号用于传输时延的测量时所参考的基线为哪个资源的信号了。
在使能的参考基线或指示的参考基线有一个或多于一个的情况下,所述配置信息还可以包括第四指示信息,所述第四指示信息用于指示第二参考信号用于传输时延的测量时所参考的基线为所述第一参考信号,或者,前述第二指示信息还用于指示第二参考信号用于传输时延的测量时所参考的基线为所述第一参考信号。
示例的,第一信息域可以为时延基线Time-delay-baseline域,该域可以包括资源集合标识(resource setting ID),CSI测量集合ID(CSI measurement setting ID)或者资源ID(resource ID)中的一个或多个。第一信息域包括所述第一指示信息,这样,第一指示信息可以用于指示第一参考信号可以为用于传输时延(差)测量的参考基线的信息。第一指示信息可以为所述第一参考信号的资源ID,或者,第一参考信号所属的资源集合ID,或者,第一参考信号所属的CSI measurement setting ID,或者,它们中的一个或多个的组合。具体可以参考前述Time-delay-Config域的描述。
第一信息域的配置可以与具体的第一参考信号的配置信息(如第一参考信号的时域行为,端口数等)一起传输,也可以分开传输。
UE可以通过第一信息域获得用于传输时延测量的参考基线。
UE还可以通过CSI measurement setting中的指示信息,或者,前述Time-delay-Config域中的信息获知需要进行传输时延差的上报,和/或,获知需要针对第二参考信号进行传输时延差的测量和/或反馈。这样,UE可以根据第二参考信号以及对应的参考基线,获得二者的传输时延差,进而上报该传输时延差的信息。
可选的,无线网络设备也可以配置多个参考基线,比如每个参考基线可以增加一个标识信息。在CSI measurement setting中或前述Time-delay-Config域中指示第二参考信号的参考基线是哪个,进而UE可以进行对应的测量和上报。
参考基线的配置方法举例如下,其中,time-delay-baselineConfigID为时延基线配置标识域,Time-delay-baselineConfigID可以为具体的标识值,比如0,1,2,3,…,可以是自然数或 者正整数。Time-delay-baseline-resource为基线参考资源信息域。
Time-delay-baseline={
time-delay-baselineConfigID Time-delay-baselineConfigID
Time-delay-baseline-resource resource setting ID or resource ID or CSI measurement setting ID
}
Time-delay-baseline={
time-delay-baselineConfigID Time-delay-baselineConfigID
Time-delay-baseline-resource resource setting ID or resource ID or CSI measurement setting ID
}
或者可以多个配置信息放在一起,比如:
Time-delay-baseline={
time-delay-baselineConfigID Time-delay-baselineConfigID
Time-delay-baseline-resource resource setting ID or resource ID or CSI measurement setting ID
time-delay-baselineConfigID Time-delay-baselineConfigID
Time-delay-baseline-resource resource setting ID or resource ID or CSI measurement setting ID
}
或者
Time-delay-baseline={
time-delay-baselineConfigIDList sequence(SIZE(2..8))of Time-delay-baselineConfigID
Time-delay-baseline-resourceList sequence(SIZE(2..8))of resource setting ID or resource ID or CSI measurement setting ID
}
可选的,CSI measurement setting中配置举例如下,其中resouce-settingIDConfig用于指示资源集合ID,CSI-reporting-settingIDConfig用于指示CSI上报(或反馈)集合ID,time-delay-baselineConfigID用于指示时延参考基线的配置ID,time-delay-baseline用于指示时延参考基线ID。
CSI measurement setting Config={
resouce-settingIDConfig sequence(SIZE(1..8))of resource-setting ID
CSI-reporting-settingIDConfig sequence(SIZE(1..8))of CSI-reporting-settingID
time-delay-baselineConfigID Time-delay-baselineConfigID
or time-delay-baseline resource setting ID or resource ID or CSI measurement setting ID
}
通过以上配置,UE可以获知第二参考信号用于传输时延的测量(具体第二参考信号可以为CSI measurement setting内的哪个资源,可以通过协议预定义或指示信息另行指示,请参考前述第二指示信息的描述,在此不予赘述),以及第二参考信号所对应的资源信息,还可以获知第二参考信号用于传输时延的测量时所参考的时延基准。这样,UE就可以进行传输 时延差的测量,进而进行传输时延差的信息的上报。可以理解的是,上述配置中第二指示信息可以为所述time-delay-baselineConfigID或time-delay-baseline,也就是说,第二指示信息既用于指示第二参考信号所对应的资源信息,也用于指示第二参考信号用于传输时延的测量时所参考的时延基准。可选的,第二指示信息还可以触发所述第二参考信号所对应的传输时延差的测量和/或上报。
具体的,配置多个参考基准的应用场景可能为:
协作集中包括多个小区或者每个小区包括多个波束时,为了便于测量协作传输时实际传输的小区间的时延差或者多个波束间的时延差,可以考虑配置多个参考基线。比如协作小区为1,2,3,4,5,6时,假设可能协作传输的小区组合为(1,2)、(1,3)、(4,5)、(4,6)。此时可以配置时延基线1为小区1发送的资源信息,时延基线2为小区4的资源信息。进一步只需要测量小区2和小区1,小区3和小区1,小区5与小区4,小区6与小区4的传输时延差中的至少一个即可。这样可以避免测量不必要的传输时延差,比如小区4与小区1,小区5与小区1,小区6与小区1的传输时延差,减少开销。
比如假设CSI measurement setting 2为小区2对应的测量配置信息,CSI measurement setting 3为小区3对应的测量配置信息,CSI measurement setting 5为小区5对应的测量配置信息,CSI measurement setting 6为小区6对应的测量配置信息。则时延基线配置信息可以如下:
CSI measurement setting Config={
CSI-measurement-settingIDconfig CSI measurement setting ID=2
