WO2023011265A1 - 一种通信方法和通信装置 - Google Patents

一种通信方法和通信装置 Download PDF

Info

Publication number
WO2023011265A1
WO2023011265A1 PCT/CN2022/108032 CN2022108032W WO2023011265A1 WO 2023011265 A1 WO2023011265 A1 WO 2023011265A1 CN 2022108032 W CN2022108032 W CN 2022108032W WO 2023011265 A1 WO2023011265 A1 WO 2023011265A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
trp
indication information
reference signal
target cell
Prior art date
Application number
PCT/CN2022/108032
Other languages
English (en)
French (fr)
Inventor
顾志方
娄崇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023011265A1 publication Critical patent/WO2023011265A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/04Reselecting a cell layer in multi-layered cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/12Messaging; Mailboxes; Announcements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer

Definitions

  • the present application relates to the communication field, and more specifically, to a communication method and a communication device.
  • MIMO multiple input multiple output
  • massive MIMO massive MIMO
  • a cell may be covered by one or more transmission reception points (TRP), and terminal devices can perform data transmission with one or more TRPs to improve communication reliability performance and transmission capacity.
  • TRP transmission reception points
  • Massive MIMO technology requires beam management, and uses beam directions with better communication quality for communication.
  • the terminal device can manage the beam of the target cell before the cell handover, and then after switching to the target cell, it can quickly complete the beam alignment.
  • data transmission with multiple TRPs cannot be performed directly, resulting in reduced communication reliability and transmission capacity.
  • Embodiments of the present application provide a communication method and a communication device, in the hope that a terminal device can directly perform multiple TRP transmissions after switching to a target cell, thereby improving communication reliability and transmission capacity.
  • the present application provides a communication method, which can be performed by a terminal device, or can also be performed by a component (such as a chip, a chip system, etc.) configured in the terminal device, or can also be performed by a
  • a component such as a chip, a chip system, etc.
  • a logic module or software implementation that realizes all or part of the functions of the terminal device is not limited in this application.
  • the method includes: receiving first indication information from the first network device, the first indication information is used to indicate whether to switch from the source cell to the target cell and whether to use multiple TRP transmissions, the target cell is one of the candidate cells One: performing data transmission in the source cell and/or the target cell according to the first indication information.
  • the first indication information received by the terminal device is used to indicate whether the terminal device performs cell switching, and at the same time indicates whether the terminal device performs multiple TRP transmissions, so that after the terminal device switches to the target cell, it can directly perform multiple TRP transmissions.
  • TRP transmission improves communication reliability and communication capacity.
  • the method further includes: receiving configuration information from the first network device, where the configuration information is used to measure the source cell and the candidate cell; sending the first network device Send measurement results.
  • the terminal device measures the source cell and the candidate cell based on the configuration information, and notifies the first network device of the measurement result, so that the first network device determines whether the terminal device performs cell handover based on the measurement result, and further determines whether to perform multiple TRP transmission improves communication reliability and transmission capacity within a period of time after switching.
  • sending the measurement result to the first network device includes: sending the measurement result of the first reference signal through physical layer signaling, where the first reference signal is the source cell and the candidate cell At least one reference signal in; the measurement result of the second reference signal is sent by MAC layer signaling or radio resource control (radio resource control, RRC) layer signaling, and the second reference signal is at least one reference in the source cell and the candidate cell signal, the second reference signal is different from the first reference signal.
  • RRC radio resource control
  • the terminal device sends the measurement results of a part of the reference signals through physical layer signaling, that is, the measurement results of the first reference signal, and then sends the rest of the reference signals that need to be reported except the first reference signal through MAC layer signaling or RRC layer signaling.
  • the measurement results of the reference signal that is, the measurement results of the second reference signal, are reported incrementally, which solves the problem that the measurement results of the reference signal cannot be reported in full when the physical layer signaling resources are limited, and greatly reduces the physical Layer signaling overhead.
  • the first reference signal is determined according to the signal strength of the reference signal, where the reference signal is a plurality of reference signals of the source cell and the candidate cell.
  • the selection of the first reference signal can be based on the signal strength of the reference signal. For example, select the reference signal with the highest signal strength among the multiple reference signals of the source cell and the candidate cell as the first reference signal, and quickly report the first reference signal through physical layer signaling.
  • the measurement results of the reference signal enable relatively important measurement results to be reported quickly.
  • the measurement result includes a measurement result of the first TRP, and the measurement result of the first TRP is measured by a beam corresponding to one or more reference signals transmitted by the first TRP As a result, it is determined that the first TRP is any TRP in the source cell or the candidate cell.
  • the terminal device can also report the measurement results at the TRP level. For example, it can be reported through a certain field of the RRC layer signaling, and when reporting through the RRC layer signaling, different TRPs can be distinguished. Measurement results, therefore, the measurement results provided by the terminal device for the first network device are more refined.
  • the present application provides a communication method, and the method may be executed by the first network device, or may also be executed by a component (such as a chip, a chip system, etc.) configured in the first network device, or, It may also be realized by a logic module or software capable of realizing all or part of the functions of the first network device, which is not limited in this application.
  • a component such as a chip, a chip system, etc.
  • the method includes: generating first indication information according to the measurement results, the first indication information is used to indicate whether to switch from the source cell to the target cell and whether to use multiple TRP transmissions, the target cell is one of the candidate cells, the above
  • the measurement result is obtained by the terminal device based on the measurement of the source cell and the candidate cell; and sending first indication information.
  • the first network device sends the first indication information to the terminal device.
  • the first indication information is used to indicate whether the terminal device performs cell handover and at the same time indicates whether the terminal device performs multiple TRP transmissions, so that the terminal After the device is switched to the target cell, it can directly perform multiple TRP transmissions, which improves communication reliability and communication capacity.
  • the method further includes: sending configuration information to the terminal device, where the configuration information is used to measure the source cell and the candidate cell; and receiving the measurement result from the terminal device.
  • the first network device sends the configuration information to the terminal device so that the terminal device can measure the source cell and the candidate cell; secondly, the first network device receives the measurement result of the source cell and the candidate cell, and determines whether the terminal device is based on the measurement result Cell handover is performed to further determine whether to perform multiple TRP transmissions, and communication reliability and transmission capacity are improved within a period of time after the handover.
  • receiving the measurement result from the terminal device includes: receiving the measurement result of the first reference signal through physical layer signaling, where the first reference signal is the source cell and the candidate cell at least one reference signal; receive the measurement result of the second reference signal through MAC layer signaling or RRC layer signaling, the second reference signal is at least one reference signal in the source cell and the candidate cell, the second reference signal and the first reference signal The signals are different.
  • the physical layer signaling carries the measurement results of a part of the reference signals, that is, the measurement results of the first reference signal
  • the MAC layer signaling or RRC layer signaling carries the measurement results of the remaining reference signals that need to be reported, that is, the measurement results of the second reference signal
  • the method of incremental reporting is adopted to solve the problem that the measurement results of the reference signal cannot be reported in full when the signaling resources of the physical layer are limited.
  • the measurement result includes the measurement result of the first TRP, and the measurement result of the first TRP is the measurement of the beam corresponding to one or more reference signals transmitted by the first TRP As a result, it is determined that the first TRP is any TRP in the source cell or the candidate cell.
  • the indication manner of the first indication information received by the terminal device may have different designs.
  • the first indication information includes N bits, N is a positive integer, and N bits are used to indicate: switch to the target cell without using multiple TRP transmissions; or switch to the target cell and use multiple TRP transmission, multiple TRPs are TRPs in the target cell; or handover to the target cell, and use multiple TRP transmissions, multiple TRPs include the TRP of the target cell, and the TRPs of the source cell and/or the candidate cell; or do not switch cells , and multiple TRPs are used for transmission, and the multiple TRPs include the TRP of the source cell and the TRP of the candidate cell.
  • the first indication information received by the terminal device includes N bits, and the N bits can be used to indicate which operation the terminal device performs, where the N bits can be, for example, 1 bit, 2 bits, etc., for example, 2 bits indicate the terminal device Which kind of operation is performed specifically, that is, "00", "01", "10", and "11" respectively correspond to one of the above four operations.
  • the first indication information may further include at least one TCI state, where each TCI state in the at least one TCI state is used to indicate a beam direction of a TRP.
  • the first indication information indicates which operation the terminal device performs, it may also include at least one TCI state, at least one TCI state is used to indicate the beam direction required by the terminal device for TRP transmission, without further configuration of TRP transmission by the first network device
  • the required beam direction after the terminal device is switched, multiple TRP transmissions can be performed in the target cell with an accurate beam direction, which improves communication reliability and transmission capacity.
  • the first indication information includes at least one TCI state, and the at least one TCI state is used to indicate: switching to the target cell without using multiple TRP transmissions; or switching to the target cell and using multiple TRP transmission, the multiple TRPs are TRPs in the target cell; or switching to the target cell, and using multiple TRPs for transmission, the multiple TRPs include the TRPs of the target cell, and the TRPs of the source cell and/or the candidate cell; or not The cell is switched, and multiple TRPs are used for transmission, and the multiple TRPs include the TRP of the source cell and the TRP of the candidate cell.
  • Each TCI state in at least one TCI state corresponds to a TRP, and different operations are indicated by the TCI state, in other words, which operation is determined by the number of TCI states and the cell to which the TRP corresponding to the TCI state belongs.
  • the first indication information when the first indication information includes a TCI state, and the TRP corresponding to the TCI state is not the source cell, the first indication information indicates switching to the target cell, but does not use multiple TRP transmissions; for another example, the first indication information includes TRPs corresponding to multiple TCI states of the source cell and other cells, and the TCI state corresponding to other cells is in front, then the first indication information indicates switching to the target cell, and multiple TRPs are used for transmission.
  • the TRPs include the TRP of the target cell, and the TRPs of the source cell and/or the candidate cell, which are not listed here.
  • the first indication information only needs to carry the TCI state, and does not need to carry other information, thereby reducing signaling overhead.
  • Another possible design is that multiple candidate operations are indicated through the second indication information, and any one of the multiple candidate operations is used to indicate whether the terminal device switches cells and at least one TCI state, and at least one TCI state Each TCI state corresponds to a TRP, and the first indication information is used to indicate one of the above operations.
  • the second indication information carries multiple candidate operations
  • the first indication information indicates one of the above multiple candidate operations through bits.
  • the first indication information only needs to carry 2 bits "00”
  • the second indication information Among the various operations indicated by the information, "00" indicates switching to candidate cell #1
  • the candidate cell #1 uses TCI state #1 for data transmission
  • the terminal device switches to candidate cell # according to the first indication information 1.
  • the physical layer signaling carries the first indication information
  • the MAC layer signaling carries the second indication information.
  • the physical layer signaling only needs to carry a small amount of bit information, reducing the number of physical layer signaling.
  • the overhead of the physical layer solves the problem of limited signaling overhead.
  • the first indication information is carried in physical layer signaling or MAC layer signaling.
  • a possible design is to carry the first indication information through physical layer signaling, so that the indication can be completed relatively quickly.
  • Another possible design is to carry the first indication information through MAC layer signaling, which greatly reduces the overhead of physical layer signaling.
  • N bits are carried in the MAC layer signaling, and N bits are logical channel identifiers (logical channel identity document, LCID).
  • the present application provides a communication method, which can be performed by a terminal device, or can also be performed by a component configured in the terminal device (such as a chip, a chip system, etc.), or can also be performed by a A logic module or software implementation that realizes all or part of the functions of the terminal device is not limited in this application.
  • the method includes: sending the measurement result of the first reference signal through physical layer signaling, where the first reference signal is at least one reference signal in the source cell and the candidate cell; sending the result through MAC layer signaling or RRC layer signaling
  • the measurement result of the second reference signal, the second reference signal is at least one reference signal in the source cell and the candidate cell, the second reference signal is different from the first reference signal;
  • the first indication information is received, and the first indication information is used to indicate whether Handover from the source cell to the target cell and whether to use multiple TRP transmissions, the target cell is one of the candidate cells.
  • the physical layer signaling carries the measurement results of a part of the reference signals, that is, the measurement results of the first reference signal
  • the MAC layer signaling or RRC layer signaling carries the remaining reference signals except the first reference signal among the reference signals that need to be reported.
  • the measurement results of the signal are reported in increments, which solves the problem that the measurement results cannot be reported in full when the physical layer signaling resources are limited, and makes the measurement results of relatively important reference signals available through the physical layer signaling. Quick escalation.
  • the method further includes: receiving configuration information from the first network device, where the configuration information is used to measure the source cell and the candidate cell.
  • the terminal device Based on the configuration information, the terminal device measures the reference signal of the source cell and the reference signal of the candidate cell to obtain a beam-level measurement result.
  • the configuration information further includes configuration information related to multiple TRPs.
  • the configuration information related to multiple TRPs includes one or more of the following: physical cell identity (physical cell identity, PCI) corresponding to different TRPs, physical layer signal addition/descrambling sequences used by different TRPs, physical A control resource set pool index (control resource set pool index, CoresetPoolIndex) corresponding to a downlink control channel (physical downlink control channel, PDCCH).
  • the first reference signal is determined according to the signal strength of the reference signal.
  • the terminal device can determine the first reference signal according to the order of the signal strength of the reference signal from high to low.
  • the number P of the first reference signal is determined by the transmission resource allocated to the physical layer signaling, P ⁇ 1, and P is an integer .
  • the first reference signal includes a reference signal whose signal strength is in the top P positions in multiple cells, and the multiple cells include a source cell and one or more candidate cells.
  • the first reference signal includes the reference signal with the strongest signal strength in each of the M cells, and the M cells include the source cell and one or more candidate cells, 1 ⁇ M ⁇ P, M is an integer.
  • the first reference signal includes a reference signal whose strength is at the top P among the M reference signals from M cells, and each reference signal in the M reference signals is related to one cell in the M cells Correspondingly, each reference signal is a reference signal with the strongest signal strength in the corresponding cell, the M cells include the source cell and one or more candidate cells, 1 ⁇ P ⁇ M, and M is an integer.
  • the above method provides multiple possible implementations of determining the first reference signal, so that the terminal device can determine a relatively important reference signal as the first reference signal, so that the first network device can quickly receive the measurement result of the important reference signal.
  • the present application provides a communication method, which may be performed by a terminal device, or may also be performed by a component (such as a chip, a chip system, etc.) configured in the terminal device, or may also be performed by a capable
  • a communication method which may be performed by a terminal device, or may also be performed by a component (such as a chip, a chip system, etc.) configured in the terminal device, or may also be performed by a capable
  • a logic module or software implementation that realizes all or part of the functions of the terminal device is not limited in this application.
  • the method includes: sending a measurement result to the first network device, where the measurement result includes a measurement result of the first TRP, and the measurement result of the first TRP is transmitted by a beam corresponding to one or more reference signals transmitted by the first TRP
  • the measurement results determine that the first TRP is any TRP in the source cell or the candidate cell; receive the first indication information, and the first indication information is used to indicate whether to switch from the source cell to the target cell and whether to use multiple transmission reception points TRP transmission , the target cell is one of the candidate cells.
  • the terminal device further calculates the beam-level measurement results of the reference signal, obtains the TRP-level measurement results, and reports the TRP-level measurement results to the first network device, so that when multiple TRPs in the cell When different PCIs are associated, the measurement results of different TRPs can be distinguished, or the measurement results of different PCIs can be distinguished, so that the reported measurement results are more refined.
  • the method further includes: receiving configuration information from the first network device, where the configuration information is used to measure the source cell and the candidate cell.
  • the terminal device Based on the configuration information, the terminal device measures the reference signal of the source cell and the reference signal of the candidate cell to obtain a beam-level measurement result. Further, the TRP-level measurement result is obtained according to the beam-level measurement result.
  • the configuration information further includes configuration information related to multiple TRPs.
  • the configuration information related to multiple TRPs includes one or more of the following items: PCI corresponding to different TRPs, physical layer signal scrambling/descrambling sequences used by different TRPs, and CoresetPoolIndex corresponding to PDCCHs of different TRPs.
  • the measurement result of the first TRP is carried in the RRC layer signaling.
  • the first TRP is any TRP of the source cell or the candidate cell
  • the measurement results reported by the terminal device may also include measurement results of other TRPs, that is, the measurement results include measurement results of multiple TRPs.
  • the PCIs associated with multiple TRPs are the same, the PCIs are associated with the source cell or the candidate cell, and the PCI-level measurement results can be further calculated based on the TRP-level measurement results.
  • One possible design is that, when multiple TRPs are associated with the same PCI, the measurement results of multiple TRPs are averaged to obtain a PCI-level measurement result.
  • Another possible design is that when multiple TRPs are associated with the same PCI, the strongest TRP measurement result among the multiple TRP measurement results is used as the PCI-level measurement result.
  • each of the multiple TRPs is associated with one PCI, and the PCI-level measurement results correspond to the TRP-level measurement results.
  • the PCI identifier can be added to the cells to distinguish different PCIs, so that the measurement results carried in the RRC layer signaling can be distinguished Different PCI, or different TRP measurement results can be distinguished, so that the reported measurement results are more refined.
  • the present application provides a communications device that can implement the method in any possible implementation manner of the first aspect to the fourth aspect and the first aspect to the fourth aspect.
  • the apparatus comprises corresponding means for carrying out the method described above.
  • the units included in the device may be implemented by software and/or hardware.
  • the apparatus may be, for example, a terminal device or a first network device, or a chip, a chip system, or a processor that supports a terminal device or a first network device to implement the above method, or may be a terminal device or a first network device capable of implementing Logic modules or software that function in whole or in part.
  • the present application provides a communication device, where the communication device includes a processor.
  • the processor is coupled with the memory, and can be used to execute the computer program in the memory, so as to realize the communication method in the first aspect to the fourth aspect and any possible implementation manner of the first aspect to the fourth aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the present application provides a communication device, including a processor and an interface circuit, and the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or transmit signals from the processor The signal is sent to other communication devices other than the communication device, and the processor is used to realize the communication in any possible implementation manner of the first aspect to the fourth aspect and the first aspect to the fourth aspect through a logic circuit or executing code instructions method.
  • the communication devices in the fifth aspect to the seventh aspect are terminal equipment.
  • the communication device in the fifth aspect to the seventh aspect is the first network device.
  • the present application provides a computer-readable storage medium, in which a computer program or instruction is stored, and when the computer program or instruction is executed, the first aspect to the fourth aspect and The communication method in any possible implementation manner of the first aspect to the fourth aspect.
  • the present application provides a computer program product, the computer program product includes instructions, and when the instructions are executed, any possible implementation of the first to fourth aspects and any one of the first to fourth aspects can be realized The communication method in the method.
  • the present application provides a chip system, the chip system includes a processor, and may also include a memory, for implementing the first aspect to the fourth aspect and any possible implementation manner of the first aspect to the fourth aspect communication method.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the embodiment of the present application provides a communication system, where the communication system includes the foregoing terminal device and the first network device.
  • FIG. 1 is a schematic diagram of a network architecture of a communication system provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a scenario in which a terminal device performs multiple TRP transmissions according to an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 4 is another schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 5 is another schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 7 is another schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • WLAN wireless local area network
  • LTE LTE frequency division duplex
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunications system
  • WiMAX global interconnection microwave access
  • 5G mobile communication system may include non-standalone networking (non-standalone, NSA) and/or standalone networking (standalone, SA).
  • the technical solution provided by this application can also be applied to future communication systems, such as the sixth generation (6th Generation, 6G) mobile communication system and the like. This application is not limited to this.
  • the network device may be any device with a wireless transceiver function.
  • the equipment includes but is not limited to: evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), Node B (Node B, NB), base station controller (base station controller, BSC) , base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), wireless fidelity (wireless fidelity, WiFi) system Access point (access point, AP), wireless relay node, wireless backhaul node, etc.
  • 5G such as gNB in NR system, or one or a group of base stations in 5G system (including multiple Antenna panel) Antenna panel, or it can also be a network node constituting gNB, such as baseband unit (BBU), or distributed unit (distributed unit, DU),
  • a gNB may include CUs and DUs.
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implements RRC and packet data convergence protocol (packet data convergence protocol, PDCP) layer functions;
  • DU It may include functions of a radio link control (radio link control, RLC) layer, functions of a MAC layer, and some functions of a physical (physical, PHY) layer.
  • a DU may include functions of higher layers in the PHY layer.
  • the high-level functions in the PHY layer may include cyclic redundancy check (cyclic redundancy check, CRC) function, channel coding, rate matching, scrambling, modulation, and layer mapping; or, the high-level functions in the PHY layer may include cyclic Redundancy checking, channel coding, rate matching, scrambling, modulation, layer mapping and precoding.
  • CRC cyclic redundancy check
  • the functions of the middle and lower layers of the PHY layer can be realized by another network entity independent from the DU, wherein the functions of the middle and lower layers of the PHY layer can include precoding, resource mapping, physical antenna mapping and radio frequency functions; or, the functions of the middle and lower layers of the PHY layer can be Includes resource mapping, physical antenna mapping, and radio frequency functions.
  • the embodiment of the present application does not limit the function division of the upper layer and the lower layer in the PHY layer.
  • the DU sends data or information to other communication devices (such as terminal equipment, core network equipment), which can be understood as: DU executes RLC layer, MAC layer functions, and, some functions of the PHY layer.
  • the network independent of the DU that performs the functions of the middle and lower layers of the PHY layer
  • the entity performs the remaining functions of mapping and sending on physical resources.
  • the network device provides services for the cell, and the terminal device communicates with the cell through the transmission resources (for example, frequency domain resources, or spectrum resources) allocated by the network device.
  • the cell may belong to a macro base station (for example, a macro eNB or a macro gNB, etc.) , can also belong to the base station corresponding to a small cell, where the small cell can include: a metro cell, a micro cell, a pico cell, a femto cell, etc. , these small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • a terminal device may also be referred to as a UE, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent or user device.
  • a terminal device may be a device that provides voice/data connectivity to users, for example, a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • some examples of terminal equipment can be: mobile phone (mobile phone), tablet computer (pad), computer with wireless transceiver function (such as notebook computer, palmtop computer, etc.), mobile Internet device (mobile internet device, MID), virtual Reality (virtual reality, VR) devices, augmented reality (augmented reality, AR) devices, wireless terminals in industrial control, wireless terminals in self driving, and remote medical Wireless terminals, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, cellular phones, Cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (PDAs), handheld devices with wireless communication capabilities, computing devices, or Other processing devices connected to the wireless modem, vehicle-mounted devices, wearable devices, terminal devices in the 5G network or terminal devices in the future evolution of the public land mobile network (
  • wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories.
  • Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the terminal device may also be a terminal device in an Internet of Things (internet of things, IoT) system.
  • IoT Internet of Things
  • Its main technical feature is to connect objects to the network through communication technology, so as to realize the intelligent network of human-machine interconnection and object interconnection.
  • IoT technology can achieve massive connections, deep coverage, and terminal power saving through, for example, narrow band (NB) technology.
  • NB narrow band
  • terminal equipment can also include sensors such as smart printers, train detectors, and gas stations.
  • the main functions include collecting data (partial terminal equipment), receiving control information and downlink data from network equipment, and sending electromagnetic waves to transmit uplink data to network equipment. .
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect .
  • the first indication information and the second indication information are for distinguishing different indication information, and the sequence thereof is not limited.
  • words such as “first” and “second” do not limit the number and execution order, and words such as “first” and “second” do not necessarily limit the difference.
  • a cell is described by high layers from the perspective of resource management or mobility management or a service unit.
  • the coverage of each network device can be divided into one or more cells, and each cell can correspond to one or more frequency points, or in other words, each cell can be regarded as the coverage area of one or more frequency points formed area.
  • the cell may be an area within the coverage of the wireless network of the network device.
  • different cells may correspond to the same or different network devices.
  • the network device to which the source cell belongs and the network device to which the target cell belongs may be different network devices, such as a base station. That is to say, the source cell and the target cell may be managed by different base stations.
  • the network equipment that manages the source cell and the network equipment that manages the target cell may also be different radio frequency processing units of the same base station, for example, a radio remote unit (radio remote unit, RRU), that is, the source cell
  • RRU radio remote unit
  • the target cell and the target cell can be managed by the same base station, have the same baseband processing unit and intermediate frequency processing unit, but have different radio frequency processing units.
  • the network device to which the source cell belongs and the network device to which the target cell belongs may be the same network device, such as a base station. That is to say, the source cell and the target cell can be managed by the same base station. In this case, it can be called the source cell and the target cell are co-sited. This application does not specifically limit it.
  • a cell is the coverage area of a network device (such as a base station), and each cell may include one or more TRPs, and a terminal device may perform a single TRP transmission or multiple TRP transmissions in the cell.
  • Performing multiple TRP transmissions in the cell may be understood as configuring multiple sets of communication resources for the cell.
  • the above communication resources may be air space resources, such as beams.
  • TRP A network node that can be used to implement reception and/or transmission.
  • the network node used for sending can also be called transmission point (transmission point, TP), and the network node used for receiving can be called reception point (reception point, RP).
  • transmission point transmission point
  • reception point reception point
  • multiple TRPs can be understood as multiple geographically separated antennas or antenna panels of a network device (such as a base station), so as to receive and/or transmit wireless signals from different geographical locations with different beam directions function.
  • Each cell can include one or more TRPs.
  • a terminal device can perform data transmission with one or more TRPs.
  • a terminal device can perform data transmission with multiple TRPs.
  • the network node with the sending function communicates, for the sake of brevity, in the following description, the process of the terminal device performing data transmission with multiple TRPs is simply referred to as the terminal device performing multiple TRP transmissions (hereinafter referred to as mTRP transmission).
  • the terminal device switches to the target cell and performs mTRP transmission. It may be that the terminal device performs data communication with multiple network nodes in the target cell for receiving and/or transmitting functions.
  • the terminal device communicates with multiple TRPs in the cell. It can also be understood that the terminal device communicates with multiple sets of communication resources in the cell. Exemplarily, the above communication resources may be airspace resources, such as beams.
  • Handover In a wireless communication system, when a terminal device moves/approaches from one cell to another, in order to keep the communication of the terminal device uninterrupted, a handover is required.
  • the source cell refers to the cell that provides services for the terminal device before the handover
  • the target cell refers to the cell that provides services for the terminal device after the handover
  • the candidate cell is an alternative cell that provides services for the terminal device, and the target cell as one of the candidate cells.
  • the terminal device may be handed over from the source cell to the target cell, and the relevant information of the target cell (such as the PCI of the target cell, the beam direction that the terminal device should use in the target cell (such as transmission configuration indication (TCI) status), etc.) , may be indicated by indication information, where the indication information is sent to the terminal device by a network device (such as a first network device) to which the source cell belongs.
  • a network device such as a first network device
  • Handover can be intra-station handover or inter-station handover.
  • Intra-site handover means that the source cell and the target cell belong to the same network device (such as a base station);
  • inter-site handover means that the source cell and the target cell belong to different network devices (such as a base station). This application does not limit this.
  • Reference signal It can be used for channel measurement, channel estimation, or beam quality monitoring.
  • the reference signals involved in this embodiment of the present application may include, for example, a channel state information reference signal (channel state information reference signal, CSI-RS), a synchronization signal, and a physical broadcast channel block (synchronization signal and physical broadcast channel block, SSB).
  • CSI-RS channel state information reference signal
  • SSB physical broadcast channel block
  • FIG. 1 is a schematic diagram of a network architecture of a communication system 100 provided by an embodiment of the present application.
  • the communication system 100 may include a TRP and a terminal device, such as a TRP 110, a TRP 120, and a terminal device 130 as shown in the figure.
  • the terminal device 130 may be mobile or fixed.
  • the terminal device 130 can perform data transmission with the TRP 110 and the TRP 120, which is called mTRP transmission.
  • the TRP 110 and the TRP 120 may be located in the same cell or in different cells, which is not limited in this embodiment of the present application.
  • the communication system shown in the communication system 100 may include more or less TRPs, and other numbers of terminal devices, and each terminal device may perform data transmission with one or more TRPs.
  • Each TRP may be located in the same cell, or may be located in different cells. This embodiment of the present application does not limit it.
  • Each of the above-mentioned communication devices can be configured with multiple antennas.
  • the plurality of antennas may include at least one transmit antenna for transmitting signals and at least one receive antenna for receiving signals.
  • each communication device additionally includes a transmitter chain and a receiver chain, and those of ordinary skill in the art can understand that they all include a plurality of components related to signal transmission and reception (such as processors, modulators, multiplexers, etc.) , demodulator, demultiplexer or antenna, etc.). Therefore, the TRP and the terminal equipment can communicate through multi-antenna technology.
  • Massive MIMO technology can improve coverage and capacity, and is very suitable for scenarios such as high-frequency communication.
  • a cell may be covered by one or more TRPs, and a terminal device may perform single TRP transmission or mTRP transmission.
  • the terminal device can manage the beam of the target cell before the cell handover, and then can quickly complete the beam alignment after switching to the target cell.
  • the terminal device switches cells, it cannot maintain the mTRP transmission state, which leads to the inability to directly perform mTRP transmission after switching to the target cell. Reduced reliability and transmission capacity.
  • the present application provides a communication method. Based on the measurement results of the terminal device on the source cell and the candidate cell, the network device instructs the terminal device whether to perform cell handover, and further instructs the terminal device whether to perform mTRP transmission, so that the terminal device switches to After the target cell, the mTRP transmission can be directly performed, so that the terminal equipment can improve the communication reliability and transmission capacity within a period of time after the handover.
  • Fig. 2 shows a schematic diagram of a scenario where a terminal device performs mTRP transmission after switching to a target cell.
  • a terminal device performs data transmission with TRP 1 and TRP 2 in the source cell; after the terminal device switches to the target cell, it transmits data between the target cell and TRP 3 and TRP 4 for data transmission.
  • the source cell and the target cell may include more or less TRPs, although not shown in the figure, but this embodiment of the present application does not limit it.
  • the terminal device performs mTRP transmission in the source cell. When the terminal device moves to or approaches the target cell, it can switch from the source cell to the target cell. Based on the method provided in this application, after the terminal device switches to the target cell, it can directly perform mTRP transmission in the target cell. mTRP transport.
  • FIG. 2 shows that the terminal device performs mTRP transmission in the target cell, and the terminal device can also communicate with the TRP of the target cell and other candidate cells Perform mTRP transmission, or perform single TRP transmission in the target cell, or perform mTRP transmission with the TRPs of the source cell and the target cell, etc.
  • the terminal device performs data transmission with TRP 1 of the source cell and TRP 3 of the target cell. This embodiment of the present application does not limit it.
  • the figure only shows the scenario where the terminal device performs mTRP transmission in the source cell, but the terminal device can also perform a single TRP transmission in the source cell, for example, the terminal device performs data transmission with TRP 1.
  • This embodiment of the present application does not limit it.
  • FIG. 3 is a schematic flowchart of a communication method 300 provided by an embodiment of the present application.
  • the method 300 shown in FIG. 3 may include S310 to S360.
  • the process of handing over a terminal device from a source cell to a target cell will be described in detail below in conjunction with FIG. 3 .
  • the cell corresponding to the first network device shown in FIG. 3 includes the source cell, and the terminal device may perform single TRP transmission or mTRP transmission in the source cell.
  • the cell corresponding to the second network device includes candidate cells, and one of the candidate cells may be determined as the target cell if the handover condition is met, and each candidate cell may include one or more TRPs.
  • the first network device sends configuration information to the terminal device.
  • the terminal device receives the configuration information.
  • the configuration information can be used to measure the source cell and the candidate cell.
  • the configuration information includes configuration information of candidate cells.
  • the configuration information may also include configuration information of the source cell.
  • the first network device may be a network device of the source cell.
  • the first network device may send the configuration information of the source cell and the configuration information of the candidate cell together to the terminal device.
  • the first network device may not send the configuration information of the source cell.
  • the configuration information includes one or more of the following: reference signal configuration information, measurement configuration information, beam configuration information, quasi co-location (quasi co-location, QCL) information, control resource set (control resource set, Coreset) Configuration information, search space configuration information, timing advance (timing advance, TA) information, terminal equipment identification, channel configuration information (such as physical downlink shared channel (physical downlink shared channel, PDSCH), PDCCH, physical uplink shared channel (physical uplink shared channel) shared channel, PUSCH), physical uplink control channel (physical uplink control channel, PUCCH)), random access resource configuration information, wireless link monitoring configuration information, security-related configuration information, MAC configuration information, RLC configuration information, etc.
  • reference signal configuration information such as physical downlink shared channel (physical downlink shared channel, PDSCH), PDCCH, physical uplink shared channel (physical uplink shared channel) shared channel, PUSCH), physical uplink control channel (physical uplink control channel, PUCCH)
  • channel configuration information such as physical downlink shared channel (physical downlink shared channel, PDSCH
  • the configuration information further includes configuration information related to multiple TRPs.
  • the configuration information related to multiple TRPs includes one or more of the following items: PCI corresponding to different TRPs, physical layer signal scrambling/descrambling sequences used by different TRPs, and CoresetPoolIndex corresponding to PDCCHs of different TRPs.
  • the number of items of configuration information of different cells may be the same or different.
  • the configuration information corresponding to a candidate cell may include all the above configuration items, and the configuration information corresponding to another candidate cell includes the first three items of the above configuration information, then the terminal device may consider that the other configuration items of the candidate cell are consistent with the source cell .
  • the method further includes S305, the second network device sends the configuration information of the candidate cell to the first network device.
  • the second network device may be a network device of a candidate cell. It can be understood that, when the source cell co-sites with all candidate cells, that is, the first network device and the second network device are the same network device, S305 may not be performed.
  • the terminal device measures the source cell and the candidate cell.
  • the terminal device After receiving the configuration information from the first network device, the terminal device measures the reference signal of the source cell and the reference signal of the candidate cell.
  • the reference signal may be SSB, CSI-RS or other types of reference signal, and different reference signals correspond to different beam directions.
  • the terminal device measures different reference signals of the source cell and the candidate cell, and obtains beam-level measurement results.
  • the reference signals of the source cell are SSB 1, SSB 2, CSI-RS 1, and CSI-RS 2
  • the reference signals of the first candidate cell are SSB 1, SSB 2, CSI-RS 1, and CSI-RS 2
  • the reference signals of the second candidate cell are SSB 1, SSB 2, CSI-RS 1, and CSI-RS 2, wherein the first candidate cell and the second candidate cell are any cells in the candidate cells.
  • the terminal equipment needs to measure the above-mentioned reference signals separately to obtain 12 beam-level measurement results.
  • the terminal device sends the measurement result to the first network device.
  • the first network device receives the measurement result from the terminal device.
  • the foregoing measurement results include beam-level measurement results, TRP-level measurement results, and cell-level measurement results.
  • the terminal device measures the reference signal, and after obtaining the beam-level measurement result, further determines the TRP-level measurement result and the cell-level measurement result, and sends the measurement result to the first network device.
  • the measurement results of beams, TRPs and cells are recorded as: beam-level measurement results and TRP-level measurement results and cell-level measurements.
  • the measurement result may include at least one of a beam-level measurement result, a TRP-level measurement result, and a cell-level measurement result.
  • calculation method of the cell-level measurement result reference may be made to the calculation method of the cell-level measurement result in the prior art.
  • the calculation method of the TRP-level measurement result will be described in detail below taking the first TRP as an example.
  • the first TRP is any TRP in the source cell or the candidate cell, and the measurement result corresponding to the first TRP is determined by the beam measurement result corresponding to one or more reference signals transmitted by the first TRP.
  • the terminal device determines the measurement result of the first TRP based on the beam-level measurement result.
  • a possible implementation manner is that the terminal device measures one or more reference signals transmitted by the first TRP to obtain a beam-level measurement result, and further, the beam-level measurement result of the one or more reference signals Averaging is performed to obtain the measurement result of the first TRP.
  • the reference signals transmitted by the first TRP are SSB 1, SSB 2, CSI-RS 1, and CSI-RS 2, and the beam-level measurement results of the reference signals SSB 1, SSB 2, CSI-RS 1, and CSI-RS 2
  • the measurement result of the first TRP can be obtained.
  • the terminal device communicates with two TRPs, namely the first TRP and the second TRP, and the reference signals transmitted by the second TRP are SSB 3, SSB 4, CSI-RS 3, and CSI-RS 4, the same method
  • the measurement results of the second TRP can be obtained, that is, the measurement results of the second TRP can be obtained by averaging the beam-level measurement results of the reference signals SSB 3 , SSB 4 , CSI-RS 3 , and CSI-RS 4 .
  • the terminal device measures one or more reference signals transmitted by the first TRP to obtain a beam-level measurement result, and further, the signal strength of the one or more reference signals exceeds a preset
  • the beam-level measurement results of the threshold reference signal are averaged to obtain the first TRP measurement result.
  • the reference signals whose signal strength exceeds the preset threshold are SSB 1, SSB 2 and CSI-RS 1
  • the beam-level measurement results of the three reference signals are averaged to obtain the first A measurement of TRP.
  • the terminal device measures one or more reference signals transmitted by the first TRP to obtain beam-level measurement results, and further determines that the signal strength of the one or more reference signals is the strongest A reference signal of , and use the beam-level measurement result of the reference signal as the measurement result of the first TRP. For example, if the reference signal with the strongest signal strength among the reference signals of the first TRP is SSB 1, the beam-level measurement result of the reference signal SSB 1 may be used as the measurement result of the first TRP.
  • the first network device may configure a reporting period and a reporting resource for the terminal device, and the terminal device may use the reporting resource to report a measurement result to the first network device based on the reporting period.
  • the first network device configures a trigger event for the terminal device to trigger its report, for example, the reference signal receiving power (reference signal receiving power, RSRP) of each beam in the beam measurement results of the source cell is less than a certain When a preset threshold is reached, the terminal device reports the measurement result to the first network device.
  • the reference signal receiving power reference signal receiving power, RSRP
  • the first network device sends a reporting instruction to the terminal device, where the reporting instruction is used to instruct the terminal device to report the measurement result, and the terminal device reports the measurement result after receiving the reporting instruction.
  • the measurement results sent by the terminal device need to reflect the measurement results of reference signals transmitted by different TRPs.
  • a possible design is that there is a corresponding relationship between an identifier (identifier, ID) of the reference signal and a TRP, and the first network device determines the corresponding TRP according to the ID of the reference signal in the measurement result.
  • the terminal device when the terminal device reports the measurement result, it includes indication information corresponding to the TRP, which is used to indicate the beam-level measurement results of different TRPs.
  • the first network device generates first indication information according to the measurement result, where the first indication information is used to indicate whether to switch from the source cell to the target cell and whether to perform mTRP transmission.
  • the first network device determines whether the terminal device needs to perform cell handover and whether to perform mTRP transmission according to the measurement result reported by the terminal device.
  • the first network device may determine that the candidate cell is the target cell, and the terminal device needs to perform cell handover.
  • the TRP-level measurement results of the target cell are used to determine whether mTRP transmission is required, and further according to the beam-level measurement results of the target cell, multiple beam directions of the terminal device when communicating with multiple TRPs can be determined. Wherein, each beam direction corresponds to one TRP.
  • the first network device may generate first indication information, so as to indicate to the terminal device whether to switch from the source cell to the target cell through the first indication information, and Whether to use mTRP transport.
  • the first indication information includes N bits, where N is a positive integer. N bits are used to indicate: switch to the target cell, but do not use mTRP transmission; or switch to the target cell, and use mTRP transmission, the mTRP is the TRP in the target cell; or switch to the target cell, and use mTRP transmission, the mTRP Include the TRP of the target cell, and the TRP of the source cell and/or the candidate cell; or do not switch cells, and use mTRP transmission, where the mTRP includes the TRP of the source cell and the TRP of the candidate cell.
  • the first indication information uses N bits to indicate whether the terminal device switches cells and whether to perform mTRP transmission. There is no need for the network device to further configure multiple TRPs, and the terminal device can also directly perform mTRP transmission, which improves communication reliability and transmission. capacity.
  • the N bit can also indicate other operations.
  • the N bit is used to indicate switching to the target cell, performing a single TRP transmission with TRP 1, or switching to the target cell, and performing a single TRP transmission with TRP 2.
  • the examples are not limited, and for the sake of brevity, they are not listed here.
  • the first indication information includes N bits, it may also include at least one TCI state, and each TCI state in the at least one TCI state is used to indicate a TRP, such as the beam direction of the TRP.
  • the first indication information includes N bits and at least one TCI state, so that the terminal device can perform data transmission with the TRP in an accurate beam direction.
  • the TCI state may indicate a downlink receive beam direction and/or an uplink transmit beam direction of the terminal device.
  • the first indication information includes N bits and at least one TCI state, so that the terminal device can switch to the target cell to directly perform multiple TRP transmissions based on the received first indication information, and after switching to the target cell, the first network device does not need further By configuring the beam direction, the terminal device can transmit data with the TRP in an accurate beam direction according to the TCI state, thereby improving the reliability of communication and the transmission capacity.
  • the first indication information indicates one of the above operations through 2 bits, for example, the first indication information includes "00" and a TCI state, "00" indicates switching to the target cell, but does not use mTRP transmission, That is, the terminal device switches to the target cell and performs a single TRP transmission, and the TCI state indicates the beam direction for the terminal device to perform a single TRP transmission.
  • the first indication information includes "01" and multiple TCI states, "01" indicates switching to the target cell, and uses mTRP for transmission, the mTRP is the TRP in the target cell, and each TCI state in the multiple TCI states Corresponds to a TRP.
  • the mTRP includes the TRP of the target cell and the TRP of the source cell and/or the candidate cell; or "11" indicates not switching to the cell and using mTRP for transmission,
  • the mTRP includes the TRP of the source cell and the TRP of the candidate cell.
  • the first indication information indicates one of the above operations by using 1 bit. For example, "0" indicates no mTRP transmission; “1" indicates mTRP transmission. For example, if the first indication information includes "0" and a TCI state, it indicates to switch to the target cell, but mTRP transmission is not performed; for another example, if the first indication information includes "1" and multiple TCI states, then further The TRP corresponding to each TCI state determines which of the above operations is to be performed. For example, the two TCI states carried by the first indication information correspond to TRP 1 and TRP 2 in the target cell, then the first indication information indicates to switch to the target cell, and use mTRP for transmission, and the mTRP is the TRP in the target cell.
  • the two TCI states carried by the first indication information correspond to one TRP in the target cell and one TRP of the candidate cell, and the TCI state corresponding to the TRP of the target cell is first, then the first indication information indicates to switch to the target cell, And using mTRP transmission, the mTRP includes the TRP of the target cell, and the TRP of the source cell and/or the candidate cell.
  • the mTRP includes the TRP of the target cell, and the TRP of the source cell and/or the candidate cell.
  • the first indication information includes at least one TCI state, and the at least one TCI state is used to indicate one of the above operations.
  • the TCI status may indicate the direction of the downlink receiving beam and/or the direction of the uplink sending beam of the terminal device.
  • the first indication information when the first indication information includes a TCI state, and the TRP corresponding to the TCI state is not the source cell, the first indication information indicates handover to the target cell, but mTRP transmission is not used.
  • the first indication information carries multiple TCI states, and the TRP corresponding to the TCI state belongs to the same cell, but the cell is not the source cell, then the first indication information indicates to switch to the target cell, and use mTRP transmission, the mTRP is the TRP in the target cell.
  • the first indication information indicates switching to the target cell, and Using mTRP transmission, the mTRP includes the TRP of the target cell, and the TRP of the source cell and/or the candidate cell.
  • the TRP corresponding to the TCI state carried by the first indication information has both the source cell and other cells, and the TCI state corresponding to the source cell is first, then the first indication information indicates that the cell is not switched, and mTRP is used for transmission,
  • the mTRP includes the TRP of the source cell and the TRP of the candidate cell. For the sake of brevity, they are not listed here.
  • Another possible design is to distinguish the different operations indicated by the first indication information through the LCID of the MAC subheader (subheader).
  • the N bits included in the first indication information are LCIDs.
  • Signaling such as MAC control element (control element, CE).
  • At least one LCID may be predefined in the protocol, and each LCID in the at least one LCID corresponds to an operation that instructs the terminal device to perform.
  • 4 LCIDs are defined in the protocol, and each LCID corresponds to the following operations: handover to the target cell without using mTRP transmission; or handover to the target cell and use mTRP transmission, where mTRP is the TRP in the target cell; or handover To the target cell, and use mTRP transmission, mTRP includes the TRP of the target cell, and the TRP of the source cell and/or candidate cell; or do not switch cells, and use mTRP transmission, mTRP includes the TRP of the source cell and the TRP of the candidate cell.
  • the first network device sends the first indication information to the terminal device.
  • the terminal device receives the first indication information from the first network device.
  • the first network device After the first network device generates the first indication information, it sends the first indication information to the terminal device, so that the terminal device performs data transmission according to the operation indicated by the first indication information.
  • the first indication information may be carried by physical layer signaling, may also be carried by MAC layer signaling, or may also be carried by a combination of physical layer signaling and MAC layer signaling. This embodiment of the present application does not limit it.
  • a possible design is that the first network device sends the first indication information through physical layer signaling, that is, N bits and at least one TCI state or at least one TCI state is carried in the physical layer signaling.
  • the first network device sends the first indication information through MAC layer signaling, that is, N bits and at least one TCI state or at least one TCI state is carried in the MAC layer signaling.
  • the first network device when the first network device sends the first indication information by referring to MAC layer signaling, different operations included in the first indication information may also be distinguished by the LCID of the MAC subheader.
  • the first network device may also instruct the terminal device which specific operation to perform by jointly sending indication information through physical layer signaling and MAC layer signaling.
  • the first network device may generate second indication information, where the second indication information is used to indicate multiple candidate operations, and any one of the multiple candidate operations is used to indicate whether the terminal device switches cells and at least one TCI Each TCI state in at least one TCI state corresponds to a TRP.
  • the first indication information is used to indicate one of the above multiple candidate operations. That is to say, the first network device indicates multiple possible candidate operations through the second indication information, and indicates one of the above multiple candidate operations through the first indication information, thereby saving the overhead of physical layer signaling.
  • the second indication information can use 2 bits to indicate multiple candidate operations, "00" indicates switching to candidate cell #1, using TCI state #1; "01” indicates switching to candidate cell #1, using TCI state # 1 and TCI state #2, TCI state #1 and TCI state #2 correspond to candidate cell #1; “10” indicates switching to candidate cell #1, use TCI state #1 and TCI state #2, TCI state #1 corresponds to For candidate cell #1, TCI state #2 corresponds to candidate cell #2; “11” means not to switch cells, use TCI state #1 and TCI state #2 for mTRP transmission, TCI state #1 corresponds to the source cell, TCI state #2 corresponds to candidate cell #1.
  • the first network device determines that the candidate cell #1 is the target cell, and further, indicates "00" through the first indication information, and after receiving the first indication information, the terminal device, based on the "00" in the second indication information In a corresponding operation, the terminal device switches to candidate cell #1, that is, the target cell, and uses TCI state #1 for transmission.
  • the second indication information may also indicate more candidate operations.
  • the second indication information may use 3 bits to indicate more candidate operations, for example, "000” indicates switching to candidate cell #1, using TCI state #1; "001” indicates switching to candidate cell #1, Use TCI state #2; “010” indicates handover to candidate cell #2, use TCI state #1; “011” indicates handover to candidate cell #1, use TCI state #1 and TCI state #2 for mTRP transmission; "110 "Indicates to switch to candidate cell #2, use TCI state #1 and TCI state #2 for mTRP transmission; "111” indicates not to switch cells, use TCI state #1 and TCI state #2 for mTRP transmission, for the sake of brevity, do not List them one by one.
