WO2020156364A1 - 测量方法和通信装置 - Google Patents

测量方法和通信装置 Download PDF

Info

Publication number
WO2020156364A1
WO2020156364A1 PCT/CN2020/073406 CN2020073406W WO2020156364A1 WO 2020156364 A1 WO2020156364 A1 WO 2020156364A1 CN 2020073406 W CN2020073406 W CN 2020073406W WO 2020156364 A1 WO2020156364 A1 WO 2020156364A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
signal quality
cell
measure
quality threshold
Prior art date
Application number
PCT/CN2020/073406
Other languages
English (en)
French (fr)
Inventor
郑黎丽
张宏平
曾清海
勒孔特大卫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020156364A1 publication Critical patent/WO2020156364A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • This application relates to the field of communication, and more specifically, to a measurement method and communication device.
  • Mobility management is an important part of wireless mobile communication. Mobility management refers to the general term for related content involved to ensure that the communication link between network equipment and terminal equipment is not interrupted due to the movement of the terminal equipment. Exemplarily, according to the state of the terminal device, it can be divided into idle state mobility management, deactivated state mobility management, and connected state mobility management. The measurement result is one of the consideration factors for mobility management.
  • the present application provides a measurement method and a communication device, so that terminal equipment can measure the signal quality of a cell reasonably and efficiently, and meet different measurement requirements as much as possible.
  • a measurement method is provided.
  • the method may be executed by a terminal device, or may also be executed by a chip or a circuit configured in the terminal device, which is not limited in this application.
  • the method may include: receiving measurement configuration information, the measurement configuration information includes a cell signal quality threshold; when the signal quality of the primary cell exceeds the cell signal quality threshold, not measuring non-serving cells belonging to the first frequency range, and based on the measurement configuration information , Measure non-serving cells belonging to the second frequency range.
  • the cell signal quality threshold may also be referred to as the signal quality threshold, or may also be referred to as the value of s-Measure.
  • the naming of s-Measure, cell signal quality threshold, or signal quality threshold is only a name, and does not limit the protection scope of this application.
  • the value of s-Measure it may be pre-defined by the network device or protocol, or it may be configured by the network device according to the actual communication situation, which is not limited.
  • the primary cell (SpCell, or it can also be called a special cell), if it is a primary base station or a master node (master node, MN), the primary cell can refer to the primary cell (PCell); if it is A secondary base station or secondary node (secondary node, SN), the primary cell may refer to a primary secondary cell (primary secondary cell, PSCell).
  • a non-serving cell belonging to the first frequency range means a non-serving cell on the measurement target, and the measurement target belongs to the first frequency range
  • a non-serving cell belonging to the second frequency range means A non-serving cell on the measurement object, and the measurement object belongs to the second frequency range.
  • the terminal device can separately consider whether to measure non-serving cells in different frequency ranges.
  • different measurement requirements can be considered, or, in other words, the use of cell signal quality thresholds can be made more flexible.
  • the terminal device can determine whether to measure the non-serving cell belonging to the first frequency range according to the signal quality of the primary cell and the cell signal quality threshold. In other words, whether to measure the non-serving cell belonging to the first frequency range can be determined according to the primary Whether the signal quality of the cell exceeds the cell signal quality threshold is determined.
  • the terminal device can measure the non-serving cells belonging to the second frequency range based on the measurement configuration information, in other words, as long as there are non-serving cells belonging to the second frequency range.
  • the terminal device In the measurement task of the serving cell, the terminal device always measures the non-serving cell belonging to the second frequency range. Therefore, the use of the cell signal quality threshold can be made more flexible, and different measurement requirements can be met as much as possible. In other words, the cell signal quality threshold can be made effective only for non-serving cells in the first frequency range.
  • the frequency of the first frequency range is less than the frequency of the second frequency range.
  • the frequency of the first frequency range is smaller than the frequency of the second frequency range.
  • the band beam in the first frequency range is wider and has better coverage; compared to the frequency band in the first frequency range, the frequency band in the second frequency range is More technologies such as beamforming will be used.
  • the signal quality of the primary cell will be considered, that is, the primary cell meets the cell signal quality threshold (ie s-Measure)
  • the cell signal quality threshold ie s-Measure
  • the cell handover refers to the measurement result of the measurement object belonging to the first frequency range.
  • the cell signal quality threshold includes a parameter P used to indicate the number of good beams.
  • the signal quality of the primary cell will be considered for the measurement for cell handover, that is, when the primary cell meets the cell signal quality threshold (ie s-Measure), it does not need to measure neighboring cells, which can avoid unnecessary measurements. ,save resources.
  • a measurement method is provided.
  • the method may be executed by a terminal device, or may also be executed by a chip or a circuit configured in the terminal device, which is not limited in this application.
  • the method may include: receiving measurement configuration information, where the measurement configuration information includes a first cell signal quality threshold value and/or a second cell signal quality threshold value, wherein the first cell signal quality threshold value is used to determine whether to measure a non-frequency signal belonging to the first frequency range.
  • the second cell signal quality threshold is used to determine whether to measure a non-serving cell belonging to the second frequency range; the measurement is performed based on the measurement configuration information.
  • the terminal device can separately consider whether to measure non-serving cells in different frequency ranges, in other words, can consider different measurement requirements. For example, the terminal device can determine whether to measure a non-serving cell belonging to the first frequency range according to the signal quality of the primary cell and the signal quality threshold of the first cell. In other words, whether to measure the non-serving cell belonging to the first frequency range. It is determined according to whether the signal quality of the primary cell exceeds the signal quality threshold of the first cell.
  • the terminal device can determine whether to measure non-serving cells belonging to the second frequency range according to the signal quality of the primary cell and the signal quality threshold of the second cell, in other words, whether to measure non-serving cells belonging to the second frequency range, It can be determined according to whether the signal quality of the primary cell exceeds the signal quality threshold of the second cell.
  • the signal quality threshold of the first cell and the signal quality threshold of the second cell may be the same or different, which is not limited. Therefore, by configuring independent cell signal quality thresholds according to different frequency ranges or different measurement requirements, different measurement requirements can be met as much as possible.
  • the measurement is performed based on the measurement configuration information, including: when the signal quality of the primary cell exceeds the signal quality threshold of the first cell, the measurement belongs to the first frequency range Non-serving cell.
  • the measurement is performed based on the measurement configuration information, including: when the signal quality of the primary cell exceeds the signal quality threshold of the second cell, the measurement belongs to the second frequency range Non-serving cell.
  • the frequency of the first frequency range is less than the frequency of the second frequency range.
  • the cell handover refers to the measurement result of the measurement object belonging to the first frequency range.
  • the first cell signal quality threshold includes a first parameter used to indicate the number of good beams
  • the second cell signal quality threshold includes The second parameter of the number of good beams
  • a measurement method is provided.
  • the method may be executed by a network device, or may also be executed by a chip or circuit configured in the network device, which is not limited in this application.
  • the method may include: generating measurement configuration information, the measurement configuration information including a first cell signal quality threshold value and/or a second cell signal quality threshold value, wherein the first cell signal quality threshold value is used to determine whether to measure the non-frequency components belonging to the first frequency range.
  • Serving cell the second cell signal quality threshold is used to determine whether to measure a non-serving cell belonging to the second frequency range; sending measurement configuration information.
  • the frequency of the first frequency range is less than the frequency of the second frequency range.
  • the cell handover refers to the measurement result of the measurement object belonging to the first frequency range.
  • the first cell signal quality threshold includes a first parameter used to indicate the number of good beams
  • the second cell signal quality threshold includes The second parameter of the number of good beams
  • a measurement method is provided.
  • the method may be executed by a terminal device, or may also be executed by a chip or a circuit configured in the terminal device, which is not limited in this application.
  • the method may include: receiving a cell signal quality threshold and indication information, where the indication information is used to indicate the cell signal quality threshold to determine whether to measure a non-serving cell belonging to the first frequency range, or the indication information is used to indicate the cell signal quality threshold. To determine whether to measure a non-serving cell belonging to the second frequency range; perform measurement according to the cell signal quality threshold and indication information.
  • the indication information and the cell signal quality threshold may be sent to the terminal device separately, or may be sent to the terminal device in one signaling (for example, measurement configuration information), and it is not limited.
  • the terminal device can separately consider whether to measure non-serving cells in different frequency ranges, in other words, can consider different measurement requirements, or, in other words, can make the use of cell signal quality thresholds more flexible.
  • the network device may send instruction information to the terminal device to indicate that the cell signal quality threshold is used to determine whether to measure a non-serving cell belonging to the first frequency range, that is, the terminal device may according to the signal quality of the primary cell and the cell signal quality threshold, To determine whether to measure a non-serving cell belonging to the first frequency range, in other words, whether to measure a non-serving cell belonging to the first frequency range can be determined according to whether the signal quality of the primary cell exceeds the cell signal quality threshold.
  • the network device may send indication information to the terminal device to indicate that the cell signal quality threshold is used to determine whether to measure a non-serving cell belonging to the second frequency range, that is, the terminal device may be based on the signal quality of the primary cell and the cell signal quality threshold .
  • the terminal device may be based on the signal quality of the primary cell and the cell signal quality threshold .
  • the indication information is used to indicate the cell signal quality threshold is used to determine whether to measure a non-serving cell belonging to the first frequency range, and according to the cell signal quality threshold and the indication information, including : When the signal quality of the primary cell exceeds the cell signal quality threshold, non-serving cells belonging to the first frequency range are not measured.
  • the indication information is used to indicate the cell signal quality threshold to determine whether to measure a non-serving cell that belongs to the second frequency range, and perform the measurement according to the cell signal quality threshold and the indication information.
  • the measurement includes: when the signal quality of the primary cell exceeds the cell signal quality threshold, non-serving cells belonging to the second frequency range are not measured.
  • the frequency of the first frequency range is less than the frequency of the second frequency range.
  • the cell handover refers to the measurement result of the measurement object belonging to the first frequency range.
  • the cell signal quality threshold includes a parameter P used to indicate the number of good beams.
  • a measurement method is provided.
  • the method may be executed by a network device, or may also be executed by a chip or circuit configured in the network device, which is not limited in this application.
  • the method may include: generating indication information; sending a cell signal quality threshold and indication information, the indication information is used to indicate the cell signal quality threshold is used to determine whether to measure a non-serving cell belonging to the first frequency range, or the indication information is used to indicate the cell
  • the signal quality threshold is used to determine whether to measure a non-serving cell belonging to the second frequency range.
  • the frequency of the first frequency range is less than the frequency of the second frequency range.
  • the cell handover refers to the measurement result of the measurement object belonging to the first frequency range.
  • a measurement method is provided.
  • the method may be executed by a terminal device, or may also be executed by a chip or a circuit configured in the terminal device, which is not limited in this application.
  • the method may include: receiving measurement configuration information, the measurement configuration information includes a cell signal quality threshold, the cell signal quality threshold includes a parameter P used to indicate the number of good beams, or the measurement configuration information includes P; based on measurement Configure information and perform measurements.
  • the cell signal quality threshold includes a parameter P used to indicate the number of good beams; performing measurement based on measurement configuration information includes: based on measurement configuration information, measurement master The signal quality of the cell; when the signal quality of the primary cell exceeds the cell signal quality threshold, and the number of good beams exceeds P, non-serving cells are not measured.
  • the measurement configuration information includes P; measurement is performed based on the measurement configuration information, including: when the number of good beams in the primary cell exceeds P, non-service is not measured Community.
  • a measurement method is provided.
  • the method may be executed by a network device, or may also be executed by a chip or circuit configured in the network device, which is not limited in this application.
  • the method may include: generating measurement configuration information, the measurement configuration information includes a cell signal quality threshold, the cell signal quality threshold includes a parameter P used to indicate the number of good beams, or the measurement configuration information includes P; Send measurement configuration information.
  • a communication device including: a communication unit and a processing unit, wherein the communication unit is used to receive measurement configuration information, the measurement configuration information includes a cell signal quality threshold; the processing unit is used to: signal in the primary cell When the quality exceeds the cell signal quality threshold, non-serving cells belonging to the first frequency range are not measured, and based on the measurement configuration information, non-serving cells belonging to the second frequency range are measured.
  • the device can be configured in or itself as a terminal device.
  • the frequency of the first frequency range is smaller than the frequency of the second frequency range.
  • the cell handover refers to the measurement result of the measurement object belonging to the first frequency range.
  • the cell signal quality threshold includes a parameter P used to indicate the number of good beams.
  • each unit in the device is respectively used to execute the steps of the measurement method in the first aspect and the implementation manners of the first aspect.
  • the device is a communication chip
  • the communication chip may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
  • the apparatus is a communication device, and the communication device may include a transmitter for sending information or data, and a receiver for receiving information or data.
  • a communication device including: a communication unit and a processing unit, wherein the communication unit is configured to receive measurement configuration information, the measurement configuration information including a first cell signal quality threshold and/or a second cell signal quality threshold , Wherein the first cell signal quality threshold is used to determine whether to measure a non-serving cell belonging to the first frequency range, and the second cell signal quality threshold is used to determine whether to measure a non-serving cell belonging to the second frequency range; the processing unit is used to: Based on the measurement configuration information, the measurement is performed.
  • the device can be configured in or itself as a terminal device.
  • the processing unit is configured to not measure non-serving cells belonging to the first frequency range when the signal quality of the primary cell exceeds the signal quality threshold of the first cell.
  • the processing unit is configured to not measure non-serving cells belonging to the second frequency range when the signal quality of the primary cell exceeds the signal quality threshold of the second cell.
  • the frequency of the first frequency range is smaller than the frequency of the second frequency range.
  • the cell handover refers to the measurement result of the measurement object belonging to the first frequency range.
  • the first cell signal quality threshold includes a first parameter used to indicate the number of good beams
  • the second cell signal quality threshold includes The second parameter of the number of good beams
  • each unit in the device is respectively used to execute the above-mentioned second aspect and each step of the measurement method in each implementation manner of the second aspect.
  • the device is a communication chip
  • the communication chip may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
  • the apparatus is a communication device, and the communication device may include a transmitter for sending information or data, and a receiver for receiving information or data.
  • a communication device including: a communication unit and a processing unit, wherein the processing unit is configured to generate measurement configuration information, and the measurement configuration information includes a first cell signal quality threshold and/or a second cell signal quality threshold , Wherein the first cell signal quality threshold is used to determine whether to measure a non-serving cell belonging to the first frequency range, and the second cell signal quality threshold is used to determine whether to measure a non-serving cell belonging to the second frequency range; the communication unit is used to: Send measurement configuration information.
  • the device can be configured in or itself is a network device (such as a base station).
  • a network device such as a base station.
  • the frequency of the first frequency range is less than the frequency of the second frequency range.
  • the cell handover refers to the measurement result of the measurement object belonging to the first frequency range.
  • the first cell signal quality threshold includes a first parameter used to indicate the number of good beams
  • the second cell signal quality threshold includes The second parameter of the number of good beams
  • each unit in the device is respectively used to execute the above-mentioned third aspect and each step of the measurement method in each implementation manner of the third aspect.
  • the communication device is a communication chip
  • the communication chip may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
  • the communication device is a communication device
  • the communication chip may include a transmitter for sending information or data, and a receiver for receiving information or data.
  • a communication device including: a communication unit and a processing unit, wherein the communication unit is configured to: receive a cell signal quality threshold and indication information, and the indication information is used to indicate the cell signal quality threshold to determine whether to measure The non-serving cell belonging to the first frequency range, or the indication information is used to indicate the cell signal quality threshold to determine whether to measure the non-serving cell belonging to the second frequency range; the processing unit is used to: according to the cell signal quality threshold and the indication information, Take measurements.
  • the device can be configured in or itself as a terminal device.
  • the indication information is used to indicate the cell signal quality threshold for determining whether to measure a non-serving cell belonging to the first frequency range
  • the processing unit is used to: If the signal quality exceeds the cell signal quality threshold, the non-serving cell belonging to the first frequency range is not measured.
  • the indication information is used to indicate the cell signal quality threshold to determine whether to measure a non-serving cell belonging to the second frequency range
  • the processing unit is used to: If the signal quality exceeds the cell signal quality threshold, the non-serving cell belonging to the second frequency range is not measured.
  • the frequency of the first frequency range is smaller than the frequency of the second frequency range.
  • the cell handover refers to the measurement result of the measurement object belonging to the first frequency range.
  • the cell signal quality threshold includes a parameter P used to indicate the number of good beams.
  • each unit in the device is respectively used to execute the above-mentioned fourth aspect and each step of the measurement method in each implementation manner of the fourth aspect.
  • the device is a communication chip
  • the communication chip may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
  • the apparatus is a communication device, and the communication device may include a transmitter for sending information or data, and a receiver for receiving information or data.
  • a communication device including: a communication unit and a processing unit, wherein the processing unit is used to generate indication information; the communication unit is used to send a cell signal quality threshold and indication information, and the indication information is used to indicate The cell signal quality threshold is used to determine whether to measure a non-serving cell belonging to the first frequency range, or the indication information is used to indicate the cell signal quality threshold is used to determine whether to measure a non-serving cell belonging to the second frequency range.
  • the device can be configured in or itself is a network device (such as a base station).
  • a network device such as a base station.
  • the frequency of the first frequency range is less than the frequency of the second frequency range.
  • the cell handover refers to the measurement result of the measurement object belonging to the first frequency range.
  • the cell signal quality threshold includes a parameter P used to indicate the number of good beams.
  • each unit in the device is respectively used to execute the above-mentioned fifth aspect and each step of the measurement method in each implementation manner of the fifth aspect.
  • the communication device is a communication chip
  • the communication chip may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
  • the communication device is a communication device
  • the communication chip may include a transmitter for sending information or data, and a receiver for receiving information or data.
  • a communication device including: a communication unit and a processing unit, wherein the communication unit is configured to: receive measurement configuration information, the measurement configuration information includes a cell signal quality threshold, and the cell signal quality threshold includes a signal for indicating good The parameter P of the number of good beams, or the measurement configuration information includes P; the processing unit is used to perform measurement based on the measurement configuration information.
  • the device can be configured in or itself as a terminal device.
  • the cell signal quality threshold includes a parameter P used to indicate the number of good beams; the processing unit is used to: measure the signal of the primary cell based on the measurement configuration information Quality: When the signal quality of the primary cell exceeds the cell signal quality threshold, and the number of good beams exceeds P, non-serving cells are not measured.
  • the measurement configuration information includes P; the processing unit is used to: perform measurement based on the measurement configuration information, including: when the number of good beams exceeds P , Do not measure non-serving cells.
  • the cell signal quality threshold includes a parameter P used to indicate the number of good beams.
  • each unit in the device is used to execute the above-mentioned sixth aspect and each step of the measurement method in each implementation manner of the sixth aspect.
  • the device is a communication chip
  • the communication chip may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
  • the apparatus is a communication device, and the communication device may include a transmitter for sending information or data, and a receiver for receiving information or data.
  • a communication device including: a communication unit and a processing unit, wherein the processing unit is configured to generate measurement configuration information, the measurement configuration information includes a cell signal quality threshold, and the cell signal quality threshold includes The parameter P representing the number of good beams; the communication unit is used to send measurement configuration information.
  • the device can be configured in or itself is a network device (such as a base station).
  • a network device such as a base station.
  • each unit in the device is used to execute the steps of the measurement method in the seventh aspect and the implementation manners of the seventh aspect.
  • the communication device is a communication chip
  • the communication chip may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
  • the communication device is a communication device
  • the communication chip may include a transmitter for sending information or data, and a receiver for receiving information or data.
  • a communication device including a processor, a memory, the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that the communication device executes the first aspect,
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory and the processor may be provided separately.
  • the communication device further includes a transmitter (transmitter) and a receiver (receiver).
  • a communication device including a processor, a memory, the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that the communication device executes the third aspect, The measurement method in the fifth aspect, or the seventh aspect and various implementations thereof.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory and the processor may be provided separately.
  • the communication device further includes a transmitter (transmitter) and a receiver (receiver).
  • a seventeenth aspect provides a communication system, the communication device provided by the fifteenth aspect and/or the communication device provided by the sixteenth aspect.
  • the communication system may also include other devices that interact with the communication device in the solution provided in the embodiments of the present application.
  • a computer program product includes: a computer program (also called code, or instruction), which when the computer program is executed, causes the computer to execute the first aspect to The method in any possible implementation of the seventh aspect.
  • a computer program also called code, or instruction
  • a computer-readable medium stores a computer program (also called code, or instruction) when it runs on a computer, so that the computer executes the first aspect to The method in any possible implementation of the seventh aspect.
  • a computer program also called code, or instruction
  • a chip system including a memory and a processor, the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory so that the communication device installed with the chip system executes The method in any one possible implementation manner of the first aspect to the seventh aspect.
  • the chip system may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
  • a communication system including the aforementioned terminal equipment and base station.
  • the terminal device can separately consider whether to measure non-serving cells in different frequency ranges, in other words, can consider different measurement requirements, or, in other words, can make the use of cell signal quality thresholds more flexible .
  • the terminal device can determine whether to measure a non-serving cell belonging to the first frequency range according to the signal quality of the primary cell and the cell signal quality threshold, and regardless of whether the signal quality of the primary cell exceeds the cell signal quality threshold, as long as there is a cell signal quality threshold.
  • the terminal device will always measure the non-serving cell in the second frequency range.
  • network equipment can independently configure cell signal quality thresholds.
  • the network device may also indicate the applicable range of the signal quality threshold of the cell to the terminal device. Therefore, the use of the cell signal quality threshold can be made more flexible, and different measurement requirements can be met as much as possible.
  • Fig. 1 shows a schematic diagram of a communication system suitable for an embodiment of the present application
  • Figure 2 shows another schematic diagram of a communication system applicable to an embodiment of the present application
  • Figure 3 shows a schematic flow chart of measurement in NR
  • FIG. 4 shows a schematic diagram of the relationship between the measurement identifier, the measurement object, and the report configuration
  • FIG. 5 is a schematic interaction diagram of a measurement method proposed in an embodiment of the present application.
  • FIG. 6 is a schematic diagram applicable to the measurement method proposed in an embodiment of the present application.
  • FIG. 7 is a schematic interaction diagram of a measurement method proposed by another embodiment of the present application.
  • FIG. 8 is a schematic interaction diagram of a measurement method proposed by another embodiment of the present application.