resouce-settingIDConfig sequence(SIZE(1..8))of resouce-setting ID
CSI-reporting-settingIDConfig sequence(SIZE(1..8))of CSI-reporting-settingID
time-delay-baselineConfigID Time-delay-baselineConfigID=1
}
CSI measurement setting Config={
CSI-measurement-settingIDconfig CSI measurement setting ID=5
resource-settingIDConfig sequence(SIZE(1..8))of resource-setting ID
CSI-reporting-settingIDConfig sequence(SIZE(1..8))of CSI-reporting-settingID
time-delay-baselineConfigID Time-delay-baselineConfigID=4
}
可选的,上述时延基线配置也可以放在resource setting或者CSI reporting setting域中,
具体举例如下:
Resource setting Config={
Resource-settingIDConfig sequence(SIZE(1..8))of Resource-setting ID
Resource IDConfig sequence(SIZE(1..8))of Resource-ID
time-delay-baselineConfigID Time-delay-baselineConfigID=4
}
CSI reporting setting Config={
CSI reporting-settingIDConfig sequence(SIZE(1..8))of CSI reporting-setting ID
time-delay-baselineConfigID Time-delay-baselineConfigID=4
}
方式二,所述配置信息还包括第五指示信息,所述第五指示信息用于指示所述第一参考信号为用于传输时延测量的参考基线。
用于传输时延测量的参考基线的信息的配置可以通过高层信令如RRC信令或MAC(media access control)信令进行指示,也可以通过物理层信令,如DCI信令,进行指示。也可以通过高层信令和物理层信令共同指示的方式,比如,通过高层信令进行多种配置的指示,通过物理层信令使能其中的一种或多种配置。比如,通过使能第一参考信号作为用于传输时延测量的参考基线使UE获知传输时延测量的参考基线为第一参考信号,比如前述第五指示信息用于所述使能。
在使能的参考基线为一个时,所述配置信息可以不用另行指示第二参考信号用于传输时延的测量时所参考的基线为哪个资源的信号了。
在使能的参考基线或指示的参考基线有一个或多于一个的情况下,所述配置信息还可以包括第四指示信息,所述第四指示信息用于指示第二参考信号用于传输时延的测量时所参考的基线为所述第一参考信号,或者,前述第二指示信息还用于指示第二参考信号用于传输时延的测量时所参考的基线为所述第一参考信号。
示例的,可以在前述Time-delay-Config域中对应第一参考信号的资源域增加第五指示信息,如time-delay-baseline字段,该字段为1时,表示第一参考信号用作时延基准,为0时,表示第一参考信号不用做时延基准。还可以在对应第二参考信号的资源域中增加第四指示信息,所述第四指示信息可以为time-delay-baseline字段,该字段中的标识,可以指示第二参考信号用于传输时延的测量时所参考的基线,比如为第一参考信号的资源标识。
可选的,UE可以根据S00中所包括的配置信息进行传输时延和/或传输时延差的信息的反馈。
具体的,所述配置信息可以包括第六指示信息,第六指示信息用于指示传输时延和/或传输时延差的反馈信息。
可选的,所述传输时延或传输时延差的获得和/或反馈可以为周期的,也可以非周期的。以下以传输时延差为例进行描述,可以理解的是,以下描述也可以应用于传输时延。
周期的情况下,第六指示信息用于指示传输时延差的反馈信息包括:
所述第六指示信息可以包括与周期反馈相关的信息,所述与周期反馈相关的信息包括用于指示周期反馈周期和偏置的信息。
与周期反馈相关的信息可以通过高层信令如RRC信令或MAC(media access control)信令进行指示,也可以通过物理层信令,如DCI信令,进行指示。也可以通过高层信令和物理层信令共同指示的方式,比如,通过高层信令进行多种配置的指示,通过物理层信令使能其中的一种或多种配置。
具体的,用于指示周期反馈周期和偏置的信息可以为一标识信息,该标识信息对应一个周期反馈周期和偏置,或者,用于指示周期反馈周期和偏置的信息也可以为周期反馈周期的信息和周期反馈偏置的信息,也可以为其他方式,在此不予赘述。UE根据该第六指示信息可以获知周期反馈的周期和偏置,进而进行相应的反馈。
示例的,以I time_delay表示前述对应一个周期反馈周期和偏置的标识,N pd表示周期反馈 的周期,N OFFSET表示周期反馈的偏置为例,具体的上报时刻可以满足以下举例的方式:
Figure PCTCN2018074292-appb-000001
其中,n f为反馈的包括1个或多个时隙的时间单元的编号,如子帧号,n s为反馈的时隙号。N ns表示一个前述时间单元中包括的时隙个数。
以LTE系统为例,在LTE中一个无线帧包括10个子帧。一个子帧包括2个时隙,时隙编号为0到19的整数。无线帧的编号为0到1023。子帧的编号为0到9的整数。I time_delay与N pd和N OFFSET的关系可以如下表一所示:
表一(单位为子帧)
Figure PCTCN2018074292-appb-000002
以NR系统为例,当子载波间隔为60kHz时,2个时隙slot构成一个更大的时间单位,如一个子帧subframe(也可称为其他时间单元的名称),每个时隙可以包括4个微时隙mini-slot,每个微时隙可以包括7个符号。具体的上报时刻可以满足以下举例的方式:
Figure PCTCN2018074292-appb-000003
其中,n f为反馈的包括1个或多个时隙的时间单元的编号,如子帧号,n s为反馈的时隙号。N ns表示一个前述时间单元中包括的时隙个数。
或者,具体的上报时刻可以满足以下举例的方式:
Figure PCTCN2018074292-appb-000004
其中,n f为反馈的包括1个或多个时隙的时间单元的编号,如子帧号,n s为反馈的时隙号,n mini-s为反馈的微时隙号。N ns表示一个前述时间单元中包括的时隙个数。N minis表示一个时隙中包括的微时隙个数。
或者,具体的上报时刻可以满足以下举例的方式:
Figure PCTCN2018074292-appb-000005
其中,n f为反馈的包括1个或多个时隙的时间单元的编号,如子帧号,n minis为反馈的微时隙号。N minis-s表示一个前述时间单元中包括的微时隙个数。
比如:在NR中一个无线帧包括10个子帧。一个子帧包括2个时隙,时隙编号为0到19的整数。微时隙编号为0到79的整数。无线帧的编号为0到1023。子帧的编号为0到9的整数。I time_delay与N pd和N OFFSET的关系可以如下表二所示:
表二
(N pd的取值单位可以是某个时间单位,如子帧,时隙,微时隙等,N OFFSET的取值单位可以是某个时间单位,如子帧,时隙或者微时隙等,两者的取值单位可以相同也可以不同)
Figure PCTCN2018074292-appb-000006
非周期的情况下,第六指示信息用于指示传输时延差的反馈信息可以包括:
