WO2021027750A1 - 更新波束信息的方法和通信装置 - Google Patents

更新波束信息的方法和通信装置 Download PDF

Info

Publication number
WO2021027750A1
WO2021027750A1 PCT/CN2020/108073 CN2020108073W WO2021027750A1 WO 2021027750 A1 WO2021027750 A1 WO 2021027750A1 CN 2020108073 W CN2020108073 W CN 2020108073W WO 2021027750 A1 WO2021027750 A1 WO 2021027750A1
Authority
WO
WIPO (PCT)
Prior art keywords
tci
state
ccs
signaling
information
Prior art date
Application number
PCT/CN2020/108073
Other languages
English (en)
French (fr)
Inventor
管鹏
张希
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010087025.5A external-priority patent/CN112399597A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20852730.9A priority Critical patent/EP4009725A4/en
Priority to BR112022002812A priority patent/BR112022002812A2/pt
Publication of WO2021027750A1 publication Critical patent/WO2021027750A1/zh
Priority to US17/671,229 priority patent/US20220173848A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands

Definitions

  • This application relates to the field of communications, and in particular to a method and communication device for updating beam information.
  • CC component carriers
  • different component carriers can use the same analog beam or different analog beams.
  • CC component carriers
  • RRC radio resource control
  • MAC-CE medium access control-control element
  • the present application provides a method and communication device for updating beam information, which can reduce beam indication signaling overhead and time delay.
  • a method for updating beam information is provided.
  • the method may be executed by a terminal device, or may also be executed by a chip or chip system or circuit configured in the terminal device, which is not limited in this application.
  • the method may include: receiving beam update information of a first carrier unit CC; and updating one or more second CCs and beam information of the first CC based on the beam update information of the first CC, wherein the one Or multiple second CCs have an association relationship with the first CC.
  • the one or more second CCs and the first CC use the same beam configuration.
  • the beam information of the CC may, for example, be embodied as the information of the receiving beam of the CC, that is, the receiving beam used in the communication process.
  • the receiving beam of the terminal device is the receiving beam when the terminal device receives signals or data on the frequency domain resources of the CC.
  • the transmitting beam of the network device is the receiving beam when the network device sends a signal or data on the frequency domain resource of the CC.
  • the transmitting beam of the network device and the receiving beam of the terminal device constitute a downlink.
  • the change in the receiving beam of the terminal device means that the transmitting beam of the network device has also changed; in other words, when the transmitting beam of the network device changes, the receiving beam of the corresponding terminal device also changes accordingly.
  • the beam information of the CC may be embodied as a transmission configuration indicator (transmission configuration indicator, TCI).
  • TCI transmission configuration indicator
  • the TCI may be a TCI used for signals or data transmitted on the frequency domain resources of the CC.
  • the beam information of the CC may, for example, be embodied as the information of the transmission beam of the CC, that is, the transmission beam used in the communication process.
  • the receiving beam of the network device is the receiving beam when the network device receives signals or data on the frequency domain resources of the CC.
  • the receiving beam of the network device and the sending beam of the terminal device constitute an uplink.
  • the change of the transmitting beam of the terminal device means that the receiving beam of the network device has also changed; in other words, the receiving beam of the network device changes, and the transmitting beam of the corresponding terminal device also changes accordingly.
  • one or more second CCs have an association relationship with the first CC, which may indicate that the one or more second CCs use the same beam as the first CC. Alternatively, it may also indicate that the beam configuration of the one or more second CCs and the first CC are the same except for the ID of the CC. Alternatively, it can also mean that the TCI state (TCI-state) activated by the one or more second CCs is the same as the TCI-state activated by the first CC.
  • TCI state TCI-state
  • the reference signal resource identifier included in the TCI-state activated by the one or more second CCs can also indicate that the reference signal resource identifier included in the TCI-state activated by the one or more second CCs, the identifier (identifier, ID) of the first CC, and the reference included in the TCI-state activated by the first CC Signal resource identification association.
  • the one or more second CCs and the first CC are configured with the same quasi-co-location (QCL)-type D (typeD) (qcl-TypeD).
  • QCL quasi-co-location
  • typeD typeD
  • qcl-TypeD quasi-co-location
  • the first CC may indicate a CC used for beam management or beam training
  • the second CC may indicate a CC using the beam training result of the first CC
  • multiple CCs can be updated through the beam update information of one CC (that is, the beam update information of the first CC).
  • CC beam information In other words, the network device does not need to send beam update information for each CC to instruct the terminal device to update the beam information of the corresponding CC.
  • the terminal device updates the beam information. In other words, the terminal device updates the receiving beam and/or sending beam, or it can be understood that the terminal device will use the updated receiving beam and/or sending beam for communication on the CC.
  • the beam information of multiple CCs can be updated through one signaling, or in other words, the receiving beams and/or transmitting beams of multiple CCs can be updated through one signaling terminal device, which not only reduces the transmission of repeated signaling And to reduce the redundant configuration, the overhead and time delay of the beam indication can also be reduced, and the communication performance is improved.
  • the method before the receiving beam update information of the first CC, the method further includes: receiving beam configuration information and indication information of the first CC, where The indication information is used to indicate that the one or more second CCs have an association relationship with the first CC.
  • the one or more second CCs have an association relationship with the first CC, including: the one or more second CCs and the first CC
  • One CC uses the same beam configuration.
  • the indication information indicates that the one or more second CCs use the same beam configuration as the first CC.
  • the method further includes: receiving information about time-frequency tracking reference signal resources configured for the first CC, and providing information for the one or more second CCs.
  • CC configuration time-frequency tracking reference signal resource information; the updating the beam information of one or more second CCs based on the beam update information of the first CC includes: the beam update information based on the first CC, Update the beam information of the time-frequency tracking reference signal resource of the one or more second CCs.
  • Updating the beam information of the time-frequency tracking reference signal resource of the one or more second CCs means to update the beam information corresponding to the time-frequency tracking reference signal resource of the one or more second CCs.
  • the terminal device can update the receiving beam of the time-frequency tracking reference signal resource of the second CC based on the beam update information of the first CC.
  • the network device may configure time-frequency tracking reference signal resources for the first CC, and/or the network device may configure time-frequency tracking reference signal resources for one or more second CCs.
  • the beam update information of the first CC includes information indicating the TCI state TCI-state of the transmission configuration activated by the first CC; the update one or more The beam information of the second CC and the first CC includes: the TCI-state activated by the one or more second CCs and the first CC, and the TCI-state activated by the one or more second CCs.
  • the state is the same as the TCI-state activated by the first CC.
  • the terminal device can determine a TCI-state selected (or activated) by the first CC based on the beam update information of the first CC.
  • the terminal device may also determine the activated TCI-state of one or more second CCs according to the beam update information of the first CC.
  • the network device does not need to indicate the activated TCI-state of the one or more second CCs to the terminal device, thereby reducing the overhead and time delay of beam indication.
  • the terminal device may determine that the TCI-state activated by the first CC is TCI-state#2 based on the beam update information of the first CC, and the terminal device may also determine one or more second CCs based on the beam update information of the first CC.
  • the activated TCI-state of the second CC is TCI-state#2.
  • the beam update information of the first CC is carried in medium access control-control element (medium access control-control element, MAC-CE) signaling.
  • medium access control-control element medium access control-control element, MAC-CE
  • updating the one or more second CCs and the beam information of the first CC further includes: updating the one or more second CCs and the The TCI-state of the first CC identifies the mapping relationship between the TCI-state ID and the TCI field value, and the mapping relationship between the TCI-state ID and the TCI field value updated by the one or more second CCs is updated with the first CC
  • the mapping relationship between the TCI-state ID and the TCI field value is the same.
  • the activated TCI-state of one or more second CCs and the mapping relationship between the TCI-state and the TCI field value are updated to be the same as the first CC.
  • update the mapping relationship between the one or more second CCs and the TCI-state identifier TCI-state ID of the first CC and the TCI field value in the DCI, and the one or more second CCs are updated
  • the mapping relationship between the TCI-state ID and the TCI field value in the DCI is the same as the mapping relationship between the TCI-state ID updated by the first CC and the TCI field value in the DCI.
  • the information of the terminal capability is sent, and the information of the terminal capability includes: whether the terminal device supports simultaneous updating and activation of the TCI-state and the mapping relationship between the TCI-state and the TCI field value.
  • mapping relationship of one or more second CCs at the same time, that is, updating the mapping relationship between the TCI state ID of one or more second CCs and the TCI field value in the DCI, one or more The activated TCI-state of the second CC and the mapping relationship between TCI-state and TCI field values are updated to be the same as those of the first CC. Therefore, it is possible to avoid misalignment of the data transmission beams of the terminal device and the network device, thereby avoiding affecting the transmission performance.
  • the beam update information of the first CC includes information about the TCI-state activated by the first CC; the update of one or more second CCs
  • the beam information includes: updating the spatial relationship of the one or more second CCs, and the updated spatial relationship of the one or more second CCs is associated with the TCI-state activated by the first CC.
  • the second CC and the first CC have the same spatial relationship (SR).
  • the second CC and the first CC have the same transmission beam for sending uplink signals.
  • the spatial relationship of the second CC is associated with the TCI-state of the first CC, that is, the transmit beam of the second CC (that is, the spatial relationship of the second CC) is the downlink receive beam (the TCI-state of the first CC) Corresponding uplink transmit beam.
  • the terminal device can automatically update the spatial relationship of the second CC based on the indication of the activation of the TCI-state of the first CC.
  • the beam update information of the first CC includes information about the reference signal resource corresponding to the TCI-state activated by the first CC; the update one or more The beam information of the second CC and the first CC includes: updating the reference signal resource corresponding to the one or more second CCs and the TCI-state activated by the first CC, and the one or more second CCs
  • the updated reference signal resource of the TCI-state activated by the second CC is the same as the updated reference signal resource of the TCI-state activated by the first CC.
  • the reference signal resource corresponding to the TCI-state activated by the first CC means the reference signal resource included in the TCI-state activated by the first CC.
  • Update one or more second CCs and the reference signal resources corresponding to the TCI-state activated by the first CC that is, update the reference signal resources included in the TCI-state activated by one or more second CCs, and update the first Reference signal resources included in the TCI-state activated by CC.
  • the updated reference signal resource of the TCI-state activated by one or more second CCs is the same as the updated reference signal resource of the TCI-state activated by the first CC, which means that after the reference signal resource is updated, one or more second
  • the reference signal resource included in the TCI-state activated by the CC is the same as the reference signal resource included in the TCI-state activated by the first CC.
  • the beam update information of the first CC is carried on radio resource control (radio resource control, RRC) signaling.
  • RRC radio resource control
  • the terminal device can determine the reference signal resource of the TCI-state activated by the first CC based on the beam update information of the first CC.
  • the terminal device may also determine the reference signal resources of the TCI-state activated by one or more second CCs according to the beam update information of the first CC. It can be understood that the network device does not need to indicate to the terminal device the reference signal resources of the TCI-state activated by the one or more second CCs, so that the overhead and time delay of the beam indication can be reduced.
  • the terminal device may determine that the reference signal resource of the TCI-state activated by the first CC is updated to the channel state information reference signal (channel state information reference signal, CSI-RS) #2, then the terminal According to the beam update information of the first CC, the device may also determine that one or more reference signal resources of the TCI-state activated by the second CC are updated to the CSI-RS#2 of the first CC.
  • channel state information reference signal channel state information reference signal
  • the one or more second CCs have an association relationship with the first CC, including one or more of the following:
  • the TCI-state activated by the second CC is the same as the TCI-state activated by the first CC;
  • the reference signal resource included in the TCI-state activated by the one or more second CCs is the same as the TCI-state activated by the first CC.
  • the reference signal resources included in the state are the same; the reference signal resource identification ID included in the TCI-state activated by the one or more second CCs is the ID of the first CC and the TCI-state activated by the first CC The reference signal resource ID included in the reference signal resource ID is associated; the one or more second CCs and the first CC have a quasi co-located QCL relationship; or, the one or more second CCs use the beam of the first CC Training results.
  • beam management is performed on the first CC, or the first CC is used for beam training.
  • the first CC indicates a CC that has transmitted a beam management reference signal (such as a synchronization signal block (synchronization signal block, SSB), a CSI-RS, or a sounding reference signal (sounding reference signal, SRS)).
  • a beam management reference signal such as a synchronization signal block (synchronization signal block, SSB), a CSI-RS, or a sounding reference signal (sounding reference signal, SRS)
  • the beam update information of the first CC is carried in the MAC-CE signaling of the medium access control-control element.
  • the reserved field can be used to indicate whether to update one or more second CCs and the beam information of the first CC based on the beam update information of the first CC.
  • the value of the reserved field R in the MAC-CE signaling is 1, based on the beam update information of the first CC, one or more second CCs and the beams of the first CC are updated Information:
  • the value of the reserved field R in the MAC-CE signaling is 0, only the beam information of the first CC is updated based on the beam update information of the first CC.
  • a method for updating beam information is provided.
  • the method may be executed by a network device, or may also be executed by a chip or chip system or circuit configured in the network device, which is not limited in this application.
  • the method may include: generating beam update information of a carrier unit CC, and the beam update information of the first CC can be used for a terminal device to update one or more second CCs and the beam information of the first CC.
  • the one or more second CCs have an association relationship with the first CC; sending beam update information of the first CC.
  • the network device can update through the beam update information of one CC (that is, the beam update information of the first CC) Beam information of multiple CCs.
  • the network device does not need to send beam update information for each CC to instruct the terminal device to update the beam information of the corresponding CC.
  • the terminal device updates the beam information.
  • the terminal device updates the receiving beam and/or sending beam, or it can be understood that the terminal device will use the updated receiving beam and/or sending beam for communication on the CC.
  • the network device can make the terminal device update the beam information of multiple CCs through a single signaling, thereby not only reducing the transmission of repeated signaling and reducing redundant configuration, but also reducing the overhead and delay of beam indication , Improved communication performance.
  • the method before sending the beam update information of the first CC, the method further includes: sending beam configuration information and indication information of the first CC, where The indication information is used to indicate that the one or more second CCs have an association relationship with the first CC.
  • the one or more second CCs have an association relationship with the first CC, including: the one or more second CCs and the first CC One CC has an association relationship.
  • the method further includes: sending information about the time-frequency tracking reference signal resource configured for the first CC, and sending information for the one or more second CCs.
  • the time-frequency tracking reference signal resource information configured by the CC.
  • the beam update information of the first CC includes information indicating the TCI state TCI-state of the activated transmission configuration of the first CC.
  • the beam update information of the first CC is carried in medium access control-control element (medium access control-control element, MAC-CE) signaling.
  • medium access control-control element medium access control-control element, MAC-CE
  • the beam update information of the first CC includes information of the reference signal resource corresponding to the TCI-state activated by the first CC.
  • the beam update information of the first CC is carried on radio resource control (radio resource control, RRC) signaling.
  • RRC radio resource control
  • the one or more second CCs have an association relationship with the first CC, including one or more of the following:
  • the TCI-state activated by the second CC is the same as the TCI-state activated by the first CC;
  • the reference signal resource included in the TCI-state activated by the one or more second CCs is the same as the TCI-state activated by the first CC.
  • the reference signal resources included in the state are the same; the reference signal resource identification ID included in the TCI-state activated by the one or more second CCs is the ID of the first CC and the TCI-state activated by the first CC The reference signal resource ID included in the reference signal resource ID is associated; the one or more second CCs and the first CC have a quasi co-located QCL relationship; or, the one or more second CCs use the beam of the first CC
  • the MAC-CE signaling is sent, and the MAC-CE signaling includes beam update information of the first CC, and the MAC-CE signaling
  • the reserved field in the command can be used to indicate whether the terminal device updates one or more second CCs and the beam information of the first CC based on the beam update information of the first CC.
  • the terminal device can update one or more second CCs and the first CC based on the beam update information of the first CC.
  • the beam information of the CC when the value of the reserved field R in the MAC-CE signaling is 0, the terminal device only updates the beam information of the first CC based on the beam update information of the first CC.
  • a method for updating beam information is provided.
  • the method may be executed by a terminal device, or may also be executed by a chip or chip system or circuit configured in the terminal device, which is not limited in this application.
  • the method may include: receiving beam configuration information of a first CC; receiving indication information, where the indication information is used to indicate that one or more second CCs have an association relationship with the first CC.
  • a method for updating beam information is provided.
  • the method may be executed by a terminal device, or may also be executed by a chip or chip system or circuit configured in the terminal device, which is not limited in this application.
  • the method can include:
  • the first signaling includes information indicating the TCI status of N transmission configurations activated by the first carrier component CC, and the first signaling can be used to activate the first CC and the second CC
  • the second CC has an association relationship with the first CC, where N is an integer greater than or equal to 1;
  • the TCI deactivation command of the first CC does not take effect for the second CC .
  • the first signaling can be used to activate the TCI states of multiple CCs (such as the first CC and the second CC), that is, through one signaling, the TCI states of multiple CCs can be activated.
  • the first signaling may be based on the TCI state of multiple CCs (such as the first CC and the second CC) activated, reference may be made to the method provided in any one of the first to third aspects above.
  • the first signaling may be MAC-CE signaling.
  • the information of the N TCI states activated by the first CC represents a group of newly activated TCI state information.
  • the first signaling can also be understood as a TCI deactivation command of the first CC, that is, the original TCI state of the first CC is deactivated.
  • the first signaling can also be considered as a TCI deactivation command, that is, based on the first signaling, the original TCI state of the first CC is deactivated.
  • the first signaling can be used to activate the N TCI states of the first CC and the second CC. It can also be understood that based on the first signaling, the original TCI states of the second CC and the first CC are deactivated. In other words, the first signaling can be used to deactivate the original TCI state of the first CC and the second CC. It can be understood that, based on the first signaling, the terminal device uses the new beam on the second CC and the first CC and no longer uses the old beam.
  • the activated one or more TCI states of the second CC include all TCI states in the N TCI states. It can also be understood as a TCI state set activated based on the first signaling (that is, the TCI state set includes N Each TCI state) belongs to a subset of the activated TCI state set of the second CC, or it can also mean that a group of newly activated TCI state sets belong to a subset of the activated TCI state set of the second CC.
  • the activated one or more TCI states of the second CC include part of the TCI states in the N TCI states, which can also be understood as a TCI state set activated based on the first signaling (that is, the TCI state set includes N (One TCI state) has an intersection with the activated TCI state set of the second CC, or, alternatively, it can also indicate that a group of newly activated TCI state sets have an intersection with the activated TCI state set of the second CC.
  • the TCI deactivation command of the first CC does not take effect on the second CC.
  • the original TCI state of the second CC will not be deactivated.
  • the TCI state activated by the second CC also includes the originally activated TCI state.
  • the TCI deactivation command of the first CC is only valid for the first CC, and not for the second CC.
  • the terminal device ignores the TCI deactivation command of the first CC.
  • the TCI status of multiple CCs (that is, one or more second CCs and the first CC) is updated through a TCI activation command of one CC (that is, the information of the TCI status of the first CC activated)
  • the TCI status can be updated according to Whether the activated one or more TCI states of the second CC includes part or all of the TCI states of the N TCI states is used to determine whether to deactivate the original TCI state of the second CC.
  • TCI state set activated by the first CC (such as N TCI states) belongs to a subset of the activated TCI state set of the second CC, or whether the TCI state set activated by the first CC is the same as the activated TCI state set of the second CC
  • the TCI state sets have an intersection.
  • one or more TCI states of the second CC that have been activated include some or all of the N TCI states, or in other words, the set of TCI states activated in the first CC belongs to the activated TCI state of the second CC
  • the original TCI state of the second CC will not be deactivated.
  • the terminal equipment including the number of activated TCI statuses, avoid errors. Deactivate operation to ensure communication performance.
  • the method further includes: activating the TCI status of the first CC and the second CC based on the first signaling, and the first The TCI states activated by the CC and the second CC include the N TCI states.
  • One signaling may be based on the TCI status of multiple CCs (such as the first CC and the second CC) activated.
  • TCI status of multiple CCs such as the first CC and the second CC
  • the activated TCI state of the second CC includes the N TCI states and the activated TCI state of the second CC.
  • the first signaling is MAC-CE signaling
  • the value of the reserved field R in the MAC-CE signaling is 1.
  • the TCI state of multiple CCs or BWPs of multiple CCs can be activated or deactivated. It should be understood that a set of newly activated TCI states belongs to a subset of the activated TCI state set of the second CC, or a set of newly activated TCI states has an intersection with the activated TCI state set of the second CC, the MAC -The deactivation command of the CE does not take effect for the second CC.
  • the configuration of updating the TCI status for multiple CCs at the same time can be achieved by taking the value of R to 1 MAC-CE signaling.
  • the information of the activated TCI status of the second CC is carried in the second signaling, and the reserved field R in the second signaling takes a value 0.
  • the second signaling is MAC-CE signaling.
  • the information of the activated TCI state set of the second CC comes from the MAC-CE signaling whose R value is 0.
  • a method for updating beam information is provided.
  • the method may be executed by a terminal device, or may also be executed by a chip or chip system or circuit configured in the terminal device, which is not limited in this application.
  • the method can include:
  • the first signaling includes information indicating the TCI status of N transmission configurations activated by the first carrier component CC, and the first signaling can be used to activate the first CC and the second CC
  • the second CC has an association relationship with the first CC, where N is an integer greater than or equal to 1;
  • the TCI deactivation command of the first CC is not correct for the first CC.
  • Two CC takes effect.
  • the first signaling can activate the TCI states of multiple CCs (such as the first CC and the second CC), that is, through one signaling, the TCI states of multiple CCs can be activated.
  • the first signaling may be MAC-CE signaling.
  • the information of the N TCI states activated by the first CC represents a group of newly activated TCI state information.
  • the first signaling can also be understood as a TCI deactivation command of the first CC, that is, the original TCI state of the first CC is deactivated.
  • the first signaling can also be considered as a TCI deactivation command, that is, based on the first signaling, the original TCI state of the first CC is deactivated.
  • the first signaling can be used to activate the N TCI states of the first CC and the second CC. It can also be understood that based on the first signaling, the original TCI states of the second CC and the first CC are deactivated. In other words, the first signaling can be used to deactivate the original TCI state of the first CC and the second CC. It can be understood that, based on the first signaling, the terminal device uses the new beam on the second CC and the first CC and no longer uses the old beam.
  • the TCI state set composed of N TCI states means that the TCI state set includes the N TCI states.
  • the TCI deactivation command of the first CC does not take effect on the second CC.
  • the original TCI state of the second CC will not be deactivated.
  • the TCI state activated by the second CC also includes the originally activated TCI state.
  • the TCI deactivation command of the first CC is only valid for the first CC, and not for the second CC.
  • the terminal device ignores the TCI deactivation command of the first CC.
  • the TCI status of multiple CCs ie, one or more second CCs and the first CC
  • the TCI activation command of one CC ie the information of the TCI status of the first CC activated
  • the number of TCI states that can be activated by the CC such as whether the combination of the TCI state set activated in the first CC (that is, the TCI state set includes N TCI states) and the activated TCI state set of the second CC is less than or equal to the terminal device capability , To determine whether to deactivate the original TCI state of the second CC.
  • the original TCI state of the second CC will not be deactivated.
  • the original TCI state of the second CC will not be deactivated.
  • the method further includes: activating the TCI status of the first CC and the second CC based on the first signaling, and the first The TCI states activated by the CC and the second CC include the N TCI states.
  • One signaling may be based on the TCI status of multiple CCs (such as the first CC and the second CC) activated.
  • TCI status of multiple CCs such as the first CC and the second CC
  • the activated TCI state of the second CC includes the N TCI states and the activated TCI state of the second CC.
  • the value of the reserved field R in the MAC-CE signaling is 1.
  • the information of the activated TCI state of the second CC is carried in the second signaling, and the reserved field R in the second signaling takes a value 0.
  • the second signaling is MAC-CE signaling.
  • the information of the activated TCI state set of the second CC comes from the MAC-CE signaling whose R value is 0.
  • a method for updating beam information is provided.
  • the method may be executed by a terminal device, or may also be executed by a chip or chip system or circuit configured in the terminal device, which is not limited in this application.
  • the method can include:
  • the reserved field in the MAC-CE signaling can be used to indicate whether to update one or more second CCs based on the beam update information of the first CC, and Beam information of the first CC;
  • the reserved field in the MAC-CE signaling can be used to indicate the transmission point corresponding to the MAC-CE signaling.
  • the transmission point corresponding to the MAC-CE signaling, or which transmission point the MAC-CE signaling is used for is used to indicate: for the transmission point, the MAC-CE signaling is used for one of the following functions or Various: activate TCI-state, deactivate TCI-state, indicate the mapping relationship between activated TCI-state and TCI field value in DCI, etc.
  • One signaling may be based on the TCI status of multiple CCs (such as the first CC and the second CC) activated.
  • TCI status of multiple CCs such as the first CC and the second CC
  • the terminal device can determine the function of the MAC-CE signaling according to the instructions of the network device on the multi-transport mode.
  • the MAC-CE is suitable for notifying the functions of activation TCI-state and mapping relationship of each transmission point.
  • the MAC-CE is not suitable for notifying the function of simultaneously updating the first CC and the second CC.
  • the MAC-CE is suitable for notifying whether to update one or more second CCs and the beam information of the first CC based on the beam update information of the first CC.
  • the method further includes:
  • a method for updating beam information is provided.
  • the method may be executed by a network device, or may also be executed by a chip or chip system or circuit configured in the network device, which is not limited in this application.
  • the method can include:
  • the reserved field in the MAC-CE signaling can be used to indicate whether to update one or more second CCs based on the beam update information of the first CC, and Beam information of the first CC;
  • the reserved field in the MAC-CE signaling can be used to indicate the transmission point corresponding to the MAC-CE signaling.
  • the method further includes:
  • the number of values of the CORESETPoolIndex configured in the high-level signaling is greater than 1;
  • the number of values of the CORESETPoolIndex configured in the high-level signaling is less than 1 or equal to 1.
  • a method for updating beam information is provided.
  • the method may be executed by a terminal device, or may also be executed by a chip or chip system or circuit configured in the terminal device, which is not limited in this application.
  • the method can include:
  • mapping relationship of the first mode indicates that two or more transmission configuration indication TCI state IDs TCI-state ID can be mapped to the TCI field value in the same downlink control information DCI
  • the second mode The mapping relationship indicates that two or more TCI-state IDs cannot be mapped to the TCI field value in the same DCI.
  • One signaling may be based on the TCI status of multiple CCs (such as the first CC and the second CC) activated.
  • TCI status of multiple CCs such as the first CC and the second CC
  • the reserved bits in the MAC-CE signaling can be used to distinguish whether the MAC-CE signaling is used for the mapping relationship in the first mode or the mapping relationship used in the second mode.
  • the method further includes:
  • the MAC-CE signaling is used to notify the mapping relationship of the first mode or the mapping relationship of the second mode.
  • the number of values of CORESETPoolIndex and the reserved bits in the MAC-CE signaling can be used to distinguish whether the MAC-CE signaling is used for the mapping in the first mode or the mapping in the second mode. Relationship, and whether the MAC-CE signaling is applicable to a single CC or to multiple CCs (such as the first CC and the second CC) at the same time.
  • the number of values of CORESETPoolIndex can be used to distinguish whether the MAC-CE signaling is used for the mapping relationship in the first mode or the mapping relationship used in the second mode, and according to the reservation in the MAC-CE signaling
  • the bit determines whether the MAC-CE signaling is applicable to a single CC or to multiple CCs at the same time.
  • the method further includes:
  • the CORESETPoolIndex it is determined whether to update one or more second CCs and the beam information of the first CC based on the beam update information of the first CC.
  • the number of values of CORESETPoolIndex and the reserved bits in the MAC-CE signaling can be used to distinguish whether the MAC-CE signaling is used for the mapping in the first mode or the mapping in the second mode. Relationship, and whether the MAC-CE signaling is applicable to a single CC or to multiple CCs (such as the first CC and the second CC) at the same time.
  • the MAC-CE signaling it is possible to distinguish whether the MAC-CE signaling is used for the mapping relationship in the first mode or the mapping relationship in the second mode, and according to the number of values of CORESETPoolIndex , To determine whether the MAC-CE signaling is applicable to a single CC or to multiple CCs at the same time.
  • a method for updating beam information is provided.
  • the method may be executed by a network device, or may also be executed by a chip or chip system or circuit configured in the network device, which is not limited in this application.
  • the method can include:
  • the reserved field in the MAC-CE signaling can be used to indicate that the MAC-CE signaling is used to notify the mapping relationship of the first mode or the mapping relationship of the second mode; or,
  • the reserved field in the MAC-CE signaling can be used to indicate whether to update one or more second CCs and the beam information of the first CC based on the beam update information of the first CC;
  • mapping relationship of the first mode indicates that two or more transmission configuration indication TCI state IDs TCI-state ID can be mapped to the TCI field value in the same downlink control information DCI
  • the second mode The mapping relationship indicates that two or more TCI-state IDs cannot be mapped to the TCI field value in the same DCI.
  • One signaling may be based on the TCI status of multiple CCs (such as the first CC and the second CC) activated.
  • TCI status of multiple CCs such as the first CC and the second CC
  • the reserved field in the MAC-CE signaling can be used to indicate whether to update one or more of the fields based on the beam update information of the first CC.
  • the beam information of the second CC and the first CC the method further includes:
  • the number of values of the CORESETPoolIndex is used to determine: the MAC-CE signaling is used to notify the mapping relationship of the first mode or the mapping relationship of the second mode.
  • the reserved field in the MAC-CE signaling can be used to indicate that the MAC-CE signaling is used to notify the mapping relationship of the first mode or The mapping relationship of the second mode, the method further includes:
  • the number of values of the CORESETPoolIndex is used to determine whether to update one or more second CCs and the beam information of the first CC based on the beam update information of the first CC.
  • a communication device configured to execute the method provided in the above-mentioned first aspect, third aspect, fourth aspect, fifth aspect, sixth aspect, or eighth aspect.
  • the communication device may include a module for executing the method provided in the first aspect, the third aspect, the fourth aspect, the fifth aspect, the sixth aspect, or the eighth aspect.
  • a communication device is provided, and the communication device is configured to execute the method provided in the above-mentioned second aspect, seventh aspect, or ninth aspect.
  • the communication device may include a module for executing the method provided in the second aspect.
  • a communication device including a processor.
  • the processor is coupled with the memory, and can be used to execute instructions in the memory to implement the above-mentioned first, third, fourth, fifth, sixth, or eighth aspects, as well as the first and third aspects.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, the processor is coupled with the communication interface, and the communication interface is used to input and/or output information.
  • the information includes at least one of instructions and data.
  • the communication device is a terminal device.
  • the communication interface may be a transceiver or an input/output interface.
  • the communication device is a chip or a chip system.
  • the communication interface may be an input/output interface, which may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system, etc.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the communication device is a chip or a chip system configured in a terminal device.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication device including a processor.
  • the processor is coupled with the memory, and can be used to execute instructions in the memory to implement the above-mentioned second, seventh, or ninth aspect and any one of the possible implementation manners of the second, seventh, or ninth aspect Method in.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, the processor is coupled with the communication interface, and the communication interface is used to input and/or output information.
  • the information includes at least one of instructions and data.
  • the communication device is a network device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip or a chip system.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin, or related circuit on the chip or chip system.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the communication device is a chip or a chip system configured in a network device.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication device in a fourteenth aspect, includes a processor coupled to a memory.
  • the processor executes a computer program or instruction in the memory, the first, third, and fourth aspects , The fifth aspect, the sixth aspect, or the eighth aspect, and the method in any one of the first, third, fourth, fifth, sixth, or eighth aspects may be implemented carried out.
  • a communication device in a fifteenth aspect, includes a processor coupled with a memory.
  • the processor executes a computer program or instruction in the memory
  • the second, seventh, or ninth aspect is Aspect and the method in any one of the possible implementation manners of the second aspect, the seventh aspect, or the ninth aspect are executed.
  • a communication device in a sixteenth aspect, includes a processor and an interface.
  • the processor is coupled to the memory through the interface.
  • the processor executes a computer program or instruction in the memory, the first aspect and the third Aspect, fourth aspect, fifth aspect, sixth aspect, or eighth aspect, and any one of the first, third, fourth, fifth, sixth, or eighth aspect may be realized The method in the mode is executed.
  • a communication device in a seventeenth aspect, includes a processor and an interface.
  • the processor is coupled to the memory through the interface.
  • the processor executes a computer program or instruction in the memory, the second and seventh aspects Aspect, or ninth aspect, and the method in any one of the possible implementation manners of the second, seventh, or ninth aspect is executed
  • a chip including: a processor and an interface, used to call and run a computer program stored in the memory from a memory, and execute the first, third, fourth, and fifth aspects , The sixth aspect, or the eighth aspect, and the method in any one of the possible implementation manners of the first, third, fourth, fifth, sixth, or eighth aspect.
  • a chip including: a processor and an interface, used to call and run a computer program stored in the memory from a memory, and execute the second aspect, the seventh aspect, or the ninth aspect and the second aspect Aspect, the seventh aspect, or the method in any one of the possible implementation manners of the ninth aspect.
  • a computer-readable storage medium on which a computer program is stored.
  • the communication device realizes the first, third, fourth, and fourth aspects.
  • a computer-readable storage medium having a computer program stored thereon, and when the computer program is executed by a communication device, the communication device realizes the second aspect, the seventh aspect, or the ninth aspect , And the method in any possible implementation manner of the second, seventh, or ninth aspect.
  • a computer program product containing instructions which when executed by a computer, enables a communication device to implement the first aspect, the third aspect, the fourth aspect, the fifth aspect, the sixth aspect, or the eighth aspect The method provided by the aspect.
  • a computer program product containing instructions is provided, which when executed by a computer, causes a communication device to implement the method provided in the second aspect, the seventh aspect, or the ninth aspect.
  • a communication system including the aforementioned network equipment and terminal equipment.
  • FIG. 1 and Fig. 2 are schematic diagrams of a communication system applied in an embodiment of the present application
  • 3 and 4 are schematic diagrams of the format of MAC-CE applicable to embodiments of the present application.
  • FIG. 5 is a schematic interaction diagram of a method for updating beam information provided by an embodiment of the present application.
  • FIG. 6 is a schematic interaction diagram of a method for updating beam information according to another embodiment of the present application.
  • FIG. 7 is a schematic interaction diagram of a method for updating beam information provided by still another embodiment of the present application.
  • FIG. 8 is a schematic interaction diagram of a method for updating beam information provided by still another embodiment of the present application.
  • FIG. 9 is a schematic diagram of the format of MAC-CE applicable to its own embodiment.
  • FIG. 10 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 11 is another schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • the embodiments of this application can be applied to beam-based communication systems, such as: 5th generation (5G) systems, new radio (NR), long term evolution (LTE) systems, LTE frequency division dual Frequency division duplex (FDD) system, LTE time division duplex (TDD), universal mobile telecommunication system (UMTS) or other evolved communication systems, etc.
  • 5G 5th generation
  • NR new radio
  • LTE long term evolution
  • FDD frequency division dual Frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • the communication system applied in the embodiments of the present application may include one or more network devices and one or more terminal devices.
  • a network device can transmit data or control signaling to one or more terminal devices.
  • multiple network devices may simultaneously transmit data or control signaling for one terminal device.
  • FIG. 1 is a schematic diagram of a communication system 100 applied in an embodiment of this application.
  • the communication system 100 includes a network device or 110 and a plurality of terminal devices 120 (terminal device 120a and terminal device 120b as shown in FIG. 1).
  • the network device 110 may simultaneously transmit multiple analog beams through multiple radio frequency channels to transmit data to multiple terminal devices.
  • the network device transmits beam 1 and beam 2 at the same time, wherein beam 1 is used to transmit data for terminal device 120a, and beam 2 is used to transmit data for terminal device 120b.
  • the beam 1 may be referred to as the serving beam of the terminal device 120a, and the beam 2 may be referred to as the serving beam of the terminal device 120b.
  • the terminal device 120a and the terminal device 120b may belong to the same cell.
  • FIG. 2 shows another schematic diagram of a communication system 200 applicable to an embodiment of the present application.
  • the communication system 200 may include at least two network devices, such as the network device 210 shown in FIG. 2 (the network device 210a and the network device 210b shown in FIG. 2); the communication system 200 also It may include at least one terminal device, such as the terminal device 220 shown in FIG. 2.
  • the terminal device 220 may establish a wireless link with the network device 210a and the network device 210b through dual connectivity (DC) technology or multi-connection technology.
  • the network device 210a may be, for example, a primary base station
  • the network device 210b may be, for example, a secondary base station.
  • the network device 210a is the network device when the terminal device 220 initially accesses, and is responsible for radio resource control (RRC) communication with the terminal device 220.
  • RRC radio resource control
  • the network device 210b can be added during RRC reconfiguration. , Used to provide additional wireless resources.
  • the terminal equipment in the embodiments of this application may also be called: user equipment (UE), mobile station (MS), mobile terminal (MT), access terminal, user unit, user station, Mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • access terminal user unit, user station, Mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • the terminal device may be a device that provides voice/data connectivity to users, for example, a handheld device with a wireless connection function, a vehicle-mounted device, and so on.
  • some examples of terminals are: mobile phones (mobile phones), tablets, notebook computers, palmtop computers, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, and augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving (self-driving), wireless terminals in remote medical surgery, and smart grid (smart grid) Wireless terminals, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless phones, session initiation protocols , SIP) phone, wireless local loop (WLL) station, personal digital assistant (personal digital assistant, PDA), handheld device with wireless communication function, computing device or other processing device connected to wireless modem, vehicle Devices, wearable devices, terminal devices in a 5G network, or terminal devices in a public land mobile network (PLMN) that will evolve in
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • the terminal device may also be a terminal device in the Internet of Things (IoT) system.
  • IoT Internet of Things
  • the IoT is an important part of the development of information technology in the future. Its main technical feature is to pass items through communication technology. Connect with the network to realize the intelligent network of human-machine interconnection and interconnection of things.
  • the network device in the embodiment of the present application may be a device used to communicate with terminal devices.
  • the network device may also be called an access network device or a wireless access network device, and may be a transmission reception point (TRP). ), it can also be an evolved NodeB (evolved NodeB, eNB or eNodeB) in the LTE system, a home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU) , It can also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario, or the network device can be a relay station, an access point, a vehicle-mounted device, a wearable device, and a network device in a 5G network or
  • the network equipment in the future evolved PLMN network may be an access point (AP) in a WLAN, or a gNB in a new radio system (new radio, NR) system, which is not limited in the embodiment of the present application.
  • AP access
  • a network device may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node, or a control plane CU node (CU).
  • CU centralized unit
  • DU distributed unit
  • RAN device including a CU node and a DU node, or a control plane CU node (CU).
  • -CP node user plane CU node
  • CU-UP node user plane CU node
  • RAN equipment of DU node may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node, or a control plane CU node (CU).
  • -CP node user plane CU node (CU-UP node) and RAN equipment of DU node.
  • the network equipment provides services for the cell, and the terminal equipment communicates with the cell through the transmission resources (for example, frequency domain resources, or spectrum resources) allocated by the network equipment.
  • the cell may belong to a macro base station (for example, a macro eNB or a macro gNB, etc.) , It may also belong to the base station corresponding to the small cell, where the small cell may include: metro cell, micro cell, pico cell, femto cell, etc. These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-speed data transmission services.
  • the embodiment of the beam in the NR protocol can be a spatial domain filter, or a spatial filter or a spatial parameter.
  • the beam used to transmit a signal can be called a transmission beam (Tx beam), can be called a spatial domain transmission filter or a spatial transmission parameter (spatial transmission parameter); the beam used to receive a signal can be called To receive the beam (reception beam, Rx beam), it may be called a spatial domain receive filter (spatial domain receive filter) or a spatial receive parameter (spatial RX parameter).
  • the transmitting beam may refer to the distribution of signal strength in different directions in space after a signal is transmitted through the antenna
  • the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space.
  • the beam may be a wide beam, or a narrow beam, or other types of beams.
  • the beam forming technology can be beamforming technology or other technology.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, or a hybrid digital/analog beamforming technology, etc.
  • Beams generally correspond to resources. For example, when performing beam measurements, network devices can use different beams to send signals on different resources, terminal devices use different beams to receive signals on different resources, and terminal devices can feed back to network devices on different resources The quality of the measured signal, so that the network device knows the quality of the corresponding beam.
  • the beam information is also indicated by its corresponding resource. For example, the network device instructs the terminal device physical downlink shared channel (PDSCH) beam information through the transmission configuration indicator (TCI) resource in the downlink control information (DCI).
  • PDSCH physical downlink shared channel
  • TCI transmission configuration indicator
  • multiple beams with the same or similar communication characteristics may be regarded as one beam.
  • One beam corresponds to one or more antenna ports, which are used to transmit data channels, control channels, and sounding signals.
  • One or more antenna ports corresponding to a beam can also be regarded as an antenna port set.
  • each beam of the network device corresponds to a resource, so the resource identifier (or index) can be used to uniquely identify the beam corresponding to the resource.
  • the resource's identifier can be used to uniquely identify the beam corresponding to the resource.
  • the resource can be an uplink signal resource or a downlink signal resource.
  • Uplink signals include but are not limited to: uplink random access sequence, sounding reference signal (SRS), demodulation reference signal (demodulation reference signal, DMRS) (such as uplink control channel demodulation reference signal or uplink data channel demodulation) Reference signal) and uplink phase noise tracking signal.
  • SRS sounding reference signal
  • DMRS demodulation reference signal
  • Downlink signals include but are not limited to: channel state information reference signal (CSI-RS), cell-specific reference signal (CS-RS), UE-specific reference signal (user equipment specific reference signal, US-RS), demodulation reference signal (DMRS) (downstream control channel demodulation reference signal or downlink data channel demodulation reference signal), downlink phase noise tracking signal, and synchronization signal/physical broadcast channel block (synchronization) signal/physical broadcast channel block, SS/PBCH block).
  • CSI-RS channel state information reference signal
  • CS-RS cell-specific reference signal
  • DMRS demodulation reference signal
  • SS/PBCH block synchronization signal/physical broadcast channel block
  • the SS/PBCH block may be referred to as a synchronization signal block (synchronization signal block, SSB) for short.
  • the resources can be configured through radio resource control (radio resource control, RRC) signaling.
  • RRC radio resource control
  • a resource is a data structure, including its corresponding uplink/downlink signal related parameters, such as the type of uplink/downlink signal, the resource element that carries the uplink/downlink signal, the transmission time and period of the uplink/downlink signal , The number of ports used to send uplink/downlink signals, etc.
  • Each uplink/downlink signal resource has a unique identification to identify the uplink/downlink signal resource. It is understandable that the identifier of the resource may also be referred to as the index of the resource, which is not limited in the embodiment of the present application.
  • beam management resources may refer to resources used for beam management, and may also be embodied as resources used for calculating and measuring beam quality.
  • beam quality may include but is not limited to: layer 1 reference signal received power (L1-RSRP), layer 1 reference signal received quality (L1-RSRQ), layer 1 signal and interference Noise ratio (layer 1 signal to interference and noise ratio, L1-SINR), etc.
  • beam management resources may include: synchronization signals, broadcast channels, downlink channel measurement reference signals, tracking signals, downlink control channel demodulation reference signals, downlink shared channel demodulation reference signals, uplink sounding reference signals, uplink random access signals, etc. .
  • the signals corresponding to the antenna ports with the QCL relationship have the same parameters, or the parameters of one antenna port can be used to determine the parameters of the other antenna port that has the QCL relationship with the antenna port, or the two antenna ports have the same parameters , Or, the parameter difference between the two antenna ports is less than a certain threshold.
  • the parameters may include one or more of the following: delay spread, Doppler spread, Doppler shift, average delay, average Gain, spatial reception parameters (spatial Rx parameters).
  • the spatial reception parameters can include one or more of the following: angle of arrival (angle of arrival, AOA), average AOA, AOA extension, angle of departure (angle of departure, AOD), average departure angle AOD, AOD extension, reception Antenna spatial correlation parameter, transmit antenna spatial correlation parameter, transmit beam, receive beam, and resource identification.
  • the above-mentioned angle may be decomposition values of different dimensions, or a combination of decomposition values of different dimensions.