  • FIG. 9 is a schematic block diagram of an example of the communication device of the present application.
  • FIG. 10 is a schematic structural diagram of an example of a terminal device of the present application.
  • Fig. 11 is a schematic structural diagram of an example of a network device of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • UMTS universal mobile telecommunication system
  • 5G fifth generation
  • NR new radio
  • the terminal equipment in the embodiments of the present application may also be referred to as: user equipment (UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), access terminal, user unit, user station, Mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • access terminal user unit, user station, Mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • the terminal device may be a device that provides voice/data connectivity to users, for example, a handheld device with a wireless connection function, a vehicle-mounted device, and so on.
  • some examples of terminals are: mobile phones, tablet computers, notebook computers, handheld computers, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control, wireless terminals in autonomous driving (self-driving), wireless terminals in remote medical surgery, and smart grid (smart grid)
  • Wireless terminals in transportation safety wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, cellular phones, cordless phones, session initiation protocol (session initiation protocol) , SIP) telephone, wireless local loop (wireless local loop, WLL) station, personal digital assistant (personal digital assistant, PDA), handheld device with wireless communication function, computing device or other processing device connected to wireless modem, vehicle Devices, wearable devices, terminal devices in a 5G network, or terminal devices in a public land mobile network (
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only hardware devices, but also powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be implemented without relying on smartphones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • the terminal device may also be a terminal device in the Internet of Things (IoT) system.
  • IoT Internet of Things
  • Its main technical feature is to pass items through communication technology. Connect with the network to realize the intelligent network of human-machine interconnection and interconnection of things.
  • the network device in the embodiment of the present application may be a device used to communicate with terminal devices.
  • the network device may also be called an access network device or a wireless access network device, and may be a transmission reception point (TRP). ), it can also be an evolved NodeB (evolved NodeB, eNB or eNodeB) in an LTE system, a home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU) , It can also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario, or the network device can be a relay station, an access point, a vehicle-mounted device, a wearable device, and a network device in a 5G network or
  • the network equipment in the future evolved PLMN network may be an access point (AP) in a WLAN, or a gNB in a new radio system (new radio, NR) system, which is not limited in the embodiment of the present application.
  • AP access
  • a network device may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node, or a control plane CU node (CU).
  • CU centralized unit
  • DU distributed unit
  • RAN device including a CU node and a DU node, or a control plane CU node (CU).
  • -CP node user plane CU node
  • CU-UP node user plane CU node
  • RAN equipment of DU node may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node, or a control plane CU node (CU).
  • -CP node user plane CU node (CU-UP node) and RAN equipment of DU node.
  • the network equipment provides services for the cell, and the terminal equipment communicates with the cell through the transmission resources (for example, frequency domain resources, or spectrum resources) allocated by the network equipment.
  • the cell may belong to a macro base station (for example, a macro eNB or a macro gNB, etc.) , It can also belong to the base station corresponding to the small cell, where the small cell can include: metro cell, micro cell, pico cell, femto cell, etc. These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-speed data transmission services.
  • Fig. 1 shows a schematic diagram of a communication system 100 applicable to an embodiment of the present application.
  • the communication system 100 may include at least one network device, such as the network device 110 shown in FIG. 1; the communication system 100 may also include at least one terminal device, such as the terminal device 120 shown in FIG. 1.
  • the network device 110 and the terminal device 120 may communicate through a wireless link.
  • FIG. 2 shows another schematic diagram of a communication system 200 applicable to an embodiment of the present application.
  • the communication system 200 may include at least two network devices, such as the network devices 210 and 220 shown in FIG. 2; the communication system 200 may also include at least one terminal device, such as the terminal shown in FIG. Equipment 230.
  • the terminal device 230 may establish a wireless link with the network device 110 and the network device 120 through dual connectivity (DC) technology or multi-connection technology.
  • the network device 210 may be, for example, a primary base station
  • the network device 220 may be, for example, a secondary base station.
  • the network device 210 is the network device when the terminal device 230 initially accesses, and is responsible for radio resource control (RRC) communication with the terminal device 230.
  • RRC radio resource control
  • the network device 220 may be added during RRC reconfiguration. , Used to provide additional wireless resources.
  • the network device 210 may be referred to as a master node (master node, MN).
  • master node MN
  • the master node may be an MeNB or MgNB, but is not limited thereto;
  • another network device, such as the network device 220 may be called a secondary node ( secondary node, SN), for example, the secondary node may be an SeNB or SgNB, and is not limited thereto.
  • multiple serving cells in the master node may form a master cell group (master cell group, MCG), including one primary cell (PCell) and optionally one or more serving cells (serving cell, SCell).
  • master cell group MCG
  • PCell primary cell
  • SCell serving cell
  • Multiple serving cells in a secondary node may form a secondary cell group (secondary cell group, SCG), including one primary and secondary cell (PSCell) and optionally one or more SCells.
  • SCG secondary cell group
  • the serving cell refers to the cell configured by the network for the terminal equipment to perform uplink and downlink transmission.
  • a terminal device can also have a communication connection with multiple network devices at the same time and can send and receive data.
  • one network device may be responsible for exchanging radio resource control messages with the terminal device and be responsible for communicating with the core network. Control plane entity interaction, then, the network device can be called MN, and the other network devices can be called SN.
  • the network device 220 may also be a primary base station or a primary node, and the network device 210 may be a secondary base station or a secondary node, which is not limited in this application.
  • the figure is only for ease of understanding, showing a wireless connection between two network devices and a terminal device, but this should not constitute any limitation to the applicable scenarios of this application.
  • the terminal device can also establish wireless links with more network devices.
  • Each communication device such as the network device 110 or the terminal device 120 in FIG. 1, or the network device 210, the network device 220, or the terminal device 230 in FIG. 2, may be configured with multiple antennas.
  • the plurality of antennas may include at least one transmitting antenna for transmitting signals and at least one receiving antenna for receiving signals.
  • each communication device additionally includes a transmitter chain and a receiver chain.
  • Those of ordinary skill in the art can understand that they can all include multiple components related to signal transmission and reception (such as processors, modulators, multiplexers). , Demodulator, demultiplexer or antenna, etc.). Therefore, multiple antenna technology can be used to communicate between network devices and terminal devices.
  • Beam It can be understood as a spatial resource, and can refer to a transmission or reception precoding vector with energy transmission directivity.
  • the directivity of energy transmission can refer to the precoding processing of the signal to be sent through the precoding vector, the signal after the precoding processing has a certain spatial directivity, and the signal after receiving the precoding processing by the precoding vector has a higher Good received power, such as meeting the signal-to-noise ratio of receiving and demodulating.
  • the directivity of energy transmission may also mean that the same signal sent from different spatial locations received through the precoding vector has different received power.
  • the transmitted or received precoding vector can be identified by index information, and the index information can correspond to the resource identification (identity, ID) of the configured terminal device.
  • the index information can correspond to the configured reference signal identification and reference signal resource.
  • the reference signal can be used for channel measurement or channel estimation.
  • the reference signal resource can be used to configure the transmission attributes of the reference signal, for example, the position of the time-frequency resource, the port mapping relationship, the power factor, and the scrambling code. For details, refer to the prior art.
  • the transmitting end device may send the reference signal based on the reference signal resource, and the receiving end device may receive the reference signal based on the reference signal resource.
  • the reference signal may include, for example, a channel state information reference signal (CSI-RS), a synchronization signal block (synchronization signal block, SSB), and a sounding reference signal (sounding reference signal, SRS).
  • the reference signal resources may include CSI-RS resources (CSI-RS resources), SSB resources, and SRS resources (SRS resources).
  • each reference signal resource can correspond to a reference signal resource identifier, for example, CSI-RS resource indicator (CSI-RS resource indicator, CRI), SSB resource indicator (SSB resource indicator, SSBRI) , SRS resource index (SRS resource index, SRI).
  • the SSB resource identifier may also be referred to as an SSB identifier (SSB index).
  • SSB index SSB identifier
  • the measurement involved in this application may include beam measurement, that is, beam quality information is obtained by measuring a reference signal.
  • the parameters used to measure beam quality include reference signal receiving power (RSRP), but are not limited to this.
  • RSRP reference signal receiving power
  • the beam quality can also be determined by reference signal receiving quality (RSRQ), signal-noise ratio (signal-noise ratio, SNR), signal-to-interference plus noise ratio (SINR, or signal interference for short). Noise ratio) and other parameters.
  • the index information may also be the index information displayed or implicitly carried by the signal or channel carried by the beam.
  • the same communication device may have different precoding vectors, and different devices may also have different precoding vectors, that is, corresponding to different beams.
  • a communication device can use one or more of multiple different precoding vectors at the same time, that is, one beam or multiple beams can be formed at the same time.
  • Mobility management is an important part of wireless mobile communication, and mobility measurement is the basis of mobility management.
  • Mobility management refers to the general term for related content involved in order to ensure that the communication link between the network and the terminal device is not interrupted due to the movement of the terminal device.
  • it can be divided into idle state (RRC_IDLE state) mobility management, inactive state (inactive state, or RRC_INACTIVE state) mobility management, and connected state (RRC_CONNECTED state) mobility management.
  • RRC_IDLE state idle state
  • inactive state inactive state
  • RRC_CONNECTED state connected state
  • Figure 3 shows a schematic flow chart of measurement in NR.
  • the measurement can be divided into two parts: physical layer measurement (layer 1 measurement) and RRC layer measurement (layer 3 measurement) according to the levels involved.
  • layer 1 measurement physical layer measurement
  • RRC layer measurement layer 3 measurement
  • the terminal device performs a specified type of measurement on the configured measurement resource.
  • the terminal device For SSB-based measurement, the terminal device combines the measurement results obtained on multiple SSBs with the same SSB index and PCI to obtain the beam-level layer 1 measurement result of the SSB corresponding to the SSB index of the cell corresponding to the PCI , And report to layer 3.
  • the terminal device For CSI-RS-based measurement, the terminal device combines the measurement results obtained on multiple CSI-RS resources with the same CSI-RS resource identifier and PCI to obtain the CSI-RS resource of the cell corresponding to the PCI Identify the beam layer 1 measurement result of the corresponding CSI-RS resource and report it to layer 3.
  • the foregoing process of combining measurement results on multiple measurement resources may be referred to as layer 1 filtering.
  • the specific merging method can be implemented by terminal equipment, which is not limited.
  • layer 3 After layer 3 receives the beam-level measurement results reported by layer 1, it selects or merges the layer 1 measurement results of each beam in the same cell to derive the cell-level layer 3 measurement results. Then, perform layer 3 filtering on the obtained cell-level layer 3 measurement results. The measurement result after layer 3 filtering will be used to verify whether the report trigger condition is met and the final report.
  • the terminal device may also need to report beam-level layer 3 measurement results.
  • the terminal device can directly perform layer 3 filtering on the layer 1 measurement results of each beam, and then select the measurement results to be reported from the filtered measurement results for reporting.
  • the specific selection method is not limited.
  • the terminal device When the reporting trigger condition is met, the terminal device sends a measurement report to the network.
  • Measurement object For example, it may be frequency information, such as frequency point or frequency band, and the measurement configuration (measConfig) may include a corresponding measurement object for each service frequency.
  • the frequency point information may include at least one of the following: SSB frequency (ssbFrequency), reference resource block (common resource block, common RB, such as common RB0) absolute frequency position (for example, PointA absolute frequency (refFreqCSI-RS)), etc.
  • This application is not limited to this.
  • the measurement object can be a certain frequency point.
  • the terminal device can measure the signal quality of the cell corresponding to the frequency point. When the measured signal quality of a certain cell meets the handover trigger condition, the terminal The device can determine that the cell is a cell that meets the trigger condition.
  • the network equipment will inform the terminal equipment of some information that it needs to know about the frequency point, including the configuration of the measurement resources on the frequency point, the cell list on the frequency point, and so on.
  • the measurement object can indicate the frequency/time domain position and subcarrier spacing of the reference signal to be measured.
  • the measurement object can correspond to an E-UTRA frequency point.
  • the report configuration mainly includes the report type of the measurement report (for example, periodic report or eventtriggered report), event trigger configuration, periodic report configuration, cell global identifier (CGI) report configuration (reportCGI), etc. Wait.
  • the event trigger configuration may include the event type of the reported event (such as A1-A6), the related configuration corresponding to the event (for example, it may include the threshold (for example, the threshold of the reporting condition corresponding to the reported event), the hysteresis value, etc.), the reference signal Type, reporting interval, reporting times, etc.
  • Periodic reporting configuration can include reference signal type, reporting interval, reporting times, maximum number of reporting cells, etc.
  • reportCGI is the terminal equipment reporting the CGI of the neighboring cell of the specified physical cell ID.
  • the event-triggered reporting configuration includes a series of measurement events:
  • Event A1 the serving cell trigger amount is higher than the threshold
  • Event A2 (the amount of triggering of the serving cell does not exceed the threshold);
  • Event A3 the trigger amount of the neighboring cell is better than the trigger amount of PCell/PSCell after considering the offset value
  • Event A4 (the trigger amount of the neighboring area is higher than the threshold);
  • Event A5 the trigger amount of PCell/PSCell does not exceed threshold 1, and the trigger amount of neighboring cells is higher than threshold 2;
  • Event A6 The trigger amount of the neighboring cell is better than that of the SCell after considering the deviation value.
  • Measurement identity can be considered as a combination of a measurement object and a report configuration.
  • the measurement identity can associate the measurement object with the report configuration, that is, a measurement identity can Indicates its associated measurement object and report configuration.
  • the measurement configuration information may include the content in the following Table 1. That is, the measurement configuration includes: the measurement identifier 1 and the first frequency point and the first report configuration associated with the measurement identifier 1, and the measurement identifier 2 and the second frequency associated with the measurement identifier 2. Point and the second report configuration, the measurement ID 3, and the third frequency point and the third report configuration associated with the measurement ID 3. It should be understood that the measurement objects associated with different measurement identifiers may be the same or different.
  • the first frequency point may be the same or different from the second frequency point, and the reporting configuration associated with different measurement objects may also be the same or different, for example, the second frequency point.
  • the reporting configuration and the third reporting configuration are the same or different. It should be understood that the measurement objects and reporting configurations associated with two different measurement identifiers are not completely the same.
  • the first frequency point and the second frequency point are the same, and the first report configuration and the second report configuration are different; or, the first frequency point Different from the second frequency point, the first report configuration and the second report configuration are the same; or, the first frequency point and the second frequency point are different, and the first report configuration and the second report configuration are different.
  • the measurement object and the reporting configuration can be combined to determine the details of the measurement for a measurement object.
  • Any measurement object/report configuration can be associated with any one/multiple/0 report configurations/measurement objects that have the same radio access technology (RAT).
  • Figure 4 shows an example for representing the relationship between the measurement identifier, the measurement object, and the report configuration.
  • Quantity configuration refers to the configuration of layer 3 filter coefficients. Before the trigger measurement is used to verify whether the report trigger condition is met, and before the report measurement is finally reported, layer 3 filtering is required first. The coefficient of layer 3 filtering is notified to the terminal device through the measurement quantity configuration.
  • Measurement interval configuration If the same frequency/different frequency/different system measurement involves switching the center frequency, the data transmission cannot be performed at the same time, and the network device needs to configure the measurement interval for it.
  • the cell is described by the higher layers from the perspective of resource management or mobility management or service unit.
  • the coverage of each network device can be divided into one or more cells, and the cell can be regarded as composed of certain frequency domain resources.
  • the cell may be an area within the coverage of the wireless network of the network device.
  • different cells may correspond to different network devices.
  • the network equipment in cell #1 and the network equipment in cell #2 may be different network equipment, such as a base station. That is, the cell #1 and the cell #2 can be managed by different base stations. In this case, it can be called the cell #1 and the cell #2 co-site, or in other words, the same site.
  • the network equipment in cell #1 and the network equipment in cell #2 can also be different radio frequency processing units of the same base station, for example, a radio remote unit (RRU), that is, cell #1 and cell #2 can be managed by the same base station, with the same baseband processing unit and intermediate frequency processing unit, but with different radio frequency processing units.
  • RRU radio remote unit
  • the overall 5G spectrum resources can be divided into the following two frequency ranges (frequency ranges, FR), as shown in Table 2 below.
  • FR1 and FR2 should not constitute any limitation in this application. This application does not exclude the possibility of defining other names in future agreements to represent the same or similar meanings.
  • FR1 and FR2 are used respectively in the following embodiments.
  • FR1 Sub 6G frequency band, in other words, the low frequency frequency band is the main 5G frequency band. In FR1, frequencies below 3 GHz can be called Sub 3G, and the remaining frequency bands can be called C-band. It should be understood that the frequency range corresponding to FR1 may correspond to 450MHz-6000MHz as shown in Table 2, but is not limited to this, and this application does not exclude the possibility of defining other ranges to represent the same or similar meaning in future agreements.
  • FR2 Millimeter waves above 6G, in other words, the high-frequency band is an extended band of 5G with abundant spectrum resources. It should be understood that the frequency range corresponding to FR2 may correspond to 24250MHz-52600MHz as shown in Table 2, but is not limited to this, and this application does not exclude the possibility of defining other ranges to represent the same or similar meaning in future agreements.
  • the frequency bands of FR1 and FR2 have different radio frequency characteristics.
  • the frequency band on FR1 has better coverage due to its wider beam.
  • terminal equipment and network equipment will use more massive multiple-input multiple-output (massive multiple-input multiple-output, Massive MIMO), beamforming (beamforming) and other technologies.
  • Massive MIMO massive multiple-input multiple-output
  • beamforming beamforming
  • a cell signal quality threshold s-Measure is configured in the measurement configuration (measConfig)
  • two measurement objects are configured, respectively marked as MO1 (MO1 belongs to FR1) and MO2 (MO2 belongs to FR2)
  • two report configurations are configured, which are respectively marked as reportConfig 1, reportConfig 2.
  • reportConfig1 is used for mobility, for example, event A3, reportConfig1 is associated with MO1. For this, it is hoped that when the signal quality of the PCell satisfies the s-Measure, the neighboring cell is not measured.
  • reportConfig2 is used for carrier management. For example, event A4, reportConfig2 is associated with MO2. For this, it is hoped that the neighbor cell measurement does not need to consider the signal quality of the PCell.
  • this application proposes a measurement method that can meet different measurement requirements.
  • the high-level parameters may be included in high-level signaling.
  • the high-level signaling may be, for example, a radio resource control (Radio Resource Control, RRC) message, or other high-level signaling, which is not limited in this application.
  • RRC Radio Resource Control
  • "used to indicate” may include used for direct indication and used for indirect indication, and may also include explicit indication and implicit indication.
  • the information indicated by a certain piece of information (configuration information as described below) is called information to be instructed.
  • information to be instructed In the specific implementation process, there are many ways to indicate the information to be instructed. For example, but not limited to, you can directly indicate the information to be instructed.
  • Information such as the information to be indicated or the index of the information to be indicated.
  • the information to be indicated can also be indicated indirectly by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while other parts of the information to be indicated are known or agreed in advance. For example, it is also possible to realize the indication of the to-be-indicated information by pre-arranged (for example, protocol stipulation) whether there is a certain cell, so as to reduce the indication overhead to a certain extent.
  • pre-acquisition may include being indicated by network device signaling or pre-defined, for example, protocol definition.
  • pre-defined can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate related information in the equipment (for example, including terminal equipment and network equipment). This application does not make any specific implementation methods. limited.
  • the “protocols” involved in the embodiments of the present application may refer to standard protocols in the communication field, for example, may include LTE protocol, NR protocol, and related protocols applied to future communication systems, which are not limited in this application.
  • FIG. 5 is a schematic interaction diagram of a measurement method 200 provided by an embodiment of the present application.
  • Method 200 includes:
  • S210 The terminal device receives measurement configuration information.
  • the foregoing measurement configuration information is sent by the network device to the terminal device.
  • Network equipment can configure s-MeasureConfig in measConfig.
  • the measurement configuration information received by the terminal device may include s-Measure.
  • the measurement configuration information may also include at least one of the following information: measurement object, report configuration, measurement identification, measurement quantity configuration, or measurement interval configuration, etc.
  • measurement object report configuration
  • measurement identification measurement identification
  • measurement quantity configuration or measurement interval configuration
  • the measurement configuration information may include the first measurement object and the second measurement object.
  • the network device configures the terminal device with the measurement task of the first measurement object and the measurement task of the second measurement object.
  • the terminal device measures the cell on the first measurement object based on the measurement task of the first measurement object
  • the terminal device measures the cell on the second measurement object based on the measurement task of the second measurement object.
  • the first measurement object may specifically be one or more measurement objects, and the frequency points of the one or more measurement objects belong to FR1.
  • the first measurement object is used as an example for illustration below. In other words, the first measurement object is used below. Indicates one or more measurement objects belonging to FR1.
  • the measurement result of the first measurement object may be used for mobility (for example, to find a target cell for handover); or, in other words, the measurement performed for mobility may consider the cell on the first measurement object.
  • the second measurement object may specifically be one or more measurement objects, and the frequency points of the one or more measurement objects belong to FR2.
  • the second measurement object is used as an example for illustration below. In other words, the second measurement object is used below. Indicates one or more measurement objects belonging to FR2.
  • the measurement result of the second measurement object can be used for carrier management (for example, if you want to find a good-quality neighbor and add it as an SCell); or, in other words, the cell on the second measurement object is mostly used for load balancing. balance), for example, can be added as SCell.
  • the network device can send information required for measurement (ie, measurement configuration information) to the terminal device, and the terminal device performs corresponding processing after receiving the measurement configuration information.
  • information required for measurement ie, measurement configuration information
  • the signaling sent by the network device can be a radio resource control (radio resource control, RRC) reconfiguration (RRC Reconfiguration) message.
  • RRC radio resource control
  • the measConfig cell of the signaling It contains the measurement configuration information sent to the terminal device.
  • the terminal device after receiving the RRCReconfiguration message, the terminal device can modify its measurement configuration database and measurement report list accordingly, and send an RRC reconfiguration complete (RRCReconfigurationComplete) message to the network device to successfully modify the configuration. To inform the network equipment.
  • RRC radio resource control
  • the measurement configuration information may be carried in an RRC message.
  • the RRC message may be an RRC reconfiguration message carrying a synchronization reconfiguration information element (ReconfigurationWithSync) or may be a mobility control information message.
  • the measurement configuration information may also be other messages, such as a medium access control (MAC) message or a downlink control information (DCI) message, and the embodiment of the present application is not limited thereto.
  • MAC medium access control
  • DCI downlink control information
  • Network equipment can configure s-MeasureConfig in measConfig.
  • the measurement configuration information received by the terminal device may include s-Measure.
  • the cell signal quality threshold which can also be referred to as the signal quality threshold
  • the cell signal quality threshold can be represented by s-Measure, which is configured for SpCell, for example, for the primary base station or the primary node (MN)
  • the s-Measure is configured for the PCell.
  • the s-Measure affects the cells in the MN; for another example, for the secondary base station or secondary node (SN), the s-Measure is configured for the PSCell.
  • the s-Measure affects the cells in the SN.
  • s-Measure is a threshold that can be used to judge the signal quality of the cell.
  • the signal quality can be characterized by RSRP or RSRQ.
  • the signal quality value of the primary cell ie SpCell
  • the signal quality value of the primary cell can be compared with the value of s-Measure. When the signal quality value of the cell is greater than the value of s-Measure, it can be considered that the signal quality of the cell is better; When the signal quality of is smaller than the value of s-Measure, it can be considered that the signal quality of the cell is poor.
  • s-Measure cell signal quality threshold, or signal quality threshold is only a name, and does not limit the protection scope of this application. S-Measure will be used uniformly below. Regarding the value of s-Measure, it may be pre-defined by the network device or protocol, or it may be configured by the network device according to the actual communication situation, which is not limited.