所述第六指示信息包括与非周期反馈相关的信息,所述与非周期反馈相关的信息可以包括用于指示所述传输时延差的反馈的开始的信息,反馈次数的信息,用于指示所述传输时延差的反馈的结束的信息,用于指示一次传输时延差反馈的开始时刻和结束时刻的信息等信息中的一个或多个。其中,反馈次数的信息用于指示所述传输时延差的反馈次数。
与非周期反馈相关的信息可以通过高层信令如RRC信令或MAC(media access control)信令进行指示,也可以通过物理层信令,如DCI信令,进行指示。也可以通过高层信令和物理层信令共同指示的方式,比如,通过高层信令进行多种配置的指示,通过物理层信令使能其中的一种或多种配置。
示例的,通过RRC信令进行指示,具体的,可以指示反馈的时频域资源信息,该时频域资源信息也可以是协议预定义的,比如,最后一个符号,或者频域上的第一个PRB或者最后一个PRB等,前述指示反馈的时频域资源信息也可以通过DCI信令进行指示。
可选的,还可以通过DCI信令发送用于指示所述传输时延差的反馈的开始的信息(也可以简称为触发信息),UE接收到该触发信息后可以在规定的时刻进行反馈,比如默认在若干个子帧后进行反馈,如4个子帧。
具体的,可以在DCI中配置传输时延的触发信息,比如通过1bit指示需要UE上报传输时延。
可选的,还可以基于RRC信令中的配置触发传输时延(或传输时延差)的测量和/或上报。
比如,在PUCCH中反馈传输时延和/或传输时延差的信息,可以通过指示PUCCH的传输格式,如格式4用于指示传输时延(或传输时延差)的测量和/或上报,触发UE进行传输时延(或传输时延差)的测量和/或上报;或者,在CSI中反馈传输时延或传输时延差的信息,可以通过指示CSI的反馈type,如type 10用于指示支持传输时延(或传输时延差)的测量和/或上报,触发UE进行传输时延(或传输时延差)的测量和/或上报,其中,传输时延或传输时延差的信息可以与CSI联合编码,比如和PMI和CQI联合编码后进行上报,也可以独立编码,比如独立编码后与RI一起上报,或者,独立编码后独立上报(即与CSI的上报不复用时域或频域资源)。
可选的,非周期反馈的次数为多次的情况下,可以在RRC信令或者DCI中指示反馈的开始时刻和结束时刻。指示反馈的开始时刻和结束时刻的方式可以为以下方式中的一种或多种:
方式一,触发信息触发UE反馈多次,比如触发一次UE反馈5次,这里的反馈次数可以是协议预定义的。
进一步的,触发信息还可以为反馈次数信息的指示。
方式二,指示反馈次数信息。
比如:
触发信息可以为半静态反馈semi-persistent report字段,占1bit,示例的,0表示正常触发一次上报一次,1表示为多次反馈的情况。
反馈次数的信息可以为上报次数report number字段,占1bit或者2bit或者其他,具体可以根据最大的上报次数为确定所占bit数,该信息指示具体的反馈次数。
反馈次数信息可以通过枚举反馈次数的方式进行指示,比如在上报次数report number字段,用枚举的值进行指示,如report number ENUMERATED{5,10,15,20,spare1}。
方式三,指示反馈开始时刻和结束时刻,比如开始时刻为帧号5,结束时刻为帧号25。
比如,StartReportFrameNumber表示开始上报的帧号,StopReportFrameNumber表示结束上报的帧号。
StartReportFrameNumber ENUMERATED{5,10,15,20,25,spare1}
StopReportFrameNumber ENUMERATED{5,10,15,20,25,spare1}
可以理解的是,上述帧号,也可以是其他时间单位,比如子帧,时隙等。
方式四,上报的时候发送触发消息指示开始上报,结束的时候再发送触发消息指示结束上报。
比如StartReportTrigger表示存在该消息则表示开始上报,该上报行为可以从下一时刻生效或者下X个时刻生效,X可以为协议预定义的,或通过其他信令指示的。
StopReport Trigger表示存在该消息则表示停止上报,该结束上报行为也可以下一时刻生效或者下Y个时刻生效,Y可以为协议预定义的,或通过其他信令指示的。
可选的,所述传输时延和/或传输时延差的信息可以包括在上行控制信号(信道)中,如物理上行控制信道(physical uplink control channel,PUCCH)中,或者,可以包括在信道状态信息(channel state information,CSI)中。示例的,可以通过新增格式,或是重新定义已有格式(如在已有格式中增加相应域)的方式进行传输。
所述传输时延和/或传输时延差的信息包括在CSI中的情况下,可选的,UE还可以接收第七指示信息,第七指示信息用于指示传输时延和/或传输时延差的信息包括在信道状态信息中进行反馈。可以理解的是,该第七指示信息也可以用于触发传输时延和/或传输时延差的信息的获得和/或反馈。
可选的,所述第七指示信息可以为一种CSI的反馈类型的信息。当UE收到该CSI的反馈类型的信息时,UE获知传输时延和/或传输时延差的信息包括在信道状态信息中进行反馈。
比如,CSI的反馈类型为类型(type)10反馈,则表示支持传输时延和/或传输时延差的反馈。具体的,传输时延和/或传输时延差可以与CSI,如PMI和CQI,联合编码后进行反馈,也可以独立编码后和CSI,如RI,一起反馈。
所述传输时延和/或传输时延差的信息包括在上行控制信号(信道)中的情况下,可以为上行控制信道的反馈增加一种传输格式,比如格式4,则可以表示需要反馈在上行控制信道中反馈传输时延和/或传输时延差的信息。可以理解的是,该传输格式也可以用于触发传输时延和/或传输时延差的信息的获得和/或反馈。
可选的,所述传输时延和/或传输时延差的反馈可以通过将传输时延和/或传输时延差经过量化后或经过编码后进行反馈,比如通过若干比特,如3bits或4bits进行反馈。反馈的是传输时延和/或传输时延差的信息,比如索引信息。
比如传输时延差可以为100ns,200ns,300ns,…,-100ns,-200ns,-300ns,通过如下表格进行索引。可以理解的是,索引和数值只是举例说明,也可以是其他的值。
Figure PCTCN2018074292-appb-000007
Figure PCTCN2018074292-appb-000008
或者16Ts,32Ts,64Ts,128Ts,256Ts,…,-16Ts,-32Ts,-64Ts,-128Ts,-256Ts,……通过如下表格进行索引。其中,Ts为一种时间单位,如LTE系统中,Ts=1/(15000*2048)秒(s),其中15000为子载波间隔,2048为采样点数。索引和数值只是举例说明,也可以是其他的值。
Figure PCTCN2018074292-appb-000009
可选的,所述传输时延和/或传输时延差的反馈可以通过将所述传输时延和/或传输时延差(或者传输时延和/或传输时延差经量化后的值)经过函数的变换之后进行反馈。所述函数可以为傅里叶变换,反傅里叶变换,或者其他的函数变换,本申请对此不做限定。
或者通过其他的量化格式和取值进行反馈,在此不予赘述。
这样,通过如图3所示的信息传输的方法,可以使得UE可以根据参考信号获得传输时延和/或传输时延差,进而,通过UE将传输时延和/或传输时延差发送给无线网络设备,可以使得与UE进行通信的至少两个无线网络设备中的至少一个进行相位的调整,进而使得UE从这至少两个无线网络设备收到的数据的传输时延差小于门限值,达到接近理论上同时接收的效果,进而提高传输性能。
根据前述方法,如图4a所示,本发明实施例还提供一种用于信息传输的装置,该装置可以为无线设备10。该无线设备10可以对应上述方法中的用户设备。
该装置可以包括处理器110和存储器120。进一步的,该装置还可以包括、接收器140和发送器150。进一步的,该装置还可以进一步包括总线系统130,其中,处理器110、存储器120、接收器140和发送器150可以通过总线系统130相连。
