WO2020030144A1 - 一种功率控制的方法和装置 - Google Patents

一种功率控制的方法和装置 Download PDF

Info

Publication number
WO2020030144A1
WO2020030144A1 PCT/CN2019/100065 CN2019100065W WO2020030144A1 WO 2020030144 A1 WO2020030144 A1 WO 2020030144A1 CN 2019100065 W CN2019100065 W CN 2019100065W WO 2020030144 A1 WO2020030144 A1 WO 2020030144A1
Authority
WO
WIPO (PCT)
Prior art keywords
power control
power
node
transmission
dynamic range
Prior art date
Application number
PCT/CN2019/100065
Other languages
English (en)
French (fr)
Inventor
刘凤威
袁世通
陈磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19848690.4A priority Critical patent/EP3826373A4/en
Publication of WO2020030144A1 publication Critical patent/WO2020030144A1/zh
Priority to US17/170,108 priority patent/US11438847B2/en
Priority to US17/887,272 priority patent/US20230029758A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/46TPC being performed in particular situations in multi hop networks, e.g. wireless relay networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control

Definitions

  • the present application relates to the field of communications, and more particularly, to a method and apparatus for power control.
  • IAB nodes are evolved nodes of the relay technology.
  • relay nodes are usually used to achieve extended coverage or blind spot coverage, or to increase system capacity.
  • the IAB node is functionally divided into: an IAB mobile terminal (mobile terminating, MT) and an IAB base station distributed unit (Distributed Unit, DU).
  • the IAB MT refers to the IAB as a terminal device UE, which is connected to a higher-level node.
  • IAB DU refers to the IAB as a distributed unit of the base station, which provides access services to the UE and other downstream nodes.
  • the link that the IAB DU provides to the UE is called an access link (AC), and the link that sends data to other IAB nodes is called a backhaul link (BH) ),
  • AC access link
  • BH backhaul link
  • the transmission power calculation process in the prior art is used, the transmission power of the access link and the return link of the IAB node is unbalanced, which will cause a great impact on the link. Therefore, how to perform power control on IAB nodes is a problem that needs to be considered in the current IAB standardization.
  • this application provides a method and device for power control.
  • the value of the power control index is determined by the transmission mode and / or transmission capability, which can meet more application scenarios and support more transmission modes.
  • a node supports at least The two transmit beams can more flexibly and quickly adjust power control parameters in scenarios such as space division multiplexing and non-space division multiplexing.
  • a power control method includes:
  • the second node receives a radio resource control RRC from the first node, the RRC includes: a power control parameter set configured for the second node, the power control parameter set includes: a power control index, and the power control index is based on a second The transmission mode and / or transmission capability of the node is determined; the second node receives downlink control information DCI, and the DCI includes: power control index indication information, where the power control index indication information is used when the first node schedules the second node When indicating the power control index value of the uplink transmission configured for the second node; the second node determines the transmission power according to the power control index indication information and the power control parameter set; and the second node determines the transmission power Send a signal.
  • the RRC includes: a power control parameter set configured for the second node, the power control parameter set includes: a power control index, and the power control index is based on a second The transmission mode and / or transmission capability of the node is determined;
  • the second node receives downlink control
  • determining the value of the power control index according to the transmission mode and / or transmission capacity can satisfy more application scenarios and support more transmission modes, such as node support At least two transmit beams can more flexibly and quickly adjust power control parameters in scenarios such as space division multiplexing and non-space division multiplexing.
  • the transmission mode of the second node is a space division multiplex transmission mode
  • the transmission capacity of the second node is the number of beams supported by the second node.
  • the method further includes: different power control indexes corresponding to different transmission modes and different power control indexes corresponding to different transmission capabilities.
  • the power control parameter set further includes at least one of the following power control parameters:
  • An uplink power control identifier an uplink reference signal path loss identifier, an uplink transmission reference power, a power control parameter, or a path loss compensation factor.
  • the power control index is associated with the power control parameter.
  • the determining, by the second node according to the power control index indication information and the power control parameter set, the sending power specifically includes:
  • the second node determines transmission power according to a power control parameter and a power control calculation formula.
  • a power control method includes:
  • the transmit power dynamic range is a transmit power dynamic range determined according to a reference signal
  • the signal is transmitted at a determined transmission power.
  • the relay node measures the uplink dynamic range of the uplink power to determine the uplink transmit power.
  • the transmit power is reasonably controlled, which reduces the impact on other links. Interference effects.
  • the dynamic range of the transmission power includes: a dynamic range of a power spectral density PSD and / or a dynamic range of a power factor ratio EPRE.
  • the determining the transmission power according to the dynamic range of the transmission power specifically includes:
  • a power control device includes:
  • a transceiver for receiving a radio resource control RRC including: a power control parameter set of a power control device, the power control parameter set including: a power control index, the power control index according to transmission of the power control device Determining the mode and / or transmission capability; and receiving downlink control information DCI, the DCI includes: power control index indication information, where the power control index indication information is used to indicate a configured power control index value for uplink transmission.
  • a processor configured to determine transmission power according to the power control index indication information and a power control parameter set.
  • a power control device includes:
  • a transceiver for transmitting a reference signal and receiving a dynamic range of transmit power, the transmit power dynamic range being a dynamic range of transmit power determined according to the reference signal; and a transmit signal for determining transmit power
  • a processor configured to determine a transmission power according to a dynamic range of the transmission power.
  • a power control device includes:
  • a processor configured to execute the program stored in the memory, and when the program is executed, the processor is configured to execute the method according to any one of the first aspect or the second aspect.
  • a power control device includes:
  • a computer-readable storage medium including instructions that, when run on a computer, cause the computer to perform the method according to any of the first aspect or the second aspect
  • a power control device includes: a computer program product, wherein the computer program product includes computer program code, and when the computer program code runs on a computer, the computer executes The method of any one aspect or the second aspect.
  • a chip includes a memory and a processor, where the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that the processor executes the claims The method according to any one of the first aspect or the second aspect.
  • FIG. 1 is a system architecture diagram to which an embodiment of the present application is applied;
  • FIGS. 2 to 5 are diagrams of another system architecture provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a power control method according to an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of another power control method according to an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a power control apparatus according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of another power control apparatus according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a hardware structure of a network device according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • the communication system includes a network device and at least one terminal device.
  • the terminal device is within the coverage of the network device and communicates with the network device to implement the technical solutions provided in the embodiments of the present application described below.
  • the communication system of this embodiment can be applied to a multi-TRP scenario.
  • the embodiments of the present application describe various embodiments in combination with a network device and a terminal device.
  • the network device and the terminal device can work in a licensed frequency band or an unlicensed frequency band, among which:
  • Terminal equipment can also be called user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user Agent or user device.
  • Terminal equipment can be stations (STATION, ST) in Wireless Local Area Networks (WLAN), cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, wireless local loop (Wireless Local Loop (WLL) stations, Personal Digital Processing (PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, and next-generation communication systems, For example, terminal equipment in a fifth-generation (5G) network or terminal equipment in a future evolved Public Land Mobile Network (PLMN) network, terminal equipment in an NR system, and the like.
  • 5G fifth-generation
  • PLMN Public Land Mobile Network
  • the terminal device may also be a wearable device.
  • Wearable devices can also be referred to as wearable smart devices. They are the general name for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a device that is worn directly on the body or is integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also powerful functions through software support, data interaction, and cloud interaction.
  • Broad-spectrum wearable smart devices include full-featured, large-sized, full or partial functions that do not rely on smart phones, such as smart watches or smart glasses, and only focus on certain types of application functions, and need to cooperate with other devices such as smart phones Use, such as smart bracelets, smart jewelry, etc. for physical signs monitoring.
  • network equipment is also called radio access network (RAN) equipment, which is a device that connects terminal equipment to the wireless network. It can be an evolved base station in Long Term Evolution (LTE) (Evolutional NodeB, eNB or eNodeB), or a relay station or access point, or a network device in a 5G network or a network device in a future evolved PLMN network, or a new generation base station in a NR system (newradioNodeB, gNodeB ) Etc. are not limited here.
  • LTE Long Term Evolution
  • eNB Term Evolution
  • eNodeB evolved NodeB
  • gNodeB New RadioNodeB
  • the network device provides a service to the cell, and the terminal device communicates with the network device through a transmission resource (for example, a frequency domain resource or a spectrum resource) used by the cell.
  • the cell may be a cell corresponding to a network device (for example, a base station), and the cell may belong to a macro base station or a base station corresponding to a small cell.
  • the small cells here may include: urban cells, micro cells, pico cells, femto cells, etc. These small cells have the characteristics of small coverage and low transmission power. , Suitable for providing high-speed data transmission services.
  • FIG. 1 is a schematic structural diagram of a communication system applicable to an embodiment of the present application.
  • the communication systems mentioned in the embodiments of the present application include, but are not limited to, a narrow-band Internet of Things (NB-IoT) system, a long-term evolution (LTE) system, and a next-generation 5G Mobile communication system or communication system after 5G, or device-to-device (D2D) communication system.
  • NB-IoT narrow-band Internet of Things
  • LTE long-term evolution
  • D2D device-to-device
  • An IAB system includes at least one base station 100, one or more terminals 101 served by the base station 100, one or more relay nodes rTRP 110, and one or more terminals 111 served by the rTRP 110.
  • the base station 100 is called The host base station (donor next generation node B, DgNB), rTRP 110 is connected to the base station 100 through a wireless backhaul link 113.
  • the terminal is also called a terminal
  • the host base station is also called a host node, that is, a Donor node.
  • Base stations include but are not limited to: evolved node B (eNB), radio network controller (RNC), node B (NB), base station controller (BSC), Base transceiver station (BTS), home base station (for example, home nodeB, or home nodeB, HNB), baseband unit (BBU), or next-generation new air interface base station (such as gNB).
  • eNB evolved node B
  • RNC radio network controller
  • NB node B
  • BSC base station controller
  • BTS Base transceiver station
  • home base station for example, home nodeB, or home nodeB, HNB
  • BBU baseband unit
  • next-generation new air interface base station such as gNB
  • the integrated access and backhaul system can also include multiple other relay nodes, such as rTRP 120 and rTRP 130.
  • rTRP 120 is connected to the relay node rTRP 110 via the wireless backhaul link 123 to access the network.
  • RTRP 130 It is connected to the relay node rTRP 110 via the wireless backhaul link 133 to access the network, rTRP 120 serves one or more terminals 121, and rTRP 130 serves one or more terminals 131.
  • the relay nodes rTRP 110 and rTRP 120 are connected to the network through a wireless backhaul link. In this application, the wireless backhaul links are all viewed from the perspective of the relay node.
  • the wireless backhaul link 113 is the backhaul link of the relay node rTRP 110
  • the wireless backhaul link 123 is the relay node rTRP 120 Backhaul link.
  • a relay node such as 120
  • a node providing wireless backhaul link resources such as 110
  • 120 is referred to as a lower node of the relay node 110
  • a lower node can be regarded as a terminal of a higher node.
  • a relay node In the integrated access and backhaul system shown in FIG. 1, a relay node is connected to an upper node, but in the future relay system, in order to improve the reliability of the wireless backhaul link, a relay node, Such as 120, there can be multiple upper-level nodes to provide services for them at the same time.
  • rTRP 130 can also be connected to the relay node rTRP 120 through the backhaul link 134, that is, both rTRP 110 and rTRP 120 are the upper nodes of rTRP 130.
  • the terminals 101, 111, 121, 131 may be stationary or mobile devices.
  • the mobile device may be a mobile phone, a smart terminal, a tablet computer, a notebook computer, a video game console, a multimedia player, or even a mobile relay node.
  • a stationary device is usually located in a fixed location, such as a computer, an access point (connected to the network through a wireless link, such as a stationary relay node), and so on.
  • the names of the relay nodes rTRP 110, 120, 130 are not limited to the scene or network in which they are deployed, and can be any other name such as relay, RN, and so on.
  • the use of rTRP in this application is for the convenience of description only.
  • the wireless link 102, 112, 122, 132, 113, 123, 133, 134 can be a bidirectional link, including uplink and downlink transmission links.
