WO2020224575A1 - 通信方法与装置 - Google Patents

通信方法与装置 Download PDF

Info

Publication number
WO2020224575A1
WO2020224575A1 PCT/CN2020/088675 CN2020088675W WO2020224575A1 WO 2020224575 A1 WO2020224575 A1 WO 2020224575A1 CN 2020088675 W CN2020088675 W CN 2020088675W WO 2020224575 A1 WO2020224575 A1 WO 2020224575A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement interval
measurement
configuration information
requirement information
information
Prior art date
Application number
PCT/CN2020/088675
Other languages
English (en)
French (fr)
Inventor
郑黎丽
张宏平
曾清海
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20801754.1A priority Critical patent/EP3958604A4/en
Publication of WO2020224575A1 publication Critical patent/WO2020224575A1/zh
Priority to US17/519,915 priority patent/US20220060923A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • This application relates to the field of communication, and specifically to a communication method and device.
  • RF radio frequency
  • the network side will configure the measurement interval for the terminal device, which makes the flexibility of configuring the measurement interval poor.
  • the present application provides a communication method and device, which can effectively improve the flexibility of configuring measurement intervals.
  • a communication method includes: receiving measurement configuration information from a network device, the measurement configuration information indicating a measurement task; determining whether the measurement task requires a measurement interval; if the measurement task does not require Measurement interval, sending first measurement interval requirement information indicating that no measurement interval is required to the network device, the first measurement interval requirement information being used to deactivate or release configured measurement interval configuration information; and/or, if The measurement task requires a measurement interval, and second measurement interval requirement information indicating that the measurement interval is required is sent to the network device, and the second measurement interval requirement information is used to activate or validate the measurement interval corresponding to the second measurement interval requirement information Configuration information.
  • the measurement interval configuration status is determined based on the measurement interval requirement information reported by the terminal device, which can improve the flexibility of the measurement interval configuration on the one hand, and avoid unnecessary communication interruption between the terminal device and the serving cell on the other hand , which can improve communication efficiency.
  • the measurement interval requirement information reported by the terminal device is directly used to activate or take effect, or to deactivate or release, the measurement interval configuration information, thereby eliminating the need for the network device to reconfigure or reconfigure through radio resource control (RRC) signaling. Release the measurement interval, which can reduce signaling overhead.
  • RRC radio resource control
  • the measurement configuration information includes first measurement interval configuration information; if the measurement task does not require a measurement interval, send the measurement interval to the network device First measurement interval demand information, where the first measurement interval demand information is used to deactivate or release the first measurement interval configuration information; and/or, if the measurement task requires a measurement interval, send all information to the network device
  • the second measurement interval requirement information, the second measurement interval requirement information is used to activate or validate the first measurement interval configuration information.
  • the first measurement interval configuration information is valid by default, and if the measurement task does not require a measurement interval, the first measurement is sent to the network device Interval requirement information, where the first measurement interval requirement information is used to deactivate or release the first measurement interval configuration information; if the measurement task requires a measurement interval, the measurement interval requirement information is not sent to the network device.
  • the terminal device only needs to send measurement interval requirement information to the network device when the measurement interval is not required, to deactivate or release the configured measurement interval configuration information. In this case, there is no need to send measurement interval requirement information, which can further save signaling overhead.
  • the first measurement interval configuration information does not take effect by default, and if the measurement task requires a measurement interval, the second measurement is sent to the network device Interval requirement information, the second measurement interval requirement information is used to activate or validate the first measurement interval configuration information; if the measurement task does not require a measurement interval, the measurement interval requirement information is not sent to the network device.
  • the terminal device only needs to send the measurement interval requirement information to the network device when the measurement interval is needed, to activate or validate the required measurement interval configuration information.
  • the measurement interval is not required Next, there is no need to send measurement interval requirement information, which can further save signaling overhead.
  • the second measurement interval requirement information is sent to the network device, and the second measurement interval requirement information is Includes a measurement interval parameter, and the second measurement interval requirement information is used to validate the measurement interval configuration information corresponding to the measurement interval parameter.
  • This implementation manner may be applicable to scenarios where the measurement interval configuration information is not included in the measurement configuration information, or may also be applicable to scenarios where the configured measurement interval configuration information does not meet the measurement requirements of the measurement task.
  • the judging whether the measurement task requires a measurement interval includes: determining whether the measurement task requires measurement when the serving cell configuration changes interval.
  • the change of the serving cell configuration includes any one or more of the following: adding a serving cell (SCell addition), deleting a serving cell (SCell removal), and modifying the serving cell configuration.
  • the terminal device determines whether the measurement task requires a measurement interval, and can report to the measurement task according to the determination result.
  • the network device reports the measurement interval requirement information, thereby effectively ensuring that the measurement configuration information meets the measurement requirement.
  • a communication method includes: sending measurement configuration information to a terminal device, where the measurement configuration information indicates a measurement task; and when the measurement task does not require a measurement interval, the communication method includes: The device receives first measurement interval requirement information indicating that no measurement interval is required, and the first measurement interval requirement information is used to deactivate or release configured measurement interval configuration information; and/or, when the measurement task requires a measurement interval In this case, receiving second measurement interval requirement information indicating that a measurement interval is required from the terminal device, where the second measurement interval requirement information is used to activate or validate the measurement interval configuration information corresponding to the second measurement interval requirement information.
  • the measurement interval configuration status is determined based on the measurement interval requirement information reported by the terminal device, which can improve the flexibility of the measurement interval configuration on the one hand, and avoid unnecessary communication interruption between the terminal device and the serving cell on the other hand , which can improve communication efficiency.
  • the measurement interval requirement information reported by the terminal device is directly used to activate or validate, or deactivate or release, the measurement interval configuration information, so that the network device does not need to configure or release the measurement interval again through RRC signaling, which can reduce signaling Overhead.
  • the measurement configuration information includes the first measurement interval configuration information; in the case that the measurement task does not require a measurement interval, the terminal device Receiving the first measurement interval requirement information, where the first measurement interval requirement information is used to deactivate or release the first measurement interval configuration information; and/or, when the measurement task requires a measurement interval, from The terminal device receives the second measurement interval requirement information, where the second measurement interval requirement information is used to activate or validate the first measurement interval configuration information.
  • the first measurement interval configuration information takes effect by default, and when the measurement task does not require a measurement interval, the terminal device receives the The first measurement interval demand information, the first measurement interval demand information is used to deactivate or release the first measurement interval configuration information; in the case that the measurement task requires a measurement interval, no measurement is received from the terminal device Interval demand information.
  • the first measurement interval configuration information does not take effect by default, and when the measurement task requires a measurement interval, the terminal device receives the Second measurement interval demand information, where the second measurement interval demand information is used to activate or validate the first measurement interval configuration information; when the measurement task does not require a measurement interval, no measurement is received from the terminal device Interval demand information.
  • the second measurement interval requirement information is received from the terminal device, and the second measurement interval requirement information includes a measurement interval parameter, and the first 2.
  • the measurement interval requirement information is used to validate the measurement interval configuration information corresponding to the measurement interval parameter.
  • a communication method includes: sending measurement configuration information to a terminal device, the measurement configuration information carrying measurement interval configuration information; sending a medium access control control element to the terminal device.
  • control element, MAC-CE control element, MAC-CE
  • the MAC-CE indicates to deactivate the configured measurement interval configuration information, or the MAC-CE indicates to activate the configured measurement interval configuration information.
  • the network device uses MAC-CE to deactivate or activate the measurement interval configuration information, which can reduce transmission delay compared to using RRC signaling.
  • the method further includes: receiving measurement interval requirement information from a terminal device, the measurement interval requirement information indicating that a measurement interval is needed or not required.
  • sending the MAC-CE to the terminal device includes: when the measurement interval requirement information indicates that the measurement interval is not required, sending to the terminal device a MAC-CE indicating deactivation of the configured measurement interval requirement information; or In a case where the measurement interval requirement information indicates that a measurement interval is required, a MAC-CE indicating activation of the configured measurement interval requirement information is sent to the terminal device.
  • the measurement interval requirement information sent by the terminal device is carried in the RRC reconfiguration complete message.
  • the measurement interval requirement information sent by the terminal device is carried in other uplink signaling.
  • the network device uses MAC-CE to deactivate or activate the configured measurement interval configuration information according to the measurement interval requirement information reported by the terminal device, which can improve the flexibility of the measurement interval configuration.
  • sending the MAC-CE to the terminal device includes: sending the MAC-CE to the terminal device according to the measurement interval capability of the terminal device.
  • the MAC-CE indicating the deactivation of the configured measurement interval requirement information is sent to the terminal device;
  • a MAC-CE indicating activation of the configured measurement interval requirement information is sent to the terminal device.
  • sending a MAC-CE to a terminal device includes: sending the MAC-CE to the terminal device based on a protocol.
  • the terminal device is sent to the terminal device the MAC-CE indicating the deactivation of the configured measurement interval requirement information.
  • a MAC-CE indicating activation of the configured measurement interval requirement information is sent to the terminal device.
  • a communication method includes: receiving measurement configuration information from a network device, the measurement configuration information carrying measurement interval configuration information; and receiving a MAC-CE from the network device, the MAC-CE Instructing to deactivate the configured measurement interval configuration information, or the MAC-CE instructs to activate the configured measurement interval configuration information.
  • the network device uses MAC-CE to deactivate or activate the measurement interval configuration information, which can reduce transmission delay compared to using RRC signaling.
  • the method further includes: sending measurement interval requirement information to the network device, where the measurement interval requirement information indicates whether a measurement interval is needed or not.
  • the measurement configuration information indicates the measurement task.
  • the measurement interval requirement information indicating that the measurement interval is not required is sent to the network device.
  • the measurement interval requirement information indicating that the measurement interval is required is sent to the network device.
  • the measurement interval requirement information sent by the terminal device is carried in the RRC reconfiguration complete message.
  • the measurement interval requirement information sent by the terminal device is carried in other uplink signaling.
  • the network device may send the MAC-CE to the terminal device according to the measurement interval requirement information reported by the terminal device.
  • the measurement interval requirement information indicates that the measurement interval is not required
  • sending a MAC-CE indicating activation of the configured measurement interval requirement information to the terminal device may send the MAC-CE to the terminal device according to the measurement interval requirement information reported by the terminal device.
  • the network device uses MAC-CE to deactivate or activate the configured measurement interval configuration information according to the measurement interval requirement information reported by the terminal device, which can improve the flexibility of the measurement interval configuration.
  • a communication device is provided, and the communication device is configured to execute the method provided in the first aspect, the second aspect, the third aspect, or the fourth aspect.
  • the communication device may include a module for executing the method provided in the first aspect, the second aspect, the third aspect, or the fourth aspect.
  • a communication device in a sixth aspect, includes a memory and a processor, the memory is used to store instructions, and the processor is used to execute instructions stored in the memory, and respond to the instructions stored in the memory.
  • the execution of causes the processor to execute the method provided in the first aspect, the second aspect, the third aspect, or the fourth aspect.
  • a chip in a seventh aspect, includes a processing module and a communication interface, the processing module is used to control the communication interface to communicate with the outside, and the processing module is also used to implement the first and second aspects , The method provided by the third or fourth aspect.
  • a computer-readable storage medium on which a computer program is stored.
  • the computer program When the computer program is executed by a computer, the computer realizes what is provided in the first, second, third, or fourth aspect method.
  • a computer program product containing instructions is provided, when the instructions are executed by a computer, the computer realizes the method provided in the first aspect, the second aspect, the third aspect, or the fourth aspect.
  • the measurement interval configuration status is determined based on the measurement interval requirement information reported by the terminal device. This can improve the flexibility of the measurement interval configuration on the one hand, and on the other hand can prevent the terminal device and the serving cell from being disconnected. The necessary communication is interrupted, so that the communication efficiency can be improved.
  • the measurement interval requirement information reported by the terminal device is directly used to activate or validate, or deactivate or release, the measurement interval configuration information, so that the network device does not need to configure or release the measurement interval again through RRC signaling, which can reduce signaling Overhead.
  • Fig. 1 and Fig. 2 are schematic diagrams of communication systems suitable for embodiments of the present application.
  • Fig. 3 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • Fig. 4 is another schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a communication device provided by an embodiment of the application.
  • FIG. 6 is another schematic block diagram of a communication device provided by an embodiment of this application.
  • FIG. 7 is a schematic structural diagram of a terminal device provided by an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • Mobility management is an important part of wireless mobile communication. It refers to a general term for related content involved in order to ensure that the communication link between the network and user equipment (UE) is not interrupted due to the movement of the UE. According to the state of the UE, it can be roughly divided into two parts: idle state (RRC_IDLE state)/deactivated state (RRC_INACTIVE state) mobility management and connected state (RRC_CONNECTED state) mobility management.
  • RRC_IDLE state idle state/deactivated state
  • RRC_INACTIVE state deactivated state
  • RRC_CONNECTED state connected state
  • mobility management mainly refers to cell handover. Whether it is cell selection/reselection or handover, it is all based on the measurement results. Therefore, mobility measurement is the basis of mobility management.
  • the mobility measurement is based on the beam. Let's briefly introduce the beam, and then introduce the mobility measurement in NR.
  • a beam can be understood as a spatial resource, and can refer to a transmission or reception precoding vector with energy transmission directivity.
  • the transmission or reception precoding vector can be identified by index information, and the index information can correspond to the resource identification (identity, ID) of the configuration terminal.
  • the index information may correspond to the identifier or resource of the configured channel state information reference signal (channel state information reference signal, CSI-RS); it may also correspond to the configured synchronization signal/physical broadcast channel block (Synchronization signal/physical broadcast channel block).
  • Channel block, SS/PBCH block (SS/PBCH block may also be referred to as SSB for short) identifier or resource; it may also be the identifier or resource of a correspondingly configured uplink sounding reference signal (Sounding Reference Signal, SRS).
  • the index information may also be index information that is displayed or implicitly carried by a signal or channel carried by a beam.
  • the energy transmission directivity may refer to the precoding processing of the signal to be sent by the precoding vector, and the signal after the precoding processing has a certain spatial directivity.
  • the signal received after precoding processing by the precoding vector has better received power, such as meeting the signal-to-noise ratio of receiving and demodulating.
  • the energy transmission directivity may also mean that the same signal sent from different spatial locations received through the precoding vector has different received power.
  • the same communication device may have different precoding vectors, and different devices may also have different precoding vectors, that is, corresponding to different beams.
  • a communication device can use one or more of multiple different precoding vectors at the same time, that is, one beam or multiple beams can be formed at the same time.
  • the overall flow of measurement in NR is as follows.
  • the measurement can be divided into two parts: physical layer measurement (layer 1 measurement) and RRC layer measurement (layer 3 measurement) according to the levels involved.
  • the UE performs a specified type of measurement on the configured measurement resource. All measurement types supported by NR are defined in 38.215.
  • the UE For SSB-based measurement, the UE combines the measurement results obtained on multiple SSBs with the same SSB index and physical cell identifier (PCI) to obtain the corresponding SSB index of the cell corresponding to the PCI SSB's beam-level layer 1 measurement results are reported to layer 3.
  • PCI physical cell identifier
  • the UE For CSI-RS-based measurement, the UE combines the measurement results obtained on multiple CSI-RS resources with the same CSI-RS resource identifier (resource identifier) and PCI to obtain the CSI of the cell corresponding to the PCI -The beam layer 1 measurement result of the CSI-RS resource corresponding to the RS resource identifier and reported to the layer 3.
  • resource identifier resource identifier
  • PCI beam layer 1 measurement result of the CSI-RS resource corresponding to the RS resource identifier and reported to the layer 3.
  • the foregoing process of merging measurement results on multiple measurement resources is the so-called layer 1 filtering.
  • the specific merging method is implemented by UE, and the standard will not stipulate. However, the UE needs to ensure that the measurement meets a series of indicators in terms of delay and accuracy defined in 38.133.
  • the UE After layer 3 receives the beam-level measurement result reported by layer 1, the UE needs to select/combine the layer 1 measurement results of each beam in the same cell to derive the cell-level layer 3 measurement result.
  • the specific selection/merging method is defined in 38.331. After that, it is necessary to perform layer 3 filtering on the obtained cell-level layer 3 measurement results. Note that only the measurement results after layer 3 filtering will be used to verify whether the report trigger condition is met and the final report.
  • the UE may also need to report beam-level layer 3 measurement results.
  • the UE directly performs layer 3 filtering on the layer 1 measurement results of each beam, and then selects the measurement results to be reported from the filtered measurement results for reporting.
  • the specific selection method is defined in 38.331.
  • 38.300 requires the UE to verify the reporting trigger condition at least when a new cell-level measurement result is generated. When the reporting trigger condition is met, the UE needs to send a measurement report to the network.
  • the network sends the information required for measurement to the UE through signaling.
  • the signaling sent by the network side may be RRC reconfiguration signaling (RRC Reconfiguration), and the measurement configuration (measConfig) cell of the signaling contains measurement configuration information sent to the UE. 38.331 requires the network side to ensure:
  • the measurement configuration will include the corresponding measurement object for each service frequency.
  • the UE After receiving the signaling, the UE modifies its measurement configuration database and measurement report list accordingly, and informs the network of the successful modification message (RRC Reconfiguration Complete).
  • the following configuration information is included.
  • Measurement object In LTE, one measurement object corresponds to one frequency point. In the measurement object configuration, the network will inform the UE of the necessary information that the UE needs to know for measurement on the frequency point, including the configuration of the measurement resources on the frequency point, the cell list on the frequency point, and so on. In NR, for intra-frequency measurement and inter-frequency measurement, the measurement object indicates the frequency domain/time domain position and subcarrier spacing of the reference signal to be measured. For E-UTRA measurement of different systems, the measurement object corresponds to an E-UTRA frequency point .
  • Reporting configuration (reporting configuration).
  • the network informs the UE of the details of the specific measurement to be performed, including the measurement type, the reporting trigger mode, and the reporting format.
  • Measurement identity is a combination of a measurement object and a report configuration. The combination of the two determines the various details of the measurement of a measurement object. Any measurement object/report configuration can be associated with any one/multiple/0 report configurations/measurement objects that have the same RAT type.
  • Quantity configuration refers to the configuration of the layer 3 filter coefficients. Before the trigger measurement is used to verify whether the report trigger condition is met, and before the report measurement is finally reported, layer 3 filtering is required first. The coefficient of layer 3 filtering is notified to the UE through measurement configuration.
  • Measurement gap configuration If the same frequency/different frequency/different system measurement involves switching the center frequency, the data transmission cannot be performed at the same time, and the network needs to configure the measurement interval for it.
  • the network configures the measurement gap (measurement gap) for the UE in the measurement configuration (measConfig). During the measurement interval, data transmission and reception between the UE and the serving cell is not required, and the UE can perform measurements.
  • RF radio frequency
  • the measurement interval configuration (measGapConfig) is carried in the measurement configuration (measConfig).
  • the measurement interval configuration may include gap type, gap offset (gapOffset), gap length (mgl) (in milliseconds (ms)), gap repetition period (mgrp) (in ms), And gap timing advance (measurement gap timing advance, mgta) (unit: ms), etc.
  • the gap type can include gapUE, gapFR1 and gapFR2.
  • gapUE represents the gap of each UE (per UE)
  • gapFR1 represents that the gap is only applicable to FR1
  • gapFR2 represents that the gap is only applicable to FR2.
  • UE-level measurement interval indicates the measurement interval that all UEs need to support.
  • the so-called UE-level measurement interval refers to the measurement interval applicable to both FR1 and FR2.
  • the frequency range level measurement interval (per-FR gap) can also be supported according to the capabilities of the UE.
  • the UE In per-UE gap, the UE is not required to transmit; the UE is not required to receive data from any serving cell except the reference signal used for measurement; the UE is not required to switch the frequency to the frequency of any serving cell .
  • a set of measurement interval patterns are defined for the FR1 and FR2 frequency bands, and each set of measurement interval patterns will only apply to the corresponding frequency band.
  • the UE In per-FR gap, the UE is not required to transmit to the cell in the corresponding frequency band; the UE is not required to receive data from any serving cell in the corresponding frequency band except the reference signal used for measurement; the UE is not required to switch the frequency point To the frequency point of any serving cell on the corresponding frequency band.
  • BWP is a new concept proposed in the NR standard.
  • BWP represents a continuous bandwidth resource configured to the UE by the network side.
  • BWP can realize flexible transmission bandwidth configuration on the network side and UE side.
  • the application scenarios of BWP can include the following three scenarios.
  • Scenario 1 Applied to a small bandwidth capable UE to access a large bandwidth network.
  • Scenario 2 The UE switches between large and small BWPs to achieve power saving effects.
  • Scenario 3 Different BWPs, different Numerology configurations, and different services.
  • BWPs can be configured for different UEs, which can be referred to as the UE-level concept of BWP.
  • the UE does not need to know the transmission bandwidth on the network side, and only needs to support the BWP bandwidth information configured for the UE.
  • the classification of BWP is as follows.
  • Initial BWP (Initial BWP): The BWP configured during the initial access phase of the UE.
  • the signal and channel during initial access are transmitted in the Initial BWP.
  • Dedicated BWP (Dedicated BWP): The BWP configured by the UE in the RRC connected state.
  • a UE can configure up to 4 Dedicated BWPs.
  • Active BWP Active BWP: The BWP activated by the UE at a certain moment in the RRC connected state is one of the Dedicated BWPs.
  • the UE can only have one Active BWP at a time in the RRC connected state.
  • Default BWP (Default BWP): When the UE is in the RRC connected state, when its BWP inactivity timer expires, the UE returns to the default BWP.
  • the default BWP is also one of the Dedicated BWPs.
  • the network instructs the UE which configured Dedicated BWP is used as the Default BWP through RRC signaling.
  • the network side will configure the measurement interval for the terminal device, which makes the flexibility of configuring the measurement interval poor.
  • this application proposes a communication method and device, which can effectively improve the flexibility of measurement interval configuration.
  • the technical solutions of the embodiments of this application can be applied to various communication systems, for example, the fifth generation (5G) system, the new radio (NR), the machine to machine communication (M2M) system, Or other communication systems that will evolve in the future, etc., which are not limited in the embodiment of the present application.
  • 5G fifth generation
  • NR new radio
  • M2M machine to machine communication
  • FIG. 1 is a schematic diagram of a communication system 100 applicable to an embodiment of the present application.
  • the communication system 100 may include at least one network device, such as the network device 110 shown in FIG. 1.
  • the communication system 100 may also include at least one terminal device, such as the terminal device 120 shown in FIG. 1.
  • the network device 110 and the terminal device 120 may communicate through a wireless link.
  • FIG. 2 is a schematic diagram of a communication system 200 applicable to an embodiment of the present application.
  • the communication system 200 may include at least two network devices, such as the network devices 210 and 220 shown in FIG. 2.
  • the communication system 200 may also include at least one terminal device, such as the terminal device 230 shown in FIG. 2.
  • the terminal device 230 may establish a wireless link with the network device 110 and the network device 120 through dual connectivity (DC) technology or multi-connection technology.
  • the network device 210 may be, for example, a primary base station
  • the network device 220 may be, for example, a secondary base station.
  • the network device 210 is the network device when the terminal device 230 is initially connected, and is responsible for radio resource control (RRC) communication with the terminal device 230.
  • RRC radio resource control
  • the network device 220 can be added during RRC reconfiguration. , Used to provide additional wireless resources.
  • one of the two network devices shown in FIG. 2, such as the network device 210, may be called a master node (master node, MN), and is responsible for exchanging radio resource control messages with the terminal device 230 , And is responsible for interacting with the core network control plane entity.
  • the master node may be MeNB or MgNB, which is not limited in this application.
  • the other network device among the two network devices shown in FIG. 2, such as the network device 220 may be referred to as a secondary node (SN).
  • the secondary node may be an SeNB or SgNB, which is not limited in this application.