该存储器120用于存储指令,该处理器110用于执行该存储器120存储的指令,以控制接 收器140接收信号,并控制发送器150发送信号,完成上述方法中用户设备的步骤。其中,接收器140和发送器150可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。所述存储器220可以集成在所述处理器210中,也可以与所述处理器210分开设置。
作为一种实现方式,接收器140和发送器150的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器110可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本发明实施例提供的无线设备。即将实现处理器110,接收器140和发送器150功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器110,接收器140和发送器150的功能。
该装置所涉及的与本发明实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
图4b提供了一种用户设备UE的结构示意图。该UE可适用于图2所示出的系统中和/或如图1a和图1b所示的场景中。为了便于说明,图4b仅示出了用户设备的主要部件。如图4b所示,用户设备100包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个用户设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持UE执行附图3部分所描述的动作。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述的码本。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当用户设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到用户设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图4b仅示出了一个存储器和处理器。在实际的用户设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本发明实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个用户设备进行控制,执行软件程序,处理软件程序的数据。图4b中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,用户设备可以包括多个基带处理器以适应不同的网络制式,用户设备可以包括多个中央处理器以增强其处理能力,用户设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,在发明实施例中,可以将具有收发功能的天线和控制电路视为UE10的收发 单元101,将具有处理功能的处理器视为UE10的处理单元102。如图4b所示,UE10包括收发单元101和处理单元102。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元101中用于实现接收功能的器件视为接收单元,将收发单元101中用于实现发送功能的器件视为发送单元,即收发单元101包括接收单元和发送单元示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
根据前述方法,如图5a所示,本发明实施例还提供另一种用于信息传输的装置,该装置可以为无线设备20,该无线设备20对应上述方法中的第一无线网络设备。可以理解的是,第二无线设备也可以其他设备,在此不予限定。
该装置可以包括处理器210和存储器220。进一步的,该装置还可以包括接收器240和发送器250。再进一步的,该装置还可以包括总线系统230。
其中,处理器210、存储器220、接收器240和发送器250通过总线系统230相连,该存储器220用于存储指令,该处理器210用于执行该存储器220存储的指令,以控制接收器240接收信号,并控制发送器250发送信号,完成上述方法中第一无线网络设备的步骤。其中,接收器240和发送器250可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。所述存储器220可以集成在所述处理器210中,也可以与所述处理器210分开设置。
作为一种实现方式,接收器240和发送器250的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器210可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本发明实施例提供的无线设备。即将实现处理器210,接收器240和发送器250功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器210,接收器240和发送器250的功能。
所述装置所涉及的与本发明实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
根据前述方法,如图5b所示,本发明实施例还提供一种无线网络设备,如基站,的结构示意图。
该基站可应用于如图2所示的系统和/或如图1a和图1b所示的场景中。基站20包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)201和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)202。所述RRU201可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线2011和射频单元2012。所述RRU201部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向用户设备发送上述实施例中所述的信令指示和/或参考信号。所述BBU202部分主要用于进行基带处理,对基站进行控制等。所述RRU201与BBU202可以是可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU202为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行图3所示的流程。
在一个示例中,所述BBU202可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网。所述 BBU202还包括存储器2021和处理器2022。所述存储器2021用以存储必要的指令和数据。例如存储器2021存储上述实施例中的传输时延差的信息与传输时延差的对应关系。所述处理器2022用于控制基站进行必要的动作,例如用于控制基站如附图3部分所示的动作。所述存储器2021和处理器2022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
根据本发明实施例提供的方法,本发明实施例还提供一种通信系统,其包括前述的第一无线网络设备和一个或多于一个用户设备。
应理解,在本发明实施例中,处理器可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。
该总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
还应理解,本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本发明实施例的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分, 仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (33)

