WO2020164418A1 - 一种测量方法、终端设备及网络设备 - Google Patents

一种测量方法、终端设备及网络设备 Download PDF

Info

Publication number
WO2020164418A1
WO2020164418A1 PCT/CN2020/074308 CN2020074308W WO2020164418A1 WO 2020164418 A1 WO2020164418 A1 WO 2020164418A1 CN 2020074308 W CN2020074308 W CN 2020074308W WO 2020164418 A1 WO2020164418 A1 WO 2020164418A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
domain resource
terminal device
resource group
measurement
Prior art date
Application number
PCT/CN2020/074308
Other languages
English (en)
French (fr)
Inventor
严乐
耿婷婷
曾清海
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020164418A1 publication Critical patent/WO2020164418A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • This application relates to the field of network communication, and in particular to a measurement method, terminal equipment and network equipment.
  • CA technology supports terminal equipment to simultaneously use different carriers of multiple cells under the same base station for uplink and downlink communications, thereby supporting high-speed data transmission.
  • the DC technology allows terminal equipment to simultaneously use the carriers of multiple cells of two different base stations for uplink and downlink communications.
  • This application provides a measurement method, terminal equipment and network equipment.
  • a measurement method is provided, which may be executed by a terminal device, or may also be executed by a chip or a circuit configured in the terminal device, which is not limited in this application.
  • the method includes: the terminal device receives measurement configuration information, the measurement configuration information indicates at least one frequency domain resource group, the at least one frequency domain resource group includes frequency domain resources used for carrier aggregation, or the at least one frequency domain
  • the resource group includes frequency domain resources for multiple connections; the terminal device measures the frequency domain resources according to the at least one frequency domain resource group.
  • the embodiments of the present application can reasonably perform measurement configuration. For example, it can only measure frequency domain resources that can be used for carrier aggregation or multiple connections, thereby reducing some invalid measurements of terminal equipment (for example, for non-supporting carrier aggregation or multiple connections).
  • the measurement of connected frequency domain resources which can make the measurement of the terminal equipment more efficient and report the measurement report quickly, so that the terminal equipment can be timely after switching to a new serving base station or switching from the idle state to the connected state
  • the at least one frequency domain resource group includes a first frequency domain resource group, and the first frequency domain resource group includes a frequency domain resource group for performing carrier aggregation with the first frequency domain resource.
  • the first frequency domain resource group includes frequency domain resources used for multiple connections with the first frequency domain resource.
  • the terminal device measuring the frequency domain resource according to the at least one frequency domain resource group includes: the terminal device measuring the first frequency domain resource , And determine whether to measure other frequency domain resources in the first frequency domain resource group according to the measurement result.
  • measurement information can also be configured according to the combination of frequency domain resources supported by the base station, so that the terminal device can determine whether to measure other frequency domain resources in the group according to the obtained measurement results When the measurement result fails to meet the requirements, other frequency domain resources in the group may not be measured, so that the measurement efficiency of the terminal device can be improved.
  • the first frequency domain resource is used by multiple cells, and the terminal device measures the first frequency domain resource, and determines whether to measure other resources according to the measurement result.
  • Measuring frequency domain resources includes: the terminal device separately measuring the first frequency domain resources used by the multiple cells;
  • the terminal device measures the frequency domain resource according to the at least one frequency domain resource group, including: the terminal device obtains from the second frequency domain resource group Determine at least one target frequency domain resource, where the target frequency domain resource is a frequency domain resource that the terminal device can support, and the second frequency domain resource group is any one of the at least one frequency domain resource group; the terminal The device measures the target frequency domain resource.
  • the terminal device determines at least one target frequency domain resource from the second frequency domain resource group, including: the terminal device obtains at least one target frequency domain resource from the second frequency domain resource according to the support capability information At least one target frequency domain resource is determined in the group, where the support capability information indicates the frequency domain resources for carrier aggregation that the terminal device can support; or the support capability information indicates the frequency domain resources that the terminal device can support for multiple connections. Domain resources.
  • the embodiment of the application can filter the configured frequency domain resources according to the support capability information of the terminal device. For example, the frequency domain resources used for carrier aggregation or the frequency domain resources used for multiple connections that are not supported by the terminal device can be filtered out. Instead, only the frequency domain resources supported by the terminal device are measured, which improves the measurement efficiency.
  • the frequency domain resource includes the frequency domain resource used by the serving cell of the terminal device; or the frequency domain resource does not include the frequency domain resource used by the serving cell of the terminal device. Frequency domain resources.
  • the terminal device when there are multiple frequency domain resource groups, the terminal device measures the frequency domain resources according to the at least one frequency domain resource group, The method includes: the terminal device determines the priority of each frequency domain resource group; the terminal device measures the frequency domain resources in the frequency domain resource group according to the priority.
  • a measurement method is provided, which may be executed by a network device, or may also be executed by a chip or circuit configured in the network device, which is not limited in this application.
  • the network device may be a base station, such as an eNB, gNB, CU, or DU, etc., without limitation.
  • a base station such as an eNB, gNB, CU, or DU, etc., without limitation.
  • the method includes: generating measurement configuration information indicating at least one frequency domain resource group, the at least one frequency domain resource group including frequency domain resources used for carrier aggregation, or the at least one frequency domain resource group Including frequency domain resources for multiple connections; sending the measurement configuration information to the terminal device.
  • the at least one frequency domain resource group includes a first frequency domain resource group
  • the first frequency domain resource group includes a frequency domain resource group for performing carrier aggregation with the first frequency domain resource.
  • the first frequency domain resource group includes frequency domain resources used for multiple connections with the first frequency domain resource.
  • the frequency domain resource includes the frequency domain resource used by the serving cell of the terminal device; or the frequency domain resource does not include the frequency domain resource used by the serving cell of the terminal device. Frequency domain resources.
  • a measurement method is provided, which can be executed by a terminal device, or can also be executed by a chip or a circuit configured in the terminal device, which is not limited in this application.
  • the method includes: the terminal device determines a plurality of measurement gap GAPs, wherein the lengths of any two measurement GAPs in the plurality of measurement GAPs are different; the terminal device according to the number of the second frequency point group to be measured Determine the second measurement GAP from the multiple measurement GAPs; the terminal device measures the frequency points in the second frequency point group according to the second measurement GAP.
  • the embodiment of this application is configured with multiple sets of measurement GAPs, which can flexibly select measurement GAPs according to the number of measurement targets (frequency points). It is convenient to configure measurement GAPs reasonably to improve the measurement effect, and on the other hand, it can also satisfy the terminal equipment as much as possible. The demand for data scheduling improves the user experience.
  • the terminal device determines the second measurement GAP from the plurality of measurement GAPs according to the number of second frequency point groups to be measured, including: the terminal device determines the second measurement GAP according to The relationship between the number of the second frequency point group and the number of the first frequency point group and the first measurement GAP, the second measurement GAP is determined from the plurality of measurement GAPs, where the first frequency point group is in the The frequency point group measured before the second frequency point group, and the first measurement GAP is the measurement GAP used when the terminal device measures the first frequency point group.
  • the method when the length of the second measured GAP is not equal to the length of the first measured GAP, the method further includes: the terminal device sends notification information to the base station, and The notification information is used to notify that the measurement GAP currently used by the terminal device is the second measurement GAP.
  • the method further includes: the terminal device obtains information from the plurality of frequency points in the second frequency point group according to the second measurement GAP.
  • the third measurement GAP is determined in the measurement GAP; the terminal device measures the frequency points in the second frequency point group according to the third measurement GAP.
  • a terminal device including a unit for executing each step of the method in the first and third aspects and their implementations.
  • a communication device which includes a unit for executing each step of the method in the second aspect and its implementations.
  • a communication device including a processor, the processor is configured to couple with a memory and read instructions or programs stored in the memory.
  • the communication device may further include the memory, and the memory is used to store instructions or programs.
  • the processor is used to call and run the instruction or program from the memory, so that the communication device executes the communication methods in the first aspect or the third aspect and various possible implementation manners thereof.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory and the processor may be provided separately.
  • the communication device further includes a transmitter (or transmitter) and a receiver (or receiver).
  • a communication device including a processor, configured to couple with a memory and read instructions or programs stored in the memory.
  • the communication device may further include the memory, and the memory is used to store instructions or programs.
  • the processor is used to call and run the instruction or program from the memory, so that the communication device executes the communication method in the second aspect and various implementation manners thereof.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory and the processor may be provided separately.
  • the communication device further includes a transmitter (or transmitter) and a receiver (or receiver).
  • a communication system including the communication device provided in the sixth aspect and/or the communication device provided in the seventh aspect.
  • the communication system may also include other devices that interact with the communication device in the solution provided in the embodiments of the present application.
  • a computer program product includes: a computer program (also called code, or instruction), which when the computer program is executed, causes the computer to execute the first aspect to the first aspect. Any one of the three possible implementation methods.
  • a computer-readable medium stores a computer program (also called code, or instruction) when it runs on a computer, so that the computer executes the first aspect to the first aspect. Any one of the three possible implementation methods.
  • a chip or chip system in an eleventh aspect, includes a processor for coupling with a memory and reading instructions or programs stored in the memory.
  • the chip or chip system may further include the memory, and the memory is used to store the instructions or programs.
  • the processor is used to call and run the instruction or program from the memory, so that the communication device or communication device installed with the chip or chip system executes the method in any one of the possible implementation manners of the first aspect to the third aspect.
  • the chip system may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
  • a communication system including a terminal device in any possible implementation manner of any of the foregoing aspects and a network device in any possible implementation manner of any of the foregoing aspects.
  • Figure 1 shows a schematic diagram of a dual-connected network architecture.
  • Fig. 2 is a schematic diagram of a system applicable to the measurement method of the embodiment of the present application.
  • Fig. 3 is a schematic flowchart of an example of a measurement method according to the present application.
  • Fig. 4 is a schematic flowchart of another example of the measurement method according to the present application.
  • Fig. 5 is a schematic block diagram of an example of the communication device of the present application.
  • Fig. 6 is a schematic structural diagram of an example of a terminal device of the present application.
  • Fig. 7 is a schematic structural diagram of an example of a network device of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • UMTS universal mobile telecommunication system
  • 5G fifth generation
  • NR new radio
  • the terminal equipment in the embodiments of this application may also be called: user equipment (UE), mobile station (MS), mobile terminal (MT), access terminal, user unit, user station, Mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • access terminal user unit, user station, Mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • the terminal device may be a device that provides voice/data connectivity to users, for example, a handheld device with a wireless connection function, a vehicle-mounted device, and so on.
  • some examples of terminals are: mobile phones (mobile phones), tablets, notebook computers, palmtop computers, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, and augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving (self-driving), wireless terminals in remote medical surgery, and smart grid (smart grid) Wireless terminals, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless phones, session initiation protocols , SIP) phone, wireless local loop (WLL) station, personal digital assistant (personal digital assistant, PDA), handheld device with wireless communication function, computing device or other processing device connected to wireless modem, vehicle Devices, wearable devices, terminal devices in a 5G network, or terminal devices in a public land mobile network (PLMN) that will evolve in
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • the terminal device may also be a terminal device in the Internet of Things (IoT) system.
  • IoT Internet of Things
  • the IoT is an important part of the development of information technology in the future. Its main technical feature is to pass items through communication technology. Connect with the network to realize the intelligent network of human-machine interconnection and interconnection of things.
  • the network device in the embodiment of the present application may be a device used to communicate with terminal devices.
  • the network device may also be called an access network device or a wireless access network device, and may be a transmission reception point (TRP). ), it can also be the base transceiver station (BTS) in the global system for mobile communications (GSM) system or code division multiple access (CDMA), or it can be broadband code division multiple access
  • the base station (NodeB, NB) in the (wideband code division multiple access, WCDMA) system can also be the evolved NodeB (evolved NodeB, eNB or eNodeB) in the LTE system, or the base station controller (BSC) ), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), or cloud wireless access network (cloud wireless access network)
  • Radio access network (CRAN) scenario wireless controller, or the network device can be a relay station, access point, in-ve
  • a network device may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node, or a control plane CU node (CU).
  • CU centralized unit
  • DU distributed unit
  • RAN device including a CU node and a DU node, or a control plane CU node (CU).
  • -CP node user plane CU node
  • CU-UP node user plane CU node
  • RAN equipment of DU node may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node, or a control plane CU node (CU).
  • -CP node user plane CU node (CU-UP node) and RAN equipment of DU node.
  • the network equipment provides services to the terminal equipment through the cell or the transceiver point in the cell, and the transmission resources (for example, frequency domain resources, or spectrum resources, or video resources) allocated by the terminal equipment through the network equipment and the cell or the cell
  • the transceiver point communicates.
  • the cell can be the cell corresponding to the transceiver point.
  • the cell can belong to a macro base station (for example, a macro eNB or a macro gNB, etc.) or a base station corresponding to a small cell.
  • the small cell here can include : Metro cells, micro cells, pico cells, femto cells, etc. These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high data rates Data transfer services.
  • FIG 1 shows a schematic diagram of a dual-connected network architecture.
  • a terminal device can communicate with two network devices at the same time and can send and receive data, which can be called dual-connectivity.
  • the two network devices such as base stations
  • master gNB master gNB
  • MgNB master gNB
  • gNB secondary base station
  • the primary base station is the control plane anchor point, that is, the terminal equipment establishes an RRC connection with the primary node, and the primary base station establishes a control plane connection with the core network.
  • part of the RRC message (for example, measurement configuration information, measurement report, etc.) may also be sent between the secondary base station and the terminal device.
  • multiple serving cells in a primary base station form a master cell group (master cell group, MCG), including a primary cell (primary cell, PCell) and optionally one or more secondary cells (primary cell, PCell) .
  • Secondary cell group SCG
  • PSCell primary secondary cell
  • SCell SCell
  • the serving cell refers to the cell configured by the network for the terminal equipment to perform uplink and downlink transmission.
  • the terminal device can also have a communication connection with multiple network devices (such as base stations) at the same time and can send and receive data, which can be called multi-connectivity or multi-connectivity (MC).
  • multiple network devices such as base stations
  • MC multi-connectivity or multi-connectivity
  • One base station is responsible for interacting radio resource control messages with the terminal device and interacting with the core network control plane entity. Then, this base station can be called a primary base station, and the rest of the base stations can be called secondary base stations. Understandably, DC is a scene of MC.
  • Fig. 1 is a schematic diagram of a DC network architecture. To facilitate the understanding of this application, the following continues to introduce the architecture of carrier aggregation.
  • Carrier aggregation In order to efficiently use fragmented spectrum, the system supports aggregation between different carrier units.
  • the technology of aggregating two or more carriers to support a larger transmission bandwidth can be called carrier aggregation.
  • the terminal equipment can be configured with multiple carrier units (component carrier, CC, or component carrier, component carrier, carrier, etc.), and each CC can correspond to an independent cell.
  • One CC can be equivalent to one cell.
  • the primary cell corresponds to the primary CC (or called primary carrier), which may be a cell for initial connection establishment for the terminal, or a cell for RRC connection reestablishment, or a designated primary cell during a handover.
  • the secondary cell corresponds to the secondary CC (or secondary carrier), which may be added during RRC reconfiguration and used to provide additional radio resources.
  • the terminal device can have multiple serving cells, which can be called a serving cell set.
  • the primary cell and the secondary cell described above constitute a serving cell set of the terminal device.
  • the serving cell set includes at least one primary cell and at least one secondary cell.
  • a terminal device configured with carrier aggregation can perform data transmission with one PCell and multiple SCells.
  • FIG. 2 is a schematic diagram of a system 100 applicable to the measurement method according to the embodiment of the present application.
  • the communication system 100 may include at least one terminal device, such as the terminal device 101 as shown in the figure; the communication system 100 may also include at least three network devices, such as the base stations 102 and 103 as shown in the figure. , 104.
  • the terminal device 101 can have a communication connection (ie DC) with the base stations 102 and 103 at the same time and can send and receive data.