  • multiple serving cells in the master node may form a master cell group (master cell group, MCG), including a primary cell (primary cell, PCell) and optionally one or more secondary cells (primary cell, PCell).
  • MCG master cell group
  • Multiple serving cells in a secondary node can form a secondary cell group (SCG), including a primary and secondary cell (PSCell, or, also called a special cell) and optionally one or more SCell.
  • SCG secondary cell group
  • the serving cell refers to the cell configured by the network for the terminal equipment to perform uplink and downlink transmission.
  • a terminal device can also have a communication connection with multiple network devices at the same time and can send and receive data.
  • one network device may be responsible for exchanging radio resource control messages with the terminal device and is responsible for communicating with the core network. Control plane entity interaction, then, the network device can be called MN, and the rest of the network devices can be called SN.
  • the network device 220 may also be a primary base station or a primary node, and the network device 210 may also be a secondary base station or a secondary node, which is not limited in this application.
  • FIG. 1 and FIG. 2 are only examples and not limitation.
  • Figure 1 shows a wireless connection between a terminal device and a network device
  • Figure 2 shows a wireless connection between two network devices and a terminal device, but this should not be applicable to this application.
  • the scene constitutes any limitation.
  • the terminal device can also establish wireless links with more network devices.
  • Each communication device shown in FIG. 1 and FIG. 2 such as the network device 110 or the terminal device 120 in FIG. 1, or the network device 210, the network device 220, or the terminal device 230 in FIG. 2, may be configured with multiple antennas.
  • the plurality of antennas may include at least one transmitting antenna for transmitting signals and at least one receiving antenna for receiving signals.
  • each communication device additionally includes a transmitter chain and a receiver chain.
  • Those of ordinary skill in the art can understand that they can all include multiple components related to signal transmission and reception (such as processors, modulators, multiplexers). , Demodulator, demultiplexer or antenna, etc.). Therefore, multiple antenna technology can be used to communicate between network devices and terminal devices.
  • the network device in the embodiment of the present application may be a device used to communicate with a terminal device, and may be any device with a wireless transceiver function or a chip that can be set in the device.
  • the network device may be a base station, and the base station may be used to communicate with one or more terminal devices, or it may be used to communicate with one or more base stations with partial terminal device functions (for example, a macro base station and a micro base station).
  • a network device may refer to a device in an access network that communicates with a wireless terminal through one or more sectors on the air interface.
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment may be an evolved base station in LTE, and the network equipment may also be a base station in a 5G system, an NR system, an M2M system, or other communication systems that will evolve in the future.
  • the network equipment may also be an access point (AP), a transport point (TRP), a centralized unit (CU), a distributed unit (DU) or other network entities.
  • AP access point
  • TRP transport point
  • CU centralized unit
  • DU distributed unit
  • the network device in the embodiment of the present invention may be not only a base station device, but also a relay device, or other network element devices with base station functions.
  • the terminal device in the embodiment of the present application may be a device that provides voice and/or data connectivity to the user.
  • the terminal device is a handheld device with a wireless connection function or other processing device connected to a wireless modem.
  • the terminal equipment can communicate with the network equipment via the Radio Access Network (RAN).
  • Terminal equipment can refer to user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal, wireless communication equipment, user agent or User device.
  • the terminal device can also be a cellular phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (personal digital assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, or terminal devices in the public land mobile network (PLMN) that will evolve in the future, this application is implemented The example does not limit this.
  • PLMN public land mobile network
  • FIG. 3 is a schematic flowchart of a communication method 300 according to an embodiment of the present application.
  • the communication method 300 includes the following steps.
  • the network device sends measurement configuration information to the terminal device, and the measurement configuration information indicates a measurement task.
  • the terminal device receives the measurement configuration information from the network device.
  • the network device sends an RRC reconfiguration (RRC Reconfiguration) message to the terminal device, and the RRC reconfiguration message includes measurement configuration (measConfig) information.
  • RRC Reconfiguration RRC Reconfiguration
  • measConfig measurement configuration
  • the terminal device After receiving the measurement configuration information, the terminal device determines whether the measurement task requires a measurement interval.
  • the terminal device sends to the network device first measurement interval requirement information indicating that the measurement interval is not required, and the first measurement interval requirement information is used to deactivate or release the configured measurement interval configuration information; and /or
  • the terminal device sends to the network device second measurement interval requirement information indicating that the measurement interval is required.
  • the second measurement interval requirement information is used to activate or validate the measurement interval configuration information corresponding to the second measurement interval requirement information.
  • the first measurement interval requirement information is used to deactivate or release the configured measurement interval configuration information, which means that after the terminal device sends the first measurement interval requirement information, it autonomously considers that the configured measurement interval configuration information is deactivated or released.
  • the network device After receiving the first measurement interval requirement information, the network device deactivates or releases the configured measurement interval information. That is, after the network device receives the first measurement interval requirement information, there is no need to deactivate/release the measurement interval through RRC signaling again, and the terminal device autonomously considers that the configured measurement interval configuration information is deactivated or released.
  • the configured measurement interval configuration information may be the measurement interval configuration information carried in the measurement configuration information in step S310.
  • the second measurement interval requirement information is used to activate or validate the measurement interval configuration information corresponding to the second measurement interval requirement information, which means that after the terminal device sends the second measurement interval requirement information, it autonomously considers that the second measurement interval requirement information corresponds to The measurement interval configuration information is activated or validated, and the network device activates or validates the measurement interval configuration information corresponding to the second measurement interval requirement information after receiving the second measurement interval requirement information. That is to say, after the network device receives the second measurement interval requirement information, there is no need to activate/validate the measurement configuration through RRC signaling again. The terminal device autonomously considers that the measurement interval configuration information corresponding to the second measurement interval requirement information is activated or valid. .
  • the measurement interval configuration information corresponding to the second measurement interval requirement information may be configured measurement interval configuration information, or may also be new measurement interval configuration information that is different from the configured measurement interval configuration information.
  • the terminal device determines whether to send the measurement interval requirement information to the network device according to whether the current measurement task requires a measurement interval; in the case that the terminal device sends the measurement interval requirement information to the network device, if the measurement interval requirement information indicates that it is not required Measurement interval, the configured measurement interval configuration information is automatically deactivated or released. If the measurement interval requirement information indicates that a measurement interval is required, the measurement interval configuration information corresponding to the measurement interval requirement information is automatically activated or effective.
  • the terminal device sends the measurement interval demand information indicating that the measurement interval is not required to the network device, directly deactivating or releasing the configured measurement interval configuration information, thereby avoiding unnecessary communication interruption between the terminal device and the serving cell.
  • the network device in the process of realizing the deactivation or release of the configured measurement interval configuration information, there is no need for the network device to issue RRC signaling again for configuration, which can save signaling overhead and also reduce transmission delay.
  • the measurement interval requirement information indicating that the measurement interval is required is sent to the network device through the terminal device, so that the measurement interval configuration information corresponding to the measurement interval requirement information is directly activated or effective, thereby meeting the measurement requirement of the measurement task.
  • the network device does not need to issue RRC signaling again for configuration, which can save signaling overhead and reduce transmission delay.
  • the measurement interval configuration status is determined based on the measurement interval requirement information reported by the terminal device. This can improve the flexibility of measurement interval configuration on the one hand, and avoid unnecessary communication between the terminal device and the serving cell on the other hand. Communication is interrupted, which can improve communication efficiency.
  • the measurement interval requirement information reported by the terminal device is directly used to activate or validate, or deactivate or release, the measurement interval configuration information, so that the network device does not need to configure or release the measurement interval again through RRC signaling, which can reduce signaling Overhead.
  • the terminal device may carry measurement interval requirement information in an RRC reconfiguration complete (RRCReconfigurationComplete) message.
  • RRC reconfiguration complete RRCReconfigurationComplete
  • the terminal device may also carry measurement interval requirement information in other uplink signaling.
  • Whether the terminal device sends the measurement interval requirement information to the network device can be achieved in the following ways.
  • the terminal device sends the first measurement interval requirement information to the network device.
  • the first measurement interval requirement information is used to deactivate or release the configured measurement interval configuration information; if the measurement task requires a measurement interval, the terminal device
  • the second measurement interval requirement information is sent to the network device, where the second measurement interval requirement information is used to activate or validate the measurement interval configuration information corresponding to the second measurement interval requirement information.
  • the first implementation manner may be applicable to a scenario where the network device configures the measurement interval for the terminal device in advance.
  • the measurement configuration information in step S310 carries the measurement interval configuration information.
  • the first implementation manner may also be applicable to a scenario where the network device has not previously configured the measurement interval for the terminal device.
  • the measurement configuration information in step S310 does not carry the measurement interval configuration information.
  • the terminal device sends the first measurement interval requirement information to the network device.
  • the first measurement interval requirement information is used to deactivate or release the configured measurement interval configuration information; if the measurement task requires a measurement interval, the terminal device Do not send measurement interval requirement information to network equipment.
  • the terminal device only sends the measurement interval requirement information to the network device when the measurement interval is not required, to deactivate or release the configured measurement interval configuration information. When the measurement interval is required, there is no need to send the measurement interval. Demand information can further save signaling overhead.
  • the second implementation manner may be applicable to a scenario where the network device configures the measurement interval for the terminal device in advance.
  • the measurement configuration information in step S310 carries the measurement interval configuration information.
  • the terminal device sends the second measurement interval requirement information to the network device.
  • the second measurement interval requirement information is used to activate or validate the measurement interval configuration information corresponding to the second measurement interval requirement information; if the measurement task does not require measurement Interval, terminal equipment does not send measurement interval demand information to network equipment.
  • the terminal device only sends the measurement interval requirement information to the network device when the measurement interval is needed to activate or validate the required measurement interval configuration information. If the measurement interval is not required, there is no need to send the measurement interval requirement. Information, can further save signaling overhead.
  • the third implementation manner may be applicable to a scenario where the network device configures the measurement interval for the terminal device in advance.
  • the measurement configuration information in step S310 carries the measurement interval configuration information.
  • the third implementation manner may also be applicable to a scenario where the network device does not configure the measurement interval for the terminal device in advance.
  • the measurement configuration information in step S310 does not carry the measurement interval configuration information.
  • the second measurement interval requirement information may include a measurement interval parameter, and the second measurement interval requirement information is used to validate the measurement corresponding to the measurement interval parameter. Interval configuration information.
  • This embodiment may be applicable to scenarios where the measurement configuration information does not include measurement interval configuration information, or it may also be applicable to scenarios where the configured measurement interval configuration information does not meet the measurement requirements of the measurement task.
  • the measurement interval parameter carried in the second measurement interval requirement information may be determined according to the measurement requirement of the measurement task.
  • the measurement interval parameter includes any one or more of the following: gap type, gap offset (gapOffset), gap length (mgl) (unit can be milliseconds (ms)), gap repetition period (mgrp) (unit can be ms ), and gap timing advance (measurement gap timing advance, mgta) (unit can be ms), etc.
  • the second measurement interval requirement information includes measurement interval parameters, and also includes indication information that explicitly indicates that the measurement interval is required.
  • the second measurement interval requirement information includes measurement interval parameters, but does not include indication information that explicitly indicates that the measurement interval is required, and the measurement interval parameter implicitly indicates that the measurement interval is required.
  • the network device can modify the related parameters in the configured measurement interval configuration information based on the measurement interval parameters carried in the second measurement interval requirement information, and based on the modified The measurement interval configuration information is communicated with the terminal device.
  • the network device may regenerate the corresponding measurement interval configuration information according to the measurement interval parameters carried in the second measurement interval requirement information, and perform the communication with the terminal device based on the new measurement interval configuration information. Communication.
  • the measurement interval requirement information carrying the measurement interval parameter is sent to the network device through the terminal device, so that the measurement interval configuration information corresponding to the measurement interval parameter is directly activated or valid.
  • the network device does not need to issue again RRC signaling can be configured to save signaling overhead, thereby reducing transmission delay.
  • the measurement configuration information issued by the network device in step S310 carries measurement interval configuration (measGapConfig) information (denoted as the first measurement interval configuration information).
  • the first measurement interval requirement information is used to deactivate or deactivate the first measurement interval requirement information;
  • the terminal device sends the second measurement interval requirement information to the network device Measurement interval requirement information, where the second measurement interval requirement information is used to activate or validate the first measurement interval requirement information.
  • the measurement configuration information issued by the network device in step S310 carries measurement interval configuration information (denoted as the first measurement interval configuration information), and the first measurement interval configuration information takes effect by default.
  • the terminal device may adopt the foregoing implementation manner 1 or implementation manner 2. Wherein, if the terminal device sends the first measurement interval requirement information to the network device, the first measurement interval requirement information is used to deactivate or deactivate the first measurement interval requirement information; if the terminal device sends the second measurement interval requirement information to the network device , The second measurement interval requirement information is used to activate or validate the first measurement interval requirement information.
  • the measurement configuration information issued by the network device in step S310 carries measurement interval configuration information (denoted as the first measurement interval configuration information), and the first measurement interval configuration information does not take effect by default.
  • the terminal device may adopt the foregoing implementation manner 1 or implementation manner 3. If the terminal device sends the first measurement interval requirement information to the network device, the first measurement interval requirement information is used to deactivate or deactivate the first measurement interval requirement information; if the terminal device sends the second measurement interval requirement information to the network device, the The second measurement interval requirement information is used to activate or validate the first measurement interval requirement information.
  • the measurement configuration information issued by the network device in step S310 does not carry measurement interval configuration information.
  • the terminal device may adopt the third implementation manner described above. Wherein, if the terminal device sends the second measurement interval requirement information to the network device, the second measurement interval requirement information includes the measurement interval parameter, and the second measurement interval requirement information is used to validate the measurement interval configuration information corresponding to the measurement interval parameter.
  • Releasing the measurement interval configuration information indicates that the measurement interval configuration information has been completely deleted, and it needs to be reconfigured if it is needed next time.
  • Deactivating the measurement interval configuration information means that the measurement interval configuration information is invalidated within a certain period of time, but the configuration information is not released. If the configuration information is subsequently activated, the configuration information becomes valid again and can be used continuously.
  • the activation and validation involved in this application can be considered to have the same meaning, in short, it is to make the measurement interval configuration information valid. Of course, if it is necessary to distinguish between these two actions, it is also possible. For example, if a configuration information becomes valid again after it becomes invalid, this process can be called activation.
  • the terminal device if the terminal device sends the first measurement interval requirement information to the network device, the first measurement interval requirement information is used to deactivate the configured measurement interval requirement information; if the terminal device sends the network device Sending second measurement interval requirement information, where the second measurement interval requirement information is used to activate the measurement interval requirement information corresponding to the second measurement interval requirement information.
  • the first measurement interval requirement information is used to release the configured measurement interval requirement information; if the terminal device sends the network device The second measurement interval requirement information is used to validate the measurement interval requirement information corresponding to the second measurement interval requirement information.
  • the measurement interval requirement information sent by the terminal device to the network device may be at least 1-bit information.
  • the 1-bit information is the first value, it means that the measurement interval is not required (that is, the first Measurement interval requirement information).
  • the 1-bit information is the second value, it indicates that the measurement interval is required (that is, the second measurement interval requirement information).
  • the 1-bit information when the 1-bit information is "0", it means that the measurement interval is not required (that is, the first measurement interval demand information), and when the 1-bit information is "1", it means that the measurement interval is required (that is, the second measurement interval). Interval demand information). Or, when the 1-bit information is "1", it means that the measurement interval is not required (that is, the first measurement interval demand information), and when the 1-bit information is "0", it means that the measurement interval is required (that is, the second measurement interval). Interval demand information).
  • Trigger condition 1 The measurement configuration information is received.
  • the terminal device determines whether the measurement task indicated by the measurement configuration information requires a measurement interval, and determines whether to send to the network device according to the determination result. Measurement interval demand information.
  • the measurement configuration information may be measurement configuration information issued by the network device for the first time.
  • the measurement configuration information may also be measurement update configuration information sent again by the network device after the measurement configuration information is issued once.
  • the measurement task's demand for the measurement interval may change.
  • the measurement interval demand information by sending the measurement interval demand information to the network device, it is helpful to obtain the measurement interval configuration that meets the measurement demand. information.
  • the network device does not need to carry the measurement interval configuration information every time the terminal device is configured with measurement configuration information.
  • the measurement interval configuration information may not be carried in the subsequent measurement update configuration information, unless the measurement interval needs to be updated. If the measurement interval configuration information has not been configured before, the measurement interval configuration information may or may not be carried in the subsequent measurement update configuration information. Including the following three situations.
  • Case 1 The network device has previously configured the measurement interval configuration information for the terminal device, and the measurement update configuration information does not carry the measurement interval configuration information.
  • the pre-configured measurement interval configuration information is activated or effective by default. In other words, as long as the pre-configured measurement interval configuration information is not released, no matter what the state of the pre-configured measurement interval configuration information is before sending the measurement update configuration information (for example, deactivated, activated or effective by default), the After the measurement configuration information is updated, the pre-configured measurement interval configuration information is activated by default.
  • the terminal device After receiving the measurement update configuration information, the terminal device determines whether the measurement task indicated in the measurement update configuration information requires a measurement interval, and determines whether to send the measurement interval requirement information to the network device according to the judgment result and the pre-configured measurement interval configuration information.
  • Measurement update configuration information carries measurement interval configuration information.
  • the network device regardless of whether the network device has previously configured the measurement interval configuration information for the terminal device, after the terminal device receives the measurement update configuration information, it determines whether the measurement task indicated in the measurement update configuration information requires a measurement interval, according to the judgment result And the measurement interval configuration information carried in the measurement update configuration information determines whether to send to the network device.
  • Case 3 The network device has not previously configured the measurement interval configuration information for the terminal device, and the measurement update configuration information does not carry the measurement interval configuration information.
  • the second measurement interval requirement information is sent to the network device, and the second measurement configuration interval requirement information includes the measurement interval parameter .
  • Trigger condition 2 The configuration of the serving cell (SCell) changes.
  • the terminal device when the serving cell configuration changes, the terminal device carries the first measurement interval requirement information or the second measurement interval requirement information in the configuration complete message.
  • the terminal device receives an RRC reconfiguration message from the network device, and the RRC reconfiguration message carries information indicating that the configuration of the serving cell has changed.
  • the change of the serving cell configuration includes any one or more of the following: adding a serving cell (SCell addition), deleting a serving cell (SCell removal), and modifying the serving cell configuration.
  • the terminal device when the configuration of the serving cell changes, the following situation will occur: before the configuration of the serving cell changes, the terminal device performs measurement tasks without a measurement interval (or requires a measurement interval), and after the configuration of the serving cell changes, The terminal device needs a measurement interval (or does not require a measurement interval) to perform measurement tasks.
  • the terminal device determines whether the measurement task requires a measurement interval, and can report the measurement interval requirement information to the network device according to the determination result, thereby effectively ensuring that the measurement configuration information meets the measurement requirement.
  • the measurement interval configuration status is determined based on the measurement interval requirement information reported by the terminal device, which can improve the flexibility of the measurement interval configuration on the one hand, and avoid unnecessary communication interruption between the terminal device and the serving cell on the other hand , which can improve communication efficiency.
  • the measurement interval requirement information reported by the terminal device is directly used to activate or validate, or deactivate or release, the measurement interval configuration information, so that the network device does not need to configure or release the measurement interval again through RRC signaling, which can reduce signaling Overhead.
  • the network device may not configure the measurement interval for the terminal device.
  • the terminal device supports per-FR gap, and the BWP frequency points configured in all serving cells are not in the same FR as the frequency points in the MO.
  • any configured BWP (configured BWP) except for the initial BWP (initial BWP) covers the frequency domain resources of the SSB under test.
  • the SSB to be tested is in the active BWP (active BWP), or the active BWP is the initial BWP intra-frequency measurement.
  • the measurement configuration information issued by the network device does not carry the measurement interval configuration information.
  • the communication method includes the following steps.
  • Step 1) The network device sends first measurement configuration information to the terminal device, where the first measurement configuration information indicates a measurement task.
  • the network device sends a first RRC reconfiguration (RRC Reconfiguration) message to the terminal device, where the first RRC reconfiguration message includes first measurement configuration (measConfig) information.
  • RRC Reconfiguration first RRC reconfiguration
  • measConfig first measurement configuration
  • the first measurement configuration (measConfig) information may carry measurement interval configuration (measGapConfig) information.
  • the first measurement configuration information may not carry the measurement interval configuration information.
  • Step 2) The terminal device sends to the network device measurement interval requirement information for indicating that the measurement interval is required, and the measurement interval requirement information also includes measurement interval parameters.
  • the terminal device determines that the measurement task requires a measurement interval, it sends the measurement interval requirement information to the network device.
  • the terminal device sends an RRC reconfiguration complete message to the network device, and the RRC reconfiguration complete message carries the measurement interval requirement information.
  • Step 3) The network device sends second measurement configuration information to the terminal device, where the second measurement configuration information includes measurement interval configuration information corresponding to the measurement interval parameter.
  • the network device sends a second RRC reconfiguration message to the terminal device, and the second RRC reconfiguration message includes the second measurement configuration information.
  • the network device configures the terminal device with new measurement interval configuration information according to the measurement interval parameter reported by the terminal device.
  • the terminal device validates the measurement interval configuration information corresponding to the measurement interval parameter.
  • the terminal device originally has FR1 measurement interval configuration information, for example, the FR1 measurement interval configuration information is acquired through the first measurement configuration information. Another FR1 measurement interval configuration information is received through the second measurement configuration information. In this case, the terminal device can release the FR1 measurement interval configuration information that it originally has, and subsequently configure the newly configured FR1 measurement interval configuration information.