  1. 一种信息传输方法,其特征在于,包括:
    用户设备接收第一参考信号和/或第二参考信号;
    用户设备根据第一参考信号和第二参考信号确定第一参考信号和第二参考信号之间的传输时延差;或者,根据第一参考信号确定第一传输时延和/或根据第二参考信号确定第二传输时延。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    用户设备接收第一指示信息和/或第二指示信息,第一指示信息用于指示第一参考信号用于传输时延的测量,第二指示信息用于指示第二参考信号用于传输时延的测量;
    所述用户设备根据第一参考信号和第二参考信号确定第一参考信号和第二参考信号之间的传输时延差包括:
    所述用户设备基于第一指示信息和第二指示信息,根据第一参考信号和第二参考信号确定第一参考信号和第二参考信号之间的传输时延差;或者,
    所述根据第一参考信号确定第一传输时延和/或根据第二参考信号确定第二传输时延包括:
    所述用户设备基于第一指示信息,根据第一参考信号确定第一传输时延,和/或,
    所述用户设备基于第二指示信息,根据第二参考信号确定第二传输时延。
  3. 根据权利要求2所述的方法,其特征在于,第一指示信息用于指示第一参考信号用于传输时延的测量包括:
    所述第一指示信息包括在信道状态信息测量集合域,信道状态信息上报集合域,或者,参考信号资源域中的至少一项中,所述第一指示信息用于指示所述信道状态信息测量集合域,信道状态信息上报集合域,或者,参考信号资源域中的至少一项中所包括的参考信号资源标识中的一个所对应的参考信号为第一参考信号,所述第一参考信号用于传输时延的测量。
  4. 根据权利要求2或3所述的方法,其特征在于,第二指示信息用于指示第二参考信号用于传输时延的测量包括:
    所述第二指示信息包括在信道状态信息测量集合域,信道状态信息上报集合域,或者,参考信号资源域中的至少一项中,所述第一指示信息用于指示所述信道状态信息测量集合域,信道状态信息上报集合域,或者,参考信号资源域中的至少一项中所包括的参考信号资源标识中的一个所对应的参考信号为第二参考信号,所述第二参考信号用于传输时延的测量。
  5. 根据权利要求2-4中任意一项所述的方法,其特征在于,所述第一参考信号为用于传输时延测量的参考基线,所述第一指示信息还用于指示所述第一参考信号为用于传输时延测量的参考基线。
  6. 根据权利要求5所述的方法,其特征在于,所述第一指示信息还用于指示所述第一参考信号为用于传输时延测量的参考基线包括:
    所述第一指示信息包括在第一信息域中,所述第一信息域用于指示用于传输时延测量的参考基线的信息。
  7. 根据权利要求6所述的方法,其特征在于,所述第一信息域还包括除了第一指示信 息之外的第三指示信息,所述第三指示信息用于指示用于传输时延测量的另一参考基线的信息。
  8. 根据权利要求7所述的方法,其特征在于,还包括:所述用户设备接收第四指示信息,所述第四指示信息用于指示第二参考信号用于传输时延的测量时所参考的基线为所述第一参考信号。
  9. 根据权利要求2-4所述的方法,其特征在于,所述第一参考信号为用于传输时延测量的参考基线,所述方法还包括:
    所述用户设备接收第五指示信息,所述第五指示信息用于指示所述第一参考信号为用于传输时延测量的参考基线。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:所述用户设备接收第四指示信息,所述第四指示信息用于指示第二参考信号用于传输时延的测量时所参考的基线为所述第一参考信号。
  11. 根据权利要求1-10中任意一项所述的方法,其特征在于,所述方法还包括:
    所述用户设备发送所述传输时延差的信息,所述传输时延差的信息包括所述传输时延差的索引,或者,所述传输时延差的量化后的值,或者,
    所述用户设备发送所述第一传输时延和/或第二传输时延的信息。
  12. 根据权利要求1-10中任意一项所述的方法,其特征在于,所述方法还包括:
    用户设备接收第六指示信息,第六指示信息用于指示传输时延差和/或传输时延的反馈信息,
    所述用户设备根据所述第六指示信息发送传输时延差和/或传输时延的信息,
    其中,第六指示信息用于指示传输时延差和/或传输时延的反馈信息包括:
    所述第六指示信息包括与周期反馈相关的信息,和/或,包括与非周期反馈相关的信息,所述与周期反馈相关的信息包括用于指示周期反馈周期和偏置的信息,所述与非周期反馈相关的信息包括用于指示所述传输时延差和/或传输时延的反馈的开始的信息,反馈次数的信息,用于指示所述传输时延差和/或传输时延的反馈的结束的信息,或者,用于指示一次传输时延差和/或传输时延反馈的开始时刻和结束时刻的信息中的一个或多个,其中,反馈次数的信息用于指示所述传输时延差和/或传输时延的反馈次数。
  13. 根据权利要求12所述的方法,其特征在于,所述传输时延差和/或传输时延的信息包括所述传输时延差和/或传输时延的索引,或者,所述传输时延差和/或传输时延的量化后的值。
  14. 根据权利要求11-13中任意一项所述的方法,其特征在于,所述传输时延差和/或传输时延的信息包括在上行控制信道中,或者,包括在信道状态信息中。
  15. 根据权利要求14所述的方法,其特征在于,所述传输时延差和/或传输时延的信息包括在信道状态信息中,所述方法还包括:
    用户设备接收第七指示信息,所述第七指示信息用于指示传输时延差和/或传输时延的信息包括在信道状态信息中。