  • the first network device After the first network device generates the second indication information, it sends the second indication information to the terminal device through MAC layer signaling, and sends the first indication information to the terminal device through physical layer signaling.
  • the first indication information indicates "001".
  • the terminal device After receiving the first indication information and the second indication information, the terminal device performs the operation corresponding to "001", that is, switches to candidate cell #1 and uses TCI state #2, in other words, candidate cell #1 is the target cell, The terminal device switches to the target cell and performs a single TRP transmission.
  • the method of jointly sending the indication information through the physical layer signaling and the MAC layer signaling can reduce occupation of physical layer resources, thereby reducing physical layer signaling overhead.
  • the terminal device performs data transmission in the source cell and/or the target cell according to the first indication information.
  • the terminal device After receiving the first indication information, the terminal device performs one or more TRP transmissions on the source cell and/or the target cell.
  • the terminal device switches to the target cell and performs mTRP transmission in the target cell, or, switches to the target cell, performs mTRP transmission in the target cell and the source cell, or switches to the target cell, and performs mTRP transmission in the target cell and other candidate cells, Or do not switch to the target cell, and perform mTRP transmission in the source cell and the candidate cell.
  • the first indication information indicates whether to switch to the target cell
  • it also indicates whether the terminal device performs mTRP transmission, so that after the terminal device switches to the target cell, it can directly perform mTRP transmission, which improves communication reliability and improves transmission capacity.
  • the present application also provides a communication
  • the measurement results are jointly reported by the physical layer signaling and the MAC layer signaling or the RRC layer signaling, so that the terminal equipment can report all the measurement results.
  • FIG. 4 is another schematic flowchart of a communication method 400 provided by an embodiment of the present application.
  • the method 400 shown in FIG. 4 may include S410 to S460.
  • the process of reporting the measurement result by the terminal device will be described in detail below in conjunction with FIG. 4 .
  • the first network device sends the configuration information of the source cell and the candidate cell to the terminal device.
  • the terminal device measures the source cell and the candidate cell.
  • the terminal device determines the first reference signal according to the signal strength of the reference signal.
  • the reference signal can be used for channel measurement, and different reference signals correspond to different beams.
  • Reference signals may include, but are not limited to: CSI-RS, SSB, etc.
  • the embodiment of the present application does not limit the type of the reference signal.
  • the first reference signal is at least one reference signal of the source cell and the candidate cell.
  • the reference signals of the source cell are SSB 1, SSB 2, CSI-RS 1, and CSI-RS 2
  • the candidate cells include the first candidate cell and the second candidate cell
  • the reference signals of the first candidate cell are SSB 1, SSB 2 , CSI-RS 1, CSI-RS 2
  • the reference signal of the second candidate cell is SSB 1, SSB 2, CSI-RS 1, CSI-RS 2
  • the first reference signal is one of the above 12 reference signals or multiple reference signals.
  • the first reference signal may include the same type of reference signal, such as the type of the first reference signal is CSI-RS; it may also include different types of reference signal, such as the type of the first reference signal is CSI-RS, SSB . This embodiment of the present application does not limit it.
  • the first reference signal may be a reference signal from the same cell, or may be a reference signal from a different cell, which is not limited in this embodiment of the present application.
  • the number of first reference signals is determined by the transmission resources allocated to the physical layer signaling.
  • the physical layer signaling can transmit the measurement results of P reference signals at most, P ⁇ 1, and P is an integer, then the terminal device can transmit from the source cell P reference signals are determined from all reference signals of candidate cells.
  • the first reference signal includes a reference signal whose signal strength is in the top P positions in multiple cells, and the multiple cells include a source cell and one or more candidate cells.
  • the reference signals corresponding to the beam measurement results that need to be reported are as follows: the reference signals of the source cell are SSB 1, SSB 2, CSI-RS 1, CSI-RS 2, the reference signals of the first candidate cell are SSB 1, SSB 2, CSI-RS 1, CSI-RS 2, the reference signals of the second candidate cell are SSB 1, SSB 2, CSI-RS 1, CSI-RS 2, and the value of P is 4, then the terminal device can select the above 12 reference signals
  • the first reference signal includes the reference signal with the strongest signal strength in each of the M cells
  • the M cells include the source cell and one or more candidate cells
  • 1 ⁇ M ⁇ P and M are integers
  • the remaining P-M reference signals may select a reference signal whose signal strength is at the top P-M bits among the remaining reference signals.
  • the first reference signal includes the reference signal whose strength is at the top P among the M reference signals from the M cells, and each reference signal in the M reference signals is related to the M reference signal in the M cells.
  • M cells include the cell where the terminal device is located and one or more candidate cells. A reference signal with the strongest signal strength is determined for each cell of , and then the reference signal at the first P positions among the M reference signals is selected.
  • the terminal device sends the measurement result of the first reference signal through physical layer signaling.
  • the measurement result of the first reference signal may be sent in physical layer signaling.
  • the terminal device After determining the first reference signal, the terminal device sends the measurement result of the first reference signal through physical layer signaling.
  • the physical layer signaling further includes third indication information, where the third indication information is used to indicate a reference signal corresponding to a measurement result not carried in the physical layer signaling. That is to say, the third indication information may indicate which reference signal measurement results are not carried in the physical layer signaling.
  • S450 Send the measurement result of the second reference signal through MAC layer signaling or RRC layer signaling.
  • the measurement result of the second reference signal may be sent in MAC layer signaling or RRC layer signaling.
  • the second reference signal is at least one reference signal of the source cell and the candidate cell, and the second reference signal is different from the first reference signal.
  • the second reference signal is the remaining reference signal after the first reference signal is removed from the reference signals that need to report the measurement results, where the reference signal may include but not limited to: CSI-RS, SSB, etc.
  • the terminal device can report the measurement results of some reference signals through physical layer signaling, that is, the measurement results of the first reference signal, and then report the measurement results of other reference signals that need to be reported through MAC layer signaling or RRC layer signaling, namely The measurement result of the second reference signal.
  • the second reference signal may include reference signals of the same type, or may include reference signals of different types.
  • the second reference signal may be a reference signal from the same cell; it may also be a reference signal from a different cell.
  • the reference signals that need to be reported are as follows: the reference signals of the source cell include SSB 1, SSB 2, CSI-RS 1, and CSI-RS 2, and the reference signals of the first candidate cell include SSB 1, SSB 2, and CSI-RS 1. CSI-RS 2.
  • the reference signals of the second candidate cell include SSB 1, SSB 2, CSI-RS 1, and CSI-RS 2.
  • the first reference signal reported by the terminal device through physical layer signaling includes: SSB of the source cell 1.
  • the second reference signal reported through MAC layer signaling or RRC layer signaling is: CSI-RS 1 and CSI-RS 2 of the source cell, SSB 1, CSI-RS 2 of the first candidate cell, SSB 1, SSB 2, CSI-RS 1, CSI-RS 2 of the second candidate cell.
  • the first network device sends first indication information to the terminal device, where the first indication information is used to indicate whether to switch from the source cell to the target cell and whether to perform mTRP transmission.
  • the description of the first indication information refer to the relevant description of S340 above
  • the process of sending the first indication information by the first network device refer to the relevant description of S350 above, and for the sake of brevity, details are not repeated here.
  • the terminal device firstly reports relatively important measurement results through physical layer signaling, such as the measurement results of reference signals with strong signal strength, and then incrementally reports other needs to be reported through MAC layer signaling or RRC layer signaling
  • the measurement results of the reference signal solve the problem that the physical layer signaling cannot report the measurement results in full, and the first network device can receive important measurement results in a timely manner and quickly determine whether to perform cell handover, so that the terminal device can Quickly switch to a cell with better communication quality, which improves communication quality and user experience.
  • the terminal device can also incrementally report the measurement results of other reference signals that need to be reported through MAC layer signaling or RRC layer signaling, the first network device has no control over the reception of the reference signal of the terminal device in other cells.
  • a more comprehensive understanding of the situation facilitates the first network device to make a reasonable decision for the terminal device, which is beneficial to improving system performance.
  • the embodiment of the present application provides a communication method.
  • the terminal device determines the TRP-level measurement results based on the beam-level measurement results, and uses the newly added cells of the RRC layer cell, The TRP measurement result is reported to the first network device, thereby distinguishing different PCI measurement results, and providing more refined measurement results to the first network device.
  • FIG. 5 is a schematic flowchart of a communication method 500 provided by an embodiment of the present application.
  • the method 500 shown in FIG. 5 may include S510 to S550.
  • the first network device sends configuration information of the source cell and the candidate cell to the terminal device.
  • the terminal device measures the source cell and the candidate cell.
  • the terminal device determines the measurement result of the first TRP based on the beam-level measurement result.
  • the measurement result corresponding to the first TRP is determined by the beam-level measurement result corresponding to one or more reference signals transmitted by the first TRP, and the first TRP is any TRP in the source cell or the candidate cell.
  • the terminal device determines the measurement result of the first TRP based on the beam-level measurement result.
  • a possible implementation manner is that the terminal device measures one or more reference signals transmitted by the first TRP to obtain a beam-level measurement result, and further, performs a beam-level measurement result of the one or more reference signals On average, the measurements of the first TRP are obtained.
  • the reference signals transmitted by the first TRP are SSB 1, SSB 2, CSI-RS 1, and CSI-RS 2, and the beam-level measurement results of the reference signals SSB 1, SSB 2, CSI-RS 1, and CSI-RS 2
  • the measurement result of the first TRP can be obtained.
  • the terminal device communicates with two TRPs, namely the first TRP and the second TRP, and the reference signals transmitted by the second TRP are SSB 3, SSB 4, CSI-RS 3, and CSI-RS 4, the same method
  • the measurement results of the second TRP can be obtained, that is, the measurement results of the second TRP can be obtained by averaging the beam-level measurement results of the reference signals SSB 3 , SSB 4 , CSI-RS 3 , and CSI-RS 4 .
  • the terminal device measures one or more reference signals transmitted by the first TRP to obtain a beam-level measurement result, and further, the signal strength of the one or more reference signals exceeds a preset
  • the beam-level measurement results of the threshold reference signal are averaged to obtain the first TRP measurement result.
  • the reference signals whose signal strength exceeds the preset threshold are SSB 1, SSB 2 and CSI-RS 1
  • the beam-level measurement results of the three reference signals are averaged to obtain the first A measurement of TRP.
  • the terminal device measures one or more reference signals transmitted by the first TRP to obtain beam-level measurement results, and further determines that the signal strength of the one or more reference signals is the strongest A reference signal of , and use the beam-level measurement result of the reference signal as the measurement result of the first TRP. For example, if the reference signal with the strongest signal strength among the reference signals of the first TRP is SSB 1, the beam-level measurement result of the reference signal SSB 1 may be used as the measurement result of the first TRP.
  • the terminal device may also determine the PCI-level measurement result.
  • the process of determining the measurement results at the PCI level is briefly described below.
  • the terminal device When the terminal device communicates with the first TRP and the second TRP, and the PCI associated with the first TRP is the same as the PCI associated with the second TRP, the terminal device can use the above calculation method for calculating the first TRP to determine the measurement of the first TRP As a result, further, the terminal device can use the same calculation method to determine the measurement result of the second TRP.
  • the average value of the measurement results of multiple TRPs is used as the measurement result of the PCI level, or the measurement result of the strongest TRP among the measurement results of the multiple TRPs is used as the measurement result of the PCI level.
  • the terminal device communicates with the first TRP and the second TRP, and the PCI associated with the first TRP is different from the PCI associated with the second TRP, record the PCI corresponding to the first TRP as the first PCI, and record the PCI corresponding to the second TRP as the first PCI. If the PCI is recorded as the second PCI, the measurement result of the first TRP can be regarded as the measurement result of the first PCI, and similarly, the measurement result of the second TRP can be regarded as the measurement result of the second PCI.
  • the terminal device sends a measurement result to the first network device, where the measurement result includes a measurement result of the first TRP.
  • the measurement result of the first TRP is carried in the RRC layer signaling. Specifically, it may be carried in a certain field of the RRC layer signaling, and the field is used to indicate the measurement results of one or more TRPs and/or the measurement results of PCIs associated with one or more TRPs.
  • a possible design is to add a "MeasResultServingPCI" information element to the information element (information element, IE) (referred to as the information element) "MeasResultServMO" in the existing RRC layer signaling, and the information element may include one or more
  • the measurement result of one TRP or the measurement result of one or more PCIs, the content included in this cell can be expressed as "SEQUENCE(SIZE(1..maxNrofPCIs))OF MeasResultNR", where “SEQUENCE” is a data type, “ maxNrofPCIs” is the maximum number of PCIs associated with multiple TRPs of a cell, and "MeasResultNR" is an information element defined by an existing protocol, indicating the measurement result of NR.
  • “MeasResultServingPCI” is only a name code indicated by the PCI-level measurement result, and the embodiment of the present application does not limit which name code is specifically selected.
  • the corresponding identifiers are "physCellID", “physCellID 2" and “physCellID 3" respectively, where “physCellID” is the ID of the physical cell, which is the existing cell ID in "MeasResultNR”. field, "physCellID 2" and “physCellID 3" are newly added information elements in "MeasResultNR”.
  • the first network device sends first indication information to the terminal device, where the first indication information is used to indicate whether to switch from the source cell to the target cell and whether to perform mTRP transmission.
  • the description of the first indication information refer to the relevant description of S340 above
  • the process of sending the first indication information by the first network device refer to the relevant description of S350 above, and for the sake of brevity, details are not repeated here.
  • the terminal device further determines the TRP-level measurement result based on the beam-level measurement result, and reports the TRP-level measurement result to the first network device, so that multiple TRPs communicating with the terminal device are associated with different
  • different TRP measurement results can be distinguished, or different PCI measurement results can be distinguished, so that the reported measurement results are more refined, which is beneficial for the first network device to perform more refined mobility on the terminal device Management and more efficient mTRP delivery.
  • FIG. 3 , FIG. 4 and FIG. 5 may be combined or implemented separately, which is not limited in this embodiment of the present application.
  • Fig. 3 , Fig. 4 and Fig. 5 it can not only ensure that the terminal equipment reports all the measurement results, but also distinguish the measurement results of different TRPs, thereby making the reported measurement results more refined, and also It can enable the terminal equipment to directly perform mTRP transmission after switching to the target cell, thereby improving communication reliability and transmission capacity.
  • FIG. 3 , FIG. 4 and FIG. 5 can be selected for implementation in specific implementation, and the order of the steps in the illustrations can also be adjusted for implementation, which is not limited in the present application. It should be understood that performing some of the steps in the illustration or adjusting the order of the steps for specific implementation falls within the protection scope of the present application.
  • FIG. 6 to FIG. 8 are schematic structural diagrams of possible communication devices provided by the embodiments of the present application.
  • a communication device 600 includes a processing unit 610 and a transceiver unit 620 .
  • the communication device 600 is used to realize the function of the terminal device in the method embodiment shown in FIG. A module, which may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • the communication device 600 is used to implement the functions of the first network device in the method embodiment shown in FIG. 3 above, or, the communication device 600 may include any A module of function or operation, which may be realized in whole or in part by software, hardware, firmware or any combination thereof.
  • the communication device 600 is used to realize the function of the terminal device in the method embodiment shown in FIG. A module, which may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • the communication device 600 is used to realize the function of the first network device in the method embodiment shown in FIG. 4 above, or, the communication device 600 may include any A module of function or operation, which may be realized in whole or in part by software, hardware, firmware or any combination thereof.
  • the communication device 600 is used to realize the function of the terminal device in the method embodiment shown in FIG. A module, which may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • the communication device 600 is used to implement the functions of the first network device in the method embodiment shown in FIG. 5 above, or the communication device 600 may include any A module of function or operation, which may be realized in whole or in part by software, hardware, firmware or any combination thereof.
  • the target cell is one of the candidate cells.
  • the processing unit 610 is configured to perform data transmission in the source cell and/or the target cell according to the first indication information.
  • the transceiver unit 620 is used to send the first indication information, and the first indication information is used to indicate whether to switch from the source cell to the target cell and whether to use multiple TRP transmissions, the target cell is one of the candidate cells.
  • the processing unit 610 is configured to generate first indication information according to the measurement result.
  • the transceiver unit 620 is used to send the measurement results of the first reference signal through physical layer signaling.
  • the first reference signal is the source cell and the candidate At least one reference signal in the cell;
  • the transceiver unit 620 is also configured to send the measurement result of the second reference signal through MAC layer signaling or RRC layer signaling, the second reference signal is at least one reference signal in the source cell and the candidate cell, The second reference signal is different from the first reference signal;
  • the transceiver unit 620 is also configured to receive first indication information from the first network device, the first indication information is used to indicate whether to switch from the source cell to the target cell and whether to use multiple For TRP transmission, the target cell is one of the candidate cells.
  • the processing unit 610 is configured to measure the source cell and the candidate cell; the processing unit 610 is also configured to determine the first reference signal according to the signal strength of the reference signal.
  • the transceiver unit 620 is used to receive the measurement result of the first reference signal from the terminal device through physical layer signaling.
  • the signal is at least one reference signal in the source cell and the candidate cell;
  • the transceiver unit 620 is also used to receive the measurement result of the second reference signal from the terminal device through MAC layer signaling or RRC layer signaling, and the second reference signal is the source cell Unlike at least one reference signal in the candidate cell, the second reference signal is different from the first reference signal;
  • the transceiver unit 620 is also used to send first indication information, the first indication information is used to indicate whether to switch from the source cell to the target cell and Whether to use multiple TRP transmissions, the target cell is one of the candidate cells.
  • the transceiver unit 620 is used to send the measurement result to the first network device, the measurement result including the measurement result of the first TRP; the transceiver unit 620 is further configured to receive first indication information from the first network device.
  • the processing unit 610 is used to measure the source cell and the candidate cell; the processing unit 610 is also used to determine the measurement result of the first TRP based on the measurement result of the beam level, and the measurement result of the first TRP is transmitted by one or more TRPs transmitted by the first TRP.
  • the beam measurement results corresponding to the reference signals are determined, and the first TRP is any TRP in the source cell or the candidate cell.
  • the transceiver unit 620 is used to receive the measurement result from the terminal device, the measurement result including the first TRP measurement result; Unit 620 is further configured to send first indication information, where the first indication information is used to indicate whether to switch from the source cell to the target cell and whether to use multiple TRP transmissions, and the target cell is one of the candidate cells.
  • processing unit 610 and the transceiver unit 620 can be directly obtained by referring to the relevant descriptions in the method embodiments shown in FIG. 3 , FIG. 4 or FIG. 5 , and details are not repeated here.
  • FIG. 7 is another schematic block diagram of a communication device 700 provided by an embodiment of the present application.
  • the device 700 may be a system on a chip, or may also be a device configured with a system on a chip to implement the communication function in the foregoing method embodiments.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • the apparatus 700 may include a processor 710 and a communication interface 720 .
  • the communication interface 720 can be used to communicate with other devices through a transmission medium, so that the devices used in the device 700 can communicate with other devices.
  • the communication interface 720 may be, for example, a transceiver, an interface, a bus, a circuit, or a device capable of implementing a transceiver function.
  • the processor 710 can use the communication interface 720 to input and output data, and be used to implement the communication method described in the embodiment corresponding to FIG. 3 or FIG. 4 or FIG. 5 .
  • the apparatus 700 may be used to implement the functions of the first network device or terminal device in the foregoing method embodiments.
  • the processor 710 is used to implement the functions of the processing unit 610
  • the communication interface 720 is used to implement the functions of the transceiver unit 620 .
  • the device 700 further includes at least one memory 730 for storing program instructions and/or data.
  • the memory 730 is coupled to the processor 710 .
  • the coupling in the embodiments of the present application is an indirect coupling or a communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 710 may cooperate with memory 730 .
  • Processor 710 may execute program instructions stored in memory 730 . At least one of the at least one memory may be included in the processor.
  • the specific connection medium among the processor 710, the communication interface 720, and the memory 730 is not limited in the embodiment of the present application.
  • the processor 710 , the communication interface 720 and the memory 730 are connected through a bus 740 .
  • the bus 740 is represented by a thick line in FIG. 7 , and the connection manner between other components is only for schematic illustration and is not limited thereto.
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 7 , but it does not mean that there is only one bus or one type of bus.
  • FIG. 8 is a schematic structural diagram of a network device provided by an embodiment of the present application, for example, it may be a schematic structural diagram of a base station.
  • the base station 800 may execute the function of the first network device in the foregoing method embodiments.
  • the base station 800 may include one or more radio frequency units, such as a remote radio unit (remote radio unit, RRU) 810 and one or more baseband units (BBU) (also referred to as distributed units ( DU)) 820.
  • the RRU 810 may be called a transceiver unit, corresponding to the transceiver unit 620 in FIG. 6 .
  • the RRU 810 may also be called a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 8101 and a radio frequency unit 8102.
  • the RRU 810 may include a receiving unit and a sending unit, the receiving unit may correspond to a receiver (or called receiver, receiving circuit), and the sending unit may correspond to a transmitter (or called transmitter, sending circuit).
  • the RRU 810 part is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals, for example, for sending the first indication information to the terminal equipment.
  • the BBU 820 part is mainly used for baseband processing, controlling the base station, and the like.
  • the RRU 810 and the BBU 820 may be physically set together, or physically separated, that is, a distributed base station.
  • the BBU 820 is the control center of the base station, and can also be called a processing unit, which can correspond to the processing unit 610 in FIG. 6 , and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, spectrum spreading, and the like.
  • the BBU processing unit
  • the BBU may be used to control the base station to execute the operation procedure related to the first network device in the above method embodiment, for example, generate the first indication information according to the measurement result.
  • the BBU 820 may be composed of one or more single boards, and multiple single boards may jointly support a wireless access network (such as an LTE network) of a single access standard, or may separately support wireless access networks of different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 820 also includes a memory 8201 and a processor 8202.
  • the memory 8201 is used to store necessary instructions and data.
  • the processor 8202 is used to control the base station to perform necessary actions, for example, to control the base station to execute the operation procedures related to the first network device in the above method embodiments.
  • the memory 8201 and processor 8202 may serve one or more boards. That is to say, memory and processors can be set independently on each single board. It may also be that multiple single boards share the same memory and processor. In addition, necessary circuits can also be set on each single board.
  • the base station 800 shown in FIG. 8 can implement various processes involving the first network device in the method embodiment shown in FIG. 3 , FIG. 4 , or FIG. 5 .
  • the operations and/or functions of the various modules in the base station 800 are respectively for implementing the corresponding processes in the above method embodiments.
  • the above-mentioned BBU 820 can be used to execute the actions internally implemented by the first network device described in the previous method embodiments, and the RRU 810 can be used to perform the first network device described in the previous method embodiments to send to or from the terminal device Receive action.
  • the RRU 810 can be used to perform the first network device described in the previous method embodiments to send to or from the terminal device Receive action.
  • the present application also provides a computer program product, the computer program product including: a computer program (also referred to as code, or an instruction), when the computer program is executed, the computer executes the program shown in FIG. 3 or FIG. 4 or FIG. 5 .
  • a computer program also referred to as code, or an instruction
  • the method executed by the terminal device or the method executed by the first network device when the computer program is executed, the computer executes the program shown in FIG. 3 or FIG. 4 or FIG. 5 .
  • the present application also provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program (also called a code, or an instruction).
  • a computer program also called a code, or an instruction.
  • the computer program When the computer program is executed, the computer is made to execute the method executed by the terminal device or the method executed by the first network device in the embodiment shown in FIG. 3 or FIG. 4 or FIG. 5 .
  • An embodiment of the present application provides a communication system, where the communication system includes the aforementioned terminal device and the first network device.
  • the processor in this embodiment of the present application may be an integrated circuit chip that has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (application specific integrated circuit, ASIC), a field programmable gate array (field programmable gate array, FPGA) or other possible Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Program logic devices discrete gate or transistor logic devices, discrete hardware components.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • direct rambus RAM direct rambus RAM
  • unit may be used to denote a computer-related entity, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • each functional unit may be fully or partially implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer instructions (programs). When the computer program instructions (program) are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital versatile disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD) )wait.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a digital versatile disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: various media capable of storing program codes such as U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种通信方法和通信装置,该方法包括:第一网络设备将第一指示信息发送给终端设备,第一指示信息用于指示是否从源小区切换至目标小区以及是否使用多个传输接收点TRP传输,目标小区为候选小区中的一个;终端设备根据第一指示信息,在源小区和/或目标小区进行数据传输。终端设备基于接收到的第一指示信息,可以确定是否进行小区切换,以及是否进行多个TRP传输,若第一指示信息指示终端设备进行多个TRP传输,则无需第一网络设备进一步配置多个TRP,终端设备即可直接进行多个TRP传输,提升了通信的可靠性和传输容量。