  • the terminal device originally has FR2 measurement interval configuration information, for example, the FR2 measurement interval configuration information is acquired through the first measurement configuration information. Receive one FR1 measurement interval configuration information through the second measurement configuration information. In this case, the terminal device may not release its original FR2 measurement interval configuration information.
  • the present application also provides a communication method 400.
  • the communication method 400 includes the following steps.
  • the network device sends measurement configuration information to the terminal device, where the measurement configuration information carries measurement interval configuration information.
  • the network device sends an RRC reconfiguration (RRCReconfiguration) message to the terminal device.
  • the RRC reconfiguration message includes measurement configuration (measConfig) information, and the measurement configuration (measConfig) information carries measurement interval configuration (measGapConfig) information.
  • the measurement configuration information indicates a measurement task.
  • the measurement configuration information does not indicate a measurement task.
  • the network device sends a medium access control control element (MAC-CE) to the terminal device.
  • MAC-CE indicates to deactivate the configured measurement interval configuration information, or the MAC-CE indicates to activate the configured configuration. Measurement interval configuration information.
  • the network device uses MAC-CE to deactivate or activate the measurement interval configuration information, which can reduce transmission delay compared to using RRC signaling.
  • the network device may determine the MAC-CE to indicate the deactivation of the configured measurement interval configuration information to the terminal device according to any of the following methods, or to indicate the activation of the configured measurement interval configuration information MAC-CE.
  • Method 1 According to the measurement interval requirement information reported by the terminal device.
  • the method 400 further includes:
  • the terminal device sends measurement interval requirement information to the network device, where the measurement interval requirement information indicates that a measurement interval is needed or not required.
  • step S420 when the measurement interval requirement information indicates that the measurement interval is not required, the network device sends to the terminal device the MAC-CE that instructs to deactivate the configured measurement interval requirement information; or, in the measurement interval requirement information indication When the measurement interval is needed, the network device sends to the terminal device a MAC-CE indicating activation of the configured measurement interval requirement information.
  • the terminal device sends the measurement interval requirement information in the RRC reconfiguration complete message.
  • the terminal equipment sends measurement interval requirement information in other uplink signaling.
  • the network device uses MAC-CE to deactivate or activate the configured measurement interval configuration information according to the measurement interval requirement information reported by the terminal device, which can improve the flexibility of the measurement interval configuration.
  • Method 2 Based on the measurement interval capability of the terminal device.
  • the network device sends the MAC-CE to the terminal device according to the measurement interval capability of the terminal device.
  • the MAC-CE indicating the deactivation of the configured measurement interval requirement information is sent to the terminal device; the terminal is determined according to the measurement interval capability of the terminal device When the device needs a measurement interval, it sends a MAC-CE indicating activation of the configured measurement interval requirement information to the terminal device.
  • the terminal device reports the measurement interval capability to the network device.
  • the terminal device feeds back in the RRC message whether the terminal device works at each frequency point and the reference signal to be measured is located at each frequency domain position whether a measurement interval is required.
  • the network device sends the MAC-CE to the terminal device based on protocol provisions.
  • the MAC-CE indicating the deactivation of the configured measurement interval requirement information is sent to the terminal device.
  • the MAC-CE indicating the activation of the configured measurement interval requirement information is sent to the terminal device.
  • the network device uses MAC-CE to deactivate or activate the measurement interval configuration information, which can reduce transmission delay compared to using RRC signaling.
  • the methods and operations implemented by the terminal device can also be implemented by components (such as chips or circuits) that can be used in the terminal device, and the methods and operations implemented by the location management device can also be implemented It is implemented by components (such as chips or circuits) that can be used to locate and manage equipment.
  • each device such as a transmitter device or a receiver device, includes hardware structures and/or software modules corresponding to each function in order to realize the aforementioned functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application can divide the transmitter device or the receiver device into functional modules according to the above method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation. The following is an example of dividing each function module corresponding to each function.
  • FIG. 5 is a schematic block diagram of a communication device 500 according to an embodiment of the application.
  • the communication device 500 includes a transceiver unit 510 and a processing unit 520.
  • the transceiver unit 510 can communicate with the outside, and the processing unit 510 is used for data processing.
  • the transceiving unit 510 may also be referred to as a communication interface or a communication unit.
  • the communication device 500 may be used to perform the actions performed by the terminal device in the above method embodiment, or perform the actions performed by the network device in the above method embodiment.
  • the communication device 500 may be used to perform the actions performed by the terminal device in the above method 300.
  • the communication device 500 may be referred to as a terminal device.
  • the transceiving unit 510 is used to perform the transceiving related operations on the terminal device side in the above method 300
  • the processing unit 520 is used to perform processing related operations on the terminal device in the above method 300.
  • the transceiver unit 510 is used to receive measurement configuration information from the network device, and the measurement configuration information indicates a measurement task; the processing unit 520 is used to determine whether the measurement task requires a measurement interval; the transceiver unit 510 is also used to: The task does not require a measurement interval, and the first measurement interval requirement information indicating that the measurement interval is not required is sent to the network device, the first measurement interval requirement information is used to deactivate or release the configured measurement interval configuration information; and/or, if the measurement task If a measurement interval is required, the second measurement interval requirement information indicating that the measurement interval is required is sent to the network device, and the second measurement interval requirement information is used to activate or validate the measurement interval configuration information corresponding to the second measurement interval requirement information.
  • the measurement interval configuration status is determined based on the measurement interval requirement information reported by the terminal device, which can improve the flexibility of the measurement interval configuration on the one hand, and avoid unnecessary communication interruption between the terminal device and the serving cell on the other hand , which can improve communication efficiency.
  • the measurement interval requirement information reported by the terminal device is directly used to activate or validate, or deactivate or release, the measurement interval configuration information, so that the network device does not need to configure or release the measurement interval again through RRC signaling, which can reduce signaling Overhead.
  • the transceiver unit 510 is configured to receive measurement configuration information from the network device, and the measurement configuration information indicates a measurement task; the processing unit 520 is configured to determine whether the measurement task requires a measurement interval;
  • the transceiver unit 510 is further configured to: if the measurement task does not require a measurement interval, send first measurement interval requirement information indicating that the measurement interval is not required to the network device, and the first measurement interval requirement information is used to deactivate or release the configured measurement interval Configuration information; and/or if the measurement task requires a measurement interval, send to the network device second measurement interval requirement information indicating that the measurement interval is required, and the second measurement interval requirement information is used to activate or validate the measurement interval corresponding to the second measurement interval requirement information Configuration information.
  • the measurement configuration information includes first measurement interval configuration information; the transceiver unit 510 is configured to: if the measurement task does not require a measurement interval, send the first measurement interval requirement information to the network device, and the first measurement interval The interval requirement information is used to deactivate or release the first measurement interval configuration information; and/or if the measurement task requires a measurement interval, the second measurement interval requirement information is sent to the network device, and the second measurement interval requirement information is used to activate or validate the first measurement interval. Measurement interval configuration information.
  • the first measurement interval configuration information takes effect by default, and the transceiver unit 510 is configured to: if the measurement task does not require a measurement interval, send the first measurement interval requirement information to the network device, and the first measurement interval requirement information Used to deactivate or release the first measurement interval configuration information; if the measurement task requires a measurement interval, the measurement interval requirement information is not sent to the network device.
  • the first measurement interval configuration information is not effective by default, and the transceiver unit 510 is configured to: if the measurement task requires a measurement interval, send the second measurement interval requirement information to the network device, and the second measurement interval requirement information Used to activate or validate the first measurement interval configuration information; if the measurement task does not require a measurement interval, the measurement interval requirement information is not sent to the network device.
  • the transceiver unit 510 is configured to send second measurement interval requirement information to the network device if the measurement task requires a measurement interval.
  • the second measurement interval requirement information includes a measurement interval parameter, and the second measurement interval
  • the demand information is used to validate the measurement interval configuration information corresponding to the measurement interval parameter.
  • the processing unit 520 is configured to determine whether the measurement task requires a measurement interval when the configuration of the serving cell changes.
  • the communication device 500 may be used to perform the actions performed by the network device in the above method 300.
  • the communication device 500 may be referred to as a network device.
  • the transceiving unit 510 is used to perform the transceiving related operations on the network device side in the above method 300
  • the processing unit 520 is used to perform processing related operations on the network device in the above method 300.
  • the processing unit 520 is used to determine measurement configuration information for the terminal device, and the measurement configuration information indicates a measurement task; the transceiver unit 510 is used to send measurement configuration information to the terminal device, and the measurement task does not require a measurement interval.
  • the first measurement interval requirement information indicating that the measurement interval is not required is received from the terminal device, the first measurement interval requirement information is used to deactivate or release the configured measurement interval configuration information; and/or when the measurement task requires a measurement interval
  • the second measurement interval requirement information indicating that a measurement interval is required is received from the terminal device, and the second measurement interval requirement information is used to activate or validate the measurement interval configuration information corresponding to the second measurement interval requirement information.
  • the measurement interval configuration status is determined based on the measurement interval requirement information reported by the terminal device, which can improve the flexibility of the measurement interval configuration on the one hand, and avoid unnecessary communication interruption between the terminal device and the serving cell on the other hand , which can improve communication efficiency.
  • the measurement interval requirement information reported by the terminal device is directly used to activate or validate, or deactivate or release, the measurement interval configuration information, so that the network device does not need to configure or release the measurement interval again through RRC signaling, which can reduce signaling Overhead.
  • the measurement configuration information includes first measurement interval configuration information
  • the transceiver unit 510 is configured to: receive the first measurement interval requirement information from the terminal device when the measurement task does not require a measurement interval, The first measurement interval requirement information is used to deactivate or release the first measurement interval configuration information; and/or when the measurement task requires a measurement interval, the second measurement interval requirement information is received from the terminal device, and the second measurement interval requirement information is used To activate or validate the first measurement interval configuration information.
  • the first measurement interval configuration information is valid by default, and the transceiver unit 510 is configured to receive the first measurement interval requirement information from the terminal device when the measurement task does not require a measurement interval, and the first measurement interval
  • the interval requirement information is used to deactivate or release the first measurement interval configuration information; when the measurement task requires a measurement interval, the measurement interval requirement information is not received from the terminal device.
  • the first measurement interval configuration information does not take effect by default
  • the transceiver unit 510 is configured to receive the second measurement interval requirement information from the terminal device when the measurement task requires a measurement interval.
  • the interval requirement information is used to activate or validate the first measurement interval configuration information; when the measurement task does not require a measurement interval, the measurement interval requirement information is not received from the terminal device.
  • the transceiver unit 510 is configured to receive second measurement interval requirement information from the terminal device, the second measurement interval requirement information includes measurement interval parameters, and the second measurement interval requirement information is used to validate the measurement interval.
  • the measurement interval configuration information corresponding to the parameter.
  • the communication device 500 may be used to perform the actions performed by the network device in the above method 400.
  • the communication device 500 may be referred to as a network device.
  • the transceiving unit 510 is used to perform the transceiving related operations on the network device side in the above method 400
  • the processing unit 520 is used to perform processing related operations on the network device in the above method 400.
  • the processing unit 520 is used to allocate measurement configuration information to the terminal device, and the measurement configuration information carries measurement interval configuration information; the transceiver unit 510 is used to send the measurement configuration information to the terminal device; to send media to the terminal device Access control control element (medium access control-control element, MAC-CE), MAC-CE indicates to deactivate configured measurement interval configuration information, or MAC-CE indicates to activate configured measurement interval configuration information.
  • the measurement configuration information carries measurement interval configuration information
  • the transceiver unit 510 is used to send the measurement configuration information to the terminal device; to send media to the terminal device Access control control element (medium access control-control element, MAC-CE), MAC-CE indicates to deactivate configured measurement interval configuration information, or MAC-CE indicates to activate configured measurement interval configuration information.
  • MAC-CE medium access control-control element
  • the network device uses MAC-CE to deactivate or activate the measurement interval configuration information, which can reduce transmission delay compared to using RRC signaling.
  • the transceiver unit 510 is further configured to receive measurement interval requirement information from the terminal device, where the measurement interval requirement information indicates that a measurement interval is needed or not.
  • the transceiver unit 510 is configured to, when the measurement interval requirement information indicates that the measurement interval is not required, send to the terminal device a MAC-CE that instructs to deactivate the configured measurement interval requirement information; or, when the measurement interval requirement information indicates that the measurement interval is required In the case of a measurement interval, a MAC-CE indicating activation of the configured measurement interval requirement information is sent to the terminal device.
  • the measurement interval requirement information sent by the terminal device is carried in the RRC reconfiguration complete message.
  • the measurement interval requirement information sent by the terminal device is carried in other uplink signaling.
  • the network device uses MAC-CE to deactivate or activate the configured measurement interval configuration information according to the measurement interval requirement information reported by the terminal device, which can improve the flexibility of the measurement interval configuration.
  • the transceiver unit 510 is configured to send the MAC-CE to the terminal device according to the measurement interval capability of the terminal device.
  • the transceiver unit 510 is configured to: in the case of determining that the terminal device does not need a measurement interval according to the measurement interval capability of the terminal device, send to the terminal device the MAC-CE indicating the deactivation of the configured measurement interval requirement information; If the measurement interval capability determines that the terminal device needs a measurement interval, the terminal device sends a MAC-CE indicating activation of the configured measurement interval requirement information.
  • the transceiver unit 510 is configured to send the MAC-CE to the terminal device based on the protocol.
  • the transceiver unit 510 is configured to: in a scenario where the measurement interval specified by the protocol is not required, send to the terminal device a MAC-CE indicating to deactivate the configured measurement interval requirement information; In the scenario, the MAC-CE indicating activation of the configured measurement interval requirement information is sent to the terminal device.
  • the communication device 500 may be used to perform the actions performed by the terminal device in the above method 400.
  • the communication device 500 may be referred to as a terminal device.
  • the transceiving unit 510 is used to perform the transceiving related operations on the terminal device side in the above method 400
  • the processing unit 520 is used to perform processing related operations on the terminal device in the above method 400.
  • the transceiver unit 510 is configured to: receive measurement configuration information from a network device, the measurement configuration information carries measurement interval configuration information; receive a MAC-CE from the network device, and the MAC-CE instructs to deactivate the configured measurement interval configuration information Or, MAC-CE indicates to activate the configured measurement interval configuration information.
  • the processing unit 520 is configured to determine the measurement interval configuration state according to the MAC-CE.
  • the processing unit 520 deactivates the configured measurement interval configuration information.
  • the processing unit 520 activates the configured measurement interval configuration information.
  • the network device uses MAC-CE to deactivate or activate the measurement interval configuration information, which can reduce transmission delay compared to using RRC signaling.
  • the transceiver unit 510 is further configured to send measurement interval requirement information to the network device, and the measurement interval requirement information indicates that a measurement interval is needed or not.
  • the measurement configuration information indicates the measurement task.
  • the transceiver unit 510 is configured to: when it is determined that the measurement task does not require a measurement interval, send measurement interval demand information indicating that the measurement interval is not required to the network device; when it is determined that the measurement task requires a measurement interval, send the network device a measurement indicating that the measurement interval is required Interval demand information.
  • the measurement interval requirement information sent by the terminal device is carried in the RRC reconfiguration complete message.
  • the measurement interval requirement information sent by the terminal device is carried in other uplink signaling.
  • the network device may send the MAC-CE to the terminal device according to the measurement interval requirement information reported by the terminal device.
  • the measurement interval requirement information indicates that the measurement interval is not required
  • the device sends a MAC-CE indicating activation of the configured measurement interval requirement information.
  • the network device uses MAC-CE to deactivate or activate the configured measurement interval configuration information according to the measurement interval requirement information reported by the terminal device, which can improve the flexibility of the measurement interval configuration.
  • processing unit 520 in the above embodiments may be implemented by a processor or a processor-related circuit
  • transceiver unit 510 may be implemented by a transceiver or a transceiver-related circuit.
  • an embodiment of the present application also provides a communication device 600.
  • the communication device 600 includes a processor 610, a memory 620, and a transceiver 630.
  • the memory 620 stores a program.
  • the processor 610 is used to execute the program stored in the memory 620, and executes the program stored in the memory 620 so that the processor 610 uses In executing the relevant processing steps in the above method embodiment, the execution of the program stored in the memory 620 enables the processor 610 to control the transceiver 630 to perform the transceiving-related steps in the above method embodiment.
  • the communication device 600 is used to execute the actions performed by the terminal device in the above method embodiment.
  • the execution of the program stored in the memory 620 enables the processor 610 to execute the above method embodiment.
  • the transceiver 630 is configured to perform the receiving and sending steps on the terminal device side in the above method embodiment.
  • the execution of the program stored in the memory 620 enables the processor 610 to control the transceiver 630 to execute the receiving and sending steps on the terminal device side in the above method embodiment.
  • the communication device 600 is used to perform the actions performed by the network device in the above method embodiment.
  • the execution of the program stored in the memory 620 enables the processor 610 to perform the above method implementation.
  • the transceiver 630 is used to perform the receiving and sending steps on the network device side in the above method embodiment.
  • the execution of the program stored in the memory 620 enables the processor 610 to control the transceiver 630 to execute the receiving and sending steps on the network device side in the above method embodiment.
  • the embodiment of the present application also provides a communication device 700, and the communication device 700 may be a terminal device or a chip.
  • the communication device 700 may be used to perform the actions performed by the terminal device in the foregoing method embodiments.
  • FIG. 7 shows a simplified schematic diagram of the structure of the terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 7 only one memory and processor are shown in FIG. 7. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiver function can be regarded as the transceiver unit of the terminal device, and the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 710 and a processing unit 720.
  • the transceiver unit 710 may also be referred to as a transceiver, a transceiver, a transceiver, and so on.
  • the processing unit 720 may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 710 may be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 710 as the sending unit, that is, the transceiver unit 710 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, receiver, or receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • the transceiver unit 710 is also used to perform the receiving operation on the terminal device side in step S310 shown in FIG. 3, the sending operation on the terminal device side in step S330, and/or the transceiver unit 710 also uses To perform other receiving and sending steps on the terminal device side.
  • the processing unit 720 is configured to execute step S320 shown in FIG. 3.
  • the transceiver unit 710 is further configured to perform the receiving operation on the terminal device side in steps S410 and S420 shown in FIG. 4, the sending operation on the terminal device side in step S430, and/or the transceiver unit 710 is also used to perform other transceiving steps on the terminal device side.
  • the processing unit 720 is configured to execute the processing steps on the terminal device side in the embodiment in FIG. 4, for example, to determine measurement interval requirement information for the measurement task.
  • FIG. 7 is only an example and not a limitation, and the foregoing terminal device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 7.
  • the chip When the communication device 700 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip.
  • the embodiment of the present application also provides a communication device 800, which may be a network device or a chip.
  • the communication device 800 may be used to perform the actions performed by the network device in the foregoing method embodiments.
  • FIG. 8 shows a simplified schematic diagram of the base station structure.
  • the base station includes part 810 and part 820.
  • the 810 part is mainly used for the transmission and reception of radio frequency signals and the conversion between radio frequency signals and baseband signals; the 820 part is mainly used for baseband processing and control of the base station.
  • the 810 part can usually be called a transceiver unit, transceiver, transceiver circuit, or transceiver.
  • the 820 part is usually the control center of the base station, and may generally be referred to as a processing unit, which is used to control the base station to perform the processing operations on the network device side in the foregoing method embodiments.
  • the transceiver unit of part 810 may also be called a transceiver or a transceiver, etc., which includes an antenna and a radio frequency unit, and the radio frequency unit is mainly used for radio frequency processing.
  • the device for implementing the receiving function in part 810 can be regarded as the receiving unit, and the device for implementing the sending function as the sending unit, that is, the part 810 includes the receiving unit and the sending unit.
  • the receiving unit may also be called a receiver, a receiver, or a receiving circuit
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the 820 part may include one or more single boards, and each single board may include one or more processors and one or more memories.
  • the processor is used to read and execute programs in the memory to implement baseband processing functions and control the base station. If there are multiple boards, the boards can be interconnected to enhance processing capabilities. As an optional implementation, multiple single boards may share one or more processors, or multiple single boards may share one or more memories, or multiple single boards may share one or more processing at the same time. Device.
  • part 810 is used to perform the sending operation on the network device side in step S310 shown in FIG. 3, the receiving operation on the network device side in step S330 is used, and/or part 810 is also used to execute network Other sending and receiving steps on the device side.
  • the 820 part is used to execute the processing steps on the network device side in the embodiment in FIG. 3.
  • part 810 is also used to perform the sending operation on the network device side in steps S410 and S420 shown in FIG. 4, the receiving operation on the network device side in step S430, and/or part 810 also Used to perform other receiving and sending steps on the network device side.
  • the 820 part is used to execute the processing steps on the network device side in the embodiment in FIG. 4.
  • FIG. 8 is only an example and not a limitation, and the foregoing network device including the transceiver unit and the processing unit may not rely on the structure shown in FIG. 8.
  • the chip When the communication device 800 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor or microprocessor or integrated circuit integrated on the chip.
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored.
  • the computer program When the computer program is executed by a computer, the computer realizes the method on the terminal device side or the method on the network device side in the above method embodiments.
  • the embodiments of the present application also provide a computer program product containing instructions, which when executed by a computer, cause the computer to implement the method on the terminal device side or the method on the network device side in the foregoing method embodiments.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution subject of the methods provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided according to the embodiments of the application.
  • the execution subject of the method provided in the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call and execute the program.
  • various aspects or features of the present application can be implemented as methods, devices, or products using standard programming and/or engineering techniques.
  • article of manufacture as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (DVD)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • processors mentioned in the embodiments of this application may be a central processing unit (CPU), or may be other general-purpose processors, digital signal processors (DSP), or application specific integrated circuits ( application specific integrated circuit (ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法与装置,该通信方法包括:从网络设备接收测量配置信息;判断测量任务是否需要测量间隔;若测量任务不需要测量间隔,向网络设备发送指示不需要测量间隔的第一测量间隔需求信息,第一测量间隔需求信息用于去激活或释放已配置的测量间隔配置信息;和/或若测量任务需要测量间隔,向网络设备发送指示需要测量间隔的第二测量间隔需求信息,第二测量间隔需求信息用于激活或生效第二测量间隔需求信息对应的测量间隔配置信息。测量间隔配置状态基于终端设备上报的测量间隔需求信息而确定,可以提高测量间隔配置的灵活性,避免不必要的通信中断,无需网络侧通过RRC消息再配置或释放测量间隔配置,因此可以减少信令开销。