  16. 根据权利要求15所述的方法,其特征在于,所述第七指示信息为一种信道状态信息的反馈类型。
  17. 一种信息传输方法,其特征在于,包括:
    无线网络设备发送配置信息,所述配置信息包括与传输时延测量相关的信息;
    所述无线网络设备接收来自用户设备的传输时延和/或传输时延差的信息。
  18. 根据权利要求17所述的方法,其特征在于,所述配置信息包括第一指示信息和/或第二指示信息,第一指示信息用于指示第一参考信号用于传输时延的测量,第二指示信息用于指示第二参考信号用于传输时延的测量。
  19. 根据权利要求18所述的方法,其特征在于,第一指示信息用于指示第一参考信号用于传输时延的测量包括:
    所述第一指示信息包括在信道状态信息测量集合域,信道状态信息上报集合域,或者,参考信号资源域中的至少一项中,所述第一指示信息用于指示所述信道状态信息测量集合域,信道状态信息上报集合域,或者,参考信号资源域中的至少一项中所包括的参考信号资源标识中的一个所对应的参考信号为第一参考信号,所述第一参考信号用于传输时延的测量。
  20. 根据权利要求18或19所述的方法,其特征在于,第二指示信息用于指示第二参考信号用于传输时延的测量包括:
    所述第二指示信息包括在信道状态信息测量集合域,信道状态信息上报集合域,或者,参考信号资源域中的至少一项中,所述第一指示信息用于指示所述信道状态信息测量集合域,信道状态信息上报集合域,或者,参考信号资源域中的至少一项中所包括的参考信号资源标识中的一个所对应的参考信号为第二参考信号,所述第二参考信号用于传输时延的测量。
  21. 根据权利要求18-20中任意一项所述的方法,其特征在于,所述第一参考信号为用于传输时延测量的参考基线,所述第一指示信息还用于指示所述第一参考信号为用于传输时延测量的参考基线。
  22. 根据权利要求21所述的方法,其特征在于,所述第一指示信息还用于指示所述第一参考信号为用于传输时延测量的参考基线包括:
    所述第一指示信息包括在第一信息域中,所述第一信息域用于指示用于传输时延测量的参考基线的信息。
  23. 根据权利要求22所述的方法,其特征在于,所述第一信息域还包括除了第一指示信息之外的第三指示信息,所述第三指示信息用于指示用于传输时延测量的另一参考基线的信息。
  24. 根据权利要求23所述的方法,其特征在于,所述配置信息还包括第四指示信息,所述第四指示信息用于指示第二参考信号用于传输时延的测量时所参考的基线为所述第一参考信号。
  25. 根据权利要求18-20所述的方法,其特征在于,所述第一参考信号为用于传输时延测量的参考基线,所述配置信息还包括第五指示信息,所述第五指示信息用于指示所述第一参考信号为用于传输时延测量的参考基线。
  26. 根据权利要求17-25中任意一项所述的方法,其特征在于,所述配置信息还包括第六指示信息,第六指示信息用于指示传输时延差和/或传输时延的反馈信息,
    其中,第六指示信息用于指示传输时延差和/或传输时延的反馈信息包括:
    所述第六指示信息包括与周期反馈相关的信息,和/或,包括与非周期反馈相关的信息,所述与周期反馈相关的信息包括用于指示周期反馈周期和偏置的信息,所述与非周期反馈相关的信息包括用于指示所述传输时延差和/或传输时延的反馈的开始的信息,反馈次数 的信息,用于指示所述传输时延差和/或传输时延的反馈的结束的信息,或者,用于指示一次传输时延差和/或传输时延反馈的开始时刻和结束时刻的信息中的一个或多个,其中,反馈次数的信息用于指示所述传输时延差和/或传输时延的反馈次数。
  27. 根据权利要求17-26中任意一项所述的方法,其特征在于,所述传输时延差和/或传输时延的信息包括在上行控制信道中,或者,包括在信道状态信息中。
  28. 根据权利要求27所述的方法,其特征在于,所述传输时延差和/或传输时延的信息包括在信道状态信息中,所述配置信息还包括第七指示信息,所述第七指示信息用于指示传输时延差和/或传输时延的信息包括在信道状态信息中。
  29. 一种装置,其特征在于,包括处理器和存储器,
    所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,当处理器执行所述存储器存储的指令时,所述装置用于完成如权利要求1至28任意一项所述的方法。
  30. 一种装置,其特征在于,包括处理器,所述处理器与存储器耦合,
    所述处理器用于执行所述存储器存储的程序或指令,当处理器执行所述存储器存储的指令时,所述装置用于完成如权利要求1至28任意一项所述的方法。
  31. 一种装置,其特征在于,用于执行如权利要求1至28任意一项所述的方法。
  32. 一种可读存储介质,其特征在于,包括程序或指令,当所述程序或指令在计算机上运行时,如权利要求1至28中任意一项所述的方法被执行。
  33. 一种计算机程序产品,其特征在于,包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行权利要求1至28中任意一项所述的方法。
PCT/CN2018/074292 2017-01-26 2018-01-26 一种信息传输方法和装置 WO2018137703A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710061851.0A CN108365997B (zh) 2017-01-26 2017-01-26 一种信息传输方法和装置
CN201710061851.0 2017-01-26