  • Antenna ports are antenna ports with different antenna port numbers, and/or antenna ports that have the same antenna port number for information transmission or reception in different time and/or frequency and/or code domain resources, and/or have different Antenna port number The antenna port for information transmission or reception in different time and/or frequency and/or code domain resources.
  • the resource identifier may include: CSI-RS resource identifier, or SRS resource identifier, or SSB resource identifier, or the resource identifier of the preamble sequence transmitted on the Physical Random Access Channel (PRACH), or the demodulation reference signal (DMRS) resource identifier is used to indicate the beam on the resource.
  • CSI-RS resource identifier or SRS resource identifier, or SSB resource identifier, or the resource identifier of the preamble sequence transmitted on the Physical Random Access Channel (PRACH), or the demodulation reference signal (DMRS) resource identifier is used to indicate the beam on the resource.
  • QCL relationships can be divided into the following four types based on different parameters:
  • Type A Doppler frequency shift, Doppler spread, average delay, and delay spread;
  • Type B Doppler frequency shift, Doppler spread
  • Type C Doppler frequency shift, average delay
  • Type D (type D): Space receiving parameters.
  • QCL involved in the embodiment of the present application is a type D QCL.
  • QCL can be understood as a QCL of type D, that is, a QCL defined based on spatial reception parameters.
  • a QCL relationship refers to a QCL relationship of type D, it can be considered as an airspace QCL.
  • the QCL relationship between the downlink signal port and the downlink signal port, or between the uplink signal port and the uplink signal port can be that the two signals have the same AOA or AOD. Yu means the same receiving beam or transmitting beam.
  • the AOA and AOD of the two signals may have a corresponding relationship, or the AOD and AOA of the two signals may have a corresponding relationship, that is, the beam can be used Reciprocity: Determine the uplink transmit beam according to the downlink receive beam, or determine the downlink receive beam according to the uplink transmit beam.
  • the two antenna ports are spatial QCL, it can mean that the corresponding beam directions of the two antenna ports are spatially consistent. From the perspective of the receiving end, if the two antenna ports are spatial QCL, it can mean that the receiving end can receive the signals sent by the two antenna ports in the same beam direction.
  • the signal transmitted on the port with the spatial QCL relationship may also have a corresponding beam, and the corresponding beam includes at least one of the following: the same receiving beam, the same transmitting beam, and the transmitting beam corresponding to the receiving beam (corresponding to the reciprocal Scene), the receiving beam corresponding to the transmitting beam (corresponding to the scene with reciprocity).
  • the signal transmitted on the port with the spatial QCL relationship can also be understood as using the same spatial filter to receive or transmit the signal.
  • the spatial filter may be at least one of the following: precoding, weight of the antenna port, phase deflection of the antenna port, and amplitude gain of the antenna port.
  • the signal transmitted on the port with the spatial QCL relationship can also be understood as having a corresponding beam pair link (BPL), and the corresponding BPL includes at least one of the following: the same downlink BPL, the same uplink BPL, and the downlink BPL The corresponding uplink BPL, the downlink BPL corresponding to the uplink BPL.
  • BPL beam pair link
  • the spatial reception parameter (ie, QCL of type D) can be understood as a parameter for indicating the direction information of the reception beam.
  • the spatial relationship may also be referred to as an uplink transmission configuration indicator (UL TCI).
  • the spatial relationship can be used to determine the transmission beam of the uplink signal.
  • the spatial relationship can be determined by beam training.
  • the reference signal used for beam training may be, for example, an uplink reference signal, such as SRS, or a downlink reference signal, such as SSB or CSI-RS.
  • the terminal device may determine the transmitting beam based on the spatial relationship indicated by the network device, and the network device may determine the receiving beam based on the same spatial relationship.
  • the spatial relationship may also include related parameters for uplink transmit power control, including one or more of the following: Pathloss Reference RS, reference power, compensation coefficient (Alpha), open loop or closed loop Power control indicator, closed loop power control number (closedLoopIndex), etc.
  • Pathloss Reference RS reference power
  • compensation coefficient Alpha
  • open loop or closed loop Power control indicator open loop or closed loop Power control indicator
  • closed loop power control number closedLoopIndex
  • SR is configured by network equipment to each terminal device.
  • the following is a format of SR.
  • TCI-state can be used to indicate the QCL relationship between two reference signals.
  • Each TCI-state may include a serving cell index (ServeCellIndex), a bandwidth part (bandwidth part, BWP) identifier (identifier, ID), and a reference signal resource identifier.
  • the reference signal resource identifier may be, for example, at least one of the following: non-zero power (NZP) CSI-RS reference signal resource identifier (NZP-CSI-RS-ResourceId), non-zero power CSI-RS reference signal Resource set identifier (NZP-CSI-RS-ResourceSetId) or SSB index (SSB-Index).
  • the information of the transmitting beam (that is, the transmitting beam of the network device or the receiving beam of the terminal device) can be indicated through the TCI-state.
  • Each TCI-state includes its own index (tci-StateId) and two QCI information (QCI information, QCl-Info).
  • Each QCl-Info may include a reference signal resource (referenceSignal), which indicates that the resource using the TCI-state and the reference signal resource included in the QCL-Info constitute a QCL relationship. For example, if a TCI-state is configured for resource 1, and the resource included in the QCL-Info included in the TCI-state is resource 2, it means that resource 1 and resource 2 are QCL.
  • TCI-state is configured by network equipment to each terminal device.
  • the following is a format of TCI-state.
  • the terminal device may determine the receiving beam based on the TCI-state indicated by the network device, and the network device may determine the transmitting beam based on the same TCI-state.
  • TCI-state can be configured globally. In TCI-states configured for different cells and different BWPs, if the index of the TCI-state is the same, the configuration of the corresponding TCI-state is also the same.
  • the cell is described by the higher layer from the perspective of resource management or mobility management or service unit.
  • the coverage of each network device can be divided into one or more serving cells, and the serving cell can be regarded as composed of certain frequency domain resources.
  • a component carrier (CC, or component carrier, component carrier, carrier, etc.) can be replaced with a serving cell or a cell or a transmission point or a physical cell.
  • Cell Cell
  • Services Cell Transmission Point
  • CC Cell
  • serving cell index serving cell ID
  • cell ID cell ID
  • physical cell identity physical cell identity
  • transmission point identification or transmission point index
  • TCI can be used to indicate TCI-state.
  • the network device can configure the TCI-state list (list) for the terminal device through high-level signaling (such as radio resource control (RRC)).
  • RRC radio resource control
  • the network device can use the TCI in the RRC message -state add mode list (tci-StatesToAddModList) to configure TCI-state list for terminal device.
  • the TCI-state list may include multiple TCI-states.
  • the network device may configure a maximum of 64 TCI-states for each BWP in each cell.
  • the network device can activate one or more TCI-states through high-level signaling (such as medium access control-control element (MAC-CE)).
  • the activated TCI-state is a subset of the TCI-state list configured in the above RRC message.
  • the network device can activate up to 8 TCI-states for each BWP in each cell.
  • the network device may also indicate a selected TCI-state through the TCI field in the physical layer signaling (downlink control information (DCI)).
  • DCI downlink control information
  • the DCI may be applicable to DCI for scheduling physical downlink resources, for example.
  • the configuration information of a TCI-state may include the identification of one or two reference signal resources and the associated QCL type.
  • the terminal device can demodulate the physical downlink control channel (physical downlink control channel, PDCCH) or physical downlink shared channel (physical downlink control channel, PDCCH) according to the instruction of the TCI-state downlink shared channel, PDSCH).
  • the terminal device can know which transmit beam is used by the network device to send signals, and can then determine which receive beam to use to receive signals according to the beam pairing relationship determined by the channel measurement described above.
  • the terminal device may determine the receiving beam for receiving the PDSCH according to the TCI field in the DCI on the PDCCH.
  • Control resource set (CORESET)
  • Each CORESET is used to transmit a resource set of downlink control information, and may also be referred to as a control resource region or a physical downlink control channel resource set.
  • Each CORESET can be a set of resource element groups (REG).
  • REG is the basic unit for downlink control signaling to allocate physical resources, and is used to define the mapping of downlink control signaling to RE.
  • one REG may be composed of 4 continuous resource elements (resource elements, RE) of non-reference signal (RS) in the frequency domain.
  • REG resource elements
  • RS non-reference signal
  • CORESET can be understood as a collection of resources that may be used to send PDCCH; for terminal devices, the resources corresponding to the search space of the PDCCH of each terminal device belong to the CORESET.
  • the network device can determine the resource used to send the PDCCH from the CORESET, and the terminal device can determine the search space of the PDCCH according to the CORESET.
  • CORESET can include time-frequency resources.
  • it can be a bandwidth or one or more subbands in the frequency domain; it can be one or more symbols in the time domain; and a control resource set can be continuous in the time-frequency domain.
  • a discontinuous resource unit for example, a continuous resource block (resource block, RB) or a discontinuous RB.
  • CORESET can also include TCI-state.
  • CORESET can include multiple TCI-states, and the activated TCI-state can be one of the multiple TCI-states.
  • the resource used to transmit PDCCH can specifically adopt one of the multiple TCI-states.
  • Which TCI-state is used is specified by the network device. For example, the network device sends a MAC-CE to the terminal device. The MAC-CE carries a TCI-state index, and the TCI-state index is used to indicate that the PDCCH corresponding to the CORESET uses the TCI-state.
  • the network equipment can also modify the TCI-state of the PDCCH through the MAC-CE. The network device can configure one or more CORESET for the terminal device to transmit different types of PDCCH.
  • CORESET can be configured through the ControlResourceSet information element (control resource set information element) in high-level parameters, for example.
  • the high-level parameters may include, for example, the identifier (ID) of CORESET, frequency domain resources, and the number of symbols included in duration (duration). This application does not limit the specific parameters used to configure CORESET.
  • the network device can give beam instructions to the terminal device through different signaling, which can instruct the terminal device on how to receive the downlink physical channel or physical signal, and can also instruct the terminal device on how to send the uplink physical channel or Physical signal.
  • the beam indication information may include, but is not limited to, one or more of the following: beam number, beam management resource number, uplink signal resource number, downlink signal resource number, absolute index of beam, relative index of beam, logical index of beam, beam correspondence
  • the index of the antenna port, the antenna port group index corresponding to the beam, the index of the downlink signal corresponding to the beam, the time index of the downlink synchronization signal block corresponding to the beam, the beam pair link (BPL) information, and the transmission parameters corresponding to the beam (Tx parameter), the reception parameter corresponding to the beam (Rx parameter), the transmission weight corresponding to the beam, the weight matrix corresponding to the beam, the weight vector corresponding to the beam, the reception weight corresponding to the beam, the index of the transmission weight corresponding to the beam, and the corresponding beam
  • the network device may also allocate QCL identifiers to beams having a QCL relationship among beams associated with the frequency resource group.
  • the beam indication information may also be embodied as TCI, and TCI may include various parameters, such as: cell ID, BWP ID, reference signal identifier, synchronization signal block identifier, QCL type, and so on.
  • the network equipment can use signaling, such as high-level signaling (such as RRC, MAC-CE) or physical layer signaling (such as DCI), to perform beam indication for terminal equipment.
  • signaling such as high-level signaling (such as RRC, MAC-CE) or physical layer signaling (such as DCI), to perform beam indication for terminal equipment.
  • network equipment can use a three-level signaling structure of RRC signaling + MAC-CE signaling + DCI signaling to perform PDSCH beam indication.
  • Network equipment can configure TCI-states for terminal equipment through high-level signaling (such as RRC signaling). For example, network equipment can configure up to 128 TCI-states through RRC signaling. Thereafter, the network device can activate one or more TCI-states through high-level signaling (such as MAC-CE signaling), for example, up to 8 TCI-states can be activated. The activated TCI-state is a subset of the TCI-state configured by the above RRC signaling. Thereafter, the network device may also indicate a selected TCI-state through the TCI field in the physical layer signaling (such as DCI), and the selected TCI-state is used for current PDSCH transmission.
  • the DCI may be suitable for DCI scheduling physical downlink resources (such as PDSCH), for example.
  • a component carrier can also be called a component carrier, a component carrier, or a component carrier.
  • Each carrier in multi-carrier aggregation can be called "CC”.
  • the terminal device can receive data on multiple CCs.
  • Each carrier is composed of one or more physical resource blocks (PRB), and each carrier can have its own corresponding PDCCH, and the PDSCH of each CC can be scheduled.
  • PRB physical resource blocks
  • the reference signal sent by the CC or the reference signal of the CC is mentioned many times, unless otherwise specified, it means that the reference signal occupies the frequency domain resources of the CC.
  • CC can be replaced with BWP, or CC can be replaced with CC and BWP, or CC can be replaced with CC or BWP.
  • CC ID can be replaced with BWP ID, or CC ID can be replaced with CC ID and BWP ID, or CC ID can be replaced with CC ID or BWP ID.
  • the system can configure the corresponding bandwidth for each terminal device.
  • This part of the bandwidth configured for the terminal device is called BWP, and the terminal device is on its own BWP transmission.
  • the BWP may be a set of continuous frequency domain resources on the carrier, such as a physical resource block (PRB), and the frequency domain resources that can be occupied by different BWPs may partially overlap (overlap) or may not overlap each other.
  • Bandwidths of frequency domain resources occupied by different BWPs may be the same or different, which is not limited in this application.
  • the minimum granularity of BWP in the frequency domain can be 1 PRB.
  • a terminal device may have only one active BWP at a time, and the terminal device only receives data/reference signals or sends data/reference signals on the active BWP (active BWP).
  • the terminal device can be configured to work on multiple CCs, and each CC can have a working (or activated) BWP at the same time.
  • each BWP of each CC has been configured with relevant beams, and beam-related signaling has been sent.
  • the network equipment configures the TCI-state of each BWP of each CC for the terminal equipment through RRC signaling, and the network equipment uses MAC-CE signaling to perform TCI-state for each BWP of each CC of the terminal equipment. Activation.
  • FIG. 3 is a schematic diagram of the format of MAC-CE applicable to the embodiment of the present application.
  • an octet (Oct) in FIG. 3 represents a byte composed of 8 bits (bits).
  • the MAC-CE can be used to configure TCI-state for the PDSCH in the indicated serving cell.
  • the MAC-CE includes an identifier (ID) of a serving cell (serving cell), an ID of a BWP, and an indication bit used to indicate whether each TCI-state is activated.
  • ID identifier
  • serving cell serving cell
  • ID of a BWP an indication bit used to indicate whether each TCI-state is activated.
  • Ti in the MAC-CE is used to indicate whether each TCI state is activated.
  • Each Ti can occupy one bit, and i can correspond to the i-th TCI-state in the TCI-state list configured through tci-StatesToAddModList in the RRC message.
  • i is equal to the value of TCI-state ID (TCI-StateId).
  • the activated TCI-state indicated by the MAC-CE can be understood as the TCI-state configured for the indicated serving cell and BWP, that is, when the PDSCH is transmitted on the BWP in the serving cell, The transmitting beam and the receiving beam may be determined based on the information indicated by the TCI-state.
  • the network device may indicate the TCI-state activated by the first CC to the terminal device through the MAC-CE format as shown in FIG. 3.
  • FIG. 4 is a schematic diagram of the format of the MAC-CE applicable to the embodiment of the present application.
  • the MAC-CE can be used to configure the TCI-state for the PDCCH in the indicated serving cell.
  • the MAC-CE includes an identifier (ID) of a serving cell (serving cell), an ID of a CORESET, and an ID of an activated TCI-state.
  • the activated TCI-state indicated by the MAC-CE can be understood as the TCI-state configured for the serving cell and BWP indicated by the MAC-CE, that is, when the PDCCH is transmitted on the BWP in the serving cell,
  • the transmitting beam and the receiving beam may be determined based on the information indicated by the TCI-state.
  • the network equipment configures the TCI-state of the CORESET of each BWP of each CC for the terminal equipment through RRC signaling, and the network equipment uses the MAC-CE signaling for each BWP of each CC of the terminal equipment.
  • a CORESET indicates that a TCI-state is used for the transmission of the target CORESET. It should be noted that the number of CORESET is unique within a CC.
  • CCs In the communication process, such as high-frequency communication, different CCs can use the same analog beam or different analog beams.
  • CCs In order to reduce the overhead of beam management, in actual deployed high-frequency communication systems, often only one or a few CCs are configured with beam management reference signals, and the results of these CC beam management, including beam indications, can be applied to other CCs. In this case, the beam configuration of all CCs should be the same, and the beam of one CC changes, and the beams of all other CCs should change.
  • an embodiment of the present application proposes a method for updating beam information, which can reduce the signaling overhead of the beam indication.
  • the network device may indicate to the terminal device the TCI-state activated by the first CC through the MAC-CE format as shown in FIG. 4. There are at least the following two possible situations.
  • the TCIs of control resource sets with the same control resource set ID of all serving cells are updated.
  • FIG. 5 is a schematic interaction diagram of a method 500 for updating beam information provided by an embodiment of the present application.
  • the method 500 may include the following steps.
  • the network device sends the beam update information of the first CC to the terminal device, and correspondingly, the terminal device receives the beam update information of the first CC.
  • the network device sends the beam update information of the first CC to the terminal device to update the beam information of the first CC.
  • the first CC is only a naming and does not limit the protection scope of the embodiments of the present application.
  • the first CC may represent any CC or multiple CCs; for another example, the first CC may represent a CC used for beam management or beam training.
  • the first CC indicates a CC used for beam management or beam training.
  • the first CC indicates a CC that transmits a beam management reference signal (such as SSB, CSI-RS, or SRS).
  • the first CC is taken as one CC for exemplary description.
  • the beam information of the CC may, for example, be embodied as the information of the receiving beam of the CC, that is, the receiving beam used in the communication process, or in other words, the receiving beam when the terminal device receives signals or data on the frequency domain resources of the CC.
  • the beam information of the CC may be, for example, the information of the transmission beam of the CC, that is, the transmission beam used in the communication process, or in other words, the transmission beam when the terminal device transmits signals or data on the frequency domain resources of the CC.
  • the description will be given mainly by taking the receiving beam of the CC as an example.
  • the beam information of the CC may be embodied as a TCI.
  • the TCI may be the TCI used for the PDCCH (that is, the PDCCH transmitted on the frequency domain resources of the CC); or, the TCI may also be the TCI used for the PDSCH (that is, the PDSCH transmitted on the frequency domain resources of the CC)
  • the TCI can also be applied to the TCI of a reference signal (that is, a reference signal transmitted on the frequency domain resource of the CC, such as CSI-RS).
  • the TCI may include multiple parameters, such as: cell ID, BWP ID, reference signal identifier, synchronization signal block identifier, QCL type, etc.
  • the beam information of the CC can be replaced with information of a TCI of the CC, or can also be replaced with information of a TCI-state of the CC.
  • the beam information of the CC may include one TCI of the PDSCH.
  • the network device sends a MAC-CE to the terminal device, where Ti in the MAC CE is used to indicate whether each TCI-state is activated.
  • the value of Ti can be 1 or 0. 1 can represent that TCI-state is selected and activated, and 0 can represent that TCI-state is not selected and activated.
  • the network device sends the beam update information of the first CC to the terminal device to update the beam information of the first CC.
  • the network device may send the MAC-CE to the terminal device to indicate which TCI-state of PDSCH activation is. That is, when the PDSCH is transmitted on the BWP in the first CC, the sending beam and the receiving beam may be determined based on the information indicated by the TCI-state.
  • the beam information of the CC may include one TCI of the PDCCH.
  • the network device sends a MAC-CE to the terminal device.
  • the MAC-CE includes the ID of the serving cell and the ID of the CORESET, and the ID of the activated TCI-state.
  • the activated TCI-state indicated by the MAC-CE can be understood as the TCI-state configured for the serving cell and BWP indicated by the MAC-CE, that is, when the PDCCH is transmitted on the BWP in the serving cell,
  • the transmitting beam and the receiving beam may be determined based on the information indicated by the TCI-state.
  • the network device sends the beam update information of the first CC to the terminal device to update the beam information of the first CC.
  • the network device may send the MAC-CE to the terminal device to indicate which TCI-state of the PDCCH is activated. That is, when the PDCCH is transmitted on the BWP in the first CC, the sending beam and the receiving beam can be determined based on the information indicated by the TCI-state.
  • the beam update information of the first CC includes the information of the TCI-state activated by the first CC.
  • the network device sends the beam update information of the first CC to the terminal device to activate one or more TCI-states for the first CC.
  • the network device sends the beam update information of the first CC to the terminal device to update the beam information of the first CC.
  • the network device sends the MAC-CE to the terminal device to indicate transmission on the first CC.
  • the activated TCI-state of the PDSCH is the activated TCI-state of the PDSCH.
  • updating the beam information of the first CC may include activating a TCI-state for the first CC.
  • updating the beam information of the CC can be replaced by activating a TCI-state for the CC.
  • the beam update information of the first CC may be carried on MAC-CE signaling.
  • the network device selects (or activates) a TCI-state for the first CC through MAC-CE signaling.
  • the network device updates the TCI-state activated by the first CC from TCI-state#1 to TCI-state#2 through MAC-CE signaling.
  • the first CC, BWP#1 that is, the currently activated BWP
  • the beam update information of the first CC includes the reference signal resource information corresponding to the TCI-state of the first CC.
  • the network device sends the beam update information of the first CC to the terminal device to update a Qcl-TypeD reference signal resource of a TCI-state of the first CC.
  • the beam update information of the first CC includes reference signal resource information corresponding to the TCI-state activated by the first CC.
  • updating the beam information of the first CC may include updating a qcl-TypeD reference signal resource of a TCI-state of the first CC.
  • the reference signal resource type may be updated, or the reference signal resource identifier may be updated.
  • updating the beam information of the first CC may also include updating the spatial relation of the uplink of the first CC.
  • the beam update information of the first CC may be carried on RRC signaling.
  • the network device updates the reference signal resource ID of the qcl-TypeD of one TCI-state of the first CC through RRC signaling.
  • the terminal device updates one or more second CCs and beam information of the first CC based on the beam update information of the first CC, where one or more second CCs have an association relationship with the first CC.
  • the value of the reserved field R in the MAC-CE signaling may be used to instruct the terminal device whether to update one or more second CCs based on the beam update information of the first CC and The beam information of the first CC.
  • a reserved field in the MAC-CE signaling can be used to indicate whether the MAC-CE signaling can be used for multiple CCs to activate the TCI state at the same time.
  • the terminal device updates one or more second CCs and the beam information of the first CC based on the beam update information of the first CC, for example,
  • the MAC-CE signaling can be used for multiple CCs to activate the TCI state at the same time.
  • the terminal device only updates the beam information of the first CC based on the beam update information of the first CC. For example, the MAC-CE signaling cannot be used Activate TCI status on multiple CCs at the same time.
  • one or more second CCs and the first CC have an association relationship, including: one or more second CCs and the first CC use the same beam configuration.
  • the one or more second CCs have an association relationship with the first CC, which may include: the beam information of the one or more second CCs is associated with the beam information of the first CC.
  • the reference signal resource ID of the qcl-TypeD of one TCI-state of one or more second CCs is associated with the reference signal resource ID of the qcl-TypeD of one TCI-state of the first CC and the ID of the first CC.
  • the embodiments of the present application may be applicable to terminal devices that simultaneously support one active beam.
  • the terminal device when it supports one active beam at the same time, it can update one or more second CCs and beam information of the first CC based on the beam update information of the first CC.
  • the activation beam for example, can mean the activation of the transmission beam, and those skilled in the art can understand its meaning. It is used to indicate the transmission beam or the transmission beam indication, or it can also indicate the spatial relation indication, in other words, the indication used in the communication process. Transmit beam.
  • the terminal equipment supports one active beam at the same time, which can be expressed as: at the same time, the terminal equipment uses the same transmission beam on one or more second CCs and the first CC.
  • the activation beam for example, can also mean the activation of the receiving beam.
  • the receiving beam can also mean the QCL indication, in other words, indicating the use in the communication process.
  • the receive beam The terminal equipment supports one active beam at the same time, which can be expressed as: at the same time, the terminal equipment uses the same receiving beam on one or more second CCs and the first CC.
  • an activated beam is used as an example for exemplification.
  • the terminal device may report that the maximum number of activated TCIs and/or the maximum number of activated spatial relations are both 1 through UE capabilities. Further, optionally, this TCI and this spatial relation may be the same beam, that is, the transmission beam corresponding to the same reception beam, or the reception beam corresponding to the same transmission beam.
  • the terminal device After receiving the beam update information of the first CC, the terminal device not only updates the beam information of the first CC, but can also update one or more first CCs that have an association relationship with the first CC (for example, use the same beam configuration as the first CC). Two CC beam information. It can be understood that the network device no longer needs to send the beam update information of one or more second CCs, thereby saving signaling overhead and reducing the overhead and delay of beam indication signaling.
  • first CC and the second CC are only named for distinction, and do not limit the protection scope of the embodiments of the present application.
  • One or more second CCs have an association relationship with the first CC, which is used to indicate that there may be one or more CCs that have an association relationship with the first CC, or in other words, there are multiple CCs that have an association relationship.
  • the embodiments of this application do not limit this.
  • the one or more second CCs and the first CC may be multiple CCs in a cell group.
  • the one or more second CCs and the first CC may be multiple CCs in one band.
  • the one or more second CCs and the first CC may be multiple CCs in a band group (band group or band combination). There is no limit to this.
  • the second CC has an association relationship with the first CC (for example, the second CC uses the same beam configuration as the first CC).
  • the first CC performs beam training
  • the second CC uses the beam training result of the first CC
  • the second The CC and the first CC have an association relationship (for example, the second CC and the first CC use the same beam configuration).
  • the terminal device supports 8 high-frequency CCs, for distinction, they are marked as: CC#0, CC#1, CC#2, CC#3, CC#4, CC#5, CC#6, CC#7.
  • the first CC is CC#0
  • the second CC includes 7 CCs, namely CC#1, CC#2, CC#3, CC#4, CC#5, CC#6, CC#7.
  • CC#0 performs beam training
  • CC#1, CC#2, CC#3, CC#4, CC#5, CC#6, and CC#7 use the beam training results of CC#0.
  • RRC configuration includes:
  • Cell group configuration (cell group configure, CellGroupConfig) ⁇ ... ⁇ serving cell configure (ServingCellConfig) ⁇ ... ⁇ BWP ⁇ ... ⁇ PDSCH-Config... ⁇ tci-StatesToAddModList/tci-StatesToReleaseList.
  • tci-StatesToAddModList/tci-StatesToReleaseList can be jointly used to determine the final TCI of the CC/BWP configuration.
  • the possible format of tci-StatesToAddModList/tci-StatesToReleaseList is as follows.
  • the elements in the TCI-state list of PDCCH/CORESET only include the ID of the TCI-state, and the elements in the TCI-state list of PDSCH include the specific configuration of the TCI-state.
  • TCI-state is configured for each CC
  • the same TCI-state can be configured repeatedly for each CC and each BWP, namely CC#1, CC#2, CC#3, CC#4, CC#5, CC#6, CC#7 and CC#0 use the same configuration.
  • CC#1, CC#2, CC#3, CC#4, CC#5, CC#6, CC#7 and CC#0 use the same configuration.
  • TCI LIST may represent PDSCH-Config... ⁇ tci-StatesToAdd ModList in the above RRC configuration.
  • the reference signal resources of qcl-TypeD are: CSI-RS of CC#0 #1.
  • CC#1, CC#2, CC#3, CC#4, CC#5, CC#6, CC#7 and CC#0 are configured with the same qcl-TypeD.
  • the second CC and the first CC have an association relationship, or the second CC and the first CC use the same beam configuration, which can mean that the second CC and the first CC use the same beam. Or, it can also be expressed that the beam configurations of the second CC and the first CC are the same except for the ID of the CC. Alternatively, it can also be expressed that the TCI-state activated by the second CC is the same as the TCI-state activated by the first CC. Alternatively, it may also indicate that the reference signal resource identifier included in the TCI-state activated by the second CC is associated with the ID of the first CC and the reference signal resource identifier included in the TCI-state activated by the first CC. Or, it can also indicate that the second CC and the first CC are configured with the same qcl-TypeD. Alternatively, it can also be expressed that one or more second CCs have a QCL relationship with the first CC.
  • the configuration of the same qcl-TypeD, or the same qcl-TypeD of the activated TCI-state can mean that the related configuration of the qcl-TypeD is the same, and the reference signal resources in the qcl-TypeD are the same (such as the same reference signal identifier, Same resource types, etc.).
  • qcl-TypeD with the same configuration is used to indicate.
  • the beam configuration of the second CC and the first CC may include the following two possible forms.
  • Form 1 The network device performs beam configuration for both the second CC and the first CC.
  • the network device configures a TCI-state list with qcl-TypeD for the first CC and the second CC respectively.
  • the first CC and the second CC are configured with the same TCI-state, in other words, the activated TCI-state configured by the network device for the first CC is the same as the activated TCI-state configured by the network device for the second CC.
  • Form 2 The network device only performs beam configuration for the first CC.
  • the network device only configures the TCI-state list with qcl-TypeD for the first CC, and sends the beam configuration information and indication information of the first CC to the terminal device, and the indication information is used to indicate the second CC and the first CC.
  • CC has an association relationship.
  • the second CC and the first CC have an association relationship, that is, the second CC and the first CC use the same beam configuration, or in other words, the second CC uses (or copies) the beam configuration of the first CC.
  • the network device only performs beam configuration for the first CC, which is relative to the second CC (that is, other CCs that are associated with the first CC (for example, use the same beam configuration as the first CC)) For that.
  • the network device performs beam configuration for the first CC, but does not perform beam configuration for the second CC.
  • the second CC has an association relationship with the first CC (such as using the same beam configuration). It can be understood that when the beam of the first CC is updated, the beam of the second CC is also updated to maintain the association (or use the same beam configuration) .
  • the beam update information of the first CC includes the information of the TCI-state activated by the first CC.
  • the terminal device When the terminal device receives the information of the TCI-state activated by the first CC, it will not only update the TCI-state activated by the first CC, but also automatically update the TCI-state activated by the second CC. After the update, the TCI-state activated by the first CC is the same as the TCI-state activated by the second CC.
  • the terminal device receives the information of the TCI-state activated by the first CC, and automatically activates the TCI-state of the second CC, so that the TCI-state activated by the first CC is the same as the TCI-state activated by the second CC.
  • the second CC is the same as the reference signal resource of the qcl-TypeD configured by the first CC.
  • one MAC-CE signaling can activate the TCI-states of multiple CCs.
  • the MAC-CE signaling activates the TCI-states of multiple CCs, and accordingly, the original TCI-states of the multiple CCs are deactivated.
  • the terminal device uses the new beam on the second CC and no longer uses the old beam.
  • the MAC-CE signaling can activate the TCI-states of multiple CCs, and can also deactivate the original TCI-states of multiple CCs.
  • the TCI-states of multiple CCs (such as the first CC and the second CC) can be deactivated.
  • the MAC-CE signaling can also be considered as deactivation signaling, that is, based on the MAC-CE signaling, the original TCI-states of multiple CCs are removed. activation.
  • the network device sends MAC-CE signaling to the terminal device, where the cell ID in the MAC-CE signaling is 0, and the MAC-CE signaling indicates that the TCI-state activated by CC#0 is TCI-state#2.
  • the network device does not need to send MAC-CE signaling to the terminal device, indicating that the activated TCI-state of CC#1-CC#7 is TCI-state#2.
  • the terminal device can automatically determine the TCI-state activated by CC#1-CC#7, that is, the terminal device can determine that the TCI-state activated by CC#1-CC#7 is TCI-state#2.
  • the terminal device automatically updates the TCI-state activated by CC#1-CC#7, which means that there is no need to send MAC-CE signaling for indicating the activated TCI-state of CC#1-CC#7.
  • the terminal device can determine the activated TCI-state of CC#1-CC#7. In other words, after receiving the MAC-CE signaling used to indicate the activated TCI-state of CC#0, the terminal device can determine that the activated TCI-state of CC#0 is the activated TCI-state of CC#1-CC#7.
  • the terminal device automatically activates the TCI-state of other CCs configured with the same qcl-TypeD after receiving the MAC-CE signaling used to indicate the activation of the TCI-state of CC#0.
  • the terminal device activates the TCI-state of the CC, which means that the activated TCI-state is used for current data transmission (such as PDSCH transmission). For example, when data (such as PDSCH) is transmitted on the BWP of the CC, the sending beam and the receiving beam can be determined based on the information indicated by the activated TCI-state.
  • the beam update information of the first CC includes the information of the reference signal resource corresponding to the TCI-state activated by the first CC.
  • the terminal device receives the information to update the reference signal resource of a TCI-state of the first CC, and will not only update the reference signal resource of the TCI-state of the first CC, but also automatically update the reference of a TCI-state of the second CC. Signal resources. After the update, the reference signal resource of the TCI-state of the first CC is the same as the reference signal resource of a TCI-state of the second CC.
  • the terminal device after receiving the information of updating the reference signal resource of one TCI-state of the first CC, the terminal device automatically updates the information of the reference signal resource of the second CC originally configured with the same qcl-TypeD, so that the The reference signal resource of the TCI-state is the same as the reference signal resource of a TCI-state of the second CC.
  • one RRC signaling can update beam information of multiple CCs.
  • the network device sends RRC signaling to the terminal device.
  • the cell ID in the RRC signaling is 0.
  • the RRC signaling indicates that the reference signal resource identifier of a TCI-state qcl-TypeD of CC#0 is updated from CSI-RS#1 It is CSI-RS#2.
  • the network device does not need to send RRC reconfiguration signaling to the terminal device, indicating that the reference signal resource identifier of the qcl-TypeD of the TCI-state of CC#1-CC#7 is from CSI-RS# 1 is updated to CSI-RS#2.
  • the configuration of TypeD is the same, for example, the reference signal resource identifier is CSI-RS#1 with CC#0.
  • the terminal device can automatically update the reference signal resource identifier of the qcl-TypeD of the TCI-state of CC#1-CC#7, or in other words, the terminal device can determine the qcl-TypeD of the TCI-state of CC#1-CC#7
  • the reference signal resource identifier of is CSI-RS#2 of CC#0.
  • the reference signal resource identifier of the qcl-TypeD of the TCI-state of CC#1-CC#7 is the same as the ID of CC#0 and the reference signal resource of the qcl-TypeD of the TCI-state of CC#0.
  • the identification has an association relationship.
  • the reference signal resource identifier of the qcl-TypeD of the TCI-state of CC#1-CC#7 is: CSI-RS#2 of CC#0.
  • the terminal device automatically updates the reference signal resource identifier of the qcl-TypeD of the TCI-state of CC#1-CC#7, which means that it does not need to send the qcl- for instructing to update the TCI-state of CC#1-CC#7.
  • TypeD reference signal resource identification RRC signaling After the terminal device receives the RRC signaling used to instruct to update the reference signal resource identifier of the qcl-TypeD of a TCI-state of CC#0, it can automatically update the qcl-TypeD of the TCI-state of CC#1-CC#7.
  • the reference signal resource identifier that is, the reference signal resource identifier of the qcl-TypeD of the TCI-state of the CC configured with the same qcl-TypeD is automatically updated.
  • automatic update means that there is no need to send beam update information for indicating the second CC to the terminal device.
  • the beam update information used to indicate the first CC can update the beam information of the first CC and the second CC.
  • the terminal device automatically updates the TCI of the second CC (or the terminal device automatically updates the receiving beam of the second CC), for example, the terminal device activates the TCI-state of the second CC, or the terminal device automatically Update the reference signal resource of qcl-TypeD in TCI-state.
  • the embodiments of the present application are not limited thereto.
  • the terminal device can automatically update based on the beam update information of the first CC The beam information of the one or more second CCs. Take a second CC as an example to briefly describe several other possible situations.
  • the terminal device can automatically update the transmission beam of the time-frequency tracking reference signal resource of the second CC.
  • the network device sends the information of the time-frequency tracking reference signal resource configured for the first CC and the information of the time-frequency tracking reference signal resource configured for the second CC to the terminal device.
  • the network device configures the reference signal resource used for time-frequency tracking for the first CC, for example, the time-frequency tracking reference signal resource is configured in the TCI-state of the first CC as the reference signal resource of qcl-TypeA.
  • the network device configures the reference signal resource used for time-frequency tracking for the second CC, and configures the time-frequency tracking reference signal resource in the TCI-state of the second CC as the reference signal of qcl-TypeA.
  • the terminal device may update the beam information of the time-frequency tracking reference signal resource of the second CC based on the beam update information of the first CC.
  • the terminal device can update the transmission beam of the time-frequency tracking reference signal resource of the second CC based on the beam update information of the first CC.
  • the reference signal resource identification of qcl-TypeD of the activated TCI-state of the first CC is updated from CSI-RS#1 to CSI-RS#2, and the activated TCI-state is changed from TCI-state#1 to TCI
  • the network device automatically updates the transmission beam of the time-frequency tracking reference signal resource (for example, CSI-RS#x) of the second CC, and the terminal device also automatically updates its receiving beam accordingly.
  • TCI-state#2 :(qcl-TypeA: CSI-RS#x of the second CC, qcl-TypeD: CSI-RS#2 of the first CC)
  • the terminal device updates the TCI of the first CC and automatically updates the spatial relation of the second CC.
  • the terminal device updates the receive beam of the first CC and automatically updates the transmit beam of the second CC.
  • the second CC and the first CC have the same spatial relationship.
  • the second CC and the first CC have the same transmission beam for sending the uplink signal.
  • the spatial relation of the second CC is associated with the TCI-state of the first CC, that is, the transmission beam of the second CC (that is, the spatial relation of the second CC) is the uplink transmission corresponding to the downlink receive beam (the TCI-state of the first CC) Beam.
  • the terminal device updates the downlink receiving beam of the first CC based on the beam update information of the first CC. It can be understood that the terminal device determines the receiving beam of the first CC based on the receiving beam indication of the first CC.
  • the spatial relation of the second CC is related to the TCI-state of the first CC. Therefore, the terminal device will also update the spatial relation of the second CC to correspond to the TCI-state activated by the first CC, or in other words, to match the TCI-state of the first CC.
  • the receiving beam after CC update correspond to the receiving beam after CC update
  • the received beam indication can also be replaced with a QCL indication.
  • the receiving beam indication indicates the receiving beam used in the communication process.
  • the receiving beam of the first CC means the receiving beam when the terminal device receives a signal on the frequency domain resource of the first CC.
  • updating the transmission beam of the second CC by the terminal device also includes changing the uplink transmission power.
  • the path loss estimation reference signal changes according to the change of the TCI of the first CC.
  • the network device signals the terminal device to update the TCI of one or more downlink channels/downlink signals of the first CC, and the terminal device can automatically update the transmission beam of one or more uplink channels/uplink signals of the second CC .
  • Downlink PDCCH CORESET TCI
  • uplink physical uplink shared channel (PUSCH)/SRS/random access channel (RACH) transmission beam scheduled or triggered by the PDCCH.
  • the network device signals to the terminal device to update the TCI of the PDCCH CORESET of the first CC, and the terminal device can automatically update the PUSCH/SRS/RACH transmission beams scheduled or triggered by the PDCCH of the second CC.
  • the meaning of the PUSCH/SRS/RACH scheduled or triggered by the PDCCH of the second CC should be understood by those skilled in the art.
  • the PDCCH scheduled PUSCH of the second CC represents the PUSCH scheduled by the PDCCH transmitted on the frequency domain resources of the second CC.
  • the terminal device transmits on the frequency domain resources of the second CC.
  • PUSCH scheduled by this PDCCH Others are similar, so I won’t repeat them here.
  • Downlink TCI of PDSCH
  • uplink send beam of physical uplink control channel (physical uplink control channel, PUCCH) for the PDSCH (acknowledgement, ACK) or negative (negative acknowledgement, NACK).
  • PUCCH physical uplink control channel
  • ACK indicates that the PDSCH is received correctly or the PDSCH is successfully received
  • the ACK may be a hybrid automatic repeat request (HARQ) (HARQ ACK).
  • NACK indicates that the PDSCH was not received correctly or failed to receive the PDSCH.
  • the NACK can be HARQ NACK.
  • the network device signals the terminal device to update the TCI of the PDSCH of the first CC, and the terminal device can automatically update the transmission beam of the PUCCH of the second CC, which is the PUCCH that ACKs or NACKs the PDSCH of the first CC. .
  • the terminal device successfully receives the PDSCH, that is, receives the PDSCH correctly, the downlink: TCI of the PDSCH, and the uplink: the transmission beam of the PUCCH that reports HARQ ACK to the PDSCH.
  • the network device signals the terminal device to update the TCI of the PDSCH of the first CC, and the terminal device can automatically update the PUCCH transmission beam of the second CC that reports the HARQ ACK to the PDSCH.
  • the PUCCH of the second CC that reports HARQ ACK to the PDSCH should be understood by those skilled in the art, which means that the PUCCH that reports HARQ ACK to the PDSCH is transmitted on the frequency domain resources of the second CC, in other words , The terminal device sends a PUCCH report on the frequency domain resource of the second CC to report HARQ ACK for the PDSCH.
  • the terminal device fails to receive the PDSCH, that is, it does not receive the PDSCH correctly, then the downlink: the TCI of the PDSCH, and the uplink: the transmission beam of the PUCCH that reports HARQ NACK to the PDSCH.
  • the network device signals to the terminal device to update the TCI of the PDSCH of the first CC, and the terminal device can automatically update the PUCCH transmission beam of the second CC that reports HARQ NACK to the PDSCH.
  • the PUCCH of the second CC that reports HARQ NACK to the PDSCH should be understood by those skilled in the art, which means that the PUCCH that reports HARQ NACK to the PDSCH is transmitted on the frequency domain resources of the second CC, in other words , The terminal device sends a PUCCH on the frequency domain resource of the second CC to report HARQ NACK for the PDSCH.
  • Downlink TCI of CSI-RS
  • uplink PUCCH/PUSCH transmission beam for reporting CSI.
  • the network device signals the terminal device to update the TCI of the CSI-RS of the first CC, and the terminal device can automatically update the PUCCH/PUSCH transmission beam of the CSI of the second CC.
  • the terminal device updates the spatial relation of the first CC and automatically updates the spatial relation of the second CC.
  • the terminal device updates the transmission beam of the first CC, and automatically updates the transmission beam of the second CC.
  • the second CC and the first CC have the same spatial relation.
  • the second CC and the first CC have the same transmission beam for sending uplink signals.
  • the terminal device updates the spatial relation of the first CC based on the beam update information of the first CC, that is, the terminal device determines the transmission beam of the first CC based on the transmission beam indication of the first CC.
  • the spatial relation of the second CC is related to the spatial relation of the first CC. Therefore, the terminal device will also update the spatial relation of the second CC so as to be the same as the updated spatial relation of the first CC.
  • sending beam indication may also be replaced with a spatial relation indication or a spatial filter indication.
  • Send beam indication that is, indicate the sending beam used in the communication process.
  • the sending beam of the first CC means the sending beam when the terminal device sends signals or data on the frequency domain resources of the first CC.
  • the terminal device updates the spatial relation of the first CC and automatically updates the TCI of the second CC.
  • the terminal device updates the transmission beam of the first CC and automatically updates the reception beam of the second CC.
  • the second CC and the first CC have the same TCI configuration, in other words, the second CC and the first CC receive the same signal receiving beam.
  • the terminal device updates the spatial relation of the first CC based on the beam update information of the first CC, that is, the terminal device determines the transmission beam of the first CC based on the transmission beam indication of the first CC.
  • the TCI-state of the second CC is related to the spatial relation of the first CC. Therefore, the terminal device will also update the TCI-state of the second CC to correspond to the updated spatial relation of the first CC. In other words, the terminal device automatically The receiving beam of the second CC is updated to correspond to the updated transmitting beam of the first CC.
  • the terminal device can automatically update the second CC based on the beam update information of the first CC.
  • the beam information of the CC so that the second CC and the first CC maintain the same beam configuration.
  • the terminal device may update the one or more second CCs.
  • the mapping relationship between the TCI-state ID of the second CC and the first CC and the TCI field value, the mapping relationship between the TCI-state ID updated by the one or more second CCs and the TCI field value and the TCI-state ID updated by the first CC The mapping relationship is the same as the value of the TCI field.
  • the terminal device updates one or more second CCs and the mapping relationship between the TCI-state ID of the first CC and the TCI field value in the DCI, and the updated TCI-state ID of one or more second CCs and The mapping relationship of the TCI field value in the DCI is the same as the mapping relationship between the TCI-state ID updated by the first CC and the TCI field value in the DCI.
  • the activated TCI-state of one or more second CCs and the mapping relationship between TCI-state and TCI field value are updated to be the same as the first CC. Therefore, it is possible to avoid misalignment of the data transmission beams of the terminal device and the network device, thereby reducing the impact on the transmission performance.
  • the terminal device may send relevant information about the terminal capabilities to the network device.
  • the related terminal capabilities may include: whether the terminal device supports the simultaneous update and activation of the TCI-state and the mapping relationship between the TCI-state and the TCI field value (such as the TCI field value in the DCI).
  • the network device sends the beam update information of the first CC to the terminal device, and the terminal device according to the beam update information of the first CC, That is, the mapping relationship between the activated TCI-state and TCI-state of the one or more second CCs and the TCI field value (such as the TCI field value in the DCI) can be updated.
  • the terminal device may automatically update the beam information of other CCs that have an association relationship with the first CC (such as CCs that use the same beam configuration as the first CC) based on the beam update information of the first CC.
  • the terminal device may automatically update the beam information of other CCs that have an association relationship with the first CC (such as CCs that use the same beam configuration as the first CC) based on the beam update information of the first CC.
  • multiple CCs have an association relationship (for example, multiple CCs use the same beam configuration), and the terminal device also automatically updates the remaining CCs based on the received beam update information of some of the multiple CCs.
  • CC beam information may automatically update the beam information of other CCs that have an association relationship with the first CC (such as CCs that use the same beam configuration as the first CC) based on the beam update information of the first CC.
  • multiple CCs have an association relationship (for example, multiple CCs use the same beam configuration), and the terminal device also automatically updates
  • the CC activates a TCI-state as an example, and the embodiments of the present application are not limited thereto.
  • CC ID can be replaced with BWP ID, or CC ID can be replaced with CC ID and BWP ID, or CC ID can be replaced with CC ID or BWP ID.
  • one or more second CCs and the first CC use the same beam configuration as an example for description. "One or more second CCs and the first CC use the same beam configuration" can be replaced with "one or more second CCs have an association relationship with the first CC”.
  • updating the beam information means updating the transmitting beam or the receiving beam.
  • the terminal device changes the receiving beam.
  • the transmitting beam of the network device and the receiving beam of the terminal device constitute the downlink.
  • the change in the receiving beam of the terminal device means that the transmitting beam of the network device has also changed; in other words, when the transmitting beam of the network device changes, the receiving beam of the corresponding terminal device also changes accordingly.
  • the terminal device changes the transmission beam.
  • the receiving beam of the network device and the transmitting beam of the terminal device constitute an uplink.
  • the change of the transmitting beam of the terminal device means that the receiving beam of the network device has also changed; in other words, the receiving beam of the network device changes, and the transmitting beam of the corresponding terminal device also changes accordingly.
  • the beam update information of one CC can update the beam information of multiple CCs, or in other words, through one signaling.
  • the terminal device can then update the receiving beams and/or sending beams of multiple CCs. For example, update the transmission beams of multiple CCs, such as activating TCI-state for multiple CCs, or update the reference signal resources of the qcl-TypeD of the TCI-states of multiple CCs (such as reference signal resource identifier or reference signal resource type, etc.) .
  • update the transmit beams of multiple CCs may be updated.
  • FIG. 6 is a schematic interaction diagram of a method 600 for updating beam information according to another embodiment of the present application.
  • the method 600 may include the following steps.
  • the network device sends CC#0 and CC#1 beam configuration information to the terminal device.
  • the network device sends RRC signaling to the terminal device to configure beam information for each CC or the BWP of each CC.
  • the network device performs related beam configuration for both CC#0 and CC#1.
  • RRC configuration includes:
  • Step 610 is similar to the existing configuration method, and will not be described in detail here.
  • CC#0 may be a CC used for beam training or beam management.