Description

一种通信方法和通信装置
本申请要求于2021年8月4日递交中国国家知识产权局、申请号为202110892623.4、发明名称为“一种通信方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种通信方法和通信装置。
背景技术
随着多天线技术的发展,多输入多输出(multiple input multiple output,MIMO)已由原来的8天线扩增为16/32/64/128天线,称为大规模(massive)MIMO。Massive MIMO技术可提高覆盖和容量,在例如高频通信等场景中非常适用。
在某些场景中,如高频通信场景中,一个小区可能由一个或多个传输接收点(transmission reception point,TRP)覆盖,终端设备可以与一个或多个TRP进行数据传输,以提升通信可靠性和传输容量。
Massive MIMO技术需要进行波束管理,使用通信质量较好的波束方向进行通信。在基于物理层/媒体接入控制(medium access control,MAC)层的小区切换技术中,终端设备能够在小区切换前进行目标小区的波束管理,进而切换到目标小区后,能够快速完成波束对齐,但无法直接与多个TRP进行数据传输,导致通信可靠性和传输容量降低。
发明内容
本申请实施例提供了一种通信方法和通信装置,以期终端设备在切换至目标小区后,能够直接进行多个TRP传输,从而提高通信的可靠性和传输容量。
第一方面,本申请提供了一种通信方法,该方法可以由终端设备来执行,或者,也可以由配置在终端设备中的部件(如芯片、芯片系统等)执行,或者,还可以由能实现全部或部分终端设备功能的逻辑模块或软件实现,本申请对此不作限定。
示例性地,该方法包括:接收来自第一网络设备的第一指示信息,第一指示信息用于指示是否从源小区切换至目标小区以及是否使用多个TRP传输,目标小区为候选小区中的一个;根据第一指示信息,在源小区和/或目标小区进行数据传输。
基于上述技术方案,终端设备接收到的第一指示信息用于指示终端设备是否进行小区切换的同时,还指示终端设备是否进行多个TRP传输,使得终端设备切换至目标小区之后,可以直接进行多个TRP传输,提高了通信可靠性,同时提升了通信容量。
结合第一方面,在第一方面可能的实现方式中,所述方法还包括:接收来自第一网络设备的配置信息,该配置信息用于对源小区和候选小区进行测量;向第一网络设备发送测量结果。
终端设备基于配置信息对源小区和候选小区进行测量,并将测量结果告知给第一网络设备,以便于第一网络设备基于测量结果确定出终端设备是否进行小区切换,进一步确定出是否进行多个TRP传输,在切换后一段时间内,提升了通信的可靠性和传输容量。
结合第一方面,在第一方面可能的实现方式中,向第一网络设备发送测量结果,包括:通过物理层信令发送第一参考信号的测量结果,第一参考信号为源小区和候选小区中的至少一个参考信号;通过MAC层信令或无线资源控制(radio resource control,RRC)层信令发送第二参考信号的测量结果,第二参考信号为源小区和候选小区中的至少一个参考信号,第二参考信号和第一参考信号不同。
终端设备通过物理层信令发送一部分参考信号的测量结果,即第一参考信号的测量结果,再通过MAC层信令或RRC层信令发送需要上报的参考信号中除去第一参考信号的剩余的参考信号的测量结果,即第二参考信号的测量结果,采用增量上报的方式,解决了物理层信令资源受限的情况下,无法全量上报参考信号的测量结果的问题,大大减少了物理层信令开销。
结合第一方面,在第一方面可能的实现方式中,根据参考信号的信号强度,确定第一参考信号,上述参考信号为源小区和候选小区的多个参考信号。
第一参考信号的选取可以基于参考信号的信号强度,例如,选取源小区和候选小区的多个参考信号中信号强度靠前的参考信号作为第一参考信号,快速通过物理层信令上报第一参考信号的测量结果,使得相对重要的测量结果可以快速上报。
结合第一方面,在第一方面可能的实现方式中,所述测量结果包括第一TRP的测量结果,第一TRP的测量结果由第一TRP发射的一个或多个参考信号对应的波束的测量结果确定,第一TRP为源小区或候选小区中的任意一个TRP。
终端设备除了上报参考信号的测量结果外,还可以上报TRP级的测量结果,例如,可以通过RRC层信令的某一字段上报,且通过RRC层信令上报时,可以区分出不同的TRP的测量结果,因此,终端设备为第一网络设备提供的测量结果更加精细。
第二方面,本申请提供了一种通信方法,该方法可以由第一网络设备来执行,或者,也可以由配置在第一网络设备中的部件(如芯片、芯片系统等)执行,或者,还可以由能实现全部或部分第一网络设备功能的逻辑模块或软件实现,本申请对此不作限定。
示例性地,该方法包括:根据测量结果生成第一指示信息,第一指示信息用于指示是否从源小区切换至目标小区以及是否使用多个TRP传输,目标小区为候选小区中的一个,上述测量结果是终端设备基于对源小区和候选小区的测量得到;发送第一指示信息。
基于上述技术方案,第一网络设备将第一指示信息发送给终端设备,第一指示信息用于指示终端设备是否进行小区切换的同时,还用于指示终端设备是否进行多个TRP传输,使得终端设备切换至目标小区后,可以直接进行多个TRP传输,提高了通信可靠性,同时提升了通信容量。
结合第二方面,在第二方面可能的实现方式中,所述方法还包括:向终端设备发送配置信息,该配置信息用于对源小区和候选小区进行测量;接收来自终端设备的测 量结果。
第一网络设备将配置信息发送给终端设备,以便于终端设备对源小区和候选小区进行测量,其次,第一网络设备接收对源小区和候选小区的测量结果,基于测量结果确定出终端设备是否进行小区切换,进一步确定出是否进行多个TRP传输,在切换后一段时间内,提升了通信的可靠性和传输容量。
结合第二方面,在第二方面可能的实现方式中,接收来自终端设备的测量结果,包括:通过物理层信令接收第一参考信号的测量结果,第一参考信号为源小区和候选小区中的至少一个参考信号;通过MAC层信令或RRC层信令接收第二参考信号的测量结果,第二参考信号为源小区和候选小区中的至少一个参考信号,第二参考信号和第一参考信号不同。
物理层信令携带一部分参考信号的测量结果,即第一参考信号的测量结果,MAC层信令或RRC层信令携带需要上报的剩余的参考信号的测量结果,即第二参考信号的测量结果,采用增量上报的方式,解决了物理层信令资源受限的情况下,无法全量上报参考信号的测量结果的问题。
结合第二方面,在第二方面可能的实现方式中,所述测量结果包括第一TRP的测量结果,第一TRP的测量结果由第一TRP发射的一个或多个参考信号对应的波束的测量结果确定,第一TRP为源小区或候选小区中的任意一个TRP。
结合第一方面或第二方面,在某些可能的实现方式中,终端设备接收到的第一指示信息的指示方式可以有不同的设计。
在一种可能的设计中,第一指示信息包括N比特,N为正整数,N比特用于指示:切换至目标小区,但不使用多个TRP传输;或切换至目标小区,且使用多个TRP传输,多个TRP为目标小区中的TRP;或切换至目标小区,且使用多个TRP传输,多个TRP包括目标小区的TRP,以及源小区和/或候选小区的TRP;或不切换小区,且使用多个TRP传输,多个TRP包括源小区的TRP和候选小区的TRP。
终端设备接收到的第一指示信息包括N比特,N比特可以用于指示终端设备执行哪一种操作,其中,N比特例如可以是1比特、2比特等等,例如,通过2比特指示终端设备具体执行哪一种操作,即通过“00”、“01”、“10”、“11”分别对应上述四种操作中的一种。
可选地,第一指示信息还可以包括至少一个TCI状态,其中,至少一个TCI状态中的每个TCI状态用于指示一个TRP的波束方向。
第一指示信息指示终端设备执行哪一种操作的同时,还可以包括至少一个TCI状态,至少一个TCI状态用于指示终端设备进行TRP传输所需要的波束方向,无需第一网络设备进一步配置TRP传输需要的波束方向,终端设备进行切换后,在目标小区能够以准确的波束方向进行多个TRP传输,提升了通信的可靠性和传输容量。
在另一种可能的设计中,第一指示信息包括至少一个TCI状态,至少一个TCI状态用于指示:切换至目标小区,但不使用多个TRP传输;或切换至目标小区,且使用多个TRP传输,多个TRP为所述目标小区中的TRP;或切换至目标小区,且使用多个TRP传输,多个TRP包括目标小区的TRP,以及源小区和/或候选小区的TRP;或不切换小区,且使用多个TRP传输,多个TRP包括源小区的TRP和候选小区的TRP。
至少一个TCI状态中的每个TCI状态对应一个TRP,通过TCI状态指示不同的操作,换言之,通过TCI状态的数目以及TCI状态对应的TRP所属的小区来确定对应哪一种操作。例如,第一指示信息包括一个TCI状态,且该TCI状态对应的TRP并非源小区时,则第一指示信息指示切换至目标小区,但不使用多个TRP传输;又例如,第一指示信息包括的多个TCI状态对应的TRP既有源小区的,也有其他小区的,且对应于其他小区的TCI状态在前,则第一指示信息指示切换至目标小区,且使用多个TRP传输,该多个TRP包括目标小区的TRP,以及源小区和/或候选小区的TRP,此处不一一列举。上述方法使得第一指示信息只需要携带TCI状态即可,无需携带其他信息,减少了信令开销。
又一种可能的设计是,通过第二指示信息指示多种候选的操作,多种候选的操作中的任意一种操作用于指示终端设备是否切换小区以及至少一个TCI状态,至少一个TCI状态中的每个TCI状态对应一个TRP,第一指示信息用于指示上述操作中的一种。
换言之,第二指示信息携带有多种候选的操作,第一指示信息通过比特指示上述多种候选的操作的一种,例如,第一指示信息只需要携带2比特“00”,在第二指示信息指示的多种操作中,其中,“00”指示切换至候选小区#1,且在候选小区#1使用TCI状态#1进行数据传输,则终端设备根据第一指示信息,切换至候选小区#1,使用TCI状态#1进行数据传输。通过上述方法,物理层信令携带第一指示信息,MAC层信令携带第二指示信息,通过物理层和MAC层的联合,物理层信令只需要携带少量比特信息,减少了物理层信令的开销,解决了物理层信令开销受限的问题。
结合第一方面或第二方面,在某些可能的实现方式中,第一指示信息携带在物理层信令或MAC层信令中。
一种可能的设计是,通过物理层信令携带第一指示信息,能够较为快速地完成指示。
另一种可能的设计是,通过MAC层信令携带第一指示信息,大大地减少了物理层信令的开销。
结合第一方面或第二方面,在某些可能的实现方式中,当通过MAC层信令携带第一指示信息时,N比特携带在MAC层信令中,N比特为逻辑信道标识(logical channel identity document,LCID)。
第三方面,本申请提供了一种通信方法,该方法可以由终端设备来执行,或者,也可以由配置在终端设备中的部件(如芯片、芯片系统等)执行,或者,还可以由能实现全部或部分终端设备功能的逻辑模块或软件实现,本申请对此不作限定。
示例性地,该方法包括:通过物理层信令发送第一参考信号的测量结果,第一参考信号为源小区和候选小区中的至少一个参考信号;通过MAC层信令或RRC层信令发送第二参考信号的测量结果,第二参考信号为源小区和候选小区中的至少一个参考信号,第二参考信号和第一参考信号不同;接收第一指示信息,第一指示信息用于指示是否从源小区切换至目标小区以及是否使用多个TRP传输,目标小区为候选小区中的一个。
基于上述技术方案,物理层信令携带一部分参考信号的测量结果,即第一参考信号的测量结果,MAC层信令或RRC层信令携带需要上报的参考信号中除去第一参考 信号的剩余参考信号的测量结果,采用增量上报的方式,解决了物理层信令资源受限的情况下,无法全量上报测量结果的问题,且使得相对重要的参考信号的测量结果可以通过物理层信令得以快速上报。
结合第三方面,在第三方面可能的实现方式中,所述方法还包括:接收来自第一网络设备的配置信息,该配置信息用于对源小区和候选小区进行测量。
终端设备基于配置信息,对源小区的参考信号和候选小区的参考信号进行测量,得到波束级的测量结果。在本申请实施例中,该配置信息还包括多个TRP相关的配置信息。其中,多个TRP相关的配置信息包括如下一项或多项:不同TRP对应的物理小区身份标识(physical cell identity,PCI)、不同TRP使用的物理层信号加/解扰序列、不同TRP的物理下行控制信道(physical downlink control channel,PDCCH)对应的控制资源集合池索引(control resource set pool index,CoresetPoolIndex)。
结合第三方面,在第三方面可能的实现方式中,根据参考信号的信号强度,确定第一参考信号。
终端设备可以按照参考信号的信号强度由高到低的顺序,确定出第一参考信号,第一参考信号的数量P由分配给物理层信令的传输资源确定,P≥1,且P为整数。
一种可能的设计是,第一参考信号包括多个小区中信号强度处于前P位的参考信号,多个小区包括源小区和一个或多个候选小区。
另一种可能的设计是,第一参考信号包括M个小区中每个小区中的信号强度最强的参考信号,M个小区包括源小区和一个或多个候选小区,1≤M≤P,M为整数。
又一种可能的设计是,第一参考信号包括来自M个小区的M个参考信号中强度处于前P位的参考信号,M个参考信号中的每个参考信号与M个小区中的一个小区对应,每个参考信号是所对应的小区中信号强度最强的一个参考信号,M个小区包括源小区和一个或多个候选小区,1≤P<M,M为整数。
上述方法提供了确定第一参考信号多种可能的实现方式,使得终端设备可以确定出相对重要的参考信号作为第一参考信号,以便于第一网络设备快速接收到重要的参考信号的测量结果。
第四方面,本申请提供了一种通信方法,该方法可以由终端设备来执行,或者,也可以由配置在终端设备中的部件(如芯片、芯片系统等)执行,或者,还可以由能实现全部或部分终端设备功能的逻辑模块或软件实现,本申请对此不作限定。
示例性地,该方法包括:向第一网络设备发送测量结果,所述测量结果包括第一TRP的测量结果,第一TRP的测量结果由第一TRP发射的一个或多个参考信号对应的波束测量结果确定,第一TRP为源小区或候选小区中的任意一个TRP;接收第一指示信息,第一指示信息用于指示是否从源小区切换至目标小区以及是否使用多个传输接收点TRP传输,目标小区为候选小区中的一个。
基于上述技术方案,终端设备对参考信号的波束级的测量结果进行进一步地计算,得到TRP级的测量结果,将TRP级的测量结果也上报给第一网络设备,使得当小区中的多个TRP关联着不同的PCI时,可以区分出不同的TRP的测量结果,或者说区分出不同的PCI的测量结果,使得上报的测量结果更为精细。
结合第四方面,在第四方面可能的实现方式中,所述方法还包括:接收来自第一 网络设备的配置信息,该配置信息用于对源小区和候选小区进行测量。
终端设备基于配置信息,对源小区的参考信号和候选小区的参考信号进行测量,得到波束级的测量结果。进一步地,根据波束级的测量结果得到TRP级的测量结果。在本申请实施例中,该配置信息还包括多个TRP相关的配置信息。其中,多个TRP相关的配置信息包括如下一项或多项:不同TRP对应的PCI、不同TRP使用的物理层信号加/解扰序列、不同TRP的PDCCH对应的CoresetPoolIndex。
结合第四方面,在第四方面可能的实现方式中,第一TRP的测量结果携带在RRC层信令中。
应理解,第一TRP为源小区或候选小区的任意一个TRP,终端设备上报的测量结果中还可以包括其他TRP的测量结果,即测量结果中包括多个TRP的测量结果。当多个TRP关联的PCI相同时,PCI和源小区或候选小区相关联,PCI级的测量结果可以基于TRP级的测量结果进一步计算得到。
一种可能的设计是,当多个TRP关联的PCI相同时,将多个TRP的测量结果进行平均得到PCI级的测量结果。
另一种可能的设计是,当多个TRP关联的PCI相同时,将多个TRP的测量结果中最强的一个TRP的测量结果作为PCI级的测量结果。
当多个TRP关联的PCI不同时,多个TRP中的每个TRP关联一个PCI,PCI级的测量结果与TRP级的测量结果对应。
特别地,当多个TRP关联着不同的PCI,通过RRC层信令上报测量结果时,可以在信元中增加PCI标识,用于区分不同的PCI,使得RRC层信令携带的测量结果可以区分出不同的PCI,或者说可以区分出不同的TRP的测量结果,从而上报的测量结果更加精细。
第五方面,本申请提供了一种通信装置,可以实现上述第一方面至第四方面以及第一方面至第四方面任一种可能的实现方式中的方法。该装置包括用于执行上述方法的相应的单元。该装置包括的单元可以通过软件和/或硬件方式实现。该装置例如可以为终端设备或第一网络设备,也可以为支持终端设备或第一网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以为能实现终端设备或第一网络设备的全部或部分功能的逻辑模块或软件。
第六方面,本申请提供了一种通信装置,该通信装置包括处理器。该处理器与存储器耦合,可用于执行存储器中的计算机程序,以实现第一方面至第四方面以及第一方面至第四方面任一种可能实现方式中的通信方法。
可选地,该通信装置还包括存储器。
可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
第七方面,本申请提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现第一方面至第四方面以及第一方面至第四方面任一种可能实现方式中的通信方法。
可选地,第五方面至第七方面中的通信装置为终端设备。
可选地,第五方面至第七方面中的通信装置为第一网络设备。
第八方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被执行时,以实现第一方面至第四方面以及第一方面至第四方面任一种可能实现方式中的通信方法。
第九方面,本申请提供了一种计算机程序产品,该计算机程序产品包括指令,当该指令被运行时,以实现第一方面至第四方面以及第一方面至第四方面任一种可能实现方式中的通信方法。
第十方面,本申请提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现第一方面至第四方面以及第一方面至第四方面任一种可能实现方式中的通信方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十一方面,本申请实施例提供了一种通信系统,该通信系统包括如前所述的终端设备和第一网络设备。
应当理解的是,本申请的第五方面至第十一方面与本申请的第一方面至第四方面的技术方案相对应,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
附图说明
图1是本申请实施例提供的通信系统的网络架构示意图;
图2是本申请实施例提供的终端设备进行多个TRP传输的场景示意图;
图3是本申请实施例提供的通信方法的流程示意图;
图4是本申请实施例提供的通信方法的另一流程示意图;
图5是本申请实施例提供的通信方法的又一流程示意图;
图6是本申请实施例提供的通信装置的示意性框图;
图7是本申请实施例提供的通信装置的另一示意性框图;
图8是本申请实施例提供的网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请提供的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、无线局域网(wireless local area network,WLAN)、LTE系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、5G移动通信系统或新无线接入技术(new radio Access Technology,NR)。其中,5G移动通信系统可以包括非独立组网(non-standalone,NSA)和/或独立组网(standalone,SA)。
本申请提供的技术方案还可以应用于未来的通信系统,如第六代(6th Generation,6G)移动通信系统等。本申请对此不作限定。
本申请实施例中,网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP)、无线中继节点、无线回传节点等,还可以为5G,如,NR系统中的gNB,或,5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)、集中式单元(centralized unit,CU)等,或者下一代通信6G系统中的基站等。
在一些部署中,gNB可以包括CU和DU。示例性地,CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU负责处理非实时协议和服务,实现RRC,分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能;DU可以包括无线链路控制(radio link control,RLC)层的功能、MAC层的功能,和,物理(physical,PHY)层的部分功能。