Description

通信方法与装置
本申请要求于2019年05月08日提交中国专利局、申请号为201910380807.5、申请名称为“通信方法与装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且具体涉及一种通信方法与装置。
背景技术
对于连接态的终端设备,在进行测量时,可能因为对目标参考信号的测量需要进行射频(radio frequency,RF)切换,从而使终端设备无法同时既与服务小区保持通信又进行目标参考信号的测量。针对该问题,测量间隔(measurement gap)机制被提出,服务小区为终端设备配置测量间隔。在测量间隔的期间,不要求终端设备与服务小区之间进行数据收发,终端设备可以进行目标参考信号的测量。
目前,在新无线(new radio,NR)系统中,除了一些特殊场景(例如,“待测SSB在激活BWP(active BWP)内”或者“active BWP即为初始BWP(initial BWP)的同频测量”或者“UE支持per-FR gap并且待测频点和服务频点不在同一FR”)之外,网络侧都会为终端设备配置测量间隔,这使得配置测量间隔的灵活性较差。
发明内容
本申请提供一种通信方法与装置,可以有效提高配置测量间隔的灵活性。
第一方面,提供一种通信方法,所述通信方法包括:从网络设备接收测量配置信息,所述测量配置信息指示测量任务;判断所述测量任务是否需要测量间隔;若所述测量任务不需要测量间隔,向所述网络设备发送指示不需要测量间隔的第一测量间隔需求信息,所述第一测量间隔需求信息用于去激活或释放已配置的测量间隔配置信息;和/或,若所述测量任务需要测量间隔,向所述网络设备发送指示需要测量间隔的第二测量间隔需求信息,所述第二测量间隔需求信息用于激活或生效所述第二测量间隔需求信息对应的测量间隔配置信息。
在本申请中,测量间隔配置状态基于终端设备上报的测量间隔需求信息而确定,这样一方面可以提高测量间隔配置的灵活性,另一方面可以避免终端设备与服务小区之间不必要的通信中断,从而可以提高通信效率。同时,终端设备上报的测量间隔需求信息直接用于,激活或生效,或者,去激活或释放,测量间隔配置信息,从而无需网络设备通过无线资源控制(radio resource control,RRC)信令再次配置或释放测量间隔,这样可以减少信令开销。
结合第一方面,在第一方面的一种可能的实现方式中,所述测量配置信息中包括第一 测量间隔配置信息;若所述测量任务不需要测量间隔,向所述网络设备发送所述第一测量间隔需求信息,所述第一测量间隔需求信息用于去激活或释放所述第一测量间隔配置信息;和/或,若所述测量任务需要测量间隔,向所述网络设备发送所述第二测量间隔需求信息,所述第二测量间隔需求信息用于激活或生效所述第一测量间隔配置信息。
结合第一方面,在第一方面的一种可能的实现方式中,所述第一测量间隔配置信息默认生效,若所述测量任务不需要测量间隔,向所述网络设备发送所述第一测量间隔需求信息,所述第一测量间隔需求信息用于去激活或释放所述第一测量间隔配置信息;若所述测量任务需要测量间隔,不向所述网络设备发送测量间隔需求信息。
应理解,在本实现方式中,终端设备只需在不需要测量间隔的情况下,向网络设备发送测量间隔需求信息,用于去激活或释放已配置的测量间隔配置信息,在需要测量间隔的情况下,无需发送测量间隔需求信息,可以进一步节省信令开销。
结合第一方面,在第一方面的一种可能的实现方式中,所述第一测量间隔配置信息默认不生效,若所述测量任务需要测量间隔,向所述网络设备发送所述第二测量间隔需求信息,所述第二测量间隔需求信息用于激活或生效所述第一测量间隔配置信息;若所述测量任务不需要测量间隔,不向所述网络设备发送测量间隔需求信息。
应理解,在本实现方式中,终端设备只需在需要测量间隔的情况下,向网络设备发送测量间隔需求信息,用于激活或生效所需的测量间隔配置信息,在不需要测量间隔的情况下,无需发送测量间隔需求信息,可以进一步节省信令开销。
结合第一方面,在第一方面的一种可能的实现方式中,若所述测量任务需要测量间隔,向所述网络设备发送所述第二测量间隔需求信息,所述第二测量间隔需求信息中包括测量间隔参数,所述第二测量间隔需求信息用于生效所述测量间隔参数对应的测量间隔配置信息。
本实现方式可以适用于测量配置信息中不包括测量间隔配置信息的场景,或者,还可以适用于已配置的测量间隔配置信息不符合测量任务的测量需求的场景。
结合第一方面,在第一方面的一种可能的实现方式中,所述判断所述测量任务是否需要测量间隔,包括:在服务小区配置发生变化的情况下,判断所述测量任务是否需要测量间隔。
服务小区配置发生变化包括下列任一种或多种:添加服务小区(SCell addition)、删除服务小区(SCell removal)、修改服务小区配置。
应理解,在服务小区配置发生变化的情况下,测量任务对测量间隔的需求可能发生变化,因此,终端设备在服务小区配置发生变化时,判断测量任务是否需要测量间隔,并根据判断结果可以向网络设备上报测量间隔需求信息,从而可以有效保证测量配置信息符合测量需求。
第二方面,提供一种通信方法,所述通信方法包括:向终端设备发送测量配置信息,所述测量配置信息指示测量任务;在所述测量任务不需要测量间隔的情况下,从所述终端设备接收指示不需要测量间隔的第一测量间隔需求信息,所述第一测量间隔需求信息用于去激活或释放已配置的测量间隔配置信息;和/或,在所述测量任务需要测量间隔的情况下,从所述终端设备接收指示需要测量间隔的第二测量间隔需求信息,所述第二测量间隔需求信息用于激活或生效所述第二测量间隔需求信息对应的测量间隔配置信息。。
在本申请中,测量间隔配置状态基于终端设备上报的测量间隔需求信息而确定,这样一方面可以提高测量间隔配置的灵活性,另一方面可以避免终端设备与服务小区之间不必要的通信中断,从而可以提高通信效率。同时,终端设备上报的测量间隔需求信息直接用于,激活或生效,或者,去激活或释放,测量间隔配置信息,从而无需网络设备通过RRC信令再次配置或释放测量间隔,这样可以减少信令开销。
结合第二方面,在第二方面的一种可能的实现方式中,所述测量配置信息中包括第一测量间隔配置信息;在所述测量任务不需要测量间隔的情况下,从所述终端设备接收所述第一测量间隔需求信息,所述第一测量间隔需求信息用于去激活或释放所述第一测量间隔配置信息;和/或,在所述测量任务需要测量间隔的情况下,从所述终端设备接收所述第二测量间隔需求信息,所述第二测量间隔需求信息用于激活或生效所述第一测量间隔配置信息。
结合第二方面,在第二方面的一种可能的实现方式中,所述第一测量间隔配置信息默认生效,在所述测量任务不需要测量间隔的情况下,从所述终端设备接收所述第一测量间隔需求信息,所述第一测量间隔需求信息用于去激活或释放所述第一测量间隔配置信息;在所述测量任务需要测量间隔的情况下,不从所述终端设备接收测量间隔需求信息。
结合第二方面,在第二方面的一种可能的实现方式中,所述第一测量间隔配置信息默认不生效,在所述测量任务需要测量间隔的情况下,从所述终端设备接收所述第二测量间隔需求信息,所述第二测量间隔需求信息用于激活或生效所述第一测量间隔配置信息;在所述测量任务不需要测量间隔的情况下,不从所述终端设备接收测量间隔需求信息。
结合第二方面,在第二方面的一种可能的实现方式中,从所述终端设备接收所述第二测量间隔需求信息,所述第二测量间隔需求信息中包括测量间隔参数,所述第二测量间隔需求信息用于生效所述测量间隔参数对应的测量间隔配置信息。
第三方面,提供一种通信方法,所述通信方法包括:向终端设备发送测量配置信息,所述测量配置信息携带测量间隔配置信息;向终端设备发送媒体接入控制控制元素(medium access control-control element,MAC-CE),所述MAC-CE指示去激活已配置的测量间隔配置信息,或者,所述MAC-CE指示激活已配置的测量间隔配置信息。
在本申请中,网络设备通过MAC-CE去激活或激活测量间隔配置信息,相对于采用RRC信令,可以减少传输时延。
结合第三方面,在第三方面的一种可能的实现方式中,所述方法还包括:从终端设备接收测量间隔需求信息,所述测量间隔需求信息指示需要或不需要测量间隔。
其中,向终端设备发送MAC-CE,包括:在所述测量间隔需求信息指示不需要测量间隔的情况下,向所述终端设备发送指示去激活已配置的测量间隔需求信息的MAC-CE;或者,在所述测量间隔需求信息指示需要测量间隔的情况下,向所述终端设备发送指示激活已配置的测量间隔需求信息的MAC-CE。
可选地,终端设备发送的测量间隔需求信息承载在RRC重配置完成消息中。
可选地,终端设备发送的测量间隔需求信息承载在其他上行信令中。
在本实现方式中,网络设备根据终端设备上报的测量间隔需求信息,通过MAC-CE去激活或激活已配置的测量间隔配置信息,这样可以提高测量间隔配置的灵活性。
结合第三方面,在第三方面的一种可能的实现方式中,向终端设备发送MAC-CE,包 括:根据终端设备的测量间隔能力,向所述终端设备发送所述MAC-CE。
其中,在根据终端设备的测量间隔能力确定终端设备不需要测量间隔的情况下,向所述终端设备发送指示去激活已配置的测量间隔需求信息的MAC-CE;在根据终端设备的测量间隔能力确定终端设备需要测量间隔的情况下,向所述终端设备发送指示激活已配置的测量间隔需求信息的MAC-CE。
结合第三方面,在第三方面的一种可能的实现方式中,向终端设备发送MAC-CE,包括:基于协议,向所述终端设备发送所述MAC-CE。
其中,在协议规定的不需要测量间隔的场景中,向所述终端设备发送指示去激活已配置的测量间隔需求信息的MAC-CE。
在协议规定的需要测量间隔的场景中,向所述终端设备发送指示激活已配置的测量间隔需求信息的MAC-CE。
第四方面,提供一种通信方法,所述通信方法包括:从网络设备接收测量配置信息,所述测量配置信息携带测量间隔配置信息;从所述网络设备接收MAC-CE,所述MAC-CE指示去激活已配置的测量间隔配置信息,或者,所述MAC-CE指示激活已配置的测量间隔配置信息。
在本申请中,网络设备通过MAC-CE去激活或激活测量间隔配置信息,相对于采用RRC信令,可以减少传输时延。
结合第四方面,在第四方面的一种可能的实现方式中,所述方法还包括:向网络设备发送测量间隔需求信息,所述测量间隔需求信息指示需要或不需要测量间隔。
例如,测量配置信息指示测量任务。当判断所述测量任务不需要测量间隔时,向网络设备发送指示不需要测量间隔的测量间隔需求信息。当判断所述测量任务需要测量间隔时,向网络设备发送指示需要测量间隔的测量间隔需求信息。
可选地,终端设备发送的测量间隔需求信息承载在RRC重配置完成消息中。
可选地,终端设备发送的测量间隔需求信息承载在其他上行信令中。
在本实现方式中,网络设备可以根据终端设备上报的测量间隔需求信息,向终端设备发送MAC-CE。在所述测量间隔需求信息指示不需要测量间隔的情况下,向所述终端设备发送指示去激活已配置的测量间隔需求信息的MAC-CE;或者,在所述测量间隔需求信息指示需要测量间隔的情况下,向所述终端设备发送指示激活已配置的测量间隔需求信息的MAC-CE。
在本实现方式中,网络设备根据终端设备上报的测量间隔需求信息,通过MAC-CE去激活或激活已配置的测量间隔配置信息,这样可以提高测量间隔配置的灵活性。
第五方面,提供一种通信装置,所述通信装置用于执行第一方面、第二方面、第三方面或第四方面提供的方法。
可选地,所述通信装置可以包括用于执行第一方面、第二方面、第三方面或第四方面提供的方法的模块。
第六方面,提供一种通信装置,所述通信装置包括存储器和处理器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,并且对所述存储器中存储的指令的执行使得所述处理器执行第一方面、第二方面、第三方面或第四方面提供的方法。
第七方面,提供一种芯片,所述芯片包括处理模块与通信接口,所述处理模块用于控 制所述通信接口与外部进行通信,所述处理模块还用于实现第一方面、第二方面、第三方面或第四方面提供的方法。
第八方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被计算机执行时使得所述计算机实现第一方面、第二方面、第三方面或第四方面提供的方法。
第九方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得所述计算机实现第一方面、第二方面、第三方面或第四方面提供的方法。
基于上述描述,在本申请中,测量间隔配置状态基于终端设备上报的测量间隔需求信息而确定,这样一方面可以提高测量间隔配置的灵活性,另一方面可以避免终端设备与服务小区之间不必要的通信中断,从而可以提高通信效率。同时,终端设备上报的测量间隔需求信息直接用于,激活或生效,或者,去激活或释放,测量间隔配置信息,从而无需网络设备通过RRC信令再次配置或释放测量间隔,这样可以减少信令开销。
附图说明
图1与图2为适用于本申请实施例的通信系统的示意图。
图3为根据本申请实施例的通信方法的示意性流程图。
图4为根据本申请实施例的通信方法的另一示意性流程图。
图5为本申请实施例提供的通信设备的示意性框图。
图6为本申请实施例提供的通信设备的另一示意性框图。
图7为本申请实施例提供的终端设备的示意性结构图。
图8为本申请实施例提供的网络设备的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
为了便于理解本申请实施例,下面描述一些相关的概念。
1、移动性管理
移动性管理是无线移动通信中的重要组成部分。它指的是为了保证网络与用户设备(user equipment,UE)之间的通信链路不因UE的移动而中断所涉及到的相关内容的统称。根据UE的状态大致上可以分为空闲态(RRC_IDLE state)/去激活态(RRC_INACTIVE state)移动性管理和连接态(RRC_CONNECTED state)移动性管理两部分。在空闲态/去激活态下,移动性管理主要指的是小区选择/重选(cell selection/reselection)的过程,在连接态下,移动性管理主要指的是小区切换(handover)。不论是小区选择/重选还是切换,都是基于测量的结果进行的。因此移动性测量是移动性管理的基础。
在新无线(new radio,NR)(或5G)系统中,移动性测量时基于波束(beam)的。下简单介绍一下波束,其后在介绍NR中的移动性测量。
2、波束
波束可以理解为空间资源,可以指具有能量传输指向性的发送或接收预编码向量。
该发送或接收预编码向量能够通过索引信息进行标识,该索引信息可以对应配置终端的资源标识(identity,ID)。例如,该索引信息可以对应配置的信道状态信息参考信号(channel statement information reference signal,CSI-RS)的标识或者资源;也可以是对应配置的同步信号/物理层广播信道块(Synchronization signal/physical broadcast channel block,SS/PBCH block)(SS/PBCH block也可以简称为SSB)的标识或者资源;也可以是对应配置的上行探测参考信号(Sounding Reference Signal,SRS)的标识或者资源。
可选地,该索引信息也可以是通过波束承载的信号或信道显示或隐式承载的索引信息。该能量传输指向性可以指,通过该预编码向量对所需发送的信号进行预编码处理,经过该预编码处理的信号具有一定的空间指向性。接收经过该预编码向量进行预编码处理后的信号具有较好的接收功率,如满足接收解调信噪比等。该能量传输指向性也可以指,通过该预编码向量接收来自不同空间位置发送的相同信号具有不同的接收功率。
可选地,同一通信装置(比如终端设备或网络设备)可以有不同的预编码向量,不同的设备也可以有不同的预编码向量,即对应不同的波束。针对通信装置的配置或者能力,一个通信装置在同一时刻可以使用多个不同的预编码向量中的一个或者多个,即同时可以形成一个波束或者多个波束。
3、NR(5G)中的移动性测量
NR中测量的整体流程如下。
大体上,可以根据所涉及到的层次将测量划分为物理层测量(层1测量)和RRC层测量(层3测量)两部分。
在物理层,UE在配置的测量资源上进行指定类型的测量,NR支持的所有测量类型在38.215中定义。
对于基于SSB的测量而言,UE对多个具有相同的SSB index和物理小区标识(physical cell identifier,PCI)的SSB上得到的测量结果进行合并,得到该PCI对应的小区的该SSB index对应的SSB的beam级层1测量结果,并上报给层3。
对于基于CSI-RS的测量而言,UE对多个具有相同的CSI-RS资源标识(resource identifier)和PCI的CSI-RS资源上得到的测量结果进行合并,得到该PCI对应的小区的该CSI-RS资源标识对应的CSI-RS资源的beam层1测量结果,并上报给层3。
上述对于多个测量资源上的测量结果进行合并的过程就是所谓的层1滤波。具体的合并方式是UE实现,标准不会规定。但是UE需要保证测量满足38.133中定义的时延、精度方面的一系列指标。
层3在接收到了层1上报的beam级测量结果后,UE需要对同一个小区的各个beam的层1测量结果进行选择/合并以推导出该小区级的层3测量结果。具体的选择/合并方式在38.331中定义。之后还需要对得到的小区级层3测量结果进行层3滤波。注意只有层3滤波后的测量结果才会用于验证上报触发条件是否满足和最终的上报。
此外,根据配置,UE也可能需要上报beam级的层3测量结果。此时UE直接对各个beam的层1测量结果进行层3滤波,再在滤波后的测量结果中选择出要上报的测量结果进行上报。具体选择的方式在38.331中定义。
38.300要求UE至少应该在有新的小区级测量结果产生的时候对上报触发条件进行验 证。当上报触发条件满足时,UE需要向网络发送测量报告。
4、测量配置
在测量配置阶段,网络将测量所需的信息通过信令发送给UE。
在连接态下,网络侧发送的信令可以是RRC重配置信令(RRC Reconfiguration),在该信令的测量配置(measConfig)信元中包含了发给UE的测量配置信息。38.331要求网络侧应该确保:
1)测量配置中会为每一个服务频率包含对应的测量对象。
2)仅当相应的测量对象、上报配置和测量量已经配置给UE的情况下,网络侧才会配置一个测量标识。
在接收到信令后,UE对自己的测量配置数据库和测量报告列表相应地进行修改,并将修改成功的消息(RRC Reconfiguration complete)告知网络。
在测量配置信息中,包括了如下方面的配置信息。
测量对象(measurement object,MO)。LTE中一个测量对象对应一个频点。在测量对象配置中,网络将告知UE对于该频点进行测量需要知道的必要信息,包括该频点上测量资源的配置情况,该频点上的小区列表等等。在NR中,对于同频测量和异频测量,测量对象指示要测的参考信号的频域/时域位置和子载波间隔,对于异系统的E-UTRA测量,测量对象对应一个E-UTRA频点。
上报配置(reporting configuration)。在上报配置中,网络告知UE具体要执行的测量的细节,包括测量的类型,上报触发的方式,以及上报的格式等等。
测量标识(measurement identity)。一个测量标识是一个测量对象和一个上报配置的结合。两者结合在一起就确定了对于一个测量对象的测量的各种细节。任一个测量对象/上报配置可以关联到任何一个/多个/0个与之拥有相同RAT类型的报告配置/测量对象上。
测量量配置(quantity configuration)。测量量配置指的是对于层3滤波系数的配置。在触发测量量用于验证上报触发条件是否满足之前,以及上报测量量最终上报之前,都需要首先进行层3滤波。而层3滤波的系数就是通过测量量配置告知UE的。