  • the s-Measure may include parameters related to beams, for example, denoted as parameter P, which may be used to indicate the number of good beams.
  • good beam can refer to a beam that meets preset conditions, for example, the quality of the beam reaches a certain threshold.
  • the threshold may be a threshold specified by the protocol or a threshold preset by the network device.
  • Each measurement object can correspond to a threshold; or, all measurement objects correspond to a threshold; or, the measurement objects are grouped, each group of measurement objects corresponds to a threshold, and so on.
  • the threshold can be configured or included in measConfig. When measConfig includes a threshold, the threshold is applicable to all measurement objects; when measConfig includes multiple thresholds, the multiple thresholds can correspond to one or more measurement objects, which is not limited.
  • the threshold may be for reference signals, for example, a threshold may be configured for SSB, and/or a threshold may be configured for CSI-RS.
  • the threshold may also be an existing beam threshold used to generate cell quality in the reused measurement object, that is, an SSB-based beam consolidation threshold (absThreshSSB-BlocksConsolidation), and/or a CSI-RS-based beam threshold Beam consolidation threshold (absThreshCSI-RS-Consolidation).
  • the network device configures s-MeasureConfig in measConfig, it can specify that s-MeasureConfig only affects the cell on the first measurement object. In other words, the s-MeasureConfig is only valid for the measurement on the first measurement object; s-MeasureConfig does not Affect the cell on the second measurement object, in other words, the s-MeasureConfig is invalid for the measurement on the second measurement object.
  • the terminal device when the signal quality value of SpCell is higher than the value of s-Measure, for the first measurement object, the terminal device does not need to check the non-serving cell (non-serving cell, or, It can also be called a neighboring cell or neighboring cell) for measurement; for the second measurement object, the non-serving cell measurement on the second measurement object will not be affected by s-Measure, regardless of the signal quality of the SpCell, the terminal device will always Or always measure the non-serving cell on the second measurement object.
  • the non-serving cell non-serving cell, or, It can also be called a neighboring cell or neighboring cell
  • the terminal device when the parameter P is included in the s-Measure, when the signal quality value of SpCell is higher than the value of s-Measure and the number of good beams exceeds P, for the first measurement object, the terminal device does not need to The measurement is performed on the non-serving cell (non-serving cell, or also called neighboring cell or neighboring cell) on the first measurement object; for the second measurement object, the non-serving cell measurement on the second measurement object does not Affected by s-Measure or good beam, regardless of the signal quality of the SpCell, the terminal device always or always measures the non-serving cell on the second measurement object.
  • the non-serving cell non-serving cell, or also called neighboring cell or neighboring cell
  • s-MeasureConfig only affects the cell on the first measurement object as an example, that is, for the cell on the first measurement object and the cell on the second measurement object, s-MeasureConfig affects the cell on the first measurement object , Does not affect the cell on the second measurement object, in other words, s-MeasureConfig is valid for the measurement on the first measurement object, and is invalid for the measurement on the second measurement object.
  • s-Measure is configured in the measurement configuration of the primary station (MN) or s-Measure is configured in the measurement configuration of the secondary station (SN)
  • MN primary station
  • SN secondary station
  • only the first measurement object will be affected Measurement of non-serving cells on the network.
  • the measurement of the non-serving cell on the second measurement object is not affected by the s-Measure.
  • the terminal device will always measure the non-serving cell on the second measurement object.
  • the s-Measure in the MN will only affect the non-serving cell of the first measurement object in the MN.
  • Measurement the measurement of the non-serving cell on the second measurement object in the MN is not affected by the s-Measure; the s-Measure in the SN only affects the measurement of the non-serving cell on the first measurement object in the SN.
  • the measurement of the non-serving cell on the second measurement object is not affected by the s-Measure.
  • the terminal device After the terminal device receives the measurement configuration information, it can perform measurement based on the received measurement configuration information. Taking the foregoing first measurement object and second measurement object as an example, the method 200 further includes S220:
  • the terminal device When the signal quality of the SpCell exceeds the value of s-Measure, the terminal device does not measure the non-serving cell on the first measurement object, and based on the measurement configuration information, measures the non-serving cell belonging to the second measurement object.
  • the measurement on the second measurement object is required. In other words, always measure the non-serving cell on the second measurement object, and report the measurement result when the measurement report trigger condition is met. Or, when the parameter P is included in the s-Measure, for the terminal device, if it receives the measurement task of the second measurement object configured by the network device for the terminal device, no matter whether the signal quality value of SpCell exceeds the value of s-Measure Or whether the number of good beams exceeds P, the measurement on the second measurement object must be performed. In other words, the non-serving cell on the second measurement object is always measured, and the measurement result is reported when the measurement report trigger condition is met. .
  • the terminal device For the terminal device, if it receives the measurement task of the first measurement object configured by the network device for the terminal device, when the signal quality value of the SpCell exceeds the value of s-Measure, the terminal device does not need to check the non-identity on the first measurement object.
  • the serving cell performs measurement; when the signal quality value of SpCell does not exceed the value of s-Measure, the terminal device performs measurement on the non-serving cell on the first measurement object.
  • the terminal device when the parameter P is included in the s-Measure, for the terminal device, if it receives the measurement task of the first measurement object configured by the network device for the terminal device, when the signal quality value of SpCell is higher than the value of s-Measure And when the number of good beams exceeds P, the terminal device does not need to measure the non-serving cell on the first measurement object; when the signal quality value of SpCell does not exceed the value of s-Measure or the number of good beams does not exceed P At this time, the terminal device measures the non-serving cell on the first measurement object.
  • the network device For the network device, if the network device configures the measurement on the second measurement object for the terminal device, regardless of whether the signal quality value of SpCell exceeds the value of s-Measure, the network device will receive when the measurement report trigger condition is met. Measurement report of terminal equipment. Or, when the parameter P is included in the s-Measure, for the network device, if the network device configures the measurement on the second measurement object for the terminal device, no matter whether the signal quality value of SpCell exceeds the value of s-Measure or Whether the number of good beams exceeds P, the network device will receive the measurement report from the terminal device when the measurement report trigger condition is met.
  • “exceeds” may mean “higher than or equal to”, and “not exceeded” or “not exceeded” means “less than”.
  • the signal quality of SpCell exceeds the value of s-Measure, it means that the signal quality of SpCell is higher than or equal to the value of s-Measure; the signal quality of SpCell does not exceed the value of s-Measure, which means that the signal quality of SpCell is lower than the value of s-Measure.
  • the value of s-Measure is the value of s-Measure.
  • “exceeds” may mean “higher than”, and “not exceeded” or “not exceeded” means “less than or equal to.” For example, if the signal quality of SpCell exceeds the value of s-Measure, it means that the signal quality of SpCell is higher than the value of s-Measure; the signal quality of SpCell does not exceed the value of s-Measure, which means that the signal quality of SpCell is lower than or equal to The value of s-Measure.
  • “exceeds” may mean “higher than”, and “not exceeded” or “not exceeded” means “less than”.
  • the signal quality of SpCell exceeds the value of s-Measure, it means that the signal quality of SpCell is higher than the value of s-Measure; the signal quality of SpCell does not exceed the value of s-Measure, which means that the signal quality of SpCell is lower than s-Measure.
  • the value of Measure for the case where the signal quality of SpCell is equal to the value of s-Measure, it can belong to the case that the signal quality of SpCell exceeds the value of s-Measure, or it can also belong to the case that the signal quality of SpCell does not exceed the value of s-Measure. There is no limit to the value of.
  • the measConfig carries s-MeasureConfig, and the measConfig includes reportConfig1 whose rsType is SSB and reportConfig2 whose rsType is set to SSB, and also includes MO1 (that is, an example of the first measurement object) and MO2 (that is, an example of the second measurement object).
  • MO1 is the corresponding ssbFrequency is a frequency on FR1
  • MO2 is the corresponding ssbFrequency is a frequency on FR2.
  • reportConfig1 is triggered by an event.
  • the event is Event A3 and is associated with MO1, corresponding to measId1.
  • reportConfig2 is also triggered by an event, for example, the event is Event A4 and is associated with MO2, corresponding to measId2.
  • the terminal device measures the neighboring cell corresponding to measId1.
  • the terminal device When the SSB-based cell signal quality (characterized by RSRP) of the SpCell after layer 3 filtering exceeds the RSRP indicated by s-MeasureConfig, the terminal device does not measure the neighboring cell corresponding to measId1.
  • RSRP RSRP indicated by s-MeasureConfig
  • the terminal device measures the neighboring cell corresponding to measId2.
  • first measurement object in method 200 can be replaced with “FR1” or “measurement object belonging to FR1”
  • second measurement object can be replaced with "FR2” or “measurement object belonging to FR2”.
  • the measurement result of the measurement object belonging to FR1 can be used for mobility (such as finding a target cell for handover).
  • mobility such as finding a target cell for handover
  • the measurement results of the measurement object belonging to FR2 can be used for carrier management (for example, if you want to find a good quality neighbor and add it as an SCell), in other words, you hope that the neighbor measurement does not need to consider SpCell
  • the signal quality for example, reportConfig2 in the above example may be used for carrier management.
  • the non-serving cell corresponding to the measurement task on the measurement object belonging to FR2 will always be measured, and the measurement of the non-serving cell corresponding to the measurement task on the measurement object belonging to FR1 considers the signal quality of SpCell, so that measConfig The s-Measure configuration in s-Measure meets different measurement requirements, making the application of s-Measure more flexible.
  • the cell signal quality threshold can also be represented by p.
  • “s-Measure” can be replaced by "parameter p", that is, the good Whether the number of beams exceeds p is used to determine whether to measure non-serving cells belonging to the FR1 measurement target. I won't repeat them here.
  • FIG. 7 is a schematic interaction diagram of a measurement method 300 provided by an embodiment of the present application.
  • Method 300 includes:
  • S310 The terminal device receives measurement configuration information.
  • the network device may send measurement configuration information to the terminal device.
  • the measurement configuration information includes: s-Measure configured for measurement objects belonging to FR1, and/or, configured for measurement objects belonging to FR2 s-Measure.
  • the first measurement object is still used to represent the measurement object belonging to FR1
  • the second measurement object is used to represent the measurement object belonging to FR2.
  • the description of the first measurement object and the second measurement object refer to the description in the method 200, which is not repeated here.
  • s-Measure can be configured separately for the first measurement object and the second measurement object. value.
  • a possible implementation is to configure s-Measure and s-MeasureConfigFR2 in measConfig: s-Measure only affects the first measurement object, and s-MeasureConfigFR2 only affects the second measurement object; or, configure s-Measure and s-MeasureConfigFR1 in measConfig : S-Measure only affects the second measurement object, s-MeasureConfigFR1 only affects the first measurement object. It should be understood that the naming of s-MeasureConfigFR1 and s-MeasureConfigFR2 is only an exemplary description for ease of understanding, and should not constitute any limitation to this application.
  • the non-serving cell on the first measurement object is not measured, and when the signal quality value of SpCell does not exceed the value of s-Measure, the measurement The non-serving cell on the first measurement object.
  • the signal quality value of SpCell exceeds the value of s-MeasureConfigFR2
  • the non-serving cell on the second measurement object is not measured, and when the signal quality value of SpCell does not exceed the value of s-MeasureConfigFR2, Measure the non-serving cell on the second measurement object.
  • the existing s-Measure can be used, and different measurement requirements can be met.
  • Another possible implementation is to introduce per-FR s-Measure, that is, the network device can separately configure the s-Measure value for the first measurement object and/or the s-Measure value for the second measurement object. Value, assuming that these two fields are called s-MeasureConfigFR1 and s-MeasureConfigFR2 respectively. That is, it can be understood that the first measurement object and the second measurement object independently use two s-Measure configurations.
  • the non-serving cell on the first measurement target is not measured, and when the signal quality value of SpCell does not exceed the value of s-MeasureConfigFR1, the first measurement A non-serving cell on the measurement object.
  • the signal quality value of SpCell exceeds the value of s-MeasureConfigFR2
  • the non-serving cell on the second measurement object is not measured, and when the signal quality value of SpCell does not exceed the value of s-MeasureConfigFR2, the measurement The non-serving cell on the second measurement object.
  • the network device configures s-MeasureConfigFR1, and correspondingly, s-MeasureConfigFR1 is carried in measConfig.
  • s-MeasureConfigFR1 affects the first measurement object. For example, when the signal quality value of SpCell exceeds the value of s-MeasureConfigFR1, the non-serving cell on the first measurement object is not measured.
  • the network device configures s-MeasureConfigFR2, and correspondingly, s-MeasureConfigFR2 is carried in measConfig.
  • s-MeasureConfigFR2 affects the second measurement object. For example, when the signal quality value of SpCell exceeds the value of s-MeasureConfigFR2, the non-serving cell on the second measurement object is not measured.
  • the network device configures s-MeasureConfigFR1 and s-MeasureConfigFR2, and correspondingly, s-MeasureConfigFR1 and s-MeasureConfigFR2 are carried in measConfig.
  • s-MeasureConfigFR1 affects the first measurement object
  • s-MeasureConfigFR2 affects the second measurement object.
  • the non-serving cell on the first measurement object is not measured, and when the signal quality value of SpCell does not exceed the value of s-MeasureConfigFR1, then Measure the non-serving cell on the first measurement object.
  • the signal quality value of SpCell exceeds the value of s-MeasureConfigFR2
  • the non-serving cell on the second measurement object is not measured, and when the signal quality value of SpCell does not exceed the value of s-MeasureConfigFR2, Then measure the non-serving cell on the second measurement object.
  • the network device configures s-MeasureConfig, and correspondingly, s-MeasureConfig is carried in measConfig, but s-MeasureConfigFR1 and s-MeasureConfigFR2 are not carried.
  • s-MeasureConfig affects the first measurement object and the second measurement object at the same time.
  • the network device configures s-MeasureConfig and s-MeasureConfigFR1, and correspondingly, s-MeasureConfig and s-MeasureConfigFR1 are carried in measConfig.
  • s-MeasureConfigFR1 affects the first measurement object, and s-MeasureConfig neither affects the first measurement object nor the second measurement object.
  • the s-MeasureConfig is a configuration error or failure. For example, in this case, when the signal quality value of SpCell exceeds the value of s-MeasureConfigFR1, the non-serving cell on the first measurement object is not measured.
  • the network device configures s-MeasureConfig and s-MeasureConfigFR2, and correspondingly, s-MeasureConfig and s-MeasureConfigFR2 are carried in measConfig.
  • s-MeasureConfigFR2 affects the second measurement object, and s-MeasureConfig neither affects the first measurement object nor the second measurement object.
  • the s-MeasureConfig is a configuration error or failure. For example, in this case, when the signal quality value of SpCell exceeds the value of s-MeasureConfigFR2, the non-serving cell on the second measurement object is not measured.
  • the network device can separately configure the s-Measure value for the first measurement object and/or the s-Measure value for the second measurement object, so as to meet different measurement requirements.
  • the terminal device After the terminal device receives the measurement configuration information, it can perform measurement based on the received measurement configuration information.
  • the method 300 also includes S320:
  • S320 The terminal device performs measurement based on the measurement configuration information.
  • the measurement configuration information includes the s-Measure configured for the measurement object belonging to FR1, which is recorded as s-Measure-FR1.
  • the s-Measure-FR1 may be s-Measure or s-MeasureConfigFR1.
  • the terminal device For the terminal device, if it receives the measurement task of the second measurement object configured by the network device for the terminal device, regardless of whether the signal quality value of SpCell exceeds the value of s-Measure-FR1, it must perform the measurement on the second measurement object. Measurement, in other words, always measure the non-serving cell on the second measurement object, and report the measurement result when the measurement report trigger condition is met.
  • the terminal device For the terminal device, if it receives the measurement task of the first measurement object configured by the network device for the terminal device, when the signal quality value of SpCell exceeds the value of s-Measure-FR1, the terminal device does not need to perform the measurement on the first measurement object. When the signal quality value of SpCell does not exceed the value of s-Measure-FR1, the terminal device measures the non-serving cell on the first measurement object.
  • the network device For the network device, if the network device configures the measurement on the second measurement object for the terminal device, regardless of whether the signal quality value of SpCell exceeds the value of s-Measure-FR1, the network device will meet the measurement report trigger condition Receive the measurement report from the terminal device.
  • the measurement configuration information includes the s-Measure configured for the measurement object belonging to FR2, which is recorded as s-Measure-FR2.
  • the s-Measure-FR2 may be s-Measure or s-MeasureConfigFR2.
  • the measurement task on the first measurement object must be performed. Measurement, in other words, always measure the non-serving cell on the first measurement object, and report the measurement result when the measurement report trigger condition is met.
  • the terminal device For the terminal device, if it receives the measurement task of the second measurement object configured by the network device for the terminal device, when the signal quality value of SpCell exceeds the value of s-Measure-FR2, the terminal device does not need to perform the measurement on the second measurement object. When the signal quality value of SpCell does not exceed the value of s-Measure-FR2, the terminal device measures the non-serving cell on the second measurement object.
  • the network device For the network device, if the network device configures the measurement on the first measurement object for the terminal device, regardless of whether the signal quality value of SpCell exceeds the value of s-Measure-FR2, the network device will meet the measurement report trigger condition Receive the measurement report from the terminal device.
  • the measurement configuration information includes the s-Measure configured for the measurement object belonging to FR1 and the s-Measure configured for the measurement object belonging to FR2, denoted as s-MeasureConfigFR1 and s-MeasureConfigFR2, respectively.
  • the terminal device For the terminal device, if it receives the measurement task of the first measurement object configured by the network device for the terminal device, when the signal quality value of SpCell exceeds the value of s-MeasureConfigFR1, the terminal device does not need to check the non-information on the first measurement object.
  • the serving cell performs measurement; when the signal quality value of the SpCell does not exceed the value of s-MeasureConfigFR1, the terminal device performs measurement on the non-serving cell on the first measurement object.
  • the terminal device For the terminal device, if it receives the measurement task of the second measurement object configured by the network device for the terminal device, when the signal quality value of the SpCell exceeds the value of s-MeasureConfigFR2, the terminal device does not need to check the second measurement object.
  • the serving cell performs measurement; when the signal quality value of the SpCell does not exceed the value of s-MeasureConfigFR2, the terminal device performs measurement on the non-serving cell on the second measurement object.
  • first measurement object in the method 300 can be replaced by "FR1” or “measurement object belonging to FR1”
  • second measurement object can be replaced by "FR2” or “measurement object belonging to FR2”.
  • the network device can separately configure s-Measure for the measurement object belonging to FR1 and the measurement object belonging to FR2, thereby determining whether to measure the measurement object belonging to FR1 according to the s-Measure corresponding to the SpCell and the measurement object belonging to FR1
  • According to the s-Measure corresponding to the SpCell and the measurement object belonging to FR2 determine whether to measure the non-serving cell corresponding to the measurement task on the measurement object belonging to FR2, so as to make the s- in measConfig
  • the Measure configuration meets different measurement requirements, making the application of s-Measure more flexible.
  • the parameter p may also be included in the s-Measure, and the situation when the parameter p is included in the s-Measure may refer to the method 200, which will not be repeated here.
  • the cell signal quality threshold may also be represented by p.
  • s-Measure can be replaced by "parameter p”. I won't repeat them here.
  • s-Measure and s-MeasureConfigFR2 Take the configuration of s-Measure and s-MeasureConfigFR2 in measConfig as an example.
  • s-Measure and s-MeasureConfigFR2 are configured in measConfig, s-Measure only affects the first measurement object, s-MeasureConfigFR2 only affects the second measurement object, it can also be replaced by the configuration P and P_FR2 in measConfig, P only affects the first measurement object , P_FR2 only affects the second measurement object.
  • the non-serving cell on the first measurement object is not measured, and when the number of good beams of the SpCell does not exceed P, the measurement is performed on the first measurement object.
  • Non-serving cell when the number of good beams of SpCell exceeds P_FR2, the non-serving cell on the second measurement object is not measured, and when the number of good beams of SpCell does not exceed P_FR2, the second measurement object is measured Non-serving cell on the Internet.
  • the network device separately configuring s-MeasureConfigFR1 for the first measurement object and s-MeasureConfigFR2 for the second measurement object as an example.
  • P_FR1 affects the first measurement object
  • P_FR2 affects the second measurement object.
  • the non-serving cell on the object will not be measured.
  • the second measurement will not be measured.
  • the non-serving cell on the object Other situations are similar, so I won't repeat them here.
  • FIG. 8 is a schematic interaction diagram of a measurement method 400 provided by an embodiment of the present application.
  • Method 400 includes:
  • S410 The terminal device receives measurement configuration information and instruction information.
  • Network equipment can configure s-MeasureConfig in measConfig.
  • the measurement configuration information received by the terminal device may include s-Measure.
  • the terminal device receives indication information from the network device, and the indication information is used to indicate the applicable scope of the s-Measure.
  • the indication information and the measurement configuration information can be sent to the terminal device separately, or can be sent to the terminal device in one signaling.
  • the indication information can be indicated to the terminal device through the measurement configuration information, which is not described in this embodiment of the application. limited.
  • a field or information element indicating the applicable range of s-Measure may be included in measConfig or s-MeasureConfig, so that the application of s-Measure is more flexible.
  • the field or information element may be represented by s-MeasureApplicability, for example. It should be understood that the naming of the field s-MeasureApplicability is only an exemplary description for ease of understanding, and should not constitute any limitation to the application, and it may have other names or expressions.
  • the first measurement object and the second measurement object are still taken as examples for exemplary description.
  • the first measurement object and the second measurement object refer to the description in the method 200, which will not be repeated here.
  • the network device when the network device is configured with s-Measure, the network device can send indication information to the terminal device, indicating that the s-Measure affects the first measurement object.
  • the s-Measure is the first measurement object.
  • the measurement object is configured.
  • the terminal device when the signal quality value of SpCell is higher than the value of s-Measure, for the first measurement object, the terminal device does not need to measure the non-serving cell on the first measurement object; for the second measurement object , The non-serving cell measurement on the second measurement object will not be affected by the s-Measure, regardless of the signal quality of the SpCell, the terminal device always measures the non-serving cell on the second measurement object.
  • the network device when the network device is configured with s-Measure, the network device can send indication information to the terminal device, indicating that the s-Measure affects the second measurement object.
  • the s-Measure is the first measurement object. 2. The configuration of the measurement object.
  • the terminal device when the signal quality value of SpCell is higher than the value of s-Measure, for the second measurement object, the terminal device does not need to measure the non-serving cell on the second measurement object; for the first measurement object , The non-serving cell measurement on the first measurement object will not be affected by the s-Measure, regardless of the signal quality of the SpCell, the terminal device always measures the non-serving cell on the first measurement object.
  • the network device when the network device is configured with s-Measure, the network device may send indication information to the terminal device, indicating that the s-Measure affects the first measurement object and the second measurement object, in other words, the s-Measure -Measure is configured for the first measurement object and the second measurement object.
  • the terminal device when the signal quality value of SpCell is higher than the value of s-Measure, regardless of whether it is the first measurement object or the second measurement object, the terminal device no longer needs to service non-service on the first measurement object and the second measurement object.
  • the cell is measured.
  • the network device when the network device is configured with an s-Measure, it can be assumed that the s-Measure affects the first measurement object and the second measurement object.
  • the s-Measure is the first measurement object and the second measurement object.
  • the second measurement object is configured, that is, the network device may not send the indication information for indicating the applicable scope of the s-Measure to the terminal device.
  • the terminal device when the signal quality value of SpCell is higher than the value of s-Measure, regardless of whether it is the first measurement object or the second measurement object, the terminal device no longer needs to service non-service on the first measurement object and the second measurement object.
  • the cell is measured.
  • the form of the indication information may be an enumerated (ENUMERATED) form. For example, you can select a value from FR1 (indicating that s-Measure only affects FR1), FR2 (indicating that s-Measure only affects FR2), and both (indicating that s-Measure affects both FR1 and FR2). For another example, you can also select a value from FR1 (indicating that s-Measure only affects FR1) and FR2 (indicating that s-Measure only affects FR2), and when the instruction information is not carried, it is considered that s-Measure affects both FR1 and FR2. FR2.
  • the form of the indication information may also be a BOOLEAN form.
  • TRUE indicates that s-Measure only affects FR1
  • FALSE indicates that s-Measure only affects FR2
  • when the indication field is not carried it indicates that s-Measure affects both FR1 and FR2.
  • TRUE indicates that s-Measure only affects FR2
  • FALSE indicates that s-Measure only affects FR1
  • FALSE indicates that s-Measure only affects FR1 and when the indicator field is not carried, it indicates that s-Measure affects both FR1 and FR2.
  • instruction information may also take other forms, which are not limited in the embodiment of the present application.
  • the method 400 further includes S420:
  • S420 The terminal device performs measurement according to the measurement configuration information and the instruction information.
  • Case 1 Assume that in S410, the terminal device receives indication information, which indicates that the s-Measure affects the first measurement object.
  • the terminal device For the terminal device, if it receives the measurement task of the second measurement object configured by the network device for the terminal device, no matter whether the signal quality value of SpCell exceeds the value of s-Measure, the measurement on the second measurement object is required. In other words, always measure the non-serving cell on the second measurement object, and report the measurement result when the measurement report trigger condition is met.