  • the terminal device 101 can communicate with the base station 102 through multiple serving cells.
  • the terminal device 101 may also communicate with the base station 103 through multiple serving cells.
  • the base station 102 may serve as the main base station of the terminal device 101, and multiple serving cells of the base station 102 form an MCG.
  • the base station 103 may be used as a secondary base station of the terminal device 101, and multiple serving cells of the base station 103 form an SCG.
  • the terminal device 101 moves to the base station 103 and gradually moves away from the base station 102, the terminal device 101 faces the problem of reconfiguring the serving cell (MCG and/or SCG) and the serving base station (primary base station and/or secondary base station).
  • the terminal device 101 may disconnect from the base station 102 and establish a communication connection with the base station 104.
  • the base station 103 can be configured as the new primary base station of the terminal device 101, and multiple serving cells under the base station 103 can be configured as new MCGs.
  • the base station 104 can also be configured as a new secondary base station, and the base station The multiple serving cells below 104 are configured as new SCGs.
  • the terminal device 101 resides in the serving cell of the base station 102 and is in a non-connected state (such as idle state, deactivated state RRC_INACTIVE, enhanced idle state, etc.) .
  • a non-connected state such as idle state, deactivated state RRC_INACTIVE, enhanced idle state, etc.
  • the terminal device 102 changes to the connected state in the base station 102, or, as another possibility, the terminal device 101 moves into the base station 103 and changes to the connected state in the base station 103.
  • the base station 102 and/or the base station 103 can send the measurement configuration to the terminal device 101, and the terminal device 101 can be configured with carrier aggregation configuration or dual connectivity according to the measurement result reported by the terminal device 101 Configuration.
  • This application provides a measurement method that can perform reasonable measurement configuration, and the terminal device can efficiently perform measurement and quickly report the measurement report, so that when the terminal device is converted from the non-connected state to the connected state, or the terminal device is switched to a new one After serving the base station, the terminal equipment can be configured with carrier aggregation configuration or dual connectivity configuration in time.
  • FIG. 3 is a schematic flowchart of a measurement method 200 according to the present application.
  • the measurement method 200 of the present application will be described in detail below in conjunction with FIG. 3.
  • the terminal device and/or the network device can perform some or all of the steps in the embodiment of this application. These steps or operations are only examples, and the embodiments of this application can also perform other operations or various Deformation of operation. In addition, each step may be executed in a different order presented in the embodiment of the present application, and it may not be necessary to perform all the operations in the embodiment of the present application.
  • the base station #A In step 210, the base station #A generates measurement configuration information, which is used to indicate at least one frequency domain resource group, and the frequency domain resource group includes at least one frequency domain resource.
  • the frequency domain resource group may include frequency domain resources used for carrier aggregation, or the frequency domain resource group may include frequency domain resources used for multiple connections, or the frequency domain resource group may include frequency domain resources used for carrier aggregation and Frequency domain resources for multiple connections.
  • the frequency domain resource may be at least one of a frequency point and a frequency band.
  • the frequency domain resource group may be a combination of frequency points composed of at least one frequency point, or the frequency domain resource group may be a combination of frequency points composed of at least one frequency band, or the frequency domain resource group may be composed of at least one frequency point and at least one frequency band The frequency band combination.
  • step 220 the base station #A sends the measurement configuration information to the terminal device.
  • the base station #A may generate the measurement configuration information, and send the measurement configuration information to the terminal device.
  • base station #A may be a serving base station of the terminal device.
  • the base station #A may be the only serving base station of the terminal device #A, or may be one of multiple serving base stations.
  • base station #A may be the primary serving base station of the terminal device, or the secondary base station of the terminal device.
  • base station #A may be the primary base station of the terminal device, or in other words, base station #A may be the base station where the primary cell is located.
  • the base station #A may also be the secondary base station of the terminal device, or in other words, the base station #A may be the base station where the primary and secondary cells are located.
  • the base station #A may generate the measurement configuration information according to base station configuration information acquired from other base stations (for example, base station #B). Base station #A may also send base station configuration information of base station #A to other base stations.
  • the base station configuration information may indicate the combination of frequency domain resources supported by the base station for carrier aggregation, or include the combination of frequency domain resources supported by the base station for multiple connections, or include the frequency domain supported by the base station for carrier aggregation and multiple connections Resource combination.
  • the base station configuration information may also be used to indicate the frequency domain resource combination capability information for carrier aggregation supported by the base station, and/or the frequency domain resource combination capability information for multiple connections supported by the base station, the frequency domain resource combination capability
  • the information may be frequency point combination capability information or frequency band combination capability information.
  • base station #B may be a neighboring base station of base station #A or another serving base station of the terminal device. Or, base station #B may be another serving base station of the terminal device.
  • Base station #A and other base stations can establish a request message (X2/Xn set request) through the X2/Xn interface, set up a response message on the X2/Xn interface, and update the wireless access network node configuration (ng-ran node configuration) update or eNB configuration update) information, radio access network configuration confirmation (ng-ran node configuration acknowledge or eNB configuration acknowledge) information, secondary node addition request (s-node addition request or seNB addition request) message or secondary node addition request confirmation (s-node addition request acknowledge or seNB addition request acknowledge) messages and other corresponding base station configuration information are exchanged.
  • ng-ran node configuration ng-ran node configuration
  • eNB configuration update radio access network configuration confirmation
  • secondary node addition request s-node addition request or seNB addition request
  • secondary node addition request confirmation s-node addition request acknowledge or seNB addition request acknowledge
  • the Xn interface setup request message carries base station configuration information of base station #A; other base stations can send an Xn interface setup response message, which carries the Xn interface setup response message Base station configuration information of this base station.
  • the base station #A may determine at least one frequency domain resource group in the measurement configuration information according to base station configuration information of itself and/or other base stations.
  • the base station may determine the at least one frequency domain resource group based on the frequency point combination capability or frequency band combination capability information of carrier aggregation supported by itself and/or other base stations.
  • base station #B may send its own base station configuration information to base station #A, and base station #A may determine at least one frequency domain resource group according to its own and base station configuration information of base station #B.
  • the base station configuration information including a frequency domain resource combination is a frequency point combination as an example for description. It is understandable that the embodiments of the present application may also be applicable to scenarios where frequency domain resources are combined into frequency band combinations, and may also be applicable to scenarios where base station configuration information includes frequency domain resource combination capabilities, which is not limited in the embodiments of the present application.
  • the frequency combination of carrier aggregation supported by base station #A includes ⁇ F1, F2 ⁇ , ⁇ F1, F3 ⁇
  • the base station configuration information of base station #B includes the frequency combination supported by base station #B for carrier aggregation including ⁇ F2, F3 ⁇ , ⁇ F2,F4 ⁇
  • base station #A supports frequency combinations for multiple connections including ⁇ F1, F5 ⁇ , ⁇ F1, F6 ⁇
  • base station configuration information includes base station #B’s support for multiple connections
  • the connected frequency point combinations include ⁇ F2, F5 ⁇ , ⁇ F2, F7 ⁇ .
  • the base station #A may generate at least one frequency domain resource group in at least one of the following ways:
  • the at least one frequency domain resource group includes a first frequency domain resource group, and the first frequency domain resource group includes frequency domain resources for performing carrier aggregation or multiple connections with the first frequency domain resource.
  • the first frequency domain resource group may correspond to the first frequency domain resource.
  • the first frequency domain resource group includes the first frequency domain resource.
  • the first frequency domain resource group may correspond to the first frequency domain resource, where the first frequency domain resource may be included in the first frequency domain resource group.
  • Any frequency domain resource in the first frequency domain resource group may be referred to as a first frequency domain resource, or a frequency domain resource ranked first in the first frequency domain resource group may be referred to as a first frequency domain resource.
  • Other frequency domain resources in the first frequency domain resource group may perform carrier aggregation or multiple connections with the first frequency domain resource.
  • the frequency domain resource group #1-1 As an example, taking the frequency domain resource group #1-1 as an example, for the above frequency domain resource group #1-1, it corresponds to the frequency point F1, and the frequency domain resource group #1-1 includes the frequency domain resource group #1-1 for communicating with the frequency point F1.
  • Frequency points F2 and F3 for carrier aggregation That is, the aforementioned frequency domain resource group #1-1 is the first frequency domain resource group in at least one frequency domain resource group, and the frequency point F1 is the first frequency domain resource corresponding to the first frequency domain resource group, F2, F3 is a frequency domain resource used for carrier aggregation with the first frequency domain resource.
  • the frequency domain resource group #1-2 may correspond to the frequency point F1
  • the frequency domain resource group #1-1 includes the frequency domain resource group #1-1 for communicating with the frequency point F1.
  • Frequency points F2 and F3 for carrier aggregation That is, the aforementioned frequency domain resource group #1-1 is the first frequency domain resource group in at least one frequency domain resource group, and the frequency point F1 is the first frequency domain resource corresponding to the first frequency domain resource group, F2, F3 is a frequency domain resource used for carrier aggregation with the first frequency domain resource.
  • the frequency domain resource group #1-2 may also correspond to the frequency point F2, and the frequency domain resource group #1-2 includes frequency points F3 and F4 for performing carrier aggregation with the frequency point F2.
  • the frequency domain resources may include frequency domain resources used by the serving cell of the terminal device.
  • the frequency domain resources may include frequency domain resources used by the primary cell of the terminal equipment, or the frequency domain resources may include frequency domain resources used by the secondary cell of the terminal equipment, or the frequency domain resources may include the terminal equipment The frequency domain resources used by the primary and secondary cells.
  • the frequency domain resources may include the frequency domain resources used by the MCG or the serving cell in the SCG of the terminal device.
  • the frequency domain resource may include the frequency domain resource used by the serving cell in the serving cell set of the terminal device.
  • the frequency domain resources may not include frequency domain resources used by the serving cell of the terminal device.
  • step 230 the terminal device receives the measurement configuration information, and performs measurement according to the measurement configuration information.
  • the terminal device measures the frequency domain resources in the frequency domain resource group according to at least one frequency domain resource group indicated by the measurement configuration information.
  • the terminal device may measure each frequency domain resource in each frequency domain resource group.
  • the terminal device may measure each frequency domain resource in each frequency domain resource group, and obtain measurement results of one or more cells under the frequency domain resource.
  • the measurement result may be the reference signal receiving power (RSRP) of the cell, the signal-to-noise ratio (Signal Noise Ratio, SNR), the received signal strength indication (RSSI) or the reference signal receiving Any one or more of parameters such as reference signal receive quality (RSRQ).
  • RSRP reference signal receiving power
  • SNR Signal-to-noise ratio
  • RSSI received signal strength indication
  • RSSI received signal strength indication
  • RSSQ reference signal receive quality
  • the terminal device may not perform measurement on all frequency domain resources in each frequency domain resource group.
  • the first frequency domain resource corresponding to the first frequency domain resource group may be measured first, and according to the measurement result of the first frequency domain resource, it is determined whether to Other frequency domain resources are measured.
  • the first frequency domain resource corresponding to the first frequency domain resource group may be measured first, and whether to perform carrier aggregation or multi-connection frequency with the first frequency domain resource is determined according to the measurement result of the first frequency domain resource. Domain resources are measured.
  • other frequency domain resources in the first frequency domain resource group may be measured only when the measurement result of the cell corresponding to the first frequency domain resource satisfies a certain condition. For example, when a terminal device measures a first frequency domain resource, if the measurement result of at least one cell corresponding to the first frequency domain resource measured by the terminal device is greater than or equal to the preset first threshold Other frequency domain resources in the first frequency domain resource group are measured.
  • the terminal device when the terminal device measures the first frequency domain resource, if the terminal device cannot search or measure the cell corresponding to the first frequency domain resource, or if the first frequency domain measured by the terminal device If the quality of all cells corresponding to the resource is lower than the second threshold, the terminal device may not measure other frequency domain resources in the first frequency domain resource group.
  • the first threshold and the second threshold may be the same or different, or the second threshold and the first threshold may be the same threshold.
  • the first threshold and the second threshold may be arbitrarily determined by the terminal device, may also be specified by a communication system or communication protocol, or may be configured by a network device, which is not particularly limited in this application.
  • the first threshold may be configured by the serving base station of the terminal device, for example, the measurement configuration information may include the first threshold.
  • the terminal device may determine at least one target frequency domain resource from a second frequency domain resource group, where the target frequency domain resource is a frequency domain resource that the terminal device can support, and the second frequency domain resource group is in the at least one frequency domain resource group Any one of the frequency domain resource group; the terminal device measures the target frequency domain resource.
  • the at least one target frequency domain resource may be determined according to the support capability information of the terminal device.
  • the terminal device may determine whether to measure the frequency domain resource group or determine whether to measure the frequency domain resource in the frequency domain resource group according to its own support capability information.
  • the support capability information of the terminal device may indicate the frequency domain resource combination (for example, frequency point combination or frequency band combination) used for carrier aggregation and/or multiple connections that the terminal device can support.
  • the terminal device can select the corresponding frequency domain resource group or select the corresponding frequency domain resource in the frequency domain resource group according to the frequency point combination capability information or frequency band combination capability information for carrier aggregation and/or multiple connections supported by the terminal device. measuring.
  • the terminal device For example, taking the frequency domain resource group #1-1 as an example, if the terminal device supports the frequency points F1 and F2 in the group, for example, the terminal supports the configuration of F1 and F2 for the carrier aggregation configuration of the terminal device, but does not support the frequency points in the group. Frequency point F3, then frequency point F3 may not be measured.
  • frequency domain resource group #2-1 if the terminal device supports the frequency points F1 and F5 in the group, for example, the terminal supports the configuration of F1 and F5 for the multi-connection configuration of the terminal equipment, but does not support the frequency point F6 in the group, then It is not necessary to measure the frequency point F6. Further, if the measurement result of any cell corresponding to F1 measured by the terminal device does not meet the first threshold, the terminal device may also not measure F2 and F5.
  • the terminal device may perform measurements on the multiple frequency domain resource groups in a certain order.
  • the terminal device may determine the priority of each frequency domain resource group, and measure the frequency domain resources in the frequency domain resource group in the order of the priority.
  • the priority may be determined by the support capability information of the terminal device.
  • the terminal device may determine the priority of each frequency domain resource group according to the support capability information of the terminal device, and measure the frequency domain resources in the frequency domain resource group in the order of the priority.
  • the priority may be configured by the base station.
  • the base station can be determined according to the base station configuration information of the base station.
  • the base station may determine the priority of each frequency domain resource group according to the frequency domain resource combination supported by the base station for carrier aggregation and/or multiple connections, and send priority indication information to instruct the terminal device to configure the measurement in the order of the priority
  • the frequency domain resources in the frequency domain resource group in the information are measured.
  • base station #A may send priority indication information to the terminal device.
  • the priority indication information is used to indicate the frequency domain resource group 1-1.
  • the priority is high, and the priority of frequency domain resource group 1-2 is low; and/or, taking frequency domain resource group #2-1 and frequency domain resource group #2-2 as examples, the priority indication information is used to indicate frequency The priority of domain resource group #2-1 is high, and the priority of frequency domain resource group #2-2 is low.
  • the priority indication information may be carried in the measurement configuration information. After receiving the measurement configuration information, the terminal device can determine the priority of each frequency domain resource group, and measure the frequency domain resources in the frequency domain resource group in the order of the priority.
  • the measurement configuration information may also include measurement report configuration, such as including at least one of the following information: the maximum number of frequencies reported, the maximum number of cells reported, the maximum number of beams reported by each cell, and whether to report the cell global identity ( cell global identifier, CGI), etc.
  • measurement report configuration such as including at least one of the following information: the maximum number of frequencies reported, the maximum number of cells reported, the maximum number of beams reported by each cell, and whether to report the cell global identity ( cell global identifier, CGI), etc.
  • step 240 the terminal device sends a measurement report to base station #A.