Publications (1)

Publication Number Publication Date
WO2018137703A1 true WO2018137703A1 (zh) 2018-08-02

Family

ID=62979009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074292 WO2018137703A1 (zh) 2017-01-26 2018-01-26 一种信息传输方法和装置

Country Status (2)

Country Link
CN (1) CN108365997B (zh)
WO (1) WO2018137703A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111432479A (zh) * 2019-01-10 2020-07-17 华为技术有限公司 传输信道状态信息的方法和装置
CN114175532A (zh) * 2019-08-02 2022-03-11 高通股份有限公司 用于辅助波形选择的信令
CN114362900A (zh) * 2020-10-13 2022-04-15 维沃移动通信有限公司 指示sps pdsch的方法、装置、设备及可读存储介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110944352B (zh) * 2018-09-25 2022-11-01 维沃移动通信有限公司 一种旁链路的链路失败检测方法及终端
CN109644455B (zh) * 2018-11-29 2023-07-25 北京小米移动软件有限公司 Csi测量反馈方法、装置及存储介质
CN111511010B (zh) * 2019-01-31 2021-09-14 华为技术有限公司 发送和接收指示的方法和装置
CN112448783B (zh) * 2019-08-30 2022-09-02 华为技术有限公司 一种数据传输的时延补偿方法、终端设备以及trp
CN111526492B (zh) * 2020-04-16 2021-07-30 天翼电信终端有限公司 一种vr通话方法及系统
CN114124167A (zh) * 2020-08-31 2022-03-01 华为技术有限公司 建立回传网络和通信的方法及通信装置
CN116456361A (zh) * 2022-01-07 2023-07-18 大唐移动通信设备有限公司 定时测量上报、定时配置、信息传输方法、装置及设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102685874A (zh) * 2012-04-12 2012-09-19 中兴通讯股份有限公司 一种多个接入点间偏差校准方法、系统和装置
CN102958084A (zh) * 2011-08-23 2013-03-06 中兴通讯股份有限公司 一种时延差的纠正方法和系统
WO2015020896A2 (en) * 2013-08-07 2015-02-12 Alcatel Lucent Systems and methods for determining a user equipment location based on measurements from multiple base stations