  • the terminal device For the terminal device, if it receives the measurement task of the first measurement object configured by the network device for the terminal device, when the signal quality value of the SpCell exceeds the value of s-Measure, the terminal device does not need to check the non-identity on the first measurement object.
  • the serving cell performs measurement; when the signal quality value of SpCell does not exceed the value of s-Measure, the terminal device performs measurement on the non-serving cell on the first measurement object.
  • the network device For the network device, if the network device configures the measurement on the second measurement object for the terminal device, regardless of whether the signal quality value of SpCell exceeds the value of s-Measure, the network device will receive when the measurement report trigger condition is met. Measurement report of terminal equipment.
  • Case 2 Assume that in S410, the terminal device receives indication information, which indicates that the s-Measure affects the second measurement object.
  • the terminal device For the terminal device, if it receives the measurement task of the first measurement object configured by the network device for the terminal device, no matter whether the signal quality value of SpCell exceeds the value of s-Measure, the measurement on the first measurement object is required. In other words, the non-serving cell on the first measurement object is always measured, and the measurement result is reported when the measurement report trigger condition is met.
  • the terminal device For the terminal device, if it receives the measurement task of the second measurement object configured by the network device for the terminal device, when the signal quality value of the SpCell exceeds the value of s-Measure, the terminal device does not need to check the second measurement object.
  • the serving cell performs measurement; when the signal quality value of SpCell does not exceed the value of s-Measure, the terminal device performs measurement on the non-serving cell on the second measurement object.
  • the network device For network devices, if the network device configures the measurement on the first measurement object for the terminal device, regardless of whether the signal quality value of SpCell exceeds the value of s-Measure, the network device will receive the message when the measurement report trigger condition is met. Measurement report of terminal equipment.
  • Case 3 Assume that the terminal device does not receive the indication information used to indicate the applicable scope of the s-Measure; or, in S420, the terminal device receives the indication information indicating that the s-Measure affects the first measurement object and the second measurement object .
  • the terminal device For the terminal device, if it receives the measurement task of the first measurement object configured by the network device for the terminal device, when the signal quality value of the SpCell exceeds the value of s-Measure, the terminal device does not need to check the non-identity on the first measurement object.
  • the serving cell performs measurement; when the signal quality value of SpCell does not exceed the value of s-Measure, the terminal device performs measurement on the non-serving cell on the first measurement object.
  • the terminal device For the terminal device, if it receives the measurement task of the second measurement object configured by the network device for the terminal device, when the signal quality value of the SpCell exceeds the value of s-Measure, the terminal device does not need to check the second measurement object.
  • the serving cell performs measurement; when the signal quality value of SpCell does not exceed the value of s-Measure, the terminal device performs measurement on the non-serving cell on the second measurement object.
  • measConfig carries s-MeasureConfig
  • measConfig contains rsType of SSB
  • reportConfig1 and reportConfig2 with rsType set to SSB also include MO1 (that is, an example of the first measurement object) and MO2 (that is, an example of the second measurement object).
  • MO1 is the corresponding ssbFrequency is a frequency on FR1
  • MO2 is the corresponding ssbFrequency is a frequency on FR2.
  • reportConfig1 is triggered by an event.
  • the event is Event A3 and is associated with MO1, corresponding to measId1.
  • reportConfig2 is also triggered by an event, for example, the event is Event A4 and is associated with MO2, corresponding to measId2.
  • measConfig also carries a field s-MeasureApplicability.
  • the s-MeasureConfig affects the cell on the first measurement object.
  • the s-MeasureConfig is only valid for the measurement on the first measurement object.
  • the terminal device measures the neighboring cell corresponding to measId1.
  • the terminal device does not measure the neighboring cell corresponding to measId1.
  • the terminal device measures the neighboring cell corresponding to measId2.
  • the value of s-MeasureApplicability is FR2.
  • the s-MeasureConfig affects the cell on the second measurement object.
  • the s-MeasureConfig is only valid for the measurement on the second measurement object.
  • the terminal device measures the neighboring cell corresponding to measId2.
  • the terminal device does not measure the neighboring cell corresponding to measId2.
  • the terminal device measures the neighboring cell corresponding to measId1.
  • the s-MeasureConfig affects the cells on the first measurement object and the second measurement object.
  • the s-MeasureConfig is effective for the measurements on the first measurement object and the second measurement object.
  • the terminal device measures the neighboring cells corresponding to measId1 and measId2.
  • the terminal device When the SSB-based cell signal quality (eg, characterized by RSRP) of the SpCell after being filtered by Layer 3 exceeds the RSRP indicated by s-MeasureConfig, the terminal device does not measure the neighboring cells corresponding to measId1 and measId2.
  • RSRP RSRP indicated by s-MeasureConfig
  • first measurement object in the method 400 can be replaced with “FR1” or “measurement object belonging to FR1”
  • second measurement object can be replaced with "FR2” or “measurement object belonging to FR2”.
  • the network device can indicate the applicable scope of the configured s-Measure to the terminal device, so that different instructions can be given according to different measurement requirements, so that the s-Measure configuration in measConfig meets different measurement requirements, so that s -The application of Measure is more flexible.
  • the parameter p may also be included in the s-Measure, and the situation when the parameter p is included in the s-Measure may refer to the method 200, which will not be repeated here.
  • the cell signal quality threshold may also be represented by p.
  • “s-Measure” can be replaced by "parameter p".
  • the indication information indicates that the parameter p affects the first measurement object, then the data in the SpCell
  • the terminal device no longer needs to measure the non-serving cell on the first measurement object. Other situations are similar, so I won't repeat them here.
  • the terminal equipment can separately consider whether to measure non-serving cells in different frequency ranges.
  • different measurement requirements can be considered, or, in other words, s-Measure
  • the terminal device can determine whether to stop measuring non-serving cells in the FR1 range according to the signal quality and s-Measure of the primary cell, and regardless of whether the signal quality of the primary cell exceeds the s-Measure, as long as there are non-serving cells in the FR2 range.
  • the terminal device For the measurement task of the serving cell, the terminal device always measures the non-serving cell that belongs to the FR2 range.
  • network devices can independently configure s-Measure for different frequency ranges.
  • the network device may also indicate the applicable scope of the s-Measure to the terminal device.
  • the above mainly considers the measurement for the non-serving cell belonging to the FR1 range and the measurement for the non-serving cell belonging to the FR2 range. Another embodiment is provided below, that is, it does not distinguish whether the non-serving cell belongs to the FR1 range or the FR2 range. , A measurement method for all non-serving cells. It should be understood that this embodiment can be used in combination with the embodiments described in FIGS. 5 to 8 or used alone, which is not limited.
  • the terminal device may use any of the following methods to determine whether to measure a non-serving cell (also called a neighboring cell or a neighboring cell).
  • the non-serving cell may be a non-serving cell belonging to the FR1 range, or may also be a measurement of a non-serving cell belonging to the FR2 range, which is not limited.
  • the s-Measure may include parameters related to the beam, and based on the parameters and the s-Measure, it is determined whether to measure the non-serving cell.
  • the s-Measure may include parameters related to the beam, for example, denoted as parameter P, which may be used to indicate the number of good beams.
  • parameter P parameters related to the beam
  • the terminal device does not need to deal with non-serving cells (also It can be called neighboring cell or neighboring cell) for measurement.
  • the terminal device can determine that no more Perform measurement on non-serving cells (or also called stopping measurement on non-serving cells).
  • mode 1 can be used in combination with the embodiments described in FIGS. 5 to 8 above. Take the combined use mode 1 and the embodiment described in FIG. 5 as an example.
  • the terminal device when the signal quality of the SpCell exceeds the value of s-Measure, the terminal device does not measure the non-serving cell on the first measurement object, and based on the measurement configuration information, the measurement belongs to the second measurement object Non-serving cell.
  • the signal quality of SpCell exceeds the value of s-Measure, and the number of good beams is greater than or equal to P, the non-serving cell and terminal equipment on the first measurement object are not measured Based on the measurement configuration information, the measurement belongs to the non-serving cell on the second measurement object.
  • the measurement configuration may include beam-related parameters, and determine whether to measure non-serving cells based on the parameters.
  • the cell-level s-Measure can be changed to a beam-level threshold denoted by P.
  • the terminal device does not need to measure non-serving cells (also called neighboring cells or neighboring cells).
  • the non-serving cell may be a non-serving cell that belongs to the FR1 range.
  • the serving cell or, may also be the measurement of a non-serving cell belonging to the FR2 range, which is not limited.
  • good beam refer to the description of Method 1 above.
  • the terminal device determines that it does not need to measure all non-serving cells (or it can also be called stopping the measurement of non-serving cells) .
  • FIG. 9 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1000 may include a communication unit 1100 and a processing unit 1200.
  • the communication device 1000 may implement the steps or processes performed by the terminal device corresponding to the above method embodiment, for example, it may be a terminal device, or a chip or circuit configured in the terminal device.
  • the communication unit 1100 is configured to: receive measurement configuration information, where the measurement configuration information includes a cell signal quality threshold; the processing unit 1200 is configured to: do not measure when the signal quality of the primary cell exceeds the cell signal quality threshold Non-serving cells belonging to the first frequency range, and based on the measurement configuration information, measuring the non-serving cells belonging to the second frequency range.
  • the frequency of the first frequency range is less than the frequency of the second frequency range.
  • the cell handover refers to the measurement result of the measurement object belonging to the first frequency range.
  • the cell signal quality threshold includes a parameter P used to indicate the number of good beams (good beams).
  • the communication device 1000 may implement the steps or processes executed by the terminal device in the method 200 according to the embodiment of the present application.
  • the communication device 1000 may include a unit for executing the method executed by the terminal device in the method 200 in FIG. 5 .
  • each unit in the communication device 1000 and other operations and/or functions described above are used to implement the corresponding process of the method 200 in FIG. 5.
  • the communication unit 1100 can be used to execute step 210 in the method 200
  • the processing unit 1200 can be used to execute step 220 in the method 200.
  • the communication unit 1100 is configured to: receive measurement configuration information, where the measurement configuration information includes a first cell signal quality threshold and/or a second cell signal quality threshold, where the first cell signal quality threshold is used to determine Whether to measure a non-serving cell belonging to the first frequency range, the second cell signal quality threshold is used to determine whether to measure a non-serving cell belonging to the second frequency range; the processing unit 1200 is used to perform measurement based on measurement configuration information.
  • the measurement configuration information includes a first cell signal quality threshold and/or a second cell signal quality threshold, where the first cell signal quality threshold is used to determine Whether to measure a non-serving cell belonging to the first frequency range, the second cell signal quality threshold is used to determine whether to measure a non-serving cell belonging to the second frequency range; the processing unit 1200 is used to perform measurement based on measurement configuration information.
  • the processing unit 1200 is configured to not measure non-serving cells belonging to the first frequency range when the signal quality of the primary cell exceeds the signal quality threshold of the first cell.
  • the processing unit 1200 is configured to: when the signal quality of the primary cell exceeds the signal quality threshold of the second cell, not to measure non-serving cells belonging to the second frequency range.
  • the frequency of the first frequency range is less than the frequency of the second frequency range.
  • the cell handover refers to the measurement result of the measurement object belonging to the first frequency range.
  • the first cell signal quality threshold includes a first parameter used to indicate the number of good beams
  • the second cell signal quality threshold includes a second parameter used to indicate the number of good beams
  • the communication device 1000 may implement the steps or processes executed by the terminal device in the method 300 according to the embodiment of the present application.
  • the communication device 1000 may include a unit for executing the method executed by the terminal device in the method 300 in FIG. 7 .
  • the units in the communication device 1000 and the other operations and/or functions described above are used to implement the corresponding process of the method 300 in FIG. 7.
  • the communication unit 1100 can be used to execute step 310 in the method 300
  • the processing unit 1200 can be used to execute step 320 in the method 300.
  • the communication unit 1100 is configured to: receive a cell signal quality threshold and indication information, where the indication information is used to indicate the cell signal quality threshold to determine whether to measure a non-serving cell belonging to the first frequency range, or to indicate The information is used to indicate the cell signal quality threshold to determine whether to measure a non-serving cell belonging to the second frequency range; the processing unit 1200 is used to: perform measurement according to the cell signal quality threshold and the indication information.
  • the indication information is used to indicate the cell signal quality threshold to determine whether to measure a non-serving cell belonging to the first frequency range, and the processing unit 1200 is used to: when the signal quality of the primary cell exceeds the cell signal quality threshold, not Measure non-serving cells belonging to the first frequency range.
  • the indication information is used to indicate the cell signal quality threshold to determine whether to measure a non-serving cell belonging to the second frequency range, and the processing unit 1200 is used to: when the signal quality of the primary cell exceeds the cell signal quality threshold, not Measure non-serving cells belonging to the second frequency range.
  • the frequency of the first frequency range is less than the frequency of the second frequency range.
  • the cell handover refers to the measurement result of the measurement object belonging to the first frequency range.
  • the cell signal quality threshold includes a parameter P used to indicate the number of good beams (good beams).
  • the communication device 1000 may implement the steps or processes executed by the terminal device in the method 400 corresponding to the embodiment of the present application.
  • the communication device 1000 may include a unit for executing the method executed by the terminal device in the method 400 in FIG. 8 .
  • each unit in the communication device 1000 and other operations and/or functions described above are used to implement the corresponding process of the method 400 in FIG. 8.
  • the communication unit 1100 may be used to execute step 410 in the method 400
  • the processing unit 1200 may be used to execute step 420 in the method 400.
  • the communication unit 1100 is configured to: receive measurement configuration information, the measurement configuration information includes a cell signal quality threshold, and the cell signal quality threshold includes a parameter P used to indicate the number of good beams, or ,
  • the measurement configuration information includes P;
  • the processing unit 1200 is configured to perform measurement based on the measurement configuration information.
  • the cell signal quality threshold includes a parameter P used to indicate the number of good beams
  • the processing unit 1200 is configured to: measure the signal quality of the primary cell based on the measurement configuration information; when the signal quality of the primary cell exceeds the cell signal quality threshold, And when the number of good beams exceeds P, non-serving cells are not measured.
  • the measurement configuration information includes P; the processing unit 1200 is configured to: do not measure non-serving cells when the number of good beams in the primary cell exceeds P.
  • the communication unit 1100 in the communication device 1000 may be implemented by the transceiver 2020 in the terminal device 2000 shown in FIG. 10, and the processing unit 1200 in the communication device 1000 may be implemented by the terminal device 2000 shown in FIG. The processor 2010 in 2000 is implemented.
  • the communication unit 1100 in the communication device 1000 may also be an input/output interface.
  • the communication device 1000 can implement the steps or processes executed by the network device corresponding to the above method embodiment, for example, it can be a network device, or a chip or circuit configured in the network device.
  • the processing unit 1200 is configured to: generate measurement configuration information, where the measurement configuration information includes a first cell signal quality threshold and/or a second cell signal quality threshold, where the first cell signal quality threshold is used to determine whether A non-serving cell belonging to the first frequency range is measured, and the second cell signal quality threshold is used to determine whether to measure a non-serving cell belonging to the second frequency range; the communication unit 1100 is used to send measurement configuration information.
  • the measurement configuration information includes a first cell signal quality threshold and/or a second cell signal quality threshold, where the first cell signal quality threshold is used to determine whether A non-serving cell belonging to the first frequency range is measured, and the second cell signal quality threshold is used to determine whether to measure a non-serving cell belonging to the second frequency range; the communication unit 1100 is used to send measurement configuration information.
  • the frequency of the first frequency range is less than the frequency of the second frequency range.
  • the cell handover refers to the measurement result of the measurement object belonging to the first frequency range.
  • the first cell signal quality threshold includes a first parameter used to indicate the number of good beams
  • the second cell signal quality threshold includes a second parameter used to indicate the number of good beams
  • the communication device 1000 may implement the steps or processes executed by the network device in the method 300 according to the embodiment of the present application.
  • the communication device 1000 may include a unit for executing the method executed by the network device in the method 300 in FIG. 7 .
  • the units in the communication device 1000 and the other operations and/or functions described above are used to implement the corresponding process of the method 300 in FIG. 7.
  • the communication unit 1100 may be used to execute step 310 in the method 300.
  • the processing unit 1200 is configured to: generate indication information; the communication unit 1100 is configured to: send a cell signal quality threshold and indication information, the indication information is used to indicate the cell signal quality threshold to determine whether the measurement belongs to the first The non-serving cell in the frequency range, or the indication information is used to indicate the cell signal quality threshold to determine whether to measure the non-serving cell belonging to the second frequency range.
  • the frequency of the first frequency range is less than the frequency of the second frequency range.
  • the cell handover refers to the measurement result of the measurement object belonging to the first frequency range.
  • the cell signal quality threshold includes a parameter P used to indicate the number of good beams (good beams).
  • the communication device 1000 may implement the steps or processes executed by the network device in the method 400 according to the embodiment of the present application.
  • the communication device 1000 may include a unit for executing the method executed by the network device in the method 400 in FIG. 8 .
  • each unit in the communication device 1000 and other operations and/or functions described above are used to implement the corresponding process of the method 400 in FIG. 8.
  • the communication unit 1100 may be used to execute step 410 in the method 400.
  • the processing unit 1200 is configured to generate measurement configuration information, the measurement configuration information includes a cell signal quality threshold, and the cell signal quality threshold includes a parameter P used to indicate the number of good beams.
  • the measurement configuration information includes P; the communication unit 1100 is configured to send measurement configuration information.
  • the communication unit in the communication device 1000 can be implemented by the transceiver 3200 in the network device 3000 shown in FIG. 11, and the processing unit 1200 in the communication device 1000 can be implemented by the network device shown in FIG. The processor 3100 in 3000 is implemented.
  • the communication unit 1100 in the communication device 1000 may also be an input/output interface.
  • FIG. 10 is a schematic structural diagram of a terminal device 2000 provided by an embodiment of the present application.
  • the terminal device 2000 may be applied to the system shown in FIG. 1 or FIG. 2 to perform the functions of the terminal device in the foregoing method embodiment, or to implement the steps or processes executed by the terminal device in the foregoing method embodiment.
  • the terminal device 2000 includes a processor 2010 and a transceiver 2020.
  • the terminal device 2000 further includes a memory 2030.
  • the processor 2010, the transceiver 2002, and the memory 2030 can communicate with each other through an internal connection path to transfer control and/or data signals.
  • the memory 2030 is used for storing computer programs, and the processor 2010 is used for downloading from the memory 2030. Call and run the computer program to control the transceiver 2020 to send and receive signals.
  • the terminal device 2000 may further include an antenna 2040 for sending uplink data or uplink control signaling output by the transceiver 2020 through a wireless signal.
  • the aforementioned processor 2010 and the memory 2030 can be combined into a processing device, and the processor 2010 is configured to execute the program code stored in the memory 2030 to realize the aforementioned functions.
  • the memory 2030 may also be integrated in the processor 2010 or independent of the processor 2010.
  • the processor 2010 may correspond to the processing unit in FIG. 9.
  • the above transceiver 2020 may correspond to the communication unit in FIG. 9 and may also be referred to as a transceiver unit.
  • the transceiver 2020 may include a receiver (or called receiver, receiving circuit) and a transmitter (or called transmitter, transmitting circuit). Among them, the receiver is used to receive signals, and the transmitter is used to transmit signals.
  • the terminal device 2000 shown in FIG. 10 can implement various processes involving the terminal device in the method embodiments shown in FIGS. 5 to 8.
  • the operation and/or function of each module in the terminal device 2000 are respectively for implementing the corresponding process in the foregoing method embodiment.
  • the above-mentioned processor 2010 can be used to perform the actions described in the previous method embodiments implemented by the terminal device, and the transceiver 2020 can be used to perform the terminal device described in the previous method embodiments to send to or receive from the network device action.
  • the transceiver 2020 can be used to perform the terminal device described in the previous method embodiments to send to or receive from the network device action.
  • the above-mentioned terminal device 2000 may further include a power supply 2050 for providing power to various devices or circuits in the terminal device.
  • the terminal device 2000 may also include one or more of an input unit 2060, a display unit 2070, an audio circuit 2080, a camera 2090, and a sensor 2100.
  • the audio circuit A speaker 2082, a microphone 2084, etc. may also be included.
  • FIG. 11 is a schematic structural diagram of a network device provided by an embodiment of the present application, for example, it may be a schematic structural diagram of a base station.
  • the base station 3000 may be applied to the system shown in FIG. 1 or FIG. 2 to perform the functions of the network device in the foregoing method embodiment, or implement the steps or processes performed by the network device in the foregoing method embodiment.
  • the base station 3000 may include one or more radio frequency units, such as a remote radio unit (RRU) 3100 and one or more baseband units (BBU) (also known as digital units). ,Digital unit,DU)3200.
  • the RRU 3100 may be called a transceiver unit, and corresponds to the communication unit 1100 in FIG. 9.
  • the transceiver unit 3100 may also be called a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 3101 and a radio frequency unit 3102.
  • the transceiver unit 3100 may include a receiving unit and a transmitting unit, the receiving unit may correspond to a receiver (or receiver, receiving circuit), and the transmitting unit may correspond to a transmitter (or transmitter or transmitting circuit).
  • the RRU 3100 part is mainly used for sending and receiving of radio frequency signals and conversion of radio frequency signals and baseband signals, for example, for sending instruction information to terminal equipment.
  • the BBU 3200 part is mainly used for baseband processing, control of base stations, and so on.
  • the RRU 3100 and the BBU 3200 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 3200 is the control center of the base station, and may also be called a processing unit, which may correspond to the processing unit 1200 in FIG. 9, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU processing unit
  • the BBU may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment, for example, to generate the foregoing indication information, or configure measurement information.
  • the BBU 3200 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network (such as an LTE network) of a single access standard, or support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 3200 further includes a memory 3201 and a processor 3202.
  • the memory 3201 is used to store necessary instructions and data.
  • the processor 3202 is configured to control the base station to perform necessary actions, for example, to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 3201 and the processor 3202 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the base station 3000 shown in FIG. 11 can implement various processes involving network devices in the method embodiments of FIGS. 5 to 8.
  • the operations and/or functions of the various modules in the base station 3000 are to implement the corresponding procedures in the foregoing method embodiments.
  • the above-mentioned BBU 3200 can be used to perform the actions described in the previous method embodiments implemented by the network device, and the RRU 3100 can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • the RRU 3100 can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • the embodiment of the present application also provides a processing device, including a processor and an interface.
  • the processor may be used to execute the method in the foregoing method embodiment.
  • the processing device may be a chip.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system on chip (SoC), or It is a central processor unit (CPU), it can also be a network processor (NP), it can also be a digital signal processing circuit (digital signal processor, DSP), or it can be a microcontroller (microcontroller unit). , MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processing circuit
  • microcontroller unit microcontroller unit
  • MCU programmable logic device
  • PLD programmable logic device
  • the steps of the above method can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. In order to avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • serial link DRAM SLDRAM
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code runs on a computer, the computer executes the embodiment shown in FIG. 9 The method of any one of the embodiments.
  • the present application also provides a computer-readable medium that stores program code, and when the program code runs on a computer, the computer executes the steps shown in FIGS. 5 to 8 The method of any one of the embodiments is shown.
  • the present application also provides a system, which includes the aforementioned one or more terminal devices and one or more network devices.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disc, SSD)) etc.
  • the network equipment in the above apparatus embodiments corresponds to the network equipment or terminal equipment in the terminal equipment and method embodiments, and the corresponding modules or units execute the corresponding steps.
  • the communication unit transmits the receiving or sending in the method embodiments.
  • other steps can be executed by the processing unit (processor).
  • the processing unit processor
  • component used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, a processor, an object, an executable file, an execution thread, a program, and/or a computer running on a processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or threads of execution, and components may be located on one computer and/or distributed between two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • a component can be based on a signal having one or more data packets (for example, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals) Communicate through local and/or remote processes.
  • data packets for example, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种测量方法和通信装置。该方法包括:接收测量配置信息,测量配置信息包括小区信号质量阈值;主小区的信号质量超过小区信号质量阈值的情况下,不测量属于第一频率范围的非服务小区,以及基于测量配置信息,测量属于第二频率范围的非服务小区。通过本申请,可以使得小区信号质量阈值的使用更加灵活,也能够尽可能地满足不同的测量需求。