  • the network device sends CC#0 beam update information to the terminal device.
  • the network device sends RRC signaling to the terminal device to update the qcl-TypeD reference signal resource identifier of a TCI-state of CC#0.
  • the network device sends RRC signaling to the terminal device.
  • the cell ID in the RRC signaling is 0, and the RRC signaling indicates that the reference signal resource identifier of a TCI-state qcl-TypeD of CC#0 is from CSI-RS# 1 is updated to CSI-RS#2.
  • the terminal device updates the beam information of CC#0 and CC#1.
  • the terminal device After the terminal device receives the RRC signaling for CC#0, the terminal device will consider the beam information of other CCs (CCs that have an association relationship with CC#0, for example, CCs that use the same beam configuration as CC#0) Update. Specifically, it means that the TCI of other CCs originally configured with the same qcl-typeD reference signal ID is updated.
  • the terminal device After receiving the RRC signaling, the terminal device updates the qcl-TypeD reference signal resource identifier of the TCI-state of CC#0 and CC#1.
  • the qcl-TypeD reference signal resource identifier of the TCI-state of CC#0 is updated from CSI-RS#1 to CSI-RS#2.
  • the reference signal resource identifier of the qcl-TypeD of the TCI-state of CC#1 is associated with the ID of CC#0 and the reference signal resource identifier of the qcl-TypeD of the TCI-state of CC#0.
  • the reference signal resource identifier of the qcl-TypeD of the TCI-state of CC#1 is: CSI-RS#1 of CC#0.
  • the reference signal resource identifier of the qcl-TypeD of the TCI-state of CC#1 is: CSI-RS#2 of CC#0.
  • the RRC reconfiguration signaling of CC#1 does not need to be sent, and the terminal device will automatically update the beam information of CC#1, which can reduce repeated signaling and redundant configuration, thereby reducing the overhead of beam indication And time delay.
  • the network device sends MAC-CE signaling to the terminal device, where the MAC-CE signaling is used to activate or select the beam of CC#0.
  • the terminal device After the terminal device receives the MAC-CE signaling, it will consider that the beam information of CC#1 is updated at the same time.
  • TCI-state#1 :: ⁇ qcl-TypeD:CC#0 CSI-RS#1 ⁇ activate TCI-state#2:: ⁇ qcl-TypeD:CC#0 CSI -RS#2 ⁇ .
  • the MAC-CE signaling of CC#1 does not need to be sent, and the terminal device will automatically update the beam information of CC#1, thereby reducing the overhead and time delay of beam indication.
  • CC#1 can be configured with only one time-frequency offset tracking reference signal (for example, CSI-RS#x is used for the reference of qcl-TypeA), and it does not need QCL indication (ie, CSI-RS#x is the downlink physical signal itself). No need to configure QCL information), the network device can automatically update its transmitting beam, and the terminal device can also automatically update its receiving beam.
  • CSI-RS#x is used for the reference of qcl-TypeA
  • QCL indication ie, CSI-RS#x is the downlink physical signal itself
  • the network device when the activated TCI-state changes from TCI-state#1 to TCI-state#2, the network device automatically updates the transmission beam of CSI-RS#x of CC#1, and the terminal device automatically updates accordingly. It receives the beam.
  • FIG. 7 is a schematic interaction diagram of a method 700 for updating beam information according to another embodiment of the present application.
  • the method 700 may include the following steps.
  • the network device sends CC#0 beam configuration information to the terminal device.
  • the network device sends RRC signaling to the terminal device to configure beam information for the BWP of CC#0 or CC#0.
  • RRC configuration includes:
  • RRC only configures a TCI-state list with qcl-TypeD for one CC (for example, CC#0), and other CCs (for example, CC#1) multiplex this
  • each CC does not need to copy the same TCI qcl-TypeD content, but simply indicates that CC#1 and CC#0 have a qcl-TypeD association relationship.
  • the network device performs the relevant beam configuration for CC#0.
  • the multiple CCs may be multiple CCs in a cell group. Alternatively, the multiple CCs may be multiple CCs in one frequency band. Alternatively, the multiple CCs may be multiple CCs in one frequency band group. There is no limit to this.
  • indicating that CC#1 and CC#0 have a qcl-TypeD association relationship can be implemented in any of the following ways.
  • CC#1 and CC#0 have a qcl-TypeD association relationship by default.
  • the network equipment pre-prescribes or pre-prescribes in the agreement or pre-arranged in advance, multiple CCs in a cell group have this association; or, multiple CCs in a frequency band have this association; or, in a frequency band group The multiple CCs have this relationship.
  • the terminal device reports that CC#1 and CC#0 have a qcl-TypeD association relationship. Specifically, the terminal device may feed back to the network device whether multiple CCs have such an association relationship.
  • the network device can be configured according to the feedback of the terminal device.
  • the terminal device may also determine whether to automatically update the beam information of CC#1 based on the beam update information of CC#0 according to whether multiple CCs have such an association relationship.
  • the network device sends the beam configuration information and indication information of CC#0 to the terminal device, and the indication information is used to indicate that CC#1 and CC#0 have an association relationship. That is, CC#1 uses the beam configuration of CC#0.
  • CC#1 when CC#1 is configured with a reference signal for time-frequency tracking (such as type A), CC#1 still has a TCI-state list, but the content of qcl-TypeD is the same.
  • CC#0 may be a CC used for beam training or beam management. Specifically, refer to the description of the first CC in the method 500.
  • the network device sends CC#0 beam update information to the terminal device.
  • the network device sends RRC signaling to the terminal device to update the qcl-TypeD reference signal resource identifier of a TCI-state of CC#0.
  • This step is similar to step 620 in method 600 and will not be repeated here.
  • the terminal device updates the beam information of CC#0 and CC#1.
  • the terminal device can automatically update the beam information of CC#1 after receiving the RRC signaling.
  • the terminal device will automatically update the beam information of CC#1, thereby reducing repeated signaling and redundant configuration, thereby reducing the overhead and time delay of beam indication.
  • This step is similar to step 630 in method 600, and will not be repeated here.
  • the network device sends MAC-CE signaling to the terminal device, where the MAC-CE signaling is used to activate or select the beam of CC#0.
  • the terminal device can automatically update the beam information of CC#1 after receiving the RRC signaling.
  • the MAC-CE signaling of CC#1 does not need to be sent, and the terminal device will automatically update the beam information of CC#1, thereby reducing the overhead and time delay of beam indication.
  • This step is similar to step 640 in method 600, and will not be repeated here.
  • the reference signal resource of qcl-TypeD of the TCI-state of the CC is updated multiple times, where the TCI-state of the CC may represent the activated TCI-state of the CC.
  • qcl-TypeD with the same configuration is mentioned multiple times.
  • the same qcl-TypeD configuration can be replaced with the same reference signal resources of the configured qcl-TypeD.
  • the terminal device automatically updates the beam information of the CC, which means that the network device does not need to send information indicating beam update for the CC (such as MAC-CE signaling indicating activation of TCI-state, or, RRC reconfiguration signaling indicating the update of the reference signal resource of qcl-TypeD, etc.).
  • information indicating beam update for the CC such as MAC-CE signaling indicating activation of TCI-state, or, RRC reconfiguration signaling indicating the update of the reference signal resource of qcl-TypeD, etc.
  • multiple CCs use the same beam configuration, and the terminal device can automatically update the beam information of the remaining CCs in the multiple CCs based on the beam update information of one CC or part of the CCs.
  • the first CC and the second CC, or, CC#0 and CC#1 are taken as examples for exemplification, and the embodiments of the present application are not limited thereto.
  • multiple CCs have an association relationship (for example, multiple CCs use the same beam configuration), and the terminal device also automatically updates the remaining CCs in the multiple CCs based on the received beam update information of some of the multiple CCs. Beam information.
  • the beam information of multiple CCs can be updated through the beam update information of one CC.
  • one signaling terminal device can update the receiving beams and/or sending beams of multiple CCs. For example, through one signaling (such as MAC-CE signaling) to activate TCI-state for multiple CCs; another example, through one signaling (such as RRC signaling) to update the reference of qcl-TypeD of the TCI-state of multiple CCs Signal resource (such as reference signal resource identifier or reference signal resource type, etc.).
  • one signaling such as MAC-CE signaling
  • RRC signaling to update the reference of qcl-TypeD of the TCI-state of multiple CCs
  • Signal resource such as reference signal resource identifier or reference signal resource type, etc.
  • the network device and the terminal device communicate with the same group of beams on multiple CCs (for example, including one or more second CCs and the first CC), the Rel-15 beam indication scheme is used,
  • the network device needs to configure exactly the same beam information (such as TCI indication or spatial relationship indication) on each CC via RRC, and activate the same beam set on each CC via MAC-CE.
  • the network device may send up to (32*12) MAC-CEs (32 is the maximum number of CCs supported, 12 is the maximum number of CORESETs per CC, * Represents a multiplication operation), each MAC-CE is for the same beam change information, in other words, the notification content is the same (except for the CC ID is different).
  • This not only increases redundant signaling, but also increases beam indication overhead. Therefore, this application proposes that the beam information of multiple CCs can be automatically updated through a signaling terminal device, such as supporting simultaneous activation of the beam information of multiple CCs, thereby reducing beam indication overhead, reducing signaling redundancy, and reducing time. Extension.
  • the beam information of the multiple CCs can be automatically updated through one signaling terminal device, or it can be understood that it is necessary to allow the active beams (such as PDCCH beams) to be updated across all CCs (or BWPs) at the same time.
  • the network device only needs to send an explicit TCI activation/deactivation command and TCI selection command for one CC, and the terminal device can adjust the activation and activation of all other related CCs. The selected TCI and spatial relationship.
  • the TCI-state set activated for multiple CCs may only be a subset of the TCI-state set activated for each CC, or the TCI-state set activated for multiple CCs at the same time and the TCI-state activated for each CC Sets have intersection or union.
  • the embodiment of the application also proposes a solution. The details are described below.
  • the first CC is CC#0
  • one or more second CCs are CC#1 as an example.
  • CC#0 and CC#1 have an association relationship.
  • FIG. 8 is a schematic interaction diagram of a method 800 for updating beam information provided by still another embodiment of the present application.
  • the method 800 may include the following steps.
  • the network device sends RRC signaling to the terminal device, where the RRC signaling is used to configure beam information for each CC or the BWP of each CC.
  • the network device sends the beam configuration information of CC#0 and CC#1 to the terminal device. For details, refer to step 610 in method 600.
  • the network device sends CC#0 beam configuration information to the terminal device. For details, refer to step 710 in method 700.
  • This step 810 is similar to the step 610 in the method 600, or this step is similar to the step 710 in the method 700.
  • this step 810 is similar to the step 610 in the method 600, or this step is similar to the step 710 in the method 700.
  • the network device sends first MAC-CE signaling to the terminal device, where the first MAC-CE signaling is used to independently activate/deactivate one or more TCI-states for each CC.
  • the first MAC-CE signaling is used to activate/deactivate one or more TCI-states for the CC, meaning that the first MAC-CE signaling is used to activate one or more TCI-states for the CC, Correspondingly, the original TCI-state of the CC is deactivated.
  • the value of the reserved field R in the MAC-CE signaling can be used to instruct the terminal device whether to update the beam information of CC#1 and CC#0 based on the beam update information of CC#0 .
  • the terminal device updates the beam information of CC#1 and CC#0 based on the beam update information of CC#0; MAC-CE information
  • the terminal device only updates the beam information of CC#0 based on the beam update information of CC#0.
  • the terminal device updates the beam information of CC#1 and CC#0 based on the beam update information of CC#0; the reserved field R in the MAC-CE signaling takes When the value is 1, the terminal device updates only the beam information of CC#0 based on the beam update information of CC#0. There is no restriction on this.
  • the terminal device updates the beam information of CC#1 and CC#0 based on the beam update information of CC#0; the value of the reserved field R in the MAC-CE signaling is In the case of 0, the terminal device only updates the beam information of CC#0 based on the beam update information of CC#0, which is illustrated as an example.
  • the network device independently activates/deactivates one or more TCI-states for each CC.
  • the reserved field R in the first MAC-CE signaling can be set to 0, which means independent activation/deactivation.
  • the currently activated BWP, activated TCI-state includes: TCI-state#0, TCI-state#1, TCI-state#2, TCI-state#3;
  • the currently activated BWP, activated TCI-state includes: TCI-state#1, TCI-state#2, TCI-state#3, TCI-state#4, TCI-state#5, TCI-state#6 ,TCI-state#7,TCI-state#8.
  • the network device sends second MAC-CE signaling to the terminal device, where the second MAC-CE signaling is used to activate/deactivate one or more TCI-states for CC#0.
  • the second MAC-CE is only a naming for distinction, and does not limit the protection scope of the embodiments of the present application.
  • the second MAC-CE signaling is used to activate/deactivate one or more TCI-states for CC#0, indicating that the second MAC-CE signaling is used to activate one or more TCI-states for CC#0 TCI-state, correspondingly, the original TCI-state of CC#0 is deactivated.
  • TCI-state#5 use the second MAC-CE signaling to activate TCI-state#5, TCI-state#6, TCI-state#7, and TCI-state#8 for CC#0.
  • other TCI-states of this CC#1 are deactivated.
  • the TCI states activated by CC#0 include: TCI-state#5, TCI-state#6, TCI-state#7, and TCI-state#8.
  • the reserved field in the MAC-CE signaling can be used to indicate whether the MAC-CE signaling can be used for multiple CCs to activate the TCI-state at the same time.
  • the reserved field R in the second MAC-CE signaling can be used to indicate that the second MAC-CE signaling is used to activate TCI-states for multiple CCs at the same time.
  • the reserved field R in the second MAC CE signaling can be set to 1, which means that the MAC-CE signaling simultaneously activates the TCI-state of other CCs (such as CC#1): TCI-state#5,TCI-state# 6, TCI-state#7, TCI-state#8.
  • the network device sends the second MAC-CE signaling, and the R field is 1 to indicate that the second MAC-CE signaling activates the TCI-state for multiple CCs. That is, based on the second MAC-CE signaling, the TCI-states of multiple CCs are activated.
  • the original TCI-states of the multiple CCs are deactivated. That is, the second MAC-CE can be used to deactivate the original TCI-states of the multiple CCs.
  • the TCI deactivation command of CC#0 (that is, the TCI deactivation effect of the second MAC-CE) does not take effect on CC#1.
  • the TCI-state set activated by CC#0 belongs to a subset of the activated TCI-state set of CC#1.
  • the TCI-state set activated by CC#0 has an intersection with the activated TCI-state set of CC#1.
  • Case 3 The combination of the TCI-state set activated by CC#0 and the TCI-state set activated by CC#1 is less than or equal to the terminal device capability.
  • one MAC-CE signaling can activate and deactivate the TCI-state of the PDSCH of multiple CCs or multiple BWPs.
  • the deactivation command does not take effect or is not applicable.
  • the deactivation command does not take effect or does not apply to the CC or BWP.
  • the deactivation command does not take effect or does not apply to the CC or BWP.
  • the deactivation command does not take effect or is not applicable to the CC or BWP.
  • multiple TCI-states may be considered as a TCI-state set, or in other words, a TCI-state set may be used to represent a set composed of multiple TCI-states.
  • the TCI-state activated by CC#0 includes: TCI-state#5, TCI-state#6, TCI-state#7, then the TCI-state#5, TCI-state#6, TCI-state#7 can be Think of it as a TCI-state collection.
  • the TCI-state set activated by CC#0 belongs to a subset of the activated TCI-state set of CC#1.
  • one or more TCI-states activated by CC#1 include all TCI-states activated by CC#0.
  • the first CC can be judged according to whether the TCI status set activated by the first CC belongs to the subset of the activated TCI status set of the second CC. Whether the TCI deactivation command of the CC is effective for the second CC, or whether to deactivate the original TCI state of the second CC. In the case that the TCI state set activated by the first CC belongs to a subset of the activated TCI state set of the second CC, the TCI deactivation command of the first CC does not take effect on the second CC, or the original TCI state of the second CC is not valid. Is deactivated. Alternatively, it can also be understood that, in addition to the TCI state activated by CC#0, the TCI state activated by the second CC also includes the previously activated TCI state.
  • the activated TCI-state of CC#1 includes: TCI-state#1, TCI-state#2, TCI-state#3, TCI-state#4, TCI-state#5, TCI-state #6,TCI-state#7,TCI-state#8.
  • the TCI-state set activated by CC#0 belongs to the subset of the activated TCI-state set of CC#1, that is, the activated TCI-state of CC#1 includes: TCI-state#5, TCI-state#6, TCI-state#7, TCI-state#8. Therefore, the TCI deactivation command of CC#0 does not take effect on CC#1. In other words, the TCI-state#1, TCI-state#2, TCI-state#3, and TCI-state#4 of CC#1 should not be deactivated.
  • the TCI-state activated by CC#1 includes: TCI-state#1, TCI-state#2, TCI-state#3, TCI-state#4, TCI-state#5, TCI- state#6,TCI-state#7,TCI-state#8.
  • the TCI-state set activated by CC#0 has an intersection with the activated TCI-state set of CC#1.
  • the one or more TCI-states activated by CC#1 include the partially activated TCI-states of CC#0.
  • the first CC can be judged according to whether the TCI status set activated by the first CC has an intersection with the activated TCI status set of the second CC. Whether the TCI deactivation command is effective for the second CC, or whether to deactivate the original TCI state of the second CC. In the case where the TCI state set activated by the first CC has an intersection with the TCI state set activated by the second CC, the TCI deactivation command of the first CC does not take effect for the second CC, or the original TCI state of the second CC is not affected. go activate. Alternatively, it can also be understood that, in addition to the TCI state activated by CC#0, the TCI state activated by the second CC also includes the previously activated TCI state.
  • TCI-state#1 has activated TCI-state including: TCI-state#1, TCI-state#2, TCI-state#3, TCI-state#4, TCI-state#5, TCI-state# 6, TCI-state#7.
  • the TCI-state set activated by CC#0 has an intersection with the activated TCI-state set of CC#1, that is, the activated TCI-state of CC#1 includes: TCI-state#5, TCI-state#6, TCI -state#7. Therefore, the TCI deactivation command of CC#0 does not take effect on CC#1. In other words, the TCI-state#1, TCI-state#2, TCI-state#3, and TCI-state#4 of CC#1 should not be deactivated.
  • the TCI-state activated by CC#1 includes: TCI-state#1, TCI-state#2, TCI-state#3, TCI-state#4, TCI-state#5, TCI- state#6,TCI-state#7,TCI-state#8.
  • Case 3 The combination of the TCI-state set activated by CC#0 and the TCI-state set activated by CC#1 is less than or equal to the terminal device capability.
  • the capabilities of the terminal device can be considered, such as the combination of the TCI status set activated by the first CC and the TCI status set activated by the second CC. Whether it is less than or equal to the terminal device capability, it is determined whether the TCI deactivation command of the first CC is valid for the second CC, or whether to deactivate the original TCI state of the second CC.
  • the TCI deactivation command of the first CC does not take effect on the second CC, or the second CC
  • the original TCI state is not deactivated.
  • the TCI state activated by the second CC also includes the previously activated TCI state.
  • the capabilities of the terminal device To determine whether the TCI deactivation command of CC#0 is effective for CC#1, the capabilities of the terminal device also need to be considered.
  • the terminal device can monitor at most 8 TCI-states on each CC, that is, at most 8 TCI-states can be activated on each CC.
  • TCI-state#1 has activated TCI-state including: TCI-state#1, TCI-state#2, TCI-state#3, TCI-state#4, TCI-state#5, TCI-state# 6, TCI-state#7.
  • the collection of the TCI-state set activated by CC#0 and the TCI-state set activated by CC#1 is 8 TCI-states, namely: TCI-state#1, TCI-state#2, TCI-state#3, TCI -state#4,TCI-state#5,TCI-state#6,TCI-state#7,TCI-state#8.
  • the combination of the TCI-state set activated by CC#0 and the TCI-state set activated by CC#1 is equal to the terminal equipment capability. Therefore, the TCI deactivation command of CC#0 does not take effect on CC#1. In other words, the TCI-state#1, TCI-state#2, TCI-state#3, and TCI-state#4 of CC#1 should not be deactivated.
  • the TCI-state activated by CC#1 includes: TCI-state#1, TCI-state#2, TCI-state#3, TCI-state#4, TCI-state#5, TCI- state#6,TCI-state#7,TCI-state#8.
  • the embodiment of the present application does not limit it.
  • a part of the activated TCI-state of CC#1 can be deactivated.
  • TCI-state#0 TCI-state#1, TCI-state#2, TCI-state#3, TCI-state#4, TCI- state#5,TCI-state#6,TCI-state#7.
  • the collection of the TCI-state set activated by CC#0 and the TCI-state set activated by CC#1 is 9 TCI-states, namely: TCI-state#0, TCI-state#1, TCI-state#2, TCI -state#3,TCI-state#4,TCI-state#5,TCI-state#6,TCI-state#7,TCI-state#8.
  • the combination of the TCI-state set activated by CC#0 and the TCI-state set activated by CC#1 is greater than the terminal equipment capability. At this time, part of the activated TCI-state of CC#1 can be deactivated.
  • the TCI-state activated by CC#1 includes the TCI-state activated by CC#0, a part of the activated TCI-state of CC#1 is deactivated.
  • the TCI-state activated by CC#1 includes: TCI-state#1, TCI-state#2, TCI-state#3, TCI-state#4, TCI-state#5, TCI- state#6,TCI-state#7,TCI-state#8.
  • the TCI-state activated by CC#1 includes: TCI-state#0, TCI-state#2, TCI-state#3, TCI-state#4, TCI-state#5, TCI-state #6,TCI-state#7,TCI-state#8.
  • the TCI-state activated by CC#1 includes: TCI-state#0, TCI-state#1, TCI-state#3, TCI-state#4, TCI-state#5, TCI-state #6,TCI-state#7,TCI-state#8.
  • the TCI-state activated by CC#1 includes: TCI-state#0, TCI-state#1, TCI-state#2, TCI-state#4, TCI-state#5, TCI-state #6,TCI-state#7,TCI-state#8.
  • the TCI-state activated by CC#1 includes: TCI-state#0, TCI-state#1, TCI-state#2, TCI-state#3, TCI-state#5, TCI-state #6,TCI-state#7,TCI-state#8.
  • the original TCI state of multiple CCs (such as CC#0 and CC#1) can be deactivated through one signaling (such as the second MAC-CE signaling).
  • the TCI deactivation command of CC#0 does not take effect on CC#1.
  • the terminal device can report one or more of the following capabilities through the terminal capabilities:
  • the terminal equipment supports the TCI state of one signaling for multiple CC/BWP to activate one or more PDSCH at the same time;
  • the terminal equipment supports the TCI state of deactivating one or more PDSCHs for multiple CC/BWP in one signaling
  • the terminal equipment supports one signaling to update one or more PDCCH and TCI for multiple CC/BWP at the same time;
  • the terminal device supports the two modes of activating/deactivating PDSCH and TCI status for the CC/BWP indicated in the signaling, and activating/deactivating the PDSCH and TCI status for multiple CCs/BWPs in one signaling;
  • the terminal device may also inform the network device of the above-mentioned one or more items of information in an implicit manner.
  • notification methods include, but are not limited to, reporting the number of CC/BWP supported by the terminal device, whether the terminal device supports the multi-transmission point transmission mode, and on which CC/BWP the terminal device supports the multi-transmission point mode and other messages implicitly notify the network equipment.
  • the network device may notify one or more of the following configurations through RRC signaling:
  • the working mode of the current signaling is: a signaling mode only activates/deactivates PDSCH TCI status for the CC/BWP indicated in the signaling, or a mode where a signaling activates/deactivates PDSCH TCI status for multiple CC/BWPs ;
  • the working mode of the current signaling is: a signaling mode only updates PDCCH TCI for the CC/BWP indicated in the signaling, or a signaling mode updates PDCCH TCI for multiple CCs/BWPs;
  • the network device may also inform the terminal device of the one or more items of information in an implicit manner.
  • the terminal device is implicitly notified by messages such as whether the current working mode is the multi-transport point mode, and which CC/BWP the network device performs multi-transport point transmission on.
  • one signaling can activate/deactivate the PDSCH TCI status or update the PDCCH TCI for multiple CCs/BWPs at the same time.
  • the multiple CC/BWP at least the following optional solutions can be included.
  • the CC/BWP for multi-transmission point transmission is excluded.
  • the inactive CC/BWP is excluded.
  • one signaling activates/deactivates PDSCH and TCI status for multiple CC/BWP at the same time, it is the CC/BWP activation/deactivation transmitted by the transmission point that sends the signaling, or it is indicated by the signaling
  • the CC/BWP transmitted by the transmission point is activated/deactivated.
  • one signaling updates the PDCCH TCI for multiple CC/BWP at the same time, it is the CC/BWP transmitted by the transmission point that sent the signaling, or the CC/BWP transmitted by the transmission point indicated by the signaling Update.
  • the association relationship between the transmission point and the TCI state can be saved in advance, such as the association relationship between the network device configuration transmission point and the TCI state. For example, when one signaling activates/deactivates PDSCH TCI status for multiple CC/BWP at the same time, the TCI status associated with the transmission point that sends the signaling is updated, or the TCI status associated with the transmission point indicated by the signaling is updated. For another example, when one signaling updates PDCCH TCI for multiple CCs/BWPs at the same time, the TCI status associated with the transmission point that sends the signaling is updated, or the TCI status associated with the transmission point indicated by the signaling is updated.
  • the TCI status of multiple CCs when the TCI status of multiple CCs is updated through a TCI activation/deactivation command of one CC, it can be based on whether the TCI status set configured/activated by the first CC is the same as the TCI configured/activated by the second CC.
  • the state set is the same to determine whether to activate/deactivate the original TCI state of the second CC.
  • whether the first CC configured/activated TCI state set is the same as the second CC configured/activated TCI state set can indicate that the first CC configured/activated TCI state set is the same as the second CC configuration
  • the TCI state IDs in the set of/activated TCI states are the same or related, or it may indicate that the reference signal resources in the TCI state are the same or related.
  • the PDCCH TCI of multiple CCs when the PDCCH TCI of multiple CCs is updated through the update PDCCH TCI command of one CC, it can be based on whether the configured/activated TCI state set of the first CC is the same as the configured/activated TCI state set of the second CC The same, or, it is possible to determine whether to update the original PDCCH TCI of the second CC according to whether the set of PDCCH TCI states configured/selected by the first CC is the same as the TCI state configured/selected by the second CC.
  • whether the first CC configured/activated TCI state set is the same as the second CC configured/activated TCI state set can indicate that the first CC configured/activated TCI state set is the same as the second CC configuration
  • the TCI state IDs in the TCI state set of the selected/activated TCI state are the same, or it may indicate that the reference signal resources in the TCI state are the same.
  • whether the first CC configured/selected PDCCH TCI state set is the same as the second CC configured/selected PDCCH TCI state set can indicate that the first CC configured/selected PDCCH TCI state set is the same as the second Two CC configured/selected PDCCH and TCI state IDs in the TCI state set are the same or related, or it can mean that the reference signal resources in the TCI state are the same or related.
  • the terminal device may be notified of the related mode through high-level signaling, for example, the terminal device may be notified that the transmission mode is multi-transmission point transmission or single transmission point mode.
  • the high-level signaling is recorded as CORESETPoolIndex, and the CORESETPoolIndex is associated with CORESET. It should be understood that the naming of signaling does not limit the protection scope of the embodiments of the present application. In future protocols, the names used to indicate the same function are all applicable to the embodiments of this application.
  • the following CORESETPoolIndex is taken as an example for illustration only.
  • CORESETPoolIndex may be 0, or may also be 1.
  • first transmission point and the second transmission point are only named for distinction, and do not limit the protection scope of the embodiments of the present application.
  • CORESETPoolIndex is the identification of the transmission point.
  • the transmission mode can be indicated implicitly through CORESETPoolIndex. For example, when the number of CORESETPoolIndex values configured by the network device for the terminal device exceeds one (for example, two), it indicates that the multi-transport mode is enabled.
  • the following takes MAC-CE signaling as an example, combined with two different formats suitable for MAC-CE signaling.
  • the reserved field can be used to determine which transmission point the MAC-CE signaling is used for.
  • the reserved field can be used to determine whether the MAC-CE signaling is used for a single CC or multiple CCs.
  • the single transmission point mode when the single transmission point mode is turned on, it can be determined whether the MAC-CE signaling is used for a single CC or multiple CCs according to the indication of the R bit.
  • MAC-CE signaling is used for
  • the MAC-CE signaling is used for one or more of the following functions: activate TCI-state, deactivate TCI-state, and indicate activated TCI -The mapping relationship between state and TCI field value in DCI, etc.
  • the terminal device can determine the function of the MAC-CE signaling according to the indication of the network device on the multi-transmission point mode.
  • the MAC-CE is suitable for notifying the functions of activation TCI-state and mapping relationship of each transmission point.
  • the MAC-CE is not applicable to the function of notifying the first CC and the second CC to update at the same time, or it can be understood that it excludes multi-transmission point transmission as described above.
  • the first mode or can also be called the single DCI mode, means that it allows two TCI-state IDs to be mapped to the TCI field value in the same DCI.
  • TCI-state ID subscripts (N, 1) and (N, 2) are mapped to the TCI field value in DCI.
  • the value of the TCI field is N, where N is greater than 0 or an integer equal to 0.
  • the second mode or can also be called the multiple DCI mode, means that it is not allowed to map two TCI-state IDs to the TCI field value in the same DCI.
  • the TCI-state whose subscript is (N, 1) is mapped to the TCI field in the DCI of the first transmission point.
  • the value of the TCI field in the DCI of the first transmission point is N.
  • the value of the TCI field in the TCI-state marked (N, 2) mapped to the DCI of the second transmission point is N.
  • the TCI-state whose subscript is (i,1) of the TCI-state ID is mapped to the value of the TCI field in the DCI of the first transmission point.
  • TCI-state ID i,1 1
  • the TCI-state with the subscript (j, 2) of the TCI-state ID is mapped to the TCI field value in the DCI of the second transmission point, according to the size of j, or according to the size of the TCI-state ID, to The value of the TCI field in the DCI.
  • i and j are integers greater than or equal to zero.
  • Implementation manner 1 The mapping relationship of the first mode and the mapping relationship of the second mode can be distinguished by preset field R bits.
  • Implementation 2 The number of values of CORESETPoolIndex can be used to distinguish the mapping relationship of the first mode and the mapping relationship of the second mode.
  • the MAC-CE signaling can be used to notify the mapping relationship of the first mode; if the high-level signaling configures a CORESETPoolIndex value or does not configure CORESETPoolIndex, then this MAC-CE signaling can be used to notify the mapping relationship of the second mode.
  • Implementation mode 3 The number of values of CORESETPoolIndex can be used to distinguish whether the MAC-CE signaling is used for the mapping relationship in the first mode or the mapping relationship used in the second mode. Moreover, it is possible to distinguish whether the MAC-CE signaling is applicable to a single CC or to multiple CCs (such as the first CC and the second CC) at the same time by using reserved fields.
  • the MAC-CE signaling can be used to notify the mapping relationship of the second mode and be used for a single CC, such as the first CC;
  • the number of values of CORESETPoolIndex can be used to distinguish whether the MAC-CE signaling is used for the mapping relationship in the first mode or the mapping relationship used in the second mode.
  • the R bit can be used to distinguish whether MAC-CE signaling is applicable to a single CC or to multiple CCs (such as the first CC and the second CC) at the same time. Understandable. This method can also be seen as a specific implementation of the CC/BWP that excludes multi-transmission point transmission as described above.
  • the reserved field can be used to distinguish whether the MAC-CE signaling is used for the mapping relationship in the first mode or the mapping relationship used in the second mode.
  • the number of values of CORESETPoolIndex can be used to distinguish whether MAC-CE signaling is applicable to a single CC or to multiple CCs (such as the first CC and the second CC).
  • the number of values of CORESETPoolIndex can be used to distinguish whether the MAC-CE signaling is applicable to a single CC or to multiple CCs (such as the first CC and the second CC) at the same time.
  • the R bit can be used to distinguish whether the MAC-CE signaling is used for the mapping relationship in the first mode or the mapping relationship used in the second mode. Understandable. This method can also be seen as a specific implementation of the CC/BWP that excludes multi-transmission point transmission as described above.
  • only the TCI-state ID corresponding to i, 1 in the TCI-state ID subscript may be activated, or only the TCI-state ID corresponding to i, 2 may be activated.
  • TCI-state ID i,1 or TCI-state ID can be distinguished according to the transmission point where MAC-CE signaling is sent.
  • state ID i,2 the activation of TCI-state ID i,1 or TCI-state ID can be distinguished according to the transmission point where MAC-CE signaling is sent.
  • the MAC-CE signaling sent by the first transmission point updates the TCI-state of the first transmission point, that is, the TCI-state ID i,1 .
  • the MAC-CE signaling sent by the second transmission point updates the TCI-state of the second transmission point, that is, TCI-state ID i,2 .
  • i, 1 and i, 2 correspond to the first antenna panel and the second antenna panel of the terminal device, respectively.
  • the antenna panel that receives the MAC-CE signaling it can distinguish the activation of TCI-state ID i, 1 or TCI-state ID i,2 .
  • the TCI-state of the first antenna panel that is, TCI-state ID i,1
  • the TCI-state of the first antenna panel that is, TCI-state ID i,2
  • the MAC-CE signaling can be used to notify the mapping relationship of the first mode and be used for a single CC, such as the first CC ;
  • the above describes in detail the possible ways for the terminal device to determine whether the multi-transmission point mode is enabled, and each transmission point can be responsible for updating its own corresponding TCI-state to the DCI in the DCI.
  • the mapping relationship of the fields can reduce the impact on transmission performance.
  • the terminal device determines whether the combination of the TCI state set activated by the first CC and the TCI state set activated by the second CC is less than or equal to the terminal device capability, to determine whether to deactivate the original TCI state of the second CC .
  • the TCI state set activated by the first CC belongs to a subset of the TCI state set activated by the second CC, or the TCI state set activated by the first CC has an intersection with the activated TCI state set by the second CC
  • the original TCI state of the second CC will not be deactivated.
  • the terminal equipment including the number of activated TCI statuses, avoid errors. Deactivate operation to ensure communication performance.
  • the methods and operations implemented by terminal devices can also be implemented by components (such as chips or circuits) that can be used in terminal devices
  • the methods and operations implemented by network devices can also be implemented by It can be implemented by components (such as chips or circuits) of network devices.
  • each network element such as a transmitting end device or a receiving end device, includes hardware structures and/or software modules corresponding to each function in order to realize the above functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application can divide the transmitter device or the receiver device into functional modules according to the above method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation. The following is an example of dividing each function module corresponding to each function.
  • FIG. 10 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1000 may include a communication unit 1010 and a processing unit 1020.
  • the communication unit 1010 can communicate with the outside, and the processing unit 1020 is used for data processing.
  • the communication unit 1010 may also be referred to as a communication interface or a transceiving unit.
  • the communication interface is used to input and/or output information, and the information includes at least one of instructions and data.
  • the communication device may be a chip or a chip system.
  • the communication interface may be an input/output interface, which may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the communication device 1000 can implement the steps or processes performed by the terminal device corresponding to the above method embodiment.
  • it can be a terminal device, or a chip or chip system or a chip system configured in the terminal device. Circuit.
  • the communication device 1000 may be called a terminal device.
  • the communication unit 1010 is configured to perform the transceiving-related operations on the terminal device side in the above method embodiment
  • the processing unit 1020 is configured to perform the processing related operations on the terminal device in the above method embodiment.
  • the communication unit 1010 is configured to: receive the beam update information of the first carrier unit CC; the processing unit 1020 is configured to: update one or more second CCs and the first CC based on the beam update information of the first CC.
  • the communication unit 1010 is further configured to: receive beam configuration information and indication information of the first CC, where the indication information is used to indicate that one or more second CCs have an association relationship with the first CC.
  • one or more second CCs and the first CC have an association relationship, including: one or more second CCs and the first CC use the same beam configuration.
  • the communication unit 1010 is further configured to: receive information about time-frequency tracking reference signal resources configured for the first CC and information about time-frequency tracking reference signal resources configured for one or more second CCs; processing unit 1020 It is used to update the beam information of the time-frequency tracking reference signal resource of one or more second CCs based on the beam update information of the first CC.
  • the beam update information of the first CC includes information indicating the TCI state TCI-state of the activated transmission configuration of the first CC; the processing unit 1020 is configured to: activate one or more second CCs and the TCI-state of the first CC , The TCI-state activated by one or more second CCs is the same as the TCI-state activated by the first CC.
  • the processing unit 1020 is specifically configured to: update one or more second CCs and the mapping relationship between the TCI-state identifier TCI-state ID and the TCI field value of the first CC, and the updated TCI of one or more second CCs
  • the mapping relationship between state ID and TCI field value is the same as the mapping relationship between TCI-state ID and TCI field value updated by the first CC.
  • the beam update information of the first CC includes information about the TCI-state activated by the first CC; the processing unit 1020 is configured to: update the spatial relationship of one or more second CCs, after one or more second CCs are updated The spatial relationship of is associated with the TCI-state activated by the first CC.
  • the beam update information of the first CC includes information of the reference signal resource corresponding to the TCI-state activated by the first CC; the processing unit 1020 is configured to: update one or more second CCs and the TCI-state activated by the first CC.
  • the reference signal resource corresponding to the state, the reference signal resource after one or more updated TCI-state activated by the second CC is the same as the reference signal resource after the updated TCI-state activated by the first CC.
  • one or more second CCs have an association relationship with the first CC, including one or more of the following: the TCI-state activated by one or more second CCs is the same as the TCI-state activated by the first CC; Or, the reference signal resource included in the TCI-state activated by one or more second CCs is the same as the reference signal resource included in the TCI-state activated by the first CC; or, the TCI-state activated by one or more second CCs
  • the reference signal resource identification ID included in the state is associated with the ID of the first CC and the reference signal resource ID included in the TCI-state activated by the first CC; or, one or more second CCs and the first CC have quasi co-location QCL relationship; or, one or more second CCs use the beam training result of the first CC, where beam management is performed on the first CC.
  • the beam update information of the first CC is carried in the medium access control-control element MAC-CE signaling, and the reserved field in the MAC-CE signaling can be used to indicate whether it is based on the beam update of the first CC Information, update one or more second CCs and beam information of the first CC.
  • the communication device 1000 can implement the steps or processes performed by the terminal device corresponding to the method 500 to the method 800 according to the embodiments of the present application, and the communication device 1000 can include methods for executing the method 500 in FIG. 5 and the method in FIG. 6 600.
  • the units in the communication device 1000 and the other operations and/or functions described above are used to implement the method 500 in FIG. 5, the method 600 in FIG. 6, the method 700 in FIG. 7, or the method 800 in FIG. Process.
  • the communication unit 1010 can be used to execute step 510 in the method 500
  • the processing unit 1020 can be used to execute step 520 in the method 500.
  • the communication unit 1010 can be used to execute steps 610, 620, and 640 in the method 600, and the processing unit 1020 can be used to execute step 630 in the method 600.
  • the communication unit 1010 can be used to execute step 710, step 720, and step 740 in the method 700, and the processing unit 1020 can be used to execute step 730 in the method 700.
  • the communication unit 1010 may be used to execute step 810, step 820, and step 830 in the method 800.
  • the communication unit 1010 in the communication device 1000 may be implemented by the transceiver 1210 in the terminal device 1200 shown in FIG. 12, and the processing unit 1020 in the communication device 1000 may be implemented by the terminal device shown in FIG.
  • the processor 1220 in 1200 is implemented.
  • the transceiver may include a transmitter and/or a receiver, which respectively implement the functions of the sending unit and the receiving unit.
  • the communication unit 1010 in the communication device 1000 may also be an input/output interface.
  • the communication device 1000 can implement steps or processes corresponding to the network device in the above method embodiment.
  • it can be a network device, or a chip or chip system configured in the network device. Or circuit.
  • the communication device 1000 may be referred to as a network device.
  • the communication unit 1010 is used to perform the transceiving-related operations on the network device side in the above method embodiment
  • the processing unit 1020 is used to perform the processing related operations on the network device in the above method embodiment.
  • the communication device 1000 may implement the steps or processes performed by the network device in the method 500 to the method 800 according to the embodiments of the present application.
  • the communication device 1000 may include methods for executing the method 500 in FIG. 5 and the method in FIG. 6 600.
  • the units in the communication device 1000 and the other operations and/or functions described above are used to implement the method 500 in FIG. 5, the method 600 in FIG. 6, the method 700 in FIG. 7, or the method 800 in FIG. Process.
  • the communication unit 1010 may be used to execute step 510 in the method 500.
  • the communication unit 1010 may be used to execute step 610, step 620, and step 640 in the method 600.
  • the communication unit 1010 may be used to execute step 710, step 720, and step 740 in the method 700.
  • the communication unit 1010 may be used to execute step 810, step 820, and step 830 in the method 800.
  • the communication unit 1010 in the communication device 1000 can be implemented by the transceiver 1310 in the network device 1300 shown in FIG. 13, and the processing unit 1020 in the communication device 1000 can be implemented through the network shown in FIG. The processor 1320 in the device 1300 is implemented.
  • the communication unit 1010 in the communication device 1000 may also be an input/output interface.
  • the transceiver may include a transmitter and/or a receiver, which respectively implement the functions of the sending unit and the receiving unit.
  • FIG. 11 is another schematic block diagram of a communication device 1100 according to an embodiment of the present application.
  • the communication device 1100 includes a processor 1110, a memory 1120, and a transceiver 1130.
  • the memory 1120 stores programs.
  • the processor 1110 is used to execute the programs stored in the memory 1120, and execute the programs stored in the memory 1120.
  • the processor 1110 is configured to execute the relevant processing steps in the above method embodiment, and execute the program stored in the memory 1120, so that the processor 1110 controls the transceiver 1130 to execute the transceiving-related steps in the above method embodiment.
  • the communication device 1100 is used to execute the actions performed by the terminal device in the above method embodiment.
  • the execution of the program stored in the memory 1120 enables the processor 1110 to execute the above method embodiment.
  • the processing steps on the terminal device side in the middle execute the program stored in the memory 1120, so that the processor 1110 controls the transceiver 1130 to perform the receiving and sending steps on the terminal device side in the above method embodiment.
  • the communication device 1100 is used to perform the actions performed by the network device in the above method embodiment.
  • the execution of the program stored in the memory 1120 enables the processor 1110 to perform the above method implementation.
  • the processing steps on the network device side execute the programs stored in the memory 1120 so that the processor 1110 controls the transceiver 1130 to perform the receiving and sending steps on the network device side in the above method embodiment.
  • the embodiment of the present application also provides a communication device 1200, and the communication device 1200 may be a terminal device or a chip.
  • the communication device 1200 may be used to perform the actions performed by the terminal device in the foregoing method embodiments.
  • FIG. 12 shows a simplified schematic diagram of the structure of the terminal device.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 12 only one memory and processor are shown in FIG. 12. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal device, and the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 1210 and a processing unit 1220.
  • the transceiver unit 1210 may also be referred to as a transceiver, a transceiver, a transceiver, and the like.
  • the processing unit 1220 may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 1210 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1210 as the sending unit, that is, the transceiver unit 1210 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, receiver, or receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • the processing unit 1220 is configured to perform step 520 in the method 500, step 630 in the method 600, and step 730 in the method 700, and/or the processing unit 1220 is further configured to perform this Other processing steps on the terminal device side in the application embodiment.
  • the transceiver unit 1210 is also used to perform step 510 in method 500, step 610, step 620, step 640 in method 600, step 710, step 720, step 740, step 810, step 820 in method 800, Step 830, and/or the transceiving unit 1210 is further configured to perform other transceiving steps on the terminal device side.
  • FIG. 12 is only an example and not a limitation, and the foregoing terminal device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 12.
  • the chip When the communication device 1200 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface
  • the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip.
  • the embodiment of the present application also provides a communication device 1300, and the communication device 1300 may be a network device or a chip.
  • the communication device 1300 may be used to perform actions performed by a network device in the foregoing method embodiments.
  • FIG. 13 shows a simplified schematic diagram of the base station structure.
  • the base station includes 1310 parts and 1320 parts.
  • the 1310 part is mainly used for the transmission and reception of radio frequency signals and the conversion between radio frequency signals and baseband signals; the 1320 part is mainly used for baseband processing and control of base stations.
  • the 1310 part can generally be called a transceiver unit, transceiver, transceiver circuit, or transceiver.
  • the part 1320 is usually the control center of the base station, and can usually be referred to as a processing unit, which is used to control the base station to perform the processing operations on the network device side in the foregoing method embodiments.
  • the transceiver unit of part 1310 may also be called a transceiver or a transceiver, etc., which includes an antenna and a radio frequency unit, and the radio frequency unit is mainly used for radio frequency processing.
  • the device for implementing the receiving function in part 1310 can be regarded as the receiving unit, and the device for implementing the sending function as the sending unit, that is, the part 1310 includes the receiving unit and the sending unit.
  • the receiving unit may also be called a receiver, a receiver, or a receiving circuit
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the 1320 part may include one or more single boards, and each single board may include one or more processors and one or more memories.
  • the processor is used to read and execute programs in the memory to implement baseband processing functions and control the base station. If there are multiple boards, the boards can be interconnected to enhance processing capabilities. As an optional implementation, multiple single boards may share one or more processors, or multiple single boards may share one or more memories, or multiple single boards may share one or more processing at the same time. Device.
  • the transceiver unit of part 1310 is used to perform step 510 in method 500, step 610, step 620, step 640 in method 600, step 710, step 720, step 740, and step 740 in method 700.
  • the transceiving operations on the network device side in step 810, step 820, and step 830 in the method 800, and/or part of the transceiving unit 1310 are also used to perform other transceiving steps on the network device side in the embodiment of the present application.
  • the processing unit part 1320 is used to execute the processing steps on the network device side in the embodiment of the present application.
  • FIG. 13 is only an example and not a limitation, and the foregoing network device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 13.
  • the chip When the communication device 1300 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor or microprocessor or integrated circuit integrated on the chip.
  • the network equipment is not limited to the above forms, and may also be in other forms: for example, including AAU, CU node and/or DU node, or BBU and adaptive radio unit (ARU), or BBU; It may also be a customer premises equipment (CPE), or other forms, which are not limited in this application.
  • AAU CU node and/or DU node
  • BBU and adaptive radio unit
  • ARU adaptive radio unit
  • BBU BBU
  • CPE customer premises equipment
  • the above-mentioned CU and/or DU can be used to perform the actions described in the previous method embodiment implemented by the network device, and the AAU can be used to perform the network device described in the previous method embodiment to send or receive from the terminal device action.
  • the AAU can be used to perform the network device described in the previous method embodiment to send or receive from the terminal device action.
  • the embodiment of the present application also provides a processing device, including a processor and an interface.
  • the processor may be used to execute the method in the foregoing method embodiment.
  • the processing device may be a chip.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system on chip (SoC), or It is a central processor unit (CPU), it can also be a network processor (NP), it can also be a digital signal processing circuit (digital signal processor, DSP), or it can be a microcontroller (microcontroller unit). , MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processing circuit
  • microcontroller unit microcontroller unit
  • MCU programmable logic device
  • PLD programmable logic device
  • the steps of the above method can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. In order to avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments may be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • serial link DRAM SLDRAM
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product.
  • the computer program product includes: computer program code, which when the computer program code runs on a computer, causes the computer to execute the steps shown in FIGS. 5 to 9 The method of any one of the embodiments is shown.
  • the present application also provides a computer-readable medium that stores program code, and when the program code runs on a computer, the computer executes the steps shown in FIGS. 5 to 9 The method of any one of the embodiments is shown.
  • the present application also provides a system, which includes the aforementioned one or more terminal devices and one or more network devices.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disc, SSD)) etc.
  • the network equipment in the above device embodiments corresponds to the network equipment or terminal equipment in the terminal equipment and method embodiments, and the corresponding modules or units execute the corresponding steps.
  • the communication unit transmits the receiving or sending in the method embodiments.
  • other steps can be executed by the processing unit (processor).
  • the processing unit processor
  • component used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, processor, object, executable file, thread of execution, program, and/or computer running on the processor.
  • application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or threads of execution, and components may be located on one computer and/or distributed between two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • the component may be based on, for example, a signal having one or more data packets (such as data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals) Communicate through local and/or remote processes.
  • a signal having one or more data packets (such as data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals) Communicate through local and/or remote processes.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种更新波束信息的方法与通信装置,可以降低波束指示信令开销和时延。该方法可以包括:终端设备接收第一载波单元CC的波束更新信息;终端设备基于该第一CC的波束更新信息,更新第一CC以及一个或多个第二CC的波束信息,换句话说,终端设备基于该第一CC的波束更新信息,更新第一CC以及一个或多个第二CC的发送波束和/或接收波束。其中,一个或多个第二CC与第一CC具有关联关系,如一个或多个第二CC与第一CC使用相同的波束配置。