测量间隔(measurement gap)配置。如果同频/异频/异系统测量涉及切换中心频率,则和数据传输不能同时进行,需要网络为其配置测量间隔。
5、测量间隔(measurement gap)
对于连接态的UE,在进行测量时,可能因为对目标参考信号的测量需要进行射频(RF)切换而使得测量和服务小区的数据收发无法同时进行。因此网络会在测量配置(measConfig)中给UE配置测量间隔(measurement gap)。在测量间隔期间,不要求UE和服务小区之间进行数据收发,UE可以进行测量。
测量间隔配置(measGapConfig)是在测量配置(measConfig)中携带的。
作为示例,在NR中,测量间隔配置(measGapConfig)可以包括gap类型、gap偏差(gapOffset)、gap长度(mgl)(单位为毫秒(ms))、gap重复周期(mgrp)(单位为ms),以及gap定时提前(measurement gap timing advance,mgta)(单位为ms)等。
其中,gap类型可以包括gapUE、gapFR1和gapFR2。其中,gapUE表示每个UE(per UE)的gap,gapFR1表示该gap只适用于FR1,gapFR2表示该gap只适用于FR2。
6、测量间隔样式
1)UE级测量间隔(per-UE gap)表示所有UE需要支持的测量间隔。所谓UE级测量间隔,指的是同时适用于FR1和FR2的测量间隔。
2)在NR中,提出根据UE的能力,还可以支持频率范围级测量间隔(per-FR gap)。
在per-UE gap中,不要求UE进行传输;不要求UE接收除了用于测量的参考信号之外的来自于任何服务小区的数据;不要求UE将频点切换至任何服务小区的频点上。
在per-FR gap中,对FR1和FR2频段分别定义了一组测量间隔样式,每一组测量间隔样式将只适用于对应的频段。
在per-FR gap中,不要求UE向相应频段的小区进行传输;不要求UE接收相应频段上除了用于测量的参考信号之外的来自于任何服务小区的数据;不要求UE将频点切换至相应频段上任何服务小区的频点上。
7、带宽部分(bandwidth part,BWP)
BWP是NR标准中提出的新概念。BWP表示网络侧配置给UE的一段连续的带宽资源。BWP可实现网络侧和UE侧灵活地传输带宽配置。
BWP的应用场景可以包括如下3个场景。
场景1:应用于小带宽能力UE接入大带宽网络。
场景2:UE在大小BWP间进行切换,达到省电效果。
场景3:不同BWP,配置不同Numerology,承载不同业务。
可以为不同UE配置不同的BWP,这可称为BWP的UE级概念。
UE不需要知道网络侧的传输带宽,只需要支持配置给UE的BWP带宽信息。
BWP的分类如下。
1)初始BWP(Initial BWP):UE初始接入阶段配置的BWP。
初始接入时的信号和信道在Initial BWP内传输。
2)专有BWP(Dedicated BWP):UE在RRC连接态配置的BWP。
1个UE最多可以配置4个Dedicated BWP。
3)激活BWP(Active BWP):UE在RRC连接态某一时刻激活的BWP,是Dedicated BWP中的1个。
R15协议中,UE在RRC连接态,某一时刻只能有1个Active BWP。
4)默认BWP(Default BWP):UE在RRC连接态时,当其BWP去激活定时器(BWP inactivity timer)超时后,UE回到默认的BWP上。
默认BWP也是Dedicated BWP中的1个。网络通过RRC信令指示UE哪一个配置的Dedicated BWP作为Default BWP。
目前,在NR中,除了协议规定的几种终端设备不需要测量间隔的特殊场景之外,网络侧都会为终端设备配置测量间隔,这使得配置测量间隔的灵活性较差。
针对上述问题,本申请提出一种通信方法与装置,可以有效提高测量间隔配置的灵活性。
本申请实施例的技术方案可以应用于各种通信系统,例如,第五代(5th generation,5G)系统、新无线(new radio,NR)、机器与机器通信(machine to machine,M2M)系统、或者未来演进的其它通信系统等,本申请实施例对此并不限定。
图1为适用于本申请实施例的通信系统100的示意图。
通信系统100可以包括至少一个网络设备,例如图1所示的网络设备110。该通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备120。网络设备110与终端设备120可通过无线链路通信。
图2适用于本申请实施例的通信系统200的示意图。
该通信系统200可以包括至少两个网络设备,例如图2中所示的网络设备210和220。该通信系统200还可以包括至少一个终端设备,例如图2中所示的终端设备230。该终端设备230可以通过双连接(dual connectivity,DC)技术或者多连接技术与网络设备110和网络设备120建立无线链路。其中,网络设备210例如可以为主基站,网络设备220例如可以为辅基站。在此情况下,网络设备210为终端设备230初始接入时的网络设备,负责与终端设备230之间的无线资源控制(radio resource control,RRC)通信,网络设备220可以是RRC重配置时添加的,用于提供额外的无线资源。
可选地,图2中所示的两个网络设备之中的一个网络设备,如网络设备210,可以称之为主节点(master node,MN),负责与该终端设备230交互无线资源控制消息,并负责和核心网控制平面实体交互。例如,主节点可以是MeNB或者MgNB,本申请对比不作限定。图2中所示的两个网络设备之中的另一个网络设备,如网络设备220,可以称之为辅节点(secondary node,SN)。例如,辅节点可以是SeNB或者SgNB,本申请对比不作限定。其中,主节点中的多个服务小区可以组成主小区组(master cell group,MCG),包括一个主小区(primary cell,PCell)和可选的一个或多个辅小区(primary cell,PCell)。辅节点中的多个服务小区可以组成辅小区组(secondary cell group,SCG),包括一个主辅小区(primary secondary cell,PSCell,或者,也可以称为特殊小区)和可选的一个或多个SCell。服务小区是指网络配置给终端设备进行上下行传输的小区。
类似地,终端设备也可以同时与多个网络设备存在通信连接并可收发数据,该多个网络设备之中,可以有一个网络设备负责与该终端设备交互无线资源控制消息,并负责和核心网控制平面实体交互,那么,该网络设备可以称之为MN,则其余的网络设备可以称之为SN。
可选地,网络设备220也可以为主基站或主节点,网络设备210也可以为辅基站或辅节点,本申请对此不做限定。
应理解,图1和图2仅为示例而非限定。例如,图1示出了一个终端设备与一个网络设备之间的无线连接的情形,图2示出了两个网络设备与终端设备之间无线连接的情形,但这不应对本申请所适用的场景构成任何限定。终端设备还可以与更多的网络设备建立无线链路。
图1和图2中所示的各通信设备,例如图1中的网络设备110或终端设备120,或者图2中的网络设备210、网络设备220或终端设备230,可以配置多个天线。该多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。另外,各通信设备还附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。因此,网络设备与终端设备之间可通过多天线技术通信。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,可以是任意一种具有无线收发功能的设备或可设置于该设备内的芯片。网络设备可以为基站,基站可以用于与 一个或多个终端设备进行通信,也可以用于与一个或多个具有部分终端设备功能的基站进行通信(例如宏基站与微基站)。网络设备可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。网络设备还可协调对空中接口的属性管理。例如,网络设备可以是LTE中的演进型基站,网络设备还可以是5G系统、NR系统、M2M系统、或者未来演进的其它通信系统中的基站。另外,网络设备也可以为接入点(access point,AP)、传输节点(transport point,TRP)、集中式单元(centralized unit,CU)、分布式单元(distributed unit,DU)或其他网络实体,并且可以包括以上网络实体的功能中的一些或所有功能,本申请实施例并不限定。需要说明的是,本发明实施例中的网络设备不仅可以是基站设备,还可以是中继设备,或者具备基站功能的其他网元设备。
本申请实施例中的终端设备可以是指向用户提供语音和/或数据连通性的设备。终端设备是具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。终端设备可以经无线接入网(Radio Access Network,RAN)与网络设备进行通信。终端设备可以指用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
图3为根据本申请实施例的通信方法300的示意性流程图。该通方法300包括如下步骤。
S310,网络设备向终端设备发送测量配置信息,测量配置信息指示测量任务。相应地,终端设备从网络设备接收测量配置信息。
例如,网络设备向终端设备发送RRC重配置(RRCReconfiguration)消息,该RRC重配置消息中包括测量配置(measConfig)信息。
S320,终端设备在接收到测量配置信息后,判断该测量任务是否需要测量间隔。
S330,若测量任务不需要测量间隔,终端设备向网络设备发送指示不需要测量间隔的第一测量间隔需求信息,第一测量间隔需求信息用于去激活或释放已配置的测量间隔配置信息;和/或
若测量任务需要测量间隔,终端设备向网络设备发送指示需要测量间隔的第二测量间隔需求信息,第二测量间隔需求信息用于激活或生效第二测量间隔需求信息对应的测量间隔配置信息。
第一测量间隔需求信息用于去激活或释放已配置的测量间隔配置信息,指的是,终端设备发送该第一测量间隔需求信息之后,自主认为已配置的测量间隔配置信息去激活或释放,网络设备在接收到该第一测量间隔需求信息之后,去激活或释放已配置的测量间隔信息。也就是说,在网络设备接收到第一测量间隔需求信息之后,无需再次通过RRC信令来去激活/释放测量间隔,终端设备自主就认为已配置的测量间隔配置信息去激活或释放了。
其中,已配置的测量间隔配置信息可以是,步骤S310中的测量配置信息中携带的测 量间隔配置信息。
第二测量间隔需求信息用于激活或生效第二测量间隔需求信息对应的测量间隔配置信息,指的是,终端设备发送该第二测量间隔需求信息之后,自主认为第二测量间隔需求信息对应的测量间隔配置信息激活或生效,网络设备在接收到该第二测量间隔需求信息之后,激活或生效第二测量间隔需求信息对应的测量间隔配置信息。也就是说,在网络设备接收到第二测量间隔需求信息之后,无需再次通过RRC信令来激活/生效测量配置,终端设备自主就认为第二测量间隔需求信息对应的测量间隔配置信息激活或生效。
其中,第二测量间隔需求信息对应的测量间隔配置信息可以是已配置的测量间隔配置信息,或者,也可以是不同于已配置的测量间隔配置信息的新的测量间隔配置信息。
在本申请中,终端设备根据当前测量任务是否需要测量间隔,确定是否向网络设备发送测量间隔需求信息;在终端设备向网络设备发送测量间隔需求信息的情况下,如果测量间隔需求信息指示不需要测量间隔,则已配置的测量间隔配置信息自动去激活或释放,如果测量间隔需求信息指示需要测量间隔,则该测量间隔需求信息对应的测量间隔配置信息自动激活或生效。
其中,通过终端设备向网络设备发送指示不需要测量间隔的测量间隔需求信息,直接使得已配置的测量间隔配置信息去激活或释放,从而可以避免终端设备与服务小区之间不必要的通信中断。此外,在实现已配置的测量间隔配置信息的去激活或释放的过程中,无需网络设备再次下发RRC信令进行配置,可以节省信令开销,同时也可以减小传输时延。
其中,通过终端设备向网络设备发送指示需要测量间隔的测量间隔需求信息,直接使得测量间隔需求信息对应的测量间隔配置信息激活或生效,从而可以满足测量任务的测量需求。此外,在实现测量间隔配置信息激活或生效的过程中,无需网络设备再次下发RRC信令进行配置,可以节省信令开销,同时也可以减小传输时延。
因此,在本申请中,测量间隔配置状态基于终端设备上报的测量间隔需求信息而确定,这样一方面可以提高测量间隔配置的灵活性,另一方面可以避免终端设备与服务小区之间不必要的通信中断,从而可以提高通信效率。同时,终端设备上报的测量间隔需求信息直接用于,激活或生效,或者,去激活或释放,测量间隔配置信息,从而无需网络设备通过RRC信令再次配置或释放测量间隔,这样可以减少信令开销。
可选地,在步骤S330中,终端设备可以在RRC重配置完成(RRCReconfigurationComplete)消息中携带测量间隔需求信息。
可选地,在步骤S330中,终端设备也可以在其它上行信令中携带测量间隔需求信息。
终端设备是否向网络设备发送测量间隔需求信息,可以通过下列几种方式实现。
实现方式一。
若测量任务不需要测量间隔,终端设备向网络设备发送第一测量间隔需求信息,第一测量间隔需求信息用于去激活或释放已配置的测量间隔配置信息;若测量任务需要测量间隔,终端设备向网络设备发送第二测量间隔需求信息,第二测量间隔需求信息用于激活或生效第二测量间隔需求信息对应的测量间隔配置信息。
实现方式一可以适用于网络设备预先为终端设备配置测量间隔的场景,例如,步骤S310中的测量配置信息中携带测量间隔配置信息。实现方式一也可以适用于网络设备未预先为终端设备配置测量间隔的场景,例如,步骤S310中的测量配置信息中不携带测量 间隔配置信息。
实现方式二。
若测量任务不需要测量间隔,终端设备向网络设备发送第一测量间隔需求信息,第一测量间隔需求信息用于去激活或释放已配置的测量间隔配置信息;若测量任务需要测量间隔,终端设备不向网络设备发送测量间隔需求信息。
应理解,终端设备只在不需要测量间隔的情况下,向网络设备发送测量间隔需求信息,用于去激活或释放已配置的测量间隔配置信息,在需要测量间隔的情况下,无需发送测量间隔需求信息,可以进一步节省信令开销。
实现方式二可以适用于网络设备预先为终端设备配置测量间隔的场景,例如,步骤S310中的测量配置信息中携带测量间隔配置信息。
实现方式三。
若测量任务需要测量间隔,终端设备向网络设备发送第二测量间隔需求信息,第二测量间隔需求信息用于激活或生效第二测量间隔需求信息对应的测量间隔配置信息;若测量任务不需要测量间隔,终端设备不向网络设备发送测量间隔需求信息。
应理解,终端设备只在需要测量间隔的情况下,向网络设备发送测量间隔需求信息,用于激活或生效所需的测量间隔配置信息,在不需要测量间隔的情况下,无需发送测量间隔需求信息,可以进一步节省信令开销。
实现方式三可以适用于网络设备预先为终端设备配置测量间隔的场景,例如,步骤S310中的测量配置信息中携带测量间隔配置信息。实现方式三也可以适用于网络设备未预先为终端设备配置测量间隔的场景,例如,步骤S310中的测量配置信息中不携带测量间隔配置信息。
可选地,在终端设备向网络设备发送第二测量间隔需求信息的实施例中,第二测量间隔需求信息中可以包括测量间隔参数,第二测量间隔需求信息用于生效测量间隔参数对应的测量间隔配置信息。
本实施例可以适用于测量配置信息中不包括测量间隔配置信息的场景,或者,还可以适用于已配置的测量间隔配置信息不符合测量任务的测量需求的场景。
第二测量间隔需求信息中携带的测量间隔参数可以根据测量任务的测量需求确定。
例如,测量间隔参数包括下列中任一项或多项:gap类型、gap偏差(gapOffset)、gap长度(mgl)(单位可以为毫秒(ms))、gap重复周期(mgrp)(单位可以为ms),以及gap定时提前(measurement gap timing advance,mgta)(单位可以为ms)等。
可选地,第二测量间隔需求信息中包括测量间隔参数,还包括显式指示需要测量间隔的指示信息。
可选地,第二测量间隔需求信息中包括测量间隔参数,不包括显式指示需要测量间隔的指示信息,该测量间隔参数隐式指示需要测量间隔。
在本实施例中,网络设备在接收第二测量间隔需求信息之后,可以通过基于第二测量间隔需求信息中携带的测量间隔参数修改已配置的测量间隔配置信息中的相关参数,并基于修改后的测量间隔配置信息与终端设备进行通信。
或者,网络设备在接收第二测量间隔需求信息之后,可以根据第二测量间隔需求信息中携带的测量间隔参数,重新生成相应的测量间隔配置信息,并基于新的测量间隔配置信 息与终端设备进行通信。
在本实施例中,通过终端设备向网络设备发送携带测量间隔参数的测量间隔需求信息,直接使得该测量间隔参数对应的测量间隔配置信息激活或生效,在这个过程中,无需网络设备再次下发RRC信令进行配置,可以节省信令开销,从而可以减小传输时延。
可选地,在一些实施例中,步骤S310中网络设备下发的测量配置信息中携带测量间隔配置(measGapConfig)信息(记为第一测量间隔配置信息)。在本实施例中,如果终端设备向网络设备发送第一测量间隔需求信息,该第一测量间隔需求信息用于去激活或失效该第一测量间隔需求信息;如果终端设备向网络设备发送第二测量间隔需求信息,该第二测量间隔需求信息用于激活或生效该第一测量间隔需求信息。
可选地,在一些实施例中,步骤S310中网络设备下发的测量配置信息中携带测量间隔配置信息(记为第一测量间隔配置信息),且该第一测量间隔配置信息默认生效。
在本实施例中,终端设备可以采用上述实现方式一或实现方式二。其中,如果终端设备向网络设备发送第一测量间隔需求信息,该第一测量间隔需求信息用于去激活或失效该第一测量间隔需求信息;如果终端设备向网络设备发送第二测量间隔需求信息,该第二测量间隔需求信息用于激活或生效该第一测量间隔需求信息。
可选地,在一些实施例中,步骤S310中网络设备下发的测量配置信息中携带测量间隔配置信息(记为第一测量间隔配置信息),且该第一测量间隔配置信息默认不生效。
在本实施例中,终端设备可以采用上述实现方式一或实现方式三。如果终端设备向网络设备发送第一测量间隔需求信息,该第一测量间隔需求信息用于去激活或失效该第一测量间隔需求信息;如果终端设备向网络设备发送第二测量间隔需求信息,该第二测量间隔需求信息用于激活或生效该第一测量间隔需求信息。
可选地,在一些实施例中,步骤S310中网络设备下发的测量配置信息中不携带测量间隔配置信息。
在本实施例中,终端设备可以采用上述实现方式三。其中,如果终端设备向网络设备发送第二测量间隔需求信息,第二测量间隔需求信息中包括测量间隔参数,第二测量间隔需求信息用于生效测量间隔参数对应的测量间隔配置信息。
本申请中涉及的释放与去激活具有不同含义。释放测量间隔配置信息,表示,该测量间隔配置信息被彻底删除,如果下次需要使用,需要重新配置。去激活测量间隔配置信息,表示,在一定时间内,使得该测量间隔配置信息失效,但并不释放这些配置信息,如果后续,这些配置信息被激活,则这些配置信息重新生效,可以继续使用。
本申请中涉及的激活与生效,含义可以认为是相同,总之就是使得测量间隔配置信息有效。当然,如果有必要区分这两种动作,也是可以的。例如,如果一个配置信息失效之后重新有效,这个过程可以称为激活。
可选地,在上述一些实施例中,如果终端设备向网络设备发送第一测量间隔需求信息,该第一测量间隔需求信息用于去激活已配置的测量间隔需求信息;如果终端设备向网络设备发送第二测量间隔需求信息,该第二测量间隔需求信息用于激活第二测量间隔需求信息对应的测量间隔需求信息。