Description

测量方法和通信装置
本申请要求于2019年02月02日提交中国专利局、申请号为201910107837.9、申请名称为“测量方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种测量方法和通信装置。
背景技术
移动性管理是无线移动通信中的重要组成部分。移动性管理指的是为了保证网络设备与终端设备之间的通信链路不因终端设备的移动而中断所涉及到的相关内容的统称。示例性的,根据终端设备的状态可以分为空闲态移动性管理、去激活态移动性管理、连接态移动性管理。测量结果是移动性管理的考量因素之一。
因此,如何合理、高效测量小区的信号质量成为亟待解决的问题。
发明内容
本申请提供一种测量方法和通信装置,以期终端设备合理高效地测量小区的信号质量,并尽可能地满足不同的测量需求。
第一方面,提供了一种测量方法。该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或电路执行,本申请对此不作限定。
该方法可以包括:接收测量配置信息,测量配置信息包括小区信号质量阈值;主小区的信号质量超过小区信号质量阈值的情况下,不测量属于第一频率范围的非服务小区,以及基于测量配置信息,测量属于第二频率范围的非服务小区。
其中,小区信号质量阈值,或者,也可以称为信号质量阈值,或者,也可以称为s-Measure的取值。s-Measure、小区信号质量阈值、或信号质量阈值其命名仅是一种名称,不对本申请的保护范围造成限定。关于s-Measure的取值,可以是网络设备或者协议预先规定好的,也可以是网络设备根据实际通信情况配置的,对此,不作限定。
其中,主小区(SpCell,或者也可以称为特殊小区(special cell)),如果是主基站或主节点(master node,MN),该主小区可以指主小区(primary cell,PCell);如果是辅基站或辅节点(secondary node,SN),该主小区可以指主辅小区(primary secondary cell,PSCell)。
其中,属于第一频率范围的非服务小区(non-serving cell),即表示测量对象上的非服务小区,且该测量对象属于第一频率范围;属于第二频率范围的非服务小区,即表示测量对象上的非服务小区,且该测量对象属于第二频率范围。
基于上述技术方案,终端设备可以分别考虑是否要测量不同频率范围内的非服务小 区,换句话说,可以考虑不同的测量需求,或者,换句话说,可以使得小区信号质量阈值的使用更加灵活。例如,终端设备可以根据主小区的信号质量和小区信号质量阈值,来确定是否测量属于第一频率范围的非服务小区,换句话说,是否测量属于第一频率范围的非服务小区,可以根据主小区的信号质量有没有超过小区信号质量阈值来确定。又如,不管主小区的信号质量有没有超过小区信号质量阈值,终端设备均可以基于测量配置信息来测量属于第二频率范围的非服务小区,换句话说,只要有属于第二频率范围的非服务小区的测量任务,终端设备总是(always)测量该属于第二频率范围的非服务小区。从而,可以使得小区信号质量阈值的使用更加灵活,也能够尽可能地满足不同的测量需求。也就是说,可以使得小区信号质量阈值仅对第一频率范围的非服务小区生效。
结合第一方面,在第一方面的某些实现方式中,第一频率范围的频率小于第二频率范围的频率。
基于上述技术方案,第一频率范围的频率小于第二频率范围的频率。一种可能的方式中,相对于第二频率范围上的频带,第一频率范围上的频带波束较宽,覆盖性较好;相对于第一频率范围上的频带,第二频率范围上的频带会更多使用波束赋形等技术。因此,根据本申请,针对为了移动性(mobility)而进行的测量(如针对第一频率范围的测量),会考虑主小区的信号质量,即主小区满足小区信号质量阈值(即s-Measure)时,不用测邻区;针对为了载波管理或负载均衡(load balance)(如配置载波聚合或双连接或多连接等)而进行的测量(如针对第二频率范围的测量),不用考虑主小区的信号质量。
结合第一方面,在第一方面的某些实现方式中,小区切换参考属于第一频率范围的测量对象的测量结果。
结合第一方面,在第一方面的某些实现方式中,小区信号质量阈值包括用于表示好波束(good beam)的个数的参数P。
基于上述技术方案,针对为了小区切换而进行的测量,会考虑主小区的信号质量,即主小区满足小区信号质量阈值(即s-Measure)时,不用测邻区,从而可以避免不必要的测量,节约资源。
第二方面,提供了一种测量方法。该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或电路执行,本申请对此不作限定。
该方法可以包括:接收测量配置信息,测量配置信息包括第一小区信号质量阈值和/或第二小区信号质量阈值,其中,第一小区信号质量阈值用于确定是否测量属于第一频率范围的非服务小区,第二小区信号质量阈值用于确定是否测量属于第二频率范围的非服务小区;基于测量配置信息,进行测量。
基于上述技术方案,终端设备可以分别考虑是否要测量不同频率范围内的非服务小区,换句话说,可以考虑不同的测量需求。例如,终端设备可以根据主小区的信号质量和第一小区信号质量阈值,来确定是否测量属于第一频率范围的非服务小区,换句话说,是否测量属于第一频率范围的非服务小区,可以根据主小区的信号质量有没有超过第一小区信号质量阈值来确定。又如,终端设备可以根据主小区的信号质量和第二小区信号质量阈值,来确定是否测量属于第二频率范围的非服务小区,换句话说,是否测量属于第二频率范围的非服务小区,可以根据主小区的信号质量有没有超过第二小区信号质量阈值来确定。其中,第一小区信号质量阈值和第二小区信号质量阈值可以相同,也可以不同,对此 不作限定。从而通过根据不同的频率范围或者说根据不同的测量需求配置独立的小区信号质量阈值,可以使得尽可能地满足不同的测量需求。
结合第二方面,在第二方面的某些实现方式中,基于测量配置信息,进行测量,包括:在主小区的信号质量超过第一小区信号质量阈值的情况下,不测量属于第一频率范围的非服务小区。
结合第二方面,在第二方面的某些实现方式中,基于测量配置信息,进行测量,包括:在主小区的信号质量超过第二小区信号质量阈值的情况下,不测量属于第二频率范围的非服务小区。
结合第二方面,在第二方面的某些实现方式中,第一频率范围的频率小于第二频率范围的频率。
结合第二方面,在第二方面的某些实现方式中,小区切换参考属于第一频率范围的测量对象的测量结果。
结合第二方面,在第二方面的某些实现方式中,第一小区信号质量阈值包括用于表示好波束(good beam)的个数的第一参数,第二小区信号质量阈值包括用于表示好波束的个数的第二参数。
第三方面,提供了一种测量方法。该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片或电路执行,本申请对此不作限定。
该方法可以包括:生成测量配置信息,测量配置信息包括第一小区信号质量阈值和/或第二小区信号质量阈值,其中,第一小区信号质量阈值用于确定是否测量属于第一频率范围的非服务小区,第二小区信号质量阈值用于确定是否测量属于第二频率范围的非服务小区;发送测量配置信息。
结合第三方面,在第三方面的某些实现方式中,第一频率范围的频率小于第二频率范围的频率。
结合第三方面,在第三方面的某些实现方式中,小区切换参考属于第一频率范围的测量对象的测量结果。
结合第三方面,在第三方面的某些实现方式中,第一小区信号质量阈值包括用于表示好波束(good beam)的个数的第一参数,第二小区信号质量阈值包括用于表示好波束(good beam)的个数的第二参数。
第四方面,提供了一种测量方法。该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或电路执行,本申请对此不作限定。
该方法可以包括:接收小区信号质量阈值和指示信息,指示信息用于指示小区信号质量阈值用于确定是否测量属于第一频率范围的非服务小区,或,指示信息用于指示小区信号质量阈值用于确定是否测量属于第二频率范围的非服务小区;根据小区信号质量阈值和指示信息,进行测量。
其中,该指示信息和小区信号质量阈值可以分别发送给终端设备,也可以在一个信令中(例如测量配置信息中)发送给终端设备,不作限定。
基于上述技术方案,终端设备可以分别考虑是否要测量不同频率范围内的非服务小区,换句话说,可以考虑不同的测量需求,或者,换句话说,可以使得小区信号质量阈值的使用更加灵活。例如,网络设备可以向终端设备发送指示信息,以指示该小区信号质量 阈值用于确定是否测量属于第一频率范围的非服务小区,即终端设备可以根据主小区的信号质量和小区信号质量阈值,来确定是否测量属于第一频率范围的非服务小区,换句话说,是否测量属于第一频率范围的非服务小区,可以根据主小区的信号质量有没有超过小区信号质量阈值来确定。又如,网络设备可以向终端设备发送指示信息,以指示该小区信号质量阈值用于确定是否测量属于第二频率范围的非服务小区,即终端设备可以根据主小区的信号质量和小区信号质量阈值,来确定是否测量属于第二频率范围的非服务小区,换句话说,是否测量属于第二频率范围的非服务小区,可以根据主小区的信号质量有没有超过小区信号质量阈值来确定。从而,可以使得小区信号质量阈值的使用更加灵活,也能够尽可能地满足不同的测量需求。
结合第四方面,在第四方面的某些实现方式中,指示信息用于指示小区信号质量阈值用于确定是否测量属于第一频率范围的非服务小区,根据小区信号质量阈值和指示信息,包括:在主小区的信号质量超过小区信号质量阈值的情况下,不测量属于第一频率范围的非服务小区。
结合第四方面,在第四方面的某些实现方式中,指示信息用于指示小区信号质量阈值用于确定是否测量属于第二频率范围的非服务小区,根据小区信号质量阈值和指示信息,进行测量,包括:在主小区的信号质量超过小区信号质量阈值的情况下,不测量属于第二频率范围的非服务小区。
结合第四方面,在第四方面的某些实现方式中,第一频率范围的频率小于第二频率范围的频率。
结合第四方面,在第四方面的某些实现方式中,小区切换参考属于第一频率范围的测量对象的测量结果。
结合第四方面,在第四方面的某些实现方式中,小区信号质量阈值包括用于表示好波束(good beam)的个数的参数P。
第五方面,提供了一种测量方法。该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片或电路执行,本申请对此不作限定。
该方法可以包括:生成指示信息;发送小区信号质量阈值和指示信息,指示信息用于指示小区信号质量阈值用于确定是否测量属于第一频率范围的非服务小区,或,指示信息用于指示小区信号质量阈值用于确定是否测量属于第二频率范围的非服务小区。
结合第五方面,在第五方面的某些实现方式中,第一频率范围的频率小于第二频率范围的频率。
结合第五方面,在第五方面的某些实现方式中,小区切换参考属于第一频率范围的测量对象的测量结果。
第六方面,提供了一种测量方法。该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或电路执行,本申请对此不作限定。
该方法可以包括:接收测量配置信息,测量配置信息包括小区信号质量阈值,小区信号质量阈值包括用于表示好波束(good beam)的个数的参数P,或,测量配置信息包括P;基于测量配置信息,进行测量。
结合第六方面,在第六方面的某些实现方式中,小区信号质量阈值包括用于表示好波束的个数的参数P;基于测量配置信息,进行测量,包括:基于测量配置信息,测量主小 区的信号质量;在主小区的信号质量超过小区信号质量阈值,且good beam的个数超过P的情况下,不测量非服务小区。
结合第六方面,在第六方面的某些实现方式中,测量配置信息包括P;基于测量配置信息,进行测量,包括:在主小区good beam的个数超过P的情况下,不测量非服务小区。
第七方面,提供了一种测量方法。该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片或电路执行,本申请对此不作限定。
该方法可以包括:生成测量配置信息,测量配置信息包括小区信号质量阈值,所述小区信号质量阈值包括用于表示好波束(good beam)的个数的参数P,或,测量配置信息包括P;发送测量配置信息。
第八方面,提供了一种通信装置,包括:通信单元和处理单元,其中,通信单元用于:接收测量配置信息,测量配置信息包括小区信号质量阈值;处理单元用于:在主小区的信号质量超过小区信号质量阈值的情况下,不测量属于第一频率范围的非服务小区,以及基于测量配置信息,测量属于第二频率范围的非服务小区。
其中,该装置可以配置在或本身即为终端设备。
结合第八方面,在第八方面的某些实现方式中,第一频率范围的频率小于第二频率范围的频率。
结合第八方面,在第八方面的某些实现方式中,小区切换参考属于第一频率范围的测量对象的测量结果。
结合第八方面,在第八方面的某些实现方式中,小区信号质量阈值包括用于表示好波束(good beam)的个数的参数P。
其中,该装置中的各单元分别用于执行上述第一方面以及第一方面的各实现方式中的测量方法的各步骤。
在一种设计中,该装置为通信芯片,通信芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
在另一种设计中,所述装置为通信设备,通信设备可以包括用于发送信息或数据的发射机,以及用于接收信息或数据的接收机。
第九方面,提供了一种通信装置,包括:通信单元和处理单元,其中,通信单元用于:接收测量配置信息,测量配置信息包括第一小区信号质量阈值和/或第二小区信号质量阈值,其中,第一小区信号质量阈值用于确定是否测量属于第一频率范围的非服务小区,第二小区信号质量阈值用于确定是否测量属于第二频率范围的非服务小区;处理单元用于:基于测量配置信息,进行测量。
其中,该装置可以配置在或本身即为终端设备。
结合第九方面,在第九方面的某些实现方式中,处理单元用于:在主小区的信号质量超过第一小区信号质量阈值的情况下,不测量属于第一频率范围的非服务小区。
结合第九方面,在第九方面的某些实现方式中,处理单元用于:在主小区的信号质量超过第二小区信号质量阈值的情况下,不测量属于第二频率范围的非服务小区。
结合第九方面,在第九方面的某些实现方式中,第一频率范围的频率小于第二频率范围的频率。
结合第九方面,在第九方面的某些实现方式中,小区切换参考属于第一频率范围的测 量对象的测量结果。
结合第九方面,在第九方面的某些实现方式中,第一小区信号质量阈值包括用于表示好波束(good beam)的个数的第一参数,第二小区信号质量阈值包括用于表示好波束的个数的第二参数。
其中,该装置中的各单元分别用于执行上述第二方面以及第二方面的各实现方式中的测量方法的各步骤。
在一种设计中,该装置为通信芯片,通信芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
在另一种设计中,所述装置为通信设备,通信设备可以包括用于发送信息或数据的发射机,以及用于接收信息或数据的接收机。
第十方面,提供了一种通信装置,包括:通信单元和处理单元,其中,处理单元用于:生成测量配置信息,测量配置信息包括第一小区信号质量阈值和/或第二小区信号质量阈值,其中,第一小区信号质量阈值用于确定是否测量属于第一频率范围的非服务小区,第二小区信号质量阈值用于确定是否测量属于第二频率范围的非服务小区;通信单元用于:发送测量配置信息。
其中,该装置可以配置在或本身即为网络设备(如基站)。
结合第十方面,在第十方面的某些实现方式中,第一频率范围的频率小于第二频率范围的频率。
结合第十方面,在第十方面的某些实现方式中,小区切换参考属于第一频率范围的测量对象的测量结果。
结合第十方面,在第十方面的某些实现方式中,第一小区信号质量阈值包括用于表示好波束(good beam)的个数的第一参数,第二小区信号质量阈值包括用于表示好波束的个数的第二参数。
其中,该装置中的各单元分别用于执行上述第三方面以及第三方面的各实现方式中的测量方法的各步骤。
在一种设计中,该通信装置为通信芯片,通信芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
在另一种设计中,所述通信装置为通信设备,通信芯片可以包括用于发送信息或数据的发射机,以及用于接收信息或数据的接收机。
第十一方面,提供了一种通信装置,包括:通信单元和处理单元,其中,通信单元用于:接收小区信号质量阈值和指示信息,指示信息用于指示小区信号质量阈值用于确定是否测量属于第一频率范围的非服务小区,或,指示信息用于指示小区信号质量阈值用于确定是否测量属于第二频率范围的非服务小区;处理单元用于:根据小区信号质量阈值和指示信息,进行测量。
其中,该装置可以配置在或本身即为终端设备。
结合第十一方面,在第十一方面的某些实现方式中,指示信息用于指示小区信号质量阈值用于确定是否测量属于第一频率范围的非服务小区,处理单元用于:在主小区的信号质量超过小区信号质量阈值的情况下,不测量属于第一频率范围的非服务小区。
结合第十一方面,在第十一方面的某些实现方式中,指示信息用于指示小区信号质量 阈值用于确定是否测量属于第二频率范围的非服务小区,处理单元用于:在主小区的信号质量超过小区信号质量阈值的情况下,不测量属于第二频率范围的非服务小区。
结合第十一方面,在第十一方面的某些实现方式中,第一频率范围的频率小于第二频率范围的频率。
结合第十一方面,在第十一方面的某些实现方式中,小区切换参考属于第一频率范围的测量对象的测量结果。
结合第十一方面,在第十一方面的某些实现方式中,小区信号质量阈值包括用于表示好波束(good beam)的个数的参数P。
其中,该装置中的各单元分别用于执行上述第四方面以及第四方面的各实现方式中的测量方法的各步骤。
在一种设计中,该装置为通信芯片,通信芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
在另一种设计中,所述装置为通信设备,通信设备可以包括用于发送信息或数据的发射机,以及用于接收信息或数据的接收机。
第十二方面,提供了一种通信装置,包括:通信单元和处理单元,其中,处理单元用于:生成指示信息;通信单元用于:发送小区信号质量阈值和指示信息,指示信息用于指示小区信号质量阈值用于确定是否测量属于第一频率范围的非服务小区,或,指示信息用于指示小区信号质量阈值用于确定是否测量属于第二频率范围的非服务小区。
其中,该装置可以配置在或本身即为网络设备(如基站)。
结合第十二方面,在第十二方面的某些实现方式中,第一频率范围的频率小于第二频率范围的频率。
结合第十二方面,在第十二方面的某些实现方式中,小区切换参考属于第一频率范围的测量对象的测量结果。
结合第十二方面,在第十二方面的某些实现方式中,小区信号质量阈值包括用于表示好波束(good beam)的个数的参数P。
其中,该装置中的各单元分别用于执行上述第五方面以及第五方面的各实现方式中的测量方法的各步骤。
在一种设计中,该通信装置为通信芯片,通信芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
在另一种设计中,所述通信装置为通信设备,通信芯片可以包括用于发送信息或数据的发射机,以及用于接收信息或数据的接收机。
第十三方面,提供了一种通信装置,包括:通信单元和处理单元,其中,通信单元用于:接收测量配置信息,测量配置信息包括小区信号质量阈值,小区信号质量阈值包括用于表示好波束(good beam)的个数的参数P,或,测量配置信息包括P;处理单元用于:基于测量配置信息,进行测量。
其中,该装置可以配置在或本身即为终端设备。
结合第十三方面,在第十三方面的某些实现方式中,小区信号质量阈值包括用于表示好波束的个数的参数P;处理单元用于:基于测量配置信息,测量主小区的信号质量;在主小区的信号质量超过小区信号质量阈值,且good beam的个数超过P的情况下,不测量 非服务小区。
结合第十三方面,在第十三方面的某些实现方式中,测量配置信息包括P;处理单元用于:基于测量配置信息,进行测量,包括:在good beam的个数超过P的情况下,不测量非服务小区。
结合第十三方面,在第十三方面的某些实现方式中,小区信号质量阈值包括用于表示好波束(good beam)的个数的参数P。
其中,该装置中的各单元分别用于执行上述第六方面以及第六方面的各实现方式中的测量方法的各步骤。
在一种设计中,该装置为通信芯片,通信芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
在另一种设计中,所述装置为通信设备,通信设备可以包括用于发送信息或数据的发射机,以及用于接收信息或数据的接收机。
第十四方面,提供了一种通信装置,包括:通信单元和处理单元,其中,处理单元用于:生成测量配置信息,测量配置信息包括小区信号质量阈值,所述小区信号质量阈值包括用于表示好波束(good beam)的个数的参数P;通信单元用于:发送测量配置信息。
其中,该装置可以配置在或本身即为网络设备(如基站)。
其中,该装置中的各单元分别用于执行上述第七方面以及第七方面的各实现方式中的测量方法的各步骤。
在一种设计中,该通信装置为通信芯片,通信芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
在另一种设计中,所述通信装置为通信设备,通信芯片可以包括用于发送信息或数据的发射机,以及用于接收信息或数据的接收机。
第十五方面,提供了一种通信设备,包括,处理器,存储器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该通信设备执行第一方面、第二方面、第四方面、或第六方面及其各种可能实现方式中的测量方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
可选的,该通信设备还包括,发射机(发射器)和接收机(接收器)。
第十六方面,提供了一种通信设备,包括,处理器,存储器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该通信设备执行第三方面、第五方面、或第七方面及其各种实现方式中的测量方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
可选地,该通信设备还包括,发射机(发射器)和接收机(接收器)。
第十七方面,提供了一种通信系统,上述第十五方面提供的通信设备和/或第十六方面提供的通信设备。
在一个可能的设计中,该通信系统还可以包括本申请实施例提供的方案中与通信设备 进行交互的其他设备。
第十八方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面至第七方面中任一种可能实现方式中的方法。
第十九方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面至第七方面中任一种可能实现方式中的方法。
第二十方面,提供了一种芯片系统,包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得安装有该芯片系统的通信设备执行上述第一方面至第七方面中任一种可能实现方式中的方法。
其中,该芯片系统可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
第二十一方面,提供了一种通信系统,包括前述的终端设备和基站。
基于本申请实施例,终端设备可以分别考虑是否要测量不同频率范围内的非服务小区,换句话说,可以考虑不同的测量需求,或者,换句话说,可以使得小区信号质量阈值的使用更加灵活。例如,终端设备可以根据主小区的信号质量和小区信号质量阈值,来确定是否测量属于第一频率范围的非服务小区,且不管主小区的信号质量有没有超过小区信号质量阈值,只要有属于第二频率范围的非服务小区的测量任务,终端设备总是会测量该属于第二频率范围的非服务小区。又如,针对不同的频率范围,网络设备可以独立配置小区信号质量阈值。又如,网络设备也可以向终端设备指示该小区信号质量阈值的适用范围等等。从而,可以使得小区信号质量阈值的使用更加灵活,也能够尽可能地满足不同的测量需求。
附图说明
图1示出了适用于本申请实施例的通信系统的一示意图;
图2示出了适用于本申请实施例的通信系统的又一示意图;
图3示出了NR中测量的一示意性流程图;
图4示出了测量标识、测量对象、和报告配置间关系的一示意图;
图5是本申请一实施例提出的测量方法的示意性交互图;
图6适用于本申请一实施例提出的测量方法的示意图;
图7是本申请另一实施例提出的测量方法的示意性交互图;
图8是本申请又一实施例提出的测量方法的示意性交互图;
图9是本申请的通信装置的一例的示意性框图;
图10是本申请的终端设备的一例的示意性结构图;
图11是本申请的网络设备的一例的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term  evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、第五代(5th generation,5G)系统或新无线(new radio,NR)或者其他演进的通信系统等。
本申请实施例中的终端设备也可以称为:用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。
另外,本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备也可以称为接入网设备或无线接入网设备,可以是传输接收点(transmission reception point,TRP),还可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,可以是WLAN中的接入点 (access point,AP),可以是新型无线系统(new radio,NR)系统中的gNB,本申请实施例并不限定。
在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备、或者控制面CU节点(CU-CP节点)和用户面CU节点(CU-UP节点)以及DU节点的RAN设备。
网络设备为小区提供服务,终端设备通过网络设备分配的传输资源(例如,频域资源,或者说,频谱资源)与小区进行通信,该小区可以属于宏基站(例如,宏eNB或宏gNB等),也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
为便于理解本申请实施例,首先结合图1和图2详细说明适用于本申请实施例的通信系统。
图1示出了适用于本申请实施例的通信系统100的示意图。如图所示,该通信系统100可以包括至少一个网络设备,例如图1所示的网络设备110;该通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备120。网络设备110与终端设备120可通过无线链路通信。
图2示出了适用于本申请实施例的通信系统200的另一示意图。如图所示,该通信系统200可以包括至少两个网络设备,例如图2中所示的网络设备210和220;该通信系统200还可以包括至少一个终端设备,例如图2中所示的终端设备230。该终端设备230可以通过双连接(dual connectivity,DC)技术或者多连接技术与网络设备110和网络设备120建立无线链路。其中,网络设备210例如可以为主基站,网络设备220例如可以为辅基站。此情况下,网络设备210为终端设备230初始接入时的网络设备,负责与终端设备230之间的无线资源控制(radio resource control,RRC)通信,网络设备220可以是RRC重配置时添加的,用于提供额外的无线资源。
此外,如图2所示,该两个网络设备之中,可以有一个网络设备,如网络设备210,负责与该终端设备交互无线资源控制消息,并负责和核心网控制平面实体交互,那么,该网络设备210可以称之为主节点(master node,MN),例如,主节点可以是MeNB或者MgNB,不限定于此;则另一个网络设备,如网络设备220,可以称之为辅节点(secondary node,SN),例如,辅节点可以是SeNB或者SgNB,不限定于此。其中,主节点中的多个服务小区可以组成主小区组(master cell group,MCG),包括一个主小区(primary cell,PCell)和可选的一个或多个服务小区(serving cell,SCell)。辅节点中的多个服务小区可以组成辅小区组(secondary cell group,SCG),包括一个主辅小区(primary secondary cell,PSCell)和可选的一个或多个SCell。服务小区是指网络配置给终端设备进行上下行传输的小区。
类似的,终端设备也可以同时与多个网络设备存在通信连接并可收发数据,该多个网络设备之中,可以有一个网络设备负责与该终端设备交互无线资源控制消息,并负责和核心网控制平面实体交互,那么,该网络设备可以称之为MN,则其余的网络设备可以称之为SN。
当然,也可以是网络设备220为主基站或主节点,网络设备210为辅基站或辅节点, 本申请对此不做限定。另外,图中仅为便于理解,示出了两个网络设备与终端设备之间无线连接的情形,但这不应对本申请所适用的场景构成任何限定。终端设备还可以与更多的网络设备建立无线链路。
各通信设备,如图1中的网络设备110或终端设备120,或者图2中的网络设备210、网络设备220或终端设备230,可以配置多个天线。该多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。另外,各通信设备还附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。因此,网络设备与终端设备之间可通过多天线技术通信。
为便于理解本申请实施例,下面首先对本申请中涉及的几个术语做简单介绍。
1、波束:可以理解为空间资源,可以指具有能量传输指向性的发送或接收预编码向量。
能量传输指向性可以指通过预编码向量对所需发送的信号进行预编码处理,经过该预编码处理的信号具有一定的空间指向性,接收经过该预编码向量进行预编码处理后的信号具有较好的接收功率,如满足接收解调信噪比等。能量传输指向性也可以指通过该预编码向量接收来自不同空间位置发送的相同信号具有不同的接收功率。
该发送或接收预编码向量能够通过索引信息进行标识,该索引信息可以对应配置终端设备的资源标识(identity,ID),比如,索引信息可以对应配置的参考信号的标识与参考信号资源。参考信号可用于信道测量或者信道估计等。参考信号资源可用于配置参考信号的传输属性,例如,时频资源位置、端口映射关系、功率因子以及扰码等,具体可参考现有技术。发送端设备可基于参考信号资源发送参考信号,接收端设备可基于参考信号资源接收参考信号。
其中,参考信号例如可以包括信道状态信息参考信号(channel state information reference signal,CSI-RS)、同步信号块(synchronization signal block,SSB)以及探测参考信号(sounding reference signal,SRS)。与此对应地,参考信号资源可以包括CSI-RS资源(CSI-RS resource)、SSB资源、SRS资源(SRS resource)。为了区分不同的参考信号资源,每个参考信号资源可对应于一个参考信号资源的标识,例如,CSI-RS资源标识(CSI-RS resource indicator,CRI)、SSB资源标识(SSB resource indicator,SSBRI)、SRS资源索引(SRS resource index,SRI)。
其中,SSB资源标识也可以称为SSB标识(SSB index)。
应理解,上文中列举的参考信号以及相应的参考信号资源仅为示例性说明,不应对本申请构成任何限定,本申请并不排除在未来的协议中定义其他参考信号来实现相同或相似功能的可能。
本申请中涉及的测量可以包括波束测量,即通过测量参考信号获得波束质量信息,用于衡量波束质量的参数包括参考信号接收功率(reference signal receiving power,RSRP),但不限于此。例如,波束质量也可以通过参考信号接收质量(reference signal receiving quality,RSRQ),信噪比(signal-noise ratio,SNR),信号与干扰噪声比(signal to interference plus noise ratio,SINR,简称信干噪比)等参数衡量。
可选地,索引信息也可以是通过波束承载的信号或信道显示或隐式承载的索引信息。
可选地,同一通信装置(比如终端设备或网络设备)可以有不同的预编码向量,不同的设备也可以有不同的预编码向量,即对应不同的波束。针对通信装置的配置或者能力,一个通信装置在同一时刻可以使用多个不同的预编码向量中的一个或者多个,即同时可以形成一个波束或者多个波束。
2、测量:移动性管理是无线移动通信中的重要组成部分,移动性测量是移动性管理的基础。移动性管理指的是为了保证网络与终端设备之间的通信链路不因终端设备的移动而中断所涉及到的相关内容的统称。示例性的,根据终端设备的状态可以分为空闲态(RRC_IDLE state)移动性管理、、去激活态(inactive state,或者RRC_INACTIVE state)移动性管理、连接态(RRC_CONNECTED state)移动性管理。测量结果是移动性管理的考量因素之一。
图3示出了NR中测量的一示意性流程图。
一种可能的方式中,可以根据所涉及到的层次将测量划分为物理层测量(层1测量)和RRC层测量(层3测量)两部分。在物理层,终端设备在配置的测量资源上进行指定类型的测量。
对于基于SSB的测量而言,终端设备对多个具有相同的SSB index和PCI的SSB上得到的测量结果进行合并,得到该PCI对应的小区的该SSB index对应的SSB的beam级层1测量结果,并上报给层3。
对于基于CSI-RS的测量而言,终端设备对多个具有相同的CSI-RS资源标识和PCI的CSI-RS资源上得到的测量结果进行合并,得到该PCI对应的小区的该CSI-RS资源标识对应的CSI-RS资源的beam层1测量结果,并上报给层3。
上述对于多个测量资源上的测量结果进行合并的过程可以被称为是层1滤波。具体的合并方式是可以是终端设备来实现,对此,不作限定。
层3在接收到了层1上报的beam级测量结果后,对同一个小区的各个beam的层1测量结果进行选择或合并,以推导出该小区级的层3测量结果。然后再对得到的小区级层3测量结果进行层3滤波。层3滤波后的测量结果会用于验证上报触发条件是否满足和最终的上报。
此外,终端设备也可能需要上报beam级的层3测量结果。此时终端设备可以直接对各个beam的层1测量结果进行层3滤波,再在滤波后的测量结果中选择出要上报的测量结果进行上报。具体选择的方式不作限定。
当上报触发条件满足时,终端设备向网络发送测量报告。
可以理解的是,上述的测量流程为示例,本申请实施例对具体的测量方式不做限定。
3、测量对象(measurement object,MO):例如可以为频率信息,例如可以为频点或频段,测量配置(measConfig)中可以会为每一个服务频率包含对应的测量对象。其中,频点信息可以包括以下至少一项:SSB的频率(ssbFrequency)、参考资源模块(common resource block,common RB,如common RB0)的绝对频率位置(例如PointA绝对频率(refFreqCSI-RS))等,本申请不局限于此。测量对象可以为某一频点,针对该频点,例如,终端设备可以测量对应该频点的小区的信号质量,在测得的某个小区的信号质量满足切换的触发条件的情况下,终端设备可以确定该小区为满足触发条件的小区。
在测量对象配置中,网络设备将告知终端设备对于该频点进行测量需要知道的一些信 息,包括该频点上测量资源的配置情况、该频点上的小区列表等等。对于同频测量和异频测量,测量对象可以指示要测的参考信号的频域/时域位置和子载波间隔,对于异系统的演进通用移动通信系统陆地无线接入(evolved-UMTS terrestrial radio access,E-UTRA)测量,测量对象可以对应一个E-UTRA频点。