Description

更新波束信息的方法和通信装置
本申请要求于2019年08月14日提交中国专利局、申请号为201910750959.X、申请名称为“更新波束信息的方法和通信装置”的中国专利申请的优先权。
本申请还要求于2019年09月30日提交中国专利局、申请号为201910941731.9、申请名称为“更新波束信息的方法和通信装置”的中国专利申请的部分内容的优先权,该部分内容未要求过优先权,该部分内容通过引用结合在本申请中。
本申请要求于2020年02月11日提交中国专利局、申请号为202010087025.5、申请名称为“更新波束信息的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,具体涉及一种更新波束信息的方法和通信装置。
背景技术
在通信过程中,如高频通信中,不同的载波单元(component carrier,CC)可以使用相同的模拟波束,也可以使用不同的模拟波束。为了降低波束管理的开销,在实际部署的高频通信系统中,经常只有一个或少数几个CC配置了波束管理参考信号。该一个或少数几个CC波束管理的结果,包括波束指示,可以应用于其他CC。在这种情况下,所有CC的波束配置是相同的。
当一个CC的波束发生了变化,其他所有CC的波束都应该发生变化。在现有技术中,为了通知这种波束变化的情况,需要在所有的CC上都发送相同的信令,比如无线资源控制(radio resource control,RRC)信令(例如只有CC的标识(identifier,ID)不同)以及介质接入控制-控制元素(medium access control-control element,MAC-CE)(例如只有CC的ID不同)。
这种通知方法带来了巨大的信令开销。
发明内容
本申请提供一种更新波束信息的方法与通信装置,可以降低波束指示信令开销和时延。
第一方面,提供了一种更新波束信息的方法。该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或芯片系统或电路执行,本申请对此不作限定。
该方法可以包括:接收第一载波单元CC的波束更新信息;基于所述第一CC的波束更新信息,更新一个或多个第二CC以及所述第一CC的波束信息,其中,所述一个或多个第二CC与所述第一CC具有关联关系。
可选地,所述一个或多个第二CC与所述第一CC使用相同的波束配置。
可选地,CC的波束信息例如可以体现为CC的接收波束的信息,即通信过程中使用的接收波束。例如,终端设备的接收波束,即终端设备在该CC的频域资源上接收信号或数据时的接收波束。又如,网络设备的发送波束,即网络设备在该CC的频域资源上发送信号或数据时的接收波束。应理解,网络设备的发送波束和终端设备的接收波束构成下行链路。可以理解,终端设备的接收波束发生改变,意味着网络设备的发送波束也发生了改变;或者说,网络设备的发送波束发生改变,相应终端设备的接收波束也相应的改变。
例如,CC的波束信息可以体现为一个传输配置指示(transmission configuration indicator,TCI)。该TCI可以是用于在该CC的频域资源上传输的信号或数据的TCI。
可选地,CC的波束信息例如可以体现为CC的发送波束的信息,即通信过程中使用的发送波束。例如,终端设备在该CC的频域资源上发送信号或数据时的发送波束。又如,网络设备的接收波束,即网络设备在该CC的频域资源上接收信号或数据时的接收波束。应理解,网络设备的接收波束和终端设备的发送波束构成上行链路。可以理解,终端设备的发送波束发生改变,意味着网络设备的接收波束也发生了改变;或者说,网络设备的接收波束发生改变,相应终端设备的发送波束也相应的改变。可选地,一个或多个第二CC与第一CC具有关联关系,可以表示,该一个或多个第二CC与第一CC使用的波束相同。或者,也可以表示,该一个或多个第二CC与第一CC的波束配置中除了CC的ID不同,其他信息都相同。或者,也可以表示,该一个或多个第二CC激活的TCI状态(TCI-state)与第一CC激活的TCI-state相同。或者,也可以表示,该一个或多个第二CC激活的TCI-state中包括的参考信号资源标识与第一CC的标识(identifier,ID)以及第一CC激活的TCI-state中包括的参考信号资源标识关联。或者,也可以表示,该一个或多个第二CC与第一CC配置了相同的准共址(quasi-co-location,QCL)-类型D(typeD)(qcl-TypeD)。或者,也可以表示,该一个或多个第二CC与第一CC具有QCL关系。
可选地,第一CC可以表示用于波束管理或波束训练的CC,第二CC可以表示使用第一CC的波束训练结果的CC。
基于上述技术方案,多个CC(即一个或多个第二CC以及第一CC)具有关联关系的情况下,通过一个CC的波束更新信息(即第一CC的波束更新信息)可以更新多个CC的波束信息。也就是说,网络设备不需要针对每个CC都发送波束更新信息,以指示终端设备更新相应CC的波束信息。终端设备更新波束信息,换句话说,终端设备更新了接收波束和/或发送波束,或者可以理解为,终端设备将在该CC上使用更新后的接收波束和/或发送波束通信。在本申请中,通过一个信令可以更新多个CC的波束信息,或者说,通过一个信令终端设备可以更新多个CC的接收波束和/或发送波束,从而不仅可以减少重复信令的发送和减少冗余的配置,也可以降低波束指示的开销和时延,提升了通信性能。
结合第一方面,在第一方面的某些实现方式中,在所述接收第一CC的波束更新信息之前,所述方法还包括:接收所述第一CC的波束配置信息和指示信息,其中,所述指示信息用于指示所述一个或多个第二CC与所述第一CC具有关联关系。
基于上述技术方案,多个CC(即一个或多个第二CC以及第一CC)具有关联关系的情况下,可以仅为其中一个或部分CC(即第一CC)进行波束配置。从而可以减少冗余的配置,节省资源。
结合第一方面,在第一方面的某些实现方式中,所述一个或多个第二CC与所述第一 CC具有关联关系,包括:所述一个或多个第二CC与所述第一CC使用相同的波束配置。
可选地,指示信息指示所述一个或多个第二CC与所述第一CC使用相同的波束配置。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:接收为所述第一CC配置的时频跟踪参考信号资源的信息,以及为所述一个或多个第二CC配置的时频跟踪参考信号资源的信息;所述基于所述第一CC的波束更新信息,更新一个或多个第二CC的波束信息,包括:基于所述第一CC的波束更新信息,更新所述一个或多个第二CC的时频跟踪参考信号资源的波束信息。
更新所述一个或多个第二CC的时频跟踪参考信号资源的波束信息,即表示,更新所述一个或多个第二CC的时频跟踪参考信号资源对应的波束信息。
可选地,终端设备基于第一CC的波束更新信息,可以更新第二CC的时频跟踪参考信号资源的接收波束。
可选地,网络设备可以为第一CC配置时频跟踪参考信号资源,和/或,网络设备可以为一个或多个第二CC配置时频跟踪参考信号资源。
结合第一方面,在第一方面的某些实现方式中,所述第一CC的波束更新信息包括所述第一CC激活的传输配置指示TCI状态TCI-state的信息;所述更新一个或多个第二CC以及所述第一CC的波束信息,包括:激活所述一个或多个第二CC以及所述第一CC的TCI-state,所述一个或多个第二CC激活的TCI-state和所述第一CC激活的TCI-state相同。
基于上述技术方案,终端设备基于第一CC的波束更新信息可以确定为第一CC选择(或者说激活)的一个TCI-state。终端设备根据该第一CC的波束更新信息还可以确定一个或多个第二CC的激活的TCI-state。可以理解,网络设备不需要再向终端设备指示该一个或多个第二CC的激活的TCI-state,从而可以降低波束指示的开销和时延。例如,终端设备基于第一CC的波束更新信息可以确定为第一CC激活的TCI-state为TCI-state#2,那么终端设备根据该第一CC的波束更新信息还可以确定一个或多个第二CC的激活的TCI-state为TCI-state#2。
可选地,第一CC的波束更新信息携带于介质接入控制-控制元素(medium access control-control element,MAC-CE)信令上。
结合第一方面,在第一方面的某些实现方式中,更新一个或多个第二CC以及所述第一CC的波束信息,还包括:更新所述一个或多个第二CC以及所述第一CC的TCI-state标识TCI-state ID与TCI字段值的映射关系,所述一个或多个第二CC更新的TCI-state ID和TCI字段值的映射关系、与所述第一CC更新的TCI-state ID和TCI字段值的映射关系相同。
可以理解,一个或多个第二CC的激活TCI-state、以及TCI-state与TCI字段值的映射关系都更新到与第一CC相同。
可选地,更新所述一个或多个第二CC以及所述第一CC的TCI-state标识TCI-state ID与DCI中的TCI字段值的映射关系,所述一个或多个第二CC更新的TCI-state ID和DCI中的TCI字段值的映射关系和所述第一CC更新的TCI-state ID和DCI中的TCI字段值的映射关系相同。
可选地,发送终端能力的信息,所述终端能力的信息包括:终端设备是否支持同时更新激活TCI-state和TCI-state与TCI字段值的映射关系。
基于上述技术方案,通过同时更新一个或多个第二CC的映射关系,即更新一个或多个第二CC的TCI state ID和DCI中的TCI字段值的映射关系,从而可以使得一个或多个第二CC的激活TCI-state、以及TCI-state与TCI字段值的映射关系都更新到与第一CC相同。因此,可以避免终端设备与网络设备的数据传输波束不对齐,从而避免影响传输性能。
结合第一方面,在第一方面的某些实现方式中,所述第一CC的波束更新信息包括所述第一CC激活的TCI-state的信息;所述更新一个或多个第二CC的波束信息,包括:更新所述一个或多个第二CC的空间关系,所述一个或多个第二CC更新后的空间关系与所述第一CC激活的TCI-state关联。
可选地,更新后,第二CC与第一CC具有相同的空间关系(spatial relation,SR),换句话说,第二CC与第一CC发送上行信号的发送波束相同。
可选地,第二CC的空间关系与第一CC的TCI-state关联,即第二CC的发送波束(即第二CC的空间关系)为该下行接收波束(第一CC的TCI-state)对应的上行发送波束。
基于上述技术方案,终端设备可以基于第一CC的激活TCI-state的指示,自动更新第二CC的空间关系。
结合第一方面,在第一方面的某些实现方式中,所述第一CC的波束更新信息包括所述第一CC激活的TCI-state对应的参考信号资源的信息;所述更新一个或多个第二CC以及所述第一CC的波束信息,包括:更新所述一个或多个第二CC以及所述第一CC激活的TCI-state对应的参考信号资源,所述一个或多个第二CC激活的TCI-state更新后的参考信号资源和所述第一CC激活的TCI-state更新后的参考信号资源相同。
第一CC激活的TCI-state对应的参考信号资源,即表示该第一CC激活的TCI-state中包括的参考信号资源。更新一个或多个第二CC以及第一CC激活的TCI-state对应的参考信号资源,即表示,更新一个或多个第二CC激活的TCI-state中包括的参考信号资源,以及更新第一CC激活的TCI-state中包括的参考信号资源。
一个或多个第二CC激活的TCI-state更新后的参考信号资源和第一CC激活的TCI-state更新后的参考信号资源相同,即表示,更新参考信号资源后,一个或多个第二CC激活的TCI-state中包括的参考信号资源,与第一CC激活的TCI-state中包括的参考信号资源相同。
可选地,第一CC的波束更新信息携带于无线资源控制(radio resource control,RRC)信令上。
基于上述技术方案,终端设备基于第一CC的波束更新信息可以确定第一CC激活的TCI-state的参考信号资源。终端设备根据该第一CC的波束更新信息还可以确定一个或多个第二CC激活的TCI-state的参考信号资源。可以理解,网络设备不需要再向终端设备指示该一个或多个第二CC激活的TCI-state的参考信号资源,从而可以降低波束指示的开销和时延。例如,终端设备基于第一CC的波束更新信息可以确定为第一CC激活的TCI-state的参考信号资源更新为信道状态信息参考信号(channel state information reference signal,CSI-RS)#2,那么终端设备根据该第一CC的波束更新信息还可以确定一个或多个第二CC激活的TCI-state的参考信号资源更新为第一CC的CSI-RS#2。
结合第一方面,在第一方面的某些实现方式中,所述一个或多个第二CC与所述第一CC具有关联关系,包括以下一项或多项:所述一个或多个第二CC激活的TCI-state与所 述第一CC激活的TCI-state相同;所述一个或多个第二CC激活的TCI-state中包括的参考信号资源与所述第一CC激活的TCI-state中包括的参考信号资源相同;所述一个或多个第二CC激活的TCI-state中包括的参考信号资源标识ID与所述第一CC的ID以及所述第一CC激活的TCI-state中包括的参考信号资源ID关联;所述一个或多个第二CC与所述第一CC具有准共址QCL关系;或,所述一个或多个第二CC使用所述第一CC的波束训练结果。
可选地,所述第一CC上进行波束管理,或者,所述第一CC用于波束训练。
可选地,第一CC表示发送了波束管理参考信号(如同步信号块(synchronization signal block,SSB)、CSI-RS、或探测参考信号(sounding reference signal,SRS))的CC。
结合第一方面,在第一面的某些实现方式中,所述第一CC的波束更新信息承载于介质接入控制-控制元素MAC-CE信令中,所述MAC-CE信令中的预留字段能用于指示:是否基于所述第一CC的波束更新信息,更新一个或多个第二CC以及所述第一CC的波束信息。
可选地,MAC-CE信令中的预留字段R取值为1的情况下,基于所述第一CC的波束更新信息,更新一个或多个第二CC以及所述第一CC的波束信息;MAC-CE信令中的预留字段R取值为0的情况下,基于所述第一CC的波束更新信息,仅更新所述第一CC的波束信息。
第二方面,提供了一种更新波束信息的方法。该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片或芯片系统或电路执行,本申请对此不作限定。
该方法可以包括:生成一载波单元CC的波束更新信息,所述第一CC的波束更新信息能够用于终端设备更新一个或多个第二CC以及所述第一CC的波束信息,其中,所述一个或多个第二CC与所述第一CC具有关联关系;发送所述第一CC的波束更新信息。
基于上述技术方案,多个CC(即一个或多个第二CC以及第一CC)具有关联关系的情况下,网络设备通过一个CC的波束更新信息(即第一CC的波束更新信息)可以更新多个CC的波束信息。也就是说,网络设备不需要针对每个CC都发送波束更新信息,以指示终端设备更新相应CC的波束信息。终端设备更新波束信息,换句话说,终端设备更新了接收波束和/或发送波束,或者可以理解为,终端设备将在该CC上使用更新后的接收波束和/或发送波束通信。在本申请中,网络设备通过一个信令就可以使得终端设备更新多个CC的波束信息,从而不仅可以减少重复信令的发送和减少冗余的配置,也可以降低波束指示的开销和时延,提升了通信性能。
结合第二方面,在第二方面的某些实现方式中,在发送所述第一CC的波束更新信息之前,所述方法还包括:发送所述第一CC的波束配置信息和指示信息,其中,所述指示信息用于指示所述一个或多个第二CC与所述第一CC具有关联关系。
结合第二方面,在第二方面的某些实现方式中,所述一个或多个第二CC与所述第一CC具有关联关系,包括:所述一个或多个第二CC与所述第一CC具有关联关系。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:发送为所述第一CC配置的时频跟踪参考信号资源的信息,以及为所述一个或多个第二CC配置的时频跟踪参考信号资源的信息。
结合第二方面,在第二方面的某些实现方式中,所述第一CC的波束更新信息包括所 述第一CC激活的传输配置指示TCI状态TCI-state的信息。
可选地,第一CC的波束更新信息携带于介质接入控制-控制元素(medium access control-control element,MAC-CE)信令上。
结合第二方面,在第二方面的某些实现方式中,所述第一CC的波束更新信息包括所述第一CC激活的TCI-state对应的参考信号资源的信息。
可选地,第一CC的波束更新信息携带于无线资源控制(radio resource control,RRC)信令上。
结合第二方面,在第二方面的某些实现方式中,所述一个或多个第二CC与所述第一CC具有关联关系,包括以下一项或多项:所述一个或多个第二CC激活的TCI-state与所述第一CC激活的TCI-state相同;所述一个或多个第二CC激活的TCI-state中包括的参考信号资源与所述第一CC激活的TCI-state中包括的参考信号资源相同;所述一个或多个第二CC激活的TCI-state中包括的参考信号资源标识ID与所述第一CC的ID以及所述第一CC激活的TCI-state中包括的参考信号资源ID关联;所述一个或多个第二CC与所述第一CC具有准共址QCL关系;或,所述一个或多个第二CC使用所述第一CC的波束训练结果,其中,所述第一CC上进行波束管理。
结合第二方面,在第二方面的某些实现方式中,发送所述MAC-CE信令,所述MAC-CE信令中包括所述第一CC的波束更新信息,所述MAC-CE信令中的预留字段能用于指示:终端设备是否基于所述第一CC的波束更新信息,更新一个或多个第二CC以及所述第一CC的波束信息。
可选地,MAC-CE信令中的预留字段R取值为1的情况下,终端设备基于所述第一CC的波束更新信息,能够更新一个或多个第二CC以及所述第一CC的波束信息;MAC-CE信令中的预留字段R取值为0的情况下,终端设备基于所述第一CC的波束更新信息,仅更新所述第一CC的波束信息。
第三方面,提供了一种更新波束信息的方法。该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或芯片系统或电路执行,本申请对此不作限定。
该方法可以包括:接收第一CC的波束配置信息;接收指示信息,所述指示信息用于指示一个或多个第二CC与所述第一CC具有关联关系。
第四方面,提供了一种更新波束信息的方法。该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或芯片系统或电路执行,本申请对此不作限定。
该方法可以包括:
接收第一信令,所述第一信令包括第一载波单元CC激活的N个传输配置指示TCI状态的信息,所述第一信令能够用于激活所述第一CC和第二CC的所述N个TCI状态,所述第二CC与所述第一CC具有关联关系,其中,N为大于1或等于1的整数;
在所述第二CC已激活的一个或多个TCI状态包括所述N个TCI状态中的部分或全部TCI状态的情况下,所述第一CC的TCI去激活命令不对所述第二CC生效。
可以理解,第一信令能够用于激活多个CC(如第一CC和第二CC)的TCI状态,也就是说,通过一个信令,可以激活多个CC的TCI状态。关于第一信令可以基于激活多个CC(如第一CC和第二CC)的TCI状态,可以参考如上面第一方面至第三方面中任一方面提供的方法。
可选地,第一信令可以为MAC-CE信令。
第一CC激活的N个TCI状态的信息,表示一组新激活的TCI状态的信息。
第一信令,还可以理解为,是第一CC的TCI去激活命令,也就是说,第一CC原来的TCI状态被去激活。换句话说,对于第一CC原来的TCI状态,该第一信令也可以认为是TCI去激活命令,即基于该第一信令,第一CC原来的TCI状态被去激活。
第一信令能够用于激活第一CC和第二CC的N个TCI状态,也可以理解为,基于第一信令,第二CC和第一CC原来的TCI状态被去激活。换句话说,第一信令可以用于去激活第一CC和第二CC原来的TCI状态。可以理解,基于第一信令,终端设备在第二CC和第一CC上使用新波束而不再使用旧波束。
可选地,第二CC已激活的一个或多个TCI状态包括N个TCI状态中的全部TCI状态,也可以理解为,基于第一信令激活的TCI状态集合(即该TCI状态集合包括N个TCI状态)属于第二CC已激活的TCI状态集合的子集,或者,也可以表示,一组新激活的TCI状态集合属于第二CC已激活的TCI状态集合的子集。
可选地,第二CC已激活的一个或多个TCI状态包括N个TCI状态中的部分TCI状态,也可以理解为,基于第一信令激活的TCI状态集合(即该TCI状态集合包括N个TCI状态)与第二CC已激活的TCI状态集合有交集,或者,也可以表示,表示,一组新激活的TCI状态集合与第二CC已激活的TCI状态集合有交集。
可选地,所述第一CC的TCI去激活命令不对所述第二CC生效,换句话说,所述第二CC原来的TCI状态不会被去激活。或者,也可以理解为,第二CC激活的TCI状态中除了包括第一信令指示的激活的TCI状态,还包括原来已激活的TCI状态。或者,也可以理解为,第一CC的TCI去激活命令仅对第一CC生效,不对第二CC生效。或者,也可以理解为,终端设备忽略第一CC的TCI去激活命令。
可选地,关于所述第二CC与所述第一CC具有关联关系,可以参考如上面第一方面至第三方面中任一方面提供的方法。
应理解,上述以一个第二CC为例进行了说明,本申请实施例并未限定于此,第一CC可以与一个或多个第二CC具有关联关系。
基于上述技术方案,当通过一个CC的TCI激活命令(即第一CC激活的TCI状态的信息)更新多个CC(即一个或多个第二CC以及第一CC)的TCI状态时,可以根据第二CC已激活的一个或多个TCI状态是否包括N个TCI状态中的部分或全部TCI状态,来判断是否要去激活第二CC原来的TCI状态。例如,第一CC激活的TCI状态集合(如N个TCI状态)是否属于第二CC已激活的TCI状态集合的子集,或者,第一CC激活的TCI状态集合是否与第二CC已激活的TCI状态集合有交集。在第二CC已激活的一个或多个TCI状态包括N个TCI状态中的部分或全部TCI状态的情况下,或者说,在第一CC激活的TCI状态集合属于第二CC已激活的TCI状态集合的子集的情况下,或者,在第一CC激活的TCI状态集合与第二CC已激活的TCI状态集合有交集的情况下,第二CC原来的TCI状态不会被去激活。通过这种方式,为多个CC同时更新TCI状态的配置时,考虑去激活信令对其他CC的TCI状态的影响,在终端设备能力范围内,包括激活TCI状态的数目较多,避免错误的去激活操作,保证通信性能。
结合第四方面,在第四方面的某些实现方式中,所述方法还包括:基于所述第一信令, 激活所述第一CC和所述第二CC的TCI状态,所述第一CC和所述第二CC激活的TCI状态包括所述N个TCI状态。
基于一个信令可以基于激活多个CC(如第一CC和第二CC)的TCI状态,具体的可以参考如上面第一方面至第三方面中任一方面提供的方法。
结合第四方面,在第四方面的某些实现方式中,在所述第二CC已激活的一个或多个TCI状态包括所述N个TCI状态中的部分或全部TCI状态的情况下,所述第二CC激活的TCI状态包括所述N个TCI状态和所述第二CC已激活的TCI状态。
结合第四方面,在第四方面的某些实现方式中,所述第一信令为MAC-CE信令中,所述MAC-CE信令中的预留字段R取值为1。
可以理解,通过一个MAC-CE信令,可以激活或去激活多个CC或多个CC的BWP的TCI状态。应理解,一组新激活的TCI状态集合属于第二CC已激活的TCI状态集合的子集,或者,一组新激活的TCI状态集合与第二CC已激活的TCI状态集合有交集,该MAC-CE的去激活命令对该第二CC不生效。
基于上述技术方案,为多个CC同时更新TCI状态的配置时,可以通过R取值为1MAC-CE信令实现。
结合第四方面,在第四方面的某些实现方式中,所述第二CC已激活的TCI状态的信息承载于第二信令,所述第二信令中的预留字段R取值为0。
可选地,第二信令为MAC-CE信令。换句话说,第二CC的已激活TCI状态集合的信息来自R取值为0的MAC-CE信令中。
基于上述技术方案,可以保证第二CC激活TCI状态的数目尽可能地多,保证通信性能。
第五方面,提供了一种更新波束信息的方法。该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或芯片系统或电路执行,本申请对此不作限定。
该方法可以包括:
接收第一信令,所述第一信令包括第一载波单元CC激活的N个传输配置指示TCI状态的信息,所述第一信令能够用于激活所述第一CC和第二CC的所述N个TCI状态,所述第二CC与所述第一CC具有关联关系,其中,N为大于1或等于1的整数;
在所述第二CC已激活的TCI状态集合与所述N个TCI状态组成的TCI状态集合的合集小于或等于终端设备能力的情况下,所述第一CC的TCI去激活命令不对所述第二CC生效。
可以理解,第一信令可以激活多个CC(如第一CC和第二CC)的TCI状态,也就是说,通过一个信令,可以激活多个CC的TCI状态。
可选地,第一信令可以为MAC-CE信令。
第一CC激活的N个TCI状态的信息,表示一组新激活的TCI状态的信息。
第一信令,还可以理解为,是第一CC的TCI去激活命令,也就是说,第一CC原来的TCI状态被去激活。换句话说,对于第一CC原来的TCI状态,该第一信令也可以认为是TCI去激活命令,即基于该第一信令,第一CC原来的TCI状态被去激活。
第一信令能够用于激活第一CC和第二CC的N个TCI状态,也可以理解为,基于第一信令,第二CC和第一CC原来的TCI状态被去激活。换句话说,第一信令可以用于去 激活第一CC和第二CC原来的TCI状态。可以理解,基于第一信令,终端设备在第二CC和第一CC上使用新波束而不再使用旧波束。
可以理解,N个TCI状态组成的TCI状态集合,表示TCI状态集合中包括该N个TCI状态。
可选地,所述第一CC的TCI去激活命令不对所述第二CC生效,换句话说,所述第二CC原来的TCI状态不会被去激活。或者,也可以理解为,第二CC激活的TCI状态中除了包括第一信令指示的激活的TCI状态,还包括原来已激活的TCI状态。或者,也可以理解为,第一CC的TCI去激活命令仅对第一CC生效,不对第二CC生效。或者,也可以理解为,终端设备忽略第一CC的TCI去激活命令。
可选地,关于所述第二CC与所述第一CC具有关联关系,可以参考如上面第一方面至第三方面中任一方面提供的方法。
应理解,上述以一个第二CC为例进行了说明,本申请实施例并未限定于此,第一CC可以与一个或多个第二CC具有关联关系。
基于上述技术方案,当通过一个CC的TCI激活命令(即第一CC激活的TCI状态的信息)更新多个CC(即一个或多个第二CC以及第一CC)的TCI状态时,可以考虑CC能够激活的TCI状态的数目,如在第一CC激活的TCI状态集合(即该TCI状态集合包括N个TCI状态)与第二CC已激活的TCI状态集合的合集是否小于或等于终端设备能力,来判断是否要去激活第二CC原来的TCI状态。例如,在第一CC激活的TCI状态集合与第二CC已激活的TCI状态集合的合集小于或等于终端设备能力的情况下,第二CC原来的TCI状态不会被去激活。通过这种方式,为多个CC同时更新TCI状态的配置时,考虑去激活信令对其他CC的TCI状态的影响,在终端设备能力范围内,包括激活TCI状态的数目较多,避免错误的去激活操作,保证通信性能。
结合第五方面,在第五方面的某些实现方式中,所述方法还包括:基于所述第一信令,激活所述第一CC和所述第二CC的TCI状态,所述第一CC和所述第二CC激活的TCI状态包括所述N个TCI状态。
基于一个信令可以基于激活多个CC(如第一CC和第二CC)的TCI状态,具体的可以参考如上面第一方面至第三方面中任一方面提供的方法。
结合第五方面,在第五方面的某些实现方式中,在所述第二CC已激活的TCI状态集合与所述N个TCI状态组成的TCI状态集合的合集小于或等于终端设备能力的情况下,所述第二CC激活的TCI状态包括所述N个TCI状态和所述第二CC已激活的TCI状态。
结合第五方面,在第五方面的某些实现方式中,所述第一信令为MAC-CE信令中,所述MAC-CE信令中的预留字段R取值为1。
结合第五方面,在第五方面的某些实现方式中,所述第二CC已激活的TCI状态的信息承载于第二信令,所述第二信令中的预留字段R取值为0。
可选地,第二信令为MAC-CE信令。换句话说,第二CC的已激活TCI状态集合的信息来自R取值为0的MAC-CE信令中。
第六方面,提供了一种更新波束信息的方法。该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或芯片系统或电路执行,本申请对此不作限定。
该方法可以包括:
接收介质接入控制-控制元素MAC-CE信令,其中,所述MAC-CE信令中包括第一载波单元CC的波束更新信息;
在传输模式为单传输点传输的情况下,所述MAC-CE信令中的预留字段能用于指示:是否基于所述第一CC的波束更新信息,更新一个或多个第二CC以及所述第一CC的波束信息;
在传输模式为多传输点传输的情况下,所述MAC-CE信令中的预留字段能用于指示:所述MAC-CE信令对应的传输点。
示例地,MAC-CE信令对应的传输点,或者说,MAC-CE信令用于哪个传输点,用于表示:对于该传输点,该MAC-CE信令用于以下功能的一种或者多种:激活TCI-state、去激活TCI-state、指示激活的TCI-state到DCI中的TCI字段值的映射关系等等。
基于一个信令可以基于激活多个CC(如第一CC和第二CC)的TCI状态,具体的可以参考如上面第一方面至第三方面中任一方面提供的方法。
基于上述技术方案,终端设备可以根据网络设备关于多传输点模式的指示,判断MAC-CE信令的功能。例如,如果是多传输点传输,该MAC-CE适用于通知各个传输点的激活TCI-state和映射关系的功能。或者,可以理解为,如果是多传输点传输,该MAC-CE不适用于通知第一CC和第二CC同时更新的功能。又如,如果是单传输点传输,该MAC-CE适用于通知是否要基于第一CC的波束更新信息,更新一个或多个第二CC以及第一CC的波束信息。
结合第六方面,在第六方面的某些实现方式中,所述方法还包括:
接收高层信令,所述高层信令包括CORESETPoolIndex;
在所述CORESETPoolIndex的取值个数大于1情况下,确定传输模式为多传输点传输;
在所述CORESETPoolIndex的取值个数小于1或等于1情况下,确定传输模式为单传输点传输。
第七方面,提供了一种更新波束信息的方法。该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片或芯片系统或电路执行,本申请对此不作限定。
该方法可以包括:
发送介质接入控制-控制元素MAC-CE信令,其中,所述MAC-CE信令中包括第一载波单元CC的波束更新信息;
在传输模式为单传输点传输的情况下,所述MAC-CE信令中的预留字段能用于指示:是否基于所述第一CC的波束更新信息,更新一个或多个第二CC以及所述第一CC的波束信息;
在传输模式为多传输点传输的情况下,所述MAC-CE信令中的预留字段能用于指示:所述MAC-CE信令对应的传输点。
结合第七方面,在第七方面的某些实现方式中,所述方法还包括:
发送高层信令,所述高层信令包括CORESETPoolIndex;
在传输模式为多传输点传输的情况下,所述高层信令中配置的所述CORESETPoolIndex的取值个数大于1;
在传输模式为单传输点传输的情况下,所述高层信令中配置的所述CORESETPoolIndex的取值个数小于1或等于1。
第八方面,提供了一种更新波束信息的方法。该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或芯片系统或电路执行,本申请对此不作限定。
该方法可以包括:
接收介质接入控制-控制元素MAC-CE信令,其中,所述MAC-CE信令中包括第一载波单元CC的波束更新信息;
基于所述MAC-CE信令中的预留字段,确定是否基于所述第一CC的波束更新信息,更新一个或多个第二CC以及所述第一CC的波束信息;或,
基于所述MAC-CE信令中的预留字段,确定所述MAC-CE信令用于通知第一模式的映射关系或第二模式的映射关系;
其中,所述第一模式的映射关系表示:两个或两个以上的传输配置指示TCI状态标识TCI-state ID能够映射到同一个下行控制信息DCI中的TCI字段值,所述第二模式的映射关系表示:两个或两个以上的TCI-state ID不能映射到同一个DCI中的TCI字段值。
基于一个信令可以基于激活多个CC(如第一CC和第二CC)的TCI状态,具体的可以参考如上面第一方面至第三方面中任一方面提供的方法。
基于上述技术方案,可以通过MAC-CE信令中的预留比特,来区分MAC-CE信令用于第一模式的映射关系,还是用于第二模式的映射关系。或者,也可以根据MAC-CE信令中的预留比特,来区分MAC-CE信令适用于单个CC还是可以同时应用于多个CC(如第一CC和第二CC)。从而,不仅可以灵活地使用MAC-CE信令中的预留比特,而且可以节省信令开销。
结合第八方面,在第八方面的某些实现方式中,在基于所述MAC-CE信令中的预留字段,确定是否基于所述第一CC的波束更新信息,更新一个或多个第二CC以及所述第一CC的波束信息的情况下,所述方法还包括:
接收高层信令,所述高层信令包括CORESETPoolIndex;
根据所述CORESETPoolIndex的取值个数,确定所述MAC-CE信令用于通知第一模式的映射关系或第二模式的映射关系。
基于上述技术方案,可以依靠CORESETPoolIndex的取值的个数以及MAC-CE信令中的预留比特,来区分MAC-CE信令用于第一模式的映射关系,还是用于第二模式的映射关系,且该MAC-CE信令适用于单个CC还是可以同时应用于多个CC(如第一CC和第二CC)。例如,可以根据CORESETPoolIndex的取值的个数,来区分MAC-CE信令用于第一模式的映射关系,还是用于第二模式的映射关系,且根据该MAC-CE信令中的预留比特确定该MAC-CE信令适用于单个CC还是可以同时应用于多个CC。
结合第八方面,在第八方面的某些实现方式中,在基于所述MAC-CE信令中的预留字段,确定所述MAC-CE信令用于通知所述第一模式的映射关系或所述第二模式的映射关系的情况下,所述方法还包括:
接收高层信令,所述高层信令包括CORESETPoolIndex;
根据所述CORESETPoolIndex的取值个数,确定是否基于所述第一CC的波束更新信息,更新一个或多个第二CC以及所述第一CC的波束信息。
基于上述技术方案,可以依靠CORESETPoolIndex的取值的个数以及MAC-CE信令中的预留比特,来区分MAC-CE信令用于第一模式的映射关系,还是用于第二模式的映 射关系,且该MAC-CE信令适用于单个CC还是可以同时应用于多个CC(如第一CC和第二CC)。例如,可以根据MAC-CE信令中的预留比特,来区分MAC-CE信令用于第一模式的映射关系,还是用于第二模式的映射关系,且根据CORESETPoolIndex的取值的个数,确定该MAC-CE信令适用于单个CC还是可以同时应用于多个CC。
第九方面,提供了一种更新波束信息的方法。该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片或芯片系统或电路执行,本申请对此不作限定。
该方法可以包括:
发送介质接入控制-控制元素MAC-CE信令,其中,所述MAC-CE信令中包括第一载波单元CC的波束更新信息;
所述MAC-CE信令中的预留字段能用于指示:所述MAC-CE信令用于通知第一模式的映射关系或第二模式的映射关系;或,
所述MAC-CE信令中的预留字段能用于指示:是否基于所述第一CC的波束更新信息,更新一个或多个第二CC以及所述第一CC的波束信息;
其中,所述第一模式的映射关系表示:两个或两个以上的传输配置指示TCI状态标识TCI-state ID能够映射到同一个下行控制信息DCI中的TCI字段值,所述第二模式的映射关系表示:两个或两个以上的TCI-state ID不能映射到同一个DCI中的TCI字段值。
基于一个信令可以基于激活多个CC(如第一CC和第二CC)的TCI状态,具体的可以参考如上面第一方面至第三方面中任一方面提供的方法。
结合第九方面,在第九方面的某些实现方式中,所述MAC-CE信令中的预留字段能用于指示:是否基于所述第一CC的波束更新信息,更新一个或多个第二CC以及所述第一CC的波束信息,所述方法还包括:
发送高层信令,所述高层信令包括CORESETPoolIndex;
所述CORESETPoolIndex的取值个数用于确定:所述MAC-CE信令用于通知第一模式的映射关系或第二模式的映射关系。
结合第九方面,在第九方面的某些实现方式中,所述MAC-CE信令中的预留字段能用于指示:所述MAC-CE信令用于通知第一模式的映射关系或第二模式的映射关系,所述方法还包括:
发送高层信令,所述高层信令包括CORESETPoolIndex;
所述CORESETPoolIndex的取值个数用于确定:是否基于所述第一CC的波束更新信息,更新一个或多个第二CC以及所述第一CC的波束信息。
第十方面,提供一种通信装置,所述通信装置用于执行上述第一方面、第三方面、第四方面、第五方面、第六方面、或第八方面提供的方法。具体地,所述通信装置可以包括用于执行第一方面、第三方面、第四方面、第五方面、第六方面、或第八方面提供的方法的模块。
第十一方面,提供一种通信装置,所述通信装置用于执行上述第二方面、第七方面、或第九方面提供的方法。具体地,所述通信装置可以包括用于执行第二方面提供的方法的模块。
第十二方面,提供一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面、第三方面、第四方面、第五方面、第六方面、或 第八方面,以及第一方面、第三方面、第四方面、第五方面、第六方面、或第八方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合,所述通信接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为芯片或芯片系统。当该通信装置为芯片或芯片系统时,所述通信接口可以是输入/输出接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片或芯片系统。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第十三方面,提供一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面、第七方面、或第九方面以及第二方面、第七方面、或第九方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合,所述通信接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。
在一种实现方式中,该通信装置为网络设备。当该通信装置为网络设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为芯片或芯片系统。当该通信装置为芯片或芯片系统时,所述通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片或芯片系统。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第十四方面,提供一种通信装置,该通信装置包括处理器,该处理器与存储器耦合,当该处理器执行存储器中的计算机程序或指令时,第一方面、第三方面、第四方面、第五方面、第六方面、或第八方面,以及第一方面、第三方面、第四方面、第五方面、第六方面、或第八方面中任一种可能实现方式中的方法被执行。
第十五方面,提供一种通信装置,该通信装置包括处理器,该处理器与存储器耦合,当该处理器执行存储器中的计算机程序或指令时,第二方面、第七方面、或第九方面以及第二方面、第七方面、或第九方面中任一种可能实现方式中的方法被执行。
第十六方面,提供一种通信装置,该通信装置包括处理器和接口,该处理器通过该接口与存储器耦合,当该处理器执行存储器中的计算机程序或指令时,第一方面、第三方面、第四方面、第五方面、第六方面、或第八方面,以及第一方面、第三方面、第四方面、第五方面、第六方面、或第八方面中任一种可能实现方式中的方法被执行。
第十七方面,提供一种通信装置,该通信装置包括处理器和接口,该处理器通过该接口与存储器耦合,当该处理器执行存储器中的计算机程序或指令时,第二方面、第七方面、 或第九方面以及第二方面、第七方面、或第九方面中任一种可能实现方式中的方法被执行
第十八方面,提供一种芯片,包括:处理器和接口,用于从存储器中调用并运行所述存储器中存储的计算机程序,执行第一方面、第三方面、第四方面、第五方面、第六方面、或第八方面以及第一方面、第三方面、第四方面、第五方面、第六方面、或第八方面中任一种可能实现方式中的方法。
第十九方面,提供一种芯片,包括:处理器和接口,用于从存储器中调用并运行所述存储器中存储的计算机程序,执行第二方面、第七方面、或第九方面以及第二方面、第七方面、或第九方面中任一种可能实现方式中的方法。
第二十方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置实现第一方面、第三方面、第四方面、第五方面、第六方面、或第八方面,以及第一方面、第三方面、第四方面、第五方面、第六方面、或第八方面的任一可能的实现方式中的方法。
第二十一方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置实现第二方面、第七方面、或第九方面,以及第二方面、第七方面、或第九方面的任一可能的实现方式中的方法。
第二十二方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得通信装置实现第一方面、第三方面、第四方面、第五方面、第六方面、或第八方面提供的方法。
第二十三方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得通信装置实现第二方面、第七方面、或第九方面提供的方法。
第二十四方面,提供了一种通信系统,包括前述的网络设备和终端设备。
附图说明
图1与图2是本申请实施例应用的通信系统的示意图;
图3与图4是适用于本申请实施例的MAC-CE的格式的示意图;
图5是本申请一实施例提供的更新波束信息的方法的示意性交互图;
图6是本申请又一实施例提供的更新波束信息的方法的示意性交互图;
图7是本申请再一实施例提供的更新波束信息的方法的示意性交互图;
图8是本申请再一实施例提供的更新波束信息的方法的示意性交互图;
图9是适用于本身实施例的MAC-CE的格式的示意图;
图10是本申请实施例提供的通信装置的示意性框图;
图11是本申请实施例提供的通信装置的另一示意性框图;
图12是本申请实施例提供的终端设备的示意性框图;
图13是本申请实施例提供的网络设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例可以应用于基于波束的通信系统,例如:第五代(5th generation,5G)系统、新无线(new radio,NR)、长期演进(long term evolution,LTE)系统、LTE频分 双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)或者其他演进的通信系统等。
本申请实施例应用的通信系统中可以包括一个或多个网络设备,以及一个或多个终端设备。一个网络设备可以向一个或多个终端设备传输数据或控制信令。或者,多个网络设备也可以同时为一个终端设备传输数据或者控制信令。
作为示例而非限定,图1为本申请实施例应用的通信系统100的示意图。
该通信系统100包括一个网络设备或110与多个终端设备120(如图1中所示的终端设备120a和终端设备120b)。网络设备110可以通过多个射频通道同时发送多个模拟波束来为多个终端设备传输数据。如图1所示,网络设备同时发送波束1和波束2,其中波束1用于为终端设备120a传输数据,波束2用于为终端设备120b传输数据。波束1可以称为终端设备120a的服务波束,波束2可以称为终端设备120b的服务波束。终端设备120a和终端设备120b可以属于同一个小区。
图2示出了适用于本申请实施例的通信系统200的另一示意图。
如图2所示,该通信系统200可以包括至少两个网络设备,例如图2中所示的网络设备210(如图2中所示的网络设备210a和网络设备210b);该通信系统200还可以包括至少一个终端设备,例如图2中所示的终端设备220。该终端设备220可以通过双连接(dual connectivity,DC)技术或者多连接技术等与网络设备210a和网络设备210b建立无线链路。其中,网络设备210a例如可以为主基站,网络设备210b例如可以为辅基站。此情况下,网络设备210a为终端设备220初始接入时的网络设备,负责与终端设备220之间的无线资源控制(radio resource control,RRC)通信,网络设备210b可以是RRC重配置时添加的,用于提供额外的无线资源。
本申请实施例中的终端设备也可以称为:用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。
另外,本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备也可以称为接入网设备或无线接入网设备,可以是传输接收点(transmission reception point,TRP),还可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,可以是WLAN中的接入点(access point,AP),可以是新型无线系统(new radio,NR)系统中的gNB,本申请实施例并不限定。
在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备、或者控制面CU节点(CU-CP节点)和用户面CU节点(CU-UP节点)以及DU节点的RAN设备。
网络设备为小区提供服务,终端设备通过网络设备分配的传输资源(例如,频域资源,或者说,频谱资源)与小区进行通信,该小区可以属于宏基站(例如,宏eNB或宏gNB等),也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
为便于理解本申请实施例,下面首先介绍本申请实施例涉及的一些术语。
1、波束
波束在NR协议中的体现可以是空域滤波器(spatial domain filter),或者称空间滤波器(spatial filter)或空间参数(spatial parameter)。用于发送信号的波束可以称为发送波束(transmission beam,Tx beam),可以称为空域发送滤波器(spatial domain transmission filter)或空间发射参数(spatial transmission parameter);用于接收信号的波束可以称为接收波束(reception beam,Rx beam),可以称为空域接收滤波器(spatial domain receive filter)或空间接收参数(spatial RX parameter)。
发送波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。
此外,波束可以是宽波束,或者窄波束,或者其它类型波束。形成波束的技术可以是 波束赋形技术或者其它技术。波束赋形技术具体可以为数字波束赋形技术、模拟波束赋形技术或者混合数字/模拟波束赋形技术等。
波束一般和资源对应,例如进行波束测量时,网络设备可以在不同资源使用不同的波束发送信号,终端设备在不同的资源使用不同的波束接收信号,并且终端设备可以向网络设备反馈在不同资源上测得的信号的质量,从而网络设备就知道对应的波束的质量。在数据传输时,波束信息也是通过其对应的资源来进行指示的。例如网络设备通过下行控制信息(downlink control information,DCI)中的传输配置指示(transmission configuration indicator,TCI)资源,来指示终端设备物理下行共享信道(physical downlink shared channel,PDSCH)波束的信息。
可选地,具有相同或者类似的通信特征的多个波束可以视为一个波束。
一个波束对应一个或多个天线端口,用于传输数据信道、控制信道和探测信号等。一个波束对应的一个或多个天线端口也可以看作是一个天线端口集。
在波束测量中,网络设备的每一个波束对应一个资源,因此可以通过资源的标识(或者称索引)来唯一标识该资源对应的波束。
2、资源
在波束测量中,可以通过资源的标识来唯一标识该资源对应的波束。
资源可以是上行信号资源,也可以是下行信号资源。
上行信号包括但不限于:上行随机接入序列、探测参考信号(sounding reference signal,SRS)、解调参考信号(demodulation reference signal,DMRS)(如上行控制信道解调参考信号或上行数据信道解调参考信号)以及上行相位噪声跟踪信号。
下行信号包括但不限于:信道状态信息参考信号(channel state information reference signal,CSI-RS)、小区专用参考信号(cell specific reference signal,CS-RS)、UE专用参考信号(user equipment specific reference signal,US-RS)、解调参考信号(demodulation reference signal,DMRS)(如下行控制信道解调参考信号或下行数据信道解调参考信号)、下行相位噪声跟踪信号以及同步信号/物理广播信道块(synchronization signal/physical broadcast channel block,SS/PBCH block)。其中,SS/PBCH block可以简称为同步信号块(synchronization signal block,SSB)。
资源可以通过无线资源控制(radio resource control,RRC)信令配置。
在配置结构上,一个资源是一个数据结构,包括其对应的上行/下行信号的相关参数,例如上行/下行信号的类型,承载上行/下行信号的资源粒,上行/下行信号的发送时间和周期,发送上行/下行信号所采用的端口数等。
每一个上行/下行信号的资源具有唯一的标识,以标识该上行/下行信号的资源。可以理解的是,资源的标识也可以称为资源的索引,本申请实施例对此不作任何限制。
此外,波束管理资源可以指用于波束管理的资源,又可以体现为用于计算和测量波束质量的资源。波束质量例如可以包括但不限于:层一接收参考信号功率(layer 1reference signal received power,L1-RSRP)、层一接收参考信号质量(layer 1reference signal received quality,L1-RSRQ)、层一信号与干扰噪声比(layer 1signal to interference and noise ratio,L1-SINR)等。例如,波束管理资源可以包括:同步信号、广播信道、下行信道测量参考信号、跟踪信号、下行控制信道解调参考信号、下行共享信道解调参考信号、上行探测参 考信号、上行随机接入信号等。
3、准共址(quasi-co-location,QCL)
准共址(quasi-co-location,QCL)或者称准同位。具有QCL关系的天线端口对应的信号中具有相同的参数,或者,一个天线端口的参数可用于确定与该天线端口具有QCL关系的另一个天线端口的参数,或者,两个天线端口具有相同的参数,或者,两个天线端口间的参数差小于某阈值。其中,所述参数可以包括以下一项或多项:时延扩展(delay spread),多普勒扩展(Doppler spread),多普勒频移(Doppler shift),平均时延(average delay),平均增益,空间接收参数(spatial Rx parameters)。其中,空间接收参数可以包括以下的一项或多项:到达角(angle of arrival,AOA)、平均AOA、AOA扩展、离开角(angle of departure,AOD)、平均离开角AOD、AOD扩展、接收天线空间相关性参数、发送天线空间相关性参数、发射波束、接收波束以及资源标识。
其中,上述角度可以为不同维度的分解值,或不同维度分解值的组合。天线端口为具有不同天线端口编号的天线端口,和/或,具有相同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口,和/或,具有不同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口。资源标识可以包括:CSI-RS资源标识,或SRS资源标识,或SSB资源标识,或物理随机接入信道(Physical Random Access Channel,PRACH)上传输的前导序列的资源标识,或解调参考信号(demodulation reference signal,DMRS)的资源标识,用于指示资源上的波束。
在NR协议中,QCL关系可以基于不同的参数分为以下四种类型:
类型A(type A):多普勒频移、多普勒扩展、平均时延、时延扩展;
类型B(type B):多普勒频移、多普勒扩展;
类型C(type C):多普勒频移、平均时延;以及
类型D(type D):空间接收参数。
本申请实施例所涉及的QCL为类型D的QCL。下文中在没有特别说明的情况下,QCL可以理解为类型D的QCL,即,基于空间接收参数定义的QCL。
当QCL关系指类型D的QCL关系时,可以认为是空域QCL。当天线端口满足空域QCL关系时,下行信号的端口和下行信号的端口之间,或上行信号的端口和上行信号的端口之间的QCL关系,可以是两个信号具有相同的AOA或AOD,用于表示具有相同的接收波束或发射波束。又例如对于下行信号和上行信号间或上行信号与下行信号的端口间的QCL关系,可以是两个信号的AOA和AOD具有对应关系,或两个信号的AOD和AOA具有对应关系,即可以利用波束互易性,根据下行接收波束确定上行发射波束,或根据上行发射波束确定下行接收波束。
从发送端来看,如果说两个天线端口是空域QCL的,则可以是指这两个天线端口的对应的波束方向在空间上是一致的。从接收端来看,如果说两个天线端口是空域QCL的,则可以是指接收端能够在同一波束方向上接收到这两个天线端口发送的信号。
具有空域QCL关系的端口上传输的信号还可以具有对应的波束,对应的波束包括以下至少之一:相同的接收波束、相同的发射波束、与接收波束对应的发射波束(对应于有互易的场景)、与发射波束对应的接收波束(对应于有互易的场景)。
具有空域QCL关系的端口上传输的信号还可以理解为使用相同的空间滤波器(spatial  filter)接收或发送信号。空间滤波器可以为以下至少之一:预编码,天线端口的权值,天线端口的相位偏转,天线端口的幅度增益。
具有空域QCL关系的端口上传输的信号还可以理解为具有对应的波束对连接(beam pair link,BPL),对应的BPL包括以下至少之一:相同的下行BPL,相同的上行BPL,与下行BPL对应的上行BPL,与上行BPL对应的下行BPL。
因此,空间接收参数(即,类型D的QCL)可以理解为用于指示接收波束的方向信息的参数。
4、空间关系(spatial relation,SR)
空间关系,也可以称为上行传输配置指示(uplink transmission configuration indicator,UL TCI)。空间关系可以用于确定上行信号的发送波束。该空间关系可以由波束训练确定。用于波束训练的参考信号例如可以是上行参考信号,如SRS,也可以是下行参考信号,如SSB或CSI-RS。
在通信过程中,终端设备可以基于网络设备所指示的空间关系确定发送波束,网络设备可以基于同一空间关系确定接收波束。
可选地,空间关系中还可以包含上行发送功率控制的相关参数,包括以下一种或多种:路径损耗估计参考信号(Pathloss Reference RS),基准功率,补偿系数(Alpha),开环或者闭环功控指示,闭环功控编号(closedLoopIndex)等。
SR是由网络设备配置给各个终端设备的,下列是SR的一种格式。
Figure PCTCN2020108073-appb-000001
5、TCI状态(TCI-state)
TCI-state可用于指示两种参考信号之间的QCL关系。每个TCI-state中可以包括服务小区的索引(ServeCellIndex)、带宽部分(band width part,BWP)标识(identifier,ID)和参考信号资源标识。其中,参考信号资源标识例如可以为以下至少一项:非零功率(non-zero power,NZP)CSI-RS参考信号资源标识(NZP-CSI-RS-ResourceId)、非零功 率CSI-RS参考信号资源集标识(NZP-CSI-RS-ResourceSetId)或SSB索引(SSB-Index)。
发送波束的信息(即网络设备的发送波束或终端设备的接收波束)可以通过TCI-state进行指示。每个TCI-state包括一个自身的索引(tci-StateId)和两个QCI信息(QCI information,QCl-Info)。每个QCl-Info可以包括一个参考信号资源(referenceSignal),表示采用该TCI-state的资源与该QCL-Info包括的参考信号资源构成QCL关系。例如,为资源1配置了一个TCI-state,其中该TCI-state包括的QCL-Info中包括的资源为资源2,则表示资源1和资源2是QCL的。