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841778A (zh) * 2009-03-17 2010-09-22 松下电器产业株式会社 上行链路多点接收中的时间提前量的调整方法和装置
CN102118825B (zh) * 2009-12-31 2013-12-04 华为技术有限公司 实现多点联合传输的方法、终端及系统
WO2012041422A2 (en) * 2010-09-30 2012-04-05 Panasonic Corporation Timing advance configuration for multiple uplink component carriers
CN102740314A (zh) * 2011-04-06 2012-10-17 上海华为技术有限公司 接收通道延时校正方法、装置及具有该装置的基站
US8873677B1 (en) * 2013-05-01 2014-10-28 Samsung Electronics Co., Ltd. Apparatus and method for enveloping tracking calibration
CN105325037A (zh) * 2014-05-30 2016-02-10 华为技术有限公司 同步方法、同步装置和基站
CN105471790B (zh) * 2014-08-04 2020-05-15 北京三星通信技术研究有限公司 适用于分布式天线系统的协作传输方法、基站及终端
US9485039B1 (en) * 2015-06-11 2016-11-01 Applied Micro Circuits Corporation Calibration and tracking of receiver

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102958084A (zh) * 2011-08-23 2013-03-06 中兴通讯股份有限公司 一种时延差的纠正方法和系统
CN102685874A (zh) * 2012-04-12 2012-09-19 中兴通讯股份有限公司 一种多个接入点间偏差校准方法、系统和装置
WO2015020896A2 (en) * 2013-08-07 2015-02-12 Alcatel Lucent Systems and methods for determining a user equipment location based on measurements from multiple base stations

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111432479A (zh) * 2019-01-10 2020-07-17 华为技术有限公司 传输信道状态信息的方法和装置
US11943027B2 (en) 2019-01-10 2024-03-26 Huawei Technologies Co., Ltd. Channel state information transmission method and apparatus
CN111432479B (zh) * 2019-01-10 2024-03-29 华为技术有限公司 传输信道状态信息的方法和装置
CN114175532A (zh) * 2019-08-02 2022-03-11 高通股份有限公司 用于辅助波形选择的信令
CN114362900A (zh) * 2020-10-13 2022-04-15 维沃移动通信有限公司 指示sps pdsch的方法、装置、设备及可读存储介质

Also Published As

Publication number Publication date
CN108365997B (zh) 2021-12-14
CN108365997A (zh) 2018-08-03

Similar Documents

Publication Publication Date Title
WO2018137703A1 (zh) 一种信息传输方法和装置
WO2019153347A1 (zh) 配置信息的接收和发送方法、装置及通信系统
US10644777B2 (en) Channel state information reference signal (CSI-RS) for layer-3 (L3) mobility
US20200022172A1 (en) Signal transmission method, apparatus, and system
WO2020215981A1 (zh) 辅小区激活方法和装置
WO2018127181A1 (zh) 一种信号传输方法和装置
WO2021027750A1 (zh) 更新波束信息的方法和通信装置
WO2018137577A1 (zh) 通信方法及装置
WO2018228532A1 (zh) 通信方法、终端及网络设备
CN110476364A (zh) 一种信号传输方法和装置
WO2020155849A1 (zh) 发送和接收指示的方法和装置
US20230109063A1 (en) Method for obtaining channel information and communications apparatus
WO2019137441A1 (zh) 一种通信方法及装置
WO2020244551A1 (zh) 用于激活辅小区的方法和装置
EP3843450A1 (en) Method and device for reporting measurement result of interference measurement
US11064490B2 (en) Method and device for transmitting and receiving information
WO2018082672A1 (zh) 一种上行测量参考信号传输方法、装置和系统
CN116114209A (zh) 用于用户设备预期的公共波束切换的方法和装置
WO2021052473A1 (zh) 通信方法和通信装置
WO2020164329A1 (zh) 通信方法和设备
US20190260565A1 (en) Information transmission method, apparatus, and system
WO2018223426A1 (zh) 波束失败报告发送方法、接收方法、用户设备和网络设备
WO2017113395A1 (zh) 一种无线通信方法、设备及系统
WO2021062689A1 (zh) 一种上行传输的方法及装置
CN114158059B (zh) 一种信息处理方法、装置、终端设备及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744647

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18744647

Country of ref document: EP

Kind code of ref document: A1