4、上报配置(reporting configuration,ReportConfig):在上报配置中,网络设备将告知终端设备具体要执行的测量的细节。上报配置主要包括测量报告的上报类型(例如,周期(periodical)上报或事件触发(eventTriggered)上报)、事件触发配置、周期上报配置、小区全局标识(cell global identifier,CGI)上报配置(reportCGI)等等。具体的,事件触发配置可以包括上报事件的事件类型(如A1-A6)、事件对应的相关配置(例如,可以包括阈值(例如,上报事件对应的上报条件阈值)、迟滞值等)、参考信号类型、上报间隔、上报次数等。周期上报配置可以包括参考信号类型、上报间隔、上报次数、最大上报小区数目等。reportCGI是终端设备对指定物理小区ID的邻区的CGI进行上报。
以事件触发上报配置为例,事件触发上报配置包含了一系列测量事件:
事件A1(服务小区触发量高于阈值);
事件A2(服务小区触发量不超过阈值);
事件A3(邻区触发量考虑偏移值后好于PCell/PSCell的触发量);
事件A4(邻区触发量高于阈值);
事件A5(PCell/PSCell的触发量不超过阈值1,邻区的触发量高于阈值2);
事件A6(邻区的触发量考虑偏差值后好于SCell的触发量)。
5、测量标识(measurement identity,measID):一个测量标识可以认为是一个测量对象和一个上报配置的结合,换句话说说,该测量标识可以将测量对象和上报配置关联起来,即一个测量标识可以表示其关联的测量对象和上报配置。例如,测量配置信息可以包括以下表格1中的内容,即测量配置包括:测量标识1以及测量标识1关联的第一频点和第一上报配置,测量标识2以及测量标识2关联的第二频点和第二上报配置,测量标识3以及测量标识3关联的第三频点和第三上报配置。应理解,不同的测量标识关联的测量对象可以相同或者不同,例如,第一频点可以与第二频点相同或者不同,不同的测量对象关联的上报配置也可以相同或者不同,例如,第二上报配置和第三上报配置相同或者不同。应理解,不同的两个测量标识关联的测量对象和上报配置不完全相同,例如,第一频点和第二频点相同,第一上报配置和第二上报配置不同;或者,第一频点和第二频点不同,第一上报配置和第二上报配置相同;或者,第一频点和第二频点不相同,第一上报配置和第二上报配置也不相同。
表1
测量标识 测量对象 上报配置
1 第一频点 第一上报配置
2 第二频点 第二上报配置
3 第三频点 第三上报配置
测量对象和上报配置结合在一起就可以确定对于一个测量对象测量的细节。任一个测量对象/上报配置可以关联到任何一个/多个/0个与之拥有相同无线接入技术(radio access  technology,RAT)的报告配置/测量对象上。图4示出了一个用于表示测量标识、测量对象、和报告配置间关系的例子。
6、测量量配置(quantity configuration):指的是对于层3滤波系数的配置。在触发测量量用于验证上报触发条件是否满足之前,以及上报测量量最终上报之前,都需要首先进行层3滤波。层3滤波的系数就是通过测量量配置告知终端设备的。
7、测量间隔配置:如果同频/异频/异系统测量涉及切换中心频率,则和数据传输不能同时进行,需要网络设备为其配置测量间隔。
8、小区(cell):小区是高层从资源管理或移动性管理或服务单元的角度来描述的。每个网络设备的覆盖范围可以被划分为一个或多个小区,且该小区可以看作由一定频域资源组成。小区可以为网络设备的无线网络的覆盖范围内的区域。在本申请实施例中,不同的小区可以对应不同的网络设备。例如,小区#1中的网络设备和小区#2中的网络设备可以是不同的网络设备,如,基站。也就是说,小区#1和小区#2可以由不同的基站来管理,这种情况下,可以称为小区#1和小区#2共站,或者说,同站。小区#1中的网络设备和小区#2中的网络设备也可以是同一基站的不同的射频处理单元,例如,射频拉远单元(radio remote unit,RRU),也就是说,小区#1和小区#2可以由同一基站管理,具有相同的基带处理单元和中频处理单元,但具有不同的射频处理单元。本申请对此不做特别限定。
9、频谱范围(frequency range,FR)
在第三代合作伙伴计划(3rd generation partnership project,3GPP)协议中,5G的总体频谱资源可以分为以下两个频谱范围(frequency range,FR),如下表2所示。
表2
频率范围名称 频率范围
FR1 450MHz-6000MHz
FR2 24250MHz-52600MHz
应理解,上述频率范围FR1、FR2的命名不应对本申请构成任何限定。本申请并不排除在未来的协议中定义其他名称来表示相同或相似含义的可能。为区分,在下文实施例中分别用FR1、FR2表示。
FR1:Sub 6G频段,换句话说,低频频段,为5G的主用频段。在FR1中,3GHz以下的频率可以称为Sub 3G,其余频段可以称为C-band。应理解,FR1对应的频率范围可以对应于如表2所示的450MHz-6000MHz,但不限于此,本申请并不排除在未来的协议中定义其他的范围来表示相同或相似含义的可能。
FR2:6G以上的毫米波,换句话说,高频频段,为5G的扩展频段,频谱资源丰富。应理解,FR2对应的频率范围可以对应于如表2所示的24250MHz-52600MHz,但不限于此,本申请并不排除在未来的协议中定义其他的范围来表示相同或相似含义的可能。
可选的,FR1和FR2的频带有不同的射频特点。FR1上的频带由于波束较宽,覆盖性较好。对于FR2频带,终端设备和网络设备会更多使用大规模多输入多输出(massive multiple-input multiple-output,Massive MIMO)、波束赋形(beamforming)等技术。
假设,测量配置(measConfig)中配置一个小区信号质量阈值s-Measure,配置两个 测量对象,分别记为MO1(MO1属于FR1)、MO2(MO2属于FR2),配置两个上报配置,分别记为reportConfig 1、reportConfig 2。
可能存在以下一种场景:reportConfig1用于移动性,例如事件A3,reportConfig1关联到MO1,对此,希望当PCell的信号质量满足s-Measure时不用测邻区。reportConfig2用于载波管理,例如事件A4,reportConfig2关联到MO2,对此,希望邻区测量不用考虑PCell的信号质量。
有鉴于此,本申请提出一种测量方法,能够满足不同的测量需求。
为了便于理解本申请实施例,作出以下几点说明。
第一,在本申请实施例中,多处涉及高层参数,该高层参数可以包含在高层信令中。该高层信令例如可以是无线资源控制(radio resource control,RRC)消息,也可以是其他高层信令,本申请对此不做限定。
第二,在本申请实施例中,“用于指示”可以包括用于直接指示和用于间接指示,也可以包括显式指示和隐式指示。将某一信息(如下文所述的配置信息)所指示的信息称为待指示信息,则具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)是否存在某个信元来实现对待指示信息的指示,从而在一定程度上降低指示开销。
第三,在下文示出的实施例中第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的测量对象等。
第四,在下文示出的实施例中,“预先获取”可包括由网络设备信令指示或者预先定义,例如,协议定义。其中,“预先定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
第五,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
第六,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“多个”是指两个或两个以上,其它量词与之类似。此外,对于单数形式“a”,“an”和“the”出现的元素(element),除非上下文另有明确规定,否则其不意味着“一个或仅一个”,而是意味着“一个或多于一个”。例如,“a device”意味着对一个或多个这样的device。再者,至少一个(at least one of).......”意味着后续关联对象中的一个或任意组合,例如“A,B和C中的至少一个”包括A,B,C,AB,AC,BC,或ABC。
下面将结合附图详细说明本申请提供的各个实施例。
图5是本申请实施例提供的一种测量方法200的示意性交互图。方法200包括:
S210,终端设备接收测量配置信息。
一种可能的方式中,上述测量配置信息是网络设备向终端设备发送的。
网络设备可以在measConfig中配置s-MeasureConfig。换句话说,终端设备接收到的测量配置信息中可以包括s-Measure。
此外,测量配置信息还可以包括以下至少一项信息:测量对象、上报配置、测量标识、测量量配置、或测量间隔配置等。具体参考上文描述,不再赘述。应理解,本申请实施例中并不对测量配置信息的具体形式做限定。
一种可能的方式中,测量配置信息可以包括第一测量对象和第二测量对象,换句话说,网络设备为终端设备配置了第一测量对象的测量任务和第二测量对象的测量任务。相应地,终端设备基于第一测量对象的测量任务测量第一测量对象上的小区,终端设备基于第二测量对象的测量任务测量第二测量对象上的小区。
其中,第一测量对象具体可以为一个或多个测量对象,该一个或多个测量对象的频点属于FR1,下文用第一测量对象进行示例性说明,换句话说,下文用第一测量对象表示属于FR1的一个或多个测量对象。第一测量对象的测量结果可以用于移动性(如用于寻找一个切换的目标小区);或者,换句话说,为了移动性而进行的测量可以多考虑第一测量对象上的小区。
其中,第二测量对象具体可以为一个或多个测量对象,该一个或多个测量对象的频点属于FR2,下文用第二测量对象进行示例性说明,换句话说,下文用第二测量对象表示属于FR2的一个或多个测量对象。第二测量对象的测量结果可以用于载波管理(如,希望发现一个质量好的邻区,将其添加为SCell);或者,换句话说,第二测量对象上的小区多用于负载均衡(load balance),如,可添加为SCell。
网络设备可以将测量所需的信息(即测量配置信息)发送给终端设备,终端设备接收到测量配置信息后进行相应的处理。
如图6所示,在连接态下,对于网络设备来说,网络设备发送的信令可以为无线资源控制(radio resource control,RRC)重配置(RRCReconfiguration)消息,在该信令的measConfig信元中包含发送给终端设备的测量配置信息。对于终端设备来说,终端设备接收到该RRCReconfiguration消息后,可以对自己的测量配置数据库和测量报告列表相应地进行修改,并向网络设备发送RRC重配置完成(RRCReconfigurationComplete)消息,用于将修改成功的消息告知网络设备。
应理解,在本申请实施例中,该测量配置信息可以携带在RRC消息中,例如该RRC消息可以是携带同步重配置信元(ReconfigurationWithSync)的RRC重配置消息或者可以是携带移动性控制信息信元(mobility control info)的RRC连接重配置消息,或者其他消息,或者是新定义的RRC消息,如RRC条件重配置消息或者也可以具有其他名称,对此本申请不做限定。该测量配置信息还可以是其他消息,例如可以是媒体接入控制(medium access control,MAC)消息或者下行控制信息(downlink control information,DCI)消息,本申请实施例并不限于此。
网络设备可以在measConfig中配置s-MeasureConfig。换句话说,终端设备接收到的测量配置信息中可以包括s-Measure。
其中,在本申请实施例中,小区信号质量阈值,也可以称为信号质量阈值,可以用s-Measure来表示,s-Measure是针对SpCell配置的,例如,对于主基站或主节点(MN)来说,s-Measure是针对PCell配置的,换句话说,该s-Measure影响MN中的小区;又如, 对于辅基站或辅节点(SN)来说,s-Measure是针对PSCell配置的,换句话说,该s-Measure影响SN中的小区。
s-Measure是一个门限,可以用来判断小区的信号质量。例如,信号质量可以通过RSRP或RSRQ进行表征。可以将主小区(即SpCell)的信号质量取值与s-Measure的值进行比较,当小区的信号质量取值大于s-Measure的值时,则可以认为该小区的信号质量较好;当小区的信号质量取值小于s-Measure的值时,则可以认为该小区的信号质量较差。
应理解,s-Measure、小区信号质量阈值、或信号质量阈值其命名仅是一种名称,不对本申请的保护范围造成限定。下文统一用s-Measure表示。关于s-Measure的取值,可以是网络设备或者协议预先规定好的,也可以是网络设备根据实际通信情况配置的,对此,不作限定。
此外,可选地,s-Measure中可以包括与波束相关的参数,例如,记为参数P,该参数P可以用于表示好波束(good beam)的个数。
其中,good beam可以指满足预设条件的beam,如beam的质量达到一定门限。其中,门限可以是协议规定的或者是网络设备预先设置的门限。每个测量对象均可以对应一个门限;或者,所有测量对象对应一个门限;或者,将测量对象分组,每一组测量对象对应一个门限等等。该门限可以配置于或包含于measConfig中。当measConfig中包含一个门限时,该门限对所有的测量对象均适用;当measConfig中包含多个门限时,该多个门限可分别对应一个或多个测量对象,对此,不作限定。
此外,该门限可以是针对参考信号的,如可以针对SSB配一个门限,和/或,针对CSI-RS配一个门限。或者,该门限也可以是复用测量对象中现有的用于生成小区质量(cell quality)的beam门限,即基于SSB的beam合并门限(absThreshSSB-BlocksConsolidation),和/或,基于CSI-RS的beam合并门限(absThreshCSI-RS-Consolidation)。
以上述第一测量对象和第二测量对象为例。网络设备如果在measConfig中配置了s-MeasureConfig,可以规定s-MeasureConfig只影响第一测量对象上的小区,换句话说,该s-MeasureConfig只对第一测量对象上的测量有效;s-MeasureConfig不影响第二测量对象上的小区,换句话说,该s-MeasureConfig对第二测量对象上的测量无效。也就是说,当SpCell的信号质量值高于s-Measure的取值时,对于第一测量对象来说,终端设备不用再对第一测量对象上的非服务小区(non-serving cell,或者,也可以称为邻区或邻小区)进行测量;对于第二测量对象来说,第二测量对象上的非服务小区测量不会受到s-Measure的影响,不管SpCell的信号质量如何,终端设备始终或总是会测量第二测量对象上的非服务小区。
或者,当s-Measure中包括参数P时,当SpCell的信号质量值高于s-Measure的取值、且good beam的个数超过P时,对于第一测量对象来说,终端设备不用再对第一测量对象上的非服务小区(non-serving cell,或者,也可以称为邻区或邻小区)进行测量;对于第二测量对象来说,第二测量对象上的非服务小区测量不会受到s-Measure或good beam的影响,不管SpCell的信号质量如何,终端设备始终或总是测量第二测量对象上的非服务小区。
应理解,在本申请实施例中,只影响第一测量对象上的小区,或者,只对第一测量对象上的测量有效,是相对于第二测量对象上的小区来说的。同样,只影响第二测量对象上 的小区,或者,只对第二测量对象上的测量有效,是相对于第一测量对象上的小区来说的。以s-MeasureConfig只影响第一测量对象上的小区为例,也就是说,对于第一测量对象上的小区和第二测量对象上的小区来说,s-MeasureConfig影响第一测量对象上的小区,不影响第二测量对象上的小区,换句话说,s-MeasureConfig对第一测量对象上的测量有效,对第二测量对象上的测量无效。
作为一个示例,NR-DC中,无论是主站(MN)的测量配置中配了s-Measure,还是辅站(SN)的测量配置中了s-Measure,都只会影响到第一测量对象上的非服务小区的测量。第二测量对象上的非服务小区的测量不受s-Measure的影响,换句话说,只要有针对第二测量对象的测量任务,终端设备总是会测量第二测量对象上的非服务小区。
应理解,当MN的测量配置中配了s-Measure,SN的测量配置中也配了s-Measure,MN中的s-Measure都只会影响到MN中第一测量对象上的非服务小区的测量,MN中第二测量对象上的非服务小区的测量不受s-Measure的影响;SN中的s-Measure都只会影响到SN中第一测量对象上的非服务小区的测量,SN中第二测量对象上的非服务小区的测量不受s-Measure的影响。
终端设备接收到测量配置信息后,可以基于接收到的测量配置信息进行测量。以上述第一测量对象和第二测量对象为例,方法200还包括S220:
S220,SpCell的信号质量超过s-Measure的取值的情况下,终端设备不测量第一测量对象上的非服务小区,以及基于测量配置信息,测量属于第二测量对象上的非服务小区。
对于终端设备来说,如果收到网络设备为终端设备配置的第二测量对象的测量任务,无论SpCell的信号质量值是否超过s-Measure的取值,都要进行第二测量对象上的测量,换句话说,总是测量第二测量对象上的非服务小区,并在满足测量上报触发条件时上报测量结果。或者,当s-Measure中包括参数P时,对于终端设备来说,如果收到网络设备为终端设备配置的第二测量对象的测量任务,无论SpCell的信号质量值是否超过s-Measure的取值或者good beam的个数有没有超过P,都要进行第二测量对象上的测量,换句话说,总是测量第二测量对象上的非服务小区,并在满足测量上报触发条件时上报测量结果。
对于终端设备来说,如果收到网络设备为终端设备配置的第一测量对象的测量任务,当SpCell的信号质量值超过s-Measure的取值时,终端设备不用对第一测量对象上的非服务小区进行测量;当SpCell的信号质量值不超过s-Measure的取值时,终端设备对第一测量对象上的非服务小区进行测量。或者,当s-Measure中包括参数P时,对于终端设备来说,如果收到网络设备为终端设备配置的第一测量对象的测量任务,当SpCell的信号质量值高于s-Measure的取值、且good beam的个数超过P时,终端设备不用对第一测量对象上的非服务小区进行测量;当SpCell的信号质量值不超过s-Measure的取值或者good beam的个数不超过P时,终端设备对第一测量对象上的非服务小区进行测量。
对于网络设备来说,如果网络设备为终端设备配置了第二测量对象上的测量之后,无论SpCell的信号质量值是否超过s-Measure的取值,网络设备都会在满足测量上报触发条件时收到终端设备的测量报告。或者,当s-Measure中包括参数P时,对于网络设备来说,如果网络设备为终端设备配置了第二测量对象上的测量之后,无论SpCell的信号质量值是否超过s-Measure的取值或者good beam的个数有没有超过P,网络设备都会在满足测量上报触发条件时收到终端设备的测量报告。
应理解,在本申请实施例中,“超过”可以表示“高于或等于”,“不超过”或“未超过”表示“低于”。例如,SpCell的信号质量超过s-Measure的取值,表示SpCell的信号质量高于或等于s-Measure的取值;SpCell的信号质量不超过s-Measure的取值,表示SpCell的信号质量低于s-Measure的取值。或者,“超过”可以表示“高于”,“不超过”或“未超过”表示“低于或等于”。例如,SpCell的信号质量超过s-Measure的取值,表示SpCell的信号质量高于s-Measure的取值;SpCell的信号质量不超过s-Measure的取值,表示SpCell的信号质量低于或等于s-Measure的取值。或者,“超过”可以表示“高于”,“不超过”或“未超过”表示“低于”。例如,SpCell的信号质量超过s-Measure的取值,表示SpCell的信号质量高于s-Measure的取值;SpCell的信号质量不超过s-Measure的取值,表示SpCell的信号质量低于s-Measure的取值;对于SpCell的信号质量等于s-Measure的取值的情况,可以属于SpCell的信号质量超过s-Measure的取值的情况,或者,也可以属于SpCell的信号质量不超过s-Measure的取值的情况,对此,不作限定。
下面结合一个具体示例进行示例性说明。
measConfig中携带s-MeasureConfig,且measConfig中包含rsType为SSB的reportConfig1和rsType设为SSB的reportConfig2,还包含MO1(即第一测量对象的一例)和MO2(即第二测量对象的一例)。其中,MO1为对应的ssbFrequency是一个FR1上的频点,MO2为对应的ssbFrequency是一个FR2上的频点。假设reportConfig1是事件触发,如事件为Event A3,并关联到MO1,对应measId1。假设reportConfig2也是事件触发,如事件为Event A4,并关联到MO2,对应measId2。
当SpCell的经过层3过滤之后的基于SSB的小区信号质量(如用RSRP表征)不超过s-MeasureConfig指示的RSRP时,终端设备对measId1相应的邻区进行测量。
当SpCell的经过层3过滤之后的基于SSB的小区信号质量(用RSRP表征)超过s-MeasureConfig指示的RSRP时,终端设备不对measId1相应的邻区进行测量。
无论SpCell的RSRP质量如何,即无论SpCell的经过层3过滤之后的基于SSB的小区信号质量有没有超过s-MeasureConfig指示的RSRP,终端设备都对measId2相应的邻区进行测量。
应理解,在方法200中涉及到的信元的命名仅是为便于理解作的示例性说明,不应对本申请构成任何限定,方法200中涉及到的信元均可以有其他名称或表达形式。
还应理解,方法200中的“第一测量对象”均可替换为“FR1”或“属于FR1的测量对象”,“第二测量对象”均可替换为“FR2”或“属于FR2的测量对象”。
在本申请实施例中,属于FR1的测量对象(如上述第一测量对象)的测量结果可用于移动性(如用于寻找一个切换的目标小区),换句话说,希望当SpCell的信号质量值超过s-Measure的取值时,不用对属于FR1的测量对象上的非服务小区进行测量。属于FR2的测量对象(如上述第二测量对象)的测量结果可用于载波管理(如,希望发现一个质量好的邻区,将其添加为SCell),换句话说,希望邻区测量不用考虑SpCell的信号质量,例如上述示例中的reportConfig2可能用于载波管理。通过本申请实施例,属于FR2的测量对象上的测量任务对应的非服务小区总是会测量,属于FR1的测量对象上的测量任务对应的非服务小区测量考虑SpCell的信号质量,从而可以使得measConfig中的s-Measure配置满足不同的测量需求,使得s-Measure的应用更加灵活。
应理解,在上述方法200中,小区信号质量阈值也可以用p来表示,换句话说,在上述方法200中,“s-Measure”均可用“参数p”来代替,即可以通过SpCell的good beam的个数有没有超过p来确定是否测量属于FR1的测量对象上的非服务小区。此处不再赘述。
图7是本申请实施例提供的一种测量方法300的示意性交互图。方法300包括:
S310,终端设备接收测量配置信息。
一种可能的方式中,可以是网络设备向终端设备发送测量配置信息,该测量配置信息中包括:为属于FR1的测量对象配置的s-Measure,和/或,为属于FR2的测量对象配置的s-Measure。
关于测量配置信息,参考方法200中S210的描述,此处不再赘述。
下面,为简洁,仍用第一测量对象表示属于FR1的测量对象,用第二测量对象表示属于FR2的测量对象。关于第一测量对象和第二测量对象的描述,参考方法200中的描述,此处不再赘述。
在本申请实施中,考虑到FR1和FR2的差异性,或者说,考虑到第一测量对象和第二测量对象的差异性,可以为第一测量对象和第二测量对象单独配置s-Measure的值。
一种可能的实现方式,measConfig中配置s-Measure和s-MeasureConfigFR2:s-Measure只影响第一测量对象,s-MeasureConfigFR2只影响第二测量对象;或者,measConfig中配置s-Measure和s-MeasureConfigFR1:s-Measure只影响第二测量对象,s-MeasureConfigFR1只影响第一测量对象。应理解,s-MeasureConfigFR1、s-MeasureConfigFR2的命名仅是为便于理解作的示例性说明,不应对本申请构成任何限定。
以measConfig中配置s-Measure和s-MeasureConfigFR2为例进行说明。
例如,在SpCell的信号质量值超过s-Measure的取值的情况下,则不测第一测量对象上的非服务小区,在SpCell的信号质量值不超过s-Measure的取值的情况下,测第一测量对象上的非服务小区。又如,在SpCell的信号质量值超过s-MeasureConfigFR2的取值的情况下,则不测第二测量对象上的非服务小区,在SpCell的信号质量值不超过s-MeasureConfigFR2的取值的情况下,测第二测量对象上的非服务小区。
基于上述实现方式,可以沿用现有的s-Measure,并可以满足不同的测量需求。
又一种可能的实现方式,引入per-FR的s-Measure,也就是说,网络设备可以单独配置用于第一测量对象的s-Measure值和/或用于第二测量对象的s-Measure值,假设这两个字段分别称为s-MeasureConfigFR1和s-MeasureConfigFR2。即,可以理解为,第一测量对象和第二测量对象独立地使用两个s-Measure配置。
应理解,per-FR的s-Measure、s-MeasureConfigFR1、和s-MeasureConfigFR2的命名仅是为便于理解作的示例性说明,不应对本申请构成任何限定,per-FR的s-Measure、s-MeasureConfigFR1、和s-MeasureConfigFR2均可以有其他名称或表达形式。
例如,在SpCell的信号质量值超过s-MeasureConfigFR1的取值的情况下,不测第一测量对象上的非服务小区,在SpCell的信号质量值不超过s-MeasureConfigFR1的取值的情况下,测第一测量对象上的非服务小区。又如,在SpCell的信号质量值超过s-MeasureConfigFR2的取值的情况下,不测第二测量对象上的非服务小区,在SpCell的信号质量值不超过s-MeasureConfigFR2的取值的情况下,测第二测量对象上的非服务小区。
在该实现方式下,包括以下几种情况:
一种情况,网络设备配置s-MeasureConfigFR1,相应地,measConfig中携带s-MeasureConfigFR1。在该情况下,s-MeasureConfigFR1影响第一测量对象。例如,在SpCell的信号质量值超过s-MeasureConfigFR1的取值的情况下,则不测第一测量对象上的非服务小区。
又一种情况,网络设备配置s-MeasureConfigFR2,相应地,measConfig中携带s-MeasureConfigFR2。在该情况下,s-MeasureConfigFR2影响第二测量对象。例如,在SpCell的信号质量值超过s-MeasureConfigFR2的取值的情况下,则不测第二测量对象上的非服务小区。
又一种情况,网络设备配置s-MeasureConfigFR1和s-MeasureConfigFR2,相应地,measConfig中携带s-MeasureConfigFR1和s-MeasureConfigFR2。在该情况下,s-MeasureConfigFR1影响第一测量对象,s-MeasureConfigFR2影响第二测量对象。例如,在SpCell的信号质量值超过s-MeasureConfigFR1的取值的情况下,则不测第一测量对象上的非服务小区,在SpCell的信号质量值不超过s-MeasureConfigFR1的取值的情况下,则测第一测量对象上的非服务小区。又如,在SpCell的信号质量值超过s-MeasureConfigFR2的取值的情况下,则不测第二测量对象上的非服务小区,在SpCell的信号质量值不超过s-MeasureConfigFR2的取值的情况下,则测第二测量对象上的非服务小区。
又一种情况,网络设备配置s-MeasureConfig,相应地,measConfig中携带s-MeasureConfig,没有携带s-MeasureConfigFR1和s-MeasureConfigFR2。在该情况下,s-MeasureConfig同时影响第一测量对象和第二测量对象。
又一种情况,网络设备配置s-MeasureConfig和s-MeasureConfigFR1,相应地,measConfig中携带s-MeasureConfig和s-MeasureConfigFR1。该情况下,s-MeasureConfigFR1影响第一测量对象,s-MeasureConfig既不影响第一测量对象,也不影响第二测量对象,也可以理解为该s-MeasureConfig为配置失误或失效。例如,该情况下,在SpCell的信号质量值超过s-MeasureConfigFR1的取值的情况下,则不测第一测量对象上的非服务小区。
又一种情况,网络设备配置s-MeasureConfig和s-MeasureConfigFR2,相应地,measConfig中携带s-MeasureConfig和s-MeasureConfigFR2。该情况下,s-MeasureConfigFR2影响第二测量对象,s-MeasureConfig既不影响第一测量对象,也不影响第二测量对象,也可以理解为该s-MeasureConfig为配置失误或失效。例如,该情况下,在SpCell的信号质量值超过s-MeasureConfigFR2的取值的情况下,则不测第二测量对象上的非服务小区。
基于上述实现方式,网络设备可以单独配置用于第一测量对象的s-Measure值和/或用于第二测量对象的s-Measure值,从而满足不同的测量需求。
终端设备接收到测量配置信息后,可以基于接收到的测量配置信息进行测量。方法300还包括S320:
S320,终端设备基于测量配置信息,进行测量。
下面分三种情况进行说明。
情况1:假设S310中,测量配置信息中包括为属于FR1的测量对象配置的s-Measure,记为s-Measure-FR1。如S310中的描述,该s-Measure-FR1可以为s-Measure或者s-MeasureConfigFR1。
对于终端设备来说,如果收到网络设备为终端设备配置的第二测量对象的测量任务,无论SpCell的信号质量值是否超过s-Measure-FR1的取值,都要进行第二测量对象上的测量,换句话说,总是测量第二测量对象上的非服务小区,并在满足测量上报触发条件时上报测量结果。
对于终端设备来说,如果收到网络设备为终端设备配置的第一测量对象的测量任务,当SpCell的信号质量值超过s-Measure-FR1的取值时,终端设备不用对第一测量对象上的非服务小区进行测量;当SpCell的信号质量值不超过s-Measure-FR1的取值时,终端设备对第一测量对象上的非服务小区进行测量。
对于网络设备来说,如果网络设备为终端设备配置了第二测量对象上的测量之后,无论SpCell的信号质量值是否超过s-Measure-FR1的取值,网络设备都会在满足测量上报触发条件时收到终端设备的测量报告。
情况2:假设S310中,测量配置信息中包括为属于FR2的测量对象配置的s-Measure,记为s-Measure-FR2。如S310中的描述,该s-Measure-FR2可以为s-Measure或者s-MeasureConfigFR2。
对于终端设备来说,如果收到网络设备为终端设备配置的第一测量对象的测量任务,无论SpCell的信号质量值是否超过s-Measure-FR2的取值,都要进行第一测量对象上的测量,换句话说,总是测量第一测量对象上的非服务小区,并在满足测量上报触发条件时上报测量结果。
对于终端设备来说,如果收到网络设备为终端设备配置的第二测量对象的测量任务,当SpCell的信号质量值超过s-Measure-FR2的取值时,终端设备不用对第二测量对象上的非服务小区进行测量;当SpCell的信号质量值不超过s-Measure-FR2的取值时,终端设备对第二测量对象上的非服务小区进行测量。
对于网络设备来说,如果网络设备为终端设备配置了第一测量对象上的测量之后,无论SpCell的信号质量值是否超过s-Measure-FR2的取值,网络设备都会在满足测量上报触发条件时收到终端设备的测量报告。
情况3:假设S310中,测量配置信息中包括为属于FR1的测量对象配置的s-Measure和为属于FR2的测量对象配置的s-Measure,分别记为s-MeasureConfigFR1和s-MeasureConfigFR2。
对于终端设备来说,如果收到网络设备为终端设备配置的第一测量对象的测量任务,当SpCell的信号质量值超过s-MeasureConfigFR1的取值时,终端设备不用对第一测量对象上的非服务小区进行测量;当SpCell的信号质量值不超过s-MeasureConfigFR1的取值时,终端设备对第一测量对象上的非服务小区进行测量。
对于终端设备来说,如果收到网络设备为终端设备配置的第二测量对象的测量任务,当SpCell的信号质量值超过s-MeasureConfigFR2的取值时,终端设备不用对第二测量对象上的非服务小区进行测量;当SpCell的信号质量值不超过s-MeasureConfigFR2的取值时,终端设备对第二测量对象上的非服务小区进行测量。
应理解,在方法300中涉及到的信元的命名仅是为便于理解作的示例性说明,不应对本申请构成任何限定,方法300中涉及到的信元均可以有其他名称或表达形式。
还应理解,方法300中的“第一测量对象”均可替换为“FR1”或“属于FR1的测量 对象”,“第二测量对象”均可替换为“FR2”或“属于FR2的测量对象”。
通过本申请实施例,网络设备可以为属于FR1的测量对象和属于FR2的测量对象单独配置s-Measure,从而根据SpCell与属于FR1的测量对象对应的s-Measure,确定是否测量属于FR1的测量对象上的测量任务对应的非服务小区;根据SpCell与属于FR2的测量对象对应的s-Measure,确定是否测量属于FR2的测量对象上的测量任务对应的非服务小区,从而可以使得measConfig中的s-Measure配置满足不同的测量需求,使得s-Measure的应用更加灵活。
应理解,在上述方法300中,s-Measure中也可以包括参数p,s-Measure中包括参数p时的情况可以参考方法200,此处不再赘述。
还应理解,在上述方法300中,小区信号质量阈值也可以用p来表示,换句话说,在上述方法300中,“s-Measure”均可用“参数p”来代替。此处不再赘述。
以measConfig中配置s-Measure和s-MeasureConfigFR2为例。measConfig中配置s-Measure和s-MeasureConfigFR2,s-Measure只影响第一测量对象,s-MeasureConfigFR2只影响第二测量对象,也可以替换为,measConfig中配置P和P_FR2,P只影响第一测量对象,P_FR2只影响第二测量对象。例如,在SpCell的good beam的个数超过P的情况下,则不测第一测量对象上的非服务小区,在SpCell的good beam的个数不超过P的情况下,则测第一测量对象上的非服务小区。又如,在SpCell的good beam的个数超过P_FR2的情况下,则不测第二测量对象上的非服务小区,在SpCell的good beam的个数不超过P_FR2的情况下,则测第二测量对象上的非服务小区。