可选地,在上述一些实施例中,如果终端设备向网络设备发送第一测量间隔需求信息,该第一测量间隔需求信息用于释放已配置的测量间隔需求信息;如果终端设备向网络设备 发送第二测量间隔需求信息,该第二测量间隔需求信息用于生效第二测量间隔需求信息对应的测量间隔需求信息。
可选地,在一些实施例中,终端设备向网络设备发送的测量间隔需求信息可以为至少1比特的信息,当这1比特的信息为第一值时,表示不需要测量间隔(即第一测量间隔需求信息),当这1比特的信息为第二值时,表示需要测量间隔(即第二测量间隔需求信息)。
例如,当这1比特的信息为“0”时,表示不需要测量间隔(即第一测量间隔需求信息),当这1比特的信息为“1”时,表示需要测量间隔(即第二测量间隔需求信息)。或者,当这1比特的信息为“1”时,表示不需要测量间隔(即第一测量间隔需求信息),当这1比特的信息为“0”时,表示需要测量间隔(即第二测量间隔需求信息)。
在本申请中,终端设备上报测量间隔需求信息的触发条件有多种。
触发条件一:接收到测量配置信息。
可选地,在一些实施例中,每次接收到网络设备下发的测量配置信息之后,终端设备判断该测量配置信息指示的测量任务是否需要测量间隔,根据判断结果,决定是否向网络设备发送测量间隔需求信息。
该测量配置信息可以是网络设备首次下发的测量配置信息。
或者,该测量配置信息还可以是网络设备在下发一次测量配置信息之后再次发送的测量更新配置信息。
应理解,当测量任务发生变化时,测量任务对测量间隔的需求可能会发生变化,在该需求发生变化时,通过向网络设备发送测量间隔需求信息,有助于获得满足测量需求的测量间隔配置信息。
应理解,网络设备不必在每次为终端设备配置测量配置信息时都携带测量间隔配置信息。
如果已经配置过测量间隔配置信息,在后续的测量更新配置信息中,可以不携带测量间隔配置信息,除非需要更新测量间隔时才携带。如果之前未配置过测量间隔配置信息,在后续的测量更新配置信息中,可以携带测量间隔配置信息,也可以不携带测量间隔配置信息。包括下列三种情况。
情况一:网络设备预先已为终端设备配置过测量间隔配置信息,测量更新配置信息中未携带测量间隔配置信息,
这种情况下,随着网络设备向终端设备发送该测量更新配置信息,预先配置的测量间隔配置信息默认激活或生效。换句话说,只要预先配置的测量间隔配置信息未被释放,无论在发送该测量更新配置信息之前,预先配置的测量间隔配置信息是什么状态(例如,去激活、激活或默认生效),在发送该测量更新配置信息之后,该预先配置的测量间隔配置信息默认激活。
终端设备在接收到测量更新配置信息后,判断测量更新配置信息中指示的测量任务是否需要测量间隔,根据判断结果以及该预先配置的测量间隔配置信息,确定是否向网络设备发送测量间隔需求信息。
情况二:测量更新配置信息中携带了测量间隔配置信息。
这种情况下,无论网络设备是否预先为终端设备配置过测量间隔配置信息,在终端设备接收到测量更新配置信息后,判断该测量更新配置信息中指示的测量任务是否需要测量 间隔,根据判断结果以及该测量更新配置信息中携带的测量间隔配置信息,确定是否向网络设备发送。
情况三:网络设备未预先为终端设备配置过测量间隔配置信息,测量更新配置信息中也未携带测量间隔配置信息。
这种情况下,在终端设备接收到测量更新配置信息后,在判断测量任务需要测量间隔的情况下,向网络设备发送第二测量间隔需求信息,第二测量配置间隔需求信息中包括测量间隔参数。
触发条件二:服务小区(SCell)配置发生变化。
可选地,在一些实施例中,终端设备在服务小区配置发生变化时,在所述配置完成消息中携带所述第一测量间隔需求信息或所述第二测量间隔需求信息。
例如,终端设备从网络设备接收RRC重配置消息,该RRC重配置消息中携带指示服务小区配置发生变化的信息。
服务小区配置发生变化包括下列任一种或多种:添加服务小区(SCell addition)、删除服务小区(SCell removal)、修改服务小区配置。
应理解,在服务小区配置发生变化的情况下,会出现如下情形:在服务小区配置发生变化之前,终端设备执行测量任务不需要测量间隔(或需要测量间隔),在服务小区配置发生变化之后,终端设备执行测量任务需要测量间隔(或不需要测量间隔)。
因此,终端设备在服务小区配置发生变化时,判断测量任务是否需要测量间隔,并根据判断结果可以向网络设备上报测量间隔需求信息,从而可以有效保证测量配置信息符合测量需求。
在本申请中,测量间隔配置状态基于终端设备上报的测量间隔需求信息而确定,这样一方面可以提高测量间隔配置的灵活性,另一方面可以避免终端设备与服务小区之间不必要的通信中断,从而可以提高通信效率。同时,终端设备上报的测量间隔需求信息直接用于,激活或生效,或者,去激活或释放,测量间隔配置信息,从而无需网络设备通过RRC信令再次配置或释放测量间隔,这样可以减少信令开销。
还需要说明的是,对于协议规定的终端设备不需要测量间隔的特殊场景,网络设备可以不为终端设备配置测量间隔。
作为示例,协议规定的几种特殊场景如下。
1)对于基于SSB的异频(inter-frequency)测量,终端设备支持per-FR gap,并且所有服务小区配置的BWP频点都和MO中的频点不在同一FR。
2)对于基于SSB的同频(intra-frequency)测量,除了初始BWP(initial BWP)以外的任意配置的BWP(configured BWP)都覆盖了待测SSB的频域资源。或者,换一种说法,对于基于SSB的同频(intra-frequency)测量,待测SSB在激活BWP(active BWP中),或active BWP即为initial BWP的同频测量。
也就是说,在上述特殊场景下,网络设备下发的测量配置信息中不携带测量间隔配置信息。
本申请还提供一种通信方法。该通信方法包括如下步骤。
步骤1),网络设备向终端设备发送第一测量配置信息,该第一测量配置信息指示测量任务。
例如,网络设备向终端设备发送第一RRC重配置(RRCReconfiguration)消息,该第一RRC重配置消息中包括第一测量配置(measConfig)信息。
第一测量配置(measConfig)信息中可以携带测量间隔配置(measGapConfig)信息。
或者,第一测量配置信息中也可以不携带测量间隔配置信息。
步骤2),终端设备向网络设备发送用于指示需要测量间隔的测量间隔需求信息,该测量间隔需求信息中还包括测量间隔参数。
例如,终端设备在确定测量任务需要测量间隔的情况下,向网络设备发送该测量间隔需求信息。
例如,终端设备向网络设备发送RRC重配置完成消息,RRC重配置完成消息中携带该测量间隔需求信息。
步骤3),网络设备向终端设备发送第二测量配置信息,该第二测量配置信息包括该测量间隔参数对应的测量间隔配置信息。
例如,网络设备向终端设备发送第二RRC重配置消息,该第二RRC重配置消息中包括该第二测量配置信息。
可以理解为,在步骤3)中,网络设备根据终端设备上报的测量间隔参数,向终端设备配置新的测量间隔配置信息。
在本实施例中,终端设备接收到第二测量配置信息后,生效该测量间隔参数对应的测量间隔配置信息。
作为示例,终端设备原本具有FR1测量间隔配置信息,例如,通过第一测量配置信息获取FR1测量间隔配置信息。通过第二测量配置信息又接收一个FR1测量间隔配置信息。这种情形下,终端设备可以将原本具有的FR1测量间隔配置信息释放,后续新配置的FR1测量间隔配置信息。
作为另一个示例,终端设备原本具有FR2测量间隔配置信息,例如,通过第一测量配置信息获取FR2测量间隔配置信息。通过第二测量配置信息接收一个FR1测量间隔配置信息。这种情形下,终端设备可以不释放原本具有的FR2测量间隔配置信息。
如图4所示,本申请还提供一种通信方法400,该通信方法400包括如下步骤。
S410,网络设备向终端设备发送测量配置信息,测量配置信息携带测量间隔配置信息。
例如,网络设备向终端设备发送RRC重配置(RRCReconfiguration)消息,该RRC重配置消息中包括测量配置(measConfig)信息,测量配置(measConfig)信息中携带测量间隔配置(measGapConfig)信息。
可选地,该测量配置信息指示测量任务。
或者,该测量配置信息未指示测量任务。
S420,网络设备向终端设备发送媒体接入控制控制元素(medium access control-control element,MAC-CE),MAC-CE指示去激活已配置的测量间隔配置信息,或者,MAC-CE指示激活已配置的测量间隔配置信息。
在本申请中,网络设备通过MAC-CE去激活或激活测量间隔配置信息,相对于采用RRC信令,可以减少传输时延。
在步骤S420中,网络设备可以根据如下任一种方式,确定向终端设备发送用于指示去激活已配置的测量间隔配置信息的MAC-CE,或者,用于指示激活已配置的测量间隔配 置信息的MAC-CE。
方式一:根据终端设备上报的测量间隔需求信息。
可选地,在一些实施例中,该方法400还包括:
S430,终端设备向网络设备发送测量间隔需求信息,该测量间隔需求信息指示需要或不需要测量间隔。
其中,在步骤S420中,在测量间隔需求信息指示不需要测量间隔的情况下,网络设备向终端设备发送指示去激活已配置的测量间隔需求信息的MAC-CE;或者,在测量间隔需求信息指示需要测量间隔的情况下,网络设备向终端设备发送指示激活已配置的测量间隔需求信息的MAC-CE。
可选地,终端设备在RRC重配置完成消息中发送测量间隔需求信息。
可选地,终端设备在其他上行信令中发送测量间隔需求信息。
在本实施例中,网络设备根据终端设备上报的测量间隔需求信息,通过MAC-CE去激活或激活已配置的测量间隔配置信息,这样可以提高测量间隔配置的灵活性。
方式二:基于终端设备的测量间隔能力。
可选地,在一些实施例中,在步骤S420中,网络设备根据终端设备的测量间隔能力,向终端设备发送MAC-CE。
其中,在根据终端设备的测量间隔能力确定终端设备不需要测量间隔的情况下,向终端设备发送指示去激活已配置的测量间隔需求信息的MAC-CE;在根据终端设备的测量间隔能力确定终端设备需要测量间隔的情况下,向终端设备发送指示激活已配置的测量间隔需求信息的MAC-CE。
可选地,终端设备向网络设备上报测量间隔能力。
例如,终端设备在RRC消息中反馈,终端设备工作于各个频点、待测参考信号位于各个频域位置是是否需要测量间隔。
方式三:基于协议规定。
可选地,在一些实施例中,在步骤S420中,网络设备基于协议规定,向终端设备发送MAC-CE。
其中,在协议规定的不需要测量间隔的场景中,向终端设备发送指示去激活已配置的测量间隔需求信息的MAC-CE。
在协议规定的需要测量间隔的场景中,向终端设备发送指示激活已配置的测量间隔需求信息的MAC-CE。
基于上述描述,在本申请中,网络设备通过MAC-CE去激活或激活测量间隔配置信息,相对于采用RRC信令,可以减少传输时延。
还应理解,本文中涉及的第一或第二等各种数字编号仅为描述方便进行的区分,并不用来限制本发明实施例的范围。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由定位管理设备实现的方法和操作,也可以由可用于定位管理设备的部件(例如芯片或者电路)实现。
上文描述了本申请实施例提供的方法实施例,下文将描述本申请实施例提供的装置实施例。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
上述主要从各个设备之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个设备,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图5为本申请实施例提供的通信设备500的示意性框图。该通信设备500包括收发单元510和处理单元520。收发单元510可以与外部进行通信,处理单元510用于进行数据处理。收发单元510还可以称为通信接口或通信单元。
该通信设备500可以用于执行上文方法实施例中终端设备所执行的动作,或者,执行上文方法实施例中网络设备所执行的动作。
作为一种实现方式,通信设备500可以用于执行上文方法300中终端设备所执行的动作。在本实现方式中,该通信设备500可以称为终端设备。收发单元510用于执行上文方法300中终端设备侧的收发相关操作,处理单元520用于执行上文方法300中终端设备的处理相关操作。
在本实现方式中,收发单元510,用于从网络设备接收测量配置信息,测量配置信息指示测量任务;处理单元520,用于判断测量任务是否需要测量间隔;收发单元510还用于,若测量任务不需要测量间隔,向网络设备发送指示不需要测量间隔的第一测量间隔需求信息,第一测量间隔需求信息用于去激活或释放已配置的测量间隔配置信息;和/或,若测量任务需要测量间隔,向网络设备发送指示需要测量间隔的第二测量间隔需求信息,第二测量间隔需求信息用于激活或生效第二测量间隔需求信息对应的测量间隔配置信息。
在本申请中,测量间隔配置状态基于终端设备上报的测量间隔需求信息而确定,这样一方面可以提高测量间隔配置的灵活性,另一方面可以避免终端设备与服务小区之间不必要的通信中断,从而可以提高通信效率。同时,终端设备上报的测量间隔需求信息直接用于,激活或生效,或者,去激活或释放,测量间隔配置信息,从而无需网络设备通过RRC信令再次配置或释放测量间隔,这样可以减少信令开销。
可选地,在一些实施例中,收发单元510,用于从网络设备接收测量配置信息,测量配置信息指示测量任务;处理单元520,用于判断测量任务是否需要测量间隔;
收发单元510,还用于:若测量任务不需要测量间隔,向网络设备发送指示不需要测 量间隔的第一测量间隔需求信息,第一测量间隔需求信息用于去激活或释放已配置的测量间隔配置信息;和/或若测量任务需要测量间隔,向网络设备发送指示需要测量间隔的第二测量间隔需求信息,第二测量间隔需求信息用于激活或生效第二测量间隔需求信息对应的测量间隔配置信息。
可选地,在一些实施例中,测量配置信息中包括第一测量间隔配置信息;收发单元510用于:若测量任务不需要测量间隔,向网络设备发送第一测量间隔需求信息,第一测量间隔需求信息用于去激活或释放第一测量间隔配置信息;和/或若测量任务需要测量间隔,向网络设备发送第二测量间隔需求信息,第二测量间隔需求信息用于激活或生效第一测量间隔配置信息。
可选地,在一些实施例中,第一测量间隔配置信息默认生效,收发单元510用于:若测量任务不需要测量间隔,向网络设备发送第一测量间隔需求信息,第一测量间隔需求信息用于去激活或释放第一测量间隔配置信息;若测量任务需要测量间隔,不向网络设备发送测量间隔需求信息。
可选地,在一些实施例中,第一测量间隔配置信息默认不生效,收发单元510用于:若测量任务需要测量间隔,向网络设备发送第二测量间隔需求信息,第二测量间隔需求信息用于激活或生效第一测量间隔配置信息;若测量任务不需要测量间隔,不向网络设备发送测量间隔需求信息。
可选地,在一些实施例中,收发单元510用于,若测量任务需要测量间隔,向网络设备发送第二测量间隔需求信息,第二测量间隔需求信息中包括测量间隔参数,第二测量间隔需求信息用于生效测量间隔参数对应的测量间隔配置信息。
可选地,在一些实施例中,处理单元520用于,在服务小区配置发生变化的情况下,判断测量任务是否需要测量间隔。
作为另一种实现方式,通信设备500可以用于执行上文方法300中网络设备所执行的动作。在本实现方式中,该通信设备500可以称为网络设备。收发单元510用于执行上文方法300中网络设备侧的收发相关操作,处理单元520用于执行上文方法300中网络设备的处理相关操作。
在本实现方式中,处理单元520,用于为终端设备确定测量配置信息,测量配置信息指示测量任务;收发单元510,用于:向终端设备发送测量配置信息,在测量任务不需要测量间隔的情况下,从终端设备接收指示不需要测量间隔的第一测量间隔需求信息,第一测量间隔需求信息用于去激活或释放已配置的测量间隔配置信息;和/或在测量任务需要测量间隔的情况下,从终端设备接收指示需要测量间隔的第二测量间隔需求信息,第二测量间隔需求信息用于激活或生效第二测量间隔需求信息对应的测量间隔配置信息。
在本申请中,测量间隔配置状态基于终端设备上报的测量间隔需求信息而确定,这样一方面可以提高测量间隔配置的灵活性,另一方面可以避免终端设备与服务小区之间不必要的通信中断,从而可以提高通信效率。同时,终端设备上报的测量间隔需求信息直接用于,激活或生效,或者,去激活或释放,测量间隔配置信息,从而无需网络设备通过RRC信令再次配置或释放测量间隔,这样可以减少信令开销。
可选地,在一些实施例中,测量配置信息中包括第一测量间隔配置信息;收发单元510用于:在测量任务不需要测量间隔的情况下,从终端设备接收第一测量间隔需求信息, 第一测量间隔需求信息用于去激活或释放第一测量间隔配置信息;和/或在测量任务需要测量间隔的情况下,从终端设备接收第二测量间隔需求信息,第二测量间隔需求信息用于激活或生效第一测量间隔配置信息。
可选地,在一些实施例中,第一测量间隔配置信息默认生效,收发单元510用于:在测量任务不需要测量间隔的情况下,从终端设备接收第一测量间隔需求信息,第一测量间隔需求信息用于去激活或释放第一测量间隔配置信息;在测量任务需要测量间隔的情况下,不从终端设备接收测量间隔需求信息。
可选地,在一些实施例中,第一测量间隔配置信息默认不生效,收发单元510用于:在测量任务需要测量间隔的情况下,从终端设备接收第二测量间隔需求信息,第二测量间隔需求信息用于激活或生效第一测量间隔配置信息;在测量任务不需要测量间隔的情况下,不从终端设备接收测量间隔需求信息。
可选地,在一些实施例中,收发单元510用于,从终端设备接收第二测量间隔需求信息,第二测量间隔需求信息中包括测量间隔参数,第二测量间隔需求信息用于生效测量间隔参数对应的测量间隔配置信息。
作为又一种实现方式,通信设备500可以用于执行上文方法400中网络设备所执行的动作。在本实现方式中,该通信设备500可以称为网络设备。收发单元510用于执行上文方法400中网络设备侧的收发相关操作,处理单元520用于执行上文方法400中网络设备的处理相关操作。
在本实现方式中,处理单元520用于,为终端设备分配测量配置信息,该测量配置信息携带测量间隔配置信息;收发单元510用于,向终端设备发送该测量配置信息;向终端设备发送媒体接入控制控制元素(medium access control-control element,MAC-CE),MAC-CE指示去激活已配置的测量间隔配置信息,或者,MAC-CE指示激活已配置的测量间隔配置信息。
在本申请中,网络设备通过MAC-CE去激活或激活测量间隔配置信息,相对于采用RRC信令,可以减少传输时延。
可选地,收发单元510还用于,从终端设备接收测量间隔需求信息,测量间隔需求信息指示需要或不需要测量间隔。
其中,收发单元510用于,在测量间隔需求信息指示不需要测量间隔的情况下,向终端设备发送指示去激活已配置的测量间隔需求信息的MAC-CE;或者,在测量间隔需求信息指示需要测量间隔的情况下,向终端设备发送指示激活已配置的测量间隔需求信息的MAC-CE。
可选地,终端设备发送的测量间隔需求信息承载在RRC重配置完成消息中。
可选地,终端设备发送的测量间隔需求信息承载在其他上行信令中。
在本实现方式中,网络设备根据终端设备上报的测量间隔需求信息,通过MAC-CE去激活或激活已配置的测量间隔配置信息,这样可以提高测量间隔配置的灵活性。
可选地,收发单元510用于,根据终端设备的测量间隔能力,向终端设备发送MAC-CE。
其中,收发单元510用于:在根据终端设备的测量间隔能力确定终端设备不需要测量间隔的情况下,向终端设备发送指示去激活已配置的测量间隔需求信息的MAC-CE;在根 据终端设备的测量间隔能力确定终端设备需要测量间隔的情况下,向终端设备发送指示激活已配置的测量间隔需求信息的MAC-CE。
可选地,收发单元510用于,基于协议,向终端设备发送MAC-CE。