  • the wireless backhaul link 113, 123, 133, 134 can be used to provide services to lower nodes, such as the upper node 100 Provide wireless backhaul services for the lower-level nodes 110.
  • the uplink and downlink of the backhaul link may be separated, that is, the uplink and downlink are not transmitted through the same node.
  • the downlink transmission refers to an upper node, such as node 100, and the lower node, such as node 110, transmits information or data
  • the uplink transmission refers to a lower node, such as node 110, to an upper node, such as node 100, to transmit information or data.
  • the node is not limited to whether it is a network node or a terminal.
  • the terminal can serve as a relay node to serve other terminals.
  • the wireless backhaul link may be an access link in some scenarios.
  • the backhaul link 123 may be regarded as an access link for the node 110, and the backhaul link 113 is also an access link for the node 100.
  • the above-mentioned upper node may be a base station or a relay node
  • the lower node may be a relay node or a terminal having a relay function.
  • the lower node may also be a terminal.
  • a Donor node refers to a node that can access the core network through the node, or an anchor base station of a wireless access network, through which the base station can access the network.
  • the anchor base station is responsible for data processing at the packet data convergence protocol (PDCP) layer, or is responsible for receiving data from the core network and forwarding it to the relay node, or receiving data from the relay node and forwarding it to the core network.
  • PDCP packet data convergence protocol
  • the relay node is referred to as a first node, and a node above the first node is referred to as a second node.
  • the first node and the second node may be a base station, a relay node, a terminal having a relay function, or any device having a relay function.
  • the wireless backhaul link of the in-band relay coincides with the spectrum resource of the access link, that is, the backhaul link of the in-band relay has the same frequency band as the access link.
  • the backhaul link of the in-band relay has the same frequency band as the access link.
  • rTRP when rTRP is receiving on the downlink wireless backhaul link of the base station, it cannot transmit to the subordinate terminal or device; while rTRP is performing uplink transmission to the superior node on the backhaul link, it cannot receive the subordinate terminal or device to access in the uplink.
  • the half-duplex constraint of the in-band relay refers to the half-duplex constraint of simultaneous transmission and reception at the same frequency, and the time division duplexing (TDD) or frequency division duplexing method adopted by the system itself , FDD) has nothing to do.
  • TDD time division duplexing
  • FDD frequency division duplexing method adopted by the system itself
  • the access link refers to the wireless link used by a node to communicate with its subordinate nodes, including uplink and downlink transmission links.
  • the uplink transmission on the access link is also called the uplink transmission of the access link, and the downlink transmission is also called the downlink transmission of the access link.
  • the nodes include, but are not limited to, the foregoing IAB nodes.
  • the backhaul link refers to the wireless link used by a node to communicate with its superior node, including uplink and downlink transmission links.
  • the uplink transmission on the backhaul link is also referred to as the uplink transmission on the backhaul link, and the downlink transmission is also referred to as the downlink transmission on the backhaul link.
  • the nodes include, but are not limited to, the foregoing IAB nodes.
  • a beam it can be understood as a spatial resource, which can refer to sending or receiving a precoding vector with directivity of energy transmission.
  • the transmitted or received precoding vector can be identified by index information.
  • the energy transmission directivity may refer to precoding processing of a signal to be transmitted through the precoding vector, and the signal after the precoding processing has a certain spatial directivity. After receiving the precoding vector, the precoding processing is performed.
  • the signal has a better received power, such as satisfying the reception demodulation signal-to-noise ratio, etc .; the energy transmission directivity may also mean that the same signal received from the different spatial positions received by the precoding vector has different received power.
  • the same communication device such as a terminal device or a network device, may have different precoding vectors, and different communication devices may also have different precoding vectors, that is, correspond to different beams.
  • a communication device can use one or more of multiple different precoding vectors at the same time, that is, one beam or multiple beams can be formed at the same time.
  • the beam information may be identified by index information.
  • the index information may correspond to a resource identifier (identity, ID) of the configuration terminal device.
  • the index information may correspond to an ID or index or resource of a channel state information reference signal (CSI-RS) configured, or may be a corresponding configured uplink sounding reference signal (Sounding Reference Signal). , SRS) ID or resource.
  • CSI-RS channel state information reference signal
  • SRS uplink sounding reference signal
  • the index information may also be displayed or implicitly carried by a signal or channel carried by a beam.
  • the index information includes, but is not limited to, a synchronization signal sent by a beam or a broadcast channel to indicate the index information.
  • Index information of the beam may be at least one of the following: time domain, frequency domain, code domain (sequence).
  • the IAB system includes: IAB equipment, such as: IAB node 0, IAB node 1, IAB node 2, and terminal equipment UE served by each IAB device.
  • IAB node 1 receives both the uplink signal from the UE and the uplink signal from IAB node 2.
  • the UE served by IAB node 1 and the neighboring node IAB node 2 send uplink signals at the same time, and IAB node 1 receives the uplink signals from the UE and the uplink signals from IAB node 0 and IAB node 2 at the same time.
  • IAB node 1 the UE served by IAB node 1 and IAB node 2 send uplink signals at the same time, and IAB node 1 receives both uplink signals from UE and uplink signals from IAB node 2.
  • IAB node 2 sends a downlink signal to the UE and an uplink signal to IAB node 1 at a time point or time period.
  • FIG. 6 is a flowchart of a power control method according to an embodiment of the present application. As shown in FIG. 6, the method in this embodiment includes:
  • the relay node in the IAB takes the IAB node as an example, and the IAB system architecture shown in FIG. 5 as an example to describe the power control method.
  • IAB Node2 is used as the first node and the first node
  • the parent node is called the second node, such as IAB Node1.
  • the first node and the second node may be a base station, a relay node, a terminal having a relay function, or any device having a relay function.
  • IAB node 2 In a time point or time period, IAB node 2 sends a downlink signal to the terminal device UE, and at the same time sends an uplink signal to IAB node 1.
  • the first node sends a radio resource control RRC to the second node, where the RRC includes: a power control parameter set configured for the second node, the power control parameter set includes: a power control index, and the power control index is based on transmission Mode and / or transmission capability is determined.
  • RRC radio resource control
  • the power control parameter set is used to control the transmit power of a physical uplink control channel (physical uplink control channel, PUSCH) of the second node.
  • a physical uplink control channel physical uplink control channel, PUSCH
  • the power control parameter set includes a power control index.
  • the power control index may be a sounding reference signal resource index (SRI).
  • SRI is determined according to a transmission mode and / or a transmission capability.
  • the transmission mode may be a space division multiplex transmission mode, and the transmission capability may be the number of beams supported by the second node.
  • the power control indexes corresponding to different beams are different, and the power control indexes corresponding to different transmission modes are different.
  • the value of the power control index may be at least two, for example, two, or four.
  • the values of the closed loop index may include: i0 and i1, which may be indicated by 1 bit, for example, bit 0. i0, bit1 indicates i0.
  • i0 is used to instruct the second node IAB node2 to send an uplink signal to the power index value configured by node1 in the space division multiplexing scenario such as FIG. 4;
  • i1 is used by the second node IAB, node2 to send an uplink signal to the power index value configured by node1 in the space division multiplexing scenario like FIG. 5;
  • the second node provides services to the terminal device as a base station at a time point or time period, and simultaneously sends to the first node as an access terminal.
  • the uplink signal so for the second node, the link interference or influence of the second node serving as the base station to the terminal device must be considered. Therefore, compared to the configured uplink transmit power of the second node in FIG.
  • the uplink transmission power between the second node and the first node in 5 needs to be distinguished, and different uplink transmission powers are configured. This difference in uplink transmission power can be distinguished by i0 and i1 in the power control set, and further instructed to configure different power control parameter sets for implementation.
  • the power control indexes corresponding to different transmission modes are different.
  • the above-mentioned second node IAB node2 can also be used as a base station and use one or more beams to send uplink signals to the first node IAB node1.
  • the value of the closed loop index may include: i0, i1, i2, i3, which may be indicated by 2 bits, for example, 0 indicates i0, 01 indicates i1, 11 indicates i2, and 11 indicates i3.
  • the second node can support two beams, such as beam 1 and beam 2:
  • i0 is used to instruct the second node IAB node2 to use the beam index to send a power index value to node1 that needs to be configured;
  • i1 is used to instruct the second node IAB node2 to use the beam 2 to send a signal to node1 to configure the power index value.
  • the second node can support two beams, such as beam 1 and beam 2:
  • i2 is used to instruct the second node IAB node2 to use the beam index to send a signal to the power index value that needs to be configured on node1;
  • i3 is used to instruct the second node IAB node2 to use the beam 2 to send a signal to node1 to configure the power index value.
  • the power control set Since the interference or influence of the link where the second node serves the terminal device as a base station needs to be considered, it is also necessary to consider that the power index values corresponding to different beams are different, and the difference in uplink transmission power can be determined by the power control set. i0, i1, i2, and i3 are distinguished, and further instructed to configure different power control parameter sets for implementation.
  • parameter set of the power control further includes at least one of the following parameters characterizing the power control:
  • Uplink power control identification ID such as SRI-PUSCH-PowerControl ID
  • Uplink reference signal path loss identification ID such as PUSCH-PathlossReference RS-ID
  • Uplink transmission reference power p0-NominalWithGrant value range (-202 ⁇ 24) dBm, is the nominal reference power for uplink transmission;
  • Power control parameter P_0 is the adjustment amount of power control
  • alpha is the path loss compensation factor. 1 is the default value. The value ranges from 0 to 1. When 1 is set, all path losses are compensated. When 0 is used, no path loss is compensated at all. Multiply it by the path loss to obtain the specific value. Road damage compensation. That is alpha * PathLoss;
  • the above values are included in the P0-PUSCH-AlphaSet except p0-NominalWithGrant.
  • the above power parameter set has an Id number.
  • the power control index is associated with the above power control parameters, and provides different sets of power parameters for different transmission capabilities of different nodes and different transmission modes.
  • Each parameter in the power control set may be carried and sent through one or more RRC signalings.
  • the second node receives the RRC, and obtains a power control parameter set in the RRC.
  • the second node receives the RRC, acquires the power control parameter set in the RRC, and establishes an association relationship between the power control index and the power control parameter according to the power control parameter and the power control index in the power control parameter set. For example:
  • the second node stores and configures parameters in the RRC power control parameter set.
  • the first node sends a DCI to the second node.
  • the DCI includes: power control index indication information, where the power control index indication information is used for uplink transmission configured for the second node when the first node schedules the second node. Index of the power control.
  • the power control index indication information may be represented by bits. For example, taking the systems of FIG. 4 and FIG. 5 as examples, the power control indexes corresponding to different transmission modes are different.
  • the values of the closed loop indexes may include: i0 and i1, which may be indicated by 1 bit, for example, bit 0. Indicates i0, bit1 indicates i0. It may also be: taking the system of FIG. 4 or FIG.
  • the power control indexes corresponding to different transmission modes are different, and the above-mentioned second node IAB node2 may also serve as a base station and use one or more beams to send uplink signals to the first
  • the value of the closed loop index may include: i0, i1, i2, i3, which may be indicated by 2 bits, for example, 0 indicates i0, 01 indicates i1, 11 indicates i2, and 11 indicates i3. .
  • 1bit or 2bit to indicate the power control index, other methods are possible.
  • the second node receives the DCI, obtains power control index indication information, and determines a power control index value corresponding to the power control index indication information according to the power control index indication information.
  • the second node determines a power control value corresponding to the power control index indication information according to the DCI power control index indication information. For example, 0, it is determined that the power control index corresponding to the power control index indication information 0 is i0.
  • the second node determines the transmit power of the second node according to the power control index value and the power control parameter set.
  • the second node searches for a power control parameter set according to a power index value, such as i0, matches the power control parameter corresponding to i0, and obtains the power control parameter. According to the obtained power control parameter, the second node calculates and obtains the transmission power of the second node through a power control calculation formula.
  • the calculation formula for the power control may be:
  • the parameters involved in each power control parameter set involved in the above formula can be configured to the second node through RRC signaling.
  • the second node sends a signal by determining a transmission power.
  • determining the value of the power control index according to the transmission mode and / or transmission capacity can satisfy more application scenarios and support more transmission modes, such as node support At least two transmit beams can more flexibly and quickly adjust power control parameters in scenarios such as space division multiplexing and non-space division multiplexing.
  • An embodiment of the present invention also provides another embodiment, as shown in FIG. 7.