  • the terminal device sends a measurement report to other base stations (such as base station #B).
  • base stations such as base station #B
  • the terminal equipment reselects from the cell under base station #A to the cell under base station #B.
  • the terminal equipment can send a measurement report to base station #B.
  • the measurement report includes the measurement result of the frequency domain resource measurement.
  • the measurement result may be at the cell level, or in other words, the measurement result is a measurement result for different cells under each frequency domain resource.
  • the measurement result may also include the measurement result of at least one beam under the cell.
  • the terminal device may report the measurement results of different frequency domain resource groups in order of priority according to the priority of the frequency domain resource group.
  • base station #A receives the measurement report, and makes a decision based on the measurement report.
  • the base station #B receives the measurement report, and makes a decision based on the measurement report.
  • base station #A (or base station #B) may determine whether to configure carrier aggregation or multi-connection for the terminal device according to the measurement result in the measurement report, or determine whether to configure a new serving cell and/or serving base station for the terminal device.
  • the method further includes:
  • step 260 the base station #A sends the measurement result of the terminal device to the base station #B.
  • Base station #A can also forward part or all of the measurement results to other serving base stations of the terminal device (for example, base station #B), and base station #B determines whether to configure carrier aggregation or multiple connections for the terminal device, which is not limited in this application .
  • base station #A determines to perform handover according to the measurement result
  • base station #A can send the measurement result or part of the measurement result (for example, base station #A selects the appropriate measurement result according to the base station configuration information of base station #B) to the target cell The corresponding target base station (ie base station #B).
  • the base station #B may determine whether to configure carrier aggregation or multiple connections for the terminal device based on the foregoing measurement results.
  • the base station can reasonably configure the measurement target for the terminal device, which can improve the measurement efficiency of the terminal device, so that the terminal device can report the measurement report in time, when the terminal device changes from the non-connected state to the connected state, or When the terminal device switches the serving base station, it can configure carrier aggregation or multiple connections in time to improve the data transmission experience of the terminal device.
  • FIG. 4 is a schematic flowchart of a measurement method 300 according to the present application.
  • the measurement method 300 of the present application will be described in detail below in conjunction with FIG. 4.
  • the terminal device determines a plurality of measurement gaps GAPs, wherein the lengths of any two measurement GAPs in the plurality of measurement GAPs are different.
  • Measuring the length of the GAP can be understood as the length of time the terminal uses to perform the measurement.
  • the length of the GAP can be 3ms or 6ms every 40ms, that is, 3ms or 6ms are used to perform the measurement every 40ms. At this time, it can be said that the lengths of the two measurement GAPs are different.
  • multiple measurement gap GAPs can be determined based on previous measurement experience, and the multiple measurement GAPs can be determined based on the number of frequency points (or carrier frequencies) to be measured, and different numbers of frequency points correspond to different measurements. GAP, the longer the measured GAP, the more frequency points may correspond to. According to the correspondence between the measured GAP and the number of frequency points in the previous measurement, multiple measured GAPs with different lengths can be determined.
  • the multiple measurement GAPs may be determined by a terminal device, may also be specified by a communication system or a communication protocol, or may also be configured by a network device, which is not particularly limited in this application.
  • the number of frequency points to be measured may also be equivalent to the number of frequency bands or the number of cells to be measured.
  • step 320 the terminal device determines a second measurement GAP from the multiple measurement GAPs according to the number of frequency points of the second frequency point group to be measured.
  • the embodiments of this application take frequency domain resources as frequency points as an example. It is understandable that the embodiments of this application do not limit this. For example, the embodiments of this application may also be applicable to scenarios where frequency domain resources are frequency bands.
  • step 330 the terminal device measures the frequency points in the second frequency point group according to the second measurement GAP.
  • the second measurement GAP may be determined from the multiple measurement GAPs according to the previous measurement experience and the number of frequency point groups to be measured. Among them, the basic principle of determination is to ensure that all frequency points of the second frequency point group can be exactly measured within the GAP length.
  • the terminal device may measure each frequency point in the second frequency point group according to the second measurement GAP.
  • the mechanism for the terminal device to determine the number of frequency points to be measured can refer to the related mechanism in step 230, which will not be repeated here.
  • the method may further include:
  • the terminal device determines the second measurement GAP from the plurality of measurement GAPs according to the relationship between the number of the second frequency point group and the number of the first frequency point group and the first measurement GAP, wherein the first measurement GAP is The frequency point group is a frequency point group measured before the second frequency point group, and the first measurement GAP is a measurement GAP used when the terminal device measures the first frequency point group.
  • the first measurement GAP is the measurement GAP used before the terminal device determines the second measurement GAP.
  • the number of frequency points measured by the terminal device each time may be different (for example, increase or decrease), or may be the same.
  • the terminal equipment can determine the GAP length used in this measurement based on the previous measurement and according to the change in the number of frequency points.
  • the terminal equipment measures the frequency points in the first frequency point group according to the first measurement GAP. After that, the terminal equipment needs to measure the frequency points in the second frequency point group, which can be based on the relationship between the number of frequency points measured twice And the first measurement GAP to determine the second measurement GAP.
  • the second measured GAP can be determined from a plurality of measured GAPs, and the The length of the second measurement GAP is greater than that of the first measurement GAP.
  • the length of the second measurement GAP may be equal to the first measurement GAP. In other words, the terminal device continues to use the first measurement GAP.
  • the second measured GAP can be determined from multiple measured GAPs, and, The length of the second measurement GAP is smaller than the first measurement GAP.
  • the method 300 further includes:
  • step 340 the terminal device sends notification information to the base station, and the notification information is used to notify the terminal device that the currently used measurement GAP is the second measurement GAP.
  • the terminal device can send a special random access preamble to the network device.
  • the random access preamble corresponds to the second measurement GAP, and the correspondence between the random access preamble and the second measurement GAP may be received by the terminal device from the network device.
  • the network device receives the random access preamble, and can determine that the measured GAP of the terminal device is updated to the second measured GAP.
  • the base station can be notified in time, and the base station can adjust the data scheduling of the terminal equipment in time according to the notification information, so as to prevent the terminal equipment from being unable to receive data when the short measurement GAP is updated to the long measurement GAP.
  • the method 300 further includes:
  • step 350 the terminal device determines a third measurement GAP from a plurality of measurement GAPs according to the completion status of the second measurement GAP on the frequency points in the second frequency point group;
  • the terminal device measures the frequency points in the second frequency point group according to the third measurement GAP.
  • the terminal device determines the second measurement GAP according to the number of frequency points in the second frequency point group, and performs measurement according to the second measurement GAP, if the configuration of the second measurement GAP is unreasonable (for example, there is no GAP in the GAP). After all the frequency points in the group have been measured), the next measurement should be fine-tuned according to the completion of the measurement, or in other words, a new and reasonable measurement GAP should be selected again.
  • the terminal device can perform measurement in multiple GAPs according to the completion status (for example, the percentage of completion). Select a longer GAP in the.
  • the terminal device performs measurement according to the second measurement GAP, and the measurement of all frequency points in the second frequency point group is completed earlier in the GAP.
  • the measurement duration corresponding to the GAP is 6ms, and the terminal device is at 3ms.
  • the embodiment of this application is configured with multiple sets of measurement GAPs, which can flexibly select measurement GAPs according to the number of measurement targets (frequency points). It is convenient to configure measurement GAPs reasonably to improve the measurement effect, and on the other hand, it can also satisfy the terminal equipment as much as possible. The demand for data scheduling improves the user experience.
  • Fig. 5 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1000 may include a communication unit 1100 and a processing unit 1200.
  • the communication device 1000 can implement the steps or processes performed by the terminal device corresponding to the above method embodiment, for example, it can be a terminal device, or a chip or circuit configured in the terminal device.
  • the communication apparatus 1000 may implement the steps or processes executed by the terminal device in the methods 200 and 300 according to the embodiments of the present application, and the communication apparatus 1000 may include methods for executing the method 200 in FIG. 3 or the method in FIG. 4
  • the method 300 is a unit of the method executed by the terminal device.
  • each unit in the communication device 1000 and other operations and/or functions described above are used to implement the corresponding processes of the method 200 in FIG. 3 and the method 300 in FIG. 4, respectively.
  • the communication unit 1100 can be used to execute steps 220 and 240 in the method 200, and the processing unit 1200 can be used to execute step 230 in the method 200.
  • the communication unit 1100 in the communication device 1000 may correspond to the transceiver 2020 in the terminal device 2000 shown in FIG. 6, and the processing unit 1200 in the communication device 1000 may It corresponds to the processor 2010 in the terminal device 2000 shown in FIG. 4.
  • the communication unit 1100 in the communication device 1000 may be an input/output interface.
  • the communication device 1000 can implement the steps or processes executed by the network device corresponding to the above method embodiment, for example, it can be a network device, or a chip or circuit configured in the network device.
  • the communication device 1000 may implement a chip or circuit corresponding to base station #A in the above method embodiment, or configured in base station #A.
  • the communication device 1000 may implement the steps or processes performed by the base station #A in the method 200 according to the embodiment of the present application, and the communication device 1000 may include the base station #A for executing the method 200 in FIG. 3 The unit of the method of execution.
  • each unit in the communication device 1000 and other operations and/or functions described above are used to implement the corresponding process of the method 200 in FIG. 3.
  • the communication unit 1100 can be used to execute steps 220 and 240 in the method 200
  • the processing unit 1200 can be used to execute steps 210 and 250 in the method 200.
  • the communication unit in the communication device 1000 may correspond to the transceiver 3200 in the network device 3000 shown in FIG. 7, and the processing unit 1200 in the communication device 1000 may It corresponds to the processor 3100 in the network device 3000 shown in FIG. 7.
  • the communication unit 1100 in the communication device 1000 may be an input/output interface.
  • FIG. 6 is a schematic structural diagram of a terminal device 2000 provided by an embodiment of the present application.
  • the terminal device 2000 can be applied to the systems shown in FIGS. 1 to 2 to perform the functions of the terminal device in the foregoing method embodiment, or to implement the steps or processes performed by the terminal device in the foregoing method embodiment.
  • the terminal device 2000 includes a processor 2010 and a transceiver 2020.
  • the terminal device 2000 further includes a memory 2030.
  • the processor 2010, the transceiver 2002, and the memory 2030 can communicate with each other through internal connection paths to transfer control and/or data signals.
  • the memory 2030 is used for storing computer programs, and the processor 2010 is used for downloading from the memory 2030. Call and run the computer program to control the transceiver 2020 to send and receive signals.
  • the terminal device 2000 may further include an antenna 2040 for transmitting the uplink data or uplink control signaling output by the transceiver 2020 through a wireless signal.
  • the aforementioned processor 2010 and the memory 2030 can be combined into a processing device, and the processor 2010 is configured to execute the program code stored in the memory 2030 to implement the aforementioned functions.
  • the memory 2030 may also be integrated in the processor 2010 or independent of the processor 2010.
  • the processor 2010 may correspond to the processing unit in FIG. 5.
  • the above transceiver 2020 may correspond to the communication unit in FIG. 5, and may also be called a transceiver unit.
  • the transceiver 2020 may include a receiver (or called receiver, receiving circuit) and a transmitter (or called transmitter, transmitting circuit). Among them, the receiver is used to receive signals, and the transmitter is used to transmit signals.
  • the terminal device 2000 shown in FIG. 6 can implement various processes involving the terminal device in the method embodiment shown in FIG. 3.
  • the operations and/or functions of each module in the terminal device 2000 are respectively for implementing the corresponding processes in the foregoing method embodiments.
  • the above-mentioned processor 2010 can be used to execute the actions described in the previous method embodiments implemented by the terminal device, and the transceiver 2020 can be used to execute the terminal device described in the previous method embodiments to send or receive from the network device action.
  • the transceiver 2020 can be used to execute the terminal device described in the previous method embodiments to send or receive from the network device action.
  • the aforementioned terminal device 2000 may further include a power supply 2050 for providing power to various devices or circuits in the terminal device.
  • the terminal device 2000 may also include one or more of an input unit 2060, a display unit 2070, an audio circuit 2080, a camera 2090, and a sensor 2100.
  • the audio circuit A speaker 2082, a microphone 2084, etc. may also be included.
  • FIG. 7 is a schematic structural diagram of a network device provided by an embodiment of the present application, for example, it may be a schematic structural diagram of a base station.
  • the base station 3000 may be applied to the systems shown in FIGS. 1 to 2 to perform the functions of the network device in the foregoing method embodiment, or implement the steps or processes performed by the network device in the foregoing method embodiment.
  • the base station 3000 may include one or more radio frequency units, such as a remote radio unit (RRU) 3100 and one or more baseband units (BBU) (also known as digital units). ,Digital unit,DU)3200.
  • the RRU 3100 may be called a transceiver unit, which corresponds to the communication unit 1100 in FIG. 5.
  • the transceiver unit 3100 may also be called a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 3101 and a radio frequency unit 3102.
  • the transceiver unit 3100 may include a receiving unit and a transmitting unit, the receiving unit may correspond to a receiver (or receiver, receiving circuit), and the transmitting unit may correspond to a transmitter (or transmitter or transmitting circuit).
  • the RRU 3100 part is mainly used for sending and receiving of radio frequency signals and conversion of radio frequency signals and baseband signals, for example, for sending instruction information to terminal equipment.
  • the 3200 part of the BBU is mainly used for baseband processing and control of the base station.
  • the RRU 3100 and the BBU 3200 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 3200 is the control center of the base station, and may also be called a processing unit, which may correspond to the processing unit 1200 in FIG. 5, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU processing unit
  • the BBU may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment, for example, to generate the foregoing indication information, or to configure the serving cell.
  • the BBU 3200 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network with a single access standard (such as an LTE network), or support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 3200 also includes a memory 3201 and a processor 3202.
  • the memory 3201 is used to store necessary instructions and data.
  • the processor 3202 is configured to control the base station to perform necessary actions, for example, to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 3201 and the processor 3202 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the base station 3000 shown in FIG. 7 can implement various processes involving network devices in the method embodiment in FIG. 3.
  • the operations and/or functions of the various modules in the base station 3000 are used to implement the corresponding processes in the foregoing method embodiments.
  • the above-mentioned BBU 3200 can be used to perform the actions described in the previous method embodiments implemented by the network device, and the RRU 3100 can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • the RRU 3100 can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • the embodiment of the present application also provides a processing device, including a processor and an interface.
  • the processor may be used to execute the method in the above method embodiment.
  • the processing device may be a chip.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system on chip (SoC), or It is a central processor unit (CPU), it can also be a network processor (NP), it can also be a digital signal processing circuit (digital signal processor, DSP), or it can be a microcontroller (microcontroller unit). , MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processing circuit
  • microcontroller unit microcontroller unit
  • MCU programmable logic device
  • PLD programmable logic device
  • the steps of the above method can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • serial link DRAM SLDRAM
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code runs on a computer, the computer executes the computer program shown in FIG. 3 or 4 The method of any one of the embodiments.
  • the present application also provides a computer-readable medium storing program code, which when the program code runs on a computer, causes the computer to execute the program shown in FIG. 3 or 4 The method of any one of the embodiments.
  • the present application also provides a system, which includes the aforementioned one or more terminal devices and one or more network devices.
  • the present application also provides a system, which includes the aforementioned network equipment, such as base station #A.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disc, SSD)) etc.
  • the network equipment in the above-mentioned device embodiments completely corresponds to the network equipment or terminal equipment in the terminal equipment and method embodiments, and the corresponding modules or units execute the corresponding steps.
  • the communication unit transmits the receiving or In the sending step, other steps except sending and receiving can be executed by the processing unit (processor).
  • the processing unit processor
  • component used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, a processor, an object, an executable file, an execution thread, a program, and/or a computer running on a processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or threads of execution, and components may be located on one computer and/or distributed between two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • the component may be based on, for example, a signal having one or more data packets (such as data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals) Communicate through local and/or remote processes.
  • a signal having one or more data packets (such as data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals) Communicate through local and/or remote processes.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种测量方法、终端设备及基站。所述方法包括:终端设备接收测量配置信息,所述测量配置信息指示至少一个频域资源组,所述频域资源组包括用于载波聚合的频域资源,或者,所述频域资源组包括用于多连接的频域资源;所述终端设备根据所述频域资源组,对所述频域资源进行测量。本申请实施例能够合理的进行测量配置,终端设备能够高效的进行测量并且快速上报测量报告,使得终端设备从非连接态转换为连接态时,或者使得终端设备在切换到新的服务基站后,能够及时的给终端设备配置载波聚合配置或双连接配置。