TCI-state是由网络设备配置给各个终端设备的,下列是TCI-state的一种格式。
Figure PCTCN2020108073-appb-000002
在此后的通信过程中,终端设备可以基于网络设备所指示的TCI-state确定接收波束,网络设备可以基于同一TCI-state确定发送波束。
此外,TCI-state可以是全局配置的。在为不同的小区(cell)、不同的BWP配置的TCI-state中,若TCI-state的索引相同,则所对应的TCI-state的配置也相同。
小区是高层从资源管理或移动性管理或服务单元的角度来描述的。每个网络设备的覆盖范围可以被划分为一个或多个服务小区,且该服务小区可以看作由一定频域资源组成。
在本申请实施例中,载波单元(component carrier,CC,或者称,成员载波、组成载波、载波等)可以替换为服务小区或小区或传输点或物理小区。“小区”、“服务小区”、“传输点”和“CC”可以交替使用,在不强调其区别时,其所要表达的含义是一致的。相似地,“服务小区的索引”、“服务小区的标识(ID)”、“小区标识(cell ID)”、“物理小区的标识(Physical Cell Identity)”、“传输点标识(或传输点索引)”和“CC标识(CC ID)”交替使用,在不强调其区别时,其所要表达的含义是一致的。
6、TCI
TCI可用于指示TCI-state。在一种实现方式中,网络设备可通过高层信令(如无线资 源控制(radio resource control,RRC))为终端设备配置TCI-state列表(list),例如,网络设备可以通过RRC消息中的TCI-state增加模式列表(tci-StatesToAddModList)来为终端设备配置TCI-state列表。该TCI-state列表中可以包括多个TCI-state,例如,网络设备可以为每个小区中的每个BWP配置最多64个TCI-state。
此后,网络设备可以通过高层信令(如介质接入控制-控制元素(medium access control-control element,MAC-CE))激活一个或多个TCI-state。被激活的TCI-state为上述RRC消息所配置的TCI-state列表的一个子集。例如,网络设备可以为每个小区中的每个BWP激活最多8个TCI-state。
此后,网络设备还可以通过物理层信令(如下行控制信息(downlink control information,DCI))中的TCI字段指示一个被选择的TCI-state。该DCI例如可以适用于调度物理下行资源的DCI。
其中,一个TCI-state的配置信息可以包括一个或两个参考信号资源的标识,以及所关联的QCL类型。当QCL关系配置为类型A、或B、或C中的一种时,终端设备可以根据TCI-state的指示,解调物理下行控制信道(physical downlink control channel,PDCCH)或物理下行共享信道(physical downlink shared channel,PDSCH)。当QCL关系配置为类型D时,终端设备可以知道网络设备使用哪个发射波束发送信号,进而可以根据前文所述的信道测量确定的波束配对关系确定使用哪个接收波束接收信号。终端设备可以根据PDCCH上DCI中的TCI字段来确定接收PDSCH的接收波束。
7、控制资源集(control resource set,CORESET)
CORESET用于传输下行控制信息的资源集合,也可以称为控制资源区域,或物理下行控制信道资源集合。每个CORESET可以是一组资源元素组(resource element group,REG)的集合。REG是下行控制信令进行物理资源分配的基本单位,用于定义下行控制信令到RE的映射。例如,一个REG可以由4个频域上连续的非参考信号(reference signal,RS)的资源元素(resource element,RE)组成。应理解,REG仅为用于资源分配的单位,不应对本申请构成任何限定,本申请并不排除在未来的协议中定义新的资源分配单位来实现相同或相似的功能。
对于网络设备而言,CORESET可以理解为发送PDCCH所可能使用的资源的集合;对于终端设备而言,每个终端设备的PDCCH的搜索空间所对应的资源都属于该CORESET。或者说,网络设备可以从该CORESET中确定发送PDCCH使用的资源,终端设备可以根据该CORESET确定PDCCH的搜索空间。
其中,CORESET可以包括时频资源,例如,频域上可以是一段带宽,或者一个或者多个子带等;时域上可以是一个或多个符号;一个控制资源集在时频域上可以是连续或不连续的资源单元,例如,连续的资源块(resource block,RB)或者不连续的RB。
此外,CORESET还可以包括TCI-state。CORESET可以包括多个TCI-state,激活的TCI-state可以为该多个TCI-state中的一个,换句话说,用于传输PDCCH的资源可以具体采用该多个TCI-state中的一个,具体采用哪个TCI-state是网络设备指定的。例如,网络设备向终端设备发送MAC-CE,该MAC-CE中携带一个TCI-state的索引,TCI-state的索引用于指示该CORESET对应的PDCCH采用的是TCI-state。此外,网络设备也可以通过MAC-CE来修改PDCCH的TCI-state。网络设备可以为终端设备配置一个或多个 CORESET,用于传输不同类型的PDCCH。
CORESET例如可以通过高层参数中的ControlResourceSet information element(控制资源集信息元素)配置。该高层参数中例如可以包括CORESET的标识(identifier,ID)、频域资源、持续时间(duration)所包含的符号个数等。本申请对用于配置CORESET的具体参数不作限定。
8、波束指示
对于每一个物理信道或者物理信号,网络设备都可以通过不同的信令对终端设备进行波束指示,从而可以指导终端设备如何接收下行物理信道或者物理信号,也可以指导终端设备如何发送上行物理信道或者物理信号。
以波束指示信息表示指示传输所使用的波束为例。波束指示信息可以包括但不限于以下一项或多项:波束编号、波束管理资源编号,上行信号资源号,下行信号资源号、波束的绝对索引、波束的相对索引、波束的逻辑索引、波束对应的天线端口的索引、波束对应的天线端口组索引、波束对应的下行信号的索引、波束对应的下行同步信号块的时间索引、波束对连接(beam pair link,BPL)信息、波束对应的发送参数(Tx parameter)、波束对应的接收参数(Rx parameter)、波束对应的发送权重、波束对应的权重矩阵、波束对应的权重向量、波束对应的接收权重、波束对应的发送权重的索引、波束对应的权重矩阵的索引、波束对应的权重向量的索引、波束对应的接收权重的索引、波束对应的接收码本、波束对应的发送码本、波束对应的接收码本的索引、波束对应的发送码本的索引等。网络设备还可以为频率资源组关联的波束中具有QCL关系的波束分配QCL标示符。波束指示信息还可以体现为TCI,TCI中可以包括多种参数,例如:小区ID、BWP ID、参考信号标识、同步信号块标识、QCL类型等。
网络设备可以通过信令,如高层信令(如RRC、MAC-CE)或物理层信令(如DCI),为终端设备进行波束指示。
以PDSCH为例,网络设备可以使用RRC信令+MAC-CE信令+DCI信令三级信令结构进行PDSCH的波束指示。
网络设备可通过高层信令(如RRC信令)为终端设备配置TCI-state,如网络设备可以通过RRC信令配置最多128个TCI-state。此后,网络设备可以通过高层信令(如MAC-CE信令)激活一个或多个TCI-state,如最多可以激活8个TCI-state。被激活的TCI-state为上述RRC信令所配置的TCI-state中的一个子集。此后,网络设备还可以通过物理层信令(如DCI)中的TCI字段指示一个被选择的TCI-state,该被选择的TCI-state用于当前的PDSCH传输。该DCI例如可以适用于调度物理下行资源(如PDSCH)的DCI。
9、CC或BWP相关的波束配置
单元载波又可以称为分量载波,组成载波,或成员载波等。多载波聚合中的每个载波都可以称为“CC”。终端设备可以在多个CC上接收数据。每个载波由一个或多个物理资源块(physical resource block,PRB)组成,每个载波上可以有各自对应的PDCCH,调度各自CC的PDSCH。
应理解,在本申请实施例中多次提及CC发送参考信号或CC的参考信号,除非特别说明,否则其均是表示该参考信号占用的是该CC的频域资源。
应理解,在本申请实施例中,在一些场景下,CC可以替换为BWP,或者CC可以替 换为CC和BWP,或者,CC可以替换为CC或BWP。相似地,在本申请实施例中,在一些场景下,CC ID可以替换为BWP ID,或者CC ID可以替换为CC ID和BWP ID,或者,CC ID可以替换为CC ID或BWP ID。
由于NR中同一小区中不同终端设备的发射或者接收能力可能是不同的,系统可以为每个终端设备配置相应的带宽,这一部分配置给终端设备的带宽称为BWP,终端设备在自己的BWP上传输。BWP可以是载波上一组连续的频域资源,如物理资源块(physical resource block,PRB),不同的BWP可以占用的频域资源可以部分重叠(overlap),也可以互不重叠。不同的BWP占用的频域资源的带宽可以相同,也可以不同,本申请对此不作限定。BWP在频域上的最小粒度可以为1个PRB。
在单载波场景下,一个终端设备在同一时刻可以只有一个激活的BWP,终端设备只在激活的BWP(active BWP)上接收数据/参考信号,或者发送数据/参考信号。终端设备可以被配置工作在多个CC上,其中每个CC在同一时刻可以各有一个工作的(或者说激活的)BWP。为了保证每个CC或BWP的正常工作,每个CC的每个BWP都进行了相关的波束配置,并且发送了波束相关的信令。
以PDSCH为例,网络设备通过RRC信令为终端设备配置每一个CC的每一个BWP的TCI-state,网络设备使用MAC-CE信令为终端设备的每一个CC的每一个BWP进行TCI-state的激活。
如图3所示,图3是适用于本申请实施例的MAC-CE的格式的示意图。如图3所示,图3中的一个八位组(octet,Oct)表示8比特(bits)构成的一个字节(byte)。该MAC-CE可以用于给所指示的服务小区中的PDSCH配置TCI-state。具体地,该MAC-CE中包括服务小区(serving cell)的标识(identifier,ID)和BWP的ID,以及用于指示各TCI-state是否被激活的指示比特。其中,该MAC-CE中Ti用于指示各TCI状态是否被激活。每一个Ti可以占用一个比特,i可以对应通过RRC消息中的tci-StatesToAddModList配置的TCI-state列表中的第i个TCI-state。例如,i等于TCI-state ID(TCI-StateId)的值。该MAC-CE所指示的被激活的TCI-state可以理解为:为其所指示的服务小区和BWP配置的TCI-state,也就是说,当在该服务小区中的该BWP上传输PDSCH时,可以基于该TCI-state指示的信息确定发送波束和接收波束。
在本申请实施例中,网络设备可以通过如图3所示的MAC-CE格式向终端设备指示第一CC激活的TCI-state。
如图4所示,图4是适用于本申请实施例的MAC-CE的格式的示意图。如图4所示,该MAC-CE可以用于给所指示的服务小区中的PDCCH配置TCI-state。具体地,该MAC-CE中包括服务小区(serving cell)的标识(identifier,ID)和CORESET的ID,以及激活的TCI-state的ID。该MAC-CE所指示的被激活的TCI-state可以理解为:为其所指示的服务小区和BWP配置的TCI-state,也就是说,当在该服务小区中的该BWP上传输PDCCH时,可以基于该TCI-state指示的信息确定发送波束和接收波束。
以PDCCH为例,网络设备通过RRC信令为终端设备配置每一个CC的每一个BWP的CORESET的TCI-state,网络设备通过MAC-CE信令为终端设备的每一个CC的每一个BWP的每一个CORESET指示一个TCI-state用于目标CORESET的传输。需要注意的是,CORESET的编号是一个CC内唯一的。
在通信过程中,如高频通信中,不同的CC可以使用相同的模拟波束,也可以使用不同的模拟波束。为了降低波束管理的开销,在实际部署的高频通信系统中,经常只有一个或少数几个CC配置了波束管理参考信号,这些CC波束管理的结果,包括波束指示,可以应用到其他的CC。在这种情况下,所有的CC的波束配置应该是相同的,而且一个CC的波束发生了变化,其他所有的CC的波束都应该发生变化。
一种方式,为了通知这种波束变化的情况,需要在所有的CC上都发送相同的信令,比如RRC信令(例如只有CC的标识(identifier,ID)不同)以及MAC-CE(例如只有CC的ID不同)。这种通知方法带来了巨大的信令开销。
有鉴于此,本申请实施例提出一种更新波束信息的方法,可以降低波束指示的信令开销。
在本申请实施例中,网络设备可以通过如图4所示的MAC-CE格式向终端设备指示第一CC激活的TCI-state。至少存在以下两种可能的情况。
一种可能的情况,所有的服务小区的所有控制资源集的TCI都被更新了。
又一种可能的情况,所有的服务小区的控制资源集ID相同的控制资源集的TCI都被更新了。
下面将结合附图详细说明本申请提供的各个实施例。
图5是本申请实施例提供的一种更新波束信息的方法500的示意性交互图。方法500可以包括如下步骤。
510,网络设备向终端设备发送第一CC的波束更新信息,相应地,终端设备接收第一CC的波束更新信息。
可以理解,网络设备向终端设备发送第一CC的波束更新信息,以更新第一CC的波束信息。
应理解,第一CC仅是一种命名,并不对本申请实施例的保护范围造成限定。例如,第一CC可以表示任意的一个CC或多个CC;又如,第一CC可以表示用于波束管理或波束训练的CC。第一CC表示用于波束管理或波束训练的CC,具体地,如第一CC表示发送了波束管理参考信号(如SSB、CSI-RS、或SRS)的CC。
为便于理解,下文实施例中,以第一CC为一个CC进行示例性说明。
可选地,CC的波束信息例如可以体现为CC的接收波束的信息,即通信过程中使用的接收波束,或者说,终端设备在该CC的频域资源上接收信号或数据时的接收波束。或者,CC的波束信息例如可以体现为CC的发送波束的信息,即通信过程中使用的发送波束,或者说,终端设备在该CC的频域资源上发送信号或数据时的发送波束。为便于理解,首先主要以CC的接收波束为例进行说明。
例如,CC的波束信息可以体现为一个TCI。该TCI可以是用于PDCCH(即在该CC的频域资源上传输的PDCCH)的TCI;或者,该TCI也可以是用于PDSCH(即在该CC的频域资源上传输的PDSCH)的TCI;或者,该TCI也可以适用于参考信号(即在该CC的频域资源上传输的参考信号,如CSI-RS)的TCI。TCI中可以包括多种参数,例如:小区ID、BWP ID、参考信号标识、同步信号块标识、QCL类型等。CC的波束信息可以替换为CC的一个TCI的信息,或者,也可以替换为CC的一个TCI-state的信息。
示例性地,CC的波束信息可以包括PDSCH的一个TCI。
结合图3进行说明。网络设备向终端设备发送MAC-CE,该MAC CE中Ti用于指示各TCI-state是否被激活。Ti的值可以是1或0。1可以代表TCI-state被选中激活,0可以代表未被选中激活。
网络设备向终端设备发送第一CC的波束更新信息以更新第一CC的波束信息,例如可以是,网络设备向终端设备发送MAC-CE,以指示PDSCH激活的TCI-state为哪一个。也就是说,当在该第一CC中的该BWP上传输PDSCH时,可以基于该TCI-state指示的信息确定发送波束和接收波束。
示例性地,CC的波束信息可以包括PDCCH的一个TCI。
结合图4进行说明。网络设备向终端设备发送MAC-CE,该MAC-CE中包括服务小区的ID和CORESET的ID,以及激活的TCI-state的ID。该MAC-CE所指示的被激活的TCI-state可以理解为:为其所指示的服务小区和BWP配置的TCI-state,也就是说,当在该服务小区中的该BWP上传输PDCCH时,可以基于该TCI-state指示的信息确定发送波束和接收波束。
网络设备向终端设备发送第一CC的波束更新信息以更新第一CC的波束信息,例如可以是,网络设备向终端设备发送MAC-CE,以指示PDCCH激活的TCI-state为哪一个。也就是说,当在该第一CC中的该BWP上传输PDCCH时,可以基于该TCI-state指示的信息确定发送波束和接收波束。
下面结合两种情况说明。
情况1:第一CC的波束更新信息包括第一CC激活的TCI-state的信息。
换句话说,网络设备向终端设备发送第一CC的波束更新信息,为第一CC激活一个或多个TCI-state。
下文为便于理解,均以激活一个TCI-state为例进行示例性说明。
如图3所示,网络设备向终端设备发送第一CC的波束更新信息以更新第一CC的波束信息,例如可以是,网络设备向终端设备发送MAC-CE,以指示该第一CC上传输的PDSCH的激活的TCI-state。
可选地,更新第一CC的波束信息,可以包括,为第一CC激活一个TCI-state。换句话说,在本申请实施例中,更新CC的波束信息,可以替换为,为CC激活一个TCI-state。
可选地,第一CC的波束更新信息可以承载于MAC-CE信令上。
示例性地,网络设备通过MAC-CE信令,为第一CC选择(或者说激活)一个TCI-state。
示例性地,网络设备通过MAC-CE信令,将第一CC激活的TCI-state从TCI-state#1更新为TCI-state#2。
例如:第一CC,BWP#1(即当前激活的BWP),激活TCI-state#1::{qcl-TypeD:CSI-RS#1}→激活TCI-state#2::{qcl-TypeD:CSI-RS#2}。
应理解,上述仅是示例性说明,本申请实施例并未限定于此。例如,上述仅考虑了qcl-TypeD的内容,对于qcl-TypeA、qcl-TypeB、qcl-TypeC的内容,此处不作限定。
还应理解,在本申请实施例中,qcl-TypeD的相关配置中如果没有CC的ID,说明相应的参考信号是在本CC的频域资源上发送的。例如,上述示例中,针对第一CC,qcl-TypeD的相关配置中没有CC的ID,故CSI-RS#1是在本CC的频域资源上发送的,也就是在第一CC的频域资源上发送的。
关于激活TCI-state的方式,上文术语解释已介绍,此处不再赘述。
情况2:第一CC的波束更新信息包括第一CC的TCI-state对应的参考信号资源的信息。
换句话说,网络设备向终端设备发送第一CC的波束更新信息,更新第一CC的一个TCI-state的qcl-TypeD的参考信号资源。
例如,第一CC的波束更新信息包括第一CC激活的TCI-state对应的参考信号资源的信息。
可选地,更新第一CC的波束信息,可以包括,更新第一CC的一个TCI-state的qcl-TypeD的参考信号资源。例如,可以是更新参考信号资源类型,也可以是更新参考信号资源标识。
可选地,更新第一CC的波束信息,还可以包括,更新第一CC上行的spatial relation。
可选地,第一CC的波束更新信息可以承载于RRC信令上。
示例性地,网络设备通过RRC信令,更新第一CC的一个TCI-state的qcl-TypeD的参考信号资源ID。
例如:第一CC,BWP#1,TCI LIST,TCI-state#1::{qcl-TypeD:CSI-RS#1}→TCI-state#1::{qcl-TypeD:CSI-RS#2}
应理解,上述仅是示例性说明,本申请实施例并未限定于此。
520,终端设备基于第一CC的波束更新信息,更新一个或多第二CC以及第一CC的波束信息,其中,一个或多个第二CC与第一CC具有关联关系。
可选地,在本申请实施例中,可以通过MAC-CE信令中的预留字段R的取值来指示终端设备,是否基于第一CC的波束更新信息,更新一个或多第二CC以及第一CC的波束信息。例如,可以通过MAC-CE信令中的预留字段来指示:该MAC-CE信令是否可以用于多个CC同时激活TCI状态。
示例地,MAC-CE信令中的预留字段R取值为1的情况下,终端设备基于第一CC的波束更新信息,更新一个或多第二CC以及第一CC的波束信息,例如,该MAC-CE信令可以用于多个CC同时激活TCI状态。MAC-CE信令中的预留字段R取值为0的情况下,终端设备基于第一CC的波束更新信息,仅更新第一CC的波束信息,例如,该MAC-CE信令不可以用于多个CC同时激活TCI状态。
可选地,一个或多个第二CC与第一CC具有关联关系,包括:一个或多个第二CC与第一CC使用相同的波束配置。或者,一个或多个第二CC与第一CC具有关联关系,可以包括:一个或多个第二CC的波束信息与第一CC的波束信息关联。例如,一个或多个第二CC的一个TCI-state的qcl-TypeD的参考信号资源ID,与第一CC的一个TCI-state的qcl-TypeD的参考信号资源ID以及第一CC的ID关联。
可选地,本申请实施例可以适用于同时支持一个激活波束的终端设备。换句话说,终端设备同一时刻支持一个激活波束的情况下,可以基于第一CC的波束更新信息,更新一个或多第二CC以及第一CC的波束信息。
激活波束,例如可以表示激活发送波束,本领域技术人员可以理解其含义,其用于表示指示发送波束或者表示发送波束指示,或者,也可以表示spatial relation指示,换句话说,指示通信过程中使用的发送波束。终端设备同一时刻支持一个激活波束,可以表示为, 同一时刻,终端设备在一个或多个第二CC与第一CC上使用相同的一个发送波束。
激活波束,例如还可以表示激活接收束,本领域技术人员可以理解其含义,其用于表示指示接收波束或者表示接收波束指示,或者,也可以表示QCL指示,换句话说,指示通信过程中使用的接收波束。终端设备同一时刻支持一个激活波束,可以表示为,同一时刻,终端设备在一个或多个第二CC与第一CC上使用相同的一个接收波束。
下文均以一个激活波束为例进行示例性说明。
可选地,终端设备可以通过UE能力上报最大激活TCI数目和/或最大激活spatial relation数目都为1。进一步,可选地,这一个TCI和这一个spatial relation可以是同一波束,即同一个接收波束对应的发送波束,或者同一个发送波束对应的接收波束。
终端设备接收到第一CC的波束更新信息后,不仅更新第一CC的波束信息,还可以更新与第一CC具有关联关系(如与第一CC使用相同的波束配置)的一个或多个第二CC的波束信息。可以理解,网络设备不再需要发送一个或多个第二CC的波束更新信息,从而可以节省信令开销,降低了波束指示信令的开销和时延。
应理解,第一CC和第二CC仅是为区分做的命名,并不对本申请实施例的保护范围造成限定。一个或多个第二CC与第一CC具有关联关系,用于表示与第一CC具有关联关系的CC可以有一个或多个,或者说,有多个CC具有关联关系。本申请实施例对此不作限定。
可选地,该一个或多个第二CC与第一CC可以是一个小区组(cell group)之内的多个CC。或者,该一个或多个第二CC与第一CC可以是一个频带(band)内的多个CC。或者,该一个或多个第二CC与第一CC可以是一个频带组(band group或者band combination)内的多个CC。对此,不作限定。
第二CC与第一CC具有关联关系(如第二CC与第一CC使用相同的波束配置),例如,第一CC进行波束训练,第二CC使用第一CC的波束训练结果,那么第二CC与第一CC具有关联关系(如第二CC与第一CC使用相同的波束配置)。
下面结合一个具体的例子示例性说明。
假设终端设备支持8个高频CC,为区分,分别记为:CC#0、CC#1、CC#2、CC#3、CC#4、CC#5、CC#6、CC#7。假设第一CC为CC#0,第二CC包括7个CC,即CC#1、CC#2、CC#3、CC#4、CC#5、CC#6、CC#7。CC#0进行波束训练,CC#1、CC#2、CC#3、CC#4、CC#5、CC#6、以及CC#7使用CC#0的波束训练结果。
RRC配置包括:
小区组配置(cell group configure,CellGroupConfig)→…→服务小区配置(serving cell configure,ServingCellConfig)→…→BWP→…→PDSCH-Config…→tci-StatesToAddModList/tci-StatesToReleaseList。
其中,tci-StatesToAddModList/tci-StatesToReleaseList可以联合用于确定最终该CC/BWP配置的TCI有哪些。tci-StatesToAddModList/tci-StatesToReleaseList的可能格式如下。
tci-StatesToAddModList       SEQUENCE(SIZE(1..maxNrofTCI-States))OF TCI-State
tci-StatesToReleaseList      SEQUENCE(SIZE(1..maxNrofTCI-States))OF TCI-StateId
应理解,上述RRC配置中,中间的“…”表示,中间还可能包括其他的配置,对此不作限定。
还应理解,上述主要是列举了数据信道相关的相关配置(PDSCH-Config),关于PDCCH/CORESET的TCI列表,一种可能的格式如下。
tci-StatesPDCCH-ToAddList      SEQUENCE(SIZE(1..maxNrofTCI-StatesPDCCH))OF TCI-StateId
tci-StatesPDCCH-ToReleaseList      SEQUENCE(SIZE(1..maxNrofTCI-StatesPDCCH))OF TCI-StateId
从上也可以看出,PDCCH/CORESET的TCI-state列表中的元素仅仅包括TCI-state的ID,PDSCH的TCI-state列表中的元素包括TCI-state的具体配置。
如果对每个CC都配置TCI-state,对于每一个CC每一个BWP都可以重复的配置一样的TCI-state,即CC#1、CC#2、CC#3、CC#4、CC#5、CC#6、CC#7与CC#0使用相同的配置。例如:
CC#0,BWP#1,TCI LIST,TCI-state#1::{qcl-TypeD:CSI-RS#1}
CC#1,BWP#1,TCI LIST,TCI-state#1::{qcl-TypeD:CC#0的CSI-RS#1}
CC#2,BWP#1,TCI LIST,TCI-state#1::{qcl-TypeD:CC#0的CSI-RS#1}
CC#3,BWP#1,TCI LIST,TCI-state#1::{qcl-TypeD:CC#0的CSI-RS#1}
CC#4,BWP#1,TCI LIST,TCI-state#1::{qcl-TypeD:CC#0的CSI-RS#1}
CC#5,BWP#1,TCI LIST,TCI-state#1::{qcl-TypeD:CC#0的CSI-RS#1}
CC#6,BWP#1,TCI LIST,TCI-state#1::{qcl-TypeD:CC#0的CSI-RS#1}
CC#7,BWP#1,TCI LIST,TCI-state#1::{qcl-TypeD:CC#0的CSI-RS#1}
应理解,TCI LIST可以表示上面RRC配置中的PDSCH-Config…→tci-StatesToAdd ModList。
由上可知,CC#1、CC#2、CC#3、CC#4、CC#5、CC#6、CC#7中,qcl-TypeD的参考信号资源均为:CC#0的CSI-RS#1。或者可以理解为,CC#1、CC#2、CC#3、CC#4、CC#5、CC#6、CC#7与CC#0配置了相同的qcl-TypeD。
可以看出,在CC#0的TCI-state#1的qcl-TypeD的参考信号资源发生更新时,CC#1、CC#2、CC#3、CC#4、CC#5、CC#6、CC#7的TCI-state#1的qcl-TypeD的参考信号资源也会发生更新。
第二CC与第一CC具有关联关系,或者,第二CC与第一CC使用相同的波束配置,均可以表示,第二CC与第一CC使用的波束相同。或者,也可以表示,第二CC与第一CC的波束配置中除了CC的ID不同,其他信息都相同。或者,也可以表示,第二CC激活的TCI-state与第一CC激活的TCI-state相同。或者,也可以表示,第二CC激活的TCI-state中包括的参考信号资源标识与第一CC的ID以及第一CC激活的TCI-state中包括的参考信号资源标识关联。或者,也可以表示,第二CC与第一CC配置了相同的qcl-TypeD。或者,也可以表示,一个或多个第二CC与第一CC具有QCL关系。
应理解,配置相同的qcl-TypeD,或者说,激活的TCI-state的qcl-TypeD相同,可以表示qcl-TypeD的相关配置相同,qcl-TypeD中的参考信号资源相同(如参考信号标识相同、资源类型相同等等)。下文统一用配置相同的qcl-TypeD表示。
可选地,关于第二CC与第一CC的波束配置,可以包括以下两种可能的形式。
形式1:网络设备为第二CC和第一CC均进行波束配置。
示例性地,网络设备分别为第一CC和第二CC配置具有qcl-TypeD的TCI-state列表。其中,对于第一CC和第二CC配置一样的TCI-state,换句话说,网络设备为第一CC配置的激活的TCI-state与网络设备为第二CC配置的激活的TCI-state相同。
形式2:网络设备仅为第一CC进行波束配置。
示例性地,网络设备仅为第一CC配置具有qcl-TypeD的TCI-state列表,并向终端设备发送第一CC的波束配置信息和指示信息,该指示信息用于指示第二CC和第一CC具有关联关系。
第二CC和第一CC具有关联关系,即第二CC与第一CC使用相同的波束配置,或者说,第二CC使用(或复制)第一CC的波束配置。
应理解,在形式2中,网络设备仅为第一CC进行波束配置,是相对于第二CC(即其他与第一CC具有关联关系的CC(如与第一CC使用相同的波束配置))来说的。换句话说,针对第一CC和第二CC,网络设备为第一CC进行波束配置,不为第二CC进行波束配置。
下文结合图6和图7所示的实施例详细说明上述两种形式。
第二CC与第一CC具有关联关系(如使用相同的波束配置),可以理解,第一CC的波束更新时,第二CC的波束也会更新,以保持关联(或使用相同的波束配置)。
下面结合上述两种情况详细说明。
情况1:第一CC的波束更新信息包括第一CC激活的TCI-state的信息。
终端设备接收到第一CC激活的TCI-state的信息,不仅会更新第一CC激活的TCI-state,也会自动更新第二CC激活的TCI-state。更新后,第一CC激活的TCI-state与第二CC激活的TCI-state相同。
也就是说,终端设备接收到第一CC激活的TCI-state的信息,自动激活第二CC的TCI-state,以使得第一CC激活的TCI-state与第二CC激活的TCI-state相同。该第二CC与第一CC配置的qcl-TypeD的参考信号资源相同。
或者,也可以理解,一个MAC-CE信令可以激活多个CC的TCI-state。该MAC-CE信令激活多个CC的TCI-state,那么相应地,该多个CC原来的TCI-state被去激活。例如,第二CC原来的TCI-state被去激活,可以理解,终端设备在第二CC上使用新波束而不再使用旧波束。或者可以说,该MAC-CE信令能够激活多个CC的TCI-state,还能够去激活多个CC原来的TCI-state。
也就是说,通过一个信令,可以去激活多个CC(如第一CC和第二CC)的TCI-state。
可以理解,对于多个CC原来的TCI-state来说,该MAC-CE信令也可以被认为是去激活信令,即基于该MAC-CE信令,多个CC原来的TCI-state被去激活。
仍以上述8个高频CC为例。
网络设备向终端设备发送MAC-CE信令,该MAC-CE信令中小区的ID为0,该MAC-CE信令指示CC#0激活的TCI-state为TCI-state#2。对于CC#1-CC#7,网络设备不需要向终端设备发送MAC-CE信令,分别指示CC#1-CC#7激活的TCI-state为TCI-state#2。基于CC#1-CC#7与CC#0具有关联关系(如使用相同的波束配置),即CC#1-CC#7的 TCI-state的qcl-TypeD与CC#0的TCI-state的qcl-TypeD的配置相同,如参考信号资源标识均为CC#0的CSI-RS#1。因此,终端设备可以自动确定CC#1-CC#7激活的TCI-state,即终端设备可以确定CC#1-CC#7激活的TCI-state为TCI-state#2。
一种可能的形式如下。
CC#0,当前BWP#,激活TCI-state#1::{qcl-TypeD:CSI-RS#1}→激活TCI-state#2::{qcl-TypeD:CSI-RS#2}
CC#1,当前BWP#,激活TCI-state#1::{qcl-TypeD:CC#0的CSI-RS#1}→激活TCI-state#2::{qcl-TypeD:CC#0的CSI-RS#2}
CC#2,当前BWP#,激活TCI-state#1::{qcl-TypeD:CC#0的CSI-RS#1}→激活TCI-state#2::{qcl-TypeD:CC#0的CSI-RS#2}
CC#3,当前BWP#,激活TCI-state#1::{qcl-TypeD:CC#0的CSI-RS#1}→激活TCI-state#2::{qcl-TypeD:CC#0的CSI-RS#2}
CC#4,当前BWP#,激活TCI-state#1::{qcl-TypeD:CC#0的CSI-RS#1}→激活TCI-state#2::{qcl-TypeD:CC#0的CSI-RS#2}
CC#5,当前BWP#,激活TCI-state#1::{qcl-TypeD:CC#0的CSI-RS#1}→激活TCI-state#2::{qcl-TypeD:CC#0的CSI-RS#2}
CC#6,当前BWP#,激活TCI-state#1::{qcl-TypeD:CC#0的CSI-RS#1}→激活TCI-state#2::{qcl-TypeD:CC#0的CSI-RS#2}
CC#7,当前BWP#,激活TCI-state#1::{qcl-TypeD:CC#0的CSI-RS#1}→激活TCI-state#2::{qcl-TypeD:CC#0的CSI-RS#2}
应理解,终端设备自动更新CC#1-CC#7激活的TCI-state,表示不需要发送用于指示CC#1-CC#7激活的TCI-state的MAC-CE信令。终端设备接收到用于指示CC#0激活的TCI-state的MAC-CE信令后,可以确定CC#1-CC#7激活的TCI-state。或者说,终端设备接收到用于指示CC#0激活的TCI-state的MAC-CE信令后,可以确定CC#0激活的TCI-state为CC#1-CC#7激活的TCI-state。也可以理解为,终端设备接收到用于指示CC#0激活的TCI-state的MAC-CE信令后,自动激活配置了相同qcl-TypeD的其他CC的TCI-state。
还应理解,终端设备激活CC的TCI-state,表示该激活的TCI-state用于当前的数据传输(如PDSCH传输)。如当在该CC的该BWP上传输数据(如PDSCH)时,可以基于该激活的TCI-state指示的信息确定发送波束和接收波束。
情况2:第一CC的波束更新信息包括第一CC激活的TCI-state对应的参考信号资源的信息。
终端设备接收到更新第一CC的一个TCI-state的参考信号资源的信息,不仅会更新第一CC的该TCI-state的参考信号资源,也会自动更新第二CC的一个TCI-state的参考信号资源。更新后,第一CC的该TCI-state的参考信号资源与第二CC的一个TCI-state的参考信号资源相同。
也就是说,终端设备接收更新第一CC的一个TCI-state的参考信号资源的信息后,自动更新原来配置了相同qcl-TypeD的第二CC的参考信号资源的信息,以使得第一CC的该TCI-state的参考信号资源与第二CC的一个TCI-state的参考信号资源相同。
或者,也可以理解,一个RRC信令可以更新多个CC的波束信息。
仍以上述8个高频CC为例。
网络设备向终端设备发送RRC信令,该RRC信令中小区的ID为0,该RRC信令指示CC#0的一个TCI-state的qcl-TypeD的参考信号资源标识从CSI-RS#1更新为CSI-RS#2。对于CC#1-CC#7,网络设备不需要向终端设备发送RRC重配置信令,分别指示CC#1-CC#7的TCI-state的qcl-TypeD的参考信号资源标识从CSI-RS#1更新为CSI-RS#2。基于CC#1-CC#7与CC#0具有关联关系(如使用相同的波束配置),即CC#1-CC#7的TCI-state的qcl-TypeD与CC#0的TCI-state的qcl-TypeD的配置相同,如参考信号资源标识均为CC#0的CSI-RS#1。因此,终端设备可以自动更新CC#1-CC#7的TCI-state的qcl-TypeD的参考信号资源标识,或者说,终端设备可以确定CC#1-CC#7的TCI-state的qcl-TypeD的参考信号资源标识为CC#0的CSI-RS#2。
一种可能的形式如下。
CC#0,BWP#1,TCI LIST,TCI-state#1::{qcl-TypeD:CSI-RS#1}→TCI-state#1::{qcl-TypeD:CSI-RS#2}
CC#1,BWP#1,TCI LIST,TCI-state#1::{qcl-TypeD:CC#0的CSI-RS#1}→TCI-state#1::{qcl-TypeD:CC#0的CSI-RS#2}
CC#2,BWP#1,TCI LIST,TCI-state#1::{qcl-TypeD:CC#0的CSI-RS#1}→TCI-state#1::{qcl-TypeD:CC#0的CSI-RS#2}
CC#3,BWP#1,TCI LIST,TCI-state#1::{qcl-TypeD:CC#0的CSI-RS#1}→TCI-state#1::{qcl-TypeD:CC#0的CSI-RS#2}
CC#4,BWP#1,TCI LIST,TCI-state#1::{qcl-TypeD:CC#0的CSI-RS#1}→TCI-state#1::{qcl-TypeD:CC#0的CSI-RS#2}
CC#5,BWP#1,TCI LIST,TCI-state#1::{qcl-TypeD:CC#0的CSI-RS#1}→TCI-state#1::{qcl-TypeD:CC#0的CSI-RS#2}
CC#6,BWP#1,TCI LIST,TCI-state#1::{qcl-TypeD:CC#0的CSI-RS#1}→TCI-state#1::{qcl-TypeD:CC#0的CSI-RS#2}
CC#7,BWP#1,TCI LIST,TCI-state#1::{qcl-TypeD:CC#0的CSI-RS#1}→TCI-state#1::{qcl-TypeD:CC#0的CSI-RS#2}
由上也可以看出,CC#1-CC#7的TCI-state的qcl-TypeD的参考信号资源标识,与CC#0的ID以及CC#0的TCI-state的qcl-TypeD的参考信号资源标识有关联关系。例如,更新后,CC#1-CC#7的TCI-state的qcl-TypeD的参考信号资源标识为:CC#0的CSI-RS#2。
应理解,终端设备自动更新CC#1-CC#7的TCI-state的qcl-TypeD的参考信号资源标识,表示不需要发送用于指示更新CC#1-CC#7的TCI-state的qcl-TypeD的参考信号资源标识的RRC信令。终端设备接收到用于指示更新CC#0的一个TCI-state的qcl-TypeD的参考信号资源标识的RRC信令后,可以自动更新CC#1-CC#7的TCI-state的qcl-TypeD的参考信号资源标识,即自动更新配置了相同qcl-TypeD的CC的TCI-state的qcl-TypeD的参考信号资源标识。
应理解,自动更新,表示不需要再向终端设备发送用于指示第二CC的波束更新信息。换句话说,用于指示第一CC的波束更新信息,可以更新第一CC以及第二CC的波束信息。
以上结合两种情况,详细说明了终端设备自动更新第二CC的TCI(或者说终端设备自动更新第二CC的接收波束),如终端设备激活第二CC的TCI-state,或,终端设备自动更新TCI-state中qcl-TypeD的参考信号资源。应理解,本申请实施例并未限定于此。在第一CC与一个或多个第二CC具有关联关系(如第一CC与一个或多个第二CC使用相同的波束配置)情况下,终端设备可以基于第一CC的波束更新信息自动更新该一个或多个第二CC的波束信息。下面以一个第二CC为例,简述其它几种可能的情况。
一、终端设备可以自动更新第二CC的时频跟踪参考信号资源的发送波束。
可选地,网络设备向终端设备发送为第一CC配置的时频跟踪参考信号资源的信息,以及为第二CC配置的时频跟踪参考信号资源的信息。
可以理解,网络设备为第一CC配置用于时频跟踪的参考信号资源,如将时频跟踪参考信号资源配置在第一CC的TCI-state中作为qcl-TypeA的参考信号资源。同样,网络设备为第二CC配置用于时频跟踪的参考信号资源,并将时频跟踪参考信号资源配置在第二CC的TCI-state中作为qcl-TypeA的参考信号。
应理解,即使采用形式2的方式,即网络设备仅为第一CC进行波束配置,网络设备仍会为第二CC配置用于时频跟踪的参考信号资源。
可选地,终端设备基于第一CC的波束更新信息,可以更新第二CC的时频跟踪参考信号资源的波束信息。换句话说,终端设备基于第一CC的波束更新信息,可以更新第二CC的时频跟踪参考信号资源的发送波束。
示例性地,第一CC的激活的TCI-state的qcl-TypeD的参考信号资源标识从CSI-RS#1更新为CSI-RS#2,激活的TCI-state从TCI-state#1变成TCI-state#2时,网络设备自动更新第二CC的时频跟踪参考信号资源(例如记作CSI-RS#x)的发送波束,终端设备也相应的自动更新其接收波束。
TCI-state#1::{qcl-TypeA:第二CC的CSI-RS#x,qcl-TypeD:第一CC的CSI-RS#1}
TCI-state#2::{qcl-TypeA:第二CC的CSI-RS#x,qcl-TypeD:第一CC的CSI-RS#2}
二、终端设备更新第一CC的TCI,并自动更新第二CC的spatial relation。
换句话说,终端设备更新第一CC的接收波束,并自动更新第二CC的发送波束。
可选地,更新后,第二CC与第一CC具有相同的spatial relation,换句话说,第二CC与第一CC发送上行信号的发送波束相同。
第二CC的spatial relation与第一CC的TCI-state关联,即第二CC的发送波束(即第二CC的spatial relation)为该下行接收波束(第一CC的TCI-state)对应的上行发送波束。
终端设备基于第一CC的波束更新信息更新第一CC的下行接收波束,可以理解为,终端设备基于第一CC的接收波束指示确定第一CC的接收波束。第二CC的spatial relation与第一CC的TCI-state有关联,因此,终端设备也会更新第二CC的spatial relation,以便与第一CC激活的TCI-state对应,或者说,以便与第一CC更新后的接收波束对应。
应理解,接收波束指示也可以替换为QCL指示。接收波束指示,即表示指示通信过程中使用的接收波束。如第一CC的接收波束,即表示终端设备在第一CC的频域资源上接收信号时的接收波束。
可选地,终端设备更新第二CC的发送波束,还包括改变上行发送功率。或者,可以说:路径损耗估计参考信号根据第一CC的TCI变化而变化。
示例性地,网络设备向终端设备信令,更新第一CC的一个或多个下行信道/下行信号的TCI,终端设备可以自动更新第二CC的一个或多个上行信道/上行信号的发送波束。
下面示例性地列举几种可能的场景。
(1)、下行:PDCCH CORESET的TCI,上行:该PDCCH调度或触发的物理上行共享信道(physical uplink shared channel,PUSCH)/SRS/随机接入信道(random access channel,RACH)的发送波束。
也就是说,网络设备向终端设备信令,更新第一CC的PDCCH CORESET的TCI,终端设备可以自动更新第二CC的该PDCCH调度或触发的PUSCH/SRS/RACH的发送波束。
应理解,第二CC的该PDCCH调度或触发的PUSCH/SRS/RACH,本领域技术人员应理解其含义。以第二CC的该PDCCH调度的PUSCH为例,其表示在该第二CC的频域资源上传输的该PDCCH调度的PUSCH,换句话说,终端设备在该第二CC的频域资源上发送该PDCCH调度的PUSCH。其他的类似,此处不再赘述。
(2)、下行:PDSCH的TCI,上行:对该PDSCH进行肯定(acknowledgement,ACK)或否定(negative acknowledgement,NACK)的物理上行控制信道(physical uplink control channel,PUCCH)的发送波束。其中,ACK表示正确接收PDSCH或者说成功接收PDSCH,ACK可以是混合自动重传请求(hybrid automatic repeat request,HARQ)(HARQ ACK)。NACK表示没有正确接收PDSCH或者说接收PDSCH失败,NACK可以是HARQ NACK。
也就是说,网络设备向终端设备信令,更新第一CC的PDSCH的TCI,终端设备可以自动更新第二CC的PUCCH的发送波束,该PUCCH为对第一CC的PDSCH进行ACK或NACK的PUCCH。
例如,如果终端设备接收PDSCH成功,即正确接收PDSCH,那么下行:PDSCH的TCI,上行:对该PDSCH上报HARQ ACK的PUCCH的发送波束。
也就是说,网络设备向终端设备信令,更新第一CC的PDSCH的TCI,终端设备可以自动更新第二CC的对该PDSCH上报HARQ ACK的PUCCH的发送波束。
应理解,第二CC的对该PDSCH上报HARQ ACK的PUCCH,本领域技术人员应理解其含义,即表示在该第二CC的频域资源上传输对该PDSCH上报HARQ ACK的PUCCH,换句话说,终端设备在该第二CC的频域资源上发送PUCCH以上报针对该PDSCH的HARQ ACK。
又如,如果终端设备接收PDSCH失败,即没有正确接收PDSCH,那么下行:PDSCH的TCI,上行:对该PDSCH上报HARQ NACK的PUCCH的发送波束。
也就是说,网络设备向终端设备信令,更新第一CC的PDSCH的TCI,终端设备可以自动更新第二CC的对该PDSCH上报HARQ NACK的PUCCH的发送波束。
应理解,第二CC的对该PDSCH上报HARQ NACK的PUCCH,本领域技术人员应理解其含义,即表示在该第二CC的频域资源上传输对该PDSCH上报HARQ NACK的PUCCH,换句话说,终端设备在该第二CC的频域资源上发送PUCCH以上报针对该PDSCH的HARQ NACK。
(3)、下行:CSI-RS的TCI,上行:上报CSI的PUCCH/PUSCH的发送波束。
换句话说,网络设备向终端设备信令,更新第一CC的CSI-RS的TCI,终端设备可以自动更新第二CC的CSI的PUCCH/PUSCH的发送波束。
应理解,上述仅是示例性地列举了几种场景,本申请实施例并未限定于此,任何属于上述几种场景的变形,都落入本申请实施例的保护范围。
三、终端设备更新第一CC的spatial relation,并自动更新第二CC的spatial relation。
也就是说,终端设备更新第一CC的发送波束,并自动更新第二CC的发送波束。
更新后,第二CC与第一CC具有相同的spatial relation,换句话说,第二CC与第一CC发送上行信号的发送波束相同。
终端设备基于第一CC的波束更新信息更新第一CC的spatial relation,也就是说,终端设备基于第一CC的发送波束指示确定第一CC的发送波束。第二CC的spatial relation与第一CC的spatial relation有关联,因此,终端设备也会更新第二CC的spatial relation,以便与第一CC更新后的spatial relation相同。
应理解,发送波束指示也可替换为spatial relation指示或spatial filter指示。发送波束指示,即表示指示通信过程中使用的发送波束。如第一CC的发送波束,即表示终端设备在第一CC的频域资源上发送信号或数据时的发送波束。
四、终端设备更新第一CC的spatial relation,并自动更新第二CC的TCI。
换句话说,终端设备更新第一CC的发送波束,并自动更新第二CC的接收波束。
更新后,第二CC与第一CC具有相同的TCI配置,换句话说,第二CC与第一CC接收信号的接收波束相同。
终端设备基于第一CC的波束更新信息更新第一CC的spatial relation,也就是说,终端设备基于第一CC的发送波束指示确定第一CC的发送波束。第二CC的TCI-state与第一CC的spatial relation有关联,因此,终端设备也会更新第二CC的TCI-state,以便与第一CC更新后的spatial relation对应,或者说,终端设备自动更新第二CC的接收波束,以便与第一CC更新后的发送波束对应。
应理解,上述示例性地列举了另外四种可能的情况,本申请实施例并未限定于此。在第一CC与第二CC具有关联关系(如第一CC与第二CC使用相同的波束配置)的情况下,不管什么场景,终端设备均可以基于第一CC的波束更新信息自动更新第二CC的波束信息,以便使得第二CC与第一CC保持使用相同的波束配置。
示例地,在第一CC与一个或多个第二CC具有关联关系(如第一CC与一个或多个第二CC使用相同的波束配置)情况下,终端设备可以更新该一个或多个第二CC以及第一CC的TCI-state ID与TCI字段值的映射关系,该一个或多个第二CC更新的TCI-state ID和TCI字段值的映射关系和第一CC更新的TCI-state ID和TCI字段值的映射关系相同。
例如,终端设备更新一个或多个第二CC以及第一CC的TCI-state标识TCI-state ID与DCI中的TCI字段值的映射关系,一个或多个第二CC更新的TCI-state ID和DCI中的TCI字段值的映射关系和第一CC更新的TCI-state ID和DCI中的TCI字段值的映射关系相同。
也就是说,在本申请实施例中,一个或多个第二CC的激活TCI-state、以及TCI-state与TCI字段值的映射关系都更新到与第一CC相同。因此,可以避免终端设备与网络设备的数据传输波束不对齐,从而可以减少对传输性能的影响。
可选地,在该示例下,终端设备可以向网络设备发送有关终端能力的相关信息。该相关的终端能力可以包括:终端设备是否支持同时更新激活TCI-state和TCI-state与TCI字 段值(如DCI中TCI字段值)的映射关系。
例如,终端设备支持同时更新激活TCI-state和TCI-state与TCI字段值的映射关系时,网络设备向终端设备发送第一CC的波束更新信息,终端设备根据该第一CC的波束更新信息,即可以更新该一个或多个第二CC的激活TCI-state和TCI-state与TCI字段值(如DCI中TCI字段值)的映射关系。
应理解,上述一些实施例中,以第一CC和第二CC为例进行了示例性说明,本申请实施例并未限定于此。例如,终端设备可以基于第一CC的波束更新信息,自动更新其他与第一CC具有关联关系的CC(如与第一CC使用相同的波束配置的CC)的波束信息。又如,多个CC具有关联关系(如多个CC使用相同的波束配置),终端设备也基于接收到的该多个CC中的部分CC的波束更新信息,自动更新该多个CC中的剩余CC的波束信息。
还应理解,上述一些实施例中,以为CC激活一个TCI-state为例进行了说明,本申请实施例并未限定于此。
还应理解,上述以更新CC的波束信息为例进行了示例性说明,上述CC也可以替换为BWP或者CC的BWP。或者CC可以替换为CC和BWP,或者,CC可以替换为CC或BWP。相似地,在本申请实施例中,在一些场景下,CC ID可以替换为BWP ID,或者CC ID可以替换为CC ID和BWP ID,或者,CC ID可以替换为CC ID或BWP ID。
还应理解,上述一些实施例中,以一个或多个第二CC与第一CC使用相同的波束配置为例进行了说明。“一个或多个第二CC与第一CC使用相同的波束配置”,可以替换为,“一个或多个第二CC与第一CC具有关联关系”。
还应理解,更新波束信息,即表示更新发送波束或接收波束。例如,终端设备改变了接收波束。网络设备的发送波束和终端设备的接收波束构成下行链路。可以理解,终端设备的接收波束发生改变,意味着网络设备的发送波束也发生了改变;或者说,网络设备的发送波束发生改变,相应终端设备的接收波束也相应的改变。又如,终端设备改变了发送波束。网络设备的接收波束和终端设备的发送波束构成上行链路。可以理解,终端设备的发送波束发生改变,意味着网络设备的接收波束也发生了改变;或者说,网络设备的接收波束发生改变,相应终端设备的发送波束也相应的改变。
基于上述实施例,多个CC具有关联关系(如多个CC使用相同的波束配置)的情况下,通过一个CC的波束更新信息可以更新多个CC的波束信息,或者说,通过一个信令,终端设备就可以更新多个CC的接收波束和/或发送波束。例如,更新多个CC的发送波束,如为多个CC激活TCI-state,或更新多个CC的TCI-state的qcl-TypeD的参考信号资源(如参考信号资源标识或参考信号资源类型等)。又如,更新多个CC的发送波束。从而不仅可以减少重复信令的发送和减少冗余的配置,也可以降低波束指示的开销和时延,提升了通信性能。
下面以第一CC为CC#0,一个或多个第二CC为CC#1为例,结合图6和图7分别介绍上述的形式1和形式2。图6和图7中未详细描述的内容可以参考方法500的描述。
图6是本申请又一实施例提供的一种更新波束信息的方法600的示意性交互图。方法600可以包括如下步骤。
610,网络设备向终端设备发送CC#0和CC#1的波束配置信息。
示例性地,网络设备向终端设备发送RRC信令,为每个CC或每个CC的BWP配置波束信息。
即如方法500中所述的形式1,网络设备为CC#0和CC#1均进行相关的波束配置。
RRC配置包括:
CellGroupConfig→…→ServingCellConfig→…→BWP→…→PDSCH-Config…→tci-StatesToAddModList。
对于CC#0和CC#1,重复配置一样的TCI-state。例如:
CC#0,BWP#1,TCI LIST,TCI-state#1::{qcl-TypeD:CSI-RS#1}
CC#1,BWP#1,TCI LIST,TCI-state#1::{qcl-TypeD:CC#0的CSI-RS#1}
步骤610同现有的配置方式类似,此处不再详细赘述。
可选地,CC#0可以为用于波束训练或者波束管理的CC。
620,网络设备向终端设备发送CC#0的波束更新信息。
示例性地,网络设备向终端设备发送RRC信令,更新CC#0的一个TCI-state的qcl-TypeD参考信号资源标识。
例如,网络设备向终端设备发送RRC信令,该RRC信令中小区的ID为0,该RRC信令指示CC#0的一个TCI-state的qcl-TypeD的参考信号资源标识从CSI-RS#1更新为CSI-RS#2。
630,终端设备更新CC#0和CC#1的波束信息。
终端设备接收到针对CC#0的RRC信令后,终端设备会认为其他CC(与CC#0具有关联关系的CC,如,与CC#0使用相同的波束配置的CC)的波束信息同时被更新。具体指原来配置了相同qcl-typeD参考信号ID的其他CC的TCI被更新。
终端设备接收到RRC信令后,更新CC#0和CC#1的TCI-state的qcl-TypeD参考信号资源标识。
例如,对于CC#0,CC#0的TCI-state的qcl-TypeD参考信号资源标识,从CSI-RS#1更新为CSI-RS#2。
CC#0,BWP#1,TCI LIST,TCI-state#1::{qcl-TypeD:CSI-RS#1}→TCI-state#1::{qcl-TypeD:CSI-RS#2}
CC#1,BWP#1,TCI LIST,TCI-state#1::{qcl-TypeD:CC#0的CSI-RS#1}→TCI-state#1::{qcl-TypeD:CC#0的CSI-RS#2}
可以看出,CC#1的TCI-state的qcl-TypeD的参考信号资源标识,与CC#0的ID以及CC#0的TCI-state的qcl-TypeD的参考信号资源标识有关联关系。例如,更新前,CC#1的TCI-state的qcl-TypeD的参考信号资源标识为:CC#0的CSI-RS#1。又如,更新后,CC#1的TCI-state的qcl-TypeD的参考信号资源标识为:CC#0的CSI-RS#2。
通过本申请实施例,CC#1的RRC重配置信令无需发送,终端设备将自动更新CC#1的波束信息,从而可以减少重复信令发送和减少冗余配置,从而降低了波束指示的开销和时延。
640,网络设备向终端设备发送MAC-CE信令,该MAC-CE信令用于激活或选择CC#0的波束。
终端设备接收到该MAC-CE信令后,会认为CC#1的波束信息同时被更新。
具体指原来配置了相同qcl-typeD参考信号ID的其他TCI被激活/选择。例如:
CC#0,当前BWP#,激活TCI-state#1::{qcl-TypeD:CSI-RS#1}→激活TCI-state#2::{qcl-TypeD:CSI-RS#2}
CC#1,当前BWP#,激活TCI-state#1::{qcl-TypeD:CC#0的CSI-RS#1}→激活TCI-state#2::{qcl-TypeD:CC#0的CSI-RS#2}。