示例性地,DU可以包括PHY层中高层的功能。其中,PHY层中高层的功能可以包括循环冗余校验(cyclic redundancy check,CRC)功能、信道编码、速率匹配、加扰、调制、和层映射;或者,PHY层中高层的功能可以包括循环冗余校验、信道编码、速率匹配、加扰、调制、层映射和预编码。PHY层中低层的功能可以通过另一个与DU独立的网络实体实现,其中,PHY层中低层的功能可以包括预编码、资源映射、物理天线映射和射频功能;或者,PHY层中低层的功能可以包括资源映射、物理天线映射和射频功能。本申请实施例对PHY层中高层和底层的功能划分不作限制。当PHY层中低层的功能可以以另一个与DU独立的网络实体实现时,DU向其它通信装置(例如终端设备、核心网设备)发送数据或信息,可以理解为:DU执行RLC层、MAC层的功能,和,PHY层的部分功能。例如,DU在完成RLC层、MAC层的功能,以及,循环冗余校验、信道编码、速率匹配、加扰、调制、层映射后,由执行PHY层中低层的功能的与DU独立的网络实体执行剩余的在物理资源上映射和发送的功能。
网络设备为小区提供服务,终端设备通过网络设备分配的传输资源(例如,频域资源,或者说,频谱资源)与小区进行通信,该小区可以属于宏基站(例如,宏eNB或宏gNB等),也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
在本申请实施例中,终端设备也可以称为UE、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。
终端设备可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端设备的举例可以为:手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑(如笔记本电脑、掌上电脑等)、移动互联网设备(mobile internet device,MID)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving) 中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。
其中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。IoT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。
此外,终端设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
应理解,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。例如,第一指示信息和第二指示信息是为了区分不同的指示信息,并不对其先后顺序进行限定。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
为了更好地理解本申请实施例提供的通信方法,首先对本申请中涉及到的术语作简单说明。
1、小区(cell):小区是高层从资源管理或移动性管理或服务单元的角度来描述的。每个网络设备的覆盖范围可以被划分为一个或多个小区,且每个小区可以对应一个或多个频点,或者说,每个小区可以看成是一个或多个频点的覆盖范围所形成的区域。
需要说明的是,小区可以是网络设备的无线网络的覆盖范围内的区域。在本申请实施例中,不同的小区可以对应相同或者不同的网络设备。例如,源小区所属的网络设备和目标小区所属的网络设备可以是不同的网络设备,如,基站。也就是说,源小区和目标小区可以由不同的基站来管理。或者,又例如,管理源小区的网络设备和管理目标小区的网络设备也可以是同一基站的不同的射频处理单元,例如,射频拉远单元(radio remote unit,RRU),也就是说,源小区和目标小区可以由同一基站管理,具有相同的基带处理单元和中频处理单元,但具有不同的射频处理单元。或者,再例如,源小区所属的网络设备和目标小区所属的网络设备可以是同一个网络设备,如,基站。也就是说,源小区和目标小区 可以由相同的基站来管理,这种情况下,可以称为源小区和目标小区共站。本申请对此不做特别限定。
应理解,小区即为网络设备(如基站)的覆盖区域,每个小区可以包括一个或多个TRP,终端设备在小区中可以进行单个TRP传输,也可以进行多个TRP传输,其中,在小区中进行多个TRP传输可以理解为为该小区配置了多套通信资源,示例性地,上述通信资源可以是空域资源,如波束。
2、TRP:可用于实现接收和/或发送的网络节点。用于发送的网络节点又可以称为传输点(transmission point,TP),用于接收的网络节点又可以成为接收点(reception point,RP)。在本申请实施例中,多个TRP可以理解为一个网络设备(如基站)的多个地理位置分离的天线或天线面板,实现从不同的地理位置以不同的波束方向接收和/或发送无线信号的功能。
每个小区可以包括一个或多个TRP,在该小区中,终端设备可以与一个或多个TRP进行数据传输,其中,终端设备与多个TRP进行数据传输可以理解为终端设备与多个实现接收和/或发送功能的网络节点进行通信,为了简洁,在下文的描述中,将终端设备与多个TRP进行数据传输的过程简称为终端设备进行多个TRP传输(以下称为mTRP传输)。例如,本申请实施例中的终端设备切换至目标小区,并进行mTRP传输,可以是终端设备与目标小区的多个用于实现接收和/或发送功能的网络节点进行数据通信。终端设备与小区中的多个TRP进行通信,也可以理解为,终端设备利用小区中的多套通信资源进行通信,示例性地,上述通信资源可以是空域资源,如波束。
3、切换:在无线通信系统中,当终端设备从一个小区向另一个小区移动/靠近时,为了保持终端设备的通信不中断,需要进行切换。在本申请实施例中,源小区表示切换前为终端设备提供服务的小区,目标小区表示切换后为终端设备提供服务的小区,候选小区是可供选择的为终端设备提供服务的小区,目标小区为候选小区中的一个。终端设备是否从源小区切换至目标小区,以及目标小区的相关信息(如目标小区的PCI、终端设备在目标小区应使用的波束方向(如传输配置指示(transmission configuration indication,TCI)状态)等),可以通过指示信息来指示,该指示信息是源小区所属的网络设备(如第一网络设备)向终端设备发送的。
切换可以是站内切换或站间切换。站内切换,可以指源小区与目标小区属于同一个网络设备(如基站);站间切换,指源小区与目标小区属于不同的网络设备(如基站)。本申请对此不做限定。
4、参考信号:可以用于信道测量、信道估计或者波束质量监测等。本申请实施例中涉及的参考信号例如可以包括信道状态信息参考信号(channel state information reference signal,CSI-RS)和同步信号和物理广播信道块(synchronization signal and physical broadcast channel block,SSB)。
为便于理解本申请实施例,下面将结合图1详细说明适用于本申请实施例的通信系统。图1是本申请实施例提供的通信系统100的网络架构示意图。如图1所示,该通信系统100可以包括TRP和终端设备,如图中所示的TRP 110、TRP 120以及终端设备130。其中,该终端设备130可以是移动的或固定的。终端设备130可以与TRP 110和TRP 120进行数据传输,称为mTRP传输。TRP 110和TRP 120可以位于同一小区,也可以位于不同的小 区,本申请实施例对此不作限定。
可选地,该通信系统100所示的通信系统可以包括更多或更少的TRP,以及其它数量的终端设备,每个终端设备都可以与一个或多个TRP进行数据传输。各TRP可以位于同一小区,也可以位于不同的小区。本申请实施例对此不做限定。
上述各个通信设备,如图1中的TRP 110、TRP 120以及终端设备130,可以配置多个天线。该多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。另外,各通信设备还附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。因此,TRP与终端设备之间可通过多天线技术通信。
随着多天线技术的发展,MIMO由原来的8天线扩增为16/32/64/128天线,称为Massive MIMO技术。Massive MIMO技术可提高覆盖和容量,在高频通信等场景中非常适用。在某些场景中,例如,在高频通信场景中,一个小区可能由一个或多个TRP覆盖,终端设备可以进行单个TRP传输或进行mTRP传输。
目前,基于物理层/MAC层的小区切换技术中,终端设备能够在小区切换前进行目标小区的波束管理,进而切换至目标小区后,能够快速完成波束对齐。但终端设备在进行切换小区时,无法维持mTRP的传输状态,进而导致切换至目标小区后,也无法直接进行mTRP传输,因此,终端设备在切换后的一段时间内,终端设备与目标小区的通信可靠性和传输容量降低。
因此,本申请提供了一种通信方法,网络设备基于终端设备对源小区和候选小区的测量结果,指示终端设备是否进行小区切换的同时,进一步指示终端设备是否进行mTRP传输,使得终端设备切换至目标小区后,可以直接进行mTRP的传输,从而终端设备在切换后的一段时间内,提高了通信的可靠性和传输容量。
图2示出了终端设备切换至目标小区后进行mTRP传输的场景示意图。如图2所示,以终端设备进行两个TRP传输为例,终端设备进行小区切换之前,在源小区与TRP 1和TRP 2进行数据传输;终端设备切换至目标小区后,在目标小区与TRP 3和TRP 4进行数据传输。应理解,源小区和目标小区可以包括更多或更少数量的TRP,图中虽未予以示出,但本申请实施例对此不作限定。终端设备在源小区进行mTRP传输,当终端设备向目标小区移动或靠近时,可以从源小区切换至目标小区,基于本申请提供的方法,终端设备切换至目标小区后,可以直接在目标小区进行mTRP传输。
应理解,图2所示的场景仅为一个示例,终端设备切换至目标小区后,图2仅示出了终端设备在目标小区进行mTRP传输,终端设备也可以与目标小区和其他候选小区的TRP进行mTRP传输,或在目标小区进行单个TRP传输,或与源小区和目标小区的TRP进行mTRP传输等。例如,终端设备与源小区的TRP 1和目标小区的TRP 3进行数据传输。本申请实施例对此不作限定。
还应理解,图中仅示出了终端设备在源小区进行mTRP传输的场景,但终端设备在源小区也可以进行单个TRP传输,例如,终端设备与TRP 1进行数据传输。本申请实施例对此不作限定。
图3是本申请实施例提供的通信方法300的流程示意图,图3所示的方法300可以包括S310至S360,下面将结合图3对终端设备从源小区切换至目标小区的流程做详细描述。
应理解,图3中所示的第一网络设备对应的小区包括源小区,终端设备在源小区中,可以进行单个TRP传输或mTRP传输。第二网络设备对应的小区包括候选小区,候选小区中的某个小区在满足切换条件的情况下,可以被确定为目标小区,每个候选小区中可以包括一个或多个TRP。
S310、第一网络设备向终端设备发送配置信息。相应地,终端设备接收该配置信息。
所述配置信息可用于对源小区和候选小区进行测量。配置信息包括候选小区的配置信息。可选地,该配置信息还可以包括源小区的配置信息。
这里,第一网络设备可以为源小区的网络设备。当源小区的配置信息需要增加或修改时,则第一网络设备可以将源小区的配置信息和候选小区的配置信息一同发送给终端设备。当源小区的配置信息不需要增加或修改时,第一网络设备可以不发送源小区的配置信息。
可选地,配置信息包括如下一项或多项:参考信号配置信息、测量配置信息、波束配置信息、准共址(quasi co-location,QCL)信息、控制资源集合(control resource set,Coreset)配置信息、搜索空间配置信息、时间提前量(timing advance,TA)信息、终端设备标识、信道配置信息(如物理下行共享信道(physical downlink shared channel,PDSCH)、PDCCH、物理上行共享信道(physical uplink shared channel,PUSCH)、物理上行控制信道(physical uplink control channel,PUCCH))、随机接入资源配置信息、无线链路监控配置信息、安全相关配置信息、MAC配置信息、RLC配置信息等。
在本申请实施例中,配置信息还包括多个TRP相关的配置信息。其中,多个TRP相关的配置信息包括如下一项或多项:不同TRP对应的PCI、不同TRP使用的物理层信号加/解扰序列、不同TRP的PDCCH对应的CoresetPoolIndex。
需要说明的是,不同小区的配置信息的项数可以相同,也可以不同。例如,某一候选小区对应的配置信息可以包括上述全部配置项,另一候选小区对应的配置信息包括上述配置信息的前三项,则终端设备可以认为该候选小区其他的配置项和源小区一致。
在源小区与候选小区不共站的情况下,可选地,在S310之前,该方法还包括S305,第二网络设备将候选小区的配置信息发送给第一网络设备。这里,第二网络设备可以为候选小区的网络设备。可以理解,当源小区与所有候选小区共站的情况下,即第一网络设备与第二网络设备为同一个网络设备,S305可以不执行。
S320、终端设备对源小区和候选小区进行测量。
终端设备接收到来自第一网络设备的配置信息后,对源小区的参考信号和候选小区的参考信号进行测量。参考信号可以是SSB、CSI-RS或其他类型的参考信号,不同的参考信号对应不同的波束方向。终端设备对源小区和候选小区的不同参考信号进行测量,得到波束级的测量结果。
示例性地,源小区的参考信号为SSB 1、SSB 2、CSI-RS 1、CSI-RS 2,第一候选小区的参考信号为SSB 1、SSB 2、CSI-RS 1、CSI-RS 2,第二候选小区的参考信号为SSB 1、SSB 2、CSI-RS 1、CSI-RS 2,其中,第一候选小区、第二候选小区为候选小区中的任意小区。终端设备需要对上述参考信号分别进行测量,得到12个波束级的测量结果。
S330、终端设备将测量结果发送给第一网络设备。相应地,第一网络设备从终端设备接收测量结果。
上述测量结果包括波束级的测量结果、TRP级的测量结果以及小区级的测量结果。终 端设备对参考信号进行测量,得到波束级的测量结果后,进一步地确定TRP级的测量结果和小区级的测量结果,并将测量结果发送给第一网络设备。
应理解,在本申请实施例中,为了便于区分不同粒度的测量结果,将波束的测量结果、TRP的测量结果和小区的测量结果,分别记为:波束级的测量结果、TRP级的测量结果和小区级的测量结果。当单独描述测量结果时,测量结果可以包括波束级的测量结果、TRP级的测量结果和小区级的测量结果中的至少一项。
其中,小区级的测量结果的计算方法可参看已有技术中的小区级的测量结果的计算方法,下面以第一TRP为例详细描述TRP级的测量结果的计算方法。
第一TRP为源小区或候选小区中的任意一个TRP,第一TRP对应的测量结果由第一TRP发射的一个或多个参考信号对应的波束测量结果确定。终端设备基于波束级的测量结果,确定第一TRP的测量结果。
一种可能的实现方式是,终端设备对第一TRP发射的一个或多个参考信号进行测量,可以得到波束级的测量结果,进一步地,将该一个或多个参考信号的波束级的测量结果进行平均,得到第一TRP的测量结果。例如,第一TRP发射的参考信号为SSB 1、SSB 2、CSI-RS 1、CSI-RS 2,将参考信号SSB 1、SSB 2、CSI-RS 1、CSI-RS 2的波束级的测量结果求平均值,则可以得到第一TRP的测量结果。可以理解,若终端设备与两个TRP进行通信,分别为第一TRP和第二TRP,第二TRP发射的参考信号为SSB 3、SSB 4、CSI-RS 3、CSI-RS 4,同样的方法可以得到第二TRP的测量结果,即,将参考信号SSB 3、SSB 4、CSI-RS 3、CSI-RS 4的波束级的测量结果求平均值,则可以得到第二TRP的测量结果。
另一种可能的实现方式是,终端设备对第一TRP发射的一个或多个参考信号进行测量,得到波束级的测量结果,进一步地,将上述一个或多个参考信号中信号强度超过预设门限的参考信号的波束级的测量结果进行平均,得到第一TRP的测量结果。例如,第一TRP发射的参考信号中信号强度超过预设门限的参考信号为SSB 1、SSB 2和CSI-RS 1,则将该三个参考信号的波束级的测量结果求平均值,得到第一TRP的测量结果。
又一种可能的实现方式是,终端设备对第一TRP发射的一个或多个参考信号进行测量,得到波束级的测量结果,进一步地,确定出上述一个或多个参考信号中信号强度最强的一个参考信号,将该参考信号的波束级的测量结果作为第一TRP的测量结果。例如,第一TRP的参考信号中信号强度最强的参考信号为SSB 1,则可以将参考信号SSB 1的波束级的测量结果作为第一TRP的测量结果。
应理解,触发终端设备发送测量结果的方式可以有多种。
在一个示例中,第一网络设备可以给终端设备配置上报周期和上报资源,则终端设备可以基于上报周期,使用上报资源来向第一网络设备上报一次测量结果。
在另一个示例中,第一网络设备给终端设备配置触发其上报的触发事件,例如,源小区的波束的测量结果中每个波束的参考信号接收功率(reference signal receiving power,RSRP)都小于某一预设门限时,终端设备向第一网络设备上报测量结果。
在又一个示例中,第一网络设备向终端设备发送上报指示,该上报指示用于指示终端设备上报测量结果,则终端设备接收到上报指示后,上报测量结果。
应理解,当每个候选小区有多个TRP时,终端设备发送的测量结果中需要体现不同TRP发射的参考信号的测量结果。
一种可能的设计是,参考信号的标识(identifier,ID)与TRP存在对应关系,第一网络设备根据测量结果中参考信号的ID确定对应的TRP。
另一种可能的设计是,终端设备在上报测量结果时,包含与TRP对应的指示信息,用于指示不同TRP的波束级的测量结果。
S340、第一网络设备根据测量结果生成第一指示信息,该第一指示信息用于指示是否从源小区切换至目标小区,以及是否进行mTRP传输。
第一网络设备根据终端设备上报的测量结果,确定终端设备是否需要进行小区切换,以及是否进行mTRP传输。示例性地,当某一候选小区的小区级的测量结果表征的小区信号质量强于源小区时,第一网络设备可确定该候选小区为目标小区,以及终端设备需要进行小区切换。进一步地,对目标小区的TRP级的测量结果进行判断是否需要进行mTRP传输,并可进一步根据目标小区的波束级的测量结果,判断终端设备在与多个TRP通信时的多个波束方向。其中,每个波束方向对应一个TRP。
第一网络设备在确定了终端设备是否需要进行小区切换,以及是否进行mTRP传输之后,可以生成第一指示信息,以通过该第一指示信息向终端设备指示是否从源小区切换至目标小区,以及是否使用mTRP传输。
一种可能的设计是,第一指示信息包括N比特,N为正整数。N比特用于指示:切换至目标小区,但不使用mTRP传输;或切换至目标小区,且使用mTRP传输,该mTRP为目标小区中的TRP;或切换至目标小区,且使用mTRP传输,该mTRP包括目标小区的TRP,以及源小区和/或候选小区的TRP;或不切换小区,且使用mTRP传输,该mTRP包括源小区的TRP和候选小区的TRP。在这种设计中,第一指示信息通过N比特指示终端设备是否切换小区以及是否进行mTRP传输,无需网络设备进一步配置多个TRP,终端设备也能直接进行mTRP传输,提高了通信可靠性和传输容量。
应理解,N比特还可以指示其他的操作,例如,N比特用于指示切换至目标小区,与TRP 1进行单个TRP传输,或切换至目标小区,与TRP 2进行单个TRP传输等,本申请实施例对此不作限定,为了简洁,此处不再一一列举。
可选地,第一指示信息包括N比特的同时,还可以包括至少一个TCI状态,该至少一个TCI状态中的每个TCI状态用于指示一个TRP,如TRP的波束方向。换言之,在某一种可能的设计中,第一指示信息包括N比特和至少一个TCI状态,以便于终端设备以准确的波束方向与TRP进行数据传输。具体的,所述TCI状态可以指示终端设备的下行接收波束方向和/或上行发送波束方向。
第一指示信息包括N比特和至少一个TCI状态,使得终端设备基于接收到的第一指示信息,可以切换至目标小区直接进行多个TRP传输,且切换至目标小区后,无需第一网络设备进一步配置波束方向,终端设备可以根据TCI状态,以准确的波束方向与TRP进行数据传输,从而提高了通信的可靠性和传输容量。
在一个示例中,第一指示信息通过2比特指示上述操作中的一种,例如,第一指示信息包括“00”和一个TCI状态,“00”指示切换至目标小区,但不使用mTRP传输,即终端设备切换至目标小区,且进行单个TRP传输,TCI状态指示终端设备进行单个TRP传输的波束方向。又例如,第一指示信息包括“01”和多个TCI状态,“01”指示切换至目标小区,且使用mTRP传输,该mTRP为目标小区中的TRP,多个TCI状态中的每个TCI 状态对应一个TRP。再例如,“10”指示切换至目标小区,且使用mTRP传输,该mTRP包括目标小区的TRP,以及源小区和/或候选小区的TRP;或“11”指示不切换小区,且使用mTRP传输,该mTRP包括源小区的TRP和候选小区的TRP。