Description

一种测量方法、终端设备及网络设备
本申请要求于2019年02月14日提交中国专利局、申请号为201910115160.3、申请名称为“一种测量方法、终端设备及网络设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及网络通讯领域,尤其涉及一种测量方法、终端设备及网络设备。
背景技术
为了提升系统的频谱效率和用户吞吐率,引入了载波聚合(carrier aggregation,CA)技术和双连接(dual connectivity,DC)技术。CA技术支持终端设备同时使用同一基站下多个小区(Cell)的不同载波进行上下行通信,从而支持高速数据传输。而DC技术则支持终端设备同时使用两个不同基站的多个小区的载波进行上下行通信。
在DC和CA技术中,当终端设备需要切换服务基站,或者当终端设备从非连接态转换成连接态时,现有的测量配置不够合理,测量的效率较低,不能及时的给终端设备配置载波聚合配置或双连接配置,由此影响了终端设备的通信质量。
发明内容
本申请提供一种测量方法、终端设备及网络设备。
第一方面,提供了一种测量方法,该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或电路执行,本申请对此不作限定。
具体地,该方法包括:终端设备接收测量配置信息,该测量配置信息指示至少一个频域资源组,该至少一个频域资源组包括用于载波聚合的频域资源,或者,该至少一个频域资源组包括用于多连接的频域资源;该终端设备根据该至少一个频域资源组,对该频域资源进行测量。
本申请实施例能够合理的进行测量配置,例如,可以仅对能够用于载波聚合或者多连接的频域资源进行测量,从而能够减少终端设备的一些无效测量(例如,针对不支持载波聚合或者多连接的频域资源的测量),从而能够使终端设备的测量更加高效,并且快速上报测量报告,使得终端设备在切换到新的服务基站后,或者从空闲态切换为连接态以后,能够及时的给终端设备配置载波聚合配置或双连接配置,保障了终端设备数据传输的质量。
结合第一方面,在第一方面的某些实现方式中,该至少一个频域资源组包括第一频域资源组,该第一频域资源组包括用于与第一频域资源进行载波聚合的频域资源,或者,该第一频域资源组包括用于与第一频域资源进行多连接的频域资源。
结合第一方面,在第一方面的某些实现方式中,该终端设备根据该至少一个频域资源 组,对该频域资源进行测量,包括:该终端设备对该第一频域资源进行测量,并且根据测量结果确定是否对该第一频域资源组内其他的频域资源进行测量。
本申请实施例能够合理的进行测量配置,例如,还可以按照基站支持的频域资源的组合配置测量信息,使得终端设备能够根据已经获得的测量结果确定是否对组内的其他频域资源进行测量,当测量结果达不到要求时,可以不对组内的其他频域资源进行测量,从而能够提高终端设备的测量效率。
结合第一方面,在第一方面的某些实现方式中,该第一频域资源被多个小区使用,该终端设备对该第一频域资源进行测量,并且根据测量结果确定是否对其他的频域资源进行测量,包括:该终端设备对该多个小区使用的该第一频域资源分别进行测量;
在该多个小区中的至少一个小区的测量结果大于或等于预设的第一阈值的情况下,对该第一频域资源组内的其他频域资源进行测量。
结合第一方面,在第一方面的某些实现方式中,该终端设备根据该至少一个频域资源组,对所述频域资源进行测量,包括:该终端设备从第二频域资源组中确定至少一个目标频域资源,该目标频域资源是该终端设备能够支持的频域资源,该第二频域资源组是该至少一个频域资源组中的任意一个频域资源组;该终端设备对所述目标频域资源进行测量。
结合第一方面,在第一方面的某些实现方式中,该终端设备从第二频域资源组中确定至少一个目标频域资源,包括,该终端设备根据支持能力信息从第二频域资源组中确定至少一个目标频域资源,其中,该支持能力信息指示该终端设备能够支持的用于载波聚合的频域资源;或者该支持能力信息指示该终端设备能够支持的用于多连接的频域资源。
本申请实施例能够根据终端设备的支持能力信息对配置的频域资源进行筛选,例如,可以将不被终端设备支持的用于载波聚合的频域资源或者用于多连接的频域资源筛除掉,而只对终端设备支持的频域资源进行测量,提高了测量的效率。
结合第一方面,在第一方面的某些实现方式中,该频域资源包括该终端设备的服务小区所使用的频域资源;或者该频域资源不包括该终端设备的服务小区所使用的频域资源。
结合第一方面,在第一方面的某些实现方式中,当所述频域资源组为多个时,该终端设备根据所述至少一个频域资源组,对所述频域资源进行测量,包括:该终端设备确定每个频域资源组的优先级;该终端设备按照该优先级对该频域资源组中的频域资源进行测量。
第二方面,提供了一种测量方法,该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片或电路执行,本申请对此不作限定。
例如,该网络设备可以是基站,如eNB、gNB、CU或DU等,不做限定。
具体地,该方法包括:生成测量配置信息,该测量配置信息指示至少一个频域资源组,该至少一个频域资源组包括用于载波聚合的频域资源,或者,该至少一个频域资源组包括用于多连接的频域资源;向终端设备发送该测量配置信息。
结合第二方面,在第二方面的某些实现方式中,该至少一个频域资源组包括第一频域资源组,该第一频域资源组包括用于与第一频域资源进行载波聚合的频域资源,或者,该第一频域资源组包括用于与第一频域资源进行多连接的频域资源。
结合第二方面,在第二方面的某些实现方式中,该频域资源包括该终端设备的服务小区所使用的频域资源;或者该频域资源不包括所述终端设备的服务小区所使用的频域资 源。
第三方面,提供了一种测量方法,该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或电路执行,本申请对此不作限定。
具体地,该方法包括:终端设备确定多个测量间隙GAP,其中,该多个测量GAP中的任意两个测量GAP的长度不相同;该终端设备根据待测量的第二频点组的个数从该多个测量GAP中确定第二测量GAP;该终端设备根据该第二测量GAP对该第二频点组中的频点进行测量。
本申请实施例配置了多套测量GAP,能够根据测量目标(频点)的数量灵活的选择测量GAP,一方便能够合理的配置测量GAP从而提高测量的效果,另一方面也能够尽量满足终端设备的数据调度的需求,提高了用户的使用体验。
结合第三方面,在第三方面的某些实现方式中,该终端设备根据待测量的第二频点组的个数从该多个测量GAP中确定第二测量GAP,包括:该终端设备根据该第二频点组的个数与第一频点组的个数的关系和第一测量GAP,从该多个测量GAP中确定第二测量GAP,其中,该第一频点组是在该第二频点组之前测量的频点组,该第一测量GAP是该终端设备测量该第一频点组时使用的测量GAP。
结合第三方面,在第三方面的某些实现方式中,当该第二测量GAP的长度不等于该第一测量GAP的长度时,该方法还包括:该终端设备向基站发送通知信息,该通知信息用于通知该终端设备当前所使用的测量GAP为该第二测量GAP。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:该终端设备根据该第二测量GAP对该第二频点组中的频点进行测量的完成情况从该多个测量GAP中确定第三测量GAP;该终端设备根据该第三测量GAP对该第二频点组中的频点进行测量。
第四方面,提供了一种终端设备,包括用于执行上述第一、三方面及其各实现方式中的方法的各步骤的单元。
第五方面,提供一种通信装置,包括用于执行上述第二方面及其各实现方式中的方法的各步骤的单元。
第六方面,提供了一种通信装置,包括,处理器,所述处理器用于与存储器耦合,并读取存储器中存储的指令或者程序。可选的,所述通信装置还可以包括所述存储器,该存储器用于存储指令或者程序。该处理器用于从存储器中调用并运行该指令或者程序,使得该通信装置执行第一方面或第三方面及其各种可能实现方式中的通信方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
可选的,该通信设备还包括,发射机(或发射器)和接收机(或接收器)。
第七方面,提供了一种通信装置,包括,处理器,所述处理器用于与存储器耦合,并读取存储器中存储的指令或者程序。可选的,所述通信装置还可以包括所述存储器,该存储器用于存储指令或者程序。该处理器用于从存储器中调用并运行该指令或者程序,使得该通信装置执行第二方面及其各种实现方式中的通信方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设 置。
可选地,该通信装置还包括,发射机(或发射器)和接收机(或接收器)。
第八方面,提供了一种通信系统,包括上述第六方面提供的通信设备和/或第七方面提供的通信设备。
在一个可能的设计中,该通信系统还可以包括本申请实施例提供的方案中与通信设备进行交互的其他设备。
第九方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面至第三方面中任一种可能实现方式中的方法。
第十方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面至第三方面中任一种可能实现方式中的方法。
第十一方面,提供了一种芯片或芯片系统,所述芯片或芯片系统包括处理器,所述处理器用于与存储器耦合,并读取存储器中存储的指令或者程序。可选的,所述芯片或芯片系统还可以包括所述存储器,该存储器用于存储所述指令或程序。该处理器用于从存储器中调用并运行该指令或程序,使得安装有该芯片或芯片系统的通信设备或通信装置执行上述第一方面至第三方面中任一种可能实现方式中的方法。
其中,该芯片系统可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
第十二方面,提供一种通信系统,包括前述任一方面中任一种可能实现方式中的终端设备和前述任一方面中任一种可能实现方式中网络设备。
附图说明
图1示出了双连接的一种网络架构的示意图。
图2是能够适用本申请实施例测量方法的系统的一示意图。
图3是根据本申请的测量方法的一例的示意性流程图。
图4是根据本申请的测量方法的另一例的示意性流程图。
图5是本申请的通信装置的一例的示意性框图。
图6是本申请的终端设备的一例的示意性结构图。
图7是本申请的网络设备的一例的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、第五代(5th generation,5G)系统或新无线(new radio,NR)或者其他演进的通信系统等。
本申请实施例中的终端设备也可以称为:用户设备(user equipment,UE)、移动台 (mobile station,MS)、移动终端(mobile terminal,MT)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。
另外,本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备也可以称为接入网设备或无线接入网设备,可以是传输接收点(transmission reception point,TRP),也可以是全球移动通信(global system for mobile communications,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,可以是WLAN中的接入点(access point,AP),可以是新型无线系统(new radio,NR)系统中的gNB,本 申请实施例并不限定。
在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备、或者控制面CU节点(CU-CP节点)和用户面CU节点(CU-UP节点)以及DU节点的RAN设备。
网络设备通过小区或者小区中的收发点为终端设备提供服务,终端设备通过网络设备分配的传输资源(例如,频域资源,或者说,频谱资源,或者说,视频资源)与小区或者小区中的收发点进行通信,该小区可以是收发点对应的小区,小区可以属于宏基站(例如,宏eNB或宏gNB等),也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
图1示出了双连接的一种网络架构的示意图,如图1所示,终端设备可以同时与两个网络设备存在通信连接并可收发数据,可以称之为双连接。该两个网络设备(例如基站)之中,可以有一个基站主要负责与该终端设备交互无线资源控制消息,并负责和核心网控制平面实体交互,那么,该基站可以称之为主基站(master gNB,MgNB),另一个基站可以称之为辅基站(secondary gNB,SgNB)。其中,主基站为控制面锚点,即终端设备与主节点建立RRC连接,且主基站与核心网之间建立控制面连接。在后续增强技术中,辅基站与终端设备之间也可能进行部分RRC消息的发送(例如,测量配置信息、测量报告等)。在DC中,主基站中的多个服务小区组成主小区组(master cell group,MCG),包括一个主小区(primary cell,PCell)和可选的一个或多个辅小区(primary cell,PCell)。辅基站中的多个服务小区组成辅小区组(secondary cell group,SCG),包括一个主辅小区(primary secondary cell,PSCell,或者,也可以称为特殊小区)和可选的一个或多个SCell。服务小区是指网络配置给终端设备进行上下行传输的小区。
类似的,终端设备也可以同时与多个网络设备(例如基站)存在通信连接并可收发数据,可以称之为多连接或者多链接(multi-connectivity,MC),该多个基站之中,可以有一个基站负责与该终端设备交互无线资源控制消息,并负责和核心网控制平面实体交互,那么,该基站可以称之为主基站,则其余的基站可以称之为辅基站。可以理解的,DC是MC的一种场景。
应理解,图1是DC的一种网络架构的示意图。为便于理解本申请,下面继续介绍载波聚合的架构。
载波聚合:为了高效地利用零碎的频谱,系统支持不同载波单元之间的聚合。将2个或2个以上的载波聚合在一起以支持更大的传输带宽的技术可以称为载波聚合。
载波聚合技术中,终端设备可以配置多个载波单元(component carrier,CC,或者称,成员载波、组成载波、载波等),每个CC可以对应于一个独立的小区。可以将一个CC等同于一个小区。例如,主小区对应主CC(或者称,主载波),可以是为终端进行初始连接建立的小区,或进行RRC连接重建的小区,或是在切换(handover)过程中指定的主小区。辅小区对应辅CC(或者称,辅载波),可以是在RRC重配置时添加的,用于提供额外的无线资源的小区。
对于处于连接态的终端设备来说,若配置了载波聚合,则该终端设备可以有多个服务 小区(serving cell),可以称为服务小区集合。例如,上文所述的主小区和辅小区组成了该终端设备的服务小区(serving cell)集合。换句话说,配置载波聚合的场景下,服务小区集合包括至少一个主小区和至少一个辅小区。或者说,配置了载波聚合的终端设备可与1个PCell和多个SCell进行数据传输。
图2是能够适用本申请实施例测量方法的系统100的示意图。如图2所示,该通信系统100可以包括至少一个终端设备,如图中所示的终端设备101;该通信系统100还可以包括至少三个网络设备,如图中所示的基站102、103、104。
在图2中,终端设备101可以同时与基站102和103存在通信连接(即DC)并可收发数据,其中,终端设备101可以通过多个服务小区与基站102进行通信连接,同样的,终端设备101也可以通过多个服务小区与基站103进行通信连接。作为一种可能,基站102可以作为终端设备101的主基站,基站102的多个服务小区组成MCG。基站103可以作为终端设备101的辅基站,基站103的多个服务小区组成SCG。
随着终端设备101的向基站103进行移动,并且逐渐远离基站102,终端设备101面临重配服务小区(MCG和/或SCG)和服务基站(主基站和/或辅基站)的问题。
例如,当满足切换条件时,终端设备101可能会与基站102断开连接,并且与基站104建立通信连接。此时,可以将基站103配置为终端设备101新的主基站,并且将基站103下面的多个服务小区配置为新的MCG,此外,还可以将基站104配置为新的辅基站,并且将基站104下面的多个服务小区配置为新的SCG。
此外,针对附图2还可能存在另外一种情况,终端设备101驻留在基站102的服务小区,处于非连接态(比如空闲态,去激活态RRC_INACTIVE,增强的空闲态等其它非连接态)。作为一种可能,终端设备102在基站102内转为连接态,或者,作为另一种可能,终端设备101移动到基站103内,并在基站103内转为连接态。在终端设备101从非连接态转为连接态后,基站102和/或基站103可以为终端设备101发送测量配置,可以根据终端设备101上报的测量结果为终端设备101配置载波聚合配置或双连接配置。
本申请提供一种测量方法,能够合理的进行测量配置,终端设备能够高效的进行测量并且快速上报测量报告,使得终端设备从非连接态转换为连接态时,或者使得终端设备在切换到新的服务基站后,能够及时的给终端设备配置载波聚合配置或双连接配置。
图3是根据本申请的测量方法200的示意性流程图。下面结合图3对本申请的测量方法200做详细阐述。
可以理解的,本申请实施例中,终端设备和/或网络设备可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。
在步骤210中,基站#A生成测量配置信息,该测量配置信息用于指示至少一个频域资源组,该频域资源组至少包括一个频域资源。
具体的,该频域资源组可以包括用于载波聚合的频域资源,或者,该频域资源组包括用于多连接的频域资源,或者,该频域资源组可以包括用于载波聚合和多连接的频域资源。
该频域资源可以是频点、频带的至少一种。频域资源组可以为至少一个频点组成的频点组合,或者,频域资源组可以为至少一个频带组成的频带组合,或者,该频域资源组可 以为至少一个频点和至少一个频带组成的频点频带组合。
在步骤220中,基站#A向终端设备发送该测量配置信息。
具体地,可以由基站#A生成该测量配置信息,并且将该测量配置信息发送给终端设备。
其中,基站#A可以为终端设备的服务基站。基站#A可以为终端设备#A唯一的一个服务基站,也可以是多个服务基站中的一个。
例如,在多连接场景下,基站#A可以是终端设备的主服务基站,也可以是终端设备的辅基站。
例如,在双连接场景下,基站#A可以是终端设备的主基站,或者说,基站#A可以是主小区所在的基站。
或者,基站#A也可以是终端设备的辅基站,或者说,基站#A可以是主辅小区所在的基站。
基站#A可以根据从其它基站(例如,基站#B)获取的基站配置信息生成该测量配置信息。基站#A也可以向其它基站发送基站#A的基站配置信息。
基站配置信息可以指示基站支持的用于载波聚合的频域资源组合,或者,包括基站支持的用于多连接的频域资源组合,或者,包括基站支持的用于载波聚合和多连接的频域资源组合。
或者,基站配置信息还可以用于指示基站支持的用于载波聚合的频域资源组合能力信息,和/或,基站支持的用于多连接的频域资源组合能力信息,该频域资源组合能力信息可以为频点组合能力信息或者频带组合能力信息。
其中,基站#B可以是基站#A或者终端设备的其他的服务基站的邻基站。或者,基站#B可以是终端设备另外一个服务基站。
基站#A和其它基站(例如基站#B)可以通过X2/Xn接口建立请求消息(X2/Xn set request)、X2/Xn接口建立响应消息、无线接入网节点配置更新(ng-ran node configuration update或者eNB configuration update)信息、无线接入网配置确认(ng-ran node configuration acknowledge或者eNB configuration acknowledge)信息、辅节点添加请求(s-node addition request或者seNB addition request)消息或者辅节点添加请求确认(s-node addition request acknowledge或者seNB addition request acknowledge)消息等交互对应的基站配置信息。比如,当基站#A向其它基站发送Xn接口建立请求消息,该Xn接口建立请求消息中携带基站#A的基站配置信息;其它基站可以发送Xn接口建立响应消息,该Xn接口建立响应消息中携带该基站的基站配置信息。
具体地,基站#A可以根据自身的和/或其他基站的基站配置信息,确定测量配置信息中的至少一个频域资源组。
例如,基站可以根据自身的和/或其他基站支持的载波聚合的频点组合能力或频带组合能力信确定该至少一个频域资源组。
例如,在步骤201中,基站#B可以将自身的基站配置信息发送给基站#A,基站#A可以根据自身的以及基站#B的基站配置信息确定至少一个频域资源组。
以基站配置信息包括频域资源组合,该频域资源组合是频点组合为例进行说明。可以理解的,本申请实施例还可以适用频域资源组合为频带组合的场景,还可以适用于基站配 置信息包括频域资源组合能力的场景,本申请实施例对此不作限制。基站#A支持的载波聚合的频点组合包括{F1,F2}、{F1,F3},基站#B的基站配置信息包括基站#B支持的用于载波聚合的频点组合包括{F2,F3},{F2,F4},基站#A支持的用于多连接的频点组合包括{F1,F5}、{F1,F6},基站#B的基站配置信息包括基站#B支持的用于多连接的频点组合包括{F2,F5}、{F2,F7}。
因此,在步骤210中,基站#A可以通过如下至少一种方式生成至少一个频域资源组:
(1)根据基站#A支持的用于载波聚合的频点组合确定一个频域资源组#1-1:{F1,F2,F3};
(2)根据基站#B支持的用于载波聚合的频点组合确定一个频域资源组#1-2:{F2,F3,F4};
(3)根据基站#A和基站#B支持的用于载波聚合的频点组合确定一个频域资源组#1-3:{F1,F2,F3,F4};
(4)根据基站#A支持的用于多连接的频点组合确定一个频域资源组#2-1:{F1,F5,F6};
(5)根据基站#B支持的用于多连接的频点组合确定一个频域资源组#2-2:{F2,F5,F7};
(6)根据基站#A和基站#B支持的用于多连接的频点组合确定一个频域资源组#2-3:{F1,F2,F5,F6,F7};
(7)根据基站#A的用于载波聚合的频点组合和用于多连接的频点组合确定一个频域资源组#3-1:{F1,F2,F3,F5,F6};
(8)根据基站#B的用于载波聚合的频点组合和用于多连接的频点组合确定一个频域资源组#3-2:{F2,F3,F4,F5,F7};
(9)根据基站#A和基站#B的用于载波聚合的频点组合和用于多连接的频点组合确定一个频域资源组#4-1:{F1,F2,F3,F4,F5,F6,F7};
应理解,上述各个方式只用于举例,也可以根据对应类型的频点组合中的部分组合生成相应的频域资源组,本申请对此并不限定。
本领域技术人员可以理解,上述各种方式仅是根据基站#A和接收的其它基站(基站#B)的基站配置信息确定测量配置信息的一个示例,本申请对此不进行限定。上述各种方式以基站配置信息为基站支持的频域资源为频点为例进行描述,本申请对基站支持的频域资源的类型并不进行限定。
该至少一个频域资源组包括第一频域资源组,该第一频域资源组包括用于与第一频域资源进行载波聚合或者多连接的频域资源。作为可能的实现方式,该第一频域资源组可以与该第一频域资源相对应。或者,该第一频域资源组包括该第一频域资源。
具体地,第一频域资源组可以和第一频域资源相对应,其中,该第一频域资源可以包含于第一频域资源组内。该第一频域资源组内的任一频域资源都可以称为第一频域资源,或者该第一频域资源组内的排序第一的频域资源称为第一频域资源。第一频域资源组内的其他频域资源(即组内除了第一频域资源之外的部分或全部频域资源)可以与该第一频域资源进行载波聚合或者多连接。
例如,以频域资源组#1-1为例,对于上述频域资源组#1-1,其与频点F1相对应,并 且频域资源组#1-1包括用于与该频点F1进行载波聚合的频点F2,F3。也就是说,上述频域资源组#1-1为至少一个频域资源组中的第一频域资源组,频点F1为第一频域资源组所对应的第一频域资源,F2,F3为用于与该第一频域资源进行载波聚合的频域资源。
再例如,以频域资源组#1-2为例,对于上述频域资源组#1-2,可以与频点F1相对应,频域资源组#1-1包括用于与该频点F1进行载波聚合的频点F2,F3。也就是说,上述频域资源组#1-1为至少一个频域资源组中的第一频域资源组,频点F1为第一频域资源组所对应的第一频域资源,F2,F3为用于与该第一频域资源进行载波聚合的频域资源。频域资源组#1-2还可以与频点F2相对应,频域资源组#1-2包括用于与该频点F2进行载波聚合的频点F3,F4。
可选地,该频域资源可以包括终端设备的服务小区所使用的频域资源。
例如,该频域资源可以包括终端设备的主小区所使用的频域资源,或者,该频域资源可以包括终端设备的辅小区所使用的频域资源,或者,该频域资源可以包括终端设备的主辅小区所使用的频域资源。
或者说,该频域资源可以包括终端设备的MCG或者SCG中的服务小区所使用的频域资源。
或者说,该频域资源可以包括终端设备的服务小区集合中的服务小区所使用的频域资源。
此外,该频域资源也可以不包括终端设备的服务小区所使用的频域资源。
在步骤230中,终端设备接收该测量配置信息,并且根据该测量配置信息进行测量。
具体地,终端设备根据该测量配置信息所指示的至少一个频域资源组,对频域资源组内的频域资源进行测量。
可选地,终端设备可以对每个频域资源组内的每个频域资源进行测量。
例如,终端设备可以对每个频域资源组内的每个频域资源进行测量,获取该频域资源下的一个或者多个小区的测量结果。具体地,该测量结果可以是小区的参考信号接收功率(reference signal receiving power,RSRP)、信噪比(Signal Noise Ratio,SNR)、接收信号强度指示(received signal strength indication,RSSI)或参考信号接收质量(reference signal receive quality,RSRQ)等中的任意一种或者多种参数。
可选地,终端设备可以不对每个频域资源组内的所有频域资源均进行测量。
例如,对于第一频域资源组,可以先测量该第一频域资源组对应的第一频域资源,并且根据对该第一频域资源的测量结果确定是否对第一频域资源组内其他的频域资源进行测量。或者说,可以先测量第一频域资源组对应的第一频域资源,并且根据对该第一频域资源的测量结果确定是否对与该第一频域资源进行载波聚合或者多连接的频域资源进行测量。
具体地,可以在该第一频域资源对应的小区的测量结果满足一定的条件时才对第一频域资源组内其他的频域资源进行测量。比如,当终端设备对第一频域资源进行测量时,若终端设备测量到的该第一频域资源对应的至少一个小区的测量结果大于或等于预设的第一阈值的情况下,才对第一频域资源组内的其他频域资源进行测量。
或者,当终端设备对第一频域资源进行测量时,若该终端设备搜索不到或者测量不到该第一频域资源对应的小区,或者,若该终端设备测量到的该第一频域资源对应的全部小 区的质量都低于第二阈值,则终端设备可以不对第一频域资源组内的其他频域资源进行测量。可以理解的,第一阈值和第二阈值可以相同,也可以不同,或者第二阈值和第一阈值可以为同一阈值。
其中,该第一阈值、该第二阈值可以由终端设备任意确定,也可以由通信系统或通信协议规定,或者,也可以由网络设备配置,本申请并未特别限定。
以终端设备获取第一阈值作为示例,该第一阈值可以由终端设备的服务基站进行配置,例如,该测量配置信息中可以包括该第一阈值。
终端设备可以从第二频域资源组中确定至少一个目标频域资源,该目标频域资源是终端设备能够支持的频域资源,该第二频域资源组是该至少一个频域资源组中的任意一个频域资源组;所述终端设备对所述目标频域资源进行测量。
例如,可以根据终端设备的支持能力信息确定该至少一个目标频域资源。
可选地,终端设备可以根据自身的支持能力信息,确定是否对频域资源组进行测量,或者确定是否对频域资源组内的频域资源进行测量。终端设备的支持能力信息可以指示终端设备能够支持的用于载波聚合和/或多连接的频域资源组合(例如频点组合或者频带组合)。终端设备可以根据终端设备支持的用于载波聚合和/或多连接的频点组合能力信息或者频带组合能力信息,选择对应的频域资源组,或者选择频域资源组内的对应频域资源进行测量。
例如,以上述频域资源组#1-1为例,若终端设备支持组内的频点F1、F2,比如终端支持配置F1和F2用于终端设备的载波聚合配置,而不支持组内的频点F3,则可以不对频点F3进行测量。对于频域资源组#2-1,若终端设备支持组内的频点F1、F5,比如终端支持配置F1和F5用于终端设备的多连接配置,而不支持组内的频点F6,则可以不对频点F6进行测量。进一步的,若终端设备测量的F1对应的任一小区的测量结果都不满足第一阈值,终端设备还可以不对F2和F5进行测量。
可选地,当频域资源组为多个时(即频域资源组为至少两个),终端设备可以对该多个频域资源组按照一定的顺序进行测量。作为一种实现方式,终端设备可以确定每个频域资源组的优先级,并且按照该优先级的顺序对该频域资源组中的频域资源进行测量。具体的,该优先级可以由终端设备的支持能力信息确定。比如,终端设备可以根据终端设备的支持能力信息确定每个频域资源组的优先级,并且按照该优先级的顺序对该频域资源组中的频域资源进行测量。作为另一种实现方式,该优先级可以由基站配置的。比如,基站可以根据基站的基站配置信息确定。基站可以根据该基站支持的用于载波聚合和/或多连接的频域资源组合确定每个频域资源组的优先级,并且发送优先级指示信息指示终端设备按照该优先级的顺序对测量配置信息中的频域资源组中的频域资源进行测量。以频域资源组#1-1、频域资源组#1-2为例,基站#A可以向终端设备发送优先级指示信息,该优先级指示信息用于指示频域资源组1-1的优先级高,频域资源组1-2的优先级低;和/或,以频域资源组#2-1、频域资源组#2-2为例,该优先级指示信息用于指示频域资源组#2-1的优先级高,频域资源组#2-2的优先级低。该优先级指示信息可以携带于测量配置信息中。终端设备接收到该测量配置信息以后,能够确定每个频域资源组的优先级,并且按照该优先级的顺序对该频域资源组中的频域资源进行测量。
该测量配置信息中还可以包括测量上报配置,例如包括如下信息的至少一个:最多上 报的频率数、最多上报的小区数、每个小区最多上报的波束(beam)数、是否上报小区全球标识(cell global identifier,CGI)等。
在步骤240中,终端设备向基站#A发送测量报告。
可替换的,终端设备向其它基站(比如基站#B)发送测量报告。比如终端设备从基站#A下的小区重选到基站#B下的小区,当终端设备在新小区发起接入时,终端设备可以向基站#B发送测量报告。
该测量报告中包括对频域资源进行测量的测量结果。该测量结果可以是小区级的,或者说,该测量结果是针对各个频域资源下的不同小区的测量结果。可选的,该测量结果还可以包括小区下的至少一个波束的测量结果。
可选的,终端设备可以根据频域资源组的优先级,按优先级次序上报不同频域资源组的测量结果。
可选的,在步骤250中,基站#A接收该测量报告,并且根据该测量报告进行决策。
可替换的,基站#B接收该测量报告,并且根据该测量报告进行决策。
例如,基站#A(或者基站#B)可以根据测量报告中的测量结果确定是否为终端设备配置载波聚合或者多连接,或者,确定是否为终端设备配置新的服务小区和/或服务基站。
可选地,所述方法还包括:
在步骤260中,基站#A向基站#B发送终端设备的测量结果。
基站#A也可以该部分或者全部测量结果转发给终端设备其他的服务基站(例如基站#B),并且由基站#B确定是否为终端设备配置载波聚合或者多连接,本申请对此并不限定。比如基站#A根据测量结果确定执行切换,基站#A可以发送该测量结果或该测量结果的部分测量结果(比如,基站#A根据基站#B的基站配置信息选择合适的测量结果)到目标小区对应的目标基站(即基站#B)。基站#B可以基于上述测量结果确定是否为终端设备配置载波聚合或者多连接。
本申请提供的测量方法,基站能够合理的为终端设备配置测量目标,能够提高终端设备的测量效率,使得终端设备能够及时的上报测量报告,在终端设备从非连接态转为连接态时,或者在终端设备切换服务基站的同时,能够及时的配置载波聚合或者多连接,提高终端设备的数据传输体验。
图4是根据本申请的测量方法300的示意性流程图。下面结合图4对本申请的测量方法300做详细阐述。
在步骤310中,终端设备确定多个测量间隙GAP,其中,该多个测量GAP中的任意两个测量GAP的长度不相同。测量GAP的长度可以理解为终端用于执行测量的时长。比如每40ms内GAP的长度可以为3ms或6ms,即每40ms内有3ms或6ms用于执行测量。此时可以称为两个测量GAP的长度不相同。
具体地,可以根据之前的测量经验,确定多个测量间隙GAP,并且该多个测量GAP可以根据要测量的频点(或者说,载频)数量来确定,不同的频点数量对应不同的测量GAP,测量GAP越长,可能对应的频点数量也越多。可以根据之前的测量中测量GAP和频点数量的对应关系,确定多个长度不相同的测量GAP。
应理解,该多个测量GAP可以由终端设备确定,也可以由通信系统或通信协议规定,或者,也可以由网络设备配置,本申请并未特别限定。
应理解,该要测量的频点数量也可以等价为要测量的频段数量或者小区数量等。
在步骤320中,终端设备根据待测量的第二频点组的频点个数从该多个测量GAP中确定第二测量GAP。
本申请实施例以频域资源为频点为例,可以理解的,本申请实施例对此不作限定,比如,本申请实施例还可以适用于频域资源为频带的场景。
在步骤330中,终端设备根据所述第二测量GAP对该第二频点组中的频点进行测量。
具体地,可以根据之前的测量经验,根据要测量的频点组的数量从该多个测量GAP中确定第二测量GAP。其中,确定的基本原则是要保证在该GAP长度内能够将第二频点组的所有频点恰好测量完成。终端设备可以根据该第二测量GAP对该第二频点组中的每个频点进行测量。
其中,终端设备确定待测量的频点数的机制可以参考步骤230中的相关机制,此处不再赘述。
可选地,在步骤320中,所述方法还可以包括:
在步骤321中,终端设备根据第二频点组的个数与第一频点组的个数的关系和第一测量GAP,从多个测量GAP中确定第二测量GAP,其中,该第一频点组是在该第二频点组之前测量的频点组,该第一测量GAP是终端设备测量第一频点组时使用的测量GAP。该第一测量GAP是终端设备确定第二测量GAP前使用的测量GAP。
具体地,参见前述方法200,终端设备每次测量的频点个数可能不同(例如增加或者减少),也可能相同。终端设备可以在前次测量的基础上,根据频点数量的变化情况,确定本次测量所使用的GAP长度。
终端设备根据第一测量GAP对第一频点组中的频点进行测量,之后,终端设备需要对第二频点组中的频点进行测量,可以根据两次测量频点的数量的大小关系和第一测量GAP,确定第二测量GAP。
例如,若第二频点组的频点数量大于第一频点组的数量(例如二者的差值达到某一阈值),则可以从多个测量GAP中确定第二测量GAP,并且,该第二测量GAP的长度要大于第一测量GAP。
再例如,若第二频点组的频点数量等于第一频点组的数量,则该第二测量GAP的长度可以等于该第一测量GAP。或者说,终端设备继续使用第一测量GAP。
再例如,若第一频点组的频点数量大于第二频点组的数量(例如二者的差值达到某一阈值),则可以从多个测量GAP中确定第二测量GAP,并且,该第二测量GAP的长度要小于第一测量GAP。
可选地,当第二测量GAP的长度不等于第一测量GAP的长度时,方法300还包括:
在步骤340中,终端设备向基站发送通知信息,通知信息用于通知终端设备当前所使用的测量GAP为第二测量GAP。
比如,终端设备可以向网络设备发送特殊的随机接入前导码。该随机接入前导码和该第二测量GAP对应,该随机接入前导码和该第二测量GAP的对应关系可以是终端设备从网络设备接收的。网络设备接收到该随机接入前导码,可以确定该终端设备的测量GAP更新为第二测量GAP。
当测量GAP发生改变时,可以及时的通知基站侧,基站能够根据该通知信息及时的 调整对终端设备的数据调度,从而避免终端设备由短测量GAP更新为长测量GAP时无法接收到数据,造成网络资源浪费的问题,或者终端设备有长测量GAP更新为短测量GAP时网络设备没有调度数据的问题,提高了网络资源的利用率。
可选地,方法300还包括:
在步骤350中,终端设备根据第二测量GAP对所述第二频点组中的频点进行测量的完成情况从多个测量GAP中确定第三测量GAP;
终端设备根据第三测量GAP对第二频点组中的频点进行测量。
具体地,终端设备根据第二频点组中的频点数量确定第二测量GAP,并且根据该第二测量GAP执行测量,如果该第二测量GAP配置的不合理(例如,在该GAP内没有将组内的所有频点均测量完成),则在下次测量中应当根据测量的完成情况进行微调,或者说,重新选择新的、合理的测量GAP。
例如,终端设备根据该第二测量GAP执行测量,但是在该GAP内没有将第二频点组内的所有频点均测量完成,则可以根据完成情况(例如完成的百分比),在多个GAP中重新选择一个长度更长的GAP。
再例如,终端设备根据该第二测量GAP执行测量,在该GAP内较早的完成了第二频点组内所有频点的测量,比如,该GAP对应的测量时长为6ms,终端设备在3ms内就完成了对所有频点的测量,则可以根据完成情况(例如测量所需时间占第二测量GAP的百分比),在多个GAP中重新选择一个长度更短的GAP。
本申请实施例配置了多套测量GAP,能够根据测量目标(频点)的数量灵活的选择测量GAP,一方便能够合理的配置测量GAP从而提高测量的效果,另一方面也能够尽量满足终端设备的数据调度的需求,提高了用户的使用体验。
以上,结合图3和图4说明了本申请实施例提供的方法。以下,结合图5至图7详细说明本申请实施例提供的通信装置。
图5是本申请实施例提供的通信装置的示意性框图。如图所示,该通信装置1000可以包括通信单元1100和处理单元1200。在一种可能的设计中,该通信装置1000可实现对应于上文方法实施例中的终端设备执行的步骤或者流程,例如,可以为终端设备,或者配置于终端设备中的芯片或电路。
具体地,该通信装置1000可实现对应于根据本申请实施例的方法200、300中的终端设备执行的步骤或者流程,该通信装置1000可以包括用于执行图3中的方法200或图4中的方法300中的终端设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图3中的方法200、图4中的方法300的相应流程。
其中,当该通信装置1000用于执行图3中的方法200时,通信单元1100可用于执行方法200中的步骤220、240,处理单元1200可用于执行方法200中的步骤230。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000为终端设备时,该通信装置1000中的通信单元1100可对应于图6中示出的终端设备2000中的收发器2020,该通信装置1000中的处理单元1200可对应于图4中示出的终端设备2000中的处理器2010。
还应理解,该通信装置1000为配置于终端设备中的芯片或者电路时,该通信装置1000 中的通信单元1100可以为输入/输出接口。
在另一种可能的设计中,该通信装置1000可实现对应于上文方法实施例中的网络设备执行的步骤或者流程,例如,可以为网络设备,或者配置于网络设备中的芯片或电路。
进一步地,该通信装置1000可实现对应于上文方法实施例中的基站#A,或者配置于基站#A中的芯片或电路。
具体地,该通信装置1000可实现对应于根据本申请实施例的方法200中的基站#A执行的步骤或者流程,该通信装置1000可以包括用于执行图3中的方法200中的基站#A执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作和/或功能分别为了实现图3中的方法200的相应流程。
其中,当该通信装置1000用于执行图3中的方法200时,通信单元1100可用于执行方法200中的步骤220、240,处理单元1200可用于执行方法200中的步骤210和步骤250。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000为网络设备时,该通信装置1000中的通信单元为可对应于图7中示出的网络设备3000中的收发器3200,该通信装置1000中的处理单元1200可对应于图7中示出的网络设备3000中的处理器3100。
还应理解,该通信装置1000为配置于网络设备中的芯片或者电路时,该通信装置1000中的通信单元1100可以为输入/输出接口。
图6是本申请实施例提供的终端设备2000的结构示意图。该终端设备2000可应用于如图1至图2所示的系统中,执行上述方法实施例中终端设备的功能,或者实现上述方法实施例中终端设备执行的步骤或者流程。
如图所示,该终端设备2000包括处理器2010和收发器2020。可选地,该终端设备2000还包括存储器2030。其中,处理器2010、收发器2002和存储器2030之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器2030用于存储计算机程序,该处理器2010用于从该存储器2030中调用并运行该计算机程序,以控制该收发器2020收发信号。可选地,终端设备2000还可以包括天线2040,用于将收发器2020输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器2010可以和存储器2030可以合成一个处理装置,处理器2010用于执行存储器2030中存储的程序代码来实现上述功能。具体实现时,该存储器2030也可以集成在处理器2010中,或者独立于处理器2010。该处理器2010可以与图5中的处理单元对应。
上述收发器2020可以与图5中的通信单元对应,也可以称为收发单元。收发器2020可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
应理解,图6所示的终端设备2000能够实现图3所示方法实施例中涉及终端设备的各个过程。终端设备2000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
上述处理器2010可以用于执行前面方法实施例中描述的由终端设备内部实现的动 作,而收发器2020可以用于执行前面方法实施例中描述的终端设备向网络设备发送或从网络设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选地,上述终端设备2000还可以包括电源2050,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备2000还可以包括输入单元2060、显示单元2070、音频电路2080、摄像头2090和传感器2100等中的一个或多个,所述音频电路还可以包括扬声器2082、麦克风2084等。
图7是本申请实施例提供的网络设备的结构示意图,例如可以为基站的结构示意图。该基站3000可应用于如图1至图2所示的系统中,执行上述方法实施例中网络设备的功能,或者实现上述方法实施例中网络设备执行的步骤或者流程。
如图所示,该基站3000可以包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)3100和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)3200。所述RRU 3100可以称为收发单元,与图5中的通信单元1100对应。可选地,该收发单元3100还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线3101和射频单元3102。可选地,收发单元3100可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。所述RRU 3100部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送指示信息。所述BBU 3200部分主要用于进行基带处理,对基站进行控制等。所述RRU 3100与BBU 3200可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 3200为基站的控制中心,也可以称为处理单元,可以与图5中的处理单元1200对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述指示信息,或者配置服务小区等。
在一个示例中,所述BBU 3200可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 3200还包括存储器3201和处理器3202。所述存储器3201用以存储必要的指令和数据。所述处理器3202用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器3201和处理器3202可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图7所示的基站3000能够实现图3方法实施例中涉及网络设备的各个过程。基站3000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
上述BBU 3200可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而RRU 3100可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
本申请实施例还提供了一种处理装置,包括处理器和接口。所述处理器可用于执行上 述方法实施例中的方法。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图3或4所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图3或4所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述网络设备,例如基站#A。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装 置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (29)

  1. 一种测量方法,其特征在于,包括:
    终端设备接收测量配置信息,所述测量配置信息指示至少一个频域资源组,所述至少一个频域资源组包括用于载波聚合的频域资源,或者,所述至少一个频域资源组包括用于多连接的频域资源;
    所述终端设备根据所述至少一个频域资源组,对所述频域资源进行测量。
  2. 根据权利要求1所述的测量方法,其特征在于,所述至少一个频域资源组包括第一频域资源组,所述第一频域资源组包括用于与第一频域资源进行载波聚合的频域资源,或者,所述第一频域资源组包括用于与第一频域资源进行多连接的频域资源。
  3. 根据权利要求2所述的测量方法,其特征在于,所述终端设备根据所述至少一个频域资源组,对所述频域资源进行测量,包括:
    所述终端设备对所述第一频域资源进行测量,并且根据测量结果确定是否对所述第一频域资源组内其他的频域资源进行测量。
  4. 根据权利要求3所述的测量方法,其特征在于,所述第一频域资源被多个小区使用,所述终端设备对所述第一频域资源进行测量,并且根据测量结果确定是否对其他的频域资源进行测量,包括:
    所述终端设备对所述多个小区使用的所述第一频域资源分别进行测量;
    在所述多个小区中的至少一个小区的测量结果大于或等于第一阈值的情况下,对所述第一频域资源组内的其他频域资源进行测量。
  5. 根据权利要求1至4中任一项所述的测量方法,其特征在于,所述终端设备根据所述至少一个频域资源组,对所述频域资源进行测量,包括:
    所述终端设备从第二频域资源组中确定至少一个目标频域资源,所述目标频域资源是所述终端设备能够支持的频域资源,所述第二频域资源组是所述至少一个频域资源组中的任意一个频域资源组;
    所述终端设备对所述目标频域资源进行测量。
  6. 根据权利要求5所述的测量方法,其特征在于,所述终端设备从第二频域资源组中确定至少一个目标频域资源,包括,所述终端设备根据支持能力信息从第二频域资源组中确定至少一个目标频域资源,其中,
    所述支持能力信息指示所述终端设备能够支持的用于载波聚合的频域资源组合;或者
    所述支持能力信息指示所述终端设备能够支持的用于多连接的频域资源组合。
  7. 根据权利要求1至6中任一项所述的测量方法,其特征在于,
    所述频域资源包括所述终端设备的服务小区所使用的频域资源;或者
    所述频域资源不包括所述终端设备的服务小区所使用的频域资源。
  8. 根据权利要求1至7中任一项所述的测量方法,其特征在于,当所述至少一个频域资源组为多个时,所述终端设备根据所述至少一个频域资源组,对所述频域资源进行测量,包括:
    所述终端设备确定每个频域资源组的优先级;
    所述终端设备按照所述优先级对所述至少一个频域资源组中的频域资源进行测量。
  9. 一种测量方法,其特征在于,包括:
    生成测量配置信息,所述测量配置信息指示至少一个频域资源组,所述至少一个频域资源组包括用于载波聚合的频域资源,或者,所述至少一个频域资源组包括用于多连接的频域资源;
    向终端设备发送所述测量配置信息。
  10. 根据权利要求9所述的测量方法,其特征在于,所述至少一个频域资源组包括第一频域资源组,所述第一频域资源组包括用于与第一频域资源进行载波聚合的频域资源,或者,所述第一频域资源组包括用于与第一频域资源进行多连接的频域资源。
  11. 根据权利要求9或10所述的测量方法,其特征在于,所述频域资源包括所述终端设备的服务小区所使用的频域资源;或者
    所述频域资源不包括所述终端设备的服务小区所使用的频域资源。
  12. 一种通信装置,其特征在于,包括:
    通信单元,用于接收测量配置信息,所述测量配置信息指示至少一个频域资源组,所述至少一个频域资源组包括用于载波聚合的频域资源,或者,所述至少一个频域资源组包括用于多连接的频域资源;
    处理单元,用于根据所述至少一个频域资源组,对所述频域资源进行测量。
  13. 根据权利要求12所述的通信装置,其特征在于,所述至少一个频域资源组包括第一频域资源组,所述第一频域资源组包括用于与第一频域资源进行载波聚合的频域资源,或者,所述第一频域资源组包括用于与第一频域资源进行多连接的频域资源。
  14. 根据权利要求13所述的通信装置,其特征在于,所述处理单元还用于根据测量结果确定是否对所述第一频域资源组内其他的频域资源进行测量。
  15. 根据权利要求14所述的通信装置,其特征在于,所述第一频域资源被多个小区使用,所述处理单元还用于对所述多个小区使用的所述第一频域资源分别进行测量;
    所述处理单元还用于在所述多个小区中的至少一个小区的测量结果大于或等于第一阈值的情况下,对所述第一频域资源组内的其他频域资源进行测量。
  16. 根据权利要求12至15中任一项所述的通信装置,其特征在于,所述处理单元还用于从第二频域资源组中确定至少一个目标频域资源,所述目标频域资源是所述终端设备能够支持的频域资源,所述第二频域资源组是所述至少一个频域资源组中的任意一个频域资源组;
    所述处理单元还用于对所述目标频域资源进行测量。
  17. 根据权利要求16所述的通信装置,所述处理单元还用于根据所述终端设备的支持能力信息从第二频域资源组中确定至少一个目标频域资源,其中,所述支持能力信息指示所述终端设备能够支持的用于载波聚合的频域资源组合;或者
    所述支持能力信息指示所述终端设备能够支持的用于多连接的频域资源组合。
  18. 根据权利要求12至17中任一项所述的通信装置,其特征在于,所述频域资源包括所述终端设备的服务小区所使用的频域资源;或者
    所述频域资源不包括所述终端设备的服务小区所使用的频域资源。
  19. 根据权利要求12至18中任一项所述的通信装置,其特征在于,所述至少一个频 域资源组为多个,所述处理单元还用于确定每个频域资源组的优先级;
    所述处理单元按照所述优先级对所述至少一个频域资源组中的频域资源进行测量。
  20. 一种通信装置,其特征在于,包括:
    处理单元,用于生成测量配置信息,所述测量配置信息指示至少一个频域资源组,所述至少一个频域资源组包括用于载波聚合的频域资源,或者,所述至少一个频域资源组包括用于多连接的频域资源;
    通信单元,用于向终端设备发送所述测量配置信息。
  21. 根据权利要求20所述的通信装置,其特征在于,所述至少一个频域资源组包括第一频域资源组,所述第一频域资源组包括用于与第一频域资源进行载波聚合的频域资源,或者,所述第一频域资源组包括用于与第一频域资源进行多连接的频域资源。
  22. 根据权利要求20或21所述的通信装置,其特征在于,所述频域资源包括所述终端设备的服务小区所使用的频域资源;或者
    所述频域资源不包括所述终端设备的服务小区所使用的频域资源。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,
    使得所述计算机执行如权利要求1至8中任意一项所述的方法,或者
    使得所述计算机执行如权利要求9至11中任意一项所述的方法。
  24. 一种芯片系统,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,
    使得安装有所述芯片系统的通信设备执行如权利要求1至8中任意一项所述的方法;或者
    使得安装有所述芯片系统的通信设备执行如权利要求9至11中任意一项所述的方法。
  25. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器用于与存储器耦合,读取并执行所述存储器中的指令,以实现如权利要求1至8任一项所述的方法。
  26. 根据权利要求25所述的通信装置,其特征在于,还包括所述存储器。
  27. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器用于与存储器耦合,读取并执行所述存储器中的指令,以实现如权利要求9至11任一项所述的方法。
  28. 根据权利要求25所述的通信装置,其特征在于,还包括所述存储器。
  29. 一种通信系统,其特征在于,包括如权利要求25或26所述的通信装置和如权利要求27或28所述的通信装置。
PCT/CN2020/074308 2019-02-14 2020-02-05 一种测量方法、终端设备及网络设备 WO2020164418A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910115160.3A CN111565412B (zh) 2019-02-14 2019-02-14 一种测量方法、终端设备及网络设备
CN201910115160.3 2019-02-14