再以网络设备单独配置用于第一测量对象的s-MeasureConfigFR1和用于第二测量对象的s-MeasureConfigFR2为例。网络设备配置s-MeasureConfigFR1和s-MeasureConfigFR2,s-MeasureConfigFR1影响第一测量对象,s-MeasureConfigFR2影响第二测量对象。可以替换为,网络设备配置P_FR1和P_FR2,P_FR1影响第一测量对象,P_FR2影响第二测量对象。例如,在SpCell的good beam的个数超过P_FR1的情况下,则不测第一测量对象上的非服务小区,又如,在SpCell的good beam的个数超过P_FR2的情况下,则不测第二测量对象上的非服务小区。其他情况类似,此处不再赘述。
图8是本申请实施例提供的一种测量方法400的示意性交互图。方法400包括:
S410,终端设备接收测量配置信息和指示信息。
关于测量配置信息,参考方法200中S210的描述,此处不再赘述。
网络设备可以在measConfig中配置s-MeasureConfig。换句话说,终端设备接收到的测量配置信息中可以包括s-Measure。
相应地,终端设备从网络设备接收指示信息,指示信息用于指示s-Measure的适用范围。
应理解,该指示信息和测量配置信息可以分别发送给终端设备,也可以在一个信令中发送给终端设备,例如,指示信息可以通过测量配置信息指示给终端设备,对此本申请实施例不作限定。
根据本申请实施例,可以在measConfig中或者s-MeasureConfig中包括指示s-Measure的适用范围的字段或者信元,使s-Measure的应用更加灵活。其中,该字段或者信元例如可以用s-MeasureApplicability表示。应理解,字段s-MeasureApplicability的命名仅是为便 于理解作的示例性说明,不应对本申请构成任何限定,其可以有其他名称或表达形式。
下面仍以第一测量对象和第二测量对象为例进行示例性说明。关于第一测量对象和第二测量对象参考方法200中的描述,此处不再赘述。
一种可能的实现方式,当网络设备配置了s-Measure时,网络设备可以向终端设备发送指示信息,指示该s-Measure影响第一测量对象,换句话说,该s-Measure是为第一测量对象配置的。
例如,当SpCell的信号质量值高于s-Measure的取值时,对于第一测量对象来说,终端设备不用再对第一测量对象上的非服务小区进行测量;对于第二测量对象来说,第二测量对象上的非服务小区测量不会受到s-Measure的影响,不管SpCell的信号质量如何,终端设备总是测量第二测量对象上的非服务小区。
又一种可能的实现方式,当网络设备配置了s-Measure时,网络设备可以向终端设备发送指示信息,指示该s-Measure影响第二测量对象,换句话说,该s-Measure是为第二测量对象配置的。
例如,当SpCell的信号质量值高于s-Measure的取值时,对于第二测量对象来说,终端设备不用再对第二测量对象上的非服务小区进行测量;对于第一测量对象来说,第一测量对象上的非服务小区测量不会受到s-Measure的影响,不管SpCell的信号质量如何,终端设备总是测量第一测量对象上的非服务小区。
又一种可能的实现方式,当网络设备配置了s-Measure时,网络设备可以向终端设备发送指示信息,指示该s-Measure影响第一测量对象和第二测量对象,换句话说,该s-Measure是为第一测量对象和第二测量对象配置的。
例如,当SpCell的信号质量值高于s-Measure的取值时,不管是第一测量对象还是第二测量对象来说,终端设备不用再对第一测量对象和第二测量对象上的非服务小区进行测量。
又一种可能的实现方式,当网络设备配置了s-Measure时,可以默认该s-Measure影响第一测量对象和第二测量对象,换句话说,该s-Measure是为第一测量对象和第二测量对象配置的,也就是说,网络设备可以不向终端设备发送用于指示s-Measure的适用范围的指示信息。
例如,当SpCell的信号质量值高于s-Measure的取值时,不管是第一测量对象还是第二测量对象来说,终端设备不用再对第一测量对象和第二测量对象上的非服务小区进行测量。
在上述几种可能的实现方式中,指示信息的形式可以是枚举(ENUMERATED)形式。例如,可以从FR1(表示s-Measure只影响FR1)、FR2(表示s-Measure只影响FR2)、both(表示s-Measure同时影响FR1和FR2)中选择一个取值。又如,也可以从FR1(表示s-Measure只影响FR1)和FR2(表示s-Measure只影响FR2)中选择一个取值,并且在没有携带该指示信息时认为是s-Measure同时影响FR1和FR2。
或者,在上述几种可能的实现方式中,指示信息的形式也可以是布尔(BOOLEAN)形式。例如,用TRUE表示s-Measure只影响FR1,用FALSE表示s-Measure只影响FR2,并且在没有携带该指示字段时表示s-Measure同时影响FR1和FR2。又如,用TRUE表示s-Measure只影响FR2,用FALSE表示s-Measure只影响FR1,并且在没有携带该指示字 段时表示s-Measure同时影响FR1和FR2。
应理解,指示信息也可以采用其他形式,本申请实施例对此不作限定。
终端设备接收到测量配置信息后,可以基于接收到的测量配置信息进行测量。方法400还包括S420:
S420,终端设备根据测量配置信息和指示信息,进行测量。
下面分三种情况进行说明。
情况1:假设S410中,终端设备接收指示信息,该指示信息指示s-Measure影响第一测量对象。
对于终端设备来说,如果收到网络设备为终端设备配置的第二测量对象的测量任务,无论SpCell的信号质量值是否超过s-Measure的取值,都要进行第二测量对象上的测量,换句话说,总是测量第二测量对象上的非服务小区,并在满足测量上报触发条件时上报测量结果。
对于终端设备来说,如果收到网络设备为终端设备配置的第一测量对象的测量任务,当SpCell的信号质量值超过s-Measure的取值时,终端设备不用对第一测量对象上的非服务小区进行测量;当SpCell的信号质量值不超过s-Measure的取值时,终端设备对第一测量对象上的非服务小区进行测量。
对于网络设备来说,如果网络设备为终端设备配置了第二测量对象上的测量之后,无论SpCell的信号质量值是否超过s-Measure的取值,网络设备都会在满足测量上报触发条件时收到终端设备的测量报告。
情况2:假设S410中,终端设备接收指示信息,该指示信息指示s-Measure影响第二测量对象。
对于终端设备来说,如果收到网络设备为终端设备配置的第一测量对象的测量任务,无论SpCell的信号质量值是否超过s-Measure的取值,都要进行第一测量对象上的测量,换句话说,总是测量第一测量对象上的非服务小区,并在满足测量上报触发条件时上报测量结果。
对于终端设备来说,如果收到网络设备为终端设备配置的第二测量对象的测量任务,当SpCell的信号质量值超过s-Measure的取值时,终端设备不用对第二测量对象上的非服务小区进行测量;当SpCell的信号质量值不超过s-Measure的取值时,终端设备对第二测量对象上的非服务小区进行测量。
对于网络设备来说,如果网络设备为终端设备配置了第一测量对象上的测量之后,无论SpCell的信号质量值是否超过s-Measure的取值,网络设备都会在满足测量上报触发条件时收到终端设备的测量报告。
情况3:假设终端设备没有接收到用于指示s-Measure的适用范围的指示信息;或者,S420中,终端设备接收指示信息,该指示信息指示s-Measure影响第一测量对象和第二测量对象。
对于终端设备来说,如果收到网络设备为终端设备配置的第一测量对象的测量任务,当SpCell的信号质量值超过s-Measure的取值时,终端设备不用对第一测量对象上的非服务小区进行测量;当SpCell的信号质量值不超过s-Measure的取值时,终端设备对第一测量对象上的非服务小区进行测量。
对于终端设备来说,如果收到网络设备为终端设备配置的第二测量对象的测量任务,当SpCell的信号质量值超过s-Measure的取值时,终端设备不用对第二测量对象上的非服务小区进行测量;当SpCell的信号质量值不超过s-Measure的取值时,终端设备对第二测量对象上的非服务小区进行测量。
下面结合一个具体示例进行示例性说明。
measConfig中携带s-MeasureConfig,且measConfig中包含rsType为SSB的
reportConfig1和rsType设为SSB的reportConfig2,还包含MO1(即第一测量对象的一例)和MO2(即第二测量对象的一例)。其中,MO1为对应的ssbFrequency是一个FR1上的频点,MO2为对应的ssbFrequency是一个FR2上的频点。假设reportConfig1是事件触发,如事件为Event A3,并关联到MO1,对应measId1。假设reportConfig2也是事件触发,如事件为Event A4,并关联到MO2,对应measId2。假设measConfig中还携带一个字段s-MeasureApplicability。
一种可能的情况,s-MeasureApplicability的值为FR1。
在该情况下,该s-MeasureConfig影响第一测量对象上的小区,换句话说,该s-MeasureConfig只对第一测量对象上的测量有效。当SpCell的经过层3过滤之后的基于SSB的小区信号质量(如用RSRP表征)不超过s-MeasureConfig指示的RSRP时,终端设备对measId1相应的邻区进行测量。当SpCell的经过层3过滤之后的基于SSB的小区信号质量(如用RSRP表征)超过s-MeasureConfig指示的RSRP时,终端设备不对measId1相应的邻区进行测量。无论SpCell的RSRP质量如何,即无论SpCell的经过层3过滤之后的基于SSB的小区信号质量有没有超过s-MeasureConfig指示的RSRP,终端设备都对measId2相应的邻区进行测量。
又一种可能的情况,s-MeasureApplicability的值为FR2。
在该情况下,该s-MeasureConfig影响第二测量对象上的小区,换句话说,该s-MeasureConfig只对第二测量对象上的测量有效。当SpCell的经过层3过滤之后的基于SSB的小区信号质量(如用RSRP表征)不超过s-MeasureConfig指示的RSRP时,终端设备对measId2相应的邻区进行测量。当SpCell的经过层3过滤之后的基于SSB的小区信号质量(如用RSRP表征)超过s-MeasureConfig指示的RSRP时,终端设备不对measId2相应的邻区进行测量。无论SpCell的RSRP质量如何,即无论SpCell的经过层3过滤之后的基于SSB的小区信号质量有没有超过s-MeasureConfig指示的RSRP,终端设备都对measId1相应的邻区进行测量。
又一种可能的情况,s-MeasureApplicability的值为both。
在该情况下,该s-MeasureConfig影响第一测量对象和第二测量对象上的小区,换句话说,该s-MeasureConfig对第一测量对象和第二测量对象上的测量有效。当SpCell的经过层3过滤之后的基于SSB的小区信号质量(如用RSRP表征)不超过s-MeasureConfig指示的RSRP时,终端设备对measId1和measId2相应的邻区进行测量。当SpCell的经过层3过滤之后的基于SSB的小区信号质量(如用RSRP表征)超过s-MeasureConfig指示的RSRP时,终端设备不对measId1和measId2相应的邻区进行测量。
应理解,在方法400中涉及到的信元的命名仅是为便于理解作的示例性说明,不应对本申请构成任何限定,方法400中涉及到的信元均可以有其他名称或表达形式。
还应理解,方法400中的“第一测量对象”均可替换为“FR1”或“属于FR1的测量对象”,“第二测量对象”均可替换为“FR2”或“属于FR2的测量对象”。
通过本申请实施例,网络设备可以向终端设备指示配置的s-Measure的适用范围,从而可以根据不同的测量需求进行不同的指示,使得measConfig中的s-Measure配置满足不同的测量需求,使得s-Measure的应用更加灵活。
应理解,在上述方法400中,s-Measure中也可以包括参数p,s-Measure中包括参数p时的情况可以参考方法200,此处不再赘述。
还应理解,在上述方法400中,小区信号质量阈值也可以用p来表示。换句话说,在上述方法400中,“s-Measure”均可用“参数p”来代替,例如,当终端设备接收指示信息,该指示信息指示该参数p影响第一测量对象,则在SpCell的信号质量值高于P的情况下,终端设备不用再对第一测量对象上的非服务小区进行测量。其他情况类似,此处不再赘述。
以上,结合图5至图8详细说明了终端设备可以分别考虑是否要测量不同频率范围内的非服务小区,换句话说,可以考虑不同的测量需求,或者,换句话说,可以使得s-Measure的使用更加灵活。例如,终端设备可以根据主小区的信号质量和s-Measure,来确定是否停止测量属于FR1范围的非服务小区,且不管主小区的信号质量有没有超过s-Measure,只要有属于FR2范围的非服务小区的测量任务,终端设备总是测量该属于FR2范围的非服务小区。又如,针对不同的频率范围,网络设备可以独立配置s-Measure。又如,网络设备也可以向终端设备指示该s-Measure的适用范围等等。
上文主要分别考虑了针对属于FR1范围的非服务小区的测量和针对属于FR2范围的非服务小区的测量,下面提供另一实施例,即不区分非服务小区是属于FR1范围,还是属于FR2范围,针对所有的非服务小区的测量方法。应理解,该实施例可以与上述图5至图8所述实施例结合使用,也可以单独使用,对此,不作限定。
作为示例而非限定,在本申请中,终端设备可以采用以下任意一种方式,来确定是否对非服务小区(也可以称为邻区或邻小区)进行测量。该非服务小区可以是属于FR1范围的非服务小区,或者,也可以是属于FR2范围的非服务小区的测量,对此不作限定。
方式1:s-Measure中可以包括与波束相关的参数,基于该参数以及s-Measure,来确定是否测量非服务小区。
具体地,s-Measure中可以包括与波束相关的参数,例如,记为参数P,该参数P可以用于表示good beam的个数。当SpCell的信号质量值超过s-Measure的取值时,例如,SpCell的RSRP超过s-Measure的取值时,且当good beam的个数超过P时,终端设备不用再对非服务小区(也可以称为邻区或邻小区)进行测量。
其中,关于good beam参考上述方法200中的描述,此处不再赘述。
基于方式1,可以在满足cell级的质量(即SpCell的信号质量值超过s-Measure的取值)和beam级的质量(即good beam的个数大于或等于P)时,终端设备确定不用再对非服务小区进行测量(或者也可以叫做停止对非服务小区的测量)。
应理解,方式1可以与上述图5至图8所述实施例结合使用。以结合使用方式1与图5所述实施例为例。
在方法200中的S220中,SpCell的信号质量超过s-Measure的取值的情况下,终端设备不测量第一测量对象上的非服务小区,以及基于测量配置信息,测量属于第二测量对象 上的非服务小区。当结合使用方式1与方法200,SpCell的信号质量超过s-Measure的取值,且good beam的个数大于或等于P的情况下,不测量第一测量对象上的非服务小区,以及终端设备基于测量配置信息,测量属于第二测量对象上的非服务小区。
方式2:测量配置中可以包括与波束相关的参数,基于该参数来确定是否测量非服务小区。
也就是说,可以将cell级的s-Measure改成beam级的一个用P表示的门限。具体地,当SpCell的good beam的个数大于或等于P时,终端设备不用再对非服务小区(也可以称为邻区或邻小区)进行测量,该非服务小区可以是属于FR1范围的非服务小区,或者,也可以是属于FR2范围的非服务小区的测量,对此不作限定。关于good beam的描述,参考上述方式1的描述。
基于方式2,可以在满足beam级的质量(即good beam的个数大于或等于P)时,终端设备确定不用再对所有非服务小区进行测量(或者也可以叫做停止对非服务小区的测量)。
以上两种方式仅是示例性说明,本申请并未限定于此。
以上,结合图5至图8详细说明了本申请实施例提供的方法。以下,结合图9至图11详细说明本申请实施例提供的通信装置。
图9是本申请实施例提供的通信装置的示意性框图。如图所示,该通信装置1000可以包括通信单元1100和处理单元1200。
在一种可能的设计中,该通信装置1000可实现对应于上文方法实施例中的终端设备执行的步骤或者流程,例如,可以为终端设备,或者配置于终端设备中的芯片或电路。
一种可能的实现方式,通信单元1100用于:接收测量配置信息,测量配置信息包括小区信号质量阈值;处理单元1200用于:在主小区的信号质量超过小区信号质量阈值的情况下,不测量属于第一频率范围的非服务小区,以及基于测量配置信息,测量属于第二频率范围的非服务小区。
可选地,第一频率范围的频率小于第二频率范围的频率。
可选地,小区切换参考属于第一频率范围的测量对象的测量结果。
可选地,小区信号质量阈值包括用于表示好波束(good beam)的个数的参数P。
该通信装置1000可实现对应于根据本申请实施例的方法200中的终端设备执行的步骤或者流程,该通信装置1000可以包括用于执行图5中的方法200中的终端设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图5中的方法200的相应流程。
其中,当该通信装置1000用于执行图5中的方法200时,通信单元1100可用于执行方法200中的步骤210,处理单元1200可用于执行方法200中的步骤220。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
又一种可能的实现方式,通信单元1100用于:接收测量配置信息,测量配置信息包括第一小区信号质量阈值和/或第二小区信号质量阈值,其中,第一小区信号质量阈值用于确定是否测量属于第一频率范围的非服务小区,第二小区信号质量阈值用于确定是否测量属于第二频率范围的非服务小区;处理单元1200用于:基于测量配置信息,进行测量。
可选地,处理单元1200用于:在主小区的信号质量超过第一小区信号质量阈值的情况下,不测量属于第一频率范围的非服务小区。
可选地,处理单元1200用于:在主小区的信号质量超过第二小区信号质量阈值的情况下,不测量属于第二频率范围的非服务小区。
可选地,第一频率范围的频率小于第二频率范围的频率。
可选地,小区切换参考属于第一频率范围的测量对象的测量结果。
可选地,第一小区信号质量阈值包括用于表示好波束(good beam)的个数的第一参数,第二小区信号质量阈值包括用于表示好波束的个数的第二参数。
该通信装置1000可实现对应于根据本申请实施例的方法300中的终端设备执行的步骤或者流程,该通信装置1000可以包括用于执行图7中的方法300中的终端设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图7中的方法300的相应流程。
其中,当该通信装置1000用于执行图7中的方法300时,通信单元1100可用于执行方法300中的步骤310,处理单元1200可用于执行方法300中的步骤320。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
又一种可能的实现方式,通信单元1100用于:接收小区信号质量阈值和指示信息,指示信息用于指示小区信号质量阈值用于确定是否测量属于第一频率范围的非服务小区,或,指示信息用于指示小区信号质量阈值用于确定是否测量属于第二频率范围的非服务小区;处理单元1200用于:根据小区信号质量阈值和指示信息,进行测量。
可选地,指示信息用于指示小区信号质量阈值用于确定是否测量属于第一频率范围的非服务小区,处理单元1200用于:在主小区的信号质量超过小区信号质量阈值的情况下,不测量属于第一频率范围的非服务小区。
可选地,指示信息用于指示小区信号质量阈值用于确定是否测量属于第二频率范围的非服务小区,处理单元1200用于:在主小区的信号质量超过小区信号质量阈值的情况下,不测量属于第二频率范围的非服务小区。
可选地,第一频率范围的频率小于第二频率范围的频率。
可选地,小区切换参考属于第一频率范围的测量对象的测量结果。
可选地,小区信号质量阈值包括用于表示好波束(good beam)的个数的参数P。
该通信装置1000可实现对应于根据本申请实施例的方法400中的终端设备执行的步骤或者流程,该通信装置1000可以包括用于执行图8中的方法400中的终端设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图8中的方法400的相应流程。
其中,当该通信装置1000用于执行图8中的方法400时,通信单元1100可用于执行方法400中的步骤410,处理单元1200可用于执行方法400中的步骤420。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
又一种可能的实现方式,通信单元1100用于:接收测量配置信息,测量配置信息包括小区信号质量阈值,小区信号质量阈值包括用于表示好波束(good beam)的个数的参 数P,或,测量配置信息包括P;处理单元1200用于:基于测量配置信息,进行测量。
可选地,小区信号质量阈值包括用于表示好波束的个数的参数P;处理单元1200用于:基于测量配置信息,测量主小区的信号质量;当主小区的信号质量超过小区信号质量阈值,且good beam的个数超过P时,不测量非服务小区。
可选地,测量配置信息包括P;处理单元1200用于:在主小区good beam的个数超过P的情况下,不测量非服务小区。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000中的通信单元1100可通过图10中示出的终端设备2000中的收发器2020实现,该通信装置1000中的处理单元1200可通过图10中示出的终端设备2000中的处理器2010实现。
还应理解,该通信装置1000中的通信单元1100也可以为输入/输出接口。
在另一种可能的设计中,该通信装置1000可实现对应于上文方法实施例中的网络设备执行的步骤或者流程,例如,可以为网络设备,或者配置于网络设备中的芯片或电路。
一种可能的实现方式,处理单元1200用于:生成测量配置信息,测量配置信息包括第一小区信号质量阈值和/或第二小区信号质量阈值,其中,第一小区信号质量阈值用于确定是否测量属于第一频率范围的非服务小区,第二小区信号质量阈值用于确定是否测量属于第二频率范围的非服务小区;通信单元1100用于:发送测量配置信息。
可选地,第一频率范围的频率小于第二频率范围的频率。
可选地,小区切换参考属于第一频率范围的测量对象的测量结果。
可选地,第一小区信号质量阈值包括用于表示好波束(good beam)的个数的第一参数,第二小区信号质量阈值包括用于表示好波束的个数的第二参数。
该通信装置1000可实现对应于根据本申请实施例的方法300中的网络设备执行的步骤或者流程,该通信装置1000可以包括用于执行图7中的方法300中的网络设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图7中的方法300的相应流程。
其中,当该通信装置1000用于执行图7中的方法300时,通信单元1100可用于执行方法300中的步骤310。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
又一种可能的实现方式,处理单元1200用于:生成指示信息;通信单元1100用于:发送小区信号质量阈值和指示信息,指示信息用于指示小区信号质量阈值用于确定是否测量属于第一频率范围的非服务小区,或,指示信息用于指示小区信号质量阈值用于确定是否测量属于第二频率范围的非服务小区。
可选地,第一频率范围的频率小于第二频率范围的频率。
可选地,小区切换参考属于第一频率范围的测量对象的测量结果。
可选地,小区信号质量阈值包括用于表示好波束(good beam)的个数的参数P。
该通信装置1000可实现对应于根据本申请实施例的方法400中的网络设备执行的步骤或者流程,该通信装置1000可以包括用于执行图8中的方法400中的网络设备执行的 方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图8中的方法400的相应流程。
其中,当该通信装置1000用于执行图8中的方法400时,通信单元1100可用于执行方法400中的步骤410。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
又一种可能的实现方式,处理单元1200用于:生成测量配置信息,测量配置信息包括小区信号质量阈值,所述小区信号质量阈值包括用于表示好波束(good beam)的个数的参数P,或,测量配置信息包括P;通信单元1100用于:发送测量配置信息。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000中的通信单元为可通过图11中示出的网络设备3000中的收发器3200实现,该通信装置1000中的处理单元1200可通过图11中示出的网络设备3000中的处理器3100实现。
还应理解,该通信装置1000中的通信单元1100也可以为输入/输出接口。
图10是本申请实施例提供的终端设备2000的结构示意图。该终端设备2000可应用于如图1或图2所示的系统中,执行上述方法实施例中终端设备的功能,或者实现上述方法实施例中终端设备执行的步骤或者流程。
如图所示,该终端设备2000包括处理器2010和收发器2020。可选地,该终端设备2000还包括存储器2030。其中,处理器2010、收发器2002和存储器2030之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器2030用于存储计算机程序,该处理器2010用于从该存储器2030中调用并运行该计算机程序,以控制该收发器2020收发信号。可选地,终端设备2000还可以包括天线2040,用于将收发器2020输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器2010可以和存储器2030可以合成一个处理装置,处理器2010用于执行存储器2030中存储的程序代码来实现上述功能。具体实现时,该存储器2030也可以集成在处理器2010中,或者独立于处理器2010。该处理器2010可以与图9中的处理单元对应。
上述收发器2020可以与图9中的通信单元对应,也可以称为收发单元。收发器2020可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
应理解,图10所示的终端设备2000能够实现图5至图8所示方法实施例中涉及终端设备的各个过程。终端设备2000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
上述处理器2010可以用于执行前面方法实施例中描述的由终端设备内部实现的动作,而收发器2020可以用于执行前面方法实施例中描述的终端设备向网络设备发送或从网络设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选地,上述终端设备2000还可以包括电源2050,用于给终端设备中的各种器件或 电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备2000还可以包括输入单元2060、显示单元2070、音频电路2080、摄像头2090和传感器2100等中的一个或多个,所述音频电路还可以包括扬声器2082、麦克风2084等。
图11是本申请实施例提供的网络设备的结构示意图,例如可以为基站的结构示意图。该基站3000可应用于如图1或图2所示的系统中,执行上述方法实施例中网络设备的功能,或者实现上述方法实施例中网络设备执行的步骤或者流程。
如图所示,该基站3000可以包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)3100和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)3200。所述RRU 3100可以称为收发单元,与图9中的通信单元1100对应。可选地,该收发单元3100还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线3101和射频单元3102。可选地,收发单元3100可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。所述RRU 3100部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送指示信息。所述BBU 3200部分主要用于进行基带处理,对基站进行控制等。所述RRU 3100与BBU 3200可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 3200为基站的控制中心,也可以称为处理单元,可以与图9中的处理单元1200对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述指示信息,或者配置测量信息等。
在一个示例中,所述BBU 3200可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 3200还包括存储器3201和处理器3202。所述存储器3201用以存储必要的指令和数据。所述处理器3202用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器3201和处理器3202可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图11所示的基站3000能够实现图5至图8方法实施例中涉及网络设备的各个过程。基站3000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
上述BBU 3200可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而RRU 3100可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
本申请实施例还提供了一种处理装置,包括处理器和接口。所述处理器可用于执行上述方法实施例中的方法。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated  circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图9所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图5至图8所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显 示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种测量方法,其特征在于,包括:
    接收测量配置信息,所述测量配置信息包括小区信号质量阈值;
    在主小区的信号质量超过所述小区信号质量阈值的情况下,不测量属于第一频率范围的非服务小区,以及基于所述测量配置信息,测量属于第二频率范围的非服务小区。
  2. 一种测量方法,其特征在于,包括:
    接收测量配置信息,所述测量配置信息包括第一小区信号质量阈值和/或第二小区信号质量阈值,其中,
    所述第一小区信号质量阈值用于确定是否测量属于第一频率范围的非服务小区,所述第二小区信号质量阈值用于确定是否测量属于第二频率范围的非服务小区;
    基于所述测量配置信息,进行测量。
  3. 根据权利要求2所述的方法,其特征在于,
    所述基于所述测量配置信息,进行测量,包括:
    在主小区的信号质量超过所述第一小区信号质量阈值的情况下,不测量属于所述第一频率范围的非服务小区。
  4. 根据权利要求2或3所述的方法,其特征在于,
    所述基于所述测量配置信息,进行测量,包括:
    在主小区的信号质量超过所述第二小区信号质量阈值的情况下,不测量属于所述第二频率范围的非服务小区。
  5. 一种测量方法,其特征在于,包括:
    接收小区信号质量阈值和指示信息,所述指示信息用于指示所述小区信号质量阈值用于确定是否测量属于第一频率范围的非服务小区,或,所述指示信息用于指示所述小区信号质量阈值用于确定是否测量属于第二频率范围的非服务小区;
    根据所述小区信号质量阈值和所述指示信息,进行测量。
  6. 根据权利要求5所述的方法,其特征在于,所述指示信息用于指示所述小区信号质量阈值用于确定是否测量属于第一频率范围的非服务小区,
    所述根据所述小区信号质量阈值和所述指示信息,进行测量,包括:
    在主小区的信号质量超过所述小区信号质量阈值的情况下,不测量属于所述第一频率范围的非服务小区。
  7. 根据权利要求5所述的方法,其特征在于,所述指示信息用于指示所述小区信号质量阈值用于确定是否测量属于第二频率范围的非服务小区,
    所述根据所述小区信号质量阈值和所述指示信息,进行测量,包括:
    在主小区的信号质量超过所述小区信号质量阈值的情况下,不测量属于所述第二频率范围的非服务小区。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一频率范围的频率小于所述第二频率范围的频率。
  9. 一种测量方法,其特征在于,包括:
    生成测量配置信息,所述测量配置信息包括第一小区信号质量阈值和/或第二小区信号质量阈值,其中,所述第一小区信号质量阈值用于确定是否测量属于第一频率范围的非服务小区,所述第二小区信号质量阈值用于确定是否测量属于第二频率范围的非服务小区;
    发送所述测量配置信息。
  10. 一种测量方法,其特征在于,包括:
    生成指示信息;
    发送所述指示信息和小区信号质量阈值,所述指示信息用于指示所述小区信号质量阈值用于确定是否测量属于第一频率范围的非服务小区,或,所述指示信息用于指示所述小区信号质量阈值用于确定是否测量属于第二频率范围的非服务小区。
  11. 根据权利要求9或10所述的方法,其特征在于,所述第一频率范围的频率小于所述第二频率范围的频率。
  12. 一种通信装置,其特征在于,用于实现如权利要求1至8中任意一项所述的方法。
  13. 一种通信装置,其特征在于,用于实现如权利要求9至11中任意一项所述的方法。
  14. 一种通信系统,其特征在于,包括如权利要求12所述的通信装置和如权利要求13所述的通信装置。
  15. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,
    使得所述计算机执行如权利要求1至8中任意一项所述的方法,或者
    使得所述计算机执行如权利要求9至11中任意一项所述的方法。
  16. 一种芯片系统,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,
    使得安装有所述芯片系统的通信设备执行如权利要求1至8中任意一项所述的方法;或者
    使得安装有所述芯片系统的通信设备执行如权利要求9至11中任意一项所述的方法。
PCT/CN2020/073406 2019-02-02 2020-01-21 测量方法和通信装置 WO2020156364A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910107837.9 2019-02-02
CN201910107837.9A CN111526533A (zh) 2019-02-02 2019-02-02 测量方法和通信装置