在另一个示例中,第一指示信息通过1比特指示上述操作中的一种。例如,“0”指示不进行mTRP传输;“1”指示进行mTRP传输。比如,第一指示信息包括“0”和一个TCI状态,则指示切换至目标小区,但不进行mTRP传输;又如,第一指示信息包括“1”和多个TCI状态,则进一步地根据多个TCI状态对应的TRP判断是进行上述操作中的哪一种操作。例如,第一指示信息携带的两个TCI状态对应目标小区中的TRP 1和TRP 2,则第一指示信息指示切换至目标小区,且使用mTRP传输,该mTRP为目标小区中的TRP。又例如,第一指示信息携带的两个TCI状态对应目标小区中的一个TRP和候选小区的一个TRP,且目标小区的TRP对应的TCI状态在前,则第一指示信息指示切换至目标小区,且使用mTRP传输,该mTRP包括目标小区的TRP,以及源小区和/或候选小区的TRP。为了简洁,此处不再一一举例。
另一种可能的设计是,第一指示信息包括至少一个TCI状态,该至少一个TCI状态用于指示上述操作中的一种。具体的,TCI状态可以指示终端设备的下行接收波束方向和/或上行发送波束方向。
例如,第一指示信息包括一个TCI状态,且该TCI状态对应的TRP并非源小区时,则第一指示信息指示切换至目标小区,但不使用mTRP传输。又例如,第一指示信息携带多个TCI状态,且TCI状态对应的TRP属于同一个小区,但该小区并非源小区时,则第一指示信息指示切换至目标小区,且使用mTRP传输,该mTRP为目标小区中的TRP。又例如,第一指示信息携带的多个TCI状态对应的TRP既有源小区的,也有其他小区的,且对应于其他小区的TCI状态在前,则第一指示信息指示切换至目标小区,且使用mTRP传输,该mTRP包括目标小区的TRP,以及源小区和/或候选小区的TRP。再例如,第一指示信息携带的TCI状态对应的TRP既有源小区的,也有其他小区的,且对应源小区的TCI状态在前,则第一指示信息指示不切换小区,且使用mTRP传输,该mTRP包括源小区的TRP和候选小区的TRP。为了简洁,此处不再一一列举。
又一种可能的设计是,通过MAC包子头(subheader)的LCID来区分第一指示信息指示的不同操作,换言之,第一指示信息包括的N比特为LCID,此时第一指示信息为MAC层信令,如MAC控制元素(control element,CE)。
示例性地,协议中可以预定义出至少一个LCID,至少一个LCID中的每个LCID对应一种指示终端设备执行的操作。例如,协议中定义出4个LCID,每个LCID对应下述操作:切换至目标小区,但不使用mTRP传输;或切换至目标小区,且使用mTRP传输,mTRP为目标小区中的TRP;或切换至目标小区,且使用mTRP传输,mTRP包括目标小区的TRP,以及源小区和/或候选小区的TRP;或不切换小区,且使用mTRP传输,mTRP包括源小区的TRP和候选小区的TRP。
S350、第一网络设备向终端设备发送第一指示信息。相应地,终端设备从第一网络设备接收第一指示信息。
第一网络设备生成第一指示信息后,将第一指示信息发送给终端设备,以便于终端设备根据第一指示信息指示的操作进行数据传输。
该第一指示信息可通过物理层信令来承载,也可以通过MAC层信令来承载,或者还可以通过物理层信令和MAC层信令联合的方式来承载。本申请实施例对此不作限定。
一种可能的设计是,第一网络设备通过物理层信令发送第一指示信息,即N比特和至少一个TCI状态或至少一个TCI状态携带在物理层信令中。
另一种可能的设计是,第一网络设备通过MAC层信令发送第一指示信息,即N比特和至少一个TCI状态或至少一个TCI状态携带在MAC层信令中。
另外,当第一网络设备通过指MAC层信令发送第一指示信息时,还可以通过MAC包子头的LCID来区分第一指示信息中包括的不同操作。
又一种可能的设计是,第一网络设备还可以通过物理层信令和MAC层信令联合发送指示信息的方式指示终端设备具体执行哪一种操作。具体地,第一网络设备可以生成第二指示信息,第二指示信息用于指示多种候选的操作,多种候选的操作中的任意一种操作用于指示终端设备是否切换小区以及至少一个TCI状态,至少一个TCI状态中的每个TCI状态对应一个TRP。第一指示信息用于指示上述多种候选的操作中的一种操作。也就是说,第一网络设备通过第二指示信息指示多种可能的候选的操作,通过第一指示信息指示上述多种候选的操作中的一种,节省物理层信令的开销。
一示例,第二指示信息可以通过2比特指示多种候选的操作,“00”指示切换至候选小区#1,使用TCI状态#1;“01”指示切换至候选小区#1,使用TCI状态#1和TCI状态#2,TCI状态#1和TCI状态#2对应于候选小区#1;“10”表示切换至候选小区#1,使用TCI状态#1和TCI状态#2,TCI状态#1对应于候选小区#1,TCI状态#2对应于候选小区#2;“11”表示不切换小区,使用TCI状态#1和TCI状态#2进行mTRP传输,TCI状态#1对应于源小区,TCI状态#2对应于候选小区#1。第一网络设备基于测量结果,确定候选小区#1为目标小区,进一步地,通过第一指示信息指示“00”,则终端设备接收到第一指示信息后,基于第二指示信息中“00”对应的操作,终端设备切换至候选小区#1,即目标小区,使用TCI状态#1进行传输。
应理解,第二指示信息还可以指示更多的候选操作。示例性地,第二指示信息可以通过3比特指示更多的候选的操作,例如,“000”指示切换至候选小区#1,使用TCI状态#1;“001”指示切换至候选小区#1,使用TCI状态#2;“010”表示切换至候选小区#2,使用TCI状态#1;“011”指示切换至候选小区#1,使用TCI状态#1和TCI状态#2进行mTRP传输;“110”指示切换至候选小区#2,使用TCI状态#1和TCI状态#2进行mTRP传输;“111”指示不切换小区,使用TCI状态#1和TCI状态#2进行mTRP传输,为了简洁此处不再一一列举。
第一网络设备生成第二指示信息后,将第二指示信息通过MAC层信令发送给终端设备,将第一指示信息通过物理层信令发送给终端设备。第一指示信息指示“001”。则终端设备接收到第一指示信息和第二指示信息后,执行“001”对应的操作,即切换至候选小区#1,使用TCI状态#2,换句话说,候选小区#1为目标小区,终端设备切换至目标小区,进行单个TRP传输。通过物理层信令和MAC层信令联合发送指示信息的方式可以减少占用物理层的资源,从而减少物理层信令开销。
S360、终端设备根据第一指示信息,在源小区和/或目标小区进行数据传输。
终端设备接收到第一指示信息后,在源小区和/或目标小区进行一个或多个TRP传输。
例如,终端设备切换至目标小区,在目标小区进行mTRP传输,或,切换至目标小区,在目标小区和源小区进行mTRP传输,或切换至目标小区,在目标小区和其他候选小区进行mTRP传输,或不切换至目标小区,在源小区和候选小区进行mTRP传输。
基于上述技术方案,第一指示信息指示是否切换至目标小区的同时,还指示终端设备是否进行mTRP传输,使得终端设备切换至目标小区后,能够直接进行mTRP传输,提高了通信可靠性,提升了传输容量。
可以理解,在S330中,终端设备将测量结果发送给第一网络设备时,可能存在物理层信令上报资源受限的问题,导致测量结果无法全量上报,因此,本申请还提供了一种通信方法,通过物理层信令与MAC层信令或RRC层信令联合上报测量结果的方式,使得终端设备可以将测量结果全量上报。
图4是本申请实施例提供的通信方法400的另一流程示意图。图4所示的方法400可以包括S410至S460,下面将结合图4详细描述终端设备上报测量结果的过程。
S410、第一网络设备向终端设备发送源小区和候选小区的配置信息。
S420、终端设备对源小区和候选小区进行测量。
需要说明的是,上述S410-S420的过程与前文的S310-S320类似,具体可参见S310-S320的相关描述,为了简洁,此处不再赘述。
S430、终端设备根据参考信号的信号强度,确定第一参考信号。
这里,参考信号可以用于信道的测量,不同的参考信号对应着不同的波束。参考信号可以包括但不限于:CSI-RS、SSB等。本申请实施例对参考信号的类型不作限定。第一参考信号为源小区和候选小区中的至少一个参考信号。例如,源小区的参考信号为SSB 1、SSB 2、CSI-RS 1、CSI-RS 2,候选小区包括第一候选小区和第二候选小区,第一候选小区的参考信号为SSB 1、SSB 2、CSI-RS 1、CSI-RS 2,第二候选小区的参考信号为SSB 1、SSB 2、CSI-RS 1、CSI-RS 2,则第一参考信号为上述12个参考信号中的一个或多个参考信号。
应理解,第一参考信号可以包括同一类型的参考信号,如第一参考信号的类型都为CSI-RS;也可以包括不同类型的参考信号,如第一参考信号的类型为CSI-RS、SSB。本申请实施例对此不作限定。
还应理解,第一参考信号可以是来自同一小区的参考信号;也可以是来自不同小区的参考信号,本申请实施例对此不作限定。
第一参考信号的数量由分配给物理层信令的传输资源确定,如物理层信令最多能传输P个参考信号的测量结果,P≥1,且P为整数,则终端设备可以从源小区和候选小区的所有参考信号中确定出P个参考信号。
一种可能的实现方式是,第一参考信号包括多个小区中信号强度处于前P位的参考信号,该多个小区包括源小区和一个或多个候选小区。例如,需要上报的波束测量结果对应的参考信号如下:源小区的参考信号为SSB 1、SSB 2、CSI-RS 1、CSI-RS 2,第一候选小区的参考信号为SSB 1、SSB 2、CSI-RS 1、CSI-RS 2,第二候选小区的参考信号为SSB 1、SSB 2、CSI-RS 1、CSI-RS 2,P的取值为4,则终端设备可以选取上述12个参考信号中信号强度位于前4位的参考信号,如源小区的SSB 1、SSB 2,第一候选小区的SSB 2、CSI-RS 1,换言之,第一参考信号包括:源小区的SSB 1、SSB 2,第一候选小区的SSB 2、CSI-RS  1。
另一种可能的实现方式是,第一参考信号包括M个小区中每个小区中的信号强度最强的参考信号,该M个小区包括源小区和一个或多个候选小区,1≤M≤P,M为整数,剩余的P-M个参考信号可以选取剩余的参考信号中信号强度位于前P-M位的参考信号。例如,M个小区包括源小区、第一候选小区和第二候选小区,P取值为5,则终端设备可以从源小区的参考信号中选取信号强度最强的一个参考信号,同样地,从第一候选小区和第二候选小区分别选取信号强度最强的一个参考信号,如选出的参考信号分别为源小区的SSB 1,第一候选小区的SSB 1,第二候选小区的SSB 1,进一步地,选取5-3=2个参考信号,该2个参考信号从剩余的参考信号中选取信号强度位于前2位的参考信号,如源小区的SSB 2、第一候选小区的SSB 2。即第一参考信号为:源小区的SSB 1、SSB 2,第一候选小区的SSB 1、SSB 2,第二候选小区的SSB 1。
此外,当1≤P<M时,第一参考信号包括来自M个小区的M个参考信号中强度处于前P位的参考信号,M个参考信号中的每个参考信号与M个小区中的一个小区对应,每个参考信号是所对应的小区中信号强度最强的一个参考信号,M个小区包括终端设备所在的小区和一个或多个候选小区,换言之,终端设备先从M个小区中的每个小区分别确定出信号强度最强的一个参考信号,再选取M个参考信号中位于前P位的参考信号。
S440、终端设备通过物理层信令发送第一参考信号的测量结果。换句话说,第一参考信号的测量结果可携带在物理层信令中发送。
终端设备确定出第一参考信号后,通过物理层信令发送第一参考信号的测量结果。
可选地,物理层信令还包括第三指示信息,第三指示信息用于指示未承载于物理层信令中的测量结果对应的参考信号。也就是说,第三指示信息可以指示哪些参考信号的测量结果未携带在物理层信令中。
S450、通过MAC层信令或RRC层信令发送第二参考信号的测量结果。换句话说,第二参考信号的测量结果可携带在MAC层信令或RRC层信令中发送。
第二参考信号为源小区和候选小区中的至少一个参考信号,第二参考信号和第一参考信号不同。具体地,第二参考信号为需要上报测量结果的参考信号中除去第一参考信号后剩余的参考信号,其中,参考信号可以包括但不限于:CSI-RS、SSB等。换言之,终端设备可以通过物理层信令上报一部分参考信号的测量结果,即第一参考信号的测量结果,再通过MAC层信令或RRC层信令上报其他需要上报的参考信号的测量结果,即第二参考信号的测量结果。
可以理解的是,第二参考信号可以包括同一类型的参考信号;也可以包括不同类型的参考信号。第二参考信号可以是来自同一小区的参考信号;也可以是来自不同小区的参考信号。
示例性地,需要上报的参考信号如下:源小区的参考信号包括SSB 1、SSB 2、CSI-RS 1、CSI-RS 2,第一候选小区的参考信号包括SSB 1、SSB 2、CSI-RS 1、CSI-RS 2,第二候选小区的参考信号包括SSB 1、SSB 2、CSI-RS 1、CSI-RS 2,终端设备通过物理层信令上报的第一参考信号包括:源小区的SSB 1、SSB 2,第一候选小区的SSB 2、CSI-RS 1,则通过MAC层信令或RRC层信令上报的第二参考信号为:源小区的CSI-RS 1、CSI-RS 2,第一候选小区的SSB 1、CSI-RS 2,第二候选小区的SSB 1、SSB 2、CSI-RS 1、CSI-RS 2。
S460、第一网络设备向终端设备发送第一指示信息,该第一指示信息用于指示是否从源小区切换至目标小区,以及是否进行mTRP传输。
具体地,第一指示信息的描述可参看前文S340的相关描述,第一网络设备发送第一指示信息的过程可参看前文的S350的相关描述,为了简洁,此处不再赘述。
基于上述技术方案,终端设备通过物理层信令优先上报相对重要的测量结果,例如信号强度较强的参考信号的测量结果,再通过MAC层信令或RRC层信令增量上报其他的需要上报的参考信号的测量结果,解决了物理层信令无法全量上报测量结果的问题,且第一网络设备可以及时地接收到重要的测量结果,快速地确定出是否进行小区切换,从而使得终端设备可以快速地切换至通信质量较好的小区,提高了通信质量,提升了用户体验。另一方面,由于终端设备还可以通过MAC层信令或RRC层信令增量上报其他的需要上报的参考信号的测量结果,使得第一网络设备对于该终端设备在其他小区的参考信号的接收情况了解得更为全面,从而便于第一网络设备为终端设备做出合理的决策,有利于提高系统性能。
在上述技术方案中,当终端设备与多个TRP进行通信时,且该多个TRP关联着不同的PCI时,已有的技术中通过RRC层信令上报测量结果,无法区分不同的PCI的测量结果。因此,本申请实施例提供了一种通信方法,当多个TRP关联着不同的PCI时,终端设备基于波束级的测量结果确定TRP级的测量结果,通过RRC层信元新增加的信元,将TRP的测量结果上报给第一网络设备,从而区分出不同的PCI的测量结果,给第一网络设备提供更为精细的测量结果。
图5是本申请实施例提供的通信方法500的流程示意图。图5所示的方法500可以包括S510至S550。
S510、第一网络设备向终端设备发送源小区和候选小区的配置信息。
S520、终端设备对源小区和候选小区进行测量。
需要说明的是,上述S510-S520的过程与前文的S310-S320类似,具体可参见S310-S320的相关描述,为了简洁,此处不再赘述。
S530、终端设备基于波束级的测量结果,确定第一TRP的测量结果。
其中,第一TRP对应的测量结果由第一TRP发射的一个或多个参考信号对应的波束级的测量结果确定,第一TRP为源小区或候选小区中的任意一个TRP。终端设备基于波束级的测量结果,确定第一TRP的测量结果。
一种可能的实现方式是,终端设备对第一TRP发射的一个或多个参考信号进行测量,得到波束级的测量结果,进一步地,将该一个或多个参考信号的波束级的测量结果进行平均,得到第一TRP的测量结果。例如,第一TRP发射的参考信号为SSB 1、SSB 2、CSI-RS 1、CSI-RS 2,将参考信号SSB 1、SSB 2、CSI-RS 1、CSI-RS 2的波束级的测量结果求平均值,则可以得到第一TRP的测量结果。可以理解,若终端设备与两个TRP进行通信,分别为第一TRP和第二TRP,第二TRP发射的参考信号为SSB 3、SSB 4、CSI-RS 3、CSI-RS 4,同样的方法可以得到第二TRP的测量结果,即,将参考信号SSB 3、SSB 4、CSI-RS 3、CSI-RS 4的波束级的测量结果求平均值,则可以得到第二TRP的测量结果。
另一种可能的实现方式是,终端设备对第一TRP发射的一个或多个参考信号进行测量,得到波束级的测量结果,进一步地,将上述一个或多个参考信号中信号强度超过预设门限 的参考信号的波束级的测量结果进行平均,得到第一TRP的测量结果。例如,第一TRP发射的参考信号中信号强度超过预设门限的参考信号为SSB 1、SSB 2和CSI-RS 1,则将该三个参考信号的波束级的测量结果求平均值,得到第一TRP的测量结果。
又一种可能的实现方式是,终端设备对第一TRP发射的一个或多个参考信号进行测量,得到波束级的测量结果,进一步地,确定出上述一个或多个参考信号中信号强度最强的一个参考信号,将该参考信号的波束级的测量结果作为第一TRP的测量结果。例如,第一TRP的参考信号中信号强度最强的参考信号为SSB 1,则可以将参考信号SSB 1的波束级的测量结果作为第一TRP的测量结果。
需要说明的是,终端设备也可以确定PCI级的测量结果。下面简单描述确定PCI级的测量结果的过程。
当终端设备与第一TRP和第二TRP进行通信,且第一TRP关联的PCI与第二TRP关联的PCI相同时,终端设备可以采用上述计算第一TRP的计算方法确定出第一TRP的测量结果,进一步地,终端设备可以采用同样的计算方法确定出第二TRP的测量结果。将多个TRP的测量结果的平均值作为PCI级的测量结果,或将多个TRP的测量结果中最强的一个TRP的测量结果作为PCI级的测量结果。
当终端设备与第一TRP和第二TRP进行通信,且第一TRP关联的PCI与第二TRP关联的PCI不同时,将第一TRP对应的PCI记为第一PCI,将第二TRP对应的PCI记为第二PCI,则第一TRP的测量结果可以视为第一PCI的测量结果,同样地,第二TRP的测量结果可以视为第二PCI的测量结果。
S540、终端设备向第一网络设备发送测量结果,该测量结果包括第一TRP的测量结果。
第一TRP的测量结果携带在RRC层信令中。具体地,可以携带在RRC层信令的某一字段中,该字段用于指示一个或多个TRP的测量结果和/或一个或多个TRP关联的PCI的测量结果。
一种可能的设计是,在现有的RRC层信令中的信息元素(information element,IE)(可简称信元)“MeasResultServMO”中增加“MeasResultServingPCI”信元,该信元可以包括一个或多个TRP的测量结果或一个或多个PCI的测量结果,该信元包括的内容可表示为“SEQUENCE(SIZE(1..maxNrofPCIs))OF MeasResultNR”,其中“SEQUENCE”是一种数据类型,“maxNrofPCIs”为一个小区的多个TRP关联的PCI个数的最大值,“MeasResultNR”为现有协议定义的信元,表示NR的测量结果。应注意,“MeasResultServingPCI”仅为PCI级的测量结果指示的名称代号,本申请实施例不限定具体选用何种名称代号。
“MeasResultServingPCI”中的具体内容可通过“MeasResultNR”来提供。本申请实施例中,可以在“MeasResultNR”中的“physCellID”后面增加“physCellID 2”,或将“physCellID”中的“PhysCellID”更改为“SEQUENCE(SIZE(1..maxNrofPCIs)OF PhysCellID)”,其中“maxNrofPCIs”为终端设备进行多TRP传输时,所述多个TRP关联的PCI的个数的最大值。例如,若上述多个TRP关联的PCI为3个,则对应的标识分别为“physCellID”、“physCellID 2”和“physCellID 3”,其中“physCellID”为物理小区ID,是“MeasResultNR”中现有的字段,“physCellID 2”和“physCellID 3”为“MeasResultNR”中新增加的信元。
S550、第一网络设备向终端设备发送第一指示信息,该第一指示信息用于指示是否从源小区切换至目标小区,以及是否进行mTRP传输。
具体地,第一指示信息的描述可参看前文S340的相关描述,第一网络设备发送第一指示信息的过程可参看前文的S350的相关描述,为了简洁,此处不再赘述。
基于上述技术方案,终端设备基于波束级的测量结果,进一步确定出TRP级的测量结果,并将TRP级的测量结果上报给第一网络设备,使得与终端设备通信的多个TRP关联着不同的PCI时,可以区分出不同的TRP的测量结果,或者说区分出不同的PCI的测量结果,使得上报的测量结果更为精细,有利于第一网络设备对终端设备进行更为精细化的移动性管理和更高效的mTRP传输。
应理解,图3、图4和图5所示的实施例可以结合,也可以单独实施,本申请实施例对此不作限定。当图3、图4和图5所示的实施例结合时,既能保证终端设备将测量结果全量上报,也能区分出不同的TRP的测量结果,进而使得上报的测量结果更为精细,还能使得终端设备切换至目标小区后直接进行mTRP传输,提高通信可靠性和传输容量。