  • the embodiment of the present invention also provides another method for power control method. As shown in FIG. 7, the method includes:
  • the IAB network architecture diagram of FIG. 5 is taken as an example for illustration, but it is not limited to FIG. 5 and can be applied to the various network architecture diagrams of FIGS. 1-5 above.
  • the second node sends a reference signal.
  • the reference signals include: a synchronization signal SSB, a channel state information reference signal CSI-RS, a demodulation reference signal DMRS, a tracking reference signal TRS, a phase tracking reference signal PTRS, a sounding reference signal SRS, or other reference signals RS.
  • the reference signal sent by the second node may include a signal from the second node to the first node, or a signal from the second node to the terminal device UE.
  • the downlink signal from the second node to the terminal device UE is mainly used as an example.
  • the first node measures a reference signal (Reference Signal, RS) sent by the second node, and determines a dynamic range of the transmit power of the second node.
  • RS Reference Signal
  • the transmission power of the second node is the power at which the second node sends signals to the UE or to other nodes on the access link.
  • the transmission power is the downlink transmission power of the second node. For example, in FIG. 5, the downlink transmission power from the second node to the UE or the downlink transmission power from the second node to the next node.
  • Specific S702 may include:
  • the first node measures the reference signal to obtain a measurement result, where the measurement result is used to characterize the interference strength of the reference signal.
  • the first node determines the dynamic range of the transmission power of the second node according to the measurement result.
  • the measurement result includes at least one of the following:
  • RSRP Reference signal received power
  • RSSI reference signal reception quality
  • RSSI reference signal strength indicator
  • SINR Signal interference level
  • the dynamic range of the transmission power may be an adjustment value of the transmission power of the second node, for example: ⁇ Xdb or ⁇ Xdbm, or an upper limit value of the uplink transmission power, such as Xdb or Xdbm, which indicates the uplink transmission power. It cannot be higher than this upper limit, for example, the transmit power cannot exceed 20db, or it can be a range, for example: 10db-20db.
  • the above power dynamic range includes at least one: the dynamic range of Power Spectral Density (PSD), the unit is dbm / hz and or, the dynamic range of the power factor ratio (EPRE), the unit is dbm .
  • PSD Power Spectral Density
  • EPRE power factor ratio
  • the foregoing power range may also be a specific value, for example, 20 db and the like.
  • the first node when the first node schedules the second node to send signaling or data in the downlink slot of the second node, the first node can measure the reference signal of the second node, such as the synchronization signal SSB, and the channel state information reference signal CSI- RS, etc. to obtain the dynamic range of PSD or EPRE, for example: ⁇ 10dbm, or the range ⁇ -10db, ..., + 10db ⁇ , or 20db.
  • the reference signal of the second node such as the synchronization signal SSB, and the channel state information reference signal CSI- RS, etc.
  • the first node sends a dynamic range of the transmission power of the second node to the second node.
  • the first node may report or feedback through downlink control information (DCI) or a media access control element (MAC CE) or RRC signaling.
  • DCI downlink control information
  • MAC CE media access control element
  • the second node determines the transmission power according to the obtained dynamic range of the transmission power.
  • the second node determines the transmission power according to the dynamic range of the transmission power and its own pre-configured transmission power.
  • steps S700-S706 can be replaced by the following process:
  • the host base station (IAB donor) or the first node configures an EPRE / PSD reference value, so that when the second node needs space division multiplexing to send data to the first node through the backhaul link, the EPRE of the backhaul link
  • the / PSD reference value is equal to the EPRE / PSD reference value of the access link.
  • the first node indicates the power dynamic range to the second node, for example, the power reference EPEP / PSD power difference.
  • the power dynamic range can be notified to the second node by DCI every time, or the second node can be indicated by MAC CE.
  • the second node sends a signal to determine a sending power.
  • the relay node measures the uplink dynamic range of the uplink power to determine the uplink transmit power.
  • the transmit power is reasonably controlled, which reduces the impact on other links. Interference effects.
  • the present invention also provides another embodiment, which may be combined with the power control method of the embodiment corresponding to FIG. 6 and the embodiment corresponding to FIG. 7 to calculate the power of the backhaul link and the access link of the relay node.
  • the second node is calculated as the terminal device through the method flow of FIG. 6, and the transmission power between the second node and the first node is calculated.
  • the second node is calculated as the base station by the method corresponding to FIG. 7.
  • the power of the backhaul link and the access link of the second node in FIG. 5 can also be calculated by using the method flow provided by the embodiment corresponding to FIG. 6 alone, or by using the method provided by the embodiment corresponding to FIG. 7 alone.
  • the method flow provided in the embodiment corresponding to FIG. 6 is used for calculation.
  • FIG. 8 shows a schematic block diagram of a power control apparatus according to an embodiment of the present application.
  • the apparatus is configured to execute the method performed by the second node in the foregoing method embodiment.
  • the specific form of the apparatus may be a relay node or a chip in a relay node, or may be a terminal device or a chip in a terminal device. This embodiment of the present application does not limit this.
  • the device includes:
  • the transceiver unit 802 is configured to receive a radio resource control RRC, the RRC includes: a power control parameter set of a power control device, the power control parameter set includes: a power control index, and the power control index is based on transmission of the power controlled device Determining the mode and / or transmission capability; and receiving downlink control information DCI, the DCI includes: power control index indication information, where the power control index indication information is used to indicate a configured power control index value for uplink transmission.
  • RRC radio resource control
  • the RRC includes: a power control parameter set of a power control device
  • the power control parameter set includes: a power control index
  • the power control index is based on transmission of the power controlled device Determining the mode and / or transmission capability
  • DCI includes: power control index indication information, where the power control index indication information is used to indicate a configured power control index value for uplink transmission.
  • the processing unit 804 is configured to determine a transmission power according to the power control index indication information and a power control parameter set.
  • the power control device is used to execute the power control method shown in FIG. 6.
  • the related technical features have been described in detail above in conjunction with the method 600 shown in FIG. 6, and therefore will not be repeated here.
  • FIG. 9 is a schematic diagram of a logical structure of another power control device according to an embodiment of the present invention.
  • the power control apparatus may be a network device or a relay device, and the relay device may be a base station.
  • the network device includes a transceiver unit 902 and a processing unit 904. Take FIG. 2 to FIG. 5 as an example, the network device is a first node.
  • the transceiver unit 902 is configured to send a radio resource control RRC, the RRC includes: a power control parameter set of a power control device, the power control parameter set includes: a power control index, and the power control index is based on Determining a transmission mode and / or a transmission capability; and receiving downlink control information DCI, the DCI includes: power control index indication information, where the power control index indication information is used to indicate a configured power transmission index value for uplink transmission.
  • the processing unit 904 is configured to determine the power control parameter set, where the power control parameter set includes: a power control index, and the power control index is determined according to a transmission mode and / or a transmission capability of the second node.
  • This network device is used to execute the power control method shown in FIG. 7, and related technical features have been described in detail above in conjunction with the method shown in FIG. 7, and therefore will not be repeated here.
  • FIG. 10 is a schematic diagram of a hardware structure of a network device according to an embodiment of the present invention.
  • the network device includes a processor 1002, a transceiver 1004, a plurality of antennas 1006, a memory 1008, an I / O (Input / Output) interface 1010, and a bus 1012.
  • the transceiver 1004 further includes a transmitter 10042 and a receiver 10044, and the memory 1008 is further used for storing instructions 10082 and data 10084.
  • the processor 1002, the transceiver 1004, the memory 1008, and the I / O interface 1010 are communicatively connected to each other through a bus 1012, and a plurality of antennas 1006 are connected to the transceiver 1004.
  • the processor 1002 may be a general-purpose processor, such as, but not limited to, a Central Processing Unit (CPU), or a special-purpose processor, such as, but not limited to, a Digital Signal Processor (DSP), an application Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA), etc.
  • the processor 1002 may also be a combination of multiple processors.
  • the processor 1002 may be configured to execute, for example, the operations performed by the processing unit in FIG. 8 and FIG. 9 described above.
  • the processor 1002 may be a processor specifically designed to perform the above steps and / or operations, or may be a processor that executes the above steps and / or operations by reading and executing instructions 10082 stored in the memory 1008.
  • the processor 1002 Data 7084 may be required during the above steps and / or operations.
  • the transceiver 1004 includes a transmitter 10042 and a receiver 10044, wherein the transmitter 10042 is configured to transmit a signal through at least one antenna among the multiple antennas 1006.
  • the receiver 10044 is configured to receive a signal through at least one antenna among the multiple antennas 1006.
  • the transmitter 10042 may be specifically configured to be executed by at least one antenna among multiple antennas 1006, for example, the operations performed by the transceiver unit in FIG. 8 and FIG. 9 described above. .
  • the memory 1008 may be various types of storage media, such as Random Access Memory (RAM), Read Only Memory (ROM), Non-Volatile RAM (NVRAM), Programming ROM (Programmable ROM, PROM), Erasable PROM (Erasable PROM, EPROM), Electrically Erasable PROM (Electrically Erasable PROM, EEPROM), flash memory, optical memory and registers, etc.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • NVRAM Non-Volatile RAM
  • PROM Programming ROM
  • Erasable PROM Erasable PROM
  • EPROM Electrically Erasable PROM
  • EEPROM Electrically Erasable PROM
  • flash memory optical memory and registers, etc.
  • the memory 1008 is specifically configured to store instructions 10082 and data 10084.
  • the processor 1002 can read and execute the instructions 10082 stored in the memory 1008 to perform the steps and / or operations described above, and perform the operations and / or steps Data may be used in the process.
  • the I / O interface 1010 is used for receiving instructions and / or data from a peripheral device and outputting instructions and / or data to the peripheral device.
  • the network device may also include other hardware devices, which will not be enumerated in this article.
  • the hardware structure diagram of the foregoing network device may be a hardware structure diagram of the network equipment of FIG. 8 or FIG. 9.
  • the technical solution provided by the embodiment of the present invention may be implemented by a processor + transceiver.
  • the processor is configured to perform various processing operations, such as, but not limited to, generation, determination, judgment, search, extraction, acquisition, and reading. , Receive input data to be processed and output processed data and other operations, the transceiver is used to perform operations such as transmission and reception.
  • the processor can be implemented in the following ways:
  • the processor is a dedicated processor.
  • the processor may further include an interface circuit and a processing circuit, where the interface circuit is configured to receive data that needs to be processed by the processing circuit, and output the processing of the processing circuit.
  • the processing circuit is used to perform the various processing operations described above.
  • the processor is implemented by using a general-purpose processor + memory architecture.
  • the general-purpose processor is configured to execute processing instructions stored in the memory, and these processing instructions are used to instruct the general-purpose processor to perform the foregoing various processing operations. It is not difficult to understand that the processing performed by the general-purpose processor depends on the processing instructions stored in the memory. By modifying the processing instructions in the memory, the general-purpose processor can be controlled to output different processing results.
  • the general-purpose processor and the memory may be integrated on a same chip, for example, the general-purpose processor and the memory may be integrated on a processing chip.
  • the general-purpose processor and the memory may also be provided on different chips, for example, the general-purpose processor is provided on a processing chip, and the memory is provided on a storage chip.
  • the technical solution provided by the embodiment of the present invention may also be implemented by means of a computer-readable storage medium, where the computer-readable storage medium stores processing instructions for implementing the technical solution of the embodiment of the present invention for reading by a general-purpose processing device.
  • a general-purpose processing device To complete the technical solution provided by the embodiment of the present invention.
  • the above-mentioned general processing device should be understood as a processing device including necessary hardware devices such as a processor and a transceiver, and the operation of these hardware devices depends on the processing instructions stored in the computer-readable storage medium.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server, or data center Transmission by wire (for example, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (for example, infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, and the like that includes one or more available medium integration.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (Solid State Disk (SSD)), and the like.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a DVD
  • a semiconductor medium for example, a solid state disk (Solid State Disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种功率控制的方法,该方法包括:第二节点接收来自第一节点的无线资源控制RRC,所述RRC包括:为第二节点配置的功率控制参数集合,所述功率控制参数集合包括:功率控制索引,所述功率控制索引根据第二节点的传输模式和/或传输能力确定;接收下行控制信息DCI,所述DCI包括:功率控制索引指示信息,所述功率控制索引指示信息用于当第一节点调度第二节点时,指示为第二节点配置的上行传输的功率控制索引值;根据所述功率控制索引指示信息以及功率控制参数集合,确定发送功率;以确定的发送功率发送信号。该方法支持更多传输模式,例如节点支持至少两个发送波束,在空分复用和非空分复用等场景下的更加灵活、快速地进行功率控制参数调整。