Publications (1)

Publication Number Publication Date
WO2020156364A1 true WO2020156364A1 (zh) 2020-08-06

Family

ID=71841607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073406 WO2020156364A1 (zh) 2019-02-02 2020-01-21 测量方法和通信装置

Country Status (2)

Country Link
CN (1) CN111526533A (zh)
WO (1) WO2020156364A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114585015B (zh) * 2020-11-16 2024-06-21 深圳市万普拉斯科技有限公司 一种测量上报方法、装置、终端和存储介质
CN115918134A (zh) * 2021-06-22 2023-04-04 北京小米移动软件有限公司 小区测量方法、小区测量配置方法及装置、设备及介质
CN114745744A (zh) * 2022-04-06 2022-07-12 Oppo广东移动通信有限公司 小区测量方法、装置、终端设备和计算机可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102014422A (zh) * 2009-09-08 2011-04-13 中兴通讯股份有限公司 测量处理方法和装置
CN102186188A (zh) * 2011-04-25 2011-09-14 电信科学技术研究院 一种ue测量控制方法与ue
CN102281556A (zh) * 2010-06-13 2011-12-14 中兴通讯股份有限公司 多载波通信系统以及载波聚合中启动测量任务的方法
US20160029265A1 (en) * 2013-03-21 2016-01-28 Nokia Technologies Oy Method and apparatus for mobility control in a heterogenous network
CN109587724A (zh) * 2017-09-28 2019-04-05 华为技术有限公司 一种测量方法及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070004445A1 (en) * 2005-06-29 2007-01-04 Dorsey Donald A Apparatus and method for cell selection in a wireless network
CN101001471A (zh) * 2007-01-25 2007-07-18 华为技术有限公司 一种邻区优化处理方法及其系统
US7873710B2 (en) * 2007-02-06 2011-01-18 5O9, Inc. Contextual data communication platform
CN101312575B (zh) * 2007-05-22 2011-10-19 展讯通信(上海)有限公司 Td-scdma系统中终端测量gsm邻区的方法
CN101378580A (zh) * 2007-08-27 2009-03-04 华为技术有限公司 一种邻区配置方法、通信装置及无线终端
CN101442768B (zh) * 2007-11-20 2012-04-04 杰脉通信技术(上海)有限公司 同频多小区观测时差的测量方法
US9084191B2 (en) * 2011-01-20 2015-07-14 Qualcomm Incorporated Method and apparatus for determining timing information for cells
CN102869025A (zh) * 2011-07-06 2013-01-09 中兴通讯股份有限公司 一种测量处理方法及系统
CN102612071B (zh) * 2012-02-24 2014-11-05 华为技术有限公司 室内话务地图呈现方法及装置
US9001737B2 (en) * 2012-03-29 2015-04-07 Qualcomm Incorporated EMBMS service activation and maintenance procedure in multi-frequency networks
KR20140017883A (ko) * 2012-08-01 2014-02-12 삼성전자주식회사 이동 통신 시스템에서 단말의 lte 주파수 간 또는 시스템 간 셀 재선택 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102014422A (zh) * 2009-09-08 2011-04-13 中兴通讯股份有限公司 测量处理方法和装置
CN102281556A (zh) * 2010-06-13 2011-12-14 中兴通讯股份有限公司 多载波通信系统以及载波聚合中启动测量任务的方法
CN102186188A (zh) * 2011-04-25 2011-09-14 电信科学技术研究院 一种ue测量控制方法与ue
US20160029265A1 (en) * 2013-03-21 2016-01-28 Nokia Technologies Oy Method and apparatus for mobility control in a heterogenous network
CN109587724A (zh) * 2017-09-28 2019-04-05 华为技术有限公司 一种测量方法及装置

Also Published As

Publication number Publication date
CN111526533A (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
JP6938659B2 (ja) Csi−rs測定方法および指示方法、ネットワークデバイス、ならびに端末
WO2021031921A1 (zh) 用于测量的方法与装置
US20210219155A1 (en) Interference Measurement Method and Apparatus
WO2021027750A1 (zh) 更新波束信息的方法和通信装置
WO2020135400A1 (zh) 通信方法和通信装置
WO2020030144A1 (zh) 一种功率控制的方法和装置
WO2020143692A1 (zh) 通信方法和通信装置
WO2020224575A1 (zh) 通信方法与装置
WO2020164418A1 (zh) 一种测量方法、终端设备及网络设备
WO2020248779A1 (zh) 更新传输配置指示tci信息的方法与通信装置
US20210258841A1 (en) Cell measurement method and terminal device
US20240022925A1 (en) L1/l2-centric mobility - neighbour cell measurements
WO2020135383A1 (zh) 通信方法和通信装置
WO2020156364A1 (zh) 测量方法和通信装置
WO2018137703A1 (zh) 一种信息传输方法和装置
CN110740471A (zh) 一种通信方法、装置和系统以及计算机可读存储介质
US20230189369A1 (en) Communication method and apparatus, and device
EP4185021A1 (en) Method and apparatus for determining transmission power
EP4027695A1 (en) Method and apparatus for uplink transmission
WO2019096278A1 (zh) 信号测量的方法和设备
EP4117334A1 (en) Method and apparatus for determining quality information of cell
US20220173847A1 (en) Downlink transmission method and terminal device
WO2020156562A1 (zh) 通信方法和装置
US20220240116A1 (en) Link Failure Detection Method and Apparatus
CN118055467B (zh) 通信方法、设备、存储介质及产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20748982

Country of ref document: EP

Kind code of ref document: A1