通过本申请实施例,CC#1的MAC-CE信令无需发送,终端设备将自动更新CC#1的波束信息,从而降低了波束指示的开销和时延。
可选地,CC#1可以只配置一个时频偏跟踪参考信号(如CSI-RS#x用于qcl-TypeA的参考),其本身无需QCL指示(即CSI-RS#x这个下行物理信号本身无需配置QCL信息),网络设备可以自动更新其发送波束,终端设备也自动更新其接收波束。
TCI-state#1::{qcl-TypeA:CC#1的CSI-RS#x,qcl-TypeD:CC#0的CSI-RS#1}
TCI-state#2::{qcl-TypeA:CC#1的CSI-RS#x,qcl-TypeD:CC#0的CSI-RS#2}
通过本申请实施例,激活的TCI-state从TCI-state#1变成TCI-state#2时,网络设备自动更新CC#1的CSI-RS#x的发送波束,终端设备也相应的自动更新其接收波束。
图7是本申请另一实施例提供的一种更新波束信息的方法700的示意性交互图。方法700可以包括如下步骤。
710,网络设备向终端设备发送CC#0的波束配置信息。
示例性地,网络设备向终端设备发送RRC信令,为CC#0或CC#0的BWP配置波束信息。
RRC配置包括:
CellGroupConfig→…→ServingCellConfig→…→BWP→…→PDSCH-Config…→tci-StatesToAddModList。
例如多个CC(例如CC#0和CC#1),RRC只为其中一个CC(例如CC#0)配置具有qcl-TypeD的TCI-state列表,其他CC(例如,CC#1)复用该配置,无需每个CC复制同样的TCI qcl-TypeD内容,只需要简单的指示CC#1与CC#0具有qcl-TypeD关联关系。
即如方法500中所述的形式2,网络设备为CC#0进行相关的波束配置。
其中,该多个CC可以是一个小区组(cell group)之内的多个CC。或者,该多个CC可以是一个频带内的多个CC。或者,该多个CC可以是一个频带组内的多个CC。对此,不作限定。
可选地,指示CC#1与CC#0具有qcl-TypeD关联关系,可以通过以下任一方式实现。
例如,默认CC#1与CC#0具有qcl-TypeD关联关系。具体地,网络设备预先规定或者协议预先规定或者预先约定,一个小区组内的多个CC具有这种关联关系;或者,一个频带内的多个CC具有这种关联关系;或者,一个频带组内的多个CC具有这种关联关系。
又如,终端设备反馈CC#1与CC#0具有qcl-TypeD关联关系。具体地,终端设备可以向网络设备反馈多个CC是否具有这种关联关系。网络设备可以根据终端设备的反馈进行相应的配置。终端设备也可以根据多个CC是否具有这种关联关系,确定是否基于CC#0的波束更新信息自动更新CC#1的波束信息。
示例性地,网络设备向终端设备发送CC#0的波束配置信息和指示信息,指示信息用于指示CC#1与CC#0具有关联关系。也就是说,CC#1使用CC#0的波束配置。
可选地,当CC#1配置用于时频跟踪的(如type A)的参考信号的情况下,CC#1仍有TCI-state列表,但是qcl-TypeD的内容相同。
可选地,CC#0可以为用于波束训练或者波束管理的CC。具体的,可以参考方法500中关于第一CC的描述。
720,网络设备向终端设备发送CC#0的波束更新信息。
示例性地,网络设备向终端设备发送RRC信令,更新CC#0的一个TCI-state的qcl-TypeD参考信号资源标识。
该步骤同方法600中的步骤620类似,此处不再赘述。
730,终端设备更新CC#0和CC#1的波束信息。
基于CC#1与CC#0的关联关系,终端设备接收到RRC信令后,可以自动更新CC#1的波束信息。
通过本申请实施例,终端设备将自动更新CC#1的波束信息,从而可以减少重复信令发送和减少冗余配置,从而降低了波束指示的开销和时延。
该步骤同方法600中的步骤630类似,此处不再赘述。
740,网络设备向终端设备发送MAC-CE信令,该MAC-CE信令用于激活或选择CC#0的波束。
基于CC#1与CC#0的关联关系,终端设备接收到RRC信令后,可以自动更新CC#1的波束信息。
通过本申请实施例,CC#1的MAC-CE信令无需发送,终端设备将自动更新CC#1的波束信息,从而降低了波束指示的开销和时延。
该步骤同方法600中的步骤640类似,此处不再赘述。
应理解,在上述一些实施例中,多次提及更新CC的TCI-state的qcl-TypeD的参考信号资源,此处CC的TCI-state可以表示该CC的激活的TCI-state。
还应理解,在上述一些实施例中,以为CC激活一个TCI-state为例进行了示例性说明,应理解,为CC激活多个TCI-state时,也可以使用本申请实施例的方案。
还应理解,在上述一些实施例中,多次提及配置相同的qcl-TypeD。配置相同的qcl-TypeD,可以替换为,配置的qcl-TypeD的参考信号资源相同。
还应理解,上述多次提及终端设备自动更新CC的波束信息,其表示网络设备不需要发送针对该CC的指示波束更新的信息(如指示激活TCI-state的MAC-CE信令,或者,指示更新qcl-TypeD的参考信号资源的RRC重配置信令等)。换句话说,多个CC使用相同的波束配置,终端设备可以基于该多个CC中的一个CC或者部分CC的波束更新信息,自动更新该多个CC中的剩余CC的波束信息。
还应理解,上述一些实施例中,以第一CC和第二CC、或、CC#0和CC#1,为例进行了示例性说明,本申请实施例并未限定于此。例如,多个CC具有关联关系(如多个CC使用相同的波束配置),终端设备也基于接收到的该多个CC中的部分CC的波束更新信息,自动更新该多个CC中的剩余CC的波束信息。
基于上述技术方案,多个CC具有关联关系(如多个CC使用相同的波束配置)的情况下,通过一个CC的波束更新信息可以更新多个CC的波束信息。或者说,通过一个信令终端设备可以更新多个CC的接收波束和/或发送波束。例如,通过一个信令(如MAC-CE 信令)为多个CC激活TCI-state;又如,通过一个信令(如RRC信令)更新多个CC的TCI-state的qcl-TypeD的参考信号资源(如参考信号资源标识或参考信号资源类型等)。从而不仅可以减少重复信令的发送和减少冗余的配置,也可以降低波束指示的开销和时延,提升了通信性能。
此外,在本申请中,网络设备和终端设备在多个CC上(如包括一个或多个第二CC以及第一CC)上与同一组波束通信的情况下,利用Rel-15波束指示方案,网络设备需要经由RRC在每个CC上配置完全相同的波束信息(如TCI指示或空间关系指示),并且经由MAC-CE在每个CC上激活相同的波束集合。例如,如果网络设备需要通知改变激活的波束,则它可能要发送多达(32*12)个的MAC-CE(32是支持的CC的最大数量,12是每个CC的最大CORESET数,*表示乘法运算),每个MAC-CE是对于一个完全相同的光束变化信息的,换句话说,通知的内容是一样的(除了CC ID不同)。这样不仅增加了冗余信令,也增加了波束指示开销。因此,本申请提出了,通过一个信令终端设备可以自动更新该多个CC的波束信息,如支持同时激活多个CC的波束信息,从而可以降低波束指示开销、减少信令冗余、降低时延。
此外,在本申请中,通过一个信令终端设备可以自动更新该多个CC的波束信息,或者可以理解为,需要允许跨所有CC(或BWP)同时更新激活的波束(如PDCCH波束)。通过一个信令,即表示,在支持同时更新的情况下,网络设备仅需要为一个CC发送一个显式TCI激活/去激活命令和TCI选择命令,并且终端设备能够为所有其他相关CC调整激活和选择的TCI和空间关系。
考虑到为多个CC同时激活的TCI-state集合可能只是每个CC激活的TCI-state集合的子集,或者,为多个CC同时激活的TCI-state集合与每个CC激活的TCI-state集合有交集或者并集。本申请实施例还提出一种方案。下面详细介绍。
下面仍以第一CC为CC#0,一个或多个第二CC为CC#1为例示例性说明。同样地,CC#0和CC#1具有关联关系。
图8是本申请再一实施例提供的更新波束信息的方法800的示意性交互图。方法800可以包括如下步骤。
810,网络设备向终端设备发送RRC信令,该RRC信令用于为每个CC或每个CC的BWP配置波束信息。
例如,网络设备向终端设备发送CC#0和CC#1的波束配置信息。具体的可以参考方法600中的步骤610。
又如,网络设备向终端设备发送CC#0的波束配置信息。具体的可以参考方法700中的步骤710。
该步骤810同方法600中的步骤610相似,或者,该步骤同方法700中的步骤710相似,具体的可以参考方法600或方法700中的描述,此处不再赘述。
820,网络设备向终端设备发送第一MAC-CE信令,该第一MAC-CE信令用于为每个CC独立的激活/去激活一个或多个TCI-state。
应理解,第一MAC-CE仅是为区分做的命名,并不对本申请实施例的保护范围造成限定。
还应理解,第一MAC-CE信令用于为CC激活/去激活一个或多个TCI-state,表示, 该第一MAC-CE信令用于为CC激活一个或多个TCI-state,相应地,该CC原来的TCI-state被去激活。
在本申请实施例中,可以通过MAC-CE信令中的预留字段R的取值,来指示终端设备,是否基于CC#0的波束更新信息,更新CC#1以及CC#0的波束信息。
可选地,MAC-CE信令中的预留字段R取值为1的情况下,终端设备基于CC#0的波束更新信息,更新CC#1以及CC#0的波束信息;MAC-CE信令中的预留字段R取值为0的情况下,终端设备基于CC#0的波束更新信息,仅更新CC#0的波束信息。
应理解,也可以是R取值为0的情况下,终端设备基于CC#0的波束更新信息,更新CC#1以及CC#0的波束信息;MAC-CE信令中的预留字段R取值为1的情况下,终端设备基于CC#0的波束更新信息,仅更新CC#0的波束信息。对此不作限定。
下文主要以:R取值为1的情况下,终端设备基于CC#0的波束更新信息,更新CC#1以及CC#0的波束信息;MAC-CE信令中的预留字段R取值为0的情况下,终端设备基于CC#0的波束更新信息,仅更新CC#0的波束信息,为例进行示例性说明。
在该步骤820中,网络设备为每个CC独立的激活/去激活一个或多个TCI-state。
因此,可以将第一MAC-CE信令中的预留字段R置0,表示独立激活/去激活。例如:
CC#0,当前激活的BWP,激活TCI-state包括:TCI-state#0,TCI-state#1,TCI-state#2,TCI-state#3;
CC#1,当前激活的BWP,激活TCI-state包括:TCI-state#1,TCI-state#2,TCI-state#3,TCI-state#4,TCI-state#5,TCI-state#6,TCI-state#7,TCI-state#8。
830,网络设备向终端设备发送第二MAC-CE信令,该第二MAC-CE信令用于为CC#0激活/去激活一个或多个TCI-state。
应理解,第二MAC-CE仅是为区分做的命名,并不对本申请实施例的保护范围造成限定。
还应理解,第二MAC-CE信令用于为CC#0激活/去激活一个或多个TCI-state,表示,该第二MAC-CE信令用于为CC#0激活一个或多个TCI-state,相应地,该CC#0原来的TCI-state被去激活。
例如,使用第二MAC-CE信令为CC#0激活TCI-state#5,TCI-state#6,TCI-state#7,TCI-state#8。相应地,该CC#1其他的TCI-state被去激活。例如,在步骤830之后,CC#0激活的TCI状态包括:TCI-state#5,TCI-state#6,TCI-state#7,TCI-state#8。
如前所述,MAC-CE信令中的预留字段可用于指示:该MAC-CE信令是否可以用于多个CC同时激活TCI-state。
该第二MAC-CE信令中的预留字段R可用于指示:指示该第二MAC-CE信令用于为多个CC同时激活TCI-state。例如,可以将第二MAC CE信令中预留字段R置1,表示该MAC-CE信令同时激活其他CC(如CC#1)的TCI-state:TCI-state#5,TCI-state#6,TCI-state#7,TCI-state#8。
网络设备通过发送第二MAC-CE信令,且通过R字段为1表示该第二MAC-CE信令为多个CC激活TCI-state。也就是说,基于第二MAC-CE信令,激活多个CC的TCI-state。
相应地,该多个CC原来的TCI-state被去激活。也就是说,该第二MAC-CE可以用于去激活该多个CC原来的TCI-state。
在以下至少三种情况下,CC#0的TCI去激活命令(即该第二MAC-CE的TCI去激活作用)不对CC#1生效。
情况1,CC#0激活的TCI-state集合属于CC#1已激活的TCI-state集合的子集的情况。
情况2,CC#0激活的TCI-state集合与CC#1已激活的TCI-state集合有交集的情况。
情况3,CC#0激活的TCI-state集合与CC#1已激活的TCI-state集合的合集小于或等于终端设备能力的情况。
例如,通过一个MAC-CE信令可以激活和去激活多个CC或多个BWP的PDSCH的TCI-state。当出现上述三种情况时,去激活命令不生效或者说不适用。例如,一组新激活的TCI-state集合是一个CC或BWP的已激活TCI-state集合的子集时,对于该CC或BWP来说,去激活命令不生效或者说不适用。又如,一组新激活的TCI-state集合与一个CC或BWP的已激活TCI-state集合有交集时,对于该CC或BWP来说,去激活命令不生效或者说不适用。又如一组新激活的TCI-state集合与一个CC或BWP的已激活TCI-state集合的合集小于或等于终端设备能力时,对于该CC或BWP来说,去激活命令不生效或者说不适用。
应理解,在本申请实施例中,多个TCI-state可以被认为是一个TCI-state集合,或者说,TCI-state集合可以用于表示多个TCI-state组成的一个集合。例如,CC#0激活的TCI-state包括:TCI-state#5,TCI-state#6,TCI-state#7,那么该TCI-state#5,TCI-state#6,TCI-state#7可以认为是一个TCI-state集合。
下面,以使用第二MAC-CE信令为CC#0激活TCI-state#5,TCI-state#6,TCI-state#7,TCI-state#8,且指示该第二MAC-CE信令用于CC#0和CC#1同时激活TCI-state为例,分别说明上述三种情况。
情况1,CC#0激活的TCI-state集合属于CC#1已激活的TCI-state集合的子集的情况。
换句话说,CC#1已激活的一个或多个TCI-state中包括CC#0全部激活的TCI-state。
也就是说,当通过一个CC的TCI激活命令更新多个CC的TCI状态时,可以根据第一CC激活的TCI状态集合是否属于第二CC已激活的TCI状态集合的子集,来判断第一CC的TCI去激活命令是否对第二CC生效,或者,是否要去激活第二CC原来的TCI状态。在第一CC激活的TCI状态集合属于第二CC已激活的TCI状态集合的子集的情况下,第一CC的TCI去激活命令不对第二CC生效,或者,第二CC原来的TCI状态不被去激活。或者,也可以理解为,第二CC激活的TCI状态中除了包括CC#0激活的TCI状态,还包括原来已激活的TCI状态。
其中,第一CC的激活TCI状态集合可以携带在R=1的MAC-CE信令(如第二MAC-CE信令)中,该MAC-CE信令也可以认为是第一CC的去激活命令。第二CC的已激活TCI状态集合的信息可以来自R=0的MAC-CE信令(如第一MAC-CE信令)中。
如步骤820中所示,CC#1已激活TCI-state包括:TCI-state#1,TCI-state#2,TCI-state#3,TCI-state#4,TCI-state#5,TCI-state#6,TCI-state#7,TCI-state#8。
CC#0激活的TCI-state集合属于CC#1已激活的TCI-state集合的子集,即CC#1已激活的TCI-state就包括了:TCI-state#5,TCI-state#6,TCI-state#7,TCI-state#8。因此,CC#0的TCI去激活命令不对CC#1生效。也就是说,不应将CC#1的TCI-state#1,TCI-state#2,TCI-state#3,TCI-state#4去激活。
示例地,在步骤830之后,CC#1激活的TCI-state包括:TCI-state#1,TCI-state#2,TCI-state#3,TCI-state#4,TCI-state#5,TCI-state#6,TCI-state#7,TCI-state#8。
情况2,CC#0激活的TCI-state集合与CC#1已激活的TCI-state集合有交集的情况。
换句话说,CC#1已激活的一个或多个TCI-state中包括CC#0部分激活的TCI-state。
也就是说,当通过一个CC的TCI激活命令更新多个CC的TCI状态时,可以根据第一CC激活的TCI状态集合是否与第二CC已激活的TCI状态集合有交集,来判断第一CC的TCI去激活命令是否对第二CC生效,或者,是否要去激活第二CC原来的TCI状态。在第一CC激活的TCI状态集合与第二CC已激活的TCI状态集合有交集的情况下,第一CC的TCI去激活命令不对第二CC生效,或者,第二CC原来的TCI状态不被去激活。或者,也可以理解为,第二CC激活的TCI状态中除了包括CC#0激活的TCI状态,还包括原来已激活的TCI状态。
其中,第一CC的激活TCI状态集合可以携带在R=1的MAC-CE信令(如第二MAC-CE信令)中,该MAC-CE信令也可以认为是第一CC的去激活命令。第二CC的已激活TCI状态集合的信息可以来自R=0的MAC-CE信令(如第一MAC-CE信令)中。
假设在步骤820中,CC#1已激活TCI-state包括:TCI-state#1,TCI-state#2,TCI-state#3,TCI-state#4,TCI-state#5,TCI-state#6,TCI-state#7。
CC#0激活的TCI-state集合与CC#1已激活的TCI-state集合有交集,即CC#1已激活的TCI-state就包括了:TCI-state#5,TCI-state#6,TCI-state#7。因此,CC#0的TCI去激活命令不对CC#1生效。也就是说,不应将CC#1的TCI-state#1,TCI-state#2,TCI-state#3,TCI-state#4去激活。
示例地,在步骤830之后,CC#1激活的TCI-state包括:TCI-state#1,TCI-state#2,TCI-state#3,TCI-state#4,TCI-state#5,TCI-state#6,TCI-state#7,TCI-state#8。
应理解,该情况2是在假设满足终端设备能力的情况下使用的。
情况3,CC#0激活的TCI-state集合与CC#1已激活的TCI-state集合的合集小于或等于终端设备能力的情况。
也就是说,当通过一个CC的TCI激活命令更新多个CC的TCI状态时,可以考虑终端设备的能力,如根据第一CC激活的TCI状态集合与第二CC已激活的TCI状态集合的合集是否小于或等于终端设备能力,来判断第一CC的TCI去激活命令是否对第二CC生效,或者,是否要去激活第二CC原来的TCI状态。在第一CC激活的TCI状态集合与第二CC已激活的TCI状态集合的合集小于或等于终端设备能力的情况下,第一CC的TCI去激活命令不对第二CC生效,或者,第二CC原来的TCI状态不被去激活。或者,也可以理解为,第二CC激活的TCI状态中除了包括CC#0激活的TCI状态,还包括原来已激活的TCI状态。
其中,第一CC的激活TCI状态集合可以携带在R=1的MAC-CE信令(如第二MAC-CE信令)中,该MAC-CE信令也可以认为是第一CC的去激活命令。第二CC的已激活TCI状态集合的信息可以来自R=0的MAC-CE信令(如第一MAC-CE信令)中。
确定CC#0的TCI去激活命令是否对CC#1生效,还需要考虑终端设备的能力。
假设终端设备在每个CC上最多能监测8个TCI-state,也就是每个CC上最多只能激活8个TCI-state。
假设在步骤820中,CC#1已激活TCI-state包括:TCI-state#1,TCI-state#2,TCI-state#3,TCI-state#4,TCI-state#5,TCI-state#6,TCI-state#7。
CC#0激活的TCI-state集合与CC#1已激活的TCI-state集合的合集为8个TCI-state,即:TCI-state#1,TCI-state#2,TCI-state#3,TCI-state#4,TCI-state#5,TCI-state#6,TCI-state#7,TCI-state#8。CC#0激活的TCI-state集合与CC#1已激活的TCI-state集合的合集等于终端设备能力。因此,CC#0的TCI去激活命令不对CC#1生效。也就是说,不应将CC#1的TCI-state#1,TCI-state#2,TCI-state#3,TCI-state#4去激活。
示例地,在步骤830之后,CC#1激活的TCI-state包括:TCI-state#1,TCI-state#2,TCI-state#3,TCI-state#4,TCI-state#5,TCI-state#6,TCI-state#7,TCI-state#8。
关于CC#0激活的TCI-state集合与CC#1已激活的TCI-state集合的合集大于终端设备能力的情况,本申请实施例不作限定。例如,可以将CC#1的部分已激活的TCI-state去激活。
例如,假设在步骤820中,CC#1已激活TCI-state包括:TCI-state#0,TCI-state#1,TCI-state#2,TCI-state#3,TCI-state#4,TCI-state#5,TCI-state#6,TCI-state#7。
CC#0激活的TCI-state集合与CC#1已激活的TCI-state集合的合集为9个TCI-state,即:TCI-state#0,TCI-state#1,TCI-state#2,TCI-state#3,TCI-state#4,TCI-state#5,TCI-state#6,TCI-state#7,TCI-state#8。CC#0激活的TCI-state集合与CC#1已激活的TCI-state集合的合集大于终端设备能力。此时,可以将CC#1的部分已激活的TCI-state去激活。
例如,在保证CC#1激活的TCI-state中包括CC#0激活的TCI-state的情况下,将CC#1的部分已激活的TCI-state去激活。
示例地,在步骤830之后,CC#1激活的TCI-state包括:TCI-state#1,TCI-state#2,TCI-state#3,TCI-state#4,TCI-state#5,TCI-state#6,TCI-state#7,TCI-state#8。或者,在步骤830之后,CC#1激活的TCI-state包括:TCI-state#0,TCI-state#2,TCI-state#3,TCI-state#4,TCI-state#5,TCI-state#6,TCI-state#7,TCI-state#8。或者,在步骤830之后,CC#1激活的TCI-state包括:TCI-state#0,TCI-state#1,TCI-state#3,TCI-state#4,TCI-state#5,TCI-state#6,TCI-state#7,TCI-state#8。或者,在步骤830之后,CC#1激活的TCI-state包括:TCI-state#0,TCI-state#1,TCI-state#2,TCI-state#4,TCI-state#5,TCI-state#6,TCI-state#7,TCI-state#8。或者,在步骤830之后,CC#1激活的TCI-state包括:TCI-state#0,TCI-state#1,TCI-state#2,TCI-state#3,TCI-state#5,TCI-state#6,TCI-state#7,TCI-state#8。
上述示例性地介绍了,通过一个信令(如第二MAC-CE信令)可以去激活多个CC(如CC#0和CC#1)原来的TCI状态。在如上所述的三种情况下,CC#0的TCI去激活命令不对CC#1生效。
方法800中,关于通过一个信令可以激活多个CC的TCI状态的方式,可以参考如方法500至方法700中的描述,此处不再赘述。
可选地,终端设备可以通过终端能力上报以下一种或者多种能力:
终端设备是否支持一个信令为多个CC/BWP同时激活一个或多个PDSCH的TCI状态;
终端设备是否支持一个信令为多个CC/BWP同时去激活一个或多个PDSCH的TCI状态;
终端设备是否支持一个信令为多个CC/BWP同时更新一个或多个PDCCH TCI;
终端设备支持的PDSCH TCI状态激活/去激活的CC/BWP的数目;
终端设备支持的更新PDCCH TCI的CC/BWP的数目;
终端设备支持的PDSCH TCI状态激活/去激活的CC/BWP的标识;
终端设备支持的更新PDCCH TCI的CC/BWP的标识;
终端设备是否同时支持一个信令只为信令中指示的CC/BWP激活/去激活PDSCH TCI状态,以及一个信令为多个CC/BWP激活/去激活PDSCH TCI状态这两种模式;
终端设备是否同时支持一个信令只为信令中指示的CC/BWP更新PDCCH TCI,以及一个信令为多个CC/BWP更新PDCCH TCI这两种模式。
可选地,终端设备也可以通过隐式的方式通知网络设备上述一项或多项信息。例如,通知方式包括但不限于,通过上报终端设备支持的CC/BWP数目,终端设备是否支持多传输点传输模式,终端设备在哪些CC/BWP上支持多传输点模式等消息隐式的通知网络设备。
可选地,网络设备可以通过RRC信令通知以下一种或者多种配置:
当前信令的工作模式是:一个信令只为信令中指示的CC/BWP激活/去激活PDSCH TCI状态的模式,还是一个信令为多个CC/BWP激活/去激活PDSCH TCI状态的模式;
当前信令的工作模式是:一个信令只为信令中指示的CC/BWP更新PDCCH TCI的模式,还是一个信令为多个CC/BWP更新PDCCH TCI的模式;
哪些CC/BWP可以处于一个信令为多个CC/BWP激活/去激活PDSCH TCI状态的模式;
哪些CC/BWP不可以处于一个信令为多个CC/BWP激活/去激活PDSCH TCI状态的模式;
哪些CC/BWP可以处于一个信令为多个CC/BWP更新PDCCH TCI的模式;
哪些CC/BWP不可以处于一个信令为多个CC/BWP更新PDCCH TCI的模式。
可选地,网络设备也可以通过隐式的方式通知终端设备上述一项或多项信息。例如包括但不限于,通过当前工作模式是否是多传输点模式,网络设备在哪些CC/BWP上进行多传输点的传输等消息隐式的通知终端设备。
在本申请实施例中,一个信令可以同时为多个CC/BWP激活/去激活PDSCH TCI状态或者更新PDCCH TCI。关于该多个CC/BWP,至少可以包括以下几种可选的方案。
可选地,一个信令同时为多个CC/BWP激活/去激活PDSCH TCI状态或者更新PDCCH TCI时,排除掉进行多传输点传输的CC/BWP。
可选地,一个信令同时为多个CC/BWP激活/去激活PDSCH TCI状态或者更新PDCCH TCI时,排除掉非激活的CC/BWP。
可选地,一个信令同时为多个CC/BWP激活/去激活PDSCH TCI状态时,为发送该信令的传输点传输的CC/BWP激活/去激活,或者,为该信令所指示的传输点传输的CC/BWP激活/去激活。
可选地,一个信令同时为多个CC/BWP更新PDCCH TCI时,为发送该信令的传输点传输的CC/BWP更新,或者,为该信令所指示的传输点传输的CC/BWP更新。
可选地,可以预先保存传输点和TCI状态之间的关联关系,如网络设备配置传输点和 TCI状态之间的关联关系。例如,一个信令同时为多个CC/BWP激活/去激活PDSCH TCI状态时,更新发送该信令的传输点关联的TCI状态,或者,更新该信令所指示的传输点关联的TCI状态。又如,一个信令同时为多个CC/BWP更新PDCCH TCI时,更新发送该信令的传输点关联的TCI状态,或者,更新该信令所指示的传输点关联的TCI状态。
可选地,当通过一个CC的TCI激活/去激活命令更新多个CC的TCI状态时,可以根据第一CC配置的/已激活的TCI状态集合是否与第二CC配置的/已激活的TCI状态集合相同,来判断是否激活/去激活第二CC原来的TCI状态。
其中,第一CC配置的/已激活的TCI状态集合是否与第二CC配置的/已激活的TCI状态集合相同,可以表示,第一CC配置的/已激活的TCI状态集合与第二CC配置的/已激活的TCI状态集合中的TCI状态ID相同或相关联,或者可以表示,TCI状态中的参考信号资源相同或相关联。
可选地,当通过一个CC的更新PDCCH TCI命令更新多个CC的PDCCH TCI时,可以根据第一CC配置的/已激活的TCI状态集合是否与第二CC配置的/已激活的TCI状态集合相同,或者,可以根据第一CC配置的/已选择的PDCCH TCI状态集合是否与第二CC配置的/已选择的TCI状态相同,来判断是否更新第二CC原来的PDCCH TCI。
其中,第一CC配置的/已激活的TCI状态集合是否与第二CC配置的/已激活的TCI状态集合相同,可以表示,第一CC配置的/已激活的TCI状态集合与第二CC配置的/已激活的TCI状态集合中的TCI状态ID相同,或者可以表示,TCI状态中的参考信号资源相同。
其中,第一CC配置的/已选择的PDCCH TCI状态集合是否与第二CC配置的/已选择的PDCCH TCI状态集合相同,可以表示,第一CC配置的/已选择的PDCCH TCI状态集合与第二CC配置的/已选择的PDCCH TCI状态集合中的TCI状态ID相同或相关联,或者可以表示,TCI状态中的参考信号资源相同或相关联。
为便于理解,下面示例地介绍与多点传输相关的方案。
可选地,可以通过高层信令,通知终端设备相关的模式,例如通知终端设备传输模式为多传输点传输或单传输点模式。假设高层信令记为CORESETPoolIndex,该CORESETPoolIndex与CORESET关联。应理解,信令的命名并不对本申请实施例的保护范围造成限定。在未来协议中,用于表示同样功能的命名,都适用于本申请实施例。下面以CORESETPoolIndex为例仅是说明。
示例地,CORESETPoolIndex的取值可以为0,或者,也可以为1。
例如,CORESETPoolIndex=0的CORESET以及其调度的数据可以认为是由第一传输点发送/接收的,CORESETPoolIndex=1的CORESET以及其调度的数据可以认为是由第二传输点发送/接收的。又如,CORESETPoolIndex=1的CORESET以及其调度的数据可以认为是由第一传输点发送/接收的,CORESETPoolIndex=0的CORESET以及其调度的数据可以认为是由第二传输点发送/接收的。
应理解,第一传输点和第二传输点仅是为区分做的命名,并不对本申请实施例的保护范围造成限定。
可选地,可以简单的认为CORESETPoolIndex的取值为传输点的标识。
可选地,通过CORESETPoolIndex可以隐示指示传输模式。例如,当网络设备为终端 设备配置的CORESETPoolIndex的取值个数超过1个(如为2个)时,表明开启了多传输点模式。
下面以MAC-CE信令为例,结合适用于MAC-CE信令的两种不同的格式进行说明。
格式1:基于Rel-15或者类似Rel-15的信令格式,如图3所示的信令格式。
一情况,如果高层信令配置了多于一个CORESETPoolIndex的值,可以通过预留字段确定MAC-CE信令用于哪个传输点。
可以理解,在多传输点模式开启时,可以根据R比特的指示,确定MAC-CE信令用于哪一个传输点。
例如,R=0时,该MAC-CE信令用于第一传输点;R=1时,该MAC-CE信令用于第二传输点。或者,R=1时,该MAC-CE信令用于第一传输点;R=0时,该MAC-CE信令用于第二传输点。
又一情况,如果高层信令没有配置CORESETPoolIndex,可以通过预留字段确定MAC-CE信令用于单个CC还是多个CC。
可以理解,在单传输点模式开启时,可以根据R比特的指示,确定MAC-CE信令用于单个CC还是多个CC。
例如,R=0时,该MAC-CE信令用于第一CC;R=1时,该MAC-CE信令用于第一CC和第二CC。或者,R=1时,该MAC-CE信令用于第一CC;R=0时,该MAC-CE信令用于第一CC和第二CC。
应理解,上文所述的“MAC-CE信令用于”表示该MAC-CE信令用于以下功能的一种或者多种:激活TCI-state、去激活TCI-state、指示激活的TCI-state到DCI中的TCI字段值的映射关系等等。
在本申请实施例中,当采用上述格式1时,终端设备可以根据网络设备关于多传输点模式的指示,判断MAC-CE信令的功能。
例如,如果是多传输点传输,该MAC-CE适用于通知各个传输点的激活TCI-state和映射关系的功能。或者,可以理解为,如果是多传输点传输,该MAC-CE不适用于通知第一CC和第二CC同时更新的功能,或者可以理解,其为上文所述的排除掉多传输点传输的CC/BWP的一种具体实现方式。
此外,如上文所述,如果高层信令只配置了一个CORESETPoolIndex的值,例如CORESETPoolIndex=0或者CORESETPoolIndex=1,可以认为只有一个传输点在为该终端设备服务,因此可以沿用上述单传输点模式的方法。如,R=0时,该MAC-CE信令用于第一CC;R=1时,该MAC-CE信令用于第一CC和第二CC。
可选地,考虑到网络设备可能只是暂时只使用了单传输点模式的情况,因此也可以沿用上述多传输点模式的方法。如,R=0时,该MAC-CE信令用于第一传输点;R=1时,该MAC-CE信令用于第二传输点。
格式2:基于Rel-16或者类似Rel-16的信令格式,如图9所示的信令格式。
在该格式下,可以包括多种可能的实现方式。为便于理解,首先定义两种模式:第一模式和第二模式。
1)第一模式
第一模式,或者也可以称为单DCI模式,表示:允许两个TCI-state ID映射到同一个 DCI中的TCI字段值。
以图9所示的信令为例,TCI-state ID的下标为(N,1)和(N,2)的TCI-state映射到DCI中的TCI字段值为N,其中,N为大于0或等于0的整数。
2)第二模式
第二模式,或者也可以称为多DCI模式,表示:不允许两个TCI-state ID映射到同一个DCI中的TCI字段值。
以图9所示的信令为例,TCI-state ID的下标为(N,1)的TCI-state映射到第一传输点的DCI中的TCI字段值为N,TCI-state ID的下标为(N,2)的TCI-state映射到第二传输点的DCI中的TCI字段值为N。
例如,TCI-state ID的下标为(i,1)的TCI-state映射到第一传输点的DCI中的TCI字段值,在所有TCI-state ID i,1=1的TCI-state中,按照i的大小,或者按照TCI-state ID的大小,映射到DCI中的TCI字段值。又如,TCI-state ID的下标为(j,2)的TCI-state映射到第二传输点的DCI中的TCI字段值,按照j的大小,或者按照TCI-state ID的大小,映射到DCI中的TCI字段值。其中,i、j为大于0或等于0的整数。
上述简单的介绍了两种模式,应理解,上述定义两种模式仅是为了便于理解定义的,并不对本申请实施例的保护范围造成限定。
下面介绍格式2下的几种可能的实现方式。
实现方式1:可以通过预设字段R比特,来区分第一模式的映射关系和第二模式的映射关系。
例如,如果高层信令配置了多于一个CORESETPoolIndex的值,那么R=0时,可以表示该MAC-CE信令用于通知第一模式的映射关系;R=1时,可以表示该MAC-CE信令用于通知第二模式的映射关系。或者,R=1时,可以表示该MAC-CE信令用于通知第一模式的映射关系;R=0时,可以表示该MAC-CE信令用于通知第二模式的映射关系.
实现方式2:可以通过CORESETPoolIndex取值的个数,来区分第一模式的映射关系和第二模式的映射关系。
例如,如果高层信令配置了多于一个CORESETPoolIndex的值,那么该MAC-CE信令可以用于通知第一模式的映射关系;如果高层信令配置了一个CORESETPoolIndex的值或者没有配置CORESETPoolIndex,那么该MAC-CE信令可以用于通知第二模式的映射关系。
实现方式3:可以通过CORESETPoolIndex的取值的个数,来区分MAC-CE信令用于第一模式的映射关系,还是用于第二模式的映射关系。并且,可以通过预留字段来区分MAC-CE信令适用于单个CC还是可以同时应用于多个CC(如第一CC和第二CC)。
例如,如果高层信令配置了多于一个CORESETPoolIndex的值,那么R=0时,该MAC-CE信令可以用于通知第一模式的映射关系并用于单个CC,如第一CC;R=1时,该MAC-CE信令可以用于通知第一模式的映射关系并用于多个CC,如第一CC和第二CC。
又如,如果高层信令配置了一个CORESETPoolIndex的值或者没有配置CORESETPoolIndex,那么R=0时,该MAC-CE信令可以用于通知第二模式的映射关系并用于单个CC,如第一CC;R=1时,该MAC-CE信令可以用于通知第二模式的映射关系并用于多个CC,如第一CC和第二CC。
基于该实现方式3,可以依靠CORESETPoolIndex的取值的个数,来区分MAC-CE信令用于第一模式的映射关系,还是用于第二模式的映射关系。此外,可以通过R比特来区分MAC-CE信令适用于单个CC还是可以同时应用于多个CC(如第一CC和第二CC)。可以理解。该方法也可以看做上文所述的排除掉多传输点传输的CC/BWP的一种具体实现方式。
实现方式4:可以通过预留字段,来区分MAC-CE信令用于第一模式的映射关系,还是用于第二模式的映射关系。并且,可以通过CORESETPoolIndex的取值的个数,来区分MAC-CE信令适用于单个CC还是可以同时应用于多个CC(如第一CC和第二CC)
例如,如果高层信令配置了多于一个CORESETPoolIndex的值,那么R=0时,该MAC-CE信令可以用于通知第一模式的映射关系并用于单个CC,如第一CC;R=1时,该MAC-CE信令可以用于通知第二模式的映射关系并用于单个CC,如第一CC。
又如,如果高层信令配置了一个CORESETPoolIndex的值或者没有配置CORESETPoolIndex,那么R=0时,该MAC-CE信令可以用于通知第一模式的映射关系并用于多个CC,如第一CC和第二CC;R=1时,该MAC-CE信令可以用于通知第二模式的映射关系并用于多个CC,如第一CC和第二CC。
基于该实现方式4,可以依靠CORESETPoolIndex的取值的个数,来区分MAC-CE信令适用于单个CC还是可以同时应用于多个CC(如第一CC和第二CC)。此外,可以通过R比特来区分该MAC-CE信令用于第一模式的映射关系,还是用于第二模式的映射关系。可以理解。该方法也可以看做上文所述的排除掉多传输点传输的CC/BWP的一种具体实现方式。
应理解,上述列举的实现方式仅是示例性说明,本申请实施例并未于此。
可选地,以图9所示的格式为例,可以只激活TCI-state ID下标中i,1对应的TCI-state ID,或者,也可以只激活i,2对应的TCI-state ID。
一示例,可以认为i,1和i,2分别对应第一传输点和第二传输点,因此可以根据发送MAC-CE信令的传输点,来区分激活TCI-state ID i,1或TCI-state ID i,2。例如,第一传输点发送的MAC-CE信令,更新第一传输点的TCI-state,即TCI-state ID i,1。又如,第二传输点发送的MAC-CE信令,更新第二传输点的TCI-state,即TCI-state ID i,2
又一示例,可以认为i,1和i,2分别对应终端设备的第一天线面板和第二天线面板,根据接收MAC-CE信令的天线面板,来区分激活TCI-state ID i,1或TCI-state ID i,2。例如,通过第一天线面板接收的MAC-CE信令,更新第一天线面板的TCI-state,即TCI-state ID i,1。又如,通过第二天线面板接收的MAC-CE信令,更新第一天线面板的TCI-state,即TCI-state ID i,2
应理解,上述两种示例仅是示例性说明,本申请实施例对此不做限定。
还应理解,在上述格式1和格式2中,R=0与R=1,或者,配置了多于一个CORESETPoolIndex的值、与配置了一个CORESETPoolIndex的值或者没有配置CORESETPoolIndex,仅是为了区分不同的表示含义,本申请实施例对此不做限定。例如,以上述实现方式3为例,如果高层信令配置了多于一个CORESETPoolIndex的值,那么R=0时,该MAC-CE信令可以用于通知第一模式的映射关系并用于单个CC,如第一CC;R=1时,该MAC-CE信令可以用于通知第一模式的映射关系并用于多个CC,如第一CC 和第二CC。或者,也可以是,如果高层信令配置了多于一个CORESETPoolIndex的值,那么R=1时,该MAC-CE信令可以用于通知第一模式的映射关系并用于单个CC,如第一CC;R=0时,该MAC-CE信令可以用于通知第一模式的映射关系并用于多个CC,如第一CC和第二CC。
上文结合MAC-CE信令可能的两种格式,详细说明了终端设备确定是否开启了多传输点模式的可能方式,以及每个传输点可以各自负责更新自己对应的TCI-state到DCI中DCI字段的映射关系,从而可以减少对传输性能的影响。
基于上述技术方案,当通过一个CC的TCI激活命令更新多个CC的TCI状态时,可以根据第一CC激活的TCI状态集合是否属于第二CC已激活的TCI状态集合的子集,来判断是否要去激活第二CC原来的TCI状态。或者,可以根据第一CC激活的TCI状态集合是否与第二CC已激活的TCI状态集合有交集,来判断是否要去激活第二CC原来的TCI状态。或者,考虑终端设备的能力,如第一CC激活的TCI状态集合与第二CC已激活的TCI状态集合的合集是否小于或等于终端设备能力,来判断是否要去激活第二CC原来的TCI状态。在第一CC激活的TCI状态集合属于第二CC已激活的TCI状态集合的子集的情况下,或者,在第一CC激活的TCI状态集合与第二CC已激活的TCI状态集合有交集的情况下,或者,第一CC激活的TCI状态集合与第二CC已激活的TCI状态集合的合集小于或等于终端设备能力的情况下,第二CC原来的TCI状态不会被去激活。通过这种方式,为多个CC同时更新TCI状态的配置时,考虑去激活信令对其他CC的TCI状态的影响,在终端设备能力范围内,包括激活TCI状态的数目较多,避免错误的去激活操作,保证通信性能。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
以上,结合图5至图9详细说明了本申请实施例提供的方法。以下,结合图10至图13详细说明本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模 块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图10是本申请实施例提供的通信装置的示意性框图。如图所示,该通信装置1000可以包括通信单元1010和处理单元1020。通信单元1010可以与外部进行通信,处理单元1020用于进行数据处理。通信单元1010还可以称为通信接口或收发单元。通信接口用于输入和/或输出信息,信息包括指令和数据中的至少一项。可选地,该通信装置可以为芯片或芯片系统。当该通信装置为芯片或芯片系统时,通信接口可以是输入/输出接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
在一种可能的设计中,该通信装置1000可实现对应于上文方法实施例中的终端设备执行的步骤或者流程,例如,可以为终端设备,或者配置于终端设备中的芯片或芯片系统或电路。这时,该通信装置1000可以称为终端设备。通信单元1010用于执行上文方法实施例中终端设备侧的收发相关操作,处理单元1020用于执行上文方法实施例中终端设备的处理相关操作。
一种可能的实现方式,通信单元1010用于:接收第一载波单元CC的波束更新信息;处理单元1020用于:基于第一CC的波束更新信息,更新一个或多个第二CC以及第一CC的波束信息,其中,一个或多个第二CC与第一CC具有关联关系。
可选地,通信单元1010还用于:接收第一CC的波束配置信息和指示信息,其中,指示信息用于指示一个或多个第二CC与第一CC具有关联关系。
可选地,一个或多个第二CC与第一CC具有关联关系,包括:一个或多个第二CC与第一CC使用相同的波束配置。
可选地,通信单元1010还用于:接收为第一CC配置的时频跟踪参考信号资源的信息,以及为一个或多个第二CC配置的时频跟踪参考信号资源的信息;处理单元1020用于:基于第一CC的波束更新信息,更新一个或多个第二CC的时频跟踪参考信号资源的波束信息。
可选地,第一CC的波束更新信息包括第一CC激活的传输配置指示TCI状态TCI-state的信息;处理单元1020用于:激活一个或多个第二CC以及第一CC的TCI-state,一个或多个第二CC激活的TCI-state和第一CC激活的TCI-state相同。
可选地,处理单元1020具体用于:更新一个或多个第二CC以及第一CC的TCI-state标识TCI-state ID与TCI字段值的映射关系,一个或多个第二CC更新的TCI-state ID和TCI字段值的映射关系、与第一CC更新的TCI-state ID和TCI字段值的映射关系相同。
可选地,第一CC的波束更新信息包括第一CC激活的TCI-state的信息;处理单元1020用于:更新一个或多个第二CC的空间关系,一个或多个第二CC更新后的空间关系与第一CC激活的TCI-state关联。
可选地,第一CC的波束更新信息包括第一CC激活的TCI-state对应的参考信号资源的信息;处理单元1020用于:更新一个或多个第二CC以及第一CC激活的TCI-state对应的参考信号资源,一个或多个第二CC激活的TCI-state更新后的参考信号资源和第一CC激活的TCI-state更新后的参考信号资源相同。
可选地,一个或多个第二CC与第一CC具有关联关系,包括以下一项或多项:一个或多个第二CC激活的TCI-state与第一CC激活的TCI-state相同;或,一个或多个第二CC激活的TCI-state中包括的参考信号资源与第一CC激活的TCI-state中包括的参考信号资源相同;或,一个或多个第二CC激活的TCI-state中包括的参考信号资源标识ID与第一CC的ID以及第一CC激活的TCI-state中包括的参考信号资源ID关联;或,一个或多个第二CC与第一CC具有准共址QCL关系;或,一个或多个第二CC使用第一CC的波束训练结果,其中,第一CC上进行波束管理。
可选地,第一CC的波束更新信息承载于介质接入控制-控制元素MAC-CE信令中,MAC-CE信令中的预留字段能用于指示:是否基于第一CC的波束更新信息,更新一个或多个第二CC以及第一CC的波束信息。
该通信装置1000可实现对应于根据本申请实施例的方法500至方法800中的终端设备执行的步骤或者流程,该通信装置1000可以包括用于执行图5中的方法500、图6中的方法600、图7中的方法700或图8中的方法800中的终端设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图5中的方法500、图6中的方法600、图7中的方法700或图8中的方法800的相应流程。
其中,当该通信装置1000用于执行图5中的方法500时,通信单元1010可用于执行方法500中的步骤510,处理单元1020可用于执行方法500中的步骤520。
其中,当该通信装置1000用于执行图6中的方法600时,通信单元1010可用于执行方法600中的步骤610、步骤620、步骤640,处理单元1020可用于执行方法600中的步骤630。
其中,当该通信装置1000用于执行图7中的方法700时,通信单元1010可用于执行方法700中的步骤710、步骤720、步骤740,处理单元1020可用于执行方法700中的步骤730。
其中,当该通信装置1000用于执行图8中的方法800时,通信单元1010可用于执行方法800中的步骤810、步骤820、步骤830。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000中的通信单元1010可通过图12中示出的终端设备1200中的收发器1210实现,该通信装置1000中的处理单元1020可通过图12中示出的终端设备1200中的处理器1220实现。其中,收发器可以包括发射器和/或接收器,分别实现发送单元和接收单元的功能。
还应理解,该通信装置1000中的通信单元1010也可以为输入/输出接口。
在另一种可能的设计中,该通信装置1000可实现对应于上文方法实施例中的网络设备执行的步骤或者流程,例如,可以为网络设备,或者配置于网络设备中的芯片或芯片系统或电路。这时,该通信装置1000可以称为网络设备。通信单元1010用于执行上文方法实施例中网络设备侧的收发相关操作,处理单元1020用于执行上文方法实施例中网络设备的处理相关操作。
该通信装置1000可实现对应于根据本申请实施例的方法500至方法800中的网络设备执行的步骤或者流程,该通信装置1000可以包括用于执行图5中的方法500、图6中 的方法600、图7中的方法700或图8中的方法800中的网络设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图5中的方法500、图6中的方法600、图7中的方法700或图8中的方法800的相应流程。
其中,当该通信装置1000用于执行图5中的方法500时,通信单元1010可用于执行方法500中的步骤510
其中,当该通信装置1000用于执行图6中的方法600时,通信单元1010可用于执行方法600中的步骤610、步骤620、步骤640。
其中,当该通信装置1000用于执行图7中的方法700时,通信单元1010可用于执行方法700中的步骤710、步骤720、步骤740。
其中,当该通信装置1000用于执行图8中的方法800时,通信单元1010可用于执行方法800中的步骤810、步骤820、步骤830。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000中的通信单元1010为可通过图13中示出的网络设备1300中的收发器1310实现,该通信装置1000中的处理单元1020可通过图13中示出的网络设备1300中的处理器1320实现。
还应理解,该通信装置1000中的通信单元1010也可以为输入/输出接口。其中,收发器可以包括发射器和/或接收器,分别实现发送单元和接收单元的功能。
图11是本申请实施例提供的通信装置1100的又一示意性框图。如图所示,通信装置1100包括处理器1110、存储器1120和收发器1130,存储器1120中存储有程序,处理器1110用于执行存储器1120中存储的程序,对存储器1120中存储的程序的执行,使得处理器1110用于执行上文方法实施例中的相关处理步骤,对存储器1120中存储的程序的执行,使得处理器1110控制收发器1130执行上文方法实施例中的收发相关步骤。
作为一种实现,该通信装置1100用于执行上文方法实施例中终端设备所执行的动作,这时,对存储器1120中存储的程序的执行,使得处理器1110用于执行上文方法实施例中终端设备侧的处理步骤,对存储器1120中存储的程序的执行,使得处理器1110控制收发器1130执行上文方法实施例中终端设备侧的接收和发送步骤。
作为另一种实现,该通信装置1100用于执行上文方法实施例中网络设备所执行的动作,这时,对存储器1120中存储的程序的执行,使得处理器1110用于执行上文方法实施例中网络设备侧的处理步骤,对存储器1120中存储的程序的执行,使得处理器1110控制收发器1130执行上文方法实施例中网络设备侧的接收和发送步骤。
本申请实施例还提供一种通信装置1200,该通信装置1200可以是终端设备也可以是芯片。该通信装置1200可以用于执行上述方法实施例中由终端设备所执行的动作。
当该通信装置1200为终端设备时,图12示出了一种简化的终端设备的结构示意图。如图12所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输 出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图12中仅示出了一个存储器和处理器,在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。
如图12所示,终端设备包括收发单元1210和处理单元1220。收发单元1210也可以称为收发器、收发机、收发装置等。处理单元1220也可以称为处理器,处理单板,处理模块、处理装置等。可选地,可以将收发单元1210中用于实现接收功能的器件视为接收单元,将收发单元1210中用于实现发送功能的器件视为发送单元,即收发单元1210包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
例如,在一种实现方式中,处理单元1220,用于执行方法500中的步骤520、方法600中的步骤630、以及方法700中的步骤730,和/或,处理单元1220还用于执行本申请实施例中终端设备侧的其他处理步骤。收发单元1210还用于执行方法500中的步骤510、方法600中的步骤610、步骤620、步骤640、方法700中的步骤710、步骤720、步骤740、方法800中的步骤810、步骤820、步骤830,和/或收发单元1210还用于执行终端设备侧的其他收发步骤。
应理解,图12仅为示例而非限定,上述包括收发单元和处理单元的终端设备可以不依赖于图12所示的结构。
当该通信设备1200为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种通信装置1300,该通信装置1300可以是网络设备也可以是芯片。该通信装置1300可以用于执行上述方法实施例中由网络设备所执行的动作。
当该通信装置1300为网络设备时,例如为基站。图13示出了一种简化的基站结构示意图。基站包括1310部分以及1320部分。1310部分主要用于射频信号的收发以及射频信号与基带信号的转换;1320部分主要用于基带处理,对基站进行控制等。1310部分通常可以称为收发单元、收发机、收发电路、或者收发器等。1320部分通常是基站的控制中心,通常可以称为处理单元,用于控制基站执行上述方法实施例中网络设备侧的处理操作。
1310部分的收发单元,也可以称为收发机或收发器等,其包括天线和射频单元,其中射频单元主要用于进行射频处理。可选地,可以将1310部分中用于实现接收功能的器 件视为接收单元,将用于实现发送功能的器件视为发送单元,即1310部分包括接收单元和发送单元。接收单元也可以称为接收机、接收器、或接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
1320部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器。处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增强处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,1310部分的收发单元用于执行方法500中的步骤510、方法600中的步骤610、步骤620、步骤640、方法700中的步骤710、步骤720、步骤740、方法800中的步骤810、步骤820、步骤830中网络设备侧的收发操作,和/或1310部分的收发单元还用于执行本申请实施例中网络设备侧的其他收发步骤。1320部分的处理单元用于执行本申请实施例中网络设备侧的处理步骤。
应理解,图13仅为示例而非限定,上述包括收发单元和处理单元的网络设备可以不依赖于图13所示的结构。
当该通信装置1300为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
另外,网络设备不限于上述形态,也可以是其它形态:例如:包括AAU,还可以包括CU节点和/或DU节点,或者包括BBU和自适应无线单元(adaptive radio unit,ARU),或BBU;也可以为客户终端设备(customer premises equipment,CPE),还可以为其它形态,本申请不限定。
上述CU和/或DU可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而AAU可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
本申请实施例还提供了一种处理装置,包括处理器和接口。所述处理器可用于执行上述方法实施例中的方法。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图5至图9所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图5至图9所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另 一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机 软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (40)

  1. 一种更新波束信息的方法,其特征在于,包括:
    接收第一载波单元CC的波束更新信息;
    基于所述第一CC的波束更新信息,更新一个或多个第二CC以及所述第一CC的波束信息,
    其中,所述一个或多个第二CC与所述第一CC具有关联关系。
  2. 根据权利要求1所述的方法,其特征在于,所述一个或多个第二CC与所述第一CC具有关联关系,包括:
    所述一个或多个第二CC与所述第一CC属于一个小区组。
  3. 根据权利要求1或2所述的方法,其特征在于,
    在所述接收第一CC的波束更新信息之前,所述方法还包括:
    接收所述第一CC的波束配置信息和指示信息,
    其中,所述指示信息用于指示所述一个或多个第二CC与所述第一CC具有关联关系。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,
    所述一个或多个第二CC与所述第一CC具有关联关系,包括:
    所述一个或多个第二CC与所述第一CC使用相同的波束配置。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    接收为所述第一CC配置的时频跟踪参考信号资源的信息,以及为所述一个或多个第二CC配置的时频跟踪参考信号资源的信息;
    所述基于所述第一CC的波束更新信息,更新一个或多个第二CC的波束信息,包括:
    基于所述第一CC的波束更新信息,更新所述一个或多个第二CC的时频跟踪参考信号资源的波束信息。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,
    所述第一CC的波束更新信息包括所述第一CC激活的传输配置指示TCI状态TCI-state的信息;
    所述更新一个或多个第二CC以及所述第一CC的波束信息,包括:
    激活所述一个或多个第二CC以及所述第一CC的TCI-state,所述一个或多个第二CC激活的TCI-state和所述第一CC激活的TCI-state相同;和/或,
    更新所述一个或多个第二CC的空间关系,所述一个或多个第二CC更新后的空间关系与所述第一CC激活的TCI-state关联。
  7. 根据权利要求6所述的方法,其特征在于,
    激活的所述一个或多个第二CC、以及所述第一CC的TCI-state为控制资源集标识ID相同的控制资源集的TCI-state。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述更新一个或多个第二CC以及所述第一CC的波束信息,还包括:
    更新所述一个或多个第二CC以及所述第一CC的TCI-state标识TCI-state ID与TCI字段值的映射关系,所述一个或多个第二CC更新的TCI-state ID和TCI字段值的映射关 系、与所述第一CC更新的TCI-state ID和TCI字段值的映射关系相同。
  9. 根据权利要求1至5中任一项所述的方法,其特征在于,
    所述第一CC的波束更新信息包括所述第一CC激活的TCI-state对应的参考信号资源的信息;
    所述更新一个或多个第二CC以及所述第一CC的波束信息,包括:
    更新所述一个或多个第二CC以及所述第一CC激活的TCI-state对应的参考信号资源,所述一个或多个第二CC激活的TCI-state更新后的参考信号资源和所述第一CC激活的TCI-state更新后的参考信号资源相同。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述一个或多个第二CC与所述第一CC具有关联关系,包括以下一项或多项:
    所述一个或多个第二CC激活的TCI-state与所述第一CC激活的TCI-state相同;
    所述一个或多个第二CC激活的TCI-state中包括的参考信号资源与所述第一CC激活的TCI-state中包括的参考信号资源相同;
    所述一个或多个第二CC激活的TCI-state中包括的参考信号资源标识ID与所述第一CC的ID以及所述第一CC激活的TCI-state中包括的参考信号资源ID关联;
    所述一个或多个第二CC与所述第一CC具有准共址QCL关系;
    所述一个或多个第二CC使用所述第一CC的波束训练结果。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,
    所述第一CC的波束更新信息承载于介质接入控制-控制元素MAC-CE信令中,所述MAC-CE信令中的预留字段能用于指示:是否基于所述第一CC的波束更新信息,更新一个或多个第二CC以及所述第一CC的波束信息。
  12. 一种更新波束信息的方法,其特征在于,
    接收介质接入控制-控制元素MAC-CE信令,其中,所述MAC-CE信令中包括第一载波单元CC的波束更新信息;
    所述MAC-CE信令能用于指示:是否基于所述第一CC的波束更新信息,更新一个或多个第二CC以及所述第一CC的波束信息;或者,
    所述MAC-CE信令能用于指示:所述MAC-CE信令对应的传输点TRP。
  13. 根据权利要求12所述的方法,其特征在于,所述MAC-CE信令能用于指示:所述MAC-CE信令对应的TRP,包括:
    所述MAC-CE信令用于指示所述TRP激活的TCI-state到DCI中的TCI字段值的映射关系。
  14. 根据权利要求12或13所述的方法,其特征在于,所述MAC-CE信令能用于指示:所述MAC-CE信令对应的TRP,包括:
    所述MAC-CE信令的CORESETPoolIndex用于指示所述MAC-CE信令对应的TRP。
  15. 一种通信装置,其特征在于,包括:通信单元和处理单元,
    所述通信单元用于:接收第一载波单元CC的波束更新信息;
    所述处理单元用于:基于所述第一CC的波束更新信息,更新一个或多个第二CC以及所述第一CC的波束信息,
    其中,所述一个或多个第二CC与所述第一CC具有关联关系。
  16. 根据权利要求15所述的通信装置,其特征在于,所述一个或多个第二CC与所述第一CC具有关联关系,包括:
    所述一个或多个第二CC与所述第一CC属于一个小区组。
  17. 根据权利要求15或16所述的通信装置,其特征在于,
    所述通信单元还用于:
    接收所述第一CC的波束配置信息和指示信息,其中,所述指示信息用于指示所述一个或多个第二CC与所述第一CC具有关联关系。
  18. 根据权利要求15至17中任一项所述的通信装置,其特征在于,
    所述一个或多个第二CC与所述第一CC具有关联关系,包括:
    所述一个或多个第二CC与所述第一CC使用相同的波束配置。
  19. 根据权利要求15至18中任一项所述的通信装置,其特征在于,
    所述通信单元还用于:接收为所述第一CC配置的时频跟踪参考信号资源的信息,以及为所述一个或多个第二CC配置的时频跟踪参考信号资源的信息;
    所述处理单元具体用于:
    基于所述第一CC的波束更新信息,更新所述一个或多个第二CC的时频跟踪参考信号资源的波束信息。
  20. 根据权利要求15至19中任一项所述的通信装置,其特征在于,
    所述第一CC的波束更新信息包括所述第一CC激活的传输配置指示TCI状态
    TCI-state的信息;
    所述处理单元具体用于:
    激活所述一个或多个第二CC以及所述第一CC的TCI-state,所述一个或多个第二CC激活的TCI-state和所述第一CC激活的TCI-state相同;和/或,
    更新所述一个或多个第二CC的空间关系,所述一个或多个第二CC更新后的空间关系与所述第一CC激活的TCI-state关联。
  21. 根据权利要求20所述的通信装置,其特征在于,
    激活的所述一个或多个第二CC、以及所述第一CC的TCI-state为控制资源集标识ID相同的控制资源集的TCI-state。
  22. 根据权利要求15至21中任一项所述的通信装置,其特征在于,所述处理单元具体用于:更新所述一个或多个第二CC以及所述第一CC的TCI-state标识TCI-state ID与TCI字段值的映射关系,所述一个或多个第二CC更新的TCI-state ID和TCI字段值的映射关系、与所述第一CC更新的TCI-state ID和TCI字段值的映射关系相同。
  23. 根据权利要求15至19中任一项所述的通信装置,其特征在于,
    所述第一CC的波束更新信息包括所述第一CC激活的TCI-state对应的参考信号资源的信息;
    所述处理单元具体用于:
    更新所述一个或多个第二CC以及所述第一CC激活的TCI-state对应的参考信号资源,所述一个或多个第二CC激活的TCI-state更新后的参考信号资源和所述第一CC激活的TCI-state更新后的参考信号资源相同。
  24. 根据权利要求15至23中任一项所述的通信装置,其特征在于,所述一个或多个 第二CC与所述第一CC具有关联关系,包括以下一项或多项:
    所述一个或多个第二CC激活的TCI-state与所述第一CC激活的TCI-state相同;
    所述一个或多个第二CC激活的TCI-state中包括的参考信号资源与所述第一CC激活的TCI-state中包括的参考信号资源相同;
    所述一个或多个第二CC激活的TCI-state中包括的参考信号资源标识ID与所述第一CC的ID以及所述第一CC激活的TCI-state中包括的参考信号资源的ID关联;
    所述一个或多个第二CC与所述第一CC具有准共址QCL关系;
    所述一个或多个第二CC使用所述第一CC的波束训练结果。
  25. 根据权利要求15至24中任一项所述的通信装置,其特征在于,
    所述第一CC的波束更新信息承载于介质接入控制-控制元素MAC-CE信令中,所述MAC-CE信令中的预留字段能用于指示:是否基于所述第一CC的波束更新信息,更新一个或多个第二CC以及所述第一CC的波束信息。
  26. 根据权利要求15至25中任一项所述的通信装置,其特征在于,所述处理单元为处理器,所述通信单元为收发器。
  27. 根据权利要求15至26中任一项所述的通信装置,其特征在于,所述装置为以下任一项:终端设备、芯片或芯片系统。
  28. 一种通信装置,其特征在于,包括:通信单元处理单元,
    所述通信单元用于:接收介质接入控制-控制元素MAC-CE信令,其中,所述MAC-CE信令中包括第一载波单元CC的波束更新信息;
    所述MAC-CE信令能用于指示:是否基于所述第一CC的波束更新信息,更新一个或多个第二CC以及所述第一CC的波束信息;或者,
    所述MAC-CE信令能用于指示:所述MAC-CE信令对应的传输点TRP;
    所述处理单元,用于处理所述MAC-CE信令。
  29. 根据权利要求28所述的通信装置,其特征在于,所述MAC-CE信令能用于指示:所述MAC-CE信令对应的TRP,包括:
    所述MAC-CE信令用于指示所述TRP激活的TCI-state到DCI中的TCI字段值的映射关系。
  30. 根据权利要求28或29所述的通信装置,其特征在于,所述MAC-CE信令能用于指示:所述MAC-CE信令对应的TRP,包括:
    所述MAC-CE信令的CORESETPoolIndex用于指示所述MAC-CE信令对应的TRP。
  31. 根据权利要求28至30中任一项所述的通信装置,其特征在于,所述处理单元为处理器,所述通信单元为收发器。
  32. 根据权利要求28至31中任一项所述的通信装置,其特征在于,所述装置为以下任一项:终端设备、芯片或芯片系统。
  33. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器用于执行如权利要求1至14中任一项所述的方法。
  34. 一种处理装置,其特征在于,包括至少一个处理器,所述至少一个处理器用于执行存储器中存储的计算机程序,以使得所述装置实现如权利要求1至14中任一项所述的方法。
  35. 一种处理装置,其特征在于,包括:
    通信接口,用于输入和/或输出信息;
    处理器,用于执行计算机程序,以使得所述装置实现如权利要求1至14中任一项所述的方法。
  36. 一种通信装置,其特征在于,包括:
    存储器,用于存储计算机指令;
    处理器,用于执行所述存储器中存储的计算机指令,使得所述通信装置执行如权利要求1至14中任一项所述的方法。
  37. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,当所述处理器执行存储器中的计算机程序或指令时,权利要求1至14中任一项所述的方法被执行。
  38. 一种芯片,其特征在于,包括:处理器和接口,用于从存储器中调用并运行所述存储器中存储的计算机程序,执行如权利要求1至14中任一项所述的方法。
  39. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至14中任一项所述的方法。
  40. 一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求1至14中任一项所述的方法。
PCT/CN2020/108073 2019-08-14 2020-08-10 更新波束信息的方法和通信装置 WO2021027750A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20852730.9A EP4009725A4 (en) 2019-08-14 2020-08-10 PROCEDURE FOR UPDATING BEAM INFORMATION AND COMMUNICATION DEVICE
BR112022002812A BR112022002812A2 (pt) 2019-08-14 2020-08-10 Método para atualizar informações de feixe e aparelho de comunicações
US17/671,229 US20220173848A1 (en) 2019-08-14 2022-02-14 Method for updating beam information and communications apparatus

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201910750959.X 2019-08-14
CN201910750959 2019-08-14
CN201910941731 2019-09-30
CN201910941731.9 2019-09-30
CN202010087025.5 2020-02-11
CN202010087025.5A CN112399597A (zh) 2019-08-14 2020-02-11 更新波束信息的方法和通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/671,229 Continuation US20220173848A1 (en) 2019-08-14 2022-02-14 Method for updating beam information and communications apparatus

Publications (1)

Publication Number Publication Date
WO2021027750A1 true WO2021027750A1 (zh) 2021-02-18

Family

ID=74569328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108073 WO2021027750A1 (zh) 2019-08-14 2020-08-10 更新波束信息的方法和通信装置

Country Status (4)

Country Link
US (1) US20220173848A1 (zh)
EP (1) EP4009725A4 (zh)
BR (1) BR112022002812A2 (zh)
WO (1) WO2021027750A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022206577A1 (zh) * 2021-04-02 2022-10-06 华为技术有限公司 信道测量方法及装置
WO2022217428A1 (zh) * 2021-04-12 2022-10-20 北京小米移动软件有限公司 一种波束管理方法、波束管理装置及存储介质
WO2023000300A1 (en) * 2021-07-23 2023-01-26 Lenovo (Beijing) Limited Simultaneous unified tci state update for a group of cells
WO2023094012A1 (en) * 2021-11-29 2023-06-01 Telefonaktiebolaget Lm Ericsson (Publ) Wireless communications device and methods for beam training in a wireless communications network

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11552753B2 (en) * 2019-10-17 2023-01-10 Qualcomm Incorporated Enablement of simultaneous beam update across component carriers
US11647508B2 (en) * 2019-11-01 2023-05-09 Qualcomm Incorporated Operation rules for group component carrier beam update
US11943795B2 (en) * 2019-11-20 2024-03-26 Qualcomm Incorporated Common default beam per component carrier group
US11362723B2 (en) * 2020-05-15 2022-06-14 Samsung Electronics Co., Ltd. Method and apparatus for beam management
US11627542B2 (en) * 2020-07-14 2023-04-11 Qualcomm Incorporated Beam reselection for narrowband non-terrestrial networks
US11909496B2 (en) * 2021-11-23 2024-02-20 Qualcomm Incorporated Beam switching in near-field operations
US20230170976A1 (en) * 2021-11-30 2023-06-01 Qualcomm Incorporated Beam selection and codebook learning based on xr perception
US20230188189A1 (en) * 2021-12-14 2023-06-15 Qualcomm Incorporated Methods for supporting multiple beams in cri for generation of adaptive beam weights

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180219606A1 (en) * 2017-02-01 2018-08-02 Samsung Electronics Co., Ltd. Beam management of downlink data channel and downlink control channel for 5g next radio systems
US20180288755A1 (en) * 2017-03-31 2018-10-04 Futurewei Technologies, Inc. System and Method for Beam Management in High Frequency Multi-Carrier Operations with Spatial Quasi Co-Locations
CN108809600A (zh) * 2017-05-05 2018-11-13 华为技术有限公司 一种通信方法、系统及相关设备
CN109845137A (zh) * 2016-09-21 2019-06-04 三星电子株式会社 用于无线通信系统中波束管理参考信号的方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201907680A (zh) * 2017-06-14 2019-02-16 美商Idac控股公司 無線網路中統一波束管理
KR20200020272A (ko) * 2018-08-16 2020-02-26 삼성전자주식회사 무선통신 시스템에서 데이터를 송수신하는 방법 및 장치
KR20210061373A (ko) * 2018-09-21 2021-05-27 지티이 코포레이션 무선 통신에서 스케줄링 유연성을 개선하기 위한 방법들, 장치 및 시스템들
US11419104B2 (en) * 2019-01-07 2022-08-16 Qualcomm Incorporated Scrambling sequence generation for a multi-transmit receive point configuration
US11438047B2 (en) * 2019-02-14 2022-09-06 Qualcomm Incorporated Beam failure indication techniques

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109845137A (zh) * 2016-09-21 2019-06-04 三星电子株式会社 用于无线通信系统中波束管理参考信号的方法和装置
US20180219606A1 (en) * 2017-02-01 2018-08-02 Samsung Electronics Co., Ltd. Beam management of downlink data channel and downlink control channel for 5g next radio systems
US20180288755A1 (en) * 2017-03-31 2018-10-04 Futurewei Technologies, Inc. System and Method for Beam Management in High Frequency Multi-Carrier Operations with Spatial Quasi Co-Locations
CN108809600A (zh) * 2017-05-05 2018-11-13 华为技术有限公司 一种通信方法、系统及相关设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Beam management for NR", 3GPP DRAFT; R1-1809711 BEAM MANAGEMENT FOR NR, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Gothenburg, Sweden; 20180820 - 20180824, 17 August 2018 (2018-08-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051517061 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022206577A1 (zh) * 2021-04-02 2022-10-06 华为技术有限公司 信道测量方法及装置
WO2022217428A1 (zh) * 2021-04-12 2022-10-20 北京小米移动软件有限公司 一种波束管理方法、波束管理装置及存储介质
WO2023000300A1 (en) * 2021-07-23 2023-01-26 Lenovo (Beijing) Limited Simultaneous unified tci state update for a group of cells
WO2023094012A1 (en) * 2021-11-29 2023-06-01 Telefonaktiebolaget Lm Ericsson (Publ) Wireless communications device and methods for beam training in a wireless communications network

Also Published As

Publication number Publication date
BR112022002812A2 (pt) 2022-05-10
US20220173848A1 (en) 2022-06-02
EP4009725A4 (en) 2022-12-28
EP4009725A1 (en) 2022-06-08

Similar Documents

Publication Publication Date Title
WO2021027750A1 (zh) 更新波束信息的方法和通信装置
US11723022B2 (en) Communication method and communications device
WO2020029725A1 (zh) 接收和发送信号的方法以及通信装置
WO2020156174A1 (zh) 波束指示的方法和通信装置
US20200163143A1 (en) Apparatus configured to report aperiodic channel state information for dual connectivity
WO2020134944A1 (zh) 干扰测量的方法和通信装置
US11240794B2 (en) Method for indicating PDSCH receiving information, data receiving method, and apparatus
WO2021159493A1 (zh) 一种资源配置的方法和装置
WO2020248779A1 (zh) 更新传输配置指示tci信息的方法与通信装置
WO2020155849A1 (zh) 发送和接收指示的方法和装置
WO2021254472A1 (zh) 传输配置指示状态TCI state切换的方法和装置
WO2018137703A1 (zh) 一种信息传输方法和装置
CN112399597A (zh) 更新波束信息的方法和通信装置
WO2021017874A1 (zh) 一种通信方法及通信装置
US11963205B2 (en) Resource management method and apparatus
WO2020207333A1 (zh) 链路失败恢复的方法和装置
US20220224466A1 (en) Uplink transmission method and apparatus
WO2020156364A1 (zh) 测量方法和通信装置
US20240155371A1 (en) Communication method and communication apparatus
WO2020192719A1 (zh) 更新波束的方法与通信装置
WO2021159528A1 (zh) 一种通信方法和装置
CN109478918A (zh) 波束失败报告发送方法、接收方法、用户设备和网络设备
WO2021062766A1 (zh) 一种干扰测量上报的方法和通信装置
EP4007347A1 (en) Communication method and communication apparatus
WO2023208211A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022002812

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020852730

Country of ref document: EP

Effective date: 20220302

ENP Entry into the national phase

Ref document number: 112022002812

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220214