其中,可选地,收发单元510用于:在协议规定的不需要测量间隔的场景中,向终端设备发送指示去激活已配置的测量间隔需求信息的MAC-CE;在协议规定的需要测量间隔的场景中,向终端设备发送指示激活已配置的测量间隔需求信息的MAC-CE。
作为再一种实现方式,通信设备500可以用于执行上文方法400中终端设备所执行的动作。在本实现方式中,该通信设备500可以称为终端设备。收发单元510用于执行上文方法400中终端设备侧的收发相关操作,处理单元520用于执行上文方法400中终端设备的处理相关操作。
在本实现方式中,收发单元510用于:从网络设备接收测量配置信息,测量配置信息携带测量间隔配置信息;从网络设备接收MAC-CE,MAC-CE指示去激活已配置的测量间隔配置信息,或者,MAC-CE指示激活已配置的测量间隔配置信息。处理单元520用于根据MAC-CE,确定测量间隔配置状态。
当MAC-CE指示去激活已配置的测量间隔配置信息,处理单元520去激活已配置的测量间隔配置信息。当MAC-CE指示激活已配置的测量间隔配置信息,处理单元520激活已配置的测量间隔配置信息。
在本申请中,网络设备通过MAC-CE去激活或激活测量间隔配置信息,相对于采用RRC信令,可以减少传输时延。
可选地,收发单元510还用于,向网络设备发送测量间隔需求信息,测量间隔需求信息指示需要或不需要测量间隔。
例如,测量配置信息指示测量任务。收发单元510用于:当判断测量任务不需要测量间隔时,向网络设备发送指示不需要测量间隔的测量间隔需求信息;当判断测量任务需要测量间隔时,向网络设备发送指示需要测量间隔的测量间隔需求信息。
可选地,终端设备发送的测量间隔需求信息承载在RRC重配置完成消息中。
可选地,终端设备发送的测量间隔需求信息承载在其他上行信令中。
在本实现方式中,网络设备可以根据终端设备上报的测量间隔需求信息,向终端设备发送MAC-CE。在测量间隔需求信息指示不需要测量间隔的情况下,向终端设备发送指示去激活已配置的测量间隔需求信息的MAC-CE;或者,在测量间隔需求信息指示需要测量间隔的情况下,向终端设备发送指示激活已配置的测量间隔需求信息的MAC-CE。
在本实现方式中,网络设备根据终端设备上报的测量间隔需求信息,通过MAC-CE去激活或激活已配置的测量间隔配置信息,这样可以提高测量间隔配置的灵活性。
应理解,上文实施例中的处理单元520可以由处理器或处理器相关电路实现,收发单元510可以由收发器或收发器相关电路实现。
如图6所示,本申请实施例还提供一种通信设备600。通信设备600包括处理器610、存储器620和收发器630,存储器620中存储有程序,处理器610用于执行存储器620中存储的程序,对存储器620中存储的程序的执行,使得处理器610用于执行上文方法实施例中的相关处理步骤,对存储器620中存储的程序的执行,使得处理器610控制收发器630执行上文方法实施例中的收发相关步骤。
作为一种实现,该通信设备600用于执行上文方法实施例中终端设备所执行的动作,这时,对存储器620中存储的程序的执行,使得处理器610用于执行上文方法实施例中终端设备侧的处理步骤,收发器630用于执行上文方法实施例中终端设备侧的接收和发送步骤。可选地,对存储器620中存储的程序的执行,使得处理器610控制收发器630执行上文方法实施例中终端设备侧的接收和发送步骤。
作为另一种实现,该通信设备600用于执行上文方法实施例中网络设备所执行的动作,这时,对存储器620中存储的程序的执行,使得处理器610用于执行上文方法实施例中网络设备侧的处理步骤,收发器630用于执行上文方法实施例中网络设备侧的接收和发送步骤。可选地,对存储器620中存储的程序的执行,使得处理器610控制收发器630执行上文方法实施例中网络设备侧的接收和发送步骤。
本申请实施例还提供一种通信装置700,该通信装置700可以是终端设备也可以是芯片。该通信设备700可以用于执行上述方法实施例中由终端设备所执行的动作。
当该通信设备700为终端设备时,图7示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图7中,终端设备以手机作为例子。如图7所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图7中仅示出了一个存储器和处理器,在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。
如图7所示,终端设备包括收发单元710和处理单元720。收发单元710也可以称为收发器、收发机、收发装置等。处理单元720也可以称为处理器,处理单板,处理模块、处理装置等。可选地,可以将收发单元710中用于实现接收功能的器件视为接收单元,将收发单元710中用于实现发送功能的器件视为发送单元,即收发单元710包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
例如,在一种实现方式中,收发单元710还用于执行图3中所示的步骤S310中终端设备侧的接收操作,步骤S330中终端设备侧的发送操作,和/或收发单元710还用于执行 终端设备侧的其他收发步骤。处理单元720用于执行图3中所示步骤S320。
又例如,在一种实现方式中,收发单元710还用于执行图4中所示的步骤S410和S420中终端设备侧的接收操作,步骤S430中终端设备侧的发送操作,和/或收发单元710还用于执行终端设备侧的其他收发步骤。处理单元720用于执行图4中实施例中终端设备侧的处理步骤,例如确定针对测量任务的测量间隔需求信息。
应理解,图7仅为示例而非限定,上述包括收发单元和处理单元的终端设备可以不依赖于图7所示的结构。
当该通信设备700为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种通信设备800,该通信设备800可以是网络设备也可以是芯片。该通信设备800可以用于执行上述方法实施例中由网络设备执行的动作。
当该通信设备800为网络设备时,例如为基站。图8示出了一种简化的基站结构示意图。基站包括810部分以及820部分。810部分主要用于射频信号的收发以及射频信号与基带信号的转换;820部分主要用于基带处理,对基站进行控制等。810部分通常可以称为收发单元、收发机、收发电路、或者收发器等。820部分通常是基站的控制中心,通常可以称为处理单元,用于控制基站执行上述方法实施例中网络设备侧的处理操作。
810部分的收发单元,也可以称为收发机或收发器等,其包括天线和射频单元,其中射频单元主要用于进行射频处理。可选地,可以将810部分中用于实现接收功能的器件视为接收单元,将用于实现发送功能的器件视为发送单元,即810部分包括接收单元和发送单元。接收单元也可以称为接收机、接收器、或接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
820部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器。处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增强处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,810部分用于执行图3中所示的步骤S310中网络设备侧的发送操作,步骤S330中网络设备侧的接收操作,和/或810部分还用于执行网络设备侧的其他收发步骤。820部分用于执行图3中实施例中网络设备侧的处理步骤。
又例如,在一种实现方式中,810部分还用于执行图4中所示的步骤S410和S420中网络设备侧的发送操作,步骤S430中网络设备侧的接收操作,和/或810部分还用于执行网络设备侧的其他收发步骤。820部分用于执行图4中实施例中网络设备侧的处理步骤。
应理解,图8仅为示例而非限定,上述包括收发单元和处理单元的网络设备可以不依赖于图8所示的结构。
当该通信设备800为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程 序被计算机执行时使得该计算机实现上述方法实施例中终端设备侧的方法,或网络设备侧的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例中终端设备侧的方法,或网络设备侧的方法。
上述提供的任一种通信装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器 (enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种通信方法,其特征在于,包括:
    从网络设备接收测量配置信息,所述测量配置信息指示测量任务;
    判断所述测量任务是否需要测量间隔;
    若所述测量任务不需要测量间隔,向所述网络设备发送指示不需要测量间隔的第一测量间隔需求信息,所述第一测量间隔需求信息用于去激活或释放已配置的测量间隔配置信息;和/或
    若所述测量任务需要测量间隔,向所述网络设备发送指示需要测量间隔的第二测量间隔需求信息,所述第二测量间隔需求信息用于激活或生效所述第二测量间隔需求信息对应的测量间隔配置信息。
  2. 根据权利要求1所述的通信方法,其特征在于,所述测量配置信息中包括第一测量间隔配置信息;
    若所述测量任务不需要测量间隔,向所述网络设备发送所述第一测量间隔需求信息,所述第一测量间隔需求信息用于去激活或释放所述第一测量间隔配置信息;和/或
    若所述测量任务需要测量间隔,向所述网络设备发送所述第二测量间隔需求信息,所述第二测量间隔需求信息用于激活或生效所述第一测量间隔配置信息。
  3. 根据权利要求2所述的通信方法,其特征在于,所述第一测量间隔配置信息默认生效,
    若所述测量任务不需要测量间隔,向所述网络设备发送所述第一测量间隔需求信息,所述第一测量间隔需求信息用于去激活或释放所述第一测量间隔配置信息;
    若所述测量任务需要测量间隔,不向所述网络设备发送测量间隔需求信息。
  4. 根据权利要求2所述的通信方法,其特征在于,所述第一测量间隔配置信息默认不生效,
    若所述测量任务需要测量间隔,向所述网络设备发送所述第二测量间隔需求信息,所述第二测量间隔需求信息用于激活或生效所述第一测量间隔配置信息;
    若所述测量任务不需要测量间隔,不向所述网络设备发送测量间隔需求信息。
  5. 根据权利要求1至4中任一项所述的通信方法,其特征在于,若所述测量任务需要测量间隔,向所述网络设备发送所述第二测量间隔需求信息,所述第二测量间隔需求信息中包括测量间隔参数,所述第二测量间隔需求信息用于生效所述测量间隔参数对应的测量间隔配置信息。
  6. 根据权利要求1至5中任一项所述的通信方法,其特征在于,所述判断所述测量任务是否需要测量间隔,包括:
    在服务小区配置发生变化的情况下,判断所述测量任务是否需要测量间隔。
  7. 一种通信方法,其特征在于,包括:
    向终端设备发送测量配置信息,所述测量配置信息指示测量任务;
    在所述测量任务不需要测量间隔的情况下,从所述终端设备接收指示不需要测量间隔的第一测量间隔需求信息,所述第一测量间隔需求信息用于去激活或释放已配置的测量间 隔配置信息;和/或
    在所述测量任务需要测量间隔的情况下,从所述终端设备接收指示需要测量间隔的第二测量间隔需求信息,所述第二测量间隔需求信息用于激活或生效所述第二测量间隔需求信息对应的测量间隔配置信息。
  8. 根据权利要求7所述的通信方法,其特征在于,所述测量配置信息中包括第一测量间隔配置信息;
    在所述测量任务不需要测量间隔的情况下,从所述终端设备接收所述第一测量间隔需求信息,所述第一测量间隔需求信息用于去激活或释放所述第一测量间隔配置信息;和/或
    在所述测量任务需要测量间隔的情况下,从所述终端设备接收所述第二测量间隔需求信息,所述第二测量间隔需求信息用于激活或生效所述第一测量间隔配置信息。
  9. 根据权利要求8所述的通信方法,其特征在于,所述第一测量间隔配置信息默认生效,
    在所述测量任务不需要测量间隔的情况下,从所述终端设备接收所述第一测量间隔需求信息,所述第一测量间隔需求信息用于去激活或释放所述第一测量间隔配置信息;
    在所述测量任务需要测量间隔的情况下,不从所述终端设备接收测量间隔需求信息。
  10. 根据权利要求8所述的通信方法,其特征在于,所述第一测量间隔配置信息默认不生效,
    在所述测量任务需要测量间隔的情况下,从所述终端设备接收所述第二测量间隔需求信息,所述第二测量间隔需求信息用于激活或生效所述第一测量间隔配置信息;
    在所述测量任务不需要测量间隔的情况下,不从所述终端设备接收测量间隔需求信息。
  11. 根据权利要求7至10中任一项所述的通信方法,其特征在于,从所述终端设备接收所述第二测量间隔需求信息,所述第二测量间隔需求信息中包括测量间隔参数,所述第二测量间隔需求信息用于生效所述测量间隔参数对应的测量间隔配置信息。
  12. 一种终端设备,其特征在于,包括:
    收发单元,用于从网络设备接收测量配置信息,所述测量配置信息指示测量任务;
    处理单元,用于判断所述测量任务是否需要测量间隔;
    所述收发单元,还用于:
    若所述测量任务不需要测量间隔,向所述网络设备发送指示不需要测量间隔的第一测量间隔需求信息,所述第一测量间隔需求信息用于去激活或释放已配置的测量间隔配置信息;和/或
    若所述测量任务需要测量间隔,向所述网络设备发送指示需要测量间隔的第二测量间隔需求信息,所述第二测量间隔需求信息用于激活或生效所述第二测量间隔需求信息对应的测量间隔配置信息。
  13. 根据权利要求12所述的终端设备,其特征在于,所述测量配置信息中包括第一测量间隔配置信息;
    所述收发单元用于:
    若所述测量任务不需要测量间隔,向所述网络设备发送所述第一测量间隔需求信息, 所述第一测量间隔需求信息用于去激活或释放所述第一测量间隔配置信息;和/或
    若所述测量任务需要测量间隔,向所述网络设备发送所述第二测量间隔需求信息,所述第二测量间隔需求信息用于激活或生效所述第一测量间隔配置信息。
  14. 根据权利要求13所述的终端设备,其特征在于,所述第一测量间隔配置信息默认生效,
    所述收发单元用于:
    若所述测量任务不需要测量间隔,向所述网络设备发送所述第一测量间隔需求信息,所述第一测量间隔需求信息用于去激活或释放所述第一测量间隔配置信息;
    若所述测量任务需要测量间隔,不向所述网络设备发送测量间隔需求信息。
  15. 根据权利要求13所述的终端设备,其特征在于,所述第一测量间隔配置信息默认不生效,
    所述收发单元用于:
    若所述测量任务需要测量间隔,向所述网络设备发送所述第二测量间隔需求信息,所述第二测量间隔需求信息用于激活或生效所述第一测量间隔配置信息;
    若所述测量任务不需要测量间隔,不向所述网络设备发送测量间隔需求信息。
  16. 根据权利要求12至15中任一项所述的终端设备,其特征在于,所述收发单元用于,若所述测量任务需要测量间隔,向所述网络设备发送所述第二测量间隔需求信息,所述第二测量间隔需求信息中包括测量间隔参数,所述第二测量间隔需求信息用于生效所述测量间隔参数对应的测量间隔配置信息。
  17. 根据权利要求12至16中任一项所述的终端设备,其特征在于,所述处理单元用于,在服务小区配置发生变化的情况下,判断所述测量任务是否需要测量间隔。
  18. 一种网络设备,其特征在于,包括:
    处理单元,用于为终端设备确定测量配置信息,所述测量配置信息指示测量任务;
    收发单元,用于:
    向终端设备发送所述测量配置信息,
    在所述测量任务不需要测量间隔的情况下,从所述终端设备接收指示不需要测量间隔的第一测量间隔需求信息,所述第一测量间隔需求信息用于去激活或释放已配置的测量间隔配置信息;和/或
    在所述测量任务需要测量间隔的情况下,从所述终端设备接收指示需要测量间隔的第二测量间隔需求信息,所述第二测量间隔需求信息用于激活或生效所述第二测量间隔需求信息对应的测量间隔配置信息。
  19. 根据权利要求18所述的网络设备,其特征在于,所述测量配置信息中包括第一测量间隔配置信息;
    所述收发单元用于:
    在所述测量任务不需要测量间隔的情况下,从所述终端设备接收所述第一测量间隔需求信息,所述第一测量间隔需求信息用于去激活或释放所述第一测量间隔配置信息;和/或
    在所述测量任务需要测量间隔的情况下,从所述终端设备接收所述第二测量间隔需求信息,所述第二测量间隔需求信息用于激活或生效所述第一测量间隔配置信息。
  20. 根据权利要求19所述的网络设备,其特征在于,所述第一测量间隔配置信息默认生效,
    所述收发单元用于:
    在所述测量任务不需要测量间隔的情况下,从所述终端设备接收所述第一测量间隔需求信息,所述第一测量间隔需求信息用于去激活或释放所述第一测量间隔配置信息;
    在所述测量任务需要测量间隔的情况下,不从所述终端设备接收测量间隔需求信息。
  21. 根据权利要求19所述的网络设备,其特征在于,所述第一测量间隔配置信息默认不生效,
    所述收发单元用于:
    在所述测量任务需要测量间隔的情况下,从所述终端设备接收所述第二测量间隔需求信息,所述第二测量间隔需求信息用于激活或生效所述第一测量间隔配置信息;
    在所述测量任务不需要测量间隔的情况下,不从所述终端设备接收测量间隔需求信息。
  22. 根据权利要求18至21中任一项所述的网络设备,其特征在于,所述收发单元用于,从所述终端设备接收所述第二测量间隔需求信息,所述第二测量间隔需求信息中包括测量间隔参数,所述第二测量间隔需求信息用于生效所述测量间隔参数对应的测量间隔配置信息。
  23. 一种通信装置,其特征在于,所述通信装置包括存储器和处理器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,并且对所述存储器中存储的指令的执行使得所述处理器执行权利要求1至6中任一项所述的方法,或者,权利要求7至11中任一项所述的方法。
  24. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被计算机执行时使得所述计算机实现权利要求1至6中任一项所述的方法,或者,权利要求7至11中任一项所述的方法。
PCT/CN2020/088675 2019-05-08 2020-05-06 通信方法与装置 WO2020224575A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20801754.1A EP3958604A4 (en) 2019-05-08 2020-05-06 COMMUNICATION METHOD AND APPARATUS
US17/519,915 US20220060923A1 (en) 2019-05-08 2021-11-05 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910380807.5 2019-05-08
CN201910380807.5A CN111918303B (zh) 2019-05-08 2019-05-08 通信方法与装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/519,915 Continuation US20220060923A1 (en) 2019-05-08 2021-11-05 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2020224575A1 true WO2020224575A1 (zh) 2020-11-12

Family

ID=73051412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088675 WO2020224575A1 (zh) 2019-05-08 2020-05-06 通信方法与装置

Country Status (4)

Country Link
US (1) US20220060923A1 (zh)
EP (1) EP3958604A4 (zh)
CN (1) CN111918303B (zh)
WO (1) WO2020224575A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4104596A4 (en) * 2021-05-04 2023-07-19 Apple Inc. TECHNOLOGIES FOR UPLINK GAP DEPLOYMENT AND OPERATION

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220014955A1 (en) * 2020-07-10 2022-01-13 Qualcomm Incorporated User equipment (ue) measurement gap request and release for power savings and multiple subscriber identity module (msim) measurements
WO2022183336A1 (zh) * 2021-03-01 2022-09-09 Oppo广东移动通信有限公司 一种测量间隔的确定方法及装置、终端设备
US11877238B2 (en) 2021-03-29 2024-01-16 Parsa Wireless Communications Llc Power saving for multicast broadcast services
CN115208523B (zh) * 2021-04-09 2024-06-11 维沃移动通信有限公司 信息获取、配置方法、装置及通信设备
CN115550956A (zh) * 2021-06-30 2022-12-30 维沃移动通信有限公司 定位测量方法、定位配置方法、装置及通信设备
CN115589622A (zh) * 2021-07-06 2023-01-10 中国移动通信有限公司研究院 信息配置方法、相关设备及存储介质
CN116137957A (zh) * 2021-09-16 2023-05-19 北京小米移动软件有限公司 一种调度方法、调度装置及存储介质
CN115884220A (zh) * 2021-09-29 2023-03-31 华为技术有限公司 一种测量时间段配置方法及通信装置
WO2023060576A1 (zh) * 2021-10-15 2023-04-20 北京小米移动软件有限公司 一种发送或接收能力指示信息的方法、装置、设备及介质
WO2023195752A1 (en) * 2022-04-05 2023-10-12 Samsung Electronics Co., Ltd. Method and apparatus for handling preconfigured measurement gaps during handover

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101682854A (zh) * 2007-03-20 2010-03-24 株式会社Ntt都科摩 通信控制方法、基站和用户装置
US20150071101A1 (en) * 2013-09-09 2015-03-12 Intel IP Corporation Mobile terminals and methods for performing a measurement
CN105191389A (zh) * 2014-01-29 2015-12-23 三星电子株式会社 在移动通信系统中利用多个载波发送和接收数据的方法和装置
CN106851721A (zh) * 2011-01-10 2017-06-13 联发科技股份有限公司 测量间隙报告配置方法和用户设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9119102B2 (en) * 2011-04-04 2015-08-25 Telefonaktiebolaget Lm Ericsson (Publ) Radio network node and method for using positioning gap indication for enhancing positioning performance
KR101857897B1 (ko) * 2014-04-24 2018-06-19 엘지전자 주식회사 측정 수행 방법 및 단말
CN109151884B (zh) * 2017-06-16 2021-05-11 中国移动通信有限公司研究院 一种测量配置方法、终端和基站
CN117097454A (zh) * 2017-08-10 2023-11-21 苹果公司 用于测量间隙配置的方法和装置
US11831494B2 (en) * 2017-09-21 2023-11-28 Apple Inc. UE (user equipment) assisted measurement gap in NR (new radio)
EP3692736B1 (en) * 2017-10-06 2023-06-28 Telefonaktiebolaget LM Ericsson (Publ) Dynamic change of measurement gaps
EP3487206A1 (en) * 2017-11-15 2019-05-22 Fujitsu Limited Measurement gap configuration for 5g
WO2019098928A1 (en) * 2017-11-16 2019-05-23 Telefonaktiebolaget Lm Ericsson (Publ) Measurement gap configuration in dual connectivity
US10932147B2 (en) * 2018-03-30 2021-02-23 Mediatek Inc. Gap-based cell measurement in wireless communication system
WO2020082211A1 (en) * 2018-10-22 2020-04-30 Qualcomm Incorporated On-demand measurement gap for inter-frequency rrm measurements

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101682854A (zh) * 2007-03-20 2010-03-24 株式会社Ntt都科摩 通信控制方法、基站和用户装置
CN106851721A (zh) * 2011-01-10 2017-06-13 联发科技股份有限公司 测量间隙报告配置方法和用户设备
US20150071101A1 (en) * 2013-09-09 2015-03-12 Intel IP Corporation Mobile terminals and methods for performing a measurement
CN105191389A (zh) * 2014-01-29 2015-12-23 三星电子株式会社 在移动通信系统中利用多个载波发送和接收数据的方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INC.: "Considerations on Phy-layer procedures for NR Positioning", 3GPP TSG RAN WG1 #97 R1-1907299, 4 May 2019 (2019-05-04), XP051709322 *
See also references of EP3958604A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4104596A4 (en) * 2021-05-04 2023-07-19 Apple Inc. TECHNOLOGIES FOR UPLINK GAP DEPLOYMENT AND OPERATION

Also Published As

Publication number Publication date
EP3958604A4 (en) 2022-06-15
CN111918303A (zh) 2020-11-10
EP3958604A1 (en) 2022-02-23
US20220060923A1 (en) 2022-02-24
CN111918303B (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
WO2020224575A1 (zh) 通信方法与装置
WO2021031921A1 (zh) 用于测量的方法与装置
TWI846627B (zh) 信號傳輸、信號測量上報、定位方法及裝置、電腦存儲介質
CA3066682C (en) Method and device for srs transmission
WO2020030022A1 (zh) 测量配置方法与装置
WO2020135400A1 (zh) 通信方法和通信装置
US11589345B2 (en) Management of resource allocation and notification control over RAN interfaces
WO2019029510A1 (zh) 带宽部分的配置方法、网络设备及终端
JP2021503845A (ja) 通信方法および通信デバイス
JP2022550047A (ja) アップリンク空間関係インジケーション及び電力制御
WO2020164418A1 (zh) 一种测量方法、终端设备及网络设备
CN111757400B (zh) 通信方法和通信装置
WO2020031358A1 (ja) ユーザ装置及び送信方法
WO2019096232A1 (zh) 通信方法和通信装置
US20230300927A1 (en) Communication Method, Communications Apparatus, and Storage Medium
WO2021032007A1 (zh) 链路失败报告传输的方法和装置
WO2020156364A1 (zh) 测量方法和通信装置
US20210360455A1 (en) Communication method and apparatus
WO2021088770A1 (zh) 一种测量配置方法及设备
CA3091299C (en) Maximum transmission power determining method, apparatus, system, and storage medium
JP2022507564A (ja) 通信方法および装置
WO2021031004A1 (zh) 载波测量方法和装置
US20230146882A1 (en) Wireless communication system
CN111050383B (zh) 信号传输方法及装置
CN117880859B (zh) 波形切换方法、设备、介质、芯片系统及产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20801754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020801754

Country of ref document: EP

Effective date: 20211118