Description

一种功率控制的方法和装置
本申请要求于2018年8月10日提交中国国家知识产权局、申请号为201810912271.2、申请名称为“一种功率控制的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种功率控制的方法和装置。
背景技术
在第五代通信系统(5th generation mobile networks or 5th generation wireless systems,5G)中,集成接入和回传(integrated access and backhaul,IAB)节点是中继技术的演进节点。在无线通信网络中,中继节点通常用来实现扩展覆盖或者盲区覆盖,或者用于提升系统容量。该IAB节点在功能上分为:IAB移动终端(mobile terminating,MT)和IAB基站分布式单元(Distributed Unit,DU)。其中IAB MT指IAB作为终端设备UE,接入到上级节点。IAB DU指的是IAB作为基站分布式单元,给UE和其他下游节点提供接入服务的。
IAB节点在接入网络时,IAB DU给UE提供服务的链路称为接入链路(Access link,AC),向其他IAB节点发送数据的链路称为回传链路(backhaul link,BH),如果沿用现有技术中的发送功率的计算流程,该IAB节点的接入链路和回传链路的发送功率不平衡,会导致对链路造成很大影响。因此,如何对IAB节点进行功率控制,是当前IAB标准化需要考虑的问题。
发明内容
有鉴于此,本申请提供一种功率控制的方法和装置,通过传输模式和/或传输能力确定功率控制索引的值,可以满足更多的应用场景,支持更多的传输模式,例如节点支持至少两个发送波束,在空分复用和非空分复用等场景下的更加灵活、快速地进行功率控制参数调整。
第一方面,一种功率控制的方法,包括:
第二节点接收来自第一节点的无线资源控制RRC,所述RRC包括:为第二节点配置的功率控制参数集合,所述功率控制参数集合包括:功率控制索引,所述功率控制索引根据第二节点的传输模式和/或传输能力确定;所述第二节点接收下行控制信息DCI,所述DCI包括:功率控制索引指示信息,所述功率控制索引指示信息用于当第一节点调度第二节点时,指示为第二节点配置的上行传输的功率控制索引值;所述第二节点根据所述功率控制索引指示信息以及功率控制参数集合,确定发送功率;所述第二节点以确定的发送功率发送信号。
通过上述实施例中提供的在考虑对节点进行功率控制的时候,根据传输模式和/或传 输能力确定功率控制索引的值,可以满足更多的应用场景,支持更多的传输模式,例如节点支持至少两个发送波束,在空分复用和非空分复用等场景下的更加灵活、快速地进行功率控制参数调整。
在一种可能的实现方式中,所述第二节点的传输模式为空分复用传输模式,所述第二节点的传输能力为所述第二节点支持的波束数量。
在一种可能的实现方式中,所述方法还包括:不同的传输模式对应的功率控制索引不同传输能力对应的功率控制索引不同。
在一种可能的实现方式中,所述功率控制参数集合还包括下面的至少一种功率控制参数:
上行功率控制标识、上行参考信号路径损耗标识、上行传输基准功率、功控参数或者路径损耗补偿因子。
在一种可能的实现方式中,所述功率控制索引与所述功率控制参数进行关联。
在一种可能的实现方式中,所述第二节点根据所述功率控制索引指示信息以及功率控制参数集合,确定发送功率具体包括:
所述第二节点根据所述功率控制索引指示信息,获得所述功率控制索引指示信息指示的功率控制索引;
所述第二节点根据所述获得的功率控制索引,通过所述功率控制参数集合,获得与所述功率控制索引对应的功率控制参数;
所述第二节点根据功率控制参数和功率控制计算公式,确定发送功率。
第二方面,一种功率控制的方法,包括:
发送参考信号;
接收发送功率的动态范围,所述发送功率动态范围是根据参考信号确定的发送功率动态范围;
根据所述发送功率的动态范围,确定发送功率;
以确定的发送功率发送信号。
本实施例的方案,中继节点通过测量,再反馈上行的功率动态范围,进而确定上行发送功率,实现中继节点空分发送的数据时,合理的控制发送功率,降低了对其他链路的干扰影响。
在一种可能的实现方式中,所述发送功率动态范围包括:功率谱密度PSD的动态范围和或功率因子比率EPRE的动态范围。
在一种可能的实现方式中,所述根据所述发送功率的动态范围,确定发送功率具体包括:
所述根据所述发送功率的动态范围以及预先配置的发送功率,调整发送功率。
第三方面,一种功率控制的装置,包括:
收发器,用于接收无线资源控制RRC,所述RRC包括:功率控制的装置的功率控制参数集合,所述功率控制参数集合包括:功率控制索引,所述功率控制索引根据功率控制的装置的传输模式和/或传输能力确定;以及接收下行控制信息DCI,所述DCI包括:功率控制索引指示信息,所述功率控制索引指示信息用于指示配置的上行传输的功率控制索引值。
处理器,用于根据所述功率控制索引指示信息以及功率控制参数集合,确定发送功率。
第四方面,一种功率控制的装置,包括:
收发器,用于发送参考信号,以及接收发送功率的动态范围,所述发送功率动态范围是根据参考信号确定的发送功率动态范围;以确定的发送功率发送信号
处理器,用于根据所述发送功率的动态范围,确定发送功率。
第五方面,一种功率控制的装置,包括:
存储器,用于存储程序;
处理器,用于执行所述存储器存储的所述程序,当所述程序被执行时,所述处理器用于执行第一方面或者第二方面的任一所述的方法。
第六方面,一种功率控制的装置,包括:
一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如第一方面或者第二方面任一所述的方法
第七方面,一种功率控制的装置,包括:一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如第一方面或者第二方面任一所述的方法。
第八方面,一种芯片,包括存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于从所述存储器中调用并运行所述计算机程序,使得所述处理器执行如权利要求第一方面或者第二方面中任一所述的方法。
附图说明
图1是应用本申请实施例的系统架构图;
图2-图5是本申请实施例的提供的另一种系统架构图;
图6是本申请实施例的提供的功率控制的方法的示意性流程图;
图7是本申请实施例的提供的另一种功率控制的方法的示意性流程图;
图8是根据本申请实施例的功率控制的装置的示意性框图。
图9是根据本申请实施例的另一种功率控制的装置的示意性框图。
图10是根据本申请实施例的网络设备的硬件结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1为本申请实施例提供的通信系统的示意图。如图1所示,通信系统包括网络设备和至少一个终端设备,其中,终端设备处在网络设备覆盖范围内并与网络设备进行通信,以实施下述各本申请实施例提供的技术方案。本实施例的通信系统可以应用于多TRP场景。
本申请实施例结合网络设备和终端设备描述了各个实施例,该网络设备和终端设备可以工作在许可频段或免许可频段上,其中:
终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是无线局域网(Wireless Local Area Networks,WLAN)中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal  Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,第五代通信(the fifth-generation,5G)网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备,NR系统中的终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,网络设备又称为无线接入网(Radio Access Network,RAN)设备,是一种将终端设备接入到无线网络的设备,可以是长期演进(Long Term Evolution,LTE)中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者5G网络中的网络设备或者未来演进的PLMN网络中的网络设备,或NR系统中的新一代基站(new radio Node B,gNodeB)等,在此并不限定。
另外,在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信。该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(small cell)对应的基站。这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
图1为本申请实施例所适用的通信系统的结构示意图。
需要说明的是,本申请实施例提及的通信系统包括但不限于:窄带物联网(narrow band-internet of things,NB-IoT)系统、长期演进(long term evolution,LTE)系统,下一代5G移动通信系统或者5G之后的通信系统,或者设备到设备(device to device,D2D)通信系统。
在图1所示的通信系统中,给出了一体化的接入和回程IAB系统。一个IAB系统至少包括一个基站100,及基站100所服务的一个或终端101,一个或多个中继节点rTRP 110,及该rTRP 110所服务的一个或多个终端111,通常基站100被称为宿主基站(donor next generation node B,DgNB),rTRP 110通过无线回程链路113连接到基站100。本申请中,终端又被称为终端,宿主基站在也称为宿主节点,即,Donor节点。基站包括但不限于:演进型节点B(evolved node base,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseband unit,BBU)、或下一代新空口基站(比如gNB)等。
一体化的接入和回程系统还可以包括多个其他中继节点,例如rTRP 120和rTRP 130,rTRP 120是通过无线回程链路123连接到中继节点rTRP 110以接入到网络的,rTRP 130是通过无线回程链路133连接到中继节点rTRP 110以接入到网络的,rTRP 120为一个或 多个终端121服务,rTRP 130为一个或多个终端131服务。图1中,中继节点rTRP 110和rTRP 120都通过无线回程链路连接到网络。在本申请中,所述无线回程链路都是从中继节点的角度来看的,比如无线回程链路113是中继节点rTRP 110的回程链路,无线回程链路123是中继节点rTRP 120的回程链路。如图1所示,一个中继节点,如120,可以通过无线回程链路,如123,连接另一个中继节点110,从而连接到网络,而且,中继节点可以经过多级无线中继节点连接到网络。
通常,把提供无线回程链路资源的节点,如110,称为中继节点120的上级节点,而120则称为中继节点110下级节点。通常,下级节点可以被看作是上级节点的一个终端。应理解,图1所示的一体化接入和回程系统中,一个中继节点连接一个上级节点,但是在未来的中继系统中,为了提高无线回程链路的可靠性,一个中继节点,如120,可以有多个上级节点同时为其提供服务,如图中的rTRP 130还可以通过回程链路134连接到中继节点rTRP 120,即,rTRP 110和rTRP 120都为rTRP 130的上级节点。在本申请中,所述终端101,111,121,131,可以是静止或移动设备。例如移动设备可以是移动电话,智能终端,平板电脑,笔记本电脑,视频游戏控制台,多媒体播放器,甚至是移动的中继节点等。静止设备通常位于固定位置,如计算机,接入点(通过无线链路连接到网络,如静止的中继节点)等。中继节点rTRP 110,120,130的名称并不限制其所部署的场景或网络,可以是比如relay,RN等任何其他名称。本申请使用rTRP仅是方便描述的需要。
在图1中,无线链路102,112,122,132,113,123,133,134可以是双向链路,包括上行和下行传输链路,特别地,无线回程链路113,123,133,134可以用于上级节点为下级节点提供服务,如上级节点100为下级节点110提供无线回程服务。应理解,回程链路的上行和下行可以是分离的,即,上行链路和下行链路不是通过同一个节点进行传输的。所述下行传输是指上级节点,如节点100,向下级节点,如节点110,传输信息或数据,上行传输是指下级节点,如节点110,向上级节点,如节点100,传输信息或数据。所述节点不限于是网络节点还是终端,例如,在D2D场景下,终端可以充当中继节点为其他终端服务。无线回程链路在某些场景下又可以是接入链路,如回程链路123对节点110来说也可以被视作接入链路,回程链路113也是节点100的接入链路。应理解,上述上级节点可以是基站,也可以是中继节点,下级节点可以是中继节点,也可以是具有中继功能的终端,如D2D场景下,下级节点也可以是终端。
图1中,Donor节点是指通过该节点可以接入到核心网的节点,或者是无线接入网的一个锚点基站,通过该锚点基站可以接入到网络。锚点基站负责分组数据汇聚协议(packet data convergence protocol,PDCP)层的数据处理,或者负责接收核心网的数据并转发给中继节点,或者接收中继节点的数据并转发给核心网。
为描述方便,以下将中继节点称为第一节点,第一节点的上级节点称为第二节点。第一节点和第二节点可以为基站,中继节点,具有中继功能的终端,或者任何具有中继功能的设备。
当中继节点在半双工约束下,带内中继的无线回程链路与接入链路的频谱资源重合,即,带内中继的回传链路与接入链路具有相同频段。如,rTRP在基站的下行无线回程链路进行接收时,就不能向下属终端或设备进行传输;而rTRP在回程链路上向上级节点进行上行传输时,不能接收下属终端或设备在上行接入链路或下级节点的回程链路上的传输。 应理解,带内中继的半双工约束指的是同时同频收发的半双工约束,与系统本身采用的时分双工(Time Division Duplexing,TDD)或频分双工方式(Frequency Division Duplexing,FDD)无关。
下面对一些常用的技术术语给出如下定义:
接入链路:接入链路是指某个节点和它的下级节点进行通信时所使用的无线链路,包括上行传输和下行传输的链路。接入链路上的上行传输也被称为接入链路的上行传输,下行传输也被称为接入链路的下行传输。其中的节点包括但不限于前述IAB节点。
回传链路:回传链路是指某个节点和它的上级节点进行通信时所使用的无线链路,包括上行传输和下行传输的链路。回传链路上的上行传输也被称为回传链路的上行传输,下行传输也被称为回传链路的下行传输。其中的节点包括但不限于前述IAB节点。
对于波束(beam),可以理解为空间资源,可以指具有能量传输指向性的发送或接收预编码向量。并且,该发送或接收预编码向量能够通过索引信息进行标识。其中,能量传输指向性可以指通过该预编码向量对所需发送的信号进行预编码处理,经过该预编码处理的信号具有一定的空间指向性,接收经过该预编码向量进行预编码处理后的信号具有较好的接收功率,如满足接收解调信噪比等;所述能量传输指向性也可以指通过该预编码向量接收来自不同空间位置发送的相同信号具有不同的接收功率。可选地,同一通信设备,比如终端设备或网络设备,可以有不同的预编码向量,不同的通信设备也可以有不同的预编码向量,即对应不同的波束。
针对通信设备的配置或者能力,一个通信设备在同一时刻可以使用多个不同的预编码向量中的一个或者多个,即同时可以形成一个波束或者多个波束。波束信息可以通过索引信息进行标识,可选地,所述索引信息可以对应配置终端设备的资源标识(identity,ID)。例如,所述索引信息可以对应配置的信道状态信息参考信号(Channel status information Reference Signal,CSI-RS)的ID或者索引(index)或资源,也可以是对应配置的上行探测参考信号(Sounding Reference Signal,SRS)的ID或者资源。或者,可选地,所述索引信息也可以是通过波束承载的信号或信道显示或隐式承载的索引信息,比如,所述索引信息包括但是不限于通过波束发送的同步信号或者广播信道指示该波束的索引信息。该资源可以是以下至少一种:时域、频域、码域(序列)。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
另外,由于5G NR支持高频段,并且采用了大规模天线技术(Massive MIMO),使得信号的能量可以集中的向某个方向传输,这样使得IAB设备可以同时接收多个方向传输过来的信号,下面再介绍IAB中空分传输中的一些系统组成示意图,如图2-图5所示。
图2-图5所示,IAB系统包括:IAB设备,例如:IAB node 0,IAB node1,IAB node2,以及各IAB设备所服务的终端设备UE。图2中,IAB node 1同时接收来自UE的上行信号和来自IAB node 2的上行信号。图3中,IAB node 1所服务的UE,和相邻的节点IAB node 2同时发送上行信号,IAB node 1同时接收来自UE的上行信号和来自IAB node 0以及IAB node 2的上行信号。图4中,IAB node 1所服务的UE和IAB node 2同时发送上行信号,IAB node 1同时接收来自UE的上行信号和来自IAB node 2的上行信号。图5中, IAB node 2在一个时间点或者时间段内,IAB node 2向UE发送下行信号,同时向IAB node1发送上行信号。
图6为本申请实施例提供的一种功率控制的方法流程图,如图6所示,本实施例的方法包括:
以下以IAB中的中继节点以IAB节点为例,以图5所示的IAB系统架构为例对功率控制的方法进行描述,其中,为了便于描述,以IAB Node2作为第一节点,第一节点的上级节点称为第二节点,例如IAB Node1。第一节点和第二节点可以为基站,中继节点,具有中继功能的终端,或者任何具有中继功能的设备。IAB node 2在一个时间点或者时间段内,IAB node 2向终端设备UE发送下行信号,同时向IAB node 1发送上行信号。
S600、第一节点发送无线资源控制RRC给第二节点,所述RRC包括:为第二节点配置的功率控制参数集合,所述功率控制参数集合包括:功率控制索引,所述功率控制索引根据传输模式和/或传输能力确定。
其中,所述功率控制参数集合用于控制第二节点的物理上行控制信道(physical uplink control channel,PUSCH)的发送功率。
所述功率控制参数集合包括:功率控制索引,具体所述功率控制索引可以为信道探测参考信号资源索引(sounding reference signal-Resource Index,SRI),SRI是根据传输模式和/或传输能力确定的,其中,所述传输模式可以为空分复用传输模式,所述传输能力可以为所述第二节点支持的波束数量。不同的波束对应的功率控制索引不同,不同的传输模式对应的功率控制索引不同。根据不同的传输模式和/或传输能力,所述功率控制索引的值可以为至少2个,例如2个,或者4个等。
以信道探测参考信号资源索引-物理上行控制信道-闭环索引SRI-PUSCH-CloesdLoopIndex为例,结合图4和图5不同的应用场景以及第二节点支持的不同波束为例具体描述上述闭环索引的值。
以图4和图5系统为例,不同的传输模式对应的功率控制索引不同,所述闭环索引的值可以包括:i0和i1,该值可以通过1个比特bit进行指示,例如用bit 0指示i0,bit1指示i0。
i0用于指示第二节点IAB node2在图4这种空分复用的场景中发送上行信号给node1配置的功率索引值;
i1用于第二节点IAB node2在图5这种空分复用的场景中发送上行信号给node1配置的功率索引值;
由于图4和图5的不同场景下,尤其是图5中,由于第二节点在一个时间点或者时间段内,作为基站向终端设备提供服务,同时向作为接入终端,向第一节点发送上行信号,所以对于第二节点而言,要考虑到第二节点作为基站给终端设备提供服务的链路干扰或者影响,因此,相对图4中第二节点的被配置的上行发送功率,针对图5中的第二节点与第一节点之间的上行发送功率是需要进行区别,配置不同的上行发送功率。该上行发送功率的不同可以通过功率控制集合中的i0和i1进行区分,进而进一步指示被配置不同的功率控制参数集来实现。
以图4或者图5系统为例,不同的传输模式对应的功率控制索引不同,上述的第二节点IAB node2还可以作为基站,使用一个或者多个波束来发送上行信号给第一节点IAB  node1,所述闭环索引的值可以包括:i0,i1,i2,i3,该值可以通过2个比特bit进行指示,例如用0 0指示i0,01指示i1,11指示i2,11指示i3。
基于图4,第二节点可以支持两种波束,例如波束1和波束2:
i0用于指示第二节点IAB node2使用波束1发送信号到node1所需要配置的功率索引值;
i1用于指示第二节点IAB node2使用波束2发送信号到node1所需要配置的功率索引值。
基于图5,第二节点可以支持两种波束,例如波束1和波束2:
i2用于指示第二节点IAB node2使用波束1发送信号到node1所需要配置的功率索引值;
i3用于指示第二节点IAB node2使用波束2发送信号到node1所需要配置的功率索引值。
由于要考虑到第二节点作为基站给终端设备提供服务的链路的干扰或者影响,进一步还需要考虑到不同的波束对应的功率索引值不同,该上行发送功率的不同可以通过功率控制集合中的i0,i1,i2,i3进行区分,进而进一步指示被配置不同的功率控制参数集来实现。
进一步地,所述功率控制的参数集还包括下面至少一种表征功率控制的参数:
1.上行功率控制标识ID,例如SRI-PUSCH-PowerControl ID;
2.上行参考信号路径损耗标识ID,例如PUSCH-PathlossReference RS-ID;
3.上行传输基准功率p0-NominalWithGrant,取值范围(-202~24)dBm,是上行发送的标称基准功率;
4.功控参数P_0,是功控的调整量;
5.alpha,是路径损耗补偿因子,1为默认值,取值范围0~1,取1的时候即将所有路径损耗都补偿,取0为完全不补偿路径损耗,用它乘以路损得到具体的路损补偿。即alpha*PathLoss;
上述值除了p0-NominalWithGrant,其余都包含在P0-PUSCH-AlphaSet中,上述功率参数集是有Id编号。
其中,功率控制索引与上述功率控制参数进行关联,针对不同的节点的不同传输能力以及不同的传输模式提供不同的功率参数集合。
所述上述功率控制集合中的各参数可以通过一条或者多条RRC信令承载并发送。
S602、第二节点接收所述RRC,获取所述RRC中的功率控制参数集合。
具体地,所述第二节点接收RRC,获取所述RRC中的功率控制参数集合,根据功率控制参数集合中的功率控制参数以及功率控制索引,建立所述功率控制索引与功率控制参数的关联关系,例如如下:
Figure PCTCN2019100065-appb-000001
可选地,第二节点将所述RRC的功率控制参数集合中的参数进行存储、配置。
S604、第一节点发送DCI给第二节点,所述DCI包括:功率控制索引指示信息,所述功率控制索引指示信息用于当第一节点调度第二节点时,为第二节点配置的上行传输的功率控制索引值。
功率控制索引指示信息可以通过比特来表示。例如以图4和图5系统为例,不同的传输模式对应的功率控制索引不同,所述闭环索引的值可以包括:i0和i1,该值可以通过1个比特bit进行指示,例如用bit 0指示i0,bit1指示i0。还可以是:以图4或者图5系统为例,不同的传输模式对应的功率控制索引不同,上述的第二节点IAB node2还可以作为基站,使用一个或者多个波束来发送上行信号给第一节点IAB node1,所述闭环索引的值可以包括:i0,i1,i2,i3,该值可以通过2个比特bit进行指示,例如用0 0指示i0,01指示i1,11指示i2,11指示i3。不限制用1bit或者2bit去指示功率控制索引,其它方式都可以。
S606、第二节点接收所述DCI,获取功率控制索引指示信息,根据所述功率控制索引指示信息,确定与所述功率控制索引指示信息对应的功率控制索引值。
具体地,所述第二节点根据DCI的功率控制索引指示信息,确定与所述功率控制索引指示信息对应的功率控制值。例如0,确定该功率控制索引指示信息0对应的功率控制索引为i0。
S608、第二节点根据功率控制索引值以及功率控制参数集合,确定第二节点的发送功率。
所述第二节点根据功率索引值,例如i0,查找功率控制参数集合,匹配i0对应的功率控制参数,获得所述功率控制参数。所述第二节点根据获得的功率控制参数,通过功率控制计算公式,计算获得第二节点的发送功率。
所述功率控制的计算公式可以为:
Figure PCTCN2019100065-appb-000002
其中,上述公式中涉及的各功率控制参数集合中涉及的参数都可以通过RRC信令配置给第二节点。
S610、第二节点以确定发送功率发送信号。
通过上述实施例中提供的在考虑对节点进行功率控制的时候,根据传输模式和/或传输能力确定功率控制索引的值,可以满足更多的应用场景,支持更多的传输模式,例如节点支持至少两个发送波束,在空分复用和非空分复用等场景下的更加灵活、快速地进行功率控制参数调整。
本发明实施例还提供另一种实施例,如图7所示。
当中继节点例如第二节点给终端设备提供服务,第一节点在调度第二节点时需要考虑回传链路的接入功率差。因此,本发明实施例还提供另一种功率控制的方法流程,如图7 所示,所述方法包括:
以图5的IAB的组网架构图为例进行举例说明,但是不限制与图5,可以应用到上面图1-图5的各种组网架构图中。
S700、第二节点发送参考信号。
所述参考信号包括:同步信号SSB,信道状态信息参考信号CSI-RS,解调参考信号DMRS,跟踪参考信号TRS,相位跟踪参考信号PTRS,探测参考信号SRS,或其他参考信号RS。
所述第二节点发送的参考信号可以包括:第二节点到第一节点的信号,或者,第二节点到终端设备UE的信号,这里主要以第二节点到终端设备UE的下行信号为例。
S702、第一节点对第二节点发送的参考信号(Reference Signal,RS)进行测量,确定第二节点的发送功率动态范围。
所述第二节点的发送功率为第二节点在接入链路上给UE或给其他节点发送信号的功率。该发送功率为第二节点的下行发送功率,例如图5中,第二节点到UE的下行发送功率或者第二节点到下一个节点的下行发送功率。
具体的S702具体可以包括:
首先,第一节点测量所述参考信号,获得测量结果,所述测量结果用于表征所述参考信号的干扰强度。
其次,第一节点根据测量结果,确定第二节点的发送功率动态范围。
所述测量结果包括下面至少一种:
参考信号接收功率(refernce signal receving power,RSRP),参考信号接收质量(refernce signal receiving quality,RSRQ),参考信号强度指示(Received Signal Strength Indicator,RSSI)或者信号干扰水平(信号干扰噪声比SINR signal to Interference Plus noise ratio)。
其中,所述发送功率的动态范围可以为第二节点的发送功率的调整值大小,例如:±Xdb或者±Xdbm,也可以为上行发送功率的上限值,例如Xdb或者Xdbm,表示上行发送功率不能高于这个上限值,例如发送功率不可以超过20db,也可以是一个范围,例如:10db-20db。
上述的功率动态范围包括至少一种:功率谱密度(Power Spectral Density,PSD)的动态范围,单位是dbm/hz和或,功率因子比率(Energy per resource element,EPRE)的动态范围,单位是dbm。
可选的,上述的功率范围也可以是一种具体的值,例如20db等。
例如:第一节点在第二节点的下行时隙里调度第二节点发送信令或者数据时,第一节点可以测量第二节点的参考信号,例如:同步信号SSB,信道状态信息参考信号CSI-RS等,获得PSD或者EPRE的动态范围,例如:±10dbm,或范围{-10db,…,+10db},或者20db。
S704、第一节点发送第二节点的发送功率动态范围给第二节点。
进一步地,可通过第一节点可以通过下行控制信息(Downlink Control Information,DCI)或媒体接入控制层的控制元素(Media Access Control control element,MAC CE)或RRC信令进行上报或反馈。
S706、第二节点根据获得的发送功率动态范围,确定发送功率。
其中,所述第二节点根据发送功率的动态范围,以及自己的预先配置的发送功率,确 定发送功率。
可选地,步骤S700-S706可以通过下面的流程进行替代:
首先,宿主基站(IAB donor)或者第一节点配置一个EPRE/PSD的参考值,使得第二节点需要空分复用通过回传链路发送数据到第一节点时,该回传链路的EPRE/PSD参考值等于接入链路的EPRE/PSD参考值。
其次,每次激活空分复用发送时,第一节点向第二节点指示功率动态范围,例如功率参考EPRE/PSD的功率差。
功率动态范围可以通过DCI在每次调度时通知第二节点,或通过MAC CE指示第二节点。
S708、第二节点以确定发送功率发送信号。
本实施例的方案,中继节点通过测量,再反馈上行的功率动态范围,进而确定上行发送功率,实现中继节点空分发送的数据时,合理的控制发送功率,降低了对其他链路的干扰影响。
本发明还提供另一种实施例,可以通过上述图6对应的实施例以及图7对应的实施例的功率控制方法进行组合,计算中继节点的回传链路以及接入链路的功率。
例如,以图5为例,通过图6的方法流程计算第二节点作为终端设备,第二节点与第一节点之间的发送功率,通过图7对应的方法计算第二节点作为基站,第二节点为终端设备提供服务的接入链路的发送功率。当然,也可以单独通过图6对应的实施例提供的方法流程计算图5中的第二节点的回传链路以及接入链路的功率,或者,单独通过图7对应的实施例提供的方法计算图5中的第二节点的回传链路以及接入链路的发送功率,或者第二节点的回传链路的发送功率用图7对应的方法计算,接入链路的发送功率用图6对应的实施例提供的方法流程进行计算。具体请参见上述具体实施例的描述,这里就不再赘述。
上述结合图1至图7详细描述了根据本申请实施例的功率控制的方法。下面将结合图描述根据本申请实施例的功率控制的装置。应理解,方法实施例所描述的技术特征同样适用于以下装置实施例。
图8示出了根据本申请实施例的功率控制的装置的示意性框图。所述装置用于执行前文方法实施例中第二节点执行的方法。可选地,所述装置的具体形态可以是中继节点或中继节点中的芯片,或者,可以是终端设备或终端设备中的芯片。本申请实施例对此不作限定。
所述装置包括:
收发单元802和处理单元804。
收发单元802用于接收无线资源控制RRC,所述RRC包括:功率控制的装置的功率控制参数集合,所述功率控制参数集合包括:功率控制索引,所述功率控制索引根据功率控制的装置的传输模式和/或传输能力确定;以及接收下行控制信息DCI,所述DCI包括:功率控制索引指示信息,所述功率控制索引指示信息用于指示配置的上行传输的功率控制索引值。
处理单元804,用于根据所述功率控制索引指示信息以及功率控制参数集合,确定发送功率。
功率控制的装置用于执行图6所示的功率控制的方法,相关技术特征已经在上文结合 图6所示的方法600进行了详细的描述,因此此处不再赘述。
图9是依照本发明一实施例的另一功率控制装置的逻辑结构示意图。在具体实现过程中,该功率控制装置可以是网络设备可以是中继设备,所述中继设备可以是基站。所述网络设备包括收发单元902和处理单元904。以图2-图5为例,该网络设备为第一节点。
收发单元902,用于发送无线资源控制RRC,所述RRC包括:功率控制的装置的功率控制参数集合,所述功率控制参数集合包括:功率控制索引,所述功率控制索引根据功率控制的装置的传输模式和/或传输能力确定;以及接收下行控制信息DCI,所述DCI包括:功率控制索引指示信息,所述功率控制索引指示信息用于指示配置的上行传输的功率控制索引值。
处理单元904,用于确定所述功率控制参数集合,所述功率控制参数集合包括:功率控制索引,所述功率控制索引根据第二节点的传输模式和/或传输能力确定。
该网络设备用于执行图7所示的功率控制方法,相关技术特征已经在上文结合图7所示的方法进行了详细的描述,因此此处不再赘述。
图10是依照本发明一实施例的网络设备的硬件结构示意图。如图10所示,网络设备包括处理器1002、收发器1004、多根天线1006,存储器1008、I/O(输入/输出,Input/Output)接口1010和总线1012。收发器1004进一步包括发射器10042和接收器10044,存储器1008进一步用于存储指令10082和数据10084。此外,处理器1002、收发器1004、存储器1008和I/O接口1010通过总线1012彼此通信连接,多根天线1006与收发器1004相连。
处理器1002可以是通用处理器,例如但不限于,中央处理器(Central Processing Unit,CPU),也可以是专用处理器,例如但不限于,数字信号处理器(Digital Signal Processor,DSP)、应用专用集成电路(Application Specific Integrated Circuit,ASIC)和现场可编程门阵列(Field Programmable Gate Array,FPGA)等。此外,处理器1002还可以是多个处理器的组合。特别的,在本发明实施例提供的技术方案中,处理器1002可以用于执行,例如,上述图8以及图9中处理单元所执行的操作。处理器1002可以是专门设计用于执行上述步骤和/或操作的处理器,也可以是通过读取并执行存储器1008中存储的指令10082来执行上述步骤和/或操作的处理器,处理器1002在执行上述步骤和/或操作的过程中可能需要用到数据7084。
收发器1004包括发射器10042和接收器10044,其中,发射器10042用于通过多根天线1006之中的至少一根天线发送信号。接收器10044用于通过多根天线1006之中的至少一根天线接收信号。特别的,在本发明实施例提供的技术方案中,发射器10042具体可以用于通过多根天线1006之中的至少一根天线执行,例如,上述图8以及图9中收发单元所执行的操作。
存储器1008可以是各种类型的存储介质,例如随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、非易失性RAM(Non-Volatile RAM,NVRAM)、可编程ROM(Programmable ROM,PROM)、可擦除PROM(Erasable PROM,EPROM)、电可擦除PROM(Electrically Erasable PROM,EEPROM)、闪存、光存储器和寄存器等。存储器1008具体用于存储指令10082和数据10084,处理器1002可以通过读取并执行存储器1008中存储的指令10082,来执行上文所述的步骤和/或操作,在执行上述操作和/或步骤的过程中可能需要用到数据7084。
I/O接口1010用于接收来自外围设备的指令和/或数据,以及向外围设备输出指令和/或数据。
应注意,在具体实现过程中,网络设备还可以包括其他硬件器件,本文不再一一列举。
上述网络设备的硬件结构图可以为图8或者图9的网络设备的硬件结构图。
本发明实施例提供的技术方案,可以通过处理器+收发器的方式来实现,其中,处理器用于执行各种处理操作,例如但不限于生成、确定、判断、查找、提取、获取、读取、接收输入的待处理数据和输出处理后的数据等操作,收发器用于执行发射和接收等操作。在具体实现过程中,处理器可以通过以下方式来实现:
第一种方式,处理器为专用处理器,在这种情况下,该处理器可以进一步包括接口电路和处理电路,其中接口电路用于接收需要由处理电路处理的数据,以及输出处理电路的处理结果,处理电路用于执行上述各种处理操作。
第二种方式,处理器采用通用处理器+存储器的架构来实现,其中,通用处理器用于执行存储器中存储的处理指令,这些处理指令用于指示该通用处理器执行上述各种处理操作。不难理解,通用处理器所执行的处理取决于存储器内存储的处理指令,通过修改存储器内的处理指令,可以控制通用处理器输出不同的处理结果。
进一步的,在上述第二种方式中,该通用处理器和存储器可以集成在同一块芯片上,例如该通用处理器和存储器均可以集成在处理芯片上。此外,该通用处理器和存储器也可以设置在不同的芯片上,例如通用处理器设置在处理芯片上,存储器设置在存储芯片上。
本发明实施例提供的技术方案,还可以通过计算机可读存储介质的方式来实现,其中该计算机可读存储介质中存储有实现本发明实施例技术方案的处理指令,以供通用处理设备读取,来完成本发明实施例提供的技术方案。其中,上述通用处理设备应理解为包含必要的处理器和收发器等硬件器件的处理设备,这些硬件器件的操作取决于上述计算机可读存储介质中存储的处理指令。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
综上所述,以上仅为本发明的实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (23)

  1. 一种功率控制的方法,其特征在于,包括:
    第二节点接收来自第一节点的无线资源控制RRC,所述RRC包括:为第二节点配置的功率控制参数集合,所述功率控制参数集合包括:功率控制索引,所述功率控制索引根据第二节点的传输模式和/或传输能力确定;
    所述第二节点接收下行控制信息DCI,所述DCI包括:功率控制索引指示信息,所述功率控制索引指示信息用于当第一节点调度第二节点时,指示为第二节点配置的上行传输的功率控制索引值;
    所述第二节点根据所述功率控制索引指示信息以及功率控制参数集合,确定发送功率;
    所述第二节点以确定的发送功率发送信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第二节点的传输模式为空分复用传输模式,所述第二节点的传输能力为所述第二节点支持的波束数量。
  3. 根据权利要求1或者2所述的方法,其特征在于,不同的传输模式对应的功率控制索引不同传输能力对应的功率控制索引不同。
  4. 根据权利要求1-3所述的任意一项方法,其特征在于,所述功率控制参数集合还包括下面的至少一种功率控制参数:
    上行功率控制标识、上行参考信号路径损耗标识、上行传输基准功率、功控参数或者路径损耗补偿因子。
  5. 根据权利要求4所述的方法,其特征在于,所述功率控制索引与所述功率控制参数进行关联。
  6. 根据权利要求1所述的方法,其特征在于,所述第二节点根据所述功率控制索引指示信息以及功率控制参数集合,确定发送功率具体包括:
    所述第二节点根据所述功率控制索引指示信息,获得所述功率控制索引指示信息指示的功率控制索引;
    所述第二节点根据所述获得的功率控制索引,通过所述功率控制参数集合,获得与所述功率控制索引对应的功率控制参数;
    所述第二节点根据功率控制参数和功率控制计算公式,确定发送功率。
  7. 一种功率控制的方法,其特征在于,包括:
    发送参考信号;
    接收发送功率的动态范围,所述发送功率动态范围是根据参考信号确定的发送功率动态范围;
    根据所述发送功率的动态范围,确定发送功率;
    以确定的发送功率发送信号。
  8. 根据权利要求7所述的方法,其特征在于,所述发送功率动态范围包括:功率谱密度PSD的动态范围和或功率因子比率EPRE的动态范围。
  9. 根据权利要求7所述的方法,其特征在于,所述根据所述发送功率的动态范围,确定发送功率具体包括:
    所述根据所述发送功率的动态范围以及预先配置的发送功率,调整发送功率。
  10. 一种功率控制的装置,其特征在于,包括:
    收发器,用于接收无线资源控制RRC,所述RRC包括:功率控制的装置的功率控制参数集合,所述功率控制参数集合包括:功率控制索引,所述功率控制索引根据功率控制的装置的传输模式和/或传输能力确定;以及接收下行控制信息DCI,所述DCI包括:功率控制索引指示信息,所述功率控制索引指示信息用于指示配置的上行传输的功率控制索引值。
    处理器,用于根据所述功率控制索引指示信息以及功率控制参数集合,确定发送功率。
  11. 根据权利要求10所述的装置,其特征在于,所述传输模式为空分复用传输模式,所述传输能力为所述装置支持的波束数量。
  12. 根据权利要求10或者11所述的装置,其特征在于,不同的传输模式对应的功率控制索引不同传输能力对应的功率控制索引不同。
  13. 根据权利要求10-11所述的任意一项装置,其特征在于,所述功率控制参数集合还包括下面的至少一种功率控制参数:
    上行功率控制标识、上行参考信号路径损耗标识、上行传输基准功率、功控参数或者路径损耗补偿因子。
  14. 根据权利要求13所述的装置,其特征在于,所述功率控制索引与所述功率控制参数进行关联。
  15. 根据权利要求10所述的装置,其特征在于,所述处理器,具体用于:
    根据所述功率控制索引指示信息,获得所述功率控制索引指示信息指示的功率控制索引;根据所述获得的功率控制索引,通过所述功率控制参数集合,获得与所述功率控制索引对应的功率控制参数;根据功率控制参数和功率控制计算公式,确定发送功率。
  16. 一种功率控制的装置,其特征在于,包括:
    收发器,用于发送参考信号,以及接收发送功率的动态范围,所述发送功率动态范围是根据参考信号确定的发送功率动态范围;以确定的发送功率发送信号
    处理器,用于根据所述发送功率的动态范围,确定发送功率。
  17. 根据权利要求16所述的装置,其特征在于,所述发送功率动态范围包括:功率谱密度PSD的动态范围和或功率因子比率EPRE的动态范围。
  18. 根据权利要求16所述的装置,其特征在于,所述处理器,具体用于:
    根据所述发送功率的动态范围以及预先配置的发送功率,调整发送功率。
  19. 一种功率控制装置,其特征在于,用于执行权利要求1-6或者7-9任意一项所述的方法。
  20. 一种功率控制装置,其特征在于,包括:
    存储器,用于存储程序;
    处理器,用于执行所述存储器存储的所述程序,当所述程序被执
    行时,所述处理器用于执行如权利要求1-6或者7-9任一所述的方法。
  21. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-6或者7-9中任一所述的方法。
  22. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如权利要求1-6或者7-9中任一所述的方法。
  23. 一种芯片,其特征在于,包括存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于从所述存储器中调用并运行所述计算机程序,使得所述处理器执行如权利要求1-6或者7-9中任一所述的方法。
PCT/CN2019/100065 2018-08-10 2019-08-09 一种功率控制的方法和装置 WO2020030144A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19848690.4A EP3826373A4 (en) 2018-08-10 2019-08-09 PERFORMANCE CONTROL METHOD AND DEVICE
US17/170,108 US11438847B2 (en) 2018-08-10 2021-02-08 Power control method and apparatus
US17/887,272 US20230029758A1 (en) 2018-08-10 2022-08-12 Power control method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810912271.2 2018-08-10
CN201810912271.2A CN110831135B (zh) 2018-08-10 2018-08-10 一种功率控制的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/170,108 Continuation US11438847B2 (en) 2018-08-10 2021-02-08 Power control method and apparatus

Publications (1)

Publication Number Publication Date
WO2020030144A1 true WO2020030144A1 (zh) 2020-02-13

Family

ID=69414039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100065 WO2020030144A1 (zh) 2018-08-10 2019-08-09 一种功率控制的方法和装置

Country Status (4)

Country Link
US (2) US11438847B2 (zh)
EP (1) EP3826373A4 (zh)
CN (2) CN110831135B (zh)
WO (1) WO2020030144A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022186738A1 (en) * 2021-03-01 2022-09-09 Telefonaktiebolaget Lm Ericsson (Publ) Setting power control configuration parameters in a communications network with decoupled dl and ul transmission
WO2022227052A1 (zh) * 2021-04-30 2022-11-03 富士通株式会社 无线通信方法、装置和系统
EP4183178A4 (en) * 2020-07-15 2024-04-10 Qualcomm Inc PATH ATTENTION REFERENCE SIGNAL UPDATE FOR MULTIPLE BEAMS

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3966981A1 (en) * 2019-05-09 2022-03-16 Telefonaktiebolaget Lm Ericsson (Publ) Channel sounding for distributed transmission
US11477795B2 (en) * 2019-12-09 2022-10-18 Qualcomm Incorporated IAB power configuration
CN113381839B (zh) * 2020-03-09 2023-03-14 维沃移动通信有限公司 信号传输方法、信息发送方法和通信节点
CN113453329B (zh) * 2020-03-24 2023-02-21 维沃移动通信有限公司 干扰处理方法及节点设备
CN113453339B (zh) * 2020-03-24 2023-04-07 维沃移动通信有限公司 功率调整方法及节点设备
JP7296910B2 (ja) * 2020-03-30 2023-06-23 Kddi株式会社 中継伝送における送信電力制御を実行する通信装置、制御方法、及び、プログラム
CN113596975B (zh) * 2020-04-30 2022-12-06 华为技术有限公司 一种上行功率控制方法及装置
CN111901859A (zh) * 2020-05-14 2020-11-06 中兴通讯股份有限公司 功率控制方法、装置、服务节点、终端及存储介质
CN113677026A (zh) * 2020-05-15 2021-11-19 华为技术有限公司 功率控制方法和功率控制装置
CN111901003A (zh) * 2020-06-02 2020-11-06 中兴通讯股份有限公司 复用方法、装置、设备及存储介质
CN113973374A (zh) * 2020-07-24 2022-01-25 维沃移动通信有限公司 功率获取方法、装置及节点设备
CN113973361B (zh) * 2020-07-24 2024-04-26 维沃移动通信有限公司 功率分配、获取方法、装置及节点设备
CN114531693A (zh) * 2020-11-02 2022-05-24 维沃移动通信有限公司 传输参数管理方法、装置及电子设备
CN115175291A (zh) * 2021-04-02 2022-10-11 维沃移动通信有限公司 功率控制参数指示方法、终端及网络侧设备
WO2023047387A1 (en) * 2021-09-27 2023-03-30 Guangdong Oppo Mobile Telecomminications Corp., Ltd. Apparatus and method for uplink open-loop power control identification for unified transmission control indication (tci) states
CN115915441A (zh) * 2021-09-30 2023-04-04 华为技术有限公司 一种资源配置方法及通信装置
CN114514781B (zh) * 2022-01-14 2024-02-02 北京小米移动软件有限公司 发送功率确定方法及装置
CN116963205A (zh) * 2022-04-20 2023-10-27 大唐移动通信设备有限公司 一种信息接收方法、信息发送方法、装置及可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082877A1 (en) * 2009-01-16 2010-07-22 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for pucch load control by pdcch restrictions
CN102378387A (zh) * 2010-08-13 2012-03-14 中兴通讯股份有限公司 回程链路物理上行控制信道的资源配置指示方法和系统
CN102892186A (zh) * 2011-07-19 2013-01-23 中兴通讯股份有限公司 一种物理下行控制信道资源的确定方法及装置
CN103814616A (zh) * 2012-03-23 2014-05-21 日电(中国)有限公司 用于调度用户设备的方法和设备
CN105432105A (zh) * 2014-07-17 2016-03-23 华为技术有限公司 一种功率控制的方法,基站和用户设备
CN108366418A (zh) * 2017-01-26 2018-08-03 华为技术有限公司 节点和功率控制方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102281571B (zh) * 2010-06-11 2015-01-14 电信科学技术研究院 一种功率控制的方法和设备
CN102457952B (zh) * 2010-11-02 2014-10-29 上海中兴软件有限责任公司 为空分复用用户进行物理上行信道功率授权的方法及系统
CN111586821A (zh) * 2012-05-03 2020-08-25 瑞典爱立信有限公司 无线电网络节点、用户设备及其方法
EP2942888B1 (en) * 2013-01-07 2018-08-01 LG Electronics Inc. Method for receiving a downlink signal from a plurality of transmission points by a user equipment and corresponding user equipment
US9992749B2 (en) * 2014-10-30 2018-06-05 Telefonaktiebolaget L M Ericsson (Publ) First node and methods therein for controlling a transmission power of a second node
US10630410B2 (en) * 2016-05-13 2020-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
US10278088B2 (en) * 2016-07-22 2019-04-30 Qualcomm Incorporated Channel estimation enhancement
CN107889209B (zh) * 2016-09-29 2023-09-22 华为技术有限公司 一种功率控制的方法及终端设备
WO2018107358A1 (zh) * 2016-12-13 2018-06-21 广东欧珀移动通信有限公司 控制上行功率的方法和设备
US10602453B2 (en) * 2017-10-20 2020-03-24 Qualcomm Incorporated Uplink power control in wireless systems
EP4040862A1 (en) * 2017-11-17 2022-08-10 Telefonaktiebolaget LM Ericsson (publ) Limiting accumulation of transmit power control in beam-specific power control
US10863494B2 (en) * 2018-01-22 2020-12-08 Apple Inc. Control signaling for uplink multiple input multiple output, channel state information reference signal configuration and sounding reference signal configuration

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082877A1 (en) * 2009-01-16 2010-07-22 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for pucch load control by pdcch restrictions
CN102378387A (zh) * 2010-08-13 2012-03-14 中兴通讯股份有限公司 回程链路物理上行控制信道的资源配置指示方法和系统
CN102892186A (zh) * 2011-07-19 2013-01-23 中兴通讯股份有限公司 一种物理下行控制信道资源的确定方法及装置
CN103814616A (zh) * 2012-03-23 2014-05-21 日电(中国)有限公司 用于调度用户设备的方法和设备
CN105432105A (zh) * 2014-07-17 2016-03-23 华为技术有限公司 一种功率控制的方法,基站和用户设备
CN108366418A (zh) * 2017-01-26 2018-08-03 华为技术有限公司 节点和功率控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3826373A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4183178A4 (en) * 2020-07-15 2024-04-10 Qualcomm Inc PATH ATTENTION REFERENCE SIGNAL UPDATE FOR MULTIPLE BEAMS
US11985604B2 (en) 2020-07-15 2024-05-14 Qualcomm Incorporated Pathloss reference signal update for multiple beams
WO2022186738A1 (en) * 2021-03-01 2022-09-09 Telefonaktiebolaget Lm Ericsson (Publ) Setting power control configuration parameters in a communications network with decoupled dl and ul transmission
WO2022227052A1 (zh) * 2021-04-30 2022-11-03 富士通株式会社 无线通信方法、装置和系统

Also Published As

Publication number Publication date
CN115396997A (zh) 2022-11-25
EP3826373A1 (en) 2021-05-26
US11438847B2 (en) 2022-09-06
US20210168728A1 (en) 2021-06-03
EP3826373A4 (en) 2021-12-08
CN110831135B (zh) 2022-08-26
US20230029758A1 (en) 2023-02-02
CN110831135A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
WO2020030144A1 (zh) 一种功率控制的方法和装置
US11991642B2 (en) Sounding reference signal power control for multiple input multiple output wireless system
US20210219155A1 (en) Interference Measurement Method and Apparatus
US11949553B2 (en) Transmission parameter configuration method and apparatus
US20190098606A1 (en) Uplink selection for wireless network based on network based on network cell weight and linkspecific weight for wireless links
US20210337549A1 (en) Resource indication method and apparatus
US20170289917A1 (en) Dynamic time division duplex interference mitigation in a wireless network
US10091805B2 (en) Method in a network and network node for co-scheduling in a network
WO2021217668A1 (zh) 多载波通信方法、终端设备和网络设备
US20210377916A1 (en) Wireless Communications Method and Apparatus
EP3499947B1 (en) Resource management indication method and device
US9801105B2 (en) Method and apparatus for managing measurement event trigger criteria
WO2018126448A1 (zh) 基于动态时分双工的传输装置、方法以及通信系统
WO2020156364A1 (zh) 测量方法和通信装置
WO2022078115A1 (zh) 功率确定方法、装置、终端及网络侧设备
WO2021159413A1 (zh) 下行传输方法和终端设备
US20220240116A1 (en) Link Failure Detection Method and Apparatus
US20230353219A1 (en) Beam Selection Method and Communication Apparatus
WO2020143782A1 (zh) 一种资源指示方法及装置
US20220337306A1 (en) Method for beam selection, terminal device, and network device
WO2024032396A1 (zh) 通信方法与装置
WO2023011265A1 (zh) 一种通信方法和通信装置
US20230254860A1 (en) Communication method and apparatus
WO2023137767A1 (en) A method of sensing based interference management for network nodes
CN117528604A (zh) 网络资源控制方法、终端、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19848690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019848690

Country of ref document: EP

Effective date: 20210222