Publications (1)

Publication Number Publication Date
WO2020164418A1 true WO2020164418A1 (zh) 2020-08-20

Family

ID=72045489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074308 WO2020164418A1 (zh) 2019-02-14 2020-02-05 一种测量方法、终端设备及网络设备

Country Status (2)

Country Link
CN (1) CN111565412B (zh)
WO (1) WO2020164418A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023138424A1 (zh) * 2022-01-21 2023-07-27 华为技术有限公司 一种异频测量资源和/或时间确定方法及装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115150044A (zh) * 2021-03-31 2022-10-04 展讯通信(上海)有限公司 测量间隙gap的处理方法及相关产品
CN115334530A (zh) * 2021-05-10 2022-11-11 华为技术有限公司 测量配置方法和装置
CN113329421B (zh) * 2021-05-18 2022-09-06 Oppo广东移动通信有限公司 频点测量方法及装置、芯片、设备、存储介质
CN113489580B (zh) * 2021-07-30 2022-09-02 中国联合网络通信集团有限公司 一种载波聚合辅小区的配置方法和装置
CN114885424A (zh) * 2022-04-07 2022-08-09 Oppo广东移动通信有限公司 小区配置方法、装置、设备及存储介质
CN117082528A (zh) * 2022-05-07 2023-11-17 华为技术有限公司 资源状态交互方法和通信装置
WO2024031258A1 (zh) * 2022-08-08 2024-02-15 北京小米移动软件有限公司 一种接收测量配置信息的方法、装置、设备及可读存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106792869A (zh) * 2016-08-12 2017-05-31 展讯通信(上海)有限公司 测量配置方法及装置、基站
CN108632851A (zh) * 2017-03-22 2018-10-09 展讯通信(上海)有限公司 小区测量方法及用户终端

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108810962B (zh) * 2017-04-28 2020-07-03 展讯通信(上海)有限公司 双连接测量配置方法、通信系统、基站及可读存储介质

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106792869A (zh) * 2016-08-12 2017-05-31 展讯通信(上海)有限公司 测量配置方法及装置、基站
CN108632851A (zh) * 2017-03-22 2018-10-09 展讯通信(上海)有限公司 小区测量方法及用户终端

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Assistance information for measurement capability and gap coordination", 3GPP TSG-RAN WG2 #101 R2-1802647, 2 March 2018 (2018-03-02), XP051399549 *
HUAWEI ET AL.: "Control plane impacts due to the introduction of 32CCs", 3GPP TSG-RAN WG2 MEETING #89BIS R2-151338, 24 April 2015 (2015-04-24), XP050953283 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023138424A1 (zh) * 2022-01-21 2023-07-27 华为技术有限公司 一种异频测量资源和/或时间确定方法及装置

Also Published As

Publication number Publication date
CN111565412B (zh) 2022-02-11
CN111565412A (zh) 2020-08-21

Similar Documents

Publication Publication Date Title
WO2020164418A1 (zh) 一种测量方法、终端设备及网络设备
WO2020135400A1 (zh) 通信方法和通信装置
WO2020143692A1 (zh) 通信方法和通信装置
WO2021031921A1 (zh) 用于测量的方法与装置
WO2020200034A1 (zh) 一种网络接入的方法和装置
JP2021503845A (ja) 通信方法および通信デバイス
JP2022518418A (ja) 無線通信方法、端末装置及びネットワーク装置
WO2020135383A1 (zh) 通信方法和通信装置
WO2021213217A1 (zh) 一种放松测量方法和通信装置
WO2021104039A1 (zh) 一种测量配置方法及装置
WO2020228630A1 (zh) 一种通信方法和通信装置
WO2021159862A1 (zh) 一种添加辅小区组的方法、接入网设备和终端设备
US20230086410A1 (en) Communication method and communication apparatus
WO2022011500A1 (zh) 配置方法和装置
EP4185029A1 (en) Information processing method, terminal device, and network device
WO2020156364A1 (zh) 测量方法和通信装置
WO2020211778A1 (zh) 小区切换方法以及装置
WO2021104038A1 (zh) 一种测量配置方法及装置
WO2021027660A1 (zh) 无线通信的方法和通信装置
US20220224405A1 (en) Beam Handover Method, Apparatus, And Communications Device
WO2021160013A1 (zh) 无线通信的方法和装置以及通信设备
WO2022133692A1 (zh) 状态切换的方法、终端设备和网络设备
US11265937B2 (en) Device discovery in a device to device communication using two types of discovery
WO2021031004A1 (zh) 载波测量方法和装置
WO2023050181A1 (zh) 无线通信方法及无线通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20755772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20755772

Country of ref document: EP

Kind code of ref document: A1