还应理解,在具体实施中可以选择图3、图4和图5中的部分步骤进行实施,还可以调整图示中步骤的顺序进行实施,本申请对此不做限定。应理解,执行图示中的部分步骤或调整步骤的顺序进行具体实施,均落在本申请的保护范围内。
图6至图8为本申请实施例提供的可能的通信装置的结构示意图。
如图6所示,通信装置600包括处理单元610和收发单元620。
通信装置600用于实现上述图3所示的方法实施例中终端设备的功能,或者,通信装置600可以包括用于实现上述图3所示的方法实施例中终端设备的任一功能或操作的模块,该模块可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。通信装置600用于实现上述图3所示的方法实施例中第一网络设备的功能,或者,通信装置600可以包括用于实现上述图3所示的方法实施例中第一网络设备的任一功能或操作的模块,该模块可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。
通信装置600用于实现上述图4所示的方法实施例中终端设备的功能,或者,通信装置600可以包括用于实现上述图4所示的方法实施例中终端设备的任一功能或操作的模块,该模块可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。通信装置600用于实现上述图4所示的方法实施例中第一网络设备的功能,或者,通信装置600可以包括用于实现上述图4所示的方法实施例中第一网络设备的任一功能或操作的模块,该模块可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。
通信装置600用于实现上述图5所示的方法实施例中终端设备的功能,或者,通信装置600可以包括用于实现上述图5所示的方法实施例中终端设备的任一功能或操作的模块,该模块可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。通信装置600用于实现上述图5所示的方法实施例中第一网络设备的功能,或者,通信装置600可以包括用于实现上述图5所示的方法实施例中第一网络设备的任一功能或操作的模块,该模块可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。
当通信装置600用于实现图3所示的方法实施例中终端设备的功能时,收发单元620用于接收来自第一网络设备的第一指示信息,该第一指示信息用于指示是否从源小区切换至目标小区以及是否使用多个TRP传输,目标小区为候选小区中的一个。处理单元610用 于根据第一指示信息,在源小区和/或目标小区进行数据传输。
当通信装置600用于实现图3所示的方法实施例中第一网络设备的功能时,收发单元620用于发送第一指示信息,该第一指示信息用于指示是否从源小区切换至目标小区以及是否使用多个TRP传输,目标小区为候选小区中的一个。处理单元610用于根据测量结果生成第一指示信息。
当通信装置600用于实现图4所示的方法实施例中终端设备的功能时,收发单元620用于通过物理层信令发送第一参考信号的测量结果,第一参考信号为源小区和候选小区中的至少一个参考信号;收发单元620还用于通过MAC层信令或RRC层信令发送第二参考信号的测量结果,第二参考信号为源小区和候选小区中的至少一个参考信号,第二参考信号和第一参考信号不同;收发单元620还用于接收来自第一网络设备的第一指示信息,该第一指示信息用于指示是否从源小区切换至目标小区以及是否使用多个TRP传输,目标小区为候选小区中的一个。处理单元610用于对源小区和候选小区进行测量;处理单元610还用于根据参考信号的信号强度,确定第一参考信号。
当通信装置600用于实现图4所示的方法实施例中第一网络设备的功能时,收发单元620用于通过物理层信令接收来自终端设备的第一参考信号的测量结果,第一参考信号为源小区和候选小区中的至少一个参考信号;收发单元620还用于通过MAC层信令或RRC层信令接收来自终端设备的第二参考信号的测量结果,第二参考信号为源小区和候选小区中的至少一个参考信号,第二参考信号和第一参考信号不同;收发单元620还用于发送第一指示信息,该第一指示信息用于指示是否从源小区切换至目标小区以及是否使用多个TRP传输,目标小区为候选小区中的一个。
当通信装置600用于实现图5所示的方法实施例中终端设备的功能时,收发单元620用于向第一网络设备发送测量结果,所述测量结果包括第一TRP的测量结果;收发单元620还用于接收来自第一网络设备的第一指示信息。处理单元610用于对源小区和候选小区进行测量;处理单元610还用于基于波束级的测量结果,确定第一TRP的测量结果,第一TRP的测量结果由第一TRP发射的一个或多个参考信号对应的波束测量结果确定,第一TRP为源小区或候选小区中的任意一个TRP。
当通信装置600用于实现图5所示的方法实施例中第一网络设备的功能时,收发单元620用于接收来自终端设备的测量结果,所述测量结果包括第一TRP的测量结果;收发单元620还用于发送第一指示信息,该第一指示信息用于指示是否从源小区切换至目标小区以及是否使用多个TRP传输,目标小区为候选小区中的一个。
有关上述处理单元610和收发单元620更详细的描述可以直接参考图3、图4或图5所示的方法实施例中相关描述直接得到,这里不加赘述。
图7是本申请实施例提供的通信装置700的另一示意性框图。该装置700可以为芯片系统,或者,也可以为配置了芯片系统,以用于实现上述方法实施例中通信功能的装置。在本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
如图7所示,该装置700可以包括处理器710和通信接口720。其中,通信接口720可用于通过传输介质和其它设备进行通信,从而用于装置700中的装置可以和其它设备进行通信。所述通信接口720例如可以是收发器、接口、总线、电路或者能够实现收发功能的装置。处理器710可利用通信接口720输入输出数据,并用于实现图3或图4或图5对 应的实施例中所述的通信方法。具体地,该装置700可用于实现上述方法实施例第一网络设备或终端设备的功能。
当通信装置700用于实现图3、图4或图5所示的方法时,处理器710用于实现上述处理单元610的功能,通信接口720用于实现上述收发单元620的功能。
可选地,该装置700还包括至少一个存储器730,用于存储程序指令和/或数据。存储器730和处理器710耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器710可能和存储器730协同操作。处理器710可能执行存储器730中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
本申请实施例中不限定上述处理器710、通信接口720以及存储器730之间的具体连接介质。本申请实施例在图7中以处理器710、通信接口720以及存储器730之间通过总线740连接。总线740在图7中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图7中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图8是本申请实施例提供的网络设备的结构示意图,例如可以为基站的结构示意图。该基站800可执行上述方法实施例中第一网络设备的功能。如图8所示,该基站800可以包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)810和一个或多个基带单元(BBU)(也可称为分布式单元(DU))820。所述RRU 810可以称为收发单元,与图6中的收发单元620对应。可选地,该RRU 810还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线8101和射频单元8102。可选地,RRU 810可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。所述RRU 810部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送第一指示信息。所述BBU 820部分主要用于进行基带处理,对基站进行控制等。所述RRU 810与BBU 820可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 820为基站的控制中心,也可以称为处理单元,可以与图6中的处理单元610对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于第一网络设备的操作流程,例如,根据测量结果生成第一指示信息等。
在一个示例中,所述BBU 820可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 820还包括存储器8201和处理器8202。所述存储器8201用以存储必要的指令和数据。所述处理器8202用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于第一网络设备的操作流程。所述存储器8201和处理器8202可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图8所示的基站800能够实现图3、图4或图5所示方法实施例中涉及第一网络设备的各个过程。基站800中的各个模块的操作和/或功能,分别为了实现上述方法实 施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述BBU 820可以用于执行前面方法实施例中描述的由第一网络设备内部实现的动作,而RRU 810可以用于执行前面方法实施例中描述的第一网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
本申请还提供一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行图3或图4或图5所示实施例中终端设备执行的方法或第一网络设备执行的方法。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序(也可以称为代码,或指令)。当所述计算机程序被运行时,使得计算机执行图3或图4或图5所示实施例中终端设备执行的方法或第一网络设备执行的方法。
本申请实施例提供了一种通信系统,该通信系统包括如前所述的终端设备和第一网络设备。
应理解,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本说明书中使用的术语“单元”、“模块”等,可用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。在本申请所提供的几个实施例中,应该理解到,所揭露的装置、设备和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,各功能单元的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令(程序)。在计算机上加载和执行所述计算机程序指令(程序)时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital video disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种通信方法,其特征在于,所述方法应用于终端设备或终端设备中的芯片,所述方法包括:
    接收来自第一网络设备的第一指示信息,所述第一指示信息用于指示是否从源小区切换至目标小区以及是否使用多个传输接收点TRP传输,所述目标小区为候选小区中的一个;
    根据所述第一指示信息,在所述源小区和/或所述目标小区进行数据传输。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    接收来自所述第一网络设备的配置信息,所述配置信息用于对所述源小区和所述候选小区进行测量;
    向所述第一网络设备发送测量结果。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一指示信息用于指示是否从所述源小区切换至目标小区以及是否使用多个传输接收点TRP传输,包括:
    所述第一指示信息包括N比特,N为正整数,所述N比特用于指示:
    切换至所述目标小区,但不使用多个TRP传输;或
    切换至所述目标小区,且使用多个TRP传输,所述多个TRP为所述目标小区中的TRP;或
    切换至所述目标小区,且使用多个TRP传输,所述多个TRP包括所述目标小区的TRP,以及所述源小区和/或所述候选小区的TRP;或
    不切换小区,且使用多个TRP传输,所述多个TRP包括所述源小区的TRP和所述候选小区的TRP。
  4. 如权利要求3所述的方法,其特征在于,所述第一指示信息还包括至少一个传输配置指示TCI状态,所述至少一个TCI状态中的每个TCI状态用于指示一个TRP。
  5. 如权利要求1或2所述的方法,其特征在于,所述第一指示信息用于指示是否从所述源小区切换至目标小区以及是否使用多个TRP传输,包括:
    所述第一指示信息包括至少一个TCI状态,所述至少一个TCI状态用于指示:
    切换至所述目标小区,但不使用多个TRP传输;或
    切换至所述目标小区,且使用多个TRP传输,所述多个TRP为所述目标小区中的TRP;或
    切换至所述目标小区,且使用多个TRP传输,所述多个TRP包括所述目标小区的TRP,以及所述源小区和/或所述候选小区的TRP;或
    不切换小区,且使用多个TRP传输,所述多个TRP包括所述源小区的TRP和所述候选小区的TRP。
  6. 如权利要求3至5中任一项所述的方法,其特征在于,所述第一指示信息携带在物理层信令或媒体接入控制MAC层信令中。
  7. 如权利要求3所述的方法,其特征在于,所述N比特携带在MAC层信令中,所述N比特为逻辑信道标识LCID。
  8. 如权利要求3所述的方法,其特征在于,所述方法还包括:
    接收第二指示信息,所述第二指示信息用于指示多种候选的操作,所述多种候选 的操作中的任意一种操作用于指示所述终端设备是否切换小区以及至少一个TCI状态,所述至少一个TCI状态中的每个TCI状态对应一个TRP;以及所述第一指示信息用于指示所述多种候选的操作中的一种操作。
  9. 如权利要求2所述的方法,其特征在于,所述向所述第一网络设备发送测量结果,包括:
    通过物理层信令发送第一参考信号的测量结果,所述第一参考信号为所述源小区和所述候选小区中的至少一个参考信号;
    通过MAC层信令或无线资源控制RRC层信令发送第二参考信号的测量结果,所述第二参考信号为所述源小区和所述候选小区中的至少一个参考信号,所述第二参考信号和所述第一参考信号不同。
  10. 如权利要求9所述的方法,其特征在于,所述方法还包括:
    根据参考信号的信号强度,确定所述第一参考信号,所述参考信号为所述源小区和所述候选小区中的多个参考信号。
  11. 如权利要求2、9或10中任一项所述的方法,其特征在于,所述测量结果包括第一TRP的测量结果,所述第一TRP的测量结果由所述第一TRP发射的一个或多个参考信号对应的波束测量结果确定,所述第一TRP为所述源小区或所述候选小区中的任意一个TRP。
  12. 一种通信方法,其特征在于,所述方法应用于第一网络设备或第一网络设备中的芯片,所述方法包括:
    根据测量结果生成第一指示信息,所述第一指示信息用于指示是否从源小区切换至目标小区以及是否使用多个TRP传输,所述目标小区为候选小区中的一个,所述测量结果是终端设备基于对所述源小区和所述候选小区的测量得到;
    发送所述第一指示信息。
  13. 如权利要求12所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送配置信息,所述配置信息用于对所述源小区和所述候选小区进行测量;
    接收来自所述终端设备的测量结果。
  14. 如权利要求12或13所述的方法,其特征在于,所述第一指示信息用于指示是否从所述源小区切换至目标小区以及是否使用多个TRP传输,包括:
    所述第一指示信息包括N比特,N为正整数,所述N比特用于指示:
    切换至所述目标小区,但不使用多个TRP传输;或
    切换至所述目标小区,且使用多个TRP传输,所述多个TRP为所述目标小区中的TRP;或
    切换至所述目标小区,且使用多个TRP传输,所述多个TRP包括所述目标小区的TRP,以及所述源小区和/或所述候选小区的TRP;或
    不切换小区,且使用多个TRP传输,所述多个TRP包括所述源小区的TRP和所述候选小区的TRP。
  15. 如权利要求14所述的方法,其特征在于,所述第一指示信息还包括至少一个TCI状态,所述至少一个TCI状态中的每个TCI状态用于指示一个TRP。
  16. 如权利要求12或13所述的方法,其特征在于,所述第一指示信息用于指示是否从所述源小区切换至目标小区以及是否使用多个TRP传输,包括:
    所述第一指示信息包括至少一个TCI状态,所述至少一个TCI状态用于指示:
    切换至所述目标小区,但不使用多个TRP传输;或
    切换至所述目标小区,且使用多个TRP传输,所述多个TRP为所述目标小区中的TRP;或
    切换至所述目标小区,且使用多个TRP传输,所述多个TRP包括所述目标小区的TRP,以及所述源小区和/或所述候选小区的TRP;或
    不切换小区,且使用多个TRP传输,所述多个TRP包括所述源小区的TRP和所述候选小区的TRP。
  17. 如权利要求14至16中任一项所述的方法,其特征在于,所述第一指示信息携带在物理层信令或MAC层信令中。
  18. 如权利要求14所述的方法,其特征在于,所述N比特携带在MAC层信令中,所述N比特为LCID。
  19. 如权利要求14所述的方法,其特征在于,所述方法还包括:
    发送第二指示信息,所述第二指示信息用于指示多种候选的操作,所述多种候选的操作中的任意一种操作用于指示所述终端设备是否切换小区以及至少一个TCI状态,所述至少一个TCI状态中的每个TCI状态对应一个TRP;以及所述第一指示信息用于指示所述多种候选的操作中的一种操作。
  20. 如权利要求13所述的方法,其特征在于,所述接收来自所述终端设备的测量结果,包括:
    接收物理层信令,所述物理层信令中携带第一参考信号的测量结果,所述第一参考信号为所述源小区和所述候选小区中的至少一个参考信号;
    接收MAC层信令或RRC层信令,所述MAC层信令或RRC层信令中携带第二参考信号的测量结果,所述第二参考信号为所述源小区和所述候选小区中的至少一个参考信号,所述第二参考信号和所述第一参考信号不同。
  21. 如权利要求13或20所述的方法,其特征在于,所述测量结果包括第一TRP的测量结果,所述第一TRP的测量结果由所述第一TRP发射的一个或多个参考信号对应的波束测量结果确定,所述第一TRP为所述源小区或所述候选小区中的任意一个TRP。
  22. 一种通信装置,其特征在于,包括用于执行如权利要求1至11中任一项所述方法的单元。
  23. 一种通信装置,其特征在于,包括处理器和存储器,所述处理器和所述存储器耦合,所述处理器用于控制所述装置实现如权利要求1至11中任一项所述的方法。
  24. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至11中任一项所述的方法。
  25. 一种通信装置,其特征在于,包括用于执行如权利要求12至21中任一项所 述方法的单元。
  26. 一种通信装置,其特征在于,包括处理器和存储器,所述处理器和所述存储器耦合,所述处理器用于控制所述装置实现如权利要求12至21中任一项所述的方法。
  27. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求12至21中任一项所述的方法。
  28. 一种通信系统,其特征在于,包括如权利要求22所述的通信装置和如权利要求25所述的通信装置;或,如权利要求23所述的通信装置和如权利要求26所述的通信装置;或,如权利要求24所述的通信装置和如权利要求27所述的通信装置。
  29. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被计算机执行时,实现如权利要求1至21中任一项所述的方法。
  30. 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当所述指令被计算机运行时,实现如权利要求1至21中任一项所述的方法。
PCT/CN2022/108032 2021-08-04 2022-07-26 一种通信方法和通信装置 WO2023011265A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110892623.4 2021-08-04
CN202110892623.4A CN115707021A (zh) 2021-08-04 2021-08-04 一种通信方法和通信装置

Publications (1)

Publication Number Publication Date
WO2023011265A1 true WO2023011265A1 (zh) 2023-02-09

Family

ID=85155199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108032 WO2023011265A1 (zh) 2021-08-04 2022-07-26 一种通信方法和通信装置

Country Status (2)

Country Link
CN (1) CN115707021A (zh)
WO (1) WO2023011265A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107371195A (zh) * 2016-05-11 2017-11-21 中兴通讯股份有限公司 小区切换方法和装置及系统
CN108632926A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 通信方法、网络设备和终端
CN110291814A (zh) * 2019-05-17 2019-09-27 北京小米移动软件有限公司 Bwp切换方法、装置及存储介质
CN111294173A (zh) * 2019-01-11 2020-06-16 北京展讯高科通信技术有限公司 一种速率匹配方法及装置
CN111711988A (zh) * 2020-05-15 2020-09-25 捷开通讯(深圳)有限公司 部分带宽切换方法
CN114071615A (zh) * 2020-08-07 2022-02-18 维沃移动通信有限公司 小区切换方法和终端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107371195A (zh) * 2016-05-11 2017-11-21 中兴通讯股份有限公司 小区切换方法和装置及系统
CN108632926A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 通信方法、网络设备和终端
CN111294173A (zh) * 2019-01-11 2020-06-16 北京展讯高科通信技术有限公司 一种速率匹配方法及装置
CN110291814A (zh) * 2019-05-17 2019-09-27 北京小米移动软件有限公司 Bwp切换方法、装置及存储介质
CN111711988A (zh) * 2020-05-15 2020-09-25 捷开通讯(深圳)有限公司 部分带宽切换方法
CN114071615A (zh) * 2020-08-07 2022-02-18 维沃移动通信有限公司 小区切换方法和终端

Also Published As

Publication number Publication date
CN115707021A (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
US11438847B2 (en) Power control method and apparatus
WO2020135400A1 (zh) 通信方法和通信装置
WO2020164418A1 (zh) 一种测量方法、终端设备及网络设备
WO2020143692A1 (zh) 通信方法和通信装置
WO2019095929A1 (zh) 通信方法和通信设备
WO2021013122A1 (zh) 切换的方法和装置
CN108365997B (zh) 一种信息传输方法和装置
JP6996635B2 (ja) セル設定装置及び方法
WO2020135383A1 (zh) 通信方法和通信装置
US20230009565A1 (en) Communication method and apparatus applied to multi-link device in wireless local area network
JP6442734B2 (ja) 基準信号受信品質を測定するためのユーザ機器および方法
EP3846532A1 (en) Power control method and device
WO2017210907A1 (zh) 多链接配置方法、基站及用户设备
US20230012998A1 (en) Communication method, access network device, terminal device, and core network device
EP3496454B1 (en) Beamforming information interaction method and network device
WO2020211778A1 (zh) 小区切换方法以及装置
WO2020156364A1 (zh) 测量方法和通信装置
WO2019096278A1 (zh) 信号测量的方法和设备
US20220224405A1 (en) Beam Handover Method, Apparatus, And Communications Device
WO2023011265A1 (zh) 一种通信方法和通信装置
CN114759964A (zh) 一种信息处理方法、装置及网络侧设备
JP7276416B2 (ja) セル設定装置及び方法
EP4216633A1 (en) Communication method and communication apparatus
CN114390727B (zh) 目标对象切换方法及装置、电子设备、网络设备
US20220159526A1 (en) Handover method, system for handover, and terminal device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22851979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE